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ABSTRACT 

The depletion of fossil fuels and environmental impacts from its combustion are stimulating 

the development of biofuel production processes. Bioprocess models are required at various 

stages of this process development to determine the optimum setpoints for maximum yields. 

In this thesis, a review of the literature on the use of Artificial Neural Networks (ANN) as a 

tool for modelling and optimization of biofuel production with emphasis on dark fermentative 

hydrogen production was carried out.  Then the impact of culture volume on the accuracy of 

bioprocess models was studied using Artificial Neural Networks (ANN) and the Response 

Surface Methodology (RSM).  Additionally, ANN was used to develop intelligent bioprocess 

models to predict hydrogen production based on physicochemical parameters for dark 

fermentation and Microbial Electrolysis Cells (MECs). The review examined the application 

of ANN for the modelling and optimization of biohydrogen, biogas, biodiesel, microbial fuel 

cell technology and bioethanol.  The efficiency of ANN in abstracting the non-linear 

relationship that exists between process inputs and biofuel yield was highlighted. The studies 

indicated that ANN exhibits superior modelling and optimization ability for biofuel 

production processes over alternative methods such as the Response Surface Methodology 

(RSM).  

The impact of culture volume on the accuracy of bioprocess models was assessed on ANN 

and RSM based process models. The process  input parameters were hydraulic retention time 

(10-48 h), inoculum (10-50%) and molasses concentration (100-300 g/L) on the hydrogen 

yield (mol H2/ mol sucrose consumed) and  two different process scales were considered (80 

and 800 mL). The ANN based models gave coefficient of determination (R2) values of 0.99 

and 0.95 whereas the RSM based models gave R2 values of 0.97 and 0.89 for 80 and 800 mL, 

respectively. Variations in predictions of optimum setpoints by all four models were 

negligible. All four optimized conditions were further evaluated at semi-pilot scales (8 L).  A 

comparative assessment of semi-pilot scale and lab scale yields showed a negligible 

discrepancy. The microbial community responsible for hydrogen production was examined 

using Next generation sequencing (NGS). Presumptive hydrogen-producing microorganisms 

present within this system were members of the genus Clostridia, Enterobacter and 

Klebsiella. This study revealed that volume reduction does not significantly impact on the 

accuracy of the process model but rather reduces the costs of process development.   



vi 

The intelligent process models were developed using Multilayer Perceptron (MLP) Neural 

Networks and trained on bioprocess data available in the public domain from selected studies. 

The first two models focused on hydrogen production via dark fermentation process with 

varying yield expression units. The considered input parameters were inoculum type, 

substrate type, substrate concentration, pH and temperature and the output was the hydrogen 

yield expressed as mole of hydrogen per mole of substrate (Mol_Model) and cumulative 

volume (mL) of hydrogen per gram of substrate (Vol_Model). A topology of 5-7-7-1 

corresponding to the number of neurons of inputs, hidden (2) and output layers for both 

models was used with data sizes of 133 (Mol_Model) and 49 (Vol_Model) from 49 and 15 

published studies, respectively. For these two models, a high coefficient of determination (R2) 

was obtained for the Vol_Model (0.90) compared to the Mol_Model (0.46).  Thus, the 

Vol_Model shows higher predictive accuracy compared to the Mol_Model.  

The third model focused on hydrogen production using Microbial Electrolysis Cells (MECs). 

The considered inputs were substrate type, substrate concentration, pH, temperature, applied 

voltage, reactor configuration and the output was the hydrogen yield (mol H2/ mol substrate). 

A committee of neural networks with a topology of 6-(6, 8, 11, 12, 14)-1 was used. The 

training data size was 50 from 15 published studies. The coefficients of determination (R2) for 

the five models were as follows: 0.90, 0.81, 0.85, 0.70 and 0.80 with an average R2 value of 

0.85 for the five models. Validation on unknown inputs for new MEC processes showed a 

strong correlation between the observed and predicted hydrogen yields. 

The findings from these studies demonstrate that ANN based models are efficient in the 

development of biofuel processes. Process miniaturization does not impact on the accuracy of 

ANN and RSM derived process models thus reducing the process development time and 

costs. Furthermore, ANNs may be used to develop intelligent models to predict hydrogen 

yield on novel processes based on existing data in public repositories. This will shorten the 

hydrogen process development time and cost. 

Keywords: Modelling and optimization, Biohydrogen production, Artificial Neural 

Networks, Bioprocess models, Renewable energy 
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CHAPTER 1 

 

General Introduction 

 

1.1 The need for renewable and sustainable energy sources 

Global energy demand is rapidly increasing as populations continue to grow at accelerated 

levels (Nath and Das, 2011; BP, 2015a). Currently, fossil fuel sources such as coal, 

petroleum, bitumen, natural gas and tar sand are used as primary sources of energy to meet 

global energy demand (Das and Veziroglu, 2001). Dependence on fossil fuels has led to the 

depletion of these energy reserve combined with environmental pollution (Levin et al., 2004). 

This poses significant challenges on a global scale (Levin et al., 2004). Among these fossil 

fuels, oil reserves have shown to be the most exploited energy source globally (BP, 2015a).  

The annual Beyond Petroleum (BP) statistical review (2015a) reported that the total proven 

oil reserves reached nearly 1700.1 billion barrels at the end of 2014 which was sufficient to 

meet approximately 52.5 years of global production. The Middle East is the major oil supplier 

contributing to a staggering 47.7% of the total world oil reserves (BP, 2015a). However, they 

are currently experiencing several challenges with regard to government instability, civil 

unrest and terrorism which pose global energy concerns (Mecad, 2013). Sorrell et al. (2009) 

predicted that a peak in oil production in the Middle East would occur before the year 2020. 

But due to the high energy demand, these oil reserves are diminishing at an alarming rate (Li, 

2007). The global oil reserve to production ratio (Figure 1.1) shows that the Middle East oil 

reserves, according to the current production rate, would last for approximately 78 years (BP, 

2015a). 

 
                Figure 1.1. Regional oil reserves to production ratio for 2014 (BP, 2015a). 
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Besides its depletion and non-renewable nature, fossil fuel consumption is detrimental to the 

environment as well as to human health (Levin et al., 2004). Combustion of fossil fuels 

results in the release of greenhouse gases such as carbon dioxide (CO2), methane and nitrous 

oxide (IPPC, 2014). As illustrated in Figure 1.2, the highest carbon emissions were as a result 

of fossil fuel combustion and industrial application with a total of 65% CO2 emitted globally 

(IPPC, 2014).   

 

 
                 Figure 1.2. Global greenhouse gas emissions for 2010 (IPCC, 2014). 

 

The increased emission of greenhouse gases has been associated with an increase in    

atmospheric temperature most commonly referred to as global warming in addition to acid 

rain, ozone depletion, eutrophication and health implications (Smith et al., 2009; Hook and 

Tang, 2013). Global warming will have far-reaching consequences in the near future and 

therefore cannot be ignored. These include effects on the climate, environment, economic 

growth and food security (Barbir et al., 1990).  In a study by Schmidhuber and Tubiello  

(2007), it was revealed that  climate  change  will  have a substantial  effect  on  food  

security. Droughts will lead to a significant decline in crop yields and livestock. For example, 

Cooper et al. (2008) stated that an estimated 40% of Sub-Saharan farmlands in Africa will not 

be suitable for farming by the year 2030 as a result of environmental effects such as heat, 

drought and floods which will contribute to the deterioration in crop yields and livestock 

production. In order to meet global energy demand without adverse environmental impacts for 

future generations, energy sources with low carbon emissions should be sought (Asif and 

Muneer, 2007).   
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The annual BP Energy Outlook 2035 Report (2015b) projected that world  population  will  

reach  8.7  billion  by  the year 2030,  which  means  an  additional 1.6 billion people will 

require energy.  

Renewable energy based technologies have emerged as potential replacements for traditional 

fossil fuel sources (Levin et al., 2004). These include solar, wind, hydro and geothermal 

power (Shockey et al., 2010). Renewable biofuels such as biohydrogen, biogas, bioethanol, 

biodiesel (Naik et al., 2010) and fuel cell technologies such as Microbial Fuel Cells (MFC) 

and Microbial Electrolysis Cells (MEC) (Zhou et al., 2012) have shown to be valuable as 

alternative energy sources. Extensive research is currently focused on the improvement of the 

low yields observed for these biofuels for commercialization (Levin et al., 2004; Nath and 

Das, 2011).  

1.2. Hydrogen as an alternative 

Despite the competitiveness of crude oil due to its low cost compared to biofuels such as 

biohydrogen, its non-renewable nature in addition to its environmental impact make it 

unattractive for continuous use in future years. Hydrogen is viewed as an excellent 

replacement for current energy sources. This is due to its high gravimetric energy density of 

122 kJ/g which is approximately 2.9 times higher than petroleum (44 kJ/g), gas (52 kJ/g), coal 

(40 kJ/g), methane (50.1 kJ/g) and ethanol (26.5 kJ/g). Moreover, the combustion of this fuel 

results in water as the only by-product (Belafi-Bakó et al., 2010). Hydrogen possesses 

properties that make it compatible with energy technologies such as fuel cells, engines and 

combustion turbines (Caglar and Ozmen, 2000). The United  States  Department  of  Energy  

(USDOE, 2004) reported that the total contribution of  hydrogen to the  energy  market  will  

reach an estimated 6-10%  by  the year 2025. Several developed countries have acknowledged 

the fundamental role of hydrogen as a fuel. It is thus imperative to strive towards a hydrogen-

based economy (Turner, 2004). 

Hydrogen production may be carried out by both biological and non-biological methods. 

Non-biological methods for hydrogen generation include electrolysis of water as well as 

steam reformation of methane, but these however, are expensive and energy intensive (Antoni 

et al., 2007). Biological methods include dark fermentation, photo-fermentation and microbial 

electrolysis. While photo-fermentation is dependent on light, dark fermentation offers a light 

independent process with higher yields than photo-fermentation (Das and Veziroglu, 2001). 
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On the other hand, microbial electrolysis has recently emerged as a method for biohydrogen 

production and is viewed as a remarkable method for high hydrogen yields by overcoming 

some of the challenges encountered during dark fermentation (Cheng and Logan, 2007).  

In comparison to other technologies, fermentative biohydrogen production via the dark 

fermentation process is more appealing owing to its high hydrogen production rate, use of 

low-cost renewable substrates and its low technical requirements (Kotay and Das, 2008; 

Nandi and Sengputa, 1998; Hawkes et al., 2002).  Furthermore, the simultaneous reduction of 

environmental pollutants with combined energy production make it ideal for future use  (Van  

Ginkel  and  Logan,  2005;  Levin  et  al.,  2004) . This process has attracted much interest in 

recent years with government-supported initiatives reaching more than 30 countries thus far. 

The implementation of hydrogen as an alternative energy source has prompted over 400 

projects worldwide.  These initiatives are part of a global effort to upsurge energy security, 

environmental protection, and economic success by means of the industrialization and 

subsequent commercialization of hydrogen (EIA, 2011). Dark fermentative hydrogen 

production entails the use of microorganisms under anaerobic conditions to break-down 

organic matter which results in the production of hydrogen, organic  acids (acetic and  butyric 

acid) and alcohols (ethanol and butanol) (Hallenbeck, 2009;  Nath and Das, 2011). 

Additionally, novel technologies such as Microbial Electrolysis Cells (MECs) may potentially 

overcome some of the challenges encountered during dark fermentation. MECs are based on 

the commonly known microbial fuel cells (MFCs). MFCs produce electricity from the 

microbial break-down of organic matter whereas MECs use bacterial metabolism along with 

the application of a low electric voltage for the production of hydrogen (Logan and Regan, 

2006). However the industrialization of this process still faces significant scale up challenges. 

Effect of key input parameters on dark fermentative biohydrogen production 

Various factors influence the hydrogen production process such as: inoculum type and 

concentration, substrate type and concentration, pH and temperature (Wang and Wan, 2009a; 

Wang and Wan, 2009b; Wang and Wan, 2009c). These factors impact on the microbial 

composition, metabolic fluxes and thus the quantity of hydrogen produced (Wang and Wan, 

2009b; Elsharnouby et al., 2013). Reports on the impact of pH on biohydrogen production 

have revealed that values below 4.5 tend to inhibit the hydrogenase activity and will therefore 

impact the overall yield (Fang and Liu, 2002; Hawkes et al., 2002; Khanal et al., 2004). With 
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regards to inoculum type, both pure and mixed culture systems have been used for hydrogen 

production (Elsharnouby et al., 2013). Studies have indicated that the inoculum concentration, 

source and microbial community structure influence the hydrogen production process.  

Available studies on this parameter have indicated that relatively low inoculum concentrations 

(< 10%) lead to a decrease in the cumulative hydrogen volume (Kotay and Das, 2006; Wang 

and Jin, 2009; Bakonyi et al., 2011; Veena et al., 2012). 

At the laboratory level various feedstocks such as glucose, sucrose and xylose have been 

experimented with for biohydrogen production (Wang and Wan, 2009c; Mu et al., 2006a; Mu 

et al., 2006b; Mu et al., 2009). The synergistic interactions in mixed microbial consortia 

allow simultaneous substrate degradation and biohydrogen production on complex substrates 

(Sarkar et al., 2013). This is beneficial when resistant lignocellulosic biomass, mainly 

consisting of xylose, lignin and cellulose is used. Recently, the search for renewable and 

sustainable substrates for biohydrogen production has gained much attention. These include 

lignocellulosic biomass, industrial wastes and rich carbohydrates that are produced in large 

quantities by the sugar refining industry such as molasses (Mafuleka and Gueguim-Kana, 

2015; Sekoai and Gueguim-Kana, 2013; Whiteman and Gueguim-Kana, 2014). Despite the 

advances in biohydrogen process development, its commercialization has been impeded by 

low yields. Thus, further optimizations through the development of more accurate process 

models and subsequent scale up on low cost substrates are required.  

Biohydrogen process modelling and optimization 

Several modelling algorithms have been used for biohydrogen process development. These 

include One Variable at a time (OVAT), factorial design of Experiment (DOE), Response 

Surface Methodology (RSM) and Artificial Neural Networks (ANN) (Sekoai and Gueguim 

Kana, 2013; Venkata-Mohan et al., 2009; Nasr et al., 2013a; Nasr et al., 2013b; Wang and 

Wan, 2009a; Wang and Wan, 2009c). Although, OVAT has been widely used, it ignores the 

interactive effects of input parameters on the process output and is not practical to reach a 

suitable optimum in a low number of experiments (Lotfy et al., 2007). Alternatively, the 

factorial design of experiment (DOE) is tedious, resource-intensive and laborious when the 

quantity of input parameters is increased (Gueguim-Kana et al., 2012). RSM employs 

polynomial regression analysis to generate a second-order model equation that is used to 

relate the input parameters to the output. The model equation is used to determine the 

optimum process setpoints (Mandenius and Brundin, 2008). These models assume that the 
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polynomial equations can accurately estimate the fermentation dynamics. Nevertheless, RSM 

disregards the “less important” parameters with a limited understanding of their possible 

interactive effects on the bioprocess output (Gueguim-Kana et al., 2012).  

Artificial Neural Networks (ANN) are a mathematical illustration of the human nervous 

system. They simulate the learning process of the human brain by mathematically modelling 

the network structure of interconnected nerve cells (Gueguim-Kana et al., 2012). These 

systems are totally data-driven and studies existing relationships between input and output 

parameters in an attempt to identify the effects that govern the process output. One of the 

most frequently adopted architectures is the multi-layer perceptron (MLP) which is made up 

of an input layer, one or more hidden layers and the output layer (Gueguim-Kana et al., 

2012). These layers comprise neurons, the number of which may differ depending on the 

intricacy of the process it is being applied to (Whiteman and Gueguim-Kana, 2014).  

Numerous studies have indicated that ANN is able to abstract relationships from small data 

sizes, though the data must be statistically well distributed in the input domain (Whiteman 

and Gueguim-Kana, 2014; Gueguim-Kana et al., 2012; Wang and Wan, 2009a; Wang and 

Wan, 2009c).  

1.3 Research Motivation 

A hydrogen-based economy has been impeded by high production costs and low yields. This 

requires further modelling and optimization at lab scale with subsequent scale up. The 

development of accurate and reliable bioprocess models is imperative for process 

optimization. Additionally, there is a lack of consensus on the appropriate fermentation 

volume size for fermentation screening, modelling and optimization at the early stages of 

process development. Various studies have used a process volume in the range of 100-200 

mL for  modelling biohydrogen  production (Whiteman and Gueguim-Kana, 2014; Sekoai 

and Gueguim-Kana, 2013; Wang et al., 2005; Wang and Wan, 2009a; Wang and Wan, 2009c; 

Faloye et al., 2013; Faloye et al., 2014) and to a lesser extent between 1-6 L (Rosales-

Colunga et al., 2010; Prakasham et al., 2011; Shi et al., 2010; Mullai et al., 2013). 

Biohydrogen process development requires extensive knowledge at the lab scale level for 

efficient scale up (Escamilla-Alvarado et al., 2012). Bioprocess modelling inaccuracies 

introduced at the lab scale have significantly impeded the scale up phase (Schmidt, 2005).  
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Efforts to overcome these challenges include modelling and optimization of the key input 

parameters across bioprocess scales.  

Conversely, large variations exist between the reported optimum set points of input 

parameters for fermentative hydrogen production (Wang et al., 2009; Wang and Wan, 2008; 

Wang and Wan, 2009a; Wang and Wan, 2009c; Mu et al., 2006a; Mu et al., 2009).  

In addition, inconsistencies in the reported biohydrogen yield expression units have hampered 

the process development of hydrogen production. Relating the influence of key input 

parameters on the corresponding hydrogen yield using a standardized yield expression unit 

will contribute towards improving the hydrogen development phase. Furthermore, despite the 

availability of various reports on the influence of key input parameters on biohydrogen 

production, there is a dearth of knowledge on intelligent models built on pre-existing 

information which can efficiently predict the hydrogen response on unknown input patterns. 

The implementation of accurate and reliable process models is necessary for the 

determination of the optimal set points for biohydrogen production. Thus, the development of 

efficient ANN models to predict on unknown parameters will contribute significantly towards 

reducing the biohydrogen development via both dark fermentation and microbial electrolysis.  

1.4. Aims 

This work aims at developing Artificial Neural Network based process models for 

biohydrogen production via dark fermentation and microbial electrolysis. Furthermore, it 

investigates the impact of experimental process volume size on the efficiency of ANN and 

RSM based process models. 

In order to achieve this aim, the following specific objectives were undertaken. 

 
(i) A review of the application of Artificial Neural Networks as a tool for modelling and 

optimization of biofuel production was carried out. 

 

(ii) Bioprocess models were developed using ANN and RSM for optimization of hydrogen 

response on operational parameters of inoculum size, substrate concentration and Hydraulic 

Retention Time (HRT) across two scales (80 and 800 mL).  
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(iii) Subsequently, a preliminary assessment of biohydrogen production at a semi-pilot scale 

(8 L) under the optimized conditions determined by the developed models was carried out. 

The microbial community involved in the hydrogen production process was examined. 

 

(iv) Two ANN based models were developed for prediction of fermentative hydrogen 

production (mol H2/ mol substrate and mL H2/ g substrate) on inputs of inoculum type, 

substrate type, substrate concentration, pH and temperature. 

 

(v) A committee of Artificial Neural Network models was developed for prediction of 

hydrogen production (mol H2/ mol substrate) from Microbial Electrolysis Cells (MEC).  The 

input parameters consisted of substrate type, substrate concentration, pH, temperature, applied 

voltage and MEC reactor configuration. 

1.5. Outline of dissertation/thesis structure 

This thesis includes six chapters and conforms to the “research paper format” as outlined in 

the dissertation/thesis template by the College of Agriculture, Engineering and Science (AES) 

of the University of KwaZulu-Natal. A literature review of the efficiency of Artificial Neural 

Networks as a tool for modelling and optimization of biofuel production with emphasis on 

dark fermentative hydrogen production is presented in Chapter 2. 

Chapter 3 focuses on the modelling and optimization of hydrogen response on operational 

setpoint parameters of inoculum size, sugarcane molasses concentration and Hydraulic 

Retention Time (HRT) across two bioprocess scales (80 and 800 mL). Response Surface 

Methodology (RSM) and Artificial Neural Networks (ANN) were used at both scales. A 

preliminary assessment of biohydrogen production using the optimized set points was carried 

out at semi-pilot scales.  The microbial community involved in this bioprocess was examined. 

In Chapter 4, two Artificial Neural Network (ANN) models were developed for the 

prediction of fermentative hydrogen production using two yield expression units (mol H2/ mol 

substrate and mL H2/ g substrate). Input parameters considered were inoculum type, substrate 

type, substrate concentration, pH and temperature. 
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Chapter 5 focuses on the development of a committee of Artificial Neural Networks (ANN) 

models for prediction of hydrogen production (mol H2/ mol substrate) from Microbial 

Electrolysis Cells (MECs). Inputs parameters consisted of substrate type, substrate 

concentration, pH, temperature, applied voltage and MEC reactor configuration. 

The final chapter, Chapter 6, states major conclusions derived from this study, integrates 

the work and provides recommendations for future research. 
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CHAPTER 2 

Artificial Neural Networks: An efficient tool for Modelling and 

Optimization of Biofuel production 
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Abstract 

In view of the looming energy crisis as a result of depleting fossil fuel resources and 

environmental concerns from greenhouse gas emissions, the need for sustainable energy 

sources have secured global attention. Research is currently focused on renewable sources of 

energy and biofuel due to availability and their environmental friendliness. Biofuel production 

like other bioprocesses is controlled by several process parameters including pH, temperature 

and substrate concentration. However, the improvement of biofuel production requires a 

robust process model that accurately relates the effect of input variables on the process output. 

Artificial Neural Networks (ANNs) have emerged as a tool for modelling complex, non-linear 

processes. ANNs are applied in the prediction of various process outcomes and its use in 

biofuel production is currently in the early phase of development. This review highlights the 

efficiency of Artificial Neural Networks (ANNs) as a tool for modelling and optimization of 

biofuel production with emphasis on dark fermentative hydrogen production and its potential 

for future application. Recent findings on the application of ANN for the optimization of 

biohydrogen, biogas, biodiesel, microbial fuel cell technology and bioethanol were reviewed. 

In addition, comparative studies on ANN and other modelling techniques such as the 

Response Surface Methodology (RSM) on the optimization of biofuel production were 

evaluated. 

 

 

Keywords: Modelling, Optimization, Biofuel production, Artificial Neural Networks, 

Bioprocess  
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1. Introduction  

Bioprocesses are described as biological systems that are non-linear, complex and unsteady, 

thus presenting challenges in developing a precise physical-based formula to characterize its 

physical performance. In addition, the development of accurate bioprocess models continue to 

baffle experts as a result of the non-linear nature of the biochemical network interactions that 

occur during fermentation processes (Franco-Lara et al., 2006). Bioprocesses are influenced 

by several parameters which include pH, temperature, hydraulic retention time, and substrate 

concentration. The determination of the optimum setpoints of these parameters is therefore 

crucial for bioprocess development and scale up (Wang and Wan, 2009a; Wang and Wan, 

2009b; Wang and Wan, 2009c). 

Mathematical  and  statistical based models can provide vital information for the 

understanding, analysis and prediction of biological processes (Nath and Das, 2011) and they 

are required for the optimization of the key parameters in order to improve the process output 

(Escamilla-Alvarado et al., 2012).  These bioprocess models can provide insight into the 

individual as well as the interactive effect of the various input parameters on the target output. 

Nevertheless, the non-linearities associated with microbial fermentations have limited the use 

of these bioprocess models. Non-linear systems, as opposed to linear systems, are not 

standardized which results in deviations between the results obtained. The implementation of 

bioprocess models that are able to efficiently encapsulate these non-linearities are of 

paramount importance for optimization and scale up of the bioprocess (Almeida, 2002).  

Biofuel production has emerged as a promising alternative to fossil fuel sources (Levin et al., 

2004), the development of which may help overcome the current energy crisis and also 

provide a clean source of energy to combat the phenomenon of global warming (Levin et al., 

2004; Nath and Das, 2011). Current biofuels include bioethanol, biodiesel, biohydrogen, 

biogas (Naik et al., 2010) and fuel cell technologies such as Microbial Fuel Cells (MFC) and 

Microbial Electrolysis Cells (MEC) (Zhou et al., 2012). The major limitation of these biofuels 

may be attributed to their low yields and production rates observed (Nath and Das, 2011). 

Modelling and optimization of biofuel production processes will contribute to increased 

understanding of the process inputs for optimum yield and production rate. The main goal of 

modelling is to optimize the processes involved in producing these biofuels in order to 

improve the yields. Various modelling algorithms have been applied in biofuel production 
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processes (Nath and Das, 2011; Wang and Wan, 2009a; Wang and Wan, 2009b; Gueguim-

Kana et al., 2012a; Abu-Qdais et al., 2010; Saraphirom and Reungsang, 2010; Mohamed et 

al., 2013; Sewsynker et al., 2015), and results have shown that modelling and optimization 

can enhance biofuel yields (Ghosh et al., 2012, Gueguim-Kana et al., 2012a). 

For instance, Ghosh et al. (2012) used the Response Surface Methodology (RSM) to optimize 

biohydrogen production on inputs of glucose concentration, fixed nitrogen, and light intensity 

in a single-stage photo-fermentation with the photosynthetic bacterium Rhodobacter 

capsulatus.  Their results showed that these parameters had a significant interactive effect on 

the biohydrogen yield and nitrogenase activity.  The optimized biohydrogen yield (5.5 mol 

H2/mol glucose) was 85% higher than previously achieved. 

Traditionally, modelling and optimization of bioprocesses has been carried out using the One 

Variable At a Time approach (OVAT), factorial Design Of Experiment (DOE) and Response 

Surface Methodology (RSM) (Nath and Das, 2011; Kyazze et al., 2010; Selembo et al., 2009; 

Lu et al., 2011; Tartakovsky et al., 2009; Guo et al., 2010; Yahya et al., 2013, Cheng et al., 

2011; Whiteman and Gueguim-Kana, 2014). These approaches have been extensively used 

and their concepts as well as limitations are well known.  For example, OVAT does not 

consider the interactive effect of parameters on the process and therefore the optimum 

setpoints may be completely ignored (Wang and Lu, 2005; Gueguim-Kana et al., 2012a). 

Moreover, it is unfeasible for the search to accomplish an appropriate optimum in a restricted 

amount of experimental setups (Lotfy et al., 2007). The factorial Design of Experiment 

(DOE) has shown to be unappealing since it is time-consuming, resource demanding and 

labour intensive when the numbers of input factors are increased (Wang and Wan, 2009c). On 

the other hand, the Response Surface Methodology (RSM) disregards the “less important” 

parameters with a limited understanding of their possible interactive effects on the bioprocess 

output (Desai et al., 2008; Gueguim-Kana et al., 2012a). 

Artificial Intelligence (AI) tools have emerged as a promising method for the modelling and 

optimization of bioprocesses. Some of these include Artificial Neural Networks (ANN) and 

Genetic Algorithm (GA) (Zhang et al., 2010; Prakasham et al., 2011; Abu-Qdais et al., 2010), 

Fuzzy Logic (FL), Ant Algorithm (AA) and Particle Swarm Optimization (PSO) all of which 

are considered suitable for  the design of bioprocesses for research and development (Haider 

et al., 2008; Garlapati and Banerjee, 2010). In the last decade, ANN has been applied in 
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multivariate non-linear bioprocess research and development. They are efficient for the 

development of bioprocess models devoid of previous information regarding the kinetics and 

metabolic fluxes that occur within the cells and cell surroundings (Gueguim-Kana et al., 

2012a). ANN models simulate the linkage that exists in biological neurons with extraordinary 

capability for learning, analysis, association and adaptation (Nagata and Chu, 2003). 

ANNs can be described as a mathematical understanding of the neurological functioning of 

the human brain. They emulate the brain’s learning process by arithmetically modelling the 

network structure of interconnected nerve cells (Nagata and Chu, 2003). Furthermore, ANNs 

are entirely data-based with no previous knowledge of the events that govern the process (Shi 

et al., 2010). They consist of an input layer, one or more hidden layers, and an output layer 

(shown in Figure 1). The neurons of the hidden layer assist the network in establishing the 

complex associations that subsist between the input and output parameters (Nagata and Chu, 

2003).  

The appeal of ANNs as a modelling tool stems from their extraordinary information 

processing features which are attributed primarily to non-linearity, high parallelism, fault and 

noise acceptance, as well as their learning and generalization abilities. In contrast to 

traditional modelling tools, ANNs offer a model-free, adaptive, parallel-processing, and 

vigorous elucidation with error and failure tolerance. Moreover, its learning capability for 

processing inaccurate and fuzzy information and its ability to generalize unseen patterns is 

impeccable (Levstek and Lakota, 2010). ANN possesses the ability to sketch process input 

and outputs devoid of causal assumption regarding the division of data.  ANNs have gained 

much attention as significant soft computing tools not limited to data processing and analysis 

but can also be applied to solve difficulties in multifaceted and non-linear processes 

(Almeida, 2002). 
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Figure 1: General Topology of a multilayer structure of an Artificial Neural Network  

The rapid development of algorithms and information technology is the major motivation 

behind the broad application of ANNs in research and development (Huang et al., 2007). 

Currently, ANNs are employed in the prediction of various outcomes including process 

control, medicine, forensic science, biotechnology, weather forecasting, finance and 

investment and food science. However, it is noteworthy to state that the use of ANNs in 

biofuel production is currently in the early phases of development. This review therefore 

highlights the efficiency of Artificial Neural Networks (ANNs) as a tool for the modelling and 

optimization of biofuel production. This paper summarizes various studies on the application 

of ANN in biofuel production including biohydrogen, biogas, microbial fuel cell technology 

and bioethanol. The biohydrogen production process is discussed in detail in terms of the 

production process, the effects of process parameters and challenges associated with its 

modelling and optimization. In addition, the comparison of ANN to commonly used 

modelling techniques such as response surface methodology (RSM) for biofuel production is 

also highlighted. 

2.  Principles of Artificial Neural Networks 

ANN involves the interconnection of a structure known as artificial neurons similar to 

biological neurons (Levstek and Lakota, 2010; Graupe, 2007). The principle behind ANNs is 
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to mimic the functioning and learning process of the human brain using an artificial neuron. 

An artificial neuron is a computational model that is inspired by biological neurons.  

Biological neurons consist of dendrites, soma, axon and synapses. The dendrites are used for 

receiving signals from other neurons and can also be referred to as chemical receptors. 

Additionally, the soma makes up the cell body of a neuron and is involved in processing the 

input signals. This is followed by the emission of the processed signals to neurons that are in 

close proximity to the axon. Finally, the neurons are linked via the synapses which also 

control the transmission of signals among the neurons. The actual structure and functioning of 

a biological neuron is far more intricate as compared to the simple design of an artificial 

neuron (Huang et al., 2007, Levstek and Lakota, 2010). 

An artificial neural network is composed of groups of interconnected processing elements 

known as neurons and the links between these neurons are known as weights and biases 

(Gurney, 1997). Furthermore, in contrast to a biological neuron, an artificial neuron receives a 

sequence of input information (xi) linked to a weight factor (wi-). Basically, the neuron adds 

the weighed inputs and forwards the outcome to a transfer function to produce an output. The 

output information is thereafter transmitted to an alternate neuron as an input or may be 

employed directly as a network result. The weights are referred to as the attachment strength 

linking the neurons. As a result of some input signals being more significant compared to 

others, the utilization of weights as equivalent to the significance of each input signal provides 

a well-organized process to create an ideal output. Weights are changeable for the duration of 

network training and there are various algorithms available for the adjustment of weights 

during network training (Graupe, 2007). 

The network architecture or topology refers to the pattern of interconnections among the 

neurons that makes up a network (Marchitan et al., 2010).  Artificial neurons develop layers 

with different types of connections between them i.e. a neuron of one layer can be linked with 

neurons of at least one other layer. There are different types of connections used between 

layers and these are referred to as inter-layer connections. With regard to inter-layer 

connections, a neuron in one layer is linked with all the neurons in the subsequent layer, thus 

resulting in a completely connected network. However, if the neurons are connected to only 

some of the neurons in the next layer then the network is only partially connected. Usually, 

neurons in one layer send output information to the next layer, and they may (feedback 
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networks) or may not obtain information back from the next layer. Also, these neurons may or 

may not be linked with each other in the same layer (Huang et al., 2007).  

Alternatively, in more complex structures the neurons communicate among themselves within 

a layer called intra-layer connections. Regarding these intra-layer connections, once the input 

information has been obtained from the previous layer, neurons within one layer converse 

with each other several times prior to transmitting their output to another layer (Yu et al., 

2007). ANNs are occasionally referred to as machine learning algorithms, since changing its 

connection weights (training) causes the network to learn the solution to a problem. The 

strength of connection among the neurons is stored as a weight-value for the specific 

connection. The system is able to learn new knowledge by adjusting these connection 

weights. The learning ability of an ANN is determined by its design and by the algorithmic 

method selected for training. This algorithm attempts to reduce the error that is computed by 

various methods depending on the specific technique used to adjust the connections (i.e. the 

learning algorithm) (Levstek and Lakota, 2010).  

Generally, learning can be done by (i) supervised and (ii) unsupervised training. During 

supervised training, both the inputs and the outputs are provided. The network then processes 

the inputs and compares its subsequent outputs against the desired outputs. Errors are then 

computed, causing the system to adjust the weights which control the network. This process is 

repeated over and over again as the weights are constantly adjusted. On the contrary, with 

unsupervised training, the network is provided with inputs but without the desired outputs. 

The neural network system on its own then selects what characteristics it will use to classify 

the input data (Bishop, 1995, Levstek and Lakota, 2010).  

3. ANN types and training algorithms 

ANNs are characterized according to their functions. Common ANNs described in studies 

include Hopfield (Hopfield and Tank, 1986), Kohonen (Zupan and Gasteiger, 1999; Huang et 

al., 2007), Recurrent (Pham, 1994), Counter propagation (Zupan and Gasteiger, 1999), Radial 

basis function (RBF) networks (Schalkoff, 1997) and Back propagation (Desai et al., 2008; 

Whiteman and Gueguim-Kana, 2014; Rosales-Colunga et al., 2010; Nikhil et al., 2008). The 

Back propagation neural network which employs a supervised learning process has been 

frequently reported in biofuel process modelling as shown in Table 1-5 and is discussed in 

detail. 
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 3.1. Back Propagation Neural Networks (BPNN) 

This type of network is the most extensively studied and involves the minimization of a 

performance function (Sadrzadeh et al., 2008). In general, this network is a multilayer 

perceptron (MLP) architecture which is mostly used to solve non-linear regression problems 

(Marchitan et al., 2010). The multilayer perceptron includes an input layer with nodes that 

embody the input variable to the problem, the output layer with nodes that signify the 

dependent variable (what is modelled), and one or more hidden layers consisting of nodes to 

facilitate the encapsulation of non-linearity in data. The back propagation is usually used for 

training of feed forward networks and has been extensively studied (Figure 2) (Almeida, 

2002; Marchitan et al., 2010). By means of supervised learning, this network is able to learn 

the mapping from one data set to another by exploiting the examples.  Back propagation 

describes the manner in which the error computed at the output side is propagated backward 

from the output layer to the hidden layer and lastly to the input layer. In these networks, the 

data are fed forward directly into the network with no feedback (Huang et al., 2007; Levstek 

and Lakota, 2010) and the neurons can be completely or partially interconnected. During 

training, the weight and biases are adjusted with the goal of fitting the predicted response 

closer to the experimental response (Hagan et al., 1996). BPNNs are versatile and may be 

employed for data modelling and process control in medicine, forensic science, 

biotechnology, weather forecasting, finance and investment and food science (Hassoun, 1995; 

Lou and Nakai, 2001; Mjalli, 2005; Messikh et al., 2007; Desai et al., 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Back propagation training flowchart for Artificial Neural Networks  
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4. Biofuel Production 

4.1. Fermentative hydrogen production by dark fermentation 

The dark fermentation process involves the break-down of carbohydrates by anaerobic 

bacteria to produce hydrogen (Hallenbeck and Ghosh, 2009). This method is viewed as a 

promising system for practical application in the near future. The benefits of this process over 

light dependent processes include cheaper process with lower energy requirements, higher 

hydrogen production and the application of low-value waste materials as feedstock (Levin et 

al., 2004). Although the dark fermentation process is widely accepted as a potential system to 

be implemented at an industrial scale, there are several limitations to its commercialization 

(Nath and Das, 2011). The amount of hydrogen that may be produced by the dark 

fermentation process is dependent on the metabolic pathways adopted by the bacteria 

(Hallenbeck and Ghosh, 2009). These reactions result in the production of hydrogen in 

addition to other products such as carbon dioxide and simple organic compounds such as 

volatile fatty acids (VFA). Some VFAs produced during hydrogen production include acetate 

and butyrate.  The  maximum  theoretical  value  of  hydrogen  that  may  be  produced  under  

ideal conditions when glucose is used as the substrate  is 4 moles of hydrogen per mole of 

glucose which  occur via the acetate pathway (Hallenbeck and Ghosh, 2009). On the other 

hand, only 2 moles of hydrogen per mole of glucose is produced via the butyrate pathway 

(Vazquez et al., 2009). Current efforts are directed towards the search for renewable, cheap 

waste material that is rich in carbohydrates and can be readily utilized by the hydrogen-

producing microorganisms. These include agricultural residues (Mafuleka and Gueguim-

Kana, 2015) and industrial wastewater such as those from the sugar refining industry 

(Whiteman and Gueguim-Kana, 2014; Wang and Jin, 2009).  

Biohydrogen production can be operated in either batch or continuous mode but the majority 

of studies have employed batch mode which is simpler to operate and has shown to be more 

feasible for research (Wang and Wan, 2009a; Wang and Wan, 2009c). Alternatively, various 

studies have reported semi-pilot scale and pilot scale reactor systems with continuous mode of 

production for biohydrogen production (Ren et al., 2006; Chang et al., 2011). Although both 

batch and continuous systems present several benefits during the developmental phase, their 

practical application for commercialization is limited by the low yields observed.  
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4.2. Metabolic pathways for dark fermentative hydrogen production 

The major species involved in hydrogen production are members of the genus Clostridia 

(Nandi and Sengupta, 1998). Clostridium spp. are rod-shaped, Gram-positive and are 

endospore-forming bacteria (Holt et al., 1994). Their resistant endospores allow them to 

survive extreme conditions above or below their optimum (Holt et al., 1994). The production 

of hydrogen by these species is generally associated with two pathways (Cai et al., 2011). The 

first pathway involves the conversion of pyruvate to acetyl-CoA and CO2 by the enzyme 

pyruvate ferredoxin oxidoreductase which leads to the generation of reduced ferredoxin (Fd). 

Hydrogen is then generated from the reduced ferredoxin by the enzyme hydrogenase. The 

second  pathway  entails  re-oxidizing  a part  of  the  NADH  that was produced  from  

glycolysis  by  the  NADH- ferredoxin oxidoreductase  to generate reduced ferredoxin 

(Vardar-Schara et al.,  2008), which  in  turn  is re-oxidized  by  hydrogenase  to  produce  

hydrogen. Clostridium spp. can stoichiometrically produce 2 and 4 moles of hydrogen per 

mole of glucose by the butyrate and acetate pathways, respectively (Hallenbeck and Ghosh, 

2009).  However  the  practical  yields achieved are  lower  due  to  formation  of  other 

fermentative by-products. Studies have reported that the butyrate pathway produces lower 

yields due to inhibitory effects on hydrogen production and cell growth (Chin et al., 2003; 

Berrios-Rivera et al., 2000).  Furthermore,  this pathway has been documented  as  the  major 

conflicting  pathway  during  hydrogen  production  since it  consumes  more  NADH  than  

the acetate  pathway which results in a decrease in  the hydrogen  yield  (Kumar et al., 2001). 

 

4.3. Key parameters that influence the biohydrogen production process  

Several factors have been shown to impact the hydrogen production process. These include: 

inoculum type, substrate type and concentration, temperature, and pH (Wang and Wan, 

2009b). These factors affect the microbial community composition, the metabolic fluxes and 

ultimately the amount of hydrogen produced in the system (Wang and Wan, 2009b; 

Elsharnouby et al., 2013). A slight change from the optimum setpoint may have a significant 

impact on the process yield (Fang and Liu, 2002; Fan et al., 2004; Mu et al., 2006a; Wang et 

al.,  2007). The influences of these parameters are briefly discussed below.   
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4.3.1. Inoculum type and concentration 

The production of hydrogen is a  specific  mechanism  to  dispose  of  excess  electrons  

through  the  activity  of   hydrogenases  in  bacteria. Specific  types  of  bacteria  that  possess  

such  capability  include  strict anaerobes which could be  a single species (pure culture) or a 

mixture of two known species (co-culture) (Valdez -Vazquez  et  al.,  2005). Examples of 

these are members of the genus Clostridium and Enterobacter (Hung et al., 2011). On the 

other hand a mixture of different types of microbes (mixed culture) may be used (Li and Fang, 

2007). Mixed culture communities that are capable of producing hydrogen are ubiquitous in 

natural environments such as soil, wastewater, sewage sludge, compost and animal dung. 

(Sivagurunathan et al., 2014; Wang and Wan, 2009c; Cheong and Hansen, 2006; Hu and 

Chen, 2007; An et al., 2014). Within these mixed consortia, a synergistic interaction occurs 

whereby other microbes that are not involved in the hydrogen production process create 

favourable conditions for the hydrogen-producing microorganisms (Sarkar et al., 2013; Yasin 

et al., 2013, Chen et al., 2015).   Besides Clostridium and Enterobacter spp., other microbes 

capable of producing hydrogen such as Klebsiella spp. (Niu et al., 2010), Bacillus spp. (Kotay 

and Das, 2006), Pseudomonas spp. (Guo et al., 2008), Escherichia coli (Bisaillon et al., 2006; 

Turcot et al., 2008), Ethanoligenens spp. (Xing et al., 2008), Citrobacter spp. (Oh et al., 

2008), Ruminococcus spp. (Ntaikou et al., 2008) have been reported.  

The type and characteristics of the microbial inoculum employed plays a significant role in 

the hydrogen production process. Pure cultures have shown to produce higher yields in 

comparison to mixed culture consortia (Masset et al., 2012). Even though pure cultures prove 

efficient for studying the mechanisms within the fermentation process, they still pose many 

challenges during operation. For instance, major hydrogen-producers such as Clostridium spp. 

require strictly anaerobic conditions for growth, therefore the addition of reducing agents in 

the culture medium is crucial to maintain low redox potentials in order to eliminate oxygen 

from the system. Alternatively, mixed cultures comprise a vast community of microorganisms 

that synergistically interact for growth and development. Mixed cultures are simpler to 

operate, cheaper to use since they do not require the addition of expensive reducing agents 

and are able to metabolize a wide range of substrates compared to pure cultures (Masset et al., 

2012). Nevertheless, the presence of hydrogen-consuming microorganisms such as 

methanogens poses a huge challenge in the case of mixed cultures for biohydrogen 

production. Energy intensive and costly pretreatment methods are required for the inhibition 
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of hydrogen-consuming bacteria in mixed microbial communities. Several studies have 

reported the different inoculum pretreatment techniques that lead to higher hydrogen yields 

(Faloye et al., 2013; Faloye et al., 2014; Ren et al., 2008).  

Regarding inoculum size, studies have shown that the initial cell concentration significantly 

influences the lag phase of cell growth, product formation and overall productivity (Wang and 

Jin, 2009). This may be attributed to the adjustment of the cells to fresh medium. A short lag 

phase may occur due to the cells’ rapid adaptation to the conditions applied, whereas a long 

lag phase may be attributed to slow microbial growth and adjustment in the new system to 

establish biomass production and product formation (Kotay and Das, 2006; Wang and Jin, 

2009). Studies have indicated that optimum initial inoculum concentration for biohydrogen 

production is influenced by the inoculum source used. In a study by Prakasham et al. (2011) it 

was shown that increasing both pH and inoculum concentration (anaerobic digested sludge) 

simultaneously for biohydrogen production would favour the fermentation process. The 

aforementioned authors stated that the optimum inoculum concentration was between 65-

75%. On the other hand, Whiteman and Gueguim-Kana (2014) reported that the optimum 

inoculum size for hydrogen production was 15% with anaerobic digested sludge.  

4.3.2. Substrate type and concentration 

The substrate type can affect the hydrogen yield by selecting the metabolic pathway within 

microorganisms. Various types of substrates have been used for fermentative hydrogen 

production (Wang and Wan, 2009b). These include simple carbohydrates such as glucose and 

sucrose which are easily utilized by microorganisms; however these substrates are costly. 

Therefore, current research on fermentative hydrogen production is driven towards the use of 

waste material such as lignocellulosic biomass and industrial effluents that are both abundant 

and cost-effective (Mafuleka and Gueguim-Kana, 2015). Lignocellulosic materials require 

pretreatments prior to use for fermentation due to their complex structures that cannot be 

degraded by bacteria. Both physical (e.g. milling, extrusion and microwave) and chemical 

pretreatment methods (e.g. acids or bases) have been reported (Ramadoss et al., 2014). 

Industrial effluents such as food waste, dairy waste and sugar refining waste are much more 

attractive since they do not require expensive pretreatments and are readily accessible to the 

microorganisms compared to lignocellulosic materials (Whiteman and Gueguim-Kana, 2013).   
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Optimum substrate concentration for maximum hydrogen yield has been reported by several 

studies (Whiteman and Gueguim-Kana, 2014; Sekoai and Gueguim-Kana, 2013; Wang and 

Jin, 2009). Usually, an increase in the substrate concentration results in a higher hydrogen 

yield up to a certain level. Glucose and sucrose concentrations have been reported to be 

optimum within the range of 10-30 g/L (Wang and Wan, 2009a; Wang and Wan, 2009c; Mu 

et al., 2009). Wang and Wan (2009c) reported a maximum yield of 305.3 mL H2/g glucose. 

This result was consistent with Wang and Wan (2009b). The search for cheap and renewable 

substrates for use in biohydrogen production is currently underway (Lay et al., 2010; 

Whiteman and Gueguim-Kana, 2014). Renewable and abundant feedstock such as sugar cane 

molasses may be valuable for biohydrogen production. Molasses are a by-product of the 

sugarcane refining industry. It is a thick, dark syrup that results from the crystallization and 

extraction of the majority of sucrose from sugar cane. Current uses of molasses include 

animal feed additives, sweeteners or feedstock for renewable energy production such as 

bioethanol. Molasses consist of 50% sugar by dry weight and is primarily made of sucrose 

and is a much cheaper alternative to pure glucose (Wang and Jin, 2009). This substrate 

contains essential vitamins and minerals that are required by the microbes involved in 

biohydrogen production (Beshay and Moreira, 2005). Therefore, it does not require the 

supplementation of expensive essential vitamins and minerals (iron, nitrogen, phosphorus) 

that are fundamental for the bioprocess, thereby reducing production costs (He et al., 2007). 

Whiteman and Gueguim-Kana (2014) investigated the influence of substrate concentration on 

biohydrogen production and reported a maximum cumulative hydrogen volume (84.33 mL) at 

an optimum molasses concentration of 150 g/L. Conversely, Wang and Jin (2009) assessed 

the influence of carbon and nitrogen concentrations present in molasses for biohydrogen 

production and observed a maximum hydrogen yield (1.85 mol hydrogen/mol hexose) when 

the molasses concentration was 100 g/L.  

4.3.3. Hydraulic retention time 

Generally, HRT  is  considered  an  important  operational parameter  affecting  continuous  

production  of  biohydrogen (Zhang et al., 2006). Nevertheless, several batch studies have 

considered HRT as an input parameter (Sekoai and Gueguim-Kana, 2013; Kim et al., 2004; 

Lay, 2001). Studies that have considered HRT as a parameter have indicated that the control 

of HRT is essential for the inhibition of the hydrogen-consuming microbes such as 

methanogens (Chen et al., 2001).  
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Moreover, an optimum HRT is significantly influenced by the substrate type used. Numerous 

studies have reported an optimum HRT for maximum biohydrogen production of 1-6 days 

(Thanwised et al., 2012; Zhang et al., 2006). Generally, short HRTs are beneficial for 

hydrogen production due to costs associated with longer times. In addition, hydrogen-

producers are able to grow and reproduce rapidly, whereas the methanogens require longer 

HRTs to proliferate (Liu et al., 2008). In a study by Kim et al. (2004), it was found that short 

HRTs (<3 days) increased biohydrogen production. This result was consistent with Kim et al. 

(2010) and Tawfik et al. (2012).  On the other hand, Sekoai and Gueguim-Kana (2013) 

modeled and optimized biohydrogen production and considered HRT as one of the inputs. 

Optimum biohydrogen yield was reported at an HRT of approximately 3.5 days. Also, 

Jayalakshmi et al. (2009) reported an optimum HRT of 7 days for biohydrogen production. 

Various studies have indicated that shorter HRTs can lead to a low pH (Liu et al., 2008; Shin 

and Youn, 2005; Chang and Lin, 2004). This interaction has shown to enhance this system 

since it is a biological method for eliminating methanogens at mesophilic and thermophilic 

conditions (Oh et al., 2004).  

4.3.4. pH 

The pH parameter is considered crucial for the hydrogen production process since it 

influences the hydrogenase system, substrate utilization and the metabolic activity of the 

hydrogen-producing microorganisms (Kothari et al., 2012). Studies have indicated that pH 

affects various activities within the bacterial cells including nutrient uptake due to cell 

membrane sensitivity (Li and Fang, 2007; Khanal et al., 2004).  An increase in pH could 

enhance the activity of the hydrogen-producing bacteria up to a certain point beyond which it 

will adversely affect hydrogen production. Variations in pH can modify important processes 

such as metabolic activity, protein synthesis, and adaptation to extreme conditions by the 

bacteria (Kothari et al., 2012).  Since the majority of  studies  were  conducted  in  batch  

mode  without pH  control, whereby only the initial  pH  was investigated, the optimum initial 

pH for hydrogen production reported has shown to vary between studies. Initial pH values 

may influence the duration of the lag phase during fermentation. An optimum initial pH 

within the range of 6-7.5 was reported in numerous studies (Hawkes et al., 2002; Khanal et 

al., 2004). Generally, an initial pH between 4-4.5 may lead to an extended lag phase by 

inhibiting the hydrogenase activity which in turn affects the hydrogen production process 

(Fang and Liu, 2002; Hawkes et al., 2002; Khanal et al., 2004). At a lower initial pH, 
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hydrogen production occurs gradually over a longer time period (Sinha and Pandey, 2011). 

Conversely, a higher initial pH results in faster rate of hydrogen and acid production which 

eventually affects the buffering ability of the system.  

 

4.3.5. Temperature 

Temperature has been shown to have significant effects on hydrogen production processes. 

This parameter influences the growth rate and metabolic pathways of hydrogen-producing 

bacteria which in turn affects the  activity  of  hydrogen-producing  enzymes  such  as  

hydrogenases (Elsharnouby et  al.,  2013). It also influences substrate degradation efficiency, 

volatile fatty acid production, microbial communities and overall hydrogen yields (Fang and 

Liu, 2002). Various temperature ranges exist for carrying out biohydrogen production. 

Commonly used temperature conditions for hydrogen production are at mesophilic (20-40 

°C), thermophilic (40-65 °C) or hyperthermophilic conditions (>80 °C) (Sinha and Pandey, 

2011). The majority of studies have been carried out under mesophilic conditions 

(Elsharnouby et al., 2013). These temperature ranges are beneficial as a result of low-costs. 

High temperatures may cause protein denaturation within the hydrogen-producing bacteria 

which result in a decline in hydrogen production (Sinha and Pandey, 2011). Other studies 

have recommended higher temperatures for hydrogen production as this can eliminate non-

spore forming methanogens and may improve the process yields (Lay et al., 1999). 

4.3.6. Reactor configuration 

The reactor configuration used for biohydrogen production may vary with regard to vessel 

size. Bioreactors range from laboratory scale reactors (100-500 mL), semi-pilot scale (2-10 L) 

and pilot scale (10-400 L). These vessels may be operated in  batch, fed batch and  continuous  

mode (Show et  al.,  2011;  De  Gioannis  et  al.,  2013).  For industrial purposes, the 

continuous mode of hydrogen production is more feasible due to its many advantages. This 

includes monitoring and regulation of process parameters at their optimum (Ismail et al., 

2009). Types of bioreactors reported by previous studies include Continuous  stirred  tank 

reactors (CSTR) (Chen and Lin, 2003; Zhang et al., 2007; Kim et al., 2011); anaerobic 

fluidized bed reactors (AFBR) (Lee  et al., 2004; Zhang  et al., 2008); upflow anaerobic 

sludge blanket reactors (UABR) (Chang and Lin,  2004; Gavala  et al., 2006), anaerobic 

sequencing batch reactors (Vijaya-Bhaskar  et al.,  2008)  and membrane bioreactors (Oh et 
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al., 2004).. The most frequently used for hydrogen fermentation processes are CSTRs.  These 

bioreactors have been well-recognized for efficient homogenous mixing of the fermentation 

medium that results in high mass transfer (Show et al., 2011).   

4.4. Challenges associated with Biohydrogen Modelling and Optimization  

Bioprocess development is carried out during the initial stages of the fermentation process to 

achieve maximum hydrogen yields. The application of accurate and reliable bioprocess 

models is therefore imperative for bioprocess optimization. Even though several attempts 

have been made to abstract the relationships between the key inputs and the corresponding 

hydrogen output, significant variations exist between the reported optimum setpoints of input 

parameters for fermentative hydrogen production (Wang et al., 2005; Wang and Wan, 2009a; 

Wang and Wan, 2009c; Mu et al., 2006a; Mu et al., 2009). 

Biohydrogen process development requires extensive knowledge at the lab scale level for 

efficient scale up (Escamilla-Alvarado et al., 2012). Previous reports have been limited due to 

modelling inaccuracies at the lab scale level which have significantly hindered the scale up 

phase (Schmidt, 2005). For instance, there is a lack of uniformity with regard to the most 

suitable fermentation volume size that should be adopted for screening, modelling and 

optimization during the initial stages of process development.  Previous studies have often 

reported a volume size in the range of 100-200 mL (Whiteman and Gueguim-Kana, 2014; 

Sekoai and Gueguim-Kana, 2013; Wang et al., 2005; Wang and Wan, 2009a; Wang and Wan, 

2009c; Faloye et al., 2013; Faloye et al., 2014) and to a lesser extent between 1-6 L for 

modelling biohydrogen  research (Rosales-Colunga et al., 2010; Prakasham et al., 2011; Shi 

et al., 2010; Mullai et al., 2013). Despite the availability of these studies, there is no 

reasonable scientific explanation for the selected volume used during the modelling and 

optimization process. Besides the inconsistency in the process volume size used for the 

development of bioprocess models, there is a gap of knowledge of the potential impact of the 

volume size on the model accuracy.   

Lower volume sizes would accomplish a higher mixing efficiency and mass transfer 

compared to larger vessels (Schmidt, 2005). As opposed to chemical reactors, the scale up of 

microbial fermentation processes is drastically challenged by reproducibility in yield as the 

scale is increased. This could be as a result of the physiological characteristics (growth of the 

microorganisms) as well as the output (product formation) that occur within the reactor 
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(Votruba and Sobotka, 1992). A frequent catastrophic occurrence is the inability to sustain 

physiological conditions experienced at lab scale during the scale up process and it continues 

to pose a huge challenge. Scale‐up of microbial fermentations presents several challenges 

since large vessels are considerably more heterogeneous in contrast to smaller vessels (Shuler 

and Kargi, 2002). The scaling process does not function in a linear manner, therefore even 

when geometrically similar vessels are employed, it may be impossible to achieve a similar 

rate of shear, mixing time, and mass transfer previously observed from the small vessel to the 

larger vessel (Shuler and Kargi, 2002).  Efforts to overcome these challenges include 

modelling and optimization across bioprocess scales in order to determine the impact of the 

volume on the model accuracy and output yield.   

Furthermore, significant discrepancies exist in the methods used for the different yield 

expression units by several studies on the key parameters that influence fermentative 

hydrogen production and have impeded the biohydrogen process development phase. Relating 

the key input parameters to the corresponding hydrogen output by using a standardized yield 

expression unit will contribute towards improving the hydrogen production process. Despite 

the availability of dispersed reports on the influence of key input parameters on biohydrogen 

production using different yield expression units, there is a lack of knowledge of intelligent 

models that have been built on pre-existing information which can efficiently predict the 

hydrogen response on unknown input patterns from the available public repositories. The 

development of accurate and reliable models will assist in determining the optimum setpoints 

for hydrogen production and could shorten the bioprocess development stage.  

5. Application of ANNs in biofuel production 

The efficiency of ANNs in bioprocess modelling has been well documented (Bourquin et al., 

1998; Desai et al., 2008; Levstek and Lakota, 2010). More importantly, its  use for modelling 

and optimization of biofuel production has proven valuable (Gueguim-Kana et al., 2012a; 

Whiteman and Gueguim-Kana, 2014; Tardast et al., 2014; Ahmadian-Moghadam et al., 

2013). The superiority of ANN as a modelling tool essentially lies in its ability to represent 

the non-linearities in bioprocesses efficiently coupled with the capability of learning from 

historical data (Nath and Das, 2011). Other merits include the ability to approximate different 

forms of non-linear functions as well as the non-requirement of a prior specification of a 

suitable fitting function (Desai et al., 2008). 
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The development of biofuel production, like many other bioprocesses, requires the 

development of an accurate model to achieve process optimization and subsequent scale up 

towards industrialization. Several studies have reported the application of ANN for modelling 

and optimization of the key parameters associated with microbial fermentation in biofuel 

production (Wang and Wan, 2009a; Wang and Wan, 2009c; Gueguim-Kana et al., 2012a; 

Gueguim-Kana et al., 2012b ; Whiteman and Gueguim-Kana, 2014). In the same vein, some 

of these studies are further discussed below. 

5.1. Biohydrogen production 

The production of biohydrogen via the dark fermentation process entails the use of 

microorganisms under anaerobic conditions to degrade organic matter. Biohydrogen is viewed 

as an excellent potential replacement for conventional fossil fuels due to its high energy 

density (122 kJ/g) and its combustion which results in water as the only by-product.  

However, the commercialization of this process has been limited due to the low yields 

observed (Nath and Das, 2011). The use of ANNs for modelling and optimization of 

biohydrogen production has been widely reported. For instance, Wang and Wan (2009c) 

established the influence of temperature, initial pH and glucose concentration on hydrogen 

production output using BPNN. The prediction accuracy and optimization abilities of the 

response surface methodology and artificial neural network model were compared. The 

results showed that the root mean square error and the prediction error for the neural network 

model (17.80 and 7.70%)  was much lower than that of the RSM model (38.40 and 16.60%), 

indicating the efficiency of ANN. In another study, the optimization of biohydrogen 

production on the input parameter of pH, glucose to xylose ratio, inoculum age and 

concentration as inputs resulted in a 14.25% improvement in the hydrogen yield, which 

further emphasized the efficiency of ANN for process optimization (Prakasham et al., 2011). 

In addition, ANN models have been successfully used for the realtime monitoring and 

prediction of biohydrogen production. For example, Rosales-Colunga et al. (2010) estimated 

hydrogen production on inputs of oxidation reduction potential (ORP), dissolved CO2 and pH 

during hydrogen fermentation. A coefficient of determination (R2) value of 0.95 was observed 

indicating that the model had a good fitness (Rosales-Colunga et al., 2010).  The authors 

reported that ANN models successfully estimated the hydrogen production using only on-line 

parameters, suggesting that this software sensor was a low-cost efficient tool for the 

monitoring of the biohydrogen process. Other studies reported on optimization of 
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biohydrogen production using ANN are summarized in Table 1. Important aspects of the 

developed neural network models such as the type of ANN used, ANN structure and 

coefficient of determination (R2) are presented. 
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Table 1: Summary of Biohydrogen production modelling studies using ANN 

Input Parameter Output 

parameters 

Type of 

ANN 

ANN 

Structure 

R2 value References 

pH, glucose: xylose ratio, 

inoculum size, inoculum age 

Cumulative H2 BPNN 4-10-1 0.99 Prakasham et al. (2011) 

T°C, pH, So SE (%), HPR, HY BPNN 3-5-1 - Wang and Wan (2009a) 

T°C, pH, So 

 

HY  BPNN 3-4-1 - Wang and Wan (2009c) 

So, Inoculum %, T°C Cumulative  H2 BPNN 4-(6-10)-1 0.91 Whiteman and Gueguim-Kana (2014) 

ORP, pH, dissolved CO2 

 

HPR  BPNN - 0.96 Rosales-Colunga et al. (2010) 

 

HRT, So,  ORP, pH, recycle 

ratio, alkalinity 

HPR BPNN 12-20-1 0.80 Nikhil et al. (2008) 

OLR, ORP, pH, alkalinity HPR BPNN 4-3-1 - Shi et al. (2010) 
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Table 1: Continued… 

Input Parameters Output parameters Type of 

ANN 

ANN 

Structure 

R2 value References 

pH, So, Xo, T°C, time HPR BPNN 5-6-4-1 0.98 Nasr et al. (2013a) 

OLR, pH, VSS yield HPR BPNN 3-8-4-1 0.85 Nasr et al. (2013b) 

OLR, HRT, influent 

alkalinity 

HY,HPR, TOC eff, 

products conc. 

BPNN - - Mu and Yu (2007) 

pH, Temperature, So and 

HRT 

HY BPNN 4-12-4-1 0.99 Mullai et al. (2013) 

ORP: Oxidation-reduction potential; CO2: Carbon dioxide; HPR: Hydrogen production; HRT: Hydraulic retention time; So: Initial substrate 

concentration, Xo= Initial biomass concentration; T°C: Temperature; SE (%): Substrate degradation efficiency; OLR: Organic loading rate; H2: 

Hydrogen; TOCeff : Effluent total organic carbons; VSS yield: Volatile  suspended  solids yield; BPNN: Back propagation neural network; HY: 

Hydrogen yield;  R2: Coefficient of determination. 
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5.2. Biogas production 

The production of biogas involves the anaerobic digestion of organic materials. Biogas 

mainly comprises methane (55% to 70%), carbon dioxide (30% to 45%) and hydrogen (less 

than 10%) (Jönsson et al., 2003). The methane upgraded from biogas, may be used for heat 

and electricity generation or as a fuel for vehicles (Wellinger and Linberg 2000). 

Optimization of this process may improve the production and application of biogas as an 

alternative fuel to conventional fossil fuel sources. The use of ANNs for biogas production 

has been widely studied. Levstek and Lakota (2010) reviewed the use of ANNs for 

compounds prediction in biogas from anaerobic digestion. These authors summarized some of 

the most significant studies of the assessment and prediction of biogas constituents during 

production using ANNs.  

Similarly, Ozkaya et al. (2007) studied the effect of leachate, pH, alkalinity, chemical oxygen 

demand (COD), sulphate, conductivity, chloride, temperature (°C) and refuse age on methane 

fraction (%) in biogas. The ANN model was developed to capture the effect of the inputs on 

methane fraction using field-scale bioreactors. These models were shown to be versatile and 

may be applied at large scale production. In another study, a multilayer back propagation 

ANN with two hidden layers and sigmoid function was trained to simulate the digestion 

process during biogas production. The ANN model successfully captured the underlying 

patterns in the training data set with input parameters of temperature, total solids, total volatile 

solids and pH. The performance of the ANN model demonstrated its efficiency with a 

correlation coefficient (R2) of 0.87 (Abu Qdais et al., 2010).   

In a study by Elnekave et al. (2012), three different ANNs, viz. back propagation (BPNN), 

radial basis function-based neural networks (RBF) and generalized regression neural networks 

(GRNN) were used to model the effect of flow rate, volumetric load, initial chemical oxygen 

demand (CODin) and initial total suspended solids (TSSin) on final chemical oxygen demand 

(CODout), and final total suspended solids (TSSout) for biogas production. The results 

indicated that the BPNN gave the best predictions with an average deviation in the range of 

6.4-15.6% from the experimental values. These authors successfully developed an ANN 

model that was able to achieve a relatively high COD removal efficiency (77-79%) with 

simultaneous biogas production of 880-11000 m3/day). Other selected studies reporting the 

use of ANN for optimization of biogas production are presented in Table 2. Moreover, 



40 

noteworthy characteristics pertaining to the developed neural network models such as the type 

of ANN used, input and output parameters, ANN structure and coefficient of determination 

(R2) obtained are presented.  
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Table 2: Summary of Biogas production modelling studies using ANN 

 

 

 

 

Input Parameters Output parameters Type of ANN ANN Structure R2 value References 

Flow rate, Volumetric load, 

CODin, TSSin 

CODout, TSSout, Biogas 

production 

GRNN 

RBF 

BPNN 

- - Elnekave et al. (2012) 

OLR, VFA, influent-effluent 

alkalinity, influent-effluent 

pH, T°C 

Biogas production BPNN - 0.93 Kanat and Saral (2009) 

Sludge concentrations Methane production BPNN 5-7-1 0.99 Mahanty et al. (2013) 

Co-substrates concentration Biogas production BPNN 5-2-1 - Gueguim-Kana et al. (2012a) 

Leachate  (pH, Alkalinity, 

COD, sulphate, conductivity, 

chloride, waste T°C) and 

Refuse age 

Methane fraction (%) in 

biogas 

BPNN - 0.96 Ozkaya et al. (2007) 
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Table 2: Continued… 

Input Parameters Output parameters Type of ANN ANN Structure R2 value References 

Peak current , Pre peak slope COD removal 

efficiency (%), 

Methane production 

BPNN 2-3-1 - Harper Jr. and Taewoo 

(2013) 

 

T°C, pH, TS, TVS 

 

Biogas yield 

 

BPNN 

 

- 

 

0.87 

 

Abu-Qdais et al. (2010) 

 

 

H2S:S LR, H2S in biogas, 

total sulphides, , pH,  OLR 

 

 

H2S and NH3 in 

biogas 

 

 

BPNN 

 

 

4-3-1 

 

 

0.91, 

0.83 

 

 

Strik et al. (2005) 

 

CODin:  Chemical oxgen demand (initial); TSSin: Total suspended solids (initial) ; CODout (final): Chemical oxygen demand (final) , TSSout: Total 

suspended solids (final); OLR: Organic loading rate; VFA: Volatile fatty acids ; T°C: Temperature; H2S:Hydrogen sulfide; S:Sulfur; NH3: 

Ammonia; GRNN: Generalized regression neural neworks; RBF: Radial basis function-based neural network; BPNN: Back propagation neural 

network; LR: Loading rate; R2: Coefficient of determination  
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5.3. Microbial Fuel Cell Technology 

Microbial Fuel Cells (MFC) and Microbial Electrolysis Cells (MEC) make up the microbial 

fuel technology. While MFCs produce an electric current from the microbial decomposition 

of organic compounds, MECs partially reverse the process by using bacterial metabolism to 

generate hydrogen from organic material with an electric current (Cheng and Logan, 2007). 

MFC technology has been shown to be efficient for energy generation with simultaneous 

wastewater treatment (Logan and Regan, 2006). Although these systems prove useful, they 

are still limited by the low yields and lack of information pertaining to the influence of the 

interactive effect of key parameters on the process output. Thus there is a need to optimize the 

process parameters to enhance hydrogen and electricity production as well as improving its 

efficiency for wastewater treatment.  

Although  the  field  of  mathematical  models  is  highly  advanced  and  has been extensively 

used for bioprocess modelling (Logan et al., 2006; Kinoshita et al., 1988; Wang, 2004), its 

application for MEC and MFC has been scarcely reported.  Mathematical models may assist 

in the development of these systems with regard to design, power (MFC) and hydrogen 

(MEC) output. These models can be used to test the hypothesis regarding microbial 

community composition, microbial activity and mode of electron transfer in these systems.  

In a study by Tardast et al. (2014), an ANN model was applied for the prediction of power 

density on inputs of pH, temperature and electron acceptor concentration. The ANN model 

had a low mean square error (MSE) and R2 value of 0.0023 and 0.99 respectively suggesting 

high prediction accuracy. The low MSE and high R2 value showed that the ANN was able to 

accurately model the considered inputs with the corresponding output. A similar result was 

observed in a previous study by the same authors (Tardast et al., 2012). The concept of MEC 

technology for hydrogen production is a relatively new research area (Cheng and Logan, 

2007). Hence, the use of conventional modelling approaches for optimization of hydrogen 

production in MECs has been scantily reported (Gil-Carerra et al., 2013; Tartakovsky et al., 

2011; Yahya et al., 2015).  

In our previous study, we developed a committee of ANN models on hydrogen production 

using microbial electrolysis cells (MEC) with inputs of substrate type, substrate 

concentration, pH, temperature, applied voltage and reactor configuration (Sewsynker et al., 

http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Hydrogen
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2015). The coefficients of determination for the five models were 0.90, 0.81, 0.85, 0.70 and 

0.80, respectively. The results showed that the ANN committee was able to efficiently extract 

the non-linear behavior between the inputs and the target output (Sewsynker et al., 2015) The 

use of accurate and reliable models such as ANNs will help broaden the knowledge of both 

MFC and MEC systems and will contribute to increased yield and wastewater treatment 

efficiency.  

As shown in Table 3, few studies from literature have modelled and optimized electricity and 

biohydrogen production from MFC technologies using ANN. A summary of the various 

studies is presented in Table 3.  
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Table 3: Summary of Microbial Fuel Cell (MFC) technology modelling studies using ANN 

Input Parameters Output parameters Type of ANN ANN Structure R2 value References 

pH, BOD, COD, TSS Current generation BPNN 4-4-1 - Tardast et al. (2012) 

 

T°C, pH, Electron acceptor 

concentration 

 

Power density , Current 

density 

 

BPNN 

 

3-3-1 

 

0.98 

 

Tardast et al. (2014) 

 

T°C, ferrous sulphate 

concentration 

 

Voltage 

 

BPNN 

 

3-9-1 

 

0.90 

 

Garg et al. (2014) 

 

pH, T°C, So, substrate type, 

applied voltage, MEC 

configuration 

 

HY 

 

BPNN 

 

6-(6, 8, 11, 12, 14)-1 

 

0.90, 0.81, 

0.85, 0.70 

and 0.80 

 

Sewsynker et al. (2015) 

 

 

BOD: Biochemical oxygen demand; COD: Chemical oxygen demand ; TSS: Total suspended solids ; T°C: Temperature ; So: Initial substrate 

concentration; MEC: Microbial Electrolysis Cell ;  ; HY: Hydrogen yield ; BPNN: Back propagation neural network;  R2: Coefficient of 

determination 
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5.4. Biodiesel production 

Biodiesel will play a major role in providing an alternative fuel for automobiles in the near 

future.  The use of microalgae for biodiesel production represents a renewable and sustainable 

energy source due to their high biomass productivity and ability to treat both air and 

wastewater sources (Christenson and Sims, 2011). The advantages of using microalgae as 

opposed to oil crops (e.g. soybeans) are that microalgae have simple structures and high 

photosynthetic efficiency. Additionally, microalgae can be produced throughout the year 

since its growth conditions can be controlled compared to plant sources that only grow 

seasonally (Wu et al., 2012).  

Nonetheless, the commercialization of microalgae biomass for biofuel production is still 

facing significant difficulties. These include high production costs and low yields. In light of 

these challenges, there is a need to model and optimize the biomass production and lipid 

profile during biodiesel production. The utilization of ANNs for the prediction of chemical 

compositions of lipids for biodiesel production has been well established (Jahirul et al.; 2014; 

Baroutian et al., 2008; Kumar et al., 2000). Few studies have reported the use of ANN for 

optimization of biodiesel production from microalgae. Mohamed et al. (2013) comparatively 

assessed ANN and RSM models for determining the effect of glucose concentration, yeast 

extract and sodium nitrate on the lipid productivity of Tetraselmis sp. FTC 209. Their findings 

revealed that even though both ANN and RSM efficiently modelled the considered inputs on 

the output, the ANN model was more robust for prediction in non-linear systems (Mohamed 

et al., 2013).  

Similarly, Wu and Shi (2006) investigated the effect of glucose concentration on biomass 

concentration (Chlorella pyrenoidosa 15-2070) with the use of a hybrid ANN model and a 

deterministic kinetic model. Optimized biomass concentrations and maximum productivity 

for the hybrid ANN was 10 and 40% higher than that predicted by the deterministic kinetic. 

Other reports on the use of ANNs for optimization of biomass concentration of microalgae for 

biodiesel production are summarized in Table 4. The reviewed literature on optimization of 

biodiesel production elucidates the efficiency of the development of process models such as 

ANNs. As shown in Table 4, modelling and optimization of biodiesel production using ANN 

has been scantily reported. Major elements of the developed neural network models such as 
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the type of ANN used, ANN structure and coefficient of determination (R2) are presented in 

Table 4. 
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Table 4: Summary of Biodiesel production modelling studies using ANN 

Input parameter Output parameter Type of ANN ANN structure R2-value References 

So, yeast extract 

concentration and 

sodium nitrate 

concentration 

Lipid productivity, 

Biomass Concentration 

BPNN 3-10-1 0.99 Mohamed et al. (2013) 

 

Time 

 

Biomass Concentration 

 

- 

 

- 

 

0.95 

 

Furlong et al. (2013) 

 

pH 

 

Biomass Concentration 

 

- 

 

1-2-1 

 

- 

 

Galvão et al. (2013) 

 

Glucose 

Concentration 

 

Biomass Concentration 

 

HNN 

 

1-3-1 

 

- 

 

Wu and Shi (2006) 

BPNN: Back propagation neural network; R2: Coefficient of determination 



49 

5.5. Bioethanol production 

Another renewable and sustainable fuel alternative to the depleting petroleum sources is 

bioethanol. The production of this fuel occurs via the microbial fermentation of organic 

matter. The most commonly used substrates for bioethanol production are corn, sugar 

cane and wheat (Sarkar et al., 2012). However, its competitiveness and market value 

with fossil fuels has limited its implementation. The main goal of bioethanol 

optimization is to increase yields while reducing costs. 

As shown in Table 5, the application of ANNs for modelling and optimization of 

bioethanol production is still limited. Ahmadian-Moghadam et al. (2013) assessed the 

effect of initial substrate (molasses) concentration, live yeast cells and dead yeast cells 

as input process parameters on bioethanol production using Saccharomyces cerevisae. 

An R2 value of 0.93 was obtained which shows that the model was suitable for 

recognizing patterns in the data and accurately predicted the bioethanol yield. In a more 

recent study by Betiku and Taiwo (2015), the effect of breadfruit hydrolysate 

concentration, hydraulic retention time and pH on bioethanol production was evaluated 

using ANN and RSM. The ANN model had a prediction error of 0.24% compared to 

1.67% by RSM. These results further confirm ANNs ability to model non-linear 

processes compared to other modelling techniques such as RSM. Table 5 shows the 

studies on the modelling and optimization of bioethanol production with the 

corresponding bioethanol output. Key features of the developed neural network models 

such as the type of ANN used, ANN structure and R2 value are presented in Table 5. 
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           Table 5: Summary of Bioethanol production modelling studies using ANN 

Input parameter Output 

parameter 

Type of ANN ANN 

structure 

R2-value References 

So, Live Yeast Cells, 

Dead Yeast Cells 

 

 

Bioethanol 

production 

- - 0.93 Ahmadian-Moghadam et 

al. (2013) 

So , HRT and pH Bioethanol 

production 

BPNN 3-3-1 1 Betiku and Taiwo (2015) 

So: Initial substrate concentration; HRT: Hydraulic retention time; BPNN: Back propagation neural network; R2: Coefficient of 

determination 
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6. Genetic Algorithms (GA) coupled with ANN for optimization  

Genetic Algorithm is an artificial intelligence based stochastic non-linear optimization 

technique (Goldberg, 1989). This class of Algorithm was based on the evolutionary 

process of natural selection and genetics in nature (Renner and Ekárt, 2003; Shopova 

and Bancheva, 2006). While ANNs are typically used for modelling non-linear 

associations between the process input variables and the target output, Genetic 

algorithm (GA) is an optimization algorithm that determines the optimum input 

setpoints for the maximum process output (Davis, 1991). Genetic Algorithm has proven 

to be effective in solving various optimization problems in bioprocess development 

(Sarkar and Modak, 2003). Once the ANN model is developed and validated, it is 

deemed an objective function for optimization by the GA module. During the 

optimization process, the first generation which comprises chromosomes that are made 

up of genes (i.e. the inputs being investigated) is assessed using the ANN model. 

Subsequently, the best solutions are chosen for breeding purposes in order to obtain the 

second generation (Sexton et al., 1999; Desai et al., 2008; Whiteman and Gueguim-

Kana, 2014).  

These individuals are then combined arbitrarily for ‘crossing over’ to take place, 

thereby imitating the biological phenomenon of natural selection. The parent 

chromosomes will pair and thereafter exchange genes at randomly spread out points to 

produce the next generation. In order to improve this process, mutations are added and 

genes on specific chromosomes are arbitrarily substituted with values that occur within 

the search range. Once this occurs, a new assortment transpires for the generation of 

new individuals and possible solutions. This process is repeated several times till an 

optimum threshold is met, thereby generating a potential global optimal solution.  

(Sexton et al., 1999; Whiteman and Gueguim-Kana, 2014). Several studies have 

employed ANN models coupled with GA (ANN-GA) for optimization (Pansandideh 

and Niaki, 2006; Sexton et al., 1999; Desai et al., 2008). In particular, the application of 

ANN-GA for biofuel production has been extensively studied (Wang and Wan, 2009c; 

Gueguim-Kana et al., 2012a; Gueguim-Kana et al., 2012b; Whiteman and Gueguim-

Kana, 2014; Betiku and Taiwo, 2015; Abu-Qdais et al., 2010; Ahmadian-Moghadam et 

al., 2013).  For instance, Gueguim-Kana et al. (2012a) reported the modelling and 
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optimization of biogas production on mixed substrates of sawdust, cow dung, banana 

stem, rice bran and paper waste using ANN coupled with Genetic Algorithm (GA). The 

optimized substrate profile predicted biogas production of 10.14 L. Assessment of the 

optimal profile gave a biogas production of 10.28 L, which shows an 8.64% 

improvement in biogas yield coupled with a reduction in the lag phase with the onset of 

production from day 3 compared to day 8 (Gueguim-Kana et al., 2012a). These results 

demonstrate the high modelling ability of ANN for non-linear processes such as biogas 

production. Application of such tools would provide much more insight into the 

optimum conditions required for maximum biofuel production.  

7. Comparative assessment of ANN and RSM for modelling and optimization of 

biofuel production  

Several studies have comparatively examined the use of ANN and RSM for bioprocess 

modelling and optimization (Desai et al., 2008; Giordano et al., 2010; Gueguim-Kana et 

al., 2012b). More specifically, the comparative assessment of ANN and RSM for 

biofuel production is currently increasing (Whiteman and Gueguim-Kana, 2014; Wang 

and Wan, 2009c; Mohamed et al., 2013; Betiku and Taiwo, 2015). In a study by Wang 

and Wan (2009c), RSM and ANN efficiency were compared for modelling biohydrogen 

production. The findings revealed that the RSM model had a much higher prediction 

error (16.60%) in contrast to the ANN model (7.70%) indicating the efficiency of ANN 

over RSM for predicting non-linear systems. This result was also in accordance with 

Whiteman and Gueguim-Kana (2014). Similarly, Mohamed et al. (2013) comparatively 

used ANN and RSM models for modelling and optimizing biodiesel production. These 

authors reported that although RSM was able to relate the considered process inputs to 

the output, the ANN model was more robust for predicting the non-linear systems. 

Betiku and Taiwo (2015) investigated bioethanol production using ANN and RSM. The 

abovementioned authors indicated that the ANN model had a prediction error of 0.24% 

compared to 3.41% by RSM which further confirms the superiority of ANN over RSM.  

A summary of these comparative studies is presented in Table 6. Although both ANN 

and RSM have been reported to be suitable in modelling and optimization of 

bioprocesses, ANN models have proven to be more efficient for non-linear processes 

such as microbial fermentations.
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Table 6: Summary of Comparative modelling studies using ANN and RSM for biofuel production 

So: Initial substrate concentration, T°C: Temperature; H2: Hydrogen; HY: Hydrogen yield; HRT: Hydraulic retention time; R2: Coefficient 

of determination. 

Input Parameters Output 

parameters 

ANN R2 RSM R2 ANN Prediction 

error (%) 

RSM Prediction 

error (%) 

References 

 

So, Inoculum %, T°C Cumulative H2 0.91 0.75 15.12 119.08 Whiteman and Gueguim-Kana 

(2014) 

T°C, pH, So HY - - 7.70 16.60 Wang and Wan (2009c) 

So, yeast extract 

concentration and 

sodium nitrate 

concentration 

Lipid productivity, 

Biomass 

Concentration 

0.99 0.99 4.18 5.72 Mohamed et al. (2013) 

 

So, HRT and pH 

 

Bioethanol 

production 

 

1 

 

0.99 

 

0.24 

 

3.41 

 

Betiku and Taiwo (2015) 
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Conclusion  

Regardless of the complex biological systems associated with bioprocesses, ANNs have 

shown to efficiently encapsulate the non-linear behavior of various fermentation 

processes in biofuel production. The studies highlighted in this review show the high 

prediction accuracy of ANNs. It is apparent that ANNs are becoming a powerful tool in 

modelling biofuel production due to its flexible learning algorithm, diverse network 

topology, fast learning algorithm, and high error tolerance for non-linear processes such 

as those associated with microbial fermentations. Particularly, the use of ANN for 

biohydrogen production has shown to be valuable. However, bioprocess 

experimentation with very small data sizes may be problematic in several instances and 

may be unlikely to provide sufficient information for network training. The use of 

virtual experimentation by employing ANN and GA in bioprocess development can also 

reduce costs and process development time. 
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Abstract  

There is a renewed interest in biohydrogen production as a potential alternative to depleting fossil 

fuels. Its scale up requires the availability of accurate and reliable process models that relate the key 

operational parameters to hydrogen yields at various scales of the process development. In this paper, 

the Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were used to model 

and optimize biohydrogen production at two different process scales. The input variables consisted of 

inoculum size (10-50%), molasses concentration (100-300 g/L) and Hydraulic Retention Time (10-48 

h) and the output was the hydrogen yield (mol H2/ mol sucrose consumed). The considered process 

scales were the culture volumes of 80 and 800 mL. Seventeen experimental data were generated at 

each scale and used for model development and process optimization, thus a total of two models at 

each scale. ANN based models gave R2 values of 0.99 and 0.95 whereas RSM based models gave R2 

values of 0.97 and 0.89 for 80 and 800 mL, respectively.  Process optimization with these models gave 

predicted yields of 0.87 and 0.73 mol H2/mol sucrose consumed (ANN based models) and 1.09 and 

0.72 mol H2/mol sucrose consumed (RSM based models) for 80 and 800 mL, respectively. Models 

validation on ANN models gave experimental yields of 0.89 and 0.71 mol H2/mol sucrose consumed 

compared to 0.99 and 0.70 mol H2/mol sucrose consumed (RSM models) for 80 and 800 mL, 

respectively. These models showed relatively negligible deviations from their predicted values across 

scales. The RSM model at 80 mL (RSM_Model80) predicted the highest yield compared to the other 

three models. A comparative analysis of the prediction errors indicated that the ANN model at 80 mL 

(ANN_Model80) displayed a higher accuracy for prediction on unknown data. Semi-pilot scale (8 L) 

process assessments under optimized conditions showed negligible yield discrepancies from the 

predictive values of the models at lab scale. Microbial community analysis using Next Generation 

Sequencing (NGS) revealed the presence of presumptive hydrogen-producing microorganisms which 

were members within the genus Clostridia, Enterbacter and Klebsiella. These findings suggested that 

miniaturization of experiments for biohydrogen model development do not significantly impact on the 

model accuracy, thus reducing costs during the process developmental stage.  

Keywords: Modelling, Optimization, Bioprocess scales, Biohydrogen production, Artificial Neural 

Networks, Response Surface Methodology 
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Introduction  

The global energy crisis combined with environmental impact from fossil fuel consumption has 

skewed research towards alternative renewable sources [1]. Currently, the fermentative production of 

hydrogen is gaining significant interest. This is due to its high energy yield (122 kJ/g) that is about 2.9 

times greater than fossil fuels [2]. Additionally, the only by-product formed from its combustion is 

water [3]. Various biological methods exist for hydrogen production and include photo-fermentation, 

dark fermentation and microbial electrolysis. However, at present the most energy efficient method is 

via dark fermentation [2]. During this process hydrogen is generated by microbial degradation of 

organic matter under anaerobic conditions [4]. 

The commercialization of hydrogen has been impeded by its low yields [5]. Current efforts are being 

channelled towards modelling and optimization of the physicochemical parameters that have a 

significant impact on the production process. Some of these parameters include pH, temperature, 

hydraulic retention time, agitation, substrate type and concentration and inoculum type and 

concentration [6–8]. Optimum input ranges for temperature, pH, substrate concentration and hydraulic 

retention time have been reported between 25-40°C, 6-9, 10-30 g/L and less than 3 days depending on 

the substrate type, respectively [1, 6–10]. The types of microbes involved in hydrogen production 

include both pure and mixed cultures. Pure cultures mainly comprise of Clostridium and Enterobacter 

spp. [11], whereas mixed cultures consist of a range of microbes that display synergistic interactions 

for metabolic functioning and survival [12–17].   

The search for cheap and renewable substrates for biohydrogen production is currently underway [4, 

18, 19]. Renewable and sustainable feedstocks such as sugar cane molasses may be valuable potential 

feedstocks for biohydrogen production. Molasses are by-products from the crystallization and 

extraction of the majority of sucrose from sugar cane. Cheeseman [20] reported that the production of 

sugar cane molasses in South Africa approximates to 850 000 tons per year. This feedstock is a much 

cheaper alternative to glucose and contains essential vitamins and minerals that are required by the 

microbes involved in biohydrogen production [21]. Therefore, it does not necessitate the 

supplementation of expensive essential vitamins and minerals (iron, nitrogen, phosphorus) that are 

fundamental for the bioprocess, thereby reducing production costs [22].  

Biohydrogen production process scale up requires the development of process models that relate the 

abovementioned key input parameters to the hydrogen yields at the lab scale level [23]. The use of 

models that are accurate and reliable at various scales of the process development phase is of 

paramount importance. Modelling and optimization of bioprocesses have been carried out using the 

One Variable at a Time approach (OVAT) and statistical methods. However, limitations of OVAT are 
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that (1) it does not consider the interactive effects of parameters on the process output and (2) it is 

impractical to obtain a suitable optimum with few experiments [24]. Factorial design of experiment 

(DOE) is tedious, resource-intensive and laborious when the quantity of inputs is increased. 

Conversely, multivariate methods such as the Response Surface Methodogy (RSM) and Artificial 

Neural Networks (ANN) have proven to be more efficient with regard to their predictive accuracy on 

complex non-linear bioprocesses. RSM is a statistical modelling system which employs a polynomial 

regression analysis to produce a second-order model equation thereby relating the process inputs and 

output. Hence, the optimum process operational set points are obtained by solving the model equation 

[25]. RSM assumes that the model equation can estimate the fermentation dynamics quite accurately 

whereas ANN is completely data-driven and studies the relationship between input and output 

variables in an attempt to understand the underlying effects that govern the process, similar to the 

human brain.  The most common ANN architecture is the multi-layered perceptron (MLP) which 

consists of an input, one or more hidden layers and the output, comprising of neurons which may 

differ in amount subject to the complexity of the process it is being applied to [19].  

ANN has proven to be more suitable for modeling bioprocesses compared to RSM [6, 19]. This is 

owing to the fact that ANN does not require a prior knowledge of the process kinetics. Studies have 

indicated that ANN can work well even with relatively less data. However, the data must be 

statistically well distributed in the input domain [19, 26, 27]. Therefore, experimental data of RSM 

should be adequate to build an effective ANN model. The use of ANN and RSM as modelling tools 

for biohydrogen production has been reported [6, 7, 19, 26, 28–30], as well as a comparative 

assessment of both tools [6, 19].  

There is a lack of consensus on the appropriate fermentation process volume size for model 

development, process optimization, and substrate screening required at an early stage of process 

development.  The most commonly reported volume for modelling biohydrogen research has been in 

the range of 100-200 mL [6, 7, 19, 28, 29, 31–33] and to a lesser extent between 1-6 L [34–37]. There 

is a dearth of studies on the scientific rationale of the choice of fermentation volume size for process 

modelling and optimization. Biohydrogen process development requires extensive process knowledge 

from laboratory scale for efficient scale up [23]. Modelling inaccuracies at the laboratory scale 

significantly impact the scale up phase [38]. Several studies have reported on modelling and 

optimization of biohydrogen production [6, 7, 19, 28, 29, 31–37]. In addition to a lack of uniformity in 

the process volume size used for the development of the above models, there is a gap of knowledge on 

the potential impact of the volume size on the model accuracy.   
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In this study, the Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were 

comparatively used to model and optimize biohydrogen production at two different process scales. 

This was performed to determine the impact of process scale (80 and 800 mL) on each model’s 

efficiency. In addition, the sensitivity of each input parameter was examined across both model types 

(RSM and ANN) and scales (80 and 800 mL). Furthermore, the optimized models were comparatively 

assessed at semi-pilot scale.  

Materials and Methods 

Experimental setup 

Substrate and Inoculum Pretreatment 

The inoculum source used in this study was the anaerobic digested sludge obtained from Darville 

wastewater treatment plant, Pietermaritzburg, South Africa. The sludge was autoclaved at 121 °C for 

10 min to deactivate the hydrogen-consuming methanogens [18]. The substrate used in this study was 

sugar cane molasses (C-Molasses), a by-product from the Illovo Sugar Mill, Eston, South Africa with 

the composition as shown in Table 1. The molasses were heated at 60 °C for 30 min to decrease the 

vegetative microbial cells. 

Experimental design 

The Box-Behnken response design was used to generate seventeen experimental runs for the 

development of each model. The input parameters consisted of inoculum size (10-50 %), molasses 

concentration (100-300 g/L) and hydraulic retention time (HRT) (10-48 h). The parameters, with their 

coded values and search ranges are shown in Table 2.  
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Table 1. Composition of the sugarcane molasses (on 100% dark matter basis) 

Component Content 

Moisture 26.67 % 

Non-Structural Carbohydrates 16.69 % 

Crude Protein 4.76 % 

Nitrogen 0.76 % 

Calcium 0.90 % 

Magnesium 0.50 % 

Potassium 4.70 % 

Sodium 0.11 % 

Potassium/Calcium+Magnesium 1.39 % 

Phosphorus 0.12% 

Zinc 8 mg/kg 

Copper 2 mg/kg 

Manganese 94 mg/kg 

Iron 166 mg/kg 

 

Batch Fermentation Experiments 

Bath fermentations were carried out at two scales of 80 and 800 mL to generate data for modelling and 

optimization at these scales. The bioreactors used were modified Erlenmeyer flasks. Thirty four batch 

experiments (seventeen batches per scale) were carried out with pretreated molasses and inoculated 

with the treated sludge. No mineral salts were added since the molasses naturally contained the 

essential minerals and vitamins required by the microbes for biohydrogen production (shown in Table 

1). The reactors were thereafter flushed with nitrogen gas for 2 min to create anaerobic conditions. The 

input parameters, namely inoculum size, molasses concentration and hydraulic retention time (HRT) 

were maintained according to the design in Table 3 and the volumes were made up to each respective 

scale (80 and 800 mL) using autoclaved water. Operational temperature, initial pH and agitation were 

maintained at 37.5 °C, 6.5 and 120 rpm, respectively. All thirty four experiments were carried out in 

duplicate. 
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Table 2. Input variables and their ranges used by Box–Behnken for design generation 

Variable Coded 

Factor 

Input Coded Values Unit 

   -1 0 1  

Inoculum size A 10-50 10 30 50 % 

Molasses Concentration B 100-

300 

100 200 300 g/L 

Hydraulic Retention Time C 10-48 10 29 48 hours 

 

Analytical Procedure 

The hydrogen fraction of mixed biogas was determined using the hydrogen sensor BCP-H2 (Bluesens, 

Germany) with an operational range of 0-100% and a measuring principle based on a thermal 

conductivity detector. The gas volume was measured using the water displacement method. The 

cumulative volume of biohydrogen produced was computed according to Equation (1).  

 

VH,i = VH,i−1 + CH,I (VG,i,-VG,i−1) + VH (CH,i - CH,i−1)       (1) 

VH,i and VH,i−1 are cumulative hydrogen gas volumes at the current (i) and previous (i−1) time 

intervals, VG,i, and VG,i−1 the total biogas volumes in the current and previous time intervals, CH,i and 

CH,i−1 the fraction of hydrogen gas in the headspace of the reactor in the current and previous time 

intervals, and VH the total volume of headspace in the reactor [39]. 

The hydrogen output was computed in terms of hydrogen yield (mol hydrogen/mol sucrose consumed) 

at STP (Standard Temperature and Pressure). For substrate consumption, the sucrose content was 

determined using a Biochemistry Analyzer (Model 2700 select-dual configuration, YSI, USA). 

 

Semi-pilot scale process with optimized models 

Optimized conditions from the four models were further evaluated at semi-pilot scale in a 10 L 

bioreactor (Labfors INFORS HT, Switzerland). The reactor was heat sterilized and four processes 

were set up according to the optimized setpoints of HRT, molasses concentration and inoculum size, 

determined from ANN and RSM based models, with reactor working volumes of 8 L.  The control 

setpoints of initial pH, temperature and agitation were maintained at 6.5, 37.5°C and 180 rpm, 

respectively. These batch processes were designated RSM_Model80_8L, RSM_Model800_8L, 

ANN_Model80_8L and ANN_Model800_8L. All experiments were carried out in duplicate. Hydrogen 
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fraction of the biogas was monitored using a hydrogen sensor BCP-H2 (Bluesens, Germany) with a 

detection range of 0-100% and a measuring principle based on thermal conductivity detector. Gas 

volume was measured using a milligas counter (MGC, Bluesens, Germany). The hydrogen sensor was 

interfaced to the F-lab Biogas software described by Faloye et al. [32] and the sampling interval was 

set to 1 min. The cumulative volume of hydrogen produced was calculated according to Equation (1).  

DNA extraction and Next Generation Sequencing (NGS) 

DNA extraction 

DNA extraction was carried out according to the modified method of Orsini and Romano-Spica [40]. 

A 1 mL sample was extracted during peak hydrogen production from the bioreactor using the 

optimized conditions for the most accurate model (shown under results section) and was suspended in 

1 ml of extraction buffer (50 mM Tris-HCl, 25 mM EDTA, 0.1% (w/v) SDS, 0.1% (w/v) PVP, pH 

8.0). The sample was thereafter centrifuged at 8000 rpm for 1 min. The supernatant was discarded and 

the pellet was suspended in 500 µl of lysis buffer (50 mM Tris-HCl, 25 mM EDTA, 3.0% (w/v) SDS, 

1.0% (w/v) PVP, pH 8.0). The sample was thereafter heated at 90 oC for 10 min and rapidly cooled in 

liquid nitrogen. A pre-warmed (65 oC) extraction solution (500 µl; 10 mM Tris-HCl, 1 mM EDTA, 

300 mM sodium acetate, 1.0% (w/v) PVP) was added to the sample. 

Phenol:choloroform:isoamyalcohol (25:24:1) was added to the tube and mixed by inversion. 

Isopropanol was used to precipitate the resulting DNA. The DNA pellet was subsequently washed 

with 70% ethanol and thereafter re-suspended in 100 µl TE buffer (pH 8.0). The DNA extract was 

quantified using the Nanodrop 2000 spectrophotometer. 

Next Generation Sequencing (NGS) and analysis 

The 16S rRNA gene fragments of extracted DNA were amplified by PCR using the universal bacterial 

primer 907R (5'-CCGTCAATTCMTTTGAGTTT-3') [41]. Next generation sequencing was performed 

on Illumina MiSeq platform (Inqaba Biotec, South Africa). The raw reads obtained for the 

metagenome were used (high quality reads, q>30 were only selected) for taxonomic profiling and was 

carried out using CLC Genomics Workbench 8.5.1 [42], with an e-value less than 5×10-3. 

RSM Model development and Validation 

The experimental data obtained from batch fermentations for 80 and 800 mL were used to develop the 

polynomial equations that relate hydrogen production to the process input parameters. The general 

form of the polynomial model is shown in Equation 2: 

Y= α0 + α1x1 + α2x2 + α3x3 + α11x1
2 + α22x2

2 + α33x3
2 + α12x1 x2 + α13x1 x3 + α23x2 x3  (2)  
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where Y represents the response output, α0 is the intercept, α1x1,α2x2, α3x3 are the linear coefficients,  

α11x1
2, α22x2

2 , α33x3
2 are the quadratic coefficients and α12x1 x2, α13x1 x3, α23x2 x3 represent the 

interaction of coefficients. The significance of these models was assessed using the Analysis of 

variance (ANOVA) (Design Expert software, Stat Ease, Inc.). Optimum input set points for 

biohydrogen yield were obtained by solving the equation using the methods of Myers and 

Montgomery [43]. These set points were thereafter validated experimentally in duplicate. R2 values for 

the RSM models were calculated as the Proportional Reduction of Error (PRE) according to Equation 

3 [44]. 

 

                                                    PRE=  
𝑬𝟏  −𝑬𝟐      

𝑬𝟐
                                                          (3)                                  

where E1 (or total sum of squares, SST) is the prediction errors made when excluding the independent 

variables. E2 (residual sum of squares, SSE) measures the prediction errors made when the prediction 

is based on the independent variables.  

 

Artificial Neural Network Modelling 

ANN structure  

Two individual neural networks built on multilayer perceptrons were structured and used for model 

development. Each neural network had a topology of 3-5-5-1, corresponding to the number of neurons 

of input, hidden (two) and output layers (Figure 1).  

The input vector comprised hydraulic retention time (HRT), sugarcane molasses concentration, and 

inoculum size on the corresponding output (hydrogen yield). The feed forward architecture was 

adopted, whereby the input layer neurons transmitted signals to the hidden layer neurons [45]. For the 

hidden layer, a sigmoid transfer function was implemented. This hidden layer had two main purposes: 

(1) the addition of the weighted inputs together with the linked bias; (2) then, to change the input data 

to a non-linear form, as shown in the following Equations 4 and 5 [45]: 

 

                           sum = ∑ = 1𝑥𝑖𝑤𝑖 +  𝜃
𝑛

𝑖
                       (4) 

 

where, wi (i = 1, n) are the connection weights, θ is the bias and xi is the input variable (Desai et al., 

2008) 

                     𝑓(𝑠𝑢𝑚) =  
1

1+exp (−𝑠𝑢𝑚)
                                                     (5) 
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The learning patterns were randomly selected during the learning process. The Mean Square Error 

(MSE) between predicted and observed data was calculated according to Equation 6. 

 

 

                                         RMSE= √∑ ∑ (𝑦𝑖𝑛−ŷ𝑖𝑛)
2𝑀

𝑛=1
𝑁
𝑖

𝑁𝑀
                                             (6) 

  

where, N refers to the number of patterns used in the training; M denotes the number of output nodes; i 

denotes the index of the input pattern (vector) and yin and ŷin are the actual and predicted outputs, 

respectively. 

 

 
 

Figure 1. Topology of Neural Networks used for ANN_Model80 and ANN_Model800. It consists of 

one input layer (three neurons), two hidden layers (five neurons each) and one output layer (one 

neuron) 

Experimental data from the Box-Behnken design were divided into training and validation sets and 

used to train the ANN models at 80 (ANN_Model80) and 800 mL (ANN_Model800). The back 

propagation (BP) algorithm was used for the training process (Figure 2). The Mean Square Error 

(MSE) for training and validation was 0.007 and 0.025, respectively for the (ANN_Model80), 0.08 and 

0.005 for training and validation respectively for (ANN_Model800).  The training was completed after 

14000 and 5000 epochs for the ANN_Model80 and ANN_Model800, respectively.  
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Figure 2. The back propagation training flowchart for artificial neural network. Note: Mean square 

error (MSE) 

Sensitivity Analysis 

To determine the effect of fractional changes of each input parameter on the hydrogen output, a 

sensitivity analysis was performed. A fractional change on each parameter was carried out in the 

ranges of -100 to 100% in increments of 5 while keeping other parameters at their midpoint values. 

The midrange value was assigned a value of 0%.  
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Table 3. Experimental fermentation batches with the observed and predicted hydrogen yields from RSM and ANN at 80 and 800 mL culture volumes 

 Input parameters Hydrogen yield (mol H2/mol sucrose consumed) 

Run Inoculum 

size (%) 

Molasses 

concentration 

(g/L) 

Hydraulic 

Retention 

Time 

(hours) 

Observed80 

 

RSM_Model80 ANN_Model80 Observed800  

 

RSM_Model800 ANN_Model800 

1 30 200 29 0.966 0.899 0,900 0.494 0.508 0,510 

2 50 300 29 0.204 0.150 0,282 0.253 0.201 0,255 

3 10 200 10 0 -0.041 0,081 0.047 0.042 0,050 

4 50 200 48 0.492 0.533 0,493 0.335 0.340 0,338 

5 30 200 29 0.832 0.899 0,900 0.528 0.508 0,510 

6 10 300 29 0.371 0.294 0,374 0.220 0.108 0,221 

7 10 100 29 0.442 0.496 0,444 0.414 0.467 0,415 

8 30 100 48 1.15 1.037 0,879 0.808 0.691 0,782 

9 30 200 29 0.897 0.899 0,900 0.503 0.508 0,510 

10 50 200 10 0 -0.06 0,001 0.223 0.158 0,225 

11 30 200 29 0.915 0.899 0,900 0.513 0.508 0,510 

12 30 100 10 0 -0.012 0,00171 0.471 0.424 0,473 

13 10 200 48 0.354 0.418 0,358 0.195 0.260 0,198 

14 30 300 10 0 0.116 0,0823 0.0125 0.129 0,0180 

15 50 100 29 0.656 0.732 0,658 0.457 0.569 0,300 

16 30 200 29 0.883 0.899 0,900 0.501 0.508 0,510 

17 30 300 48 0.113 0.125 0,114 0.212 0.260 0,121 
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Results and Discussion 

Assessment of the Significance of RSM Models  

The fitness of the RSM models was assessed using Analysis of Variance (ANOVA). Results are 

presented in Table 4 and 5. The coefficient of determination (R2) is illustrative of the fraction of total 

deviation in the dependent variable that can be accounted for by the independent variables of the 

model.  It is used as a measure of variance and ranges between 0 and 1. R2 values greater than 0.70 are 

indicative of a good model [45].  The coefficients of determination (R2) were 0.97 (RSM_Model80) 

and 0.89 (RSM_Model800), indicating that these models could account for 97% and 89% of variations 

in the observed data. The relatively low P-values of <0.0001 (RSM_Model80) and 0.0120 

(RSM_Model800) and the high F values of 29.04 (RSM_Model80) and 6.31 (RSM_Model800) further 

elucidate the significance of these models. Moreover, an F value this high has only a 0.01 % chance 

that it is due to noise. The lack of fit, P value for the two models at 80 and 800 mL were 0.0365 and 

0.0002 and indicated that the lack of fit was not significant in relation to the pure error. Regarding the 

ANOVA of coefficient of estimates, generally “Prob>F” less than 0.05 is suggestive of the 

significance of the model terms. From Table 4 and 5, it can be seen that the most significant of these 

variables for both RSM_Model80 and RSM_Model800 were Hydraulic Retention Time (C) with a P 

value of <0.0001 and 0.0120 followed by Molasses concentration (B) and finally the mutual 

interaction of Molasses concentration and hydraulic retention time (BC). The polynomial models are 

shown in Equations 7 and 8. 

 

Hydrogen yield at 80 mL = 0.90 + 0.023A − 0.20B + 0.26C − 0.095AB + 0.034AC − 0.26BC −

0.29A2 − 0.19B2 − 0.39C2                                                                         (7) 

 
Hydrogen yield at 800 mL = 0.51 + 0.049A − 0.18B + 0.100C − 2.42X10−3AB − 8.989X10−3AC −

0.035BC − 0.17A2  − 2.027X10−3B2 − 0.13C2                                          (8) 

 
 
where, A is the inoculum size, B is the molasses concentration and C is the hydraulic retention time 

(HRT).  

The optimum conditions predicted by the RSM_Model80 for maximum hydrogen production were 

34.84% inoculum size, 100g/L molasses and 41.84 hours HRT compared to 32.71% inoculum size, 

100g/L molasses and 38.44 hours HRT by the RSM_Model800. These conditions were determined 

using equation (7) and (8) for the RSM_Model80 and RSM_Model800, respectively. 
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Table 4. Analysis of variance (ANOVA) of RSM_Model80 

Factor Coefficient Sum of Squares Degrees of freedom (df) Standard Error F value p value (probability>F) 

Intercept or model 0.90 2.47 9 1 29.04 <0.001 
A-Inoculum size (%) 0.023 0.004257 1 1 0.45 0.5235 
B-Molasses concentration (g/L) -0.20 0.31 1 1 32.45 0.0007 
C-Hydraulic Retention Time (hours) 0.26 0.56 1 1 59.16 0.0001 
AB -0.095 0.036 1 0.049 3.83 0.0912 
AC 0.034 0.004744 1 0.049 0.50 0.5014 
BC -0.26 0.27 1 0.049 28.72 0.0011 
A2 -0.29 0.36 1 0.047 38.28 0.0005 
B2 -0.19 0.15 1 0.047 15.71 0.0054 
C2 -0.39 0.65 1 0.047 69.31 <0.0001 
Residual Error - 0.066 7 - - - 
Lack of fit - 0.057 3 - 7.99 0.365 
Pure Error - 0.009452 4 - - - 

 

Table 5. Analysis of variance (ANOVA) of RSM_Model800 

Factor Coefficient Sum of Squares Degrees of freedom (df) Standard Error F value p value (probability>F) 

Intercept or model 0.51 0.58 9 1 6.31 0.0120 
A-Inoculum size (%) 0.049 0.019 1 1 1.87 0.2133 
B-Molasses concentration (g/L) -0.18 0.26 1 1 25.75 0.0041 
C-Hydraulic Retention Time (hours) 0.100 0.079 1 1 7.76 0.0271 
AB -0.002426 0.00002354 1 0.051 0.002299 0.9631 
AC -0.008989 0.0003232 1 0.051 0.032 0.8640 
BC -0.035 0.004779 1 0.051 0.47 0.5164 
A2 -0.17 0.13 1 0.049 12.39 0.0097 
B2 -0.002027 0.00001731 1 0.049 0.001691 0.9684 
C2 -0.13 0.075 1 0.049 7.37 0.0300 
Residual Error - 0.072 7 - - - 
Lack of fit - 0.071 3 - 134.02 0.0002 
Pure Error - 0.0007059 4 - - - 
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 Assessment of the Significance of ANN Models  

The Analysis of Variance on ANN models gave R2 values of 0.99 (ANN_Model80) and 0.95 

(ANN_Model800) as shown in Table 6. Therefore, these models were able to account for 99 and 95% 

of the variability in the observed data. The relatively low P-values of 0.046 and 0.324 and the high F 

values of 326.73 and 36.14 further elucidate the significance of these models at 80 and 800 mL 

respectively. The high R2 values indicated that both models were able to abstract the relationships 

between the input and corresponding output. Optimized conditions for ANN models were derived 

from the sensitivity analysis and are shown below. 

 

Table 6. Comparison of ANOVA for the developed RSM and ANN models 

Source Sum of 

Squares 

df Mean 

Squares 

F-value P-value R2 

RSM_Model80 

RSM_Model800 

2.47 9 0.27 29.04 <0.0001 0.97 

0.58 9 0.065 6.31 0.0120 0.89 

ANN_Model80 

ANN_Model800 

0.42 1 0.42 326.73 0.046 0.99 

0.23 1 0.23 36.14 0.324 0.95 

df: degrees of freedom; F-value: Fisher-Snedecor distribution value; P-value: Probability value; R2: 
Coefficient of determination 

 

Assessment of the developed models on experimental data 

Figure 3 (a-d) shows the one-to-one relationship between the experimental and predicted yields for 

both ANN and RSM models at 80 and 800 mL. The data points were scattered along or near the 

diagonal line thus illustrating the closeness between the observed and model predicted yields. This 

was more pronounced for the ANN models as compared to the RSM models. Hence, the ANN models 

showed a higher correlation between the observed and model predicted experimental data.  
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Figure 3. Predicted versus observed biohydrogen yields (mol H2/mol sucrose consumed) (a) 

RSM_Model80 (R2=0.97), (b) RSM_Model800 (R2= 0.89), (c) ANN_Model80 (R2=0.99) and (d) 

ANN_Model800 (R2=0.95), respectively. Note: The diagonal line illustrates expectations under a one-

to-one relationship between predicted and observed values 

Sensitivity Analysis on RSM and ANN models 

Sensitivity values display the change in the systems’ output relative to change in the input. Typically, 

a large sensitivity to a variable suggests that the output can vary substantially with a small variation in 

the input parameter [46, 47]. On the other hand, a low sensitivity implies that a small variation in the 

output occurs even if there is a large variation in the input variable.  

For the RSM models, this was done by assessing the coefficients in the polynomial equations. The 

polynomial coefficients showed that HRT had the most significant influence on the hydrogen yield, 

followed by inoculum size and molasses concentration in decreasing order. RSM_Model80 had 

coefficients of 0.26 (HRT), 0.023 (Inoculum size) and 0.20 (molasses concentration) compared to 

    

    

a b 

c d 
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0.100 (HRT), 0.049 (inoculum size) and -0.18 (molasses concentration) for the RSM_Model800. In 

addition, the interactive effect of inoculum size and HRT had the highest coefficients of 0.034 

(RSM_Model80) and -0.008989 (RSM_Model800) for both models.  These data revealed that the order 

of parameter sensitivity was similar at both scales (80 ml and 800ml). The RSM models showed that a 

slight change in HRT will significantly influence the hydrogen yield. On the other hand, the low 

sensitivity of molasses concentration suggests that even if a large variation occurs in this parameter 

within the range studied, little change would occur in the hydrogen output. Additionally, the 

interactive effect of inoculum size and HRT has a significant influence the hydrogen yield.  

Several techniques exist for performing sensitivity analysis on ANN models. In this study, a fractional 

reduction analysis was used. The variations in hydrogen outputs as a response to fractional change on 

process inputs for the ANN_Model80 and ANN_Model800 is illustrated in Figure 4a and b.  

 

Figure 4. Fractional change of input parameters of Inoculum size, Molasses concentration and HRT 

(a) ANN_Model80 and (b) ANN_Model800 on hydrogen yield 

Sensitivity analysis with the ANN_Model80 indicated that a fractional increase in HRT from -55 to -

20% (13.05 to 23.20 h) significantly enhanced hydrogen yield. However, a fractional change in the 

same parameter between -15 and 45% (24.65 to 42.05 h) did not significantly impact the hydrogen 

yield. With regards to inoculum size, it can be seen that a fractional increase from -70.7 to 10% 

(inoculum percentage of 8.79 to 33%) significantly increased hydrogen yield, but further fractional 

increases beyond 30% (39% inoculum concentration) led to a decline hydrogen yield. When 

considering molasses concentration, a fractional increase above 15% (operational molasses 

concentration of 230 g/L) resulted in a significant decline in hydrogen yield. Optimum hydrogen yield 

was observed between a fractional change from -53 to 10% (94-220 g/L molasses) from its midpoint 

 

 

a b 
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value. The impact of fractional variations of input parameters on hydrogen yield can be further 

observed in Figure 4a. 

With regard to sensitivity analysis for the ANN_Model800, a fractional change in HRT from   -69.4 to 

69.4% (0-49.13 hours) led to a significant increase in hydrogen yield. Inoculum size, on the other 

hand, showed that a fractional reduction from its midpoint value to 70.7% (inoculum percentage of 

8.79%) resulted in a decrease in hydrogen yield. Likewise, a fractional increase from 20 to 70.7% (36-

51.21% inoculum concentration) from its midpoint value negatively impacted the hydrogen yield. 

Optimum hydrogen yield was observed between 31.5-34.5% inoculum concentration corresponding to 

a fractional increase of 5 to 15% from its baseline value. With the molasses substrate, it was observed 

that a fractional increase from -15 to 53% (170-306 g/L of molasses) resulted in a significant decline 

in hydrogen yield whereas a fractional reduction from -15 to -50% (170 to 100 g/L of molasses) led to 

a substantial increase in hydrogen yield.  These fractional changes can be observed in Figure 4b. 

To compare the relative sensitivity of input parameters, the gradient of each series was obtained. 

Generally, the higher the slope, the larger the effect of the specific input on the corresponding output. 

The gradient of each series for the ANN_Model80 were 0.0052 (HRT), 0.017 and (inoculum size) and 

-0.0014 and (molasses concentration) compared to 0.0034 (HRT), 0.0016 (inoculum size) and -0.0072 

and (molasses concentration) obtained for the ANN_Model800. A comparative assessment of these 

gradients for both ANN_Model80 and ANN_Model80 showed that HRT had the greatest influence on 

the hydrogen output followed by inoculum size and molasses concentration in decreasing order. The 

high slope obtained for HRT indicated that a slight change in this parameter led to a large variation in 

the hydrogen yield. Alternatively, the low sensitivity observed for molasses concentration implies that 

even if a large variation occurred in this parameter, a slight change would be observed in the 

hydrogen output. It is interesting to note that the sensitivities of the input parameters for both ANN 

models developed at the two different process scales exhibited the same order of sensitivity with HRT 

followed by inoculum size and molasses concentration in decreasing order. A striking observation is 

the consensus on the relative importance of the input parameters as shown by the sensitivity analysis 

with the RSM and ANN models at both scales. Both modelling algorithms revealed that HRT, 

inoculum size and molasses concentration in decreasing order affected biohydrogen production. This 

pattern was observed for both 80 and 800 ml process scales.  

Previous studies have indicated that HRT significantly influenced the biohydrogen production process  

and the optimum  reported  HRT value is within the ranges of 1-6 days depending on the substrate 

source [10, 28, 48–52]. Generally, short HRTs are advantageous for hydrogen production, since the 

hydrogen-producers are able to grow and reproduce rapidly, whereas the methanogens which are 

hydrogen consumers require longer HRTs to proliferate [53].  The inoculum concentration has shown 

to impact the hydrogen yield and reports on the optimum inoculum concentration have indicated that 
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this parameter is dependent on the inoculum source and community adopted. A low inoculum 

concentration of 15% (anaerobic sludge as inoculum) was found to be optimum in a study by 

Whiteman and Gueguim-Kana [19] in contrast to a high concentration of between 65-75% by 

Prakasham et al. [35] using the same inoculum type. Several studies have indicated that moderately 

low inoculum concentrations (<10%) resulted in a decrease in the cumulative hydrogen volume [54–

57].  The optimum substrate concentration for maximum hydrogen yield has been reported by several 

studies [6, 7, 19, 28, 55, 58]. Low substrate levels would result in a decline in the hydrogen yields 

observed due to rapid substrate degradation, whereas elevated substrate concentrations result in longer 

lag phases during fermentation [55, 58]. Studies on molasses have revealed that optimum 

concentration for maximum biohydrogen production ranges between 100-150 g/L [19, 55]. Optimum 

conditions predicted by the ANN models in this study are shown in Table 7.  

Table 7. Optimized input variables with their hydrogen output from the RSM and ANN Models  

Model Inoculum 

size (%) 

Molasses 

concentration 

(g/L) 

Hydraulic 

Retention 

Time 

(hours) 

Predicted H2 

yield (mol 

H2/mol 

sucrose 

consumed) 

Observed 

H2 yield (mol 

H2/mol 

sucrose 

consumed) 

Prediction 

error (%) 

RSM_Model80 

RSM_Model800 

34.84 100 41.84 1.09 0.990 10.10 

32.71 100 38.44 0.720 0.700 2.86 

ANN_Model80 

ANN_Model800 

33 100 29 0.870 0.890 2.25 

33 100 40 0.730 0.710 2.82 

 

 

Comparison of RSM and ANN for prediction accuracy and optimization efficiency 

The percentage error difference (between the experimental yield and the predicted yields) and the 

coefficients of determination (R2 values) for the RSM and ANN models are presented in Table 7. Of 

the four models developed, the RSM_Model80 and ANN_Model80 predicted the maximum hydrogen 

yield of 1.09 and 0.870 mol H2/ mol sucrose consumed whereas RSM_Model800 and ANN_Model800 

predicted hydrogen yields of 0.720 and 0.730 mol H2/ mol sucrose consumed, respectively. 

Experimental validations of RSM_Model80 and ANN_Model80 gave hydrogen yields of 0.990 and 

0.890 mol H2/ mol sucrose consumed. On the other hand, the RSM_Model800 and ANN_Model800 gave 

experimental hydrogen yields of 0.700 and 0.710, respectively. The lower hydrogen yields obtained at 

800 mL compared to the 80 mL process scale may be due to poor mass transfer that occurs within 

larger vessels (Schmidt, 2005). Slight variations were observed between the optimized conditions for 

the RSM_Model800 and ANN_Model800 with predicted hydrogen yields of 0.720 and 0.730 mol H2/ 



93 

mol sucrose, respectively.  The high level of similarity between the hydrogen yields predicted by the 

RSM_Model800 and the ANN_Model800 demonstrates the modelling efficiency of the developed 

models.  

Although the RSM_Model80 gave a higher hydrogen yield compared to the other three models, its 

prediction error (10.10%) was relatively higher compared to these models (2.25, 2.82% and 2.86 for 

the ANN_Model80, ANN_Model800 and RSM_Model800, respectively). These results suggest that the 

ANN models were much more accurate for prediction on unseen data compared to the RSM models. 

A slight variation was observed among the models on their predicted optimum operational 

parameters. For example, the RSM_Model80 predicted an optimum inoculum size, molasses 

concentration and HRT of 34.84%, 100 g/L and 41.84 h whereas the RSM_Model800 predicted a 

32.41% inoculum, 100 g/L molasses concentration and 38.44 h HRT. The slightly higher inoculum 

size with a longer HRT for the RSM_Model80 may account for the increase in observed yield. On the 

other hand, the ANN_Model80 and ANN_Model800 predicted the same optimum inoculum size, 

molasses concentration of 33%, and 100 g/L with a difference in the HRT. ANN_Model80 predicted 

an HRT of 29 h compare to 40 h predicted by the ANN_Model800. With regards to these models, a 

lower mass transfer observed at the larger process volume (800 mL) compared to the lower process 

volume (80 mL) may have contributed to the slightly higher yield for the ANN_Model80 compared to 

the ANN_Model800. These results suggest that although the RSM_Model80 displayed the highest 

predicted hydrogen yield, the ANN_Model80 exhibited a higher prediction accuracy on unknown data.  

The comparative predictive superiority of ANN over RSM has been reported in various studies [6, 19, 

45]. Generally, ANN models exhibit higher modelling and optimization abilities. Additionally, ANN 

has a greater generalization capability whereby it can approximate the majority of non-linear and 

quadratic functions whereas RSM is mostly suitable for quadratic estimations. Desai et al. [45] 

compared ANN and RSM for fermentation medium optimization for scleroglucan production and 

showed that ANN had a greater generalization ability than RSM. Similarly, Whiteman and Gueguim-

Kana [19] comparatively evaluated RSM and ANN for biohydrogen production and revealed ANNs’ 

superiority over RSM.  

 

Potential Impact of process scale on biohydrogen yield 

The observed hydrogen yields at both scales are shown in Table 3. Maximum hydrogen yield obtained 

at the 80 mL process volume was 1.15 mol H2/mol sucrose consumed on inputs of 48 hours (HRT), 

30% inoculum size and 100 g/L molasses concentration. This result was comparable to the yield at 

800 mL (0.808 mol H2/mol sucrose consumed) under similar conditions. No hydrogen production was 

observed at 80 mL process volume when the HRT was 10 hours. On the other hand, low hydrogen 
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yields (0.050, 0.225, 0.473 and 0.0180 mol H2/mol sucrose consumed) were observed at a process 

volume of 800 mL with an HRT of 10 hours.  

A paired sample t-test was performed on the experimentally observed hydrogen yields at both process 

scales (80 and 800 mL). The average mean and t-test statistic was calculated using MS excel 2010 

(Microsoft, Inc, USA). The significance was noted when p <0.05. Results showed that the average 

mean between the hydrogen yields at 80 and 800 mL was 0.123 ± 0.062 mol H2/mol sucrose 

consumed  (t16,17 = 1.99, p = 0.064).  These results indicate that there was no significant difference 

(p>0.05) between biohydrogen yields across scales.  However the 80 mL process volume exhibited a 

slightly higher yield compared to the 800 mL process volume. This result may be attributed to the 

mixing efficiency and thus mass transfer within the reactors. Generally, lower scales would achieve 

higher mixing efficiency and mass transfer as opposed to larger vessels [38].  

In contrast to chemical reactors, the scale up of microbial fermentation processes is significantly 

challenged by the reproducibility in yield as the scale increases. This is due to the physiology of 

growth and thus product formation within the reactor [59]. A frequent catastrophic scenario is the 

inability to maintain physiological conditions from lab scale to a larger scale. Variations from 

physiological uniformity that is initiated by environmental changes may induce stress on the 

microorganisms. These stress conditions can reduce the cells’ physiological functions, thereby 

resulting in a lower product yield [59]. The lower yield observed at 800 mL compared to the lower 

process volume of 80 mL may be as result of reduced mass transfer which was previously described 

by Formenti et al. [60]. Scale up poses various challenges since large vessels are substantially more 

heterogeneous compared to smaller vessels [38, 61]. Shuler and Kargi [61] stated that even when 

geometrically similar vessels are employed, it appears impossible to retain the same level of shear, 

mixing time, and mass transfer from the small vessel to the larger vessel because power and mixing 

constraints generally fail to scale in a linear manner. The approaches to address such challenges 

include using multiple small reactors as opposed to one large reactor.  Rouf et al. [62] compared a 

6000 L vessel to six 1000 L bioreactors of equal size and revealed that although the production costs 

for the 6000 L were lower than that of using multiple reactors, the downstream processing of using 

multiple reactors was much cheaper. Efficient scale up requires the application of deterministic 

models such as computational fluid dynamics to achieve similar mixing efficiencies between different 

scales. Statistical data from this study showed no significant yield difference across both scales. Thus, 

a scale down from 800 to 80 ml could reduce the bioprocess screening time and model development 

cost. 
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Comparative Assessment of the Optimized Models for Biohydrogen production at Semi-pilot scale 

As shown in Figure 5(a-d), short lag phases were observed for all optimized conditions. The observed 

lag phases for the semi-pilot bioprocesses were 2 h, 5 h, 6 h and 4 h for RSM_Model80_8L, 

RSM_Model800_8L, ANN_Model80_8L and ANN_Model800_8L, respectively. Short lag phases are 

desirable. Generally, short lag phases indicate that the microorganisms adapted well to the medium. 

Lab scale studies on biohydrogen production have shown lag phase times of 10, 11 and 20 h [55, 63, 

64] compared to semi-pilot and pilot scale experiments  with  higher lag phases of 19 and 24 h [33, 

65].   

With regards to the RSM_Model80_8L, the exponential phase lasted from 2 to 19 h. The maximum 

hydrogen fraction and cumulative volume of hydrogen were 46.59% and 3180.48 mL, respectively. 

Conversely, the RSM_Model800_8L had an exponential phase of 5 to 18 h with a maximum hydrogen 

fraction and cumulative volume of hydrogen of 38.96% and 2618.12 mL. An exponential phase of 6 

to 20 h was observed for the ANN_Model80_8L with a maximum hydrogen fraction and cumulative 

volume of 45.04% and 2929.40 mL. Similarly, the ANN_Model800_8L had an exponential phase that 

lasted from 4 to 19 h with a maximum hydrogen fraction and cumulative volume of 44.01% and 

2876.93 mL, respectively. Zhou et al. [63] indicated that the exponential growth phase for hydrogen 

production lasted approximately 21.2 h in lab scale experiments.  

Hydrogen production generally takes place during the exponential phase of growth in microorganisms 

[66]. Studies have shown that peak hydrogen fraction may differ depending on the process time, 

substrate type and vessel size in semi-pilot and pilot scale experiments [67]. In a study by Ren et al. 

[68], peak hydrogen fraction of 52% was observed when using a 2000 L pilot-scale bioreactor fed 

with molasses and operated for 200 days. Similarly, in a study by Chang et al. [69], a 12 L bioreactor 

that was operated for 95 days gave a peak hydrogen fraction of 40.4%. Likewise, Lin et al. [67] 

investigated hydrogen production using a 400 L bioreactor that was operated for 65 days and gave a 

peak hydrogen fraction of 37.8% using sucrose as the substrate.  

Maximum hydrogen yields for the semi-pilot processes obtained in this study were 0.89, 0.76, 0.81 

and 0.78 mol H2/ mol sucrose consumed for RSM_Model80_8L, RSM_Model800_8L, 

ANN_Model80_8L and ANN_Model800_8L, respectively. Although, these data exhibit high similarity 

to their corresponding lab scale, slight variations between the semi-pilot scale and lab scale is 

observed. These data may suggest that hydrogen production is influenced by the process scale, in line 

with previous reported studies. For example, Chang et al. [69] obtained a hydrogen yield of 1.40 mol 

H2 mol/ mol glucose when a 12 L bioreactor was used compared to 1.04 mol H2 mol/ mol sucrose by 

Lin et al. [67] when a 400 L bioreactor was used. In addition, Faloye et al. [33] reported a yield of 

2.07 mol H2 mol/ mol glucose using a 7 L bioreactor compared to 2.91 mol H2 mol H2/ mol by Masset 

et al. [70] when a 20 L bioreactor was used. These studies suggest that hydrogen production is 
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dependent on scale which may be attributed to conventional scale-up challenges encountered during 

fermentation process development. After 18 h HRT, the pH values were recorded and were shown to 

decrease from an initial value of 6.50 to 5.82, 5.94, 5.84, and 5.89 for the RSM_Model80_8L, 

RSM_Model800_8L, ANN_Model80_8L and ANN_Model800_8L, respectively. This decrease may be 

due to the metabolic processes that resulted in acid formation [71]. Optimum pH for biohydrogen 

production has been reported in the range of 5.5-6 [54, 71, 72].  

Hydrogen production in the RSM_Model80_8L  batch lasted for  19 h  and corresponded to a substrate 

degradation efficiency and final pH of 55% and 4.39, respectively, whereas the RSM_Model800_8L 

showed a hydrogen production that lasted 18 h with a substrate degradation of 44% and a final pH of 

5.30. Similar to the RSM based semi-pilot experiments, the ANN derived semi-pilot experiments 

showed a relatively short hydrogen production phase and low substrate degradation efficiencies. For 

example ANN_Model80_8L had a hydrogen phase that lasted 20 h with a substrate degradation 

efficiency and final pH of 43% and 4.48, respectively, and ANN_Model800_8L showed a hydrogen 

phase of 19 h and a corresponding substrate degradation efficiency and final pH of 47% and 4.35, 

respectively. The slight deviations in terms of substrate degradation efficiency between the two ANN 

optimized experiments at semi-pilot scale are due to the longer HRT predicted by the ANN_Model800. 

Nonetheless, the slightly higher HRT predicted by the ANN_Model800_8L did not significantly impact 

on the maximum hydrogen yields observed for both models (0.81 and 0.78 mol H2/ mol sucrose 

consumed for the ANN_Model80_8L and ANN_Model800_8L, respectively). Large similarities were 

observed across all four optimized conditions. For instance, the various phases of hydrogen 

production display similarity in terms of fermentation time and hydrogen fractions produced. Other 

similarities include the substrate degradation efficiency and final pH values observed. This highlights 

that all four models developed in this study were efficient for predicting biohydrogen production on 

inputs of inoculum size, molasses concentration and HRT.    

Slight changes in operational parameters such as pH may have adverse effects on the hydrogen-

producers [71]. Faloye et al. [33] reported a peak hydrogen production of 56.8% accompanied by a 

shorter lag phase when the pH was controlled compared to uncontrolled pH (49%) in a semi-pilot 

reactor (7 L). The decline phases observed for all four batches in this study may be due to the shift in 

metabolic process from acidogenic to solventogenic fermentation [71]. Solventogenic fermentation 

results in the production of VFAs such as acetate, butyrate and ethanol which leads to a decrease in 

the pH, thus resulting in a shift in the cells’ metabolism. Several attempts have been made to reduce 

the production of VFAs [32, 73, 74]. These methods include regulating the pH during the process or 

the addition of buffers at the start of the process thereby maintaining the pH which promotes growth 

of hydrogen-producing bacteria [33, 53, 73, 74]. Changes in the operational setpoints promotes the 

growth of hydrogen-consuming bacteria such as homoacetogens which are chemolithoautotrophic and 
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use hydrogen and carbon dioxide for growth thereby producing acetate when the peak hydrogen 

production occurs [71].  

 

Figure 5. Evolution of hydrogen fraction for the optimized runs: (a) RSM_Model80_8L, (b) 

RSM_Model800_8L , (c) ANN_Model80_8L and (d)ANN_Model800_8L 

Microbial community analysis using Next Generation Sequencing 

To determine the microbial community involved within the hydrogen production process, next 

generation sequencing (NGS) was performed on the ANN_Model80_8L. Results based on phylum 

classification are shown in Figure 6. 

 

Figure 6. Taxonomic assignment of bacteria based on Phylum classification 
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As shown in Figure 6, bacteria in the phylum Proteobacteria comprise the majority of microorganisms 

present (64.51%), followed by the Firmicutes (32.41%), other (2.85%) and unknown microbes 

(0.23%). Previous studies on hydrogen production have shown that Firmicutes dominate hydrogen-

producing communities followed by Proteobacteria. This result indicated that some microbes were 

able to survive the inoculum heat pretreatment. Heat treatment does not completely select for 

hydrogen-producing bacteria. For instance, hydrogen-producers that do not form endospores include 

bacteria such as Enterobacter spp., Klebsiella spp. and Citrobacter spp. and were shown to survive 

pretreatments [75–77]. Kraemer and Bagley [78] stated that vegetative cells are not completely 

inhibited by heat treatment which is highly dependent on whether the inoculum source is dry or wet in 

addition to the time and temperature of exposure. Studies on inoculum pretreatment have reported the 

presence of non-spore-forming bacteria [79–81]. 

Presumptive hydrogen-producing microorganisms detected in this study were members of the genus 

Clostridium, Enterobacter and Klebsiella. At species level it was shown that Clostridium 

bifermentans, Clostridium butyricum, Enterobacter clocae and Klebsiella pneumonia were present in 

this system. Generally, major hydrogen-producers are found within the genus Clostridium. These 

microorganisms are Gram-positive, rod-shaped, strictly anaerobic and form endospores that allow 

them to survive extreme conditions [82, 83]. The majority of studies on biohydrogen production have 

revealed the presence of microorganisms within this genus [84]. In a study by Wang et al. [85], a pure 

culture of C. bifermentans was used as the inoculum to digest wastewater sludge and gave a hydrogen 

yield of 0.9 mmol-H2/g-dried solids. Likewise, C. butyricum has shown to be excellent for hydrogen 

production with reported yields of 0.22 and 2.9 mol H2/ mol hexose using pure cultures [66, 86].  

On the other hand, Enterobacter spp. are Gram-negative, rod-shaped and facultative anaerobes [83]. 

Enterobacter cloacae was detected within this community. Members of the genus Enterobacter are 

known for their hydrogen-producing capabilities [87–89]. Other hydrogen-producers found in this 

study were members within the genus Klebsiella. These microbes are Gram-negative, facultative 

anaerobes and are rod-shaped. The presence of Klebsiella spp. has been shown in several hydrogen-

producing reactors [76, 90, 91]. Numerous studies have reported that facultative anaerobes such as 

Enterobacter spp. and Klebsiella spp. play an important role in the utilization of  excess oxygen  

present within  the  bioreactor, thus creating  anaerobic  conditions  required  for  hydrogen  

production [76, 87, 88].   
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Conclusion 

In this study, RSM and ANN models were implemented for fermentative hydrogen processes across 

two scales. Process scales of 80 and 800 mL were considered with inputs of inoculum size, molasses 

concentration and HRT with hydrogen yield as the corresponding output. Results showed that the R2 

value across all scales were relatively high. ANN based models gave R2 values of 0.99 

(ANN_Model80) and 0.95 (ANN_Model800) whereas RSM based models gave R2 values of 0.97 

(RSM_Model80) and 0.89 (RSM_Model800). ANN_Model80 displayed a higher accuracy for prediction 

on unknown data compared to the RSM_Model80, RSM_Model800 and ANN_Model800, respectively. 

ANN models are known for its higher generalization in addition to its modelling ability. Furthermore, 

a sensitivity analysis was performed on both the RSM and ANN based models. Results revealed that 

HRT, inoculum size and molasses concentration influenced the biohydrogen production process in 

decreasing order. The obtained data revealed that variation in process scale within the studied window 

did not impact on the efficiency of ANN or RSM derived process models. An assessment of the 

optimized models at semi-pilot scale gave a relatively similar hydrogen production profile with peak 

fractions within the range of 38.96% and 46.59%. Next Generation Sequencing (NGS) revealed the 

presence of presumptive hydrogen-producing microorganisms which were members within the genus 

Clostridia, Enterobacter and Klebsiella. These findings suggested that miniaturization of experiments 

for biohydrogen model development does not significantly impact on the model accuracy. This is of 

paramount importance as it reduces the process developmental time and resources towards the 

commercialization of biohydrogen.  
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Abstract 

Bioprocess development for hydrogen production requires an excellent understanding of the 

influence of key operational parameters on hydrogen yields at early stages of the innovation 

chain. Knowledge on the impact of inoculum type, substrate type, substrate concentration, pH 

and temperature on fermentative hydrogen yields exist in the public domain. This study builds 

on this knowledge to implement intelligent models that could predict the hydrogen response 

on new physicochemical input values. Two Artificial Neural Network (ANN) models for 

hydrogen production were implemented and assessed using published data from 64 selected 

studies. For both models the multilayer perceptron (MLP) class of neural network was used 

with a topology of 5-7-7-1 corresponding to the number of neurons of inputs, hidden (2) and 

output layers. The input variables consisted of inoculum type (mixed and pure cultures), 

substrate type (xylose, glucose and sucrose), substrate concentration, pH and temperature. The 

output was the hydrogen yield expressed as mole of hydrogen per mole of substrate 

(Mol_Model) or as cumulative volume of hydrogen per gram substrate (Vol_Model). These 

models were validated by predicting the yields on experimental studies not previously used 

for model training. A high coefficient of determination (R2) was obtained for Vol_Model 

(0.90) whereas a low value was observed with Mol_Model (0.46). Sensitivity analysis 

revealed that the most significant inputs on the process yield were temperature, pH, substrate 

type, inoculum type and substrate concentration (Mol_Model) and temperature, inoculum 

type, substrate type, pH and substrate concentration (Vol_Model) in decreasing order. These 

findings showed that the Vol_Model efficiently abstracted the non-linear relationship between 

the considered inputs and biohydrogen yield with a higher prediction accuracy on new 

physicochemical parameters.  Thus, these ANN derived models could be used to navigate the 

optimization space and shorten the biohydrogen process development time. 

mailto:kanag@ukzn.ac.za
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1. Introduction 

Fossil fuel depletion and the steep increase in greenhouse gas emissions have driven research 

towards renewable energy methods [1]. Biohydrogen has proven to be an excellent potential 

alternative to fossil fuel sources [2], due to its high gravimetric energy density of 122 kJ/g, 

which is approximately 2.9 times higher than conventional fossil fuels. Additionally, the 

combustion of hydrogen results in water as the only by-product [3]. Various biological 

methods exist for hydrogen production and include: photo-fermentation, dark fermentation 

and microbial electrolysis. Dark fermentation has shown to generate superior hydrogen 

production rates compared to other processes in terms of energy efficiency, and can exploit a 

wide array of renewable organic matter [4]. It proceeds via the butyrate (2 mol H2/ mol 

hexose) or acetate pathway (4 mol H2/ mol hexose) however; practical yields do not reach 

theoretical values due to metabolic limitations [5]. 

Bioprocess development and scale up requires modelling and optimization of the key 

parameters that impact the output at the initial stages of process development [6]. Key 

parameters for biohydrogen production include pH, temperature, inoculum source, substrate 

type and substrate concentration and may affect the microbes that are involved in the process. 

A bioprocess model provides insight into the individual as well as the interactive effects of 

the various input parameters on the corresponding output. Nevertheless, the non-linearities 

associated with microbial fermentations increase the complexity in model development. Non-

linear systems as opposed to linear systems are not standardized thus resulting in deviations 

between results obtained [7]. The implementation of bioprocess models that efficiently 

encapsulate these non-linearities are of paramount importance for optimization and scale up 

of the process [7]. Numerous studies have attempted to provide models that relate these 

physicochemical inputs to the hydrogen yields [8─12].  

Several factors have shown to impact the hydrogen production process and include: inoculum 

type, substrate type and concentration, temperature, and pH [8─13]. These factors affect the 

microbial community composition, impact the metabolic fluxes and ultimately the amount of 

hydrogen produced in the system, thus selecting the metabolic pathway for biohydrogen 

production [13,14]. A slight change from the optimum set point may have a significant impact 
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on the process yield [13,15─27]. Studies have revealed that pH values below 4.5 inhibit the 

hydrogenase activity and thus will influence the overall yield [15,22,28]. Both pure and mixed 

cultures may be used for hydrogen production [14]. The latter are cheaper to operate, simpler 

to control at large scale without contamination and have a broader choice of substrate 

[29─31].  

With regards to substrate type, pure glucose has been mostly used for biohydrogen research 

[10,14]. It is easily metabolized by most microorganisms. However, the availability and costs 

associated with glucose as a substrate have restricted its potential use for biofuel research.  

Alternatively, sucrose and xylose have been used to a lesser extent [17,19]. Sucrose, a 

disaccharide is more resistant for microbes to degrade; however, the more versatile the 

culture, as in the case of a mixed consortium, the less challenging it becomes. Synergistic 

interactions between microbial communities permit simultaneous carbohydrate degradation 

and biohydrogen production using complex substrates. This is advantageous when 

considering substrates such as lignocellulosic biomass that is mainly comprised of xylose, 

lignin and cellulose. Reports on pure xylose as a substrate are scarce since it is commonly 

accessible from waste plant matter that may be pretreated for the fermentation process. 

Optimum substrate concentration has been reported within the range of 10-30 g/L [10,11,19]. 

Wang and Wan [10] reported a maximum yield of 305.3 mL H2/g glucose. This result was 

consistent with Wang and Wan [11]. Contrariwise, Mu et al. [19] obtained a maximum yield 

of 252 mL H2/g sucrose. 

Significant variations exist between the reported optimum set points of input parameters for 

fermentative hydrogen production [10,11,17,19,32─34].  The development of bioprocess 

models at the initial stages of the optimization process is of paramount importance for 

efficiently relating the key parameters on the hydrogen output [2,35]. The implementation of 

accurate and reliable process models is necessary for the determination of the optimal set 

points for biohydrogen production. 

Different bioprocess modelling algorithms have been employed in biohydrogen research. 

These include the Response Surface Methodology (RSM), fractional factorial design and 

Artificial Neural Networks (ANN) [8,10,11,36─38]. Sekoai and Gueguim Kana [8] used 

RSM to model the effect of substrate concentration, pH, temperature and hydraulic retention 

time on the hydrogen production process and indicated that this model was able to adequately 

relate the inputs to the hydrogen output. Likewise, Venkata-Mohan et al. [36] modelled the 
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effect of inoculum type and pretreatment, inlet pH and feed composition on the hydrogen 

production and substrate degradation efficiency using a fractional factorial design (Taguchi 

method). Results showed that the developed model was able to determine the optimum 

conditions for hydrogen production and substrate degradation.  

ANNs are described as mathematical representations of the neurological functioning of the 

human brain. They imitate the brain’s learning process by mathematically modelling the 

network structure of interconnected nerve cells [39] and can be used for bioprocess model 

development without prior knowledge of the kinetics of metabolic fluxes within the cell and 

the cultural environment [40]. The effectiveness of ANN in bioprocess development has been 

reported in various studies [9─12,35,37,38,40─45]. The ability of ANN models to accurately 

capture the non-linear relationships in hydrogen fermentation processes were illustrated by the 

high correlation between the observed and predicted data in the above-mentioned studies.  

For instance, Prakasham et al. [35] developed an ANN model on hydrogen production with 

inputs of pH, glucose to xylose ratio, inoculum size and inoculum age. Whiteman and 

Gueguim-Kana [9] implemented an ANN model to determine the effect of temperature, initial 

pH, substrate concentration and inoculum size on hydrogen yield. Both models showed a high 

level of correlation between the predicted and observed with R2 values above 0.90 [9,35]. 

Similarly, Nikhil et al. [42] investigated the influence of hydraulic retention time (HRT), 

recycle ratio, sucrose concentration and degradation, biomass concentration, pH, alkalinity, 

oxidation-reduction potential (ORP), and acid and alcohol concentrations on hydrogen 

production rate and acquired a coefficient of determination of 0.90. These models were 

implemented with data sample sizes below 50, as large numbers of bioprocess 

experimentations are costly and time consuming. The predictive accuracy of ANN may be 

enhanced with an increase in data size [46].  With the exception of the study by Nasr et al 

[37], the application of ANN on biofuel bioprocess modelling with a data set beyond 30 has 

been scantily reported [43─45].  

Biohydrogen yields have been typically expressed using the specific hydrogen production 

potential (mL H2/ g substrate) and the number of moles of hydrogen per mole of substrate 

consumed (mol H2/mol substrate). These different units in hydrogen yields may be defined as 

the cumulative volume of hydrogen produced with regard to the total substrate consumed (mL 

H2/g substrate) [10,18] and the number of moles of hydrogen per mole of substrate (hexose 

sugar) consumed (mol H2/mol substrate) [19,24]. The latter is more often used since it 
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accounts for the stoichiometric yield and can be associated with the metabolic pathway 

adopted by the microorganisms involved in the fermentation process. It is thus believed to be 

more suitable for yield comparison [17─19,24,47].  

To the best of our knowledge, there has been no comparative scientific study on 

reproducibility of the above-mentioned yield expressions in the public domain. Additionally, 

despite the availability of scattered reports on the effects of individual as well as the 

interactive effect of input parameters on biohydrogen response, there is a dearth of knowledge 

of intelligent models built on existing information which can efficiently predict the hydrogen 

response on unknown input patterns in the available public repositories. This study aims at 

using Artificial Intelligence to implement intelligent models from existing knowledge that 

could predict the hydrogen response on new physicochemical input values. Two Artificial 

Neural Network models for hydrogen production, based on yield expression type, were 

developed with input variables of (pure and mixed), substrate type (xylose, glucose and 

sucrose), substrate concentration, temperature and pH. The developed models were thereafter 

assessed on new input patterns for hydrogen production. 

2. Materials and Methods 

2.1. Data collection  

Following an extensive survey of the published literature on the effect of various 

physicochemical parameters on biohydrogen production, 64 studies were selected to generate 

182 data points for this study.  These were divided into 133 data points (Mol_Model) from 49 

published studies and 49 data points (Vol_Model) from 15 published studies under varied 

input conditions. 

The selected input variables consisted of inoculum type, temperature, pH, substrate type and 

concentration. The model output was the hydrogen yield as mol H2/ mol substrate 

(Mol_Model) or mL H2/ g substrate (Vol_Model). For the Mol_Model the input parameter 

types and ranges were inoculum type (pure or mixed), substrate type (xylose, glucose and 

sucrose), substrate concentration (10-40g/L), temperature (25-40°C) and pH (4.5-9) (Table 1 

and 2). With regard to the Vol_Model, the ranges for the input parameters were inoculum type 

(pure or mixed culture), temperature (25-40°C), pH (5-9), substrate types (xylose, glucose and 

sucrose) and substrate concentration (10-35 g/l) (Table 3 and 4). 
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Table 1. Database used for the development of the ANN Mol_Model 

Note: Numbers next to substrates were assigned to distinguish between the various types. This was performed based on the molecular 
weights of each substrate, thus xylose (150.13 g/mol), glucose (180.16 g/mol) and sucrose (342.2965 g/mol) were ranked as numerical 
values 1, 2 and 3, respectively.  Inoculum type was designated as (1) for mixed cultures and (2) for pure cultures.  

Table 2. Ranges for input parameters used in the Mol_Model development 

Parameter Minimum Maximum Unit 

Inoculum type 1 2 - 

Temperature 25 40 °C 

pH 4.5 9 - 

Substrate type 1 3 - 

Substrate concentration 10 40 g/L 

Hydrogen yield 0.5 2 mol H2/mol substrate 

Note: Inoculum type: mixed culture (1); pure culture (2); Substrate type: xylose (1); glucose (2); sucrose (3). This was performed 
based on the molecular weights, as described in Table 1. 

 

  Inoculum type  
Carbon source No. of data 

points 
Mixed 
culture 

Pure 
culture 

Temperature 
(°C) 

pH Substrate 
concentration 

(g/L) 

Source 

Xylose (1) 27 12 15 35-40 5.5-9 10-40 [18,20,23,48─53] 
 

Glucose (2) 
 

83 
 

43 
 

40 
 

25-40 
 

4.5-7.5 
 

10-20 
 

[17,19,26,27,47─50,54─79] 
 

Sucrose (3) 
 

23 
 

17 
 
6 

 
30-40 

 
4.7-8.5 

 
10-30 

 
[23─25,68,80─86] 
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Table 3. Database used for the development of the ANN Vol_Model 

Note: Inoculum type: mixed culture (1); pure culture (2); Substrate type: xylose (1); glucose (2); sucrose (3). This was performed 
based on the molecular weights, as described in Table 1. 

 

Table 4. Ranges for input and output parameters used in the Vol_Model development 

Parameter Minimum Maximum Unit 

Inoculum type 1 2 - 

Temperature 25 40 °C 

pH 5 9 - 

Substrate type 1 3 - 

Substrate concentration 10 35 g/L 

Hydrogen yield 101 305.3 mL H2/g substrate 

Note: Inoculum type: mixed culture (1); pure culture (2); Substrate type: xylose (1); glucose (2); sucrose (3). This was performed 
based on the molecular weights, as described in Table 1.

  Inoculum type  
Carbon source No. of data 

points 
Mixed 
culture 

Pure 
culture 

Temperature 
(°C) 

pH Substrate 
concentration 

(g/L) 

Source 

Xylose (1) 3 2 1 37 6-6.8 10-20 [53,87] 
 

Glucose (2) 
 

39 
 

32 
 
7 

 
30-40 

 
5-9 

 
10-40 

 
[10,11,32─34,60,61,88─91] 

 
Sucrose (3) 

 
7 

 
7 

 
0 

 
30-37 

 
5-9 

 
10-30 

 
[18,92] 
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2.2. Neural network development 

For model development, two separate Artificial Neural Networks (ANN) built on multilayer 

perceptrons were structured. Each Neural network had a topology of 5-7-7-1, corresponding 

to the number of neurons of input, hidden (two) and output layers (Figure 1).  

 

 
Figure 1. Topology of Neural Networks used for Mol_Model and Vol_Model.   It consists of 

one input layer (five neurons), two hidden layers (seven neurons each) and one output layer 

(one neuron). 

The feed forward architecture was adopted, whereby the input layer neurons transmitted 

signals to the hidden layer neurons [93]. For the hidden layer, a sigmoid transfer function was 

implemented. This hidden layer had two main purposes: (i) the addition of the weighted 

inputs together with the linked bias; (ii) then, to change the input data to a non-linear form, as 

shown in Equations 1 and 2 [93]: 

 

sum = ∑ = 1𝑥𝑖𝑤𝑖 +  𝜃
𝑛

𝑖
  (1) 

 

where wi (i = 1, n) are the connection weights, θ is the bias and xi is the input variable (Desai 

et al., 2008) 
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    𝑓(𝑠𝑢𝑚) =  
1

1+exp (−𝑠𝑢𝑚)
                           (2) 

 

The learning patterns were randomly selected during the learning process. The Mean Square 

Error (MSE) between predicted and observed for the cross-validating data for both models 

was calculated according to Equation 3. 

 

   RMSE= √∑ ∑ (𝑦𝑖𝑛−ŷ𝑖𝑛)
2𝑀

𝑛=1
𝑁
𝑖

𝑁𝑀
                       (3) 

  

where N refers to the number of patterns used in the training; M denotes the number of output 

nodes; i denotes the index of the input pattern (vector) and yin and ŷin are the actual and 

predicted outputs, respectively. 

 

2.3. Data pretreatment, ANN training and validation 

Prior to using the data, noise reduction was achieved by discarding the outliers. Data 

normalization was carried out according to Equation 4. Data on substrate and inoculum type 

were transformed to coded values. This was done based on the molecular weights for each 

substrate. Thus, xylose (150.13 g/mol), glucose (180.16 g/mol) and sucrose (342.2965 g/mol) 

were coded as 1, 2 and 3, respectively. For inoculum type, mixed cultures and pure culture 

were coded as 1 and 2, respectively. 

Normalized (𝑒𝑖) = 𝑒𝑖− 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
  (4) 

 

where ei  is the normalized data and Emin and Emax  denote the minimum and maximum values 

set at -0.9 and 0.9, respectively.  

 

Both ANN models were trained using the back propagation (BP) algorithm [9] with a 

momentum and learning rate of 0.05 for both models, respectively.  In this process, the error 

between the experimental (observed) and predicted data was propagated backward through 

the network and used to adjust the neurons’ connections. This process was repeated until the 

MSE between the experimental and predicted data was reduced below an acceptable threshold 

(Figure 2). 
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Figure 2. The back propagation training flowchart for artificial neural network.  

 

2.4. Sensitivity Analysis 

Sensitivity analysis was carried out to assess the impact of fractional changes of each input 

parameter on hydrogen response. A fractional change on each parameter was carried out in 

the ranges of -100 to 100% while keeping other parameters at their midpoint values (0%). The 

midrange values for substrate and inoculum type were assigned based on the most commonly 

reported substrate and inoculum type. For substrate type, xylose, glucose and sucrose were 

designated -50, 0 and 50%, respectively. Regarding inoculum type, mixed and pure cultures 

were designated -50 and 50%, respectively. 

 

3. Results and discussion 

3.1. Experimental Data Overview 

An examination of the database indicated that glucose, a monosaccharide that is easily broken 

down, has most commonly been used as a substrate for biohydrogen research 

[10,11,17,19,47]. Xylose and sucrose have also been used but to a lesser extent [18,87]. 

Biohydrogen yields on these substrates vary from 0.5 to 2.35 mol H2/mol glucose and 101 to 

305.3 mL H2/g glucose, depending on substrate type and the substrate concentration which 

ranges from 10-40g/L [10,76].  
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Inoculum type has shown to play a major role on hydrogen yields. Mixed cultures have been 

more commonly used compared to pure cultures since the former are simpler to handle, 

cheaper to operate and metabolize a wide range of substrate types. Pure cultures include 

microbes from the genus Clostridium. Mixed culture communities for hydrogen production 

are present in natural environments such as soil, wastewater, sewage sludge, compost and 

animal dung [47,53,60,91,94]. Within these mixed consortia, a synergistic interaction occurs 

whereby the non-hydrogen producing microbes create favourable conditions for the 

hydrogen-producing microorganisms [95─97].  

The pH parameter has been suggested as one of the most critical variables in bioprocesses. 

Surprisingly, most reported studies on biohydrogen have been carried out without pH 

regulation throughout the duration of the process and the stated initial values ranged from 4.5-

9 [98─100]. Unlike the pH parameter, temperature has been regulated in most studies on 

biohydrogen in the range 25-40°C [1,19,24,53,66,68,69,85,101]. 

3.2. Challenges associated with non-uniformity for expression of hydrogen yields 

Studies on biohydrogen production have commonly reported yields as mL H2/g substrate and 

mol H2/mol substrate. The non-uniformity in unit expression for biohydrogen research has 

significantly impeded the process development [1]. The need for common expression in 

hydrogen data has previously been expressed by several authors [1,102,103].  Additionally, 

the non-uniformity in biohydrogen yield expression poses significant challenges in the 

reproducibility of experiments. 

 

3.3. Assessment of the Models’ Significance  

During the training process, the MSE between the predicted and the observed data reduced to 

0.004 and 0.42 for training and cross validation for the Mol_Model, and to 0.006 and 0.08 for 

training and cross validation for the Vol_Model. The fitness of the two models was assessed 

using Analysis of Variance (ANOVA) (Table 5). The coefficients of determination (R2) for 

Mol_Model and Vol_Model were 0.46 and 0.90 respectively, thus indicating that these 

models could account for 46% and 90% of variations in the observed data. R2 values > 0.70 

are regarded as good models [93]. Low P-values of < 0.019162 and 0.008908 and high F-

values of 26.71 and 72.89 were observed for the Mol_Model and Vol_Model, respectively. 

These statistical indices point to a relative predictive superiority of the Vol_Model over the 

Mol_Model.  
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Logan et al. [103] stated that the amount of hydrogen produced from a substrate is generally 

calculated for specific carbohydrates on a molar basis. Usually, the number of moles of 

hydrogen produced in an experiment is calculated from the volume of hydrogen produced and 

the ideal gas law as nH2=VH2P/(RT), where P (bar) is the atmospheric pressure measured in the 

laboratory and R is 0.08314 L bar/K mol. However various researchers have substituted the 

standard temperature and pressure in the same equation for computing the hydrogen yield 

[62,104] and this can account for great variation in the yields observed among other factors.   

The limitations of using the ideal gas law are that: (1) it only works well at low pressures and 

high temperatures; (2) most gases do not behave ideally above a pressure of 1 atm; (3) it does 

not work well near the condensation conditions of a gas. Thus, using the ideal gas law at 

standard conditions poses additional limitations since the pressure differs from place to place 

and will affect the volume of gas produced since pressure is inversely proportional to the 

volume of gas [105,106].  Conversely, the mL H2/ g substrate unit of expression presents 

different challenges. For example, the cumulative volume of hydrogen gas is influenced by 

the environmental pressure and temperature at which the experiment is conducted. These are 

not taken into account with this unit of expression.  

The mol H2/ mol substrate unit of expression is a stoichiometric yield that may be used for 

determining the metabolic pathways adopted by the microbes involved in the fermentation 

process. However, this may be much more complex when considering mixed microbial 

consortia. This is a result of the various microbes present within mixed culture systems that 

follow different metabolic pathways in the same system. Therefore, it is difficult to determine 

the metabolic pathways based on the stoichiometric yield [107]. In such circumstances, 

microbial community analysis needs to be performed using high throughput methods such as 

next generation sequencing for establishing the microbes involved and ultimately the major 

metabolic pathways in the fermentation process [108]. Another investigative method for 

confirmation of the metabolic pathway followed is volatile fatty acid (VFA) analysis [109].  

Therefore, standardization of reporting hydrogen yields is crucial for overcoming the 

discrepancies in hydrogen output under similar conditions. Optimization of biohydrogen 

production requires an in-depth knowledge of the key parameters that drive the fermentation 

process. The availability of an enhanced biohydrogen process model that accurately predicts 

process output over a wide range of input conditions will reduce the experimental burden. In 
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this study, the Vol_Model showed a relative superiority over the Mol_Model. These results 

indicate that biohydrogen research should apply this unit of expression for reporting yields in 

future studies for a more accurate comparison.  

The developed models in this study were thereafter assessed for their predictive accuracy on 

hydrogen yields from 33 and 10 data points for the Mol_Model and Vol_Model, respectively. 

These data points were obtained from studies by Mu et al. [19], Lin and Cheng [23], Wang et 

al. [24], Wang et al. [25], Xing et al. [27], Sivagurunathan et al. [47], Lo et al. [50], An et al. 

[53], Kawagoshi et al. [55], Baghchehsaraee et al. [59], Wang and Wan [60], Zhao et al. [66], 

Junghare et al. [68], Liu et al. [69], Tang et al. [70], Kurokawa and Tanisho [74] and Mei et 

al. [85] for Mol_Model and Wang and Wan [10],  Mu et al. [18], Wang and Wan [60], Qian 

et al. [61], Cheng et al. [87] and for Vol_Model. These data were not previously used in the 

development of the models. 

Table 5. Analysis of Variance (ANOVA) for Mol_Model and Vol_Model 

Source Sum of 

Squares 

df Mean Squares F-value P-value R2 

Mol_Model 4.089058 1 4.089058 26.71 0.019162 0.46 

Vol_Model 21572.04 1 21572.04 72.89 0.008908 0.90 

 

The plots of predicted versus observed hydrogen yield values are depicted in Figure 3(a) and 

3(b) for the Mol_Model and Vol_Model respectively. Figure 3(a) showed that the data points 

are scattered on either side of the diagonal, thereby illustrating a weak relationship between 

the predicted and the observed hydrogen yields for the Mol_model. On the other hand, Figure 

3(b) showed that most data points were aligned near the diagonal, thus illustrating the 

closeness between the predicted and observed yields.  
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Figure 3. Predicted versus observed biohydrogen yields (mol H2/mol substrate and mL H2/g 

substrate) values for 10 and 33 experimental data sets for (a) Mol_Model (R2=0.46) and (b) 

Vol_Model (R2= 0.90), respectively. Note: The diagonal line illustrates expectations under a 

one-to-one relationship between predicted and observed values.  

3.4. Mol_Model prediction on new experiments not used for training 

The Mol_Model was further assessed using 33 data points from studies carried out by Mu et 

al. [19], Lin and Cheng [23], Wang et al. [24], Wang et al. [25], Xing et al. [27], 

Sivagurunathan et al. [47], Lo et al. [50], An et al. [53], Kawagoshi et al. [55], 

Baghchehsaraee et al. [59], Wang and Wan [60], Zhao et al. [66], Junghare et al. [68], Liu et 

al. [69], Tang et al. [70], Kurokawa and Tanisho [74] and Mei et al. [85] (Figure 4a).  

For instance, the observed hydrogen yields in the study by Mu et al. [19] with input variables 

of temperature, pH and substrate concentration were 1.78 and 1.73 mol H2/mol glucose 

against 1.72 mol H2/mol glucose predicted by the Mol_Model. Wang et al. [24] studied the 

influence of pH, temperature and substrate concentration on hydrogen production. Observed 

hydrogen yields were 0.65, 2.23 and 0.887 mol H2/mol sucrose against the Mol_Model 

predicted of 0.81, 2.17 and 1.89 mol H2/mol sucrose, respectively.   

Similarly, Sivagurunathan et al. [47] evaluated the effect of individual and combined mixed 

culture inoculum sources on biohydrogen production. Observed hydrogen yields were 1.93 

(cow dung+anaerobic sludge+pig slurry), 1.86 (anaerobic sludge), 1.95 (anaerobic sludge + 

pig slurry) and 1.61 (cow dung+pig slurry) mol H2/mol glucose. The Mol_Model under 

similar conditions predicted a hydrogen yields of 1.88 mol H2/mol glucose for all the above-
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mentioned inoculum combination types. Likewise, Kawagoshi et al. [55] investigated the 

influence of pH on hydrogen production using anaerobic digested sludge as an inoculum. The 

observed hydrogen yield was 1.80 mol H2/mol glucose against 0.69 mol H2/mol glucose 

predicted by the Mol_Model. In addition, Baghchehsaraee et al. [59] obtained a hydrogen 

yield of 1.95 mol H2/mol glucose compared to 1.77 mol H2/mol glucose predicted by the 

Mol_Model. Wang and Wan [60] observed a hydrogen yield of 1.78 mol H2/mol glucose 

compared to 1.00 mol H2/mol glucose predicted by the Mol_Model. Alternatively, the 

observed yield of 1.96 mol H2/mol glucose by Zhao et al. [66] was slightly higher than that 

predicted by the present Mol_Model under similar conditions (1.65 mol H2/mol glucose). In a 

study by Junghare et al. [68], an experimental hydrogen yield of 1.49 mol H2/mol sucrose was 

achieved which was significantly lower than that predicted by the Mol_Model (2.21 mol 

H2/mol sucrose) developed in this study. A similar correlation pattern between the predicted 

and the observed yields using the Mol_Model was observed by Liu et al. [69], Tang et al. 

[70], Kurokawa and Tanisho [74] and Lo et al. [50] and the predicted yields by the 

implemented  Mol_Model.  

On the other hand, Wang et al. [25] obtained hydrogen yields of 2.46 mol H2/mol sucrose, 

2.21 mol H2/mol sucrose and 1.35 mol H2/mol sucrose against predicted yields of 1.89, 2.04 

and 1.26 mol H2/mol sucrose by the Mol_Model, respectively. A comparable result was 

observed between the experimental and predicted yields by Lin and Cheng [23], Xing et al. 

[27], An et al. [53] and Mei et al. [85].  Although this model exhibited a low R2 value (0.46), 

it is interesting to note that the trends between the predicted and observed values in Figure 

4(a) display a high level of parallelization. 

The low correlation observed within the Mol_Model does not demonstrate any weakness of 

ANN as a modelling tool but is attributable to the non-uniformity in reported hydrogen yields 

initially used for model development. Non-uniformities that have led to the variations 

observed may be related to the inconsistencies between methods used for yield computation in 

terms of the pressure and temperature used. Despite the low R2 value obtained with the 

Mol_Model, an acceptable match pattern was observed between the predicted and 

experimental  hydrogen output (Figure 4a). This result shows the robustness of ANN models 

for bioprocess development.  
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3.5. Vol_Model prediction on new experimental studies  

The developed Vol_Model was further assessed by predicting the hydrogen response on 10 

data points from studies carried out by Wang and Wan [10], Mu et al. [18], Wang and Wan 

[60], Qian et al. [61], Cheng et al. [87] and Wang and Wan [89] (Figure 4b).  A high 

correlation was obtained between the predicted and the observed hydrogen response using this 

model. For example, the observed hydrogen yield in the study of Wang and Wan [10] under 

the input variables of temperature, pH and substrate concentration was 131.9 mL H2/g 

glucose. In this study, the Vol_Model predicted 156.7 mL H2/g glucose. Additionally, in the 

same study by Wang and Wan [10], hydrogen yields of 123.1 mL H2/g glucose and 305.3 mL 

H2/g glucose were observed. The implemented Vol_Model predicted 150.1 mL H2/g glucose 

and 287.3 mL H2/g glucose under similar conditions.  

 

 
Figure 4. Observed hydrogen yield compared to the predicted for (a) Mol_Model (33 data 

points) and (b) Vol_Model (10 data points)   

The Vol_Model predicted hydrogen yields of 133.5 and 253.2 mL H2/g sucrose obtained with 

the experimental inputs from the study of Mu et al. [18]. The observed yields were 101 and 

255 mL H2/g sucrose. The considered input pattern was pH (6.0 and 5.5), temperature (30 and 

35°C) and substrate concentration (20 and 25g/L). Likewise, Wang and Wan [60] achieved a 

hydrogen yield of 223 mL H2/g glucose against 225.3 mL H2/g glucose predicted by the 

Vol_Model. A similar correlation pattern between the predicted and the observed yields using 

the Vol_Model was observed by Wang and Wan [60], Qian et al. [61], Cheng et al. [87] and 

Wang and Wan [89]. In the study by Qian et al. [61] observed yields were 152.9 mL H2/g 

glucose and 140 mL H2/g glucose compared to 172.6 mL H2/g glucose and 162.8 mL H2/g 
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glucose predicted by the Vol_Model. Cheng et al. [87] observed a hydrogen yield of 177.8 

mL H2/g xylose compared to 191.3 mL H2/g xylose (predicted by Vol_Model). Furthermore, 

the observed yield by Wang and Wan [89] was 180 mL H2/g glucose vs 192.9 mL H2/g 

glucose predicted by the Vol_Model. The high correlation observed between the experimental 

and predicted hydrogen yields can be linked to the models’ high generalization ability to 

predict on novel input parameters. The slight discrepancies between the observed and model 

predicted yields may be accounted for by the ineluctable mismatch in experimental conditions 

encountered in microbial bioprocesses.  

Nevertheless, ANN models have proven to be valuable especially for their robustness in

biological systems prediction [9,10]. These observations demonstrate the Vol_Models’ high 

predictive ability in novel virtual experimentations. 

3.6. Sensitivity analysis of input parameters on ANN models 

Sensitivity analysis was carried out on the developed models to determine the relative 

sensitivity of hydrogen yields on input parameters of inoculum type, substrate type, substrate 

concentration, pH and temperature. A sensitivity indicator represents the adjustment in the 

systems’ outputs attributable to variations in the process input parameters.  A large sensitivity 

to a parameter implies that the process output can change considerably with slight variation in 

the input parameter [110,111]. Conversely, a low sensitivity indicates a little change will 

occur in the output of the system even if a large variation occurs in the input parameter. The 

sensitivity analysis for the Mol_Model (Figure 5a and c) and Vol_Model (Figure 5b and d) is 

shown below. The lines on each graph represent the rate of change of the output with respect 

to a change in each input.  
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Figure 5 (a-d). Impact of fractional change of input parameters on hydrogen output (a) 

Inoculum type and Substrate type (Mol_Model), (b) Inoculum type and substrate type 

(Vol_Model), (c) Temperature, pH and substrate concentration (Mol_Model) and (d) 

Temperature, pH and substrate concentration (Vol_Model) on hydrogen yield 

Sensitivity analysis on the Mol_Model indicated that using mixed cultures had a relatively 

higher hydrogen yield (1.15 mol H2/ mol glucose) compared to pure cultures (0.73 mol H2/ 

mol glucose). Whereas, the Vol_Model showed that for  inoculum type, both pure (50%) and 

mixed cultures (-50%) were efficient for hydrogen production with similar yields of 162.5 mL 

H2/g substrate and 164.8 mL H2/g glucose, respectively. The slight increase in hydrogen yield 

for mixed cultures for the Vol_Model may be accounted for by the synergistic interactions 

between mixed microflora [61].  

The diverse microorganisms exhibit different metabolic pathways thus they are able to 

produce hydrogen from a wide range of substrates. Mixed cultures have shown to be effective 

for hydrogen production since the microbial community displays synergistic interactions for 

biohydrogen production. However, mixed culture communities may require a pretreatment to 

deactivate the hydrogen-consuming microbes such as the methanogens and encourage 

hydrogen producers such as Clostridium spp. Several studies have shown that different 
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pretreatment methods of the mixed inoculum source may lead to improved yields 

[62,112,113]. Nevertheless, other studies have demonstrated that pure cultures result in higher 

yields compared to mixed culture systems [61,73,114─117].  

With reference to substrate type, a fractional increase of 50% from the baseline which 

corresponded to sucrose, resulted in the maximum predicted hydrogen yield of 1.62 mol 

H2/mol sucrose followed by glucose (1.15 mol H2/mol glucose) and xylose (0.99 mol H2/mol 

xylose) for the Mol_Model. On the other hand, the Vol_Model showed that for substrate type, 

glucose (162.5 mL H2/g glucose) had the greatest influence on the hydrogen yield followed by 

xylose (152.8 mL H2/g xylose) and sucrose (78.4 mL H2/g sucrose).  

With the substrate concentration, it was shown that a 10% reduction from its midpoint value 

(22.5 g/L) resulted in a maximum predicted hydrogen yield of 1.42 mol H2/mol glucose for 

the Mol_Model. The Vol_Model however showed that a fractional reduction of 30% from its 

base line value (15.19 g/L) resulted in the maximum predicted yield of 276,4 mL H2/g 

glucose.  Interestingly, the optimum substrate concentration predicted by both models was 

within the range previously stated by [10,11,17─19,60]. 

The Mol_Model  showed that a fractional change in temperature of 24.5% increase from the 

base line (thus an operating temperature of 40.45°C) resulted in a maximum predicted 

hydrogen yield of 1.94 mol H2/mol glucose. On the other hand, a fractional change in 

temperature of 24.5% reduction from its midpoint value (24.55°C) decreased the hydrogen 

yield to 0.83 mol H2/mol glucose.  For the Vol_Model, a fractional increase in temperature of 

10% from its base line (38.5°C) resulted in a maximum predicted hydrogen yield of 282.1 mL 

H2/g glucose. The higher temperature values predicted by the Mol_Model (40.45°C) and 

Vol_Model (38.5°C) were consistent with previous studies on hydrogen production 

[10,11,13,18,19,60], since the hydrogen-producers generally grow under mesophilic (20-

40°C) and thermophilic conditions (40-60°C). 

A fractional change in the pH value has shown to significantly influence hydrogen yield. A 

fractional reduction in pH of 35% from its base line (4.39) resulted in a maximum hydrogen 

yield of 1.17 mol H2/mol glucose. However, when the pH was fixed at its midpoint value 

(6.75) a slightly lower hydrogen yield of 1.15 mol H2/mol glucose was observed. Regarding 

the Vol_Model, optimum pH was predicted at a fractional increase of 15% from its midpoint 

value (operational pH of 8.05), corresponding to a predicted hydrogen yield of 187,7 mL H2/g 
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glucose. The optimum pH range for hydrogen production has been reported to be between 5-9 

[13,98─100]. Previous studies have shown that pH values below 4.5 inhibit the hydrogenase 

activity during the fermentation process and are unfavorable for the hydrogen production 

process [15,22,28].  The predicted pH by the Vol_Model indicates that an initial pH of 

approximately 8 is required for maximum hydrogen yield. This value was within the range (5-

9) previously reported for optimum hydrogen yield [15,12].  

A comparison of the relative sensitivity of process inputs was computed based on the rate of 

change on hydrogen output for the Mol_Model and the Vol_Model. Slope values showed that 

for the Mol_Model, the relative sensitivity increased from substrate concentration (-0.0104), 

inoculum type (-0.0042), substrate type (0.0025), pH (0.0063) to temperature (0.0271) 

whereas for the Vol Model, the relative sensitivity increased from substrate concentration (-

0.9648), pH (-0.837), substrate type (-0.7441), inoculum type (0.0235) to temperature 

(1.4567). 

3.7. Limitations of the developed models 

Additional parameters not considered in this study during model development, but which may 

impact on biohydrogen production include the inoculum pretreatment temperature and time 

since many microbes survive certain pretreatments and may impact on the overall yield [62]. 

Different microbes exist in the various sources and have shown to influence the process yield. 

Additionally, the quantity of essential nutrients for hydrogen production within fermentation 

medium (such as iron, nitrogen and phosphorus) have not been considered [13,14,35,62].  

4. Conclusion 

In this study, two intelligent bioprocess models have been implemented using ANN on 64 

reported studies on fermentative hydrogen processes for the Mol_Model and Vol_Model, 

based on yield expression units (mL H2/ g substrate and mol H2/ mol substrate). A significant 

discrepancy was observed in the size of explainable variations of the two models with 

coefficient of determinations (R2) of 0.46 and 0.90 for the Mol_Model and Vol_Model, 

respectively. Assessment of these models indicated that they were able to efficiently 

encapsulate the highly non-linear associations between the inputs and corresponding 

hydrogen yield pattern within the design space. The Vol_Model showed a superior 

biohydrogen predictive accuracy on various novel experimental data not used for training. 
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Thus, the implementation of intelligent bioprocess models with aggregated knowledge from 

several laboratories will significantly shorten the process development cost and time.  
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CHAPTER 5  

Modelling of biohydrogen generation in microbial electrolysis cells (MECs) 

using a committee of artificial neural networks (ANNs) 

 

 

This chapter has been published with the title: Modelling of biohydrogen generation in 

microbial electrolysis cells (MECs) using a committee of artificial neural networks (ANNs) in 

Biotechnology and Biotechnological Equipment (2015, 29(6):1208-1215) 

 

The published paper is presented in the following pages. 
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CHAPTER 6 

Conclusions and Recommendations 

for Further Research 

 

6.1. Conclusions  

In this study, the impact of experimental process volume size on the efficiency of Artificial 

Neural Networks (ANN) and Response Surface Methodology was investigated at process 

scales of 80 and 800 mL. In addition, ANN models were developed for biohydrogen 

prediction from dark fermentation and microbial electrolysis using existing knowledge in 

public repositories. Major findings and their significance are summarized as follows: 

6.1.1. The impact of process volume size on bioprocess modelling efficiency was assessed 

using RSM and ANN for hydrogen production. This was carried out across two process scales 

(80 and 800 mL). Results showed that there was no significant difference (p>0.05) between 

modelling at two different bioprocess scales (80 and 800 mL) for biohydrogen production. 

ANN based models achieved higher coefficient of determination (R2) values (0.99 and 0.95) 

compared to RSM based models (0.97 and 0.89) for 80 and 800 mL, respectively.  In 

addition, the lowest prediction error (2.25 %) was observed for the ANN model at a process 

volume of 80 mL. Thus, ANN had a higher modelling and optimization efficiency compared 

to RSM for complex, non-linear systems.  

6.1.1.1.   Semi-pilot scales at 8 L process volume for all four optimized conditions showed 

negligible deviations from their corresponding flask volumes. Therefore process 

miniaturization does not impact on the accuracy of ANN and RSM derived process models 

thus, this reduces the process development time and costs.  

6.1.1.2.   Microbial community analysis of the semi-pilot scale process carried out at peak 

hydrogen production phase revealed that presumptive hydrogen-producing microorganisms 

within this system were members of the genus Clostridia, Enterobacter and Klebsiella.  

6.1.2. Two intelligent bioprocess models were implemented using ANN on 64 selected 

reported studies for fermentative hydrogen processes based on two yield expression units (mL 

H2/ g substrate and mol H2/ mol substrate). A high coefficient of determination (R2) was 
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obtained for the cumulative volume of hydrogen per gram substrate model (Vol_Model) (mL 

H2/ g substrate) (0.90) whereas a low value was observed with the mole of hydrogen per mole 

of substrate model (Mol_Model) (0.46). These findings showed that the Vol_Model 

efficiently abstracted the non-linear relationship between the considered inputs and hydrogen 

yield with a higher prediction accuracy on novel biohydrogen experiments. Thus, these ANN 

derived models could be used to predict hydrogen yields on novel experimental inputs or to 

navigate the optimization space and shorten the biohydrogen process development time. 

6.1.3. A committee of ANN models was developed using 15 selected reported investigations 

on MEC processes. The coefficient of determination (R2) between the experimental and 

predicted hydrogen yields for the five models were as follows: 0.90, 0.81, 0.85, 0.70 and 0.80. 

An average R2 value of 0.85 was obtained for the five models. Validation on new MEC 

processes showed a strong correlation between the observed and predicted hydrogen yields. 

Findings showed that the committee of networks accurately modelled the non-linear 

relationship between the considered physicochemical parameters of MEC and hydrogen yield, 

and thus could be used to determine the optimum set points in MEC scale-up processes. 

6.2. Recommendations for future studies 

Based on the findings derived from this study, the following recommendations can be made 

for future research on biohydrogen process development: 

6.2.1. Dark fermentative hydrogen production may be integrated with other processes such as 

biodiesel, biogas, microbial fuel cell technology (Microbial Fuel Cells and Microbial 

Electrolysis Cells) and bioethanol by the use of a two-stage system. This may assist in the 

achievement of higher substrate conversion and energy efficiency when using substrates such 

as sugarcane molasses.  

6.2.2. A standard unit of expression for reporting hydrogen yields should be used to enable 

the inter-laboratory reproducibility within the research community. This will enhance 

hydrogen process development towards commercialization.  

6.2.3. The application of Artificial Intelligence (AI) tools such as ANN on existing process 

data provide virtual experimentations for dark fermentative hydrogen production and 
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Microbial Electrolysis Cells (MECs). This could significantly lower the time and costs of 

process development. 

6.2.4. Improvement in the capability of the hydrogen-producing microorganisms by using 

metabolic engineering and immobilization techniques for higher hydrogen yields in addition 

to the utilization of low-cost materials with regard to substrate type, reactor configurations 

and modes of production. This will enhance the industrial feasibility of the biohydrogen 

production process as it will significantly reduce costs associated with upstream, production 

and downstream processes.  

 

 


