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Abstract

In this work, we studied heat and mass transfer in a nanofluid flow over a stretching sheet.

Fluid flow in different flow geometries was studied and a co-ordinate transformation was

used to transform the governing equations into non-dimensional non-similar boundary layer

equations. These equations were then solved numerically using both established and recent

techniques such as the spectral relaxation and spectral quasi-linearization methods. Numerical

solutions for the heat transfer, mass transfer and skin friction coefficients have been presented

for different system parameters, such as heat generation, Soret and Dufour effects, chemical

reaction, thermal radiation influence, the local Grashof number, Prandtl number, Eckert num-

ber, Hartmann number and the Schmidt number. The dependency of the skin friction, heat

and mass transfer coefficients on these parameters has been quantified and discussed. The

accuracy, and validity of the spectral relaxation and spectral quasi-linearization methods has

been established.
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Chapter 1

Introduction

1.1 Background and Motivation

Fluid flow and heat transfer occur in both natural and man-made industrial situations. Such

flow or heat and mass transfer processes can be modeled mathematically by complex systems

of partial differential equations, which are often nonlinear due to both the complexity of the

problem and the number of variables in the problem. There are several ways to solve these

differential equations, such as numerical, analytical or semi-analytical methods. Each of these

methods has both advantages and disadvantages. Analytical solutions, where they can be

found, often provide the best insights into the effects of different parameters that have a

bearing on the solution, which is not usually the case with the other methods. Due to their

complexity, there are however a lot of fluid flow, and heat and mass transfer problems that

do not have exact solutions. In order to solve such problems semi-analytical and numerical

methods have been introduced and used successfully. The main goal of the current study is

1



to introduce two numerical methods to solve nonlinear partial differential equations that arise

in the flow of fluids.

Flows of practical significance, such as the spread of ground pollutants, occur over a porous

medium. A porous medium consists of a solid matrix with interconnected voids. In a natural

porous medium the distribution of pores, their shapes and sizes is irregular. Examples of

natural porous media include beach sand, sandstone, limestone, wood and pulmonary tissue

in the lungs, Bear and Bachmat [1], Corey [2], Ingham and Pop [3] and Vazquez [4]. Porous

media flows have been comprehensively studied since they offer a means of separating solid

materials of different sizes, Strange and Webber [5], Nield and Bejan [6]. Porous media act

as highly selective screens or cages that allow access only to particles below a certain size.

Porous media are generally characterized by two properties of porous media; porosity and

permeability, that generally control the movement and storage of fluids. Porosity is the ratio

of the void space to the total volume of the porous medium, see Lethr and Lethr [7]. Porosity

is denoted by ϕ and represents the total storage capacity of the medium. The quantity 1−ϕ

therefore defines the fraction of the medium occupied by the solid. By defining ϕ in this way,

the implicit assumption is that all the void space is connected. If, some of the pore space is

disconnected from the remainder, then the concept of an effective porosity is often introduced.

This is defined as the ratio of connected void to total volume, Nield and Bejan [6]. The second

property, permeability, of porous media gives a sense of the ease with which a fluid can move

freely through the pores. Natural flow through porous media is found in geomechanics, soil

mechanics, hydrogeology, petroleum geology and geophysics. In civil engineering, this type

of flow is important in geothermal energy recovery, ground water pollution, thermal energy

storage and crude oil extraction, Feng [8], Vafai [9]. The significant topic investigated in this

2



dissertation is that of flow, or heat and mass transfer, in a porous medium saturated with a

nanofluid.

Modelling fluid flow, or heat and mass transfer in a porous medium, has been investigated

in various ways. Firstly, the concept of non-Darcy effects on transport equations, as will be

explained further in Section 1.2, for several geometrical configurations and boundary condi-

tions has been used, Nield and Bejan [6]. Alternatively, research on porous media has used

the generalised Brinkman-Forcheimer model. In particular, Vafai [9] and Ranganatha and

Viskanta [10] used this model to study convection from a vertical plate media; Nield and

Kuznetsov [11; 12] studied boundary layer flows in nanofluids; while Kumari and Nath [13]

studied non-Darcy natural convection in a Newtonian in a porous medium. In the present

work we investigate the convective transport of heat and mass in nanofluid boundary layer

flow.

In heat transfer studies, the objective is often to determine energy transfer between bodies

at different temperatures and the mechanisms of heat transfer. In the eighteenth and early

nineteenth centuries, researchers postulated that all bodies contained an invisible substance

called the caloric. Properties assigned to the caloric included the weight. These ideas have

subsequently proved to be inconsistent, but nevertheless an important feature of the caloric

was that it flowed from hotter bodies to colder ones, see Behzadmehr and Azarkish [14]. Heat

transfer is now understood to be the flow of thermal energy due to a non-uniform temperature

field. This is commonly measured as a heat flux, see Holman [15] and Burmeister [16]. There

are three modes of heat transfer between differentially heated bodies, conduction, convection

and radiation, Thirumale [17].
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Mass transfer occurs either via the bulk fluid motion or through the diffusion of a chemical

species. The primary focus in this dissertation is on mass transfer through diffusion as a

result of concentration gradients. An often mentioned example of diffusive mass transfer is

the humidification that occurs when a container of water is left open leading to a mixture

of air and water vapour in the atmosphere. A concentration gradient causes water to be

transported from the liquid surface into the atmosphere, Wetly et al. [18]. Mass transfer has

several similarities to the process of heat transfer.

The mechanisms of heat and mass transfer may considered in terms of conduction or convec-

tion. In this regard, heat conduction is due to temperature gradients normal to the interface

between two materials, and mass diffusion is due to mass gradients normal to the surface, if

the fluid is at rest everywhere, see Kays and Crawford [19]. Moreover, if the fluid is moving,

then its own movement as well as the two potential gradients are responsible for transferring

heat and mass. Hence the transport of heat or mass is by both molecular conduction processes

together with gross fluid motion.

Heat transport induced by buoyancy forces arising from a temperature gradient is called free

convection, see Jaluria [20], Gorla and Zinolabedini [21; 22], Gebhart et al. [23] and Rathore

and Kapuno [24]. It arises in situations such as cooling operations. Numerous scholars have

studied free convection flows, among them Jaluria and Gebhart [25], Chen and Minkowycz

[26] and Jaluria and Himasekhar [27]. Forced convection in porous medium was investigated

by Rudramoorthy and Mayilsamy [28]. A combination of natural and forced convection was

studied by Wooding [29] and Lai [30], and Lioyd and Sparrow [31]. Mixed convection with

boundary layer stability and viscous dissipation over a horizontal surface was studied by,
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among others, Mureithi and Mason [32] whose findings showed that the boundary layer is

dominated by internal regions of super velocities.

1.2 Double-diffusive convection

In this section, we turn our attention to processes of combined heat and mass transfer that are

driven by buoyancy. Double-diffusive convection describes convection driven by two different

density gradients with different diffusion rates, see Siegmann and Rubenfeld [33]. Double-

diffusive convection occurs in sea water, the mantle flow in the earth’s crust as well as in

many engineering and physical problems such as in contaminant transport in saturated soils,

food processing, and the spread of pollutants, Bourich and Advani [34]. Double-diffusive

convection in a fluid-saturated porous medium has been an active area of research for many

years. Comprehensive reviews of the literature in this area can be found in the articles by

Benzeghiba and Chikh [35], Mojtabi and Mojtabi [36], Beya and Lilia [37] and Mamou [38].

Double-diffusive convection also appears in the modeling of solar ponds, Akbarzadeh and

Manins [39]. Nield [40] investigated double-diffusive convection and the in viscoelastic fluids

in a porous media. Numerous previous studies have been published regarding the problem of

a porous layer heated from below or the side by, among others, Baines and Gill [41], Gershuni

et al. [42] and Khan and Zebib [43]. A number of studies are of particular interest, such as

Raptis et al. [44] who found similarity solutions for the boundary layer flow near a vertical wall

immersed in porous media with constant temperature and solute concentration. Nield et al.

[45] studied convection due to inclined thermal and solutal gradients in a shallow horizontal

layer in porous medium. Amahmid et al. [46] investigated double-diffusive convection in
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a horizontal Brinkman porous layer with constant heat and mass fluxes. Alloui et al. [47]

investigated the onset of double-diffusive convection in a rectangular porous layer on horizontal

boundaries. The transition to chaos in double-diffusive Marangoni convection was investigated

by Li et al. [48]. Magnetohydrodynamic (MHD) double-diffusive convective flow in a porous

medium was investigated by Okedayo et al. [49] and the influence of viscous dissipation on

free convection in a non-Darcy porous medium saturated with a nanofluid was studied by

RamReddy et al. [50]. This review of the literature shows the importance of combined heat

and mass transfer in double-diffusive convection flow. However, insufficient work has been

carried out on double-diffusive convection. Consequently in this study we will consider fluid

flow, and heat and mass transfer on nanofluids.

1.3 The study of nanofluids

The study of nanofluids has in recent years gained a lot of attention. Nanofluids are solid-

liquid mixtures consisting of solid nanoparticles suspended in a liquid. For a fluid that is

an inherently poor thermal conductor, such as ethylene glycol, high concentrations of solid

particles are usually required to achieve good thermal conductivity. However, reports by

Eastman et al. [51] and Choi et al. [52] show that the addition of a small amount of copper

nanoparticles, less than 1% by volume, could increase the fluid’s thermal conductivity by as

much as 40%. Some results in this speedily evolving field include a surprisingly strong increase

in the thermal conductivity of a nanofluid compared with the base fluid, Vassallo et al. [53].

Cooling by nanofluids has many potential applications. In this regard, You et al. [54] studied

the feasibility of using a nanofluid to improve the cooling of nuclear reactors. Other studies
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indicate that nanofluids as cooling fluids have the potential to conserve considerably amounts

of energy for industries in the USA and reduce annual gas emissions by approximately 5.6-

million tonnes of carbon dioxide, see Routbort [55]. Nanoparticles can also be used to cool

pipes exposed to high temperatures in geothermal power and energy extraction from the

earth’s crust, Wong et al.[56]. Besides other mechanical applications such as in automatic

transmission fluids, engine oils, lubricants and coolants, biomedical applications such as in

cancer therapies, nano-drug delivery, nano-cryosurgery as well as electronic applications such

as cooling microchips in computers have been reported by Boungiorno et al. [57].

1.4 Empirical and numerical studies of double-diffusive

convection

Early empirical studies on double-diffusive convection (DDC) were carried out over 40 years

ago. For instance, Herbert and Turner [58] studied double-diffusive convection and stratifi-

cation in oceans. In a multi-compound solution, Bai et al.[59] showed that double-diffusive

convection occurs in the liquid due to a coupling of temperature and concentration gradients.

Other recent empirical studies include those of Mergui et al. [60] and Barman and Dutta [61].

The transport equations are nonlinear and it is not easy to find their analytical solutions

because analytical techniques generally cannot handle this level of complexity. Instead, nu-

merical solutions are usually sought. Consequently, many researchers have recognised the

value of using empirical studies to validate theoretical models of DDC. One of the first to do

this was Griffith [62], who studied diffusive convection experimentally using a Hele-Shaw cell
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in a porous medium. He measured salt fluxes and compared the results with predictions from

numerical models. In another study, Beckermann et al.[63] provided experimental validation

for numerical simulations of double-diffusive natural convection in a Hele-Shaw cell. Webb et

al. [64] also investigated DDC in a cylinder in a highly diffusive regime.

With the success of numerical simulations, other studies have recognised factors which may

influence DDC, such as hydromagnetics, chemical reaction, heat generation, heat radiation and

Soret and Dufour effects, see Gebhart and Pera [65]. Free convection with suction/injection

over permeable surfaces in a porous medium was studied by Minkowycz et al.[66]. The prob-

lem of modelling fluid flow has attracted many investigations, see for instance Chamkha and

El-Kabeir [67], Lai [68], Yih [69] and Cheng [70]. Of particular interest are the following three

findings. Firstly, interfacial velocities due to mass diffusion are small enough to be neglected.

Secondly, the heat transfer rate at the surface increases with the buoyancy parameter, un-

steadiness parameter, Prandtl number, and the solid volume fraction of nanoparticles. Finally,

larger values of the Grashof number have a significant effect on the momentum boundary layer

flow of a nanofluid along a stretching sheet with thermal radiation and viscous dissipation,

see Khan et al. [71]. A variety of methods have been used for these studies. In particular,

Lai [68] obtained similarity solutions, while implicit finite differences were used by Yih [69],

Mahdy [72] and Khan et al. [71]. Mixed convection flow along both vertical and inclined flat

plates was investigated by Chen et al. [73], who showed that the interfacial velocities due to

mass diffusion are very small and so could be neglected. Unsteady heat and mass transfer over

an impulsively stretched vertical surface with chemical reaction and Soret and Dufour effects

was studied by Chamkha and El-Kabeir [67]. They demonstrated the influences of the Hart-

mann number, Dufour number, Soret number, mixed convection parameter, suction/injection
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parameter, dimensionless chemical reaction parameter, and the wall temperature and concen-

tration exponent. Lai [68] solved the coupled heat and mass transfer problem in a vertical

plate in a saturated porous medium. The results indicated that heat and mass transfer re-

sults may range from the asymptotic free convection limit to that of the forced convection

limit. Yih [69] used the modified Keller box method to study mixed convection about a wedge

embedded in a porous medium. Solutions for steady two-dimensional free convection and

mass transfer flow of a viscous incompressible electrically conducting fluid through a porous

medium were found by Acharya et al. [74]. The solution for transient heat and mass transfer

from a vertical plate embedded in fluid saturated porous media were found using the cubic

spline collocation method by Cheng [70]. Unsteady mixed convection boundary layer flow

and heat transfer in nanofluids due to a stretching sheet was studied by Mahdy [72]. They

discussed the effects of the governing parameters and different models of nanofluids and found

that the heat transfer rate at the surface increases with buoyancy parameter, unsteadiness

parameter, Prandtl number, and the solid volume fraction of nanoparticles. Khan et al. [71]

found that larger values of the Grashof number had a significant effect on the momentum

boundary layer for unsteady MHD free convection boundary layer. Implicit finite differences

were used to solve nonlinear partial differential equations. In this study we will investigate

unsteady and steady MHD mixed convection boundary layer flow, heat and mass transfer in

a porous medium saturated with a nanofluid.

Ishak et al. [75] investigated heat transfer over an unsteady stretching permeable surface

with a prescribed wall temperature. They quantified the effects of the unsteadiness parameter,

suction/injection and the Prandtl number on the heat transfer characteristics. Complementing

this was a study by Joshi et al. [76]. They found the effect of thermal radiation in magne-
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tohydrodynamic (MHD) boundary layer flow over a stretching surface with suction/injection.

Manjunatha et al. [77] used a fifth order Runge-Kutta Fehlberg method to investigate the

effect of thermal radiation on boundary layer flow and heat transfer from a dusty fluid over an

unsteady stretching sheet. Bhattacharyya et al.[78] studied unsteady MHD boundary layer

flow with diffusion and a first order chemical reaction over a permeable stretching sheet with

suction or blowing using the finite difference method and a quasi-linearization technique. From

this analysis of the literature, it is clear that numerical methods, such as finite difference, fifth

order Runge-Kutta Fehlberg method and the Keller-box method can be useful for solving

non-linear differential equations

1.5 Some solution techniques

Numerous problems in science and engineering are governed by nonlinear differential equa-

tions. These equations are often strongly coupled and obtaining their exact solutions is not

simple. For this reason we often have to resort to approximate numerical solutions. Over the

years, a number of computational methods have been developed to solve non-linear equations,

Adomian [79]. These include established numerical schemes like the Runge-Kutta schemes,

the shooting method, the Keller-box method and the finite element method. The main dis-

advantage of numerical methods is that they often do not give insights into the structure of

the solution, especially when the problem involves many parameters. They also give discon-

tinuous points on the solution curve. Furthermore, some numerical methods are not stable

or uniformly convergent. In such cases one is often forced to resort to either the classical

series method or other perturbation methods to find approximate analytical solutions. The
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disadvantage of conventional perturbation methods is that they require the presence of either

a large or a small parameter in the problem, see Williams and Rhyne [80]. Many of the meth-

ods are difficult to implement, because of slow rates of convergence or are even divergent.

In this work, we use at least two innovative numerical techniques to solve strongly nonlinear

systems of partial differential equations that arise in the study of fluid flow problems. The

methods of particular interest are; (1) the spectral relaxation method (SRM), and (2) the

spectral quasi-linearization method (SQLM), see Motsa et al. [81] and Motsa [82]. These two

techniques are used in conjunction with the Chebyshev peseudo-spectral collocation method

which is extensively explained in Trefethen [83] and Canuto et al. [84]. Furthermore, the two

approaches use ideas suggested by;

• The Gauss-Seidel relaxation technique, and

• The Taylor series expansion.

1.5.1 The spectral relaxation method (SRM)

The spectral relaxation method is based on simple iteration schemes formed by reducing large

systems of nonlinear equations into smaller systems of linear equations, Motsa [82]. The

method has been used to solve various nonlinear problems and has been determined to be

an efficient method, see Motsa [82]. The main idea is to decouple the system of nonlinear

equations using the Gauss-Seidel method. The decoupled system of equations is then inte-

grated numerically using the Chebyshev spectral collocation method. It has been observed

that the SRM gives good accuracy, even with only a few grid points, Motsa [82]. In Motsa

and Makukula [85], the method was used to solve the steady von Karman flow of a Reiner-
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Rivlin fluid with Joule heating and viscous dissipation. Accurate results were obtained and

the speed of convergence of the method was significantly improved by using successive over

relaxation (SOR) techniques. In Shateyi [86], the steady MHD flow of a Maxwell fluid past

a vertical stretching sheet in a Darcy porous medium was studied. In Shateyi and Makinde

[87], the SRM was used to solve the problem of steady stagnation point flow and heat transfer

of an electrically conducting incompressible viscous fluid. Shateyi and Marewo [88] studied

the magneto-dynamic boundary layer flow with heat and mass transfer in an incompressible

upper-convected Maxwell fluid over a stretching sheet with viscous dissipation and thermal

radiation. Motsa et al. [81], extended the method to a multistage technique to achieve better

accuracy and computational efficiency. We use the spectral relaxation method to solve the

system of nonlinear partial differential equations that describe the fluid flow and heat and

mass transfer.

1.5.2 The spectral quasi-linearization method (SQLM)

The spectral quasi-linearization method (SQLM) was introduced by Motsa and Shateyi [89].

In the SQLM, the governing nonlinear equations are linearized using the Newton-Raphson

based quasi-linearization method (QLM), which was developed by Bellman and Kalaba [90].

The method has been implemented extensively and shown to be efficient, simple to use and

quite accurate. For instance, in Motsa and Shateyi [89], the SQLM scheme was developed and

used to solve the Blasius boundary layer equation and the unsteady free convective heat and

mass transfer on a stretching surface in a porous medium with suction/injection parameter.

The method was compared against the local linearisation method (LLM) where it was shown

that the SQLM loses accuracy when the number of collocation points is made large, see Motsa
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and Sibanda [91]. The method has been used alongside other methods to try to determine its

accuracy. In Dlamini et al. [92], the SQLM is compared against the compact finite difference

quasi-linearization method (CFD-QLM) using both a one dimensional problem and a three

dimensional problem. The results showed that SQLM had a faster computational speed than

the CFD-QLM but the SQLM was less accurate for the three dimensional problem. In another

example, Motsa and Sibanda [93] used the method to obtain a sequence of techniques with

arbitrary higher order convergence. The techniques were used to find solutions of Falknen-

Skan type boundary layer equations. We use the spectral quasi-linearization method to solve

the system of nonlinear partial differential equations which describe the fluid motion and heat

and mass transfer.

1.6 Dissertation objectives

The objectives of this dissertation are as follows:

(i) To investigate unsteady nanofluid flow with heat and mass transfer over a stretching

sheet in the presence of heat generation.

(ii) To determine the effects of the Dufour and Soret parameters, the magnetic field strength,

the thermal radiation parameter, buoyancy terms and the chemical reaction parameter

on steady state mixed convection in a nanofluid flow over a non-isothermal wedge due

to a stretching sheet.

To this end:

13



• We compare the accuracy rate of the SRM and SQLM.

• We compare our results with previous studies to determine the accuracy and reliability

of the SRM and SQLM.

The study consists of four main chapters. In Chapter 2 we give a description of the theory

under pinning the use of the SRM and SQLM methods. In Chapter 3 we study unsteady

nanofluid flow, heat and mass transfer over a stretching sheet in the presence of heat gen-

eration and thermal-diffusion effects. The governing non-linear partial differential equations

and the boundary conditions are transformed into a set of non-similar equations are solved

numerically using both the spectral relaxation and quasi-linearization methods. The accuracy

of the numerical methods is tested by determining the influences of various physical param-

eters and in the limiting case our results are compared with published work. In Chapter

4 we study steady state mixed convection and heat and mass transfer characteristics from

a non-isothermal wedge due to a stretching sheet with the Soret and Dufour effects. The

transformed coupled nonlinear partial differential equations are solved numerically using the

spectral relaxation method. A comparison is made between our results and others published

in the literature. In Chapter 5 we extend the work presented in Chapter 4 to study unsteady

magnetohydrodynamic mixed convection boundary layer flow with suction/injection. In the

analysis we include the effects of the heat generation coefficient, viscous dissipation and the

Soret and Dufour effects. The spectral relaxation method is used to solve the governing non-

similar equations. A parametric survey of the effects of some governing parameters is made

and a representative sample of results presented graphically. A comparison of the results ob-

tained using the SRM method for the skin friction coefficient with previously published results

is given. In Chapter 6 we conclude by discussing the main findings of this dissertation.
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Chapter 2

A brief description of the SRM and

SQLM

In this chapter we discuss in detail the spectral relaxation and quasi-linearization methods.

The methods were first introduced by Motsa and Makukula [85] for the solution of nonlinear

system of equations such as arise in the study of fluid flow problems. Moreover, we used

matlab program for a simulations in order to obtain the values of our parameter for this dis-

sertation.

Over the years, a number of computational methods have been developed to solve nonlinear

equations. Such higher order systems have proven to be complicated to solve analytically,

hence the need to obtain numerical solutions. As was described in Section 1.5, while methods

such as the Runge-Kutta schemes and the finite element method are quite efficient in terms

of providing approximate solutions for system of nonlinear equations, because of slow conver-

gence, they may however be unsuited to solve strongly nonlinear systems. Thus conventional
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methods are unsuited to solving the systems of nonlinear partial differential equations that

arise when modelling fluid flow. Instead, here we adopt a different approach.

The spectral relaxation method (SRM) and the spectral quasi-linearization method (SQLM)

have higher rates of convergence, good accuracy with only a few grid points, and ease of

application to complicated nonlinear partial differential equations. Consequently, although the

methods have not been applied extensively, we use them here due to the following advantages:

(i) They are applicable to all non-linear ODE and PDE equations.

(ii) They are relatively easy to implement.

The methods are fully described in Motsa and Sibanda [91]. Here we present a brief description

of how the methods can be implemented in practice. Let us consider a system of m nonlinear

ordinary differential equations inm unknown functions zj(η) j = 1, 2, 3, ...,m where η ∈ [a, b]

is the dependent variable. Define a vector Zj to be the vector of the derivatives of the variable

zj with respect to η, such that

Zj(η) = [z
(0)
j , z

(1)
j , ..., z

(nj)
j ], (2.1)

where z
(0)
j = zj, z

(p)
j is the pth derivative of zj with respect to η and nj(j = 1, 2, ...m) is the

highest derivative order of the variable zj appearing in the system of equations. Now let Zj

be denoted as a sum of its linear (Lj) and nonlinear components (Nj) as

Lj[Z1, Z2, ..., Zm] +Nj[Z1, Z2, ..., Zm] = Hj(η), j = 1, 2, ...,m, (2.2)

where z
(0)
j = zj, z

(p)
j is the pth derivative of zj with respect to η and nj(j = 1, 2, ...m) is the

highest order derivative order of the variable zj appearing in the system of equations. Now
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the system can be written in terms of Zj as a sum of its linear (Lj) and nonlinear components

(Nj) as

Lj[Z1, Z2, ..., Zm] +Nj[Z1, Z2, ..., Zm] = Hj(η), j = 1, 2, ...,m, (2.3)

where H(η) is a known function of η. If the nonlinear component in (2.2) is a sum of nonlinear

terms with at least one of them being a multiple of zj, we can further split Nj into a sum of

the two nonlinear functions as

Nj[Z1, Z2..., Zm] = zjFj[Z1, Z2, .., Ẑj., Zm] +Gj[Z1, Z2, ..., Zm], (2.4)

where Ẑj(η) = [z
(1)
j , ..., z

(nj)
j ] and Fj is a nonlinear function of Z1, Z2, ..., Zm in which zj is

either absent or appears as a nonlinear factor.

A two point boundary condition is imposed on equation (2.2) in the form

m∑
j=1

nj−1∑
p=0

β
p
v,jz

(p)
j (a) = Wa,v, v = 1, 2, ...,ma, (2.5)

m∑
j=1

nj−1∑
p=0

γ
p
c,jz

(p)
j (b) = Wb,c, c = 1, 2, ...,ma, (2.6)

where β
[p]
v,j, γ

[p]
c,j are the constant coefficients of z

(p)
j in the boundary conditions, and ma, mb

are the total number of prescribed boundary conditions at η = a and η = b respectively.

We use the Gauss-Seidel method to decouple systems of nonlinear equations. Given initial
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approximations Z1,0, Z2,0, ...., Zm,0, the iterative scheme described by

L1[Z1,r+1, Z2,r, ..., Zm,r] + Z1,r+1F1[Ẑ1,r, Z2,r, ..., Zm,r]

= H1 −G1[Z1,r, Z2,r, ..., Zm,r],

L2[Z1,r+1, Z2,r+1, Z3,r..., Zm,r] + Z2,r+1F2[Z1,r+1, Ẑ2,r, Z3,r, ..., Zm,r]

= H2 −G2[Z1,r+1, Z2,r, ..., Zm,r],

.

.

.

Lm[Z1,r+1, ..., Zm−1,r+1, Zm,r+1] + zm−1,r+1Fm[Z1,r+1, ..., Zm−1,r+1, Ẑm,r]

= Hm −Gm[Z1,r+1, ..., Zm−1,r+1, Zm,r],

(2.7)

where Zj,r+1 and Zj,r are the approximations of Zj at the current and the previous iteration,

respectively. Equation (2.7) forms a system of m linear decoupled equations which can be

solved iteratively for r = 1, 2, ... from a starting initial approximation z1,0. The iteration is

repeated until convergence takes place at a point. Convergence can be assessed by determining

the error after each iteration. This error Ed at the (r+1)th iteration is defined by the following

formula, Motsa and Sibanda [91],

Ed = Max(||z1,r+1 − z1,r||∞, ||z1,r+1 − z1,r||∞, ||z1,r+1 − z1,r||∞, ). (2.8)

We transform the domain [a,b] on which the governing equations are defined to the interval

[-1,1] using the formula

η =
(b− a)(τ+ 1)

2
.

The differentiation matrix D is used to approximate the derivatives of the unknown variables
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zj(η) at the collocation points as the matrix vector product see Motsa [94]

dzj

dη
=

N∑
s=0

Dls(τs) = DZi, l = 0, 1, ...,N (2.9)

where N+1 is the number of grid points, D = 2D/(b−a) and Z = [z(τ0), z(τ1), ..., z(τN)]T is

the vector function at the collocation points. Higher order derivatives are obtained as powers

of D, that is

z
(p)
j = DpZj. (2.10)

Equation (2.1) is equivalent to

m∑
j=1

nj∑
p=0

α
[p]
i,j z

(p)
j +Ni[Z1, Z2, ..., Zm] = Hi, (2.11)

where α
[p]
i,j are the constant coefficients of z

(p)
j , the derivative of zj, j = 1, 2, ...,m at the ith

equation for i = 1, 2, ...,m. The iteration scheme given in equation (2.7) can be expressed

compactly as

i∑
j=1

nj∑
p=0

α
[p]
i,j z

(p)
j,r+1 + zi,r+1F[Z1,r+1, ..., Zi−1,r+1, Ẑi,r, Zi+1,r, ..., Zm,r]

= Hi −

m∑
j=i+1

nj∑
p=0

α
[p]
i,j z

(p)
j,r −Gi[Z1,r+1, ..., Zi−1,r+1, ..., Zm,r]

(2.12)

for i = 1, 2, ...,m. Applying equations (2.10) to (2.12) and the corresponding boundary

conditions gives

i∑
j=1

nj∑
p=0

α
[p]
i,j D

pZj,r+1 + zi,r+1Fi[Z1,r+1, ...,Zi−1,r+1,
︷︸︸︷
Z
i,r
,Zi+1,r, ...,Zm,r]

= Hi −

m∑
j=i+1

nj∑
p=0

α
[p]
i,j D

[p]Zj,r −Gi[Z1,r+1, ...,Zi−1,r+1,Zi,r, ...,Zm,r]

(2.13)

subject to
m∑

j=1

nj−1∑
p=0

β
[p]
v,j

N∑
c=o

D
p

Nc
zj,r+1(τz) = Ca,v, v = 1, 2, ...,ma, (2.14)

19



m∑
j=1

nj−1∑
p=0

γ
[p]
o,j

N∑
c=o

D
p

0z
zj,r+1(τz) = Cb,o, o = 1, 2, ...,ma, (2.15)

Consider the system of m nonlinear differential equations in m unknowns functions zi(η),

i = 1, 2, ...,m where ηε[a, b] is the dependent variable. The system can be written in terms

of zi as a sum of it’s linear (L) and nonlinear components (N)

L[Z1(η), Z2(η), ..., Zm(η)] +N[Z1(η), Z2(η), ..., Zm(η)] = H(η), ηε(a, b) (2.16)

subject to the boundary conditions

Ai[Z1(a), Z2(a), ..., Zm(a)] = Wa,i, Bi[Z1(b), Z2(b), ..., Zm(b)] = Wb,i, (2.17)

where Ai and Bi are linear operators and Wa,i and Wb,i are constants for i = 1, 2, ...,m. A

vector Zj is defined as

Zj = [z
(0)
1 , z

(1)
2 , ..., z

(nj)
j ], (2.18)

where z
(0)
j = zj, z

(p)
j is the pth derivative of zj with respect to η and ni(i = 1, 2, ...,m) is the

highest derivative order of the variable zj and (2.17) becomes

Li[Z1, Z2, ..., Zm] +Ni[Z1, Z2, ..., Zm] =

m∑
j=1

nj∑
p=0

α
[p]
i,j z

(p)
j +Ni[Z1, Z2, ..., .Zm] (2.19)

where α
[p]
i,j are the constant coefficient of z

(p)
j .

The derivatives in the boundary conditions are at most one less than the highest derivative

of zj in the governing system (2.20). We define the vector Žj to be the vector of the derivatives

of the variables zj with respect to the dependent variable η from 0 up to nj − 1, that is,

Žj = [z
(0)
j , z

(1)
j , ..., z

(nj−1)
j ] (2.20)
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The boundary conditions (2.17) are written as

Aν[Ž1(a), Ž2(a), ..., Žm(a)]

=

m∑
j=1

nj−1∑
p=0

β
[p]
ν,jz

(p)
j (a) = Qa,ν, ν = 1, 2, ...,ma, (2.21)

Bσ[Ž1(b), Ž2(b), ..., Žm(b)]

=

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,jz

(p)
j (b) = Qb,σ, σ = 1, 2, ...,mb. (2.22)

where β
[p]
ν,j and γ

[p]
σ,j are the constant coefficients of Z

(p)
j in the boundary conditions, and ma,

mb are the total number of prescribed boundary conditions at x = a and x = b respectively

where

ma +mb =

m∑
j=1

nj (2.23)

Assume that the solution zi(η) of (2.19) at the (r + 1)th iteration is zj,r+1. If the solution

at the previous iteration zj,r(η) is sufficiently close to zj,r+1, the nonlinear component Ni

of equation (2.19) can be linearized using a one term Taylor series expansion for multiple

variables so that equation (2.19) can be approximated as

Li[Z1,r+1, Z2,r+1, ..., Zm,r+1] +Ni[Z1,r, ..., Zm,r] +

m∑
j=1

nj∑
p=0

(z
(p)
j,r+1 − z

(p)
j,r )

∂Ni

∂z
(p)
j

[...] = Hi(η),

(2.24)

subject to conditions

m∑
j=1

nj−1∑
p=0

β
[p]
ν,jz

(p)
j,r+1(a) = 0, ν = 1, 2, ...,ma, (2.25)

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,jz

(p)
j,r+1(b) = 0, σ = 1, 2, ...,mb. (2.26)

where [
. . .

]
=

[
Z1,r, Z2,r, . . ., Zm,r

]
. (2.27)
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Equation (2.24) can be re-written as

Li[Z1,r+1, ..., Zm,r+1] +

m∑
j=1

nJ∑
p=0

z
(p)
j,r+1

∂Ni

∂z
(p)
j

[...] = Hi(η) +

m∑
j=1

nJ∑
p=0

z
(p)
j,r

∂Ni

∂z
(p)
j

[...] −Ni[...] (2.28)

The initial approximation is obtained as a solution of the linear part of equation (2.16) subject

to the boundary conditions equation (2.17), in other words, we solve

m∑
j=1

nj∑
p=0

α
[p]
i,j z

(p)
j,0 = Hi(η), (2.29)

subject to

m∑
j=1

nj−1∑
p=0

β
[p]
ν,jz

(p)
j,0 (a) = Wa,ν, ν = 1, 2, ...,ma (2.30)

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,jz

(p)
j,0 (b) = Wν,b, σ = 1, 2, ...,mb. (2.31)

The differentiation matrix D is used to approximate the derivatives of the unknown variables

zi(η) at the grid points as the matrix vector product

dZj

dη
=

N̄∑
k=0

DlkZi(τk) = DZi, l = 0, 1, ..., N̄ (2.32)

whereN+1 is the number of collocation points, D = 2D/(b−a), and Z = [z(τ0), z(τ1), ..., z(τN)]T

is the vector function at the collocation points. Higher order derivatives are obtained as powers

of D, that is

Z
(p)
j = DpZj. (2.33)

Applying the Chebyshev spectral method on the initial approximation equations (2.29)-(2.31),

we obtain,
m∑

j=1

nj∑
p=0

α
[p]
i,j D

pZj,0 = Hi(η), (2.34)
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subject to
m∑

j=1

nj−1∑
p=0

β
[p]
ν,j

N∑
k=0

Dp
Nqzj,0(τk) = Wa,ν, ν = 1, 2, ...,ma (2.35)

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,j

N∑
k=0

Dp
0qzj,0(τk) = Wb,σ, σ = 1, 2, ...,mb (2.36)

Equations (2.34) can be written in matrix form



A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

. . . .

. . . .

. . . .

Am,1 Am,2 . . . Am,m





Z1,0

Z2,0

.

.

.

Zm,0



=



H1

H2

.

.

.

Hm



(2.37)

where Zi,0 are vectors of size (N+ 1)× 1 and Ai,j are (N+ 1)× (N+ 1) matrices which are,

respectively, defined as

Zi,0 = [zi,o(τ0), zi,0(τ1), ..., zi,0(τN)]T ,

Ai,j =

nj∑
p=0

α
p
i,jD

p, i, j = 1, 2, ...,m. (2.38)

Applying the Chebyshev spectral collocation on the recursive iteration scheme (2.28) gives

m∑
j=1

[Ai,j + Πi,j]Zj,r+1 = Φi,r, i, j = 1, 2, ...,m, (2.39)

where Zi,r+1 = [zi,r+1(τ0), zi,r+1(τ1), ..., zi,r+1(τN)]T , Ai,j =
∑nj

p=0 α
p
i,jD

p, i, j = 1, 2, ...,m and

Πi,j and Φi are given by

Πi,j =

nj∑
p=0

[
∂Ni

∂Z
(p)
j

]dD
p, (2.40)
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and

Φi,r = Hi(η) +

m∑
j=1

nj∑
p=0

Z
(p)
j,r

∂Ni

∂Z
(p)
j

[...]d −Ni[Z1,r, Z2,r, ..., Zm,r], (2.41)

respectively, where [...]d denotes a diagonal matrix. We let ∆ = A+Π, and rewrite the equa-

tion (2.39) in matrix form



∆1,1 ∆1,2 . . . ∆1,m

∆2,1 ∆2,2 . . . ∆2,m

. . . .

. . . .

. . . .

∆m,1 ∆m,2 . . . ∆m,m





Z1,r+1

Z2,r+1

.

.

.

Zm,r+1



=



Φ1,r

Φ2,r

.

.

.

Φm,r



(2.42)

where Zi,r and Φi,r are vectors of size (N + 1) × 1 and ∆i,j are (N + 1) × (N + 1) matrices.

Starting from Zi,0, the recursive sequence (2.42) is solved iteratively for r = 0, 1, 2, 3, ....

In this Chapter we gave a description of two methods that can be used in the numerical

solution of both ordinary and nonlinear partial differential equations, which often arise in

fluid mechanics and other engineering applications. The goal is to highlight the advantages

of these methods over traditional methods of solving the PDE problems in fluid mechanics.

In the next chapter we study the problem of unsteady nanofluid flow, heat and mass transfer

due to a stretching sheet in order to set up a system of equations to which we can apply these

methods.
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Chapter 3

Unsteady nanofluid flow, heat and

mass transfer over a stretching sheet

In this chapter we study unsteady nanofluid flow and heat and mass transfer over a stretching

sheet in the presence of heat generation, thermal-diffusion effects and a homogeneous chem-

ical reaction parameter. The transformed nonlinear partial differential equations are solved

numerically using spectral relaxation and quasi-linearization methods.

3.1 Introduction

There has been a great deal of investigative interest in the study of boundary flow and heat

transfer characteristics due to the impulsive motion of a stretching sheet. An assortment of

technical processes involve the production of stretching materials including both metallic and

polymer sheets. The final product is, in general, dependent on the heat transfer at the sheet

25



surface.

Over a century ago, Blasius [95] presented report on the boundary layer flow over a flat

plate in a uniform free stream. It was 30 years before Howarth [96], provided a numerical

solution to the Blasius problem. Boundary layer flow over a continuously moving plate in a

quiescent ambient fluid was the first to studied by Sakiadis [97]. Crane [98] expanded this

study to a sheet which stretched with a velocity that was linearly proportional to the distance

from the origin. Since Crane’s pioneering work, the literature concerning boundary layer flow

past a stretching sheet has grown enormously. Indeed, Crane’s problem has been expanded

to include many other features such as porosity, heat and mass transfer, magnetic field effects

and viscoelasticity or permeable surfaces, Gupta and Gupta [99].

Early work based on Crane’s model includes that of Chen and Strob [100] and Grubka and

Bobba [101]. More recently contributions have come from Gireesha et al. [102], Aiyesimi et

al. [103], Bhattacharyya and Vajravelu [104], Ramesh et al. [105], Joshi et al. [106], Mondal

and Pal [107] and Vajravelu [108]. Of significance, because of the importance of boundary

layer flow over stretching sheets, are studies concerned with aspects of unsteady flow past a

stretching sheet by Andersson et al. [109], Ali and Mehmood [110], Ishak et al. [111], Ishak

et al. [112], Hayat et al. [113], Sharma et al. [114], Sharma [115], Bachok et al. [116],

Bhattacharyy [117], Manjunatha et al. [118] and Bhattacharyya et al. [119]. Liao [120] and

Xu et al. [121] obtained series solutions of the unsteady boundary layer equations and studied

heat transfer in boundary layer over an impulsively stretching plate.
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As explained in Section 1.3, nanofluids are dilute suspensions of nanoparticles with criti-

cal dimension smaller than 100 nm dispensed in a base fluid. Thermal conductivity rates in

common fluids such as water, oils and ethylene glycol are very poor but can be improved by

adding these nanoparticles, mostly metals or metal oxides, Choi and Eastman [122]. Much

attention has been paid in the past decade to nanofluids because of their enhanced thermal

properties, Yulong et al. [123]. Nanofluids have higher thermal conductivity rates than com-

mon fluids such as water, and have been considered for application as advanced heat transfer

fluids, Sheikholeslami et al. [124]. The most important properties of nanofluids are enhanced

effective fluid thermal conductivity and heat transfer coefficient, see Choi [125] and Khan and

Pop [126]. Later, Das [127], Zheng et al. [128], Mustafa et al. [129] and Kameswaran et al.

[130] provided further examples of problems relating to nanofluid flow on stretching surfaces.

Studies on unsteady nanofluid flow due to stretching sheet have also been reported by Rohni

et al. [131], Narayana and Sibanda [132], Bachok et al.[133], Chamkha et al.[134] and Mustafa

et al. [135].

The goal of this study is thus, to present solutions of the boundary layer momentum, en-

ergy and concentration equations for unsteady nanofluid flow over a stretching sheet with

heat generation, thermo-diffusivity (Soret effects) and a chemical reaction. We use the spec-

tral relaxation method (SRM) together with the spectral quasi-linearization method (SQLM)

suggested by Motsa et al. [85; 136] to obtain accurate numerical solutions of the governing

non-linear equations.
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3.2 Governing Equations

Consider the unsteady two-dimensional laminar free, convective flow of an incompressible

nanofluid over a stretching sheet (situated y = 0). As shown in Figure 3.1, the x and y

coordinates are taken along and perpendicular to the sheet respectively with the flow confined

to y ≥ 0. The sheet stretches with velocity u = ax where a is a positive constant. The

temperature and nanoparticle concentration at the stretching surface are Tw and Cw, and

those of the ambient nanofluid are T∞ and C∞ respectively. The momentum, energy and

concentration equations for the laminar boundary layer flow can be written as (Chamkha et

al. [134]);

Figure 3.1: Physical model and coordinate system.
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∂u

∂x
+
∂v

∂y
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
µnf

ρnf

∂2u

∂y2
, (3.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

Q

(ρcp)nf

(T − T∞), (3.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
− k0(C− C∞), (3.4)

where t, u and v are the time and tangential and normal velocity components along the x

and y axes respectively, T and C are the temperature and concentration, µnf is the effective

dynamic viscosity of the nanofluid, ρnf is the nanofluid density, αnf is the thermal diffusivity

of the nanofluid, (ρcp)nf is the heat capacity of the nanofluid, ρ is the density of the fluid, cp

is the heat capacity of the base fluid at constant pressure, Q is the volumetric rate of heat

generation/absorption, Dm is the chemical molecular diffusivity, KT , Tm and k0 are the thermal

diffusion ratio, the mean fluid temperature and a chemical reaction parameter respectively.

The flow is subject to the boundary conditions:

t ≥ 0 : u = ax, v = 0, T = Tw = T∞ + bx, C = Cw = C∞ + dx at y = 0,

t ≥ 0 : u → 0, T → T∞, C → C∞ as y → ∞, (3.5)

and initial conditions

t < 0 : u = 0, v = 0, T = Tw, C = Cw, ∀ x, y, (3.6)

where a, b and d are positive constants.

The effective dynamic viscosity of the nanofluid was given by Brinkman [137] as

µnf =
µf

(1− φ)2.5
, (3.7)

where φ is the solid volume fraction of nanoparticles, µf is the dynamic viscosity of the base
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fluid. In equations (3.1) - (3.4)

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s,

ρnf = (1− φ)ρf + φρs, νnf =
µnf

ρnf

,

αnf =
knf

(ρcp)nf

,
knf

kf

=
(ks + 2kf) − 2φ(kf − ks)

(ks + 2kf) + φ(kf − ks)
, (3.8)

where νnf is the kinematic viscosity of nanofluid, (ρcp)f is heat capacity of the base fluid,

knf is the thermal conductivity of the nanofluid, kf and ks are the thermal conductivities of

the fluid and of the solid fractions, respectively, and ρf and ρs are the densities of the fluid

and of the solid fractions, respectively, see Abu-Nada [138].

It is convenient to introduce the stream function ψ defined by

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (3.9)

and the following non-dimensional variables, see Liao [139]

η =

√
a

νfξ
y, ξ = 1− exp(−τ), τ = at, ψ =

√
aνfξ x f(ξ, η),

θ(ξ, η) =
T − T∞
Tw − T∞ , Φ(ξ, η) =

C− C∞
Cw − C∞ . (3.10)

The governing equations (3.1) - (3.4) along with the boundary conditions (3.5) can then be

presented in the form

f ′′′ + φ1

[η
2
(1− ξ)f ′′ + ξ

(
ff ′′ − f ′

2
)]

= φ1ξ(1− ξ)
∂f ′

∂ξ
, (3.11)

θ ′′ +
kf

knf

Prφ2

[η
2
(1− ξ)θ ′ + ξ (fθ ′ − f ′θ+ δθ)

]
=
kf

knf

Prφ2ξ(1− ξ)
∂θ

∂ξ
, (3.12)

Φ ′′ + Sc
[η
2
(1− ξ)Φ ′ + ξ (fΦ ′ − f ′Φ− γΦ) + Srθ ′′

]
= Scξ(1− ξ)

∂Φ

∂ξ
, (3.13)

subject to the boundary conditions

f(ξ, 0) = 0, f ′(ξ, 0) = 1, θ(ξ, 0) = 1, Φ(ξ, 0) = 1, ξ ≥ 0,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, Φ(ξ,∞) = 0, ξ ≥ 0, (3.14)
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where

φ1 = (1− φ)2.5

[
1− φ+ φ

(
ρs

ρf

)]
, φ2 =

[
1− φ+ φ

(ρc)s

(ρc)f

]
, (3.15)

and

Pr =
νf

αf

, αf =
kf

(ρcp)f

, νf =
µf

ρf

, Sc =
νf

D
, γ =

k1

a
,

Sr =
DmKT

Tm

(Tw − T∞)

νf(Cw − C∞)
, δ =

Q

a(ρCp)nf

. (3.16)

The parameters Pr, Sc, Sr, αf, δ, γ and νf represent the Prandtl number, Schmidt number,

Soret number, coefficient of thermal diffusivity of the base fluid, dimensionless heat generation,

scaled chemical reaction parameter and the kinematic viscosity of base fluid respectively.

The Prandtl number Pr is a dimensionless number; and it represents the ratio of momen-

tum diffusivity to thermal diffusivity. The Prandtl number controls the relative thickness

of the momentum and thermal boundary layers. When Pr is small, the heat diffuses very

quickly compared to the velocity. The mass transfer analog of the Prandtl number is the

Schmidt number Sc, which is the ratio of momentum diffusivity to the mass diffusivity. The

Soret number represents the ratio of the thermal diffusion coefficient to the ordinary diffusion

coefficient.

3.3 Skin friction, heat and mass transfer coefficients

In heat and mass transport problems, we are particularly interested in the skin friction co-

efficient Cf, the local Nusselt number Nux and the local Sherwood number Shx. These pa-

rameters respectively characterize the surface drag and the wall heat and mass transfer rates

respectively.
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The shearing stress at the surface of the wall τw is given by

τw = −µnf

(
∂u

∂y

)
y=0

= −
axµf

(1− φ)
2.5

√
a

νfξ
f ′′(0, ξ), (3.17)

where µnf is the coefficient of viscosity.

The skin friction coefficient is defined as

Cx
f =

2τw

ρfa2x2
. (3.18)

Hence

(1− φ)
2.5

√
ξRex Cx

f = −2f ′′(0, ξ). (3.19)

where Rex is the local Reynolds number given by

Rex =
ax2

νf

. (3.20)

The heat transfer rate at the surface is given by

qw = −knf

(
∂T

∂y

)
y=0

= −knf(Tw − T∞)

√
a

νfξ
θ ′(0, ξ), (3.21)

where knf is the thermal conductivity of the nanofluid.

The Nusselt number is defined as

Nux =
xqw

kf (Tw − T∞)
, (3.22)

so that

Nux√
ξRex

(
kf

knf

)
= −θ ′(0, ξ). (3.23)

The mass flux at the surface is given by

qm = −D

(
∂C

∂y

)
y=0

= −D(Cw − C∞)

√
a

νfξ
Φ ′(0, ξ), (3.24)

32



and the Sherwood number is given by

Shx =
xqm

D (Cw − C∞)
, (3.25)

so that

Shx√
ξRex

= −Φ ′(0, ξ). (3.26)

3.4 Some particular cases of interest

In this section we present some limiting cases of equations (3.11)-(3.13) where the equations

reduce to ordinary differential equations.

Case(1): Initial steady state flow

For steady flow we have ξ = 0 corresponding to t = 0. Thus f(η, 0) = fi(η), θ(η, 0) = θi(η)

and Φ(η, 0) = Φi(η). In this case equations (3.11) - (3.13) reduce to

f ′′′i +
1

2
φ1ηf

′′
i = 0, (3.27)

θ ′′
i +

1

2

kf

knf

Prφ2ηθ
′
i = 0, (3.28)

Φ ′′
i +

1

2
ScηΦ ′

i + ScSrθ ′′
i = 0, (3.29)

subject to boundary conditions (3.38).

In the case φ1 = 1, equation (3.27) reduces to (see Ishak et al. [111], Mustafa et al. [135] and

Liao [139])

f ′′′i +
1

2
ηf ′′i = 0, (3.30)
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subject to

fi(0) = 0, f ′i(0) = 1, f ′i(∞) = 0. (3.31)

Equation (3.30) admits the exact solution, see Liao [139]

fi(η) = η erfc
(η
2

)
+

2√
π

[
1− exp

(
−η2

4

)]
, (3.32)

where the complementary error function erfc, is defined as

erfc(η) = 1− erf(η) = 1−
2√
π

∫η

0

e−t2

dt =
2√
π

∫∞
η

e−t2

dt. (3.33)

The skin friction in the initial steady state is

√
ξRex Cx

f = −
1√
π
. (3.34)

The exact solution plays an important role in the proper understanding of qualitative features

of the model and the validation of numerical solutions.

Case(2): Final steady state flow

In this case, ξ = 1 as t → ∞, corresponding to f(η, 1) = fs(η), θ(η, 1) = θs(η) and

Φ(η, 1) = Φs(η). Equations (3.11) - (3.13) reduce to the following forms

f ′′′s + φ1

(
fsf

′′
s − f ′s

2
)

= 0, (3.35)

θ ′′
s +

kf

knf

Prφ2 (fsθ
′
s − f ′sθs + δθs) = 0, (3.36)

Φ ′′
s + Sc (fsΦ

′
s − f ′sΦs − γΦs + Srθ ′′

s ) = 0, (3.37)

subject to the boundary conditions

f(0) = 0, f ′(0) = 1, θ(0) = 1, Φ(0) = 1, f ′(∞) = 0, θ(∞) = 0, Φ(∞) = 0. (3.38)
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Equation (3.35) reduces to the equation (3.39) blow when φ1 = 1 and ξ = 1

f ′′′s + fsf
′′
s − f ′s

2
= 0, (3.39)

subject to boundary conditions (3.38). This equation has the exact solution, see Liao [139]

fs = 1− e−η. (3.40)

3.5 Results and Discussion

The nonlinear partial differential equations (3.1) - (3.4) with the boundary conditions (3.5)

were transformed to the nonlinear forms (3.11) - (3.13). These equations were solved using

the spectral relaxation method SRM together with the spectral quasi-linearization method

SQLM. In this section we used the parameters given previously in literature and compared

the results with those published previously. The thermophysical properties, together with

those of the base fluid, are given in Table 3.1, see Oztop and Abu-Nada [140].

Table 3.1: Thermophysical properties of water and copper and silver nanofluids.

Physical properties Base fluid (Water) Copper (Cu) Silver (Ag)

Cp(J/kgK) 4179 385 235

ρ(Kg/m3) 997.1 8933 10500

k(W/mK) 0.613 401 429

α× 107(m2/s) 1.47 1163.1 1738.6

β× 105(K−1) 21 1.67 1.89
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The case when the heat generation term in equation (3.12) is absent with φ = 0 (regular fluid)

has been considered and compared with the results reported by Chamkha and El-Kabeir [67].

The results are shown in Tables 3.2 and 3.3 for various values of the Prandtl number and

λ = 0. From the Tables, it can be seen that heat transfer coefficient increases for increasing

Prandtl numbers. This increase suggests that the heat diffuses much slower compared to the

velocity. Thus, momentum diffusivity dominates. Moreover, the present results show that the

values for both skin friction and heat transfer coefficients are in good agreement with those

from Chamkha and El-Kabeir [67]. We may, therefore, conclude that the present numerical

methods (SRM and SQLM) can be used with confidence to solve systems of coupled nonlinear

equations of the type presented in this study.

Table 3.2: Effect of various values of the Prandtl number Pr on the skin friction −f ′′(0) and

heat transfer coefficient −θ ′(0), when δ = 0.

Chamkha and El-Kabeir [67] Present result SRM

Pr f ′′(0, 1) -θ ′(0, 1) f ′′(0, 1) -θ ′(0, 1)

0.7 -1.00000 0.79371 -1.00005852 0.79415181

1.0 -1.00000 1.00000 -1.00005852 1.00005852

3.0 -1.00000 1.92374 -1.00005852 1.92364300

7.0 -1.00000 3.07221 -1.00005852 3.07221790
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Table 3.3: Effect of various values of the Prandtl number Pr on the skin friction −f ′′(0) and

heat transfer coefficient −θ ′(0), when δ = 0.

Chamkha and El-Kabeir [67] Present result SQLM

Pr f ′′(0, 1) -θ ′(0, 1) f ′′(0, 1) -θ ′(0, 1)

0.7 -1.00000 0.79371 -1.00005852 0.79415181

1.0 -1.00000 1.00000 -1.00005852 1.00005852

3.0 -1.00000 1.92374 -1.00005852 1.92364300

7.0 -1.00000 3.07221 -1.00005852 3.07221790

The results for both a Cu-water and a Ag-water were found by both SRM and SQLM, as

shown in Tables 3.4 - 3.5. In the analysis we note that φ = 0 represents a regular fluid and

ξ = 1 represents the final steady state. In the numerical simulations we have used mostly

Pr = 7 which represents water-based fluids. We used the values Sc = 0.6, Sr = 0.4 and

Pr = 7; as have been used previously by Afify [141] and Gbadeyan et al.[142]. The results

obtained by both the SRM and SQLM are typically of the same orders, This means that these

methods are good enough for solving complicated nonlinear partial differential equations.
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Table 3.4: Effect of variation of nanoparticle volume fraction φ on the skin friction −f ′′(0),

heat and mass transfer coefficients −θ ′(0), −Φ ′(0) when δ = 1, γ = 1.

SRM

Cu - Water Ag - Water

φ ξ -f ′′(0, ξ) -θ ′(0, ξ) -Φ ′(0, ξ) -f ′′(0, ξ) -θ ′(0, ξ) -Φ ′(0, ξ)

0.3 0.70127 1.96885 0.29914 0.70127 1.96885 0.29914

0.0 0.5 0.78983 2.00842 0.44555 0.78983 2.00842 0.44555

0.7 0.87627 2.04601 0.58441 0.87627 2.04601 0.58441

1.0 1.00024 2.09309 0.78086 1.00024 2.09309 0.78086

0.3 0.82643 1.22051 0.45328 0.88207 1.16354 0.46148

0.3 0.5 0.93080 1.19782 0.60359 0.99346 1.13098 0.61132

0.7 1.03267 1.15065 0.75169 1.10219 1.06903 0.76016

1.0 1.17877 0.60768 1.04850 1.25813 0.21711 1.10588

0.3 0.65794 0.90136 0.53081 0.70795 0.83012 0.54082

0.5 0.5 0.74103 0.87907 0.68432 0.79736 0.79794 0.69329

0.7 0.82213 0.83564 0.83329 0.88462 0.73967 0.84231

1.0 0.93845 0.27724 1.11972 1.00978 -0.28592 1.18603
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Table 3.5: Effect of variation of nanoparticle volume fraction φ on the skin friction −f ′′(0),

heat and mass transfer coefficients −θ ′(0), −Φ ′(0) when δ = 1, γ = 1.

SQLM

Cu - Water Ag - Water

φ ξ -f ′′(0, ξ) -θ ′(0, ξ) -Φ ′(0, ξ) -f ′′(0, ξ) -θ ′(0, ξ) -Φ ′(0, ξ)

0.3 0.70127 1.96885 0.29914 0.70127 1.96885 0.29914

0.0 0.5 0.78983 2.00842 0.44555 0.78983 2.00842 0.44555

0.7 0.87627 2.04601 0.58441 0.87627 2.04601 0.58441

1.0 1.00024 2.09309 0.78086 1.00024 2.09309 0.78086

0.3 0.82643 1.22051 0.45328 0.88207 1.16354 0.46148

0.3 0.5 0.93080 1.19782 0.60359 0.99346 1.13098 0.61132

0.7 1.03267 1.15065 0.75169 1.10219 1.06903 0.76016

1.0 1.17877 0.60768 1.04850 1.25813 0.21711 1.10588

0.3 0.65794 0.90136 0.53081 0.70795 0.83012 0.54082

0.5 0.5 0.74103 0.87907 0.68432 0.79736 0.79794 0.69329

0.7 0.82213 0.83564 0.83329 0.88462 0.73967 0.84231

1.0 0.93845 0.27724 1.11972 1.00978 -0.28592 1.18603
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The effect of the various fluid and physical parameters are presented graphically in Figures

3.2 - 3.16. Here we have assumed Prandtl number Pr = 7 for both Ag-water and Cu-water

nanofluids, see Afify [141], Hasegawa and Kasagi [143] and Kafoussias and Williams [144].

The graphical results show the local skin friction coefficient −f ′′(0, ξ), the local heat transfer

coefficient −θ ′(0, ξ) and the local mass transfer coefficient −Φ ′(0, ξ) for different physical and

fluid parameter values. We have excluded any analysis of the effects of Pr and Sc because

these have been discussed extensively in the literature.

Figures 3.2 - 3.5 show typical fluid velocity profiles, temperature and concentration profiles

for different nanoparticle volume fraction φ. As can be seen from the figures, increasing φ

increases both the nanofluid velocity profiles and the temperature profiles. By contrast, it

causes the solute concentration profiles to decrease. Thus, we can conclude that the con-

ductivity of the nanofluid increases as the nanoparticle volume fraction increases, so leading

to a broadening of the thermal boundary layer profiles. This increases momentum thinning

and decreases the nanoparticle volume fraction. Furthermore, the results in Figures 3.2 and

3.3 indicate that the effect of the nanoparticle volume fraction is more pronounced in the

case of a Cu-water nanofluid compared to a Ag-water nanofluid. However, in Figure 3.4 we

note that the reverse; the effect of the nanoparticle volume fraction is greater in the case of

an Ag-water nanofluid compared to an Cu-water nanofluid. Moreover, in Figure 3.4 as the

nanoparticle volume fraction increases, the temperature of the nanofluid decreases. Physically,

an increase in the nanoparticle volume fraction leads to an increase in the thermal conductiv-

ity of the nanofluid, and hence the thickness of the thermal boundary layer increases. Over

all, the results show a good agreement with Vajravelu et al.[145] and Kameswaran et al. [146].
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Figure 3.2: Effect of nanoparticle volume fraction φ on the velocity profiles with ξ = 0.5,

δ = 1, γ = 1.

Figure 3.3: Effect of nanoparticle volume fraction φ on tangential velocity profiles with ξ =

0.5, δ = 1, γ = 1.

We note from Figure 3.5 that the effect of the nanoparticle volume fraction is greater in the

case of a Ag-water nanofluid compared to a Cu-water nanofluid. However, when φ = 0.7 we

get the opposite effect. The results show a good agreement with Kameswaran et al.[147].
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Figure 3.4: Effect of nanoparticle volume fraction φ on the temperature profiles with ξ = 0.5,

δ = 1, γ = 1.

Figure 3.5: Effect of nanoparticle volume fraction φ on the concentration profiles with ξ = 0.5,

δ = 1, γ = 1.

Figures 3.6 and 3.7 show the influence of the heat generation parameter on the temperature

and concentration profiles. Increasing the heat generation parameter tends to increase the

nanofluid temperature significantly. The presence of a heat source causes the thermal bound-

ary layer to increase. The result is expected because heat generation in the fluid increases the

temperature within the boundary layer which accelerates the convection as well as increas-
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ing the flow within the boundary layer at the same time as the solute concentration profiles

increase. Therefore, the concentration boundary layer thickness decreases as the heat genera-

tion parameter increases due to the new product. Again, the effect of the dimensionless heat

generation is more significant in the case of a Ag-water nanofluid compared to a Cu-water

nanofluid, which is a similar result to that of Alam and Mollah[148].

Figure 3.6: Effect of the dimensionless heat generation δ on the temperature profiles with

ξ = 0.5, φ = 0.3, γ = 1.

43



Figure 3.7: Effect of the dimensionless heat generation δ on the concentration profiles with

ξ = 0.5, φ = 0.3, γ = 1.

Figure 3.8 shows the effect of the chemical reaction parameter on the solute concentration pro-

files. As the chemical reaction increases, the solute concentration in the nanofluid decreases

due to the conversion of solute to form a new product. This result shows that the solute

concentration thickness is reduced as the reaction progresses.

Figure 3.8: Effect of chemical reaction parameter γ on the concentration profiles with ξ = 0.5,

δ = 1, φ = 0.3.
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Figure 3.9 shows the impact of the Soret number on the concentration profiles. The Figure

shows that as the Soret number increases, the nanofluid boundary layer thickness increases,

more significantly in the case of a Ag-water nanofluid than for a Cu-water nanofluid.

Figure 3.9: Effect of the Soret number Sr on the concentration profiles with ξ = 0.5, δ = 1,

φ = 0.3, γ = 1.
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Figures 3.10 - 3.12 show the effect of various values of the nanoparticle volume fraction on the

skin friction, heat and mass transfer coefficient. Increasing the nanoparticle volume fraction

value causes the skin friction and the heat transfer coefficients to decrease, while the mass

transfer coefficient increases. We obtain higher values of the skin friction and mass transfer

coefficients at ξ = 1, see Figures (3.10 and 3.12), but at ξ = 0 we get higher values of heat

transfer coefficient, see Figure 3.11. This indicates that changes in heat transfer rates are as-

sociated with the nanoparticle volume fraction, which highlights the possible use of nanofluids

in heat transfer processes.

Figure 3.10: Effect of the variation nanoparticle volume fraction φ on the skin frication

coefficient against ξ with δ = 1, γ = 1.
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Figure 3.11: Effect of the variation nanoparticle volume fraction φ on heat transfer coefficient

against ξ with δ = 1, γ = 1.

Figure 3.12: Effect of the variation nanoparticle volume fraction φ on mass transfer coefficient

against ξ with δ = 1, γ = 1.
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Figures 3.13 and 3.14 show the impact of heat generation on the heat and mass transfer co-

efficients. For both Cu-water and Ag-water nanofluids, the heat transfer coefficient −θ ′(0, ξ)

decreases with the heat generation parameter while increasing with ξ. The mass transfer

coefficient −φ ′(0, ξ) increases with ξ and the heat generation parameter. With increasing

heat generation parameter δ and ξ we obtain higher values of the mass transfer coefficient.

In particular, when δ = 0, 0.5 with ξ = 1, the heat transfer coefficient is higher than when

δ = 1 and ξ = 1. For the heat transfer coefficient (see Figure 3.13), the effect of the heat

generation parameter is more significant in the case of a Cu-water nanofluid compared to a

Ag-water nanofluid. However, the opposite is true for the mass transfer coefficient in Figure

3.14. These results are qualitatively similar to those obtained by Ali et al.[149].

Figure 3.13: Effect of the dimensionless heat generation parameter δ on heat transfer coeffi-

cient against ξ with φ = 0.3, γ = 1.

48



Figure 3.14: Effect of the dimensionless heat generation parameter δ on mass transfer coeffi-

cient against ξ with φ = 0.3, γ = 1.

Figure 3.15 shows the influence of the chemical reaction parameter on the mass transfer

coefficient. As the chemical reaction increases, the mass transfer coefficient also increases and

we get higher values of mass transfer as ξ increases. We note that the effect of chemical

reaction parameter is marginally greater in the case of a Ag-water nanofluid compared to a

Cu-water nanofluid.
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Figure 3.15: Effect of chemical reaction parameter γ on mass transfer coefficient against ξ

with δ = 1 φ = 0.3.

Figure 3.16 illustrates the effect of the Soret number on the mass transfer rate. We observe

that increasing the Soret number tends to reduce the nanoparticle volume fraction boundary

layer thickness. We observe that −Φ ′(0, ξ) increases with variable ξ and decreases with the

Soret parameter. The effect of the Soret parameter is greater for a Ag-water nanofluid than

a Cu-water nanofluid. Thus, we note that increasing the Soret number tends to reduce the

volume fraction boundary layer thickness.
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Figure 3.16: Effect of the Soret number Sr on mass transfer coefficient against ξ with δ = 1,

φ = 0.3, γ = 1.

3.6 Summary

In this chapter we investigated unsteady nanofluid flow and convection from a stretching sheet

in the presence of heat generation and Soret effects. The accuracy was tested by comparing

with published literature for the special cases. We found that our results for limiting case are

in line with those previously published. In Chapter 4 we study steady MHD mixed convection

a nanofluid flow and heat and mass transfer from a stretching sheet.
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Chapter 4

Mixed convection in MHD nanofluid

flow due to a stretching sheet with

Soret and Dufour effects

In this chapter we investigate Soret and Dufour effects on steady mixed convection in a

nanofluid flow. The incompressible fluid flow is subject to temperature dependent viscosity,

thermal radiation influences and a chemical reaction parameter. The transformed govern-

ing partial differential equations are solved numerically using the spectral relaxation method

(SRM).
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4.1 Introduction

The problem of steady magneto-hydrodynamics(MHD) flow and heat and mass transfer over

a stretching surface has applications in polymer technology, glass-fiber production and in

metallurgy. In particular, many metallurgical processes involve cooling continuous strips or

filaments by drawing them through a quiescent fluid. The properties of the final product

depend on the rate of cooling which can be controlled by drawing such strips in an electrically

conducting fluid subject to a magnetic field to achieve the desired characteristics in the final

product. Indeed, many engineering processes, on conveyor belts, possess the characteristics

of a moving continuous surface, see Abel and Veena [150], Prasad et al. [151].

As was outlined in Chapter 3, Blasius [95] was the first to report the boundary layer flow

over a flat plate in a uniform free stream. Howarth [96], provided a numerical solution to

the Blasius problem and a continuously moving plate in a quiescent ambient fluid was the

first studied by Sakiadis [97]. Crane [98] expanded this study stretched sheet. Since Crane’s

pioneering work, the literature concerning boundary layer flow due to a stretching sheet has

grown enormously. Indeed, Crane’s problem has been expanded to include many other features

such as porosity, heat and mass transfer, magnetic field effects and viscoelasticity or permeable

surfaces, extended by Gupta and Gupta [99].

Early work based on Crane’s model includes that of Chen and Strob [100] and Grubka and

Bobba [101]. More recently contributions have come from Aiyesimi et al. [103] and Aminraza

et al. [152]. of significance, because of the importance of boundary layer flow over a stretching

sheets, are studies concerned with aspects of unsteady flow past a stretching surface by Hamad

53



and Ferdows [153] and Dulal and Mondal [154]. In particular, Liao [120] and Xu et al. [121]

obtained series solutions of the unsteady boundary layer equations.

As previously explained in Chapter 3, nanofluids have higher thermal conductivity rates

compared to common fluids such as water and have been considered for application as ad-

vanced heat transfer fluids. Masuda et al. [155] and Buongiorno [156] suggested the use of

nanofluids in cooling advanced nuclear systems. The most important properties of nanofluids

are enhanced effective fluid thermal conductivity and heat transfer coefficient, see Choi [125].

Studies on steady nanofluid flow due to stretching sheet have also been reported by Gbadeyan

et al. [157], Seddeek [158], Subhakar and Gangadhar [159], Shakhaoath et al. [160] and Singh

et al. [161]. A benchmark study on the enhancement of thermal conductivity in nanofluids was

made by Buongiorno [162]. Venerus et al.[163] investigated the viscosity effects on colloidal

dispersions in heat transfer applications. Gharagozloo et al. [164] investigated aggregation

and the thermal conductivity in nanofluids and Philip et al. [165] proposed a nanofluid with

tunable thermal properties.

The aim of the present study is to analyze the combined effects of Soret and Dufour parameters

on steady mixed convection in boundary layer flow of a nanofluid with magneto-hydrodynamics

(MHD) over a non-isothermal wedge. The flow is subject to a chemical reaction, thermal ra-

diation and viscous dissipation. A special case of this study is, that obtained by Yih [166].

The spectral relaxation method (SMR) is used to solve the governing equations.
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4.2 Mathematical formulation

Consider steady two-dimensional incompressible nanofluid flow over a non-isothermal stretch-

ing wedge. The temperature and nanoparticles concentration at the stretching surface are Tw

and Cw, and those of the ambient nanofluid are T∞ and C∞, respectively. The radiation heat

flux in the x-direction is negligible compared to the flux in the y-direction. The x-axis is along

the plate and the y-axis is normal to this, as shown in Figure 4.1. Introducing the boundary

layer approximation, the governing equations are given by Tiwari and Das [167];

Figure 4.1: Physical model and coordinate system.
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u
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DmKT
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∂2T

∂y2
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where u and v are the fluid velocity and normal velocity components in the x and y directions,
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respectively, νnf is the nanofluid kinematic viscosity, p is the pressure, σ an electrical con-

ductivity, B0 is the externally imposed magnetic field in the y-direction, ρnf is the nanofluid

density, g is the gravitational acceleration, βT is the volumetric thermal expansion coefficient,

βC is the volumetric solutal expansion coefficient, T is the temperature of fluid in the bound-

ary layer, C is the fluid solutal concentration, αnf is the thermal diffusivity of the nanofluid,

(ρcp)nf is the nanofluid heat capacitance, ρf is the density of the base fluid, Dm is the mass

diffusivity of the concentration, KT is the thermal diffusion ratio, Cs is the concentration

susceptibility, (cp)nf is the specific heat of fluid at constant pressure, Tm is the mean fluid

temperature, R is the chemical reaction parameter and qr is the radiation heat flux given by

qr = −
4σ∗

3K∗
∂T 4

∂y
, (4.5)

where σ∗ is the Stefen-Boltzmann constant and K∗ is the Rosseland mean absorption coef-

ficient. We assume that the temperature variation T 4 may be expanded in a Taylor series.

Neglecting higher order terms and expanding T 4 about T∞ we obtain,T 4 ∼= 4T 3∞T − 3T 4∞, see

Singh et al.[161].

For a free - stream, the momentum equation (4.2) becomes

U∞dU∞
dx

= −
1

ρnf

∂p

∂x
−
σB2

0

ρnf

U∞, (4.6)

whereU∞ = axn is the velocity of the potential flow outside the boundary layer, n = β/(2−β),

and β is the Hartree pressure gradient parameter which corresponds to β = Ω/π, the angle

of the wedge, and a is a positive real number.

Substituting (4.6) in (4.2) and (4.5) in (4.3), the transport written as
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, (4.8)
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subject to the boundary conditions

u = v = 0, T = Tw(x) = T∞ + T0x
2n, C = Cw(x) = C∞ + C0x

2n at y = 0,

u → U∞(x) = axn, T = T∞, C = C∞ as y → ∞, (4.9)

and initial conditions

u = 0, v = 0, T = Tw, C = Cw, ∀ x, y, (4.10)

where T0 and C0, are positive real numbers. We note that 0 ≤ n ≤ 1 with n = 0 for the

boundary- layer flow over a stationary flat plate and n = 1 for the flow near the stagnation

point on an infinite wall.

The effective viscosity of the nanofluid, see Brinkman [137] is

µnf =
µf

(1− φ)2.5
, (4.11)

where φ is the solid volume fraction of nanoparticles, µf is the dynamic viscosity of the base

fluid. In equations (4.1) - (4.4);

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s

ρnf = (1− φ)ρf + φρs, νnf =
µnf

ρnf

αnf =
knf

(ρcp)nf

,
knf

kf

=
(ks + kf) − 2φ(kf − ks)

(ks + kf) + φ(kf − ks)
, (4.12)

where knf is the thermal conductivity of the nanofluid, kf and ks are the thermal conductivities

of the fluid and of the solid fractions, respectively, and ρs is the density of the solid fractions,

(ρcp)f and (ρcp)s are the heat capacity of base fluid and effective heat capacity of nanoparticles

respectively, knf is the thermal conductivity of the nanofluid, see Abu-Nada [138].

It is convenient to introduce the stream function ψ where

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (4.13)
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We use the following dimensionless variables, Yih [166]

η =

√
U∞x
νfξ

y

x
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0
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√
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T − T∞
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C− C∞
Cw − C∞ .

(4.14)

The governing equations (4.4), (4.7) and (4.8) with the boundary conditions (4.9) and (4.14)

can be presented in the form
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subject to the boundary conditions

f(ξ, 0) = f ′(ξ, 0) = 0, θ(ξ, 0) = 1, Φ(ξ, 0) = 1, η = 0 , ξ ≥ 0,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, Φ(ξ,∞) = 0, η −→ ∞, ξ ≥ 0, (4.18)

where

φ1 = (1− φ)2.5

[
1− φ+ φ

(
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1− φ+ φ
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]
. (4.19)

Here
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νfTm(Cw − C∞)
, (4.20)

where Grt is the local Grashof number, Grc is the local solutal Grashof number, Pr is the

Prandtl number, Nr is the thermal radiation parameter, Ec is the Eckert number, Sc is the
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Schmidt number, Df is the Dufour number, αf is the coefficient of the thermal diffusivity of

the base fluid, νf is the kinematic viscosity of base fluid, γ is the scaled chemical reaction

parameter and Sr is the Soret number.

The Eckert number represents the kinetic energy of the flow relative to the boundary layer

enthalpy difference. The Dufour effect describes the energy flux created when a chemical

system is under a concentration gradient.

4.3 Skin friction, heat and mass transfer coefficients

Parameters of engineering interest include the skin friction coefficient Cf, the local Nusselt

number Nux, and the local Sherwood number Shx.

The shearing stress at the surface τw is given by

τw = −µnf

(
∂u

∂y

)
y=0

= −
µf

(1− φ)
2.5

U∞
x

√
U∞x
νf

f ′′(0, ξ), (4.21)

where µnf is the nanofluid coefficient of viscosity.

The skin friction coefficient is defined as

Cf =
2τw

ρfU2∞ , (4.22)

and using (4.21) in (4.22) we obtain

1

2
(1− φ)

2.5
√
Rex Cf = −f ′′(0, ξ), (4.23)
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where Rex is the local Reynolds number given by

Rex =
U∞x
νf

. (4.24)

The heat transfer rate at the surface is given by

qw = −knf

(
∂T

∂y

)
y=0

= −knf
(Tw − T∞)

x

√
U∞x
νf

θ ′(0, ξ), (4.25)

where knf is the thermal conductivity of the nanofluid.

The Nusselt number is defined as

Nux =
xqw

kf (Tw − T∞)
. (4.26)

Using (4.25) in (4.26), the dimensionless wall heat transfer rate is obtained as

Nux√
Rex

(
kf

knf

)
= −θ ′(0, ξ). (4.27)

The mass flux at the wall surface is given by

qm = −D

(
∂C

∂y

)
y=0

= −D
(Cw − C∞)

x

√
U∞x
νf

Φ ′(0, ξ), (4.28)

and the Sherwood number is defined as

Shx =
xqm

D (Cw − C∞)
. (4.29)

Using (4.28) in (4.29) the dimensionless wall mass transfer rate is obtained as

Shx√
Rex

= −Φ ′(0, ξ). (4.30)
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4.4 Some particular cases of interest

In this section we present some limiting cases of equations (4.15) - (4.17) where the equations

reduce to ordinary differential equations.

Case(1) For steady-state flow when φ = 0 (regular fluid) we have ξ = 0, Grt = 0 and

Grc = 0. In this case, equation (4.15) reduces to that given in Yih [166]

f ′′′ +
n+ 1

2
ff ′′ + n(1− f ′2) = 0. (4.31)

The solution of equation (4.31) is presented later in Table 4.1 for the skin friction for various

values of n.

Case(2) For a regular fluid and ξ = 0, n = 0, Nr = 0, Ec = 0, Df = 0, and Grt and Grc are

set to be zero. Equations (4.15) and (4.16) reduce to

f ′′′ +
1

2
ff ′′ = 0. (4.32)

1

Pr
θ ′′ +

1

2
fθ ′ = 0. (4.33)

Equation (4.32) is decoupled from the energy equation (4.33).

Case(3): For the nanoparticle volume fraction φ = 0; if we substitute the physical parame-

ters n = 0, Nr = 0, Ec = 0, Df = 0, and Grt and Grc are set to be zero. If we substitute into

equations (4.15) - (4.16) we obtain (see Yih [166]):

f ′′′ +
1

2
ff ′′ + ξ(1− f ′) = ξ

[
f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

]
, (4.34)

1

Pr
θ ′′ +

1

2
fθ ′ = ξ

[
f ′
∂θ

∂ξ
− θ ′ ∂f

∂ξ

]
. (4.35)

The Nusselt number for various values of the Prandtl number Pr and ξ is given in Table 4.3.

61



4.5 Results and Discussion

As was shown in Sections 4.2 and 4.3, equations (4.2) - (4.4) and boundary conditions (4.9)

were transformed into nonlinear partial differential equations (4.15) - (4.17). These were then

solved numerically using the spectral relaxation method for 0 ≤ ξ ≤ 1. The thermophysical

properties of the nanofluids and the base fluid water, are given in Table 3.1. We have compared

our results for the local skin friction coefficient f ′′(0, 0), and local Nusselt number θ ′(0, 0) with

the previous results by Yih [166]. The results are shown in Tables 4.1 - 4.3. There is good

agreement between Yih’s [166] work and our values for both the local skin friction coefficient

and the heat transfer coefficient. This shows the validity of our approach.

Table 4.1: Comparison of the values of −f ′′(0, 0) for various values of n, when φ = 0, Grt =

Grc = 0 and ξ = 0 (steady state).

Yih [166] Present result (SRM )

n −f ′′(0, 0) −f ′′(0, 0)

-0.05 0.213484 0.213685

0.0 0.332057 0.332058

1/3 0.757448 0.757406
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Table 4.2: Comparison of the heat transfer coefficient −θ ′(0, ξ) for various values of Pr and

ξ with φ = 0, Nr = Ec = Df = n = 0.

Yih [166] Present results

Pr ξ -θ ′(0, ξ) -θ ′(0, ξ)

0.0 0.297526 0.297526

0.5 0.357022 0.356986

0.733 1.0 0.382588 0.382558

0.0 0.332057 0.332057

0.5 0.402864 0.402822

1.0 1.0 0.433607 0.433572

Table 4.3: Comparison of heat transfer coefficient −θ ′(0, 0) for various values of Pr, when

φ = 0, Nr = Ec = Df = n = 0 and ξ = 0 (steady state).

Yih [166] Present result (SRM )

Pr -θ ′(0, 0) -θ ′(0, 0)

0.1 0.140034 0.140034

1.0 0.332057 0.332057

10 0.728141 0.728141

100 1.571831 1.571658

1000 3.387083 3.396962

10000 7.297402 7.351156
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Figures 4.2 - 4.5 we show the effect of nanoparticle volume fraction on the velocity profiles,

temperature profiles, concentration profiles, skin friction coefficient, heat transfer coefficient

and the mass transfer coefficient respectively. Increased nanoparticle volume fraction leads

to an increase in the fluid velocity, temperature profiles and the mass transfer coefficient,

while, the concentration profiles, skin friction coefficient and heat transfer coefficients are

reduced. Figures 4.4 and 4.5, show that the skin friction and the heat transfer coefficient

decrease with ξ, whereas the mass transfer coefficient increases. This is due to the fact that

increased nanoparticle volume fraction enhances the thermal conductivity causing higher flow

rates at the surface. Comparing the effect of the nanoparticle volume fraction on Cu-water

and Ag-water nanofluids, (Figures 4.2, 4.3(a) and 4.5(b)) we note that the effect is greater

in the case of a Ag-water nanofluid than in a Cu-water nanofluid. The reverse is true for

solutal concentration profiles, skin friction coefficient and the heat transfer coefficient, where

the effect is greater for Cu-water nanofluids. These finding are similar to the results reported

by Kameswaran et al.[147].
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(a) (b)

Figure 4.2: Effect of nanoparticle volume fraction φ on (a) the normal and (b) tangential

velocity profiles respectively, for Grt = 0.01, n = 0, Grc = 0.01 , Nr = 10, Pr = 7,Ec = 10,

Df = 0.01, γ = 3, Sc = 1,Sr = 1 and ξ = 0.5.

(a) (b)

Figure 4.3: Effect of nanoparticle volume fraction φ on (a) the temperature profiles and (b)

the concentration profiles for Grt = 0.01, n = 0, Grc = 0.01 , Nr = 10, Pr = 7,Ec = 10,

Df = 0.01, γ = 3, Sc = 1,Sr = 1 and ξ = 0.5.
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Figure 4.4: Effect of nanoparticle volume fraction φ on the skin friction coefficient for Grt =

0.01, n = 0, Grc = 0.01 , Nr = 10, Pr = 7,Ec = 10, Df = 0.01, γ = 3,Sc = 1 and Sr = 1.

(a) (b)

Figure 4.5: Effect of nanoparticle volume fraction φ on (a) the heat transfer coefficient and

(b) the mass transfer coefficient for Grt = 0.01, n = 0, Grc = 0.01 , Nr = 10, Pr = 7,Ec = 10,

Df = 0.01, γ = 3,Sc = 1 and Sr = 1.
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In Figures 4.6 - 4.8, we illustrate the influence of the thermal radiation parameter on the

temperature profiles, concentration profiles, skin friction coefficient, heat transfer coefficient

and mass transfer coefficient. Figure 4.6(a) indicates that the as η increase, the temperature

profile increases correspondingly and then decrease. The results show a greater sensitivily for

a Ag-water nanofluid regarding the temperature profiles, and mass transfer coefficient while

Cu-water nanofluid is more sensitive for concentration profile, the skin friction coefficient

and the heat transfer coefficient. These results are qualitatively similar to those obtained by

Kameswaran and Sibanda [168].

(a) (b)

Figure 4.6: Effect of the thermal radiation parameter Nr on (a) the temperature profiles and

(b) the concentration profiles for n = 0, φ = 0.3, Grt = 0.01 , Grc = 0.01 , Pr = 7, Ec = 10,

Df = 0.01, γ = 3, Sc = 1 , Sr = 1 and ξ = 0.5.

67



Figure 4.7: Effect of the thermal radiation parameter Nr on skin friction coefficient for n = 0,

φ = 0.3, Grt = 0.01 , Grc = 0.01 , Pr = 7, Ec = 10, Df = 0.01, γ = 3, Sc = 1 and Sr = 1.

(a) (b)

Figure 4.8: Effect of the thermal radiation parameter Nr on (a) the heat transfer coefficient

and (b) the mass transfer coefficient for n = 0, φ = 0.3, Grt = 0.01 , Grc = 0.01 , Pr = 7,

Ec = 10, Df = 0.01, γ = 3, Sc = 1 and Sr = 1.
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Figures 4.9 - 4.10, show the effects of the Dufour number for different values of the nanoparticle

volume fraction (φ = 0.3 and 0.5) on the temperature profiles, concentration profiles, heat

transfer coefficient and mass transfer coefficient, respectively. With increases in the Dufour

number, the temperature profiles and mass transfer coefficient increase while the concentration

profiles and heat transfer coefficient are reduced. As with the previous set of graphs, a Ag-

water nanofluid show a greater sensitivity to increases in the Dufour number compared to a

Cu-water nanofluid. The heat transfer coefficient is greater for a Cu-water nanofluid.

(a) (b)

Figure 4.9: Effect of the Dufour number Df on (a) the temperature profiles and (b) the

concentration profiles with nanofluid φ = 0.3, 0.5.
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(a) (b)

Figure 4.10: Effect of the Dufour number Df on (a) the heat transfer coefficient and (b) the

mass transfer coefficient with nanofluid φ = 0.3, 0.5 for n = 0, Grt = 0.05 , Grc = 0.1 ,

Pr = 7, Nr = 10, Ec = 9, γ = 0.3, Sc = 2 and Sr = 1.

Figures 4.11 and 4.12, show the effect of the chemical reaction parameter on the concentration

profiles and the mass transfer coefficient. The chemical reaction increases the rate of interfacial

mass transfer. The reaction rate reduces the local solute concentration. With an increase in

the chemical reaction parameter, the concentration profiles decrease whereas the mass transfer

coefficient increases. The mass transfer coefficient increase as ξ increases.
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Figure 4.11: Effect of the chemical reaction parameter γ on the concentration profiles for

n = 0, φ = 0.3, Grt = 0.01 , Grc = 0.01 , Pr = 7, Nr = 10, Ec = 10, Df = 0.01, Sc = 1 ,

Sr = 1 and ξ = 0.5.

Figure 4.12: Effect of the chemical reaction parameter γ on the local Sherwood number for

n = 0, φ = 0.3, Grt = 0.01 , Grc = 0.01 , Pr = 7, Nr = 10, Ec = 10, Df = 0.01, Sc = 1 and

Sr = 1.
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Figures 4.13 and 4.14, show the impact of the Soret number on the concentration profiles

and the mass transfer coefficient. Where the concentration profiles grow less while the mass

transfer coefficient increases with an increase in the Soret number. We note from Figures 4.13

and 4.14 that increasing the Soret number reduces the boundary layer thickness for the solute

concentration. The mass transfer coefficient is increasing when the Soret number is positive.

Figure 4.13: Effect of the Soret number Sr on the concentration profiles with n = 0, φ = 0.3,

Grt = 0.01 , Grc = 0.01 , Pr = 7, Nr = 10, Ec = 10, Df = 0.01, Sc = 1 , γ = 3 and ξ = 0.5.
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Figure 4.14: Effect of the Soret number Sr on the local Sherwood number for n = 0, φ = 0.3,

Grt = 0.01 , Grc = 0.01 , Pr = 7, Nr = 10, Ec = 10, Df = 0.01, Sc = 1 and γ = 3.

4.6 Summary

In this chapter we have studied MHD mixed convection in a nanofluid flow due to a stretching

sheet. The effects of thermal-diffusion and diffusion thermo have been investigated. The set of

nonlinear governing equations and the boundary condition were reduced to coupled nonlinear

partial differential equations and solved numerically using the SRM. We have qualitatively

compared our present results with published results. The results show a good agreement with

Yih [166]. In Chapter 5 we study unsteady MHD mixed convection in boundary layer flow

with suction/injection due to a stretching/shrinking sheet.
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Chapter 5

Unsteady MHD mixed convection

with suction/injection due to a

stretching/shrinking surface

In this Chapter, we extend the study reported in Chapter 4 to unsteady magnetohydrodynamic

(MHD) mixed convection with suction/injection, heat generation, viscous dissipation, and

Soret and Dufour effects. The spectral relaxation method is used to solve the non-similar

differential equations that describe the flow.

5.1 Introduction

Nanofluids have been previously described in Section 2.1. Their application as a means of im-

proving heat transfer rates in liquids has led to a considerable research interest, see collections
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by Kuznetsov and Nield [169], Ishak et al. [75]. and Das [127]. The majority of the previous

studies have been restricted to boundary layer flow and heat transfer in nanofluids. Following

the early work by Crane [98], Khan and Pop [126] were the first to work on nanofluid flow

due to stretching sheet. Other writers have studied various aspects of flow and heat transfer

in a fluid of infinite extent, see for instance Chen [170] and Abo-Eldahab and El Aziz [171]. A

mathematical analysis of momentum and heat transfer characteristics of the boundary layer

flow of an incompressible and electrically conducting viscoelastic fluid over a linear stretching

sheet was carried out by El Aziz [172]. In addition, radiation effects on the viscous flow of

a nanofluid and heat transfer over a nonlinearly stretching sheet were studied by Hady et al.

[173]. Theoretical studies have featured even more recently, for example, modelling unsteady

boundary layer flow of a nanofluid over a permeable stretching/shrinking sheet by Bachok

et al. [174]. Rohni et al. [175] developed a numerical solution for the unsteady flow over a

continuously shrinking surface with wall mass suction using the nanofluid model proposed by

Buongiorno [176].

The effect of magnetic field effects on nanofluids has substantial application in chemistry,

physics and engineering. These include cooling of continuous filaments, in the process of

drawing, annealing and thinning of copper wire. Drawing such strips through an electrically

conducting fluid subject to a magnetic field can control the rate of cooling and stretching,

thereby furthering the desired characteristics of the final product. Such an application of a

linearly stretching sheet of incompressible viscous flow of MHD was discussed by Pavlov [177].

In other work, Jafar et al. [178] studied the effects of magnetohydrodynamic(MHD) flow and

heat transfer due to a stretching/shrinking sheet with an external magnetic field, viscous dis-

sipation and joule effects. A model for magnetohydrodynamic flow over a uniformly stretched
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vertical permeable surface subject to a chemical reaction implemented by Chamkha [179]. An

analysis of the effects of chemical reactions on heat and mass transfer on a magnetohydro-

dynamic boundary layer flow over a wedge with ohmic heating and viscous dissipation in a

porous medium was carried out by Kandasamy and Palanimani [180]. The effect of a trans-

verse magnetic field on the flow and heat transfer over a stretching surface were examined by

Anjali and Thiyagarajan [181].

Despite all this prior work, there is still a lot that is known about nanofluids. In this Chapter

we examine the unsteady of MHD mixed convection boundary layer with suction/injection in

the presence of Soret and Dufour effects, heat generation, magnetic field, viscous dissipation

and a chemical reaction. The spectral relaxation method (SRM) proposed by Motsa and his

group [81; 85; 182] is used to solve the governing partial differential equations. This method

has been successfully applied to other problems in fluid mechanics. In the previous two

Chapters we have shown that it gives results which are comparable to those in the literature.

5.2 Governing Equations

Consider the unsteady two-dimensional laminar MHD mixed convective incompressible flow

of nanofluid due to a stretching/shrinking sheet (situated y = 0) with velocity u = ax where

a is positive constant, the temperature and nanoparticles concentration at stretching surface

are Tw and Cw repectivly, and those of the ambient nanofluid are T∞ and C∞, respectively.

The x and y directions are taken in the plane of and perpendicular to the sheet, respectively,

see Figure 5.1. The continuity, momentum, energy and concentration equation of an unsteady,
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incompressible nanofluid boundary layer flow, as given by Suali et al. [183] and Yang [184],

can be written as

(a) A stretching (fw > 0) (b) A shrinking (fw < 0)

Figure 5.1: Schematic diagram of the flow geometry.

∂u

∂x
+
∂v

∂y
= 0, (5.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

1

ρnf

∂p

∂x
+
µnf

ρnf

∂2u

∂y2
+ gβT (T − T∞) + gβC(C− C∞) −

σB2
0

ρnf

u, (5.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

Q

(ρcp)nf

(T − T∞) +
ρfDmKT

Cs(ρcp)nf

∂2C

∂2y
, (5.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmKm

Tm

∂2T

∂y2
− R(C− C∞), (5.4)

where x and y are the coordinates measured along and perpendicular to the sheet, conse-

quently, where t, u and v are the time and the fluid velocity and normal velocity components

in the x and y orientations respectively. νnf is the nanofluid kinematic viscosity, p is the

pressure, ρnf nanofluid density, σ an electrical conductivity, B0 is the uniform magnetic field

in the y-direction, µnf is the effective dynamic viscosity of the nanofluid, g is gravitational ac-

celeration, βT is volumetric thermal expansion coefficient, βC is volumetric solutal expansion

coefficient, T is temperature of fluid in the boundary layer, C is fluid solutal concentration,

αnf is the thermal diffusivity of the nanofluid, (ρcp)nf is the nanofluid heat capacitance, Q is

the volumetric rate of heat generation, ρf is the density of the base fluid, Dm is the mass dif-
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fusivity of the concentration, KT is thermal diffusion ratio, Cs is concentration susceptibility,

(cp)nf specific heat of fluid at constant pressure, Tm is mean fluid temperature and R is the

chemical reaction parameter,

subject to the boundary conditions are

t ≥ 0 : u = Uw = ax, v = vw, T = Tw, C = Cw at y = 0,

t ≥ 0 : u = U∞ = a∞x, v = 0, T = T∞, C = C∞ as y → ∞. (5.5)

The initial conditions are

t < 0 : u(x, y, t) = 0, v(x, y, t) = 0, T(x, y, t) = Tw, C(x, y, t) = Cw, ∀ x, y, (5.6)

where a and a∞(> 0) are the stretching/shrinking rate of the sheet and stagnation flow

rate parameters, respectively, with a < 0 for shrinking, a > 0 for a stretching. Here vw is a

prescribed suction velocity (vw < 0) or blowing velocity (vw > 0). In case of free - stream the

momentum equation (5.2) becomes

U∞dU∞
dx

= −
1

ρnf

∂p

∂x
−
σB2

0

ρnf

U∞, (5.7)

substituting (5.7) in (5.2) the momentum equation written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= νnf

∂2u

∂y2
+U∞dU∞

dx
+ (U∞ − u)

σB2
0

ρnf

+ gβT (T − T∞)

+ gβC(C− C∞). (5.8)

The effective dynamic viscosity of the nanofluid was given by Brinkman [137] as

µnf =
µf

(1− φ)2.5
, (5.9)
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where φ is the solid volume fraction of nanoparticles, µf is the dynamic viscosity of the base

fluid. In equations (5.1) - (5.4).

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s

ρnf = (1− φ)ρf + φρs , νnf =
µnf

ρnf

αnf =
knf

(ρcp)nf

,
knf

kf

=
(ks + kf) − 2φ(kf − ks)

(ks + kf) + φ(kf − ks)
. (5.10)

where knf is the thermal conductivity of the nanofluid, kf and ks are the thermal conductivities

of the fluid and of the solid fractions, respectively, and ρs is the density of the solid fractions,

(ρcp)f and (ρcp)s are the heat capacity of base fluid and effective heat capacity of nanoparticle

respectively, knf is the thermal conductivity of the nanofluid.

The continuity equation (5.1) is satisfied by introducing a stream function ψ(x, y) such that

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (5.11)

We introduce the following non-dimensional variables, see Liao [139]

η =

[
a∞
νfξ

]1
2

y, ξ = 1− exp(−τ), τ = a∞t, ψ = [a∞νfξ]
1
2 xf(ξ, η), (5.12)

θ(ξ, η) =
T − T∞
Tw − T∞ , Φ(ξ, η) =

C− C∞
Cw − C∞ , (5.13)

where η and ξ are similarity variables, f(ξ, η) is the dimensionless stream function, θ(ξ, η)

is the dimensionless temperature and φ(ξ, η) is the dimensionless solute concentration. By

using (5.12) and (5.13), the governing equations (5.3), (5.4) and (5.8) along with the boundary
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conditions (5.5) are reduced to the following two-point boundary value problem

f ′′′ + φ1

[η
2
(1− ξ)f ′′ + ξ

(
ff ′′ − f ′

2
+ 1+Ha2(1− f ′) +Grtθ+GrcΦ

)]
= φ1ξ(1− ξ)

∂f ′

∂ξ
, (5.14)

θ ′′ +
kf

knf

Prφ2

[
η

2
(1− ξ)θ ′ + ξ (fθ ′ + δθ) +

Df

φ2

Φ ′′
]

=
kf

knf

Prφ2ξ(1− ξ)
∂θ

∂ξ
, (5.15)

Φ ′′ + Sc
[η
2
(1− ξ)Φ ′ + ξ (fΦ ′ − γΦ) + Srθ ′′

]
= Scξ(1− ξ)

∂Φ

∂ξ
, (5.16)

subject to the boundary conditions

f(ξ, 0) = fw, f
′(ξ, 0) = λ, θ(ξ, 0) = 1, Φ(ξ, 0) = 1 at η = 0, ξ ≥ 0,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, Φ(ξ,∞) = 0 as η → ∞, ξ ≥ 0 .(5.17)

The prime denotes differentiation with respect to η, while αf = kf/(ρcp)f and νf = µf/ρf

are the thermal diffusivity and kinetic viscosity of the base fluid, respectively. Other non-

dimensional parameters appearing in equations (5.14) - (5.16) are the Hartmann number Ha,

the local temperature Grashof number Grt, the local concentration Grashof number Grc,

the Prandtl number Pr, the dimensionless heat generation parameter δ, Dufour number Df,

Schmidt number Sc, scaled chemical reaction parameter γ and Soret number Sr. These are

defined as

Ha2 =
σB2

0

a∞ρnf

, Grt =
gβT (Tw − T∞)

a2∞x , Grc =
gβC(Cw − C∞)

a2∞x , Pr =
νf

αf

, δ =
Q

a∞(ρCp)nf

,

Df =
DmKT (Cw − C∞)

Cs(Cp)fνf(Tw − T∞)
, Sc =

νf

Dm

, γ =
R

a∞ , Sr =
DmKT

Tm

(Tw − T∞)

νf(Cw − C∞)
. (5.18)

The nanoparticle volume fractions φ1 and φ2 are defined as

φ1 = (1− φ)2.5

[
1− φ+ φ

(
ρs

ρf

)]
, φ2 =

[
1− φ+ φ

(ρc)s

(ρc)f

]
, (5.19)
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In equations (5.17), fw = −vw/
√
a∞νfξ represents suction (fw > 0) or injection (fw < 0) and

λ(= a/a∞) is the stretching/shrinking parameter.

5.3 Skin friction, heat and mass transfer coefficients

The skin friction coefficient Cf, the local Nusselt number Nux and the local Sherwood number

Shx characterize the surface drag, wall heat and mass transfer rates, respectively.

The shearing stress at the surface of the wall τw is given by

τw = −µnf

(
∂u

∂y

)
y=0

= −
U∞µf

(1− φ)
2.5
x

√
U∞x
νfξ

f ′′(0, ξ), (5.20)

where µnf is the coefficient of viscosity.

The skin friction coefficient is defined as

Cfx =
2τw

ρfU2∞ , (5.21)

and using equation (5.20) in Equation (5.21) we obtain

1

2
(1− φ)

2.5
Cfx = − ξ− 1

2 Re
− 1

2
x f ′′(0, ξ). (5.22)

The heat transfer rate at the surface flux at the wall is given by

qw = −knf

(
∂T

∂y

)
y=0

= −knf
(Tw − T∞)

x

√
U∞x
νfξ

θ ′(0, ξ), (5.23)

where knf is the thermal conductivity of the nanofluid. The local Nusslet number (heat

transfer coefficient) is defined as

Nux =
xqw

kf (Tw − T∞)
. (5.24)
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Using equation (5.23) in equation (5.24), the dimensionless wall heat transfer rate is obtained

as (
kf

knf

)
Nux = − ξ− 1

2 Re
1
2
x θ

′(0, ξ). (5.25)

The mass flux at the wall surface is given by

qm = −D

(
∂C

∂y

)
y=0

= −D
(Cw − C∞)

x

√
U∞x
νfξ

Φ ′(0, ξ), (5.26)

and the local Sherwood number (mass transfer coefficient) is defined as

Shx =
xqm

D (Cw − C∞)
. (5.27)

The dimensionless wall mass transfer rate is obtained as

Shx = − ξ− 1
2 Re

1
2
x Φ

′(0, ξ). (5.28)

Where Rex represents the local Reynolds number defined as

Rex =
xu∞
νf

. (5.29)

5.4 Cases of special interest

In this section we can obtain some particular cases of of equations (5.16) - (5.14) where the

equations reduce to ordinary differential equations.

Case(1): for initial steady-state flow

For steady flow when φ = 0 (regular fluid) we have ξ = 0 corresponding to t = 0, thus

f(η, 0) = f(η), θ(η, 0) = θ(η) and Φ(η, 0) = Φ(η). In this case equations (5.14) - (5.16)

reduce to
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f ′′′ +
1

2
φ1ηf

′′ = 0. (5.30)

θ ′′ +
1

2

kf

knf

Pr φ2 η θ
′ +

kf

knf

PrDf Φ
′′ = 0. (5.31)

Φ ′′ +
1

2
Sc η Φ ′ + Sc Sr θ ′′ = 0. (5.32)

We cannot obtain the exact solutions of these equations because of their boundary conditions.

Case(2):final steady state flow

In this case, we have ξ = 1 when t → ∞, corresponding to that f(η, 1) = f(η), θ(η, 1) = θ(η)

and Φ(η, 1) = Φ(η). Equations (5.14) - (5.16) reduce to the following forms

f ′′′ + ff ′′ − f ′2 + 1+Ha2(1− f ′) +GRtθ+GrcΦ = 0, (5.33)

θ ′′ +
kf

knf

Pr φ2(f θ
′ + δ θ) +

kf

knf

PrDf Φ
′′ = 0, (5.34)

Φ ′′ + Sc (fΦ ′ − γ Φ+ Sr θ ′′) = 0. (5.35)

The two cases above are subject to the boundary conditions (5.17). In this Chapter the

equations will be solved using the SRM.

5.5 Results and Discussion

The system of partial differential equations (5.14) - (5.16) subject to boundary conditions

(5.17) was solved numerically using the spectral relaxation method (SRM). We considered

both Cu-water and Ag-water nanofluids. The thermophylical properties of the nanofluids

used in this dissertation are given in Table 3.1. In order to determine the accuracy of our
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numerical results, the present results for the skin friction coefficient were compared with the

results previously published by Jafar et al. [178], Wang and Mujumdar [185] and Suali et

al. [183], as shown in Tables 5.1 to 5.3. The results in the three tables show that our values

for the coefficient f ′′(0, 1) for different parameter values, are all in very good agreement with

those in the literature.

Table 5.1: Comparison of f ′′(0, 1) for various values of λ when Ha = Grt = Grc = δ = Df =

Sc = Sr = γ = 0, Pr = 1 and φ = 0 with ξ = 1 (final steady state).

Wang and Mujumdar [185] Jafar et al.[178] Present result (SRM )

λ f ′′(0, 1) f ′′(0, 1) f ′′(0, 1)

0 1.232588 1.2326 1.23258

0.1 1.14656 1.1466 1.14655

0.2 1.05113 1.0511 1.05112

0.5 0.71330 0.7133 0.71328

1 0.00000 0.00000 0.00000

2 -1.88731 -1.8873 -1.88690

5 -10.26475 -10.2648 -10.24531
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Table 5.2: Comparison of f ′′(0, 1) for various values of λ when Ha = Grt = Grc = δ = Df =

Sc = Sr = γ = 0, Pr = 1 and φ = 0 with ξ = 1.

λ -0.25 -0.5 -0.75 -1

Wang and Mujumdar [185] 1.40224 1.49576 1.48930 1.32882

Jafar et al.[178] 1.4022 1.4957 1.4893 1.3288

Present result (SRM ) 1.40224 1.49565 1.48913 1.32795

Table 5.3: Comparison of f ′′(0, 1) for various values of λ for the both stretching/shrinking

sheet when Ha = Grt = Grc = δ = Df = Sc = Sr = γ = 0, Pr = 1 and φ = 0 with ξ = 1.

Suali et al. [183] Present result (SRM )

λ f ′′(0, 1) f ′′(0, 1)

4 -7.086378 -7.086378

3 -4.276545 -4.276542

0.2 1.051130 1.051130

0.1 1.146561 1.146561

-0.2 1.373886 1.373886

-0.5 1.495672 1.495670

The effect of the nanoparticle volume fraction on the nanofluid velocity profiles, temperature,

concentration profiles, skin friction, the wall heat and mass transfer rates respectively are

85



shown in Figures 5.2 - 5.5 for both Cu-water and Ag-water nanofluids. As nanoparticle

volume fraction increases, the velocity, solute concentration profiles and the wall heat transfer

rates decrease while the temperature profile, skin friction and the wall mass rate increase.

The findings are in agreement with those of Vajravelu et al. [145]. Increasing the nanoparticle

volume fraction increases the thermal conductivity of the nanofluid resulting in a thickening of

the thermal boundary layer while the momentum boundary layer thickness dcreases. We also

observe that for a Ag-water nanofluid the axial velocity is comparatively higher than that of

a Cu-water nanofluid. We further note that the thermal conductivity of Ag-water nanofluid is

more than that of Cu-water nanofluid. The temperature distribution in a Ag-water nanofluid

is higher than that of a Cu-water nanofluid. The boundary layer thickness decreases with

the nanoparticle volume fraction in both cases of the nanofluids. The results show a good

agreement for tangential profiles and temperature profiles with Kameswaran et al.[147]. When

the nanoparticle volume fraction increases, the solute boundary layer thickness decreases. In

the same vein we note that the momentum boundary layer thickness increases. The findings

are similar to those obtained by Hamad and Pop [186]. Figure 5.4 shows that the skin friction

coefficient decreases monotonically with increasing values of the dimensionless variable ξ. The

maximum value of the skin friction in the case of a Cu-water nanofluid is achieved at a smaller

value of ξ compared to a Ag-water nanofluid. Furthermore, the Ag-water nanofluid shows less

drag as compared to a Cu-water nanofluid. The wall heat transfer and the mass transfer rates

are shown as a functions of ξ in Figures 5.5(a) and (b) respectively. The wall heat transfer rate

decreases while the opposite is true for the wall mass transfer rate. The Cu-water nanofluid

exhibits a higher wall heat transfer rate as compared to an Ag-water nanofluid. Thus the

presence of nanoparticles tends to increase the wall heat transfer rate and to reduce the wall

mass transfer rates with increasing values of ξ, in accordance with results reported by Afify
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[141].

(a) (b)

Figure 5.2: Effect of the nanoparticle volume fraction φ on (a) the normal velocity and (b)

tangential Velocity profiles respectively, for Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01,

Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

(a) (b)

Figure 5.3: Effect of the nanoparticle volume fraction φ on (a) the temperature profiles and

(b) the concentration profiles for Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Ha = 2,

δ = 0.1, Sc = 1, Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.
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Figure 5.4: Effect of the nanoparticle volume fraction φ on the skin friction coefficient for

Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1 and

γ = 0.1 .

(a) (b)

Figure 5.5: Effect of the nanoparticle volume fraction φ on (a) the heat transfer coefficient

and (b) the mass transfer coefficient for Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Ha = 2,

δ = 0.1, Sc = 1, Sr = 1, fw = 1 and γ = 0.1 .
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Figures 5.6 to 5.8 show the nanofluid velocity, skin friction coefficient, the wall heat and mass

transfer rates, respectively, for various values of the Harmann number Ha in the case of Cu-

water nanofluid and Ag-water nanofluid. The effect of the Harmann number is to increase the

nanofluid velocity and the wall heat transfer rate whilst reducing the skin friction coefficient

and the wall mass transfer rate. The momentum boundary layer thickness increases with in-

creases in the Harmann number. In the case of a Cu-water nanofluid the velocity is relatively

less than that in an Ag-water nanofluid. Figure 5.7 shows the skin friction coefficient as a

function of the dimensionless variable ξ. It is clear that the value of skin friction reduces

when ξ increases. We see that the Cu-water nanofluid exhibits a higher drag on the flow as

compared to the Ag-water nanofluid. Figures 5.8 (a) and (b) show that the wall heat and

mass transfer rates for different values of the Hartmann number. The wall heat transfer rate

increases with ξ in the case of an Ag-water nanofluid although it is less that that of a Cu-water

nanofluid. Further, the values of the wall mass transfer rate increase up to certain value of ξ

before decreasing.
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(a) (b)

Figure 5.6: Effect of the Hartmann number Ha on (a) axial velocity and (b) tangential velocity

profiles respectively, for Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, fw = 1, δ = 0.1, Sc = 1,

Sr = 1, λ = −1.15, γ = 3 and ξ = 0.5.

Figure 5.7: Effect of the Hartmann number on the skin friction coefficient for Df = 0.01,

φ = 0.3, Grt = 0.01, Grc = 0.01, fw = 1, δ = 0.1, Sc = 1, Sr = 1, λ = −1.15 and γ = 3.
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(a) (b)

Figure 5.8: Effect of the Hartmann number on (a) the heat transfer coefficient and (b) the

mass transfer coefficient when Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, fw = 1, δ = 0.1,

Sc = 1, Sr = 1, λ = −1.15 and γ = 3.

The effect of suction (fw > 0) and injection (fw < 0) parameters on the nanofluid velocity, tem-

perature profile, concentration profile, skin friction coefficient, the wall heat and mass transfer

rates are shown in Figures 5.9 - 5.12. It can be seen that ncreasing the suction/injection pa-

rameter increases the nanofluid velocity profiles and the wall heat transfer rate, while the

temperature profile, skin friction coefficient and the wall mass transfer rate decrease. This

means that the effect of the suction parameter is to increase the concentration profiles at

the surface. Beyond this critical η value, the concentration profiles decrease with increasing

injection parameter fw. The momentum boundary layer thickness increases. In the case of

a Cu-water nanofluid the increase is less than that observed for an Ag-water nanofluid. The

results show a good agreement with those obtained by Motsa and Shateyi [187]. Figure 5.11

shows that the skin friction coefficient decreases with increasing ξ. Which indicates that the

axial distribution of the wall heat and mass transfer rates are shown in Figures 5.12 (a) and

(b), respectively, where we can see that the wall heat transfer rate increased as ξ increases.
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This increase is higher in the case of a Cu-water nanofluid than that in a Ag-water nanofluid.

The results reported with respect to the wall mass transfer rate hold for both nanofluids.

When the suction/injection parameter fw = −1, the Ag-water nanofluid values are higher

than those of a Cu-water nanofluid up to a certain value of ξ, before this critical value, those

for an Ag-water nanofluid are less than those of a Cu-water nanofluid, see Figure 5.12(b). For

the values of the parameters, see Afify [141] and Chamkha and El-Kabeir [67]. These results

show good agreement with those obtained by Alam and Mollah [148], see Figure 5.9.

(a) (b)

Figure 5.9: Effect of suction/injection parameter fw on (a) axial velocity and (b) tangential

velocity profiles respectively, when Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, Ha = 2,

δ = 0.2, Sc = 1, Sr = 1, λ = 0.5, γ = 3 and ξ = 0.5.
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(a) (b)

Figure 5.10: Effect of suction/injection parameter fw on (a) the temperature profiles and (b)

the concentration profiles when Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, Ha = 2, δ = 0.2,

Sc = 1, Sr = 1, λ = 0.5, γ = 3 and ξ = 0.5.

Figure 5.11: Effect of suction/injection parameter fw on the skin friction coefficient for Df =

0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5 and γ = 3.
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(a) (b)

Figure 5.12: Effect of suction/injection parameter fw on (a) the heat transfer coefficient and

(b) the mass transfer coefficient for Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, Ha = 2,

δ = 0.2, Sc = 1, Sr = 1, λ = 0.5 and γ = 3.

Figures 5.13 - 5.16 show the influence of the stretching/shrinking parameter λ on the velocity

profiles, temperature profiles, solutal concentration profiles, skin friction coefficient, the wall

heat and mass transfer rates ares, for both nanofluids. We notice that increasing the stretch-

ing/shrinking parameter λ causes an increase in the velocity profiles, skin friction and heat

transfer coefficient. On the other hand the temperature profiles, solutal concentration pro-

files and the mass transfer coefficient decrease with increasing λ. It can be seen from Figure

5.13 that the momentum boundary layer thickness increases with increases in the stretch-

ing/shrinking parameter λ. When λ = −2 (shrinking) the momentum boundary layer for an

Ag-water nanofluid is greater than that of a Cu-water nanofluid. When λ = 2 (stretching) the

opposite is true. This indicate that the thermal boundary for an Ag-water nanofluid is higher

than that of a Cu-water nanofluid. Figures 5.14 (a) and (b) show that the solutal concentra-

tion increases up to a certain value of η. We observe that in the case of an Ag-water nanofluid

the increase is less than that of Cu-water nanofluid, beyond this critical value the concentra-
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tion profile decreases. We observe that in the case a Cu-water nanofluid the increase is greater

than that of an Ag-water nanofluid when λ = −2, 0, but when λ = 2 (stretching) the opposite

is true (see Figure 5.14 (b)). Therefore, the solutal concentration boundary layer thickness

increases at a certain point with the value of η increasing before it tends to decrease. The

results show good agreement with those obtained by Bhattacharyya [188]. Figure 5.15 shows

the effect of the stretching/shrinking parameter λ on the shear stress, while Figures 5.16 (a)

and (b) depict the effect of λ on the wall heat and mass transfer rates respectively. It can be

seen from Figure 5.15 that the shear stress increases with increase in a stretching/shrinking

parameter. It can also be seen that the change in the shear stress decreases with increases

in ξ. From Figures 5.16 (a) we also note that the heat transfer rate increases with λ and

the change in the heat transfer rate increases with ξ. Moreover, from Figure 5.16 (b) it is

clear that the mass transfer rate decreases with the increase in λ. Furthermore, from Figure

5.16 (a) and (b), we observe that, for the wall heat transfer rate, in the case of an Ag-water

nanofluid the increase is less than that of a Cu-water nanofluid, while the opposite is true

for the wall mass transfer rate. From the above numerical investigations we found that the

velocity profile decreases with an increase in nanoparticle volume fraction, while the opposite

is true in the case of temperature profile. Moreover, the, concentration profile increases at

certain critical value of dimensionless variable, but beyond these critical values it decreases

with an increase in nanoparticle volume fraction. The findings above show good agreement

with previously published results.
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(a) (b)

Figure 5.13: Effect of various a stretching/shrinking parameter values λ on (a) axial velocity

and (b) tangential velocity profiles respectively, for Df = 0.01, φ = 0.3, Grt = 0.01, Grc =

0.01, Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

(a) (b)

Figure 5.14: Effect of various a stretching/shrinking parameter values λ on (a) the temperature

profiles and (b) the concentration profiles for Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01,

Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.
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Figure 5.15: Effect of various a stretching/shrinking parameter values λ on the skin friction

coefficient for Df = 0.01, φ = 0.3, Grt = 0.01, Grc = 0.01, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,

fw = 1 and γ = 0.1.

(a) (b)

Figure 5.16: Effect of various a stretching/shrinking parameter values λ on (a) the heat

transfer coefficient and (b) the mass transfer coefficient for Df = 0.01, φ = 0.3, Grt = 0.01,

Grc = 0.01, Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1 and γ = 0.1.
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5.6 Summary

In this chapter we investigated unsteady MHD mixed convection, heat and mass transfer in a

nanofluid over a stretching/shrinking sheet in the presence of Soret and Dufour effects, heat

generation, magnetic field and chemical reaction parameter, for both Cu-water nanofluid and

Ag-water nanofluid. The transformed nonlinear partial differential equations are solved nu-

merically using the spectral relaxation method (SRM), our results, although using innovative

methods, are found in to be in good agreement with previously published results. Thus we

conclude that the methods employed provide a relatively easy means of simulating the be-

haviour of nanofluids, even under the influence of other complicating phenomena. From the

simulations we now understand better the behaviour of nanofluids with regards to our disser-

tation in terms of enhancing thermal conductivity of fluid and heat transfer, In particular we

highlight the new finding about parameters in our problem.
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Chapter 6

Conclusion

In this study, we presented an analysis of double-diffusive convection and flow in a porous

medium saturated with a nanofluid. Numerical results for the skin friction, heat and mass

transfer rates have been presented for different physical parameters. We transformed the set

of nonlinear governing equations and boundary conditions into nonlinear non-similar forms

suitable for numerical simulations. The numerical simulations were run using values of ther-

mophysical properties and parameter values found in the literature. We considered both

Cu-water and Ag-water nanofluids. Results showing the effects of the physical and fluid pa-

rameters on the fluid properties were tabulated and presented graphically in each Chapter.

Here, we highlight some of the results and conclusions that have been drawn from this study,

and discuss them in relation to prior work, and their application in practice.

In Chapter 3 we studied double-diffusive convection in a nanofluid flow over a stretching sheet

with heat generation, Soret effects and a chemical reaction term. The influence of the physical

parameters on the double-diffusive convection was presented graphically. Exact solutions were
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obtained in the particular cases ξ = 0 and ξ = 1. From the numerical study, the following

conclusions could be drawn;

• The tangential velocity, temperature and the local Sherwood number increases with an

increase in the nanoparticle volume fraction. The opposite is true in the case of the

solute concentration, local skin friction factor and local Nusslet number.

• Increasing the Soret number tends to increase the concentration profiles, while the local

Sherwood number decreases.

• When the chemical reaction parameter increases, the solute concentration profiles de-

creases but the reverse was noted for the local Sherwood number.

• In the limiting cases of initial steady and final steady states, we found good agreement

between our results and previous results in the literature. This suggested that the

methods used give accurate results.

In Chapter 4 we studied mixed convection in a nanofluid flow over a non-isothermal wedge

subject to Soret and Dufour effects. We applied the spectral relaxation method (SRM) to

obtain numerical solutions. A comparison of our results with those from previous studies was

again showed good agreement. We determined the influence of the physical parameters, and

found the following:

• The velocity profile increases with the nanoparticle volume fraction, thermal radiation

parameter and the Dufour number.

• The concentration profiles decrease with an increase in the nanoparticle volume fraction,

Dufour number, chemical reaction parameter and the Soret number.
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• The skin friction decreased with an increase in nanoparticle volume fraction but the

opposite is true as the thermal radiation parameter increased.

• The heat transfer coefficient reduces with an increase in the nanoparticle volume frac-

tion and the Dufour number, whereas it increased as the thermal radiation parameter

increased.

• Increasing the nanoparticle volume fraction, Dufour number, Soret number and chemical

reaction increased the mass transfer coefficient. The opposite is true in the case of the

thermal radiation parameter.

• The fluid temperature increased when the nanoparticle volume fraction, thermal radia-

tion parameter and the Dufour number are increased.

In Chapter 5 we extended the study presented in Chapter 4 to include unsteady MHD mixed

convection with suction/injection. The system of partial differential equations, were solved

numerically using the spectral relaxation method (SRM). Once again, there was good corre-

spondence between our results and those in the literature, giving us assurance of the reliability

and accuracy of our findings. The following conclusions could drawn from the study:

• The velocity profiles are reduced by an increase in the nanoparticle volume fraction.

The opposite is true in the case of the fluid temperature.

• The velocity of the nanofluid increases with the Hartmann number, suction/injection

parameter and stretching/shrinking parameter.

• The skin friction factor increases with an increase in nanoparticle volume fraction and

stretching/shrinking parameterλ.
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• Regarding stretching/shrinking and suction/injection parameters, the Cu-water nanofluid

has a higher skin friction coefficient than the Ag-water nanofluid.

• Increases in nanoparticle volume fraction lead to a decrease in the wall mass transfer

rate.

• The wall heat transfer rate increases with the Hartmann number, suction/injection

parameter fw and stretching/shrinking parameter λ, but it reduces with the nanoparticle

volume fraction.

• The fluid temperature decreases when the suction/injection and a stretching/shrinking

parameters increase.

We have, in this work, shown that nanoparticles contribute significantly to an increase in the

thermal conductivity of common fluids and enhance heat transfer. The comparison between

the SRM and the SQLM shown in Chapter 3 showed that both methods are computationally

efficient and reliable for finding solutions of highly non-linear differential equations.
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