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Now unto him that is able to do exceeding abundantly
above all that we ask or think,
According to the power that worketh in us,
For in him we live, and move, and have our being; ...
Unto him be glory...

By Christ Jesus throughout all ages.
Amen.
Eph 3:20, Act 17:28



Abstract

In this thesis, we investigate the signatures of isocureaitutial conditions in the cosmic mi-
crowave background (CMB) through the temperature and Ral#wn anisotropies, and in the

large-scale structure distribution through the baryoruatio oscillations (BAO).

The first part of this thesis is a brief review of the standarsheological model with its underly-
ing linear cosmological perturbation theory. We supplenitewith a general discussion on the

initial conditions of the primordial fluctuations.

In the third chapter, we review the evolution of the perttidoes in the adiabatic model. We
focus on the evolution of adiabatic perturbations in thetphe and baryons from the epoch of
initial conditions to the photon-baryon decoupling, assthdetermine the main features of the

primary CMB anisotropies and of the baryon acoustic odwife.

The fourth chapter recalls the theory of the CMB anisotrejaethe adiabatic model. We con-
sider the perturbations from the last scattering surfaceeanlve them through the line of sight
integral to get the adiabatic CMB power spectrum. We reviesweffect of different cosmologi-

cal parameters on the adiabatic CMB temperature spectrum.



In the fifth chapter, we investigate the observational dignes of the isocurvature perturbations
in the CMB anisotropies. We first derive simple semi-analgttpressions for the evolution of
the photon and baryon perturbations prior to decouplingHerfour isocurvature regular modes
and show that these modes excite different harmonics wtaaple differently to Silk damping
and alter the form and evolution of acoustic waves. We sthdyrhpact of different cosmolog-
ical parameters on the CMB angular power spectrum througttrke of sight integral and find
that the impact of the physical baryon and matter densitiesoicurvature models differ the most

from their effect in adiabatic models.

In the last two chapters, we explore in detail the effect édvaihg for small amplitude ad-
mixtures of general isocurvature perturbations in additmthe dominant adiabatic mode, and
their effect on the baryon acoustic oscillations. The sptthpter focuses on the distortion of
the standard ruler distance and the degradation of darkjgicenstants due to the inclusion of
isocurvature perturbations, while the seventh chapteudises in more detail the sensitivity of
BAO dark energy constraints to general isocurvature peations. We stress the role played by
Silk damping on the BAO peak features in breaking the degeyan the peak location for the
different isocurvature modes and show how more generddlicibnditions impact our interpre-
tation of cosmological data in dark energy studies. We firad tie inclusion of these additional
isocurvature modes leads to a significant increase in thie Braergy Task Force figure of merit
when considered in conjunction with CMB data. We also shat the incorrect assumption of
adiabaticity has the potential to substantially bias otimestes of the dark energy parameters.
We find that the use of the large scale structure data in conpmwith CMB data significantly

improves our ability to measure the contributions of déf@rmodes to the initial conditions.
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CHAPTER 1

Introduction

Over the last two decades, there has been a dramatic inendasth the quantity and the quality
of cosmological data from different observations. Thesseolational data have greatly im-
proved our understanding of the whole universe by testifigrént theoretical models about the
origin, the structure and the evolution of the universe. Amthese observations, three main cos-
mological probes can be highlighted: the measurementseo€dsmic microwave background
(CMB) anisotropies with the Wilkinson Microwave Anisotpprobe (WMAP) [1277,125], the
discovery of the acceleration of the expansion of the usaeising supernovae [144, 133] and
the detection of the imprint of baryon acoustic oscillai¢BAO) in the early universe on galaxy

clustering [46/_37].

The CMB radiation and more precisely its temperature aropis, is undeniably the most im-
portant and accurate source of data today. The CMB is thdualsiadiation from decoupling

after the epoch of recombination when the universe was oféwaundred thousand years old.
It has a perfect thermal black-body spectrum and an isatrigpnperature, one part ir)®, of

2.7 K today. Having traveled essentially undisturbed everesiitds a powerful tool to probe of



the early universe. More interestingly, its tiny anisotespreflect the small perturbations in the

energy density of the universe at the time of the initial gbods.

The measurement of the expansion of the universe from thersoyae indicates that the ex-
pansion of the universe has begun to gradually accelerstead of decelerating as one would
expect [13B]. This acceleration has strengthened the demgg case. It is not known whether

the universe will accelerate indefinitely or whether it veMentually reverse.

Large scale structure (LSS) surveys aim to construct a thneensional distribution of the galax-
ies in the universe and measure the matter power spectr@n1¥2]. This dataset is currently
expanding rapidly. It comes from a much later period and oallkemscales than the CMB. Al-
though it has not yet reached the same level of accuracy &MiBedata, it is a powerful tool for

constraining cosmological models [90]. In this thesis, we information from both the CMB
and the LSS.

From all the available data, we now know much more about tiheposition and the geometry
of the universe. A model of the history and structure of thevense has arisen: The standard
cosmological model, also called the concordance modehismtodel, we live in a flat or nearly
flat universe that is roughl¥3.7 Gyr old and made up of slightly less than thirty percent non-
relativistic matter, of which only about one sixth is ordipaaryonic matter, the remaining being
cold dark matter (CDM), with seventy percent of the energysity in the form of dark energy.
The cold dark matter is some non-baryonic matter in the usé/hich cannot be observed
by its electromagnetic radiation while at the same time thtigdes making up this matter are
slowly moving. The existence of the cold dark matter is irddrfrom the motions of astronomi-
cal objects, specifically stellar, galactic, and galaxystdu observation$ [36]. It is also required
in order to enable gravity to amplify the small fluctuationstie Cosmic Microwave Background
enough to form the large-scale structures that we see inriverse today. The dark energy is a
hypothetical form of energy that explains observationstiin@universe appears to be expanding

at an accelerating rate. Its nature is still a mystery bubimmonly thought to be a residual
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vacuum energy density, also referred to as the cosmologpeetant\, or a time varying scalar
field such as quintessenc¢e [130]. Present data favours al wfodlerk energy with the equation
of state i.e. the ratio of pressure to energy density beiogedo—1 [163]. Photons and neutrinos

constitute a tiny fraction of the total density of the unsetoday.

Although much progress has been made in understanding thiers®, many conceptual and
technical problems remain unsolved. For example, the eatithe fluctuations which generated
anisotropies in the CMB and the large scale structure resmahwell understood. Several dif-
ferent mechanisms of generating the primordial fluctuatioave been proposed among which,
the cosmological inflation is currently the favourite. Téere many variants of inflation, but
they all have in common that, during the first few fractionsaafecond, the energy density of
the universe was dominated by one or more scalar fields. Tingest variants use a single field
and predict that the primordial fluctuations are adiabatttdawn from a Gaussian distribution.
Although current data does not show evidence of significanmtgaussianity [163], one must

wait for the analysis of the Planck data in order to confirmisecalrd this trend [23].

In addition to the statistics and form of the primordial flugtions, the initial conditions that the
fluctuations satisfy also present a challenge for modermotixyy. Although adiabatic primor-
dial perturbations are generally assumed, there are twaafuental types of perturbations, adia-
batic and isocurvaturé |25, 29,161, 78]. For adiabatic pbétions, the fractional overdensity in
each component (baryons, photons, cold dark matter andmesijtis the same up to a constant,
which gives rise to a curvature perturbation. Isocurvapgeurbations are generated during in-
flation whenever there is more than one scalar field pres@8 [134]. They are predicted by
a wide range of scenarios: multifield inflation, topologidefects, the decay of particles prior
to nucleosynthesis such as a scalar curvaton or axions2@tcHor isocurvature perturbations,
the fractional overdensities add up to zero, keeping theature initially unperturbed, which
creates an entropy perturbation. The location of the firstsiic peak in the CMB temperature
power spectrumi ~ 220.7 4+ 0.7 as measured by WMAR |88, 113,170], strongly suggests adia-

batic initial conditions for the cosmological perturbaitso[173]. However, there is no a priori
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reason to discard more general initial conditions invajMsocurvature perturbations as they can
be generated by several different mechanisms/[111,[T09 RV 137/ 147, 148, 96, 131,110].
While current observations exclude pure isocurvature rsofdd, (51,127 70, 88], they still
allow for an admixture of adiabatic and isocurvature cdmitions [88/ 117, 14, 177]. The most
general situation is the superposition of the adiabatectiid dark matter isocurvature (Cl) and

the neutrino isocurvature density (NID) and velocity (Nivibdes([20, 121, 178, 32].

Testing the nature of the primordial perturbations requagood understanding of the different
possibilities of the initial conditions [122]. The CI modave been studied previously |25]. It
excites a sine wave rather than a cosine wave, as is the gaadi&batic conditions [78], and
produces a first peak in the power spectrum locatéckas30 [25,/92 [ 102, 175] with the height
of the peak differing from the adiabatic mode. The baryosacurvature (Bl) mode behaves
like the CI modell25] and can be neglectzd [65]. The neutsioaurvature density and velocity
modes recently introduced [29, 102] are characterized bynazero initial entropy perturbation
in the neutrino density with respect to the photon densitipyoa relative velocity between the
photon and the neutrino components with a vanishing totahemum density [29]. In this the-
sis, we consider a more generic situation where we allow tissipility of several isocurvature

modes in addition to the adiabatic one.

In this thesis, we investigate the signatures of isocureatutial conditions in the CMB through

the temperature anisotropies, and in the large-scaletsteudistribution through the BAO.

The thesis is structured as follows. In the second chaptehnefly review the standard cos-
mological model and supplement it with a general discussiorthe initial conditions of the
primordial fluctuations. In the third and fourth chapterg, meview respectively the evolution of
the perturbations and the CMB anisotropies in the adialmatidels. The fifth chapter investi-
gates the observational signatures of the isocurvatutarpations in the CMB anisotropies. In
the sixth chapter, we explore the distortion of the standalet distance and the degradation of

dark energy constraints due to the inclusion of isocureaparturbations. The seventh chapter
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discusses in more detail the sensitivity of BAO dark enemgystraints to general isocurvature

perturbations. In the last chapter of the thesis, we presemtiuding remarks.



CHAPTER 2

The Standard Cosmological Model

Over the course of past several decades, a huge amount ofatiseal data has greatly im-
proved our understanding of the universe by testing diffetteeoretical models about the origin,
the structure and the evolution of the universe. The cugreatdcepted view is that the ob-
served large scale structures of the universe such as galard galaxy clusters, and the CMB
anisotropies originated from some small initial fluctuadn the matter and radiation in the
early universe and grew under gravitational instabilityr uch fluctuations, the linear perturba-
tion theory can be used to solve for the growth of the fluctureti The perturbation theory allows
examining the initial conditions of the fluctuations, thewolution and their imprint on the large

scale structures and on the CMB. This picture representstémelard cosmological model.

In this chapter, we briefly introduce the standard cosmaokignodel with its underlying linear

cosmological perturbation theory that provides a basisufaterstanding the formation of the
large scale structures of the universe and anisotropiégiGMB. We first present the underlying
pillars of the model, introduce the unperturbed and theupleetd Friedmann-Robertson-Walker

cosmological models and argue for our choice of the gauge.théfe introduce the Einstein



eguations and the energy momentum conservation prin@pierive the differential evolution
equations for the four species of the universe. Lastly, vapment the standard cosmological

model with a discussion on the initial conditions of the prnaial fluctuations.

2.1 Brief overview

The Big Bang model, based on the homogeneous and isotrojgidnkann-Robertson-Walker
(FRW) spacetimes, is undeniably the prevailing cosmokilgiteeory describing with unprece-
dented success the evolution of the universe on large scBhesevidence for angular isotropy
on large scales of the CMB as well as the isotropy of deep gadaxl radio source surveys
strongly support the assumption of homogeneity and isgtrobis assumption, with the Coper-
nican principle leads to the conclusion that the universpaially homogeneous and constitutes
the cosmological principle, cornerstone of the standastinmogy. Four main observational pil-
lars support this model: the expansion of the universe, tiim@dances of the light elements in
agreement with the predictions of nucleosynthesis, thertakespectrum of the CMB radiation

and the large-scale structures observed in the universe.

2.1.1 Theexpansion of the universe (Hubble's law)

Distant galaxy and quasar surveys show that these objeztmaving away from us and the
further away an object is, the more rapid its recession apfgeae. This universal expansion,
predicted by Alexander Friedmann in 1922][55] and Georgesdtee in 1927([99], and first ob-

served by Edwin Hubble in 1920 [B0] constitutes Hubble’s Vaich states that the recessional

velocity v of a galaxy is proportional to the its distan¢away from us
v = Hd,

whereH is known as the Hubble parameter. WMAP experiment has detethits value today
to be Hy = 70.4 + 1.4 km sec* Mpc™ [81].



2.1.2 Light lement abundances

Prior to about one second after the Big Bang, the universererg@shot and dense. As it expanded
and cooled, some nucleons were synthesized into the lightesits such as hydrogen (H), deu-
terium (D), helium-3 {He), helium-4 {He) and lithium-7 (Li). The abundances of these light

elements depend only on the ratio of photons to baryons,hwitgelf can be independently cal-

culated from fluctuations in the CMB. The measured abundaalt@gree with those predicted

from the Big Bang Nucleosynthesis (BBN), except for theilith which presents a discrepancy
of a factor 0f2.3 — 4.3 from abundances inferred from observations of Populatistar due to

substantial systematic uncertainties [39].

2.1.3 Cosmic microwave background radiation

6000 T TTTTIT T T T TTTTT T T T T T T T T T T T B

1(1+1)C,TT/2m [uK2]
%
3

- ]
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Multipole moment [

Figure 2.1: CMB temperature anisotropy spectrum. Thisamfthe 7-year WMAP data. The
plotted errors include instrument noise, but not the snealfrelated contribution due to beam

and point source subtraction uncertainty. The blue banegsents cosmic variance.



Since its accidental discovery by Arno Penzias and Robeddiin 1964 [[13R], the CMB
radiation is considered a landmark of the Big Bang models the radiation left over from the
early hot universe that free streams towards us from thehepblast scattering, approximately
379,000 years after the Big Bang, cooling as the universareiq Precise measurements by
the Far Infrared Absolute Spectrophotometer (FIRAS) imant on the Cosmic Background
Explorer (COBE) satellite revealed perfect black body spee of the CMB at a temperature of
2.725 K and detected for the first time the fluctuations in the CMBa &tvel of 1075 K [161]].
Figure[Z.1.B combines measurements of the CMB anisotrdyyi@srious observational experi-
ments. The existence of the CMB and its blackbody spectrurae predicted by Gamow in 1946
and Alpher and Herman in 1948 |5, 6]. Large number of grobasked experiments, balloon
experiments and satellite experiments has been sincetakder More recently, the WMAP ex-

periment has yielded the most accurate values for some abraological parameters 169,/ 16].

The smoothness of the CMB confirmed that the universe hatearidergone a brief period of
rapid exponential expansion, called inflation. In additistudies on the effects of the dynamics
of distant astrophysical objects on the CMB have providethér evidence for the Copernican

principle [164].

2.1.4 Evolution and distribution of galaxies

The large scale structures such as galaxy clusters andctugters, and the morphology and dis-
tribution of galaxies and quasars, as well as observatibsisoformation are in good agreement
with simulations of the structure formation based on the Bagmg modell[2D]. The morphology

of distant galaxies differs from the nearby galaxies duentstar populations that are aging
and evolving. In addition, for galaxies situated at comphlralistance, recently formed galax-
ies appear different from galaxies formed shortly afterBigeBang. The large scale structures
originated from the primordial fluctuations that were geed during inflation. According to the

inflationary paradigm, the expansion of the universe waslacated during an early epoch of the

universe, well before the period of primordial nucleoswsil. In this period, primordial density



and gravitational wave perturbations were generated fraamtym fluctuations redshifted out of

the Hubble radius, where they remain frozen until they riesetine Hubble radius [128, 106].

2.2 Ageand energy contents of the universe

According to the standard cosmological model and in vieveoént experiments, the universe is
believed to be flat with mean energy density (critical dgnsitual top,, = 9.9 x 1073 g cm 3,
13.75 £+ 0.11 billion years old and composed of relativistic componenishsas photons and
neutrinos, relic of the Big Bang; atoms or ordinary mattdtecabaryon; and of not yet well
understood substances such as the dark energy and the déek mhe baryonic matter (stars,
galaxies, clusters, dusts,...) responsible for all vésiblatter in the universe, represents only
about4.6% of the total contents of the universe [88].

The dark energy which accounts fi@% of the contents of the universe, is a hypothetical form of
energy that uniformly permeates all space with anti-gedidhal properties tending to increase
the rate of expansion of the universe. Its existence wassfigggested by observations of Type la
supernovae in998 when, independently, A.G. Riess al. [144] and S. Perlmuttest al. [133]
noticed that rather than slowing down, the expansion appetar be speeding up. Since then,
different and independent experiments such as the measnterhthe CMB anisotropie$ [38],
the gravitational lensing [150], and the large scale stmgcsurveysl[142], have corroborated
these observations. Two popular forms for dark energy haea Iproposed: the cosmological
constant,, equivalent to the vacuum energy filling space homogengoarsti scalar fields with
energy density changing in space and time. The measurerh#drg equation of state of dark
energy is currently one of the most active research areagsmalogy as it parameterizes the

evolution of the expansion.

The cold dark matter which represents the remainisig of the contents of the universe, first
postulated by Fritz Zwicky irn934 to account for evidence of "missing mass” in the dynamics of
galaxies in clusters, is a form of non-radiative and noatrgktic matter but detectable through

gravitational interaction with the ordinary mattér [18&7]. The measurements of galaxy ve-
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locities, gravitational lensing of background objects byagy clusters, and the temperature dis-
tribution of hot gas in galaxies and clusters of galaxiepaiht to the existence of the cold dark
matter [145[ 53, 178]. The cold dark matter plays a key rolstincture formation and galaxy

evolution, and has impacts on the CMB anisotrogies [69].

2.3 Background and perturbed Friedmann-Robertson-Walker

models

To describe a homogeneous and isotropic universe, we aarthiel FRW metric which describes

a homogeneous, isotropic expanding universe. Its metrecdlement is given by

ds® = g datda” = a®(7)[—dr? + i (Z)dx'd2?], (2.2)

where the indiceg andv range from0 to 3, a is the scale factor accounting for the expansion
of the universe ang,,, is the unperturbed Robertson-Walker metric. The spatiatdinates:
take the range < i, j < 3, v;; = ¢;;/a® is the symmetric spatial part of the metric for a constant
curvature space and is the conformal time related to the proper timediy= a(7)dr. The
above metric is usually written using the spherical-likermbnates of a fundamental observer

(r,0,0) as
dr?
1 —kr?

ds* = a®(7) (—dT2 + {

whererk is a constant describing the (constant) curvature of theespia can take the valuds

+ 72(d6* + sin® 9d¢2)] ) , (2.2)

0 or —1 corresponding to a closed (spherical), flat (euclidean)@eh (hyperbolic) universe
respectively. Units are chosen such that the speed of kgimity. The FRW is a direct conse-
guence of the spatial homogeneity of the universe, indegrghdof whether or not the Einstein

eqguation is valid.

The unperturbed Robertson-Walker metric above describewath homogeneous and isotropic
expanding universe. In the presence of perturbationse tisano uniquely preferred coordinate

system. However, the coordinates must reduce to those aftieguZ1) in the limit of zero
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perturbation. A coordinate system meeting this requirdnssralled a gauge. To account for the
inhomogeneity of the universe, we consider the perturbdoeRson-Walker metric. The most

general first-order perturbation to the line element can tigem as [105]

ds* = a®(7)[—d7r* + vy (Z)dx'da? + hy, (T, 7)da"dz"), (2.3)
whereh,,, is the metric perturbation. Its components can be expliatitten as

hog = —2A, ho; = —B;, hij = 2(Di; + Eij), (2.4)

where E;; is a traceless 3-metric. The trace fof is proportional toD. For a flat universe
(x = 0), a cartesian coordinate can be chosen suchthat ¢6;;. The termA is called the lapse
function and is a perturbation to the conformal time compmbnk specifies the relation between
7 and the proper time along the threading; is the shift function which specifies the relative
velocity between the threading and the worldlines orthadtmthe slicing an@(Dd;; + E;;) is

the perturbation to the curvature of space.

The components of the metric perturbation are further bral@vn into scalar, vector and ten-
sor perturbations by decomposing every symmetric tensbea@ry vector into longitudinal and
transverse parts. The “tensor mod€]; represents the part @f; that cannot be obtained from
the gradient of a scalar or vector. It is a gauge-invariahtysitally, it represents gravitational
waves and the anisotropic stress that can interact with.tfidma “vector mode” corresponds to
the transverse vector parts of the metric, which are fourfgfirand £;. It is a generalization of
purely rotational fluid flow with anisotropic stress. Eachtges 2 degrees of freedom, but by
imposing a gauge condition, it is possible to eliminate tWthem. The “scalar mode” is spin-0
under spatial rotation and corresponds physically to Neiatogravitation with relativistic mod-
ifications. It is generally believed that the scalar modeeisagated by the vacuum fluctuation of
the inflation field. Any two of the scalar parts of the metdicD, BZ“ and EZ”J can be set to zero

by a gauge transformation.

The scalar, vector and tensor modes evolve independetitiesr perturbation theory. Therefore

each mode can be examined separately. In this thesis, weon$yder scalar perturbations and
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restrict our study to a spatially flat background spacetiite line element simplifies to
ds® = a*(1){—(1 4 2A)dr* — Bidrdz" + (1 + 2D)é;; + 2E;;|dx'da’}, (2.5)

whereA, B;, D andE;; are fixed according to the choice of gauge.

A variety of gauges have been proposed in the literature. dgnleem, the conformal Newtonian
(or longitudinal) gauge and the synchronous gauge arelysisdd in cosmology.

The conformal Newtonian gauge is a simple gauge for scalaesof the metric perturbations,
but can be generalized to include vector and tensor modgslfi® characterized by two scalar
potentialsy and¢ with the latter playing the role of the gravitational poiahin the Newtonian
limit. The four scalar perturbations to the metric are gibgmd = ), D = ¢ andB; = E;; = 0.

Thus the line element in this gauge is written as
ds® = a*(7)[— (1 + 2¢)dr* + (1 + 2¢)6;;dz" da?]. (2.6)

Since the metrig,, is diagonal, calculations in this gauge are simple. In aoditthe gauge
freedom is completely fixed as there is no gauge modes.

The synchronous gauge is a more general gauge includirgy seattor and tensor modes. Only
the space-space component of the metric tensor is pertfggd= ho; = 0). Thus the line

element in this gauge is given by
ds® = a*(7)[—d7r* + (04 + hyj)da'da?]. (2.7)

The threading consists of geodesics and the slicing is gathal to the threading. As there is no
unique threading, the synchronous description does nobfixptetely the coordinate system but
leaves some residual gauge freedom. A particular threadindpe chosen to impose adiabatic or
isocurvature initial conditions. The synchronous gaudersfa convenient computational frame
and various publicly available Boltzmann codes are writtethis gauge.
It is always possible to pass from the longitudinal gaugééostynchronous gauge and vice versa
using a gauge transformation.

A gauge transformation is an infinitesimal first-order changcoordinates in the perturbed

spacetime, from one coordinate systefto anotherz* given by
it =t + d"(2”). (2.8)
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Thus the conformal Newtonian potentialsand are related to the synchronous potentials

andn in k-space byi[114]

Ykt =a+2a, okt =n—"a, (2.9)

whereq is defined by = <h + 67'7) /2k?. The potentiah comes from writing the scalar mode

of h;j(x, T) as a Fourier integral as[1114]

l)

—

hz‘j(k,T) =

—

Zlgjh(k?, T) + (]ZZE] —

>

52])677(]27 T)J

Wl

where we repeat the use of h for the trace part of the periorbat Fourier spacel; = le
andl? is the unit vector pointing in the traveling direction of twave. In this thesis, we mostly
use the synchronous gauge although some few times, theromadfgauge is referred to mainly
for physical intuition. The overdot stands for the derivatwith respect to the conformal time.
Similarly, a species density contrast, and its velocity divergencd,,, in the conformal and

synchronous gauges are related(by [114]

§Con — 5 _ 40%, (2.10)

05" = O™ 4 k. (2.11)

2.4 Einstein equationsand energy momentum conservation

The Einstein’s field equations have undeniably revoluiedithe development of the modern
cosmology during the last century. They relate the EindtsisorG,,, describing the geometry

to the energy-momentum tenshy, describing the matter contents, and are given by
R
G =R — Gy = 81GT,, . (2.12)

In this relationR,, and R = ¢"”R,, are the Ricci tensor and scalar respectively. The Ricci

tensor depends on the metric and its derivatives, and carobeaonveniently written as

. pled « a 16 a g
Ry =T9,, —T% 4T 1% —T4T

Qo pouy pous
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where thngﬁ are the Christoffel symbols given by

o 9" 199 | 995y Oap
af T "o ¥e] + a v |’
2 | Ox ox ox

and commas denote derivatives with respect tdor examplel'y, , = dI'y;, /0z*. We also

pv,o

define the covariant derivative denoted by a semi-colon wiibBbe used later in this chapter as

[ — oty poo a g
Tl = oo + DT T3, T0 (2.13)

Thus, Einstein equations relate the perturbations in theierte the perturbations in matter and
radiation [41]. For a homogeneous universe with energyitlepér) and pressuré®(r), the

Einstein equations give the following evolution equatiiisl]:

N2
H? = (9) 3 -k, (2.14)
a 3
d d (a 47 _
Ay d () _ _Amnec . ap 2.15
dr dr (a) 3 Ga™(p+3P), ( )

where we have defined the Hubble parameter in conformal tiine, a/a. The equation{2.14)

is nothing else but the Friedmann equation which gives the &volution of the scale factor
a(1), and equation(Z.15) is the acceleration equation. EqugBid%) shows that the accelera-
tion of the expansion of the universe is due to the densitypaiadsure filling the universe, with

positive acceleration requiring a component with neggiressure® < —p/3.

The matter components of the universe (baryons and cold matker) can be treated as
ideal fluid at all time allowing to be completely describedthg energy density contrastand
the velocity divergencé while, for the radiation components (neutrinos and phagtoadull
treatment requires the use of the Boltzmann equation. Nless, in the baryon-photon tight-
coupling regime, the single fluid can be treated as perfeit fithout loss of accuracy. Here,
we do not consider the case of massive neutrinos. The emeogyentum tensor for such a fluid
is given by [114]

TV =Y Pugh+ (po + P)V'V,, (2.16)
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whereV* = da#//—ds? is the four-velocity of the fluidp = 5+ dp andP = P + §P are

the proper energy density and pressure in the fluid rest fraspectively. The barred quantities
refer to the background, angh andé P are respectively the density and pressure fluctuations.
We are summing over all components in the universe. Explieite can write the components

of the perturbed energy-momentum tensor as

Iy = —(p+dp), (2.17)
T = (p+ P, = T3, (2.18)
Ti=(P+6P)5i+%i,  Si=0, (2.19)

wherev; = dx'/dr is the coordinate velocity of the fluid (assumed non-reistiiv), andE;’. =
Tji — 6§T,§/3 is the anisotropic shear perturbation which denotes tleleas component df;
p(7) andP(r) are respectively the energy (or mass) density and presbtite BRW background

universe.

Let us define new variablésando as

(p+ P)0 =ik’ 3Ty, (2.20)

1 .
=5, (2.21)

wheref = ik7v; is the divergence of the fluid velocity amdis related to the shear stress. We

also define the density contrasts 6p/p = —6T7/p.

Substituting the metric and the stress-energy tensor i&ith&ein equation, we deduce the field

equations for the perturbatiohs|114]:

k*n — %gh = —4rGa*ip, (2.22)

k*n = 4nGa®(p + P)6, (2.23)

h+ 2gh — 2k*n = —81Ga?S P, (2.24)

h + 6ij + 2%@ + 61) — 2k*n = —247Ga®(p + P)o. (2.25)
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The time-time component of the Einstein equation_(R.22ksolike the Poisson equation. In
the limit of no expansiond = 0), it reduces to the ordinary Poisson equation for gravity vi
V?2n = —4ma®Gdp. The terms proportional td account for the expansion and are typically im-
portant for modes with wavelengtlis ~ a/k) comparable to, or larger than the Hubble radius
H™L,

We label the different species of the universe with subsgrip- 1,...,n, define the critical
density of the universg.. as the total density needed for a flat univer&é = 8rGa’p,.,/3) and
denote by2; = p;/p., the ratio of the density of thg" species to the critical density. The set of
equations[(Z.22E(2.25) can be written as

k n—%gh_——Hz‘WZQ 5 (2.26)
k) = §H2cr2§zj(1 +w;)0;, (2.27)
h+2 h— 2k = —9H?p, Y Q;c20, (2.28)
J
h + 67j + 2%(5 +67) — 2k*n = —9H?p (1 + w;)Q0;. (2.29)

wherew; = p;/p;, is the equation of state for th&" species and?> = dp;/0p, is its sound speed
squared.
Combining equationg(2.22) arld (2.24) we eliminatand obtain a useful equation which ex-

presses the metricin terms of the density perturbations:

b+ 2h = —87Ga2(3p + 6 P). (2.30)
a
The energy-momentum conservation principle tells us that
T = 0,1 + Tug T + T3, T =0, (2.31)

and leads to the following time evolution equations for tleaslty perturbations and the diver-
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gence of the fluid velocity

S 4w (0+2) 232 (22 _u) s (2.32)
2 a \ op
b=-2(1-3wH - "9 OP/0p 25 12, (2.33)

wherew is given by the equation of state = P/p. If w is constant, as we shall consider, the
equations simplify further sinc&”/ép = ¢> = w andw = 0. The equationd(Z.82) and(2133)
are valid for the global fluid. They are also valid for a fluichggonent which does not interact
with other components. In the case of interaction we haveltiosame corrective terms. This is
the case for baryons which couple to photons through Thorssattering before recombination.
The full set of time evolution equations for photons, baooold dark matter and massless

neutrinos are|114]:

. 4 2.
. 1.
O = —0p — Qh, (2.35)
: 1.
b= —5h, (2.36)
, 4 2.
0, = —=0, — =h, 2.37
3 3 (2.37)
for the density contrastg and
. , (1
0, =k 157 — o, | +ancor(6, — 6,), (2.38)
' : A5
Oy = — 20, + k26, + L anop(0, — 6y), (2.39)
a 30
0. =0, (2.40)
. 1
0, = k* <15” — al,) , (2.41)

for the velocity divergences. The indicesh, ¢ andv correspond to photons, baryons, cold dark
matter and relativistic neutrinos respectively,is the Thomson cross section, is the electron

number density, ang, andp, are the density of photons and baryons respectively.
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The shear stress of the radiation (photons and neutrincedeigant once the radiation component
has decoupled from the matter component for a mode withihdheon and must be taken into
account. Therefore we supplement two equations for thergpate [114]. The photon shear

stress is particularly useful for studying the primary CM&arization.

, 4 3 2. 4. 9

O = pth T e T ph T g T ganeor ey, (2.42)
4 3 2. 4

s _ 2 LF = 7y 2.4

Oy 15‘91/ 10k 1/3+ 15h+ 5”) ( 3)

where F,,; and F,; are the third moments of the momentum-averaged phase spaséies
for neutrinos and photons. A complete treatment requirdsrafthy of multipole moments to

describe the full distribution function of the radiatiomeponent([41] 152].

2.5 Initial conditions

Although the standard cosmological model is well estaklisisome problems remain. Among
them is the nature of the primordial fluctuations that evalhyued to the formation of the ob-
served large scale structure. There are two possible aglpeealn the first approach, fluctuations
were generated during the rapid expansion of the univerddi@arly imprinted in the matter
and radiation contents early in the radiation dominated Ewa the second approach, the fluc-
tuations were generated during the radiation and matterteraugh some causal mechanism
[29,[61]. In this work we adopt the first option. Different gdse regular (finite as goes to
zero) sets of initial conditions are allowed and groupeddialatic and isocurvature modes.
The adiabatic mode, by far the most studied to date, is ctearaed by the requirement that the
densities of all species are perturbed in proportion at siitial time ¢, independently of the
wavenumbeF: such that

3 3

50,2' = 51),7; = 15%1' = Zémia (244)

where the subscriptlabels the initial time. Or equivalently, using the relatentropy between
61 624

1+wg 14wy

two speciesc andy given byS,, = , Wherew, andw, are the equation of state

parameters of the speciesandy respectively, we have th&,, = 0 for all pairs of species at
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initial time. In addition, all velocity divergences aretiaily unperturbed. The adiabatic mode is
a prediction of the simplest inflationary model[67]. Thislig to the fact that inflatons, quantum
fluctuations of the field responsible for inflation, give ditg rise to perturbations in the energy
density of the inflaton field [50]. Though current datasetsasthat the initial fluctuations were
dominantly adiabatid [88], this does not exclude mixturbadiabatic and isocurvature modes.
Recent works have investigated general admixtures in thaliconditions [13/ 14, 31, 121] and
found that the current datasets allow admixtures with acus@ture fraction up to forty percent
for the CMB temperature and the LSS datasets comb[ned []3,T2@ isocurvature fraction is
expected to be slightly less than ten percent with CMB poédion from RANCK [30].

The isocurvature modes, also called entropy perturbatemescharacterized by the fact that the
abundance ratios of different particle species are noiajyatonstant initially but vary from
place to place. They are predicted by a wide range of scenasaliscussed in [29]. Four reg-
ular isocurvature modes are distinguished, namely thedaak matter isocurvature, the baryon
isocurvature, the neutrino isocurvature density and thirim® isocurvature velocity modes.

In the cold dark matter isocurvature mode first proposed bydBand Efstathiou [24, 25], the
cold dark matter to photon ratio varies spatially. Fludtuad are initially imprinted in the cold
dark matter component of the universe while the other comptnare initially unperturbed.

This can be written at some initial time as
(Scﬂ' - 1, 5{,71' - 5%1' - (51,71' - O (245)

A pure cold dark matter isocurvature mode gives about 30gimere power in the matter per-
turbations on large scales and consequently yields exeeasisotropies in the CMB 63, 140].
The baryon isocurvature was introduced by Peebles [12@]liigifor a universe made of baryons,
photons and neutrinos. In this mode the baryon to photoa matinitially spatially perturbed.

This can be written at some initial time as
(Scﬂ' - O, 6{,71' - 1, 6%1' - (51,71' - O (246)

A pure baryonic isocurvature mode lacks a curvature compaatesarly time and causes earlier
re-ionization and galaxy and star formation, discrepanaiethe peculiar velocities on small

scales and in the flow velocities on large scales|[L66, 165].

20



The neutrino isocurvature density and velocity modes westifitroduced i 999 by M. Bucher

et al. [29]. In the neutrino isocurvature density mode, the desibf the matter components
(baryon and cold dark matter) are initially unperturbedlekine initial perturbation in the neu-
trino density is balanced by its photon counterpart, kegfiie curvature unperturbed. Thus the
neutrino to photon ratio is initially spatially perturbedthhe total density perturbation vanishes.

The species initial perturbations are as follows:
5c7i = 5b7i = 07 5’y7i = __51/72'7 (247)

where we denote the fractional contributions from neusiand photons to the total density at

times early in the radiation era #y, and ., respectively.

For the neutrino isocurvature velocity mode, contrarilyhte other isocurvature modes, there
IS no relative entropy perturbation in the density field ahsanitial time. The rest frame of the
neutrino and the photon do not coincide. The neutrino velativergence is initially perturbed
but compensated by the baryon-photon common velocity Sothieatotal momentum density

vanishes. The species initial perturbations are given by:
HC,i - O, ‘9{,71' - ‘9%1' - ——91,71'. (248)

In the previous section we have derived the set of equatibBd)-[Z.41) governing the pertur-

bations around a smooth background. For each dc#hés system of equations can be solve
uniquely given suitable initial conditions during the ratilbn-dominated era, well before hori-

zon entry of the corresponding mode. In this thesis, “harizabusively denotes the Hubble

distanced; = ar, which is the physical distance that the light has traveithed given lifetime

of the universe. In the next chapter, we briefly review thdgian of the different species under

adiabatic initial conditions.
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CHAPTER 3

Evolution of Cosmological Perturbations: Adiabatic case

The evolution of cosmological perturbations can be subétiinto three stages. First, \ary
early timeswhere allk-modes are outside the horizdir(< 1) and the gravitational potential

is constant as we shall show later; then,ititermediate timewhere, progressively, themodes
enter the horizon, small scale and large scale modes egaivilerently as they enter the horizon
at different times, and the universe passes from beingtradidominated to matter dominated,;
and finally thelate timeswhere all thek-modes evolve identically again. In this chapter, we
review the evolution of the perturbations in adiabatic medé/e first focus on the evolution of
the dark matter as it constitutes the main component of nasshological models, and review
the effect of the other components on the matter pertunbaimlution. We then present the
photon and baryon evolution in the tight-coupling regiméne®evolution of the photons after
decoupling requires using the a full statistical treatmdrttis will be done in the next chapter.
After decoupling, the baryons follow the evolution of theldmatter. Here, we do not consider
the evolution of the neutrinos as these decouple very eadytlzerefore, are not relevant for this

study. In this chapter, we closely follow the descriptiorfid].
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In the previous chapter, we presented the set of time ewol@guations for photons, baryons,
cold dark matter and massless neutrinos in the synchrormugeg However, most studies of
the adiabatic case are done in the conformal gauge. Thissvsk®ler the interpretation of
the different gauge quantities. In the conformal gaugesdlean be respectively written for the

photons, baryons, cold dark matter and neutrino5. as [114]

. 4 .
0y = —5«9V +4¢, (3.1)
0 = —0 + 30, (3.2)
O, = —0. + 30, (3.3)
b, = —gey + 49, (3.4)
for the density contrasts and
9.7 = k2 (i&, - O'»y) + k% + aneor(6, — 0., (3.5)
i — o o 2p2s 4 3P0y _ 2
91, = 9;, + Csk’ (Sb + — 61,77160'1“(9,y 91,) -+ k ’QD, (36)
a 30
b= — 6. + k>, (3.7)
a
0, = k? G(s — ay) + k%, (3.8)

for the velocity divergenceg. Here for the gravitational potential we have adopted the sign
convention in[[41]. For this review, we follow closely the skoof Hu and Dodelson [41, T5].
For the gravitational potential, we supplement the abovevith the field equationd(2.22) and

(Z2Z3) which, in the conformal gauge, can be written as
kK¢ + 3% (giﬁ + %ﬁ) — 4nGla®dp, (3.9)
= (giﬁ n %) — 47Ga®(p + P)6, (3.10)
a

where we have set = ¢, in the limit that there is no quadrupole moments. For corerere,

equations[(3]9) and(3110) can be combined to eliminate énwatives of the potential and
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remain with an algebraic equation for the gravitationakptial given by

k*p = 4nGa? <5p — Sk—il(ﬁ + P)@) : (3.11)

3.1 Cold dark matter evolution

We would like to study the evolution of the dark matter ovexsley. We consider the dark matter
evolution equation$(3.3) and (B.7) and ignore the baryerbey only represent aboilt; of the
total energy density. The radiations, both photons andrimeist contribute to the gravitational
potential which in turn, is closely related to the dark maittethe limit of small baryon density.
The collision term in equatiofi (3.5) can be neglected (tghipling regime). This allows one to

treat the photons and neutrinos as one component and vgréeatution equations as

5, = —ger + 46, (3.12)
: 1
0, = kﬁ&r + k2, (3.13)

where the subscript stands for radiation. An analytic solution for the dark regtvalid at all
times and on all scales is hard to derive. One looks for swiuith certain limits of time and

scales. We therefore consider the large and small scaleswsegarately.

3.1.1 Largescales

On very large scales, analytic solutions for the potentd be obtained through the matter-
radiation transition and through horizon crossing.

3.1.1.1 Super-horizon solution

For the super-horizon modes, modes that are far outsideotiieoh, all terms dependent on the
velocity divergencé) = ikv can be neglected in the density evolution equations. Intiaddli

in this limit, the velocity divergences decouple from theasiéy contrasts. The set of equations

@B12), [3B) and(319) becomes
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b, = 49, (3.14)
b, = 3¢, (3.15)

34 <¢ + %) = AnGad’dp. (3.16)
a a

Equations[(3.14) an@(3115) requite— Z(S’" to be constant, equal to zero in the adiabatic mode.
We then substitut, = 4. in equation[[316) to get

3¢ (cb + %) — 47Ga®p.d, {1 + i} , (3.17)
a a 3y

where we have defined a new variaplas

& Pe (3.18)
Qegq Pr

The derivatives in equatiof{3]16) can be written using #méabley. This leads to

Y

4
3y + 5

y¢’+¢>=6(y+1) -

(3.19)

-
order differential equation can be obtained by differditgaequation[(3.19) and combining with

equation[(3.15). Thus we get

d . o .
Here, we have usegé = Hyd_' Prime denotes derivatives with respectito A second
Y

21y + 54y + 32
2y(y +1)(3y +4)

¢+ ¢ =0, (3.20)

yo+ EDICED

whose solution, first derived by Kodama and Sasaki [86], is

0
¢:% [16«/1+y+9y3+2y2—8y—16 (3.21)

Equation [3.211) is the solution for the gravitational padignon super-horizon scales. It tells
us that, in the limit of small;, equation[(3.21) reduces tb = ¢(0). For largey, when the
universe is matter dominated, = %¢(0). Thus on large scales, the gravitational potential

drops by 10% as the universe passes from being radiationnddeai to matter dominated. The
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gravitational potential decay is not instantaneous, beuin a quite long period, after the
matter-radiation equality. For cosmological models wétbd matter, the matter-radiation equality
epoch is closer to decoupling so that the gravitationalmg@kdecay is more apparent even at

the time of recombination. Figufe 8.1 represents the elrludf the gravitational potential on

large scales.
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Figure 3.1: Super horizon evolution of the gravitationalgmtial in a flatACDM model with
h = 0.7, Q, = 0.0449, Q. = 0.245.

3.1.1.2 Through horizon crossing

In the limit that radiation is not important, that is deep I tmatter dominated era, equations
BI12) and [[3.113) can be neglected as the gravitationahpiatedepends only on the matter
inhomogeneities. From the previous solution, we saw theagtiavitational potential is constant
deep in the matter dominated era. This allows us tajset 0 as the initial conditions for this

problem. We consider the field equati@n{3.11) and neglectatdiation components therein to
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get the following equation

3 3H
240 Y72 o
Ko=H {5C+ = 90] . (3.22)
We use equatioi(3.P22) to eliminatefrom equationd(313) an@(3.7), knowing that in the matter
dominated eraf{ oc a~'/? so thatdH /dr = —H?/2. Equation[[3.B) becomes

2k%p  2k%¢ 3HO. 3H?6,
st 3~ T o T0e=0 (3.23)

We would like to get a second order differential equatioroastfe previous case. To this end, we

first eliminated, from equation[{3.23) using the velocity divergence eque@1). This leads to

4 {90 . %} (9_P12 +k2) _0 (3.24)

3H2 T |K2 T 3H|\ 2
Now, if the second order differential equation has no termmpgrtional to¢, then constant
gravitational potential is one of the solutions to the d#f&ial equation. With this mind, we then
differentiate equatiori{3.24) with respect to the confdriimae, dropping all terms proportional
to derivatives of the potential and usilgétH‘l = % Thus we are left with
b ¢

23

or> L\ [0, 20 d9H HO. 261, .,
(T+k)+[ﬁ+3—H]%T——[H 220 o k), (329

where we have eliminatefi by using the velocity divergence equation again. The temiké
square brackets on both left and right hand sides of equ@i@B) can be expressed in terms of
# using equation{3.24). Thus, there are no terms propoitione gravitational potential in
the second order differential equation. Therefore, conigfeavitational potential is the solution
in the matter dominated era. Thus the gravitational pcaéntimains constant as long as the
universe is matter dominated. At later times, when the us&/é&s dark energy dominated, the

gravitational potential decays.

3.1.2 Small scales

In the previous sub-section, we solved for the evolutiomefgderturbations that crossed the hori-

zon well after the epoch of matter radiation equality. Irstbéction, we solve for the evolution

27



of the perturbations that crossed the horizon deep in thatrad dominated era. We shall sep-
arately consider modes in the radiation dominated era ici@#$ise horizon and the sub-horizon
modes passing through the matter radiation equality edohdifficult to analytically solve for

modes which enter the horizon around the epoch of the maitétion equality.

3.1.2.1 Horizon crossing

In the radiation dominated era, the gravitational potérgidetermined by the radiation perturba-
tions. The gravitational potential sources the matternybations but the latter do not influence
the gravitational potential. Therefore, to solve for thetteraperturbations in this case, we first
need to solve for the gravitational potential, then finaltyve for the matter perturbations us-
ing the gravitational potential as an external driving éord&Ve consider the algebraic equation
(@.13) and neglect the matter density contrasts thereimegsatre small compared to the radiation
density contrasts deep in the radiation dominated era and ge
6H?

o= 7z E& + He,} , (3.26)

sinceH? = 8wa?Gp, /3 in the radiation dominated era. Equatién(3.26) is useditoiehted,
from equationd(3]11) an@(3.5). These become

1 . 3 . k272 k21
—— 1 — 1+ pET 27
ot 0 |14 | = =0 |14 5] - o 327
) 2.2
b, + %& = k% {1 - kTT] . (3.28)

We use equatior{3:28) to eliminatie from equation[[3:47) and differentiate the latter with

respect to the conformal time to get the following seconakodifferential equation
- 4 k?
b+ =6+ 306=0. (3.29)

To solve for the gravitational potential equation[(3.29) can be turned into the spherical Bessel

equation of order 1 by defining a variahle= ¢7. Equation[(3.20) becomes

2
u+ga+(k——3)u=0. (3.30)
T

3 72
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The two solutions of equatioR(3130) are the spherical Béssetion j, (k7/+/3), and the spheri-
cal Neumann function, (k7/+/3). The latter is discarded on the basis of the initial condgias
it blows up for very small-. Expressing the spherical Bessel function in terms of trayoetric
functions, the gravitational potential can be written as
5= 34, ( (kr/V/3) — (k7//3) cos (Wﬁ)) |
(kT/V/3)?

whereg, is the primordial value of. Equationl(3.31) describes the evolution of the gravitetio

(3.31)

potential for modes crossing the horizon in the radiatiomihated era. As the mode enters the
horizon, its potential first decays then oscillates. In thatlof large k7, the gravitational poten-

tial oscillates with an amplitude decreasingras.

With the knowledge of the gravitational potential in theiedidn dominated era, let us solve for
the matter perturbation evolution. To this end, we considematter evolution equatiorls{(B.3)
and [3.¥) and turn them into a second order differential Bgoadifferentiating equatiori{3.3)
and using equatiofi{3.7) to eliminate We get

5.+ <%9 - k%) — _34. (3.32)
The term ind, can be eliminated using equati®@n{3.3). This leads to
.1 PR 3.
de + =0 = =30+ k“p — —0, (3.33)
T T

where the right hand side is the source term. We shall dehbteS(k, 7). The solutions to the
homogeneous part of equatidn (3.33) &re= constant and. = In (a). Therefore, the general

solution to equatiori{3.33) can be written as
Oc(k,7) =Cy+ Cyln (1) — / S(k, )7 (In[k7'] — In [k7])dT', (3.34)
0

where the third term is constructed using the two homogemnsolutions and the source term
[74]. The initial conditions,§. = constant at early times, dictates th@& = 0 andC; =
3¢,/2. As the source term in the integral, along with the grawvitaai potential, decays to zero

as the mode enters the horizon, the dominant contributidheéntegral occurs aboutr ~ 1.
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The integral over the first term leads to a constant, whileinkegral over the second term is
proportional tan (k7). Thus, as the mode enters the horizon, its matter densityasitis given
by

5.(k,7) = A, In (Bk7), (3.35)

where the constant and B are given by

Agp, = /OO S(k,m)r'dr, (3.36)
0
A¢,In(B) = gqﬁp — /00 S(k, )" In (kT")dr'. (3.37)
0

Equation [[3.3b) gives the matter evolution as the mode est® horizon. It tells us that the
matter perturbations grow logarithmically during the eddin dominated era, slower than in the
matter dominated era. This is due to the pressure of thetralighs the universe approaches the
matter dominated era, the radiation pressure becomesniesstant and the matter perturbations
begin to grow faster. Figute3.2 shows the evolution of tlaigational potential in the radiation

for modes that enter the horizon well before equality.

3.1.2.2 Sub-horizon evolution

As we saw for the horizon crossing, the gravitational po#tirt the radiation dominated era, is
determined by the radiation. However, as the matter peatimbs grow,p.d. eventually over-
takesp,d,, even if p. is still smaller tharp,. Once this takes place, the gravitational potential
evolves together with the dark matter perturbations, iedéently of the evolution of the radia-
tion perturbations. To solve for the evolution of the darkteaperturbations in this regime, we
consider the matter evolution equatiofs13.3) (3.7),the algebraic field equatiof (3111)
while neglecting the radiation components therein as thegabdominant. For convenience, we
use the variable introduced in equatioh(3.118) as we aim to follow the darkteraierturbations
through the epoch of the matter radiation equality. Thidseta the following set of differential

and algebraic equations
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Figure 3.2: Evolution of the potential in the radiation-doated era. These are small scale
modes which enter the horizon well before equality. For afi@DM model withh = 0.7,
Q, = 0.0449, Q, = 0.245.

0
! € — 3¢ 3.38
0, k2o
0+~ =——— (3.39)
y Hy
3y
k2 = H?5,, 3.40
T (3.40)

where thelrGp.a? factor is replaced by3/2) Hy/(y + 1) since the universe is far from being
dark energy dominated so that the dark energy is neglighle.would like to reduce this set
of equation to a second order differential equation. Weeddifitiate equatioh_(3.38), eliminate
¢’ using equation[{3.39) and use the fact th@t/ Hy)/dy = —(1 + y)~'(2Hy)—1 to get the

following differential equation
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s (2+3y)be k¢
© 2Hy*(1+vy) H?y?

To eliminated,., ¢ and its derivatives, we recall that for sub-horizon modes first term on the

= —3¢" + (3.41)

right hand side is much smaller than the second and thereforée neglected since the second
term is multiplied byk?/H?2. The matter velocity divergenge and the gravitational potential
can be respectively written in terms&fandd,. using equation§(3.88) anld (3140) and neglecting

the gravitational potential which, on sub-horizon scaesyuch smaller thah.. Thus equation

B41) becomes

248y o 3
2y(y+1) © 2y(y+1)

Equation [3.4R) is théeszarosequation. It gives the sub-horizon evolution of the coldkdar

8+ 5. = 0. (3.42)

matter once radiation perturbations have become irreteByrinspection, that s if’. is constant,

one of the two independent solutions of equatlon(3.42) is
Di(y) =y +2/3, (3.43)

a first order polynomial iny which corresponds to the growing mode of the matter perturba

tions. The second solution can derived knowing that the lsleszequation tells that= 6./ D

satisfies
1+ 3y/2)u” + 21/4)y* + 3y + 1] = 0. 3.44
(1+3y/2) y(y+1)[(/)y y+1] (3.44)
Integrating twice this equation leads to the second salutlee decaying mode
I1+y+1
D =D In | ———| —24/1 . il
o) = D)t | Y oy (3.4

In the late time limit, that ig/ < 1, the decaying mode falls off as3/2. Equations[(3.43) and
@.49) are bothk independent. This implies that at late times, all the mode$ve identically.
The general solution to the Meszaros equation is then adddiy a linear combination of the

growing and decaying modes as
0 = C1D1 + CyD, fory < yu, (3.46)
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whereyy; is the ratio of the scale factor when the mode enters the dwotiz the scale factor at
the matter radiation equality. The constafifsandC’, are determined by matching this solution

to the logarithmic solution given by equatidn{3.35).

3.1.3 Matter transfer function and Power spectrum

The gravitational potential at the late times can be reladgtle primordial potential in the very
early universe as
o(k,a) = ¢p(k) x T (k) x Di(a) (3.47)

whereT (k) is the matter transfer function which describes the evotutif perturbations through

the epochs of horizon crossing and matter radiation egquagitined as

T(k) _ ¢(k>alate)

N learge—scale(ka alate) ’

(3.48)

whereq,,;. denotes an epoch well after the transfer function regimbeeémiatter dominated era.
If we define the ratio of the gravitational potential at a gitene to its value right after the

transfer function regime as

o(a) = Di(a) (a > aje), (3.49)

¢(alate) a

and for a flat, matter-dominated univerde, (a) = a), we have

o(F,a) = o, (R () 2

(a > aiape)- (3.50)

On the other hand, we can relate the matter over-densityetpakential at late times using the
Poisson’s equation (small scales and no radiation limigofgion [3.111))

B 47 G pma’d,

¢ 12 (3.51)

From equation{3.51) and using the fact tpat= Qp., /a® and4rGp.. = (3/2)H,?, the matter

density can be written as

- k2p(k, a)a

Oc(kya) = m (a > aze)- (3.52)
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Combining [3.5R) and(3.50), we relate the over-densitaydd the primordial potential

———6,(F)T(k)Di(a)  (a> uae)- (3.53)

We define the matter power spectrut(k) of the primordial perturbation to the metric asi[41]
< G(k)g"(K) >= (21)* Py (k)32 (k — K). (3.54)

The power spectrum measures the spread in the distributioratier throughout the universe.
It is large if there much underdense and overdense regiodssmall if the distribution is ho-
mogeneous. It is shown that the primordial spectrum of dep&rturbations can be written as
P;(k) = AE™ wheren is the spectral index. Harrison, Zel'dovich and Peeblesvelathat for
the simplest inflationary model, = 1 [66,[184]. The power spectrum of the matter at late times
is given by )

P(k,q) :27#5?{%#(/5) (%) . (3.55)
This equation relates the power spectrum of the matteiiloliston to the primordial power spec-
trum produced during inflation given by, = (5072 /9%%)(k/Ho)" 6?1 (Qn/D1(a = 1))?, the

transfer function and the growth function.

3.1.4 Growth function

We derived the Meszaros equatién (3.42) assuming a uniweade of matter and radiation only.
Here, we generalize the Meszaros equation to account foddhle energy which dominates
the universe at late times. Let us consider the set of eq&af{®.38){3.40). At late time, the
variabley > 1 and the radiation density is insignificant. We combine thexpeations to get
a second order differential equation as before, diffeatinty equation(3.38), settingrGp. =

(3/2)HZS2,,a—3 and using the continuity equation to eliminate the velodityergence term. This

leads to

d?é,
da?

3\ do, 3Q,HE.

a
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where we use the scale factor as the variable insteadBduation[[3.56) has two solutions. The
first solution,s. o« H o« a~?/2, is a decaying mode. The second solution, the one that atsoun
for the lastingk—modes of the perturbations long after horizon crossing cawolitained by
lettingu = §./H. We then have

= 0. (3.57)

d? dln (H 1] d
“+3{ a H-}—“_
da

da? da a
We integrate twice and substitute back= «H to get the expression for the growing mode

a dal
D = AH — 3.58
@) = (o) [ i (3.58)
where, the proportionality constart is determined knowing that at late times in the matter
dominated erap; should be equal ta. At those time,H = HyQ2a~%/2. Equation [3.58)

becomes
5Q,, H(a) /“ da
= ) 3.59
2 HO 0 (CL/H(CL/)/H0>3 ( )

Equation[(3.59) gives the growth of the matter perturbatarate times for a flat universe. In the

D1 (CL)

matter dominated era, it reduces to the scale factdfor an open universe, a similar equation
can be derived. In both cases, open matter dominated ueieerlat dark energy dominated
universe, the growth is suppressed. Therefore, structnigas open universe or in a dark energy

dominated universe develop much earlier than in a flat, mdtminated universe.

3.1.5 Including other species

Besides the cold dark matter, which is the main componentastmosmological models, let us
consider the baryons and dark energy. The photon evolugitveated in the next chapter. In this

section, we briefly look at how the other species affect thaanperturbations.

As the baryons only represent abd(t of the total energy density of the universe, their effect
on the matter power spectrum is small. Nonetheless, two sigimatures are worth to notice.
First, loading baryons suppresses power on small scalésisTtiue to the fact that the radiation

perturbations undergo a decay when entering the horizarsirog the baryon overdensities to
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also decay due to the tight coupling before decoupling. Sdigpbaryons imprint ripples on the
matter transfer function due to the acoustic oscillatiogf®ie decoupling. Although this effect

is less noticeable, it is important as it relates to the featd the radiation.
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Figure 3.3: Effect of the dark energy on the matter power tspet

The dark energy has three main effects on the matter petininisa First, since introducing the
dark energy implies thd?,, is less than one, the turnover in the matter power spectrshified

to small wavenumber as the turnover scale is proportiondidanatter density?,,. Figure[3.B
show how the matter power spectrum shifts to the left as wednice the dark energy. Secondly,
the dark energy is indirectly related to the small mattesitgnFor a fixed gravitational potential,
the Poisson equatioh{3]152) implies that the overdensitiegversely proportional to the matter
density. Consequently, the matter density decreasesnthktade of the matter power spectrum
increases. Thirdly, as we saw in the previous section, doitong the dark matter changes the

growth factor at late times. The growth factor in a dark epélgminated era is given by equation
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B.59). As it depends on the Hubble rate, which in turn depe&mithe model of the dark energy,
different models of dark energy will have different growéicfors. For a flat universe, the Hubble
rate is given by

(3.60)

H(z) [ Qg 17
HQ N ? &3[1—&-11)]

Thus the Hubble rate and therefore the growth factor dependsoth the density2,. and the

parameterization of the dark energy.

3.2 Evolution of photonsand baryons prior to decoupling

The evolution of the photons and baryons can be separat&idistinct epochs: The period
prior to decoupling where photons and baryons evolve t@gedb a single perfect fluid, and
the post decoupling period where the photons freestreanthendaryons fall into the gravita-
tional potential wells set by the dark matter. Here, we omlgsider the pre-decoupling period.
The tight-coupling approximation of photons and baryotsved us to equaté, andf,. Thus
combining equation§(2.B8) arld (2.39) leads to

. . 1
(1+ R)b,, = —RO, + k2(1(5w — 0.,) + 2k*Réy, (3.61)

whered.,;, is the baryon photon common velocity divergence. We difféate equation[{2.34)
and make use of equatidn(3161) to derive the following seé@rder differential equation for the

photon density perturbation

R . .
——=h+h

. R . 2
0y + ——0, + k*c25, = —= T

.62
1+ R 3 ’ (3.62)

where we have neglected the photon shear and the pressuritgras it remains smaller than
the term ind., prior to decoupling. Equatiol {3162) represents a drivambaic oscillator with
the competition between gravitational infall and photoagsure giving rise to acoustic waves
propagating in the photon-baryon fluid at the speed of so&odthe associated homogeneous
equation, we look for solutions of the form o exp [z fOT wdT’] wherew(7) is some phase

function. The two solutions to the homogeneous equatiosianply sin kr, andcos kr, where
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re(T) = fOT c,d7’ is the sound horizon, and the phase function is- kc,. Here we have made
use of the Wentzel-Kramers-Brillouin (WKB) approximatiddn large scales, the WKB approx-
imation breaks down, but these modes are irrelevant for M8 @rimary anisotropy treatment
as they only enter the horizon well after decoupling. Thdigalar solution is constructed by
integrating the driving term weighed by the Green’s funttod the two homogeneous solutions
[[74]. Thus, the time evolution of the acoustic waves in thetph component prior to decoupling

is given by

(L4 R)Y25,(k,7) = Agsinkry(7) + A cos kry(7)

+

klcs /Or(l + R(T/))1/2 sin [krs(T) — k’”f’s(T,)]F(T/)dT/, (3.63)

whereAgs and Aq are determined by the initial conditions as described_1ij, [29d

Fr) = —g <1+i3h + 'h) , (3.64)
is the gravitational driving term which evolves differgntor different initial conditions. Equa-
tion (3.63) gives the time evolution of the photon densitytcast irrespective of initial condi-
tions, in the tight-coupling regime. In this regime, theywar density contrast is related to its
photon counterpart by, = %57. On small scales, a correction to the tight-coupling apipnax
tion must be applied when Silk damping becomes importanphasons leak out of overdense
regions, dragging baryons with them. This is done by muiifg the solution above by **/%5,
where the photon diffusion scalg,' is given by

—2_1/l32+4(1+3>/5

k —
b 6/ 7w (1+R?2

where7r, = an.or is the differential optical depth.

For the common photon-baryon velocity divergence, we difidate equatiod (3.61) with respect

to the conformal time and use = —46., — 2/ to obtain the second order differential equation

.. k2 .. 1 ..
(14+ R)0 + 2RO, + (3 + R) 0 = —Ekzh,. (3.65)
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Equation [3.65) represents a forced and damped harmonitatmcwith variable coefficients.

Its particular solution, applying the same method as foaéiqn [3.62), is then given by

(1+ R)0,, = B¢ coskrs + Bgsin kr

- g /OT V3(1+ R sink(ry(r) — ro(v')) (7)) d7, (3.66)

where B and Bg are determined by the initial conditions. This solution e multiplied by
e~ (k/kp)* tg correct the tight-coupling approximation.
The adiabatic mode is characterized by the requirementlieatensities of all species are

perturbed in proportion at some initial time such that

3 3
ei = Obi = 70y = 705 .67
67 (51,7 6% (57 (36 )

where the subscriptlabels the initial time. Or equivalently, using the relatentropy between
61 5y

1+wg 14wy

two speciesc andy given byS,, = , Wherew, andw, are the equation of state
parameters of the speciesandy respectively, we have th&,, = 0 for all pairs of species at
the initial time. In addition, all velocity divergences angtially unperturbed. Therefore, using
the initial conditions for the adiabatic mode [29], the dam$ A5 and A in equation[(3.63) are

all zero. The photon and baryon density contrasts are regpgaiven by

5P = ge—’*/’% / (14 R(7")) Y2 sin [kry(r) — kro(7)] x FAP(7")dr, (3.68)
0
AD 3 \/g —k2 /K2 T N\1/2 o: / AD_1 /
ot = 15 ¢ o [ (14 R(7")/“sin [krs(T) — krs(7")] x F22(7")dTr'. (3.69)
0

Thus, the adiabatic mode is only sourced by the gravitatidriging term F4?. This driving
term can be approximated by
FAP (k) & 2k jo (k)

on small and intermediate scales which reducegkte? at early times. On very large scales
the above approximation breaks down, however, this doesffiett our physical description
of the CMB as these large-scale modes are well outside thedmoat decoupling and do not

substantially influence the CMB features. The lack of an eaaalytic expression for the driving

39



AD (k = 0.019 h/Mpc)

AD (k = 0.047 h/Mpc)
B

3.0[ I 7 [ 3; I
[ Numerical ! / ll ] E Numerical !
2‘5} - - = = Semi—analytic : ! : - 22 - - = = Semi—analytic : :
E | 1 E | |
r 1 1 E 1 l
20 | | 1E | I
[ | 1 E | |
r I I I I
~ el | l ~ | 1
o 1.51 | \ © 0 3 | \
[ 1 E 1 [

r | | £ |

1.0 | | i |

r | 1 E !

[ | 1 E 1

0.5 1 1 —2F 1
[ 1 1 E 1 vl
r 1 1 E 1 A
0.0L L 1 -3t | il |

10 100 10 100

Conformal time T Conformal time T

(@) (b)
AD (k = 0.088 h/Mpc) AD (k = 0.25 h/Mpc)
4 ™ 4 T
[ Numerical A [ Numerical

[ - --- Semi—analytic [ —--—=< Semi-analytic f,

10 100 10 100
Conformal time T Conformal time T

(©) (d)
Figure 3.4: Evolution of the photon density contrast prierdecoupling for the AD mode:
Comparison of numerical and analytic solutions for someemambers. We considér =
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the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

term makes it difficult to derive exact analytic solutionstioe time evolution of the photon and
baryon density contrasts. Nevertheless, good approxamafor the photon and baryon density
contrasts are given by

5 = gab ~ kg (k) x e—F /K. (3.70)

Therefore, at early timeS:r;(7) < 1) the density contrasts for the adiabatic madlex J, o

40



(1 — cos kry) couple to acos krs harmonic [74]. Thus, the acoustic oscillation for the AD raod

can be regarded as a forced oscillation with a cosine typsegpha
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CHAPTER 4

CMB Anisotropies: Adiabatic case

The main features of the CMB are determined by the fluctuatorthe last scattering surface. At
that time, the universe was nearly an homogeneous plasrhamill fluctuations in the density
and velocity fields of the particles, and in the gravitatigmatential. In this chapter, we recall
how fluctuations on the last scattering surface translabdlire CMB power spectrum as observed
today. We first present a simpler calculation that highbghtferent contributions to the observed
CMB anisotropy. For a formal and more detailed study of thetph evolution, which can no
longer be treated as a perfect fluid after decoupling, we rmiakeof a perturbed Bose-Einstein
distribution function and introduce the line of sight intelgapproach for the computation of the
CMB anisotropies and review the effect of the cosmologieahmeters on the CMB temperature

power spectrum in the AD mode.

4.1 Sachs-Wolfederivation

Before decoupling, the baryons and photons are coupledighr@homson scattering. The

baryons are clustered in gravitational potential wells aimte the photons are coupled to the
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baryons, they are confined in potential wells created by Hrk thatter. Therefore, at the last
scattering surface when the baryons and photons decobplphbtons have to climb out of the
potential wells. In addition, the geodesics of the phot@avinhg the surface of last scattering
are sensitive to the degree of homogeneity of the univertee afatter-radiation equality. A
photon traveling to us from decoupling will experience dtghiits energy. Thus, the primary
anisotropies of the CMB can be considered as being geneiratgeb distinct phases: before
and after recombination. Although this description is calgualitative approximation, it allows
a clear and simpler understanding of the CMB physics. Indbigion we closely follow the
derivation of the Sachs-Wolfe effect by Giovannini[61], d&son [41] and, Hu and Sugiyama
[72].

The photon energy as measured in the frame of reference of the fluid, is given by

€ = guu' P’ = goou’P® + gu' P, (4.1)

whereut is the four-velocity of the fluid and@” is the photon four-momentum. The four mo-

mentum of a photon can be written as

pr=p°

d\ a2 dr a?

dz’  P'de¥ E d
T {n"—i—%éas”}, (4.2)

whereF is a parameter defining the redshift in the photon energgnotes the scalar perturba-

tion to a variable and” = (1, n?) is the four-vector describing the direction of the photon.

Introducing the affine parameterthe perturbed photon geodesic can be written as

d?>6x* dx® daP
i 4.3
dr? +0stag dr dr ’ (4.3)
whered, I} ; are the perturbed Christoffel symbols of the metric/a*. Forp = 0 in equation

(#3) and integrating, we derive that

ddx°
dr

_ / _T°<q; - d)dr — 20 (4.4)
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In order to obtain this equation, we have used the time Giffidtsymbolss, '), = v, o, =
—gz%&l-j ands,I'); = —0;¢. As the four-velocity satisfies the normalization conditig, uu” = 1,

the first order in the fluctuations gives usl[61, 2]

W= 21— ). (4.5)

a

In addition since an electron emits and absorbs a photocgtig@onents of the four-velocity are
related to the baryonic peculiar velocity by
_ Y%

Soul = 2 = lﬁivb. (4.6)
a a

Thus, substituting the four-velocity and the four-momemt(££2) into the equatiori{4.1) and
using equationg(4.4) and (#.6), we can write

£ = b [1 — 9 — nup + /TO((,Z'ﬁ—i-QL)dT} : 4.7)

a
The photon temperature fluctuati%;-Tr can be related to the difference between the final and the
initial energies of the photon. If the initial photon eneigyiven byE;,.;; = Eq[1 + (6T/T)] =

Ey[1 + 6,/4], the temperature fluctuatiod- can be written, after integration, as

(%) = % — ]2 = [navg] 7 + / _To(gf} + 4)dr. (4.8)

Equation[4.B) gives the different contributions to therdmin the photon temperature. The first

(3

contribution comes from the first two terms of the right hamesand constitute the so-called
Sachs-Wolfe (SW) effect [146]. The second contributiore ttuthe baryon peculiar velocity is
the Doppler effect, and the last term is the Integrated S¥dbige (ISW) effect which depends
on the change in the potentials and photons travel 61,1 7T8¥, Figurd4ll gives a qualitative

representation of the different contributions to the CMBvpospectrum.
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Figure 4.1: Different contributions to the CMB power spaatt Source: Hiet al,, arXiv:astro-

ph/9604166v1 (1996).

4.1.1 Theordinary Sachs-Wolfe effect

On large scales, the potentialsand« are constant in time after the last scattering. Therefore,
the only non-zero terms in equatidn (4.8) are the intringngity contrast of photons at the
last scattering surface and the gravitational Newtoniaermi@l. A photon from a dense region
at the last scattering surface will be blueshifted. Thediaty4 is due to the fact thap, o

T*. In addition a photon loses energy from climbing out of a gedional potential well. This
corresponds to a redshift in temperature. This effect igptieeominant source of fluctuations
in the CMB for angular scales above about ten degrees (largela scales i.e/ < 20). The
change in the photon temperature on large scales is therefor

AT 5, 1
(T)SW =2 - =3% (4.9)

where we have expressed the density contrast in terms ofbtieatml using equatioi(3.1) and

the adiabatic initial conditions.
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4.1.2 TheDoppler effect

As the baryons oscillate being tightly coupled to the phsefdimeir motion relative to the observer
causes a Doppler shift. The two opposite directions of thigdres with respect to the observer
provoke a spatial temperature variation on the last stadtesurface. The contribution of this

effect is important on small scalels{ 200) and is subleading on large scales.

In the tight coupling approximation, the photons and basyame described by the set of equations
@), (32), [3b) anfl(3.6). We substitute the baryon cigjadivergencd), from equation[316)
into equation[(315) and differentiate with respect to thefoomal time to get the second order

differential equation

k2

d R d 2.2 (%+¢):_ (;qb—?ﬂ) (410)

o kR

dr? 14+ Rdr 3\1+R

Before recombination) = ¢2 = R = 0 and¢ = —¢. Therefore, equatiofi{Z110) reduces to
0, + c2k*3, = constant (4.11)

which represents a harmonic oscillator that causes the IBoppaks of the CMB anisotropy
spectrum. The acoustic oscillations are caused by the dititopdetween the photons pressure
and the gravitational attraction. Using the WKB approxiimat Hu and Sugiyama derived a

general solution to equation (4]110) given by

67(7—) _ 57(0) .
YR (1) = {—4 + 925(0)] cos (krs)
k o ’ ! / a1 r(7) — 7 7_,
o= [ o) ol ) <) @a2)

for the photon density contrast, and

0, =3 PT(O) + ¢>(0)} sin (k)
k T / / / /
—5 [ @18 — vl coslh(r(r) — ()L (4.13)
0
for the photon velocity divergence with adiabatic initiainditions. From equations{4112) and

@.13), we see that the density contrast and the velocitgrgence are in opposite phase, with
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the implication that, the adiabatic spectrum is not zerondrgre. The acoustic peaks are located

atk, = nw/rs(7.), or, in the angular spacé, = nnd 4. /r(7:).

4.1.3 Theintegrated Sachs-Wolfe effect

The integrated Sachs-Wolfe effect is given by
% = / 0(q’5 + 4)dr. (4.14)

It is caused by a gravitational redshift occurring betweam last scattering surface and us,
and is only important on large scales if the potentialgnd+ change in time. There are two
main contributions: The first, calletie early ISWoccurs when the universe passes from being
radiation-dominated to matter-dominated. The seconthedthe late ISWarises much later as
the universe passes from being matter-dominated to cogicalaconstant dominated. For the
early ISW effect, at the matter-radiation transition, tlberon size was much smaller than today.
Therefore, these secondary anisotropies will be produndugher multipoles, around the first
peak ¢ ~ 200). Its main contribution occurs at recombination and is iagghwith the monopole
[41]. The late ISW effect arises at late times, as the unevarglergoes a transition from being
matter dominated to a curvature or dark energy dominatedhé\matter-dark energy equality,
the horizon size is much comparable to its current size. &fbeg, this effect affects larger scales

than the early ISW{ < 100).

4.2 Boltzmann Hierarchy and the line of sight integral ap-
proach

In the present section we derive a formal solution of the CMBatropy and introduce the line
of sight integral approach for an efficient computation.efAteaving the last scattering surface,
photons can no longer be treated as a perfect fluid as theamgaigher order moments develop
rapidly and become not negligible. One needs to use the Bostein distribution function for
a photon full description [106, 114]. Here, we follow the Ww®iof Liddle and Lyth[[106], and
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Giovannini [61].

We consider a perturbed Bose-Einstein distribution furctiin a phase space. The phase space
is described by positions?, and conjugate momenfa = mV; where the velocity; is given by
dx;/+/—ds?. Conjugate momentum is related to the proper momentuby P, = a(1 — ¢)p;.

For convenience, we define the comoving 3-momenjum ap; which can be written in terms

of its magnitudey and directiom;. It follows that the distribution function can be written as

f@, Pr) = folg)[1+ fO(, q,ny, 7)), (4.15)

where (U is a small perturbation to the zero-order phase space llion f, which is the
Bose-Einstein distribution for bosons given by:

_Ys 1
fole) = @m> (4.16)

wheree = a(p? + m?)'/? = (¢* + a®>m?)'/? is the energy]; = aT is the temperature of the
particles today assuming that the scale factor taglay 1 andg, is the number of spin degrees

of freedom. The termép andk g are the Planck and Boltzmann constants.

In terms of the distribution function and of the four-moment the energy-momentum tensor is

[L14]
—~1/2 PHPV

0

T,, = /dPldPgdPg(—g) f(z', Py, 1), (4.17)

whereg is the determinant of,,. Since(—g)~Y? = a=*(1 — ¢ + 3¢), dP,dPodPs = (1 —
3¢)¢*dqdQY, [ dQnin; = 4mé;;/3and [ dQn; = [ dQn;n;n, = 0, the components of the energy-

momentum tensor to linear order in the perturbations canrittew as [114]:

70 = —q* / ¢*dqdQ\/q® + m2a? fo(q)(1 + fV), (4.18)
70 = —a_4/q2dqunifo(q)f(l), (4.19)
. 2712‘71‘
= / ¢PdgdQ——= fo(q)(1 + 1), (4.20)
q2 + m2a2
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whered} is the solid angle associated with direction The equationd {418, {4119) arid(4.20)
are general, and hold for massive relativistic particlewal. The rate of change in the phase

space distribution can be written as

df  Of dridf dqdf dn; Of
= = Ccoll-
dr 0nz

dr — 0r ' dr Ox * dr dq (4.21)

The termC,,; represents all terms due to collisions. Their form depemdthe type of particle

interaction. Using the geodesic equatilé]?f% + FZBPO“PB = 0 we deduce a relation fcgg

dq

- =0 — (g, T)midY. (4.22)

To first order approximation, we can neglect the tégim% in the Boltzmann equation and

therefore write

afw
or

din fy
ding

{é ~iS(E mw} - e (4.23)

The equation[{4.23) above is a more general equation, \@idlf matter and radiation compo-

+i(k-n)fW+

nents of the universe. By setting the right-hand side equaéto (the collision-less Boltzmann

eguation), one can recover the expression for a perfectroidel when shear and higher order
moments are negligible. Let us notice that the terms in thismgon depend on the direction of
the momentum, only through its angle With.

Though photons travel almost freely after recombinati@casional Thomson scattering contin-
ues to transfer energy and momentum between photons anernifatte define the momentum-

average phase space density a$l[62, 114]

[ Pdafo(g) SV &

T) = Tdaty E;(—i) E(k, m)Pi(k - ), (4.24)

where we have expandéd in a series of Legendre polynomid&;(l% -n) as it depends on the

F"/(EJ

3>

cosine of the angle betweérand#, the photon perturbations, ¢, ando., can be written using
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the new variablé”, and the equation of stafe = 3P, = a™* [ ¢*dqdQ2fo(q) as

1 -
5= / dOF, (R 7 7) = Fop, (4.25)
s
3t A = 3
0, = Ton dQUk-n)F,(k,n,7) = Z/{:Fﬂ, (4.26)
3 PR 1 - 1
O~ = _16—7'(' dS) |:(k7 . n)2 — §:| Fy(k"n, ’7') = 5 ~2- (427)

The right hand sides of the above equatidns {4 .P5)4{4.Z7Jlarived using the orthogonality of
the Legendre polynomials. The zero moment(0) of the multipole expansion is the monopole
d,, the first moment{ = 1) is proportional to the dipolé, and so on.

Bond and Efstathiou have shown that the linearized cotlisiperator for Thomson scattering is

given by [25]
= - 1 N
Ccoll = QNeTeOT —F—Y(/{?, ﬁ, 7') + F—YQ(/{?, T) + 4n, - 276 — gF,yQPQ(k . ﬁ) s (428)

whereo is the Thomson cross-section,andv, are the proper mean density and velocity of the
electrons and. is the ionization fraction. In order to understand equa@#8), let us suppose
that there is no collision effect. Then the change in the ndorma-average phase space density
is exactly the sum of contributions due to the photon dens#turbations and the scattering
terms accounted for by the Doppler effect and an angularrakpey. Therefore the collision
effect is different from zero if one term dominates. The tasin %FWPQ(I% -n) is proportional

to the Legendre polynomidP,(x) = (32 — 1)/2. It accounts for the angular dependency of
Thomson scattering, which has a cross-sectioh+ cos? p, wherey is the polar angle giving

the direction of the scattering.

Now let us define thérightness perturbatio® for the fluctuation of the total density of the

radiation field as

1+ 06
Comparing equation§ {4115) arid (4.29) to first order, we dedbat the brightness function is

ﬂﬂ%mﬂz(—iﬁm. (4.29)

related to the perturbatioff’) by

dinfy " J a*dafo G2
— _ d F,=-02— "~ 91 _ 4@, 4.30
o= (Grg) - @9 =0 Tidate 0 439
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Then, the Boltzmann equation for perturbation of the bngks becomes
i . 1
O + tku(© + ) = ¢ + ancxreor | —O + Og + vy — §PQ(M)H , (4.31)

whereu, is the baryon velocity given by, = f—;; andy = k-n. The functionl] = ©,+Aps+Apy
whereApy and A p, take into account the polarization of the photons after Témmscattering.

Expanding the temperature anisotropy in multipole moments

O(p) = D 20+ 1)(=i)'OPulp), (4.32)

¢

one finds the following hierarchy of the coupled differehéiquations

Oy = —kO; + 4, (4.33)
. k

0, = 3 [©¢ — 205 + Y] + aneerT(% —6y), (4.34)
) I1

0, = % [2@1 — 3@3] + an.xr.oT |:1—0 — @2:| ) (435)
) k

O = 20+ 1 (01 — ({+1)Op1] — anereor®p. > 2 (4.36)

Now as we show later (see equatifn (4.59)), the multipole emds®, are related to the CMB

power spectrum by
2 [dk 4| O k)
@_ﬁ/kk(%+w'

Thus, as the set of coupled differential equati®éns {4 BF&) cannot be solved analytically, one
needs to numerically compute iteratively several thousagider order moments in order to find
the CMB power spectrum. In 1996, Seljak and Zaldarriagagmtesl a method by far more

efficient which revolutionised the computation of the CMByaw spectrum([152].

4.2.1 Lineof sight integral approach

The line of sight integral approach is based on a split of tMBGemperature anisotropy in a
time integral over the product of a geometrical term and acsoterm. The geometrical term
given by radial eigenfunctions, does not depend on the clogial model. The source term

is expressed in terms of photon, baryon and metric pertiarsmat These perturbations can be
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computed using a small number of differential equationss gignificantly reducing the compu-

tational time.

The starting point of this approach is to integrate equa#dbBl) along the line of sight. This

leads to
LI 1 -
0= / dretrT=m0)e=Te (7[00 + gy + 5732(/011] + ¢ — ik}, (4.37)
0

This equation could be immediately turned into an equatasreaich of the moment3, if the
integrand did not depend ga But, as the integral is multiplied by**(7=7) we can write

L etkn(m=m) = jkpe™(™=7) Thus as the whole integrand is multiplied &§#("~™), each time

that a given term in the integrand is multiplied by.awe can replace with a time derivative
[41]
1 d
— =
ik dr

Thus having eliminated the anglein the integrand through integration by parts, and noticing

" (4.38)

that the boundary terms are either damped at 0 by the factore=(%) or irrelevant at- = 7,
since they have no angular dependence, they can be dropésialiers the monopole but is

unobservable. Therefore we can write equation {4.37) as
0= / dre* =) Sk 1), (4.39)
0

with

o, 11 310
S(k,7) =g <@0+¢—f—z—@>

p 31'1) 3411 (4.40)

+e " (d+) —g <?+@ TER
where the functiorb (k, 7) is called thesource functiorandg(7) = 7.e~" is the visibility func-
tion. The visibility function gives the probability that énpton last scattered betweenand
T + dr. It therefore peaks strongly around the epoch of recomioinatvhen the dominant
contribution to the CMB anisotropies arises and can be aqpetted by a Dirac delta function

evaluated at = 7.
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In terms of the source function, the multipole momedisk, 7) are given by
Oulh,m) = [ St r)ilk(r — m)ldr. (4.41)
0

Equation[[4.411) also shows that the anisotropy that we nmedsday can be seen as a spherical
projection through the spherical Bessel function of thetflatons on the last scattering surface
towards us. It is obtained substituting equation (4.39) equation[(4.32), expanding the plane
wavee*#k(7=7) in a series of Legendre polynomials as

e = SV () (20 + 1) jolk(T — )] Pe(p), (4.42)

and using the orthogonality property of the Legendre patyiats. This approach of expressing
the moment®, as an integral along the line of sight was first derived byakedind Zaldarriaga

[152]. In this approach, the anisotropy is decomposed irstougice term which does not depend
on the higher multipole moments, but only 63, ©, and©®,, and a spherical Bessel function

independent of the cosmological model.

The expression of the source function in the synchronougeahbat corresponds to the expres-
sion in conformal Newtonian gauge given in equatlon (4.48) be easily derived knowing that
the conformal Newtonian potentialsand are related to the synchronous potentiatndn in
k-space by the set of equatiofis{2.9), and the photon dermsityastsy., and the baryon veloc-
ity divergenced), in both conformal and synchronous gauge are related by ieqsdf.10) and
(Z.113). The higher moment®,, O3, . . .) of the photon distribution function are gauge invariant

as argued in[114]. Thus the source function in the synchusigauge can be written as:

Oy 311
et e

5, 6 I 30
S+ L oa+ — + +4g(7)

S A 16 " 1642

+il) | o)
16k2
As we show in the following section, the photon polarizatb@mtribution to the source function
is small and can be neglected for the primary anisotropysTtha source function simplifies to
the expression

5, 0
T4 42

ST = e (+ )+ 9(7) |+ 1

+g(7) [% + a] : (4.43)
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where the contribution due to the intrinsic fluctuation obfin density perturbations, the gravity,
the baryon velocity and the integrated Sachs-Wolfe effethé synchronous gauge are respec-

tively given by

o) (5 - 2a), (4.44)
o) (+ 2a). (4.45)
o) (% + a) vir) (7o) (4.46)
e 00 ). (@.47)

Now, the brightness can be expanded in spherical harmdpicas

e}

1
O, 7) =Y amYim(h) = W / kO (k, 7, 7), (4.48)

l=0 m=—/

where the coefficients,,, have to be determined. Considering the expansionl(4.32)sing

the theorem of addition of spherical harmonics, which s that

47 =

Pulk-#) = g D Yo' (Yo (), (4.49)
one can compute the coefficientg, and finds
4 . -
Qo = ( ”3)2(—1’)4 / PrY; (k)O(k, 7). (4.50)
(2m)*

Considering two different directions on the sky denotedibyndn, with 7, - no = cos ¢, the
two-point correlation functio () is the ensemble average of the brightness function given by
C(W) =< O(n1,1),0(n2, 70) >. Since the background is isotropic, this average depenigs on

on/. Therefore we define the angular power spectfynas
< agmaz,m, >= Cg(Sgg/(Smml. (451)

For a givery, C, is the variance of they,,,. It tells us about the power of temperature anisotropies

on a given angular scate 1/¢ and can be written as
AT\? (0 +1)
= C 4.52
(F) = %5t (4.52)
whereTy is the background temperature af\d, the temperature anisotropy for a given
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4.3 CMB anisotropies

As introduced earlier, the CMB power spectrum measuresetémperature anisotropies for
a given angular scale. It depends on several cosmologicaihgers and on the mode of the
primordial fluctuations. In this section we investigate hbw initial conditions affect the CMB
power spectrum today. To this end, we first evaluate therdiftecontributions to the source
function at the last scattering surface, then evolve themgusie CMB transfer function to get

the CMB power spectrum today.

4.3.1 Transfer function Ay(k)

In linear perturbation theory, each Fourier mode evolvegpendently of the others. We may
define a linear transfer functiofA(k) relating the fluctuations that we measure today to some

initial entropy perturbatios (k, ;) by [45]

O(10, k,n) = Ak, n)S(k, ), (4.53)

where,r; is the initial conformal time. If we assume the initial emgygperturbationS = 1, and
expand the transfer function in Legendre polynomi’i(g, ;1) = >°,(—1)%(20 + 1) A (k) Pe(p),
then the transfer function, (k) is just the multipole momertd, (%, 7y) evaluated at present time.
The orthogonality of the Legendre polynomials insures that modes are all independent.
We have already seen (see equatfon{4.41)) that the traisfetion can be obtained by mul-
tiplying the source function by the spherical Bessel fumttand integrating along the line of
sight [152]. For sufficiently large scales, Hu showed [78&itttne slowly varying quantities con-
tained in the source function in equatién(4.41) can be takemf the integral and evaluated at

photon-baryon decoupling, leading 62> 2 to

Ouno) =[O0+ Y] (r)D(K)(20 + 1)je(kAT.) + O1(T)D(K) [€je-1 (KAT.) — (£ + 1)jesa (KAT)]

+ (20+1) / K (6 + ]je(kAT)dr, (4.54)

wherer, is the conformal time at decouplingyr,. = 70 — 7., AT = 70 — 7 andD(k) accounts
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for the diffusion damping. This diffusion damping factogisen by
D(k) = / g(r)elFE P 7. (4.55)
0

with the damping lengthp 2 = 1 [7 L Z+40+4R1)/5

=5l = arme dr. The damping effect is more effective for

scale smaller than the damping length. This is a correctidhe tight-coupling approximation
around decoupling as photons random walk through baryatisseme finite mean distande.
Any perturbation on scales smaller thap is suppressed.

Thus in this approximation (equatiodn(4154)), the evalratf the multipole moments requires
only the knowledge of the fluctuations at photon-baryon dpting, and the time evolution of
the potentials from the last scattering surface to us totlag.Bessel function, (k) tells us how
much anisotropy on large scales is contributed by a plane wéh wavenumbek. As the limit

of the Bessel function for very large(very small angular scales) vanishes, the transfer functio
Ay(k) ~ 0 for ¢ > kry. For a SCDM universe, the time dependence of the potentaide

neglected.

4.3.2 Angular power spectrum C,

The photon transfer function opens the way of computing tMBGngular power spectrum.
Here, we make use of the dominant contributions to the tearighction to understand the main
features of the CMB power spectrum. We first recall how thadier function relates to the
angular power spectrum.

A complete description of the photon distribution shoukktanto account both spatial and
angular distributions of the brightness functi®n But we only have information on the angular
distribution as we can only measure the CMB from one locatidfe expand the brightness

function of photon in spherical harmonics as

[e%) ¢
O, p,7) =Y > amm(z, 7)Y (p), (4.56)

{=1 m=—/4

where the coefficieni,,, are given in Fourier space by
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ek g T
nler) = [ e [aavi, o). (4.57)

where( is the solid angle spanned Py The coefficients,,, are usually taken to have a Gaus-
sian probability distribution with a mean value of zero. As &,,, are symmetric for a givef

the variance depends @n

Substituting equation{4.57) intb(4151) and knowing that

i - 1.3
<@G)>_ / E 2£+1k |@g7’k’)| Pg(p -p), (4.58)
leads to
2 [dk 3| ©u(T, k) ?
Cg—ﬂ_/kk OESER (4.59)

whereP, is a Legendre polynomial.

4.4 Effect of cosmological parameterson the CMB tempera-

ture spectrum: adiabatic case

In the previous section we reviewed how, from the fluctuaianthe last scattering surface, one
can derive the observed CMB anisotropy and investigatefetiteres of the CMB power spec-
trum for isocurvature modes. The CMB anisotropy spectrupedds on several cosmological
parameters among which the baryon densitythe matter density,,, the dark energy density
Qx, the optical depth,, the spectral index, and the scalar amplitudé,. Each parameter has
a particular effect on the spectrum. A change in the cosncdbgarameters affects the CMB
spectrum shifting different peaks to the left or to the righising or lowering their heights, or
moving the entire spectrum up or down. In this section, weskethe effect of the cosmological
parameters on the CMB power spectrum in adiabatic mode ierdcdcompare it, in the next

chapter, to the case of isocurvature modes. We particuiaelys on the physical baryon density
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and the physical matter density as they differently affeet€MB spectrum in different models.

The baryon density, matter density, and cosmological emsach induce a shift in the loca-
tion of peaks and troughs in the CMB spectrum. For a flat usajethe peaks are located at
l, =~ nm1y/rs(7:). Thus peak location depends on the sound horizand on the age of the
universer,. An increase in the matter densify,, 4> reduces the age of the universe but does
not affect the sound horizon. A change in the baryon denéigcts the sound horizon. More
importantly, the physical densities in mattey, 42 and baryons2,h? fix the heights of acoustic
peaks in the CMB spectrum. As we show in a following sectiba,geaks in the CMB spectrum

are lowered and shifted to highéas the matter density,,»? increases.

A dark energy model with cosmological constdit or quintessence, and curvature have no
significant effect on the pre-recombination universe arlg afiect the CMB spectrum through
the angular diameter distandg and the late-time ISW effect |98]. The optical depthtells

us how much the universe was reionized at late times. Thaigsiton of the universe reintro-
duces Thomson scattering of photons by free electronselbftical depth is large enough, the
anisotropies are washed out. The spectral indgxas an effect different from all of the previous
parameters. An increase in the spectral index lowers ttsotnpy on large scales and enhances
it on small scales, thus tilting the spectrum about a pivatescWe now study these effects in

neutrino isocurvature models using our semi-analyticplaxmations.

4.4.1 Baryon density k>

The baryon density is the cosmological parameter which aftestts the heights and locations of
peaks in the CMB power spectrum. Loading the single fluid withre baryons reduces the sound
speed and therefore changes the heights and positionsks ipghe CMB power spectrum. Odd
peaks are enhanced while even peaks are lowered as the lol@nysity increases. This is a direct
consequence of the lower frequency of the oscillations. Bdrgon density effect on the CMB

spectrum is a unique signature, making the baryon densgybtine easiest parameters to extract
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Figure 4.2:Q,h? dependence of the CMB power spectrum in the adiabatic mohis. i for a
flat ACDM model withh = 0.7 andQ.h? = 0.125.

from the CMB. Figuré_ 412 shows how the CMB spectrum changés thé baryon density.

4.4.2 Matter density ,,h?

To see the imprint of the matter density on the CMB power spatt we consider & CDM
universe, keep the physical baryon denslty:? andh constant, and modify only the dark matter
densityQ).h%. The change in the matter density is compensated hyChanging2, affects the
CMB spectrum but its effect can be neglected compared tofteet ®f matter density itself.

For a universe with a low matter density, #?, the epoch of matter-radiation equality, occurs
closer to recombination. The gravitational potentiall stdcays at recombination providing a
strong driving force for the oscillations. Therefore thefn density perturbation,, is larger
compared to high matter density universes. In additiorgesthe potential is not constant after
recombination, the integrated Sachs Wolfe effect contidiouis not negligible and should be

taken into account. Figur€{4.3) shows how all the CMB peakseahanced when the matter
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Figure 4.3:Q,,h? dependence of the CMB power spectrum in the adiabatic mokiis.iJ for a
flat ACDM model withh = 0.7 andQ,h? = 0.022.

density decreases.

4.4.3 Cosmological constant density (2,

Different models of the dark energy affect differently thdB power spectrum. Here, we restrict
ourselves to the case of the dark energy being the cosmalagnostant. At the last scattering
surface, where the main contributions to the anisotropiaswe observe today were formed, the
universe was still radiation-dominated and the cosmobdgionstant was negligible and could
not affect the perturbations. Therefore the effect of thenwmlogical constant on the CMB
power spectrum is only through the freesteaming of photra fast scattering surface towards
us. For a fixed baryon and matter density, the cosmologicadtant does not affect the sound
horizon but change the angular diameter distaficgvhich in turn modifies the peak location.
The angular diameter distandg = d/y is a classic way to measure distances by measuring

the anglep subtended by an object of known physical size The effect of the equation of
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Figure 4.4:Q2, dependence of the CMB power spectrum in the adiabatic mduis.ig for a flat
ACDM model withQ,h? = 0.022 andQ.h? = 0.125.

state parameter on the CMB power spectrum is the same similar to the effe€ of In a flat
universely =1 — Q) — Q,, =0, ¢ = (d/a)/ AT so that the angular diameter distance is given
by [41]

AT

cﬂ“:aAT:1+Z, ap =1 (4.60)

where AT is the comoving distance. At low redshift, the angular ditendistance is equal to
the comoving distance. Increasing the cosmological cansansity,(2,, shifts the location of
peaks to lower values af Thus the entire CMB spectrum shifts to lower multipoless 2,
increases. Figurd_(4.4) shows how the CMB power spectrurhifed to larger scales as we

increase the cosmological constant.
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Figure 4.5: Curvatur€lx dependence of the CMB power spectrum in isocurvature modals
we increase the curvature density, the anisotropy specthiits to small scales. For closed, flat
and opem\C' DM universe with),h? = 0.022, Q.h% = 0.125, h = 0.7.

444 Curvaturedensity Qg

Among all the cosmological parameters that we are consigethe curvature density by far
causes the largest shift in the location of the peaks [41F ftoton geodesics depend on the
geometry of the universe. In an open universe, the geode$iogassless particles start out
parallel to each other and then slowly diverge. The physcale corresponding to the first
peak gets projected onto a smaller angular scale in a flaetsg\compared to an open universe.
Therefore we expect that the peaks should be shifted to higilees of/ in an open universe.
For the closed universe, the peaks are shifted to lower salié The magnitude of this shift
is determined by the comoving angular diameter distancéeoldast scattering surface [77].

Equation[4.8D) in the previous subsection gives the angliganeter distance in a flat universe.
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For a non flat universe, the angular diameter distance gieress&o

a sinh [\/ QKH()AT] Qg >0

a4 (4.61)
HO\/W sin [/ —Qx H)AT] Qg <0

ds =

Thus changing the curvature of the universe affects the langliameter distance and subse-
quently the peak location. In Figurie#.5) we see how the /B spectrum is shifted to the

higher/ as we go from a closed univer§@, < 0) to an open universgl, > 0).

4.45 Optical depth 7,
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Figure 4.6: Reionization dependence of the CMB power spattrAs the optical depth from
reionization to the last scattering surface increasespémipies are washed out for scales inside
the horizon at the reionization epoch. For a fldt DM universe withQ,h? = 0.022, Q.h? =
0.125, h = 0.7.

After leaving the last scattering surface, photons freastr towards us today preserving the

anisotropy. This is true if we ignore the reionization of thréverse at late time. In fact, as the
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first luminous objects form their UV emission reionizes tmévarse. This brings photons back
into contact with free electrons which erases anisotrofhiesugh Thomson scattering. Taking
into account the reionization of the universe a second pppkars in the visibility function at
low redshift. The CMB photons are affected by the tempeeatpotential, and velocity of the
scattering electron5[60]. If we assume that photons hagmpératurd’(1 + ©) whereT' is the
background temperature afdthe temperature perturbation before reionization, ahieaiion,
only a fraction of photons given by ™, will emerge without scattering. The remaining fraction

(1 — e~ ™) is re-emitted by the ionized region. Thus the photon tentpegafter reionization is
T(14+0)e ™ +T(1—e™)=T(140e ™). (4.62)

This means that the CMB anisotropy after reionization isdmd by a factoe=" and con-
sequently the power spectru6y is reduced by—2. Hence, all modes within the horizon
(¢ > 19/ Treion) @t reionization will be affected by this process and the rsaméside the horizon

remain unchanged. Figue_(4.6) shows the effect of reitinisan the CMB power spectrum.

4.4.6 Spectral index n

The CMB angular power spectrum can be written as

cyzg/mk%umwammm, (4.63)

T Jo
where P;(k) is the primordial power spectrum. The primordial power $peu is proportional
to k"= wherek is the wavenumber and, the spectral density [41]. This can be written as
B@gu<f)m, (4.64)
kp
wherek, is a constant. For a wavenumber= k,, (ﬁ)”s is independent of the spectral index.
For other wavenumbers,, will modify the slope of the CMB power spectrum, pivoting anal
some multipole/,, ~ k,7y. This effect on the CMB spectrum is clearly seen in Figlré)4A
value ofn, < 1 lowers the small scale anisotropy and boosts the large an&etropy with the

opposite effect for, > 1.
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Figure 4.7: Spectral index dependence of the CMB power ggpedbr adiabatic models. For a
flat AC DM universe with),h? = 0.022, Q.h? = 0.125, h = 0.7, pivot scalek, = 0.05Mpc .
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CHAPTER 5

Observational Signatures of Isocurvature Perturbations in

the CMB

5.1 Introduction

In the previous chapters @ 4), we reviewed the evolution of cosmological perturbagiand
showed how these perturbations translate into the CMB #anjsies in the case of adiabatic ini-
tial conditions. In this chapter, we consider isocurvataitgal conditions and study the evolution
of the perturbations. We develop a semi-analytic treatrfamte perturbations and the CMB
spectrum that allows us to understand the dependence airisdare CMB spectra on cosmo-
logical parameters. The semi-analytic solutions for theypkations are accurate to abdots.
Finally, we investigate the features of the isocurvatureBJddwer spectra and study the impact

of different cosmological parameters on the isocurvatuEB@ower spectra.
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5.2 Evolution of photon and baryon perturbations

In this section, we only consider the photon and baryon émpias these, with the gravitational
potential, are the only quantities that are involved in tbenputation of the CMB spectrum
through the line of sight integral. We derive semi-analgbtutions for the evolution of the pho-
ton density contrast and velocity divergence. For the ¢ggéienal potential, we only give large
and small scale solutions as a complete solution requiee&ribwledge of the density and ve-
locity evolution for all species. However, the smaknd large-scale solutions are sufficient to

understand the CMB features.

Prior to decoupling, the energy-momentum conservatiomcpie leads to the following set of
time evolution equations for the photon, baryon, cold dadtter and neutrino density contrasts

0 and velocity divergencesin the synchronous gaude [114]:

. 4 2.
5’7 - —507 gh, (51)
op = —6, — %h, (5.2)
: 1.
0 = —=h, 5.3
. (5.3)
, 4 2.
0, = —=0, — =h, 5.4
3 3 (5.4)
for the density contrasts, and
. 1
6, = k2 (Z&, — (L,) + ancor(6, — 0,), (5.5)
' : A5
0 = _geb + k%0 + @aneUT(‘% —6h), (5.6)
a 3P0
0. =0, (5.7)
0, = k? Gé - ay) , (5.8)

for the velocity divergences. The subscriptsh, ¢ and v label respectively the photons, the
baryons, the cold dark matter and the neutrimgsis the Thomson cross sectian, is the elec-

tron number densityp, and p, are respectively the photon and baryon background desisitie
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cs = 1/4/3(1 + R) is the sound speed in the photon-baryon single flaidand o, represent

respectively the photon and neutrino shear. The sheassiféke radiation (photons and neu-
trinos) is relevant once the radiation component has ddeddppm the matter component for a
mode within the horizon and must be taken into account. Toereve supplement the above set

of equations with two equations for the quadrupale [114]

. E, 4 3 2. 4. 9

O~ = —; = 1—587 — 1_0ka3 + 1_5h + 577 - ToaneUTU“/y (59)
FI/2 4 3 2 7 4 .

5 pu— = — _— F - _ '1

o 5 15«9,, 10k w3+ 15h+ = (5.10)

whereF,,, F», I3 andF,; are respectively the second and the third moments of the minme
averaged phase space densities for photons and neutrircmsnlete treatment requires a hier-
archy of multipole moments to describe the full distribatfanction of the radiation component

[41,[152]. The synchronous gauge metric figldvolves as[114]
. a a\ >

wherej € {v,~,b,c} labels the different species of the univergg, is the critical density of

the universe anf; = p;/p.. is the ratio of the density of thg" species to the critical density.
The overdot refers to the derivative with respect to the aonél timer. Hereafter, we study
the evolution of the photons and baryons prior to and afteodpling. We focus mostly on the

pre-decoupling period as it sets the main features of thegrgi anisotropies of the CMB.

Moreover, as the gravitational potentiais a conformal gauge quantity, we consider the set of

field equations in the conformal gauge. These are giveh b4][11
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al. a 3
K2¢ + 3 (¢ + aw) = —§H2 o ;Qjéj, (5.12)
(¢+ w) :—HQ‘CTZQ (1 +w;)b;, (5.13)
é—i—g(@b—'—%b)"‘ (2___)¢+ (¢ — ¢)—9HQPCTZQJ Csj 05 (5.14)

K (6 —¢) = —Hzpcr(1+wy)90], (5.15)

where the fluid variables are evaluated in the Newtoniangang differ from their counterparts

in the synchronous gauge by the gauge transformations as

seon — 5N _ 4a9, (5.16)

05°" = 0" + k. (5.17)

wherea is defined byy = h + 677) and the potentiaj comes from writing the scalar mode

i (
2k2
of h;j(x,7),1 < 1,5 < 3, as a Fourier integral [114].

5.2.1 Evolution of photons and baryons prior to decoupling

We consider the time evolution of the photon-baryon fluidha tight-coupling regime. Pho-
tons and baryons are treated as perfect fluids. The tighghomuapproximation of photons and

baryons allows us to equate and6,. Thus combining equationS($.5) afd {5.6) leads to
. . 1
(1+R)0., = —RO, + l-c2(157 —0,) + K’ Roy, (5.18)

whered,, is the baryon photon common velocity divergence. We difféeate equatiori {5l 1) and
make use of equatiof {5118) to derive the following secortkodifferential equation for the

photon density perturbation

1) —) k226, = —= | ——h +h 5.19
”Jr1+li”Jr €% 3/1+R T ( )
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where we have neglected the photon shear (tight-couplgigw and the pressure termdnas

it remains smaller than the term & prior to decoupling. Equation(5J19) represents a driven
harmonic oscillator with the competition between gravwaal infall and photon pressure giving
rise to acoustic waves propagating in the photon-baryod #tiithe speed of sound. For the
associated homogeneous equation, we look for solutiom@dbtmJ., o< exp [z fOT wdT’} where
w(7) is some phase function. The two solutions to the homogereguestion are simplyin &,
andcos kr, wherery(r) = [ c,dr’ is the sound horizon, and the phase functiow is- kc,.
Here we have made use of the WKB approximation. On large sctile WKB approximation
breaks down, but these modes are irrelevant for the CMB pyiraaisotropy treatment as they
only enter the horizon well after decoupling. The particsglalution is constructed by integrating
the driving term weighted by the Green'’s function of the tvaortogeneous solutions [74]. Thus,

the time evolution of the acoustic waves in the photon corepbprior to decoupling is given by

(L4 R)Y25,(k,7) = Agsinkry(7) + Ac cos kry(7)

+ L /07(1 + R(T’))1/2 sin [krs(1) — kry(7)|F(7)d7, (5.20)

ke,

whereAgs and A. are determined by the initial conditions as described_1ij, [29d

2 R . .

is the gravitational driving term which evolves differgntor different initial conditions. Equa-
tion (5.20) gives the time evolution of the photon densitptecast irrespective of initial condi-
tions, in the tight-coupling regime. In this regime, theywar density contrast is related to its
photon counterpart by, = %&. On small scales, a correction to the tight-coupling apipnex
tion must be applied when Silk damping becomes importanphasons leak out of overdense
regions, dragging baryons with them. This is done by muliiyg the solution above by **/%5 |
where the photon diffusion scalg,' is given by

§ —2_1/l32+4(1+3)/5
P Te6) o Q+R?
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wherer, = an.or is the differential optical depth.

For the evolution of the common photon-baryon velocity dygmce, we differentiate equation
(&.1I8) with respect to the conformal time and l5$e: —geﬁ, — %iz to obtain the second order

differential equation

.. k2 .. 1 ..
(1+ R)., + 2RO, + <§ - R) O = _gk2h~ (5.22)

Equation [5.2R) represents a forced and damped harmonitatmcwith variable coefficients.

Its particular solution, applying the same method as foatiqn [5.19), is then given by

(1+ R)0,, = B¢ coskrs + Bgsin kr

- % /0 T V3(1+ R(r))*?sin k(ry(r) — ro(7')h(7')d7, (5.23)

where B and By are determined by the initial conditions. This solution s multiplied
by e~*/kp)* to correct the tight-coupling approximation. As we wouldegt, loading more

baryons slows down the frequency of oscillations and dsetheir oscillation amplitude.

After decoupling, the photons and baryons evolve sepgraidiere is no pressure to resist the
gravitational collapse. The baryons feel the attractiothefcold dark matter and fall into their

potential wells. Thus the baryons slow down.

Equations[(5.20) and (5.P23) are our main solutions for tme tevolution of the photon density
contrast and velocity divergence prior to decoupling. Theth depend on the metric field
related to the gravitational potential The coefficientsAg, Ac, Bs and B are independently
determined by the initial conditions of the perturbatioHgreafter, we study the time evolution
of the the photon and baryon perturbations for each moderim #e review, using this semi-

analytic approach, the well studied adiabatic case, thereranto the isocurvature modes.
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Figure 5.1: Evolution of the photon density contrast prierdecoupling for the AD mode:
Comparison of numerical and analytic solutions for someemambers. We considér =
0.019 h Mpc ! for the top-left panelp.047 h Mpc ™! for the top-right panel).088 h Mpc ™ for
the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

5211 AD mode

The adiabatic mode is characterized by the requirementhkalensities of all species are per-

turbed in proportion at some initial time such that

by = S5, = 36,

§ci 7
’ 47 4

)

(5.24)
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where the subscriptlabels the initial time. Or equivalently, using the relatentropy between
61 5y

1+wg 14wy

two speciesc andy given byS,, = , Wherew, andw, are the equation of state
parameters of the speciesandy respectively, we have th&,, = 0 for all pairs of species at
the initial time. In addition, all velocity divergences angtially unperturbed. Therefore, using
the initial conditions for the adiabatic mode [29], the dam$ As, Ac, Bs and B¢ in equations

(&.20) and[5.23) are all zero. The photon and baryon deasityrasts are respectively given by

§AP = ge—'ﬁ/‘% / (1+ R(') Y sin [kry(1) — kry(7)] x FAP(7)d7r, (5.25)
0
— %ge_kg/k% / (1 + R(7)Y?sin [kry(1) — kry(7))] x FAP(7")dr'. (5.26)
0

Thus, the adiabatic mode is only sourced by the gravitatidrieing term F4P, This driving
term can be approximated by
FAP (k1) ~ 2k jo (k)

on small and intermediate scales which reducegkte? at early times. On very large scales
the above approximation breaks down, however, this doesffiett our physical description

of the CMB as these large-scale modes are well outside thedmoat decoupling and do not

substantially influence the CMB features. The lack of an eaaalytic expression for the driving

term makes it difficult to derive exact analytic solutionstioe time evolution of the photon and
baryon density contrasts. Nevertheless, good approxamsfor the photon and baryon density
contrasts are given by

5, = géb ~ 2krgji (kry) x e ¥/kb. (5.27)

Therefore, at early timeS:r;(7) < 1) the density contrasts for the adiabatic madlex J, o
(1 — cos krs) couple to acos krs harmonic [74]. Thus, the acoustic oscillation for the AD raod

can be regarded as a forced oscillation with a cosine typsegpha

For the velocity divergence, the adiabatic initial corahs dictate thaBy = B- = 0. The

common baryon-photon velocity divergence is then given by
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Figure 5.2: Evolution of the photon velocity divergenceopitio decoupling for the AD mode:
Comparison of numerical and semi-analytic solutions fansavavenumbers. We consider=
0.019 h Mpc ! for the top-left panelp.047 h Mpc ™! for the top-right panel).088 h Mpc ™ for
the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

_ﬁe—’*/’% / VB(L+ R(7)Y? sink(ry(r) = ry(+)h()dr"

We note that solutions given by equatiohs (5.25) and 15.28)ire a perfect knowledge of the

050 = (5.28)

metric fieldh. In Figured 51l and5.2, we compare these semi-analytitisotfor the photons

to the numerical solutions outputted by CAMB_ [1.00] for somavenumbers for the AD mode.
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Throughout the thesis, 'semi-analytic solution’ referateolution for the perturbation evolution
which requires a prior knowledge of the gravitational ptiggnp evolution for the conformal
gauge or, equivalently the metric fieldevolution for the synchronous gauge. The gravitational
potential and the metric field evolution can be obtainedgiS AMB. On intermediate scales, the
semi-analytic solution agrees considerably well with thenerical solution given by CAMB. On
small and large scales, the approximation loses accuraayetkr at decoupling, which is the
time of our interest, the analytic solution is a good appr@ation to the numerical solution. As
we will see later, in order to compute the primary CMB powezctpum to about0% accuracy,

one only needs to evaluate the perturbations at decoupling.

5.2.1.2 NID mode

The NID mode arises when the densities of the matter compeaeainitially unperturbed while
the initial perturbation in the neutrino density is balashbg its photon counterpart, keeping the

curvature unperturbed. The initial perturbations are Hevis:

Oci = 0p; =0, 05 = ——0p, (5.29)

These initial conditions imply thatls = 0 and A¢ = —\/§csRy/R7 thus exciting the:os kr,
harmonic. The gravitational driving term contribution tois mode, in contrast to the AD mode,
can be neglected without loss of accuracy, as the graviiatjzotential (related tb), is initially
unperturbed and only grows inside the horizon. This can laésonderstood by considering the
right-hand side of equatiof (5]11). In the radiation dortedaera, the photon and the neutrino
density contrasts roughly cancel while the baryon and th&@@nsity contrasts remain small
until the matter dominated era when they grow. The time ai@miwf the photon and baryon

density contrasts for the NID mode are given by

FNID = % V3, coskr, x ek, (5.30)
Y

SNIP = Z% (1 — /3¢, cos kr8> X e_kQ/k%, (5.31)
Y
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Figure 5.3: Evolution of the photon density contrast priordecoupling for the NID mode:

Comparison of numerical and analytic solutions for someemambers. We considér =
0.019 h Mpc ! for the top-left panelp.047 h Mpc ™! for the top-right panel).088 h Mpc ™ for

the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

whereR, = Q,/Q,.q and R, = Q,/Q,,, are respectively the fractional energy densities of

neutrinos and photons at early times. The smallness of thatgtional potential, hence its

decay, affects the evolution of photons even after recoatian lowering the early Integrated

Sachs Wolfe (ISW) effect. Thus, the NID mode can be regarded fiee oscillation with a

cosine type phase.
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Figure 5.4: Evolution of the photon velocity divergenceoprto decoupling for the NID
mode: Comparison of numerical and analytic solutions fansavavenumbers. We consider
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for the bottom-left panel andl25 h Mpc™ for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

For the photon-baryon velocity divergence, the initial didions dictate thatBo = 0 and
Bs = —3kcsAc /4 in equation[(5.23), and the sourcing term is irrelevant.réfoge the photon-

baryon velocity divergence is given by

oNIP = \/gé&kci sin kry x ¢ /¥

N T (5.32)

For the NID mode, the semi-analytic solutions do not regiitewledge of the gravitational
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potential. In Figure§ 513 arld 5.4, we compare the numeritdlamalytical solutions for the
evolution of the photon density contrast and velocity djegrice for some wavenumbers in the
NID mode. For the photon density contrast, the semi-ar@dgtiution is in good agreement with
the numerical, as it does not require the evolution of theitatonal potential. For the photon
velocity divergence, the approximation improvesiasncreases. Nevertheless it is a good ap-

proximation around decoupling.

Equation [5.IR) suffices to give us a good approximation éoktbhaviour of the gravitational
potentialy for modes still outside the horizon. For those modes 1. We therefore neglect
the term proportional t&2. The conformal gauge perturbation in the time componenhef t
energy-momentum tensé?}. is given in the synchronous gauge &y = 5p°" + ap°¥". In
the case of the NID mode, is given to leading order by

R,

v 5.33
15+ 4R, (5.33)

Using the fact thap = —3Hp(1 + w) with H = 1/7 in the radiation-dominated era together

with the Friedmann equation, equatién{3.12) becomes

. 2R,
= 34
T+ e 15+ 4R’ (5.34)
which admits the general solution
2R
= A -1 —_— 71/ .
o T 51 4R, (5.35)

where A is some constant. The first term of this solution represemtscaying mode which
vanishes rapidly with time and the second term is constdnis Tve can omit the decaying mode

and write the solution as
—2R,

15+ 4R,
Thus outside the horizon, in the radiation-dominated dra,potentiaky is constant and does

¢ = (5.36)

not even depend on the wavenumber of the considered moddgpands only on the ratio of

neutrino density to radiation density, . This behaviour is seen in Figure 5.5(a) where we have
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represented the time evolution of the gravitational paabrior different wavenumbers using
CAMB [100]. The gravitational potential starts off consta early times, then decays at the

matter-radiation transition.
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Figure 5.5: Evolution of the gravitational potentialin the NID mode. (a): Super horizon
evolution; (b): Sub-horizon evolution in the radiation era. These curvesadbtained using

CAMB. The vertical dashed lines mark the matter-radiatiquadity and decoupling.

It is difficult to solve for the potentiap exactly through horizon crossing. However, for the NID
mode, the potentiab does not play a dominant role in determining the CMB anigné® and
finding an analytical solution fap is not so crucial. We obtain asymptotic solutionsdofirstly

at early times when radiation dominates, and then at latestiwhen matter dominates.

Inside the horizon and for small scalés, > 1, so we neglect the terms i/~ with respect to

those ink. Prior to matter-radiation equality, equati@n (3.12) camwlitten as

3 H? )
b= _iﬁ(QV&?yn + Qyéfyn + ag)’ (5.37)

whereH is given byl /7 and the termyg is constant and arises from gauge transformation from

the synchronous to the conformal gauge using equdiionlaidy/p = —3H (1 + w) [29],

sinceg is a conformal gauge quantity and the density contrastiagrichronous gauge. Since
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neutrinos decoupled early on, they freestream toward ws/tadd their density perturbations can
be neglected in the above equation. The baryons and phatessilacoupled and oscillate due
to pressure and gravity. Thus the behaviour of the poteistiakinly determined by the photon
density perturbations. The potentiathus oscillates with decreasing amplitude (due toAfte
term in equation[{5.37)), which matches the behaviour ofthall scale mode shown in Figure
5.5(06).
In the matter-dominated era and well after decoupling, tieggns and neutrino densities can be
neglected. We bear in mind that = 2/7 in the matter-dominated era. Equatién{%.12) becomes
¢ = —%(Qcéfy” + Q00" + ag). (5.38)
Well after decoupling, the baryons feel the potential wetl @ by the cold dark matter. Thus
equatingd. andd, is a good approximation. As the matter perturbation grows4#, we can

neglect the constant gauge transformation term. We thea hav

6

¢ X _k;27'2

53um, (5.39)

As the dark matter perturbation grows inside the horizor?age can easily see that the potential
¢ is therefore constant in the matter-dominated era. Theifestdescribed above can easily
be seen in Figurg 5.5(b) in which the time evolution of theeptitll ¢ is represented for four

different wavenumbers corresponding to different epodlimdzon crossing.

5.2.1.3 NIV mode

Unlike the other isocurvature modes, the NIV mode, like tH2 diode, shows no relative en-
tropy perturbation in the density field at some initial tirddl. the density perturbations are zero
initially. The main difference with the AD mode is in the veity field where the neutrino ve-
locity divergence starts perturbed, being compensatetdplioton-baryon velocity. The initial

perturbations are given by:

9077; - O, ‘9{,71' - 9%1' - ——91,71'. (540)
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Figure 5.6: Evolution of the photon density contrast priordecoupling for the NIV mode:

Comparison of numerical and analytic solutions for someemambers. We considér =
0.019 h Mpc ! for the top-left panelp.047 h Mpc ™! for the top-right panel).088 h Mpc ™ for

the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

The NIV mode excites the&n kr, harmonic, so that we can sdt: = 0 and Ag = 4Ry/\/§Rﬂ,

in equation[(5.20). As in the case of the NID mode, the gréeital driving term contribution

remains irrelevant at all times as all the densities stapetmrbed and the perturbations only

grow in the matter dominated era. Therefore, the NIV modebearegarded as a free oscillation

with a sine type phase. The photon velocity divergence t&lhyi perturbed. This set8s = 0
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Figure 5.7: Evolution of the photon velocity divergenceoprio decoupling for the NIV

mode: Comparison of numerical and analytic solutions fansavavenumbers. We consider
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and B¢

—3%:kc§ in equation[[5.23). The time evolution of the photon and bargiensity

contrasts and the baryon-photon common velocity divergémrcthe NIV mode are given by
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55[‘/ = %\/gsin krs(T) X e R /Kb (5.41)
v

o = Z%\/gsin kry(7) x e ¥ /Kb (5.42)
Y
= —3—Kkc.Ccoskrg X e D, .
OV = 3T k2 cos Kk (5.43)
gl

In Figured5.b anfiBl.7, we compare the numerical and analyatutions for the evolution of
the photon density contrast and velocity divergence foresaravenumbers for the NIV mode.
The semi-analytic density contrast and velocity divergefac photons are in good agreement

with their numerical counterparts.
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Figure 5.8: Evolution of the gravitational potentialin the NIV mode. (a): Super horizon
evolution; (b): Sub-horizon evolution in the radiation era. These curvesadbtained using

CAMB. The vertical dashed lines mark the matter-radiatiguadity and decoupling.

For the asymptotic behaviour of the gravitational potdribathe NIV mode, let us consider

equation[[5.113). The velocity divergence in the Newtoniange is related to the velocity in

. : 4R, .
the synchronous gauge by equatibn (5.17) witk — +ZR = for the NIV mode. Bearing in
mind thatH = 1/7 in the radiation-dominated era, we can rewrite equaflof)Fas

. ]_ 3 ]. S 4Ru
=" > (1 +wy)Q; (65 - k 5.44
OF 0= g 2.0 w) J(J 5+4Ry)’ (.49
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wherey has been replaced lgysince there is no shear in the tight-coupling regime (seatému
(518)). The solution of equatiof (5]44) up to leading oiidayiven by

iR, 1

= T5vaR R

(5.45)

The potentialy decreases with time outside the horizon in the radiatiomidated era. This is
shown in Figur¢ 5.8(h) for differerit—modes.

Through horizon crossing, as we emphasized for the neusowurvature density model, it is
difficult to obtain the potentiab exactly. A similar treatment to that for the neutrino iso@iure
density model can be applied here. The equatibnsl(5.37)&B8)(that we found for the neu-
trino isocurvature density model are still valid and apgtile for we did not make any restrictive
assumption related to the nature of the primordial pertioha for their derivation. Therefore
prior to matter-radiation equality, the potential os¢ésand is sourced by the photons. After
matter-radiation equality, it becomes constant. Theseifes are shown in Figufe 5.8|(b) where
the time evolution of the potential is shown for four different wavenumbers corresponding to

different epochs of horizon crossing.

5214 CIl & Bl modes

The CI and the Bl modes have been well studied in the liteea[®8,[35,[76]. The CI and
Bl modes are similar in that the perturbation starts in theMod®nsity contrast and the baryon
density contrast respectively while the other speciestially unperturbed. This can be written
at some initial time as

5c7i = 17 6b7i = 6’y7i = 51/71' = 07 (546)

for the Cl mode, and as

5c7i = 07 6b7i = 17 6’y7i = 51/72' = 07 (547)

for the Bl mode. The CI and Bl initial conditions dictate th&s = —ﬁﬁqo for the CI mode
and Ag = —%pr for the Bl mode, whileA. = 0 in both cases, thus exciting then k7,

harmonic[[85,29]. The constarits , and(2, ; are respectively the CDM and the baryon densities
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Figure 5.9: Evolution of the photon density contrast priordecoupling for the CI mode:
Comparison of numerical and semi-analytic solutions fansovavenumbers. We consider
k = 0.019 h Mpc ! for the top-left panel).047 h Mpc ™ for the top-right panel).088 h Mpc™*
for the bottom-left panel andl25 h Mpc™ for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

today. The driving term is small in the radiation dominateya as the photon and the neutrino
densities are initially unperturbed but becomes importarthe matter domination era as the

matter perturbation sources the gravitational potenfid).|
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Figure 5.10: Evolution of the photon velocity divergencepto decoupling for the CI mode:
Comparison of numerical and semi-analytic solutions fansavavenumbers. We consider=
0.019 h Mpc ! for the top-left panelp.047 h Mpc ™! for the top-right panel).088 h Mpc ™ for
the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

The time evolution of the photon and baryon density corgrimstthe Cl and Bl modes are given
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by [73]

—ch,og sin kry (1) x e ¥/¥b

+ g /07(1 + R(7)Y?sin [kry(1) — kro(7')] x FCI()dr, (5.48)

cr _
0, =

3
&= —QQc,o% sin kry(7) x e */*b

3v3 [T
L33

— [ (1+ R(T’))1/2 sin [kry(7) — kry(7')] X FCI(T')dT', (5.49)
ik,

for the Cl mode, and by

8, V3. -
551 = —ng,o? sin kr(7) x e /b

+ g /07(1 + R()Y?sin [kry(1) — kro(7)] x FBI()dr, (5.50)

3
Pl =1- 29;,70£ sin krg(7) X e F kD

+ 39 (@t R sin () ()] x PP (e, (650

for the Bl mode. Equation§ (5.M8-5151) are exact but recuiperfect knowledge of the gravi-
tational driving term. One thing to notice is the! dependence of the photon density contrast
for the Cl and Bl modes that washes out perturbations on soalkés while amplifying them on
large scales. As we show in the next section, this redigtabwf power boosts the ISW effect of
the CMB temperature power spectrum (large scales) and esggs anisotropies on small scales,
for these modes. On small scales, the effect ofithefactor can be compared to Silk damping
as they both they both suppress perturbations on these stldeever there are two main differ-
ences. Firstly, Silk damping does not act on large scalelewek —! factor amplifies large scale
perturbations. Secondly, Silk damping only becomes siganitiaround recombination while the

Lk~ factor redistributes the power at all times.

For the photon-baryon velocity divergendg; = B = 0 for both Cl and Bl modes. The
velocity is solely determined by the driving term of equat{&.Z23). The photon-baryon velocity
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Figure 5.11: Evolution of the photon density contrast ptmrdecoupling for the Bl mode:
Comparison of numerical and semi-analytic solutions fansovavenumbers. We consider
k = 0.019 h Mpc ! for the top-left panel).047 h Mpc ™ for the top-right panel).088 h Mpc™*
for the bottom-left panel andl25 h Mpc™ for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

divergence for the Cl and Bl modes is given by

CI,BI _
0 =

/ V3L 4+ R(F)¥2 sin k(rs(7) — o (7)) h(7)dr, (5.52)

6(1 + R
as for the adiabatic mode. However, the metric field in ther@l Bl modes differs from the met-
ric field in the adiabatic mode. FigurEs¥.9-5.10 &nd15. TP sompare the semi-analytic and

the numerical solution for the evolution of the photon dgneontrast and velocity divergence
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for the Cl and Bl modes respectively.
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Figure 5.12: Evolution of the photon velocity divergencepto decoupling for the Bl mode:

Comparison of numerical and semi-analytic solutions fansavavenumbers. We consider=

0.019 h Mpc! for the top-left panelp.047 h Mpc™ for the top-right panel).088 h Mpc™ for

the bottom-left panel and.25 h Mpc™! for the bottom-right panel respectively. The vertical

dashed lines mark the matter-radiation equality and ddoaup

For the super horizon evolution of the gravitational patdmt Cl and Bl models, we proceed as

previously in the NID mode. One should note that for theseespd= 0 to leading order, caus-

ing the synchronous gauge densities to be equal to theioooiat gauge counterparts. Equation
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(.12) simplifies for the Cl and Bl modes respectively as

: 4
6+ 6= Q0

. 4
TO+ ¢ = ng,oTa

which admit the general solutions

4
¢CI - BT_l - 390,07—7

4
Pl =Cr7! — ngpﬂ

(5.53)

(5.54)

(5.55)

(5.56)

where B and C' are some constants. As for the NID mode, the first terms oftisetutions

represent decaying modes which vanishes rapidly with tifine second terms, proportional to

T, are the growing modes. Thus we can omit the decaying modewaie the solutions as

(5.57)

(5.58)

CcI __ 4
¢ - _§Qc707—a
BI __ 4
qb = —ggbvo’ﬁ
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Figure 5.13: Evolution of the gravitational potentialin the Cl mode. (a): Super horizon

evolution; (b): Sub-horizon evolution in the radiation era. These curvesabtained using

CAMB. The vertical dashed lines mark the matter-radiatiQuadity and decoupling.

Thus outside the horizon, in the radiation-dominated émgravitational potentiab in the ClI

and Bl modes grows linearly with time in magnitude, and dagsxen depend on the wavenum-
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ber of the considered mode, but depends only on the dark maattiebaryon densities. This be-
haviour is shown in Figur¢s 5.13|(a) gnd 5.14(a) where we respectively represented the super

horizon evolution of the gravitational potential in Cl antdrBodels for different wavenumbers.

For the sub-horizon evolution, the derivation done in theeoaf the NID mode holds.
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Figure 5.14: Evolution of the gravitational potentialin the Bl mode. (a): Super horizon
evolution; (b): Sub-horizon evolution in the radiation era. These curvesabtained using

CAMB. The vertical dashed lines mark the matter-radiatiquadity and decoupling.

Therefore prior to matter-radiation equality, the potaidiscillates and is sourced by the pho-
tons. After matter-radiation equality, it becomes conistdinese features are shown in Figures

[5.13(b) and 5.174(b) where the sub-horizon evolution of titetialy is shown for four different

wavenumbers.

5.3 CMB anisotropiesin isocurvature models

In the previous section, we followed the time-evolution o fphoton density contrast,, the
common photon-baryon velocity divergenég,, and the gravitational potentiap, for different

initial conditions, from some initial time to the last s@athg surface where the photons and
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baryons decouple. After decoupling, photons freestreavartds us today and baryons, through
gravitational attraction, fall into the dark matter potahtvells. The three quantities,, ,, and
¢ above-mentioned allow us to compute the primary CMB angubarer spectrund’, using the

line of sight integral approach.
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Figure 5.15: Comparison of CMB temperature power spectrai, Cl, Bl, NID and NIV
modes for the same cosmological model. This is for a@bM universe with{2,h? = 0.022,
Q.h? = 0.125 andh = 0.7. The isocurvature spectra are normalized to have safjé =

2.5C{P for clarity. These spectra are obtained using CAMB.

We recall that the CMB angular power spectrum is given by

2 [dk 4| O, k) |2

where the multipole momen€3,(r, k) are given, using the line of sight integral approach, by

Ok, ) — /O " S PVjdlk(r — 7o), (5.60)
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with S(k, 7) being the source function. In the synchronous gauge, theesdunction is given
by

Oy 311
[ERETE

b b gy, I, BT
4R 16 16k2

S = e () + d&)+g(7) +9(7) +4(7) [ sl } ,

16k

whereg(7) is the visibility function. For the primary anisotropiekgetcontribution to the source
function due to the photon polarization is small compardt¢amther terms in the source function

and can be neglected. Thus the source function further siegiio the expression

5, 6
!

S=e"N+a)+g(r) 1T

+g(7) [% + oz} . (5.61)

Figure[R.Ib shows the CMB temperature power spectra for thBICNID and NIV modes for
the same cosmological model. The AD mode is shown here onlgeference purposes. Here,
the isocurvature spectra are normalized to have the samermiw = 10. Except for the ClI
and Bl modes that have the same spectrum, these spectra gfevend features from the fact
that the evolution of photon density contrast and velocitiedjence, and the evolution of the
gravitational potential differ from one mode to another. @ag these distinctive features are, the
positions and the amplitude of the acoustic peaks, the hefghe Sachs-Wolfe plateau and the
steepness of the spectrum on small scales. Hereafter, weHow that CMB power spectrum
can be obtained to abold% accuracy, using only the photon density contrast and vgldaier-
gence evaluated at decoupling, and the evolution of thatgtennal potential. We then consider
each isocurvature mode in turn and compare it to the ad@batl other isocurvature modes.
We group the NIV and NID modes as these are free oscillatind$ave some similarities with
regard to the acoustic peak positions and the integratdusS&blfe effect, then consider the ClI

and Bl modes which have the same CMB temperature power sp@ctr

The multipole moments can be further simplified knowing thatvisibility function is approxi-
mately a Dirac delta function that peaks at decoupling (igrgpreionization for now). Thus, to
a good accuracy, the multipole moments can be computed tignuhoton density contrast and
the baryon velocity divergence evaluated at decouplind,tae evolution of the gravitational

potential [78]. In this approximation, the multipole monteare given by
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Figure 5.16: CMB angular power spectrum faj: ClI, (b): BI, (c): NID and(d): NIV modes.
The dotted line represents thg obtained using only the three main contributions to the s®ur
function, and the solid line is th€, obtained using the full source function. The solid line is

obtained using CAMB. The dotted line is computed with a codé&ewn in IDL.

Ou(10) =~ [O0+ Y] (1.)D(k)(20 + 1)je(kAT.) + O1(T)D(K) [lje-1(KAT.) — (€ + 1)je1 (kAT)]
+ (20+1) / [+ ¥je(kAT)dr, (5.62)

wherer, is the conformal time at decouplindyr, = 70 — 7., A7 = 70 — 7 andD(k) accounts
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for the diffusion damping. This diffusion damping factogisen by
D(k) = / g(r)el =R e g (5.63)
0

Figure [E.16) represents the CMB power spectrum computiud) ube full transfer function
compared to the one using only the main three contributionthé transfer function for the
Cl, BI, NID and NIV modes. These are respectively obtainednbggration of the exact (see
equation[[5.60)) and the approximated (see equdiion] (st&2)sfer functions through equation
(E59). One can see that the approximation reproduces tire festures of the CMB power
spectrum.

Thus, the evolution of the photon density contrast and Wglalivergence and the evolution of
the gravitational potential, themselves depending on théewf the primordial fluctuations, give
a good approximation to the total CMB angular power spectrhiereafter, we study the main

features of the CMB temperature power spectrum in isocureahodels, for each mode in turn.

By studying Figuré 5.15 we observe that, of all the isocum&atCMB power spectra, the NIV
CMB power spectrum is the most similar to the AD CMB power $peu with regard to its over-
all shape. The Sachs-Wolfe plateau and the ISW effect andasifor both modes, and at higher
¢’s, the NIV and AD CMB spectra show the same behaviour in theglag of anisotropies on
small scales. However, the acoustic peaks are shifted terléw compared to the adiabatic
model as the NIV excites a puge kr, harmonic instead of the driven cosine like harmonic for
the AD mode, but the peak positions still follow the (1:2)3séries as for the AD mode. The
ISW effect contribution around the first peak in the NIV modeaot as important as in the AD
mode due to the smallness of the gravitational potentialitsniime derivative. At the horizon
crossing, the gravitational potential decays but this Weakects the height of the first acoustic
peak. As a result, the first peak in the NIV mode is not as high #s AD mode. In addition,
on very large scaleg (< 10), the Sachs-Wolfe plateau is boosted by the velocity deecg con-
tribution as in this mode, the photon velocity divergencaisally perturbed. In Figuré 517,
we represent the different contributions to the CMB powercsum for the NIV mode. For this

mode, the CMB spectrum is essentially dominated by the lawgbocity on large scales and
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Figure 5.17: Different contributions to the CMB power speot for the NIV mode. These
contributions are obtained using CAMB. This is for a fMEDM universe withQ,4? = 0.022,
Q.h? =0.125 andh = 0.7.

the gravitational potential is proportional 1¢%7 on large scales (see equatifn (%.45)), boosting
both the ordinary and integrated SW contributions at ts\as also explained in[121]. How-
ever, the ordinary and the integrated SW contributions hbugancel each other as they are
opposite in sign. Ag increases, the contribution due to the change in the gteonita potential
decreases and the ordinary SW contribution becomes dotiimtdne transfer function. Note that
the velocity divergence contribution in the source funeti® weighted byt —2 thus reducing its
significance on intermediate and small scales. Let us alsothat the phase difference between

the gravitational potential and the photon density cohisagot constant but changes with

For the NID mode, the acoustic peaks are located roughlyeaNiV trough positions, due to

the fact that the NID and NIV modes, are both free oscillaiaith respectively a cosine and
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Figure 5.18: Different contributions to the CMB power speot for the NID mode. These
contributions are obtained using CAMB. This is for a fMEDM universe withQ,4? = 0.022,
Q.h? =0.125 andh = 0.7.

sine type phases. The NID CMB angular power spectrum cantaore power on large scales,
compared to the anisotropies on intermediate and smakscdlhe first acoustic peak and the
SW plateau have almost the same height. One should bear ththahthe NID CMB spectrum
has a trough before the first peak. Figlreb.18 shows thereliffecontributions to the spec-
trum. The Doppler effect, though not important as in the NIdd®, reduces the depth of the
first trough. As for the NIV mode, the gravitational potehtiaitially not significant, decays
at the horizon crossing. But this decay does not signifigemtbst the anisotropy temperature
before and after recombination due to the smallness of tintgtional potential. The velocity
divergence contribution to the spectrum remains subdambioia all scales in this mode, while

the ISW contribution to the spectrum is of no significance.
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Figure 5.19: Different contributions to the CMB power spent for the CI mode. These con-
tributions are obtained using CAMB. This is for a fl’RC€CDM universe withQ,h? = 0.022,
Q.h? =0.125 andh = 0.7.

The CI and Bl modes have the same CMB power spectrum as thetioplevolution equations
are similar. They both represent a driven oscillation andtexasin kr, like harmonic, setting
the ¢ peak positions in the Cl and Bl modes roughly at the troughtipos in the AD CMB
power spectrum. Most importantly, though the gravitatigmential in the Cl and Bl modes is
as important as in the AD mode, in contrast to the NID and NI\We®where it is negligible,
the CMB power spectrum in the CI and Bl modes completely dsffer the AD spectrum: At
low ¢’s, the CMB power spectrum in the Cl and Bl modes do not shovwsgehs-Wolfe plateau
as in the AD case but instead decrease&insreases. This is due to tie! factor in the evolu-
tion equation of the photon density contrast which boosisatiropies on large scales (Ioffg)

and suppresses them on small scales. fiheactor also dictates the steep overall shape of the

Bl and CI CMB power spectra and tends to hide the fact that ki @ower spectrum has a
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Figure 5.20: Different contributions to the CMB power spent for the Bl mode. These con-
tributions are obtained using CAMB. This is for a fl’RC€CDM universe withQ,h? = 0.022,
Q.h? =0.125 andh = 0.7.

trough before the first acoustic peak in these modes as in llbenddde. For the same reason,
the ISW effect in these modes, though as relevant as in the ABenfsince the gravitational
potential is relatively large at the horizon crossing tint)es not noticeably increase the height
of the first peak as for the AD case. Figufes5.19[and 5.20 shewdntributions to the CMB
spectrum in these modes. It turns out that the CI, Bl and NiRlesofor which the first peak
of the CMB power spectrum is preceded by a trough have theusiic peak positions follow-
ing the (1:3:5) series in contrast to the AD and NIV modes (whke first acoustic peak comes

right after the Sachs-Wolfe plateau) which have the CMB speatfollowing the (1:2:3:4) series.
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5.4 Effect of cosmological parameterson theisocurvatureCMB

temperature power spectrum

In the previous section we reviewed how, from the fluctuatianthe last scattering surface, one
derives the observed CMB anisotropy, and subsequentlyesttide features of the CMB power
spectrum for isocurvature modes. The CMB anisotropy spetttepends not only on the mode
of the initial fluctuations but also on several cosmologalameters including the baryon den-
sity w, = Q,h2, the matter density,, = €,,h?, the dark energy density,, the optical depth
7., the spectral index, and the scalar amplitudé,. Each parameter has a distinct effect on the
spectrum. In a previous chapter, we studied how a change icatbmological parameters affects
the CMB spectrum in the adiabatic case. The baryon denséttemdensity, and cosmological
constant each induce a shift in the location of the acousiidke and troughs in the CMB spec-
trum. For a flat universe, the peak location depends on thedsbarizonr, and on the age of
the universey. An increase in the matter density, 7> reduces the age of the universe but does
not affect the sound horizon. A change in the baryon deniégis the sound horizon. More
importantly, the physical densities in mattey,4/? and baryons$2,h? fix the heights of acoustic
peaks in the CMB spectrum. The peaks in the CMB spectrum areréal and shifted to higher

¢ as the matter density,,h? increases.

A dark energy model with cosmological constéig or quintessence, and curvature have no
significant effect on the pre-recombination universe arlg afiect the CMB spectrum through
the angular diameter distandg and the late-time ISW effect [98]. The optical depthtells

us how much the universe was reionized at late times. Thaigsiton of the universe reintro-
duces Thomson scattering of photons by free electronselbftical depth is large enough, the
anisotropies are washed out. The spectral indgxas an effect different from all of the previous
parameters. An increase in the spectral index lowers tsotnpy on large scales and enhances

it on small scales, by tilting the spectrum about a pivotescal
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In this section, we study the effect of each of the above-mopat cosmological parameters on
the CMB power spectrum in isocurvature modes. We partiufacus on the physical baryon

density and the physical matter density as they affect th& Spectrum for adiabatic and isocur-
vature modes differently. The effect of the other cosmalalgparameters on the CMB spectrum

in isocurvature models is similar to the AD case.

5.4.1 Baryon density ,h?
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Figure 5.21:,h? dependence of the CMB power spectrum in isocurvature modals is for a
flat ACDM universe with),h? = 0.022, 0.03, 0.04 and0.06, Q.h? = 0.125 andh = 0.7.
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Figure[5. 21 represents the baryon density dependence GMiietemperature power spectrum
for different isocurvature modes. The baryon density iscitmological parameter which most
affects the heights and locations of peaks in the CMB powectspm. Except for the NIV mode,

the effect of a change in the baryon density on the CMB poweetspm is essentially determined

by the change in the photon density contrast. Prior to ddouwyphe baryons and photons are

. . . 1
coupled and form a single fluid whose squared sound speeuéa biyc? = m where
R = %. The oscillation phase depends on the sound horizoi hus loading more baryon
P~

reduces the sound speed, shifting the acoustic peaks tertfighThis effect is also seen in the
AD mode. However, the lowering and enhancement of the awopséks differ from mode to

mode.

In the NID mode, as, the baryon density increases, all thastimopeaks are significantly low-
ered. This differs from the AD mode, where the odd peaks anamced while even peaks are
lowered, due to a gravitational potential shift. As we shdve the NID mode, the gravitational
potential contribution is negligible and the amplitude loé toscillations for the photon density
contrast and velocity divergence (see equatibnsi5.30)&B&)) depends on the sound speed.
The lowering of the acoustic peaks is strongest about thetliree peaks where the Doppler
effect contribution, related té,, and 9,,7, becomes as important as the monopole contribution.
We recall tha®,, is proportional tac? while 4, is proportional toc,. Figure[5.22(¢) shows the

effect of a change in the baryon density on the contributiortee NID CMB spectrum.

The NIV mode shows the strongest height reduction of the staopeaks. The first three peaks
are strongly reduced as the baryon density increases, thieilether peaks slightly decrease as in
the NID mode. However, the effect of the change in the baryorsity is noticeable even on very
large scales in contrast to the NID case. Here, the monopoilibution and the Doppler effect
contribution are in phase. At lowéis the velocity divergence, with its amplitude proportibna
to the square of the sound speed (see equdiionl (5.43))ilbdes most to the transfer function,
while for higher/’s the photon density contrast (see equation{5.41)), ptapal to the sound
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Figure 5.22: Baryon density effect on the contributionste €MB power spectrum for the

isocurvature modes. The baryon density increases fight = 0.022 (solid lines) t00.06
(dashed lines). This is for a flAACDM universe with).h2? = 0.12 andh = 0.7.

speed, dominates in the transfer function. This is showrignre[5.22(d) where we represent

the changes in the contributions to the CMB power spectrum.

The CI and Bl modes react differently to an increase in thgdadensity. In the CI mode,

acoustic peaks are lowered. However, the baryon densityralgmce of the CMB power spec-

trum is weaker in the Cl mode than in the NID and NIV modes. Teidue to the fact that the

photon density contrast amplitude (see equafion15.48)¢mies on the photon-to-baryon ratio
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R only through the forcing term. The amplitude of the sine hamin is constant. Figuife 5.27(a)
shows that there is no significant change in the monopoleibotibn as the baryon density in-
creases. For the Bl mode, the amplitude of the sine harmseie ¢quatior (5.50)) is directly
proportional to the baryon density. Thus in contrast to tteiomodes, loading more baryons in

Bl models enhances significantly the acoustic peaks. F shows that all the contribu-

tions are boosted as the baryon density increases.

54.2 Matter density €,,h?

To see the imprint of the matter density on the CMB power spatt we consider &aCDM
universe, keep the physical baryon denslty:? andh constant, and modify only the dark matter
densityQ.h2. The change in the matter density is compensated hyChanging2, affects the

CMB spectrum but its effect can be neglected compared toftbet ®f the matter density itself.

For a universe with a low matter densidy, #?, the epoch of matter-radiation equality, occurs
closer to recombination. The gravitational potentiall stdcays at recombination providing a
strong driving force for the oscillations. Therefore thefn density perturbation,, is larger
compared to high matter density universes. In additiorgesthe potential is not constant after
recombination, the integrated Sachs Wolfe effect contidiouis not negligible and should be
taken into account. Figufe 5123 shows the effect of a chamgfeei matter density on the CMB
acoustic peaks in isocurvature modes. In contrast to theohatependence, an increase in the
matter density shifts the CMB acoustic peaks to loer The location of the acoustic peaks,
¢,, in the CMB spectrum is proportional &y o« 71y /7,(7,.) wherer, is the age of the universe
in conformal time. Increasing the matter density decreésesge of the universe pushing the

peaks to lower.

The effect of an increase in the matter density on the heigtiteo CMB temperature acous-

tic peaks in the Bl, NID and NIV modes is similar to the AD ca$@r a low matter density,
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Figure 5.2312.h? dependence of the CMB power spectrum in isocurvature modals is for a
flat ACDM universe withQ),h? = 0.022, Q.h? = 0.125, 0.2, 0.3 and0.4, andh = 0.7.

the matter-radiation equality happens closer to recontioima Therefore, the photon density
contrast at recombination is larger than in a purely mattenidated universe. In addition, an
increase in the matter density increases the gravitatmotahtial which in turn, causes the ISW
effect to significantly affect the anisotropies around tigt fand second peaks as it decays. In
the Cl mode, an increase in the matter density enhancesadlbstacpeaks as the photon density

contrast is directly proportional to the matter densitylas in equation{5.48).
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5.4.3 Cosmological constant density €2,
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Figure 5.24:Q, dependence of the CMB power spectrum in isocurvature modéis is for a
flat ACDM universe with2,h? = 0.022, Q.h? = 0.125 andQ, = 0.4, 0.6, 0.7 and0.8.

The effect of a change in the cosmological constant densitthe CMB temperature power

spectrum in isocurvature modes is similar to the AD case.hAtlast scattering surface, where

the main contributions to the anisotropies that we obsexglayt were formed, the universe was

still radiation-dominated and the cosmological constaas wegligible and could not affect the

perturbations. Therefore the effect of the cosmologicalstant on the CMB power spectrum

is only through the freesteaming of photons from last sdatiesurface towards us. For a fixed

baryon and matter density, the cosmological constanttaffbe angular diameter distanég
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which in turn modifies the peak location in the CMB power spgat The angular diameter
distancel, = d/p is a classic way to measure distances by measuring the arsgietended by
an object of known physical size In a flat universélx =1 — Q) — Q,, =0, ¢ = (d/a)/AT

so that the angular diameter distance is giveri by [41]

AT

dflat:aA — ,
A T 1tz

ap =1 (5.64)

whereAr is the comoving distance. At low redshift, the angular disndistance is equal to the
comoving distance. Thus the entire CMB spectrum shiftswetamultipoles/ as(2, increases.
However the shift in the peak location due to thg is weaker, compared to the shift due to a
change in the matter and baryon densities. Figurd 5.24 showshe CMB power spectrum for

both isocurvature modes is shifted to larger scales as $malogical constant increases.

54.4 Curvaturedensity Qg

Among all the cosmological parameters that we are consigethe curvature density by far
causes the largest shift in the location of the peaks [41F ftoton geodesics depend on the
geometry of the universe. In an open universe, the geode$iogassless particles start out
parallel to each other and then slowly diverge. The physcale corresponding to the first
peak gets projected onto a smaller angular scale in a flaetsg\compared to an open universe.
Therefore we expect that the peaks should be shifted to higilees of/ in an open universe.
For the closed universe, the peaks are shifted to lower salié The magnitude of this shift
is determined by the comoving angular diameter distancéeoldast scattering surface [77].
Equation[[5.6K) in the previous subsection gives the amglidaneter distance in a flat universe.

For a non flat universe, the angular diameter distance gieress&o

a sinh [\/Qx HoAT] Qi >0

dA = T
HO\/M sin [/ —Qx H)AT] Qg <0

(5.65)

Thus changing the curvature of the universe affects the langliameter distance and subse-

quently the peak location. In Figute 5125 we see how the w8 spectrum is shifted to

107



g 10000 f g 10000 f
3 % 3 %
— 1000 %, — 1000 | %,
= P\ i< P\
< - < -
N 100 R 100
©) [ ©) [
—~ —~
— 3 — L
+ 10 E + 10 E
RS I RS I
~— L ~— -
= 1} = 1k
01 I 1 1 1 1 01 I 1 1 1 1
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
(@) Cl (b) BI
S > 500 S > 1200
a T T T a T T T T
Qy=-01 — Q=01 —
EL 450 0 g EL K
= 100 0.1 weeveres = 1000 4
= 3 S
o~ 350 B a 800 a
~ ~
< 300 — N ]
$) S _:
~ 250 . 600 b .
— g :' 5 K -, — 3
+ 200 BORAC 1+
= 150 “\ A . s 400 T
100+ \/\ ] 200 .
50
0 1 1 Lo 0 1 1 1 1
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
(c) NID (d) NIV

Figure 5.25: Curvatur€); dependence of the CMB power spectrum in isocurvature models
As we increase the curvature density, the anisotropy specshifts to small scales. This is for
closed x = —0.1), flat (25 = 0) and openQx = 0.1) ACDM universe withQ2,h? = 0.022,
Q.h% =0.125 andh = 0.7.

the higher/ as we go from a closed univeré@, < 0) to an open universg, > 0) for all

isocurvature modes.

545 Optical depth 7,

After leaving the last scattering surface, photons freestr towards us today preserving the

anisotropy. This is true if we ignore the reionization of theverse at late time. In fact, as the
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Figure 5.26: Reionization dependence of the CMB power specin isocurvature modes.
As the optical depth from reionization to the last scatgsnrface increases, anisotropies are
washed out for scales inside the horizon at the reionizagmoch. This is for a flanCDM
universe withQ2,h% = 0.022, Q.h% = 0.125 andh = 0.7.

first luminous objects form their UV emission reionizes tmévarse. This brings photons back
into contact with free electrons which erases anisotrohiesugh Thomson scattering. Taking
into account the reionization of the universe a second pppkars in the visibility function at
low redshift. The CMB photons are affected by the tempeeatpotential, and velocity of the
scattering electron§ [60]. If we assume that photons hagmaeraturd’(1 + ©) whereT is the

background temperature afdthe temperature perturbation before reionization, ahieaiion,
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only a fraction of photons given by ™, will emerge without scattering. The remaining fraction

(1 — e~ ™) is re-emitted by the ionized region. Thus the photon tentpesgafter reionization is
T1+0O)e ™ +T(1—e)=T(1+0e ™). (5.66)

This means that the CMB anisotropy after reionization isdmd by a factoe=" and con-
sequently the power spectru6y is reduced by—2. Hence, all modes within the horizon
(¢ > 10/ Treion) At reionization will be affected by this process and the nsaméside the horizon

remain unchanged. Figure 5126 shows that this is valid ®QGh BI, NID and NIV modes.

5.4.6 Spectral index ng

The CMB angular power spectrum can be written as

c =2 / 1Py () |04 (k)2dk, (5.67)

™ Jo
where P;(k) is the primordial power spectrum. The primordial power $peu is proportional

to k™ wherek is the wavenumber and, the spectral density [41]. This can be written as

k

Pr(k) o (k—)n (5.68)

wherek, is a constant. At the wavenumbker= £,, the power spectrum is independent of the
spectral index. For other wavenumbets will modify the slope of the CMB power spectrum,
pivoting around some multipolé, ~ k,7,. This effect on the CMB spectrum is clearly seen
in Figure[5.2V for the CI, Bl NID and NIV modes. A value of < 1 lowers the small scale

anisotropy and boosts the large scale anisotropy with tpesife effect fom, > 1.
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Figure 5.27: Spectral index dependence of the CMB powertspador isocurvature models.
This is for a flatACDM universe withQ,h? = 0.022, Q.h? = 0.125 andh = 0.7, pivot scale
k, = 0.05Mpc™".
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CHAPTER O

Fundamental Uncertainty in the BAO Scale from

Isocurvature Modes

6.1 Introduction

Large galaxy surveys fall squarely in the realm of astrosyand traditionally we think of them
as living almost independently of the physics of the earlwérse. In thid_etterwe show that
this assumption breaks down rather dramatically in the chdgaryon Acoustic Oscillations
(BAO) (for a recent review seé [112] ). BAO surveys are a key ponent of the global plan for
the next two decades in cosmology because they are belieyavide a robust and powerful
statistical standard ruler that can probe dark energy. Tiagg shown to be robust to a variety of
potential systematic effects which only become importatihel% level [155,157]. However,
here we show that there is a much more significant “systeiratising from the possibility of
isocurvature modes correlated with the dominant adialperturbation which may have been

generated during the early Universe.
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To understand this systematic, consider the standard pubided by the distance that sound
waves can propagate in the primordial plasma. The standetut@ based on adiabatic pertur-
bations suggests that the key scale is the sound horizon:

> ce(2) o
H(z)

tcmb
ry = / cs(1+ 2)dt =
0

Zemb

wherec,(2) = 1/4/3 (1 + Ry(1 + 2)~1) and Ry, = 31500 wy, (T /2.7 K)~*. The measurement

of the late-time clustering of galaxies in the transverseation probes the angular diameter dis-
tance given byls(z) = r, (1 + z)~!/A®© wherer, is the intrinsic size of in the transverse
direction andA® is the position of the peak in the angular correlation fumttiwhile the clus-

tering on a scale along the line of sight probes the Hubble paramel&r;) = Az /7.

Measurements of the angular diameter distance and Hubtdengter in a series of redshift bins
using the BAO technique provide an effective probe of thepprtes of dark energy [28, 139,
155], with prospective constraints on the equation of statdark energy;uy, and its evolution
w,, as low as 0.02 and 0.04, respectively, for a future spaceebsigectroscopic mission (e.g.,
ADEPT [151]), with forecasts for current experiments (e.go3[149]) at the level of 0.03 and

0.1 respectively.

Systematic effects that affect the position and shape dB#ngon Acoustic Peak (BAP), such as
nonlinearity and redshift-space distortions, have beedistl and can be treated without a sig-
nificant impact on dark energy constraints [155,1157]. Thesdot on the BAP from non-standard

conditions in the early Universe such as changes in recatibim early dark energy or inhomo-

geneous reionization, have been studied before [40]. Hereoncentrate on the possibility that
the initial conditions were not purely adiabatic. Adiabatitial conditions are described by a net
density perturbation such that the relative number desssdf all cosmological species remain
unperturbed. There is however another possible type ofifeation, termed isocurvature, char-
acterized by variations in the particle number ratios siett the net curvature perturbation is
zero [29]. We show that isocurvature modes alter the staqaature above and deform the char-

acteristic BAP scale which manifests in the anisotropieghécosmic microwave background
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and the clustering of matter. We investigate the extent tahvhn admixture of isocurvature
modes, small enough to be undetectable byNTK, degrades constraints on dark energy pa-
rameters when allowed for, or bias the recovered valuestitaien into account. Put more
generally, we investigate the coupling of the primordiahgley perturbation to the constraints
arising from our observations at late times, even with giqomor constraints on the isocurvature
modes from CMB data. Constraints from WMAP 3 year data inditaat a 50% admixture of
three isocurvature modes with the adiabatic mode is paxth[it3], whereas forecasts for the
PLANCK experiment indicate that arbitrary isocurvature mode atlmes will be constrained to
below the 10% level [31].

What are the possible origins of isocurvature modes? Theleshpossibility perhaps is multiple
field inflation [119,137], with the curvaton mechanism as acgd casel[113]. The resulting
isocurvature perturbation is a leading candidate to er@ay primordial non-Gaussianity and
can, in certain cases, explain the observed asymmetry iCktB [52]. While the simplest,

adiabatic models of inflation are currently preferred |17 possible that some isocurvature
contamination will be uncovered in future experiments arteed this would be very fortuitous
since it would provide new handles on the physics of the vanjydJniverse. In this chapter

we argue that allowing for the possibility of isocurvaturedes is crucial in future BAO surveys

and that as a reward, such surveys can provide a powerfubletige early Universe.

6.2 TheBAO peak with adiabaticand isocurvatureinitial con-
ditions

The features of the BAO peak are not only sensitive to the drackhd dynamics, but also to
the evolution of the cosmic perturbations, in particulag thanner in which the initial relative
perturbations between the different species were esieolidHere we go beyond the assumption
of pure adiabatic fluctuations, in which the equation ofestdtthe universe is spatially constant

and the curvature is perturbed, and allow the possibilityeglilar isocurvature perturbations, in
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which the equation of state between the different speciges/éo keep the curvature constant,
as well as correlations between the adiabatic and isoawevgerturbations [29]. Depending on
how the different species are initially perturbed, diff#ressocurvature modes arise, namely the
cold dark matter isocurvature (Cl) mode, the baryon iscatume (Bl) mode, the neutrino isocur-

vature density (NID) and the neutrino isocurvature velo@itlVV) mode.

Acoustic oscillations in the photon fluid in the tight-coungl regime are described by the photon

density evolution equation in harmonic space

. R . ,,. 2| R . | _
5”+—1+R5”+k c50, = 3 1+Rh+h = F(k, 1), (6.1)
R, . . - P
whereR = 0+ 2) is the scaled baryon-to-photon density rafiois the metric field in syn-
z

chronous gauge, and the dot refers to the conformal timeatem. Solving this equation prior

to decoupling we find that
0y (k,7) = Ag sinkry(1) + Ac cos kry(7)
LA / (14 ()2 sin [y (7) — ko (<) F (k. 7')d7, (6.2)
0

with the initial conditions that define the regular modesgiby:

ADIA |  BI Cl NID | NIV
As 0 _%QC,O —%Qb,o 0 %g_:
Ac| O 0 0 [—VBefe| O
Al g f 13 0 0

where(). o and(2;,, are, respectively, the cold dark matter and the baryon tlessoday, with
R, and R, the fractional energy densities of neutrinos and photoresdy times, respectively.
The NIV mode starts with a non-zero perturbation in the phaetgocity so that it stimulates the
sin(kr,) harmonic ind,, in contrast to the NID mode which has an initial non-zerdyrbation

in the photon density and excites thes(kr,) harmonic. We note that the adiabatic mode is
sourced purely by the gravitational driving te#iiik, 7), which is constant on large scales and at

early times, so that the adiabatic solution excitessékr,) harmonic, similar to the NID mode.
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At later times, though, this approximation breaks down wthenmode enters the horizon, and
the adiabatic solution deviates from a pure cosine modé, thé consequence that its acoustic
peaks are offset in phase from the NID peaks. In the tramsitianatter domination, the gravita-
tional driving term switches on as a source for the Cl and Btlesp whereas its contribution to

the NID and NIV modes remains negligible.

Figure 6.1: Baryon mass profile for adiabatic and isocureatnodes at decoupling, with the
correct relative amplitude between the AD (black solid)PNblue short dot-dashed line) NIV

(green long dot-dashed line), Bl (cyan dashed line) and &l @otted line) modes.

The solutions given above for the density contrasts of difiemodes need to be corrected for
diffusion damping, by multiplying the solutions by the fact—**/*5, wherek is the diffusion
damping wavenumber. In the absence of diffusion dampinghatles have their BAO peak at
the same position at all times but with differing shapes lier BAO profile due to the different

initial conditions. The product of the diffusion dampingtiar in harmonic space acts like a
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convolution in real space, smoothing the undamped BAO pgrafid moving baryons out of the
BAO peak. The convolution over the differing BAO profile skaghus results in a relative shift
of the BAO peak position for different modes. We observe #maesshift in the series of acoustic
peaks exhibited in the cosmic microwave background amipgtspectrum[[43], though in this

case it is recombination, as opposed to decoupling, thattsetacoustic scale. To quantify the
shifts in the BAO peak of the isocurvature modes relativééoadiabatic mode, in Figure .1 we

plot the baryon mass profil2 [47] of the various modes at dglooy, defined by

sin kr

k*r2e Mo 2df,

mm@:/nm@

r

whereT, = §,/k? is the baryon transfer function. Prior to decoupling andame scalesy, is
exactly%&, for all modes except the Bl and NID modes in which the baryah@moton density
perturbations differ by a constant, respectivélgnd R,/ R.,.

The mass profile captures the evolution of an initial poike-perturbation at the origin, though
in practice we use a narrow gaussian, with widtH in k& space. The initial density perturbation
expands out as a spherical wave at the sound spekd [11] sat thetoupling there is an excess
of baryons at the sound horizon scalg~ c,74... Note that even though the photons decouple
from the baryons at ~ 1080, it is only atz ~ 500 that the baryons stall, due to the fact that the
growing mode is dominated by the velocity field on small ssaléhich does not decay instanta-
neously after decoupling. This sets the scale for the ladshdt BAO peak, which is shown in
Figure[6.2. We observe that the BAO features for the iso¢urganodes differ in shape and po-
sition from the adiabatic BAO peak, due to the effect of tifeudion damping on the undamped
BAO profiles discussed earlier. In the case of the NID and NIdtes there is a pronounced
peak which is offset from the adiabatic BAO peak due to thepting to different harmonics,
as described above. In the case of the Bl and Cl modes thetacaase has merely imprinted
a ripple onto the homogeneous sea of baryons at decouplimghwevolves into a knee in the
baryon mass profile at the BAO scale at late times. It is al@vasting to note that the amplitude
of the mass perturbation at the origin is much smaller forislbeurvature modes because the
curvature, and thus the mass fluctuation, is initially utyrbed. It is clear that small admixtures

of the isocurvature modes and their cross-correlationsdestort the shape and location of the
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Figure 6.2: Baryon mass profile for adiabatic and isocureatnodes at = 0, with the same
labeling as in Figure®@l 1. For clarity the NID, NIV and Cl mgssfiles have been multiplied by

a factor of two, while the Bl mass profile has been multipligdaldactor of six.

adiabatic BAO peak.

6.3 Dark energy constraints

Assuming that the variations in the cosmological params€iecluding those modeling isocur-
vature) are small, we can model the likelihood function oatadet as a multivariate Gaussian
centered on a fiducial adiabat\d”DM Universe. Based on the noise estimates for tios8
and RANCK experiments, we can compute estimates of the errors on #matogical param-
eters using a Fisher matrix formalism, by perturbing thereasgy around the fiducial model.

When perturbing the dark energy model away franwe allow for dynamics and parameterize
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Figure 6.3: (a)lo error ellipses fowy, w,) from the Fisher matrix calculation for thed®s
(thin lines) and AEPT (thick lines) experiments with theLRNCK data as a prior, assuming
adiabaticity (solid) and for the fully correlated isocuiwae case (dashed). The fiducial dark
energy modelz@(’;id = —1, wf* = 0) is marked by a black star. (b) The average biases in
the dark energy parametef&w,, dw,) that could potentially arise as a result of the incorrect
assumption of adiabaticity are computed using equafidfog .8 set ofp; which are constructed
from 10,000 linear combinations of the eigenvectgrdVe can use the average of these biases to
compute a dark energy model given by (" + dwq, w!* + dw,) which, under the assumption of
adiabaticity, will be indistinguishable from the fiduciabael in a non-adiabatic Universe. This
dark energy model is shown by the dotted lines for each ofwtloecixperiments considered. All

other parameters have been marginalized over.

its equation of state using(a) = wy + (1 — a)w, wherea = 1/(1 + z) [34,[112]. To model
deviations away from adiabaticity, we adopt the isocumeaparameterization implemented in
Moodley, et al. (2004) [121], where the different modes and their crossetations are de-
scribed by 9 parameters, measuring the fractional cortioibsi of the various correlations (auto
and cross) to the overall total power spectrum. The relatigmbetween this choice of isocur-
vature parameterization and other parameterization isritbesl in Bearet al. (2006) [13]. We

wish to examine the best case scenario, in which all infaonatvailable from the galaxy power
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spectrum is used and not just the baryon acoustic wigglashémunore, we also assume perfect
knowledge of the redshift-dependent bias and include tfeermation introduced by the linear
redshift distortions. Note that for the computation of theRck Fisher matrix, we follow Al-
brechtet al. (2006) [3] and re-introduce the strict geometric degenebatween the dark energy
densityQ x andwg, w, which may be artificially broken in the standard Fisher nxatompu-
tation, leading to under-estimates of errors. The detditeeFisher matrix implementation are
given in the next chapter [124]. As a check of our numericscamputed the Fisher matrices
for the BAO experiments considered in Rasstal. (2009) [139] in accordance with the details

provided therein and recovered their results with reaseragreement.

We are concerned with how well the equation of state paraseteandw, can be measured.
In order to quantify the constraining power of the data, wepote the Dark Energy Task Force
(DETF) figure of merit (FOM), which in practice is given by tequare root of the determinant
of the2 x 2 Fisher matrix for thev, andw, parameters and is proportional to the reciprocal of
the area of the error ellipse in the — w, plane. We are concerned with the change in the FoM

when isocurvature is introduced relative to the case of pdrabaticity.

We compute the potential errors ag andw, for the case of pure adiabaticity and for the sce-
nario where all isocurvature modes and their cross-cdioalsare admitted, while marginalizing
over all other cosmological parameters. The results fan bue¢ Bossand ADEPT experiments
are shown in the first and last rows of tablel6.1. ThesBFoM is found to decrease H0%
when this additional freedom is introduced in the initiahddions, while the AEPT FOM de-
creases bg0%. These changes are illustrated in Figuré 6.3 which complhe£8% confidence
regions for the adiabatic and the fully correlated isocturacases. Evidently, no single mode
and its correlation are responsible for the change in tleavalble (w,, w,) region, but rather a

mixture of all extra degrees of freedom.

The question that we wish to ask is, what bias in the estinaftéise dark energy parameters

could potentially be induced by incorrectly assuming adiadity? For a Gaussian-distributed
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Experiment Bss ADEPT

Modes wo Wq wo Wq

AD 0.033 0.10 0.02 0.042
AD+CI+(AD, ClI) 0.033 0.10 0.020 0.04
AD+NID+(AD, NID) 0.033 0.10 0.020 0.04
AD+NIV+(AD, NIV) 0.033 0.10 0.021 0.04
ISO (ALL) 0.044 0.13 0.022 0.04

N NN

Ol

Table 6.1: Table summarizing the constraints(an, w,) for adiabatic and an admixtures of
uncorrelated adiabatic and isocurvature modes, marginglother all other parameters, for the

Bossand ADEPT experiments. The fiducial model assumes adiabaticity.

likelihood function, it can be shown that the linear bias ised of parameters that we wish to

constrainjd;, due to erroneous values of a set of fixed parameters,s [169]
06, = — [F*) ' F{?6¢, (6.3)

where F? is the Fisher sub-matrix for the parameters we wish to caimsandF?? is a Fisher
sub-matrix constructed from the product of the derivatwethe power spectrum with respect

to the parameters being constrained and those which arg bred. In our casg labels the

nine isocurvature mode amplitudes, incorrectly fixed tazérlabels the eight cosmological
parameters that are biased, anldbels the subset of two dark energy parameters whose bias
is of interest to us. In order to séb;, we diagonalize the combined ANCK and large-scale
structure (LSS) Fisher matrix and select the eigenveetavjth the smallest eigenvalug. This

corresponds to the direction in parameter space which s teastrained by the data. We then

take(SQb] = 4/ %el

For the Boss experiment, we find thatw, = —0.049 anddw, = 0.11, while for ADEPT the
biases are found to by, = —0.015 anddw, = 0.018. However this is only one particular

direction that weakly constrains all the parameters, noesgarily the dark energy parameters.
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In order to explore the full range of the bias, we use a set gdd®random linear combina-
tions of the eigenvectors to compute; and the corresponding biases. We find that the mean
biases argi(dwy) = 0.23 and u(ow,) = —2.3 with o(dwy) = 0.15 ando(dw,) = 0.73. The
implication is that if the initial conditions of our Univezsare comprised of a sub-dominant con-
tribution from isocurvature modes (within the constraints from PANCK and the selected LSS
survey), the assumption of adiabaticity could lead to aornrect7o detection ofw, # —1 or

a 23c false claim ofw, # 0. Alternatively, A could be found to be consistent with the data
when in factw(z) # —1. The potential bias incurred by the adiabatic assumptidhércase of

a more advanced BAO experiment such aseAT for wy is aroundl0o with i (dwy) = —0.20
ando(dwg) = 0.048, while the measurement af, could be inaccurate at the level tfo with
wu(dw,) = —0.52 ando(dw,) = 0.15. The reduction in the bias is encouraging as one would ex-
pect that with an increase in the constraining power of tlieesucomes a higher risk of making

false claims.

It is interesting that perhaps the most physically relevantle, the CDM isocurvature mode,
leads to no noticeable degradation of the dark energy @ingrrelative to the pure adiabatic
model and less than@5¢ bias in the dark energy parameters (on average) when taksol@
tion (see Tabl€®l1). That being said, we could be unluckytaedJniverse may in fact have an
isocurvature contribution from a single mode that is higt#generate with a nof-dark energy
model. For example, we find a particular combination of aali@mband CDM isocurvature initial
conditions can induce biases 4f (30) and9¢ (20) for thew, andw, parameters respectively
for the Boss(ADEPT) experiment. Furthermore, even in the case of a single isatwre mode
correlated with the adiabatic mode, departures from scabriance and a scale dependent cor-
relation could cause further degradation of the conssairgsented here. For example, it is well
known [128] that scale-dependent correlations arise ilisteamodels of inflation with isocur-
vature modes since the power spectra often develop featuotsas bumps. Hence our results
simply provide a lower-bound on the expected impact of iseeture modes on the standard

results.
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PLANCK + BOSs | PLANCK + ADEPT
(AD, AD) 0.30 (19) 0.29 (27)
(Cl, CI) 0.0059 (47) 0.0051 (54)
(NID,NID) | 0.014 (40) 0.014 (40)
(NIV, NIV ) 0.011 (49) 0.0085 (62)
(AD, CI) 0.025 (85) 0.023 (86)
(AD,NID) |  0.0011 (26) 0.00023 (34)
(AD,NIV) |  8.5e-05 (99) 7.9e-05 (99)
(CI, NID) 0.013 (39) 0.013 (39)
(CI, NIV) 0.0034 (34) 0.0029 (43)
(NID, NIV) | 0.013 (75) 0.012 (76)

Table 6.2: Forecasted uncertainties on isocurvature patgamin the fully correlated case for the
PLANCK and LSS data (Bssand ADEPT). The percentage improvementlia errors when the

LSS data is added to the. BNCK data is shown in brackets.

We can also turn this around and instead recognize that sultseshow that the combination of
LSS and CMB data provide a powerful new discovery tool fortexaew early Universe physics
associated with isocurvature modes. In particular, themel of the 9-dimensional isocurvature
Fisher ellipse i2 — 4 x 10° smaller than that from IANCK alone, showing that using CMB
plus BAO data in union provides exceptionally good conatsaon the early Universe relative
to the CMB alone. The constraints on the isocurvature paesié¢rom the CMB plus BAO
data are summarized in talilel6.2, with the percentage irepment over the CMB alone shown
in brackets. We find that the error bars on the isocurvaturarpeters decrease by Bo as
much as 10% for certain modes when the LSS data (eithers8 or ADEPT) is added to the
PLANCK data. More specifically, the parameters representing tieserorrelations between the
AD and Cl modes, the AD and NID modes and the NID and NIV modesvaiore than 7%
reduction in their forecasted errors. The implication igtth combination of these parameters

is strongly degenerate with the dark energy parameters & wicluded into the parameter
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space, contributes substantially to the degradation ifaileeastedv, andw, constraints.

6.4 Conclusions

With forecasted constraints on dark energy from Baryon AtouOscillation (BAO) experi-
ments at the level of a few percent made possible by the lanigenes probed by the most recent
generation of redshift surveys, it is important to expldre tull spectrum of possible BAO sys-
tematics. In thid etterwe have found that even small isocurvature admixturesfsignily alter
the BAO, and by assuming adiabaticity we run the risk of inectty attributing a shift in the

BAO away from the predicted value ineCDM model, to the presence of dark energy.

In particular, ignoring isocurvature modes can bias thenedes of the dark energy parameters,
leading to & o (100) incorrect measurement af, or as much as 230 (120) bias inw, for Boss
(ADEPT) on average. Including general initial conditions remawes bias at the expense of an
increase in the area of confidence intervals in (thg, w,) space by50% (20%) for the Boss
(ADEPT) survey, indicating that the assumption of adiabaticigdeto an under estimation of
the errors on the dark energy parameters. On the other ha@,data leads to a significant
improvement in the constraints on the general isocurvahwode mixture compared with those
from the CMB alone, and thus opens up new windows for disgogéexotic early Universe

physics.
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CHAPTER /

The Sensitivity of BAO Dark Energy Constraints to General

Isocurvature Perturbations

7.1 Introduction

Although the standard model of cosmology based\@DM has not changed fundamentally
in the last decade, there has been a remarkable refinement knowledge of the parameters
describing the model. For example, the original supernesalts gave only limits of2,, < 1.5
at20 assuming a generdlCDM model [144] while the latest results from the WiggleZ #am
Acoustic Oscillation (BAO) survey, together with WMAP anahidn2 supernova data now give

Q,, = 0.29 & 0.04 at 20 [27].

As aresult of this progress it has become obvious that sygteerrors are a key issue in pushing
the frontier further. For example, in the case of superndivare are important systematic errors
related to the lightcurve fitter used which currently leamishifts in the dark energy equation of

state of abouAw ~ 0.1 [B2]. There may be additional supernova systematics sutheasx-
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istence of Type la subpopulations and correlations betwéenlute magnitude and host galaxy

type (see e.gl1159]).

BAO have their own associated systematic errors, such aimpan effects which potentially
bias or shift the BAO peak, although these are believed taibly Emall and possible to calibrate
through theoretical modeling and N-body simulatidns [38)wever there is another theoretical
systematic due to isocurvature perturbations that hasitigaeceived attention [185, 115]. De-
pending on how general one allows the primordial isocumeafidmixture to be, there can be a
significant impact on the ability of future BAO surveys to stmain dark energy even if one im-
poses the constraint that the isocurvature modes be unaletee®y RANCK alone [185]. This
shows that at least in the next generation of surveys onenailbe able to decouple the search
for dark energy with BAO from an understanding of the earlivearse, a subtlety that does not

affect supernovae surveys.

The key reason that even small correlated isocurvature sncalgse a problem for BAO surveys
is that they alter the way in which the BAO peak appears in W oint correlation function
of baryons, and hence, of galaxies. In the simple adiabatdefthe BAO peak is controlled by
the sound horizon, the distance that sounds waves can @tgpiagthe early universe from the
time of inflation to decoupling. This characteristic scadgg@einds only on the sound speed in the
standard adiabatic picture:

RNED o
H(Z)

temb
re = / cs(1+ 2)dt = (7.2)
0

Zemb

wherec,(z) = 1//3 (1 + R,/(1 + z)) andR, = 31500 wy, (Tomp/2-7 K)_4 which can be mea-
sured accurately with the Cosmic Microwave Background (JMEy comparing the size of this
scale at the time of decoupling and its angular size at lategiwe can learn about the expansion
history of the universe and measure cosmic distances, anue ltenstrain models of dark energy
[2].

In [185], we found a clear degeneracy between the impact & daergy models and non-
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adiabatic initial conditions on the galaxy correlationdtian. In this chapter we explain in depth
why small amplitude but general admixtures of correlatedusvature modes can have such a
strong impact on the cosmological constraints based on B&@egs. We show that relaxing
the assumption of adiabaticity and allowing fractions otisrvature modes affects the develop-
ment of the acoustic waves in the baryon-photon fluid. Theus@mture modes excite different
harmonics which in turn, couple differently to Silk dampigd in so doing, modifies both the
scale on which the sound waves imprint on the baryon didtabuand the shape of the BAO

peak.

This chapter is arranged as follows; in secfiod 7.2, we sthdyevolution of the baryon density
contrast under different initial conditions and how theusture of the BAO peak is altered. In
section_ZB, a Fisher matrix formalism is implemented ineottd quantify the impact of these
changes on the forecasted errors on the dark energy paranfietien two BAO experiments,
namely Boss [48] and ADEPT [151]. As a prior, we include the information from the high-
resolution CMB temperature anisotropy and polarizatioectija from the PANCK Surveyor
[13€], which should provide stringent constraints on theoam of isocurvature in the initial
conditions. We also conduct a study of the potential biasimestimates of the dark energy pa-
rameters that can result from an incorrect assumption @& adiabatic initial conditions. Lastly,
we show that constraints on the isocurvature parameterbederived from BAO surveys. We

discuss our conclusions in section]7.4.

7.2 TheBAO peak with adiabatic and isocurvatureinitial con-
ditions

The BAO peak is sensitive not only to the matter content ofuhiverse, but also to the
character of the primordial perturbations. The featurethefBAO peak such as the location,
width and amplitude are mainly dictated by the time evolutid the baryon density contragt

from the post-inflation period to photon-baryon decouplitg turn, the time evolution of the
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baryon density contrast during the pre-decoupling perggkads on the initial configuration of

the primordial perturbations in the different species atehd of inflation.

In the simplest scenario the perturbation affects all treremogical species such that the relative
ratios in the number densities remain unperturbed, excthie adiabatic mode (AD). Although
adiabatic initial conditions are a natural feature of seafi¢ld inflationary modeld [110], it has
been shown [29] that four regular isocurvature (ISO) modesalowed in addition to the adi-
abatic (AD) mode. These isocurvature modes are charagteby variations in the particle
number ratios but with vanishing curvature perturbatioithwlifferent isocurvature modes ex-
cited depending on the species that are initially perturb&e@se are namely the cold dark matter
isocurvature (Cl) mode, the baryon isocurvature (Bl) mdtie, neutrino isocurvature density
(NID) and the neutrino isocurvature velocity (NIV) mode. Whisocurvature modes are more
difficult to physically motivate, the possibility of coreged isocurvature fluctuations is allowed

given current cosmological data |13, 31] and should theeshe considered.

We will show that different modes of the primordial pertuibas excite different harmonics
and these harmonics couple differently to the Silk dampihgreby altering the characteristic
scale at photon-baryon decoupling to different locatiohiter decoupling, baryon fluctuations
on scales larger than the Jeans lengthslow down in the rest frame of the cold dark matter
(CDM), falling into the CDM potential wells, and eventuathacing the CDM, while on scales
below )\ ; the fluctuations still oscillate, independently of theiaditonditions. In order to study
the features of the BAO peak for the different modes, we amrsihe time evolution of the

photon-baryon fluid in the tight-coupling regime.
In this regime, photons and baryons are treated as perféds.fliThe subscripts, ¢, v andv

respectively denote the baryons, the CDM, the photons andéhtrinos. The conservation of

energy-momentum leads to the following set of time evolugquations for the photon and the
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baryon density contrastsand velocity divergencesin the synchronous gauge [114]:

. 4 2.
5’7 — —507 - gh, (72)
. 1.
op = —0, — 5h, (7.3)
for the density contrasts, and
. 9 1
0, =k Z(Sv — o0, | +ancop(6, —0.), (7.4)
' . A5
Oy = — 0, + k26, + L anop(0, — 6y), (7.5)
a 30

for the velocity divergences. Here and throughout the @drapt is the Thomson scattering cross
sectiony, is the electron number densityjs the scale factop, is the background density, is
. 3* . . .
the sound speed givenby=1/+/3(1 + R), R = ﬁ is the baryon-to-photon density ratie,
is the photon shear, and the dot refers to the derivativeneghect to the conformal time The

variableh is the metric field in synchronous gauge, which evolves atingrto [114]
a a\’
ht—h==3(=) ey Q;6;(1+ 3¢, 7.6
+ - 3(@)[);“( +3cy7), (7.6)

wherej € {v,~,b, c} labels the different species of the univergg,is the critical density of the

universe and; = p;/p.. is the ratio of the density of thg" species to the critical density.

The tight-coupling approximation allows us to $et= 6, = 6.,, with the photon-baryon veloc-

ity evolving as
1
4

and the photon density contrast evolvinglas [74]

(1+ R)0, = —RO, + k*(50, — o) + ¢k’ Rdy, (7.7)

s
BRI
+r't

. 2. 9
oy + iaw + k220, = —=

1+ R 3 ‘ (7.8)

Here, we have neglected the photon shear (tight-coupligigned and the pressure term dp
as it remains smaller than the termdinprior to decoupling. EquatiofiL{4.8) represents a driven

harmonic oscillator with the competition between gravaaal infall and photon pressure giving
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rise to acoustic waves propagating in the photon-baryod dtithe speed of sound.

For the associated homogeneous equation, we look for enkutif the formy., o expifOT wdT’
wherew(7) is some phase function. The two solutions to the homogeneguestion are simply
sin kry andcos krg, wherery(7) = fOT c,d7’, the phase function is = kc,, and we have made
use of the WKB approximation. On large scales, the WKB apipnakion breaks down, but these
modes are irrelevant for the BAO treatment as they only géhgehorizon well after decoupling.
The particular solution is constructed by integrating thigidg term weighted by the Green’s
function of the two homogeneous solutions|[74]. Thus, theetevolution of the acoustic waves

in the photon component for all initial conditions prior teabupling is given by
(1+ R)Y26,(k,7) = Agsinkry(1) + Ac cos kry(T)

_'_

klcs /07(1 + R(T'N)Y2sin [kry (1) — kry(7)]F(7)dr, (7.9)

whereAg and A are determined by the initial conditions as described ii, [28d

F(r) = —% (HiRh + B) , (7.10)
is the gravitational driving term which evolves differgntor different initial conditions. Equa-
tion (Z.9) gives the time evolution of the photon densitytcast in the tight-coupling regime. In
this regime, the baryon density contrast is related to ittqicounterpart by, = %&. Onsmall
scales, a correction to the tight-coupling approximatiarstibe applied when the Silk damping
becomes important, as photons leak out of overdense regiagging baryons with them. This
is done by multiplying the solution above ky**/*5, where the photon diffusion scalg,' is
given by

kp %=

l/iR2+4(1+R)/5
6) 7. (1+R?>
where7, = an.o7 is the differential optical depth. The Silk damping turng tausignificantly

affect both the shape and the peak location of the BAO as wedibeuss later.

After decoupling, the photons free stream, while baryohgfi the CDM potential wells under

gravitational instability. Here, we only consider baryacfuations with wavelength larger than
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the Jeans scale.

The above description of the density contrast evolutiok-gpace can be intuitively and simply
understood by looking at the evolution of the mass profilenm ¢onfiguration space [47,111].

The radial mass profil@/; of a specieg, given by

o : k
M;(r,z) = / T;(k, Z)SIZ—TTI{:QTQCH{:, (7.11)
0

- / 6j(k,z)smkkrdk;, (7.12)
0

whereT;(k, z) = §;(k,z)/k* is the transfer function of th¢’" species, describes the redshift
evolution of a point-like overdensity initially located thie origin. The location of the mass pro-
file peak gives the physical radius of the spherical shelhefdverdensities for a given species.
For numerical computations, a Gaussian overdensity ofwidt is used instead of a point-like
overdensity. This is done by multiplying the integrand ofi@tion [ZIR) by:—#°*/2.

Hereafter, we study the time evolution of the baryon masélerfor each mode in turn. We
start from the well studied adiabatic case then move ontest®irvature modes, since this will

provide physical intuition into the effect of the isocunwad modes on the BAO.

7.2.1 AD mode

The adiabatic mode is characterized by the requirementhbalensities of all species are per-

turbed in proportion at some initial time such that

§5’y7i = §6l/7’i7 (713)

502':57;:
AT Thi Ty 4

where the subscriptlabels the initial time. Or equivalently, using the relatentropy between
61 624

1+w, 14wy

two speciesc andy given byS,, = , Wherew, andw, are the equation of state
parameters of the speciesandy respectively, we have th&,, = 0 for all pairs of species at
the initial time. In addition, all velocity divergences angtially unperturbed. Therefore, using

the initial conditions for the adiabatic mode [29], the photnd baryon density contrasts are
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respectively given by
V3 2o
5:;117 _ Te k2 /K2
« / (1+ R() 2 sin [fers(7) — kro(7')]
0

x FAP(")dr, (7.14)

§AD _ §\/§ —k2 /K2,
b= e
4 k

X /OT(l + R(T')N) Y2 sin [kry(1) — kry(7)]

x FAP(dr'. (7.15)

Thus, the adiabatic mode is only sourced by the gravitakidrieing term £4”. This driving
term can be approximated by
FAP(k, ) & 2k jo (k)

on small and intermediate scales which reducegkte? at early times. On very large scales
the above approximation breaks down, however, this doeaffeatt our physical description of

the BAO peak as these large-scale modes are well outsideti®h at decoupling and do not
substantially influence the BAO features. The lack of an eaaalytic expression for the driving

term makes it difficult to derive exact analytic solutionstioe time evolution of the photon and

baryon density contrasts. Nevertheless, good approxamsfor the photon and baryon density
contrasts are given by

5, = %51, ~ 2krgji (krs) x e ¥ /kb, (7.16)

Therefore, at early time§ir,(7) < 1) the density contrasts for the adiabatic modlex

0 x (1 — cos krs) couple to acos krs harmonic [74].

Now, in the perfect tight-coupling approximation, thatfisve omit the Silk damping correction

in the density contrast equations, the baryon mass profjeéen by
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Figure 7.1: Effect of Silk damping on the baryon mass profilethe AD mode at decoupling.
The solid curve represents the baryon mass profile withausitk damping correction, while
the dashed curve represents the baryon mass profile withlihda®ping factor turned on. In

the absence of the damping term, the peak is located=at, = 144.5 Mpc.

72 r? forr < r,,

—
2
2r2

My(r) o< (1 = H(r —ry)) (7.17)

0 forr > r,,

which is obtained by substituting the density contrast eggion, without the Silk damping term,
in the baryon mass profile expression. Héfér) is the Heaviside step function. We observe
that in the absence of Silk damping, the baryon mass profdeasiratic at lower and sharply
peaked at a distane€z) = r,(z). This is illustrated in Figure~7l1 where we show the effect of
Silk damping on the baryon mass profile at decoupling. We lsaevwthen we include the Silk
damping term, the BAO peak is smoothed, attenuated anceghift lowerr. We can under-
stand these features as follows. As we approach decougiegoupling between photons and
baryons weakens and the photon mean free path increasemnPluiffuse from overdensities
to underdensities carrying baryons with them. Therefoagydns leak out of the overdensity to
both lower and higher, thereby smoothing and lowering the BAO peak. Due to theslofthe

undamped mass profile (with no baryons on scales larger bligasotund horizon), Silk damping
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Figure 7.2: Mass profile snapshots for the AD mode at differedshifts. The red, green, blue
and purple curves respectively represent the CDM, the Ibathe photon and the neutrino mass
profiles. (a) Well before decouplingz = 3000), (b) At decoupling ¢ = 1080), (c) when

baryons stall{ = 500) and(d) At late times ¢ = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

has the effect of moving more baryons to larger scales. Aswdtrehe BAO peak is at a slightly
smaller distance than the sound horizon. As we will see,I8ite damping changes the shape of
the mass profile for the adiabatic and isocurvature mode#fereht ways, due to the differing
shapes of the undamped mass profiles. This has importargéeuogisces for our ability to use

the BAO as a standard ruler.
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The redshift evolution of the mass profile for the AD mode haviously been studied in the
literature [47]. Initially the overdensities of all spesieoincide. As time evolves, the photon
pressure drives acoustic waves in the photon-baryon fluidleweutrinos free stream at the
speed of light and the CDM remains at its initial location. Higure[Z.2 we show the redshift
evolution of the CDM, baryon, photon and neutrino mass @sfiPrior to decoupling, photons
drag baryons at the sound speed, leaving behind a void obbsryhus, the initial baryon point-
like overdensity evolves in a spherical shell while the CDWem@ensity collapses at the origin

under gravitational instability, and the neutrinos frereain.

After decoupling, photons free stream while baryons, freenfthe photons, collapse into the
CDM potential wells. The baryon overdensity continues tbapse, pulling matter from the
surrounding underdense regions to the overdense regioagheAbaryon velocity divergence
does not decay instantaneously at decoupling [47], theooargnly stall later at ~ 500 with
the consequence that the BAO peak is closaristoMpc than140 Mpc, the sound horizon size
at decoupling. At = 0, the baryon mass profile displays two peaks, one near then@gl a

second peak at approximatdly0 Mpc.

7.2.2 NID mode

The NID mode arises when the densities of the matter compeaeainitially unperturbed while
the initial perturbation in the neutrino density is balashby its photon counterpart, keeping the

curvature unperturbed. The initial perturbations are devis:
5c7i = 5b7i = 07 6’y7i = __51/71'- (718)

These initial conditions imply that s = 0, thus exciting theos kr, harmonic. The gravitational
driving term contribution for this mode can be neglectedwitt loss of accuracy, as the gravita-
tional potential (related th), is initially unperturbed and only grows inside the horizdhis can
also be understood by considering the right-hand side cdtemyu(Z.6). In the radiation domi-

nated era, the photon and the neutrino density contrasthipaancel while the baryon and the
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CDM density contrasts remain small until the matter dong@dadra when they grow. The time

evolution of the photon and the baryon density contrastgi®iNID mode are given by

R,
55“3 = —YV/3¢, cos kry x €_k2/k2D, (7.19)
R'Y
SNIP — 38y 1 —V/3cscoskrs) e_kQ/k%, (7.20)
b
4R,

whereR, = Q,/Q,.q and R, = Q,/Q,,, are respectively the fractional energy densities of
neutrinos and photons at early times. The pressure due totet liocalized photon overdensity
creates a baryon underdensity that propagates due to pirgto photons and perturbs, through
gravitational interaction, the CDM (see Figlrel 7.3). Iniidd, isocurvature perturbations grow
once they enter the horizon. It follows that the BAO peak ia tase of the NID mode has
smaller amplitude than in the adiabatic case. With timeptnrgon and the CDM overdensities
grow by pulling more matter from their surroundings, thusating underdense regions around
them. Note that the mass profile of a given species can beinegaice the species can be
initially perturbed positively, corresponding to an ovemdity or negatively, corresponding to
an underdensity, with respect to the background level. Tad Baryon mass profile displays a
deeper trough between the two peaks compared to the adiabat. Most importantly, though
the baryon overdensity in the NID mode evolves at earlieesilike the baryon overdensity in
the adiabatic mode as they both excite k£r, harmonics, the final locations of the NID and the
AD BAO peaks differ. At late times, the adiabatic mode becemesuperposition of sine and
cosine waves, departing from the NID mode and with the undahgofile being convolved
differently with Silk damping.

Figure[Z4 shows the effect of Silk damping on the baryon mesfiie at decoupling for the NID
mode. In the absence of Silk damping, the AD and the NID BACkpeeations would coincide.

The undamped baryon mass profile for the NID mode is given by

rforr <r,,
My(r) o< (1 =H(r —ry))r (7.21)

0 forr > r,.
As for the AD case, equatioh{7]21) is obtained by omittirgdamping factor in equatioh{7120)
and substituting into equation(7]112) for the mass profillee Baryon mass profile for the NID
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Figure 7.3: Mass profile snapshots for the NID mode at differedshifts.

blue and purple curves respectively represent the CDM, dingoln, the photon and the neutrino
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mass profiles(a) Well before decouplingA = 3000), (b) At decoupling ¢ = 1080), (c) when

baryons stall{ = 500) and(d) At late times ¢ = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

mode differs from the AD mode as it grows linearly witluntil »(z) = r,(z) then falls to zero.

For this reason, the shift in the BAO peak location due to &dknping is larger than in the case

of the AD mode for which, as previously mentioned, the undednmass profile is quadratic in

r for r < r,. The difference in the shape of the undamped mass profilesatsdhe difference in

the width of the BAO peak.
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Figure 7.4: Effect of Silk damping on the baryon mass probietfie NID mode at decoupling.
In the absence of the damping term (solid curve), the peadcetéd at- = r, = 144.5 Mpc.

The dashed curve takes into account the effect of Silk dagapin

7.2.3 NIV mode

Unlike the other isocurvature modes, the NIV mode, like tH2 iiode, shows no relative en-
tropy perturbation in the density field at some initial tirddl. the density perturbations are zero
initially. The main difference with the AD mode is in the veity field where the neutrino ve-
locity divergence starts perturbed, being compensatetdplioton-baryon velocity. The initial

perturbations are given by:
‘90,2' = 07 eb,i = ‘9%1' = __eu,z" (722)

The NIV mode excites then kr, harmonic, so that we can sét = 0 in equation[(ZB). As
for the NID mode, the gravitational driving term contritmrtiremains irrelevant at all times as
all the densities start unperturbed and the perturbatiahysgrow in the matter dominated era.

The time evolution of the photon and baryon density condristthe NIV mode are given by

4 v . -
551‘/ = gééwv = g— 3sin kry(7) x e ¥ /4D, (7.23)
Y
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Figure 7.5: Mass profile snapshots for the NIV mode at differedshifts. The red, green,
blue and purple curves respectively represent the CDM, dingoln, the photon and the neutrino
mass profiles(a) Well before decouplingA = 3000), (b) At decoupling ¢ = 1080), (c) when
baryons stall{ = 500) and(d) At late times ¢ = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

The non-zero initial velocity divergence of baryons andtphe pushes the baryons and photons
from the origin, thus creating an overdensity at approxatyathe scale of the sound horizon
and a plateau at larger scales, in the baryon and photon mafieg The redshift evolution
of the baryon overdensity for the NIV mode is shown in Fiduf® 7This is similar to the NID

case, except that the baryon mass profile remains positatanes due to the initial plateau.
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The BAO peak ends at a different location as the sine harnamrieolves differently with Silk

damping, compared to the cosine harmonic.

M(r)
7001
600;
5oo§
4oo§
3oo§
zooé
100?

S S S S S S S r
50 100 150 200

Figure 7.6: Effect of Silk damping on the baryon mass probietfie NIV mode at decoupling.
In the absence of the damping term (solid curve), the peabcetéd at- = r, = 144.5 Mpc.

The dashed curve takes into account Silk damping.

In the absence of Silk damping correction, the undampedoamass profile for the NIV mode
is given by
My (r) —2 In H x " :or T (7.24)
s r—=forr > r,.

The derivation of equatioi.{Z.P4) is similar to the AD and Nd&ses. The undamped NIV mass
profile grows quadratically with for » < r, and peaks at = r, as for the AD case. However,
the shift in the BAO peak location due to Silk damping is nosiggificant as it is for the AD and
the NID cases for the simple fact that the undamped masseduaféds not abruptly fall off to zero
as in the previous cases but decreases adefore reaching a plateau of height proportional to
rs. This is due to the fact that the non-zero initial velocitypbbtons carries baryons beyond the

sound horizon, compared to if they started from rest. Figuleshows the effect of Silk damping

on the undamped baryon mass profile. In contrast to the AD dBdcises, the BAO peak is
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slightly shifted to higher. The other effects of the damping (lowering and roundindhefBAO

peak) remain the same as for the AD and the NID modes.

7.2.4 CI & Bl modes

The CI and the Bl modes have been well studied in the liteea@%,[3%, 75]. The Cl and
Bl modes are similar in that the perturbation starts in theMaiznsity contrast and the baryon
density contrast respectively while the other speciegtially unperturbed. This can be written
at some initial time as

dei=1, 0p;i=0y;=20,;=0, (7.25)

for the Cl mode, and as
5c7i = 07 6b7i = 17 6’y7i = 51/72' = 07 (726)

for the Bl mode. The Cl and Bl initial conditions dictate tht = —ﬁﬁc,o for the Cl mode and
Ag = —ﬁ@bp for the Bl mode, whiled,. = 0 in both cases, thus exciting thi £, harmonic
[85,29]. The constantQ., and(2;,, are respectively the CDM and the baryon densities today.
The driving term is negligible in the radiation dominatioraes the photon and the neutrino
densities are initially unperturbed but becomes importarthe matter domination era as the
matter perturbation sources the gravitational potenfid).|

The time evolution of the photon and baryon density condrémt the Cl and Bl modes is

given by [73]

8 3
551 = —59670£ sin kry(7) x e % /%D

k
# 22 [T R P () — )

x FOI(r)dr, (7.27)

61 = —QQC7O§ sin kry(7)

3vV3 [T

L33
1k
x FOU(")dr' x e /¥, (7.28)

(1+ R(T)Y?sin [kry(1) — krs(7)]
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Figure 7.7: Mass profile snapshots for the Cl mode at difteredishifts. The red, green, blue
and purple curves respectively represent the CDM, the Ibathe photon and the neutrino mass
profiles. (a) Well before decouplingz = 3000), (b) At decoupling ¢ = 1080), (c) when

baryons stall{ = 500) and(d) At late times ¢ = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

for the Cl mode, and by
8, V3 .

BI
0 = —§Qb70? sin kry(7)
3 T
L3
ko Jo

x FBI(7")dr' x e */¥b, (7.29)

(1+ R(")Y?sin [kry(1) — kry(1")]

(5bBI =1 — 29&0? sin k'f’s(7—>
T 142
+ 398 [ 1y B s o) — 7
0

x FBL(Ydr' x e ¥*/kb, (7.30)



for the Bl mode. Equation§ (ZH7-7130) are exact but recuiperfect knowledge of the gravi-
tational driving term. This makes the derivation of simpklecit analytic expressions for the
Cl and Bl modes harder as compared to the AD, NID and NIV modé®refore, we do not
discuss the effect of Silk damping on the BAO peak for thesel@so However, one thing to
notice is thek~! dependence of the baryon density contrast for the Cl and Blesithat washes
out perturbations on small scales while amplifying themange scales. This redistribution of
power results in a flattening of the baryon mass profile fosg¢hreodes. On small scales, #hée
and the Silk damping factors have similar effects on the B&@kpas they both suppress pertur-
bations on these scales. However there are two main diffeserfirstly, Silk damping does not
act on large scales while tiie'! factor amplifies large scale perturbations. Secondly, &ilkp-
ing only becomes significant around recombination whileithefactor redistributes the power

at all times, hindering the development of a well defined BAflpbut producing a knee instead.

For the CI mode, an overdensity in the CDM component tends$féatathrough gravitational
attraction, the baryon density component by gatheringdoaynto an overdensity but the photon
pressure opposes this process until decoupling.

One should note that an initial overdensity in the photon ponent would easily affect the
baryon component than an initial overdensity in the CDM congnt, the reason being the high
photon pressure at earlier times. Therefore, the pertiorbtakes longer to imprint ripples onto
the homogeneous sea of baryons. Fiduré 7.7 representsribetolution of the baryon mass
profile for the ClI mode. Prior to decoupling, the CDM overdgngrows but does not signif-
icantly affect the baryon component. After decoupling aybaroverdensity develops through

gravitational interaction with the CDM but fails to displaywell defined BAO peak.

For the Bl mode, an initial overdensity in the baryon compuradfects the CDM component

through gravitational attraction, but does not signifibagrow due to the photon pressure at
earlier times that tends to widen and even wash out the bavyerdensity as can be seen in
Figure[Z8. With a similar process as for the Cl mode, the demsity becomes a knee at late

times.
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Figure 7.8: Mass profile snapshots for the Bl mode at differedshifts. The red, green, blue
and purple curves respectively represent the CDM, the Ibathe photon and the neutrino mass
profiles. (a) Well before decouplingz = 3000), (b) At decoupling ¢ = 1080), (c) when

baryons stall{ = 500) and(d) At late times ¢ = 0). The units of the mass profile are arbitrary

but correctly scaled between panels.

Although the Silk damping still affects the Cl and Bl modds, effect is not as significant as
in previous cases (for a discussion of this seé[[76] 143]) r&vall that the Silk damping tends
to suppress power on small scales while these modes are\akamificantly reduced by the

k! factor for the Cl and Bl modes. In addition, the fact that tHeaid Bl modes fail to dis-
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play a well defined BAO peak makes less noticeable the effedtlodamping on the BAO peak.

7.2.4.1 Timeevolution of the BAO peak position

We saw in previous subsections that in the absence of Silkpolnthe BAO peak location
for all the modes would coincide at all times as the acoustigenin the photon-baryon fluid
propagates at the same sound speed irrespective of the autiditions. Here we consider the

effect of Silk damping on the evolution of the BAO peak looatfor different modes.
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Figure 7.9: Time-evolution of the baryon mass profile peakiomn (see Figurds 12, 7.3 dndl7.5)
for the AD, NID and NIV modes. These curves were obtained migakly from the evolution of

the mass profile curves. The dashed vertical line indicagpoch of recombination.

Figure[Z.® shows the time evolution of the BAO peak positionthe AD, NID and NIV
modes. We do not include the CI and Bl modes as they fail tdaysp defined BAO peak. At
early times, the BAO peak positions for the AD, NID and NIV rade as the Silk damping
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factor equals one at early times. With time, the dampingeskgl increases as the photon-
baryon coupling weakens, the three modes depart from eaehn anhd the separation increases
up to decoupling. At decoupling;, ~ 0.15h Mpc™?, leading to a separation of abolLi Mpc
between the NID and NIV BAO peak positions. After decouplitmpugh the BAO peak position
still increases untit ~ 500 due to the bulk velocity, the separation between the modeairs

constant until today.

7.3 Impact of isocurvature modeson dark energy constraints

The aim of this section is to quantify the potential impacisoicurvature modes on dark energy

studies based on current- & next-generation datasets.

7.3.1 Statistical Formalism

A convenient way of quantifying the accuracy with which catogical parameters can be mea-
sured from a given dataset is the Fisher matrix formalisre ($&1] for a review). Ifx is our
observable (the CMB or the galaxy power spectrum in our ¢casean be modeled as a N-
dimensional random variable whose probability distribofi(x; &) depends on a vector of cos-
mological parameter@ that we wish to estimatel(x; ) is also known as the likelihood of

observing a set of data given a model characterizefl. by

In this study, we consider a spatially flat cosmological matkescribed by the following
parameters: the baryon density, the CDM densityw,., the density of the dark energy com-
ponentQ2y, the optical depthr, the spectral index, and the scalar amplitudé,. We allow
for dark energy models that vary with time and parametrieedidrk energy equation of state as
w(a) = wy + (1 — a)w, [34,[112] wherex = 1/(1 + z) andw, andw, are included in the pa-
rameter space. For the isocurvature modes, we adopt thegtization implemented in [121],
where the AD, CI, NID, NIV modes and their cross-correlasiane described by 10 parameters,

z;;, measuring the fractional contributions of the variouseations (auto and cross) to the total
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power spectrum. We do not consider the Bl mode as it has the spattra as the Cl mode. In

terms of these fractional parameters, the total isocurgdtaction f|sg is given by

21SO

fiso = , (7.31)
Z1S0 + 2(AD,AD)
wherezigso = /1 — Z<2AD, AD) is the total isocurvature contribution.
Defining the auto- and cross-correlated primordial powectp as follows
Pyj(k) = Ak, (7.32)

the spectral indices of the cross correlated modes are iveyn = "*% with their amplitudes
A;j o< 2. The constrainE}fj’.:1 27, = 1requires that the isocurvature parametgyexist on the
surface of & dimensional sphere of unit radius. For further details ow tlus parametrization
relates to others in the literature, séel[13]. The paraméierescales the unit power CMB
temperature spectrum to its usual amplitudeCas= 13000:K? A, C,, where(, is the fiducial

CMB temperature spectrum with unit power.

Fiducial model

W We Qx T ne  As Wy W,

0.02205 0.12495 0.7 01 10 157 -1.0 0.0

Table 7.1: Values for the parameters of the fiducial cosmo#bgnodel.

The Fisher matrix is defined by

9 Inl(x;0)

The Cramer-Rao inequality shows thgr' is the smallest variance possible for an unbiased

estimator of the parametéy. In this caseJ'~! is the most optimistic covariance matrix of the

datasetl[171] and the forecasted error bawfas

(7.34)
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The fiducial model® around which the Fisher matrix is computed is chosen to B&BM
universe with adiabatic initial conditions. The cosmotagiparameter values for the fiducial
model are givenintabled.1. We use the CMB forecasts frorRth@ick experiment in addition
to each LSS data set and compute the full Fisher magrix- F5"'?+ F /55 for the cosmological

parameter set.

7.3.1.1 Large Scale Structure (LSS) surveys

Over the next decade, the increase in the number and quatigtafrom LSS surveys will drive
fundamental improvements in precision cosmology. As tlgedaxy surveys cover increasingly
larger volumes, they will provide unprecedented probesales at which significant cosmolog-

ical information is available.

The potential of the BAO method as a powerful source of cosgioal information has been
recognized and measuring the BAO peak at multiple redsisiftow regarded as the primary
science of major future LSS surveys. We consider two such BR@eriments, one of which
is the Baryon Oscillation Spectroscopy Surveyo). Bosswill measure the redshifts of 1.5
million luminous red galaxies (LRGs) over a quarter of the tka depth ot = 0.7. In addition

to being a redshift survey,@swill be the first attempt to resolve the BAO peak in the high-z
density field(2 < z < 3), as allowed by mapping absorption lines from neutral hydmdn the

spectra of 160 000 distant quasars [149].

The Advanced Dark Energy Physics TelescopegAr) is the second proposed future LSS sur-
vey that we consider. It is a space-based experiment aimingpping galaxies in the redshift

rangel < z < 2 and over8, 600 sq. deg. of the sky [151].
The BAO peak manifests as oscillations in the matter powectspm with the size of the sound

horizon determining the frequency of these oscillationgweler, the matter power spectrum is

a rich statistic whose features at different scales prospeific cosmological information. The
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matter power spectrum is defined as
P(k,2) = D(2)? Pprim (k) T? (k) (7.35)

whereD(z) is the growth rate of structuré),,,,(k) is the primordial power spectrum afit{%)

is the transfer function. The first source of informationhis baryon acoustic oscillations, with
their wavenumbek = 27 /r, being set by the size of the sound horizon at decouplin@ince
this characteristic scale is calibrated by the CMB, measgthe wavelength of these oscillations
both in the radial and tangential directions delivérs(z) and H (z) respectively. The overall
shape of the matter power spectrum is a second source ofriafmm. Any features which de-
viate from a power law, such as the turnover, provides antiatidi characteristic scale which
is required by the Alcock-Paczynski test to be isotropic [4stly, the overall time evolution of

the amplitude informs us aboiit(z), the growth rate of structure.

In reality we measure the power spectrum as mapped by galafieh are biased tracers of
the underlying matter distribution. We can write the galgower spectrum a$,(k, z) =
b(k, 2)?>P(k, z) whereb(z, k) represents this bias resulting from the effects of galaxydion
and evolution. On the scales of the BAO, the bias can be redaslsmooth, i.eb(z, k) = b(z).
Any scale dependence that is not taken into account is redyltk lead to oscillations in Fourier
spacel([156]. Furthermore, the galaxy power spectrum medsarredshift space is distorted
relative to the power spectrum in real space as a result akgaleculiar velocities. Because
galaxies moving towards an overdensity along the line dftagpear further away than equidis-
tant galaxies moving in the tangential direction, struesuappear "squeezed” in redshift space,
with the amount of the distortion determined by the growtie.rabn large scales this has been
shown to give rise to an angle-dependent distortion whiatld¢o a multiplicative change in the
power that is a function of angle, i.eB, 5 = (1 + 3(2)u2)* P,(k, z) wherey is the angle with

respect to the line of sight angi= f /b where

_dInD(a) _ '
=W g, e (7.36)

In this article, we wish to examine the best case scenaridinowall information available in

the galaxy power spectrum is used. We assume perfect kngevkefda redshift-dependent bias

149



and include the information introduced by the redshiftaligbns. This amounts to the inclusion

of a non-zeros(z).

Assuming the likelihood function of the band powers of thiagga power spectrum to be Gaus-
sian, the Fisher matrix can be approximated asl[171, 155]:
dk
2 (2m)?
B /!/mﬂampkmampwu)
k

min ap]

F555 Ve (k)

/%malmﬁampw)
k

min ap]

onk2dkdu

xXVere(k,
ff( M) 2(27r)3

(7.37)

where,
iy Py (k) (1 + Bp2)® ]
g Py(k) (1 + Bp2)? + 1

7 is the unit vector along the line of sight akds the wave vector with norra = |k|. HereV/

Verp(k, p) = { v, (7.38)

is the survey volume contained in a given redshift bin apd") is the selection function of the
survey, dictating the a priori expectation value for the ogmg number density of galaxies. We
take this to be a constant,, is the effective volume of the survey and takes into accduet t
impact of the shot noise from undersampled regions [49]. dehevatives of the power spectrum
with respect to the cosmological parameters in table 7.1taulde isocurvature parameters are
respectively shown in Figuré€sA.1 and’A.2 in the appendix.

Bossand ADEPT survey parameters are summarized in Table 7.2. Note thaathek,,;,
is always taken as the lowest possible and has been shownd@megligible effect on the error
forecasts. The smallest scale included, giverkhy,, in the analysis does however impact on
the results[23]. Followind [155] we adopt conservativeuses fork,,.. by requirings(R) = 0.5
at a correspondin@ = 7 whereo(R) is defined similarly to the normalizatiory = o(R =

8h~'Mpc), but for a general scale R.
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Boss

n, z Kmae/h Mpc™ b V/ Gpc Areal/ded

3x107* 2<0.35 0.12 2.13 0.74 10,000
0.3b<2<0.6 0.15 1.25 2.83 10,000
2<z2<3 0.53 3.3 248 6000

ADEPT

n, z Knazh Mpc™t b V/ Gpc Area/ded

3x107* 1<2<1.25 0.20 297 17.7 28600
1.2 <2< 1.5 0.23 3.21 19.7 28600
1.5 <2< 1.75 0.26 3.44 21.0 28600
1.7 < 2 <2 0.30 3.67 21.7 28600

Table 7.2: Table summarizing the survey parameters twsand ADEPT, for different redshift

bins (centered at the middle of the redshift bin).

7.3.1.2 Cosmic microwave background (CMB) surveys

The CMB data primarily provides information about the ialitconditions of our Universe in
this analysis. Non-adiabatic initial conditions lead taydistinct features in the temperature
anisotropies, with isocurvature modes producing acowestidlations that are out of phase with
the adiabatic mode and hence a set of peaks in the tempeaaismropy power spectrum that
are slightly shifted. Furthermore, CMB polarization pr®$ a robust signature of isocurva-
ture perturbations [31]. The latest WMAP data has confirnhedl the initial perturbations were
mainly of adiabatic type [88] with the possible presence sifiladominant isocurvature contribu-
tion, which could be detected in future high-precision ekpents such asANCK [94]. The
higher resolution of PANCK over WMAP will allow for the measurement of the CMB power
spectrum on much smaller scales and the use of 9 observdiemmds will improve the modeling

of astrophysical foregrounds.
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We follow the analysis in(J3] and model the.i/NCK dataset as CMB temperature and polar-
ization maps of 8% of the sky measured in the two frequency bands where the CigiBaki
dominates. The details of the experiment are given in Tallle The maps are taken to have
no foreground contribution, assuming that the other freaguehannels can be used to remove
them. The remaining 20 of the sky is assumed to be contaminated by galactic emis¥in
exclude polarization data dt< 30 in order to weaken the forecasted constraint on the optical

depth too(7) = 0.01 in agreement with studies that include foreground moddli7@l].

g?nam gquw l// GHz 9;, AT(IMK) AP(IUK)
2000 2500 143 8 52 10.8
217 5.5 11.7 24.3

Table 7.3: Summary of the experiment specifications foxNTK .

For the CMB, the Fisher matrix is computed using

FGMP =% aaoxg [Covi|5 _aao Al (7.39)
7 Xy Pi Py

whereC', is the power in thé* multipole for X = T', £, B given by
2

(204 1) fory

whereN,, the noise level, depends on the data type. The noise isfigaloy the experiment.

[Covilxx = (Cxe + No) (7.40)

Because there is a strict geometric degeneracy bet@¥ggemn, andw,, finding the derivatives
of the dark energy equation of state (EOS) parameters waépikg(2, fixed artificially breaks
this degeneracy. To this end, we follow [3] and start with poting the Fisher matrix for the
CMB with the following parameters: g=», w., s, 7, ns, As} Whered, is the angular size of the
sound horizon. This can be written as

Ts (Zcmb)
T(Zcmb) ’

wherer,(z..5) is the sound horizon given in equationl7.1 ard.,,,;) is the comoving distance

0, =m

(7.41)

to the last scattering surface

z 1 ,
r(z) = C/o ) dz'. (7.42)
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To compute the derivativeC, /96, we use the transformation

a0, _ AC; AQ,

~ 7.43
00,  AQy AG,’ ( )
and when evaluatin 51' w. andw;, must stay fixed by compensating witithrough
+w
p = o e 7.44
N (7.44)

The resulting Fisher matri¥' is then transformed back int®, corresponding to the param-
eters p'{wp, we, Qn, 7, 1, As, Wo, W, } USING
I apm apn
F; = — P = (7.45)
’ ;;L Op; Ip;
The non-trivial expressions needed for the Jacobian areatiges off, with respect tavg, w,,

Qu, we andwb.

For the calculations of the derivatives of the power spactwith respect to the isocurvature
amplitudes in equatidn_Z.B3, we have adopted the treatmdB€] where the pure isocurvature
modes are normalized to have the same power in their CMB teatpe spectra as the adiabatic

model. This normalization is applied to both the CMB and L$8&csra.

7.3.2 Theimpact of isocurvature modeson dark energy

In this section we consider the impact of admitting isoctuxa initial conditions on the con-
straints on the dark energy parameters. We folldw [3] anasbmot to focus on the constraints
on(y, given that our intuitive estimates rooted in particle pbysre drastically disparate from
current measurements of the dark energy density.

We compute the potential errors ag andw, for different subsets of adiabatic and isocur-
vature initial conditions while marginalizing over all @hcosmological parameters. The results
for both the Bbssand ADEPT experiments are summarized in tabld 7.4. We find a systematic
degradation of the viable constraints on dark energy as ohegeces of freedom are added. In

order to quantify the constraining power of the data, we ast@phe Dark Energy Task Force
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Experiment Bss ADEPT
Parameters W Wy wWo Wy
Adiabatic mode 0.020 0.061 0.017 0.041
Adiabatic + 1 ISO mode

AD+CI+(AD,CI) 0.027 0.070 0.018 0.042
AD+NID+(AD,NID) 0.022 0.063 0.018 0.041
AD+NIV+(AD,NIV) 0.021 0.064 0.017 0.041
Adiabatic + 2 ISO modes

AD+CI+NID+corr 0.031 0.074 0.020 0.042
AD+CI+NIV+corr 0.032 0.077 0.020 0.042
AD+NIV+NID+corr 0.028 0.075 0.018 0.043
Adiabatic + all ISO modes 0.045 0.097 0.022 0.044

Table 7.4: Table summarizing the constraintg g, w, ) for adiabatic and admixtures of uncor-

related adiabatic and isocurvature modes, marginalizingrall other parameters, for theoBs

and ADEPT experiments. The fiducial model assumes adiabaticity.
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(DETF) Figure of merit (FoM), which is defined as the recigioaf the area in the, —w, plane,
enclosing the95% confidence limit (CL) region’I3]. We are concerned with themge in the
FoM when isocurvature modes are introduced relative todlse of pure adiabaticity. Thedss
FoM is found to decrease 0% from pure adiabaticity to the case in which all isocurvature
modes are admitted in addition to the adiabatic, while tibERAT FOM degrades by0%. We
note that the results quoted here are slightly differenhdsé¢ quoted in the previous chapter and
in [A85]. This is due to the different normalization methakd in [185], which follows[]121],
whereas we follow[[30]. However, the different normalipatimethods used have little impact on
the results reported here, which display a similar trend 8%] but with a slightly larger relative

degradation of parameter errors when isocurvature moaescuded.

The results suggest that no single mode in particular antbit®lation are responsible for the
change in the allowabléw,, w,) region, but rather a mixture of all extra degrees of freedom.
In order to determine the combination of parameters thaspansible for this degradation, we
diagonalize the full 17x17 Fisher matrix correspondingit® BLANCK and LSS datasets sepa-
rately and find the eigenvector with the smallest eigenvalagesponding to the direction that
is least constrained by the data. Considering theNek data alone and discarding the degen-
eracy in thew, — w, direction which is the main degenerate direction, four peaters, namely
7, Asy Aiap,N1vy and Aap Nipy define the most degenerate direction involving isocureatur
modes, with the impact of the scalar amplitude being comgtedsfor by a combination of the
cross-correlated modes and the optical depth. The dedergiraction in the LSS data (using
Bossas an example) is more complicated and involves a combmafitssocurvature parame-
ters and dark energy parameters, nangly A, wo, wa, Aap,ciy» Aap,N1vy, Aap,NiDy and
Aci,N1v)- FigurelZID shows how the perturbations in the differenapters contribute to the
the total change in the CMB power spectrum and the matter pspextrum.

The total derivative (shown in red) lies within the noiseitsrof the respective experiments,

making the net change undetectable by the data.

Clearly the dark energy model is degenerate with the padaticcombination of isocurvature
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modes in the BAO data. The implication is that the constsaot dark energy are at risk of
being substantially biased if adiabaticity is incorreetisumed. To emphasize this point, Figure

[Z11 compares the correlation function, defined by

sin kr

§(r):/000 kP (k) o dk, (7.46)

whereP (k) is the matter power spectrum, that would be measured todaufdiducial ACDM

model assuming pure adiabaticity, to a cosmological modgliming dynamical dark energy,
described byw, = —0.94 andw, = —0.137, and an admixture of initial conditions, 84% of
which is isocurvature in nature. The correlation functismégenerate in all three redshift bins
of the Bossexperiment. Note that this degeneracy is completely brakethe CMB data. We

now wish to quantify this bias.

Experiment Bss ADEPT

Parameters Wy Wy wWo W,

Adiabatic + 1 ISO mode

AD+CI+(AD,CI) 0.052 (3) -0.096 (2) 0.023 (1) -0.019 (0.5)
AD+NID+(AD,NID) -0.031 (2) 0.054 (1) -0.019 (1) -0.030 (1)
AD+NIV+(AD,NIV) -0.030 (2) 0.076 (1) -0.0055 (0.3) -0.013(0.3)
Adiabatic + 2 ISO modes

AD+CI+NID+COIT -0.065 (3) 0.11(2) -0.026 (2)  -0.025 (1)
AD+CI+NIV +corr -0.071(4) 0.12(2) -0.014 (1) 0.021 (0.5)
AD+NIV +NID+corr -0.049 (2) 0.11(2) 0.016 (1) -0.024 (1)
Adiabatic + all ISO modes -0.15(8) 0.3 (4) 0.054 (3) -0.04 (1)

Table 7.5: Table summarizing the biases(ep, w,) that could arise from the incorrect assump-
tion of adiabatic initial conditions, given a universe wah admixtures of uncorrelated adiabatic
and isocurvature modes for theoBs and ADEPT experiments. The quantities in brackets are
the biases, quoted in number If error bars corresponding to the case when pure adiabaticity

is assumed.

156



For a Gaussian-distributed likelihood function, it can hewn that the linear bias in a set of
parameters that we wish to constraifi;, due to erroneous values of a set of fixed parameters,
do;, is [169]

o Fri00; (7.47)

00; = — [F%Lm myj

where F% is the Fisher sub-matrix for the parameters we wish to camsandF % is a Fisher
sub-matrix constructed from the product of the derivatiethe power spectrum with respect to
the parameters being constrained and those which are beaug fn our casg labels the isocur-
vature mode amplitudes, incorrectly fixed to zeroJabels the eight cosmological parameters
that are biased, andlabels the subset of two dark energy parameters whose bafsnser-
est to us. In order to séi;, we diagonalize the combined RNCK and large-scale structure
(LSS) Fisher matrix and select the eigenvecipnvith the smallest eigenvalug. This corre-
sponds to the direction in parameter space which is leastticoned by the data. We then take
dpj = \/Aﬂjej, where M depends on the total number of cosmological andirsature parame-

ters.

We first consider the case of an admixture of the adiabaticemaydi the CDM isocurvature
mode. For this case we find the biases in the dark energy ptesrte bejw, = 0.052 and
dw, = —0.096 for the Bossexperiment. Comparing the mean biases toltheonstraints ob-
tained when pure adiabaticity is assumed, we find that ntigéethis isocurvature contribution
leads to a3o and2¢ error in the dark energy parameter estimatesufprandw, respectively,
when compared to the error forecasts assuming adiabatiicitye repeat the calculation for the
more advanced experimenb&pPT, we finddw, = 0.023 andéw, = —0.019, equivalent tol o
and0.5¢ errors in the dark energy parameters respectively when amedpo the adiabatic con-

straints. From this result, it appears that#eT shows a lower risk of making false claims.
Although no theoretical models for generating the neutisozurvature models have thus far

been proposed, we would like to conduct a comprehensivedn of the impact of the ini-

tial conditions on the BAO constraints and therefore adihp@ssible isocurvature degrees of
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freedom. Tabl€7]5 summarizes the biases for different sdneis of adiabatic and subsets of
isocurvature modes. The results are consistent with therdgte directions in parameter space
identified earlier. For example, the admittance of the Cl ldHd isocurvature modes and their

cross correlations has the potential to cause a bias in tikeedargy parameters by as much as

40, in the case of BsSs

For the case of an admixture of adiabatic and all isocureatuwdes and their cross correlations,
we find that the biases afev, = —0.15 anddw, = 0.3 for the Bossexperiment. This means
that if the initial conditions of our universe are compriggd sub-dominant contribution from
all isocurvature modes (within thHer constraints from the FEANCK and Bossexperiments), the
assumption of adiabaticity could lead to an incori&etdetection of nomA dark energy model
or a4o false claim of dynamics. Alternatively\ could be found to be consistent with the data
when in factw(z) # —1. The potential bias incurred by the adiabatic assumptidhearcase of
the ADEPT experiment has a mean &, = 0.054 (equivalent tdBo) while the measurement of

w, could be inaccurate at the level of orly.

7.3.2.1 Constraintson isocurvature modes from the L SS data

We now consider the impact of the large scale structure imédion on isocurvature constraints.
Although allowing for isocurvature modes degrades the @mérgy constraints relative to the
pure adiabatic case, this analysis has revealed a powersitiye. We find that the volume
of the 9-dimensional isocurvature Fisher ellipse is royght- 4 x 10° smaller than that from
PLANCK alone, showing that using the CMB and LSS data together geswexceptionally good
constraints on the early universe relative to the CMB aldre forecasted errors on the isocur-
vature parameters based on the CMB data alone and in commnmeith the LSS experiments
are compared in tablés¥[6,17.7 7.8 respectively fotesidguble and fully correlated isocur-
vature modes. We find that the error bars on the isocurvaanaeters decrease by%3@o as
much as 10% for certain modes when the LSS data (eithersB or ADEPT) is added to the

PLANCK data. Assuming an adiabatic fiducial model, the measurenfaht BAO in the first
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redshift bin of the B ssexperiment and the CMB byLRNCcK will reduce the allowed isocur-
vature fraction from 5.% for the CMB data only t3.6%, and t03.1% and2.7% when adding
the information from LSS in the second and the third redshifs.

Adiabatic + 1 ISO mode

PLANCK + BOSS PLANCK + ADEPT
(AD,AD)  0.29(7) 0.30 (3)
(c1,cl) 0.013 (11) 0.0093 (7)
(AD,CI) 0.84 (97) 0.92 (96)
(AD,AD)  0.25(18) 0.24 (23)
(NID,NID)  0.0053 (11) 0.0053 (14)
(AD,NID)  0.019 (29) 0.019 (38)
(AD,AD)  0.23(26) 0.22 (28)
(NIV,NIV) 0.0093 (6) 0.013 (9)
(AD,NIV)  0.92 (97) 0.84 (97)

Table 7.6: Forecasted uncertainties on isocurvature peteam for different cases for the
PLANCK and LSS data (Bssand ADEPT) for single isocurvature modes. The percentage im-

provement inlo errors when the LSS data is added to theafck data is shown in brackets.

The reason for this stems from the fact that the considergdragate direction in parameter
space for the CMB dataAD,N1V), (AD,NID), A;, 7.) differs from the degenerate direction of
the LSS data(aD,N1V), (AD,NID), Qx, wo, W, As).

Figure[Z1R illustrates the different directions by shaythe 1o error ellipses for the main
isocurvature contributions and,. The two degenerate directions are almost orthogonal. ,Here
the inner straight lines represent the marginalised eam tbtained by combining both. RNCK

and Bossexperiments in the case of a cosmological constant. Clélaglability of LSS data

to measure isocurvature modes is related to the informationided by the BAO about dark

energy. In Figur&7.13, we compare theerror ellipses fofw, (AD,N1V)) and(wy, (AD,NID))
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Adiabatic + 2 ISO modes

PLANCK + BOss

PLANCK + ADEPT

(AD,AD)  0.35(21) 0.33(27)

(cr,cr) 0.019 (10) 0.019 (11)
(NID,NID)  0.0071 (3) 0.0070 (5)
(aD,cl)  0.029 (97) 0.029 (97)
(AD,NID)  0.021 (32) 0.020 (36)
(cI,NID)  0.014 (5) 0.014 (6)

(AD,AD)  0.46 (21) 0.35 (22)

(c1,c1) 0.016 (15) 0.016 (15)
(NIV,NIV) 0.0093 (5) 0.0091 (7)
(AD,CI) 0.035 (96) 0.033(97)
(AD,NIV)  0.029 (97) 0.036 (97)
(ciL,NIV)  0.016 (12) 0.015 (15)
(AD,AD)  0.27 (40) 0.25 (45)

(NID,NID) 0.0082 (4) 0.0070 (5)
(NIV,NIV) 0.018 (6) 0.017 (10)
(AD,NID)  0.028 (12) 0.020 (36)
(AD,NIV)  0.037 (96) 0.041 (96)
(NID,NIV) 0.016 (6) 0.015 (12)

Table 7.7: Forecasted uncertainties on isocurvature paeam for different cases for the
PLANCK and LSS data (Bss and ADEPT) for double isocurvature modes. The percentage

improvement inlo errors when the LSS data is added to thefck data is shown in brackets.

that are obtained when we include the CMB dataset and addatiaeftbm the BSs redshift
bins in succession. We see that the BAO data primarily sexvesduce the phase space for
wo With the largest improvement in the, constraint coming from the second redshift bin.

As the redshift increases, the contribution from dark epeligninishes until matter comes to
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Adiabatic + all ISO modes

PLANCK + BOSS PLANCK + ADEPT

(AD,AD)  0.47 (21) 0.41 (30)

(c1,cl) 0.044 (23) 0.057 (39)
(NID,NID) 0.016 (16) 0.019 (24)
(NIV,NIV)  0.047 (24) 0.047 (40)
(AD,CI) 0.042 (96) 0.042 (96)
(AD,NID)  0.069 (35) 0.038 (64)
(AD,NIV)  0.072 (94) 0.048 (96)
(cL,NID)  0.057 (14) 0.066 (20)
(cIL,NIV)  0.027 (34) 0.04 (39)

(NID,NIV) 0.045 (8) 0.045 (9)

Table 7.8: Forecasted uncertainties on isocurvature peteam for different cases for the
PLANCK and LSS data (Bss and ADEPT) for fully correlated isocurvature case. The per-
centage improvement itv errors when the LSS data is added to the®ck data is shown in

brackets.

dominate, at which time the impact of dark energy on the oladdes is small. For this rea-
son, the intermediate redshift bin foroBs centered at = 0.6 provides the best constraints
on wy. In Figure[ZI¥ we compare the sum of the most dominant isatwre contributions
2ap Nivy PAPNVY 2 ap nipy PAPNIP) o the power spectrum at the different redshift
bins of the Bbss experiment to their respective error bars. The area betwveegolid (signal)
and dotted (error) curves indicates the amount of inforomgdirovided by each bin. Clearly, this
combination of isocurvature parameters is best constldnoen the measurement of the galaxy
power spectrum at = 0.6 for this particular experiment. Furthermore, the diffgrishapes
of the signal curves suggests that complementary infoonasi available at different redshifts.
Hence, the measurement of the BAO scale at different raddbeftween decoupling and today

helps to constrain the isocurvature modes.
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We note that in this study we have assumed exact knowleddeafalaxy bias which could
be a source of further degeneracy with the isocurvaturepetexs.
As an aside, we note that information about the initial cbads from LSS data does not stem
from differences in the growth rates for different modegureZ.Ib shows the growth function
of the perturbations on intermediate (top) and on largeesc@dottom). It is clear that on very
large scales, the isocurvature modes grow more slowly tieadiabatic modes. This is expected
as perturbations which are isocurvature in nature only guwen they enter the horizon while
adiabatic fluctuations grow at all times. However on thees@robed by the BAO signal, the

isocurvature modes and adiabatic modes grow at the same rate
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Figure 7.10: Main contributions to the degenerate direotrdh the highest isocurvature fraction
(a) in the CMB data from PANCK alone,(b) in the matter power spectrum using the s
dataset alone. The red solid line is the total derivativehimn ¢onsidered degenerate direction,
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Figure 7.11: The galaxy correlation functions for the$s survey for different redshift bins.
Solid lines represent the purely adiabati€DM fiducial model while dashed lines represent a
mixed model withfisg = 84%, wy = —0.940 & w, = —0.137. z = 0.35 (black),z = 0.6 (blue)
andz = 3 (red).
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7.4 Conclusions

The first detection of the BAO peak in the galaxy correlatiamdtion measured by SDSS opened
the door to using the clustering of galaxies on scales df50 Mpc as a cosmic yardstick. By
comparing the size of the overdensity of baryons at the epbobcombination predicted from
theory and calibrated by the CMB, with its size as it appaathe large-scale structure of galax-
ies today, we can study the expansion history of the univdtesvever, in order to succeed in
making a precise measurement of the signal we will need tge kialumes probed only by the
most recent generation of redshift surveys. With such pi@tiwe hope to reveal the nature of

dark energy and probe its time evolution if it exists.

With claims of constraints on dark energy from BAO experitsdn the level of a few percent,

it becomes important to check the assumptions made in thteopgervational analysis. In this
chapter, we have revisited the assumption of pure adiaipatieri conditions and considered the
impact of allowing isocurvature-adiabatic admixtures loe BAO peak and the implications for
dark energy studies. We have shown that a combination @rdifices in the baryon growth pro-
file that arises due to the presence of isocurvature modeSikndiamping change both the shape
and position of the BAO peak. Non-adiabatic initial conaliis leave the sound speed unchanged
but instead alter the development of the acoustic waveseitbényon-photon fluid prior to de-

coupling which modifies the scale on which the sound wavesiithpn the baryon distribution.

The degeneracy between the impact of mixed initial conaiitiand the effect of a dynamical
dark energy model on the BAO peak weakens the potential ionts on the dark energy pa-
rameters forecasted for a combinedaRck and LSS dataset. We found that the admission of
more general initial conditions which include isocurvatarodes and their cross-correlations in-
creases the5% confidence region ifwy, w,) space bys0% in the case of the Bssexperiment
and thus the assumption of adiabaticity can lead to the vesteénation of the errors on the dark
energy parameters. Furthermore, if we assume purely adiabiial conditions, we run the risk

of attributing a shift in the peak away from the prediction~ofl50 Mpc for a ACDM universe
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to a nonA dark energy model. We have shown that this can lead to a btag iestimates of the

dark energy parameters, leading to a seweiatorrect confirmation of\ or detection of nonk.

On a positive note, the change in the BAO peak in isocurvatwréels indicates that there is use-
ful information in the galaxy correlation function on thetua of the primordial perturbations
even when simultaneously measuring dark energy equatistatd parameters. We find that the
use of the LSS data in addition to the CMB data substantiadfyroves our ability to measure the
contributions of different modes to the initial conditiodghe matter power spectrum constrains
the dark energy parameters and in so doing breaks the deggrierthe isocurvature-dark en-
ergy parameter space. Furthermore, even when assumirg—1, the degenerate parameter

combinations in the CMB and LSS are different.
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CHAPTER 8

Conclusion

Although much progress has been made in understanding thiers®, many conceptual and
technical problems remain unsolved. Among them, the natitike fluctuations which gener-
ated anisotropies in the cosmic microwave background amthtiye scale structure remains not
well understood. Testing the nature of the primordial pddtions requires a good understand-
ing of the different possibilities of the initial conditisn In this thesis we have investigated the
signatures of isocurvature initial conditions in the CMBaihgh the temperature anisotropies,

and in the large scale structure distribution through th©BA

In the second chapter, we briefly presented the standardotogital model and its underlying
linear cosmological perturbation theory that provides sivoor understanding the formation of
the LSS of the universe and anisotropies in the CMB, and sapghted it with a discussion on

the initial conditions of the primordial fluctuations.

In the third chapter, we reviewed the evolution of the pdrations in adiabatic models with a

focus on the evolution of the dark matter and the photonsartight-coupling regime as these,
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with the gravitational potential, are the only quantitieattare involved in the computation of the
CMB spectrum through the line of sight integral. We derivethganalytic solution of the evo-

lution of the photon density contrast and velocity diveiggeprior to decoupling in synchronous
gauge and found that the AD mode excites neither the pureeasisine harmonic, but instead,

a cosine-like harmonic through the forcing term.

In the fourth chapter, we recalled how fluctuations on thedeattering surface translate into the
CMB power spectrum through the line of sight integral as oletoday and introduced the Hu
approximation for the photon transfer function for the catigion of the CMB spectrum. In
this approximation, one only needs the photon density eshénd the velocity divergence eval-
uated at decoupling, and the evolution of the gravitatigoééntial to compute the CMB power
spectrum to abouit0% accuracy. We also reviewed the effect of the cosmologicarpaters on
the CMB temperature power spectrum in the AD mode. We focosdtie impact of the baryon
density and matter density on the CMB power spectrum. Arege in the baryon density en-
hances the odd peaks and lowers the even peaks, while aasedrethe matter density lowers

all acoustic peaks.

In the fifth chapter, we have investigated the features oistbeurvature CMB power spectra and
studied the impact of different cosmological parameterthenCMB power spectrum. We first
derived aboutl0% accurate semi-analytic expressions governing the ewenludf the photons
and baryons prior to decoupling in isocurvature models andd that non-adiabatic initial con-
ditions leave the sound speed unchanged but instead exftéieedt harmonics. We also found
that the amplitude of the oscillations in the Cl and Bl mode#versely proportional to the
wavenumber, causing the suppression of the perturbatiossnall scales. We then studied the
impact of cosmological parameters on the CMB angular popectsum in isocurvature models
and found that the effects of the physical baryon and matesities in isocurvature models
differ the most from adiabatic models. An increase in theybardensity lowers the acoustic
peaks in the CI, NID and NIV, and enhances them in the Bl modeesé& baryon density de-

pendence for isocurvature modes differs from the AD modesrevithe odd peaks are enhanced
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while even peaks are lowered, due to a gravitational pakstift. The lowering of acoustic
peaks is stronger in the NIV mode and weaker in the CI. In amdithe effect of an increase in
the matter density on the height of the CMB temperature amopsaks in the Bl, NID and NIV
modes is similar to the AD case where all the acoustic peaktoarered besides being shifted
to lower/’s. In the ClI mode, an increase in the matter density enhaheescoustic peaks as the
photon density contrast is directly proportional to the teradiensity. We used the semi-analytic
treatment to explain these cosmological parameter effacthe CMB power spectrum. The
remaining four parameters have approximately the sameteffesocurvature modes as in the
adiabatic mode. In this work we have only considered the amynanisotropies of the CMB.
Further work will include contributions due to the polatiba and to the lensing of the CMB
in isocurvature models, especially since ongoing and upu@i@MB experiments such as the
PLANCK mission, SPTPol and ACTPol will provide useful potation data.

In the sixth chapter, we have explored the distortion of thadard ruler distance and the degra-
dation of dark energy constraints due to the inclusion afuseature perturbations. We showed
that small fractions of isocurvature perturbations cated with the dominant adiabatic mode are
a significant primordial systematic for BAO surveys whichghibie accounted for in future sur-
veys. Isocurvature modes distort the standard ruler distag broadening and shifting the peak
in the galaxy correlation function. While a single isocumra mode does not significantly de-
grade dark energy constraints, the general case with rfeuisipcurvature modes leads to biases
that exceedo on average in the dark energy parameters even for isocuevatoplitudes unde-
tectable by PANCK. Accounting for all isocurvature modes corrects for thizssibut degrades
the dark energy figure of merit by at ledgt’ in the case of the Bss experiment. However
the BAO data in turn provides significantly stronger conatsaon the nature of the primordial
perturbations. Future large galaxy surveys will thus begréuV probes of exotic physics in the

early Universe in addition to helping pin down the nature afkdenergy.

In the seventh chapter, we explored in detail the effect lofxahg for small amplitude admix-

tures of general isocurvature perturbations in additichéadominant adiabatic mode. We found
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that non-adiabatic initial conditions leave the sound dpeehanged but instead excite different
harmonics. These harmonics couple differently to Silk disgyaltering the form and evolution
of acoustic waves in the baryon-photon fluid prior to decoypl This modifies not only the
scale on which the sound waves imprint onto the baryon digion, which is used as the stan-
dard ruler in BAO surveys, but also the shape, width and heifithe BAO peak. We discussed
these effects in detail and showed how more general inibiatiitions impact our interpretation
of cosmological data in dark energy studies. We found thatiniclusion of these additional
isocurvature modes leads to an increase in the Dark EneskyH@ce Figure of merit by40%
and60% for the Boss and ADEPT experiments respectively when considered in conjunction
with PLANCK data. We also showed that the incorrect assumption of atligpehas the po-
tential to bias our estimates of the dark energy parameters i{10) for a single correlated
isocurvature mode, and up & (30) for three correlated isocurvature modes in the case of the
Boss(ADEPT) experiment. We found that the use of the large scale streictata in conjunc-
tion with CMB data improves our ability to measure the cdnttions of different modes to the
initial conditions by as much ag)0% for certain modes in the fully correlated case. For this
work, we only made forecasts for a combination of CMB expernits and BAO surveys. Further
work should widen the range of LSS probes to include2hem emissions from intergalactic
medium at high redshift and the Lyman alpha forest. In addjtas more galaxies are measured,
the matter power spectrum surveys will give considerablyenttata than we presently have and

will allow more stringent constraints on isocurvature nsde

On a positive note, the current rapid expansion of the datem®a both LSS surveys and CMB
experiments will allow a unique probe into the physics of¢laely universe. For example, data
from the R.ANCK satellite will provide us the CMB angular power spectra Emperature and
polarization in a wide range of multipoles. With the advehthe precision era in cosmology,

scientists should be able to pin down the nature of the pdiabperturbation in a near future.

174



Bibliography

[1] B. Abroeet al,, Astrophys. J605, 607 (2004)
[2] P. Aguiar and P. Crawford, arXiv:astro-ph/0110412 (2P0
[3] A. Albrechtet al,, arXiv:astro-ph/0609591 (2006)
[4] C. Alcock and B. Paczynski, Natu@81, 358 (1979)
[5] R. A. Alpheret al,, Phys. Rev73, 803 (1948)
[6] R.A. Alpher and R. Herman, Natude?2, 774 (1948)
[7] L. Amendolaet al, Mon. Not. Roy. Astron. So@57, 429 (2005)
[8] P. Astieret al., Astron. Astrophys447, 31 (2005)
[9] N.A. Bahcallet al., Science284, 1481 (1999)
[10] N. Bartoloet al., Phys. Rev. D64, 123504 (2001)
[11] S. Bashinsky and E. Bertschinger, Phys. Re85>123008 (2002)

[12] B.A. Bassett and R. Hlozek, arXiv:0910.5224 (2010)

175



[13] R. Beanet al,, Phys. Rev. D74, 063503 (2006)

[14] M. Beltranet al,, Phys. Rev. D72, 103515 (2005)

[15] M. Beltran et al,, Phys. Rev. Dr2, 103515 (2005)

[16] C.L. Bennettet al,, Astrophys. J. Suppl. S., (2011)

[17] M. Bertranet al, Phys. Rev. Dr0, 103530 (2004)

[18] M. Beltranet al., Phys. Rev. Dr1, 063532 (2005)

[19] E. Bertschinger, NASA STI/Recon Technical Repord® 22249 (1995)
[20] E. Bertschinger, Ann. Rev. Astron. Astrophgs, 599 (1998)

[21] E. Bertschinger, Proceedings of Cosmology 2000, LnsBaly (2000)
[22] C. Blakeet al, arxiv:1108.2637 (2011)

[23] C. Blake and K. Glazebrook, Astrophys5%4, 665 (2003)

[24] J.R. Bond and G. Efstathiou, Mon. Not. Roy. Astron. S8, 103 (1986)
[25] J.R. Bond and G. Efstathiou, Mon. Not. Roy. Astron. S2&;.33 (1987)
[26] M.L. Brown et al., Astrophys. J705, 978 (2009)

[27] M. Bucheret al,, Phys. Rev. Lett93, 081301 (2004)

[28] M. Bucher and D. Spergel, Phys. ReveD, 043505 (1999)

[29] M. Bucheret al,, Phys. Rev. 362, 083508 (2000)

[30] M. Bucheret al, Phys. Rev. D66, 023528 (2002)

[31] M. Bucheret al,, Phys. Rev. Let87, 191301 (2001)

[32] C. Carboneet al, JCAP09, 028 (2011)

176



[33] A. Challinor and A. Lasenby, Astrophys.ll3, 1 (1999)

[34] M. Chevallier and D. Polarski, Int. J. Mod. PhysaD, 213 (2001)
[35] T. Chibaet al,, Astrophys. J429, 427 (1994)

[36] D. Cloweoet al., Astrophys. J648, L109-L113 (2006)

[37] S. Coleet al,Mon. Not. Roy. Astron. So@&62, 665 (2005)

[38] M. Crocce and R. Scoccimarro, Phys. Revr®) 063519 (2006)
[39] R.H. Cyburtet al, JCAP0811, 012 (2008)

[40] P. De Bernardigt al. Phys. Rev. Dr9, 043503 (2009)

[41] S. DodelsonModern CosmologyAcademic Press (2003)”

[42] J. Dunkleyet al.,, Astrophys. J. Suppll80, 306 (2009)

[43] J. Dunkleyet al, Phys. Rev. Lett95, 261303 (2005)

[44] G. Efstathiou and J.R. Bond,Mon. Not. Roy. Astron. S248, 103 (1986)

[45] G. Efstathiou, Proceedings of the thirty-sixth SaittiUniversities Summer School in
Physics, eds. J. Peacock, A. Heavens and A. Davies, VoBén®61-390 (1989)”

[46] D. J. Eisensteirt al., Astrophys. J633, 560 (2005)

[47] D. Eisensteiret al,, Astrophys. J664, 660 (2007)

[48] D.J. Eisensteiet al, Astron. J.142, 72 (2011)

[49] D. Eisensteiret al,, Astrophys. J. Lett504, L57 (1998)

[50] K. Enqgvist and H. Kurki-Suonio, arXiv:astro-ph/99Q@72(1999)

[51] K. Engvistet al,, Phys. Rev. 065, 043002 (2002)

177



[52] A.L. Erickceket al,, Phys. Rev. (80, 083507 (2009)

[53] S.M. Faber and R.E. Jackson, Astrophy204L, 668 (1976)

[54] R. Fadelyet al., arXiv:0909.1807 (2009)

[55] A. Friedmann, General Relativity and Gravitati@i, 1991 (1999)
[56] L. Fuetal, Astron. Astrophys479, 9 (2008)

[57] J. Garcia-Bellido and D. Wands, Phys. Re\b?) 6739 (1995)
[58] J. Garcia-Bellido and D. Wands, Phys. Re\b8) 5437 (1996)
[59] G. Gamow, Phys. Rev. [20, 572 (1946)

[60] T. Giannantonio and R. Crittenden, http://www.araing/abs/0706.0274 (2007)”
[61] M. Giovannini, Int. J. Mod. Phys. 4, 363-510 (2005)

[62] M. Giovannini, Phys. Rev. 0O, 103509 (2004)

[63] N. Gouda and N. Sugiyama, Astrophys395, L59 (1992)

[64] C. Gordoret al., Phys. Rev. 63, 023506 (2001)

[65] C. Gordon and A. Lewis, Phys. Rev.@&7, 123513 (2003)

[66] E.R. Harrison, Phys. Rev. D) 2726 (1970).

[67] S.W. Hawking, Phys. Lettl15B, 295 (1982)

[68] M. Hickenet al.,, Astrophys. J700, 1097 (2009)

[69] G. Hinshawet al., Astrophys. J. SupplL80, 225 (2009)

[70] G. Hinshaw et al., Astrophys. J. Supp¥0, 288-334 (2007)

[71] W. Hu and M. White, Phys. Rev. B6, 596 (1997)

178



[72] W. Hu and N. Sugiyama, Astrophys.4¥1, 542-570 (1996)

[73] W. Hu and N. Sugiyama, Astrophys.4B6, 456 (1994)

[74] W. Hu and N. Sugiyama, Astrophys.434, 489 (1995)

[75] W. Hu and S. Dodelson, Ann. Rev. Astron. Astroph4.171 (2002)
[76] W. Hu et al,, Astrophys. J447, L59 (1995)

[77] W. Hu, Lect.Notes Phygl70, 207 (1996)

[78] W. Hu, Ph.D thesis, University of California, (1995)

[79] W. Huet al, Phys. Rev. 57, 3290 (1998)

[80] E. Hubble, Proceedings of the National Academy of Smésd5, 168 (1929)
[81] N. Jarosiket al,, Astrophys. J. Suppl92, 14 (2011).

[82] R. Kesslert al,, Astrophys. J. Suppl85, 32 (2009)

[83] L. Knox and L. Page, Phys. Rev. Le85, (2000)

[84] L. Knox, arXiv:astro-ph/0002163v1 (2001)

[85] H. Kodama and M Sasaki, Int. J. Mod. Phys.1A265 (1986)

[86] H. Kodama and M. Sasaki, Prog. Theor. Phys. Sufll (1984)
[87] L.A. Kofman and A.D. Linde, Nucl. Phys. B82, 555 (1987)

[88] E. Komatsiet al., Astrophys. J. Suppl. 992, 18 (2011)

[89] M. Kunzet al, Phys. Rev. D74, 023503 (2006)

[90] H. Kurki-Suonioet al,, Phys. Rev. Lett71, 131302 (2005)

[91] H. Lampeitlet al., Astrophys. J722, 566 (2010)

179



[92] D. Langlois and A. Riazuelo, Phys. Rev.d2, 043504 (2000)
[93] D. Langlois and B. Tent, Class. Quantum Gr28, 222001 (2011)
[94] D. Langlois, arXiv:hep-th/0405053v1 (2004)

[95] D. Langlois, Elsevier C.R. Phyd, 953-959 (2003)

[96] D. Langlois, Phys. Rev. B9, 123512 (1999)

[97] D. Larsonet al., arXiv:1001.4635 (2010)

[98] A. Lasenby and A. Challinor, Proceedings of the XLIstnRentre de Moriond, eds. C.
Magneville, R. Ansari, J. Dumarchez and J.T.T. Van, La Tufolume40, 15-23 (2006)

[99] G. Lemaitre, Mon. Not. Roy. Astron. So@l, p.483 (1931)
[100] A. Lewis and A. Challinor, CAMB (http://camb.info/j2005)
[101] A. Lewis and A. Challinor, Phys. Rept29, 1 (2006)

[102] A. Lewiset al, Astrophys. J538, 473 (2000)

[103] A. Lewis, Camb notes (http://cosmologist.info/ref)e(2005)
[104] A. Lewis, Ph.D. thesis, Cambridge University (2000)
[105] A. Lewis, Phys. Rev. 0O, 043011 (2004)

[106] A. Liddle and D. Lyth,Cosmological inflation and large scale structu@ambridge Uni-
versity Press (2000)

[107] A. Liddle and D. Wolfe, Astrophys. 231, 1 (1993)
[108] A. Liddle, An Introduction to Modern Cosmologyohn Wiley (2003)
[109] A.D. Linde and V.F. Mukhanov, Phys. Rev.98, 535 (1997)

[110] A.D. Linde, Phys. Lett. BL08, 389-393 (1982)

180



[111] A.D. Linde, Phys. Lett. B58, 375 (1985)

[112] E.V. Linder, Phys. Rev. Let@0, 091301 (2003)

[113] D.H. Lyth and D. Wands, Phys. Lett.®24, 5-14 (2002)

[114] C.P. Ma and E. Bertschinger, Astrophys435 7 (1995)

[115] A. Mangilli et al, JCAP10, 009 (2010)

[116] A. Mantzet al, Mon. Not. Roy. Astron. Socl06, 1759 (2010)
[117] B. Masoret al., Astrophys. J591, 540 (2003)

[118] R. Masseet al., Astrophys. J. Suppll72, 239 (2007)

[119] S. Mollerach and S. Matarrese, Phys. Rev4D1670 (1991)
[120] S. Mollerach, Phys. Lett. B42, 158 (1990)

[121] K. Moodleyet al., Phys. Rev. D70, 103520 (2004)

[122] K. Moodley, Ph.D thesis, University of Cambridge, (20
[123] v. Mukhanowet al., Physics Report215, 203 (1992)

[124] S. Muya Kasandat al.,, arXiv:1111.2572 (2011)

[125] M. R. Noltaet al,, Astrophys. J. SupplL80, 296 (2009)

[126] L. Pageet al,, Astrophys. J. SupplL70, 335-376 (2007)

[127] L. Pageet al.,, Astrophys. J. Suppl48, 233 (2003)

[128] D. Parkinsoret al,, Phys. Rev. Dr1, 063524 (2005)

[129] P.J.E. Peebles, Natudg7, 210 (1987); P.J.E. Peebles, Astrophyf15, L73 (1987)

[130] P. Peebles and B. Ratra, Rev. Mod. P 559 (2003)

181



[131] P.J.E. Peebles, Astrophys510, 523 (1999)

[132] A.A. Penzias and R.W. Wilson, Astrophys142, 419 (1965)
[133] S. Perimutteet al., Astrophys. J517, 565 (1999)

[134] E. Pierpaolet al, JHEP10, 015 (1999)

[135] The Planck Collaboration, arXiv:1101.2022v2 (2011)
[136] The Planck Collaboration, arXiv:astro-ph/06040692006)
[137] D. Polarski and A.A. Starobinsky, Phys. Revo() 6123 (1994)
[138] W. Press and E. Vishniac, Astrophys239, 1 (1980)

[139] A. Rassatt al, Phys. Rev. 80, 123516 (2009)

[140] A.K. Rebhan and D.J. Schwarz, Phys. Re\6d)2541 (1994)
[141] C.L. Reichardet al,, Astrophys. J694, 1200 (2009)

[142] B.A. Reidet al,, Mon. Not. Roy. Astron. Soc. , (2009)

[143] J. Rich, Fundamentals of Cosmology. Springer. pp.(2021)
[144] A.G. Riesst al,, Astron. J.116, 1009 (1998)

[145] V.C. Rubinet al,, Astrophys. J238, 471 (1980)

[146] R.K. Sachs and A.M. Wolfe, Astrophys.1117, 73 (1967)
[147] M. Sasaki and E.D. Stewart, Prog. Theor. Pi®s.71 (1996)
[148] M. Sasaki and T. Tanaka, Prog. Theor. P19g.763 (1998)
[149] D. Schlegekt al., arXiv:0902.4680 (2009)

[150] P. Schneider, arXiv:astro-ph/0509252v1 (2005)

182



[151] E. Sefusatti and E. Komatsu, Phys. Rew&) 083004 (2007)
[152] U. Seljak and M. Zaldarriaga, Astrophys489, 437 (1996)
[153] U. Seljak et al., Phys. Rev. [, 043511 (2006)

[154] U. Seljak et al., Phys. Rev. 71, 103515 (2005)

[155] H-J. Seo and D. Eisenstein, Astrophy$%B, 720 (2003)
[156] H-J. Seo and D. Eisenstein, Astrophy$3B, 575 (2005)
[157] H-J. Seo and D. Eisenstein, Astrophysab, 14 (2007)

[158] B.D. Sherwiret al,, arXiv:1105.0419v3 (2011)

[159] M. Smithet al, arxiv:1108.4923 (2011)

[160] R. Smithet al, Phys. Rev. Y5, 063512 (2007)

[161] G.F. Smoott al, Astrophys. J. Lett396, L1 (1992)

[162] D. Spergel et al., Astrophys. J. Suppi8, 175 (2003)

[163] D. Spergel et al., Astrophys. J. Suppr0, 377 (2007)

[164] R. Sriananckt al, Nature408, 931 (2000)

[165] A.J. Stompoet al,, Astrophys. J463, 8 (1996)

[166] N. Sugiyamaet al., Astrophys. J338 L43 (1989)

[167] S.H. Suywet al., Astrophys. J711, 201 (2010)

[168] T. Takahashi, Front. Cosm. Grav., Yukawa Institut®] 8001)
[169] A.N. Tayloret al, Mon. Not. Roy. Astron. So@&74, 1377 (2007)

[170] M. Tegmarket al,, Astrophys. J530, 133 (2000)

183



[171] M. Tegmarket al, Astrophys. J480, 22 (1997)

[172] M. Tegmarket al., Astrophys. J606, 702 (2004)

[173] R. Trotta, Mon. Not. Roy. Astron. So0875, L26 (2007)

[174] R. Trotta, Mon. Not. Roy. Astron. So&78, 72 (2007)

[175] R. Trotta, Ph.D thesis, University of Geneva, Thesi8bB34 (2004)
[176] S. Tsujikaweet al,, Phys. Rev. 067, 083516 (2003)

[177] J. Valiviita and T. Giannantonio, Phys. Rev80, 123516 (2009)
[178] A. Vikhlinin et al., Astrophys. J640, 691 (2006)

[179] A. Vikhlinin et al., Astrophys. J692, 1060 (2009)

[180] D. Wandset al,, Phys. Rev. 66, 043520 (2002)

[181] M. White and W. Hu, Astron. Astrophys. 321, (1997)

[182] M. Zaldarriaga and U. Seljak, Astrophys129, 431 (2000)
[183] M. Zaldarriaga and U. Seljak, Phys. Rev5B, 1830 (1997)
[184] Y.B. Zeldovich, Mon. Not. Roy. Astron. Sot60, 1 (1972)

[185] C. Zunckelet al,, Physics Letters 896, 433 (2011)

[186] F. Zwicky, Helvetica Physica Act, 110 (1933)

[187] F. Zwicky, Astrophys. J86, 217 (1937)

184



APPENDIX A

Matter Power Spectrum Derivatives with respect to the

Isocurvature Parameters

The derivatives of the matter power spectrum with respethhédsocurvature parameters have
not been presented in the literature before and we show tleeenfbr the benefit of the reader,

in addition to the derivatives with respect to the cosmalafparameters.
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Figure A.1: Logarithmic derivatives aP (k) with respect to the cosmological parameters for
different redshifts:z = 0.35 (solid black),z = 0.6 (dotted red) and = 3 (dashed blue). An

adiabatic fiducial model is assumed.
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Figure A.2: Logarithmic derivatives oP (k) with respect to the isocurvature parameters for
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