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ABSTRACT 

Missing data are a common occurrence in various fields of data science and statistics. The research 

into missing data is one of the most important topics in applied statistics, especially in academic, 

government and industry-run clinical trials. However, this data loss can result in an inadequate 

basis for study inferences. Dealing with missing data involves neglecting or imputing unobserved 

values. However, the methods used to deal with the missingness in a data set may bias the results 

and lead to results which do not reflect a true picture of the reality under investigation in a study. 

 

This thesis discusses the various missing data mechanisms and how missing values can be inferred. 

The main objective of this thesis is to evaluate the performance of several single and multiple 

imputation methods for a continuous dataset to find the best imputation techniques. Based on a 

complete survey data (2014 Lesotho Demographic Household Survey), missingness was created 

in the response variable (BMI) using three missing data mechanisms: missing completely at 

random (MCAR), missing at random (MAR) and missing not at random (MNAR). Missing values 

were then imputed using three single imputation methods and two multiple imputation methods, 

namely: mean substitution, hot-deck and regression, multiple linear regression and predictive mean 

matching (PMM), respectively. The analysis indicated that the PMM imputation method is more 

precise and can also produce lower estimated standard error compared to other methods. 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

DEDICATION 

I would like to dedicate this thesis to my late parents, Nelisiwe Dlamini and Mr Ndwandwe.  

 

I also dedicate this work to my late brother, Mzinto Ndwandwe who took care of me in difficult 

times and to my little sister, Ncamsile Ndwandwe, who used her last cent so that I can further my 

education. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ACKNOWLEDGMENTS 

First and foremost I would like to thank my Lord and Saviour for making all that I do possible and 

for constantly reminding me that anything could happen.   

 A special thanks goes to my supervisor, Dr Siaka Lougue, who literally carried me with his 

support and guidance.   

To my co-supervisor, Ms Annapurna Hazra, thank you for all the effort, guidance, time and support 

you have given me over these years, from my undergraduate studies till today.  

I would also like to thank my family, friends and colleagues that God blessed me with for always 

being there for me.  

Finally, I would like to thank the Sol Plaatje University for believing in me.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



vii 
 

TABLE OF CONTENTS 

PREFACE ....................................................................................................................................... ii 

DECLARATION: PLAGIARISM................................................................................................. iii 

ABSTRACT ................................................................................................................................... iv 

DEDICATION ................................................................................................................................ v 

ACKNOWLEDGMENTS ............................................................................................................. vi 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ....................................................................................................................... xi 

GLOSSARY OF ACRONYMS .................................................................................................... xii 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

1.1 Background .................................................................................................... 1 

1.2 Aim of the study ............................................................................................ 2 

1.3 Missing values on BMI .................................................................................. 2 

1.4 Structure of the thesis .................................................................................... 3 

CHAPTER 2: LITERATURE REVIEW ........................................................................................ 4 

2.1 Lesotho – geography and population ............................................................. 4 

2.2 Obesity and underweight in Lesotho ............................................................. 5 

2.3 Factors affecting BMI level ........................................................................... 7 

2.4 Comparison of missing data imputation techniques ...................................... 8 

2.5 Weighting methods for nonresponse ...........................................................10 

2.5.1 Introduction .............................................................................................................. 10 



viii 
 

2.5.2 Weighting class adjustments .................................................................................... 11 

2.6 Poststratification ..........................................................................................13 

CHAPTER 3: SOURCES AND PATTERN OF MISSING DATA ............................................. 15 

3.1 Unit and item nonresponse ..........................................................................15 

3.2 Factors that influence response rate and data accuracy ...............................15 

3.3 Patterns of missing data ...............................................................................17 

3.4 Missing data mechanism ..............................................................................19 

3.4.1 Missing completely at random (MCAR) ................................................................. 19 

3.4.2 Missing at random (MAR) ....................................................................................... 20 

3.4.3 Missing not at random ............................................................................................. 21 

3.4.4 Ignorable and nonignorable nonresponse mechanisms ............................................ 21 

CHAPTER 4: DATA AND METHODS ......................................................................................... i 

4.1 Data ..............................................................................................................22 

4.2 Methodology ................................................................................................22 

4.3 Imputation ....................................................................................................24 

4.4 Data handling (listwise and pairwise deletion methods) .............................24 

4.4.1 Listwise deletion method ......................................................................................... 25 

4.4.2 Pairwise deletion method ......................................................................................... 25 

4.5 Single Imputation .........................................................................................26 

4.5.1 Deductive imputation method .................................................................................. 27 

4.5.2 Mean substitution imputation method ..................................................................... 27 

4.5.3 Hot-deck imputation method ................................................................................... 29 

4.5.3.1 Random hot-deck (RHD) imputation method .................................................... 30 

4.5.3.2 Sequential hot-deck (SHD) imputation method ................................................. 30 

4.5.3.3 Nearest Neighbour hot-deck (NNHD) method ................................................... 31 

4.5.4 Cold-deck imputation............................................................................................... 31 

4.5.5 Regression imputation method ................................................................................ 32 

4.6 Multiple imputations ....................................................................................33 

4.6.1 Multiple imputation linear regression method ......................................................... 34 



ix 
 

4.6.2 Predictive mean matching (PMM) ........................................................................... 35 

4.6.3 Logistic regression for a binary variable ................................................................. 36 

4.7 Combining inferences from imputed data sets ............................................37 

CHAPTER 5: RESULTS .............................................................................................................. 39 

5.1. Descriptive analysis ....................................................................................39 

5.1.1. Descriptive analysis of the original data ................................................................. 39 

5.1.2. Descriptive analysis of data with missing values imputed ..................................... 40 

5.2 Multivariate analysis ....................................................................................42 

5.2.1. Multivariate analysis of original data ..................................................................... 44 

5.2.2. Multivariate analysis of imputed data ..................................................................... 45 

CHAPTER 6: DISCUSSION AND CONCLUSIONS ................................................................. 54 

REFERENCE LIST ...................................................................................................................... 56 

Appendix ....................................................................................................................................... 61 

 

 

 

 

 

  



x 
 

LIST OF TABLES 

Table 2.1:  Breakdown of sample by age and weight ................................................................... 12 

Table 3.1: Illustration of univariate missingness pattern .............................................................. 18 

Table 3.2: Illustration of monotone pattern .................................................................................. 18 

Table 3.3: Illustration of arbitrary pattern..................................................................................... 19 

Table 4.1: Illustration of a listwise deletion method..................................................................... 25 

Table 4.2: Illustration of a pairwise deletion method ................................................................... 26 

Table 4.3: Data with missing values ............................................................................................. 28 

Table 4.4: Illustration of dataset with some missing values ......................................................... 29 

Table 4.5: Illustration of dataset with completed values .............................................................. 29 

Table 4.6: Data collected in previous years .................................................................................. 31 

Table 4.7: Data collected recently ................................................................................................ 32 

Table 4.8: Cold-deck imputation method ..................................................................................... 32 

Table 5.1: Summary statistics for BMI in the original complete data .......................................... 39 

Table 5.2: Summary statistics for BMI imputed with mean imputation, hot-deck, regression and 

Multiple linear regression and Multiple (PMM) imputation methods .......................................... 40 

Table 5.3: Results of tests for comparison of mean of the completed data and imputed data based 

on 5 imputation methods applied to 5%, 10% and 25% missingness created by MCAR, MAR and 

MNAR …………………………………………………………………………………………..41 

Table 5.3: Linear regression results for BMI using the original dataset ....................................... 44 

Table 5.4: Linear regression results for BMI using mean substituted data .................................. 45 

Table 5.5: Linear regression results for BMI using hot-deck imputed data ................................. 47 

Table 5.6: Linear regression results for BMI using data imputed by regression method ............. 48 

Table 5.7: Linear regression results for BMI using data imputed by multiple imputation linear 

regression method ......................................................................................................................... 50 

Table 5.8: Linear regression results for BMI using PMM imputed data ...................................... 52 

 

 



xi 
 

LIST OF FIGURES 

Figure 2.1: Map of Lesotho (Bureau of Statistics, Population Statistics Unit Ministry of 

Development Planning)………………………………………………………………………...4 

Figure 2.2: Population of Lesotho from 2006 to 2016 (www.tradingeconomics.com, 

2017)…………………………………………………………………………………………....5 

Figure 2.3: Trends in women's obesity (Ministry of Health [Lesotho] and ICF 

International)……………………………………………………………………………………6 

Figure 2.4: Depth of the food deficit (google maps, 2017)……………......................................7 

Figure 4.1: Multiple imputation (Lee & Simpson, 2014)…………………………………..….33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xii 
 

GLOSSARY OF ACRONYMS 

BPCA Bayesian principal component analysis 

BMI Body mass index 

CATI Computer-assisted telephone interviewing 

CAPT Computer-assisted personal interviewing 

EM Expectation-maximisation 

FKM Fuzzy K-means 

IOA Index of agreement 

KNN K-nearest neighbour 

MAE Mean absolute error 

MAR Missing at random 

MCAR Missing completely at random 

MICE Multiple imputations by chained equations 

MNAR Missing not at random 

NNHD Nearest neighbour hot-deck 

PMM Predictive mean matching 

R Correlation coefficient 

RHD Random hot-deck 

RMSE Root mean square error 

SCE Supervised classification error 

SHD Sequential hot-deck 

SKNN Sequential K-nearest neighbour 

SRS Simple random sampling 

SVD Singular value decomposition 

UCE Unsupervised classification error 

 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 Background 

Missing data are a common occurrence in various fields of data science and statistics. Research in 

the field of missing data is one of the most important topics in applied statistics, especially in 

academic, government and clinical trials. This thesis focuses on the performance of the three single 

and two multiple imputation techniques for continuous data. Having missing values in a dataset 

can have serious consequences in the analysis of the data. For example, Katz (2015) argues that 

data loss can result in an inadequate basis for study inferences. Furthermore, data loss can lead to 

a small sample size, damaging the precision of confidence intervals, which could bias estimates of 

parameters, decrease statistical power and produce high standard errors (Dong and Peng, 2013). 

Dong and Peng (2013) further suggest that the best way to deal with missing data is to avoid 

missing information in the first instance. This means that the data collector must try by all means 

possible to ensure that the survey questions are all answered.  

No matter the precautions taken, it is nevertheless difficult to collect data with no missing values. 

This situation gives rise to an important question regarding how missing data must be dealt with. 

Most researchers suggest that imputing missing data using statistical techniques is an option in 

dealing with missing data. These imputation techniques can largely improve data quality and 

various imputation techniques have thus been developed to tackle this problem. However, it is 

very difficult for a data scientist to identify or choose the best technique for each situation. In this 

study, missingness was created on a complete survey dataset from the 2014 Lesotho Demographic 

Household Survey in the response variable body mass index (BMI) based on three missing data 

mechanisms namely: missing completely at random (MCAR); missing at random (MAR); and 

missing not at random (MNAR). Five imputation techniques, namely mean substitution, hot-deck, 

regression, multiple linear regression and predictive mean matching (PMM), were evaluated to 

determine the most effective technique. 

During the analysis phase, researchers usually apply a technique that omits all the cases containing 

missing information. However, this technique is not recommended since it can lead to results 

which are not truly representative of the data collected (Nakagawa and Freckleton, 2008). Many 

studies reveal that the imputation of missing information depends on the three missing data 
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mechanisms: MCAR, where the probability that a value is missing does not depend on missing 

neither observed; MAR, where the probability that a value is missing does depend only on 

observed; and MNAR, where the probability of an instance having a missing value for a variable 

could depend on the value of that variable.  

1.2 Aim of the study 

This study was initiated to investigate the topic of various missing data mechanisms and how 

missing values can be inferred. The main aim and objective of this thesis is to evaluate the 

performance of single and multiple imputation methods for a continuous dataset on a single 

variable which contains missing values, in this case, BMI. There are several imputation techniques 

that can be used to improve the quality of dataset. In this study, we consider five of the most 

popular imputation techniques to find one that can better reduce the nonresponse biased, namely: 

mean substitution, hot-deck, regression, multiple imputation linear regression and PMM methods. 

These imputation techniques were selected since they are the most widespread and commonly used 

in handling the missing data that is continuous.   

1.3 Missing values on BMI 

Body mass index (BMI) is a common metric used to assess an individual’s body fat, it is calculated 

as weight (kg)/height (m2). BMI cannot be calculated when information on either height or weight 

is missing. Absence of complete data for the whole of an individual’s study period is a potential 

bias risk and standard complete-case approaches may lead to biased estimates. Considering the 

dataset collected in recently surveys in Lesotho, BMI found to be the most variable that possesses 

a lot of missingness. This study is initiated to find the best imputation technique to improve the 

quality of data (by reducing nonresponse). 
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1.4 Structure of the thesis 

This thesis is organised as follows:  

Chapter 1: This chapter presents the introduction to the study. 

Chapter 2: This chapter provides a review of the relevant literature, and focuses on the geographic 

aspects of Lesotho as well as its population, the prevalence of obesity and underweight, the factors 

that affect BMI, and the concerns of several researchers regarding methods to be used in dealing 

with missing data. The chapter also presents an overview of the weighting methods for 

nonresponse.  

Chapter 3: This chapter consists of an overview of sources and patterns of missing data.  

Chapter 4: In this chapter, the data set analysed in this study is outlined, together with the design 

of the experiments, the experimental procedure and the criteria for evaluation.  

Chapter 5: This chapter consists of the results of the current study. 

Chapter 6: This concluding chapter provides a discussion of the major findings of this thesis and 

presents the conclusions that can be drawn from the study. 
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CHAPTER 2: LITERATURE REVIEW 

It was reported that above 180,000 vulnerable children in Lesotho are in need of essential services 

such as health care, access to education, and psychosocial support. Nutritional deficiencies and 

conditions are a challenge because of widespread poverty, food insecurity, and inadequate access 

to services. Because of these reasons, people feel sensitive and end up not answering questions 

regarding their BMI in the survey. Therefore, BMI variable results in having a lot of missing 

information that can be used for analysis. The next section gives the biography of Lesotho.  

 

2.1 Lesotho – geography and population  

Lesotho is a very small country which is situated inside of the borders of South Africa. The 

population of the country in 2013 was estimated at 1.9 million where Basotho people were 

dominating every area of the country with the high percentage of 99.7% (Van den Berg et al. 

2014). The total area of the country spans approximately 30, 355 square kilometres, of which 

approximately 10% is arable land (Lesotho Demographic and Health Survey 2004). The country 

is well known by its nickname ‘kingdom in the sky’ due to the mountainous terrain that 

predominates. Lesotho is a beautiful country with a clear environment and no forest: only 1% of 

the land area is forested (Lesotho Demographic and Health Survey 2004;). The map of Lesotho is 

provided in figure 2.1 (Bureau of Statistics, Population Statistics Unit Ministry of Development 

Planning). 

 

 

Figure 2.1: Map of Lesotho (Bureau of Statistics, Population Statistics Unit Ministry of 

Development Planning) 



5 
 

Figure 2.2 below illustrates the trend in population growth in Lesotho from 2006 to 2016, and 

shows that the population has been increasing year after year. 

 

 

 

Figure 2.2: Population of Lesotho from 2006 to 2016 (www.tradingeconomics.com, 2017) 

For the last decade (2006 to 2016) the population of the country has been increasing dramatically. 

In fact, the statistics indicates that there are now more births compared to the number of deaths in 

the country. 

2.2 Obesity and underweight in Lesotho 

One of the measure of obesity is body mass index (BMI) which is calculated as weight in kilograms 

divided by height in meters squared. Usually a person with a BMI of 30 and above is considered 

as obese. According to the 2014 Lesotho Demographic and Health Survey, it was found that 45% 

of women in Lesotho are obese, 4% are thin, and 51% of women have a normal BMI. The world 

health organisation (WHO) have noticed that most of the Sub-Saharan African countries are facing 

the problem of obesity. Recently studies have revealed that obesity from young age can have a 

significant factor on your adulthood (Van den Berg et al. 2014). Van den Berg (2014) further 

discussed obesity in Lesotho specifically amongst the youth, these researchers argued that there is 

no research that has been initiated to focus on obesity amongst the youth of Lesotho. Figure 2.3 

shows the trend in women’s obesity and underweight in the period of ten years (2004 to 2014). 
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In the figure it is indicated that the percentage of obese women from 2004 to 2009 was 42% and 

subsequently during the period 2009 to 2014 this percentage increased to 45%. The percentage of 

thin people from 2004 to 2009 was 6% which then decreased during 2009 to 2014 to 4%. 

An examination of the malnutrition status of Lesotho indicates that food shortages seem to be the 

main cause of underweight. The country does not have enough food to provide for all communities, 

and is currently in a position where it requires efficient support from food security agencies so that 

it can combat this shortage of food. The shortage of food in the country has a significant effect on 

malnutrition of people of Lesotho. According to the 2014 Lesotho Demographic and Health 

Survey, 33% of children under the age of 5 suffer from stunted development, which can be 

attributed to malnutrition. Figure 2.4 below shows the depth of the food deficit from the year 2004 

to 2014. 

 

Figure 2.3: Trends in women's obesity (Ministry of Health [Lesotho] and ICF International) 
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Figure 2.4: Depth of the food deficit (http://lesotho.opendataforafrica.org/ursdlbc/food-deficit) 

It is evident that from 2004 the kilocalories consumed per person per day have been decreasing 

dramatically. Attaining food security means guaranteeing the quality and continuity of food access, 

in addition to quantity, for all household members. 

 

2.3 Factors affecting BMI level 

Gender, age, education, physical activity, residence type, marital status and environmental factors 

are some of the factors that can have a significant effect on BMI. Most studies that have been 

conducted have indicated that median men have higher BMI values than median women while 

other studies have seen it in a different way (Sattar et al. 2013). Another noteworthy factor is that 

age and gender are both associated with weight gain: the older a person is, the more likely they are 

to be overweight, and women are usually more overweight than men. This further indicates that 

both age and gender can play a major role on BMI (Sattar et al. 2013). Sattar (2013) further argued 

that BMI increases with age and usually remains steady or decreases at the age of 60 and above.  

Furthermore, in their study marital status was one of the major factor associated with BMI 

(comparing married and unmarried people), where 22.9% of married people had a BMI which is 

greater than 30 compared to 6.6% of unmarried people. This therefore indicates that marital status 

can be a significant factor for BMI. Sattar et al. (2013) also discussed the influence of income and 

residence type as other factors that can influence BMI, finding that people who earn more are at 

risk of higher BMI (BMI which is greater than 30) as compared to those with low income. In 

addition, their results showed that 12.9% of those who live in rural areas have a BMI less than 
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18.5% compared to 16.6% of those who live in urban areas with BMI greater than 30. In the United 

States of America, obesity is most likely to occur among adults from rural areas than those from 

urban areas (Sattar et al. 2013). 

In another study that was conducted to understand the drivers of overweight and obesity in 

developing countries, specifically in South Africa, Puoane et al. (2002) argued that South African 

people are not concerned about their body weight, especially those aged 15 and above. The greater 

the actual body weight of participants in the study, the more the self-perception deviated from the 

true value. They further highlighted that these incorrect perceptions can also be differentiated 

between population groups where: women can have a higher BMI compared to men; those who 

live in urban areas have higher BMI compared to those in rural areas; adults people high BMI 

compared to children; women with a better education have less BMI compared to those with lower 

grades, on average (Butzlaff and Minos, 2016; Puoane et al. 2002). 

2.4 Comparison of missing data imputation techniques  

Since there are so many imputation techniques that can be used to tackle the missingness, Rubin 

(1976) argued that there is no better technique for all types of datasets. This section of the theses 

provides the findings about what other researchers found in their comparisons using different 

imputation methods in different kind of datasets. However, most of the imputation techniques they 

considered were not used in our study but few methods such as mean substitution, KNN which is 

the extension of the hot-deck are also used in our study. Tavakoli et al. (2011) also evaluated and 

compared the imputation techniques based on single and multiple imputation methods.  

 

Zainuri et al. (2015) evaluated and compared some of the imputation methods to deal with missing 

values occurring in an air quality dataset. The imputation methods evaluated include: the 

expectation-maximisation (EM) method, singular value decomposition (SVD), K-nearest 

neighbour (KNN) method, mean substitution and median substitution. The purpose of the study 

was to determine the best imputation methods of the five procedures used for air quality data in 

Malaysia, and to subsequently establish whether there was any significant difference between the 

techniques that were applied at eight stations in Peninsular Malaysia. R software (free software) 

was used to obtain the analysis for the study. Three imputation indicators: correlation coefficient 

(R), index of agreement (IOA) and mean absolute error (MAE) were used to compare the 
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performance of each imputation method. All the methods were tested using different types of 

datasets from eight monitoring stations located at the central, southern and northern regions of 

Peninsular Malaysia with missing data comprising 5%, 10%, 15%, 20%, 25% and 30% of the 

various datasets used. After the analysis was obtained, the results indicated that three of the 

methods, EM, KNN and sequential K-nearest neighbour (SKNN) were the most powerful 

imputation methods, irrespective of the station and percentage of missing data. All three 

performance indicators arrived at the same conclusion that these three imputation methods are the 

best methods for imputing the missing data (Zainuri et al. 2015). 

Tavakoli et al. (2011) evaluated and compared the imputation techniques based on single and 

multiple imputation to study the role of stress in relation to social support and mood, and also 

investigated whether mediator effects biased the bond. The methods that were involved in the 

study were: no imputation, single imputation and MI. The results of the study by Tavakoli et al. 

(2011) indicated that there were no significant differences between the data with no imputation 

and the data after imputation was applied for missing values. However, the study did show that 

there were significant results found in terms of different effect sizes after the imputation was 

applied (Tavakoli et al. 2011) 

Schmitt et al. (2015) evaluated and compared six imputation techniques, namely: mean 

substitution, KNN, fuzzy K-means (FKM), SVD, Bayesian principal component analysis (BPCA), 

and multiple imputations by chained equations (MICE). Mean substitution consists of substituting 

the missing data for a given variable by the average of all observed values of that variable; KNN 

is an extension of hot-deck imputation that defines for each sample or individual a set of K-nearest 

neighbours and then substitutes the missing data for a given variable by averaging observed values 

of its neighbours; FKM is an extension of KNN based on fuzzy K-means clustering. SVD and 

bPCA are based on eigenvalues. Last but not least, MICE are an iterative algorithm based on 

chained equations that practises an imputation model specified separately for each variable and 

involving the other variables as predictors (Schmitt et al. 2015). For their study, four real datasets 

in different sizes were used for the analysis, small data was considered to be data with less than 

ten variables, large data was the data with more than ten variables and another data form was 

MCAR and based on four evaluation criteria: root mean squared error (RMSE), unsupervised 

classification error (UCE), supervised classification error (SCE) and execution time. The results 
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suggested that the four imputation methods, namely mean, KNN, SVD and MICE, are not that 

well organized. MICE are based on a much more complex algorithm and performance of these 

imputations appears to be related to the size of the dataset. MICE can perform quickly and 

effectively when applied in a small dataset, but it can be time consuming when it is applied in large 

datasets. Finally, the conclusion was that BPCA and FKM perform more effectively compared to 

other methods that were used in the study (Schmitt et al. 2015). 

2.5 Weighting methods for nonresponse 

2.5.1 Introduction 

The basic idea behind weighting methods is to make the observed values as similar as possible to 

the original sample in terms of the distribution of some variables. Weighting adjustments are 

commonly applied in surveys to compensate for nonresponse and to make weighted sample 

estimates adapt to external values (Lohr, 2009). Lohr (2009) argued that the best way to reduce 

nonresponse bias in sample surveys is to apply a method of nonresponse weighting adjustment. 

This procedure can only be applied by the multiplication of the sampling weight of the respondent 

and the inverse of the estimated response probability, or weights can be defined as reciprocals of 

the inclusion probabilities so that an estimator of the population total becomes 

∑ 𝑤𝑖𝑦𝑖

𝑛

𝑖=1

, 

where 𝑤𝑖 = (𝜋𝑖)
−1 = 

𝑁

𝑛
  is the weight for an individual i, 𝑦𝑖 is the response of an individual i to the 

variable of interest y (in this case BMI). 

 Here 𝜋𝑖= (
𝑛

𝑁
) is the probability of being selected in the sample, N and n are the total population 

and sample size respectively. 

For stratification purposes, weights can be given by 

 

𝑤𝑖 =
𝑁ℎ

𝑛ℎ
, 

where 𝑁ℎ and 𝑛ℎ are the total population, and sample size in the stratum h. 
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Weights can also be used to adjust for nonresponse bias, 𝑅𝑖 is defined as the indicator variable that 

an individual i is selected in the sample with 𝑃(𝑅𝑖 = 1) = 𝜋𝑖 (Lohr, 2009). Let 𝑍𝑖 be a random 

variable that the ith selected individual responds. If 𝑅𝑖  is independent of 𝑍𝑖, then 

𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠) = 𝑃(𝑅𝑖 = 1, 𝑍𝑖 = 1) = 𝜋𝑖∅𝑖, 

 

where ∅𝑖 denotes the probability that individual i responds. 

The above expression can also be written in the mathematical expression: 

 

𝑃(𝑅𝑖 = 1, 𝑍𝑖 = 1) = 𝑃(𝑍𝑖 = 1|𝑅𝑖 = 1)𝑃(𝑅𝑖 = 1) = 𝜋𝑖∅𝑖. 

   

Since weighting methods for nonresponse does not depend on Y, then it is assumed to be MAR. 

Estimating ∅𝑖 for each individual in the sample gives the final weight as: 

𝑤𝑓 =
1

𝜋𝑖∅̂𝑖
.  

2.5.2 Weighting class adjustments 

Lohr (2009) also noticed that some researchers use a common method to adjust weights for 

nonresponse bias and that this procedure creates homogeneous weighting groups or cells of sample 

members, for both respondents and nonrespondents. The known variables in the sample are taken 

up to create the weighting adjustment groups and it is assumed that all the respondents and 

nonrespondents in the same group are also similar. The basic procedure of forming the groups is 

to cross-tabulate the set of the present variables.  Within each group, the respondents’ weights are 

increased to take on the weights of the nonrespondents. Consider the example below where 

variable age is grouped, suppose that the age of each member is known from a selected sample 

and it has a sampling weight: 

 𝑤𝑖 = 1
𝜋𝑖

⁄  

and the estimated response probability for each group is measured by: 

 

∅̂𝑔𝑟𝑜𝑢𝑝 =
𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝
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Table 2.1:  Breakdown of sample by age and weight 

                                     Age 

 15-24 25-34 35-44 45-64 65+ 

Sample size 62 78 51 46 63 

Respondents  33 52 42 34 63 

Sum of weights for 

sample 

2340 2780 1902 1530 2430 

Sum of weights for 

respondents 

988 1033 871 780 2430 

∅̂𝑔𝑟𝑜𝑢𝑝 0.422 0.372 0.458 0.509 1.000 

Weight factor 2.369 2.688 2.183 1.964 1.000 

Table 2.1 Illustrate the weighting class adjustment factors, where the probability of response is 

assumed to be the same within each weighting class, with the implication that within a weighting 

class, the probability of response does not depend on dependent variable y. 

To determine the estimation of total population through weight class adjustment:  

    𝑥𝑔𝑖={
     1 if individual 𝑖 is in 𝑔𝑟𝑜𝑢𝑝 𝑔

     0                   otherwise
 

Then the new weights (called predicted weights) for respondent individual i is given by:  

�̃�𝑖 =
1

𝜋𝑖
∑

𝑥𝑔𝑖

∅̂𝑔

𝐺

𝑔=1

 , 

where 𝑤𝑖 represents the sampling weight for individual i, ∅̂𝑔 is the response probability for each 

group and �̃�𝑖= 
1

𝜋𝑖∅̂𝑔
 if individual i is in a group g and �̃�𝑖 = 0 if individual i is a nonrespondent. 

From the above the estimated total population is: 

�̂�𝑤𝑔 = ∑ �̃�𝑖𝑦𝑖

𝑛

𝑖=1

. 

Also, the estimated population mean is given by:  
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�̂̅�𝑤𝑔 =
�̂�𝑤𝑔

∑ �̃�𝑖
𝑛
𝑖=1

, 

which is the division of the estimated population total by the summation of the predicted weights. 

In simple random sampling (SRS), if 𝑛𝑔 denotes the number of sample individuals in group g, 

𝑛𝑔𝑅𝑒𝑠 denotes the number of respondents in group g, and �̅�𝑔𝑅𝑒𝑠 is the average for the respondents 

in group g, then: 

∅̂𝑔 =
𝑛𝑔𝑅𝑒𝑠

𝑛𝑔
 

and  

�̂�𝑤𝑔 = ∑ ∑ 𝑤𝑖 ∅̂𝑔𝑥𝑔𝑖𝑦𝑖

𝐺

𝑔=1

𝑛

𝑖=1

 

= ∑ ∑
𝑁

𝑛

𝑛𝑔

𝑛𝑔𝑅𝑒𝑠

𝐺

𝑔=1

𝑛

𝑖=1

𝑥𝑔𝑖𝑦𝑖 

= 𝑁 ∑
𝑛𝑔

𝑛
�̅�𝑔𝑅𝑒𝑠

𝐺

𝑔=1

. 

2.6 Poststratification 

Poststratification includes adjusting the sampling weights so that they sum to the population sizes 

within each post-stratum. The method assists in decreasing the biasness of nonresponse and 

underrepresented groups in the population. The main advantage of this method is that it can lessen 

variance estimates. Poststratification was designed to balance a sample’s covariate distribution in 

the situation of complete response, but it is often used in practice to diminish nonresponse or 

coverage layers between the sample frame and target population (Holt and Smith, 1979). 

The most important aspect of poststratification is that it is similar to weighting class adjustment, 

however the difference is that population counts are used to adjust weights. After the sample has 

been taken from the population using SRS, all individuals are grouped into H post-strata. Suppose 
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there is population 𝑁ℎ individual in poststratum h, then sample 𝑛ℎ needs to be selected using SRS 

and 𝑛ℎ𝑅𝑒𝑠. Now the poststratification estimator for �̅�𝑈 is found to be: 

�̅�𝑝𝑜𝑠𝑡 = ∑
𝑁ℎ

𝑁

𝐻

ℎ=1

�̅�ℎ𝑅𝑒𝑠 

and the weighting class adjustment for �̅�𝑈 is given by: 

�̅�𝑤𝑔 = ∑
𝑛ℎ

𝑛
�̅�ℎ𝑅𝑒𝑠,

𝑛

ℎ=1

 

 

where �̅�ℎ𝑅𝑒𝑠 is the average of the respondents in the poststrata, 𝑛ℎ is the selected sample in 

poststrata. Poststratification and weighting class adjustment have similarities, however the 

difference is that 𝑁ℎ for poststratification is known but for weighting class adjustment it is not 

known (Lohr, 2009).  
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CHAPTER 3: SOURCES AND PATTERN OF MISSING DATA  

3.1 Unit and item nonresponse  

Nonresponse actually refers to failure to acquire a measurement on one or more study variables 

for one or more observation(s) in the survey. There are two main sources of missing data and these 

can be distinguished by unit and item nonresponse. Unit nonresponse refers to a situation where 

the entire unit is missing in the survey (a person was interviewed but chose not to answer any of 

the questions asked). Item nonresponse means that person was interviewed and gave some answer 

where he/she could but failed to answer some of the questions in the survey. Nonresponse has been 

a persistent problem in surveys, data analysts and researchers usually have to deal with 

nonresponse before they even proceed for analysis. However, it is important for researchers to 

understand the potential impact of nonresponse on the ability of surveys to describe large 

populations. More importantly is to ensure that nonresponse in the survey is reduced and that an 

adequate response rate is encouraged. A recent study by Groves (2006) revealed that a response 

rate of at least 50 % is considered adequate for analysis and reporting. A response rate of 60 % can 

be considered as good, a response rate of 70 % is very good. Therefore, for any researcher it is 

very important to pay attention to response rates (Groves, 2006). It is important to be able to 

distinguish between the two types of nonresponses (unit and item nonresponse). In most survey 

research, researchers have noticed that unit nonresponse is the main issue when compared to item 

nonresponse, however, they have developed statistical techniques that will help to address the 

problem of unit nonresponse (Yan and Curtin, 2010). 

3.2 Factors that influence response rate and data accuracy 

There are various reasons as to why data might be missing. In this section of the thesis these 

possible reasons will be discussed. Some of these reasons could be: a respondent might refuse to 

respond to a particular question due to the sensitivity of the question if it is related to a topic such 

as income or drugs. Data might be lost due to the carelessness of a data collector failing to enter 

data correctly on the system; the data may be missing because equipment collapsed during data 

collection, for example, a dropped call if the interview was telephonic. Weather conditions also 

play a crucial role in missingness of data, for instance, it may be difficult to collect data in certain 

areas in summer because people may be busy with activities such as garden work or ploughing. 
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The most difficult situation is when a respondent refuses to participate in the survey but does not 

provide a reason (Lohr, 2009). 

The next section discusses some factors that play an important role in reducing nonresponse before 

and during survey. 

Some of factors can be grouped as follows: 

• Survey content- Surveys on personal information such as drug use and financial problems may 

have a higher number of people refusing to participate, because they may be unwilling to reveal 

their personal information (Lohr, 2009). 

• Time of survey- The seasons of the year can also play a crucial role in causing nonresponse. For 

an example, in summer, especially in December you find that people have decided to go for 

vacation so it might not be a good timing for data collection (Lohr, 2009). 

• Interviewers- The behaviour of the interviewer to an interviewee can play a magnificent role in 

gaining cooperation from a sample unit. The way he/she interacts with the respondent can help in 

reducing nonresponse in the survey. It is possible for an interviewer to fail to simplify the questions 

to a respondent, which can have a significant influence in receiving a poor response rate (Lohr, 

2009). 

• Data-collection method- Lohr argued that some of the instruments that are used in surveys may 

also be reasons that leads to have poor responses. He continued mentioned the use of telephone 

and mail systems, of which these two are often have low response rates. But two instruments were 

then introduced to help the improvement of data accuracy in the data that was collected using 

telephone and in-person survey. These two instruments are Computer-Assisted Telephone 

Interviewing (CATI) and Computer-Assisted Personal Interviewing (CAPI) (Lohr, 2009).   

• Questionnaire design- Creating good measures involves both writing good questions and 

organising them to form the questionnaire. Wording may have a serious impact on receiving 

accurate responses. Questionnaire design is not an easy process because it requires serious 

attention to many details at once, so accuracy is vital. A creatively designed form can have a great 

impact in increasing data accuracy and also reducing item nonresponse (Dillman, 2008; Lohr, 

2009). 
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• Respondent burden- Some people may be unwilling to respond to surveys and it is therefore 

better to begin with closed questions and to end with opened questions when designing a 

questionnaire. It is advisable to have short questions that are clear and easy to understand. Shorter 

questions require fewer details, which plays an important role in reducing respondent burden 

(Lohr, 2009). 

• Survey introduction- Some people might not be familiar with the topic of the survey, and it is 

therefore advisable that the main aim and objective of the study is easy to understand. The 

researcher’s name, the name of any organisations represented, the nature of the information that 

the researcher is attempting to find out must be explained, and respondents should be assured that 

all responses will be completely anonymous. Respondents should also be made aware of how 

survey results may benefit the community (Lohr, 2009). 

• Follow-up- Follow up calls mostly occur when the data collection was achieved through mail 

and telephone surveys. People think in different ways, and there may be people who refuse to 

answer no matter how often they may be contacted. It is nevertheless important to make follow up 

calls to collect further data from a survey (Lohr, 2009). 

After the availability of the dataset and all the above mentioned factors were followed but only to 

find that missingness still does exist, then it where the imputation techniques comes. It should be 

noted that no matter how the precaution is taken, it always going to be difficult to collect the dataset 

with no missing values on it. That is why this study focuses on the imputation of missingness. 

3.3 Patterns of missing data  

The aim of data patterns is to provide the amount of dataset and also the structured of the data. 

According to Little and Rubin (2002), there are three patterns of missing data: univariate, 

monotone and arbitrary. Little and Rubin (2002) discuss the theory behind each pattern of missing 

data and the focus of each type of dataset. A challenge with these missing data patterns is that it 

may not be clear what the causes of the missingness are. 

Univariate missingness pattern: The dataset is said to have univariate missingness pattern if the 

data possess k variables such as 𝑋1, 𝑋2 𝑋3 …,𝑋𝑘 and every variable is fully observed except for 

one variable which has some missing values. Consider the example of a univariate pattern shown 

in Table 3.1 below:    
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Table 3.1: Illustration of univariate missingness pattern 

X1 X 2 X 3 X 4 X 5 

obs obs obs obs obs 

obs obs obs obs obs 

obs obs obs obs NA 

obs obs obs obs NA 

obs obs obs obs NA 

 

Monotone missingness pattern: A dataset is said to have monotone missingness pattern if 

variables with missing values are imputed sequentially with covariates obtained from their 

corresponding sets of preceding variables (Kombo et al. 2017). If an individual is missing variable 

𝑋𝑗 then it is assumed that the very same individual is also missing all subsequent variables 𝑋𝑘, 𝑘 >

𝑗 (Enders, 2010). Consider the example below in Table 3.2 of a monotone pattern: 

Table 3.2: Illustration of monotone pattern 

X1 X 2 X 3 X 4 X 5 

obs obs obs obs obs 

obs obs obs obs NA 

obs obs obs NA NA 

obs obs NA NA NA 

obs NA NA NA NA 

 

Arbitrary:  The data set is said to have an arbitrary missing pattern if the missing data occurs in 

any variable for any participant simply at random. Researchers find it very difficult to work with 

arbitrary missing pattern or to analyse the data of this structure (Enders, 2010; Lohr, 2009). 

Consider the example of an arbitrary pattern shown in Table 3.3 below:  
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Table 3.3: Illustration of arbitrary pattern 

X1 X 2 X 3 X 4 X 5 

obs obs NA obs NA 

obs obs NA obs NA 

obs NA obs NA NA 

obs NA obs NA NA 

obs NA obs NA NA 

 

3.4 Missing data mechanism 

Rubin (1976) introduced three types of missing data: missing complete at random (MCAR), 

missing at random (MAR) and missing not at random (MNAR), this can be classified as missing 

data mechanism (Huisman, 2009). These three missing data mechanisms describe relationships 

between measured variables and the probability of missing data.  

Missing data mechanisms have precise probabilistic and mathematical meanings but what is 

significant is that every mechanism has a different explanation as to why data are missing. Let V 

denote the complete data matrix with element Vik in the 𝑖𝑡ℎ row and 𝑘𝑡ℎ column, where 𝑖 = 1, … , 𝑛 

and 𝑘 = 1, … , 𝑀. In the presence of missing data, 𝑉𝑜𝑏𝑠 denotes observed values of the matrix V 

and 𝑉𝑚𝑖𝑠 denotes missing values. Let R denote a matrix with elements (Lohr, 2009): 

 

𝑟𝑖𝑘 = {
1 if 𝑉𝑖𝑘 is observed
0 if 𝑉𝑖𝑘 is missing

 . 

Now, each of the three missing data mechanisms, namely MCAR, MAR and MNAR, are discussed 

in depth below. 

3.4.1 Missing completely at random (MCAR) 

Missingness in a dataset is said to be MCAR if the probability that a value is missing depends 

neither on missing nor observed values. In the case of an MCAR situation, it is assumed that each 

individual shares the same probability of missing value (Houchens, 2015). As an example, a 

dataset can be lost in the laboratory when a tube containing blood samples breaks, which will result 
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in the researcher not being able to obtain measurements for blood parameters. Other examples of 

MCAR occur when a participant misses the administration of a survey due to scheduling 

difficulties. Other unrelated reasons may also contribute to a participant missing the administration 

of a survey, such as a doctor's appointment, or questionnaires being lost in the participants’ emails 

(Donders et al. 2006). 

The MCAR mathematical expression can be given by: 

 

𝑃(𝑅|𝑉𝑜𝑏𝑠, 𝑉𝑚𝑖𝑠) = 𝑃(𝑅). 

The advantage of MCAR data is that the complete case analysis remains unbiased. The researcher 

may lose power for the design, but the estimated parameters are not biased by the absence of data. 

To deal with data that is MCAR is not problematic since listwise/pairwise deletions are also 

options in handling missing values. This mechanism suggests that the distribution of the outcome 

variable has no difference between two groups (𝑅𝑖 = 0 and 𝑅𝑖 = 1). This mechanism is treated as 

the strongest assumption compared to others (Little and Rubin, 2002). 

 

3.4.2 Missing at random (MAR) 

A missing dataset is said to be missing at random (MAR) if the probability that a value is missing 

depends only on observed values. For an example, old people who have reached the age 50 and 

above might feel inferior to respond to questions about their sexual activity. However, if the data 

contains age of all respondents, these data may still be regarded as MAR (if it is reasonable to 

assume that the response of the sexual activity question itself does not affect to probability of 

missingness.(Eekhout et al. 2012; Vatanen, 2012). The MAR mathematical expression can be 

given by: 

 

𝑃(𝑅|𝑉𝑜𝑏𝑠, 𝑉𝑚𝑖𝑠) = 𝑃(𝑅|𝑉𝑜𝑏𝑠). 

Recent studies reveal that multiple imputation techniques and maximum likelihood are the best 

ways of dealing with data that are MAR. To determine whether MAR is a good assumption for 

data or not, the first option is to check the correlation between independent variable and dependent 
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variables. Once the correlation between independent and dependent variables becomes stronger, 

then it implies a weak MAR assumption.  

 

3.4.3 Missing not at random 

A dataset is said to be MNAR if the missing data are neither MCAR nor MAR (Van den Berg et 

al. 2014). In other words, a dataset is said to be MNAR if the probability of missing a value is 

dependent on the missing value itself (Little and Rubin, 2002). It becomes a serious issue when 

the probability of the missingness depends on the response variable itself, which is what MNAR 

is related to. As an example, consider a self-report drug assessment administered to mine workers. 

MNAR data would result if heavy drug users are more likely to skip questions out of fear of being 

reprimanded. This mechanism can play an important role in the level of bias in statistical analyses. 

The MNAR mathematical expression can be given by: 

 

𝑃(𝑅|𝑉𝑜𝑏𝑠, 𝑉𝑚𝑖𝑠) = 𝑃(𝑅|𝑉𝑚𝑖𝑠). 

 

MNAR data is the most difficult to estimate and model compared to the other two missing data 

mechanisms, MCAR and MAR (Little and Rubin, 2002; Scheffer, 2002). 

3.4.4 Ignorable and nonignorable nonresponse mechanisms 

A missing data mechanism can also be categorised as ignorable or nonignorable. There are certain 

conditions that need to be taken into consideration for a missing data mechanism to be ignorable. 

The first condition is that the dataset must be missing complete at random (MCAR) or missing at 

random (MAR). The next condition, is to let Θ and 𝜗 be the two independent parameters, where 

Θ represents parameter of interest and 𝜗 represents parameter of incomplete data set processes. In 

fact, these two parameters are independent if the following condition takes place:  

𝑃(Θ, 𝜗) = 𝑃(Θ)𝑃(𝜗). 

The above expression means that the joint distribution of the two parameters is equivalent to the 

product of the two independent parameters. If one of the two conditions does not apply, then the 

missing data mechanism becomes nonignorable (Boyko, 2013). 
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CHAPTER 4: DATA AND METHODS 

4.1 Data 

The data used in this study were obtained from the Lesotho Demographic Household Survey 2014. 

The data were used to calculate several measures of nutritional status, specifically maternal height 

and weight questions and subsequently BMI information, which is calculated as weight in 

kilograms divided by height in meters squared. For this study, the focus is on the BMI of women 

aged 15-49. From the dataset, variable BMI (variable of interest) was categorised into three groups: 

those who have a BMI of less than 25 were grouped as underweight; those with a BMI of between 

25 and 35 were grouped as overweight; and the ones who have a BMI of greater than 35 were 

grouped as obese. 

 

4.2 Methodology  

The methodology used in this study involved three steps. The first step consisted of the creation 

of missing values from a complete dataset using three missing data mechanisms, namely MCAR, 

MAR and MNAR. The second step involved the imputation of missing data using five different 

techniques: mean substitution, hot-deck, regression, multiple linear regression and PMM methods. 

The last step consisted of evaluating and comparing the performance of the five imputation 

methods. 

4.2.1 Simulation of the missing data mechanisms 

Using a real dataset, cells are systematically deleted following MCAR, MAR and MNAR 

mechanisms following nine (9) scenarios of missingness with each scenario simulated three (3) 

times. The missing values under MCAR, MAR and MNAR were generated across three degrees 

of missingness (5%, 10%, 25%). The BMI variable was chosen to be variable of interest to 

experience the missingness (Hendry et al. 2017). 

 

In the MCAR mechanism scenarios, values were remove at random across all the categories in the 

BMI variable. Provided the probability of missing P(Vmis) = P, for P = 0.05, 0.1 and 0.25. 
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To simulate the MAR mechanism, the missingness was created according to its association with 

‘educational attained, marital status and residence type’ respectively. Data was randomly deleted 

from BMI variable such that P(R|no education) = 0.1, P(Primary education) = 0.1, P(R|secondary 

education) = 0.1, P(R|tertiary education) = 0.1, P(R|married) = 0.15, P(R|not-marrried) = 0.15, 

P(R|rural) = 0.15 and P(R|urban) = 0.15. These deletions were carried out for all three amount of 

missingness (Hendry et al. 2017). 

 

MNAR was obtained by creating missing values where the probability of missingness is a function 

of the dependent variable (BMI). Deletion from the BMI variable was carried out such that P(R|bmi 

underweight) = 0.2, P(R|bmi overweight) = 0.2 and P(R|bmi obese) = 0.6. These deletions were 

repeated for the repetition for the three amount of missingness like in MAR (Hendry et al. 2017). 

 

4.2.2 Summary and comparisons of the missing mechanisms and imputations 

Parameter estimates resulting from the imputation techniques from all three missing data 

mechanisms are compared to the complete dataset results to assess bias in estimation. For a 

descriptive statistics perspective, allowing sampling variability, results (mean, median and 

standard deviation) for each of these nine scenarios were generated three times and results were 

averaged and the average was compared to the one of the original dataset. To find the differences 

between the means, Z – test hypothesis was conducted to draw statistical inferences. 

 

For the multivariate analysis, mean square error (MSE), R-squared and adjusted R-squared were 

used as the criteria comparison to see how close when compared to the results of original data. 

Smaller values for MSE indicate closer agreement between predicted and observed results, and an 

MSE of 0.0 indicates perfect agreement. 

 

R-package was used for the creation of missingness and analysis of the three single imputation 

methods which includes the mean substitution, hot-deck, and regression imputation methods. Stata 

software was used for the analyses of the two multiple imputation (MI) methods which includes 

the linear regression method and PMM methods. 
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4.3 Imputation  

Imputation methods substitute the missing values by plausible values so that it can produce the 

complete dataset which will grant the data analyst the opportunity to continue with the analysis 

using standard analysis methods and software (Huisman, 2014). Little and Rubin (2002) developed 

some of these imputation methods and have been useful for so many years. However, the question 

arises as to why the missing values must be imputed.  The reason for imputing the missing values 

is not to eradicate the missing but to reduce nonresponse bias. In this study the main focus is on 

the two general popular approaches: single and multiple imputation techniques. Single and 

multiple imputations require certain criteria to be satisfied before adoption. Imputation actually 

plays an important role in ensuring that missingness is reduced from the dataset and also to prepare 

for analysis. These methods are also responsible for the recreation of a balanced design such that 

techniques that were applied for analysing a full observed dataset can be applied in many 

situations. In fact, there are several methods to deal with or to handle missing data, but currently 

imputation is the most recommended method (Rubin, 1976). Single imputation methods can work 

extremely well in a dataset that has few missing values as compared to a dataset with many missing 

values. Allowing single imputation for a dataset that has many missing values will cause 

systematic errors since the reflection of uncertainty is not covered. Imputation has several 

advantages and disadvantages. The advantage of imputation is that it assists the analyst to proceed 

with the analysis using standard analyses and some of the statistical software. One disadvantage 

of imputation is that it can lead to the biasness of parameters, such as variances and it results in 

the researcher treating the imputed values as if they were real values from the survey. Therefore, 

this study was initiated to find the best imputation technique  

 

4.4 Data handling (listwise and pairwise deletion methods) 

Listwise and pairwise are considered as the most common methods of dealing with missing data, 

however both have their advantages and disadvantages. Before these two techniques (listwise and 

pairwise) are used for imputation, it is assumed that the data must be MCAR, meaning that the 

probability of missing in the dependent variable is related neither independent nor dependent 

(Peugh and Enders, 2004). This proves that such methods can only be unbiased when missing data 

are MCAR (Liu and Gopalakrishnan, 2017). Peugh and Enders (2004) argued that these two simple 

data handling methods are among the most disadvantageous methods available for practical 
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applications. The biggest problem is that researchers or data analysts once they come across with 

a dataset that has some missing values, they waste no time but to use these methods for analysis 

(Kim and Curry, 1977). 

4.4.1 Listwise deletion method 

Listwise deletion method only focuses on the data that are fully observed (completed data set) and 

it involves deletion of the entire observation which possesses the missing value in any of the 

variables. Consider the example of a listwise method shown in Table 4.1 below, the shaded part 

indicates the data that has been deleted: 

Table 4.1: Illustration of a listwise deletion method 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

obs obs NA obs 

obs obs obs obs 

obs obs obs obs 

NA obs obs NA 

obs obs obs obs 

NA obs obs NA 

 

Table 4.1 shows that wherever the missing value has occurred then the entire individual is deleted 

and not only the missing value. This method is still used in many fields, especially in medical 

fields. This technique has several disadvantages: firstly, it produces biased estimates and 

parameters if the data is not MCAR; and secondly, it may cause serious damage in loss of a 

statistical power (Humphries, 2013). 

4.4.2 Pairwise deletion method  

In the pairwise deletion method, only the missing values are eliminated and not the entire 

observation, which means that present values in the same observation are used for analysis. 

Statistical software programs such as SPSS do include cases that possess missing values on the 

variable(s) under analysis, but specifically remove the missing values and not the entire 

observation. In table 4.2, again the shaded part shows the data that has been deleted.   



26 
 

 

Table 4.2: Illustration of a pairwise deletion method 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

obs obs NA obs 

obs obs Obs obs 

obs obs Obs obs 

NA obs Obs NA 

obs obs Obs obs 

NA obs Obs NA 

 

Table 4.2 shows that this technique only removes the missing values (highlighted in blue) from 

each variable but not the entire individual. The advantage of the pairwise technique is that it 

increases the statistical power and seems like it would be good compared to listwise method, 

because it does make use of all available data (Graham, 2012). This method also assumes that the 

data is MCAR. Even though the pairwise method is recommended over the listwise method, but 

the method also has its own disadvantages, like producing standard errors that are underestimated 

or overestimated (Peugh and Enders, 2004). 

4.5 Single Imputation 

Single imputation refers to the gathering of common traditional missing data methods where the 

researcher imputes the missing values with superficially suitable replacement values. Researchers 

have developed many different kinds of single imputation techniques, but in this section five of 

mostly used single imputation techniques are discussed. The following are five different types of 

single imputation methods. 

 Deductive imputation method 

 Mean substitution imputation method 

 Hot-deck imputation method 

 Sequential hot-deck imputation method 

 Random hot-deck imputation method 

 Nearest neighbour hot-deck imputation method 
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 Cold-deck method 

 Regression method 

 

4.5.1 Deductive imputation method 

The deductive imputation method may only be considered when a value is deduced with certainty 

and can be completed during the data collection, office data capturing or during data processing. 

This method can only be applied if there is only one possible solution for the particular question, 

for example, if a respondent did not answer the gender question but did fill in the Mr/ Ms/Mrs 

question, then it can be deducted that the respondent is male or female. Another example is, if the 

question 'do you smoke cigarettes?' was left blank, but the following question 'How many 

cigarettes?' contained the response '6 cigarettes a day', then the answer to the first question is 

deducted from the second question of which it is ‘YES’ (Croft, 2008). Most researchers do not 

encourage people to apply this technique because it could lead to biases in the data. However, in 

some situations it is possible, and indeed desirable to deduce the response from other information 

in the questionnaire. 

4.5.2 Mean substitution imputation method 

The mean substitution imputation (unconditional) method takes the average of all the observed 

values in that variable and uses it to fill in the missing data. The mean substitution method is 

regarded as a simple and straightforward method among imputation techniques. This method is 

not recommended, and researchers have seen that it is the worst of all possible strategies. One of 

the disadvantages is that injecting the mean substitution as imputed value reduces variance on the 

variable and can dramatically cause a very serious problem with covariance and correlations. This 

technique is usually not acceptable to handle missing data and it also underestimates population 

variance (Fayers et al. 1998; Song and Shepperd, 2007). Consider the example shown in Table 4.3 

below: 
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Table 4.3: Data with missing values 

Participants Age Gender Education Residence 

1 22 male 2 rural 

2 31 female 1 urban 

3 28 male 1 rural 

4 19 male 3 rural 

5 NA male 3 rural 

6 34 female 2 urban 

7 20 male 2 urban 

8 NA female 2 rural 

9 39 female 2 urban 

10 32 female 1 urban 

11 41 female 2 rural 

12 15 male 1 rural 

13 40 female 2 rural 

14 21 female 2 rural 

15 18 male 3 urban 

16 NA female 3 rural 

17 NA female 2 urban 

18 35 male 1 urban 

19 25 male 1 urban 

20 30 female 2 rural 

The dataset in table 4.3 consists of twenty individuals and four variables (age, gender, education 

level attained, residence type) of which three variables have a completed dataset and age has some 

missing values in it. 

Example: individuals 5, 8, 16 and 17 did not provide their age, so for the mean substitution 

imputation technique, the average of all other participants with completed dataset in variable age 

is taken and used to impute for individual 5, 8, 16 and 17. The mathematical expression for mean 

method can be given by: 

 

𝑀𝑒𝑎𝑛 𝐼𝑚𝑝𝑢𝑡𝑒 =
∑ 𝐴𝑔𝑒𝑜𝑏𝑠,𝑖

𝑛𝑜𝑏𝑠
𝑖=1

𝑛𝑜𝑏𝑠
, 

 

where 𝐴𝑔𝑒𝑜𝑏𝑠 are observed values (of Age) and 𝑛𝑜𝑏𝑠 is total number of participants with complete 

values of Age. 
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4.5.3 Hot-deck imputation method 

The hot-deck imputation method actually takes the observed value given by other respondents to 

impute the missing value for another respondent. For example, if sex, race and level of education 

have been completed but age is missing, a random respondent with the same characteristics like 

sex, race and level of education is selected from the respondents, and that respondent’s age is used 

for the missing value (Allen and Seaman, 2010). Notice that hot-deck continues from the mean 

substitution imputation method but this does not mean that these two methods share any features, 

they are totally different. Consider the example of a hot-deck in tables below: 

Table 4.4: Illustration of dataset with some missing values 

STUDENT NO:   AGE   GENDER MODULE MARK 

211503699     25    MALE   MATHS   NA 

211513099     21    NA    STATS   71 

Table 4.4 above identifies cases with missing values (NA’s) from the dataset. 

 

 

Table 4.5: Illustration of dataset with completed values 

STUDENT NO:   AGE   GENDER  MODULE MARK 

211513619     25   MALE   MATHS     52 

211523430     25   MALE   MATHS     49 

211543088     25   MALE   MATHS     85 

211514000     25   MALE   MATHS     66 

211511111     25   MALE   MATHS     63 

211515019     21   FEMALE   STATS     69 

211513022     21   MALE   STATS     69 

211513005     21   MALE   STATS     69 

211511077     21   FEMALE   STATS     69 

211514093     21   MALE   STATS     69 

211523049     21   FEMALE   STATS     69 
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Table 4.5 shows a complete dataset where all student numbers with similar characteristics are 

grouped together. 

Now, one of these records is chosen at random, and the MARK value is ‘borrowed’ for student 

#211503699, specifically those with the same characteristics, and again any of the entries on 

GENDER is randomly selected and substituted with student #21153099. 

Hot-deck imputation procedures have several methods to determine how to choose a donor unit. 

In this case three of them are going to be considered, which are sequential hot-deck (SHD), random 

hot-deck (RHD) and nearest neighbour hot-deck imputation (NNHD). 

 

4.5.3.1 Random hot-deck (RHD) imputation method  

This technique involves simply choosing a donor (observed) of the same variable and using it to 

impute the missing value. The same donor may be used several times if there are too many 

participants with missing information in that variable, alternatively other imputation methods may 

be applied (Allen and Seaman, 2010). For example, if one of the participants did not give 

information about his or her educational level, this technique allows the researcher to choose 

randomly from the data any of those who provided their educational level and use it for imputation 

of the missing value.  

4.5.3.2 Sequential hot-deck (SHD) imputation method 

The sequential hot-deck method sanctuaries the arranging methodology of the unweighted 

procedure, but the advantage of this method is that its gives all the respondents an opportunity to 

become donors. In fact, sampling weights can also be used to assist in the limitation of a single 

donor to be used several times for imputation (Lohr, 2009). Respondents and non-respondents are 

first separated into two files and sorted (randomly, or by auxiliary variables). Sample weights of 

the non-respondents are rescaled to sum to the total of the respondent weights. For example, if an 

individual did not provide the information about his/her education level, the closest donor from 

the top till the bottom can be substituted for that participant. 
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4.5.3.3 Nearest Neighbour hot-deck (NNHD) method  

This technique simply selects a donor that is very close to the one of the missing and substitutes it 

there. The NNHD method is considered as the most well organised method when compared to the 

random and sequential hot-deck imputation methods. Since the NNHD uses the supplementary 

knowledge given by the values of the independent variables (x-values), this procedure does not 

pick up a donor simply at random but requires y-respondents and x-values (Chen and Shao, 2000). 

For example, consider an individual who did not provide the information about his/her education 

level attained, the NNHD method allows the researcher to take the closest donor (respondents) 

with the same characteristics and to impute the information to that particular individual. 

 

4.5.4 Cold-deck imputation 

Cold-deck imputation uses the information from other external sources to impute the missing 

values (Lohr, 2009). These values can be constructed with the use of historical data, subject-matter 

expertise, etc. For example, from the previous data one of the respondents may have provided 

information about his/her education level attained, but it may have happened that for the current 

data he/she then failed to provide the information about his/her education level attained. The cold-

deck imputation method uses the respondent’s previous information to impute for the current one. 

It has been found that it is very difficult to use the cold-deck imputation method alone, but as an 

alternative it can be used as a starting point if the researcher wants to use the hot-deck imputation 

method (Wang, 2003). The tables below show how cold-deck imputation can be applied. 

Table 4.6: Data collected in previous years 

Income Age Gender Education 

R10k 19 female NA 

R13k 21 male 1 

R15k 23 male 2 
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Table 4.7: Data collected recently 

Income Age Gender Education 

R10k NA female 1 

R13k 28 NA NA 

R15k 31 male 2 

 

Table 4.8: Cold-deck imputation method 

Income Age Gender Education 

R10k 19 female 1 

R13k 28 male 1 

R15k 31 male 2 

Table 4.8 shows the completed dataset obtained after cold-deck method was used. 

 

4.5.5 Regression imputation method 

Regression imputation is also known as conditional mean substitution imputation, which 

substitutes the missing values with predicted scores from a regression equation. The basic idea of 

this procedure is intuitively appealing; it uses knowledge from complete variables to fill the 

incomplete variables.  This technique uses a regression equation to produce all the predictions, 

then adds a random error to each of the predictions to complete the imputation of the missing 

values. Let 𝑌 be a continuous variable which satisfies the model: 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝑒𝑖. 

 

The above model is fitted using completed data with no missing values for the variable 𝑌 and its 

covariates 𝑋1, 𝑋2, … , 𝑋𝑝 where p represents the remaining variables. 

To obtain a random error the normal distribution is applied with the mean of zero and a variance 

equal to the residual variance from the prior regression analysis. The process is all dependent on 

the variable that needs to be imputed (dependent variable). 
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4.6 Multiple imputations 

Multiple imputation procedure is assumed to be more superior compared to single imputation 

procedures. Researchers noted that single imputation procedures failed to produce unbiased 

standard error estimates, and then introduced the multiple imputation procedures (Schafer and 

Graham, 2002; Tonini et al.). This technique was first introduced by Rubin (1977) and expanded 

on in his book ‘Multiple imputation for nonresponse in surveys’ in 1987. Multiple imputation 

means that the imputations are done more than once (𝑀 > 1) taking different random errors to 

add on each imputation. Using this technique, the process of imputation is repeated many times 

and all the repetitions are combined to provide a single estimate. Multiple imputation was found 

to be the most popular technique for handling missing data. It should be noted that imputed values 

should not be treated as the original values since they were created from a completed data set. 

According to Rubin (1977), multiple imputation consists of three steps: 

1. Imputation: Nonrespondents are imputed M times to generate M completed data set. 

2. Analysis: The completed data set from step 1 are analysed to produce parameter estimates 

for each imputed value. 

3. Pooling: All the parameter estimates from different imputed values in step 2 are grouped 

together to obtain a final estimate (Yuan, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Multiple imputation (Lee and Simpson, 2014) 
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Multiple imputation has been considered to be one of the most applicable tools for general purpose 

handling of missing data by many different data analysts and researchers (Little and Rubin, 2002). 

Little and Rubin (2002) provide the key steps of how multiple imputation is generated:  

Step 1: Impute missing values using an appropriate model  

Step 2: Repeat the first step M times (usually 3-5 times), producing M complete data sets.  

Step 3: Perform the desired analysis on each data set using standard complete data methods.  

Step 4: Average the values of the parameter estimates across the M samples to produce a single 

point estimate. 

Step 5: Calculate the standard errors by firstly averaging the squared standard errors of the M 

estimates and calculating the variance of the M parameter estimates across samples, and last 

combine the two quantities using a simple formula.  

 

This section of the thesis employs a theory based on three different multiple imputation methods: 

 Multiple imputation linear regression for a continuous variable 

 Predictive mean matching (PMM) for continuous variable 

 Logistic regression for a binary variable 

 

 

 

4.6.1 Multiple imputation linear regression method 

For the multiple imputation linear regression method , a regression model is fitted for each variable 

with missing values, with the previous variables as covariates. Based on the resulting model, a new 

regression model is then fitted and is used to impute the missing values of the dependent variable 

BMI (Yuan, 2010). Let 𝑌 be a continuous variable which satisfies the model: 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝑒𝑖. 

 

Consider the partition of 𝑋 = (𝑋0
′ , 𝑋𝑚

′ ) into 𝑛0 × 1 and 𝑛1 × 1 vectors containing the observed 

and missing values. Now consider the similar partition 𝑍 = (𝑍0, 𝑍𝑚) into 𝑛0 × 𝑞 and 𝑛1 × 𝑞 

submatrices. 
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The following steps show how the linear regression imputation method works: 

Step 1: Fit the regression model on the complete dataset (𝑋0, 𝑍0) to obtain parameter estimates �̂�,

and  �̂�2.  

Step 2: Simulate new parameters 𝛽∗ 𝑎𝑛𝑑 𝜎2∗ from their joint posterior distribution under ventional 

nonformative improper prior 𝑃(𝛽, 𝜎2) ∝
1

𝜎2 . This can be obtained from using two following steps 

        𝜎2∗~�̂�2(𝑛0 × 𝑞 )/𝜒2𝑛0 × 𝑞  

𝛽∗|𝜎2∗~𝑁{�̂�, �̂�2(𝑍0
′ , 𝑍0)−1} 

Step 3: Obtain one set of imputed values, 𝑋𝑚
1  by simulating from 𝑁(𝑋𝑚𝛽∗, 𝜎2∗𝐼𝑛1×𝑛1

). 

Step 4: Repeat step 2 and step 3 above correspond to simulating from the posterior predictive 

distribution of the missing data 𝑃(𝑋𝑚|𝑋0, 𝑍0). 

(Stata, 2009; Schenker et al., 2010). 

 

4.6.2 Predictive mean matching (PMM) 

Predictive mean matching (PMM) is one of the imputation techniques that is used to impute the 

missing values of a continuous variable. The PMM method is a partly parametric approach that 

first predicts the values for the missing data Y using a linear prediction model. The method uses 

the predictions (linear regression on observed data) to choose the nearest observed value to impute 

for the missing value. Randomisation can be introduced by defining a set of values that are closest 

to the predicted value and choosing one value out of that set, at random, for imputation (Durrant, 

2005). Vink (2014) further demonstrated the five steps regarding how PMM multiple imputation 

can be obtained. Let 𝑌𝑟𝑒𝑠𝑝 and 𝑋𝑟𝑒𝑠𝑝 denote the observed values from a dependent variable Y and 

independent variables X, respectively . 

Step 1: Use linear regression of 𝑌𝑟𝑒𝑠𝑝 given 𝑋𝑟𝑒𝑠𝑝 to estimate �̂�, �̂�2 𝑎𝑛𝑑 �̂�  by means of ordinary 

least squares.  
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Step 2: Draw 𝜎2∗ and 𝛽∗ from their posterior distributions, as for 𝜎2∗ =
(�̂�′�̂�)

𝑉
 where V denotes the 

chi-square distribution 𝜒2 with 𝑛𝑟𝑒𝑠𝑝 − 𝑟 degrees of freedom. Where 𝛽∗ can be obtained from 

multivariate normal distribution with mean �̂� and estimated covariance matrix 𝜎2∗(𝑋𝑟𝑒𝑠𝑝
′ 𝑋𝑟𝑒𝑠𝑝)−1 

Step 3: Compute �̂�𝑟𝑒𝑠𝑝 = 𝑋𝑟𝑒𝑠𝑝�̂� and �̂�𝑛𝑜𝑛𝑟𝑒𝑠𝑝 = 𝑋𝑛𝑜𝑛𝑟𝑒𝑠𝑝𝛽∗. where 𝑌𝑛𝑜𝑛𝑟𝑒𝑠𝑝 denotes the missing 

values of variable Y 

Step 4: For each missing value �̂�𝑛𝑜𝑛𝑟𝑒𝑠𝑝,𝑖 where 𝑖 = 1, … , 𝑛𝑛𝑜𝑛𝑟𝑒𝑠𝑝. 

(a) Find ∆= |�̂�𝑟𝑒𝑠𝑝,𝑘 − �̂�𝑛𝑜𝑛𝑟𝑒𝑠𝑝,𝑖| for all k, where 𝑘 = 1, … , 𝑛𝑟𝑒𝑠𝑝. 

(b) Now for imputation, one of the component ∆1, … , ∆5 can be chosen at random and the 

corresponding 𝑌𝑟𝑒𝑠𝑝 can be taken as the imputation.  

Step 5: Step 1 to 4 should be repeated M times (Vink et al. 2014). 

 

4.6.3 Logistic regression for a binary variable 

The logistic regression imputation method is used to fill in the missing values of a binary variable. 

This technique is found to be a parametric method that assumes a basic logistic model for those 

variables that are imputed but when other predictors are known. In the case of the logistic 

regression imputation method, this technique simply fits the logistic model using the present values 

(observed values) together with covariates. After the logistic model has been fitted and all the 

parameter estimates have been obtained, then the posterior predictive distribution of the parameters 

can be built. Posterior predictive distribution then produces a new logistic model that can be used 

to impute the missing values (Dolovich et al. 2011).  Maximum likelihood can also be used to 

estimate the logistic regression using the completed dataset. Again, posterior distribution of the 

parameters can be used in the completed dataset to create a random draw. Once the logistic model 

has been fitted then all the probabilities are obtained for every missing and a Bernoulli draw is 

created for that probability, producing imputed values of 0 and 1 (Allison, 2005). The following 

section outlines the steps and formulas regarding how the logistic regression imputation technique 

can be obtained. 

Firstly a univariate variable 𝑌 = (𝑦1, 𝑦2, … 𝑦𝑛)′ that follows a logistics regression model must be 

examined. 

𝑃(𝑌𝑖 ≠ 0|𝑋𝑖) = 𝑒𝑥𝑝(𝑋𝑖
′𝛽) 1 +⁄ 𝑒𝑥𝑝(𝑋𝑖

′𝛽), 
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where 𝑋 = (𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑛)′ records values of estimates of the univariate variable (𝑌) for an 

individual i and 𝛽 is the 𝑞 × 1 vector of the unknown regression coefficient (Raghunathan et al. 

2001). 

Taking into account that the variable of interest 𝑌 (BMI) contains some missing values that need 

to be filled in. Now the partition 𝑌 = (𝑌0
′, 𝑌𝑚

′ ) into 𝑛0 × 1 and 𝑛1 × 1 vectors must be considered, 

containing a full data set with completed values and missing. Again, the same partition of 𝑋 =

(𝑋0, 𝑋𝑚) into 𝑞0 × 1 and 𝑞1 × 1 submatrices must be considered. 

The following steps for logistic regression imputation must be considered: 

Step 1: The logistic regression model using completed data sets must be fitted and all parameter 

estimates �̂�, and their asymptotic sampling variance, �̂� must be yielded. 

Step 2:   𝛽∗ must be drawn from the large-sample normal approximation, 𝑁(�̂�, �̂�) to its posterior 

distributions but assuming non-informative prior 𝑃(𝛽) ∝ 𝑐𝑜𝑠𝑡𝑎𝑛𝑡. 

Step 3: One set of filled in values, 𝑌𝑚
1 , must be obtained by simulating from logistic distribution: 

 

𝑃(𝑦𝑖 = 1) = 𝑒𝑥𝑝(𝑋𝑖𝑚
′ 𝛽∗) {1 +⁄ 𝑒𝑥𝑝(𝑋𝑖𝑚

′ 𝛽∗)}. 
 

To obtain a greater number of imputations (M), steps 2 and 3 must be repeated. It must be kept in 

mind that 𝛽∗ is draw from the asymptotic approximation to its posterior distribution (Rubin, 1987). 

 

4.7 Combining inferences from imputed data sets 

The multiple imputation involves three steps: imputing, analysing and pooling. Therefore, the 

inferences must be combined, as well as the multiple sets of parameter estimates, standard errors 

and test statistics to obtain final parameter estimate. Then using the combining rule which was 

introduced by Rubin (1987) the average of the estimates must be calculated across multiple 

imputations, as well as the variances of the estimates. Suppose inferences about scalar 𝜙 are to be 

made, W denotes within imputation variance, B denotes between imputation variance and T is the 

total variance associated with 𝜙. The uncertainty about the results from the single imputed dataset 

is reflected by W, but B reflects the uncertainty due to the missing data. Let �̂�𝑖 and �̂�𝑖 be the 
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completed data estimates where i = 1, 2, …, M. To group the final parameter estimates for 𝜙, the 

average is calculated from the completed data set and is given by: 

 

�̅� = ∑
�̂�𝑖

𝑀

𝑀

𝑖=1

 

and  

𝑊 = ∑
�̂�𝑖

𝑀

𝑀

𝑖=1

, 

where W is the within-imputation variance component that is achieved as the average of the 

complete dataset variance estimates 

𝐵 = ∑
(�̂�𝑖 − �̅�)

2

𝑀 − 1

𝑀

𝑖=1

 

and B is the between-imputation variance. 

 

T = 𝑊 + (1 + 1/M)B. 

Total variance is the variance estimates which is related to average of 𝜙 (meaning �̅�). 

From the total variance, (1 + 1/𝑀)𝐵 estimates the increase in variance due to nonresponse 

occurred. 

If B becomes higher than 𝑊 then there is a greater efficiency, this indicates that the greater the 

number of imputations increases the more accurate estimates are achieved (Marshall et al. 2009). 

The RMSE is a useful measure tool of overall precision or accuracy and can be used to evaluate 

the performance of each imputation method. It represents the sample standard deviation of 

difference between original values and imputed difference (Ferrari and Ozaki, 2014). In general, 

the technique that would be more effective would be the one with a lower RMSE. The RMSE is 

obtained by: 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
. 
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CHAPTER 5: RESULTS 

 

5.1. Descriptive analysis 

5.1.1. Descriptive analysis of the original data 

 

The first step in analysing the data consisted of the descriptive analysis of the variable of 

interest, meaning BMI using the original data without any missing values. The results of this 

preliminary analysis are enclosed in Table 5.1. 

The p-value related to the Shapiro-Wilk test for normality is greater than 0.05, which indicates 

that the variable BMI from original complete dataset were normally distributed. This result 

implies the use of mean and standard deviation tests for the summary statistics and descriptive 

analysis.  

 

Table 5.1: Summary statistics for BMI in the original complete data  

Summary statistics Original data 

Mean 24.9200 

Median 24.0500 

Std-dev 6.7110 

IQR 7.248698 

Shapiro-Wilk test W=0.907   P-value = 0.0521 

 

Results of the summary statistics of BMI from the original dataset show that the mean BMI is 

24.92 with a standard deviation of 6.711. This results show that in general people have a healthy 

weight (scientifically called normal weight) because the BMI is in range 15 - 25. 
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5.1.2. Descriptive analysis of data with missing values imputed  

In this section, it is a question of using descriptive statistics methods for examining which of 

the mean imputation, hot-deck, regression and multiple imputation techniques provide the best 

results and under which condition (type of missingness and percentages of missing). 

Table 5.2: Summary statistics for BMI imputed with mean imputation, hot-deck, regression and 

Multiple linear regression and Multiple (PMM) imputation methods 

 

                                                                                    Mean substitution technique 
Measure 

of central 

tendency                                      

       MCAR (BMI)           MAR (BMI)          MNAR (BMI) 

5% 10% 25% 5% 10% 25% 5% 10% 25% 

Mean 24.11 24.99 25.66 24.67 25.43 25.22 24.51 25.62 25.58 

Median 24.29 24.23 25.26 24.64 24.24 23.97 24.17 24.75 24.32 

Std-dev 7.088 7.063 7.096 7.211 7.033 7.062 7.183 7.083 7.038 

                                                             Hot-deck imputation technique 

Mean 24.51 25.68 25.45 24.77 25.68 25.46 24.91 25.41 25.32 

Median 24.12 24.75 24.32 24.28 24.22 24.54 24.18 24.87 24.35 

Std-dev 7.215 7.166 6.996 7.153 7.306 7.168 7.021 7.684 7.112 

                                                            Regression imputation technique 

Mean 24.61 25.77 25.27 25.28 25.19 25.38 24.85 25.59 25.12 

Median 24.34 24.55 24.35 24.74 24.38 24.57 24.56 24.64 24.74 

Std-dev 7.083 7.356 7.352 7.407 7.719 6.749 7.418 7.187 7.240 

                                                    Multiple imputation (Linear regression) technique 

Mean 25.14 25.86 25.26 24.68 25.77 24.88 24.19 25.77 24.88 

Median 24.34 25.11 25.42 24.34 24.38 24.38 24.28 24.78 24.81 

Std-dev 7.155 7.422 7.158 6.665 6.973 7.075 6.868 7.038 7.230 

                                                                                  Multiple (PMM) imputation technique 

Mean 23.91 25.82 24.85 24.70 25.23 24.64 24.41 24.94 24.77 

Median 24.09 24.45 23.86 24.13 24.24 24.34 24.046 24.65 24.21 

Std-dev 6.614 7.153 7.320 7.060 6.679 6.808 6.392 6.833 6.131 
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The table 5.2 includes results of descriptive analysis of BMI with missing values imputed using 

different techniques from different missing mechanisms. Results summarized in this table are 

massive and the interpretation will be on based on the mean differences between imputed data 

and original data. 

Hypothesis Test for a Difference between two Means (𝝁𝟏𝐚𝐧𝐝 𝝁𝟐). 

Let 𝜇1 denote the mean of the original dataset and 𝜇2 denote the mean of the imputation method 

from different missing mechanism across three degrees of missingness (5%, 10% and 25%). 

Given the summary statistics above and the sample size of 3631 for both original dataset and 

imputed dataset, we begin by finding the difference between original data and Mean 

substitution imputed data under MCAR at 5% missing. 

𝐻0: 𝜇
1

= 𝜇
2
 

𝐻1: 𝜇
1

≠ 𝜇
2
 

Test statistics:   𝑍𝑜 =
�̅�1−�̅�1−( 𝜇1− 𝜇2)

√𝜎1
2

𝑛
+

𝜎2
2

𝑚

  

To find the critical values: 

∝= 0.05,  
∝

2
= 0.025 and 1- 

∝

2
 = 0.975. 𝐻0 is rejected if the p-value is less than ∝ (level of 

significance) otherwise we don’t. 

 

Table 5.3: Results of tests for comparison of mean of the completed data and imputed data 

based on 5 imputation methods applied to 5%, 10% and 25% missingness created by MCAR, 

MAR and MNAR. 

Imputation 

methods 
MCAR MAR MNAR 
5% 10% 25% 5% 10% 25% 5% 10% 25% 

Mean 

substitution 

2 × 10−11 0.6672 

 
2 × 10−8 0.126 1.6×

10−3 

0.0628 0.012 

 
2 ×
10−12 

2 × 10−9 

Hot-deck 0.012 
 

2 × 10−9 1 × 10−3 0.3576 
 

2 × 10−9 1× 10−3 0.9522 
 

3.8 ×
10−3 

0.0138 

Regression 0.0562 2 × 10−10 0.034 

 

0.03 0.1118 3.6×
10−3 

06744 

 
2 ×
10−10 

0.2224 

Multiple 

imputation 

linear 

regression 

0.1770 
 

 

2 × 10−14 
 

0.0366 
 

0.126 
 

2 ×
10−12 
 

0.8026 
 

 

2 ×
10−12 
 

2 ×
10−12 
 

0.8026 
 

PMM 2 × 10−14 2 × 10−12 0.6672 

 

0.1738 0.0488 0.0768 × 10−4 0.8966 0.3222 
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Comparing results of mean substitution method under MCAR, MAR and MNAR across all 

three degrees of missingness (5%, 10% and 25%), results show evidence significant difference 

between the values of original results (meanBMI = 24.92) and this technique under MNAR 

data at 5%, 10% and 25% (24.51, 25.62 and 25.58) respectively. Our null hypothesis is actually 

rejected at this point. Apart from that the results show that there are no significant differences 

between the values of original data and mean substitution method under MAR at 5% and 25%, 

the values were close to the one of the original data. Very interestingly, the findings also 

indicated that there is no difference between the values of this method under MCAR at 10% 

(meanBMI = 24.99) when compared to the results of the original, p-value of 0.6672 which is 

greater 0.05. 

Regarding the hot-deck technique, under MCAR, MAR and MNAR at 5%, 10% and 25% 

missing, the results show that hot-deck method performed better under MNAR at 5% 

(meanBMI = 24.91). This shows that BMI imputed values are very close to the values of the 

BMI original data. BMI imputed data under MCAR and MNAR across two degrees of 

missingness (10% and 25%) are far higher compared to the values of the true data. Indeed, at 

10% and 25% the values are 25.68 and 25.45 for MCAR and 25.41 and 25.32. This indicate a 

significant difference between these two comparisons. These results reveal that Hot-deck 

method provide good result compared to the mean substitution method. Indeed, the mean BMI 

(24.91) of hot-deck method under MNAR at 5% have the closest value to the original data 

compared to mean BMI of mean substitution method with 24.99 (MCAR 10%). 

In addition to findings presented above, the results in table 5.2 indicate that both regression and 

Multiple imputation (linear regression) techniques perform better with 5% and 25% missing 

under MCAR (24.61 and 25.14) and MNAR (25.12 and 24.88) respectively. These findings 

show that no significant differences are found between these two techniques and original BMI 

data, values were not far from the values of the original BMI variable. The results also 

highlighted that the null hypothesis is rejected under MCAR at 10% and 25% in both 

techniques, this means that there is a significant difference between the values of this technique 

compared to the values of original data, in fact, the values under these mechanisms are too high 

compared to the values of the original data.  

The last technique to be investigated in this analysis is the predictive mean matching method 

(PMM). Results reveal that PMM produces the closest value to the original data in situation of 

10% missing under MNAR (meanBMI = 24.94), results indicates that there is no significant 
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difference between the imputed BMI values and original BMI data. Actually this technique 

provides good results under all three mechanisms at 25% missingness. Indeed, the hypothesis 

test confirmed that imputed BMI values of this technique 25% under all mechanisms has no 

differences between the values of original BMI data. 

In nutshell, findings from table 5.2, reveal that in situation of 5% missing in a data, Hot-deck 

method is the best method (meanBMI of 24.91) under MNAR compared to all the above 

mentioned techniques. In situation of 10% missing, PMM method (meanBMI = 24.94) is the 

best of all the methods under MNAR mechanism. In the case of 25% missing, results in table 

5.2 show that Multiple imputation linear regression method (meanBMI = 24.88) under MNAR 

provides better results than all the other imputation techniques. 

 

5.2 Multivariate analysis 

The comparison of imputation technique at descriptive analysis level is limited. Indeed, it only 

focuses on comparing the values of mean BMI produced by each imputation technique and the 

mean BMI of the original data. It is important to analyse the impact of each imputation 

technique using a multivariate analysis. In this section, linear regression of BMI (dependent 

variable) and age, education attained, marital status and type of residence as covariates are 

undertaken in different situations to examine the performance of different imputation methods. 

To compare results of the model with imputed data and the original data at multivariate level, 

the parameters of the linear regression are examined. Three criteria are utilized in this section 

to reach our objective. Firstly, the best model is the one with the adjusted R-squared 𝑅2 that is 

very close to the original data and MSE which closer to zero. Secondly, it is the model with 

significant variables identical to significant variables in the original data. Thirdly and finally, 

it is the model with regression coefficients very close to the original model. It is based on these 

three criteria that the best models are selected in this section. 
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5.2.1. Multivariate analysis of original data 

Table 5.4: Linear regression results for BMI using the original dataset 

                                                                               Complete original dataset 

             R-square =   0.1365                                     Adjusted R-square = 0.1355                               MSE = 0.505 

Independent variables   Coefficients      SE p-value 

Constant 14.084 1.037 < 2e-16 

Age 0.181 0.014 < 2e-16 

Education (ref = no education) 

Primary 3.981 0.942 2.46e-05 

Secondary  5.414 0.944 1.07e-08 

Tertiary  6.068 1.016 2.60e-09 

Marital status (ref= unmarried) 

Married  2.211 0.275 1.33e-15 

Residence type (ref=rural) 

Urban  –0.541 0.249 0.0305 

 

The table 5.4 summarizes the linear regression output on original data with no missing values. 

These results indicate that 13.55% (adjusted R2) of the variability in BMI is explained by this 

model where the explanatory variables are age, education attained, marital status and residence 

type. Output illustrate that the overall model was statistically significant, and all predictors 

included in the model are statistically significant at 0.05 level of significance (P-value < 0.05).  

The above results shows that the MSE is 0.505, which iindicate that the BMI values are 

scattered wildly around the regression line, so MSE of 0.505 is as good as it gets (and is in fact, 

the line of best fit). 

The regression coefficient associated with age suggests that a one-year increase in age is 

associated with a 0.181-unit increase in BMI. Regarding the influence of education level 

attained on BMI, results show that people with primary, secondary and tertiary education level 

have 3.981, 5.414 and 6.068 higher BMI compared to those with no education respectively. 

This result reveals that when the level of education increases, BMI increases. Results show that 

BMI’s are significantly different from marital status. Indeed, married people are likely to have 

2.211 higher BMI than not married people. It also appeared that people who live in urban areas 

are likely to have a 0.541 lower BMI as compared to those in rural areas. This result highlights 

the fact that living environment can have significant effect on BMI level. 
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5.2.2. Multivariate analysis of imputed data 

Table 5.5: Linear regression results for BMI using mean substituted data 

                                                                         Mean substitution method (MCAR) 

 R-squared = 0.1287 

Adjusted R-squared=0.1273(5%)  
MSE = 0.752 

R-squared = 0.1271 

Adjusted R-squared = 0.1251 (10%) 
MSE = 0.825 

R-squared = 0.1225 

Adjusted R-squared=0.1215(25%) 
MSE = 0.818  

covariates                     Coefficients                                      SE                          p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.870 15.362 17.025 0.918 0.895 0.877 < 2e-16 < 2e-16 < 2e-16 

Age 0.170 0.140 0.196 0.013 0.011 0.0015 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education)  

Primary  3.676 4.656 5.021 0.828 0.812 0.781 9.19e-06 1.19e-16 2.11e-06 

Secondary  4.947 5.365 5.624 0.831 0.822 0.752 2.82e-09 2.82e-09 2.32e-10 

Tertiary  5.843 6.784 6.871 0.902 0.900 0.891 1.05e-10 2.56e-11 7.05e-15 

Marital status (ref=not married) 

Married 2.152 3.125 2.333 0.265 0222 0.210 6.17e-16 10.9e-06 6.19e-16 

Residence type (ref=urban) 

urban -0.626 -0.325 -0.414 0.229 0.215 0.199 0.0063 0.00021 0.00003 

                                                                      Mean substitution method (MAR) 

 R-squared = 0.1134 
Adjusted R-squared=0.1121(5%)  

MSE = 0.711 

R-squared = 0.1132 
Adjusted R-squared = 0.1111 (10%) 

MSE = 0.814 

R-squared = 0.1215 
Adjusted R-squared=0.1195(25%) 

MSE = 0.723 

covariates                           Coefficients                                      SE                          p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

    

Constant 18.116 18.215 19.222 0.795 0.699 0.678 < 2e-16 < 2e-16 < 2e-16 

Age 0.101 0.132 0.131 0.011 0.010 0.009 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  2.051 3.112 3.254 0.717 0.701 0.091 0.00423 0.00003 0.000001 

Secondary  2.853 3.542 3.666 0.719 0.699 0.671 7.43e-05 3.43e-10 3.43e-05 

Tertiary  3.346 4.051 4.001 0.719 0.699 0.671 1.88e-05 9.28e-03 1.58e-05 

Marital status (ref=not married) 

Married 1.971 2.015 2.515 0.229 0.221 0.196 < 2e-16 < 2e-16 < 2e-16 

Residence type (ref=urban) 

urban -0.311 -0.352 -0.333 0.198 0.11667 0.092 0.071 

                                                                   Mean substitution method (MNAR) 

 R-squared = 0.1243 
Adjusted R-squared=0.1223(5%)  

MSE = 0.705 

R-squared = 0.1238 
Adjusted R-squared = 0.1213 (10%) 

MSE = 0.733 

R-squared = 0.1275 
Adjusted R-squared=0.1245(25%) 

MSE = 0.759 

covariates                        Coefficients                               SE                        p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.603 15.025 15.321 1.018 1.004 0.981 < 2e-16 < 2e-16 < 2e-16 

Age 0.165 0.175 0.179 0.014 0.019 0.011 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  3.707 3.881 4.325 0.926 0.855 0.814 6.41e-05 5.41e-07 6.11e-01 

Secondary  5.088 5.310 7.198 0.928 0.881 0.844 4.47e-08 2.47e-05 1.47e-08 

Tertiary  5.793 6.164 6.525 0.998 0.899 0.811 7.20e-09 4.20e-09 5.20e-08 

Marital status (ref=not married) 

Married 2.172 2.443 3.547 0.270 0.211 0.917 1.34e-15 1.20e-09 5.20e-10 

Residence type (ref=urban) 

urban -0.509 -0.625 -0.666 0.245 0.215 0.916 0.0381 0.0012 0.0002 

 

Output of multivariate analysis presented in table 5.5 show the results of the mean imputation 

technique for different missing data mechanisms at three different percentages (5%, 10% and 

25%).  

Let start examining the results of the table 5.5 by focusing only on situation of 5% missing. 

Using the adjusted R-squared as the evaluation criteria, findings show that mean substitution 

method provides better results under MCAR 5% with an adjusted 𝑅2 of 12.73% (the original 
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data adjusted 𝑅2 is (13.55%), followed by MNAR 5%  with adjusted 𝑅2 of 12.23% and MAR 

5% with adjusted 𝑅2 of 11.21%.  

The MSE values of this technique under three mechanisms across all three missingness (5%, 

10% and 25%) are significantly higher compared to the results of the original. 

The regression coefficients used as an evaluation criterion lead to similar conclusion that this 

technique provides the best results under MCAR 5%. For example, the regression coefficient 

related to age under MCAR 5% is 0.170 which is closer to the value of the original data (0.181) 

compared to MNAR and MAR.  

At 10% missing, this technique provides better results under MCAR 10% (Adjusted R-squared 

= 12.51%) followed by MNAR 10% (Adjusted R-squared = 12.13%) mechanisms. 

Considering only 25% in the comparison of the 3 missing mechanisms, mean substitution 

method appears to produce better findings under MNAR at 25% missing with the adjusted R-

squared value of 12.45% (original data adjusted 𝑅2 is 13.55%). The regression coefficients 

associated to the model also confirmed that mean substitution technique produces better results 

under MNAR at 25%. For example, the coefficient related to age is 0.179 which is closer to 

the original data (0.181).  

In general, the output shows that in situation of unknown percentage of missing mean 

substitution method should be recommended for the imputation of missing values if they are 

MCAR. Indeed, this technique perform better at 5% and 10% under MCAR and also relatively 

perform better under MCAR at 25%. 
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Table 5.6: Linear regression results for BMI using hot-deck imputed data 

                                                                         Hot-deck imputation method (MCAR) 

 R-squared = 0.1261 
Adjusted R-squared= 0.1241(5%) 

MSE = 0.725 

R-squared = 0.1272 
Adjusted R-squared = 0.1261 (10%) 

MSE = 0.720 

R-squared = 0.1295 
Adjusted R-squared=0.1275(25%) 

MSE = 0.713 

Covariates   Coefficients      SE p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.792 15.365 17.252 1.038 0.992 0.896 < 2e-16 < 2e-16 < 2e-16 

Age 0.162 0.188 0.191 0.014 0.0112 0.0092 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  3.972 4.115 4.512 0.943 0.894 0.862 2.63e-05 1.63e-15 8.63e-11 

Secondary  5.151 5.548 6.542 0.945 0.868 0.784 5.46e-08 3.16e-08 7.46e-08 

Tertiary  5.843 5.914 6.725 1.017 0.987 0.963 1.01e-08 3.65e-07 1.11e-09 

Marital status (ref=not married) 

Married 2.286 2.325 2.551 0.276 0.211 0.196 6.17e-16 2.17e-13 6.11e-12 

Residence type (ref=urban) 

urban -0.605 -0.699 -0.625 0.250 0.214 0.198 0.0157 0.0012 0.00005 

                                                                      Hot-deck imputation method (MAR) 

 R-squared = 0.1070 
Adjusted R-squared = 0.1055(5%) 

MSE = 0.865 

R-squared = 0.1045 
Adjusted R-squared = 0.1025 (10%) 

MSE = 0.896 

R-squared = 0.1122 
Adjusted R-squared=0.1108(25%) 

MSE = 0.827 

Covariates   Coefficients      SE p-value   

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 17.974 18.652 18.785 1.046 1.025 1.009 < 2e-16 < 2e-16 < 2e-16 

Age 0.111 0.123 0.153 0.014 0.0093 0.0071 3.71e-14 3.01e-16 8.17e-10 

Education (ref=no education) 

Primary  2.244 3.254 3.661 0.951 0.892 0.784 0.018380 0.00154 0.000075 

Secondary  3.203 3.655 4.125 0.953 0.911 0.844 0.000785 0.00125 0.02655 

Tertiary  4.220 4.254 4.545 1.025 1.022 1.008 3.97e-05 3.25e-03 4.7e-20 

Marital status (ref=not married) 

Married 1.887 2.155 2.482 0.278 0.314 0.260 1.32e-11 2.07e-19 7.17e-11 

Residence type (ref=urban) 

urban -0.640 -0.663 -0.695 0.252 0.222 0.211 0.0111 0.0054 0.000091 

                                                                   Hot-deck imputation method (MNAR) 

 R-squared = 0.1335 

Adjusted R-squared = 0.1315(5%) 

MSE = 0.621 

R-squared = 0.1321 

Adjusted R-squared = 0.1307 (10%) 

MSE = 0.658 

R-squared = 0.1311 

Adjusted R-squared=0.1301(25%) 

MSE = 0.687 

Covariates   Coefficients       SE p-value   

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 13.885 14.052 15.546 1.077 1.021 1.005 < 2e-16 < 2e-16 < 2e-16 

Age 0.177 0.178 0.199 0.012 0.010 0.0083 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  4.125 5.250 5.641 0.979 0.842 0.784 2.61e-05 1.1e-16 6.1e-18 

Secondary  5.561 5.698 6.451 0.981 0.863 0.810 1.58e-08 5.5e-11 2.8e-18 

Tertiary  6.256 6.458 7.254 1.054 1.099 0.987 3.23e-09 4.52e-09 6.3e-16 

Marital status (ref=not married) 

Married 2.243 2.125 1.987 0.283 0.215 0.203 3.43e-15 2.53e-17 3.25e-12 

Residence type (ref=urban) 

urban -0.564 -0.652 -0.698 0.257 0.211 0.198 0.0287 0.0065 0.0035 

 

The table 5.6 reveals findings of hot-deck imputation method and performance under different 

missing mechanisms and different percentages. 

According to table 5.6, hot-deck imputation method appears to deliver much better results 

compared to mean substitution method. This finding is established by the values of the adjusted 

R-squared and also the significance of all the predictors included in the model (p-values are 

less than 0.05). In fact, hot-deck imputation method produces better results under MNAR at 

5%, 10% and 25% with the adjusted R-squared of 13.15%, 13.07% and 13.01% respectively. 

This result is confirmed by the values of the regression coefficients associated with marital 

status for example. The regression coefficients associated with married people are 2.243, 2.125 
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and 1.987, these coefficients present little difference with value of the original (2.211). These 

results also highlighted that the MSE values are higher compared to the one of the true value 

but still good since there not far from zero.  

 

Table 5.7: Linear regression results for BMI using data imputed by regression method 

                                                                         Regression imputation method (MCAR) 

 R-squared = 0.1421 

Adjusted R-squared = 0.1392(5%) 
MSE = 0.635 

R-squared = 0.1423 

Adjusted R-squared = 0.1411 (10%) 
MSE = 0.626 

R-squared = 0.1485 

Adjusted R-squared=0.1465(25%) 
MSE = 0.629 

Covariates   Coefficients       SE p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.246 15.052 15.624 14.246 2.054 3.054 < 2e-16 < 2e-16 < 2e-16 

Age 0.174 0.172 0.176 0.174 0.056 0.062 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  4.058 4.325 5.120 4.058 2.625 3.255 1.04e-05 2.07e-06 1.04e-01 

Secondary  5.363 5.663 5.692 5.363 1.864 1.965 6.28e-09 6.28e-09 6.11e-09 

Tertiary  6.039 6.325 6.871 6.039 1.255 1.352 1.22e-09 3.42e-09 1.23e-04 

Marital status (ref=not married) 

Married 2.253 2.650 3.262 2.253 3.254 3.251 6.17e-16 7.18e-13 8.0e-16 

Residence type (ref=urban) 

urban -0.541 -0.624 -0.644 -0.541 0.235 0.421 0.0265 0.00027 0.00052 

                                                                      Regression imputation method (MAR) 

 R-squared = 0.1611 

Adjusted R-squared = 0.1609(5%) 
MSE = 0.752 

R-squared = 0.1635 

Adjusted R-squared = 0.1621 (10%) 
MSE = 0.688 

R-squared = 0.1695 

Adjusted R-squared=0.1675(25%) 
MSE = 0.701 

Covariates   Coefficients      SE p-value   

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 18.116 19.325 19.625 1.011 2.152 2.325 < 2e-16 < 2e-16 < 2e-16 

Age 0.101 0.125 0.162 0.014 0.002 0.0003 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  2.051 3.521 3.762 0.918 2.635 2.862 1.04e-05 2.04e-01 2.14e-07 

Secondary  2.853 3.658 4.125 0.921 3.125 3.552 6.28e-09 4.25e-19 2.78e-02 

Tertiary  3.346 4.842 4.325 0.991 4.018 4.521 1.22e-09 5.23e-03 1.52e-07 

Marital status (ref=not married) 

Married 1.971 2.251 2.351 0.268 0.421 0.625 < 2e-16 < 2e-16 < 2e-16 

Residence type (ref=urban) 

urban -0.311 -0.356 -0.421 0.244 0.462 0.662 0.0265 0.0041 0.0495 

                                                                   Regression imputation method (MNAR) 

 R-squared = 0.1421 
Adjusted R-squared = 0.1411(5%) 

MSE = 0.725 

R-squared = 0.1575 
Adjusted R-squared = 0.1551 (10%) 

MSE = 0.765 

R-squared = 0.1595 
Adjusted R-squared=0.1585(25%) 

MSE = 0.728 

Covariates   Coefficients      SE p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 13.881 14.025 15.021 1.015 1.115 1.254 < 2e-16 < 2e-16 < 2e-16 

Age 0.178 0.186 0.195 0.014 0.035 0.049 < 2e-16 < 2e-16 < 2e-16 

Education (ref=no education) 

Primary  4.119 4.215 4.632 0.922 0.846 0.812 8.24e-06 2.54e-16 2.31e-06 

Secondary  5.543 5.621 5.982 0.924 0.851 0.835 2.22e-09 2.02e-07 4.12e-12 

Tertiary  6.223 6.841 6.941 0.994 0.886 0.899 4.45e-10 1.58e-09 1.25e-11 

Marital status (ref=not married) 

Married 2.227 2.321 2.625 0.269 0.352 0.451 < 2e-16 < 2e-16 < 2e-16 

Residence type (ref=urban) 

urban -0.561 -0.652 -0.682 0.244 0.325 0.562 0.0218 0.0035 0.00088 

 

Regression imputation methods are applied to data with different missing mechanisms. Results 

are included in the table 5.7 and compared with results of the previous imputation techniques 

summarized in table 5.5 and 5.6. 
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Findings show that regression imputation method produced higher values of adjusted 𝑅2 at 5%, 

10% and 25% for all three missing mechanism (minimum adjusted 𝑅2of 13.92%) compared to 

the original data where the adjusted R-squared was 13.55%. For data with 5% missing, the 

output indicate that regression method perform better under MCAR 5% (adjusted 𝑅2 =

13.95%) followed by MNAR 5% (adjusted 𝑅2 = 14.11%).  

Focusing in 10% missing, it appears that the adjusted R-squared produced by regression 

imputation method are quite different (higher) compared to the one of the original data. 

However, this method perform better at 10% under MCAR (adjusted 𝑅2 = 14.11%) followed 

by MNAR (adjusted 𝑅2 = 15.51%). The regression coefficient related to tertiary education 

among others, is in line with the findings. Indeed, coefficient related to tertiary education level 

at 10% under MCAR is 6.325 followed by MNAR (6.841) while the regression coefficient of 

the original data is 6.068. 

When the percentage of missing reached 25%, this method performed very poorly with big 

differences in adjusted R-squared values and regression coefficients compared to the original 

data. 

The above data is scattered wildly around the regression line, so MSE value are as good as it 

gets. 
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Multiple imputation techniques as described in the methodology section are theoretically 

stronger than other methods. Because of the nature of our dependent variable, the multiple 

imputation linear regression is the first method of this category to be looked at. Results are 

consined in the table 5.8 

Table 5.8: Linear regression results for BMI using data imputed by multiple imputation linear 

regression method 

                                                                        Multiple imputation (Linear regression) technique (MCAR) 

 R-squared = 0.1385 

Adjusted R-squared = 0.1365(5%) 

MSE = 0.658  

R-squared = 0.1401 

Adjusted R-squared = 0.1389 (10%) 

MSE = 0.47 

R-squared = 0.1431 

Adjusted R-squared=0.1420(25%) 

MSE = 0.625 

Covariates   Coefficients      SE p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.25 15.021 15.632 0.842 1.025 1.092 0.000 0.000 0.000 

Age 0.186 0.187 0.191 0.012 0.041 0.049 0.000 0.000 0.000 

Education (ref=no education) 

Primary  4.153 4.652 5.352 0.883 0.971 1.050 0.000 0.000 0.000 

Secondary  5.166 5.628 5.981 0.911 1.052 1.159 0.000 0.000 0.000 

Tertiary  5.762 6.021 6.821 0.963 1.070 1.260 0.000 0.000 0.000 

Marital status (ref=not married) 

Married 1.728 1.789 2.015 0.243 0.325 0.421 0.000 0.000 0.000 

Residence type (ref=urban) 

urban -0.544 -0.624 -0.640 0.240 0.312 0.515 0.024 0.039 0.0549 

                                                                     Multiple imputation (Linear regression) technique (MAR) 

 

  

R-squared = 0.1175 

Adjusted R-squared = 0.1162(5%) 

MSE = 0.802 

R-squared = 0.1225 

Adjusted R-squared =0.1201 (10%) 

MSE = 0.782 

R-squared = 0.1245 

Adjusted R-squared=0.1225(25%) 

MSE = 0.755 

Covariates   Coefficients      SE p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.37 16.021 16.524 1.126 1.205 1.025 0.000 0.000 0.000 

Age 0.184 0.187 0.189 0.017 0.021 0.034 0.000 0.000 0.000 

Education (ref=no education) 

Primary  3.952 4.012 4.652 0.752 0.811 0.820 0.000 0.000 0.000 

Secondary  4.891 5.321 5.563 0.863 0.897 0.910 0.000 0.000 0.000 

Tertiary  5.196 6.522 6.845 0.958 1.025 1.360 0.000 0.000 0.000 

Marital status (ref=not married) 

Married 2.054 2.321 3.025 0.322 0.396 0.401 0.000 0.000 0.000 

Residence type (ref=urban) 

urban -0.536 -0.633 -0.699 0.235 0.325 0.352 0.088 0.0901 0.095 

                                                                  Multiple imputation (Linear regression) technique (MNAR) 

 R-squared = 0.1315 

Adjusted R-squared = 0.1295(5%) 

MSE = 0.586 

R-squared = 0.1322 

Adjusted R-squared = 0.1301 (10%) 

MSE = 0.577 

R-squared = 0.1331 

Adjusted R-squared=0.1310(25%) 

MSE = 0.569 

Covariates   Coefficients       SE p-value  

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 13.87 17.325 17.965 0.843 0.995 1.031 0.000 0.000 0.000 

Age 0.183 0.185 0.191 0.012 0.032 0.036 0.000 0.000 0.000 

Education (ref=no education) 

Primary  3.922 4.015 4.625 0.699 0.755 0.795 0.000 0.000 0.000 

Secondary  4.623 5.236 5.552 0.705 0.861 0.8862 0.000 0.000 0.000 

Tertiary  4.989 5.632 5.924 0.821 0.965 0.986 0.000 0.000 0.000 

Marital status (ref=not married) 

Married 1.785 1.925 2.069 0.235 0.302 0.332 0.000 0.000 0.000 

Residence type (ref=urban) 

urban -0.579 -0.606 -0.625 0.240 0.365 0.415 0.016 0.032 0.0421 

 

Under multiple imputation linear regression method in table 5.7, MCAR at 5%, 10% and 25% 

missing have the adjusted 𝑅2 of 13.65%, 13.89% and 14.20% respectively. As for MAR, the 

adjusted 𝑅2 are 11.62%, 12.01% and 12.25% at 5%, 10% and 25% respectively. Finally, the 

adjusted 𝑅2 for MNAR at 5% is 13.01%, at 10% is 12.95% and at 25% it is 13.10%. This 
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output reveals a pattern that, as the percentage of imputed missing increases in the data, the 

adjusted 𝑅2 together with regression coefficients increases for all the missing data mechanisms. 

The results show that multiple imputation linear regression provides better results under 

MCAR at 5% missing compared to MAR at 5% and MNAR at 5%. This was confirmed by the 

adjusted 𝑅2 (13.65%) which is the closest to the original data (13.55%) and regression 

coefficients associated with education (primary = 4.153, secondary = 5.166 and tertiary 

=5.762).  

At 10% missing, this technique produced better results in terms of coefficients under all three 

missing mechanisms but with the use of adjusted 𝑅2, it appears that multiple linear regression 

method provided good results under MCAR (13.86%) compared to MAR and MNAR 

mechanisms. These results indicate that multiple linear regression imputation method is a 

recommended method to tackle the data with MCAR no matter the percentage of missing. 
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PMM method is also an important multiple imputation technique which was considered in this 

study. Results obtained by analysing PMM imputed data in several conditions are included in 

the table 5.9. 

Table 5.9: Linear regression results for BMI using PMM imputed data 

                                                                                       Predictive mean matching method (MCAR) 

 

  

R-squared = 0.1345 

Adjusted R-squared = 0.1345(5%) 
  MSE = 0.555 

R-squared = 0.1375 

Adjusted R-squared = 0.1352 (10%) 
    MSE = 0.425 

R-squared = 0.1395 

Adjusted R-squared=0.1375(25%) 
MSE = 0.365 

Covariates   Coefficients      SE p-value 

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 14.26 15.254 15.405 0.826 0.862 0.901 0.000 0.000 0.000 

Age 0.188 0.183 0.192 0.012 0.035 0.044 0.000 0.000 0.000 

Education (ref=no education) 

Primary  4.562 3.998 4.125 0.895 0.925 1.025 0.000 0.000 0.000 

Secondary  5.587 5.012 5.233 0.961 1.002 1.145 0.000 0.000 0.000 

Tertiary  6.321 6.325 6.524 1.063 1.302 1.232 0.000 0.000 0.000 

Marital status (ref=not married) 

Married 1.708 1.985 2.256 0.234 0.444 0.471 0.000 0.000 0.000 

Residence type (ref=urban) 

urban -0.519 -0.625 -0.640 0.235 0.352 0.410 0.027 0.029 0.04 

                                                           Predictive mean matching method (MAR) 

 
  

R-squared = 0.1235 
Adjusted R-squared = 0.1225(5%) 

MSE = 0.704 

R-squared = 0.1261 
   Adjusted R-squared = 0.1251 (10%) 

   MSE = 0.685 

R-squared = 0.1295 
Adjusted R-squared=0.1275(25%) 

MSE = 0.698 

Covariates   Coefficients      SE p-value   

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 13.93 14.025 14.302 0.905 1.025 1.063 0.000 0.000 0.000 

Age 0.172 0.179 0.191 0.014 0.016 0.023 0.000 0.000 0.000 

Education (ref=no education) 

Primary  4.215 4.623 4.815 0.883 0.887 0.952 0.000 0.000 0.000 

Secondary  5.352 5.961 6.359 0.920 0.962 0.971 0.000 0.000 0.000 

Tertiary  5.766 6.532 6.995 0.987 1.032 1.120 0.000 0.000 0.000 

Marital status (ref=not married) 

Married 2.202 2.403 3.662 0.263 0.277 0.325 0.000 0.000 0.000 

Residence type (ref=urban) 

urban -0.555 -0.571 -0.590 0.269 0.286 0.333 0.040 0.052 0.071 

                                                                                       Predictive mean matching method (MNAR) 

 
  

R-squared = 0.1345 
Adjusted R-squared = 0.1355(5%) 

  MSE = 0.432 

R-squared = 0.1375 
Adjusted R-squared = 0.1365 (10%) 

     MSE = 0.399 

R-squared = 0.1385 
Adjusted R-squared=0.1375(25%) 

MSE = 0.365 

Covariates   Coefficients       SE p-value  

 5% 10% 25% 5% 10% 25% 5% 10% 25% 

Constant 13.35 13.75 13.95 0.856 0.952 1.050 0.000 0.000 0.000 

Age 0.181 0.185 0.187 0.012 0.032 0.033 0.000 0.000 0.000 

Education (ref=no education) 

Primary  3.986 4.106 4.220 0.926 0.983 1.056 0.000 0.000 0.000 

Secondary  5.416 5.222 5.698 0.963 0.999 1.009 0.000 0.000 0.000 

Tertiary  6.069 6.150 6.325 1.097 1.120 1.325 0.000 0.000 0.000 

Marital status (ref=not married) 

Married 2.212 2.359 2.663 0.238 0.369 0.398 0.000 0.000 0.000 

Residence type (ref=urban) 

urban -0.540 -0.661 -0.768 0.246 0.310 0.457 0.014 0.026 0.041 

 

The output in table 5.9 indicate some interesting results especially under MNAR 5%. Results 

under MNAR has produces results that matches with the one of the original data.  

For data with 5% missing, findings highlighted that PMM produced best results under MNAR 

(adjusted 𝑅2 = 13.55%) compared to all other imputation techniques included in this study. 
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The regression coefficient also agreed with the results. For example, the coefficient associated 

to the variable age (0.181) matches the results of the original data (0.181).  

In the case of 10% missing, PMM perform better under MCAR (adjusted 𝑅2 =13.52%) 

followed by MNAR (13.65%). The regression coefficient of the variable age confirms that 

PMM operates well under 10% MCAR (coef = 0.183) followed by 10% MNAR (coef = 0.185).  

In situations where a data is suffering 25% missing, PMM technique appears to provide the 

best performance under two different missing mechanisms (MCAR and MNAR) by 

considering the adjusted R-squared values (13.75% for each). After taking another evaluation 

criterion into action (regression coefficients related to age), the findings reveal that this 

technique can perform much better under MNAR mechanism. Indeed, the regression 

coefficient associated with age is 0.187 which closer to the original data (0.181).  

After multivariate analysis of different imputation methods under all missing mechanisms with 

5%, 10% and 25% missingness, the results are compressed in the following paragraphs.  

Findings reveal that for 5% MCAR data, multiple imputation linear regression method is the 

best method to use followed by PMM technique. In situation of 10% and 25% MCAR data 

PMM appears to be the right choice.  

When a data is affected by 5%, 10% and 25% MAR, this study recommends the use of PMM 

technique followed by multiple imputation linear regression method. These results reveal that 

any data with MAR problem will be best treated using multiple imputation techniques. 

In the situation of MNAR 5% missing data, findings reveal that PMM is the best technique to 

tackle such data followed by hot-deck method. At 10% and 25% missing, PMM method is still 

providing better performance than other imputation techniques included in the study. 

This technique provided MSE values that are closer to zero but slightly less than actually MSE 

value from the original data. 

In overall, in the light of the above mentioned results, for any data affected by missing values, 

if the missing mechanism is unknown and or the percentage of missing is also unknown this 

study suggests the use of PMM method. 
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

This research addressed two aspects, the first was the creation of missing data mechanism 

(MCAR, MAR and MNAR) across three degrees of missingness (5%, 10% and 25%) on 

dependent variable (BMI) from the original complete dataset with no missing values. A second 

aspect of the study was to impute the created missing values on BMI variable (variable of 

interest) using different types of imputation techniques. Two sets of imputation techniques, 

single and multiple imputation, were involved. The analysis in this study was carried out using 

the free software of R and STATA. For the evaluation of results, the Shapiro-Wilk test was 

used to check the normality from both the original complete dataset and three missing data 

mechanisms at three different percentages. The results of the study show that all datasets 

(original data, MCAR, MAR and MNAR) were normally distributed.  

The main aim of this study was to find the best imputation technique by comparing the results 

of each imputation technique to the results of a complete dataset (original data) using 

explanatory and multivariate analyses. At the descriptive level, comparisons were made 

regarding the BMI means of five imputation methods based on three missing data mechanisms. 

The results show that the best imputation technique for the data that have values MNAR at 5% 

is the hot-deck method (meanBMI of 24.91) followed by PMM method (meanBMI = 24.85) 

under MAR, mean substitution, regression and multiple imputation linear regression methods 

being the least advantageous. At 10% and 25% missing, PMM (meanBMI = 24.94) under 

MNAR and Multiple imputation linear regression (meanBMI = 24.88) under both MNAR and 

MAR are the best imputation methods respectively. In summary, descriptive analysis results 

reveal that if the researcher is not aware of the missing data mechanism, then the PMM 

technique could be the best imputation technique to consider.  

Multivariate analyses results indicated that all the variables included in the model for the 

original data were statistically significant determinants of BMI (P-value < 0.05). In this case, 

the adjusted R-squared, MSE and regression coefficients are used as the evaluation criteria. For 

data that had values MCAR at 5% missing, the results show that multiple imputation linear 

regression is the best technique followed by PMM method. At 10% and 25% missing, PMM 

continued proving better performance than other methods. For data that have value MAR at 

5%, 10% and25%, this study recommends the use of PMM technique followed by multiple 

imputation linear regression method. Finally, for the data that had values MNAR, the results 

show that the PMM method is the best imputation technique compared to all other methods, 
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followed by the hot-deck. Since multivariate analysis is statistically more powerful than 

descriptive analysis, this study recommends the use of the PMM technique in the event that the 

researcher is not aware of the missing mechanism. 

From the results, it is clear that there is no better technique for all types of datasets but in the 

case of studies related to BMI, this study proposes the use of the PMM technique for the 

imputation of missing values. These results also indicated that the smaller the percentage of 

missingness the better results can be obtained. It is suggested that the results of this study can 

be extended to any continuous dataset for any health-related issue, however this extension of 

the results needs to be undertaken with caution. 
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Appendix  

Summary statistics for BMI in the original complete data and data with missingness 

Summ 

STATS 

Original 

data 

MCAR (BMI) MAR (BMI) MNAR (BMI) 

5% 10% 25% 5% 10% 25% 5% 10% 25% 

Mean 24.9200 24.5400  24.923 24.771 24.2100 24.53 24.51 24.2152 24.915 25.521 

Median 24.0500 24.0600 24.136 24.051 23.2900 23.71 23.34 24.0496 23.532 23.75 

Std-dev 6.7110 6.4000 6.7 6.772 6.390 6.412 6.07 6.3935 0.487 0.817 

IQR 7.248698 7.07527 7.207 7.237 6.404877 6.77 6.631 7.04869 7.248 6.921 

Shapiro-

Wilk test 
W=0.907  

P-value 

=2.2e - 16 

W=0.9043

3 

P-value 

=2.2e - 16 

W=0.9 

P-value 

=2.2e1

6 

W=0.87 

P-value 

=2.2e16 

W=0.874 

P-value 

=2.2e - 

16 

W=0.78 

P-value 

=2.2e-16 

W=0.8

1 

P-value 

=2.2e1

6 

W=0.9 

P-value 

=2.2e-

16 

W=0.87 

P-value 

=2.2e-16 

W=0.90

7 

P-value 

=2.2e- 

16 

 

 

Summary statistics for BMI imputed with mean substitution imputation method 

                                                                                   Mean substitution technique 

                                                            Missing completely at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.280 23.51 24.55 24.211 23.52 27.25 23.6300 24.72 28.63 

Median 24.31 24.16 24.41 24.21 24.18 24.31 25.11 24.35 26.33 

Std-dev 7.809 6.423 7.032 7.165 7.211 6.913 6.881 6.888 7.552 

 

 

Summary statistics for BMI imputed with mean substitution imputation method 

                                                                                   Mean substitution technique 

                                                            Missing at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.12 24.81 25.09 23.850 25.12 27.31 24.33 25.02 26.31 

Median 24.310 24.24 24.16 23.8500 24.88 25.21 24.1100 23.65 24.15 

Std-dev 7.141 6.457 7.666 6.115 7.121 7.963 7.125 6.525 7.135 
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Summary statistics for BMI imputed with mean substitution imputation method. 

                                                                                   Mean substitution technique 

                                                            Missing not at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.340 25.01 24.19 24.2300 25.11 27.51 24.51 25.31 26.12 

Median 24.140 24.444 23.911 23.741 24.68 25.81 24.10 23.80 25.11 

Std-dev 6.425 7.113 7.012 7.125 7.821 9.003 6.925 7.105 7.885 

 

Summary statistics for BMI imputed with hot-deck imputation method 

                                                                                         Hot-deck imputation technique 

                                                            Missing completely at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.230 25.11 24.19 24.4100 25.33 27.32 24.7100 25.51 26.53 

Median 24.190 24.151 24.26 23.80 24.74 25.721 24.1400 23.65 25.16 

Std-dev 7.011 7.403 7.332 7.865 7.221 7.603 7.025 7.165 8.200 

 

Summary statistics for BMI imputed with hot-deck imputation method 

                                                                              Hot-deck imputation technique 

                                                            Missing at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.430 25.11 24.77 24.2300 25.31 27.51 24.330 25.42 26.62 

Median 24.020 24.24 24.10 23.95 24.31 24.41 24.130 24.44 25.06 

Std-dev 7.101 7.123 7.135 6.805 8.011 8.103 7.225 7.065 7.215 
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Summary statistics for BMI imputed with hot-deck imputation method 

                                                                              Hot-deck imputation technique 

                                                            Missing not at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.430 25.11 25.18 24.50 24.61 27.11 24.51 25.12 26.32 

Median 24.16 24.12 24.26 24.26 25.25 25.11 23.8500 24.13 25.06 

Std-dev 6.511 7.053 7.100 7.520 8.011 8.821 7.015 6.865 7.565 

 

 

Summary statistics for BMI imputed with regression imputation method 

                                                                                   Regression imputation technique 

                                                            Missing completely at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.240 25.00 24.59 24.5100 25.41 27.41 24.1900 25.11 26.52 

Median 24.410 24.06 24.54 24.200 24.25 25.21 23.920 24.851 24.76 

Std-dev 6.124 7.003 7.122 6.805 6.121 8.143 6.385 8.465 7.205 

 

Summary statistics for BMI imputed with regression imputation method 

                                                        Regression imputation technique 

                                                            Missing at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.240 26.51 25.09 23.9100 25.41 26.25 24.5200 25.22 26.42 

Median 23.910 25.23 25.10 24.510 24.58 26.01 24.510 24.20 24.35 

Std-dev 6.213 6.553 7.565 7.525 8.001 7.633 5.999 6.215 7.035 
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Summary statistics for BMI imputed with regression imputation method 

                                                          Regression imputation technique 

                                                            Missing not at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 25.140 25.41 23.99 24.5500 25.01 27.21 23.69 25.13 26.55 

Median 24.970 24.26 24.46 23.8800 24.18 25.08 23.980 25.35 24.88 

Std-dev 6.322 7.113 8.582 7.105 6.125 7.333 6.352 7.816 7.552 

 

Summary statistics for BMI imputed with Multiple linear regression imputation method 

                                                                                 Multiple linear regression technique 

                                                            Missing completely at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.22 26.01 25.19 24.5100 25.55 27.51 23.56 26.21 26.02 

Median 24.410 24.06 24.54 24.500 25.11 25.71 24.280 24.75 24.22 

Std-dev 6.882 7.153 8.032 7.775 7.220 6.673 7.444 6.805 7.225 

 

Summary statistics for BMI imputed with Multiple linear regression imputation method 

                                                                            Multiple linear regression technique 

                                                            Missing at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 25.540 24.61 23.89 24.1100 26.21 27.01 25.00 24.63 25.021 

Median 24.210 25.36 24.16 24.580 24.51 26.01 24.1400 23.75 25.26 

IQR 7.411 6.453 7.532 6.865 8.121 7.633 7.325 6.865 8.235 
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Summary statistics for BMI imputed with Multiple linear regression imputation method 

                                                                           Multiple linear regression technique 

                                                            Missing not at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.40 23.51 24.66 25.2100 25.31 27.00 25.3500 24.67 27.23 

Median 23.990 24.81 24.06 23.850 24.28 26.21 24.2400 23.95 26.26 

Std-dev 6.887 7.143 6.582 7.100 9.001 8.013 6.355 7.335 9.001 

 

 

Summary statistics for BMI imputed with PMM imputation method 

                                                                            Predictive mean matching (PMM) technique 

                                                            Missing completely at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 23.650 23.89 24.19 25.5100 24.63 27.31 23.810 24.63 26.13 

Median 24.110 24.13 24.02 23.7500 24.88 24.71 23.4400 23.85 24.30 

Std-dev 7.010 7.311 6.522 7.765 7.021 6.673 7.250 6.445 7.266 

 

Summary statistics for BMI imputed with PMM imputation method 

                                                                   Predictive mean matching (PMM) technique 

                                                            Missing at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 23.540 26.01 24.55 24.530 25.03 26.13 24.500 24.33 25.10 

Median 23.910 24.06 24.41 23.950 24.65 24.11 23.9500 24.80 24.26 

Std-dev 6.515 6.663 7.002 6.995 7.111 6.633 7.525 6.865 8.035 
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Summary statistics for BMI imputed with PMM imputation method 

                                                                            Predictive mean matching (PMM) technique 

                                                            Missing not at random (BMI) 

Measure 

of 

central 

tendency                                      

3 simulations at 5% missing  3 simulations at 10% missing 3 simulations at 25% missing 

1st  2nd  3rd  1st  2nd  3rd  1st  2nd  3rd  

Mean 24.440 24.51 24.29 24.210 24.61 26.00 24.600 24.61 25.12 

Median 24.08 24.11 23.95 23.860 25.08 25.01 24.4100 23.95 24.26 

Std-dev 7.231 7.413 7.532 7.865 7.021 7.613 7.325 7.515 6.555 

 

Results of MCAR after fitting linear regression model. 

                                                    Missing complete at random (5%) 

Multiple R-square = 0.1337 Adjusted R-square = 0.1319 F-statistics: 76.88 

Covariates   Coefficients      SE p-value 

Constant 14.246 1.054 < 2e-16 

Age 0.174 0.015 < 2e-16 

Education (ref=no education) 

Primary  4.058 0.954 2.18e-05 

Secondary  5.362 0.956 2.24e-08 

Tertiary  6.039 1.032 5.41e-09 

Marital status (ref=not married) 

Married  2.253 0.283 2.61e-15 

Residence type (ref=rural) 

Urban  -0.540 0.256 0.0351 

                                                    Missing complete at random (10%) 

Multiple R-square = 0.1317 Adjusted R-square = 0.1311 F-statistics: 67.79 

Covariates   Coefficients      SE p-value 

Constant 15.254 1.025 < 2e-16 

Age 0.193 0.012 < 2e-16 

Education (ref=no education) 

Primary  4.652 0.985  2.5e-17 

Secondary  5.965 0.988  4.1e-11 

Tertiary  6.784 0.994  5.3e-06 

Marital status (ref=not married) 

Married  2.514 0.277 5.1e-04 

Residence type (ref=rural) 

Urban  -0.623 0.196 0.0084 

                                                    Missing complete at random (25%) 

Multiple R-square = 0.1299 Adjusted R-square = 0.1278 F-statistics: 72.58 

Covariates   Coefficients      SE p-value 

Constant 17.241 1.059 < 2e-16 

Age 0.197 0.035 < 2e-16 

Education (ref=no education) 

Primary  5.214 1.002 3.62e-15 

Secondary  6.325 0.985 7.02e-08 

Tertiary  6.985 0.969 8.21e-12 

Marital status (ref=not married) 

Married  1.987 1.874 2.28e-13 

Residence type (ref=rural) 

Urban  -0.632 0.163 0.00965 
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 Results of MAR after fitting linear regression model.  

                                                                                 Missing at random (5%) 

Multiple R-square = 0.1217 Adjusted R-square = 0.1196 F-statistics: 57.99 

Covariates   Coefficients      SE p-value 

Constant 14.063 1.264 < 2e-16 

Age 0.190 0.017 < 2e-16 

Education (ref=no education) 

Primary 3.991 1.158 0.000576 

Secondary  5.214 1.159 7.19e-06 

Tertiary  5.662 1.237 4.93e-06 

Marital status (ref=not married) 

Married 1.972 0.303 9.50e-11 

Residence type (ref=urban) 

Urban  -0.477 0.283 0.091883 

                                                    Missing at random (10%) 

Multiple R-square = 0.1156 Adjusted R-square = 0.1138 F-statistics: 77.91 

Covariates   Coefficients      SE p-value 

Constant 15.066 1.058 < 2e-16 

Age 0.195 0.041 < 2e-16 

Education (ref=no education) 

Primary 5.236 1.123 0.000365 

Secondary  6.562 0.996 3.65e-03 

Tertiary  7.001 0.976 5.23e-16 

Marital status (ref=not married) 

Married 2.015 0.253 0.00000535 

Residence type (ref=urban) 

Urban  -0.726 0.222 0.07812 

                                                    Missing at random (25%) 

Multiple R-square = 0.1317 Adjusted R-square = 0.1299 F-statistics: 47.99 

Covariates   Coefficients      SE p-value 

Constant 17.059 1.421 < 2e-16 

Age 0.175 0.0214 < 2e-16 

Education (ref=no education) 

Primary 4.051 1.025 4.3e-11 

Secondary  5.632 1.325 5.2e-02 

Tertiary  5.941 1.362 4.33e-09 

Marital status (ref=not married) 

Married 2.035 0.363 9.50e-11 

Residence type (ref=urban) 

Urban  -0.576 0.253 0.061883 
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Results of MAR after fitting linear regression model. 

                                                     Missing not at random (5%) 

Multiple R-square = 0.1342 Adjusted R-square = 0.1325 F-statistics: 77.40 

Covariates   Coefficients      SE p-value 

Constant 13.885 1.077 < 2e-16 

Age 0.177 0.012 < 2e-16 

Education (ref=no education) 

Primary  4.125 0.979 2.61e-05 

Secondary  5.561 0.981 1.58e-08 

Tertiary  6.256 1.054 3.23e-09 

Marital status (ref=not married) 

Married 2.243 0.283 3.43e-15 

Residence type (ref=urban) 

urban -0.564 0.257 0.0287 

                                                     Missing not at random (10%) 

Multiple R-square = 0.1269 Adjusted R-square = 0.1245 F-statistics: 68.00 

Covariates   Coefficients      SE p-value 

Constant 15.663 1.098 < 2e-16 

Age 0.182 0.0452 < 2e-16 

Education (ref=no education) 

Primary  3.999 1.023 0.0000213 

Secondary  4.652 0.996 0.0000238 

Tertiary  5.625 0.895 3.13e-17 

Marital status (ref=not married) 

Married 2.231 0.325 < 2e-16 

Residence type (ref=urban) 

urban -0.645 0.189 0.00358 

    

                                                     Missing not at random (25%) 

Multiple R-square = 0.1347 Adjusted R-square = 0.1315 F-statistics: 84.12 

Covariates   Coefficients      SE p-value 

Constant 15.352 1.111 < 2e-16 

Age 0.198 0.042 < 2e-16 

Education (ref=no education) 

Primary  4.598 1.160 4.23e-07 

Secondary  5.669 0.988 4.1e-16 

Tertiary  6.254 0.987 1.13e-23 

Marital status (ref=not married) 

Married 3.251 0.257 0.0000365 

Residence type (ref=urban) 

urban -0.674 0.222 0.000232 

 


