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Now unto him that is able to do exceeding abundantly

above all that we ask or think,

According to the power that worketh in us,

For in him we live, and move, and have our being; ...

Unto him be glory...

By Christ Jesus throughout all ages.

Amen.

Eph 3:20, Act 17:28



Abstract

In this thesis, we investigate the signatures of isocurvature initial conditions in the cosmic mi-

crowave background (CMB) through the temperature and polarization anisotropies, and in the

large-scale structure distribution through the baryon acoustic oscillations (BAO).

The first part of this thesis is a brief review of the standard cosmological model with its underly-

ing linear cosmological perturbation theory. We supplement it with a general discussion on the

initial conditions of the primordial fluctuations.

In the third chapter, we review the evolution of the perturbations in the adiabatic model. We

focus on the evolution of adiabatic perturbations in the photons and baryons from the epoch of

initial conditions to the photon-baryon decoupling, as these determine the main features of the

primary CMB anisotropies and of the baryon acoustic oscillations.

The fourth chapter recalls the theory of the CMB anisotropies in the adiabatic model. We con-

sider the perturbations from the last scattering surface and evolve them through the line of sight

integral to get the adiabatic CMB power spectrum. We review the effect of different cosmologi-

cal parameters on the adiabatic CMB temperature spectrum.
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In the fifth chapter, we investigate the observational signatures of the isocurvature perturbations

in the CMB anisotropies. We first derive simple semi-analytic expressions for the evolution of

the photon and baryon perturbations prior to decoupling forthe four isocurvature regular modes

and show that these modes excite different harmonics which couple differently to Silk damping

and alter the form and evolution of acoustic waves. We study the impact of different cosmolog-

ical parameters on the CMB angular power spectrum through the line of sight integral and find

that the impact of the physical baryon and matter densities in isocurvature models differ the most

from their effect in adiabatic models.

In the last two chapters, we explore in detail the effect of allowing for small amplitude ad-

mixtures of general isocurvature perturbations in addition to the dominant adiabatic mode, and

their effect on the baryon acoustic oscillations. The sixthchapter focuses on the distortion of

the standard ruler distance and the degradation of dark energy constants due to the inclusion of

isocurvature perturbations, while the seventh chapter discusses in more detail the sensitivity of

BAO dark energy constraints to general isocurvature perturbations. We stress the role played by

Silk damping on the BAO peak features in breaking the degeneracy in the peak location for the

different isocurvature modes and show how more general initial conditions impact our interpre-

tation of cosmological data in dark energy studies. We find that the inclusion of these additional

isocurvature modes leads to a significant increase in the Dark Energy Task Force figure of merit

when considered in conjunction with CMB data. We also show that the incorrect assumption of

adiabaticity has the potential to substantially bias our estimates of the dark energy parameters.

We find that the use of the large scale structure data in conjunction with CMB data significantly

improves our ability to measure the contributions of different modes to the initial conditions.
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CHAPTER 1

Introduction

Over the last two decades, there has been a dramatic increasein both the quantity and the quality

of cosmological data from different observations. These observational data have greatly im-

proved our understanding of the whole universe by testing different theoretical models about the

origin, the structure and the evolution of the universe. Among these observations, three main cos-

mological probes can be highlighted: the measurements of the cosmic microwave background

(CMB) anisotropies with the Wilkinson Microwave Anisotropy Probe (WMAP) [127, 125], the

discovery of the acceleration of the expansion of the universe using supernovae [144, 133] and

the detection of the imprint of baryon acoustic oscillations (BAO) in the early universe on galaxy

clustering [46, 37].

The CMB radiation and more precisely its temperature anisotropies, is undeniably the most im-

portant and accurate source of data today. The CMB is the residual radiation from decoupling

after the epoch of recombination when the universe was only afew hundred thousand years old.

It has a perfect thermal black-body spectrum and an isotropic temperature, one part in105, of

2.7 K today. Having traveled essentially undisturbed ever since, it is a powerful tool to probe of
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the early universe. More interestingly, its tiny anisotropies reflect the small perturbations in the

energy density of the universe at the time of the initial conditions.

The measurement of the expansion of the universe from the supernovae indicates that the ex-

pansion of the universe has begun to gradually accelerate instead of decelerating as one would

expect [133]. This acceleration has strengthened the dark energy case. It is not known whether

the universe will accelerate indefinitely or whether it willeventually reverse.

Large scale structure (LSS) surveys aim to construct a threedimensional distribution of the galax-

ies in the universe and measure the matter power spectrum [142, 172]. This dataset is currently

expanding rapidly. It comes from a much later period and on smaller scales than the CMB. Al-

though it has not yet reached the same level of accuracy as theCMB data, it is a powerful tool for

constraining cosmological models [90]. In this thesis, we use information from both the CMB

and the LSS.

From all the available data, we now know much more about the composition and the geometry

of the universe. A model of the history and structure of the universe has arisen: The standard

cosmological model, also called the concordance model. In this model, we live in a flat or nearly

flat universe that is roughly13.7 Gyr old and made up of slightly less than thirty percent non-

relativistic matter, of which only about one sixth is ordinary baryonic matter, the remaining being

cold dark matter (CDM), with seventy percent of the energy density in the form of dark energy.

The cold dark matter is some non-baryonic matter in the universe which cannot be observed

by its electromagnetic radiation while at the same time the particles making up this matter are

slowly moving. The existence of the cold dark matter is inferred from the motions of astronomi-

cal objects, specifically stellar, galactic, and galaxy cluster observations [36]. It is also required

in order to enable gravity to amplify the small fluctuations in the Cosmic Microwave Background

enough to form the large-scale structures that we see in the universe today. The dark energy is a

hypothetical form of energy that explains observations that the universe appears to be expanding

at an accelerating rate. Its nature is still a mystery but is commonly thought to be a residual
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vacuum energy density, also referred to as the cosmologicalconstantΛ, or a time varying scalar

field such as quintessence [130]. Present data favours a model of dark energy with the equation

of state i.e. the ratio of pressure to energy density being close to−1 [163]. Photons and neutrinos

constitute a tiny fraction of the total density of the universe today.

Although much progress has been made in understanding the universe, many conceptual and

technical problems remain unsolved. For example, the nature of the fluctuations which generated

anisotropies in the CMB and the large scale structure remains not well understood. Several dif-

ferent mechanisms of generating the primordial fluctuations have been proposed among which,

the cosmological inflation is currently the favourite. There are many variants of inflation, but

they all have in common that, during the first few fractions ofa second, the energy density of

the universe was dominated by one or more scalar fields. The simplest variants use a single field

and predict that the primordial fluctuations are adiabatic and drawn from a Gaussian distribution.

Although current data does not show evidence of significant non-gaussianity [163], one must

wait for the analysis of the Planck data in order to confirm or discard this trend [93].

In addition to the statistics and form of the primordial fluctuations, the initial conditions that the

fluctuations satisfy also present a challenge for modern cosmology. Although adiabatic primor-

dial perturbations are generally assumed, there are two fundamental types of perturbations, adia-

batic and isocurvature [25, 29, 61, 78]. For adiabatic perturbations, the fractional overdensity in

each component (baryons, photons, cold dark matter and neutrinos) is the same up to a constant,

which gives rise to a curvature perturbation. Isocurvatureperturbations are generated during in-

flation whenever there is more than one scalar field present [109, 134]. They are predicted by

a wide range of scenarios: multifield inflation, topologicaldefects, the decay of particles prior

to nucleosynthesis such as a scalar curvaton or axions, etc [29]. For isocurvature perturbations,

the fractional overdensities add up to zero, keeping the curvature initially unperturbed, which

creates an entropy perturbation. The location of the first acoustic peak in the CMB temperature

power spectruml ≈ 220.7 ± 0.7 as measured by WMAP [88, 13, 70], strongly suggests adia-

batic initial conditions for the cosmological perturbations [173]. However, there is no a priori
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reason to discard more general initial conditions involving isocurvature perturbations as they can

be generated by several different mechanisms [111, 109, 87,120, 137, 147, 148, 96, 131, 10].

While current observations exclude pure isocurvature models [44, 51, 127, 70, 88], they still

allow for an admixture of adiabatic and isocurvature contributions [88, 17, 14, 177]. The most

general situation is the superposition of the adiabatic, the cold dark matter isocurvature (CI) and

the neutrino isocurvature density (NID) and velocity (NIV)modes [29, 121, 173, 32].

Testing the nature of the primordial perturbations requires a good understanding of the different

possibilities of the initial conditions [122]. The CI mode have been studied previously [25]. It

excites a sine wave rather than a cosine wave, as is the case for adiabatic conditions [78], and

produces a first peak in the power spectrum located atl ≈ 330 [25, 92, 102, 175] with the height

of the peak differing from the adiabatic mode. The baryonic isocurvature (BI) mode behaves

like the CI mode [25] and can be neglected [65]. The neutrino isocurvature density and velocity

modes recently introduced [29, 102] are characterized by a non-zero initial entropy perturbation

in the neutrino density with respect to the photon density orby a relative velocity between the

photon and the neutrino components with a vanishing total momentum density [29]. In this the-

sis, we consider a more generic situation where we allow the possibility of several isocurvature

modes in addition to the adiabatic one.

In this thesis, we investigate the signatures of isocurvature initial conditions in the CMB through

the temperature anisotropies, and in the large-scale structure distribution through the BAO.

The thesis is structured as follows. In the second chapter, we briefly review the standard cos-

mological model and supplement it with a general discussionon the initial conditions of the

primordial fluctuations. In the third and fourth chapters, we review respectively the evolution of

the perturbations and the CMB anisotropies in the adiabaticmodels. The fifth chapter investi-

gates the observational signatures of the isocurvature perturbations in the CMB anisotropies. In

the sixth chapter, we explore the distortion of the standardruler distance and the degradation of

dark energy constraints due to the inclusion of isocurvature perturbations. The seventh chapter

4



discusses in more detail the sensitivity of BAO dark energy constraints to general isocurvature

perturbations. In the last chapter of the thesis, we presentconcluding remarks.
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CHAPTER 2

The Standard Cosmological Model

Over the course of past several decades, a huge amount of observational data has greatly im-

proved our understanding of the universe by testing different theoretical models about the origin,

the structure and the evolution of the universe. The currently accepted view is that the ob-

served large scale structures of the universe such as galaxies and galaxy clusters, and the CMB

anisotropies originated from some small initial fluctuations in the matter and radiation in the

early universe and grew under gravitational instability. For such fluctuations, the linear perturba-

tion theory can be used to solve for the growth of the fluctuations. The perturbation theory allows

examining the initial conditions of the fluctuations, theirevolution and their imprint on the large

scale structures and on the CMB. This picture represents thestandard cosmological model.

In this chapter, we briefly introduce the standard cosmological model with its underlying linear

cosmological perturbation theory that provides a basis forunderstanding the formation of the

large scale structures of the universe and anisotropies in the CMB. We first present the underlying

pillars of the model, introduce the unperturbed and the perturbed Friedmann-Robertson-Walker

cosmological models and argue for our choice of the gauge. Wethen introduce the Einstein

6



equations and the energy momentum conservation principle to derive the differential evolution

equations for the four species of the universe. Lastly, we supplement the standard cosmological

model with a discussion on the initial conditions of the primordial fluctuations.

2.1 Brief overview

The Big Bang model, based on the homogeneous and isotropic Friedmann-Robertson-Walker

(FRW) spacetimes, is undeniably the prevailing cosmological theory describing with unprece-

dented success the evolution of the universe on large scales. The evidence for angular isotropy

on large scales of the CMB as well as the isotropy of deep galaxy and radio source surveys

strongly support the assumption of homogeneity and isotropy. This assumption, with the Coper-

nican principle leads to the conclusion that the universe isspatially homogeneous and constitutes

the cosmological principle, cornerstone of the standard cosmology. Four main observational pil-

lars support this model: the expansion of the universe, the abundances of the light elements in

agreement with the predictions of nucleosynthesis, the thermal spectrum of the CMB radiation

and the large-scale structures observed in the universe.

2.1.1 The expansion of the universe (Hubble’s law)

Distant galaxy and quasar surveys show that these objects are moving away from us and the

further away an object is, the more rapid its recession appears to be. This universal expansion,

predicted by Alexander Friedmann in 1922 [55] and Georges Lematre in 1927 [99], and first ob-

served by Edwin Hubble in 1929 [80] constitutes Hubble’s lawwhich states that the recessional

velocityv of a galaxy is proportional to the its distanced away from us

v = Hd,

whereH is known as the Hubble parameter. WMAP experiment has determined its value today

to beH0 = 70.4 ± 1.4 km sec−1 Mpc−1 [81].
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2.1.2 Light element abundances

Prior to about one second after the Big Bang, the universe wasvery hot and dense. As it expanded

and cooled, some nucleons were synthesized into the light elements such as hydrogen (H), deu-

terium (D), helium-3 (3He), helium-4 (4He) and lithium-7 (7Li). The abundances of these light

elements depend only on the ratio of photons to baryons, which itself can be independently cal-

culated from fluctuations in the CMB. The measured abundances all agree with those predicted

from the Big Bang Nucleosynthesis (BBN), except for the lithium which presents a discrepancy

of a factor of2.3 − 4.3 from abundances inferred from observations of Population II star due to

substantial systematic uncertainties [39].

2.1.3 Cosmic microwave background radiation

Figure 2.1: CMB temperature anisotropy spectrum. This is from the 7-year WMAP data. The

plotted errors include instrument noise, but not the small,correlated contribution due to beam

and point source subtraction uncertainty. The blue band represents cosmic variance.
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Since its accidental discovery by Arno Penzias and Robert Wilson in 1964 [132], the CMB

radiation is considered a landmark of the Big Bang model. It is the radiation left over from the

early hot universe that free streams towards us from the epoch of last scattering, approximately

379,000 years after the Big Bang, cooling as the universe expands. Precise measurements by

the Far Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background

Explorer (COBE) satellite revealed perfect black body spectrum of the CMB at a temperature of

2.725 K and detected for the first time the fluctuations in the CMB, ata level of10−5 K [161].

Figure 2.1.3 combines measurements of the CMB anisotropiesby various observational experi-

ments. The existence of the CMB and its blackbody spectrum were predicted by Gamow in 1946

and Alpher and Herman in 1948 [59, 6]. Large number of ground-based experiments, balloon

experiments and satellite experiments has been since undertaken. More recently, the WMAP ex-

periment has yielded the most accurate values for some of thecosmological parameters [69, 16].

The smoothness of the CMB confirmed that the universe had earlier undergone a brief period of

rapid exponential expansion, called inflation. In addition, studies on the effects of the dynamics

of distant astrophysical objects on the CMB have provided further evidence for the Copernican

principle [164].

2.1.4 Evolution and distribution of galaxies

The large scale structures such as galaxy clusters and superclusters, and the morphology and dis-

tribution of galaxies and quasars, as well as observations of star formation are in good agreement

with simulations of the structure formation based on the BigBang model [20]. The morphology

of distant galaxies differs from the nearby galaxies due to the star populations that are aging

and evolving. In addition, for galaxies situated at comparable distance, recently formed galax-

ies appear different from galaxies formed shortly after theBig Bang. The large scale structures

originated from the primordial fluctuations that were generated during inflation. According to the

inflationary paradigm, the expansion of the universe was accelerated during an early epoch of the

universe, well before the period of primordial nucleosynthesis. In this period, primordial density

9



and gravitational wave perturbations were generated from quantum fluctuations redshifted out of

the Hubble radius, where they remain frozen until they re-enter the Hubble radius [123, 106].

2.2 Age and energy contents of the universe

According to the standard cosmological model and in view of recent experiments, the universe is

believed to be flat with mean energy density (critical density) equal toρ̄cr = 9.9×10−30 g cm−3,

13.75 ± 0.11 billion years old and composed of relativistic components such as photons and

neutrinos, relic of the Big Bang; atoms or ordinary matter called baryon; and of not yet well

understood substances such as the dark energy and the dark matter. The baryonic matter (stars,

galaxies, clusters, dusts,...) responsible for all visible matter in the universe, represents only

about4.6% of the total contents of the universe [88].

The dark energy which accounts for72% of the contents of the universe, is a hypothetical form of

energy that uniformly permeates all space with anti-gravitational properties tending to increase

the rate of expansion of the universe. Its existence was firstsuggested by observations of Type Ia

supernovae in1998 when, independently, A.G. Riesset al. [144] and S. Perlmutteret al. [133]

noticed that rather than slowing down, the expansion appeared to be speeding up. Since then,

different and independent experiments such as the measurement of the CMB anisotropies [88],

the gravitational lensing [150], and the large scale structure surveys [142], have corroborated

these observations. Two popular forms for dark energy have been proposed: the cosmological

constantΩΛ, equivalent to the vacuum energy filling space homogeneously, and scalar fields with

energy density changing in space and time. The measurement of the equation of state of dark

energy is currently one of the most active research areas in cosmology as it parameterizes the

evolution of the expansion.

The cold dark matter which represents the remaining23% of the contents of the universe, first

postulated by Fritz Zwicky in1934 to account for evidence of ”missing mass” in the dynamics of

galaxies in clusters, is a form of non-radiative and non-relativistic matter but detectable through

gravitational interaction with the ordinary matter [186, 187]. The measurements of galaxy ve-
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locities, gravitational lensing of background objects by galaxy clusters, and the temperature dis-

tribution of hot gas in galaxies and clusters of galaxies allpoint to the existence of the cold dark

matter [145, 53, 178]. The cold dark matter plays a key role instructure formation and galaxy

evolution, and has impacts on the CMB anisotropies [69].

2.3 Background and perturbed Friedmann-Robertson-Walker

models

To describe a homogeneous and isotropic universe, we consider the FRW metric which describes

a homogeneous, isotropic expanding universe. Its metric line element is given by

ds2 = gµνdx
µdxν = a2(τ)[−dτ 2 + γij(~x)dx

idxj ], (2.1)

where the indicesµ andν range from0 to 3, a is the scale factor accounting for the expansion

of the universe andgµν is the unperturbed Robertson-Walker metric. The spatial coordinatesxi

take the range1 < i, j < 3, γij = gij/a
2 is the symmetric spatial part of the metric for a constant

curvature space andτ is the conformal time related to the proper time bydt = a(τ)dτ . The

above metric is usually written using the spherical-like coordinates of a fundamental observer

(r, θ, φ) as

ds2 = a2(τ)

(

−dτ 2 +

[

dr2

1 − κr2
+ r2(dθ2 + sin2 θdφ2)

])

, (2.2)

whereκ is a constant describing the (constant) curvature of the space. It can take the values1,

0 or −1 corresponding to a closed (spherical), flat (euclidean) andopen (hyperbolic) universe

respectively. Units are chosen such that the speed of light is unity. The FRW is a direct conse-

quence of the spatial homogeneity of the universe, independently of whether or not the Einstein

equation is valid.

The unperturbed Robertson-Walker metric above describes asmooth homogeneous and isotropic

expanding universe. In the presence of perturbations, there is no uniquely preferred coordinate

system. However, the coordinates must reduce to those of equation (2.1) in the limit of zero
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perturbation. A coordinate system meeting this requirement is called a gauge. To account for the

inhomogeneity of the universe, we consider the perturbed Robertson-Walker metric. The most

general first-order perturbation to the line element can be written as [106]

ds2 = a2(τ)[−dτ 2 + γij(~x)dx
idxj + hµν(~x, τ)dx

µdxν ], (2.3)

wherehµν is the metric perturbation. Its components can be explicitly written as

h00 = −2A, h0i = −Bi, hij = 2(Dγij + Eij), (2.4)

whereEij is a traceless 3-metric. The trace ofhij is proportional toD. For a flat universe

(κ = 0), a cartesian coordinate can be chosen such thatγij = δij . The termA is called the lapse

function and is a perturbation to the conformal time component. It specifies the relation between

τ and the proper time along the threading.Bi is the shift function which specifies the relative

velocity between the threading and the worldlines orthogonal to the slicing and2(Dδij +Eij) is

the perturbation to the curvature of space.

The components of the metric perturbation are further broken down into scalar, vector and ten-

sor perturbations by decomposing every symmetric tensor and every vector into longitudinal and

transverse parts. The “tensor mode”ET
ij represents the part ofhij that cannot be obtained from

the gradient of a scalar or vector. It is a gauge-invariant. Physically, it represents gravitational

waves and the anisotropic stress that can interact with them. The “vector mode” corresponds to

the transverse vector parts of the metric, which are found inB⊥
i andE⊥

ij . It is a generalization of

purely rotational fluid flow with anisotropic stress. Each part has 2 degrees of freedom, but by

imposing a gauge condition, it is possible to eliminate two of them. The “scalar mode” is spin-0

under spatial rotation and corresponds physically to Newtonian gravitation with relativistic mod-

ifications. It is generally believed that the scalar mode is generated by the vacuum fluctuation of

the inflation field. Any two of the scalar parts of the metricA, D, B‖
i andE‖

ij can be set to zero

by a gauge transformation.

The scalar, vector and tensor modes evolve independently inlinear perturbation theory. Therefore

each mode can be examined separately. In this thesis, we onlyconsider scalar perturbations and
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restrict our study to a spatially flat background spacetime.The line element simplifies to

ds2 = a2(τ){−(1 + 2A)dτ 2 − Bidτdx
i + [(1 + 2D)δij + 2Eij ]dx

idxj}, (2.5)

whereA, Bi,D andEij are fixed according to the choice of gauge.

A variety of gauges have been proposed in the literature. Among them, the conformal Newtonian

(or longitudinal) gauge and the synchronous gauge are usually used in cosmology.

The conformal Newtonian gauge is a simple gauge for scalar modes of the metric perturbations,

but can be generalized to include vector and tensor modes [19]. It is characterized by two scalar

potentialsψ andφ with the latter playing the role of the gravitational potential in the Newtonian

limit. The four scalar perturbations to the metric are givenbyA = ψ,D = φ andBi = Eij = 0.

Thus the line element in this gauge is written as

ds2 = a2(τ)[−(1 + 2ψ)dτ 2 + (1 + 2φ)δijdx
idxj ]. (2.6)

Since the metricgµν is diagonal, calculations in this gauge are simple. In addition, the gauge

freedom is completely fixed as there is no gauge modes.

The synchronous gauge is a more general gauge including scalar, vector and tensor modes. Only

the space-space component of the metric tensor is perturbed(h00 = h0i = 0). Thus the line

element in this gauge is given by

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj ]. (2.7)

The threading consists of geodesics and the slicing is orthogonal to the threading. As there is no

unique threading, the synchronous description does not fix completely the coordinate system but

leaves some residual gauge freedom. A particular threadingcan be chosen to impose adiabatic or

isocurvature initial conditions. The synchronous gauge offers a convenient computational frame

and various publicly available Boltzmann codes are writtenin this gauge.

It is always possible to pass from the longitudinal gauge to the synchronous gauge and vice versa

using a gauge transformation.

A gauge transformation is an infinitesimal first-order change in coordinates in the perturbed

spacetime, from one coordinate systemxµ to another̂xµ given by

x̂µ = xµ + dµ(xν). (2.8)
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Thus the conformal Newtonian potentialsφ andψ are related to the synchronous potentialsh

andη in k-space by [114]

ψ(k, t) = α̇ +
ȧ

a
α, φ(k, t) = η − ȧ

a
α, (2.9)

whereα is defined byα ≡
(

ḣ + 6η̇
)

/2k2. The potentialη comes from writing the scalar mode

of hij(x, τ) as a Fourier integral as [114]

hij(~k, τ) = ~̂ki
~̂kjh(~k, τ) + (~̂ki

~̂kj −
1

3
δij)6η(~k, τ),

where we repeat the use of h for the trace part of the perturbation in Fourier space,~k = ~̂kk

and~̂k is the unit vector pointing in the traveling direction of thewave. In this thesis, we mostly

use the synchronous gauge although some few times, the conformal gauge is referred to mainly

for physical intuition. The overdot stands for the derivative with respect to the conformal time.

Similarly, a species density contrast,δx, and its velocity divergence,θx, in the conformal and

synchronous gauges are related by [114]

δCon
x = δSyn

x − 4α
ȧ

a
, (2.10)

θCon
x = θSyn

x + αk2. (2.11)

2.4 Einstein equations and energy momentum conservation

The Einstein’s field equations have undeniably revolutionized the development of the modern

cosmology during the last century. They relate the EinsteintensorGµν describing the geometry

to the energy-momentum tensorTµν describing the matter contents, and are given by

Gµν = Rµν − gµν
R

2
= 8πGTµν . (2.12)

In this relationRµν andR ≡ gµνRµν are the Ricci tensor and scalar respectively. The Ricci

tensor depends on the metric and its derivatives, and can be most conveniently written as

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓ

β
µα,
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where theΓµ
αβ are the Christoffel symbols given by

Γµ
αβ =

gµν

2

[

∂gαν

∂xβ
+
∂gβν

∂xα
− ∂gαβ

∂xν

]

,

and commas denote derivatives with respect tox, for exampleΓα
µν,α ≡ ∂Γα

µν/∂x
α. We also

define the covariant derivative denoted by a semi-colon, that will be used later in this chapter as

T µ
ν;µ ≡ ∂T µ

ν

∂xµ
+ Γµ

αµT
α
ν − Γα

νµT
µ
α . (2.13)

Thus, Einstein equations relate the perturbations in the metric to the perturbations in matter and

radiation [41]. For a homogeneous universe with energy density ρ̄(τ) and pressurēP (τ), the

Einstein equations give the following evolution equations[114]:

H2 =

(

ȧ

a

)2

=
8π

3
Ga2ρ̄− κ, (2.14)

d

dτ
H =

d

dτ

(

ȧ

a

)

= −4π

3
Ga2(ρ̄+ 3P̄ ), (2.15)

where we have defined the Hubble parameter in conformal time,H = ȧ/a. The equation (2.14)

is nothing else but the Friedmann equation which gives the time evolution of the scale factor

a(τ), and equation (2.15) is the acceleration equation. Equation (2.15) shows that the accelera-

tion of the expansion of the universe is due to the density andpressure filling the universe, with

positive acceleration requiring a component with negativepressurēP < −ρ̄/3.

The matter components of the universe (baryons and cold darkmatter) can be treated as

ideal fluid at all time allowing to be completely described bythe energy density contrastδ and

the velocity divergenceθ while, for the radiation components (neutrinos and photons), a full

treatment requires the use of the Boltzmann equation. Nevertheless, in the baryon-photon tight-

coupling regime, the single fluid can be treated as perfect fluid without loss of accuracy. Here,

we do not consider the case of massive neutrinos. The energy-momentum tensor for such a fluid

is given by [114]

T µ
ν =

∑

n

Png
µ
ν + (ρn + Pn)V µVν , (2.16)
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whereV µ = dxµ/
√
−ds2 is the four-velocity of the fluid,ρ = ρ̄ + δρ andP = P̄ + δP are

the proper energy density and pressure in the fluid rest framerespectively. The barred quantities

refer to the background, andδρ andδP are respectively the density and pressure fluctuations.

We are summing over all components in the universe. Explicitly, we can write the components

of the perturbed energy-momentum tensor as

T 0
0 = −(ρ̄+ δρ), (2.17)

T 0
i = (ρ̄+ P̄ )vi = −T i

0, (2.18)

T i
j = (P̄ + δP )δi

j + Σi
j , Σi

i = 0, (2.19)

wherevi ≡ dxi/dτ is the coordinate velocity of the fluid (assumed non-relativistic), andΣi
j ≡

T i
j − δi

jT
k
k /3 is the anisotropic shear perturbation which denotes the traceless component ofT i

j .

ρ̄(τ) andP̄ (τ) are respectively the energy (or mass) density and pressure of the FRW background

universe.

Let us define new variablesθ andσ as

(ρ̄+ P̄ )θ ≡ ikjδT 0
j , (2.20)

(ρ̄+ P̄ )σ ≡ −(k̂ik̂j −
1

3
δij)Σ

i
j , (2.21)

whereθ = ikjvj is the divergence of the fluid velocity andσ is related to the shear stress. We

also define the density contrastδ ≡ δρ/ρ̄ = −δT 0
0 /ρ̄.

Substituting the metric and the stress-energy tensor in theEinstein equation, we deduce the field

equations for the perturbations[114]:

k2η − 1

2

ȧ

a
ḣ = −4πGa2δρ, (2.22)

k2η̇ = 4πGa2(ρ̄+ P̄ )θ, (2.23)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −8πGa2δP, (2.24)

ḧ+ 6η̈ + 2
ȧ

a
(ḣ+ 6η̇) − 2k2η = −24πGa2(ρ̄+ P̄ )σ. (2.25)
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The time-time component of the Einstein equation (2.22) looks like the Poisson equation. In

the limit of no expansion (̇a = 0), it reduces to the ordinary Poisson equation for gravity viz

∇2η = −4πa2Gδρ. The terms proportional tȯa account for the expansion and are typically im-

portant for modes with wavelengths(λ ∼ a/k) comparable to, or larger than the Hubble radius

H−1.

We label the different species of the universe with subscript j = 1, . . . , n, define the critical

density of the universēρcr as the total density needed for a flat universe(H2 = 8πGa2ρ̄cr/3) and

denote byΩj ≡ ρ̄j/ρ̄cr the ratio of the density of thejth species to the critical density. The set of

equations (2.22)-(2.25) can be written as

k2η − 1

2

ȧ

a
ḣ = −3

2
H2ρ̄cr

∑

j

Ωjδj , (2.26)

k2η̇ =
3

2
H2ρ̄cr

∑

j

Ωj(1 + wj)θj, (2.27)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −9H2ρ̄cr

∑

j

Ωjc
2
sjδj , (2.28)

ḧ + 6η̈ + 2
ȧ

a
(ḣ+ 6η̇) − 2k2η = −9H2ρ̄cr(1 + wj)Ωjσj . (2.29)

wherewj = pj/ρj is the equation of state for thejth species andc2s = ∂pj/∂ρj is its sound speed

squared.

Combining equations (2.22) and (2.24) we eliminateη and obtain a useful equation which ex-

presses the metrich in terms of the density perturbations:

ḧ+
ȧ

a
ḣ = −8πGa2(δρ+ δP ). (2.30)

The energy-momentum conservation principle tells us that

T µν ;µ = ∂µT
µν + Γν

αβT
αβ + Γα

αβT
νβ = 0, (2.31)

and leads to the following time evolution equations for the density perturbations and the diver-
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gence of the fluid velocity

δ̇ = −(1 + w)

(

θ +
ḣ

2

)

− 3
ȧ

a

(

δP

δρ
− w

)

δ, (2.32)

θ̇ = − ȧ
a
(1 − 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ, (2.33)

wherew is given by the equation of statew ≡ P/ρ. If w is constant, as we shall consider, the

equations simplify further sinceδP/δρ ≡ c2s = w andẇ = 0. The equations (2.32) and (2.33)

are valid for the global fluid. They are also valid for a fluid component which does not interact

with other components. In the case of interaction we have to add some corrective terms. This is

the case for baryons which couple to photons through Thomsonscattering before recombination.

The full set of time evolution equations for photons, baryons, cold dark matter and massless

neutrinos are [114]:

δ̇γ = −4

3
θγ −

2

3
ḣ, (2.34)

δ̇b = −θb −
1

2
ḣ, (2.35)

δ̇c = −1

2
ḣ, (2.36)

δ̇ν = −4

3
θν −

2

3
ḣ, (2.37)

for the density contrastsδ, and

θ̇γ = k2

(

1

4
δγ − σγ

)

+ aneσT (θb − θγ), (2.38)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ρ̄γ

3ρ̄b
aneσT (θγ − θb), (2.39)

θc = 0, (2.40)

θ̇ν = k2

(

1

4
δν − σν

)

, (2.41)

for the velocity divergences. The indicesγ, b, c andν correspond to photons, baryons, cold dark

matter and relativistic neutrinos respectively,σT is the Thomson cross section,ne is the electron

number density, and̄ργ andρ̄b are the density of photons and baryons respectively.
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The shear stress of the radiation (photons and neutrinos) isrelevant once the radiation component

has decoupled from the matter component for a mode within thehorizon and must be taken into

account. Therefore we supplement two equations for the quadrupole [114]. The photon shear

stress is particularly useful for studying the primary CMB polarization.

σ̇γ =
4

15
θγ −

3

10
kFγ3 +

2

15
ḣ+

4

5
η̇ − 9

10
aneσTσγ, (2.42)

σ̇ν =
4

15
θν −

3

10
kFν3 +

2

15
ḣ +

4

5
η̇, (2.43)

whereFν3 andFγ3 are the third moments of the momentum-averaged phase space densities

for neutrinos and photons. A complete treatment requires a hierarchy of multipole moments to

describe the full distribution function of the radiation component [41, 152].

2.5 Initial conditions

Although the standard cosmological model is well established, some problems remain. Among

them is the nature of the primordial fluctuations that eventually led to the formation of the ob-

served large scale structure. There are two possible approaches. In the first approach, fluctuations

were generated during the rapid expansion of the universe and linearly imprinted in the matter

and radiation contents early in the radiation dominated era. For the second approach, the fluc-

tuations were generated during the radiation and matter eras through some causal mechanism

[29, 61]. In this work we adopt the first option. Different possible regular (finite asτ goes to

zero) sets of initial conditions are allowed and grouped in adiabatic and isocurvature modes.

The adiabatic mode, by far the most studied to date, is characterized by the requirement that the

densities of all species are perturbed in proportion at someinitial time i, independently of the

wavenumberk such that

δc,i = δb,i =
3

4
δγ,i =

3

4
δν,i, (2.44)

where the subscripti labels the initial time. Or equivalently, using the relative entropy between

two speciesx andy given bySxy = δx

1+wx
− δy

1+wy
, wherewx andwy are the equation of state

parameters of the speciesx andy respectively, we have thatSxy = 0 for all pairs of species at
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initial time. In addition, all velocity divergences are initially unperturbed. The adiabatic mode is

a prediction of the simplest inflationary model [67]. This isdue to the fact that inflatons, quantum

fluctuations of the field responsible for inflation, give directly rise to perturbations in the energy

density of the inflaton field [50]. Though current datasets show that the initial fluctuations were

dominantly adiabatic [88], this does not exclude mixtures of adiabatic and isocurvature modes.

Recent works have investigated general admixtures in the initial conditions [13, 14, 31, 121] and

found that the current datasets allow admixtures with an isocurvature fraction up to forty percent

for the CMB temperature and the LSS datasets combined [13, 29]. The isocurvature fraction is

expected to be slightly less than ten percent with CMB polarization from PLANCK [30].

The isocurvature modes, also called entropy perturbations, are characterized by the fact that the

abundance ratios of different particle species are not spatially constant initially but vary from

place to place. They are predicted by a wide range of scenarios as discussed in [29]. Four reg-

ular isocurvature modes are distinguished, namely the colddark matter isocurvature, the baryon

isocurvature, the neutrino isocurvature density and the neutrino isocurvature velocity modes.

In the cold dark matter isocurvature mode first proposed by Bond and Efstathiou [24, 25], the

cold dark matter to photon ratio varies spatially. Fluctuations are initially imprinted in the cold

dark matter component of the universe while the other components are initially unperturbed.

This can be written at some initial time as

δc,i = 1, δb,i = δγ,i = δν,i = 0. (2.45)

A pure cold dark matter isocurvature mode gives about 30 times more power in the matter per-

turbations on large scales and consequently yields excessive anisotropies in the CMB [63, 140].

The baryon isocurvature was introduced by Peebles [129] initially for a universe made of baryons,

photons and neutrinos. In this mode the baryon to photon ratio is initially spatially perturbed.

This can be written at some initial time as

δc,i = 0, δb,i = 1, δγ,i = δν,i = 0. (2.46)

A pure baryonic isocurvature mode lacks a curvature component at early time and causes earlier

re-ionization and galaxy and star formation, discrepancies in the peculiar velocities on small

scales and in the flow velocities on large scales [166, 165].
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The neutrino isocurvature density and velocity modes were first introduced in1999 by M. Bucher

et al. [29]. In the neutrino isocurvature density mode, the densities of the matter components

(baryon and cold dark matter) are initially unperturbed while the initial perturbation in the neu-

trino density is balanced by its photon counterpart, keeping the curvature unperturbed. Thus the

neutrino to photon ratio is initially spatially perturbed but the total density perturbation vanishes.

The species initial perturbations are as follows:

δc,i = δb,i = 0, δγ,i = −Rν

Rγ
δν,i, (2.47)

where we denote the fractional contributions from neutrinos and photons to the total density at

times early in the radiation era byRν andRγ , respectively.

For the neutrino isocurvature velocity mode, contrarily tothe other isocurvature modes, there

is no relative entropy perturbation in the density field at some initial time. The rest frame of the

neutrino and the photon do not coincide. The neutrino velocity divergence is initially perturbed

but compensated by the baryon-photon common velocity so that the total momentum density

vanishes. The species initial perturbations are given by:

θc,i = 0, θb,i = θγ,i = −Rν

Rγ

θν,i. (2.48)

In the previous section we have derived the set of equations (2.34)-(2.41) governing the pertur-

bations around a smooth background. For each scalek this system of equations can be solve

uniquely given suitable initial conditions during the radiation-dominated era, well before hori-

zon entry of the corresponding mode. In this thesis, “horizon” abusively denotes the Hubble

distancedH = aτ , which is the physical distance that the light has travelledin a given lifetime

of the universe. In the next chapter, we briefly review the evolution of the different species under

adiabatic initial conditions.
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CHAPTER 3

Evolution of Cosmological Perturbations: Adiabatic case

The evolution of cosmological perturbations can be subdivided into three stages. First, atvery

early timeswhere allk-modes are outside the horizon (kτ ≪ 1) and the gravitational potentialφ

is constant as we shall show later; then, theintermediate timeswhere, progressively, thek-modes

enter the horizon, small scale and large scale modes evolving differently as they enter the horizon

at different times, and the universe passes from being radiation dominated to matter dominated;

and finally thelate timeswhere all thek-modes evolve identically again. In this chapter, we

review the evolution of the perturbations in adiabatic models. We first focus on the evolution of

the dark matter as it constitutes the main component of most cosmological models, and review

the effect of the other components on the matter perturbation evolution. We then present the

photon and baryon evolution in the tight-coupling regime. The evolution of the photons after

decoupling requires using the a full statistical treatment. This will be done in the next chapter.

After decoupling, the baryons follow the evolution of the dark matter. Here, we do not consider

the evolution of the neutrinos as these decouple very early and therefore, are not relevant for this

study. In this chapter, we closely follow the description in[41].
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In the previous chapter, we presented the set of time evolution equations for photons, baryons,

cold dark matter and massless neutrinos in the synchronous gauge. However, most studies of

the adiabatic case are done in the conformal gauge. This makes simpler the interpretation of

the different gauge quantities. In the conformal gauge, these can be respectively written for the

photons, baryons, cold dark matter and neutrinos as [114]

δ̇γ = −4

3
θγ + 4φ̇, (3.1)

δ̇b = −θb + 3φ̇, (3.2)

δ̇c = −θc + 3φ̇, (3.3)

δ̇ν = −4

3
θν + 4φ̇, (3.4)

for the density contrastsδ, and

θ̇γ = k2

(

1

4
δγ − σγ

)

+ k2ψ + aneσT (θb − θγ), (3.5)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ρ̄γ

3ρ̄b
aneσT (θγ − θb) + k2ψ, (3.6)

θ̇c = − ȧ
a
θc + k2ψ, (3.7)

θ̇ν = k2

(

1

4
δν − σν

)

+ k2ψ, (3.8)

for the velocity divergencesθ. Here for the gravitational potentialφ, we have adopted the sign

convention in [41]. For this review, we follow closely the work of Hu and Dodelson [41, 75].

For the gravitational potential, we supplement the above set with the field equations (2.22) and

(2.23) which, in the conformal gauge, can be written as

k2φ+ 3
ȧ

a

(

φ̇+
ȧ

a
φ

)

= 4πGa2δρ, (3.9)

k2

(

φ̇+
ȧ

a
φ

)

= 4πGa2(ρ̄+ P̄ )θ, (3.10)

where we have setψ = φ, in the limit that there is no quadrupole moments. For convenience,

equations (3.9) and (3.10) can be combined to eliminate the derivatives of the potential and
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remain with an algebraic equation for the gravitational potential given by

k2φ = 4πGa2

(

δρ− 3H

k2
(ρ̄+ P̄ )θ

)

. (3.11)

3.1 Cold dark matter evolution

We would like to study the evolution of the dark matter overdensity. We consider the dark matter

evolution equations (3.3) and (3.7) and ignore the baryons as they only represent about4% of the

total energy density. The radiations, both photons and neutrinos, contribute to the gravitational

potential which in turn, is closely related to the dark matter in the limit of small baryon density.

The collision term in equation (3.5) can be neglected (tight-coupling regime). This allows one to

treat the photons and neutrinos as one component and write its evolution equations as

δ̇r = −4

3
θr + 4φ̇, (3.12)

θ̇r = k21

4
δr + k2φ, (3.13)

where the subscriptr stands for radiation. An analytic solution for the dark matter, valid at all

times and on all scales is hard to derive. One looks for solution in certain limits of time and

scales. We therefore consider the large and small scale modes separately.

3.1.1 Large scales

On very large scales, analytic solutions for the potential can be obtained through the matter-

radiation transition and through horizon crossing.

3.1.1.1 Super-horizon solution

For the super-horizon modes, modes that are far outside the horizon, all terms dependent on the

velocity divergenceθ = ikv can be neglected in the density evolution equations. In addition,

in this limit, the velocity divergences decouple from the density contrasts. The set of equations

(3.12), (3.3) and (3.9) becomes
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δ̇r = 4φ̇, (3.14)

δ̇c = 3φ̇, (3.15)

3
ȧ

a

(

φ̇+
ȧ

a
φ

)

= 4πGa2δρ. (3.16)

Equations (3.14) and (3.15) requireδc −
3

4
δr to be constant, equal to zero in the adiabatic mode.

We then substituteδr = 4
3
δc in equation (3.16) to get

3
ȧ

a

(

φ̇+
ȧ

a
φ

)

= 4πGa2ρcδc

[

1 +
4

3y

]

, (3.17)

where we have defined a new variabley as

y ≡ a

aeq

=
ρc

ρr

. (3.18)

The derivatives in equation (3.16) can be written using the variabley. This leads to

yφ′ + φ =
3y + 4

6(y + 1)
δc. (3.19)

Here, we have used
d

dτ
= Hy

d

dy
. Prime denotes derivatives with respect toy. A second

order differential equation can be obtained by differentiating equation (3.19) and combining with

equation (3.15). Thus we get

yφ′′ +
21y2 + 54y + 32

2y(y + 1)(3y + 4)
φ′ +

φ

y(y + 1)(3y + 4)
= 0, (3.20)

whose solution, first derived by Kodama and Sasaki [86], is

φ =
φ(0)

10y3

[

16
√

1 + y + 9y3 + 2y2 − 8y − 16
]

(3.21)

Equation (3.21) is the solution for the gravitational potential on super-horizon scales. It tells

us that, in the limit of smally, equation (3.21) reduces toφ = φ(0). For largey, when the

universe is matter dominated,φ = 9
10
φ(0). Thus on large scales, the gravitational potential

drops by 10% as the universe passes from being radiation dominated to matter dominated. The
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gravitational potential decay is not instantaneous, but occurs in a quite long period, after the

matter-radiation equality. For cosmological models with less matter, the matter-radiation equality

epoch is closer to decoupling so that the gravitational potential decay is more apparent even at

the time of recombination. Figure 3.1 represents the evolution of the gravitational potential on

large scales.

Figure 3.1: Super horizon evolution of the gravitational potential in a flatΛCDM model with

h = 0.7, Ωb = 0.0449, Ωc = 0.245.

3.1.1.2 Through horizon crossing

In the limit that radiation is not important, that is deep in the matter dominated era, equations

(3.12) and (3.13) can be neglected as the gravitational potential depends only on the matter

inhomogeneities. From the previous solution, we saw that the gravitational potential is constant

deep in the matter dominated era. This allows us to setφ̇ = 0 as the initial conditions for this

problem. We consider the field equation (3.11) and neglect the radiation components therein to
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get the following equation

k2φ =
3

2
H2

[

δc +
3H

k2
θc

]

. (3.22)

We use equation (3.22) to eliminateδc from equations (3.3) and (3.7), knowing that in the matter

dominated era,H ∝ a−1/2 so thatdH/dτ = −H2/2. Equation (3.3) becomes

2k2φ̇

3H2
+

2k2φ

3H
− 3Hθ̇c

k2
+

3H2θc

2k2
+ θc = 0. (3.23)

We would like to get a second order differential equation as for the previous case. To this end, we

first eliminateθ̇c from equation (3.23) using the velocity divergence equation (3.7). This leads to

2k2φ̇

3H2
+

[

θc

k2
+

2φ

3H

](

9H2

2
+ k2

)

= 0. (3.24)

Now, if the second order differential equation has no terms proportional toφ, then constant

gravitational potential is one of the solutions to the differential equation. With this mind, we then

differentiate equation (3.24) with respect to the conformal time, dropping all terms proportional

to derivatives of the potential and using
d

dτ
H−1 =

1

2
. Thus we are left with

[

θ̇c

k2
+
φ

3

]

(

9H2

2
+ k2

)

+

[

θc

k2
+

2φ

3H

]

d

dτ

9H2

2
= −

[

Hθc

k2
+

2φ

3

]

(9H2 + k2), (3.25)

where we have eliminateḋθc by using the velocity divergence equation again. The terms in the

square brackets on both left and right hand sides of equation(3.25) can be expressed in terms of

φ̇ using equation (3.24). Thus, there are no terms proportional to the gravitational potential in

the second order differential equation. Therefore, constant gravitational potential is the solution

in the matter dominated era. Thus the gravitational potential remains constant as long as the

universe is matter dominated. At later times, when the universe is dark energy dominated, the

gravitational potential decays.

3.1.2 Small scales

In the previous sub-section, we solved for the evolution of the perturbations that crossed the hori-

zon well after the epoch of matter radiation equality. In this section, we solve for the evolution
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of the perturbations that crossed the horizon deep in the radiation dominated era. We shall sep-

arately consider modes in the radiation dominated era crossing the horizon and the sub-horizon

modes passing through the matter radiation equality epoch.It is difficult to analytically solve for

modes which enter the horizon around the epoch of the matter radiation equality.

3.1.2.1 Horizon crossing

In the radiation dominated era, the gravitational potential is determined by the radiation perturba-

tions. The gravitational potential sources the matter perturbations but the latter do not influence

the gravitational potential. Therefore, to solve for the matter perturbations in this case, we first

need to solve for the gravitational potential, then finally solve for the matter perturbations us-

ing the gravitational potential as an external driving force. We consider the algebraic equation

(3.11) and neglect the matter density contrasts therein as they are small compared to the radiation

density contrasts deep in the radiation dominated era and get

φ =
6H2

k2

[

1

4
δr +Hθr

]

, (3.26)

sinceH2 = 8πa2Gρr/3 in the radiation dominated era. Equation (3.26) is used to eliminateδr

from equations (3.1) and (3.5). These become

− 1

k2τ
θ̇r + θr

[

1 +
3

k2τ 2

]

= −φ̇
[

1 +
k2τ 2

6

]

− φ
k2τ

3
, (3.27)

θ̇r +
1

3
θr = −k2φ

[

1 − k2τ 2

6

]

. (3.28)

We use equation (3.28) to eliminateθ̇r from equation (3.27) and differentiate the latter with

respect to the conformal time to get the following second order differential equation

φ̈+
4

τ
φ+

k2

3
φ = 0. (3.29)

To solve for the gravitational potentialφ, equation (3.29) can be turned into the spherical Bessel

equation of order 1 by defining a variableu = φτ . Equation (3.29) becomes

ü+
2

τ
u̇+

(

k2

3
− 2

τ 2

)

u = 0. (3.30)
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The two solutions of equation (3.30) are the spherical Bessel functionj1(kτ/
√

3), and the spheri-

cal Neumann functionn1(kτ/
√

3). The latter is discarded on the basis of the initial conditions as

it blows up for very smallτ . Expressing the spherical Bessel function in terms of trigonometric

functions, the gravitational potential can be written as

φ = 3φp

(

sin (kτ/
√

3) − (kτ/
√

3) cos (kτ/
√

3)

(kτ/
√

3)3

)

, (3.31)

whereφp is the primordial value ofφ. Equation (3.31) describes the evolution of the gravitational

potential for modes crossing the horizon in the radiation dominated era. As the mode enters the

horizon, its potential first decays then oscillates. In the limit of largekτ , the gravitational poten-

tial oscillates with an amplitude decreasing asτ−2.

With the knowledge of the gravitational potential in the radiation dominated era, let us solve for

the matter perturbation evolution. To this end, we considerthe matter evolution equations (3.3)

and (3.7) and turn them into a second order differential equation, differentiating equation (3.3)

and using equation (3.7) to eliminateθ̇c. We get

δ̈c +

(

ȧ

a
θc − k2φ

)

= −3φ̈. (3.32)

The term inθc can be eliminated using equation (3.3). This leads to

δ̈c +
1

τ
δ̇c = −3φ̈+ k2φ− 3

τ
φ̇, (3.33)

where the right hand side is the source term. We shall denote it by S(k, τ). The solutions to the

homogeneous part of equation (3.33) areδc = constant andδc = ln (a). Therefore, the general

solution to equation (3.33) can be written as

δc(k, τ) = C1 + C2 ln (τ) −
∫ τ

0

S(k, τ ′)τ ′(ln [kτ ′] − ln [kτ ])dτ ′, (3.34)

where the third term is constructed using the two homogeneous solutions and the source term

[74]. The initial conditions,δc = constant at early times, dictates thatC2 = 0 andC1 =

3φp/2. As the source term in the integral, along with the gravitational potential, decays to zero

as the mode enters the horizon, the dominant contribution tothe integral occurs aboutkτ ≈ 1.
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The integral over the first term leads to a constant, while theintegral over the second term is

proportional toln (kτ). Thus, as the mode enters the horizon, its matter density contrast is given

by

δc(k, τ) = Aφp ln (Bkτ), (3.35)

where the constantA andB are given by

Aφp =

∫ ∞

0

S(k, τ ′)τ ′dτ ′, (3.36)

Aφp ln (B) =
3

2
φp −

∫ ∞

0

S(k, τ ′)τ ′ ln (kτ ′)dτ ′. (3.37)

Equation (3.35) gives the matter evolution as the mode crosses the horizon. It tells us that the

matter perturbations grow logarithmically during the radiation dominated era, slower than in the

matter dominated era. This is due to the pressure of the radiation. As the universe approaches the

matter dominated era, the radiation pressure becomes less important and the matter perturbations

begin to grow faster. Figure 3.2 shows the evolution of the gravitational potential in the radiation

for modes that enter the horizon well before equality.

3.1.2.2 Sub-horizon evolution

As we saw for the horizon crossing, the gravitational potential in the radiation dominated era, is

determined by the radiation. However, as the matter perturbations grow,ρcδc eventually over-

takesρrδr, even ifρc is still smaller thanρr. Once this takes place, the gravitational potential

evolves together with the dark matter perturbations, independently of the evolution of the radia-

tion perturbations. To solve for the evolution of the dark matter perturbations in this regime, we

consider the matter evolution equations (3.3) and (3.7), and the algebraic field equation (3.11)

while neglecting the radiation components therein as they are subdominant. For convenience, we

use the variabley introduced in equation (3.18) as we aim to follow the dark matter perturbations

through the epoch of the matter radiation equality. This leads to the following set of differential

and algebraic equations
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Figure 3.2: Evolution of the potential in the radiation-dominated era. These are small scale

modes which enter the horizon well before equality. For a flatΛCDM model withh = 0.7,

Ωb = 0.0449, Ωc = 0.245.

δ′c +
θc

Hy
= −3φ′, (3.38)

θ′c +
θc

y
= −k

2φ

Hy
, (3.39)

k2φ =
3y

2(y + 1)
H2δc, (3.40)

where the4πGρca
2 factor is replaced by(3/2)H2y/(y + 1) since the universe is far from being

dark energy dominated so that the dark energy is negligible.We would like to reduce this set

of equation to a second order differential equation. We differentiate equation (3.38), eliminate

θ′c using equation (3.39) and use the fact thatd(1/Hy)/dy = −(1 + y)−1(2Hy)−1 to get the

following differential equation
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δ′′c − (2 + 3y)θc

2Hy2(1 + y)
= −3φ′′ +

k2φ

H2y2
. (3.41)

To eliminateθc, φ and its derivatives, we recall that for sub-horizon modes, the first term on the

right hand side is much smaller than the second and thereforecan be neglected since the second

term is multiplied byk2/H2. The matter velocity divergenceθc and the gravitational potentialφ

can be respectively written in terms ofδ′c andδc using equations (3.38) and (3.40) and neglecting

the gravitational potential which, on sub-horizon scales,is much smaller thanδc. Thus equation

(3.41) becomes

δ′′c +
2 + 3y

2y(y + 1)
δ′c −

3

2y(y + 1)
δc = 0. (3.42)

Equation (3.42) is theMeszarosequation. It gives the sub-horizon evolution of the cold dark

matter once radiation perturbations have become irrelevant. By inspection, that is ifδ′c is constant,

one of the two independent solutions of equation (3.42) is

D1(y) = y + 2/3, (3.43)

a first order polynomial iny which corresponds to the growing mode of the matter perturba-

tions. The second solution can derived knowing that the Meszaros equation tells thatu ≡ δc/D1

satisfies

(1 + 3y/2)u′′ +
u′

y(y + 1)
[(21/4)y2 + 3y + 1] = 0. (3.44)

Integrating twice this equation leads to the second solution, the decaying mode

D2(y) = D1(y) ln

[√
1 + y + 1√
1 + y − 1

]

− 2
√

1 + y. (3.45)

In the late time limit, that isy ≪ 1, the decaying mode falls off asy−3/2. Equations (3.43) and

(3.45) are bothk independent. This implies that at late times, all the modes evolve identically.

The general solution to the Meszaros equation is then obtained by a linear combination of the

growing and decaying modes as

δc = C1D1 + C2D2 for y ≪ yH , (3.46)

32



whereyH is the ratio of the scale factor when the mode enters the horizon to the scale factor at

the matter radiation equality. The constantsC1 andC2 are determined by matching this solution

to the logarithmic solution given by equation (3.35).

3.1.3 Matter transfer function and Power spectrum

The gravitational potential at the late times can be relatedto the primordial potential in the very

early universe as

φ(~k, a) = φp(~k) × T (k) ×D1(a) (3.47)

whereT (k) is the matter transfer function which describes the evolution of perturbations through

the epochs of horizon crossing and matter radiation equality defined as

T (k) ≡ φ(k, alate)

φlarge−scale(k, alate)
, (3.48)

wherealate denotes an epoch well after the transfer function regime in the matter dominated era.

If we define the ratio of the gravitational potential at a given time to its value right after the

transfer function regime as

φ(a)

φ(alate)
≡ D1(a)

a
(a > alate), (3.49)

and for a flat, matter-dominated universe (D1(a) = a), we have

φ(~k, a) =
9

10
φp(~k)T (k)

D1(a)

a
(a > alate). (3.50)

On the other hand, we can relate the matter over-density to the potential at late times using the

Poisson’s equation (small scales and no radiation limit of equation (3.11))

φ =
4πGρma

2δc
k2

. (3.51)

From equation (3.51) and using the fact thatρm = Ωρcr/a
3 and4πGρcr = (3/2)H0

2, the matter

density can be written as

δc(~k, a) =
k2φ(~k, a)a

(3/2)ΩmH0
2 (a > alate). (3.52)
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Combining (3.52) and (3.50), we relate the over-density today to the primordial potential

δc(~k, a) =
3

5

k2

ΩmH0
2φp(~k)T (k)D1(a) (a > alate). (3.53)

We define the matter power spectrumP (k) of the primordial perturbation to the metric as [41]

< φ(~k)φ∗(~k′) >= (2π)3Pφ(k)δ
3
c (
~k − ~k′). (3.54)

The power spectrum measures the spread in the distribution of matter throughout the universe.

It is large if there much underdense and overdense regions, and small if the distribution is ho-

mogeneous. It is shown that the primordial spectrum of density perturbations can be written as

Pi(k) = Akn wheren is the spectral index. Harrison, Zel’dovich and Peebles showed that for

the simplest inflationary model,n = 1 [66, 184]. The power spectrum of the matter at late times

is given by

P (k, a) = 2π2δ2
H

kn

H0
n+3T

2(k)

(

D1(a)

D1(a = 1)

)2

. (3.55)

This equation relates the power spectrum of the matter distribution to the primordial power spec-

trum produced during inflation given byPφ = (50π2/9k3)(k/H0)
n−1δ2

H(Ωm/D1(a = 1))2, the

transfer function and the growth function.

3.1.4 Growth function

We derived the Meszaros equation (3.42) assuming a universemade of matter and radiation only.

Here, we generalize the Meszaros equation to account for thedark energy which dominates

the universe at late times. Let us consider the set of equations (3.38)-(3.40). At late time, the

variabley ≫ 1 and the radiation density is insignificant. We combine theseequations to get

a second order differential equation as before, differentiating equation (3.38), setting4πGρc =

(3/2)H2
0Ωma

−3 and using the continuity equation to eliminate the velocitydivergence term. This

leads to

d2δc
da2

+

(

δd ln (H)da+
3

a

)

dδc
da

− 3ΩmH
2
0

2a5H2
δc = 0, (3.56)
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where we use the scale factor as the variable instead ofy. Equation (3.56) has two solutions. The

first solution,δc ∝ H ∝ a−3/2, is a decaying mode. The second solution, the one that accounts

for the lastingk−modes of the perturbations long after horizon crossing can be obtained by

lettingu = δc/H. We then have

d2u

da2
+ 3

[

d ln (H)

da
+

1

a

]

du

da
= 0. (3.57)

We integrate twice and substitute backδc = uH to get the expression for the growing mode

D1(a) = AH(a)

∫ a

0

da′

(a′H(a′))3
, (3.58)

where, the proportionality constantA is determined knowing that at late times in the matter

dominated era,D1 should be equal toa. At those time,H = H0Ω
1/2
m a−3/2. Equation (3.58)

becomes

D1(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (3.59)

Equation (3.59) gives the growth of the matter perturbations at late times for a flat universe. In the

matter dominated era, it reduces to the scale factora. For an open universe, a similar equation

can be derived. In both cases, open matter dominated universe or flat dark energy dominated

universe, the growth is suppressed. Therefore, structuresin an open universe or in a dark energy

dominated universe develop much earlier than in a flat, matter dominated universe.

3.1.5 Including other species

Besides the cold dark matter, which is the main component in most cosmological models, let us

consider the baryons and dark energy. The photon evolution is treated in the next chapter. In this

section, we briefly look at how the other species affect the matter perturbations.

As the baryons only represent about4% of the total energy density of the universe, their effect

on the matter power spectrum is small. Nonetheless, two mainsignatures are worth to notice.

First, loading baryons suppresses power on small scales. This is due to the fact that the radiation

perturbations undergo a decay when entering the horizon, causing the baryon overdensities to
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also decay due to the tight coupling before decoupling. Secondly, baryons imprint ripples on the

matter transfer function due to the acoustic oscillations before decoupling. Although this effect

is less noticeable, it is important as it relates to the feature of the radiation.

Figure 3.3: Effect of the dark energy on the matter power spectrum.

The dark energy has three main effects on the matter perturbations. First, since introducing the

dark energy implies thatΩm is less than one, the turnover in the matter power spectrum isshifted

to small wavenumber as the turnover scale is proportional tothe matter densityΩm. Figure 3.3

show how the matter power spectrum shifts to the left as we introduce the dark energy. Secondly,

the dark energy is indirectly related to the small matter density. For a fixed gravitational potential,

the Poisson equation (3.52) implies that the overdensitiesare inversely proportional to the matter

density. Consequently, the matter density decreases, the amplitude of the matter power spectrum

increases. Thirdly, as we saw in the previous section, introducing the dark matter changes the

growth factor at late times. The growth factor in a dark energy dominated era is given by equation
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(3.59). As it depends on the Hubble rate, which in turn depends on the model of the dark energy,

different models of dark energy will have different growth factors. For a flat universe, the Hubble

rate is given by
H(z)

H0
=

[

Ωm

a3
+

Ωde

a3[1+w]

]1/2

. (3.60)

Thus the Hubble rate and therefore the growth factor dependson both the densityΩde and the

parameterization of the dark energy.

3.2 Evolution of photons and baryons prior to decoupling

The evolution of the photons and baryons can be separated in two distinct epochs: The period

prior to decoupling where photons and baryons evolve together as a single perfect fluid, and

the post decoupling period where the photons freestream andthe baryons fall into the gravita-

tional potential wells set by the dark matter. Here, we only consider the pre-decoupling period.

The tight-coupling approximation of photons and baryons allows us to equateθγ andθb. Thus

combining equations (2.38) and (2.39) leads to

(1 +R)θ̇γb = −Ṙθγb + k2(
1

4
δγ − σγ) + c2sk

2Rδb, (3.61)

whereθγb is the baryon photon common velocity divergence. We differentiate equation (2.34)

and make use of equation (3.61) to derive the following second order differential equation for the

photon density perturbation

δ̈γ +
Ṙ

1 +R
δ̇γ + k2c2sδγ = −2

3

[

Ṙ

1 +R
ḣ + ḧ

]

, (3.62)

where we have neglected the photon shear and the pressure term in δb as it remains smaller than

the term inδγ prior to decoupling. Equation (3.62) represents a driven harmonic oscillator with

the competition between gravitational infall and photon pressure giving rise to acoustic waves

propagating in the photon-baryon fluid at the speed of sound.For the associated homogeneous

equation, we look for solutions of the formδγ ∝ exp
[

i
∫ τ

0
ωdτ ′

]

whereω(τ) is some phase

function. The two solutions to the homogeneous equation aresimply sin krs andcos krs where
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rs(τ) =
∫ τ

0
csdτ

′ is the sound horizon, and the phase function isω = kcs. Here we have made

use of the Wentzel-Kramers-Brillouin (WKB) approximation. On large scales, the WKB approx-

imation breaks down, but these modes are irrelevant for the CMB primary anisotropy treatment

as they only enter the horizon well after decoupling. The particular solution is constructed by

integrating the driving term weighed by the Green’s function of the two homogeneous solutions

[74]. Thus, the time evolution of the acoustic waves in the photon component prior to decoupling

is given by

(1 +R)1/2δγ(k, τ) = AS sin krs(τ) + AC cos krs(τ)

+
1

kcs

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]F (τ ′)dτ ′, (3.63)

whereAS andAC are determined by the initial conditions as described in [29], and

F (τ) = −2

3

(

Ṙ

1 +R
ḣ + ḧ

)

, (3.64)

is the gravitational driving term which evolves differently for different initial conditions. Equa-

tion (3.63) gives the time evolution of the photon density contrast irrespective of initial condi-

tions, in the tight-coupling regime. In this regime, the baryon density contrast is related to its

photon counterpart bẏδb = 3
4
δ̇γ . On small scales, a correction to the tight-coupling approxima-

tion must be applied when Silk damping becomes important, asphotons leak out of overdense

regions, dragging baryons with them. This is done by multiplying the solution above bye−k2/k2

D ,

where the photon diffusion scalek−1
D is given by

kD
−2 =

1

6

∫

1

τ̇e

R2 + 4(1 +R)/5

(1 +R)2
,

whereτ̇e = aneσT is the differential optical depth.

For the common photon-baryon velocity divergence, we differentiate equation (3.61) with respect

to the conformal time and usėδγ = −4
3
θγ − 2

3
ḣ to obtain the second order differential equation

(1 +R)θ̈γb + 2Ṙθ̇γb +

(

k2

3
+ R̈

)

θγb = −1

6
k2ḣ. (3.65)
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Equation (3.65) represents a forced and damped harmonic oscillator with variable coefficients.

Its particular solution, applying the same method as for equation (3.62), is then given by

(1 +R)θγb = BC cos krs +BS sin krs

− k

6

∫ τ

0

√
3(1 +R(τ ′))3/2 sin k(rs(τ) − rs(τ

′))ḣ(τ ′)dτ ′, (3.66)

whereBC andBS are determined by the initial conditions. This solution must be multiplied by

e−(k/kD)2 to correct the tight-coupling approximation.

The adiabatic mode is characterized by the requirement thatthe densities of all species are

perturbed in proportion at some initial time such that

δc,i = δb,i =
3

4
δγ,i =

3

4
δν,i, (3.67)

where the subscripti labels the initial time. Or equivalently, using the relative entropy between

two speciesx andy given bySxy = δx

1+wx
− δy

1+wy
, wherewx andwy are the equation of state

parameters of the speciesx andy respectively, we have thatSxy = 0 for all pairs of species at

the initial time. In addition, all velocity divergences areinitially unperturbed. Therefore, using

the initial conditions for the adiabatic mode [29], the constantAS andAC in equation (3.63) are

all zero. The photon and baryon density contrasts are respectively given by

δAD
γ =

√
3

k
e−k2/k2

D

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FAD(τ ′)dτ ′, (3.68)

δAD
b =

3

4

√
3

k
e−k2/k2

D

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FAD(τ ′)dτ ′. (3.69)

Thus, the adiabatic mode is only sourced by the gravitational driving termFAD. This driving

term can be approximated by

FAD(k, τ) ≈ 2k2c2sj0(krs)

on small and intermediate scales which reduces to2k2c2s at early times. On very large scales

the above approximation breaks down, however, this does notaffect our physical description

of the CMB as these large-scale modes are well outside the horizon at decoupling and do not

substantially influence the CMB features. The lack of an exact analytic expression for the driving
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(a) (b)

(c) (d)

Figure 3.4: Evolution of the photon density contrast prior to decoupling for the AD mode:

Comparison of numerical and analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

term makes it difficult to derive exact analytic solutions for the time evolution of the photon and

baryon density contrasts. Nevertheless, good approximations for the photon and baryon density

contrasts are given by

δγ =
4

3
δb ≈ 2krsj1(krs) × e−k2/k2

D . (3.70)

Therefore, at early times(krs(τ) ≪ 1) the density contrasts for the adiabatic mode,δγ ∝ δb ∝
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(1 − cos krs) couple to acos krs harmonic [74]. Thus, the acoustic oscillation for the AD mode

can be regarded as a forced oscillation with a cosine type phase.
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CHAPTER 4

CMB Anisotropies: Adiabatic case

The main features of the CMB are determined by the fluctuations on the last scattering surface. At

that time, the universe was nearly an homogeneous plasma with small fluctuations in the density

and velocity fields of the particles, and in the gravitational potential. In this chapter, we recall

how fluctuations on the last scattering surface translate into the CMB power spectrum as observed

today. We first present a simpler calculation that highlights different contributions to the observed

CMB anisotropy. For a formal and more detailed study of the photon evolution, which can no

longer be treated as a perfect fluid after decoupling, we makeuse of a perturbed Bose-Einstein

distribution function and introduce the line of sight integral approach for the computation of the

CMB anisotropies and review the effect of the cosmological parameters on the CMB temperature

power spectrum in the AD mode.

4.1 Sachs-Wolfe derivation

Before decoupling, the baryons and photons are coupled through Thomson scattering. The

baryons are clustered in gravitational potential wells andsince the photons are coupled to the
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baryons, they are confined in potential wells created by the dark matter. Therefore, at the last

scattering surface when the baryons and photons decouple, the photons have to climb out of the

potential wells. In addition, the geodesics of the photons leaving the surface of last scattering

are sensitive to the degree of homogeneity of the universe after matter-radiation equality. A

photon traveling to us from decoupling will experience a shift in its energy. Thus, the primary

anisotropies of the CMB can be considered as being generatedin two distinct phases: before

and after recombination. Although this description is onlya qualitative approximation, it allows

a clear and simpler understanding of the CMB physics. In thissection we closely follow the

derivation of the Sachs-Wolfe effect by Giovannini [61], Dodelson [41] and, Hu and Sugiyama

[72].

The photon energyε as measured in the frame of reference of the fluid, is given by

ε = gµνu
µP ν = g00u

0P 0 + giju
iP j, (4.1)

whereuµ is the four-velocity of the fluid andP ν is the photon four-momentum. The four mo-

mentum of a photon can be written as

P ν = P 0dx
ν

dλ
=
P 0

a2

dxν

dτ
=
E

a2

[

nν +
d

dτ
δxν

]

, (4.2)

whereE is a parameter defining the redshift in the photon energy,δ denotes the scalar perturba-

tion to a variable andnν = (1, ni) is the four-vector describing the direction of the photon.

Introducing the affine parameters, the perturbed photon geodesic can be written as

d2δxµ

dτ 2
+ δsΓ

µ
αβ

dxα

dτ

dxβ

dτ
= 0, (4.3)

whereδsΓ
µ
αβ are the perturbed Christoffel symbols of the metricgµν/a

2. Forµ = 0 in equation

(4.3) and integrating, we derive that

dδx0

dτ
=

∫ τ0

τi

(φ̇+ ψ̇)dτ − 2ψ. (4.4)
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In order to obtain this equation, we have used the time Christoffel symbolsδsΓ0
00 = ψ̇, δsΓ0

ij =

−φ̇δij andδsΓ0
0i = −∂iψ. As the four-velocity satisfies the normalization conditiongµνu

µuν = 1,

the first order in the fluctuations gives us [61, 2]

u0 =
1

a
(1 − ψ). (4.5)

In addition since an electron emits and absorbs a photon, thecomponents of the four-velocity are

related to the baryonic peculiar velocityvi
b by

δsu
i =

vi
b

a
≡ 1

a
∂ivb. (4.6)

Thus, substituting the four-velocity and the four-momentum (4.2) into the equation (4.1) and

using equations (4.4) and (4.6), we can write

ε =
E

a

[

1 − ψ − niv
i
b +

∫ τ0

τi

(φ̇+ ψ̇)dτ

]

. (4.7)

The photon temperature fluctuation∆T
T

can be related to the difference between the final and the

initial energies of the photon. If the initial photon energyis given byEinit = E0[1 + (δT/T )] ≡
E0[1 + δγ/4], the temperature fluctuation∆T

T
can be written, after integration, as

(

∆T

T

)

=
δγ
4

− [ψ]τ0τi
− [niv

i
b]

τ0
τi

+

∫ τ0

τi

(φ̇+ ψ̇)dτ. (4.8)

Equation (4.8) gives the different contributions to the change in the photon temperature. The first

contribution comes from the first two terms of the right hand side and constitute the so-called

Sachs-Wolfe (SW) effect [146]. The second contribution, due to the baryon peculiar velocity is

the Doppler effect, and the last term is the Integrated Sachs-Wolfe (ISW) effect which depends

on the change in the potentials and photons travel [61, 78, 2,181]. Figure 4.1 gives a qualitative

representation of the different contributions to the CMB power spectrum.
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Figure 4.1: Different contributions to the CMB power spectrum. Source: Huet al., arXiv:astro-

ph/9604166v1 (1996).

4.1.1 The ordinary Sachs-Wolfe effect

On large scales, the potentialsφ andψ are constant in time after the last scattering. Therefore,

the only non-zero terms in equation (4.8) are the intrinsic density contrast of photons at the

last scattering surface and the gravitational Newtonian potential. A photon from a dense region

at the last scattering surface will be blueshifted. The factor 1/4 is due to the fact thatργ ∝
T 4. In addition a photon loses energy from climbing out of a gravitational potential well. This

corresponds to a redshift in temperature. This effect is thepredominant source of fluctuations

in the CMB for angular scales above about ten degrees (large angular scales i.e.ℓ . 20). The

change in the photon temperature on large scales is therefore

(

∆T

T

)

SW

=
δγ
4

− [ψ] =
1

3
ψ, (4.9)

where we have expressed the density contrast in terms of the potential using equation (3.1) and

the adiabatic initial conditions.
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4.1.2 The Doppler effect

As the baryons oscillate being tightly coupled to the photons, their motion relative to the observer

causes a Doppler shift. The two opposite directions of the baryons with respect to the observer

provoke a spatial temperature variation on the last scattering surface. The contribution of this

effect is important on small scales (l ∼ 200) and is subleading on large scales.

In the tight coupling approximation, the photons and baryons are described by the set of equations

(3.1), (3.2), (3.5) and(3.6). We substitute the baryon velocity divergenceθb from equation (3.6)

into equation (3.5) and differentiate with respect to the conformal time to get the second order

differential equation
[

d2

dτ 2
+

Ṙ

1 +R

d

dτ
+ k2c2s

]

(
δγ
4

+ φ) =
k2

3

(

1

1 +R
φ− ψ

)

. (4.10)

Before recombination,̇φ = ċ2s = Ṙ = 0 andφ = −ψ. Therefore, equation (4.10) reduces to

δ̈γ + c2sk
2δγ = constant, (4.11)

which represents a harmonic oscillator that causes the Doppler peaks of the CMB anisotropy

spectrum. The acoustic oscillations are caused by the competition between the photons pressure

and the gravitational attraction. Using the WKB approximation, Hu and Sugiyama derived a

general solution to equation (4.10) given by

δγ(τ)

4
+ φ(τ) =

[

δγ(0)

4
+ φ(0)

]

cos (krs)

+
k√
3

∫ τ

0

dτ ′ [φ(τ ′) − ψ(τ ′)] sin [k(rs(τ) − rs(τ
′))], (4.12)

for the photon density contrast, and

θγ =
√

3

[

δγ(0)

4
+ φ(0)

]

sin (krs)

− k

3

∫ τ

0

dτ ′ [φ(τ ′) − ψ(τ ′)] cos [k(rs(τ) − rs(τ
′))], (4.13)

for the photon velocity divergence with adiabatic initial conditions. From equations (4.12) and

(4.13), we see that the density contrast and the velocity divergence are in opposite phase, with
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the implication that, the adiabatic spectrum is not zero anywhere. The acoustic peaks are located

atkn = nπ/rs(τ∗), or, in the angular space,ℓn = nπdA∗/rs(τ∗).

4.1.3 The integrated Sachs-Wolfe effect

The integrated Sachs-Wolfe effect is given by

∆T

T
=

∫ τ0

τi

(φ̇+ ψ̇)dτ. (4.14)

It is caused by a gravitational redshift occurring between the last scattering surface and us,

and is only important on large scales if the potentialsφ andψ change in time. There are two

main contributions: The first, calledthe early ISW, occurs when the universe passes from being

radiation-dominated to matter-dominated. The second, termedthe late ISW, arises much later as

the universe passes from being matter-dominated to cosmological constant dominated. For the

early ISW effect, at the matter-radiation transition, the horizon size was much smaller than today.

Therefore, these secondary anisotropies will be produced on higher multipoles, around the first

peak (ℓ ≃ 200). Its main contribution occurs at recombination and is in phase with the monopole

[41]. The late ISW effect arises at late times, as the universe undergoes a transition from being

matter dominated to a curvature or dark energy dominated. Atthe matter-dark energy equality,

the horizon size is much comparable to its current size. Therefore, this effect affects larger scales

than the early ISW (ℓ < 100).

4.2 Boltzmann Hierarchy and the line of sight integral ap-

proach

In the present section we derive a formal solution of the CMB anisotropy and introduce the line

of sight integral approach for an efficient computation. After leaving the last scattering surface,

photons can no longer be treated as a perfect fluid as the shearand higher order moments develop

rapidly and become not negligible. One needs to use the Bose-Einstein distribution function for

a photon full description [106, 114]. Here, we follow the works of Liddle and Lyth [106], and
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Giovannini [61].

We consider a perturbed Bose-Einstein distribution functionf in a phase space. The phase space

is described by positions,xi, and conjugate momentaPi ≡ mVi where the velocityVi is given by

dxi/
√
−ds2. Conjugate momentum is related to the proper momentumpi by Pi = a(1 − φ)pi.

For convenience, we define the comoving 3-momentumqj ≡ apj which can be written in terms

of its magnitudeq and directionnj . It follows that the distribution function can be written as

f(xi, Pj, τ) = f0(q)[1 + f (1)(xi, q, nj, τ)], (4.15)

wheref (1) is a small perturbation to the zero-order phase space distribution f0 which is the

Bose-Einstein distribution for bosons given by:

f0(ǫ) =
gs

h3
P

1

eǫ/kBT0 − 1
, (4.16)

whereǫ = a(p2 + m2)1/2 = (q2 + a2m2)1/2 is the energy,T0 = aT is the temperature of the

particles today assuming that the scale factor todaya0 = 1 andgs is the number of spin degrees

of freedom. The termshP andkB are the Planck and Boltzmann constants.

In terms of the distribution function and of the four-momentum, the energy-momentum tensor is

[114]

Tµν =

∫

dP1dP2dP3(−g)−1/2PµPν

P0
f(xi, Pj, τ), (4.17)

whereg is the determinant ofgµν . Since(−g)−1/2 = a−4(1 − ψ + 3φ), dP1dP2dP3 = (1 −
3φ)q2dqdΩ,

∫

dΩninj = 4πδij/3 and
∫

dΩni =
∫

dΩninjnk = 0, the components of the energy-

momentum tensor to linear order in the perturbations can be written as [114]:

T 0
0 = −a−4

∫

q2dqdΩ
√

q2 +m2a2f0(q)(1 + f (1)), (4.18)

T 0
i = −a−4

∫

q2dqdΩnif0(q)f
(1), (4.19)

T i
j = −a−4

∫

q2dqdΩ
q2ninj

√

q2 +m2a2
f0(q)(1 + f (1)), (4.20)
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wheredΩ is the solid angle associated with directionni. The equations (4.18), (4.19) and (4.20)

are general, and hold for massive relativistic particles aswell. The rate of change in the phase

space distribution can be written as

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni

dτ

∂f

∂ni
= Ccoll. (4.21)

The termCcoll represents all terms due to collisions. Their form depends on the type of particle

interaction. Using the geodesic equationP 0 dP µ

dτ
+ Γµ

αβP
αP β = 0 we deduce a relation fordq

dτ

dq

dτ
= qφ̇− ǫ(q, τ)ni∂iψ. (4.22)

To first order approximation, we can neglect the termdni

dτ
∂f
∂ni

in the Boltzmann equation and

therefore write

∂f (1)

∂τ
+ i (~k · n̂)f (1) +

dlnf0

dlnq

[

φ̇− i
ǫ

q
(~k · n̂)ψ

]

=
1

f0
Ccoll. (4.23)

The equation (4.23) above is a more general equation, valid for all matter and radiation compo-

nents of the universe. By setting the right-hand side equal to zero (the collision-less Boltzmann

equation), one can recover the expression for a perfect fluidmodel when shear and higher order

moments are negligible. Let us notice that the terms in this equation depend on the direction of

the momentum̂n only through its angle with~k.

Though photons travel almost freely after recombination, occasional Thomson scattering contin-

ues to transfer energy and momentum between photons and matter. If we define the momentum-

average phase space density as [62, 114]

Fγ(~k, n̂, τ) =

∫

q3dqf0(q)f
(1)

∫

q3dqf0(q)
≡

∞
∑

l=0

(−i)lFγl(~k, τ)Pl(k̂ · n̂), (4.24)

where we have expandedFγ in a series of Legendre polynomialsPl(k̂ · n̂) as it depends on the

cosine of the angle between̂k andn̂, the photon perturbationsδγ, θγ andσγ can be written using
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the new variableFγ and the equation of stateργ = 3Pγ = a−4
∫

q3dqdΩf0(q) as

δγ =
1

4π

∫

dΩFγ(~k, n̂, τ) = Fγ0, (4.25)

θγ =
3i

16π

∫

dΩ(k̂ · n̂)Fγ(~k, n̂, τ) =
3

4
kFγ1, (4.26)

σγ = − 3

16π

∫

dΩ

[

(k̂ · n̂)2 − 1

3

]

Fγ(~k, n̂, τ) =
1

2
Fγ2. (4.27)

The right hand sides of the above equations (4.25)-(4.27) are derived using the orthogonality of

the Legendre polynomials. The zero moment (ℓ = 0) of the multipole expansion is the monopole

δγ , the first moment (ℓ = 1) is proportional to the dipoleθγ and so on.

Bond and Efstathiou have shown that the linearized collision operator for Thomson scattering is

given by [25]

Ccoll = anexeσT

[

−Fγ(~k, n̂, τ) + Fγ0(~k, τ) + 4n̂ · ~ve −
1

8
Fγ2P2(k̂ · n̂)

]

, (4.28)

whereσT is the Thomson cross-section,ne and~ve are the proper mean density and velocity of the

electrons andxe is the ionization fraction. In order to understand equation(4.28), let us suppose

that there is no collision effect. Then the change in the momentum-average phase space density

is exactly the sum of contributions due to the photon densityperturbations and the scattering

terms accounted for by the Doppler effect and an angular dependency. Therefore the collision

effect is different from zero if one term dominates. The lastterm 1
8
Fγ2P2(k̂ · n̂) is proportional

to the Legendre polynomialP2(x) = (3x2 − 1)/2. It accounts for the angular dependency of

Thomson scattering, which has a cross-section∼ 1 + cos2 ϕ, whereϕ is the polar angle giving

the direction of the scattering.

Now let us define thebrightness perturbationΘ for the fluctuation of the total density of the

radiation field as

f(xi, q, nj, τ) =

(

q

1 + Θ

)

f0. (4.29)

Comparing equations (4.15) and (4.29) to first order, we deduce that the brightness function is

related to the perturbationf (1) by

Θ = −f (1)

(

∂lnf0

∂lnq

)−1

, and Fγ = −Θ

∫

q3dqf0
∂ ln f0

∂ ln q
∫

q3dqf0

= 4Θ. (4.30)
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Then, the Boltzmann equation for perturbation of the brightness becomes

Θ̇ + ikµ(Θ + ψ) = φ̇+ anexeσT

[

−Θ + Θ0 + µvb −
1

2
P2(µ)Π

]

, (4.31)

wherevb is the baryon velocity given byvb = θb

ik
andµ = k̂·n̂. The functionΠ ≡ Θ2+∆P2+∆P0

where∆P0 and∆P2 take into account the polarization of the photons after Thomson scattering.

Expanding the temperature anisotropy in multipole moments

Θ(µ) =
∑

ℓ

(2ℓ+ 1)(−i)ℓΘℓPℓ(µ), (4.32)

one finds the following hierarchy of the coupled differential equations

Θ̇0 = −kΘ1 + φ̇, (4.33)

Θ̇1 =
k

3
[Θ0 − 2Θ2 + ψ] + anexeσT (

vb

3
− Θ1), (4.34)

Θ̇2 =
k

5
[2Θ1 − 3Θ3] + anexeσT

[

Π

10
− Θ2

]

, (4.35)

Θ̇ℓ =
k

2ℓ+ 1
[ℓΘℓ−1 − (ℓ+ 1)Θℓ+1] − anexeσT Θℓ. ℓ > 2 (4.36)

Now as we show later (see equation (4.59)), the multipole momentsΘℓ are related to the CMB

power spectrum by

Cℓ =
2

π

∫

dk

k
k3 | Θℓ(τ, k) |2

(2ℓ+ 1)2
.

Thus, as the set of coupled differential equations (4.33)-(4.36) cannot be solved analytically, one

needs to numerically compute iteratively several thousandhigher order moments in order to find

the CMB power spectrum. In 1996, Seljak and Zaldarriaga presented a method by far more

efficient which revolutionised the computation of the CMB power spectrum [152].

4.2.1 Line of sight integral approach

The line of sight integral approach is based on a split of the CMB temperature anisotropy in a

time integral over the product of a geometrical term and a source term. The geometrical term

given by radial eigenfunctions, does not depend on the cosmological model. The source term

is expressed in terms of photon, baryon and metric perturbations. These perturbations can be
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computed using a small number of differential equations, thus significantly reducing the compu-

tational time.

The starting point of this approach is to integrate equation(4.31) along the line of sight. This

leads to

Θ =

∫ τ0

0

dτeikµ(τ−τ0)e−τe{τ̇e[Θ0 + iµvb +
1

2
P2(µ)Π] + φ̇− ikµψ}. (4.37)

This equation could be immediately turned into an equation for each of the momentsΘℓ if the

integrand did not depend onµ. But, as the integral is multiplied byeikµ(τ−τ0), we can write

d
dτ
eikµ(τ−τ0) = ikµeikµ(τ−τ0). Thus as the whole integrand is multiplied byeikµ(τ−τ0), each time

that a given term in the integrand is multiplied by aµ, we can replaceµ with a time derivative

[41]

µ → 1

ik

d

dτ
. (4.38)

Thus having eliminated the angleµ in the integrand through integration by parts, and noticing

that the boundary terms are either damped atτ = 0 by the factore−τe(0) or irrelevant atτ = τ0

since they have no angular dependence, they can be dropped. This alters the monopole but is

unobservable. Therefore we can write equation (4.37) as

Θ =

∫ τ0

0

dτeikµ(τ−τ0)S(k, τ), (4.39)

with

S(k, τ) =g

(

Θ0 + ψ − v̇b

k
− Π

4
− 3Π̈

4k2

)

+ e−τe(φ̇+ ψ̇) − ġ

(

vb

k
+

3Π̇

4k2

)

− 3g̈Π

4k2
, (4.40)

where the functionS(k, τ) is called thesource functionandg(τ) = τ̇ee
−τe is the visibility func-

tion. The visibility function gives the probability that a photon last scattered betweenτ and

τ + dτ . It therefore peaks strongly around the epoch of recombination, when the dominant

contribution to the CMB anisotropies arises and can be approximated by a Dirac delta function

evaluated atτ = τrec.
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In terms of the source function, the multipole momentsΘℓ(k, τ) are given by

Θℓ(k, τ0) =

∫ τ0

0

S(k, τ)jℓ[k(τ − τ0)]dτ. (4.41)

Equation (4.41) also shows that the anisotropy that we measure today can be seen as a spherical

projection through the spherical Bessel function of the fluctuations on the last scattering surface

towards us. It is obtained substituting equation (4.39) into equation (4.32), expanding the plane

wavee−iµk(τ−τ0) in a series of Legendre polynomials as

e−iµk(τ−τ0) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)jℓ[k(τ − τ0)]Pℓ(µ), (4.42)

and using the orthogonality property of the Legendre polynomials. This approach of expressing

the momentsΘℓ as an integral along the line of sight was first derived by Seljak and Zaldarriaga

[152]. In this approach, the anisotropy is decomposed into asource term which does not depend

on the higher multipole moments, but only onΘ0, Θ1 andΘ2, and a spherical Bessel function

independent of the cosmological model.

The expression of the source function in the synchronous gauge, that corresponds to the expres-

sion in conformal Newtonian gauge given in equation (4.40),can be easily derived knowing that

the conformal Newtonian potentialsφ andψ are related to the synchronous potentialsh andη in

k-space by the set of equations (2.9), and the photon density contrasts,δγ and the baryon veloc-

ity divergencesθb in both conformal and synchronous gauge are related by equations (2.10) and

(2.11). The higher moments(Θ2,Θ3, . . . ) of the photon distribution function are gauge invariant

as argued in [114]. Thus the source function in the synchronous gauge can be written as:

SSyn = e−τe (η̇ + α̈)+g(τ)

[

δγ
4

+
θ̇b

k2
+ 2α̇ +

Π

16
+

3Π̈

16k2

]

+ġ(τ)

[

θb

k2
+ α+

3Π̇

8k2

]

+g̈(τ)

[

3Π

16k2

]

.

As we show in the following section, the photon polarizationcontribution to the source function

is small and can be neglected for the primary anisotropy. Thus the source function simplifies to

the expression

SSyn = e−τe (η̇ + α̈) + g(τ)

[

δγ
4

+
θ̇b

k2
+ 2α̇

]

+ ġ(τ)

[

θb

k2
+ α

]

, (4.43)
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where the contribution due to the intrinsic fluctuation of photon density perturbations, the gravity,

the baryon velocity and the integrated Sachs-Wolfe effect in the synchronous gauge are respec-

tively given by

g(τ)

(

δγ
4

− ȧ

a
α

)

, (4.44)

g(τ)

(

α̇ +
ȧ

a
α

)

, (4.45)

g(τ)

(

θ̇b

k2
+ α̇

)

+ ġ(τ)

(

θb

k2
+ α

)

, (4.46)

e−τe (η̇ + α̈) . (4.47)

Now, the brightness can be expanded in spherical harmonicsYℓm as

Θ(n̂, τ) =
∞
∑

ℓ=o

ℓ
∑

m=−ℓ

aℓmYℓm(n̂) =
1

(2π)3/2

∫

d3kΘ(~k, n̂, τ), (4.48)

where the coefficientsaℓm have to be determined. Considering the expansion (4.32) andusing

the theorem of addition of spherical harmonics, which stipulates that

Pℓ(k̂ · n̂) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Yℓm
∗(k̂)Yℓm(n̂), (4.49)

one can compute the coefficientsaℓm and finds

aℓm =
(4π)

(2π)3/2
(−i)ℓ

∫

d3kY ∗
ℓm(k̂)Θℓ(~k, τ). (4.50)

Considering two different directions on the sky denoted byn̂1 andn̂2 with n̂1 · n̂2 = cos ϑ, the

two-point correlation functionC(ϑ) is the ensemble average of the brightness function given by

C(ϑ) =< Θ(n̂1, τ0),Θ(n̂2, τ0) >. Since the background is isotropic, this average depends only

on ℓ. Therefore we define the angular power spectrumCℓ as

< aℓma
∗
ℓ′m′ >= Cℓδℓℓ′δmm′ . (4.51)

For a givenℓ,Cℓ is the variance of theaℓm. It tells us about the power of temperature anisotropies

on a given angular scale∝ 1/ℓ and can be written as
(

∆Tℓ

T0

)2

=
ℓ(ℓ+ 1)

2π
Cℓ, (4.52)

whereT0 is the background temperature and∆Tℓ the temperature anisotropy for a givenℓ.
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4.3 CMB anisotropies

As introduced earlier, the CMB power spectrum measures of the temperature anisotropies for

a given angular scale. It depends on several cosmological parameters and on the mode of the

primordial fluctuations. In this section we investigate howthe initial conditions affect the CMB

power spectrum today. To this end, we first evaluate the different contributions to the source

function at the last scattering surface, then evolve them using the CMB transfer function to get

the CMB power spectrum today.

4.3.1 Transfer function ∆ℓ(k)

In linear perturbation theory, each Fourier mode evolves independently of the others. We may

define a linear transfer function∆(k) relating the fluctuations that we measure today to some

initial entropy perturbationS(k, τi) by [45]

Θ(τ0, k, n) = ∆(k, µ)S(k, τi), (4.53)

where,τi is the initial conformal time. If we assume the initial entropy perturbationS = 1, and

expand the transfer function in Legendre polynomials∆(k, µ) =
∑

ℓ(−1)ℓ(2ℓ+ 1)∆ℓ(k)Pℓ(µ),

then the transfer function∆ℓ(k) is just the multipole momentΘℓ(k, τ0) evaluated at present time.

The orthogonality of the Legendre polynomials insures thattheℓ modes are all independent.

We have already seen (see equation (4.41)) that the transferfunction can be obtained by mul-

tiplying the source function by the spherical Bessel function and integrating along the line of

sight [152]. For sufficiently large scales, Hu showed [78] that the slowly varying quantities con-

tained in the source function in equation (4.41) can be takenout of the integral and evaluated at

photon-baryon decoupling, leading forℓ ≥ 2 to

Θℓ(τ0) ≃ [Θ0 + ψ] (τ∗)D(k)(2ℓ+ 1)jℓ(k∆τ∗) + Θ1(τ∗)D(k) [ℓjℓ−1(k∆τ∗) − (ℓ+ 1)jℓ+1(k∆τ∗)]

+ (2ℓ+ 1)

∫ τ0

τ∗

[φ̇+ ψ̇]jℓ(k∆τ)dτ, (4.54)

whereτ∗ is the conformal time at decoupling,∆τ∗ = τ0 − τ∗, ∆τ = τ0 − τ andD(k) accounts
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for the diffusion damping. This diffusion damping factor isgiven by

D(k) =

∫ τ0

0

g(τ)e[−k/kD(τ)]2dτ, (4.55)

with the damping lengthkD
−2 = 1

6

∫ τ

0
1
τ̇e

R2+4(1+R)/5
(1+R)2

dτ . The damping effect is more effective for

scale smaller than the damping length. This is a correction to the tight-coupling approximation

around decoupling as photons random walk through baryons with some finite mean distanceλD.

Any perturbation on scales smaller thanλD is suppressed.

Thus in this approximation (equation (4.54)), the evaluation of the multipole moments requires

only the knowledge of the fluctuations at photon-baryon decoupling, and the time evolution of

the potentials from the last scattering surface to us today.The Bessel functionjℓ(k) tells us how

much anisotropy on large scales is contributed by a plane wave with wavenumberk. As the limit

of the Bessel function for very largeℓ (very small angular scales) vanishes, the transfer function

∆ℓ(k) ≈ 0 for ℓ ≫ kτ0. For a SCDM universe, the time dependence of the potentials can be

neglected.

4.3.2 Angular power spectrum Cℓ

The photon transfer function opens the way of computing the CMB angular power spectrum.

Here, we make use of the dominant contributions to the transfer function to understand the main

features of the CMB power spectrum. We first recall how the transfer function relates to the

angular power spectrum.

A complete description of the photon distribution should take into account both spatial and

angular distributions of the brightness functionΘ. But we only have information on the angular

distribution as we can only measure the CMB from one location. We expand the brightness

function of photon in spherical harmonics as

Θ(x, p̂, τ) =

∞
∑

ℓ=1

ℓ
∑

m=−ℓ

aℓm(x, τ)Yℓm(p̂), (4.56)

where the coefficientaℓm are given in Fourier space by
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aℓm(x, τ) =

∫

d3k

(2π)3
ei~k̇~x

∫

dΩYℓm(p̂)Θ(~k, p̂, τ), (4.57)

whereΩ is the solid angle spanned bŷp. The coefficientsaℓm are usually taken to have a Gaus-

sian probability distribution with a mean value of zero. As theaℓm are symmetric for a givenℓ,

the variance depends onℓ.

Substituting equation (4.57) into (4.51) and knowing that

< Θ∗Θ >=
1

2π2

∫

∑

ℓ

1

2ℓ+ 1
k3|Θℓ(τ, k)|2Pℓ(p̂′ · p̂), (4.58)

leads to

Cℓ =
2

π

∫

dk

k
k3 | Θℓ(τ, k) |2

(2ℓ+ 1)2
, (4.59)

wherePℓ is a Legendre polynomial.

4.4 Effect of cosmological parameters on the CMB tempera-

ture spectrum: adiabatic case

In the previous section we reviewed how, from the fluctuations at the last scattering surface, one

can derive the observed CMB anisotropy and investigated thefeatures of the CMB power spec-

trum for isocurvature modes. The CMB anisotropy spectrum depends on several cosmological

parameters among which the baryon densityωb, the matter densityωm, the dark energy density

ΩX , the optical depthτe, the spectral indexns and the scalar amplitudeAs. Each parameter has

a particular effect on the spectrum. A change in the cosmological parameters affects the CMB

spectrum shifting different peaks to the left or to the right, raising or lowering their heights, or

moving the entire spectrum up or down. In this section, we review the effect of the cosmological

parameters on the CMB power spectrum in adiabatic mode in order to compare it, in the next

chapter, to the case of isocurvature modes. We particularlyfocus on the physical baryon density
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and the physical matter density as they differently affect the CMB spectrum in different models.

The baryon density, matter density, and cosmological constant each induce a shift in the loca-

tion of peaks and troughs in the CMB spectrum. For a flat universe, the peaks are located at

ℓn =≃ nπτ0/rs(τ∗). Thus peak location depends on the sound horizonrs and on the age of the

universeτ0. An increase in the matter densityΩmh
2 reduces the age of the universe but does

not affect the sound horizon. A change in the baryon density affects the sound horizon. More

importantly, the physical densities in matterΩmh
2 and baryonsΩbh

2 fix the heights of acoustic

peaks in the CMB spectrum. As we show in a following section, the peaks in the CMB spectrum

are lowered and shifted to higherℓ as the matter densityΩmh
2 increases.

A dark energy model with cosmological constantΩΛ or quintessence, and curvature have no

significant effect on the pre-recombination universe and only affect the CMB spectrum through

the angular diameter distancedA and the late-time ISW effect [98]. The optical depthτe tells

us how much the universe was reionized at late times. The reionization of the universe reintro-

duces Thomson scattering of photons by free electrons. If the optical depth is large enough, the

anisotropies are washed out. The spectral indexns has an effect different from all of the previous

parameters. An increase in the spectral index lowers the anisotropy on large scales and enhances

it on small scales, thus tilting the spectrum about a pivot scale. We now study these effects in

neutrino isocurvature models using our semi-analytical approximations.

4.4.1 Baryon density Ωbh
2

The baryon density is the cosmological parameter which mostaffects the heights and locations of

peaks in the CMB power spectrum. Loading the single fluid withmore baryons reduces the sound

speed and therefore changes the heights and positions of peaks in the CMB power spectrum. Odd

peaks are enhanced while even peaks are lowered as the baryondensity increases. This is a direct

consequence of the lower frequency of the oscillations. Thebaryon density effect on the CMB

spectrum is a unique signature, making the baryon density one of the easiest parameters to extract
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Figure 4.2:Ωbh
2 dependence of the CMB power spectrum in the adiabatic mode. This is for a

flat ΛCDM model withh = 0.7 andΩch
2 = 0.125.

from the CMB. Figure 4.2 shows how the CMB spectrum changes with the baryon density.

4.4.2 Matter density Ωmh
2

To see the imprint of the matter density on the CMB power spectrum, we consider aΛCDM

universe, keep the physical baryon densityΩbh
2 andh constant, and modify only the dark matter

densityΩch
2. The change in the matter density is compensated byΩΛ. ChangingΩΛ affects the

CMB spectrum but its effect can be neglected compared to the effect of matter density itself.

For a universe with a low matter densityΩmh
2, the epoch of matter-radiation equalityτeq occurs

closer to recombination. The gravitational potential still decays at recombination providing a

strong driving force for the oscillations. Therefore the photon density perturbation,δγ , is larger

compared to high matter density universes. In addition, since the potential is not constant after

recombination, the integrated Sachs Wolfe effect contribution is not negligible and should be

taken into account. Figure (4.3) shows how all the CMB peaks are enhanced when the matter
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Figure 4.3:Ωmh
2 dependence of the CMB power spectrum in the adiabatic mode. This is for a

flat ΛCDM model withh = 0.7 andΩbh
2 = 0.022.

density decreases.

4.4.3 Cosmological constant density ΩΛ

Different models of the dark energy affect differently the CMB power spectrum. Here, we restrict

ourselves to the case of the dark energy being the cosmological constant. At the last scattering

surface, where the main contributions to the anisotropies that we observe today were formed, the

universe was still radiation-dominated and the cosmological constant was negligible and could

not affect the perturbations. Therefore the effect of the cosmological constant on the CMB

power spectrum is only through the freesteaming of photons from last scattering surface towards

us. For a fixed baryon and matter density, the cosmological constant does not affect the sound

horizon but change the angular diameter distancedA which in turn modifies the peak location.

The angular diameter distancedA = d/ϕ is a classic way to measure distances by measuring

the angleϕ subtended by an object of known physical sized. The effect of the equation of
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Figure 4.4:ΩΛ dependence of the CMB power spectrum in the adiabatic mode. This is for a flat

ΛCDM model withΩbh
2 = 0.022 andΩch

2 = 0.125.

state parameterw on the CMB power spectrum is the same similar to the effect ofΩΛ. In a flat

universeΩK ≡ 1−ΩΛ −Ωm = 0, ϕ = (d/a)/∆τ so that the angular diameter distance is given

by [41]

dflat
A = a∆τ =

∆τ

1 + z
, a0 = 1 (4.60)

where∆τ is the comoving distance. At low redshift, the angular diameter distance is equal to

the comoving distance. Increasing the cosmological constant density,ΩΛ, shifts the location of

peaks to lower values ofℓ. Thus the entire CMB spectrum shifts to lower multipolesℓ asΩΛ

increases. Figure (4.4) shows how the CMB power spectrum is shifted to larger scales as we

increase the cosmological constant.
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Figure 4.5: CurvatureΩK dependence of the CMB power spectrum in isocurvature models. As

we increase the curvature density, the anisotropy spectrumshifts to small scales. For closed, flat

and openΛCDM universe withΩbh
2 = 0.022, Ωch

2 = 0.125, h = 0.7.

4.4.4 Curvature density ΩK

Among all the cosmological parameters that we are considering, the curvature density by far

causes the largest shift in the location of the peaks [41]. The photon geodesics depend on the

geometry of the universe. In an open universe, the geodesicsof massless particles start out

parallel to each other and then slowly diverge. The physicalscale corresponding to the first

peak gets projected onto a smaller angular scale in a flat universe compared to an open universe.

Therefore we expect that the peaks should be shifted to higher values ofℓ in an open universe.

For the closed universe, the peaks are shifted to lower values of ℓ. The magnitude of this shift

is determined by the comoving angular diameter distance to the last scattering surface [77].

Equation (4.60) in the previous subsection gives the angular diameter distance in a flat universe.
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For a non flat universe, the angular diameter distance generalizes to

dA =
a

H0

√

|ΩK |











sinh [
√

ΩKH0∆τ ] ΩK > 0

sin [
√
−ΩKH0∆τ ] ΩK < 0

(4.61)

Thus changing the curvature of the universe affects the angular diameter distance and subse-

quently the peak location. In Figure (4.5) we see how the whole CMB spectrum is shifted to the

higherℓ as we go from a closed universe(ΩK < 0) to an open universe(ΩK > 0).

4.4.5 Optical depth τe
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Figure 4.6: Reionization dependence of the CMB power spectrum. As the optical depth from

reionization to the last scattering surface increases, anisotropies are washed out for scales inside

the horizon at the reionization epoch. For a flatΛCDM universe withΩbh
2 = 0.022, Ωch

2 =

0.125, h = 0.7.

After leaving the last scattering surface, photons freestream towards us today preserving the

anisotropy. This is true if we ignore the reionization of theuniverse at late time. In fact, as the
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first luminous objects form their UV emission reionizes the universe. This brings photons back

into contact with free electrons which erases anisotropiesthrough Thomson scattering. Taking

into account the reionization of the universe a second peak appears in the visibility function at

low redshift. The CMB photons are affected by the temperature, potential, and velocity of the

scattering electrons [60]. If we assume that photons have a temperatureT (1+ Θ) whereT is the

background temperature andΘ the temperature perturbation before reionization, at reionization,

only a fraction of photons given bye−τe , will emerge without scattering. The remaining fraction

(1 − e−τe) is re-emitted by the ionized region. Thus the photon temperature after reionization is

T (1 + Θ)e−τe + T (1 − e−τe) = T (1 + Θe−τe). (4.62)

This means that the CMB anisotropy after reionization is lowered by a factore−τe and con-

sequently the power spectrumCℓ is reduced bye−2τe . Hence, all modes within the horizon

(ℓ > τ0/τreion) at reionization will be affected by this process and the modes outside the horizon

remain unchanged. Figure (4.6) shows the effect of reionisation on the CMB power spectrum.

4.4.6 Spectral index ns

The CMB angular power spectrum can be written as

Cℓ =
2

π

∫ ∞

0

k2PI(k)|Θℓ(k)|2dk, (4.63)

wherePI(k) is the primordial power spectrum. The primordial power spectrum is proportional

to kns wherek is the wavenumber andns the spectral density [41]. This can be written as

PI(k) ∝
(

k

kp

)ns

, (4.64)

wherekp is a constant. For a wavenumberk = kp, ( k
kp

)ns is independent of the spectral index.

For other wavenumbers,ns will modify the slope of the CMB power spectrum, pivoting around

some multipoleℓp ≃ kpτ0. This effect on the CMB spectrum is clearly seen in Figure (4.7). A

value ofns < 1 lowers the small scale anisotropy and boosts the large scaleanisotropy with the

opposite effect forns > 1.
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Figure 4.7: Spectral index dependence of the CMB power spectrum for adiabatic models. For a

flat ΛCDM universe withΩbh
2 = 0.022, Ωch

2 = 0.125, h = 0.7, pivot scalekp = 0.05Mpc−1.
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CHAPTER 5

Observational Signatures of Isocurvature Perturbations in

the CMB

5.1 Introduction

In the previous chapters (3& 4), we reviewed the evolution of cosmological perturbations and

showed how these perturbations translate into the CMB anisotropies in the case of adiabatic ini-

tial conditions. In this chapter, we consider isocurvatureinitial conditions and study the evolution

of the perturbations. We develop a semi-analytic treatmentfor the perturbations and the CMB

spectrum that allows us to understand the dependence of isocurvature CMB spectra on cosmo-

logical parameters. The semi-analytic solutions for the perturbations are accurate to about10%.

Finally, we investigate the features of the isocurvature CMB power spectra and study the impact

of different cosmological parameters on the isocurvature CMB power spectra.
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5.2 Evolution of photon and baryon perturbations

In this section, we only consider the photon and baryon evolution as these, with the gravitational

potential, are the only quantities that are involved in the computation of the CMB spectrum

through the line of sight integral. We derive semi-analyticsolutions for the evolution of the pho-

ton density contrast and velocity divergence. For the gravitational potential, we only give large

and small scale solutions as a complete solution requires the knowledge of the density and ve-

locity evolution for all species. However, the small− and large−scale solutions are sufficient to

understand the CMB features.

Prior to decoupling, the energy-momentum conservation principle leads to the following set of

time evolution equations for the photon, baryon, cold dark matter and neutrino density contrasts

δ and velocity divergencesθ in the synchronous gauge [114]:

δ̇γ = −4

3
θγ −

2

3
ḣ, (5.1)

δ̇b = −θb −
1

2
ḣ, (5.2)

δ̇c = −1

2
ḣ, (5.3)

δ̇ν = −4

3
θν −

2

3
ḣ, (5.4)

for the density contrasts, and

θ̇γ = k2

(

1

4
δγ − σγ

)

+ aneσT (θb − θγ), (5.5)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ρ̄γ

3ρ̄b

aneσT (θγ − θb), (5.6)

θc = 0, (5.7)

θ̇ν = k2

(

1

4
δν − σν

)

, (5.8)

for the velocity divergences. The subscriptsγ, b, c andν label respectively the photons, the

baryons, the cold dark matter and the neutrinos,σT is the Thomson cross section,ne is the elec-

tron number density,̄ργ and ρ̄b are respectively the photon and baryon background densities,
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cs = 1/
√

3(1 +R) is the sound speed in the photon-baryon single fluid,σγ andσν represent

respectively the photon and neutrino shear. The shear stress of the radiation (photons and neu-

trinos) is relevant once the radiation component has decoupled from the matter component for a

mode within the horizon and must be taken into account. Therefore we supplement the above set

of equations with two equations for the quadrupole [114]

σ̇γ =
Ḟγ2

2
=

4

15
θγ −

3

10
kFγ3 +

2

15
ḣ+

4

5
η̇ − 9

10
aneσTσγ, (5.9)

σ̇ν =
Ḟν2

2
=

4

15
θν −

3

10
kFν3 +

2

15
ḣ+

4

5
η̇, (5.10)

whereFγ2,Fν2,Fγ3 andFν3 are respectively the second and the third moments of the momentum-

averaged phase space densities for photons and neutrinos. Acomplete treatment requires a hier-

archy of multipole moments to describe the full distribution function of the radiation component

[41, 152]. The synchronous gauge metric fieldh evolves as [114]

ḧ+
ȧ

a
h = −3

(

ȧ

a

)2

ρ̄cr

∑

j

Ωjδj(1 + 3c2sj), (5.11)

wherej ∈ {ν, γ, b, c} labels the different species of the universe,ρ̄cr is the critical density of

the universe andΩj ≡ ρ̄j/ρ̄cr is the ratio of the density of thejth species to the critical density.

The overdot refers to the derivative with respect to the conformal timeτ . Hereafter, we study

the evolution of the photons and baryons prior to and after decoupling. We focus mostly on the

pre-decoupling period as it sets the main features of the primary anisotropies of the CMB.

Moreover, as the gravitational potentialφ is a conformal gauge quantity, we consider the set of

field equations in the conformal gauge. These are given by [114]
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k2φ+ 3
ȧ

a

(

φ̇+
ȧ

a
ψ

)

= −3

2
H2ρ̄cr

∑

j

Ωjδj , (5.12)

k2

(

φ̇+
ȧ

a
ψ

)

=
3

2
H2ρ̄cr

∑

j

Ωj(1 + wj)θj , (5.13)

φ̈+
ȧ

a

(

ψ̇ + 2φ
)

+

(

2
ä

a
− ȧ2

a2

)

ψ +
k2

3
(φ− ψ) = 9H2ρ̄cr

∑

j

Ωjc
2
sjδj , (5.14)

k2(φ− ψ) =
9

2
H2ρ̄cr(1 + wj)Ωjσj , (5.15)

where the fluid variables are evaluated in the Newtonian gauge and differ from their counterparts

in the synchronous gauge by the gauge transformations as

δCon
γ = δSyn

γ − 4α
ȧ

a
, (5.16)

θCon
b = θSyn

b + αk2. (5.17)

whereα is defined byα ≡ 1

2k2

(

ḣ + 6η̇
)

and the potentialη comes from writing the scalar mode

of hij(x, τ), 1 ≤ i, j ≤ 3, as a Fourier integral [114].

5.2.1 Evolution of photons and baryons prior to decoupling

We consider the time evolution of the photon-baryon fluid in the tight-coupling regime. Pho-

tons and baryons are treated as perfect fluids. The tight-coupling approximation of photons and

baryons allows us to equateθγ andθb. Thus combining equations (5.5) and (5.6) leads to

(1 +R)θ̇γb = −Ṙθγb + k2(
1

4
δγ − σγ) + c2sk

2Rδb, (5.18)

whereθγb is the baryon photon common velocity divergence. We differentiate equation (5.1) and

make use of equation (5.18) to derive the following second order differential equation for the

photon density perturbation

δ̈γ +
Ṙ

1 +R
δ̇γ + k2c2sδγ = −2

3

[

Ṙ

1 +R
ḣ + ḧ

]

, (5.19)
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where we have neglected the photon shear (tight-coupling regime) and the pressure term inδb as

it remains smaller than the term inδγ prior to decoupling. Equation (5.19) represents a driven

harmonic oscillator with the competition between gravitational infall and photon pressure giving

rise to acoustic waves propagating in the photon-baryon fluid at the speed of sound. For the

associated homogeneous equation, we look for solutions of the formδγ ∝ exp
[

i
∫ τ

0
ωdτ ′

]

where

ω(τ) is some phase function. The two solutions to the homogeneousequation are simplysin krs

andcos krs wherers(τ) =
∫ τ

0
csdτ

′ is the sound horizon, and the phase function isω = kcs.

Here we have made use of the WKB approximation. On large scales, the WKB approximation

breaks down, but these modes are irrelevant for the CMB primary anisotropy treatment as they

only enter the horizon well after decoupling. The particular solution is constructed by integrating

the driving term weighted by the Green’s function of the two homogeneous solutions [74]. Thus,

the time evolution of the acoustic waves in the photon component prior to decoupling is given by

(1 +R)1/2δγ(k, τ) = AS sin krs(τ) + AC cos krs(τ)

+
1

kcs

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]F (τ ′)dτ ′, (5.20)

whereAS andAC are determined by the initial conditions as described in [29], and

F (τ) = −2

3

(

Ṙ

1 +R
ḣ + ḧ

)

, (5.21)

is the gravitational driving term which evolves differently for different initial conditions. Equa-

tion (5.20) gives the time evolution of the photon density contrast irrespective of initial condi-

tions, in the tight-coupling regime. In this regime, the baryon density contrast is related to its

photon counterpart bẏδb = 3
4
δ̇γ . On small scales, a correction to the tight-coupling approxima-

tion must be applied when Silk damping becomes important, asphotons leak out of overdense

regions, dragging baryons with them. This is done by multiplying the solution above bye−k2/k2

D ,

where the photon diffusion scalek−1
D is given by

kD
−2 =

1

6

∫

1

τ̇e

R2 + 4(1 +R)/5

(1 +R)2
,
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whereτ̇e = aneσT is the differential optical depth.

For the evolution of the common photon-baryon velocity divergence, we differentiate equation

(5.18) with respect to the conformal time and useδ̇γ = −4
3
θγ − 2

3
ḣ to obtain the second order

differential equation

(1 +R)θ̈γb + 2Ṙθ̇γb +

(

k2

3
+ R̈

)

θγb = −1

6
k2ḣ. (5.22)

Equation (5.22) represents a forced and damped harmonic oscillator with variable coefficients.

Its particular solution, applying the same method as for equation (5.19), is then given by

(1 +R)θγb = BC cos krs +BS sin krs

− k

6

∫ τ

0

√
3(1 +R(τ ′))3/2 sin k(rs(τ) − rs(τ

′))ḣ(τ ′)dτ ′, (5.23)

whereBC andBS are determined by the initial conditions. This solution must be multiplied

by e−(k/kD)2 to correct the tight-coupling approximation. As we would expect, loading more

baryons slows down the frequency of oscillations and decreases their oscillation amplitude.

After decoupling, the photons and baryons evolve separately. There is no pressure to resist the

gravitational collapse. The baryons feel the attraction ofthe cold dark matter and fall into their

potential wells. Thus the baryons slow down.

Equations (5.20) and (5.23) are our main solutions for the time evolution of the photon density

contrast and velocity divergence prior to decoupling. Theyboth depend on the metric fieldh

related to the gravitational potentialφ. The coefficientsAS, AC , BS andBC are independently

determined by the initial conditions of the perturbations.Hereafter, we study the time evolution

of the the photon and baryon perturbations for each mode in turn. We review, using this semi-

analytic approach, the well studied adiabatic case, then move onto the isocurvature modes.
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(a) (b)

(c) (d)

Figure 5.1: Evolution of the photon density contrast prior to decoupling for the AD mode:

Comparison of numerical and analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

5.2.1.1 AD mode

The adiabatic mode is characterized by the requirement thatthe densities of all species are per-

turbed in proportion at some initial time such that

δc,i = δb,i =
3

4
δγ,i =

3

4
δν,i, (5.24)
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where the subscripti labels the initial time. Or equivalently, using the relative entropy between

two speciesx andy given bySxy = δx

1+wx
− δy

1+wy
, wherewx andwy are the equation of state

parameters of the speciesx andy respectively, we have thatSxy = 0 for all pairs of species at

the initial time. In addition, all velocity divergences areinitially unperturbed. Therefore, using

the initial conditions for the adiabatic mode [29], the constantAS, AC , BS andBC in equations

(5.20) and (5.23) are all zero. The photon and baryon densitycontrasts are respectively given by

δAD
γ =

√
3

k
e−k2/k2

D

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FAD(τ ′)dτ ′, (5.25)

δAD
b =

3

4

√
3

k
e−k2/k2

D

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FAD(τ ′)dτ ′. (5.26)

Thus, the adiabatic mode is only sourced by the gravitational driving termFAD. This driving

term can be approximated by

FAD(k, τ) ≈ 2k2c2sj0(krs)

on small and intermediate scales which reduces to2k2c2s at early times. On very large scales

the above approximation breaks down, however, this does notaffect our physical description

of the CMB as these large-scale modes are well outside the horizon at decoupling and do not

substantially influence the CMB features. The lack of an exact analytic expression for the driving

term makes it difficult to derive exact analytic solutions for the time evolution of the photon and

baryon density contrasts. Nevertheless, good approximations for the photon and baryon density

contrasts are given by

δγ =
4

3
δb ≈ 2krsj1(krs) × e−k2/k2

D . (5.27)

Therefore, at early times(krs(τ) ≪ 1) the density contrasts for the adiabatic mode,δγ ∝ δb ∝
(1 − cos krs) couple to acos krs harmonic [74]. Thus, the acoustic oscillation for the AD mode

can be regarded as a forced oscillation with a cosine type phase.

For the velocity divergence, the adiabatic initial conditions dictate thatBS = BC = 0. The

common baryon-photon velocity divergence is then given by
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(a) (b)

(c) (d)

Figure 5.2: Evolution of the photon velocity divergence prior to decoupling for the AD mode:

Comparison of numerical and semi-analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

θAD
bγ = − k

6(1 +R)
e−k2/k2

D

∫ τ

0

√
3(1 +R(τ ′))3/2 sin k(rs(τ) − rs(τ

′))ḣ(τ ′)dτ ′. (5.28)

We note that solutions given by equations (5.25) and (5.28) require a perfect knowledge of the

metric fieldh. In Figures 5.1 and 5.2, we compare these semi-analytic solutions for the photons

to the numerical solutions outputted by CAMB [100] for some wavenumbers for the AD mode.
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Throughout the thesis, ’semi-analytic solution’ refers toa solution for the perturbation evolution

which requires a prior knowledge of the gravitational potential φ evolution for the conformal

gauge or, equivalently the metric fieldh evolution for the synchronous gauge. The gravitational

potential and the metric field evolution can be obtained using CAMB. On intermediate scales, the

semi-analytic solution agrees considerably well with the numerical solution given by CAMB. On

small and large scales, the approximation loses accuracy. However at decoupling, which is the

time of our interest, the analytic solution is a good approximation to the numerical solution. As

we will see later, in order to compute the primary CMB power spectrum to about10% accuracy,

one only needs to evaluate the perturbations at decoupling.

5.2.1.2 NID mode

The NID mode arises when the densities of the matter components are initially unperturbed while

the initial perturbation in the neutrino density is balanced by its photon counterpart, keeping the

curvature unperturbed. The initial perturbations are as follows:

δc,i = δb,i = 0, δγ,i = −Rν

Rγ
δν,i. (5.29)

These initial conditions imply thatAS = 0 andAC = −
√

3csRν/Rγ thus exciting thecos krs

harmonic. The gravitational driving term contribution forthis mode, in contrast to the AD mode,

can be neglected without loss of accuracy, as the gravitational potential (related tȯh), is initially

unperturbed and only grows inside the horizon. This can alsobe understood by considering the

right-hand side of equation (5.11). In the radiation dominated era, the photon and the neutrino

density contrasts roughly cancel while the baryon and the CDM density contrasts remain small

until the matter dominated era when they grow. The time evolution of the photon and baryon

density contrasts for the NID mode are given by

δNID
γ = −Rν

Rγ

√
3cs cos krs × e−k2/k2

D , (5.30)

δNID
b =

3

4

Rν

Rγ

(

1 −
√

3cs cos krs

)

× e−k2/k2

D , (5.31)
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(a) (b)

(c) (d)

Figure 5.3: Evolution of the photon density contrast prior to decoupling for the NID mode:

Comparison of numerical and analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

whereRν = Ων/Ωrad andRγ = Ωγ/Ωrad are respectively the fractional energy densities of

neutrinos and photons at early times. The smallness of the gravitational potential, hence its

decay, affects the evolution of photons even after recombination lowering the early Integrated

Sachs Wolfe (ISW) effect. Thus, the NID mode can be regarded as a free oscillation with a

cosine type phase.
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(a) (b)

(c) (d)

Figure 5.4: Evolution of the photon velocity divergence prior to decoupling for the NID

mode: Comparison of numerical and analytic solutions for some wavenumbers. We consider

k = 0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1

for the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

For the photon-baryon velocity divergence, the initial conditions dictate thatBC = 0 and

BS = −3kcsAC/4 in equation (5.23), and the sourcing term is irrelevant. Therefore the photon-

baryon velocity divergence is given by

θNID
γb =

√
3
3

4

Rν

Rγ
kc2s sin krs × e−k2/k2

D . (5.32)

For the NID mode, the semi-analytic solutions do not requireknowledge of the gravitational
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potential. In Figures 5.3 and 5.4, we compare the numerical and analytical solutions for the

evolution of the photon density contrast and velocity divergence for some wavenumbers in the

NID mode. For the photon density contrast, the semi-analytic solution is in good agreement with

the numerical, as it does not require the evolution of the gravitational potential. For the photon

velocity divergence, the approximation improves askτ increases. Nevertheless it is a good ap-

proximation around decoupling.

Equation (5.12) suffices to give us a good approximation to the behaviour of the gravitational

potentialφ for modes still outside the horizon. For those modes,kτ ≪ 1. We therefore neglect

the term proportional tok2. The conformal gauge perturbation in the time component of the

energy-momentum tensorδT 0
0 is given in the synchronous gauge byδρCon = δρSyn + αρ̇Syn. In

the case of the NID mode,α is given to leading order by

α = − Rν

15 + 4Rν

τ. (5.33)

Using the fact thaṫρ = −3Hρ(1 + w) with H = 1/τ in the radiation-dominated era together

with the Friedmann equation, equation (5.12) becomes

τφ̇+ φ = − 2Rν

15 + 4Rν

, (5.34)

which admits the general solution

φ = Aτ−1 − 2Rν

15 + 4Rν
, (5.35)

whereA is some constant. The first term of this solution represents adecaying mode which

vanishes rapidly with time and the second term is constant. Thus we can omit the decaying mode

and write the solution as

φ =
−2Rν

15 + 4Rν
. (5.36)

Thus outside the horizon, in the radiation-dominated era, the potentialφ is constant and does

not even depend on the wavenumber of the considered mode, butdepends only on the ratio of

neutrino density to radiation density,Rν . This behaviour is seen in Figure 5.5(a) where we have
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represented the time evolution of the gravitational potential for different wavenumbers using

CAMB [100]. The gravitational potential starts off constant at early times, then decays at the

matter-radiation transition.

(a) (b)

Figure 5.5: Evolution of the gravitational potentialφ in the NID mode. (a): Super horizon

evolution; (b): Sub-horizon evolution in the radiation era. These curves are obtained using

CAMB. The vertical dashed lines mark the matter-radiation equality and decoupling.

It is difficult to solve for the potentialφ exactly through horizon crossing. However, for the NID

mode, the potentialφ does not play a dominant role in determining the CMB anisotropies and

finding an analytical solution forφ is not so crucial. We obtain asymptotic solutions forφ, firstly

at early times when radiation dominates, and then at late times when matter dominates.

Inside the horizon and for small scales,kτ ≫ 1, so we neglect the terms in1/τ with respect to

those ink. Prior to matter-radiation equality, equation (5.12) can be written as

φ = −3

2

H2

k2
(Ωγδ

Syn
γ + Ωνδ

Syn
ν + α

ρ̇

ρ
), (5.37)

whereH is given by1/τ and the termα ρ̇
ρ

is constant and arises from gauge transformation from

the synchronous to the conformal gauge using equation (5.16) and ρ̇/ρ = −3H(1 + w) [29],

sinceφ is a conformal gauge quantity and the density contrasts are in synchronous gauge. Since
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neutrinos decoupled early on, they freestream toward us today and their density perturbations can

be neglected in the above equation. The baryons and photons are still coupled and oscillate due

to pressure and gravity. Thus the behaviour of the potentialis mainly determined by the photon

density perturbations. The potentialφ thus oscillates with decreasing amplitude (due to theH2

term in equation (5.37)), which matches the behaviour of thesmall scale mode shown in Figure

5.5(b).

In the matter-dominated era and well after decoupling, the photons and neutrino densities can be

neglected. We bear in mind thatH = 2/τ in the matter-dominated era. Equation (5.12) becomes

φ = − 6

k2τ 2
(Ωcδ

Syn
c + Ωbδ

Syn
b + α

ρ̇

ρ
). (5.38)

Well after decoupling, the baryons feel the potential well set up by the cold dark matter. Thus

equatingδc andδb is a good approximation. As the matter perturbation grows like τ 2, we can

neglect the constant gauge transformation term. We then have

φ ∝ − 6

k2τ 2
δSyn
c . (5.39)

As the dark matter perturbation grows inside the horizon asτ 2, we can easily see that the potential

φ is therefore constant in the matter-dominated era. The features described above can easily

be seen in Figure 5.5(b) in which the time evolution of the potentialφ is represented for four

different wavenumbers corresponding to different epochs of horizon crossing.

5.2.1.3 NIV mode

Unlike the other isocurvature modes, the NIV mode, like the AD mode, shows no relative en-

tropy perturbation in the density field at some initial time.All the density perturbations are zero

initially. The main difference with the AD mode is in the velocity field where the neutrino ve-

locity divergence starts perturbed, being compensated by the photon-baryon velocity. The initial

perturbations are given by:

θc,i = 0, θb,i = θγ,i = −Rν

Rγ
θν,i. (5.40)
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(a) (b)

(c) (d)

Figure 5.6: Evolution of the photon density contrast prior to decoupling for the NIV mode:

Comparison of numerical and analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

The NIV mode excites thesin krs harmonic, so that we can setAC = 0 andAS = 4Rν/
√

3Rγ

in equation (5.20). As in the case of the NID mode, the gravitational driving term contribution

remains irrelevant at all times as all the densities start unperturbed and the perturbations only

grow in the matter dominated era. Therefore, the NIV mode canbe regarded as a free oscillation

with a sine type phase. The photon velocity divergence is initially perturbed. This setsBS = 0
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(a) (b)

(c) (d)

Figure 5.7: Evolution of the photon velocity divergence prior to decoupling for the NIV

mode: Comparison of numerical and analytic solutions for some wavenumbers. We consider

k = 0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1

for the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

andBC = −3Rν

Rγ
kc2s in equation (5.23). The time evolution of the photon and baryon density

contrasts and the baryon-photon common velocity divergence for the NIV mode are given by
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δNIV
γ =

Rν

Rγ

√
3 sin krs(τ) × e−k2/k2

D , (5.41)

δNIV
b =

3

4

Rν

Rγ

√
3 sin krs(τ) × e−k2/k2

D , (5.42)

θNIV
γb = −3

Rν

Rγ

kc2s cos krs × e−k2/k2

D . (5.43)

In Figures 5.6 and 5.7, we compare the numerical and analytical solutions for the evolution of

the photon density contrast and velocity divergence for some wavenumbers for the NIV mode.

The semi-analytic density contrast and velocity divergence for photons are in good agreement

with their numerical counterparts.

(a) (b)

Figure 5.8: Evolution of the gravitational potentialφ in the NIV mode. (a): Super horizon

evolution; (b): Sub-horizon evolution in the radiation era. These curves are obtained using

CAMB. The vertical dashed lines mark the matter-radiation equality and decoupling.

For the asymptotic behaviour of the gravitational potential for the NIV mode, let us consider

equation (5.13). The velocity divergence in the Newtonian gauge is related to the velocity in

the synchronous gauge by equation (5.17) withα = − 4Rν

5 + 4Rν

1
k

for the NIV mode. Bearing in

mind thatH = 1/τ in the radiation-dominated era, we can rewrite equation (5.13) as

φ̇+
1

τ
φ =

3

2

1

k2τ 2

∑

j

(1 + wj)Ωj

(

θSyn
j − 4Rν

5 + 4Rν

k

)

, (5.44)
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whereψ has been replaced byφ since there is no shear in the tight-coupling regime (see equation

(5.15)). The solution of equation (5.44) up to leading orderis given by

φ = − 4Rν

5 + 4Rν

1

kτ
. (5.45)

The potentialφ decreases with time outside the horizon in the radiation-dominated era. This is

shown in Figure 5.8(a) for differentk−modes.

Through horizon crossing, as we emphasized for the neutrinoisocurvature density model, it is

difficult to obtain the potentialφ exactly. A similar treatment to that for the neutrino isocurvature

density model can be applied here. The equations (5.37) and (5.38) that we found for the neu-

trino isocurvature density model are still valid and applicable for we did not make any restrictive

assumption related to the nature of the primordial perturbations for their derivation. Therefore

prior to matter-radiation equality, the potential oscillates and is sourced by the photons. After

matter-radiation equality, it becomes constant. These features are shown in Figure 5.8(b) where

the time evolution of the potentialφ is shown for four different wavenumbers corresponding to

different epochs of horizon crossing.

5.2.1.4 CI & BI modes

The CI and the BI modes have been well studied in the literature [25, 35, 76]. The CI and

BI modes are similar in that the perturbation starts in the CDM density contrast and the baryon

density contrast respectively while the other species are initially unperturbed. This can be written

at some initial time as

δc,i = 1, δb,i = δγ,i = δν,i = 0, (5.46)

for the CI mode, and as

δc,i = 0, δb,i = 1, δγ,i = δν,i = 0, (5.47)

for the BI mode. The CI and BI initial conditions dictate thatAS = − 8√
3k

Ωc,0 for the CI mode

andAS = − 8√
3k

Ωb,0 for the BI mode, whileAc = 0 in both cases, thus exciting thesin krs

harmonic [85, 29]. The constantsΩc,0 andΩb,0 are respectively the CDM and the baryon densities
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(a) (b)

(c) (d)

Figure 5.9: Evolution of the photon density contrast prior to decoupling for the CI mode:

Comparison of numerical and semi-analytic solutions for some wavenumbers. We consider

k = 0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1

for the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

today. The driving term is small in the radiation dominationera as the photon and the neutrino

densities are initially unperturbed but becomes importantin the matter domination era as the

matter perturbation sources the gravitational potential [73].
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(a) (b)

(c) (d)

Figure 5.10: Evolution of the photon velocity divergence prior to decoupling for the CI mode:

Comparison of numerical and semi-analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

The time evolution of the photon and baryon density contrasts for the CI and BI modes are given
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by [73]

δCI
γ = −8

3
Ωc,0

√
3

k
sin krs(τ) × e−k2/k2

D

+

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FCI(τ ′)dτ ′, (5.48)

δCI
b = −2Ωc,0

√
3

k
sin krs(τ) × e−k2/k2

D

+
3

4

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FCI(τ ′)dτ ′, (5.49)

for the CI mode, and by

δBI
γ = −8

3
Ωb,0

√
3

k
sin krs(τ) × e−k2/k2

D

+

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FBI(τ ′)dτ ′, (5.50)

δBI
b = 1 − 2Ωb,0

√
3

k
sin krs(τ) × e−k2/k2

D

+
3

4

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)] × FBI(τ ′)dτ ′, (5.51)

for the BI mode. Equations (5.48-5.51) are exact but requirea perfect knowledge of the gravi-

tational driving term. One thing to notice is thek−1 dependence of the photon density contrast

for the CI and BI modes that washes out perturbations on smallscales while amplifying them on

large scales. As we show in the next section, this redistribution of power boosts the ISW effect of

the CMB temperature power spectrum (large scales) and suppresses anisotropies on small scales,

for these modes. On small scales, the effect of thek−1 factor can be compared to Silk damping

as they both they both suppress perturbations on these scales. However there are two main differ-

ences. Firstly, Silk damping does not act on large scales while thek−1 factor amplifies large scale

perturbations. Secondly, Silk damping only becomes significant around recombination while the

k−1 factor redistributes the power at all times.

For the photon-baryon velocity divergence,BS = BC = 0 for both CI and BI modes. The

velocity is solely determined by the driving term of equation (5.23). The photon-baryon velocity
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(a) (b)

(c) (d)

Figure 5.11: Evolution of the photon density contrast priorto decoupling for the BI mode:

Comparison of numerical and semi-analytic solutions for some wavenumbers. We consider

k = 0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1

for the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

divergence for the CI and BI modes is given by

θCI,BI
bγ = − k

6(1 +R)

∫ τ

0

√
3(1 +R(τ ′))3/2 sin k(rs(τ) − rs(τ

′))ḣ(τ ′)dτ ′, (5.52)

as for the adiabatic mode. However, the metric field in the CI and BI modes differs from the met-

ric field in the adiabatic mode. Figures 5.9-5.10 and 5.11-5.12 compare the semi-analytic and

the numerical solution for the evolution of the photon density contrast and velocity divergence
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for the CI and BI modes respectively.

(a) (b)

(c) (d)

Figure 5.12: Evolution of the photon velocity divergence prior to decoupling for the BI mode:

Comparison of numerical and semi-analytic solutions for some wavenumbers. We considerk =

0.019 h Mpc−1 for the top-left panel,0.047 h Mpc−1 for the top-right panel,0.088 h Mpc−1 for

the bottom-left panel and0.25 h Mpc−1 for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and decoupling.

For the super horizon evolution of the gravitational potential in CI and BI models, we proceed as

previously in the NID mode. One should note that for these modes,α = 0 to leading order, caus-

ing the synchronous gauge densities to be equal to their conformal gauge counterparts. Equation
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(5.12) simplifies for the CI and BI modes respectively as

τφ̇ + φ =
4

3
Ωc,0τ, (5.53)

τφ̇ + φ =
4

3
Ωb,0τ, (5.54)

which admit the general solutions

φCI = Bτ−1 − 4

3
Ωc,0τ, (5.55)

φBI = Cτ−1 − 4

3
Ωb,0τ, (5.56)

whereB andC are some constants. As for the NID mode, the first terms of these solutions

represent decaying modes which vanishes rapidly with time.The second terms, proportional to

τ , are the growing modes. Thus we can omit the decaying modes and write the solutions as

φCI = −4

3
Ωc,0τ, (5.57)

φBI = −4

3
Ωb,0τ. (5.58)

(a) (b)

Figure 5.13: Evolution of the gravitational potentialφ in the CI mode. (a): Super horizon

evolution; (b): Sub-horizon evolution in the radiation era. These curves are obtained using

CAMB. The vertical dashed lines mark the matter-radiation equality and decoupling.

Thus outside the horizon, in the radiation-dominated era, the gravitational potentialφ in the CI

and BI modes grows linearly with time in magnitude, and does not even depend on the wavenum-
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ber of the considered mode, but depends only on the dark matter and baryon densities. This be-

haviour is shown in Figures 5.13(a) and 5.14(a) where we haverespectively represented the super

horizon evolution of the gravitational potential in CI and BI models for different wavenumbers.

For the sub-horizon evolution, the derivation done in the case of the NID mode holds.

(a) (b)

Figure 5.14: Evolution of the gravitational potentialφ in the BI mode. (a): Super horizon

evolution; (b): Sub-horizon evolution in the radiation era. These curves are obtained using

CAMB. The vertical dashed lines mark the matter-radiation equality and decoupling.

Therefore prior to matter-radiation equality, the potential oscillates and is sourced by the pho-

tons. After matter-radiation equality, it becomes constant. These features are shown in Figures

5.13(b) and 5.14(b) where the sub-horizon evolution of the potentialφ is shown for four different

wavenumbers.

5.3 CMB anisotropies in isocurvature models

In the previous section, we followed the time-evolution of the photon density contrast,δγ, the

common photon-baryon velocity divergence,θbγ , and the gravitational potential,φ, for different

initial conditions, from some initial time to the last scattering surface where the photons and
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baryons decouple. After decoupling, photons freestream towards us today and baryons, through

gravitational attraction, fall into the dark matter potential wells. The three quantitiesδγ , θbγ and

φ above-mentioned allow us to compute the primary CMB angularpower spectrumCℓ using the

line of sight integral approach.

Figure 5.15: Comparison of CMB temperature power spectra for AD, CI, BI, NID and NIV

modes for the same cosmological model. This is for a flatΛCDM universe withΩbh
2 = 0.022,

Ωch
2 = 0.125 andh = 0.7. The isocurvature spectra are normalized to have sameCISO

10 =

2.5CAD
10 for clarity. These spectra are obtained using CAMB.

We recall that the CMB angular power spectrum is given by

Cℓ =
2

π

∫

dk

k
k3 | Θℓ(τ, k) |2

(2ℓ+ 1)2
, (5.59)

where the multipole momentsΘℓ(τ, k) are given, using the line of sight integral approach, by

Θℓ(k, τ0) =

∫ τ0

0

S(k, τ)jℓ[k(τ − τ0)]dτ, (5.60)
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with S(k, τ) being the source function. In the synchronous gauge, the source function is given

by

S = e−τe (η̇ + α̈)+g(τ)

[

δγ
4

+
θ̇b

k2
+ 2α̇+

Π

16
+

3Π̈

16k2

]

+ġ(τ)

[

θb

k2
+ α +

3Π̇

8k2

]

+g̈(τ)

[

3Π

16k2

]

,

whereg(τ) is the visibility function. For the primary anisotropies, the contribution to the source

function due to the photon polarization is small compared tothe other terms in the source function

and can be neglected. Thus the source function further simplifies to the expression

S = e−τe (η̇ + α̈) + g(τ)

[

δγ
4

+
θ̇b

k2
+ 2α̇

]

+ ġ(τ)

[

θb

k2
+ α

]

. (5.61)

Figure 5.15 shows the CMB temperature power spectra for the CI, BI, NID and NIV modes for

the same cosmological model. The AD mode is shown here only for reference purposes. Here,

the isocurvature spectra are normalized to have the same power atℓ = 10. Except for the CI

and BI modes that have the same spectrum, these spectra show different features from the fact

that the evolution of photon density contrast and velocity divergence, and the evolution of the

gravitational potential differ from one mode to another. Among these distinctive features are, the

positions and the amplitude of the acoustic peaks, the height of the Sachs-Wolfe plateau and the

steepness of the spectrum on small scales. Hereafter, we first show that CMB power spectrum

can be obtained to about10% accuracy, using only the photon density contrast and velocity diver-

gence evaluated at decoupling, and the evolution of the gravitational potential. We then consider

each isocurvature mode in turn and compare it to the adiabatic and other isocurvature modes.

We group the NIV and NID modes as these are free oscillations and have some similarities with

regard to the acoustic peak positions and the integrated Sachs-Wolfe effect, then consider the CI

and BI modes which have the same CMB temperature power spectrum.

The multipole moments can be further simplified knowing thatthe visibility function is approxi-

mately a Dirac delta function that peaks at decoupling (ignoring reionization for now). Thus, to

a good accuracy, the multipole moments can be computed usingthe photon density contrast and

the baryon velocity divergence evaluated at decoupling, and the evolution of the gravitational

potential [78]. In this approximation, the multipole moments are given by
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(a) CI (b) BI

(c) NID (d) NIV

Figure 5.16: CMB angular power spectrum for(a): CI, (b): BI, (c): NID and (d): NIV modes.

The dotted line represents theCℓ obtained using only the three main contributions to the source

function, and the solid line is theCℓ obtained using the full source function. The solid line is

obtained using CAMB. The dotted line is computed with a code written in IDL.

Θℓ(τ0) ≃ [Θ0 + ψ] (τ∗)D(k)(2ℓ+ 1)jℓ(k∆τ∗) + Θ1(τ∗)D(k) [ℓjℓ−1(k∆τ∗) − (ℓ+ 1)jℓ+1(k∆τ∗)]

+ (2ℓ+ 1)

∫ τ0

τ∗

[φ̇+ ψ̇]jℓ(k∆τ)dτ, (5.62)

whereτ∗ is the conformal time at decoupling,∆τ∗ = τ0 − τ∗, ∆τ = τ0 − τ andD(k) accounts
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for the diffusion damping. This diffusion damping factor isgiven by

D(k) =

∫ τ0

0

g(τ)e[−k/kD(τ)]2dτ. (5.63)

Figure (5.16) represents the CMB power spectrum computed using the full transfer function

compared to the one using only the main three contributions to the transfer function for the

CI, BI, NID and NIV modes. These are respectively obtained byintegration of the exact (see

equation (5.60)) and the approximated (see equation (5.62)) transfer functions through equation

(5.59). One can see that the approximation reproduces the main features of the CMB power

spectrum.

Thus, the evolution of the photon density contrast and velocity divergence and the evolution of

the gravitational potential, themselves depending on the mode of the primordial fluctuations, give

a good approximation to the total CMB angular power spectrum. Hereafter, we study the main

features of the CMB temperature power spectrum in isocurvature models, for each mode in turn.

By studying Figure 5.15 we observe that, of all the isocurvature CMB power spectra, the NIV

CMB power spectrum is the most similar to the AD CMB power spectrum with regard to its over-

all shape. The Sachs-Wolfe plateau and the ISW effect are similar for both modes, and at higher

ℓ’s, the NIV and AD CMB spectra show the same behaviour in the damping of anisotropies on

small scales. However, the acoustic peaks are shifted to lower ℓ’s compared to the adiabatic

model as the NIV excites a puresin krs harmonic instead of the driven cosine like harmonic for

the AD mode, but the peak positions still follow the (1:2:3:4) series as for the AD mode. The

ISW effect contribution around the first peak in the NIV mode is not as important as in the AD

mode due to the smallness of the gravitational potential andits time derivative. At the horizon

crossing, the gravitational potential decays but this weakly affects the height of the first acoustic

peak. As a result, the first peak in the NIV mode is not as high asin the AD mode. In addition,

on very large scales (ℓ . 10), the Sachs-Wolfe plateau is boosted by the velocity divergence con-

tribution as in this mode, the photon velocity divergence isinitially perturbed. In Figure 5.17,

we represent the different contributions to the CMB power spectrum for the NIV mode. For this

mode, the CMB spectrum is essentially dominated by the baryon velocity on large scales and
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Figure 5.17: Different contributions to the CMB power spectrum for the NIV mode. These

contributions are obtained using CAMB. This is for a flatΛCDM universe withΩbh
2 = 0.022,

Ωch
2 = 0.125 andh = 0.7.

the gravitational potential is proportional to1/kτ on large scales (see equation (5.45)), boosting

both the ordinary and integrated SW contributions at lowℓ’s as also explained in [121]. How-

ever, the ordinary and the integrated SW contributions roughly cancel each other as they are

opposite in sign. Asℓ increases, the contribution due to the change in the gravitational potential

decreases and the ordinary SW contribution becomes dominant in the transfer function. Note that

the velocity divergence contribution in the source function is weighted byk−2 thus reducing its

significance on intermediate and small scales. Let us also note that the phase difference between

the gravitational potential and the photon density contrast is not constant but changes withℓ.

For the NID mode, the acoustic peaks are located roughly at the NIV trough positions, due to

the fact that the NID and NIV modes, are both free oscillations with respectively a cosine and
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Figure 5.18: Different contributions to the CMB power spectrum for the NID mode. These

contributions are obtained using CAMB. This is for a flatΛCDM universe withΩbh
2 = 0.022,

Ωch
2 = 0.125 andh = 0.7.

sine type phases. The NID CMB angular power spectrum contains more power on large scales,

compared to the anisotropies on intermediate and small scales. The first acoustic peak and the

SW plateau have almost the same height. One should bear in mind that the NID CMB spectrum

has a trough before the first peak. Figure 5.18 shows the different contributions to the spec-

trum. The Doppler effect, though not important as in the NIV mode, reduces the depth of the

first trough. As for the NIV mode, the gravitational potential, initially not significant, decays

at the horizon crossing. But this decay does not significantly boost the anisotropy temperature

before and after recombination due to the smallness of the gravitational potential. The velocity

divergence contribution to the spectrum remains subdominant on all scales in this mode, while

the ISW contribution to the spectrum is of no significance.
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Figure 5.19: Different contributions to the CMB power spectrum for the CI mode. These con-

tributions are obtained using CAMB. This is for a flatΛCDM universe withΩbh
2 = 0.022,

Ωch
2 = 0.125 andh = 0.7.

The CI and BI modes have the same CMB power spectrum as their photon evolution equations

are similar. They both represent a driven oscillation and excite asin krs like harmonic, setting

the ℓ peak positions in the CI and BI modes roughly at the trough positions in the AD CMB

power spectrum. Most importantly, though the gravitational potential in the CI and BI modes is

as important as in the AD mode, in contrast to the NID and NIV modes where it is negligible,

the CMB power spectrum in the CI and BI modes completely differs for the AD spectrum: At

low ℓ’s, the CMB power spectrum in the CI and BI modes do not show theSachs-Wolfe plateau

as in the AD case but instead decreases asℓ increases. This is due to thek−1 factor in the evolu-

tion equation of the photon density contrast which boosts anisotropies on large scales (lowℓ’s)

and suppresses them on small scales. Thek−1 factor also dictates the steep overall shape of the

BI and CI CMB power spectra and tends to hide the fact that the CMB power spectrum has a
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Figure 5.20: Different contributions to the CMB power spectrum for the BI mode. These con-

tributions are obtained using CAMB. This is for a flatΛCDM universe withΩbh
2 = 0.022,

Ωch
2 = 0.125 andh = 0.7.

trough before the first acoustic peak in these modes as in the NID mode. For the same reason,

the ISW effect in these modes, though as relevant as in the AD mode (since the gravitational

potential is relatively large at the horizon crossing time), does not noticeably increase the height

of the first peak as for the AD case. Figures 5.19 and 5.20 show the contributions to the CMB

spectrum in these modes. It turns out that the CI, BI and NID modes, for which the first peak

of the CMB power spectrum is preceded by a trough have their acoustic peak positions follow-

ing the (1:3:5) series in contrast to the AD and NIV modes (where the first acoustic peak comes

right after the Sachs-Wolfe plateau) which have the CMB spectrum following the (1:2:3:4) series.
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5.4 Effect of cosmological parameters on the isocurvature CMB

temperature power spectrum

In the previous section we reviewed how, from the fluctuations at the last scattering surface, one

derives the observed CMB anisotropy, and subsequently studied the features of the CMB power

spectrum for isocurvature modes. The CMB anisotropy spectrum depends not only on the mode

of the initial fluctuations but also on several cosmologicalparameters including the baryon den-

sity ωb = Ωbh
2, the matter densityωm = Ωmh

2, the dark energy densityΩΛ, the optical depth

τe, the spectral indexns and the scalar amplitudeAs. Each parameter has a distinct effect on the

spectrum. In a previous chapter, we studied how a change in the cosmological parameters affects

the CMB spectrum in the adiabatic case. The baryon density, matter density, and cosmological

constant each induce a shift in the location of the acoustic peaks and troughs in the CMB spec-

trum. For a flat universe, the peak location depends on the sound horizonrs and on the age of

the universeτ0. An increase in the matter densityΩmh
2 reduces the age of the universe but does

not affect the sound horizon. A change in the baryon density affects the sound horizon. More

importantly, the physical densities in matterΩmh
2 and baryonsΩbh

2 fix the heights of acoustic

peaks in the CMB spectrum. The peaks in the CMB spectrum are lowered and shifted to higher

ℓ as the matter densityΩmh
2 increases.

A dark energy model with cosmological constantΩΛ or quintessence, and curvature have no

significant effect on the pre-recombination universe and only affect the CMB spectrum through

the angular diameter distancedA and the late-time ISW effect [98]. The optical depthτe tells

us how much the universe was reionized at late times. The reionization of the universe reintro-

duces Thomson scattering of photons by free electrons. If the optical depth is large enough, the

anisotropies are washed out. The spectral indexns has an effect different from all of the previous

parameters. An increase in the spectral index lowers the anisotropy on large scales and enhances

it on small scales, by tilting the spectrum about a pivot scale.
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In this section, we study the effect of each of the above-mentioned cosmological parameters on

the CMB power spectrum in isocurvature modes. We particularly focus on the physical baryon

density and the physical matter density as they affect the CMB spectrum for adiabatic and isocur-

vature modes differently. The effect of the other cosmological parameters on the CMB spectrum

in isocurvature models is similar to the AD case.

5.4.1 Baryon density Ωbh
2
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(d) NIV

Figure 5.21:Ωbh
2 dependence of the CMB power spectrum in isocurvature models. This is for a

flat ΛCDM universe withΩbh
2 = 0.022, 0.03, 0.04 and0.06, Ωch

2 = 0.125 andh = 0.7.
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Figure 5.21 represents the baryon density dependence of theCMB temperature power spectrum

for different isocurvature modes. The baryon density is thecosmological parameter which most

affects the heights and locations of peaks in the CMB power spectrum. Except for the NIV mode,

the effect of a change in the baryon density on the CMB power spectrum is essentially determined

by the change in the photon density contrast. Prior to decoupling, the baryons and photons are

coupled and form a single fluid whose squared sound speed is given byc2s =
1

3(1 +R)
where

R =
3ρ̄b

4ρ̄γ
. The oscillation phase depends on the sound horizonrs. Thus loading more baryon

reduces the sound speed, shifting the acoustic peaks to higher ℓ’s. This effect is also seen in the

AD mode. However, the lowering and enhancement of the acoustic peaks differ from mode to

mode.

In the NID mode, as, the baryon density increases, all the acoustic peaks are significantly low-

ered. This differs from the AD mode, where the odd peaks are enhanced while even peaks are

lowered, due to a gravitational potential shift. As we showed for the NID mode, the gravitational

potential contribution is negligible and the amplitude of the oscillations for the photon density

contrast and velocity divergence (see equations (5.30) and(5.32)) depends on the sound speed.

The lowering of the acoustic peaks is strongest about the first three peaks where the Doppler

effect contribution, related toθbγ and θ̇bγ , becomes as important as the monopole contribution.

We recall thatθbγ is proportional toc2s while δγ is proportional tocs. Figure 5.22(c) shows the

effect of a change in the baryon density on the contributionsto the NID CMB spectrum.

The NIV mode shows the strongest height reduction of the acoustic peaks. The first three peaks

are strongly reduced as the baryon density increases, whilethe other peaks slightly decrease as in

the NID mode. However, the effect of the change in the baryon density is noticeable even on very

large scales in contrast to the NID case. Here, the monopole contribution and the Doppler effect

contribution are in phase. At lowerℓ’s the velocity divergence, with its amplitude proportional

to the square of the sound speed (see equation (5.43)), contributes most to the transfer function,

while for higherℓ’s the photon density contrast (see equation (5.41)), proportional to the sound
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(a) CI (b) BI

(c) NID (d) NIV

Figure 5.22: Baryon density effect on the contributions to the CMB power spectrum for the

isocurvature modes. The baryon density increases fromΩbh
2 = 0.022 (solid lines) to0.06

(dashed lines). This is for a flatΛCDM universe withΩch
2 = 0.12 andh = 0.7.

speed, dominates in the transfer function. This is shown in Figure 5.22(d) where we represent

the changes in the contributions to the CMB power spectrum.

The CI and BI modes react differently to an increase in the baryon density. In the CI mode,

acoustic peaks are lowered. However, the baryon density dependence of the CMB power spec-

trum is weaker in the CI mode than in the NID and NIV modes. Thisis due to the fact that the

photon density contrast amplitude (see equation (5.48)) depends on the photon-to-baryon ratio
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R only through the forcing term. The amplitude of the sine harmonic is constant. Figure 5.22(a)

shows that there is no significant change in the monopole contribution as the baryon density in-

creases. For the BI mode, the amplitude of the sine harmonic (see equation (5.50)) is directly

proportional to the baryon density. Thus in contrast to the other modes, loading more baryons in

BI models enhances significantly the acoustic peaks. Figure5.22(b) shows that all the contribu-

tions are boosted as the baryon density increases.

5.4.2 Matter density Ωmh
2

To see the imprint of the matter density on the CMB power spectrum, we consider aΛCDM

universe, keep the physical baryon densityΩbh
2 andh constant, and modify only the dark matter

densityΩch
2. The change in the matter density is compensated byΩΛ. ChangingΩΛ affects the

CMB spectrum but its effect can be neglected compared to the effect of the matter density itself.

For a universe with a low matter densityΩmh
2, the epoch of matter-radiation equalityτeq occurs

closer to recombination. The gravitational potential still decays at recombination providing a

strong driving force for the oscillations. Therefore the photon density perturbation,δγ , is larger

compared to high matter density universes. In addition, since the potential is not constant after

recombination, the integrated Sachs Wolfe effect contribution is not negligible and should be

taken into account. Figure 5.23 shows the effect of a change in the matter density on the CMB

acoustic peaks in isocurvature modes. In contrast to the baryon dependence, an increase in the

matter density shifts the CMB acoustic peaks to lowerℓ’s. The location of the acoustic peaks,

ℓp, in the CMB spectrum is proportional toℓp ∝ πτ0/rs(τ∗) whereτ0 is the age of the universe

in conformal time. Increasing the matter density decreasesthe age of the universe pushing the

peaks to lowerℓ.

The effect of an increase in the matter density on the height of the CMB temperature acous-

tic peaks in the BI, NID and NIV modes is similar to the AD case.For a low matter density,
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Figure 5.23:Ωch
2 dependence of the CMB power spectrum in isocurvature models. This is for a

flat ΛCDM universe withΩbh
2 = 0.022, Ωch

2 = 0.125, 0.2, 0.3 and0.4, andh = 0.7.

the matter-radiation equality happens closer to recombination. Therefore, the photon density

contrast at recombination is larger than in a purely matter dominated universe. In addition, an

increase in the matter density increases the gravitationalpotential which in turn, causes the ISW

effect to significantly affect the anisotropies around the first and second peaks as it decays. In

the CI mode, an increase in the matter density enhances the acoustic peaks as the photon density

contrast is directly proportional to the matter density as shown in equation (5.48).
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5.4.3 Cosmological constant density ΩΛ
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Figure 5.24:ΩΛ dependence of the CMB power spectrum in isocurvature models. This is for a

flat ΛCDM universe withΩbh
2 = 0.022, Ωch

2 = 0.125 andΩΛ = 0.4, 0.6, 0.7 and0.8.

The effect of a change in the cosmological constant density on the CMB temperature power

spectrum in isocurvature modes is similar to the AD case. At the last scattering surface, where

the main contributions to the anisotropies that we observe today were formed, the universe was

still radiation-dominated and the cosmological constant was negligible and could not affect the

perturbations. Therefore the effect of the cosmological constant on the CMB power spectrum

is only through the freesteaming of photons from last scattering surface towards us. For a fixed

baryon and matter density, the cosmological constant affects the angular diameter distancedA
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which in turn modifies the peak location in the CMB power spectrum. The angular diameter

distancedA = d/ϕ is a classic way to measure distances by measuring the angleϕ subtended by

an object of known physical sized. In a flat universeΩK ≡ 1 − ΩΛ − Ωm = 0, ϕ = (d/a)/∆τ

so that the angular diameter distance is given by [41]

dflat
A = a∆τ =

∆τ

1 + z
, a0 = 1 (5.64)

where∆τ is the comoving distance. At low redshift, the angular diameter distance is equal to the

comoving distance. Thus the entire CMB spectrum shifts to lower multipolesℓ asΩΛ increases.

However the shift in the peak location due to theΩΛ is weaker, compared to the shift due to a

change in the matter and baryon densities. Figure 5.24 showshow the CMB power spectrum for

both isocurvature modes is shifted to larger scales as the cosmological constant increases.

5.4.4 Curvature density ΩK

Among all the cosmological parameters that we are considering, the curvature density by far

causes the largest shift in the location of the peaks [41]. The photon geodesics depend on the

geometry of the universe. In an open universe, the geodesicsof massless particles start out

parallel to each other and then slowly diverge. The physicalscale corresponding to the first

peak gets projected onto a smaller angular scale in a flat universe compared to an open universe.

Therefore we expect that the peaks should be shifted to higher values ofℓ in an open universe.

For the closed universe, the peaks are shifted to lower values of ℓ. The magnitude of this shift

is determined by the comoving angular diameter distance to the last scattering surface [77].

Equation (5.64) in the previous subsection gives the angular diameter distance in a flat universe.

For a non flat universe, the angular diameter distance generalizes to

dA =
a

H0

√

|ΩK |











sinh [
√

ΩKH0∆τ ] ΩK > 0

sin [
√
−ΩKH0∆τ ] ΩK < 0

(5.65)

Thus changing the curvature of the universe affects the angular diameter distance and subse-

quently the peak location. In Figure 5.25 we see how the wholeCMB spectrum is shifted to
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Figure 5.25: CurvatureΩK dependence of the CMB power spectrum in isocurvature models.

As we increase the curvature density, the anisotropy spectrum shifts to small scales. This is for

closed (ΩK = −0.1), flat (ΩK = 0) and open (ΩK = 0.1) ΛCDM universe withΩbh
2 = 0.022,

Ωch
2 = 0.125 andh = 0.7.

the higherℓ as we go from a closed universe(ΩK < 0) to an open universe(ΩK > 0) for all

isocurvature modes.

5.4.5 Optical depth τe

After leaving the last scattering surface, photons freestream towards us today preserving the

anisotropy. This is true if we ignore the reionization of theuniverse at late time. In fact, as the

108



 0.1

 1

 10

 100

 1000

 10000

 0  400  800  1200  1600  2000

τ= 0.1
  0.15
  0.20

ℓ

ℓ(
ℓ
+

1)
C

ℓ/
2π

(µ
K

2
)

(a) CI

 0.001

 0.01

 0.1

 1

 10

 100

 0  400  800  1200  1600  2000

τ= 0.1
  0.15
  0.20

ℓ

ℓ(
ℓ
+

1)
C

ℓ/
2π

(µ
K

2
)

(b) BI

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  400  800  1200  1600  2000

τ= 0.1
  0.15
  0.20

ℓ

ℓ(
ℓ
+

1)
C

ℓ/
2π

(µ
K

2
)

(c) NID

 0

 200

 400

 600

 800

 1000

 1200

 0  400  800  1200  1600  2000

τ= 0.1
  0.15
  0.20

ℓ

ℓ(
ℓ
+

1)
C

ℓ/
2π

(µ
K

2
)

(d) NIV

Figure 5.26: Reionization dependence of the CMB power spectrum in isocurvature modes.

As the optical depth from reionization to the last scattering surface increases, anisotropies are

washed out for scales inside the horizon at the reionizationepoch. This is for a flatΛCDM

universe withΩbh
2 = 0.022, Ωch

2 = 0.125 andh = 0.7.

first luminous objects form their UV emission reionizes the universe. This brings photons back

into contact with free electrons which erases anisotropiesthrough Thomson scattering. Taking

into account the reionization of the universe a second peak appears in the visibility function at

low redshift. The CMB photons are affected by the temperature, potential, and velocity of the

scattering electrons [60]. If we assume that photons have a temperatureT (1+ Θ) whereT is the

background temperature andΘ the temperature perturbation before reionization, at reionization,

109



only a fraction of photons given bye−τe , will emerge without scattering. The remaining fraction

(1 − e−τe) is re-emitted by the ionized region. Thus the photon temperature after reionization is

T (1 + Θ)e−τe + T (1 − e−τe) = T (1 + Θe−τe). (5.66)

This means that the CMB anisotropy after reionization is lowered by a factore−τe and con-

sequently the power spectrumCℓ is reduced bye−2τe . Hence, all modes within the horizon

(ℓ > τ0/τreion) at reionization will be affected by this process and the modes outside the horizon

remain unchanged. Figure 5.26 shows that this is valid for the CI, BI, NID and NIV modes.

5.4.6 Spectral index ns

The CMB angular power spectrum can be written as

Cℓ =
2

π

∫ ∞

0

k2PI(k)|Θℓ(k)|2dk, (5.67)

wherePI(k) is the primordial power spectrum. The primordial power spectrum is proportional

to kns wherek is the wavenumber andns the spectral density [41]. This can be written as

PI(k) ∝
(

k

kp

)ns

, (5.68)

wherekp is a constant. At the wavenumberk = kp, the power spectrum is independent of the

spectral index. For other wavenumbers,ns will modify the slope of the CMB power spectrum,

pivoting around some multipoleℓp ≃ kpτ0. This effect on the CMB spectrum is clearly seen

in Figure 5.27 for the CI, BI NID and NIV modes. A value ofns < 1 lowers the small scale

anisotropy and boosts the large scale anisotropy with the opposite effect forns > 1.
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Figure 5.27: Spectral index dependence of the CMB power spectrum for isocurvature models.

This is for a flatΛCDM universe withΩbh
2 = 0.022, Ωch

2 = 0.125 andh = 0.7, pivot scale

kp = 0.05Mpc−1.
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CHAPTER 6

Fundamental Uncertainty in the BAO Scale from

Isocurvature Modes

6.1 Introduction

Large galaxy surveys fall squarely in the realm of astrophysics and traditionally we think of them

as living almost independently of the physics of the early Universe. In thisLetterwe show that

this assumption breaks down rather dramatically in the caseof Baryon Acoustic Oscillations

(BAO) (for a recent review see [12] ). BAO surveys are a key component of the global plan for

the next two decades in cosmology because they are believed to provide a robust and powerful

statistical standard ruler that can probe dark energy. Theyhave shown to be robust to a variety of

potential systematic effects which only become important at the1% level [155, 157]. However,

here we show that there is a much more significant “systematic” arising from the possibility of

isocurvature modes correlated with the dominant adiabaticperturbation which may have been

generated during the early Universe.
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To understand this systematic, consider the standard rulerprovided by the distance that sound

waves can propagate in the primordial plasma. The standard picture based on adiabatic pertur-

bations suggests that the key scale is the sound horizon:

rs =

∫ tcmb

0

cs(1 + z)dt =

∫ ∞

zcmb

cs(z
′)

H(z′)
dz′,

wherecs(z) = 1/
√

3 (1 +Rb(1 + z)−1) andRb = 31500ωb (Tcmb/2.7 K)−4. The measurement

of the late-time clustering of galaxies in the transverse direction probes the angular diameter dis-

tance given bydA(z) = r⊥(1 + z)−1/∆Θ wherer⊥ is the intrinsic size ofrs in the transverse

direction and∆Θ is the position of the peak in the angular correlation function, while the clus-

tering on a scaler|| along the line of sight probes the Hubble parameter,H(z) = ∆z/r||.

Measurements of the angular diameter distance and Hubble parameter in a series of redshift bins

using the BAO technique provide an effective probe of the properties of dark energy [23, 139,

155], with prospective constraints on the equation of stateof dark energy,w0, and its evolution

wa, as low as 0.02 and 0.04, respectively, for a future space-based spectroscopic mission (e.g.,

ADEPT [151]), with forecasts for current experiments (e.g., BOSS [149]) at the level of 0.03 and

0.1 respectively.

Systematic effects that affect the position and shape of theBaryon Acoustic Peak (BAP), such as

nonlinearity and redshift-space distortions, have been studied and can be treated without a sig-

nificant impact on dark energy constraints [155, 157]. The impact on the BAP from non-standard

conditions in the early Universe such as changes in recombination, early dark energy or inhomo-

geneous reionization, have been studied before [40]. Here we concentrate on the possibility that

the initial conditions were not purely adiabatic. Adiabatic initial conditions are described by a net

density perturbation such that the relative number densities of all cosmological species remain

unperturbed. There is however another possible type of perturbation, termed isocurvature, char-

acterized by variations in the particle number ratios such that the net curvature perturbation is

zero [29]. We show that isocurvature modes alter the standard picture above and deform the char-

acteristic BAP scale which manifests in the anisotropies inthe cosmic microwave background
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and the clustering of matter. We investigate the extent to which an admixture of isocurvature

modes, small enough to be undetectable by PLANCK , degrades constraints on dark energy pa-

rameters when allowed for, or bias the recovered values if not taken into account. Put more

generally, we investigate the coupling of the primordial density perturbation to the constraints

arising from our observations at late times, even with strong prior constraints on the isocurvature

modes from CMB data. Constraints from WMAP 3 year data indicate that a 50% admixture of

three isocurvature modes with the adiabatic mode is permitted [13], whereas forecasts for the

PLANCK experiment indicate that arbitrary isocurvature mode admixtures will be constrained to

below the 10% level [31].

What are the possible origins of isocurvature modes? The simplest possibility perhaps is multiple

field inflation [119, 137], with the curvaton mechanism as a special case [113]. The resulting

isocurvature perturbation is a leading candidate to explain any primordial non-Gaussianity and

can, in certain cases, explain the observed asymmetry in theCMB [52]. While the simplest,

adiabatic models of inflation are currently preferred [177], it is possible that some isocurvature

contamination will be uncovered in future experiments and indeed this would be very fortuitous

since it would provide new handles on the physics of the very early Universe. In this chapter

we argue that allowing for the possibility of isocurvature modes is crucial in future BAO surveys

and that as a reward, such surveys can provide a powerful lenson the early Universe.

6.2 The BAO peak with adiabatic and isocurvature initial con-

ditions

The features of the BAO peak are not only sensitive to the background dynamics, but also to

the evolution of the cosmic perturbations, in particular the manner in which the initial relative

perturbations between the different species were established. Here we go beyond the assumption

of pure adiabatic fluctuations, in which the equation of state of the universe is spatially constant

and the curvature is perturbed, and allow the possibility ofregular isocurvature perturbations, in
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which the equation of state between the different species varies to keep the curvature constant,

as well as correlations between the adiabatic and isocurvature perturbations [29]. Depending on

how the different species are initially perturbed, different isocurvature modes arise, namely the

cold dark matter isocurvature (CI) mode, the baryon isocurvature (BI) mode, the neutrino isocur-

vature density (NID) and the neutrino isocurvature velocity (NIV) mode.

Acoustic oscillations in the photon fluid in the tight-coupling regime are described by the photon

density evolution equation in harmonic space

δ̈γ +
Ṙ

1 +R
δ̇γ + k2c2sδγ = −2

3

[

Ṙ

1 +R
ḣ + ḧ

]

≡ F (k, τ), (6.1)

whereR =
Rb

(1 + z)
is the scaled baryon-to-photon density ratio,h is the metric field in syn-

chronous gauge, and the dot refers to the conformal time derivative. Solving this equation prior

to decoupling we find that

δγ(k, τ) = AS sin krs(τ) + AC cos krs(τ)

+ AI

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]F (k, τ ′)dτ ′, (6.2)

with the initial conditions that define the regular modes given by:

ADIA BI CI NID NIV

AS 0 − 8√
3k

Ωc,0 − 8√
3k

Ωb,0 0 4√
3

Rν

Rγ

AC 0 0 0 −
√

3 cs
Rν

Rγ
0

AI

√
3

k

√
3

k

√
3

k
0 0

whereΩc,0 andΩb,0 are, respectively, the cold dark matter and the baryon densities today, with

Rν andRγ the fractional energy densities of neutrinos and photons atearly times, respectively.

The NIV mode starts with a non-zero perturbation in the photon velocity so that it stimulates the

sin(krs) harmonic inδγ , in contrast to the NID mode which has an initial non-zero perturbation

in the photon density and excites thecos(krs) harmonic. We note that the adiabatic mode is

sourced purely by the gravitational driving termF (k, τ), which is constant on large scales and at

early times, so that the adiabatic solution excites acos(krs) harmonic, similar to the NID mode.
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At later times, though, this approximation breaks down whenthe mode enters the horizon, and

the adiabatic solution deviates from a pure cosine mode, with the consequence that its acoustic

peaks are offset in phase from the NID peaks. In the transition to matter domination, the gravita-

tional driving term switches on as a source for the CI and BI modes, whereas its contribution to

the NID and NIV modes remains negligible.

Figure 6.1: Baryon mass profile for adiabatic and isocurvature modes at decoupling, with the

correct relative amplitude between the AD (black solid), NID (blue short dot-dashed line) NIV

(green long dot-dashed line), BI (cyan dashed line) and CI (red dotted line) modes.

The solutions given above for the density contrasts of different modes need to be corrected for

diffusion damping, by multiplying the solutions by the factor e−k2/k2

D , wherekD is the diffusion

damping wavenumber. In the absence of diffusion damping allmodes have their BAO peak at

the same position at all times but with differing shapes for the BAO profile due to the different

initial conditions. The product of the diffusion damping factor in harmonic space acts like a
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convolution in real space, smoothing the undamped BAO profile and moving baryons out of the

BAO peak. The convolution over the differing BAO profile shapes thus results in a relative shift

of the BAO peak position for different modes. We observe the same shift in the series of acoustic

peaks exhibited in the cosmic microwave background anisotropy spectrum [43], though in this

case it is recombination, as opposed to decoupling, that sets the acoustic scale. To quantify the

shifts in the BAO peak of the isocurvature modes relative to the adiabatic mode, in Figure 6.1 we

plot the baryon mass profile [47] of the various modes at decoupling, defined by

Mb(r, z) =

∫

Tb(k, z)
sin kr

kr
k2r2e−k2σ2/2dk,

whereTb = δb/k
2 is the baryon transfer function. Prior to decoupling and on large scales,δb is

exactly 3
4
δγ for all modes except the BI and NID modes in which the baryon and photon density

perturbations differ by a constant, respectively,1 andRν/Rγ .

The mass profile captures the evolution of an initial point-like perturbation at the origin, though

in practice we use a narrow gaussian, with widthσ−1 in k space. The initial density perturbation

expands out as a spherical wave at the sound speed [11] so thatat decoupling there is an excess

of baryons at the sound horizon scale,rs ≈ csτdec. Note that even though the photons decouple

from the baryons atz ≈ 1080, it is only atz ∼ 500 that the baryons stall, due to the fact that the

growing mode is dominated by the velocity field on small scales, which does not decay instanta-

neously after decoupling. This sets the scale for the low-redshift BAO peak, which is shown in

Figure 6.2. We observe that the BAO features for the isocurvature modes differ in shape and po-

sition from the adiabatic BAO peak, due to the effect of the diffusion damping on the undamped

BAO profiles discussed earlier. In the case of the NID and NIV modes there is a pronounced

peak which is offset from the adiabatic BAO peak due to the coupling to different harmonics,

as described above. In the case of the BI and CI modes the acoustic wave has merely imprinted

a ripple onto the homogeneous sea of baryons at decoupling, which evolves into a knee in the

baryon mass profile at the BAO scale at late times. It is also interesting to note that the amplitude

of the mass perturbation at the origin is much smaller for theisocurvature modes because the

curvature, and thus the mass fluctuation, is initially unperturbed. It is clear that small admixtures

of the isocurvature modes and their cross-correlations candistort the shape and location of the
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Figure 6.2: Baryon mass profile for adiabatic and isocurvature modes atz = 0, with the same

labeling as in Figure 6.1. For clarity the NID, NIV and CI massprofiles have been multiplied by

a factor of two, while the BI mass profile has been multiplied by a factor of six.

adiabatic BAO peak.

6.3 Dark energy constraints

Assuming that the variations in the cosmological parameters (including those modeling isocur-

vature) are small, we can model the likelihood function of a dataset as a multivariate Gaussian

centered on a fiducial adiabaticΛCDM Universe. Based on the noise estimates for the BOSS

and PLANCK experiments, we can compute estimates of the errors on the cosmological param-

eters using a Fisher matrix formalism, by perturbing the cosmology around the fiducial model.

When perturbing the dark energy model away fromΛ, we allow for dynamics and parameterize
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Figure 6.3: (a)1σ error ellipses for(w0, wa) from the Fisher matrix calculation for the BOSS

(thin lines) and ADEPT (thick lines) experiments with the PLANCK data as a prior, assuming

adiabaticity (solid) and for the fully correlated isocurvature case (dashed). The fiducial dark

energy model (wfid
0 = −1, wfid

a = 0) is marked by a black star. (b) The average biases in

the dark energy parameters
(

¯δw0, ¯δwa

)

that could potentially arise as a result of the incorrect

assumption of adiabaticity are computed using equation 6.3for a set ofφi which are constructed

from 10,000 linear combinations of the eigenvectorsei. We can use the average of these biases to

compute a dark energy model given by (wfid
0 + ¯δw0,wfid

a + ¯δwa) which, under the assumption of

adiabaticity, will be indistinguishable from the fiducial model in a non-adiabatic Universe. This

dark energy model is shown by the dotted lines for each of the two experiments considered. All

other parameters have been marginalized over.

its equation of state usingw(a) = w0 + (1 − a)wa wherea = 1/(1 + z) [34, 112]. To model

deviations away from adiabaticity, we adopt the isocurvature parameterization implemented in

Moodley, et al. (2004) [121], where the different modes and their cross-correlations are de-

scribed by 9 parameters, measuring the fractional contributions of the various correlations (auto

and cross) to the overall total power spectrum. The relationship between this choice of isocur-

vature parameterization and other parameterization is described in Beanet al. (2006) [13]. We

wish to examine the best case scenario, in which all information available from the galaxy power
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spectrum is used and not just the baryon acoustic wiggles. Furthermore, we also assume perfect

knowledge of the redshift-dependent bias and include the information introduced by the linear

redshift distortions. Note that for the computation of the PLANCK Fisher matrix, we follow Al-

brechtet al. (2006) [3] and re-introduce the strict geometric degeneracy between the dark energy

densityΩX andw0, wa which may be artificially broken in the standard Fisher matrix compu-

tation, leading to under-estimates of errors. The details of the Fisher matrix implementation are

given in the next chapter [124]. As a check of our numerics, wecomputed the Fisher matrices

for the BAO experiments considered in Rassatet al. (2009) [139] in accordance with the details

provided therein and recovered their results with reasonable agreement.

We are concerned with how well the equation of state parametersw0 andwa can be measured.

In order to quantify the constraining power of the data, we compute the Dark Energy Task Force

(DETF) figure of merit (FoM), which in practice is given by thesquare root of the determinant

of the2 × 2 Fisher matrix for thew0 andwa parameters and is proportional to the reciprocal of

the area of the error ellipse in thew0 − wa plane. We are concerned with the change in the FoM

when isocurvature is introduced relative to the case of pureadiabaticity.

We compute the potential errors onw0 andwa for the case of pure adiabaticity and for the sce-

nario where all isocurvature modes and their cross-correlations are admitted, while marginalizing

over all other cosmological parameters. The results for both the BOSSand ADEPT experiments

are shown in the first and last rows of table 6.1. The BOSS FoM is found to decrease by50%

when this additional freedom is introduced in the initial conditions, while the ADEPT FoM de-

creases by20%. These changes are illustrated in Figure 6.3 which comparesthe68% confidence

regions for the adiabatic and the fully correlated isocurvature cases. Evidently, no single mode

and its correlation are responsible for the change in the allowable(w0, wa) region, but rather a

mixture of all extra degrees of freedom.

The question that we wish to ask is, what bias in the estimatesof the dark energy parameters

could potentially be induced by incorrectly assuming adiabaticity? For a Gaussian-distributed
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Experiment BOSS ADEPT

Modes w0 wa w0 wa

AD 0.033 0.10 0.02 0.042

AD+CI+〈AD, CI〉 0.033 0.10 0.020 0.042

AD+NID+〈AD, NID〉 0.033 0.10 0.020 0.042

AD+NIV+ 〈AD, NIV 〉 0.033 0.10 0.021 0.042

ISO (ALL) 0.044 0.13 0.022 0.045

Table 6.1: Table summarizing the constraints on(w0, wa) for adiabatic and an admixtures of

uncorrelated adiabatic and isocurvature modes, marginalizing other all other parameters, for the

BOSSand ADEPT experiments. The fiducial model assumes adiabaticity.

likelihood function, it can be shown that the linear bias in aset of parameters that we wish to

constrain,δθi, due to erroneous values of a set of fixed parameters,δφj, is [169]

δθi = −
[

F θθ
]−1

ik
F θφ

kj δφj (6.3)

whereF θθ is the Fisher sub-matrix for the parameters we wish to constrain andF θφ is a Fisher

sub-matrix constructed from the product of the derivativesof the power spectrum with respect

to the parameters being constrained and those which are being fixed. In our casej labels the

nine isocurvature mode amplitudes, incorrectly fixed to zero, k labels the eight cosmological

parameters that are biased, andi labels the subset of two dark energy parameters whose bias

is of interest to us. In order to setδφj, we diagonalize the combined PLANCK and large-scale

structure (LSS) Fisher matrix and select the eigenvector,ei with the smallest eigenvalueλi. This

corresponds to the direction in parameter space which is least constrained by the data. We then

takeδφj =
√

19.2
λi

ei.

For the BOSS experiment, we find thatδw0 = −0.049 andδwa = 0.11, while for ADEPT the

biases are found to beδw0 = −0.015 andδwa = 0.018. However this is only one particular

direction that weakly constrains all the parameters, not necessarily the dark energy parameters.
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In order to explore the full range of the bias, we use a set of 10,000 random linear combina-

tions of the eigenvectors to computeδφj and the corresponding biases. We find that the mean

biases areµ(δw0) = 0.23 andµ(δwa) = −2.3 with σ(δw0) = 0.15 andσ(δwa) = 0.73. The

implication is that if the initial conditions of our Universe are comprised of a sub-dominant con-

tribution from isocurvature modes (within the1σ constraints from PLANCK and the selected LSS

survey), the assumption of adiabaticity could lead to an incorrect7σ detection ofw0 6= −1 or

a 23σ false claim ofwa 6= 0. Alternatively,Λ could be found to be consistent with the data

when in factw(z) 6= −1. The potential bias incurred by the adiabatic assumption inthe case of

a more advanced BAO experiment such as ADEPT for w0 is around10σ with µ(δw0) = −0.20

andσ(δw0) = 0.048, while the measurement ofwa could be inaccurate at the level of12σ with

µ(δwa) = −0.52 andσ(δwa) = 0.15. The reduction in the bias is encouraging as one would ex-

pect that with an increase in the constraining power of the survey comes a higher risk of making

false claims.

It is interesting that perhaps the most physically relevantmode, the CDM isocurvature mode,

leads to no noticeable degradation of the dark energy constraints relative to the pure adiabatic

model and less than a0.5σ bias in the dark energy parameters (on average) when taken inisola-

tion (see Table 6.1). That being said, we could be unlucky andthe Universe may in fact have an

isocurvature contribution from a single mode that is highlydegenerate with a non-Λ dark energy

model. For example, we find a particular combination of adiabatic and CDM isocurvature initial

conditions can induce biases of4σ (3σ) and9σ (2σ) for thew0 andwa parameters respectively

for the BOSS(ADEPT) experiment. Furthermore, even in the case of a single isocurvature mode

correlated with the adiabatic mode, departures from scale invariance and a scale dependent cor-

relation could cause further degradation of the constraints presented here. For example, it is well

known [128] that scale-dependent correlations arise in realistic models of inflation with isocur-

vature modes since the power spectra often develop featuressuch as bumps. Hence our results

simply provide a lower-bound on the expected impact of isocurvature modes on the standard

results.
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PLANCK + BOSS PLANCK + ADEPT

〈AD, AD〉 0.30 (19) 0.29 (27)

〈CI, CI〉 0.0059 (47) 0.0051 (54)

〈NID, NID〉 0.014 (40) 0.014 (40)

〈NIV, NIV 〉 0.011 (49) 0.0085 (62)

〈AD, CI〉 0.025 (85) 0.023 (86)

〈AD, NID〉 0.0011 (26) 0.00023 (34)

〈AD, NIV 〉 8.5e-05 (99) 7.9e-05 (99)

〈CI, NID〉 0.013 (39) 0.013 (39)

〈CI, NIV〉 0.0034 (34) 0.0029 (43)

〈NID, NIV 〉 0.013 (75) 0.012 (76)

Table 6.2: Forecasted uncertainties on isocurvature parameters in the fully correlated case for the

PLANCK and LSS data (BOSSand ADEPT). The percentage improvement in1σ errors when the

LSS data is added to the PLANCK data is shown in brackets.

We can also turn this around and instead recognize that our results show that the combination of

LSS and CMB data provide a powerful new discovery tool for exotic new early Universe physics

associated with isocurvature modes. In particular, the volume of the 9-dimensional isocurvature

Fisher ellipse is2 − 4 × 109 smaller than that from PLANCK alone, showing that using CMB

plus BAO data in union provides exceptionally good constraints on the early Universe relative

to the CMB alone. The constraints on the isocurvature parameters from the CMB plus BAO

data are summarized in table 6.2, with the percentage improvement over the CMB alone shown

in brackets. We find that the error bars on the isocurvature parameters decrease by 30% to as

much as 100% for certain modes when the LSS data (either BOSS or ADEPT) is added to the

PLANCK data. More specifically, the parameters representing the cross-correlations between the

AD and CI modes, the AD and NID modes and the NID and NIV modes show more than 75%

reduction in their forecasted errors. The implication is that a combination of these parameters

is strongly degenerate with the dark energy parameters and when included into the parameter
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space, contributes substantially to the degradation in theforecastedw0 andwa constraints.

6.4 Conclusions

With forecasted constraints on dark energy from Baryon Acoustic Oscillation (BAO) experi-

ments at the level of a few percent made possible by the large volumes probed by the most recent

generation of redshift surveys, it is important to explore the full spectrum of possible BAO sys-

tematics. In thisLetterwe have found that even small isocurvature admixtures significantly alter

the BAO, and by assuming adiabaticity we run the risk of incorrectly attributing a shift in the

BAO away from the predicted value in aΛCDM model, to the presence of dark energy.

In particular, ignoring isocurvature modes can bias the estimates of the dark energy parameters,

leading to a7σ (10σ) incorrect measurement ofw0 or as much as a23σ (12σ) bias inwa for BOSS

(ADEPT) on average. Including general initial conditions removesthis bias at the expense of an

increase in the area of confidence intervals in the(w0, wa) space by50% (20%) for the BOSS

(ADEPT) survey, indicating that the assumption of adiabaticity leads to an under estimation of

the errors on the dark energy parameters. On the other hand, BAO data leads to a significant

improvement in the constraints on the general isocurvaturemode mixture compared with those

from the CMB alone, and thus opens up new windows for discovery of exotic early Universe

physics.
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CHAPTER 7

The Sensitivity of BAO Dark Energy Constraints to General

Isocurvature Perturbations

7.1 Introduction

Although the standard model of cosmology based onΛCDM has not changed fundamentally

in the last decade, there has been a remarkable refinement in our knowledge of the parameters

describing the model. For example, the original supernova results gave only limits ofΩm < 1.5

at 2σ assuming a generalΛCDM model [144] while the latest results from the WiggleZ Baryon

Acoustic Oscillation (BAO) survey, together with WMAP and Union2 supernova data now give

Ωm = 0.29 ± 0.04 at2σ [22].

As a result of this progress it has become obvious that systematic errors are a key issue in pushing

the frontier further. For example, in the case of supernovaethere are important systematic errors

related to the lightcurve fitter used which currently leads to shifts in the dark energy equation of

state of about∆w ∼ 0.1 [82]. There may be additional supernova systematics such asthe ex-
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istence of Type Ia subpopulations and correlations betweenabsolute magnitude and host galaxy

type (see e.g. [159]).

BAO have their own associated systematic errors, such as nonlinear effects which potentially

bias or shift the BAO peak, although these are believed to be fairly small and possible to calibrate

through theoretical modeling and N-body simulations [38].However there is another theoretical

systematic due to isocurvature perturbations that has recently received attention [185, 115]. De-

pending on how general one allows the primordial isocurvature admixture to be, there can be a

significant impact on the ability of future BAO surveys to constrain dark energy even if one im-

poses the constraint that the isocurvature modes be undetectable by PLANCK alone [185]. This

shows that at least in the next generation of surveys one willnot be able to decouple the search

for dark energy with BAO from an understanding of the early universe, a subtlety that does not

affect supernovae surveys.

The key reason that even small correlated isocurvature modes cause a problem for BAO surveys

is that they alter the way in which the BAO peak appears in the two-point correlation function

of baryons, and hence, of galaxies. In the simple adiabatic model the BAO peak is controlled by

the sound horizon, the distance that sounds waves can propagate in the early universe from the

time of inflation to decoupling. This characteristic scale depends only on the sound speed in the

standard adiabatic picture:

rs =

∫ tcmb

0

cs(1 + z)dt =

∫ ∞

zcmb

cs(z
′)

H(z′)
dz′ (7.1)

wherecs(z) = 1/
√

3 (1 +Rb/(1 + z)) andRb = 31500 ωb

(

Tcmb/2.7 K
)−4

which can be mea-

sured accurately with the Cosmic Microwave Background (CMB). By comparing the size of this

scale at the time of decoupling and its angular size at late times we can learn about the expansion

history of the universe and measure cosmic distances, and hence constrain models of dark energy

[12].

In [185], we found a clear degeneracy between the impact of dark energy models and non-
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adiabatic initial conditions on the galaxy correlation function. In this chapter we explain in depth

why small amplitude but general admixtures of correlated isocurvature modes can have such a

strong impact on the cosmological constraints based on BAO surveys. We show that relaxing

the assumption of adiabaticity and allowing fractions of isocurvature modes affects the develop-

ment of the acoustic waves in the baryon-photon fluid. The isocurvature modes excite different

harmonics which in turn, couple differently to Silk damping, and in so doing, modifies both the

scale on which the sound waves imprint on the baryon distribution and the shape of the BAO

peak.

This chapter is arranged as follows; in section 7.2, we studythe evolution of the baryon density

contrast under different initial conditions and how the structure of the BAO peak is altered. In

section 7.3, a Fisher matrix formalism is implemented in order to quantify the impact of these

changes on the forecasted errors on the dark energy parameters from two BAO experiments,

namely BOSS [48] and ADEPT [151]. As a prior, we include the information from the high-

resolution CMB temperature anisotropy and polarization spectra from the PLANCK Surveyor

[136], which should provide stringent constraints on the amount of isocurvature in the initial

conditions. We also conduct a study of the potential bias in our estimates of the dark energy pa-

rameters that can result from an incorrect assumption of pure adiabatic initial conditions. Lastly,

we show that constraints on the isocurvature parameters canbe derived from BAO surveys. We

discuss our conclusions in section 7.4.

7.2 The BAO peak with adiabatic and isocurvature initial con-

ditions

The BAO peak is sensitive not only to the matter content of theuniverse, but also to the

character of the primordial perturbations. The features ofthe BAO peak such as the location,

width and amplitude are mainly dictated by the time evolution of the baryon density contrastδb

from the post-inflation period to photon-baryon decoupling. In turn, the time evolution of the
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baryon density contrast during the pre-decoupling period depends on the initial configuration of

the primordial perturbations in the different species at the end of inflation.

In the simplest scenario the perturbation affects all the cosmological species such that the relative

ratios in the number densities remain unperturbed, exciting the adiabatic mode (AD). Although

adiabatic initial conditions are a natural feature of single-field inflationary models [110], it has

been shown [29] that four regular isocurvature (ISO) modes are allowed in addition to the adi-

abatic (AD) mode. These isocurvature modes are characterized by variations in the particle

number ratios but with vanishing curvature perturbation, with different isocurvature modes ex-

cited depending on the species that are initially perturbed. These are namely the cold dark matter

isocurvature (CI) mode, the baryon isocurvature (BI) mode,the neutrino isocurvature density

(NID) and the neutrino isocurvature velocity (NIV) mode. While isocurvature modes are more

difficult to physically motivate, the possibility of correlated isocurvature fluctuations is allowed

given current cosmological data [13, 31] and should therefore be considered.

We will show that different modes of the primordial perturbations excite different harmonics

and these harmonics couple differently to the Silk damping,thereby altering the characteristic

scale at photon-baryon decoupling to different locations.After decoupling, baryon fluctuations

on scales larger than the Jeans lengthλJ slow down in the rest frame of the cold dark matter

(CDM), falling into the CDM potential wells, and eventuallytracing the CDM, while on scales

belowλJ the fluctuations still oscillate, independently of the initial conditions. In order to study

the features of the BAO peak for the different modes, we consider the time evolution of the

photon-baryon fluid in the tight-coupling regime.

In this regime, photons and baryons are treated as perfect fluids. The subscriptsb, c, γ andν

respectively denote the baryons, the CDM, the photons and the neutrinos. The conservation of

energy-momentum leads to the following set of time evolution equations for the photon and the
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baryon density contrastsδ and velocity divergencesθ in the synchronous gauge [114]:

δ̇γ = −4

3
θγ −

2

3
ḣ, (7.2)

δ̇b = −θb −
1

2
ḣ, (7.3)

for the density contrasts, and

θ̇γ = k2

(

1

4
δγ − σγ

)

+ aneσT (θb − θγ), (7.4)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ρ̄γ

3ρ̄b
aneσT (θγ − θb), (7.5)

for the velocity divergences. Here and throughout the chapter,σT is the Thomson scattering cross

section,ne is the electron number density,a is the scale factor,̄ρ is the background density,cs is

the sound speed given bycs = 1/
√

3(1 +R), R = 3ρ̄b

4ρ̄γ
is the baryon-to-photon density ratio,σγ

is the photon shear, and the dot refers to the derivative withrespect to the conformal timeτ . The

variableh is the metric field in synchronous gauge, which evolves according to [114]

ḧ+
ȧ

a
h = −3

(

ȧ

a

)2

ρ̄cr

∑

j

Ωjδj(1 + 3csj
2), (7.6)

wherej ∈ {ν, γ, b, c} labels the different species of the universe,ρ̄cr is the critical density of the

universe andΩj ≡ ρ̄j/ρ̄cr is the ratio of the density of thejth species to the critical density.

The tight-coupling approximation allows us to setθγ = θb = θγb, with the photon-baryon veloc-

ity evolving as

(1 +R)θ̇γb = −Ṙθγb + k2(
1

4
δγ − σγ) + c2sk

2Rδb, (7.7)

and the photon density contrast evolving as [74]

δ̈γ +
Ṙ

1 +R
δ̇γ + k2c2sδγ = −2

3

[

Ṙ

1 +R
ḣ + ḧ

]

. (7.8)

Here, we have neglected the photon shear (tight-coupling regime) and the pressure term inδb

as it remains smaller than the term inδγ prior to decoupling. Equation (7.8) represents a driven

harmonic oscillator with the competition between gravitational infall and photon pressure giving
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rise to acoustic waves propagating in the photon-baryon fluid at the speed of sound.

For the associated homogeneous equation, we look for solutions of the formδγ ∝ exp i
∫ τ

0
ωdτ ′

whereω(τ) is some phase function. The two solutions to the homogeneousequation are simply

sin krs andcos krs, wherers(τ) =
∫ τ

0
csdτ

′, the phase function isω = kcs, and we have made

use of the WKB approximation. On large scales, the WKB approximation breaks down, but these

modes are irrelevant for the BAO treatment as they only enterthe horizon well after decoupling.

The particular solution is constructed by integrating the driving term weighted by the Green’s

function of the two homogeneous solutions [74]. Thus, the time evolution of the acoustic waves

in the photon component for all initial conditions prior to decoupling is given by

(1 +R)1/2δγ(k, τ) = AS sin krs(τ) + AC cos krs(τ)

+
1

kcs

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]F (τ ′)dτ ′, (7.9)

whereAS andAC are determined by the initial conditions as described in [29], and

F (τ) = −2

3

(

Ṙ

1 +R
ḣ + ḧ

)

, (7.10)

is the gravitational driving term which evolves differently for different initial conditions. Equa-

tion (7.9) gives the time evolution of the photon density contrast in the tight-coupling regime. In

this regime, the baryon density contrast is related to its photon counterpart bẏδb = 3
4
δ̇γ . On small

scales, a correction to the tight-coupling approximation must be applied when the Silk damping

becomes important, as photons leak out of overdense regions, dragging baryons with them. This

is done by multiplying the solution above bye−k2/k2

D , where the photon diffusion scalek−1
D is

given by

kD
−2 =

1

6

∫

1

τ̇e

R2 + 4(1 +R)/5

(1 +R)2
,

whereτ̇e = aneσT is the differential optical depth. The Silk damping turns out to significantly

affect both the shape and the peak location of the BAO as we shall discuss later.

After decoupling, the photons free stream, while baryons fall into the CDM potential wells under

gravitational instability. Here, we only consider baryon fluctuations with wavelength larger than
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the Jeans scale.

The above description of the density contrast evolution ink-space can be intuitively and simply

understood by looking at the evolution of the mass profile in the configuration space [47, 11].

The radial mass profileMj of a speciesj, given by

Mj(r, z) =

∫ ∞

0

Tj(k, z)
sin kr

kr
k2r2dk, (7.11)

= r

∫ ∞

0

δj(k, z)
sin kr

k
dk, (7.12)

whereTj(k, z) = δj(k, z)/k
2 is the transfer function of thejth species, describes the redshift

evolution of a point-like overdensity initially located atthe origin. The location of the mass pro-

file peak gives the physical radius of the spherical shell of the overdensities for a given species.

For numerical computations, a Gaussian overdensity of width σ−1 is used instead of a point-like

overdensity. This is done by multiplying the integrand of equation (7.12) bye−k2σ2/2.

Hereafter, we study the time evolution of the baryon mass profile for each mode in turn. We

start from the well studied adiabatic case then move onto theisocurvature modes, since this will

provide physical intuition into the effect of the isocurvature modes on the BAO.

7.2.1 AD mode

The adiabatic mode is characterized by the requirement thatthe densities of all species are per-

turbed in proportion at some initial time such that

δc,i = δb,i =
3

4
δγ,i =

3

4
δν,i, (7.13)

where the subscripti labels the initial time. Or equivalently, using the relative entropy between

two speciesx andy given bySxy = δx

1+wx
− δy

1+wy
, wherewx andwy are the equation of state

parameters of the speciesx andy respectively, we have thatSxy = 0 for all pairs of species at

the initial time. In addition, all velocity divergences areinitially unperturbed. Therefore, using

the initial conditions for the adiabatic mode [29], the photon and baryon density contrasts are
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respectively given by

δAD
γ =

√
3

k
e−k2/k2

D

×
∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]

× FAD(τ ′)dτ ′, (7.14)

δAD
b =

3

4

√
3

k
e−k2/k2

D

×
∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]

× FAD(τ ′)dτ ′. (7.15)

Thus, the adiabatic mode is only sourced by the gravitational driving termFAD. This driving

term can be approximated by

FAD(k, τ) ≈ 2k2c2sj0(krs)

on small and intermediate scales which reduces to2k2c2s at early times. On very large scales

the above approximation breaks down, however, this does notaffect our physical description of

the BAO peak as these large-scale modes are well outside the horizon at decoupling and do not

substantially influence the BAO features. The lack of an exact analytic expression for the driving

term makes it difficult to derive exact analytic solutions for the time evolution of the photon and

baryon density contrasts. Nevertheless, good approximations for the photon and baryon density

contrasts are given by

δγ =
4

3
δb ≈ 2krsj1(krs) × e−k2/k2

D . (7.16)

Therefore, at early times(krs(τ) ≪ 1) the density contrasts for the adiabatic mode,δγ ∝
δb ∝ (1 − cos krs) couple to acos krs harmonic [74].

Now, in the perfect tight-coupling approximation, that is if we omit the Silk damping correction

in the density contrast equations, the baryon mass profile isgiven by
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Figure 7.1: Effect of Silk damping on the baryon mass profile for the AD mode at decoupling.

The solid curve represents the baryon mass profile without the Silk damping correction, while

the dashed curve represents the baryon mass profile with the Silk damping factor turned on. In

the absence of the damping term, the peak is located atr = rs = 144.5 Mpc.

Mb(r) ∝ (1 − H(r − rs))
πr2

2r2
s

∝











r2 for r ≤ rs,

0 for r > rs,

(7.17)

which is obtained by substituting the density contrast expression, without the Silk damping term,

in the baryon mass profile expression. HereH(x) is the Heaviside step function. We observe

that in the absence of Silk damping, the baryon mass profile isquadratic at lowerr and sharply

peaked at a distancer(z) = rs(z). This is illustrated in Figure 7.1 where we show the effect of

Silk damping on the baryon mass profile at decoupling. We see that when we include the Silk

damping term, the BAO peak is smoothed, attenuated and shifted to lowerr. We can under-

stand these features as follows. As we approach decoupling,the coupling between photons and

baryons weakens and the photon mean free path increases. Photons diffuse from overdensities

to underdensities carrying baryons with them. Therefore, baryons leak out of the overdensity to

both lower and higherr, thereby smoothing and lowering the BAO peak. Due to the shape of the

undamped mass profile (with no baryons on scales larger than the sound horizon), Silk damping
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Figure 7.2: Mass profile snapshots for the AD mode at different redshifts. The red, green, blue

and purple curves respectively represent the CDM, the baryon, the photon and the neutrino mass

profiles. (a) Well before decoupling (z = 3000), (b) At decoupling (z = 1080), (c) when

baryons stall (z = 500) and(d) At late times (z = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

has the effect of moving more baryons to larger scales. As a result, the BAO peak is at a slightly

smaller distance than the sound horizon. As we will see later, Silk damping changes the shape of

the mass profile for the adiabatic and isocurvature modes in different ways, due to the differing

shapes of the undamped mass profiles. This has important consequences for our ability to use

the BAO as a standard ruler.
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The redshift evolution of the mass profile for the AD mode has previously been studied in the

literature [47]. Initially the overdensities of all species coincide. As time evolves, the photon

pressure drives acoustic waves in the photon-baryon fluid, while neutrinos free stream at the

speed of light and the CDM remains at its initial location. InFigure 7.2 we show the redshift

evolution of the CDM, baryon, photon and neutrino mass profiles. Prior to decoupling, photons

drag baryons at the sound speed, leaving behind a void of baryons. Thus, the initial baryon point-

like overdensity evolves in a spherical shell while the CDM overdensity collapses at the origin

under gravitational instability, and the neutrinos free stream.

After decoupling, photons free stream while baryons, free from the photons, collapse into the

CDM potential wells. The baryon overdensity continues to collapse, pulling matter from the

surrounding underdense regions to the overdense regions. As the baryon velocity divergence

does not decay instantaneously at decoupling [47], the baryons only stall later atz ∼ 500 with

the consequence that the BAO peak is closer to150 Mpc than140 Mpc, the sound horizon size

at decoupling. Atz = 0, the baryon mass profile displays two peaks, one near the origin and a

second peak at approximately150 Mpc.

7.2.2 NID mode

The NID mode arises when the densities of the matter components are initially unperturbed while

the initial perturbation in the neutrino density is balanced by its photon counterpart, keeping the

curvature unperturbed. The initial perturbations are as follows:

δc,i = δb,i = 0, δγ,i = −Rν

Rγ

δν,i. (7.18)

These initial conditions imply thatAS = 0, thus exciting thecos krs harmonic. The gravitational

driving term contribution for this mode can be neglected without loss of accuracy, as the gravita-

tional potential (related tȯh), is initially unperturbed and only grows inside the horizon. This can

also be understood by considering the right-hand side of equation (7.6). In the radiation domi-

nated era, the photon and the neutrino density contrasts roughly cancel while the baryon and the
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CDM density contrasts remain small until the matter dominated era when they grow. The time

evolution of the photon and the baryon density contrasts forthe NID mode are given by

δNID
γ = −Rν

Rγ

√
3cs cos krs × e−k2/k2

D , (7.19)

δNID
b =

3

4

Rν

Rγ

(

1 −
√

3cs cos krs

)

× e−k2/k2

D , (7.20)

whereRν = Ων/Ωrad andRγ = Ωγ/Ωrad are respectively the fractional energy densities of

neutrinos and photons at early times. The pressure due to an initial localized photon overdensity

creates a baryon underdensity that propagates due to its coupling to photons and perturbs, through

gravitational interaction, the CDM (see Figure 7.3). In addition, isocurvature perturbations grow

once they enter the horizon. It follows that the BAO peak in the case of the NID mode has

smaller amplitude than in the adiabatic case. With time, thebaryon and the CDM overdensities

grow by pulling more matter from their surroundings, thus creating underdense regions around

them. Note that the mass profile of a given species can be negative since the species can be

initially perturbed positively, corresponding to an overdensity or negatively, corresponding to

an underdensity, with respect to the background level. The final baryon mass profile displays a

deeper trough between the two peaks compared to the adiabatic case. Most importantly, though

the baryon overdensity in the NID mode evolves at earlier times like the baryon overdensity in

the adiabatic mode as they both excitecos krs harmonics, the final locations of the NID and the

AD BAO peaks differ. At late times, the adiabatic mode becomes a superposition of sine and

cosine waves, departing from the NID mode and with the undamped profile being convolved

differently with Silk damping.

Figure 7.4 shows the effect of Silk damping on the baryon massprofile at decoupling for the NID

mode. In the absence of Silk damping, the AD and the NID BAO peak locations would coincide.

The undamped baryon mass profile for the NID mode is given by

Mb(r) ∝ (1 − H(r − rs)) r ∝











r for r ≤ rs,

0 for r > rs.

(7.21)

As for the AD case, equation (7.21) is obtained by omitting the damping factor in equation (7.20)

and substituting into equation (7.12) for the mass profile. The baryon mass profile for the NID
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Figure 7.3: Mass profile snapshots for the NID mode at different redshifts. The red, green,

blue and purple curves respectively represent the CDM, the baryon, the photon and the neutrino

mass profiles.(a) Well before decoupling (z = 3000), (b) At decoupling (z = 1080), (c) when

baryons stall (z = 500) and(d) At late times (z = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

mode differs from the AD mode as it grows linearly withr until r(z) = rs(z) then falls to zero.

For this reason, the shift in the BAO peak location due to Silkdamping is larger than in the case

of the AD mode for which, as previously mentioned, the undamped mass profile is quadratic in

r for r < rs. The difference in the shape of the undamped mass profile alsosets the difference in

the width of the BAO peak.
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Figure 7.4: Effect of Silk damping on the baryon mass profile for the NID mode at decoupling.

In the absence of the damping term (solid curve), the peak is located atr = rs = 144.5 Mpc.

The dashed curve takes into account the effect of Silk damping.

7.2.3 NIV mode

Unlike the other isocurvature modes, the NIV mode, like the AD mode, shows no relative en-

tropy perturbation in the density field at some initial time.All the density perturbations are zero

initially. The main difference with the AD mode is in the velocity field where the neutrino ve-

locity divergence starts perturbed, being compensated by the photon-baryon velocity. The initial

perturbations are given by:

θc,i = 0, θb,i = θγ,i = −Rν

Rγ

θν,i. (7.22)

The NIV mode excites thesin krs harmonic, so that we can setAC = 0 in equation (7.9). As

for the NID mode, the gravitational driving term contribution remains irrelevant at all times as

all the densities start unperturbed and the perturbations only grow in the matter dominated era.

The time evolution of the photon and baryon density contrasts for the NIV mode are given by

δNIV
γ =

4

3
δNIV
b =

Rν

Rγ

√
3 sin krs(τ) × e−k2/k2

D . (7.23)
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Figure 7.5: Mass profile snapshots for the NIV mode at different redshifts. The red, green,

blue and purple curves respectively represent the CDM, the baryon, the photon and the neutrino

mass profiles.(a) Well before decoupling (z = 3000), (b) At decoupling (z = 1080), (c) when

baryons stall (z = 500) and(d) At late times (z = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

The non-zero initial velocity divergence of baryons and photons pushes the baryons and photons

from the origin, thus creating an overdensity at approximately the scale of the sound horizon

and a plateau at larger scales, in the baryon and photon mass profiles. The redshift evolution

of the baryon overdensity for the NIV mode is shown in Figure 7.5. This is similar to the NID

case, except that the baryon mass profile remains positive atall times due to the initial plateau.
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The BAO peak ends at a different location as the sine harmonicconvolves differently with Silk

damping, compared to the cosine harmonic.

50 100 150 200
r

100

200

300

400

500

600

700

MHrL

Figure 7.6: Effect of Silk damping on the baryon mass profile for the NIV mode at decoupling.

In the absence of the damping term (solid curve), the peak is located atr = rs = 144.5 Mpc.

The dashed curve takes into account Silk damping.

In the absence of Silk damping correction, the undamped baryon mass profile for the NIV mode

is given by

Mb(r) ∝ −r
4

ln
(r − rs)

2

(r + rs)2
∝











r2 for r ≪ rs,

r−2 for r ≫ rs.

(7.24)

The derivation of equation (7.24) is similar to the AD and NIDcases. The undamped NIV mass

profile grows quadratically withr for r < rs and peaks atr = rs as for the AD case. However,

the shift in the BAO peak location due to Silk damping is not assignificant as it is for the AD and

the NID cases for the simple fact that the undamped mass profile does not abruptly fall off to zero

as in the previous cases but decreases asr−2 before reaching a plateau of height proportional to

rs. This is due to the fact that the non-zero initial velocity ofphotons carries baryons beyond the

sound horizon, compared to if they started from rest. Figure7.6 shows the effect of Silk damping

on the undamped baryon mass profile. In contrast to the AD and NID cases, the BAO peak is
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slightly shifted to higherr. The other effects of the damping (lowering and rounding of the BAO

peak) remain the same as for the AD and the NID modes.

7.2.4 CI & BI modes

The CI and the BI modes have been well studied in the literature [25, 35, 76]. The CI and

BI modes are similar in that the perturbation starts in the CDM density contrast and the baryon

density contrast respectively while the other species are initially unperturbed. This can be written

at some initial time as

δc,i = 1, δb,i = δγ,i = δν,i = 0, (7.25)

for the CI mode, and as

δc,i = 0, δb,i = 1, δγ,i = δν,i = 0, (7.26)

for the BI mode. The CI and BI initial conditions dictate thatAS = − 8√
3k

Ωc,0 for the CI mode and

AS = − 8√
3k

Ωb,0 for the BI mode, whileAc = 0 in both cases, thus exciting thesin krs harmonic

[85, 29]. The constantsΩc,0 andΩb,0 are respectively the CDM and the baryon densities today.

The driving term is negligible in the radiation domination era as the photon and the neutrino

densities are initially unperturbed but becomes importantin the matter domination era as the

matter perturbation sources the gravitational potential [73].

The time evolution of the photon and baryon density contrasts for the CI and BI modes is

given by [73]

δCI
γ = −8

3
Ωc,0

√
3

k
sin krs(τ) × e−k2/k2

D

+

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]

× FCI(τ ′)dτ ′, (7.27)

δCI
b = −2Ωc,0

√
3

k
sin krs(τ)

+
3

4

√
3

k

∫ τ

0

(1 + R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]

× FCI(τ ′)dτ ′ × e−k2/k2

D , (7.28)
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Figure 7.7: Mass profile snapshots for the CI mode at different redshifts. The red, green, blue

and purple curves respectively represent the CDM, the baryon, the photon and the neutrino mass

profiles. (a) Well before decoupling (z = 3000), (b) At decoupling (z = 1080), (c) when

baryons stall (z = 500) and(d) At late times (z = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

for the CI mode, and by

δBI
γ = −8

3
Ωb,0

√
3

k
sin krs(τ)

+

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]

× FBI(τ ′)dτ ′ × e−k2/k2

D , (7.29)

δBI
b = 1 − 2Ωb,0

√
3

k
sin krs(τ)

+
3

4

√
3

k

∫ τ

0

(1 +R(τ ′))1/2 sin [krs(τ) − krs(τ
′)]

× FBI(τ ′)dτ ′ × e−k2/k2

D , (7.30)
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for the BI mode. Equations (7.27-7.30) are exact but requirea perfect knowledge of the gravi-

tational driving term. This makes the derivation of simple explicit analytic expressions for the

CI and BI modes harder as compared to the AD, NID and NIV modes.Therefore, we do not

discuss the effect of Silk damping on the BAO peak for these modes. However, one thing to

notice is thek−1 dependence of the baryon density contrast for the CI and BI modes that washes

out perturbations on small scales while amplifying them on large scales. This redistribution of

power results in a flattening of the baryon mass profile for these modes. On small scales, thek−1

and the Silk damping factors have similar effects on the BAO peak as they both suppress pertur-

bations on these scales. However there are two main differences. Firstly, Silk damping does not

act on large scales while thek−1 factor amplifies large scale perturbations. Secondly, Silkdamp-

ing only becomes significant around recombination while thek−1 factor redistributes the power

at all times, hindering the development of a well defined BAO peak but producing a knee instead.

For the CI mode, an overdensity in the CDM component tends to affect, through gravitational

attraction, the baryon density component by gathering baryons into an overdensity but the photon

pressure opposes this process until decoupling.

One should note that an initial overdensity in the photon component would easily affect the

baryon component than an initial overdensity in the CDM component, the reason being the high

photon pressure at earlier times. Therefore, the perturbation takes longer to imprint ripples onto

the homogeneous sea of baryons. Figure 7.7 represents the time evolution of the baryon mass

profile for the CI mode. Prior to decoupling, the CDM overdensity grows but does not signif-

icantly affect the baryon component. After decoupling a baryon overdensity develops through

gravitational interaction with the CDM but fails to displaya well defined BAO peak.

For the BI mode, an initial overdensity in the baryon component affects the CDM component

through gravitational attraction, but does not significantly grow due to the photon pressure at

earlier times that tends to widen and even wash out the baryonoverdensity as can be seen in

Figure 7.8. With a similar process as for the CI mode, the overdensity becomes a knee at late

times.
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Figure 7.8: Mass profile snapshots for the BI mode at different redshifts. The red, green, blue

and purple curves respectively represent the CDM, the baryon, the photon and the neutrino mass

profiles. (a) Well before decoupling (z = 3000), (b) At decoupling (z = 1080), (c) when

baryons stall (z = 500) and(d) At late times (z = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

Although the Silk damping still affects the CI and BI modes, its effect is not as significant as

in previous cases (for a discussion of this see [76, 143]). Werecall that the Silk damping tends

to suppress power on small scales while these modes are already significantly reduced by the

k−1 factor for the CI and BI modes. In addition, the fact that the CI and BI modes fail to dis-
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play a well defined BAO peak makes less noticeable the effect of Silk damping on the BAO peak.

7.2.4.1 Time evolution of the BAO peak position

We saw in previous subsections that in the absence of Silk damping, the BAO peak location

for all the modes would coincide at all times as the acoustic wave in the photon-baryon fluid

propagates at the same sound speed irrespective of the initial conditions. Here we consider the

effect of Silk damping on the evolution of the BAO peak location for different modes.

Figure 7.9: Time-evolution of the baryon mass profile peak location (see Figures 7.2, 7.3 and 7.5)

for the AD, NID and NIV modes. These curves were obtained numerically from the evolution of

the mass profile curves. The dashed vertical line indicates the epoch of recombination.

Figure 7.9 shows the time evolution of the BAO peak position for the AD, NID and NIV

modes. We do not include the CI and BI modes as they fail to display a defined BAO peak. At

early times, the BAO peak positions for the AD, NID and NIV coincide as the Silk damping

145



factor equals one at early times. With time, the damping scale k−1
D increases as the photon-

baryon coupling weakens, the three modes depart from each other and the separation increases

up to decoupling. At decoupling,kD ≈ 0.15h Mpc−1, leading to a separation of about15 Mpc

between the NID and NIV BAO peak positions. After decoupling, though the BAO peak position

still increases untilz ≈ 500 due to the bulk velocity, the separation between the modes remains

constant until today.

7.3 Impact of isocurvature modes on dark energy constraints

The aim of this section is to quantify the potential impact ofisocurvature modes on dark energy

studies based on current- & next-generation datasets.

7.3.1 Statistical Formalism

A convenient way of quantifying the accuracy with which cosmological parameters can be mea-

sured from a given dataset is the Fisher matrix formalism (see [171] for a review). Ifx is our

observable (the CMB or the galaxy power spectrum in our case), it can be modeled as a N-

dimensional random variable whose probability distribution l(x; θ) depends on a vector of cos-

mological parametersθ that we wish to estimate.l(x; θ) is also known as the likelihood of

observing a set of data given a model characterized byθ.

In this study, we consider a spatially flat cosmological model described by the following

parameters: the baryon densityωb, the CDM densityωc, the density of the dark energy com-

ponentΩX , the optical depthτ , the spectral indexns and the scalar amplitudeAs. We allow

for dark energy models that vary with time and parametrize the dark energy equation of state as

w(a) = w0 + (1 − a)wa [34, 112] wherea = 1/(1 + z) andw0 andwa are included in the pa-

rameter space. For the isocurvature modes, we adopt the parametrization implemented in [121],

where the AD, CI, NID, NIV modes and their cross-correlations are described by 10 parameters,

zij , measuring the fractional contributions of the various correlations (auto and cross) to the total
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power spectrum. We do not consider the BI mode as it has the same spectra as the CI mode. In

terms of these fractional parameters, the total isocurvature fractionfISO is given by

fISO =
zISO

zISO + z〈AD ,AD 〉
, (7.31)

wherezISO =
√

1 − z2
〈AD ,AD 〉 is the total isocurvature contribution.

Defining the auto- and cross-correlated primordial power spectra as follows

Pij(k) = Aijk
nij−1, (7.32)

the spectral indices of the cross correlated modes are givenbynij =
nii+njj

2
with their amplitudes

Aij ∝ zij. The constraint
∑10

i,j=1 z
2
ij = 1 requires that the isocurvature parameterszij exist on the

surface of a9 dimensional sphere of unit radius. For further details on how this parametrization

relates to others in the literature, see [13]. The parameterAs rescales the unit power CMB

temperature spectrum to its usual amplitude as,Cℓ = 13000µK2 As Ĉℓ, whereĈℓ is the fiducial

CMB temperature spectrum with unit power.

Fiducial model

ωb ωc ΩX τ ns As w0 wa

0.02205 0.12495 0.7 0.1 1.0 15.7 -1.0 0.0

Table 7.1: Values for the parameters of the fiducial cosmological model.

The Fisher matrix is defined by

Fij = −
〈

∂2 ln l(x; θ)

∂θi∂θj

〉

. (7.33)

The Cramer-Rao inequality shows thatF−1
ii is the smallest variance possible for an unbiased

estimator of the parameterθi. In this case,F−1 is the most optimistic covariance matrix of the

dataset [171] and the forecasted error bar forθi is

σi =
√

(F−1)ii. (7.34)
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The fiducial modelθ around which the Fisher matrix is computed is chosen to be aΛCDM

universe with adiabatic initial conditions. The cosmological parameter values for the fiducial

model are given in table 7.1. We use the CMB forecasts from thePLANCK experiment in addition

to each LSS data set and compute the full Fisher matrixFij = FCMB
ij +FLSS

ij for the cosmological

parameter set.

7.3.1.1 Large Scale Structure (LSS) surveys

Over the next decade, the increase in the number and quality of data from LSS surveys will drive

fundamental improvements in precision cosmology. As thesegalaxy surveys cover increasingly

larger volumes, they will provide unprecedented probes of scales at which significant cosmolog-

ical information is available.

The potential of the BAO method as a powerful source of cosmological information has been

recognized and measuring the BAO peak at multiple redshiftsis now regarded as the primary

science of major future LSS surveys. We consider two such BAOexperiments, one of which

is the Baryon Oscillation Spectroscopy Survey (BOSS). BOSS will measure the redshifts of 1.5

million luminous red galaxies (LRGs) over a quarter of the sky to a depth ofz = 0.7. In addition

to being a redshift survey, BOSS will be the first attempt to resolve the BAO peak in the high-z

density field(2 < z < 3), as allowed by mapping absorption lines from neutral hydrogen, in the

spectra of 160 000 distant quasars [149].

The Advanced Dark Energy Physics Telescope (ADEPT) is the second proposed future LSS sur-

vey that we consider. It is a space-based experiment aiming at mapping galaxies in the redshift

range1 < z < 2 and over28, 600 sq. deg. of the sky [151].

The BAO peak manifests as oscillations in the matter power spectrum with the size of the sound

horizon determining the frequency of these oscillations. However, the matter power spectrum is

a rich statistic whose features at different scales providespecific cosmological information. The
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matter power spectrum is defined as

P (k, z) = D(z)2Pprim(k)T 2(k) (7.35)

whereD(z) is the growth rate of structure,Pprim(k) is the primordial power spectrum andT (k)

is the transfer function. The first source of information is the baryon acoustic oscillations, with

their wavenumberk = 2π/rs being set by the size of the sound horizon at decouplingrs. Since

this characteristic scale is calibrated by the CMB, measuring the wavelength of these oscillations

both in the radial and tangential directions deliversDA(z) andH(z) respectively. The overall

shape of the matter power spectrum is a second source of information. Any features which de-

viate from a power law, such as the turnover, provides an additional characteristic scale which

is required by the Alcock-Paczynski test to be isotropic [4]. Lastly, the overall time evolution of

the amplitude informs us aboutD(z), the growth rate of structure.

In reality we measure the power spectrum as mapped by galaxies which are biased tracers of

the underlying matter distribution. We can write the galaxypower spectrum asPg(k, z) =

b(k, z)2P (k, z) whereb(z, k) represents this bias resulting from the effects of galaxy formation

and evolution. On the scales of the BAO, the bias can be regarded as smooth, i.e.,b(z, k) = b(z).

Any scale dependence that is not taken into account is not likely to lead to oscillations in Fourier

space [156]. Furthermore, the galaxy power spectrum measured in redshift space is distorted

relative to the power spectrum in real space as a result of galaxy peculiar velocities. Because

galaxies moving towards an overdensity along the line of sight appear further away than equidis-

tant galaxies moving in the tangential direction, structures appear ”squeezed” in redshift space,

with the amount of the distortion determined by the growth rate. On large scales this has been

shown to give rise to an angle-dependent distortion which leads to a multiplicative change in the

power that is a function of angle, i.e..Pg,β = (1 + β(z)µ2)
2
Pg(k, z) whereµ is the angle with

respect to the line of sight andβ = f/b where

f =
∂lnD(a)

∂lna
≃ Ωm(z)0.6. (7.36)

In this article, we wish to examine the best case scenario in which all information available in

the galaxy power spectrum is used. We assume perfect knowledge of a redshift-dependent bias
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and include the information introduced by the redshift distortions. This amounts to the inclusion

of a non-zeroβ(z).

Assuming the likelihood function of the band powers of the galaxy power spectrum to be Gaus-

sian, the Fisher matrix can be approximated as [171, 155]:

FLSS
ij =

∫ ~kmax

~kmin

∂ lnP (~k)

∂pi

∂ lnP (~k)

∂pj
Veff(~k)

d~k

2 (2π)3

=

∫ 1

−1

∫ kmax

kmin

∂ lnP (k, µ)

∂pi

∂ lnP (k, µ)

∂pj

×Veff (k, µ)
2πk2dkdµ

2 (2π)3 (7.37)

where,

Veff(k, µ) =

[

n̄gPg(k)(1 + βµ2)2

n̄gPg(k)(1 + βµ2)2 + 1

]2

V, (7.38)

~r is the unit vector along the line of sight and~k is the wave vector with normk = |~k|. HereV

is the survey volume contained in a given redshift bin andn̄g(~r) is the selection function of the

survey, dictating the a priori expectation value for the comoving number density of galaxies. We

take this to be a constant.Veff is the effective volume of the survey and takes into account the

impact of the shot noise from undersampled regions [49]. Thederivatives of the power spectrum

with respect to the cosmological parameters in table 7.1 andto the isocurvature parameters are

respectively shown in Figures A.1 and A.2 in the appendix.

BOSSand ADEPT survey parameters are summarized in Table 7.2. Note that thevaluekmin

is always taken as the lowest possible and has been shown to have a negligible effect on the error

forecasts. The smallest scale included, given bykmax, in the analysis does however impact on

the results [23]. Following [155] we adopt conservative values forkmax by requiringσ(R) = 0.5

at a correspondingR = π
2k

whereσ(R) is defined similarly to the normalizationσ8 ≡ σ(R =

8h−1Mpc), but for a general scale R.
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BOSS

ng z kmax/h Mpc−1 b V/ Gpc3 Area/deg2

3 × 10−4 z < 0.35 0.12 2.13 0.74 10,000

0.35 < z < 0.6 0.15 1.25 2.83 10,000

2 < z < 3 0.53 3.3 2.48 6000

ADEPT

ng z kmaxh Mpc−1 b V/ Gpc3 Area/deg2

3 × 10−4 1 < z < 1.25 0.20 2.97 17.7 28600

1.25 < z < 1.5 0.23 3.21 19.7 28600

1.5 < z < 1.75 0.26 3.44 21.0 28600

1.75 < z < 2 0.30 3.67 21.7 28600

Table 7.2: Table summarizing the survey parameters for BOSSand ADEPT, for different redshift

bins (centered at the middle of the redshift bin).

7.3.1.2 Cosmic microwave background (CMB) surveys

The CMB data primarily provides information about the initial conditions of our Universe in

this analysis. Non-adiabatic initial conditions lead to very distinct features in the temperature

anisotropies, with isocurvature modes producing acousticoscillations that are out of phase with

the adiabatic mode and hence a set of peaks in the temperatureanisotropy power spectrum that

are slightly shifted. Furthermore, CMB polarization provides a robust signature of isocurva-

ture perturbations [31]. The latest WMAP data has confirmed that the initial perturbations were

mainly of adiabatic type [88] with the possible presence of asubdominant isocurvature contribu-

tion, which could be detected in future high-precision experiments such as PLANCK [94]. The

higher resolution of PLANCK over WMAP will allow for the measurement of the CMB power

spectrum on much smaller scales and the use of 9 observational bands will improve the modeling

of astrophysical foregrounds.
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We follow the analysis in [3] and model the PLANCK dataset as CMB temperature and polar-

ization maps of 80% of the sky measured in the two frequency bands where the CMB signal

dominates. The details of the experiment are given in Table 7.3. The maps are taken to have

no foreground contribution, assuming that the other frequency channels can be used to remove

them. The remaining 20% of the sky is assumed to be contaminated by galactic emission. We

exclude polarization data atℓ < 30 in order to weaken the forecasted constraint on the optical

depth toσ(τ) = 0.01 in agreement with studies that include foreground modeling[170].

ℓTmax ℓPmax ν/ GHz θb ∆T (µK) ∆P (µK)

2000 2500 143 8’ 5.2 10.8

217 5.5’ 11.7 24.3

Table 7.3: Summary of the experiment specifications for PLANCK .

For the CMB, the Fisher matrix is computed using

FCMB
ij =

∑

ℓ

∑

X,Y

∂CXℓ

∂pi

[Covℓ]
−1
XY

∂CXℓ

∂pj

, (7.39)

whereCXℓ is the power in theℓth multipole forX = T,E,B given by

[Covℓ]XX =
2

(2ℓ+ 1)fsky
(CXℓ +Nℓ) (7.40)

whereNℓ, the noise level, depends on the data type. The noise is specified by the experiment.

Because there is a strict geometric degeneracy betweenΩΛ,w0 andwa, finding the derivatives

of the dark energy equation of state (EOS) parameters while keepingΩΛ fixed artificially breaks

this degeneracy. To this end, we follow [3] and start with computing the Fisher matrix for the

CMB with the following parameters: p={ωb, ωc, θs, τ, ns, As} whereθs is the angular size of the

sound horizon. This can be written as

θs = π
rs(zcmb)

r(zcmb)
, (7.41)

wherers(zcmb) is the sound horizon given in equation 7.1 andr(zcmb) is the comoving distance

to the last scattering surface

r(z) = c

∫ z

0

1

H(z′)
dz′. (7.42)
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To compute the derivative∂Cℓ/∂θs, we use the transformation

∂Cℓ

∂θs
≃ ∆Cℓ

∆ΩΛ

∆ΩΛ

∆θs
, (7.43)

and when evaluating∆θs

∆ΩΛ

, ωc andωb must stay fixed by compensating withh through

h2 =
ωb + ωc

1 − ΩΛ

. (7.44)

The resulting Fisher matrixF is then transformed back intõF , corresponding to the param-

eters p’={ωb, ωc,ΩΛ, τ, ns, As, w0, wa} using

F̃ij =
∑

n,m

∂pm

∂pi

Fmn
∂pn

∂pj

. (7.45)

The non-trivial expressions needed for the Jacobian are derivatives ofθs with respect tow0, wa,

ΩΛ, ωc andωb.

For the calculations of the derivatives of the power spectrum with respect to the isocurvature

amplitudes in equation 7.33, we have adopted the treatment in [30] where the pure isocurvature

modes are normalized to have the same power in their CMB temperature spectra as the adiabatic

model. This normalization is applied to both the CMB and LSS spectra.

7.3.2 The impact of isocurvature modes on dark energy

In this section we consider the impact of admitting isocurvature initial conditions on the con-

straints on the dark energy parameters. We follow [3] and choose not to focus on the constraints

onΩX , given that our intuitive estimates rooted in particle physics are drastically disparate from

current measurements of the dark energy density.

We compute the potential errors onw0 andwa for different subsets of adiabatic and isocur-

vature initial conditions while marginalizing over all other cosmological parameters. The results

for both the BOSS and ADEPT experiments are summarized in table 7.4. We find a systematic

degradation of the viable constraints on dark energy as moredegrees of freedom are added. In

order to quantify the constraining power of the data, we compute the Dark Energy Task Force
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Experiment BOSS ADEPT

Parameters w0 wa w0 wa

Adiabatic mode 0.020 0.061 0.017 0.041

Adiabatic + 1 ISO mode

AD+CI+〈AD ,CI〉 0.027 0.070 0.018 0.042

AD+NID+〈AD ,NID〉 0.022 0.063 0.018 0.041

AD+NIV+〈AD ,NIV〉 0.021 0.064 0.017 0.041

Adiabatic + 2 ISO modes

AD+CI+NID+corr 0.031 0.074 0.020 0.042

AD+CI+NIV+corr 0.032 0.077 0.020 0.042

AD+NIV+NID+corr 0.028 0.075 0.018 0.043

Adiabatic + all ISO modes 0.045 0.097 0.022 0.044

Table 7.4: Table summarizing the constraints on(w0, wa) for adiabatic and admixtures of uncor-

related adiabatic and isocurvature modes, marginalizing other all other parameters, for the BOSS

and ADEPT experiments. The fiducial model assumes adiabaticity.

154



(DETF) Figure of merit (FoM), which is defined as the reciprocal of the area in thew0−wa plane,

enclosing the95% confidence limit (CL) region [3]. We are concerned with the change in the

FoM when isocurvature modes are introduced relative to the case of pure adiabaticity. The BOSS

FoM is found to decrease by60% from pure adiabaticity to the case in which all isocurvature

modes are admitted in addition to the adiabatic, while the ADEPT FoM degrades by40%. We

note that the results quoted here are slightly different to those quoted in the previous chapter and

in [185]. This is due to the different normalization method used in [185], which follows [121],

whereas we follow [30]. However, the different normalization methods used have little impact on

the results reported here, which display a similar trend to [185] but with a slightly larger relative

degradation of parameter errors when isocurvature modes are included.

The results suggest that no single mode in particular and itscorrelation are responsible for the

change in the allowable(w0, wa) region, but rather a mixture of all extra degrees of freedom.

In order to determine the combination of parameters that is responsible for this degradation, we

diagonalize the full 17x17 Fisher matrix corresponding to the PLANCK and LSS datasets sepa-

rately and find the eigenvector with the smallest eigenvalue, corresponding to the direction that

is least constrained by the data. Considering the PLANCK data alone and discarding the degen-

eracy in thew0 − wa direction which is the main degenerate direction, four parameters, namely

τ , As, A〈AD ,NIV 〉 andA〈AD ,NID 〉 define the most degenerate direction involving isocurvature

modes, with the impact of the scalar amplitude being compensated for by a combination of the

cross-correlated modes and the optical depth. The degenerate direction in the LSS data (using

BOSS as an example) is more complicated and involves a combination of isocurvature parame-

ters and dark energy parameters, namelyΩX ,As, w0, wa,A〈AD ,CI〉,A〈AD ,NIV 〉,A〈AD ,NID 〉 and

A〈CI,NI v〉. Figure 7.10 shows how the perturbations in the different parameters contribute to the

the total change in the CMB power spectrum and the matter power spectrum.

The total derivative (shown in red) lies within the noise limits of the respective experiments,

making the net change undetectable by the data.

Clearly the dark energy model is degenerate with the particular combination of isocurvature
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modes in the BAO data. The implication is that the constraints on dark energy are at risk of

being substantially biased if adiabaticity is incorrectlyassumed. To emphasize this point, Figure

7.11 compares the correlation function, defined by

ξ(r) =

∫ ∞

0

k2P (k)
sin kr

kr
dk, (7.46)

whereP (k) is the matter power spectrum, that would be measured today for our fiducialΛCDM

model assuming pure adiabaticity, to a cosmological model assuming dynamical dark energy,

described byw0 = −0.94 andwa = −0.137, and an admixture of initial conditions, 84% of

which is isocurvature in nature. The correlation function is degenerate in all three redshift bins

of the BOSSexperiment. Note that this degeneracy is completely brokenby the CMB data. We

now wish to quantify this bias.

Experiment BOSS ADEPT

Parameters w0 wa w0 wa

Adiabatic + 1 ISO mode

AD+CI+〈AD ,CI〉 0.052 (3) -0.096 (2) 0.023 (1) -0.019 (0.5)

AD+NID+〈AD ,NID〉 -0.031 (2) 0.054 (1) -0.019 (1) -0.030 (1)

AD+NIV+〈AD ,NIV〉 -0.030 (2) 0.076 (1) -0.0055 (0.3) -0.013 (0.3)

Adiabatic + 2 ISO modes

AD+CI+NID+corr -0.065 (3) 0.11 (2) -0.026 (2) -0.025 (1)

AD+CI+NIV+corr -0.071 (4) 0.12 (2) -0.014 (1) 0.021 (0.5)

AD+NIV+NID+corr -0.049 (2) 0.11 (2) 0.016 (1) -0.024 (1)

Adiabatic + all ISO modes -0.15 (8) 0.3 (4) 0.054 (3) -0.04 (1)

Table 7.5: Table summarizing the biases on(w0, wa) that could arise from the incorrect assump-

tion of adiabatic initial conditions, given a universe withan admixtures of uncorrelated adiabatic

and isocurvature modes for the BOSS and ADEPT experiments. The quantities in brackets are

the biases, quoted in number of1σ error bars corresponding to the case when pure adiabaticity

is assumed.
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For a Gaussian-distributed likelihood function, it can be shown that the linear bias in a set of

parameters that we wish to constrain,δθi, due to erroneous values of a set of fixed parameters,

δφj, is [169]

δθi = −
[

F θθ
]−1

im
F θφ

mjδφj (7.47)

whereF θθ is the Fisher sub-matrix for the parameters we wish to constrain andF θφ is a Fisher

sub-matrix constructed from the product of the derivativesof the power spectrum with respect to

the parameters being constrained and those which are being fixed. In our casej labels the isocur-

vature mode amplitudes, incorrectly fixed to zero,m labels the eight cosmological parameters

that are biased, andi labels the subset of two dark energy parameters whose bias isof inter-

est to us. In order to setδφj , we diagonalize the combined PLANCK and large-scale structure

(LSS) Fisher matrix and select the eigenvector,ei with the smallest eigenvalueλi. This corre-

sponds to the direction in parameter space which is least constrained by the data. We then take

δφj =
√

M
λj

ej , where M depends on the total number of cosmological and isocurvature parame-

ters.

We first consider the case of an admixture of the adiabatic mode and the CDM isocurvature

mode. For this case we find the biases in the dark energy parameters to beδw0 = 0.052 and

δwa = −0.096 for the BOSSexperiment. Comparing the mean biases to the1σ constraints ob-

tained when pure adiabaticity is assumed, we find that neglecting this isocurvature contribution

leads to a3σ and2σ error in the dark energy parameter estimates forw0 andwa respectively,

when compared to the error forecasts assuming adiabaticity. If we repeat the calculation for the

more advanced experiment ADEPT, we findδw0 = 0.023 andδwa = −0.019, equivalent to1σ

and0.5σ errors in the dark energy parameters respectively when compared to the adiabatic con-

straints. From this result, it appears that ADEPT shows a lower risk of making false claims.

Although no theoretical models for generating the neutrinoisocurvature models have thus far

been proposed, we would like to conduct a comprehensive exploration of the impact of the ini-

tial conditions on the BAO constraints and therefore admit all possible isocurvature degrees of
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freedom. Table 7.5 summarizes the biases for different admixtures of adiabatic and subsets of

isocurvature modes. The results are consistent with the degenerate directions in parameter space

identified earlier. For example, the admittance of the CI andNID isocurvature modes and their

cross correlations has the potential to cause a bias in the dark energy parameters by as much as

4σ, in the case of BOSS.

For the case of an admixture of adiabatic and all isocurvature modes and their cross correlations,

we find that the biases areδw0 = −0.15 andδwa = 0.3 for the BOSS experiment. This means

that if the initial conditions of our universe are comprisedof a sub-dominant contribution from

all isocurvature modes (within the1σ constraints from the PLANCK and BOSSexperiments), the

assumption of adiabaticity could lead to an incorrect8σ detection of non-Λ dark energy model

or a4σ false claim of dynamics. Alternatively,Λ could be found to be consistent with the data

when in factw(z) 6= −1. The potential bias incurred by the adiabatic assumption inthe case of

the ADEPT experiment has a mean ofδw0 = 0.054 (equivalent to3σ) while the measurement of

wa could be inaccurate at the level of only1σ.

7.3.2.1 Constraints on isocurvature modes from the LSS data

We now consider the impact of the large scale structure information on isocurvature constraints.

Although allowing for isocurvature modes degrades the darkenergy constraints relative to the

pure adiabatic case, this analysis has revealed a powerful positive. We find that the volume

of the 9-dimensional isocurvature Fisher ellipse is roughly 2 − 4 × 109 smaller than that from

PLANCK alone, showing that using the CMB and LSS data together provides exceptionally good

constraints on the early universe relative to the CMB alone.The forecasted errors on the isocur-

vature parameters based on the CMB data alone and in conjunction with the LSS experiments

are compared in tables 7.6, 7.7 and 7.8 respectively for single, double and fully correlated isocur-

vature modes. We find that the error bars on the isocurvature parameters decrease by 30% to as

much as 100% for certain modes when the LSS data (either BOSS or ADEPT) is added to the

PLANCK data. Assuming an adiabatic fiducial model, the measurementof the BAO in the first
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redshift bin of the BOSS experiment and the CMB by PLANCK will reduce the allowed isocur-

vature fraction from 5.6% for the CMB data only to3.6%, and to3.1% and2.7% when adding

the information from LSS in the second and the third redshiftbins.

Adiabatic + 1 ISO mode

PLANCK + BOSS PLANCK + ADEPT

〈AD ,AD〉 0.29 (7) 0.30 (3)

〈CI,CI〉 0.013 (11) 0.0093 (7)

〈AD ,CI〉 0.84 (97) 0.92 (96)

〈AD ,AD〉 0.25 (18) 0.24 (23)

〈NID ,NID〉 0.0053 (11) 0.0053 (14)

〈AD ,NID〉 0.019 (29) 0.019 (38)

〈AD ,AD〉 0.23 (26) 0.22 (28)

〈NIV,NIV〉 0.0093 (6) 0.013 (9)

〈AD ,NIV〉 0.92 (97) 0.84 (97)

Table 7.6: Forecasted uncertainties on isocurvature parameters for different cases for the

PLANCK and LSS data (BOSS and ADEPT) for single isocurvature modes. The percentage im-

provement in1σ errors when the LSS data is added to the PLANCK data is shown in brackets.

The reason for this stems from the fact that the considered degenerate direction in parameter

space for the CMB data (〈AD ,NIV〉, 〈AD ,NID〉, As, τe) differs from the degenerate direction of

the LSS data (〈AD ,NIV〉, 〈AD ,NID〉, ΩX , w0, wa, As).

Figure 7.12 illustrates the different directions by showing the 1σ error ellipses for the main

isocurvature contributions andw0. The two degenerate directions are almost orthogonal. Here,

the inner straight lines represent the marginalised error bars obtained by combining both PLANCK

and BOSS experiments in the case of a cosmological constant. Clearlythe ability of LSS data

to measure isocurvature modes is related to the informationprovided by the BAO about dark

energy. In Figure 7.13, we compare the1σ error ellipses for(w0, 〈AD ,NIV 〉) and(w0, 〈AD ,NID〉)
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Adiabatic + 2 ISO modes

PLANCK + BOSS PLANCK + ADEPT

〈AD ,AD〉 0.35 (21) 0.33 (27)

〈CI,CI〉 0.019 (10) 0.019 (11)

〈NID ,NID〉 0.0071 (3) 0.0070 (5)

〈AD ,CI〉 0.029 (97) 0.029 (97)

〈AD ,NID〉 0.021 (32) 0.020 (36)

〈CI,NID〉 0.014 (5) 0.014 (6)

〈AD ,AD〉 0.46 (21) 0.35 (22)

〈CI,CI〉 0.016 (15) 0.016 (15)

〈NIV,NIV〉 0.0093 (5) 0.0091 (7)

〈AD ,CI〉 0.035 (96) 0.033(97)

〈AD ,NIV〉 0.029 (97) 0.036 (97)

〈CI,NIV〉 0.016 (12) 0.015 (15)

〈AD ,AD〉 0.27 (40) 0.25 (45)

〈NID ,NID〉 0.0082 (4) 0.0070 (5)

〈NIV,NIV〉 0.018 (6) 0.017 (10)

〈AD ,NID〉 0.028 (12) 0.020 (36)

〈AD ,NIV〉 0.037 (96) 0.041 (96)

〈NID ,NIV〉 0.016 (6) 0.015 (12)

Table 7.7: Forecasted uncertainties on isocurvature parameters for different cases for the

PLANCK and LSS data (BOSS and ADEPT) for double isocurvature modes. The percentage

improvement in1σ errors when the LSS data is added to the PLANCK data is shown in brackets.

that are obtained when we include the CMB dataset and add the data from the BOSS redshift

bins in succession. We see that the BAO data primarily servesto reduce the phase space for

w0 with the largest improvement in thew0 constraint coming from the second redshift bin.

As the redshift increases, the contribution from dark energy diminishes until matter comes to
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Adiabatic + all ISO modes

PLANCK + BOSS PLANCK + ADEPT

〈AD ,AD〉 0.47 (21) 0.41 (30)

〈CI,CI〉 0.044 (23) 0.057 (39)

〈NID ,NID〉 0.016 (16) 0.019 (24)

〈NIV,NIV〉 0.047 (24) 0.047 (40)

〈AD ,CI〉 0.042 (96) 0.042 (96)

〈AD ,NID〉 0.069 (35) 0.038 (64)

〈AD ,NIV〉 0.072 (94) 0.048 (96)

〈CI,NID〉 0.057 (14) 0.066 (20)

〈CI,NIV〉 0.027 (34) 0.04 (39)

〈NID ,NIV〉 0.045 (8) 0.045 (9)

Table 7.8: Forecasted uncertainties on isocurvature parameters for different cases for the

PLANCK and LSS data (BOSS and ADEPT) for fully correlated isocurvature case. The per-

centage improvement in1σ errors when the LSS data is added to the PLANCK data is shown in

brackets.

dominate, at which time the impact of dark energy on the observables is small. For this rea-

son, the intermediate redshift bin for BOSS centered atz = 0.6 provides the best constraints

on w0. In Figure 7.14 we compare the sum of the most dominant isocurvature contributions

z〈AD ,NIV 〉P
〈AD ,NIV 〉 + z〈AD ,NID 〉P

〈AD ,NID 〉 to the power spectrum at the different redshift

bins of the BOSS experiment to their respective error bars. The area betweenthe solid (signal)

and dotted (error) curves indicates the amount of information provided by each bin. Clearly, this

combination of isocurvature parameters is best constrained from the measurement of the galaxy

power spectrum atz = 0.6 for this particular experiment. Furthermore, the differing shapes

of the signal curves suggests that complementary information is available at different redshifts.

Hence, the measurement of the BAO scale at different redshifts between decoupling and today

helps to constrain the isocurvature modes.

161



We note that in this study we have assumed exact knowledge of the galaxy bias which could

be a source of further degeneracy with the isocurvature parameters.

As an aside, we note that information about the initial conditions from LSS data does not stem

from differences in the growth rates for different modes. Figure 7.15 shows the growth function

of the perturbations on intermediate (top) and on large scales (bottom). It is clear that on very

large scales, the isocurvature modes grow more slowly than the adiabatic modes. This is expected

as perturbations which are isocurvature in nature only growwhen they enter the horizon while

adiabatic fluctuations grow at all times. However on the scales probed by the BAO signal, the

isocurvature modes and adiabatic modes grow at the same rate.
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(a) CTT

ℓ
spectrum

(b) P(k) atz = 0.35

Figure 7.10: Main contributions to the degenerate direction with the highest isocurvature fraction

(a) in the CMB data from PLANCK alone,(b) in the matter power spectrum using the BOSS

dataset alone. The red solid line is the total derivative in the considered degenerate direction,

which cancels to within the limits allowed by PLANCK and BOSSerror bars (yellow region). For

the matter power spectrum, we only plot the yellow region up to kmax = 0.1h Mpc−1 in this

redshift bin.
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Figure 7.11: The galaxy correlation functions for the BOSS survey for different redshift bins.

Solid lines represent the purely adiabaticΛCDM fiducial model while dashed lines represent a

mixed model withfISO = 84%,w0 = −0.940 & wa = −0.137. z = 0.35 (black),z = 0.6 (blue)

andz = 3 (red).
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(a)

(b)

Figure 7.12: Effect of combining the CMB and LSS datasets on the1σ error ellipses for isocur-

vature contributions andw0. We have only represented the isocurvature modes (〈AD ,NIV〉 and

〈AD ,NID〉) that determine the main degenerate direction with the largest isocurvature fraction.

Inner straight lines represent the error bars obtained using both CMB ad LSS experiments, but

assuming a cosmological constant.
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(a) (b)

(c)

Figure 7.13: Effect of adding different redshift bin datasets on the1σ error ellipses for

(w0, 〈AD,NIV 〉), (w0, 〈AD,NID〉) and(w0, wa). Hatched regions on panels (a) and (b) rep-

resent the1σ error ellipse for the CMB experiment alone.
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Figure 7.14: Sum of the most dominant isocurvature contributions z〈AD ,NIV 〉P
〈AD ,NIV 〉 +

z〈AD ,NID 〉P
〈AD ,NID 〉 to the power spectrum for different redshift bins of the BOSSexperiment.

The blue, green and red solid curves represents respectively the isocurvature contribution at red-

shift z = 0.35, z = 0.6 andz = 3. The dotted lines represent the BOSSerror bars for different

redshift bins.
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Figure 7.15: Growth function as a function of redshift for all modes.Top: on intermediate scales

(k = 0.01). Bottom: on large scalesk = 0.0053. On small and intermediate scales, the growth

function is the same for all regular modes, while the AD mode grows faster than the isocurvature

modes on large scales. We have normalized the growth to unityat z = 10.
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7.4 Conclusions

The first detection of the BAO peak in the galaxy correlation function measured by SDSS opened

the door to using the clustering of galaxies on scales of∼ 150 Mpc as a cosmic yardstick. By

comparing the size of the overdensity of baryons at the epochof recombination predicted from

theory and calibrated by the CMB, with its size as it appears in the large-scale structure of galax-

ies today, we can study the expansion history of the universe. However, in order to succeed in

making a precise measurement of the signal we will need the huge volumes probed only by the

most recent generation of redshift surveys. With such precision we hope to reveal the nature of

dark energy and probe its time evolution if it exists.

With claims of constraints on dark energy from BAO experiments to the level of a few percent,

it becomes important to check the assumptions made in the post-observational analysis. In this

chapter, we have revisited the assumption of pure adiabaticinitial conditions and considered the

impact of allowing isocurvature-adiabatic admixtures on the BAO peak and the implications for

dark energy studies. We have shown that a combination of differences in the baryon growth pro-

file that arises due to the presence of isocurvature modes andSilk damping change both the shape

and position of the BAO peak. Non-adiabatic initial conditions leave the sound speed unchanged

but instead alter the development of the acoustic waves in the baryon-photon fluid prior to de-

coupling which modifies the scale on which the sound waves imprint on the baryon distribution.

The degeneracy between the impact of mixed initial conditions and the effect of a dynamical

dark energy model on the BAO peak weakens the potential constraints on the dark energy pa-

rameters forecasted for a combined PLANCK and LSS dataset. We found that the admission of

more general initial conditions which include isocurvature modes and their cross-correlations in-

creases the95% confidence region in(w0, wa) space by50% in the case of the BOSSexperiment

and thus the assumption of adiabaticity can lead to the under-estimation of the errors on the dark

energy parameters. Furthermore, if we assume purely adiabatic initial conditions, we run the risk

of attributing a shift in the peak away from the prediction of∼ 150 Mpc for aΛCDM universe
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to a non-Λ dark energy model. We have shown that this can lead to a bias inthe estimates of the

dark energy parameters, leading to a severalσ incorrect confirmation ofΛ or detection of non-Λ.

On a positive note, the change in the BAO peak in isocurvaturemodels indicates that there is use-

ful information in the galaxy correlation function on the nature of the primordial perturbations

even when simultaneously measuring dark energy equation ofstate parameters. We find that the

use of the LSS data in addition to the CMB data substantially improves our ability to measure the

contributions of different modes to the initial conditions. The matter power spectrum constrains

the dark energy parameters and in so doing breaks the degeneracy in the isocurvature-dark en-

ergy parameter space. Furthermore, even when assumingw = −1, the degenerate parameter

combinations in the CMB and LSS are different.
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CHAPTER 8

Conclusion

Although much progress has been made in understanding the universe, many conceptual and

technical problems remain unsolved. Among them, the natureof the fluctuations which gener-

ated anisotropies in the cosmic microwave background and the large scale structure remains not

well understood. Testing the nature of the primordial perturbations requires a good understand-

ing of the different possibilities of the initial conditions. In this thesis we have investigated the

signatures of isocurvature initial conditions in the CMB through the temperature anisotropies,

and in the large scale structure distribution through the BAO.

In the second chapter, we briefly presented the standard cosmological model and its underlying

linear cosmological perturbation theory that provides a basis for understanding the formation of

the LSS of the universe and anisotropies in the CMB, and supplemented it with a discussion on

the initial conditions of the primordial fluctuations.

In the third chapter, we reviewed the evolution of the perturbations in adiabatic models with a

focus on the evolution of the dark matter and the photons in the tight-coupling regime as these,

171



with the gravitational potential, are the only quantities that are involved in the computation of the

CMB spectrum through the line of sight integral. We derived semi-analytic solution of the evo-

lution of the photon density contrast and velocity divergence prior to decoupling in synchronous

gauge and found that the AD mode excites neither the pure cosine or sine harmonic, but instead,

a cosine-like harmonic through the forcing term.

In the fourth chapter, we recalled how fluctuations on the last scattering surface translate into the

CMB power spectrum through the line of sight integral as observed today and introduced the Hu

approximation for the photon transfer function for the computation of the CMB spectrum. In

this approximation, one only needs the photon density contrast and the velocity divergence eval-

uated at decoupling, and the evolution of the gravitationalpotential to compute the CMB power

spectrum to about10% accuracy. We also reviewed the effect of the cosmological parameters on

the CMB temperature power spectrum in the AD mode. We focusedon the impact of the baryon

density and matter density on the CMB power spectrum. An increase in the baryon density en-

hances the odd peaks and lowers the even peaks, while an increase in the matter density lowers

all acoustic peaks.

In the fifth chapter, we have investigated the features of theisocurvature CMB power spectra and

studied the impact of different cosmological parameters onthe CMB power spectrum. We first

derived about10% accurate semi-analytic expressions governing the evolution of the photons

and baryons prior to decoupling in isocurvature models and found that non-adiabatic initial con-

ditions leave the sound speed unchanged but instead excite different harmonics. We also found

that the amplitude of the oscillations in the CI and BI modes is inversely proportional to the

wavenumber, causing the suppression of the perturbations on small scales. We then studied the

impact of cosmological parameters on the CMB angular power spectrum in isocurvature models

and found that the effects of the physical baryon and matter densities in isocurvature models

differ the most from adiabatic models. An increase in the baryon density lowers the acoustic

peaks in the CI, NID and NIV, and enhances them in the BI mode. These baryon density de-

pendence for isocurvature modes differs from the AD mode, where the odd peaks are enhanced
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while even peaks are lowered, due to a gravitational potential shift. The lowering of acoustic

peaks is stronger in the NIV mode and weaker in the CI. In addition, the effect of an increase in

the matter density on the height of the CMB temperature acoustic peaks in the BI, NID and NIV

modes is similar to the AD case where all the acoustic peaks are lowered besides being shifted

to lowerℓ’s. In the CI mode, an increase in the matter density enhancesthe acoustic peaks as the

photon density contrast is directly proportional to the matter density. We used the semi-analytic

treatment to explain these cosmological parameter effectson the CMB power spectrum. The

remaining four parameters have approximately the same effect in isocurvature modes as in the

adiabatic mode. In this work we have only considered the primary anisotropies of the CMB.

Further work will include contributions due to the polarization and to the lensing of the CMB

in isocurvature models, especially since ongoing and upcoming CMB experiments such as the

PLANCK mission, SPTPol and ACTPol will provide useful polarization data.

In the sixth chapter, we have explored the distortion of the standard ruler distance and the degra-

dation of dark energy constraints due to the inclusion of isocurvature perturbations. We showed

that small fractions of isocurvature perturbations correlated with the dominant adiabatic mode are

a significant primordial systematic for BAO surveys which must be accounted for in future sur-

veys. Isocurvature modes distort the standard ruler distance by broadening and shifting the peak

in the galaxy correlation function. While a single isocurvature mode does not significantly de-

grade dark energy constraints, the general case with multiple isocurvature modes leads to biases

that exceed7σ on average in the dark energy parameters even for isocurvature amplitudes unde-

tectable by PLANCK . Accounting for all isocurvature modes corrects for this bias but degrades

the dark energy figure of merit by at least50% in the case of the BOSS experiment. However

the BAO data in turn provides significantly stronger constraints on the nature of the primordial

perturbations. Future large galaxy surveys will thus be powerful probes of exotic physics in the

early Universe in addition to helping pin down the nature of dark energy.

In the seventh chapter, we explored in detail the effect of allowing for small amplitude admix-

tures of general isocurvature perturbations in addition tothe dominant adiabatic mode. We found
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that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different

harmonics. These harmonics couple differently to Silk damping, altering the form and evolution

of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the

scale on which the sound waves imprint onto the baryon distribution, which is used as the stan-

dard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discussed

these effects in detail and showed how more general initial conditions impact our interpretation

of cosmological data in dark energy studies. We found that the inclusion of these additional

isocurvature modes leads to an increase in the Dark Energy Task Force Figure of merit by140%

and60% for the BOSS and ADEPT experiments respectively when considered in conjunction

with PLANCK data. We also showed that the incorrect assumption of adiabaticity has the po-

tential to bias our estimates of the dark energy parameters by 3σ (1σ) for a single correlated

isocurvature mode, and up to8σ (3σ) for three correlated isocurvature modes in the case of the

BOSS (ADEPT) experiment. We found that the use of the large scale structure data in conjunc-

tion with CMB data improves our ability to measure the contributions of different modes to the

initial conditions by as much as100% for certain modes in the fully correlated case. For this

work, we only made forecasts for a combination of CMB experiments and BAO surveys. Further

work should widen the range of LSS probes to include the21 cm emissions from intergalactic

medium at high redshift and the Lyman alpha forest. In addition, as more galaxies are measured,

the matter power spectrum surveys will give considerably more data than we presently have and

will allow more stringent constraints on isocurvature modes.

On a positive note, the current rapid expansion of the dataset from both LSS surveys and CMB

experiments will allow a unique probe into the physics of theearly universe. For example, data

from the PLANCK satellite will provide us the CMB angular power spectra for temperature and

polarization in a wide range of multipoles. With the advent of the precision era in cosmology,

scientists should be able to pin down the nature of the primordial perturbation in a near future.
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APPENDIX A

Matter Power Spectrum Derivatives with respect to the

Isocurvature Parameters

The derivatives of the matter power spectrum with respect tothe isocurvature parameters have

not been presented in the literature before and we show them here for the benefit of the reader,

in addition to the derivatives with respect to the cosmological parameters.
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Figure A.1: Logarithmic derivatives ofP (k) with respect to the cosmological parameters for

different redshifts:z = 0.35 (solid black),z = 0.6 (dotted red) andz = 3 (dashed blue). An

adiabatic fiducial model is assumed.
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Figure A.2: Logarithmic derivatives ofP (k) with respect to the isocurvature parameters for

different redshifts:z = 0.35 (solid black),z = 0.6 (dotted red) andz = 3 (dashed blue). An

adiabatic fiducial model is assumed.
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