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Abstract

Hybrid systems combine the continuous behavior evolution specified by differential equations with

discontinuous changes specified by discrete event logic. Usually these systems in the processing

indushy can be identified as having to depend on discrete decisions regarding their operation. In

process control there therefore is a challenge to automate these decisions.

A model predictive control (MPC) strategy was proposed and verified for the control of hybrid

systems. More specifically, the dynamic mah"ix control (DMC) framework commonly used in

industry for the control of continuous variables was modified to deal with mixed integer variables,

which are necessalY for the modelling and control of hybrid systems.

The algorithm was designed and commissioned in a closed control loop comprising a SCADA system

and an optimiser (GAMS). GAMS (General Algebraic Modelling System) is an optimisation package

that is able to solve for integer/continuous variables given a model of the system and an appropriate

objective function. Online and offline closed loop tests were undertaken on a benchmark interacting

tank system and a heating/cooling circuit. The algorithm was also applied to an industrial problem

requiring the optimal sequencing of coal locks in real time. To complete the research concerning

controller design for hybrid behavior, an investigation was undertaken regarding systems that have

different modes of operation due to physicochemical (inherent) discontinuities e.g. a tank with

discontinuous cross sectional area, fitted with an overflow. The findings from the online tests and

offline simulations reveal that the proposed algorithm, with some system specific modification, was

able to control each of the four hybrid systems under investigation.

Based on which hybrid system was being controlled, by modifying the DMC algorithm to include

integer variables, the mixed integer predictive controller (MIPC) was employed to initiate selections,

switclrings and determine sequences. Control of the interacting tank system was focused on an

optimum selection in terms of operating positions for process inputs. The algorithm was shown to

retain the usual features ofDMC (i.e. tuning and dealing with multivariable interaction). For a system

with multiple modes of operation i.e. the heating/cooling circuit, the algorithm was able to switch the

mode of operation in order to meet operating objectives. The MPC strategy was used to good effect

when getting the algorithm to sequence the operation of several coal locks. In this instance, the

controller maintained system variables within certain operating constraints. Furthermore, soft

constraints were proposed and used to promote operation close to operating constraints without the

danger of computational failure due to constraint violations. For systems with inherent discontinuities,

a MPC strategy was proposed that predicted trajectories which crossed discontinuities. Convolution

models were found to be inappropriate in this instance and state space equations describing the

dynamics of the system were used instead.
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CHAPTER 1
Introduction

Process control involves the operation of some level of intelligence in parallel with a process. This

intelligent source directs the process to meet given objectives and at the same time stabilises its

operation during disturbances.

hl process conh'ol this intelligence is formally known as a controller. A process controller is typically

a mathematical algorithm (model), designed to invert the process and thereby make logical, automatic

decisions regarding its manipulation. Depending on the nature of the process variables, there exist two

kinds of dynamical systems (mathematical algorithms representing a process) in simulation and

control. These are continuous time systems and hybrid systems. Basic phenomena in processing

systems are inherently time continuous. The dynamical properties can often be determined using

principles of conservation of mass and energy together with equations describing process components.

However, in some instances binary/integer variables are required to model a process. In this event

where there is a combination of continuous and binary/integer variables, the system is said to be

hybrid in nature.

Since the phenomena to be modeled aTe all concerned with fundamentally continuous flows of

material and energy, the question arises as to when the use of binary/integer variables, in process

modelling and control, will become necessary and thus warrant a shift to a hybrid modelling

paradigm. In answering this question, there are a number of reasons for including discontinuous

mechanisms into continuous process models:

• It may be of interest to explicitly model inherent process discontinuities, at which continuous

behavior is drastically changed.

• Actuators and sensors (final and initial control elements) are often fundamentally discontinuous.

• Discrete events can be used to model various types of mode switching used in the control of
continuous processes.

Apart from the processing indush)', hybrid system behavior also arises in other application areas e.g.

automotive and aeronautic industries, and the computer science community. Over the last decade,

there has been great interest in studying hybrid systems, firstly from a theoretical point of view and

secondly because of their wide variety of practical applications. Despite much research, there as yet

does not exist a unified approach to deal with hybrid systems. Instead there are several theoretical

frameworks that are motivated by specific objectives and tasks (section 2.2).

1-1



Chapter 1: Introduction

Control design for hybrid processes is challenging and complex due to the combination of continuous

and discrete variables. Several approaches regarding the control of hybrid processes have been studied

e.g. logic-based switching, supervisory control, game theoretic control, predictive control, switch

control and hierarchical control. Despite research in these areas, the control of hybrid processes in the

chemical industry has mainly been based on hemistic rules, designed from a "common sense"

approach that accounts for specific plant scenarios (Torrisi et al., 2001). These rules are then used to

compile "if-then-else" logic, which is then used as a basis for a control algorithm Using this

relatively more ullstructmed approach, makes the analysis of the overall controlled plant for all

possible scenarios a hard task. This is typically solved in industry by perfomring a large number of

Hms with the controller.

In this research project a model predictive control (MPC) approach, is proposed and validated, for

processes exhibiting hybrid characteristics. The aim is to provide a more "holistic" approach to

optimally deal with constraints and multivariable interactions. The control strategy is aimed at

providing stabilisation to an equilibrium state or tracking of a desired reference trajectory, via

feedback control. MPC has already been adopted in indush)' over the past twenty years to solve

control problems for continuous linear systems. The control strategy is based on a receding horizon

philosophy, where a sequence of fUMe conh'ol actions, is determined according to the fUMe

predicted output of the system. The fIrst new control action is applied to the phnt until new

measurements become available. At the same time, based on the new measurements, another sequence

is established, which replaces the previous one. Each sequence is determined by means of an

optimisation procedure that takes into account two objectives: firstly optimise tracking performance

and secondly protect the system from possible constraint violations. MPC can thus be viewed as an

online procedure that systematically improves a systems dynamic performance, while keeping it

within defined regions of operation.

Along with the effort and expense required to build a good process model for a MPC controller, the

other limitation of MPC is its online computational complexity. It is for these reasons that this area of

hybrid system control hasnot been extensively implemented. The continuous on-line optimisation of

hybrid processes is a problem in mixed integer dynamic optimisation (MIDO). Numerical solutions of

MIDO problems rely on mathematical techniques developed to solve mixed integer non-linear

programming (MlNLP) problems e.g. branch and bound techniques (B&B) and outer approximation

(OA) methods. Over the past decade, there have been signifIcant improvements on the methods for

solving MlNLP problems. Coupling these advancements to the advances in computing technology,

the real time control of hybrid processes using MPC is now possible.

1.1 Research Objective

A MPC scheme is proposed which is able to control hybrid systems on desired reference trajectories,

while fulfilling operating constraints. This project is aimed at evolving and using a standard

formulation of MPC i.e. dynamic matrix control (DMC), to control and optimise the operation of

1-2



Chapter 1: Introduction

laboratory scale and industrial processes that exhibit hybrid system characteristics. When a

convolution model, as required by DMC, is not viable, then state space equations describing the

dynamics of the process are tlsed.

The control algorithm is designed to initiate or anticipate (as is the case in physicochemical

discontinuities i.e. discontinuities due to inherent fundamental physical behaviour): selection;

switching; and sequencing procedures, all of which inh'oduce hybrid behaviour into the processes

considered. In extending the on-line model predictive control strategy to include integer variables, it

will be possible to address a number of practical engineering problems that were previously not

considered as candidates for MPC.

1.2 Thesis Overview

This thesis consists of nine chapters, including the introduction. Chapters 2, 3 and 4 focus on the

theory concerning hybrid system predictive control. The next four chapters show the development and

design of the mixed integer controller based on specific lab scale and industrial processes. Chapter 9

draws conclusions and makes recorrnnendations.

Chapter 2 focuses on hybrid systems. It presents an illustrative example of a hybrid system and then

goes on to identify typical features in the processing industry that warrant mixed integer modelling

and control. Furthermore, it presents a 1iteratme review concerning hybrid system modelling and

control, together with examples of industrial hybrid systems. Chapter 3 deals with model predictive

control, more specifically dynamic matrix control, and how it can be modified to acconnnodate

integer variables. It also presents the closed control loop structure used to validate the controller

online, with the plant or offline against a model. Chapter 4, on mixed integer dynamic optimisation, is

concerned with the computational aspects of the control algorithm It also focuses on mixed integer

programming (MIP) where process logic is converted to mathematical representations using equality

and inequality constraints. This chapter also introduces GAMS, the optimisation software tool used to

design the controller.

Chapter 5 presents the first of two laboratory scale case studies. These studies are aimed at showing

the selection capability of the controller on an interacting tank system Chapter 6 concerns a fmther

study which deals with the switching capability of the controller on a thermal circuit with 3 modes of

operation. An industrial application is considered in chapter 7, involving the sequencing of a series of

gasifiers. Chapter 8 is focused on processing systems with physicochemical (inherent) discontinuities.

The operation of a hypothetical tank structure is simulated and controlled. The thesis concludes with

chapter 9. A summary of the findings from the closed loop tests with the controller is presented, and

recommendations for futme research are made.
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This chapter deals with hybrid systems. It commences with an illustrative example of a hybrid system

Section 2.2 presents features that cause systems in the processing industry to have a hybrid nature and

also how this relates to process conh·ol. Thereafter a literature review provides an overview of the

previous work done regarcling the modelling and control of hybrid systems, in terms of publications,

research groups and conferences. The chapter concludes by presenting typical examples of industrial

hybrid systems.

2.1 Illustrative Example

Presented below is the acceleration profile for the new Mercedes-Benz AMG SLK32 taken from Car

Magazine April 2002. The plots show the speed, engine speed (revs) and gear selection for a thirty­

second time interval as the car accelerates from standstill to a tenninal speed of 190 km per hour.

speed versus time engine revs versus time
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o 5 10 15
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Figure 2. 1: Dynamics of an
accelerating car

A system is said to be hybrid if it has continuous components interacting with logical or cliscrete

components. The different dynamic responses (car speed and revs) of the car accelerating through the

gears is an illush'atlon of a typical hybrid behaviour. The gear selection is either done manually, by

the driver, or through an automatic transmission (as in this case), either way it is a cliscrete logical

decision. Also the gears can only assmne positions from an integer set {1,2,3,4}, determined by the

number of gears that the car has. The speed of the car is a continuous variable, meaning that the car
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can assume any speed from 0 km per hour to its terminal speed of 190km per hour. The engine speed

exhibits discontinuous dynamic behaviour because it changes every time a new gear is selected. The

interaction between the continuous and discrete dynamics is evident, as the car speed is determined by

the engine speed differently for each gear. This interaction between the continuous and

discrete/discontinuous dynamics is typical of hybrid system behaviour. Therefore in order to model
,

this system, integer variables are required to simulate the gears, while continuous variables are

necessary for the car and engine speed.

Another example in the motoring industry of a hybrid system is "hybrid vehicles." Toyota introduced

the Prius, the world's first mass-produced hybrid car, to the Japanese market in 1997. Hybrid

techn!Jlogy is said to introduce the best of two worlds to the operation of the motor car. In this hybrid

vehicle, the power and self - contained mobility of an internal combustion engine are combined with

the clean efficiency of an elech'ic motor. The result is a car that is the equal of conventional vehicles

in range and performance, with far fewer harmful emissions and much better fuel economy. This

system is hybrid because it brings together two concepts into a single entity and operation requires

that these concepts are switched between or function in tandem

2.2 Hybrid system control

Discrete variables, used as part of a model to describe hybrid behaviour, represent decisions that have

to be made regarding the operation of that system These decisions are usually left up to some form of

intelligence or control procedure. In process control, the control of hybrid systems then involves the

evaluation or initiation of these decisions. One way to initiate these decisions is to trigger them based

on the optimal dynamic performance of the system extending into the future (see chapter 3 model

predictive control).

If the dynamics of the system are known, together with the interaction between the variables, the

operation of the system can be' optimised. The optimisation of systems with discrete/continuous

dynamics, coupled with integer decisions and constraints, is a problem in Mixed Integer Dynamic

Optimisation (MIDO) dealt with in chapter 4.

An example of a MIDO problem is when the accelerating car described in the previous section, has to

maintain a certain speed, while using minimum fuel. The controller outputs would be the accelerator

position (continuous) and gear selection (discrete). The control mechanism could then select the

appropriate gear and optimum accelerator position in order to meet the objectives of speed and

economy. Certain constraints would have to be accounted for e.g: engine speed limits i.e.

minimum/maximum allowable engine speed in a given gear. These are used to protect the engine

from stress caused by high engine speeds and strain caused by low engine revs. The optimisation

could be done repeatedly in real time, to account for changes in the gradient of the road (up-hill or

downhill) which will alter the load on the engine. Hence the car inputs viz. gear and accelerator

position would have to be changed accordingly.
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It is apparent that a model of a hybrid process has to account for the combined continuous and

discontinuous features that characterise the process. The occurrences of these features are now

discussed, together with control and modelling considerations.

2.2.1 Continuous feature

Basic phenomena in process control are inherently time continuous. Hence dynamics can often be

described using physical properties. Modelling often leads to a system description in state space form,

x(t) = f(x(t),u(t),t)

where u(t) is a vector of external inputs.

2.2.2 Discontinuous feature

(2.1)

It is the discontinuous feature that brings about the hybrid nature into processes. In the processing

industry, there are many kinds of discontinuous features. These are discussed below.

a. Different modes ofphysical behaviour

As pointed out in section 2.2.1, continuous dynamics can be descnbed generally by equation 2.1,

where x represents variables like level, temperature and concentration. Functionf is generally smooth,

but in certain instances may contain discontinuous changes that reflect a change in the process.

Physicochemical discontinuities that are inherent in the operation of the process bring about these

changes. In this instance, more than one function is required to completely define the operation of the

process.

b. Discontinuous outputs

Discrete sensors are used often in the processing industry, even if there is no apparent process

discontinuity. For example a discrete level sensor will signal that the level of a tank is above or below

a critical value. Typically such sensors are used to indicate constraints of operation.

c. Discontinuous inputs

Discontinuous inputs are the most common discrete feature in the processing industry. An example of

a discontinuous element in process control is the discrete actuator e.g. binary valve (open/closed), a

pump (on/off) or mixing motor (on/off). These are examples of binary actuators, but other non-binary

examples exist e.g. 3-valued motor driven actuator (forwardlbackward/stop). Such actuators form an

important group of process components and together with the control functions associated with them
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e.g. manuaVautomatic modes, supervIsIOn, sequence control etc, constitute a significant part of

application specific software in conh"ol systems.

To be able to integrate the discrete actuators in the overall process modelling and system design,

specific modelling concepts will have to be developed. There are important distinctions between these

discontinuous features (sections b and c) and those discussed previously (section a). In this case, the

events signifying a change of state will usually be a controllable event. In the previous case (section

a), the system can be described by more than one set of equations that are continuous in nature,

however the discontinuity exits in that only one set is active at any given moment. For discontinuous

inputs, an explicit model of the actuator states and transitions are needed to be able to describe the

system completely.

d. Discontinuous control

The final example of discrete features in process control is more related to the control strategy than

the process itself. The most apparent example of tIns is found in the control of batch processes. Here

it is natural to specify overall procedures or recipes as compromising a number ofphases. During each

phase, the control system acts in a specific mode, performing functions like filling, emptying, heating,

mixing etc. In these situations, it is convenient to distinguish between different phases or modes via

discrete variables (e.g. by multiplying changes occurring by 0 or 1) and then to couple these to

different sectors in the control system

Gain scheduling of controllers also gives rise to a coupled discrete - continuous system description. In

advanced control systems like adaptive controllers, valious switching functions are usually coupled to

continuous control algorithms.

Furthermore with regards to discontinuous control, there exists a new and fascinating discipline

bridging control engineering, mathematics and computer science, referred to as "hybrid control

systems." Hybrid control systems arise from the interaction of discrete plamling algorithms and

continuous processes and as such they provide the basic framework and methodology for the analysis

and synthesis of autonomous and intelligent systems. These types of systems contain two distinct

types of components i.e. subsystems with continuous dynamics and subsystems with discrete

dynamics which interact with each other. Figure 2.2 is an illustration of digital computation, which is

essentially discrete, but must interface to processes that are ultimately continuous. Such systems arise

. from computer aided control of continuous processes, connnunication networks, auto pilot design,

computer synchronisation and industrial process control.
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exogenous
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Figure 2.2: Interaction between finite state machines and
continuous dynamical systems through analog-to-digital (NO) and

(O/A) interfaces .

2.3 Literature Review

Over the past decade, there has been increasing interest shown in the study of hybrid systems, both

from a theoretical and a practical point of view. There has been considerable effort to develop

theoretical frameworks and models for such systems. Despite much research, there as yet does not

exist a unified approach to deal with hybrid systems. Rather there are several theoretical frameworks

that are motivated by specific tasks and applications.

The work done in the field of hybrid system modelling is extensive, because of the vast number of

processes that can be considered as hybrid in nature. Most notably, much documentation comes from

the hybrid control systems domain (Barton and Pantelides, 1994; Antsaklis, 1998; Mignone et.al,

1999), where computers and their algorithms, due to their digital nature, can be considered as hybrid

systems.

There are many publications concerning the modelling, simulation and control of hybrid processing

systems. Lennartson et at. (1994, 1996) were of the first to document the modelling and control of

hybrid systems with particular emphasis on process control applications. A general model structure

for hybrid systems was proposed. The model structure separated the openloop plant from the closed

loop system and was said to be suitable for analysis and synthesis of hybrid control systems. The

controller issued discrete/continuous cOlmnands to the plant based on feedback information. The

control problem was treated as a time optimal one.

Barton and Pantelides (1994) introduced a new formal mathelnatical description of the combined

discrete/continuous simulation problem This enhanced the understanding of the fundamental discrete

changes required to model processing systems. The model task was decomposed into two distinct
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activities: modelling fundamental behaviour and modelling extemal actions imposed on the system.

Both required significant discrete components.

Henzinger (1996) presented the Theory of Hybrid Automata. Here hybrid automata were classified

according to what questions about their behaviour could be presented algorithmically. The

classification revealed structure on mixed discrete - continuous state spaces that were previously

studied as purely discrete state spaces only.

Slupphaud and Foss (1997) and Slupphaud et al. (1997) were one of the first cited researchers to use

MPC for controlling hybrid systems. Together with the research group at the Swiss Federal institute

of Technology (ETH) Zurich, they present the only attempts at using a model predictive approach in

hybrid system control.

Lygeros et al. (1999) provided an overview of modelling, analysis and controller synthesis techniques

for hybrid systems. A modelling framework for describing a wide class of hybrid phenomena was

initially presented and then conditions for existence and uniqueness of solutions were provided. A

method for designing controllers for hybrid systems with reachability specifications was also

reviewed.

Mosterrnalill (1999) dealt with an investigation into software packages regarding their support for

hybrid system simulation. Based on hybrid system phenomena, numerical simulation required the

implementation of specific features, similar to those discussed in section 2.2. An evaluation of several

existing hybrid system simulation packages was also presented.

Riedinger and Krantz (1999) proposed the maximum principle of Pontryagin as an efficient way to

solve optimisation problems in hybrid systems. After presenting a general structure for optimal

control of hybrid systems, they make use of the maximum principle in order to get necessary

conditions for optimal control.

Pepyne and Cassandras (2000) proposed a specific framework motivated by the common problem

occurring in the manufacturing industry. In the manufacturing industry, the aim is to design a control

strategy to maximise production within minimum time, but to maintain certain standards of quality. A

hybrid system modelling framework was designed to address this problem. Ideas from queuing

networks were adapted to form a non-linear optimisation structure.

Recently Sedghi et at. (2002) presented a controller design framework for hybrid systems based on

approximate continuous time models and standard continuous control techniques. A model reduction

procedure was used that eliminated all discrete states. Since the reduced system lost its hybrid nature,

the procedure is termed dehybridisation.

2- 6



Chapter 2: Hybrid Systems

There are also research groups that dedicate their efforts to hybrid system modelling. Most notably,

Manfred Morari and his colleagues at the Automatic Control Laboratoryl in the Swiss Federal

institute of Technology (ETH) Zurich, have done the most extensive research in hybrid system

modelling. They base all of their investigations concerning hybrid system modelling on their mixed

logic dynamic (MLD) framework (Mignone, 1999). This generalised framework is used for control,

fault detection, state estimation and verification of hybrid systems. Using the techniques of Raman

aIid Grossmann (1991, 1992) prepositional logic is transformed into linear equalities involving integer

and continuous variables. In this transformation, a system of equations comprising linear dynamic

equations and linear mixed integer inequalities is arrived at. Regarding the control of hybrid systems,

the MLD framework is used as the foundation for a model predictive control strategy that is aimed at

stabilising hybrid systems (Bemporad and Morari, 1998). Based on the MLD formulation, a number

of industrial processes were modelled and controlled using a MPC strategy e.g. a gas supply system

(Bemporad and Morari, 1998); fumace heating with 3 modes (Bemporad et al., 2000); hydroelectric

plant (Ferrari-Trecate et a!', 2000 and 2002); and even traction control for cars (Borrelli et a!', 2001).

Further investigation by Torrisi et al.(2001) showed that the performance of a control strategy, using a

MPC strategy and the MLD framework, compared favourably with a controller based on heuristic

rules.

Other research groups in the field of hybrid system modelling are the Computer - Aided Systems

Laboratory (CASLi at Princeton University and another at Camegie Melon University3. World

leaders in the field of mixed integer optimisation i.e. C.A Floudas and I.E Grossrnann head both

groups respectively. These research groups are focused on developing rigorous and powerful

theoretical algorithmic approaches based on advances in mixed integer non-linear optimisation. Most

notably CASL has developed MINOPT, a procedure used in GAMS as a mixed integer solver.

Besides publications and the work done by various groups, several projects and workshops have been

held to expand on expertise in the hybrid system arena. The VHS project4 was initiated in May 1998

with the principle aim to develop methods and tools for hybrid system verification Another project,

Hybrid-EC-US0435 was started in January 1995. The objectives of this project were to develop a

theoretical basis for analysing hybrid systems and to build tools for improving the development of

computer controlled systems.

The alIDual staging of conferences and workshops that attract leaders in this area, highlights the

importance to the engineering and computer science industries of continuously evolving knowledge

regarding hybrid systems. The hybrid system computation and control (HSCC) workshops attract

researchers from industry and academia interested in modelling, analysis and implementation of

1
http:\\www.control.ethz.ch

2 http://titan.princeton.edu/work.html
3

http://www.cheme.cmu.edulwho/f."tculty/grossmann.html
4

http://www-verimag.imag.frIVHS/

5 http://albion.ncl.ac.uklesp-synltexUec-us043.html
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dynamic systems involving both discrete and continuous behaviour. The fifth intemational workshop

was held in March 2002 at Stanford California.

2.4 Hybrid Systems in Industry

Presented in this section are examples of industrial processes that have hybrid system characteristics.

Common to these systems is the requirement that the controller is able to make informed discrete

decisions regarding the operation of that paliicular system. In the case where the system has

physicochemical discontinuities, the controller must be able to anticipate the change in dynamics at

the point of discontinuity.

2.4.1 Pressure Swing Adsorption

Pressure swing adsorption (PSA) was invented in the 1960's for the purification of gases e.g. the

removal of moisture from air. However, presently it is also used for bulk separations such as the

partial separation of air to produce either nitrogen or oxygen and also the removal of impurities and

pollutants from gas streams. Separation of the components is achieved by the adsorption under

pressure, of a component from the mixture, onto a substrate e.g. zeolite packing in the case of air

separation. The adsorbed component is then desorbed from the surface of the substrate when the

pressure is lowered.

PSA is a typical illustration of a switching system. Such systems have a finite number of modes of

operation and the controller design is based on when to initiate the switch from one mode to another.

Often the switches are cyclic in nature, as is the case with PSA.

f-o
s.

bed1 exhaust bed2

rproduct

3.

\-0 f-o

Figure 2.3: Pressure Swing Adsorption
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In the PSA cycle, adsorption takes place at an elevated pressure, whereas desorption typically occurs

at near ambient pressure. In its simplest configuration PSA is carried out with two fixed beds in

parallel, operating in a cycle, as shown in figure 2.3 above. While one bed is adsorbing at one

pressure, the other is desorbing at a lower pressure. A typical sequence of steps is shown below.

Pressurisation I ,--~~F_e_e_d~~1 1,--_B~IO_W_d_o_w_n~ Purge

0.3T 0.5T 0.8T

Figure 2.4: Sequence of cycle steps in PSA

Each bed operates alternately in two half-cycles (O.5T, where T is the full cycle time) of equal

duration: (1) pressurisation followed by adsorption and (2) depressurisation (blowdown) followed by

a purge. The feed gas is used for pressurisation, while a portion of the effluent product is used for the

purge of the next bed. Thus, as in the above figure, while adsorption is taking place in bed1, part of

the gas leaving bed1 is routed to bed2, to purge that bed in the direction countercurrent to the

direction of flow of the feed gas during the adsorption step. During the second half of the cycle, the

valve openings and the beds are switched.

There exist similar types of switching systems in the chemical industry e.g. temperature swing

absorption, reverse flow reactors; swing reactors that switch when catalyst is being regenerated and

simulated moving-bed (SMB) chromatography.
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2.4.2 Selection processes from Inventories

Some chemical systems require the continuous selection of procedures, from a list of alternatives, that

directly affects the operation and productivity of the system The hybrid nature is introduced by the

discrete nature of the decisions and the effect that they would have on the process. Considered here is

a conversion process with various possible recipes and product grades.
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Figure 2.5 Blending system

The above system takes raw materials from a resource network, separates them into cuts, and then

recombines them in the appropriate proportion, to form different grades of product. Choices have to

be made about the appropriate ingredient to use from the resource network and how to combine the

. different splits to meet specifications.

The important feature is that there are dynamic responses that link the discrete choices

(discontinuities). A simple problem would be the matter of correcting grades in the product storage,

based on the present inventory. For example say that grade A was lighter than specification, then

denser material might have to be fed into the A storage for a period to raise the fixed density. In oil

refineries this is usually done with "blending controllers" which tend to be based on 'in-line' or static

blending (using multivariable LP solutions). The actual situation may however be more complex, with

inter-tank transfers being allowed and maximum/minimum inventories being set for any tank, as is the

case in the distribution of drinking water between reservoirs.

It is easy to appreciate that this type of problem, i. e. searching for an optimal choice in order to meet

objectives, requires an optimisation procedure. The selection is based on a number of aspects that'
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directly or indirectly influence the process, e.g. resources available, present inventories, market

demand and also the time period where the process will have a transient" off specification" response

to recipe changes.

Other types of systems that rely on similar decisions are:

• the selection of a solvent or reagent, that is appropriate for a certain operation, from a list of

candidates;

• selection of equipment items from an inventory available within a plant to perform a specific

duty;

• initiation of reaction, separation or recycle shTlctures at certain points in an operation;

• triggering the optimal number of units to perform a certain operation, e.g. determining the

appropriate number of heat exchangers/reactors/separators in order to meet a certain demand

while minimising cost.

2.4.3 Heating /Cooling strategies for batch reactors

The core of the drug manufacturing process is the batch or batch fed reactor, which is widely used in

the pharmaceutical industry. Due to its flexibility, a single batch reactor can be used to carry out

different reactions and operations under various operating conditions. During a batch reaction the

reaction mixture has to adhere strictly to a certain temperature trajectory, to ensure firstly the

synthesis of the appropriate product and secondly that the product is of the correct quality. It is for this

reason that the temperature control ofbatch reactors is important.

To accolmt for the wide range of temperature, over which the reaction mixture needs to extend, two

different approaches exist in the pharmaceutical industry for reactor temperature control. These are

the use of either a multifluid (figure 2.6) or a monofliud (figure 2.7) system

Figure 2.6: Multifluid temperature control
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The multifluid system uses the direct injection of the required utility into the reactor jacket. The

control task consists of frrstly selecting the correct fluid and secondly the appropriate control action

on the flowrate of the selected fluid, in order to track the desired temperature profile.

The monofluid system uses only one fluid, the temperahrre of which can be modified to achieve the

desired reactor temperature via a thermal loop that includes heat exchangers. The main advantage of

using a monofluid system, is that it offers smooth and continuous evolution of the temperature of the

thermal fluid over a wide range. The drawback of using this approach is the slow dynamic responses,

when switching from one exchanger to another, especially in the case of urgent need of rapid cooling

or heating. Another disadvantage of the monofluid system is the high investment costs incurred due

the need for heat exchangers.

heater

heal exchange network

lhermal fluid

cooler

Figure 2.7: MonofJuid temperature control

Both types of heating/cooling strategies exhibit hybrid behaviour, because both require selection

processes. In the case of multifluid system, the selection procedure concerns the thermal fluid while

for the monofluid system, the selection has to do with equipment. These selections result in

discontinuities in the temperature control strategy. Once the selection has been made, then the

appropriate amount of heating/cooling has to be determined for setpoint tracking.

Preu et al.(2002) propose a new heating/cooling strategy (figure 2.8) to incorporate advantages of

both the multifluid and monofluid systems. They have combined the concepts of both systems and

come up with a new system whose main characteristic is the use of an intermediate utility i.e.

pressurised water, generated by mixing steam and water. By adjusting the ratio of steam to water, the

desired temperature is obtained. For example, at a pressure of 3 bar, pressurised water covers a

temperature range from 20-120 cC. Within this range, heating/cooling exhibits a monofluid type

behaviour. If greater heating/cooling is required, then the system switches to multifluid behaviour.

After the jacket is purged, steam or cold utility is directly injected into the reactor jacket. To allow for
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setpoint tracking, the controller acts on the flowrate of the fluids as manipulated variables. In the case

of the intermediate fluid (pressurised water) - the flowrate is kept constant and the ratio of steam to

water is adjusted so that the desired temperature of the intermediate fluid is reached.

steam

mixer

water

air

outlet

c*J continuous valve

coolant: glycol water [><] 0/1 valve

Figure 2.8 Monofluid and multifluid temperature control

The controller must therefore, for the sake of setpoint tracking, select the appropriate thermal fluid

(discrete decision) and then set the appropriate continuous control valves. With the presence of

discrete decisions and continuous variables, the hybrid nature of this temperature control strategy is

thus apparent.

Figure 2.9 shows an example of a classical operation, under closed loop control, carried out in a batch

reactor taken from Preu et al.(2002). This is a crystallisation performed over a 25-hour time interval,

according to a very precise temperature setpoint profile. The precision in the temperature is of high

importance since it has an effect on the quality of product obtained. Note the distinct areas of

operation where different thermal fluids are used and the switching between the different fluids, based

on a change in setpoillt trajectory.

2- 13



Chapter 2: Hybrid Systems

o

2

4

s]

3

-1
25201510 Time [h]5

Pressuris ed water Glycol water , Pressurised water ,1/ Glycol water ,
'-

rT\ [kC, I1

---- Tr["C]

Tset ["Cl

I \ .. .. q [kCal/s]

'\I / .~
i \ /
i

~
I '-,

I / C<~,

i }
/

}
.i "', 'Il' ~.

~ _._. _._.~-

o
o

20

40

60

80

[OC]

Figure 2. 9. Production of a specified chemical product by crystallisation according
to a specific temperature profile

2.4.4 Tank with a weir

Some processing systems have discontinuities due to their fundamental physical behaviour, These

physicochemical discontinuities usually arise from thermodynamic (e.g. phase), fluid mechanical (e,g.

from laminar to turbulent regime) transitions, or from the geometry of the process vessels (e.g. non

uniform cross-sections). Changes between the various regimes are state events, because the time of

switching is not known in advance. It is rather a function of the system's state.

A simple chemical engineering illustration of a system showing a physicochemical discontinuity is a

buffer tank fitted with an overflow at a fixed height (figure 2.10).
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h

Figure 2.10: Buffer tank with overflow

The following equations could be used to model the influence of the weir on the dynamics of the

buffer tank.

dh =F. -F
dt In oul

FOUl =0 }
dh =F. het) s;
dt In

h is the level of liquid in the tank and hweir is the height of the weir. This formulation models the fact

that whilst the liquid level is above the weir, liquid flow out of the overflow (FOUl) will be driven by

the head above the weir, whereas while liquid level is below the weir, there is no flow. At the same

time, the rate at which the tank fills, is also dependent on the level relative to the overflow. The

discontinuity in states: tank level and weir flowrate, is presented graphically in figure 2.11 for a fixed

inlet flowrate Fin' State variables are continuous within regimes of operation, but are discontinuous at

a certain threshold point, defined by one of the states (in this case level).
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Figure 2.11: Discontinuous state behaviour in tank-weir system

Controller design for systems with physicochemical discontinuities has to account for the change in

dynamics at the point of discontinuity. The state of the internal controller model will have to be

switched at the point of discontinuity, so that the dynamics of the system can be correctly predicted.

Other systems in the chemical industry that exhibit physicochemical behaviour are: pressure relief

systems; vaporisation in vessels; crystallisation; and condensation followed by sub-cooling.
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CHAPTER 3

Model Predictive Control

The term model predictive control (MPC) describes a class of computer control algorithms that

control the future behavior of a plant through the use of an explicit process model. Using MPC

strategies to control and stabilise hybrid systems is for the following reasons a natural and intuitive

idea:

• Firstly, the MPC framework is not restricted in terms of model, objective function and/or

constraint functionality. The underlying idea is easy to illlderstand, thus making modifications

easy. This versatility makes it possible to incorporate integer variables within the structure.

• Secondly MPC with integer variables has exactly the same structure as that used for MIDO

covered in the following chapter. Both rely on dynamic models, take into account constraints and

are dynamic optimisation procedures.

• Thirdly, MPC has brought with it great success regarding the control of constrained, multivariable

systems in the processing industry. There have been numerous reports on the successful

implementation of MPC strategies in the academic and industrial arenas over the past twenty

years (Morari and Lee, 1999). The proposed algorithm deals directly with control i.e. the

applications in this thesis focused on manipulated system inputs (valves), however industrially a

hybrid multivariable algorithm is likely to work through a base layer of slave controllers, e.g.

PID, to achieve outputs.

Tills chapter deals with model predictive control and how it can be adapted to control hybrid systems.

It commences with section 3.1, which is an overview of MPC, explaining the strategy of MPC and

why it has had such success in the control environment. Following this, section 3.2 is an explanation

of the dynamic matrix control (DMC) algorithm, which is a form of MPC used in this thesis for the

proposed control of hybrid systems. After the explanation of DMC, the following section illustrates

how the DMC structure can be adapted to accommodate integer variables. Lastly section 3.3 shows

the control loop used in the subsequent chapters, for validating the mixed integer predictive control
algorithm (MIPC).

3.1 Overview
Interest of the processing industry in MPC can be, traced back to the late 1970's (Garcia and

Morshedi, 1984). In 1978 Richalet et al. described successful applications of "Model Predictive

Heuristic Control." A year later engineers from Shell (Cutler and Ramaker,l979; Prett and

Gillette,1979) outlined "Dynamic Matrix Control" (DMC) and reported applications to a fluid

catalytic reactor. In both algorithms, an explicit dynamic model of the plant was used to predict the

effect of future actions of manipulated variables on the output. Thus the name "Model Predictive

Control." The future "moves" of the manipulated variables were determined by optimisation, with the

objective being minimising the predicted error between the output states and a target, subject to
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operating conditions. The optimisation was repeated at each sampling time, based on updated

information (measurements) from the plant. Thus in the context of MPC, the control problem,

including the relative importance of the different objectives and the constraints etc, is formulated as a

dynamic optimisation problem. While this is hardly a new idea, Garcia et at. (1989) state that it

constitutes one of the first examples of large-scale dynamic optimisation applied routinely in real

time.

Although it is more than twenty years ago that MPC first appeared in industry as an effective means

to deal with constrained control problems, it is far from being a saturated field Over the past few

years there have been several publications that track its history and forecast its future, together with

possible areas of expansion. Most notably has been the publication by Qin and Badgwell (1999) that

provides an overview of nonlinear model predictive control (NMPC) applications in industry,

focussing primarily on recent applications reported by MPC vendors. Other researchers that have

followed suit by providing their iI~terpretation and perspective as to the evolution of the field are

Garcia et at. (1989) and Morari and Lee (1999).

Figure 3.1 shows how MPC is used to control a process. It is coupled to the process in a feedback

sense because it requires current state outputs for its computation of new process inputs. The

controller provides the plant with optimum inputs at regular intervals in time. The period between

controller intervention is commonly referred to as a time step or sampling instant. The main

components of the controller are the internal model and optimiser. Figure 3.2 shows a "snap shot" in

time ofprocess variables while under supervision of a MPC. This snap shot is at a single moment in a

moving horizon that extends ahead in time. This concept is characteristic of MPC strategies. The

single snap shot can be at any given time step when the controller provides the plant with new,

optimal inputs. When the controller reevaluates the optimum inputs at the next time step, its extended

horizon over which the outputs are projected (i.e. optimisation horizon), although remaining fixed in

size, advances one step into the future. Hence the term "moving horizon". Figure 3.2 is thus a

graphical illustration of what occurs within the controller at every time step.

output states

Plant

controller inputs

/ Model Predictive '\

Controller

optimiser internal model

feedback of

current output
states

Figure 3. 1: Feedback control loop showing plant and model predictive controller
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Figure 3.2: "Snap shot" of the moving horizon
approach to MPC

The above figures typify the MPC strategy: The first procedure is to use a model of the system to

predict the future evolution of the system over the prediction horizon (figure 3.2). Based on this

prediction at each time step, the controller selects a sequence of future command inputs through an

on-line optimisation procedure, aimed at maximising tracking performance and obeying constraints.

Only the first sample of the optimal sequence is applied to the plant at the present time step. At the

following time step, a new sequence is evaluated to replace the previous one. This online "replanning"

provides the desired feedback control feature.

Most of the applications using MPC reported 111 the literature are multivariable and involve

constraints. It is exactly these types of problems that initially motivated the development of MPC

control techniques. The success of MPC technology, as a process control paradigm, can be attributed

to three important factors. Firstly is the incorporation of an explicit process model into the control

calculation. This allows the controller, in principle, to deal directly with all significant features of the

process dynamics. Secondly, the MPC control algorithm considers plant behaviour over a future

horizon in time. This means that the effects of feedfoward and feedback disturbances can be

anticipated and removed, thereby allowing the controller to drive the plant more closely along the

desired trajectory. Finally the MPC controllers consider the process input, state and output constraints

directly in the evaluation. This means that constraint violations are far less likely, resulting in tighter

control at the optimal constrained steady state for the process, than for example, if the calculated valve
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settings were just "clipped" at 100%. It is the inclusion of the constraints that most clearly

distinguishes MPC from other process control paradigms.

Another aspect that has contributed to the success of MPC strategies is its flexibility and portability.

Economics demand that control systems be designed with no "hard wiring" or ad hoc "fix ups." This

means that a controller designed for a single unit can be easily transported to another, by just

replacing some key information. In the case of MPC, this is just the model and constraints which are

characteristic of the process.

3.2 Dynamic Matrix Control (DMC)

3.2.1 Introduction

The different design techniques emanating from MPC are: Dynamic Mah'ix Control (DMC); Model

Algorithmic Control (MAC); and Model Reference Adaptive Control (MRAC). The fundamental

framework of MPC consists of certain distinct elements that are shaTed in common by these schemes.

These distinct elements, as alluded to in the previous sub section, are:

• reference trajectory specification: representing desired target trajectories for process outputs;

• process output prediction: utilising a mathematical representation of the process to predict the

process output over a predetermined extended horizon;

• control action sequence computation: where the same model is used to calculate future control

moves of the manipulated variables that must satisfy objectives.

What differentiates one scheme (DMC,MAC,MRAC) from another, is the sh'ategy and philosophy

underlying how each scheme is implemented.

Of the three schemes, Morari and Lee (1999) declaJ:e that DMC is probably the most popular model

predictive control algorithm currently used in the chemical process industry. Although one of the

earliest formulations ofMPC, DMC represents the industrial standard for MPC to date. The reason for

this wide acceptance of DMC is due to its ability to handle process interactions and unusual dynamic

responses, without requiring a rigorous process model derived from first principles. In the same

publication, the authors state that most systems in the oil and chemical industries are multivariable

constrained systems. DMC, with its ability to handle consh'aints, is therefore more suited to the

control of such systems than other techniques that are llilable to handle constraints.

Cutler and Ramaker (1980) of Shell Oil reported the fundamental work on the formulation of DMC

Four years later, Garcia and Morshedi (1984) reported on a quadratic programming solution. Since its

inception, the DMC algorithm has been widely used in the processing industry, while simultaneously

undergoing various advancements to make it applicable to a wider range of control problems. Linear

dynamic matrix control (LDMC), based on a linear programming solution for optimal control policy,

was developed by Mulholland and Prosser (1999) following the methods ofChang and Seborg (1983)

and Morshedi et al.(1985). Mulholland and Prosser (1999) used this LDMC algorithm to control the

top and bottom temperatme of a semi-industrial distillation column, while Mulholland and Narotam
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(1996) considered the control of a counter-current liquid-liquid extractor. Recently Lacave (2001)

used the DMC framework for the modelling and control of a co-current sugar dryer while Pastre

(2002) used it to control chlonne levels in reservoirs for potable drinking water.

Regarding the extension ofDMC to deal with other control problems, Guiamba (2001) showed how

the algorithm can be expanded to deal with integrating systems i.e. systems that do not reach a steady

state when disturbed e.g. reservoir levels. The work done by Guiamba is essential to the work

presented in this thesis because some hybrid systems are integrating in nature. Further adv311cements

include fonnulation of multi-rate DMC that deals with fast and slow output responses in the same

system (Deghaye et al., 2000); and adaptive DMC, that aims at real-time identification of step

responses (Guiamba, 2001). Adaptive DMC is a step forward in using DMC, which is a linear

algorithm, to control processes with non-linearities.

Any model predictive controller relies on a mathematical representation of the process. The model,

typically in state space or convolution form, is used to predict the trajectories of the system's outputs

up to a moving horizon. The following sub-section presents the development of the DMC algorithm

that utilises a convolution model as a mathematical representation of the system, which is derived

from step responses.

3.2.2 DMC algorithm

Consider a single input,· single output system, initially at steady state. Byinh"oducing a unit step

change in input m at time t = 0, the resultant output response x is recorded until it reaches a new

steady state.

x
Llm = 1

---~-=-o--~·IL.-_S_ls_o__s_Y_s_te_m__r----~-t-=o-"~ _

,

:

Figure 3.3: step response for
5/50 system

Now take the response x and partition it into equally spaced, discrete-time instants (of total number N)

that extend over the entire response.
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1 ·2 3

t

4 N

Figure 3.4: Partitioning step response for convolution model

For each sampling instant t, define the change from the initial steady state (xo) prior to the step change

as: bt = xt - xo ; for t extending from 1 to N (steady state horizon for step response). ht is now a

coefficient which represents the change from steady state, caused by a unit step change in input (t =0),

at time step t.

,Assuming linearity and that the system is initially at steady state xo, the output states, for any change

in input I1m (difference between absolute input at past time step and present absolute input), made at

t =0, can be evaluated using the step response coefficients:

Xl =xo +bllln

x2 =xo +b/')m

If a sequence of changes in moves are made in consecutive time intervals, starting at t = °and

extending up to a conh"ol horizon of size N i.e. I1mo, I1m], 11m2 ..... l1mN' then using superposition the

new state outputs can be evaluated:

Xl = X o +b1l1mo

x 2 = X o +bj l1m} +bzl1mo

x3 = X o +b j l1mz +bzl1m[ +b3l1m
o

N

xN =X o + J:..bt l1mN _1
1=1

The above set of linear equations can be expressed compactly in matrix form
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XI Xo bl 0 0 0 I1mo

X 2 Xo b2 bl 0 0 I1m)

X3 Xo + b3 b2 bl
0 11m 2 (3.1)

xN Xo bN bN- 1 bN_2 bl I1mN

Equation 3.1 represents the dynamics of the system in the form of a convolution model, derived from

step response data. Thus for any sequence of inputs fliii, the resulting output states can be predicted.

This piecewise convolution model forms the basis of the DMC algorithm

Multivariable systems with multiple inputs and outputs (MIMO) can be modeled using equation 3.1,

by expanding the step response coefficients bl's as two-dimensional matrices. The data for the

matrices is generated by stepping each input in turn and recording the response for every output.

Position (iJ) in each matrix bl is the point on the trajectory, at time step t, for the {h output as it

responds to a step in the /h input. Clearly also vectors X and fliii will also be made up of sub­

vectors, corresponding to the sequential steps in time, which compliment the dimensions of B .

Mulholland et.al (2001) present explicitly how a step test identification approach (equation 3.1) can

be used to develop the DMC algorithm which is here after presented in general. Consider the

following "dynamic matrix" constmction whose elements are multiplied by I1mt , the vector of input

moves (changes) made at time t. The resulting product is ~, state vector of outputs at time t. A

moving frame of reference for time is used in which t=O represents present time. The "dynamic

matrix" is constmcted to predict P steps ahead (P?N), where N is the steady-state horizon for the

step responses.(In the present work, P is taken equal to N).

bN bN - 1 bN - Z bN - 3

bN bN _I bN - Z bN - 3

bN bN _ I bN - Z bN - 3

bN bN _1 bN - Z bN - 3

bz bl

b2 bl

b2 bl

bz .bl

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

I'J.m_N +I

I'J.m_N +Z

I'J.m_ N+,
I'J.m_ N +4

!
IbN - Z

i bN - 1

!
bN i bN

..?fI.._ ?l!=I ?!!.=2. ?N..=~ ?2..._ ?l J ? ~ ~_ ? _? _..__ _?. .
bN bN bN _1 bN - Z b3 bz i bl 0 0 0 0 0 0

bN bN bM bN _1 b4 b, i b2 bl 0 0 0 0 0

bN bN

bN bN

bN bN

(3.2a)
Simplifying for notational purposes
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(3.2b)

In the dynamic matrix, matrices B 0, B 01, and B are clearly top-left, bottom-left and bottom-right

respectively. In DMC on each time step a limited sequence of M moves (M 5: N see equation 3.2),

referred to as the control horizon, is generally solved for. Normally only one or two future moves are

solved (M=l or M=2), allowing a reduction in the size of B . Although only the first move is ever

used, a solution for a second move allows stronger action on the first move, because the solution plans

a correction with the second move. Using an extended control horizon has the effect that the controller

is able to plan a sequence of moves extending into the future. For a system that reaches steady state,

bNin matrix equation 3.2 can be repeated as in the final row of the dynamic matrix.

From the matrix multiplication 3.2b:

xOPred =Botwipa.,t - Generates N identical predicted copies of the output vector at the present time

t = o. This results in a reduction in computation as only Bo/-Bo is stored (see equation 3.3).

xPr ed =Bol !liiipast + B twi - Generates a vector of predictions at N points on the futme trajectory, as

contnbuted by the past N control moves and futme M control moves. The first part of the sum is the

open loop response (response with no future conh"ol changes), while the second part accounts for

futme changes.

For step responses reaching a steady state at step N, ifno further moves were to take place, moves up

to N intervals ago will cause variations in the futme outputs, while the moves prior to that will

contribute steady state offsets. Variations in the future states caused by past moves are accounted for

by using the openloop response (Bol~mpast). In the face of unmeasmed disturbances and model

system mismatch, some form of feed back is required to remove the steady state offset. The most

common method of incorporating feedback involves comparing the measmed xOMeas and predicted

Bo~mpast process outputs states. The cOlTected openloop response is thus:

Xol = xoMea., - B0~mpa.,t + B 01 l1iiipast

=> x ol = xoMeas + [Bol - Bo ] I1mpa.,t

Now accounting for future moves results in the closed loop response being:

Xci =xol + B~m

=> Xci =xoMea., + [Bol - BD ] ~mpa.lt +B~iii

This model (equation 3.4) can now be used to calculate a sequence of future control moves ~m that

will satisfy some specified objective such as:
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• Minimising the predicted deviation of the process output from setpoint xsp over the prediction

horizon.

• Minimising the expenditme of control effort b..iii in driving the process output to setpoint.

In completing the mathematical formulation, the above objectives can be expressed as a performance

index:

J(b..iii) = (~,p -Xel)TW(xsp -xel ) +b..iiiTAb..iii

~ J(b..iii) = (eel)T W(eel) + b..iiiTAb..iii (3.5)

Where eel is the closed loop error (difference between closed loop response and setpoint over the

optimisation horizon). W (positive definite weighting factor matrix) and A (positive definite move

suppression matrix), both generally diagonal, are tuning parameters, that determine the extent to

which deviations from setpoint and control moves are discomaged.

Graphically, as discussed in 3.1 under model predictive control, the DMC algorithm, with relevant

equations, can be depicted by the following figme:

past

Past output trajectory

present future

......
~---II-~:-----'-'-~--'-'---'-'-'-'-'-'-'-'-'-'---'-'--------_._--.

Xo1 =xoMea<; + [1301 - 130 ] I1mpast. .

Past input history

t: ;~
11m_1 : : flmo

............1 l . Ir~:,J .....~.'":.....
!Yii

No. of optimised
moves

Figure 3.5: Optimisation horizon for DMC

Thus by minimising Jup to an optimisation horizon with respect to b..iii in equation 3.5, an optimal

sequence of control moves (b..iir. ) is found that results in minimal deviation of the state trajectory (xcD

from setpoint (xsp). Due to the linear model and a quadratic objective, the DMC algorithm takes the

form of a structmed convex Quadratic program (QP). This optimisation problem can be solved in

several ways. Guiamba (2001) and Mulholland and Prosser (1999) used a linear programming
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approach, whilst Cutler and Ramaker (1980) used a quadratic programming technique. Most of the

software packages and solvers discussed in the following chapter are able to solve directly, the

quadratic progrannning DMC fonnulation. Effective solvers and software packages are important,

because the solution algorithm must converge reliably to the optimum in no more than a few seconds

to be useful in real time control. In principle, the MPC method is therefore lilnited to those problems,

for which a global optimal solution to the dynamic optimisation, can be found between one control

execution and the next.

3.2.3 DMC and Integrating Systems

Traditional DMC, as presented in the previous sub-section, is based on the assmnption that systems

reach a steady state after being disturbed. However in many processing mlits, due to material or

energy imbalance, this is not the case. Integrating behaviour is common in hybrid systems, where a

ramp change in output is the result of a step change in input, or a decision being made.

Guiamba (2001) showed how the DMC framework could be expanded to include integrating systems.

Using equation 3.2 as a basis, an integrating relationship can be represented by mlequal corresponding

elements in the final two matrices, bN and bN-1. It is assumed that this final gradient continues

indefinitely from this point onwards as a result of the integration. Defining I1b = b
N

- b
N

-
1

matrix

equation 3.2 for integrating systems now becomes:

brn_N+I

brn_N +2

brn_N +J

bm_N +4

o
o
o
o

o
o
o
o

o
o
o
oo

o
o
o

o

o
o
o

o
o
o
o

b
n

_
2 b

N
_

J bl 0

b
N

_
1

b
n

_
2 b, 0

bN bN bN bN b
N

_
1 bl brnM

(3.6)

0 ! bN
b

N
_

I!
0 ! bN

b
N

_
1

0 i bN
b

N
_

1

o bN
i
oil

-~_ .. j..._~!'- __'2:::-._...!.'.':::._.I>!!:.J__.._.:.:':-_...~:, .~~-i__~ .~_._~_._.~ ~_._~._ .._?_ ....
6b i bN + 6b bN bN _1 bN _2 bJ b2 i bl 0 0 0 0 0 0

2M ibN + 26b bN + I1b bN bN _I b. bJ I bl b
l

0 0 0 0 0

311b i i
i i
, bN bN _ 1 i
i bN +6b bN i

(P-l)119 i
Pl1b IbN + Pl1b bN + 2I1b bN + I1b i

There are two major changes in matrix equation 3.6 as cOlnpared to matrix equation 3.2. Firstly the

introduction of a new colunm before the Bo! (lower left) matrix. Elements from this new colulllll

multiply, at every time step, with the sUlIllnation term, CL f..m; ) which accumulates all moves older

than N steps back from the present time. Secondly is the modification of the B
o

! lnatrix by adding

multiples of f..b further back than the bn term, as shown in equation 3.6. Each move from the past

therefore contributes its own ramp effect in the future. Besides the above-mentioned changes, the
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DMC algorithm (closed loop equation 3.4 and objective function 3.5) remains the same as for systems

that attain steady states when disturbed.

3.2.4 DMC and Hybrid Systems

All accounts located in the literature that incorporate DMC are continuous in nature. This incorporates

both input variables, i.e. those system variables that are stepped in order to generate the step response

data, and outputs i.e. those variables that are controlled. DMC has been developed such that the

optimisation procedure results in a solution of variables required by the system for optimal operation.

In generating the data for the step responses, it is these input variables that are stepped. Equation 3.3,

contains these input variables in the vector !'1.iii. Notice that it is the change in input !'1.m from its last

position that is the result of the optimisation procedure. This is because the convolution model is

based on a step response for a unit change in m.

Extending DMC to control hybrid systems, requires adapting the algorithm to accommodate binary/

integer variables. In doing this, the DMC algOlithm effectively becomes a MIDO problem, as their

mathematical structures become identical. For the control of hybrid systems, the conh'oller, rather

than just evaluating continuous optimum inputs to a system, also has to make certain discrete

decisions which affect the process e.g. selections or initiations of events. This effectively amounts to

solving for binary/integer variables e.g. in the case of binary variables, the optimisation procedure will

determine the value (0 or 1) that minimises the objective function.·

In being consistent with the DMC structure, the binary/integer variables (indicating decisions,

selections or switches) will have to be part of the vector !'1.iii in equation 3.4. To generate the

necessary step response data, each of these decisions or selections will have to be carried out in turn in

openloop, as a switch or change procedure from a base operation, and the relevant responses captured.

Using the step response as a basis, the controller will determine whether to implement a change or not

by optimally evaluating the appropriate binary variable.

For example, a binary variable can be assigned to a valve that is either open or shut. "1" will represent

the open position of the valve, while "0" will be the shut position. To generate a step response for the

convolution model, the valve must be stepped from shut to open and the response of the system

recorded. In the optimisation procedure, the algorithm will determine, using the convolution model

derived from the step response, the optimum sequence of the binary variable (0 or 1) that minimises

the objective function. Regarding the actual plant, the solution amounts to determining whether

having the valve open or closed, best satisfies the dynamic performance of the system

Binary variables can also be used to determine the optimum time to switch between certain modes of

operation for a system consisting of multiple operating modes. Each mode can be assigned a binary

variable and step response data is generated by switching from one mode to another. Constraint

optimisation can be used to force the algorithm to set only one binary variable to "1". With respect to
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the system, this amounts to the controller selecting the appropriate mode, in real time, in order to meet

process objectives.

Mixed integer predictive control can also be used on some processes that have a number of units,

whose operation is cyclic, operating in parallel. It may be required that for some reason (economic or

capacity considerations) to sequence or stagger the cycles of each unit relative to each other. In this

case a binary variable can be assigned to each unit. During a constraint optimisation procedure, the

DMC algorithm can be used to determine a real time sequencing strategy by optimally evaluating the

binary variables. The necessary convolution model is generated by using responses that depict the

actual cycle.

DMC is therefore capable of regulating hybrid systems that have discontinuities in their inputs

whether they are direct plant inputs or just decisions. If it is possible to obtain a continuous step

response for discrete inputs, then it will be possible to use DMC to stabilise and optimise the

operation of that system However there is another class of hybrid system that DMC cannot deal with.

These systems have discontinuities in their outputs e.g. a tank with an overflow as presented in

chapter two, section 2.4.4. This effectively means that the operation of the system is divided into

distinct regimes, as defined by the state of the system To model such a system, each regime is usually

assigned its own process model. DMC is lmable to deal with these types of system because the

convolution model relies on past inputs (6.mpasl in equation 3.3). When a system enters a new regime

of operation, infommtion from the past cannot be used, because it pertains to a different model. Inputs

from a different regime cannot be used to determine the present state (xa) and openloop trajectory

xot in a new regime. Chapter 8 considers this problem in greater detail and proposes the use of state

space equations in this instance.

3.3 Control Loop

Figure 3.6 shows the integration of theDMC structure as a model predictive controller with a plant.

The controller supplies the plant with optimum inputs, at fixed time intervals, in terms of its change

from its previous value. This optimum input, for the next time step, is also used in an internal process

model, together with previous inputs, to evaluate the current state and openloop trajectory of the

system An openloop error is calculated by comparing the openloop trajectory with the desired

setpoint, and based on the convolution model, the optimum input L1m for the present time step, IS

evaluated through an optimisation procedure.
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Figure 3.6: DMC in model predictive control configuration

To validate the proposed mixed illteger model predictive control (MIPC) algorithm, based on the

DMC framework, a control loop similar to the above diagram had to be conmllssioned. Sillce the

DMC structure was written ill GAMS, where the mixed integer optimisation was also done, this task

essentially involved the integration of different software packages as shown in figure 3.7 and 3.8.

After obtaining the step response data, MATLAB is used to arrange it in convolution model form The

reason for using MATLAB is because the size of vectors and matrices can easily be varied based on

problem size. This cannot be done in GAMS. Using the print function, MATLAB once compiled,

writes out the entire control algorithm in GAMS. Refer to appendix A2, for a flowchart of this

procedure in MATLAB, where the control algorithm is spawned into GAMS.

An in house developed SCADA (sequential control and data acquisition written in C++) package

refered to as SCAD, interfaces with the plant or model. After receiving inputs necessary for the

controller from the process, SCAD calls GAMS hence executing the control algorithm After

completing the optimisation, the optimum process inputs are written to a text file, from which SCAD

collects them and passes them on to the process.

Figure 3.8 shows sequentially how program CEXTobject interfaces GAMS and SCAD to form a

control loop in real time. Refer to Appendix Al for the code written in C++(with acknowledgements

to T.Brazier and M.Mulholland).

In the following chapters, using the integrated software structure shown in the figure 3.7, the

validation of the MIPC is done on different types of hybrid systems. Tests are either done ol1line with
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an actual plant or offline, with the same SCADA framework, against a plant model also derived from

step response data.

MATLAB

GAMS

SCAD

Plant

Figure 3.7: Integration of software packages for

closed loop testing of MIPC
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CHAPTER 4·

Mixed Integer
Dynamic Optimisation

The previous chapter proposed MPC as a strategy for the control of hybrid systems. MPC

continuously optimises the closed loop dynamic performance of a system while taking into account

disturbances, constraints and targets. This chapter deals with the computational aspect of the dynamic

optimisation procedure. It starts with an introduction to mixed integer dynamic optimisation (MIDO).

Thereafter section 4.2 shows how logic can be converted into general mathematical representations

necessary for the optimisation procedure. Section 4.3 deals with the numerical solution of MIDO

problems by proposing various solvers alld software packages capable of dealing with the mixed

integer nature of the problem. This section also inh'oduces GAMS, the optimisation package used in

this work.

4.1 Introduction

Many problems in process design alld operation require the optimal solution of quantities that change

in time. When a mathematical model of the process is available, then these quantities can be evaluated

using dynamic optimisation. In process control, MPC is a problem in dynamic optimisation. The

controller prompts an optimal change in the present based on a futme prediction of the system.

When integer variables are part of the optimisation procedme, then the optimisation is known as a

mixed integer dynamic optimisation (MIDO) problem. Consequently the predictive control of hybrid

systems, where there is an interaction between continuous and integerlbinary variables, is a problem

in MIDO. Over the past 5 years, some preliminary research on MIDO formulations and solution

algorithms have appeared in the literatme. MIDO is one of three classes of dynamic optimisation

problems with discontinuities discussed by Barton et af. (1998). The other two were path-constrained

problems and hybrid discrete/continuous problems. Allgor and Barton (1997) considered the class of

MIDO problems that confonn to the following general formulation:

m in {r/J (x(t j)' u(t j), yet j)' v, t j) + JL(x(t), u(t), yet), v, t)dt}
u(t)'V'Y"j 0

subject to

f(x(t),x(t),u(t),v,y,t) = ° t E [o,t j ]

g(x(t),x(t),u(t),v,y,t) ~ ° t E [o,t j ]

kp(x(tp),x(tp),u(tp),v,y,tp)~ OpE {o, .... ,np }
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Here x(t) are the continuous variables describing the state of the dynamic system, u(t) are the

continuous controls whose optimal time variations on the interval [to,lj] are required, v are continuous

time invariant or variant parameters whose optimal values are required, y are a special set of time

invariant or variant parameters that can take on only discrete values, and tJ is a special continuous

time invariant parameter known as the final time. tJ defines the horizon over which the optimisation

extends. It is the presence of the integer parameters y that distinguishes the above formulation from

other general dynamic optimisation formulations.

Equation (4.1) is the objective function that, in being minimised, drives the optimisation procedme. It

comprises in general two parts, the first depending on variables at the end time (end point conditions)

and the second depending on the change in variables as end time is approached, hence the integral.

Equation (4.2) represents a general set of differential algebraic equations describing the dynamics of

the system Typically they will include a lumped dynamic model of the system in question, coupled

with any path equality constraints that the system must satisfy. Inequalities (4.3) represent a general

set of path inequality constraints that mL1st be satisfied by the solution of the optimisation. The point

constraints equation (4.4) encompass a special case of constraints that involve the integer variables y,

such as logical relationships, that must be satisfied e.g. an item of equipment may only be used for

certain processing tasks.

Mohideen et a!' (1996a, b) use the above framework for obtaining process designs and control

systems (also considered as part of the optimisation problem), which are economically optimal and

are able to cope with process variations. Process systems were modelled via dynamic mathematical

models, while variations included both uncertain parameters and time varying distmbances.

With the MIDO structme comes the requirement for its numerical solution. All currently reported

techniques for the numerical solution of MIDO problems rely on extensions of existing decomposition

approaches for solving mixed-integer non-linear programming (MINLP) problems (see section 4.3).

In the context of integration of design and control, Mohideen et al.(1996a, band 1997) outline an

efficient decomposition algorithm for the numerical evaluation of the MIDO problem Allgor and

Barton (1997) also presented another rigorous decomposition approach for MIDO problems that is

based in the context of optimal batch process development.

4.2 Linear Integer Programming

Given the MIDO formulation, the challenge remains to convert the physical hybrid problem at hand,

into mathematical representations. Because the focus is on systems that have logic and dynamics,

there is a need to establish a link between the two. The first step is to obtain a model of the system

that reasonably defines the dynamics of the system together with the interactions between inputs and

outputs (equation 4.2). The model can for example be in state space form (finite difference equations)

as used by Morari and his colleagues for MLD systems (Bemporad and Morari,1998; Bemporad et

al.,2000; Borrelli et al.,2001; Tomsi et al.,2001) or convolution form (generated from step responses)
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as m this thesis. Thereafter the need arises to build logical statements from operating events

concerning physical relations. The key idea is to use mixed-integer linear inequalities i.e. linear

inequalities. involving both· continuous and binary variables, to express the logic of the system

mathematically (equation 4.4).

The following table (taken from Mignone et aI., 1999) shows the basic conversions of logic relations

into mixed integer (in)equalities. Here logic relationships (AND, Or, Not, IMPLY, IFF) between the

binary variables (01 ,02, (3) are converted into equivalent mathematical relations which can then be

included as part of an algorithm.

Proposition Relation Logic
Mixed integer
(in)eQualities

PI And [01=1] A [02=1] 01=1
(A) 02=1

P2 [03=I]B -01 + 03 ~ 0
[01=1] A [02=1] -02+03 ~ 0

01 + 02 - 03 ~ 0
P3 Or [01=1] v [02=1] 01 + 02 ;::: 1

(v)
P4 [03=1] B 01- 03 ~ 0

[01=1] v [02=1] 02-03~0

-01 - 02 + 03 < 0
PS Not(,,) ~[01=1l 01=0
P6 XOR (EB) [01 =1] EB [02=1] 01 + 02 = 1
P7 [03=1] B -01 - 02 + 03 ~ 0

[01=1] EB [02=1] -01 + 02 - 03 ~ 0
01 - 02 - 03 ~ 0
01 + 02 + 03 < 0

PS IMPLY(~) [01=1] ~ [02=1] 01- 02 < 0
P9 rf(x) ~ 0] ~ [0=1] f(x) > I> + (m-I»0

PlO [0=1] ~ rf(x) ~ 0] f(x) ~ M - Mo
Pll IFF(B) rOI=11 B [02=11 01 - 02 = 0
P12 [f(x) ~ 0] B [0=1] j(x) ~M -Mo

f(x) > I> + (m-E)8

Table 4.1 : Conversion of logic into integer inequalities

M and m are the upper bound and lower bound ofj(x) respectively

£is a small tolerance beyond which the constraint is regarded as violated.

More complex logical operational procedures can be expressed by using combinations of the above

rules. Raman and Grossmann (1991,1992) show that for process synthesis, logic and heuristics can

also be integrated through proportional logic. This type of qualitative knowledge is useful for two

reasons. Firstly, in many cases solutions that reflect the operator's experience are preferred. Secondly,

heuristic rules may aid in the search for feasible solutions.
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An example showing the application of the above rules 111 converting process logic into linear

equalities is in a multiple unit separation plant.

Logic: if an absorber or membrane separator is selected to recover a product, do not use cryogenic

separation.

Introduce three binary variables (Ya, Ym, Ye) one for each unit. "1" for a specific variable implies

selection of that particular unit.

Ya =binary variable for selecting absorber.

Ym =binary variable for selecting membrane.

Ye = binary variable for selecting cryogenic separation.

Linear inequalities

Ya + Ye si

Ym+Ye s1

note that either Ya= 1 or Ym= 1 forces Ye =0 or in Boolean algebra Ye =~ (ya V yJ

Expressing the logic of the system as mixed integer linear inequalities is fundamental to the MIDO

composition. It ensures that the solutions from the optimisation are in accordance with the actual

system The structuring of these linear inequalities is also important as they are usually integrated

with the system model and the objective function in the MIDO formulation.

4.3 Computational Aspects

4.3.1 Mixed Integer Non-linear Programming

In an optimisation procedure, if the mathematical structure comprises integer variables coupled with

continuous variables, then the problem is referred to as a mixed integer program (MIP). If the

equations and objective function are linear, then the problem is a mixed integer linear program

(MILP). On the other hand, if any of the equations and/or the objective function is non-linear, then

the resulting structure is refereed to as a mixed integer non-linear program (MINLP). There exists a

special case ofMINLP, known as mixed integer quadratic program (MIQP), where the equations and

constraints are linear, but the objective function is quadratic. The MLD framework, developed by the

researchers at the Automatic Control Laboratory, is a MIQP.

The numerical optimisation of discontinuous systems has motivated a need for procedures that solve

algorithms comprising integer and continuous variables. All currently reported techniques for the

numerical solution of MIDO problems rely on extensions of approaches used for solving MINLP's

(Allgor and Barton, 1997). MIDO is after all only a MINLP problem with a dynamic aspect.
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It is only recently (last 15 years) that break throughs have been made regarding algorithms capable of

solving MIP's. The reason for the delay in progress is that MIP problems involving 0-1 variables are

N-P complete, meaning that complexity and solution effort grows exponentially with the number of

integer variables. However due to the work done by amongst others, Viswanathan, Grossmann and

Floudas, efficient algorithms for solving mixed integer structures are now available. Major algorithms

for solving the MINLP problems include: branch and bOlllld (B&B), generalised Benders

decomposition (GBD) and outer approximation (OA). In the engineering domain, much success has

been reported in the last few years, where numerous problems were formulated as MINLP's and

solved using these techniques.

B&B does not define a particular algorithm, but rather a whole class ofmethods that differ in their

details of implementation. Common to all B&B methods for m.ixed integer non-linear programming

problems is the generation of a set of easier sub-problems arranged in a tree.

child nodes

parent node

branching in the
tree structure

Figure 4.1: Tree structure for branch and
bound procedure

The idea of solving MINLP's with B&B methods relies on the relaxation of the integer constraints i.e.

binary variables are allowed to span over the entire continuous interval [0,1]. The relaxed problem is

referred to as a sub-problem The B&B algorithm for MINLP consists of solving and generating new

NLP problems in accordance with a tree search (figure 4.1), where the NLP sub-problems correspond

to nodes of the tree. Branching is obtained by generating child-nodes from parent nodes according to

branching rules (depth first or breadth first). Optimal values of the NLP subproblem, if they exist,

represent bounds on the optimal value of the original problem The solution of the corresponding NLP

at each node provides a lower bound for the optimal MINLP objective function. The lower bound is

used to direct the search, either by expanding the nodes in a breadth first or depth first fashion. The

depth first approach performs branching on the most recently created node, while the breadth first

approach selects the node with the best value at each level and expands all its successor nodes. Nodes

are labeled as either pending, if the corresponding NLP problem has not yet been solved, or fathomed,

if the node has already been fully explored. The algorithm stops when all nodes have been fathomed.
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The success of the B&B algorithm relies on the fact that whole subtrees can be excluded from further

exploration by fathoming the cOlTesponding parent nodes. TIns happens if the cOlTesponding NLP

subproblem is either infeasible or an integer solution is obtained. In the second case, the

cOlTesponding value of the cost function serves as an upper bOlmd on the optimal solution of the

MINLP problem, and is used to further fathom other nodes having a better optimal value or lower

bound. The major disadvantage of the B&B method is that, depending upon the number of integer

variables, it requires the solution of a la.Tge number ofNLP sub-problems.

Generalised benders (GBD) decomposition and outer approximation (OA) solve the MINLP by an

iterative process. The problem is decomposed into a NLP subproblem, which has integer values fixed,

and an MILP master problem. The NLP subproblems optimise the continuous variables and provide

an upper bound to the MINLP solution, while the MILP master problems have the purpose of

predicting a new lower bound for the MINLP solution, together with new integer variables for each

iteration. The search terminates when the predicted lower bound equals or exceeds the current tipper

bound. The difference between GBD and OA is in the definition of the MILP master problem.

MINLP Formulation

'- ./

NLP
Subproblem

MILP
Master Problem

YES
Lower Bound <
Upper Bound

NO

Solved

Figure 4.2 :GBD and OA
solution procedures

GBD has the advantage that one can exploit more readily special structures in the NLP subproblems,

but has the drawback that it may require a significant number of major iterations where the NLP and

MILP master problems must be solved successively. The OA algorithm has the advantage that it
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typically requires only a few major iterations, but the size of the MILP master problem is considerably

larger than in GBD. For more detailed information regarding these methods used for the solution of

MINLPs refer to the book written by Floudas (1995) Nonlinear and Mixed-Integer Optimisation.

4.3.2 Software

The previously mentioned algorithms for solving MINLP problems are available as portable code, in

the form of software packages. These packages are either available as add-on solvers or stand-alone

modelling systems. A solver is concerned primarily with solving the MINLP problem. It has to be

interfaced with the problem at hand e.g. a model developed in an external general purpose

programming language like C++. A translator is therefore required that reads the model and data

expressed in the modelling language and builds a low-level representation (such as a list of

coefficients) that the solver requires for its operation. On the other hand, stand-alone systems integrate

the solver and modelling language software as a single unit. These units usually comprise several

solvers, thus allowing the user to select from a list. By taking care of time consuming details like:

interfacing between model and solver; machine specifications; system software implementation and

compatibility, stand-alone modelling systems allow the user to concentrate on the modelling aspect of

the problem.

Software is either available commercially i.e. it is licensed and supported for a fee, or

noncommercially where it can be freely downloaded fromthe internet. Below are examples of solvers

and modelling packages that have been associated with solving MINLP problems.

Solvers:

DICOPT 1: Viswanathan and Grossmann (1990) developed this DIscrete Continuous OPTimiser

(DICOPT). Since then DICOPT++ has been released. It bases its solution of MINLP's on an

extension of the OA algOlithm.

CPLEX 2
: is arguably the most widely used solver in academic research throughout the world. CPLEX

solves linear and mixed integer problems. Solution of the mixed integer programming option uses a

variety of branch and bound techniques. CPLEX is also portable and interfaces easily with modelling

languages e.g. GAMS and AMPL.

MIQP: is a m-file written by the researchers at the control laboratory at the Swiss Federal Institute of

Technology (ETH) Zurich for solving MIQP problems (linear equations. and constraints with

quadratic objective function). MIQP is applicable as a function only in the MATLAB environment.

This code is freely available for downloading at www.contro1.ee.ethz.ch/~hybrid!miqp/ .

1 http://egon.eheme.emu. edu/Group/ResearehAreas.html#Mixed-integer%2Ooptimisation

2 .
http://www.ilog.eom/produets/cplex/
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OSL2 3: is a high performance integrated solver for LP and MlP problems. It is based on IBM's

Optimisation Subroutine Library (OSL), to solve optimisation problems. The simplex method is used

to solve LP subproblems, while branch and bound is used for MIP.

MINOS 4: solver developed at the systems optimisation laboratory at Stanford university. MINOS is

used for solving mainly LP and NLP problems.

BARON 5: is a computational system for solving optimisation problems that are purely continuous,

purely integer and mixed integer nonlinear programs. TIns software can also be run online via the

intemet. BARON integrates a number of specialised solvers with an easy to use interface.

Modelling Packages:

MINOPT 6: is a portable optimisation package developed in the CASL laboratory at the department of

Chemical Engineering at Princeton University. It features an advanced modelling language, for clear

and concise representation of complex mathematical models, together with a robust algorithmic

framework, for the efficient solution of a wide variety of mathematical programming problems.

MINOPT solves the following problems: LP; NLP; MlLP; MINLP; dynamic simulations, MINLP

with dynamic models (MIDO), optimal control problems (OCP); and mixed integer optimal control

problems (MIOCP). Its solvers CPLEX, MINOS, and LPSOLYE use the GBD, OA and GCD

(generalised cross decomposition) algorithms. LPSOLYE is a freely available LP/MILP solver that

can be obtained at ftp://ftp.ics.ele.tue.nVpub/lp solve.

GAMS 7: the General Algebraic Modelling System is designed for modelling linear, nonlinear, and

mixed integer optimisation problems. GAMS is similar to MINOPT in its operation and is available

for use on personal computers, workstations, mainframes and supercomputers. The software provides

a computer interface with OSL, CPLEX, MINOS,CONOPT and DlCOPT++. GAMS features

CONOPT and CONOPT2 as altemative solvers to MINOS for NLP problems. The algorithms used in

these solvers are different to those used in MINOS. The introduction of additional nonlinear solvers,

to the proven MINOS, is an attempt to increase the overall usefulness of nonlinear modelling in

GAMS. GAMS is the tool used in tlns thesis to model and optimise the operation of hybrid systems.

Version 19.0 (and later version 20.1) was loaded onto a PC that thereafter formed part of a closed

control loop. The following section describes the structure of GAMS programs and concludes with an

example.

3 http://www.research.ibm.com/osl/

4 http://www-neos.mcs.anl.gov/neos/solversINCO:MINOS-AMPL/

5 http://archimedes. scs.uiuc. edu/baron.html

6 http://titan.princeton.eduIMINOPT/minopt.html

7 http://www.gams.com
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4.3.3GAMS

Diagram 4.3 shows the structure of the GAMS language and its components. Since GAMS is a

modelling language, the programs must be written in the language that it is familiar with.

DATA

- set declarations and definitions
- parameter declarations and definitions
- assignments
- displays

MODEL
" '7

-' variable declarations
- equation declarations
- equation definition s
- model definitions

- solve
- dis play

SOLUTION

Figure 4.3: General structure of GAMS model

GAMS programs consist of statements that define data structures, initial values, data modifications

and symbolic relationships (equations). While there is no fixed order in which statements are

arranged, the order in which data modifications are carried out is important.

In figure 4.3 sets are placed first. Sets are the fundamental building blocks in any GAMS model. They

allow for structuring and statement of the model. Then data is specified with parameter, scalar and

table statements. This basic design paradigm of the GAMS language ensures the use of data in its

most basic form Next the model is defined with the variable, equation declaration, equation

definition, and model statements.

The following features of the GAMS package make it a suitable basic building environment from

which a MPC algorithm can be constructed. GAMS in its equation definitions, handles dynamic

models involving time sequences, lags and leads and treatment of endpoint conditions. Whole sets of

closely related constraints are entered in one statement. GAMS automatically generates each
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constraint equation, and lets the user make exceptions in the cases were generality is not desired. The

order of the equations in the model section is of no importance. The solution of the equations is not in

any sequential or chronological order as is the case in other packages like MATALB. GAMS solves

the set of equations by satisfying all constraints (equality and inequality) simultaneously. This means

that dependent variables need not be expressed explicitly i.e. on the left hand side of equations. In the

solution of the problem, GAMS rearranges those equations with implicit variables.

Example

The following example, although not dynamic in nature, illush'ates how GAMS can be used to

optimise a system with mixed integer variables.

• The reaction A ~B takes place in two reactors.

• Reactor 1: conversion 0.8 ; Cost of operation 5.5(Feed)o6 RJhr

• Reactor 2: conversion 0.667; Cost of operation 4(Feed)o6 RJhr

• Xo : feed A flowrate (kmol/hr); cost of feed 5 RJkmol

• Desired product, B, at 10 kmol/hr.

GAMS can be used to select the cheapest combination of the two reactors while fulfilling the product

demand. Part (a) has both reactors operating separately. If reactorl is in use, then reactor2 is not and

visa versa. Configuration (b) has both reactors operating in parallel. The optimisation will determine

if this is the optimum configuration in terms of cost, and if so, what are the splits to the respective.

reactors.

-I
B

A
Reactor 1 •Xl

OR

-I
B

A
Reactor 2

X, •

(a)

x,
Reaclor1 -,--

B
A

10 km

~ Reaclor2 t--

x2

(b)

ol/hr

Figure 4.4: Reactor configuration selection

Using linear integer programming the problem can be converted into a MINLP, suitable for solution

in GAMS.

Inh'oduce two binary variables:

CASE 1

Yl :=} 1 ifreactorl is selected
ootherwise

4-10
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Now usmg the binary variables, define the following constraints to represent this problem

mathematically

Xl -mlYI :::; 0

X z -mzYz :::; 0

where ml and m2 are the upper limits ofXl (feed to reactor!) andx2 (feed to reactor2) respectively and

are evaluated by dividing the demand by the conversion of each individual reactor as follows:

10
~ = - = l2.5kmoll hr

0.8

10
mz =-- =l5kmol / hr

0.667

thus the constraints now become:

Xl -12.5YI :::; 0

X z -15yz :::; 0

Xl ,xz :;:: 0

The full MlNLP formulation is thus:

Minimise

Subject to

C = 5.5x/ 6 + 4x/ 6 + 5xo

0.8XI + 0.667x2 =10 (product delmnd)

Xl -12.5YI ~ 0
X2-15Y2 ~O
XO = Xl + X2 (mass balance for second configuration)

Xl, X2 ~ 0
YI, Y2 E [0,1]

The cost can be expressed as a function of X2 (feed to the second reactor), by eliminating Xl using the

product equality constraint in the objective function. Figure 4.5 shows the variation of cost (C) with

feed to reactor2 (X2)'
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plot of cost versus feed to reaclo r2
100

98

96

-;:- 94
-E
!£
in
0 920

88

15105
86 '-----------'--------'-----------'

o
X2 (kmol/hr)

Figure 4.5:.Variation in cost with feed to reactor2

At X2 =0 a global optimum occurs corresponding to selecting reactorl only. At x2=l5 there is a local

optimum corresponding to selecting reactor2 only. The optimum selection should therefore be

selecting only reactorl, which corresponds to a minimum cost of 87.5R1hr.

The option of selecting both reactors, while appropriately setting the feeds (Xl and X2) to meet the

demands and constraints, will as shown from the plot, result in a higher cost (cost increases when feed

to reactor2 is increased). The optilllllm configuration should thus be (a) where only reactor 1 is used.

The GAMS representation of this problem is shown by the code on the following page. GAMS solves

the problem to the global minimum solution using DICOPT as the solver with MINOS solving the

NLP subproblem. The solution is in agreement with the conclusions drawn from the plot. The

optimum solution is with Yl set to one (only reactorl selected) and Y2 to zero. Correspondingly for

optimality all the feed should be directed to reactorl i.e. configuration (a). GAMS also calculates that

the minimum cost of operation is 87.5RJhr.
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binary variables
yl selection of reactorl
y2 selection of reactor2;

positive variables
xl feed to reactorl
x2 feed to reactor2;

variables
xo total feed
C cost;

equations
reactorl
reactor2
massbal
demand
objective;

reactorl ..
reactor2..
massbal..
demand..
objective ..

xl-12.5*yl =1= 0;
x2-15*y2 =1= 0;
xo =e= xl + x2;
0.8*xl + 0.667*x2 =e= 10;
C =e= 5.5*(xl **.6) + 4*(x2**.6) + 5*xo;

model reactor_select /011/

option domlim = 100

solve reactor_select using minlp minimizing C;

display xl.l,x2.I,xo.l,yl.l,y2.I,C.I;
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CHAPTERS
Laboratory Case Study 1

Interacting Tanks

The main laboratory at the School of Chemical Engineering at the University ofNatal has pilot plants,

equipped with up to date computer systems that are used to commission and validate control systems.

These processes do not possess any hybrid behavior, but were easily manipulated to exhibit hybrid

system characteristics. It was arranged so that their operation was dependent on discrete inputs and

decisions. In the closed loop control of these processes, the control algorithm, based on DMC, had to

optimally automate these decisions. Control of the lab processes in a sense directed the development

and design of the control algorithm e.g. 3-mode input required for the thermal system in the following

chapter.

This chapter presents the first case study undertaken which directed the design and connnissioning of

the mixed integer predictive controller (MIPC) using the DMC structure. It commences by presenting

a description of the system and thereafter goes on to show briefly how the controller was designed.

. Section 5.3 and 5.4 presents offline (simulated) and online (measured) tests, performed with the

controller in closed loop with a model and the actual plant respectively. The chapter ends with a

conclusion, slUnmarising the findings from these tests.

5.1 Process Flow Diagram

Figure 5.1 shows a pair of interacting tanks used by undergraduate and postgraduate shldents for

process control practicals in the School of Chemical Engineering. This system, due to its interacting

nature, is ideal for connnissioning model predictive controllers. Control of a multivariable, interacting

system like this one requires an optimisation procedure, which is the basis of MPC. The interacting

nature of the system can also be used to show the tunability (ease of tuning) and robustness of MPC

strategies.
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~
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Figure 5,1 Interacting Tanks

The system consists of three tanks. 83 is a storage tank, while 81 and 82 are the tanks that exhibit

interacting behavior. A single pump transfers water from 83 to 8 1 and 82. Valve V], fitted on a return

line to 83, regulates water pumped to 81 and 82. The line from 83 provides water for 81 and 82

separately, while V2 , fitted on the line to 82, can adjust the flow to 82. Water returns to 83 from 81 and

82 under gravity. The controlled variables are the levels of the two tanks, L] and L2 . With this

arrangement the interacting nature of the system is apparent. A variation in a single valve causes

changes to both levels. If V] is opened, both levels go down, while if V2 opens, the level in 81 (L])

goes down and that of 82 (L2 ) goes up. MPC is thus used to determine the optimum valve positions, in

the light of constraints and interacting behavior, that best satisfies setpoint conditions.

Hybrid behaviour was introduced by getting one input to operate continuously (V]) and the other

discretely (V2) i.e. allowing V2 to take on only a finite number of positions, usually two or more.

Effectively in terms of the controller this meant that it was able to treat V] as a continuous input

variable, while for Vl, it could only select its position from a finite set. This selection procedure

introduced the necessary discontinuity into the system The controller had to perfoffil the selection

while meeting system objectives i. e. setpoint tTacking but using minimum conh'ol effort.
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5.2 Modelling and Control

As explained in chapter four, using DMC for control requires step response data of the system, which

in turn generates the convolution model. Appendix B.I presents the step responses used to generate

the dynamic mah"ix for this interacting tank system. Each input (Vi and V2 ) was stepped in turn and

the response of the two controlled variables, for each step, was recorded. As explained in chapter
- - -

three "DMC algorithm", the responses were used to construct the B, B01' B0 sub-matrices for the

dynamic matrix in equation 3.2.

Because the tanks are continuously drained whilst they are filled, the levels reach a steady state after a

step change in valve positions. For a steady state condition, the rate of inflow equals the rate of

outflow. As is the case for most self-draining tanks, the rate of outflow is dependent on the level of

liquid in the tank, which in turn is dependent on the flow into the tank. After a change in inlet flow

(changing Vi and/or V2), there is transient level response before the rate of flow in and flow out is

equal again and the system re-establishes a new equilibrium operating position.

Due to the interacting nature of the system, certain combinations of levels could not be attained with

the manipulations available. As a result there was a need to define a certain operability region within

which any combination of setpoints could be achieved with the current control effort. The restrictions

were due to system characteristics i. e. the pumping capacity of the pump and the valve characteristics.

The pump could only pump a certain volume of water for any given head and the valves could only

allow a certain flowrate through when they were fully open. The operability region was especially

important for the on1ine tests, where absolute valve positions resulted in only certain tank levels.

By alTanging the step response data to fill positions in the dynamic matrix (equation 3.2), a transfer

function model of the process was created. Thus, using this as a base case, the resulting response of

the system could be evaluated for any input changes, past and future. As it stands, this could now be

used to control the interacting system with both valves operating continuously and the controller

making continuous selections. If equation 3.4 were to be written into GAMS and optimised using

equation 3.5 as the objective function, then GAMS, treating f..iii as a continuous variable, would find

the optimum changes to the valves in order to meet the objectives. f..iri would be expressed implicitly

in the program, as it appears in equation 3.4. As long as it is part of an expression, there is no need to

express it explicitly. GAMS would solve this intemally in'its optimisation.

However to allow for the induced hybrid behaviour, further modifications had to be made, that

enforced the discrete selection of V2 • As explained in section 3.2.4 "DMC and Hybrid systems"

modifications were aimed at the l1iii vector in equation 3.4. For this particular case, it comprised both

continuous changes for Vi and integer changes for V2 .

To model this in GAMS, two sets of vectors were required, one representing an absolute continuous

input (continput) and the other an integer input ( discinput). The idea was to generate them over
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the optimisation horizon and then finally superimpose them to form the absolute input vectorM . t1m

in equation 3.4 could thereafter be evaluated by difference between the absolute input from the

previous time step.

For discrete input vector discinput, a vector of binary variables binvect (b i are binary variables,

taking on a value of only 0 or 1), was necessary for the selection of the discrete valve positions. Tri­

diagonal matrix Sel contained the integer valve positions for V2 . If the following positions were

allowed for V2, [a b cl, then discinput could be evaluated for a three step optimisationprocedure as

follows:

b)

b2

b3---

discinput ~ Sel x binvect ~l~ b c 0 0 0 0 0

~l
b4

0 0 a b c 0 0 b5 (5.1)

0 0 0 0 0 a b b6---
b7

b8

b9

bi are binary variables, taking on a value of only 0 or 1. At any given time step, only one selection

from, a b, or c was possible, so the following equality constraint was necessary to enforce only one

selection:

b)

b2

b3

r~~~t~-~-~--~-0=~-~J ::: ~r~J
b7

b8

b9
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If the optinmm positions for V, were [a,a,c] over the control horizon, Discinput ~l~Jand if the

optimum continuous ioputs for V, were [x" x" x,J , Continput ~l~J'

then to comply with the DMC structure, inputs Y (although in this case absolute) must have the
fonn

XI

a

Y
Xz=
a

x3

c

So in addition to equations 5.1 and 5.2, the following matrix manipulation, with ordering mah-ices 1
1

and1z' was necessary:

- -
Y =11 x continput +1z x discinput (5.3)

which in this case was

1 0 0 0 0 0 XI 0 XI

0 0 0

l~J+
1 0 0

m~
0 a a

0 1 0 0 0 0 Xz 0 Xz+ = =Y
0 0 0 0 1 0 0 a a

0 0 1 0 0 0 x3 0 x3

0 0 0 0 0 1 0 c c

Finally since DMC is based on changes in inputs (!J.m , see equation 3.2), the absolute valve positions

now had to be converted into changes over consecutive time steps. If the present inputs for Vi and V2

are Xo and b respectively then:

Xo

-1 0 1 0 0 0 0 0 b

0 -1 0 1 0 0 0 0 XI

0 0 -1 0 1 0 0 0 a
/).iii= (5.4)0 0 0 -1 0 1 0 0 x2

0 0 0 0 -1 0 1 0 a
0 0 0 0 0 -1 0 1 x3

C
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To control the interacting tank system with this "induced" discontinuity, equations 5.1 to 5.4 were

used in tandem with the usual DMC equations (3.4 and 3.5), together with constraints on inputs and

outputs. See appendix B.3 for the equation block, as compiled in GAMS to optimise the dynamic

performance of the system by evaluating the continuous changes to Vi and discrete changes to V2 at

regular time intervals. GAMS proved to be an appropriate tool for the design and development of the

MIPC algorithm Firstly, it had provisions for the continuous and binary vector variables

( continput and binvect). As discussed, for a hybrid system with continuous and discrete inputs,

these vectors proved to be fundamental to the control algorithm Secondly GAMS simultaneously

solved the system of equations as presented. Logical constraints involving the continuous and/or

discrete variables could also be introduced as part of the optimisation procedure, i.e. equation 5.2.

Testing of this control algorithm took the form of online measurements and offline simulations.

Offline tests were performed in closed loop with a convolution model of the process that replaced

plant inputs in the SCADA system The model was superior to the actual plant when performing

investigations for nmability, because there was no noise and no disturbances in state responses as was

the case with the plant. Testing against a model had the added advantage of running the model

together with the controller faster in real time and also, tests could be performed away from the actual

equipment.

5.3 Offline Tests

Simulated setpoint step tests were performed with the following objectives in mind:

• Firstly to show the tunability of the MIPC algorithm

• Secondly to illustrate the different state behaviour (steady state offset and oscillations) induced

into a system by a controller that is restricted in its selections of inputs, in this case V2 .

• Thirdly, to evaluate the decision-making ability of the controller which is based on an

optimisation procedure.

The convolution model against which the controller was tested for the offline tests was created using

the step response data generated for the controller. (See appendix B2). Simulations for the offline tests

were conducted with a control interval of 10 seconds and an optimisation horizon of 10 steps. In the

following predictions, the control horizon is presented in terms of number of optimized moves. This

can be converted into absolute time by multiplying the control horizon size by the control cycle which

in this case is 10 seconds. The optimisation horizon for the simulated tests size, in this instance is thus

100 seconds ahead in time.

Table 5.1 presents the parameters set for the MIPC algorithm for the offline simulations. It also

compares the different conh"oller configurations in tenns of performance which is gauged by the

quality of level control attained.
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Figure horizon optimised W1 W 2 AI 1..2 Allowed V2 Level

size(steps) moves position control

5.2 10 1 1 1 1 1 10,30 satisfactory

5.3 10 2 1 1 1 1 10,30 satisfactory

5.4 10 2 1 1 1 0.1 10,30 best

5.5 10 2 1 10 1 0.1 10,30 satisfactory

5.6 10 2 1 1 1 0.1 10,30 oscillatory

5.7 10 2 1 1 1 0.1 10,20,30,40,50 satisfactory

Table 5.1 Summary of controller parameters and performance for simulations

5.3.1 Controller Tuning

The tunability of a model predictive controller is important, especially for interacting systems and also

where it is required that the controller does not take severe action in the light of plant model

mismatch. As discussed in chapter three "Model Predictive Control," the DMC algorithm can be

tuned via three parameters. The first two involve the process inputs and outputs in equation 3.5. W,

penalises the deviation of the closed loop error from setpoint for each system output state, while

A, referred to as move suppression, encourages or discourages severe changes on the inputs. The third

tuning parameter is the size of the control horizon. Having a control horizon with more than one

move, results in bolder action on the fIrst move, with the subsequent moves thereafter accounting for

correction. This results in larger gains on the first move and generally better control on the dynamic

parts of the response. As compared to responses with more than one control move, those with a single

control move tend to be sluggish because the computation is forced to target the steady state in one

move.

Figure 5.2 presents the control effort for a setpoint step in both states with the controller allowed only

one optimised move and the other tuning parameters (Wand A) set to one. An optimisation horizon of

10 steps was used throughout the course of the tests. Vj was set continuously while V2 could only be

selected from two positions i.e. [30 10] % open, with the difference between them being of greater

importance. A reasonably small tim between the only two possible valve positions for V2 ensured

smoother dynamic responses, from which reliable conclusions could be drawn. Figure 5.3 presents the

same setpoint sequence, but with the number of optimised moves set at two.
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Figure 5.3: Offline simulated setpoint step test with 2 optimised moves; W1=W2=.I1j =.I12 =1

In response to changes in setpoint, the controller was seen to make logical decisions in order to get

the tank levels to track setpoint. Contrary to expectation, the extra move in figure 5.3 made little
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difference to the action of the controller as compared to one move. Notice in both cases, the offset in

Li and L2 when L2 setpoint was stepped down to 20%. The controller set V2 to its lower position (10%

open) to accommodate for this chop in setpoint, but the change (Llm = -20%) was not enough to get L2

to setpoint. Effectively this left Vi to get L2 to setpoint, but Vi could not be over-exerted as it also had

to get Li back to setpoint, which was offset due to the change in V2 . Eventually the optimisation

determined that the optimum operation was with both levels experiencing a steady state offset.

Whether the controller oscillates the valve between its operating positions (see section 5.3.2) depends

entirely where it ends up at the time-interval. The algorithm has clearly calculated that the penalty will

be less this way than if the state continuously crossed the setpoint by valve oscillation - where the

output oscillation would be too offset or too big.

A different controller action and state response was observed when the same procedure was repeated,

but with /12 = 0.1 (figure 5.4).
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Figure 5.4: Off/ine simulated setpoint step test with 2 optimised moves; W j =W2=Aj =1; A2 =0.1

Lowering /12 made the controller more inclined to change the position of V2 • Notice on the first part of

the step test that the controller selected V2 at 10% open, which resulted in an overshoot in both levels

with respect to their setpoint. Thereafter the overshoot was corrected by returning V2 to 30%, while Vi

was set accordingly. This kind of operation is typical of a control horizon with more than one move.

The selection of V2 to operate at 10% was initiated on the basis that the optimisation corrected for any

overshoots on the second move. The net effect was that the controller had much more freedom in its

variation of inputs, which was not the case in figures 5.2 and 5.3 where valve action, especially V2 ,

was conservative. Reflecting on the control action taken in figure 5.3, with two control moves, but

/12=1, it was evident from the similarity between the two plots 5.2 (one control move) and 5.3, that the
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controller did not make use of the second move. It was only when the move suppression on V2 was

decreased that the second move started to influence the first. Thus in DMC as the number of moves

increases in the control horizon, it obviously may be necessary to decrease the move suppression.

Allowing more optimised moves in order to meet objectives does not guarantee that the optimisation

will use all of them effectively. Lower move suppression will however encourage the optimisation to

use the moves available to it, to plan a sequence of control actions extending ahead in time, especially

in the event where the input can only take on positions from an integer set. ~m between integer

positions is fixed and generally large, so a lower move suppression (A) is necessary to encourage

valve movement.

hlcreasing the number of optimised moves in the control horizon, while decreasing the move

suppression, however did not alleviate the offset in the final part of the response. The controller still

evaluated this, with the control action that it had at its disposal, as an optimum state of operation.

To show the effect of weighting on setpoints, the weight (W2) on L2 was increased. Figure 5.5 shows

the resulting control action.
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Figure 5.5: Off/ine simulated setpoint step test with 2 optimised moves; Wj =A] =1;A2 = 0.1; W2=10

From the responses, L2 tracked its setpoint more closely, while L I endured the offset. Clearly both

valve actions favoured L2 . This was evident when L2 setpoint was stepped down to 20%, V2, as

expected, was selected to operate at 10% but VI increased to aid in decreasing L2 . The action of VI

occurred in spite of it causing L I to depart from its setpoint (see time period 350s-400s). Also at the

final part of the response (after 500s), L2 was closer to its setpoint than L I (relatively smaller offset as

compared to L2).
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5.3.2 Contrasting controller action

Depending on the initial state positions relative to the setpoint, different types of control action and

hence system responses were observed. If through its discrete selection, the controller was able to take

states to their setpoints, or close enough with a reasonable offset, then steady state behaviour like that

shown previously was noticed. If on the other hand, there was a selection available to the controller,

that allowed it to alleviate the offset, then another type of response and control action was observed.

As shown in figure 5.6, state responses in this case became oscillatory, with the controller periodically

switching the position ofV2.
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Figure 5.6: Offline simulated oscillatory level Control with 2 optimised moves; WI=W2=AFl;A,FO.1

The operating point for L 2 on the second setpoint step was changed from 40% to 30%, instead of 20%

as done before. In response to this shift in operating point, the controller immediately selected V2 to

operate at 10%. The impact of this change caused L2 to decrease below setpoint. The controller

thereafter determined that it was better to get the state above setpoint (optimal decision) by increasing

V2 to 30%, than just leaving L2 to attain a steadystate offset. This ,sequence continued, with the

controller making use of the integer positions for V2, to get an oscillation of L2 about the setpoint.

Evidently this type of operation was optimally better than that where the states previously had a

steady state offset. Obviously this was dependent on: the initial state and its position relative to the

setpoint; the input change (Llm) available to the controller; and relative phasing of the setpoint steps

and controller interval. Clearly the constant switching between the discrete input state positions

resulted in an unsteady operation. However on average, the output states are kept closer to setpoint

than with the steady state offset.
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5.3.3 Multiple selection for V2

Finally in showing the versatility of the control algorithm, a control procedure was undertaken where

the controller was allowed to select from more than two operating positions for V2 i.e. [0 10203040

50]. Figure 5.7 shows the resulting control procedure with the same setpoint changes as before.
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Figure 5.7: Offline simulated set point step test with V2 allowed intermediate positions
while using 2 optimised moves; Wj=WFA 1=1; A2=O.1

Figure 5.7 shows that in getting the levels to track their respective setpoints, the controller made

selections for V2 from all integer positions made available to it. Steady state offsets occurred at only a

single pair of setpoints (L j = 70 and L2 = 40) during the initial part of the simulation. Thereafter when

the next two changes in setpoint were made, the controller firstly made the appropriate changes to get

the levels to their new operating positions, and subsequently selections were based on regulating the

states at their setpoints. Regulatory control amolmted to constantly changing the position of V2

(Am=±10), while L2 oscillated about its setpoint. In this case, giving the controller greater freedom of

choice regarding V}, meant that it had a greater dependence on firstly the dynamic and then the

regulatory aspect, once the operating point was reached. This action is typical of a servo control

problem, where the operating points change frequently and span a wide range. In between the

changes, regulatory control is also required. Controllers of this type are used to control systems

requiring both servo and regulatory control through selections and initiations. More notably they find

a place where gear and speed selections are needed to maintain variable loads and demands e.g. the

car example discussed in chapter two.
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5.4 Online Tests

Table 5.2 presents the parameters set for the MIPC algorithm for the online measurements. It also

compares the different controller configurations in terms of performance which is gauged by the

quality of level control attained.

Figure horizon optimised W1 W2 Al A2 Allowed V2 Level

size(steps) moves position control

5.8 10 2 1 1 1 0.1 20,40,60,80,100 satisfactory

5.9 10 3 1 1 1 0.01 0,100 oscillatory

Table 5.2 Summary of controller parameters and performance for online measurements

Once connnissioned on the model, it was interesting to see how the controller would perform online

on the plant. The plant brought with it additional challenges for the controller which were not present

in the offline tests. Firstly was the problem of noise, which had the possibility of introducing plant~

model mismatch. This was however seldom of real concern as the mismatch, if anything would be

slight and the feedback feature of MPC would be able to deal with it. Secondly was the possibility of

non-linearity, where system responses could be different, for the same or reverse change in input,

depending on where in the operability region the system was functioning. This would also result in

plant model mismatch. Lastly was the problem of defining the operability region, within which the

combination of setpoints (L] and L2) could be achieved by the valve ranges on the plant. Any step test

that was undertaken had to fall within this region (appendix B.2). Due to the restricted size of this

region, the plant operation within it would be relatively linear, thereby reducing the concern of

mismatch.

Many closed loop tests were done with the plant and controller in closed loop. The conh'ol interval for

the online measured tests was set at 45 seconds. The optimisation horizonin this instance was thus

450 seconds, representing the time taken for the system to attain steady state after a change in inputs.

Control quality was similar to that for the offline tests. Presented here are just two tests that show the

online performance of the controller. Settings from the offline simulations could not be used for the

online measurements mainly because in the real plant certain operating positions i.e. pairs of

setpoints, could not be attained (see appendix B.2). However, similar responses should be achieved

by using the same valve position gap, assuming that the system is not too non-linear.

Figure 5.8 shows the level control of the interacting system with V2 allowed to take on only the

positions, [020406080 100] % open. The plant response was similar to that with the model (figure

5.7). There was a region of offset in (1200s-1400s) and also a region of oscillatory behaviour in L2

(final part of the step response). The controller made use of all possible operating positions of V2 in

order to get the states to track setpoint. An incremental limit of 20% was placed on V2, which ensured

5- 13
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that all possible positions of V2 were utilised and none were skipped when a new operating position

was introduced. While setpoint tracking was satisfactory, the controller was once again seen to make

logical control decisions for the operating position of V2 .

Figure 5.9 presents a more realistic scenario. V] is allowed to be set continuously, but V2 can only be

fully open or shut. This type of operation is typical of a reservoir distribution system (e.g. drinking

water), were valves/pumps might change operation to maintain levels within limits. Tight level

control in this instance is of secondary importance. Level control on both levels is not as tight as in

the previous control sequences. Both states oscillate about their setpoints due to the opening and

closing of V2 . L] oscillates within a nanow band about its setpoint, while L2 is not controlled as

tightly. It is noticeable that at 12:35:00, L2 becomes increasingly oscillatory. Slacker tuning e.g.

higher move suppression or lower W2 would result in less oscillation, but then at the expense of

further distance from setpoint. Notice that in order to get satisfactory level control on both tanks, this

test had to be done with a control horizon of three optimised steps. In addition, because L1m in this

case was ±l00%, move suppression on V2 had to be decreased to encourage changes.
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5.5 Conclusion

To commission the MIPC algorithm on an interacting tank system (figure 5.1), hybrid system

behavior was induced by getting the controller to evaluate VI continuously while discretely selecting

operating positions for V2 . This system proved itself to be a satisfactory environment for

commissioning the MIPC algorithm The conh'oller, in basing its selections on an optimisation

procedure, was observed to make logical control decisions for the operation of V2 , while setting VI

continuously.

The inherent dynamic behaviour of the interacting tank system, with the discontinuity being on the

input, presented the opportlmity to bring forth some interesting features conceming hybrid system

control. Firstly, cross-coupling between input and output variables tested whether effective decoupled

control could be achieved with normal tlming procedures.

Another feature of the system, used to reveal different types of control action and state response, was

that the states of the system (levels) reached steady state if the position of the discrete input remained

lmchanged over a period of time. If through the real time optimisation, the conh'oller found that it was

not necessary to change the operating position of V2 , then over a period of time, both levels would

reach a steady state (figures 5.2/3). This effectively left VI to control LI and L2 and in most cases, one

or both of the states would experience a steady state offset with respect to their setpoints. On the other

hand, if the state was close enough to setpoint and depending on the options available in selecting V2 ,

the controller might decide that the optimal trajectory was to overshoot the setpoint, as compared to

enduring a steady state offset. The overshoot was corrected for, by a reversal of the decision on the

subsequent time steps (figure 5.6). The net effect was a type of "bang-bang" control action, with

output states following an oscillatory behaviour.

For hybrid systems that have discrete inputs, with fixed Llm between positions of operation, move

suppression (A) was found to have a significant influence on the control action (figure 5.4). If it was

too high then the controller was found to be reluctant in switching the position of the input. This

resulted in the states enduring steady state offsets. When move suppression was lowered, with the

control horizon increased, then the algorithm tended to switch the operating position of the input more

frequently. Increasing the control horizon had to be followed by a decrease in move suppression, to

ensure that the optimisation made effective use of all the moves in the horizon.

Offline tests show satisfactory results, where increasing the control horizon and decreasing the move

suppression, was further shown to encourage changes in the discrete input.
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CHAPTER 6

Laboratory Case Study 2­
Thermal Circuit

After connnissioning the mixed integer control algorithm on the interacting tank system, it was ftrrther

extended to automate another laboratory scale process in the School of Chemical Engineering. This

paliicular system, a thermal circuit, required a different approach due to its distinct modes of

operation. The operation of a system can be divided into regimes or modes if there are discontinuities

on the input or output of that particular system For the thermal circuit, the controlled variable

(output) was continuous, while the discontinuous manipulated variables (inputs) defined the modes of

operation. When the position of the discontinuous inputs changed from one operating position to

another, then a switch in mode had occurred. In automating hybrid systems having these

characteristics, it is the purpose of the controller to determine the switching policy of that particular

system

This chapter presents the second case study undertaken, involving the control of a system with hybrid

behaviotrr. It comnences by presenting a description of the system and then goes on to defIne the

different modes of operation. Section 6.2 shows how a model predictive controller can be designed to

initiate the switching between modes in real time. As before, the DMC framework was used. Section

6.3 presents the results of offline and online tests that demonstrate, in closed loop, the performance of

the mixed integer controller. Lastly, the chapter concludes with a recollection of the findings from this

section of research.

6.1 Process Analysis

6.1.1 Process flow diagram

Figtrre 6.1 is a process diagram of the thermal circuit, as it exists in the laboratory, with gas heaters,

cooling devices, valves and piping. The thermal fluid, water in this instant, is pumped out of tank S1

through a heating-cooling circuit and then returned to SI. Before the cooler is a return line, fItted with

control valve CV13 that allows flow to bypass the heating-cooling devices and return to the tank. In

parallel with the gas heaters, is another line, fitted with control valve CV04, that allows the heaters to

be bypassed The heaters are introduced into the network by control valve CV05. All three flows:

from the bypass; the cooler; and the heater, converge at a mixer before returning to S1.

Temperattrre meaStrrements are available at three points in the circuit. Firstly, at the exit of S1,

secondly after the cooler and lastly before the entrance to the tank. Thermocouples TU, T30 and T31
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Chapter 6: Case Study 2 - Thermal Circuit

measure these temperatures respectively. For the purpose of this investigation, the controlled variable

was chosen to be T31 i.e. the temperature of the return flow to the tank.

J3

y

Figure 6.1 Thermal circuit

6.1.2 Modes

By strategically setting the combinations of the control valves relative to each other, the thermal

circuit can be forced into having modes of operation. This system was configured into having three

distinct, mutually exclusive modes of operation i.e. "recycle", "cooling" and "heating". The system

was in recycle mode when of the three control valves, only CV13 was open, while for cooling only

CV04 was open and for heating CV05 was open. The valves operated on a binary signal from the

controller, i.e. they were either open or shut.

Figure 6.2 shows a graphical illustration of a system with ternary modes. Each side of the triangle

represents a mode transition, while the apices represent the modes. This system therefore had three

modes of operation, with 6 (3x2) possible switches between these modes.

It was the combinations of the different valve positions, from the primary inputs, that defined the

modes. In this case for 3 inputs, each with 2 possible states (open or shut), the number of possible
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modes was 8 (23
). However certain modes were eliminated e.g. the case where all valves are

simultaneously open. Thereafter the decision had to be made with regards to the switches between

these modes during operation. As before, SOl11.e transitions may not be allowed. Figure 6.3 shows this

sequence, beginning from the primary inputs, and ending at the allowed mode transitions for the

thermal circuit. This particular sequence, of logical permutations and combinations, was relevant for

the design of the controller, as the plant operated on primary input level (valves), while the controller

was designed on the basis of modes and switches between modes.

cooling heating

Figure 6.2 System with ternary modes
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Figure 6.3 Conversion from primary inputs to mode transitions
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6.2 DMC for systems with mode switches

6.2.1 Switch responses

Generating a convolution model for a system is usually done by stepping the input to the system and

then using the system response to build the model. Actually this amounts to disturbing the system and

. then using its response to the measured disturbance, as a standard for other possible disturbances. For

a system with modes, the disturbance amounts to switching between the modes of the system

The DMC algorithm can therefore be applied to systems with modes, by switching between modes,

recording the system response and then generating the convolution model in this way. In the

optimisation procedure, the algorithm now solves for the optimum switch instead of the optimum

primary plant input.

Figure 6.4 shows the openloop switch response for the actual thermal circuit. Recall that the controller

was to be designed to control the inlet temperature (T31) to the tank. The responses for T31 from this

test were used to generate the convolution model.

70r---.-----,------,------.-------r-------r----------,

i h~r

30'L...----L ----L ...L- --L -L ---.L ---l

time elapsed (s)

Mode switches in time
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heating

recycle
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time elapsed (s)
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Figure 6.4 Open/oap switch response data

The openloop switch responses, in figure 6.4, revealed two aspects regarding the dynamics of the

system that had to be considered when designing the controller. Firstly, for heating and cooling modes

of operation, the temperature of concern (T31) did not reach a steady state. So the integrating version

of DMC as presented in section 3.2.3, "DMC and integrating systems," had to be used. The other
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aspect was the asymmetrical state responses when switching from one mode to another and then back

again. For example, the response for the switch from recycle to cooling was not the mirror image of

the response for the switch from cooling to recycle. Since DMC relies on a linear convolution model,

symmehy is inherent in the algorithm Figure 6.5 illustrates, in a general sense, this behaviour for a

state response to a change in input. This effect of nonsymmetry can be overcome by using the

response for all switches (6 in total) and then getting the optimisation to only utilise them in the

direction for which each was generated. Since the switch responses are mUltiplied only by binary

variables (i.e. 0 or 1) in the algorithm, responses are therefore only ever used in the direction that they

were initially generated for the model. In the integrating case, where states do not reach a steady

state, responses used in the internal model were configmed to end with mirrored gradients, ensuring a

cancellation when modes are switched For example the slope of the switch from R~C is the negative

of the slope C~R. In tem1S of the step response data, Lill (R~C) is the negative of ~B (C~R).

sym metrical response

asymmetrical response

input m

Figure 6.5 Symmetrical and asymmetrical state response to change in input

Notice a sudden, short increase in water temperatme when the thermal circuit is changed from recycle

to cooling mode and a decrease in temperature when changing from recycle to heating mode. The

sudden increase in temperature when the mode is switched from recycle to cooling is due to the hold

up effect (residence time) in the pipework. The sudden decrease in temperature when the mode is

switched from recycle to heating is due to the hold up effect in the cooling device (radiator with fan

and coils with water shower).

Figure 6.6 shows the switch step responses used to generate the convolution model. Note the

asymmetry in the responses when switching from one mode to another and when the switch is

reversed. Entries for the dynamic matrix, for a given switch, were evaluated by extrapolating the slope

prior to the switch and subtracting that from the response, at every time step, after the switch. Refer to

appendix C.1 for the non-symmeh'ic switch response data used for generating the dynamic matrix.

6-5



Chapter 6: Case Study2 - Thermal Circuit
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Figure 6.6 Switch responses used for convolution model
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6.2.2 Adaptation for thermal circuit mode switching

In addition to the usual DMC equations (3.4 and 3.5) presented in chapter 3, "Model predictive

control," additional equality constraints were required for logical mode switching. Firstly the

optirnisation, in switching a mode, must select the switch based on the present mode. For example if

the system is currently in heating mode, then it must only switch from heating to another mode. It is

possible under the same circumstances that another mode switch e.g. R----.+ C, may result in a lower

objective function. Secondly the conversion must be made within the control algorithm from mode

switches to actual valve settings (open or closed). This conversion must be reversed (i.e. from valve

position to mode switches) when the conh"oller is called; and thereafter updated (mode switches to

valve positions) when the new optimised inputs are passed to the plant. As stated previously, the

controller ftillctions on a switching basis, while the plant operates in tenns of primary inputs i.e.

valves.

In equation 3.4, Xci = xoMeas + [Bot - Ba ] !1iiipa,t + B!1iii, the matrices making up the dynamic matrix

(Bot, Bo' B) were generated as discussed previously. However the binary vector now becomes

C----+R

H----+R

!'1m =
R----.+C

(6.1
R----+H

C----.+H

H----.+C

Equation 6.2 was required to relate present modes l~1to the switches in modes (now 11m) as

evaluated by the optimisation.
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C~R

l~l =l~L{~l ~lJ
H~R

1 -1 0 -1
R~C

0 1 1 0
R~H

-1 0 -1 1
C~H

H~C

simplyfmg for notational purposes
- - -

Mo; =MO;-l + A.f'lm

Where integrating matrix A represents the two dimensional relation matrix with -1 for movement

away from a state and +1 for movement towards a state. Since the transition vector (f'lm) is either °or

1, the elements in A are set accordingly so that the correct mode is selected at every moment in time.

Mo; was itself a vector of binary entries (0 or 1) with a "1" in the appropriate position representing

the selection of that mode. The size of the matrices and vectors were duplicated for more than one
- -

optirnised switch in time. A was expanded out in lower triangular form, while Mo; got duplicated

row wise to accommodate for the size of f'liii .

Another equality constraint (6.3) was required to ensure that the optirnisation always made logical

switches based on the current mode of the system at time step i.

3

LMO;j=l
j=1

Equation 6.3 essentially ensured that the optimisation only selected 1 mode of operation at every time

step i. Equations 6.2 and 6.3 were now sufficient to provide the algorithm with the necessary logic

needed for optimal mode selection. Finally the optimal selection must be converted to primary inputs

as required by the plant. In this case

[
CVl3

l [1 0 °l[R1cV04 = ° 1 0 C

cVos 0 0 1 H

If a record of past modes was not available, then before the optimisation procedure, 6.4 was inverted

to convert current valve positions to modes.

6-7

(6.2)

(6.3)

(6.4)



Chapter 6: Case Study2 - Thermal Circuit

6.3 Closed loop tests

Similar to the interacting tank system, the controller was cornnnssioned and its performance evaluated

in closed loop with theSCAD-GAMS conh"olloop as presented in section 3.3. The aim of the control

strategy was to maintain T31 at setpoint by selecting the conect mode of operation. The initial tests

used simple simulated linear trajectories (section 6.3.1), where the responses to switches from one

mode to another and back again were symmetric. Thereafter the controller, with different

configurations, was tested online on the actual thermal circuit and then finally against an onboard

model (6.3.2). The "onboard" model is a model (convolution in nature) that is loaded into the SCAD

system software and simulates the actual process. Refer to appendix C.3 for the equation block in

GAMS that optimised the switching of modes for the thermal circuit.

6.3.1 Simulated symmetric responses

To commission the new control algorithm and check that it was making logical selections, simple

responses were used for the internal conh"oller model and the external model. To ensure symmetric

behaviour (because the controlled model was a linear convolution model), the switch step response

data for the convolution model had the following interdependencies:

• C---+R=-R---+C
• H---+ R = - R---+ H
• H ---+ C = H--7 R + R ---+ C
• C ---+ H = C---+ R + R ---+ H
•
Refer to appendix C.2 for the synunetric switch response data used for the convolution model. For the

external model, the selection of the heating mode resulted in an indefinite increase in temperature

(similar response as switch R---+ H). The cooling mode resulted in an indefinite decrease (similar

response as switch R---+ C). To match actual plant behaviour, the observed initial inverse parts of the

R---+C and R---+H responses were included. Selection of the recycle mode results in an immediate

steady state.

Figures 6.7 and 6.8 show controller action on the model' with one and two optinrised switches allowed

in the optimisation horizon respectively. These tests show that the controller was able to make logical

switches based on the state position relative to setpoint. When the state was below setpoint, the

controller selected heating mode,' or if the state was sufficiently above setpoint, then it selected

cooling mode. When it approached setpoint, it was able to select the opportune moment in time to

switch to recycle mode, so that the steady state response thereafter coincided with setpoint.

Figure 6.7 reveals that when the switch to recycle was made, the state had to endure an offset from

setpoint thereafter. This offset was due to two reasons. Firstly, the switch in mode was based on an

optimisation procedure that minimised state difference from setpoint over a closed loop horizon

extending into the future. At the time of switching, a lower objective function was the result (even
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with the offset), as compared to the value of the objective flll1ction if the switch had not been made

then. This effect can however be influenced with the switch penalisation weight (A) and penalisation

from setpoint (W)that is part of the objective function. Secondly, the offset between the state and

setpoint was also due to the timing be.tween the model and the controller. In the control loop, the

model had to wait for the optimum input from the conh·oller. In effect, the precise optimal situation

depends also on phasing - e.g. the point in the existing response at which a setpoint change might be

made. A controlled variable might end steadily below or above setpoint, or even be made to oscillate

near the setpoint depending on when the change in setpoint was made and also the magnihlde of the

change.

Comparing the two simulations, revealed that controller-switching behavior with two possible

optimised switches was more effective than just a single switch. Switching based on one optimised

switch was conservative, with the system having to endure offsets from setpoint. For two optimised

switches, the optimisation used the extra degree of freedom to minimise the difference between state

and setpoint in the closed loop horizon. This was observed when the system entered recycle mode for

the final time and the response went to steady state thereafter. The temperature offset for 2 optimised

switches in the control horizon was not as considerable as that for just 1. Essentially, due to the

freedom it had for correction on subsequent moves, the controller with 2-optimised switches was

more prone to switching the mode of operation.

Another comparison between the two control sequences shows that when the temperature is close to

setpoint, the algorithm with a control horizon of 2 steps oscillates between cooling and heating mode.

This is because it plans an appropriate switch (correction) on the subsequent moves, which was not

the case for a single switch. The extended control horizon proved to alleviate the offset from setpoint.
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6.3.2 Measured online control

After commissioning the controller against an onboard model and establishing that it was making

logical switching decisions, it was exercised online with the real plant. For the plant, responses to

switches were asymmetric in nature. For its internal convolution model, the controller was thus loaded

with the switch responses (see appendix C.1) evaluated from the openloop plant responses (figure

6.6). To account for the integrating effect in-between mode switches, the following modifications

were made to the final pair of points on the switch responses such that:

• ~B(C -+ R) = - ~B( R-+ C)

• ~B(H-+ R) = - ~B( R-+ H)

• ~B(H -+ C) = ~B(H-+ R + R -+ C)

• ~B(C -+ H) = ~B(C-+ R + R -+ H)

This modification ensured the cancellation of the final temperature gradients during mode switches.

The controller was thus able to keep track of the temperature change during mode switches.

Figures 6.9 and 6.10 show the online control of the thermal rig with the controller using 1 optirnised

switch and 2 optirnised switches respectively. Unlike the simulated tests for the symmetric responses,

the setpoint was never tracked for any length of time. This however was expected, because the switch

to recycle mode in the actual plant had a dynamic response of its own. When the switch to recycle

was made, T31 would finally measure the initial water temperature in the tank before the switch. So

the transient response after the switch to recycle, was based on the relative temperatures before the

switch, of water entering the tank and that within the tank. This behaviour created a non-linear effect,

as the trajectory of the response was determined by where in the temperature range the switch was

made and also for how long the system was in a particular mode prior to the switch. Heat loss to the

sUlTOlmdings also meant that the temperature decreased gradually while in recycle mode. The model

was llilable to account for this due to the above relations involving iJB.
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For a single optimised move, after switching from heating to recycle, for the higher temperature

setpoint, the state experienced an offset from setpoint. This control behaviour, to an extent was similar

to that for the simulated case with the synmletric responses. For the plant control, the offset can be
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traced back in time to when the switch had initially been made. At that time the algorithm evaluated

that switching to recycle was the optimum decision. As usual, optimality was based on the state's

closed loop trajectory ;elative to setpoint. hI the recycle mode, when the temperature was sufficiently

offset from setpoint due to heat losses, the conh'oller returned the mode of operation to heating.

Initially when the temperature was offset from setpoint (e.g. greater then 5 degrees below setpoint),

the controller did not switch immediately to heating mode because it did not expect the temperatme to

keep on falling. TIns was because it did not have the incentive to act on the future. At the same time

the switching penalty would be bigger than the penalty for the offset from setpoint.

When the setpoint was lowered, the controller switched the circuit to cooling mode and thereafter

waited lUltil the state was close enough to setpoint before switclnng back to recycle. Switching from

cooling to recycle was initiated at the optimum moment in time, with setpoint thereafter being

followed closely. Both graphs 6.9 and 6.10 show that the algorithm found it much easier to track a

temperature decrease in setpoint rather than a temperature increase in setpoint. This is because there is

a more elaborate dynamic response while in heating mode as compared to cooling mode (see figure

6.4). Also the rate of heating was faster than the rate of cooling, which directly affects !1B of the

respective mode in the integrating model.

With the two-switch optimisation, as with the simulated test, the controller took a greater initiative in

regularly switching the mode of operation. For the higher setpoint temperature, the state response was

still oscillatory, but the amplitude about the setpoint was not as pronounced as for a single switch.

There was a greater effort by the controller to keep the state closer to setpoint. This effect was

particularly noticeable when the setpoint was decreased.

6.3.3 Simulated offline control

The switch response data used for the online controller was used to commission a convolution model,

to be nUl in closed loop with the controller. ill this control loop, the controller initiated the switch,

with the model directly accepting this switch and generating the response. For the previous

simulations with the symmetric responses, the controller initiated the switch, but converted it

internally to primary inputs (valve positions) before passing it to the model. In this case the model

generated responses based on a change in primary input. For the offline tests presented in this section,

the model simulated the actual plant nonsymmetrical behaviour.

6.3.3.1 Number of optimised moves

Figures 6.11 and 6.12 validate the findings of the previous tests where the performance of the

controller was evaluated with 1 and 2 optimised switches. These responses were comparable to the

actual plant responses in figures 6.9 and 6.10 thus showing a satisfactory match between plant and

model. For these offline tests, the final response of the state in recycle mode however went to steady

state. For the actual plant this was not the case due to heat losses.
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6.3.3.2 Constrained Control

Very often, optimal operation for a particular system is close to an operating constraint. MPC can be

used in this instance to drive the operation of a system as close as possible to the constraint, by setting

the setpoint at the constraint. This section presents the conh'oller, with various configurations,

selecting the appropriate mode of operation in order to keep entrance tank temperature (as recorded by

T3J) as close as possible to 65°C, but not allowing it to go above. The simulation model with

asymmetric responses was used in closed loop with the controller.

Figures 6.13 and 6.14 show attempts at <hiving the state as close as possible to the upper bOlUld

consh-aint using different conh-ol horizon sizes. Both conh-oller configurations kept the ten:tperature

within the constraint, however the controller with 4 optimised switches allowed the system to operate

much closer to the constraint. Allowing the algorithm more optimised switches made operation closer

to the consh'aint possible because the extra switches could be used to prevent constraint violation in

the closed loop horizon. In the case of two optimised switches, the controller could not allow

operation close to the constraint, as it only had a single switch, after the first one, to prevent violation.
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Figure 6.13 Constrained control switching with 2 optimised switches
(control of asymmetric model)
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Figure 6.15 shows the controller attempting to do the same as in the above two tests, but in this

instance, the constraint was soft in nature. (See section 7.4.3 for the reasoning behind and

implementation of a soft constraint). A soft constraint is one that can be violated during the

optimisation, but at some cost. The controller used in figure 6.15 was allowed 2 optimised switches.

The operation was reasonably close to the constraint, which was clearly superior to that in figure 6.13,

where the controller was also allowed 2 optimised switches and the constraint was hard in nature. In

order to get the desired control effect, tuning between the setpoint penalty and soft constraint violation

was important. For the present simulation, the weight penalisation from setpoint (W) was set at 20 and

the soft constraint'penalties (on square of positive excess) for the initial points were set at 10, while

the final points in the horizon were heavily penalised. (Recall that the weights have a square effect in

objective function). The algorithm was given the opportmrity to drive the state close to the set-point

constraint, by allowing it to violate the constraint to a certain degree, for the initial few steps, in the

closed loop horizon. With only 2 optimised switches, not much correction could be done after the first

move, so much of the closed loop trajectory, as predicted by the internal model, was due to the first

switch. As a result, in figure 6.15, the state never violated the consh"aint.

hI certain instances, the algorithm allowed the temperature to approach the setpoint/constraint more

closely (180s and nOs), while on other occasions (280s and 370s), switches were made much earlier.

This optimal time of switching depended on phasing, as explained earlier in section 6.3.1, and also the

future prediction.
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Figure 6.15 Constraint switching with soft constraint and 2 optimised switches

6.4 Conclusion

A model predictive controller was designed and commissioned to automate the switching of a thermal

circuit with modes. System modes were defined by combining specific permutations of the

discontinuities in inputs. The controller, based on the DMC framework, was modified to deal with

real time mode switching of the thermal circuit. By using openloop switch response data of the

system, the internal convolution model of the controller was generated. The controller was shown to

make logical switching decisions regarding the mode of the system when meeting operating

objectives.

Switches between succeSSIVe modes resulted in asymmetric responses regarding the state. This

phenomenon was dealt with by getting the algorithm to use the responses in direction for which they

were generated. Although the model could not account for temperature changes due to heat losses,

measured online and simulated offline closed loop tests showed good reconciliation between

asymmetric model simulations and the actual plant. Finally, using the mixed integer predictive

controller with variations in switching horizon and nature of constraints, it was shown how a system,

for the purpose of optimality, could be directed to function close to an operating constraint.
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CHAPTER 7

Industrial Application:
Coal lock sequencing

During the course of the research, an industrial application that required the real time sequencing of

events presented itself. It was thought at the time that this was an ideal opporhmity to test the mixed

integer predictive controller on a much larger scale. The industrial system exhibited typical hybrid

system characteristics in that the sequencing dealt with both continuous aspects and discrete event

logic. The controlled variable was periodic, with the controller having to initiate the start to the cycle.

This chapter presents an attempt at using model predictive control to sequence coal locks. Since the

actual dynamics of the process were much more complex than expected, the attempt at using the

MIPC to sequence the coal locks, was not pursued any further than the offline simulation stage. The

complexity lay in the fact that responses were non-linear with the base of the response being fixed i. e.

temperatures always started at the coal feed temperature, regardless of the final temperature in a cycle.

Even then, simplified responses were used as step response data for DMC. For the real plant, DMC is

in fact not a viable solution. DMC was used however as a preliminary investigation into the

sequencing characteristics of model predictive controllers. The control problem required an

optimisation procedure and the sequencing of events did require integer variables. With this in mind,

the control algorithm used for the previous case studies was modified to deal with coal lock

sequencmg.

This chapter commences with an overview of the process. Thereafter a brief description of the control

strategy presently used in industry is presented. Following this is an explanation of how MPC can be

applied to the problem Finally, presentations of offline tests are made using idealised responses,

which illustrate the proposed control strategy. The chapter concludes with an overview of the

findings.

7.1 Process Overview

SASOL is a petro-chemical company based in South Africa, whose major interest is the conversion of

coal to higher valued synthetic fuels and chemicals. The fundamental part of this conversion process

is gasification, where coal is gasified to form carbon monoxide and hydrogen, which in tum is

converted to higher hydrocarbons through Fischer Tropsch technology. Sasolburg, one of the two

major SASOL plants in South Africa, has 17 gasifiers operating in parallel, each producing on

average 50 000 Nm
3
/hr of raw gas. The gasification process is essentially a chemical reaction, with

the conversion of coal to raw gas occurring at a high temperature (400°C) and pressure (25 bar) in the
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presence of an agent. The gasification agent is an oxygen/steam mix, set at a specified ratio as

required by the Taw gas composition.

Although the pTOduction of gas is a continuous pTOcess, coal is added batchwise to the gasifier, which

is of the LURGI type (figme 7.1). Each gasifier lmit is fitted with a coal lock that pTovides fresh coal

to the gasifier. Gas is Temoved from the ciTcuit downstream in order to pressmise the coal locks, so

that the pressme within the lock is at the same pTessme as the gasifer before coal enters the gasifier. In

order to TechaTge the coal lock, the lock deconrpTesses by Teleasing gas into a CLEG (coal lock

expansion gas) network that pTOcesses the gas and TetUTllS it to the network (figme 7.2).

The single CLEG however does not have the capacity to deal with mOTe than a few of the 17 coal

locks decompTessing at once. As a Tesult, decOlllpTessing of the coal locks has to be staggered, so as

not to overload the CLEG. If the CLEG holding capacity does get exceeded, then excess gas gets

flared. Since this gas is taken from the Taw gas line coming off the gasifieTs, flaring gas Tegisters as a

loss to the PTOcess. A conh'ol strategy is thus TequiTed that sequences the decompression of the coal

locks in time, so as not to overload the CLEG and theTeby minimise flaring.

This system exhibits hybrid system behaviour. The decision to give a coal lock a "cycle start" is a

discrete event. At the same time other pTOcess vaTiables have to be monitored that diTectly affect the

decision i.e. current status of the CLEG and the temperatme within the coal lock, which is used to

infer coal level in the gasifer.
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7.2 Current control strategy

Coal locks are given a "cycle start" by the controller when the gasifer is empty and therefore needs to

be refilled. Since there is no direct way of measuring the level in the gasifer, temperature sensor

LE205 (measuring temperature in the coal lock) is used to infer the coal level in the gasifer. When the

gasifier level is low (i.e.level nearing the bottom of the gasifier), the temperature within the coal lock

rises because hot gases directly enter the coal lock from the gasifier. The current control strategy thus

uses temperature LE205 as a process variable to initiate a coal lock cycle.

Figure 7.3 shows the temperature response as detected by LE205 during a typical cycle for a single

gasifier. The second plot (PI204) is the pressure within the coal lock. Before a coal lock is given a

cycle start, the bottom cone (BC) is opened and the pressure within the lock is that of the gasifier.

When the level starts to decrease, tel11perature within the lock starts to increase. Each gasifier has a

setpoint for LE205, at which the coal lock is given a cycle start. When LE205 for a particular gasifier

reaches its setpoint, that gasifier is given a cycle start.

The cycle starts by isolating the coal lock by closing the bottom cone. Thereafter the coal lock is

depressurised (through valves DV! and DV2), with the gas passing to the CLEG. When the pressure of

the coal lock is ahnospheric, the top cone (TC) is opened and the coal lock is filled with fresh coal
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from the bunker above. When the TC closes, the coal lock is repressurised (through valve PV,) to the

pressure in the gasifier and on a timed event, the BC is opened, thus refilling the gasifier. Notice that

when the controller initiates the cycle, the temperature does not begin to decrease until the second

stage of decompression, when the air in the lock expands. The temperature further decreases when

coal is added through the TC. It only starts to increase when the level in the gasifier drops.

In an attempt to prevent the CLEG from being overloaded by many coal locks depressurizing at once,

each gasifier could be given a "forced" cycle start if it meets certain conditions. Usually coal locks are

given a cycle stmi at setpoint, but when they are given a forced start, the temperature within the lock

lies within a certain margin below setpoint. This is an attempt to stagger the coal lock events, so that

they do not all depressurise at once. Figure 7.4 shows the operation of 3 gasifiers in temlS of their

respective coal lock temperatures. Depending on certain real time criteria, at certain points they are

given a forced start, while at others the cycle is started at setpoint.

For the present cycle, an average of the last three cycles (from BC closed until BC closed again for

the next cycle) is taken (Tt e",t) and this is set as a setpoint on an indicator (TM_PV). The CellTent cycle

time is used as a process variable on this indicator. Simultaneously each gasifier is allocated a weight,

which is a representation of its impact on the CLEG e.g. gasifiers 1-13 each have a weight of 1, while

gasifiers 14-17 have a weight of 3 because of the size of their coal locks. When considering which

gasifiers to give a cycle start to, the controller sunlS up these weights and displays it as a second

indicator DEPRESS 1 17.

A coal lock will be given a forced cycle start if the following conditions are met:

• The PV of TM PV is less than 40 seconds from its SP.

• The PV of DEPRESS 1 17 must be less than 3.

• LE205 for the gasifier in question must be less than 8 QC from its setpoint.

A cycle start for a gasifier is triggered if:

1. Start requested from operator.

2. LE205 = setpoint.

3. LE205 is high.

4. Given a forced cycle start.

Notice that the main event in the control procedure is the initiation of the cycle. Thereafter all other

events are timed and predetermined i.e. depressurization; filling of the coal lock; repressurization and

finally opening of the bottom cone.
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7.3 Sequencing using MPC

The previous section shows that the control personnel at SASOL have undertaken a heuristic

approach in dealing with the sequencing of the coal locks. Sequencing is done using timing

procedures, together with the relative position of the state with respect to setpoint. It seems to work

well at the plant, but the operators agree that there is ample room for improvement.

Approaching this problem from a theoretical, rather than from a heuristic outlook, suggests that this is

in fact an optimisation problem. The controller has to prioritise the sequence of events while making

certain compromises. It has to make decisions based on which gasifier most urgently requires

refilling, while at the same time protecting the CLEG. A model predictive approach is appropriate as

it allows for planning into the future, which is useful when dealing with the CLEG. For example the

controller can "see" ahead and based on knowing when the CLEG would have a low flow of gas

through it, it could initiate events presently. Or if it "knows" that in the future the CLEG might
. .

become overloaded, then it could delay a cycle start for a specific coal lock. This plmming-ahead

approach effectively removes the need for forced cycle starts.

As with the case studies, variables had to be identified that drove the optimisation i.e. those, which

needed to be controlled. The initiation of the event will essentially be based on these variables. In this

case the logical choice was to use the temperature within the coal lock, as recorded by LE205. This

would be a direct indication of when the gasifier was empty and it was also used in the heuristic

approach to initiate a cycle start. Each coal lock was then assigned a binary variable, whose

evaluation at every time step determined whether that paIiicular lock got a cycle stali or not.

Table 7.1 shows simply (for 3 gasifiers and a single CLEG) how the problem of optimally sequencing

coal locks, was converted into a MPC problem using the DMC framework. The table contains the'

various responses, with the time at which the response starts, depicted by the circle at the stmi of the

response.

CL1 CL2 CL3 rate

T1 ~ 0 0 L
T2 I 0 ~.0

T3 0 0 ~ !
Fcleg JL JL~ 0

Table 7.1 Simplified DMC representation for sequencing coal locks
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CLI, CL2 and CL3 are three coal locks to which binary variables are attached which when activated

(take on value "1"), trigger a cycle start by bringing about a decrease in their respective temperatures

(TI,T2 and T3). One might occur gradually (TI), another instantaneously (T2), and yet another

delayed (T3). These responses are selected simply for simulation pill-poses to ensure that there is

diversity in the temperature responses for each coal lock initiation. The decisions that the controller

makes must thus be based on an "awareness" of this diversity in these responses and at the same time

fulfill constraints that may be violatedby its decisions. Another output variable, Fcleg, is introduced

which represents the extent of interaction between the gasifiers and the CLEG. Each gasifier will have

its own impact on the CLEG. Fcleg represents the collective impact of all gasifiers on the CLEG.

Very simply it can be viewed as the flowrate of gas through the CLEG as discharged from the locks

during decompression. When a coal lock is given a cycle start, that particular binary variable will

activate a delayed square extended pulse response for the variable Fcleg. The response is shaped the

way it is; firstly because decompression occurs a while after a coal lock is given a start i.e. that

particular coal lock will only impact on the CLEG later on. Secondly the pulse height depicts the

extent of impact that a particular coal lock will have on the CLEG. It is maintained over a period of

time and then it retUTIlS to the position before the cycle was initiated. Fcleg was introduced with the

intention of placing an upper limit on it, which in turn is a representation in the model for protecting

the CLEG. The "rate" input ensures that if no coal lock event was initiated, the respective temperature

would increase indefinitely as set by the slope of the line.

These responses are idealised and are different from the actual plant responses (figure 7.3). In reality

when a coal lock is given a cycle start, the temperature within the lock will always decrease to

roughly the same temperature, before it starts to increase again. This will occur regardless of where

the state was prior to initiation. DMC is however based on a floating point of reference. This means

that the position of the state, after the initiation, is dependent on the position just prior to the initiation.

The effect of the initiated event on the state is fixed. Figure 7.5 shows this shortcoming of using the

standard convolution model, to predict the state after the event is initiated.

Therefore to conectly model the trajectory of the temperature, the DMC algorithm would have to be

modified, so that the state returns to some base level regardless of where it was prior to switching.

Due to the complications it would have introduced into the procedure, no attempt was made to modify

the DMC algorithm in this respect. Firstly an approach would have to be devised that made the

controller aware of the indefinite increase in temperature when the gasifier was empty. Secondly the

temperature must be returned to a base value upon initiation of the cycle. A method of solution, in this

case, might be to reset the model every time the event is triggered. This would consequently require

removing the effect of all past initiations prior to the new event. Now the problem starts to shift away

from being a DMC problem and tends towards a MINLP problem. An initiation for a single gasifier

will trigger a certain temperature trajectory into the future, which gets intenupte'd and repeated on the

next initiation. Thus to genuinely solve this problem, this method of approach is recOlmnended i.e. set

it out as a problem in MINLP and reset the state every time a cycle is initiated However for the

purpose of investigating the sequencing capabilities of a predictive controller, the problem was dealt
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with using DMC. The following tests were based on a floating reference state with the decrease in

temperature being fixed every time a cycle was initiated.

actual response

state base state

response using

convolution model

time

Figure 7.5 Shortcoming in convolution model to predict the actual state trajectory

7.4 Offline tests

To test the proposed control strategy, tests were undertaken with 3 gasifiers, functioning in parallel,

using the SCAD-GAMS control loop presented in section 3.3. SCAD simulated the response of the

temperatures within the coal locks using a convolution model. Temperatures are allowed to increase at

a constant rate until a coal lock event is initiated and the temperature thereafter decreases gradually.

After a while, the temperature starts to increase again, depicting a decrease in level within the gasifier.

Temperature response is thus cyclic. A period is from when it frrst decreases, to when it starts to

decrease again, as triggered by another cycle start. By using different responses for the coal locks, all

three temperatures were simulated with different rates of increase and decrease. This also ensured that

their cyclic periods were different. The internal model of the model predictive controller was

commissioned with the same step responses. Refer to appendix D1 for the step response data used for

the convolution model.

The response of Fcleg can be used as an indicator for the sequencing capability of the controller. The

pulse height for each coal lock is: [CLl CL2 CL3] = [2 3 7]. Therefore if there are spikes in the

trajectory of Fc1eg, then it is an indication that the coal locks are not being sequenced optimally and

that the CLEG is overloaded by locks that depressurise at the same time. However a stable Fc1eg

response is an indication of optimal sequencing, illustrating that the controller has staggered the cycle
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starts of the different coal locks. Cycle starts for certain locks are held back until such time that the

CLEG is able to deal with the decompression.

7.4.1 Sequencing based on setpoint

As mentioned previously, temperature control was to be used to drive the sequencing procedure.

Essentially, for each gasifier, the controller uses the rise in temperature to trigger a cycle start. Figure

7.6 shows a control sequence based on just setpoint penalisation. No constraints or penalties were

placed on Fcleg.

There were sudden increases in the response of Fcleg (150s, 450s and 950s), indicating that there

were times when the controller gave all three coal locks a cycle start at once. Hence conh'ol based on

just setpoint penalty is not good enough for sequencing events. Such an outcome was however

expected, as successful sequencing must be based on an "awareness" of the entire operation and not

just one state. In this case the optimisation was based just on temperature only.

Temperature responses for the three coal locks were periodic in nature about their setpoint. This is

another indication of an optimisation procedure based on just setpoint, where there is no interaction

with other process variables. This test suggests that further penalties and even constraints were

needed, in order to get the optilllisation to sequence the coal locks successfully.

50 .
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5

1m 2m 3m 4m 5m

time(s)

6m 7m sm gm 10m
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~T3

-- Fcleg

.. T1sp

..... T2sp

.. 13sp

Figure 7.6 Sequencing using MPC based on setpoint penalisation only

7- 11



Chapter 7: Coal lock sequencing

7.4.2 Sequencing based on Tuning

Part of the optimisation procedure was to protect the CLEG. This was not done in the previous test,

with the result that there was no sense of sequencing. For this test, by penalising Fcleg every time it

deviated from zero, the optimisation was given a reason to protect the CLEG. The penalty on Fcleg

was set higher than the weights on the temperatures (WFcleg=20; WT1=WT2=WT3=l). Move suppression

was kept at 1 for all lock cycle initiations. The optimisation was allowed only one optimised move,

which was the case for all sequencing simulations lmdertaken. It was expected that the introduction of

Fcleg into the optimisation, with the appropriate tuning, would aid in the sequencing of the coal locks.

Figure 7.7 shows the conh'oller, tuned with the intent of sequencing the coal locks. Unlike figure 7.6

the temperature responses do not have fixed periods, indicating that there was another variable of

concern in the optimisation, which in this case was Fcleg. Penalising Fcleg with the correct weight

ensured that at no point in the control procedure did Fcleg exceed 7. The relative weights between

Fcleg and the temperatures led to the controller sequencing the coal locks while protecting the CLEG.

The sequencing procedure was based on a gasifier only being given a cycle start when its openloop

temperature error exceeded that error which Fcleg would endure if that specific coal lock were given a

cycle start.

Although appropriate tuning of the controller proved to be successful in sequencing the 3 coal locks, it

did have one flaw. This was illustrated in the response of Fcleg in figure 7.7. After a coal lock was

given a cycle start, the controller often waited for Fcleg to retum to 0, before it gave another lock a

start. It did not take advantage of the delay brought about when a lock was given a cycle start and

when it first started to have its effect on Fcleg. This is understandable as the optimisation is based on

minimising the deviation of Fcleg from setpoint (0). A minimum is obtained when one lock was given

a cycle start after the previous one had completed having its effect on the Fcleg.
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Figure 7.7 Coal lock sequencing using tuning

7.4.3 Introduction of soft constraint

Besides using tWling to get the controller to sequence coal locks, another feature of the MPC strategy

that could be used is constraint handling. The main aim was protection of the CLEG, so it was

expected that an upper limit constraint on Fcleg would suffice and thus cause the controller to hold

back lock events so as not to overload the CLEG.

This strategy was theoretically correct, but was initially difficult to implement. The problem was that

the constraint was a "less than or equal to" equation and therefore "hard" in nature. The optimiser, in

searching for an optimum solution, will not violate this constraint at any cost. In real time, when the

controller takes the decision to give coal locks a cycle start, it does so on the basis that Fcleg lies

within the hard consh"aint. However when time moves on and the effect of the cycle start on Fcleg

starts to come through, the constraint becomes violated in the future horizon. Usually this violation is

far down in the optimisation horizon and an algorithm with only binary selections available to it, is

unable to bring it back into the operability region. As a result it crashes with the report: "no integer

solution."
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The question arises as to what would cause a consh"aint to be violated in time, when initially the move

was made on the basis that it was not violated The obvious answer is plant model mismatch. Here the

conh"olled variable of the plant does not change according to the model prediction. So when the state

is fed back at each time step in the form of XoMeas (equation 3.3), the effect of the past moves cause it

to violate the constraint if the present XoMea, is different to that initially predicted by the model. Figure

7.8 illustrates graphically how a constraint can become violated in the future due to plant model

mismatch.

x

t

Ju Itl
u

Figure 7. 8 Violation of hard constraint due to plant model mismatch

This problem was first experienced in the SCAD-GAMS control loop, where identical convolution

models were used for the internal controller model and the external model. Model and internal control

model mismatch was therefore not the cause of the problem What caused the violation of the

constraint was the timing between controller and model. Because the model interpolated between the

points as given by the step responses, it was possible for the controller and model to be offset when

the controller intervened. Over a period of time this offset could cause a closed loop prediction too

fall on the wrong side of a constraint.

hl hybrid system control this is a problem of real concern. It means an important feature ofMPC i.e.

constraint handling cannot be used as easily for the control of hybrid systems. The core of the

problem lies in the integer nature of inputs. For continuous inputs, this problem would not be apparent

as the inputs could be freely evaluated to redirect the outputs back into the feasible region. However

in the case when there are binary inputs and basically only two options available to the algorithm to

rescue the computation, neither might prove to be sufficient. The result is that the computation fails

and the continuity in the control loop is broken.
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One way to work arOlmd this problem is to convert the hard constraint into a soft one. This allows the

computation to be aware of the constraint and at the same time prevent the algorithm from crashing if

for any of the above reasons the constraint is violated.

The following explanation, together with figure 7.9, demonstrates how a hard constraint can be

converted to a soft constraint. If Xhi and Xlo are the hard upper and lower bomld constraints for

controlled variable x, then they can be converted to soft constraints, at every point on the trajectory i,

by defining new variables Shi II and Slo 11. Where

ShiL =max[(xi -xhJ,O]

s,oli =max[(xlo -xi),O]

(7.1)

(7.2)

Soft variables Shi II and Slo II can be made part of the optimisation procedure by including them in the

objective function as squared sums. Notice that if x remains within bounds, Shi and Slo do not

contribute to the objective function. They only do so when x is out of bounds; even then its

contribution depends on the magnitude of violation.

TIns new addition to the optimisation procedure is sufficient to keep x within bounds and even when it

does exceed, the computation does not fail. If x were to lie outside of its bounds in the closed loop

response due to slight plant model mismatch or timing of when the controller intervenes, then Shi or Slo

is usually relatively small. As a result they will contribute little to the objective ftmction. In this case it

is serving the purpose of protecting the algorithm from failing. On the other hand by multiplying Shi II
or Slo II by a suitably mgh weighting factor, x can be kept within bounds.

x

Figure 7.9 Hard constraints on controlled variable x

Forttmately the discontinuous max function in equations 7.1 and 7.2 can be included in the equation

block in GAMS (see appendix D2). Figure 7.10 shows the effect of the soft constraint on the

sequencing problem when an upper bound of 5 was placed on Fcleg. Recall that CL3 had a relative

contribution of 7 to Fcleg when it was given a cycle start.

hlitially the controller delayed the cycle start for CL3 because of the soft constraint on Fcleg.

However when the enor due to the offset from setpoint, exceeded that placed on the soft constraint in
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the objective function, then CL3 was given a cycle start. Also when CL3 decompressed, it always did

so alone, therefore the maximum that Fcleg went up to was 7. CL2 and CL1 were free to be given a

cycle start at any time because they caused Fcleg to lie within the soft constraint. Sometimes they

were even given a cycle start together (see time period 150s,700s,900s) because their combined effect

resulted in Fcleg being within the constraint. The addition of a soft constraint had thus resulted in the

desired effect. The optimisation obeyed it at most times and only "violated" it in favour of a better

solution (lower objective function).

Figure 7.11 shows an attempt at sequencing coa110cks with the soft constraint for Fcleg set at 7. All

tuning parameters are set at one with the penalty on the soft constraint set at 10 000.

Sequencing was similar to that as in 7.4.2 where the controller was tuned for the task. One major

difference though was the greater continuity in Fcleg. Fcleg as before, never exceeded 7 due the soft

consh·aint. As compared to the tuning case, the controller did not have to wait for Fc1eg to return to

zero before it initiated a cycle start for another coal lock. If Fcleg was within bounds in the closed.

loop horizon i.e. less than 7, then that coa110ck was given a cycle start if its temperature was high.

With the soft constraint, the optimisation took advantage of the 1ag, which Fcleg experienced after a

cycle start. Hence there was continuity in the trajectory of Fcleg.

Another feature of the sequencing procedure, which was also present in 7.4.2, was the non-periodic

nature of the temperature cycles. TIns shows that the conh"oller was able to hold back on giving coal

locks cycle starts, until such time the CLEG was ready. In the case for the tlmed MPC, coal locks

were held back based on the penalisation of Fcleg from setpoint. However in the present case, coal

locks were held back due to the presence of the constraint. As mentioned, the constrained case proved

to be superior because it allowed greater continuity in Fcleg.
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7.4.4 Sequencing of six gasitiers

It was interesting to see how the controller would perform if it had to deal with a greater number of

gasifiers. hI figure 7.12, the controller was commissioned to sequence six gasifiers with the soft

constraint placed at 10. Out of the six gasifiers, every two had the same response (duplicated as in

appendix D1), which were staggered at the start of the simulation.

Sequencing of the six coal lock starts was satisfactory with cycle starts generally being made in close

vicinity to setpoints. Of concern though was the time at which the controller allowed Fcleg to

"violate" the soft constraint. Although this occurred three times and only for short periods, based on

the weightings, the controller should have delayed a start in favour of the CLEG. There exists no

reasonable explanation for this behaviour with the exception that the increased computational load

may have affected the GAMS solution close to the constraint. This phenomenon could perhaps be

isolated and investigated by using fewer gasifiers with similar demands on the CLEG. It was however

encouraging to see that in spite of this, Fcleg remained mostly within the soft constraint and was

continuous in nature.

Notice that occasionally the controller gave a lock a cycle start, not long after it had given it its

previous start (gasifier2, time 700s; gasifier3, time 400s). The double initiation of a cycle within close

proximity of each other is due to the floating reference state property of the convolution model

discussed earlier. The decrease in temperature is always fixed and if the state is far above setpoint,

then a double initiation might be necessary to bring it to setpoint. Cycle starts, for the same gasifier,

close to each is not possible during normal operation, as decompression occurs over a fixed period of

time. One way to account for this operational constraint is to introduce a window constraint. Within a

window, extending over several time steps, the controller can be forced not to initiate another cycle

start after it had already initiated one. This should allow time required fOT decompression and when

that lock emerges from the window, then it should be eligible for a start. The start should as befOTe be

based on temperature relative to its setpoint and the status of the CLEG.
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7.5 Conclusion

This section shows that MPC and especially DMC can be used to optimally sequence a series of

events that define a hybrid system structure. Interest in using DMC to automate a series of gasifiers

was initiated with the intention of developing an applicable online controller for the gasification plant

in Sasolburg. However, due to the complexity of the actual plant responses, this was not achieved. A

true representation of the plant required that the temperature return to a fixed value after a cycle start,

regardless of its position prior to initiation. DMC however, being linear, fWlctions on a moving

reference point, where changes are always made relative to this point. The actual dynamic response of

temperature to an initiation was also complex. As a result, superimposing piecewise linear responses

to generate the actual plant response was not possible. However for investigative purposes, where the

sequencing capabilities of the MIPC were being tested, a general convolution model proved to be

sufficient.

Therefore using simple responses (ramps and steps), a control loop was commissioned with a

controller that was able to sequence events based on some strategy. For the current study, the coal

locks had to be sequenced so as not to overload a CLEG. A MPC approach was proposed with

different strategies. Of those considered, the optimisation based on satisfying a soft constraint proved

to be the best. It was discovered that hybrid models based on future predictions had difficulty in

fulfilling hard constraints due to plant model mismatch or timing between controller and plant. The

problem was however alleviated by using a soft constraint as part of the optimisation.
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CHAPTERS

Physicochemical Discontinuities

Besides characterising systems that have discrete inputs, hybrid systems also encompass another class

of systems that, due to their inherent fundamental physical behaviour, have discontinuities. Barton

and Pantelides (1994) refer to such discontinuities as physicochemical in nature. Since the system

states experience disjunctive behaviour at known threshold values, separate sets of dynamic equations

are necessary to describe the complete evolution of the system As the system's operation progresses,

the active state of the model describing the system has to be switched.

Previously, all system outputs were continuous in nature. Controller design was focused on evaluating

the optimum decision, at the present moment in time, based on a single fixed model. Physicochemical

discontinuities introduce a new challenge regarding the design of model predictive controllers.

Generally the internal algorithm has to monitor the system states over the closed loop horizon and

then switch state models when a threshold limit is reached.

This chapter presents the design and evaluation of a model predictive controller for a tank system with

physicochemical discontinuities. It commences by explaining how such systems can be modeled

within the control algorithm for future closed loop projections. Next, a tank system is presented with

the dynamic equations and simplifications (discretisation and linearisation) for discrete time

modelling and optimisation. Simulations are performed in MATLAB by interfacing it with GAMS,

which is used as a sophisticated optimisation toolbox for MATLAB. The chapter concludes by

highlighting the findings from these tests.

8.1 Modelling

Barton and Pantelides (1994) report that physicochemical discontinuities can be modeled by dynamic

manipulations that have the functional form of equation 4.2. In their explanation, they refer to several

instances where systems having physicochemical discontinuities can be modeled using non-linear

differential algebraic equations. For example the transition from laminar to turbulent flow in a pipe

involves a discrete change in the relationship between friction factor and Reynolds number. Another

example is that of fluid in a flash drum At different times during the separation process, there are

tln'ee distinct phase arrangements i.e. vapor and liquid, subcooled liquid only and superheated vapor

only. In both examples, when the phase arrangement changes, not only does the functional form of the

equations change, but also possibly the number of valiables. At ally given point in time, the current

state of the model will thus be characterised by a set· of vaTiables and equations that Telate these
vaTiables.
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The model of a system with physicochemical discontinuities can be represented by digraphs with

nodes denoting the different model states and arcs signifying instantaneous transitions between these

states. For example a system model consisting of three states {A,B,C} can be represented as shown in

figure 8.1.

c

Figure 8.1 Model states for a single system model

During a simulation of the process, the active state of the model will determine the equations that

describe the system at that point in time. The active state of the model is changed according to the

evolution of the system. In this case,certain events have to be detected in order to trigger the switch.

Typically these are state events, where system variables cross threshold values. The time of

occunence of these events is not known a priori, so mechanisms have to be devised to detect when

they occur.

Figure 8.2 shows graphically the evolution of a system comprising two model states {A,B} and a

single system output state (x) . Each of the two model states corresponds to a different regime of

operation as defined by the threshold values [x:, x;, x~] on the state x.

The differential equations describing the system dynamics in regime A and B respectively are:

dx
- = FA (x,u) for x: S; x S; x;
dt
dx
- = FE (x,u) for x; S; x S; x~
dt

(8.1)

(8.2)

where u is the input to the system. These equations make up the system model, which when active,

individually define the state behaviour of the model.
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Figure 8.2 Model states for different regimes

When the system state x exceeds the threshold values, the model states are switched. For discrete time

computations there however exists a dilemma in simulating the crossing of the boundaries. The

selection of the model state depends on the system state. But initially, the system state gets predicted

by the state of the model.

Mostermann (1999) briefly presents a general approach to crossing state boundaries. A variation in

the integration step is used at the point of discontinuity. A fixed step can be used until within a small

tolerance of the discontinuity. When the discontinuity is reached, then the time step is repeatedly

reduced to within a set minimal value. This approach provides an accurate approximation to the point

of crossing i.e. evaluating at which point in time, with the current model state, the system state crosses

the bOWldary. Mostermallli does however report that reducing time step at the point of discontinuity

does result in longer simulation times.

The approach used in the present work is to use a small enough integration step, which is kept fixed

over the prediction horizon. When the discontinuity is crossed, the state model for the adjacent

regime, uses the system state in the present regime as an initial condition to evaluate the new state

value that lies in the adjacent regime. In this case, as shown in figure 8.3, the point of switching is not

exactly at the point of discontinuity. This is because when the switch into the new regime occurs, the

Ewer integration .uses the state in the present regime as a starting condition for the model in the

adjacent regime. GAMS solves equations 8.3, 8.4, 8.5 simultaneously, therefore the point of switching

occurs before the actual point of discontinuity due to the these logic constraints. This approximated

approach relies on a small enough integration step, where the system state gets close enough to the

discontinuity using the active model state.
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In simulating systems with physicochemical discontinuities, one cannot guarantee that all switchings

at the discontinuity smface will be correctly detected, and there may be "chattering" (state switching

back and forth) at the smface. The proposed one-step state space predictor, because it has a finite time

step, could result in "chattering" around the point where behaviom changes.

Equations 8.3, 8.4 and 8.5 m:e the conditional expressions devised for implementing this approximated

approach. a and f3 are binary variables that become unity when the state is within a given regime.

x - ax: - j3x; ;::: 0

x-ax; - j3x~ :s; 0

a+fJ=l

(8.3)

(8.4)

(8.5)

Consequently the complete differential equation govenring the system over the entire range of the
state is:
dx- =aFA(x,u) + j3FB (x,u) (8.6)
dt

regime A

f3 = 1
x x; ___.......... . _ ______....................... .._.... -._ _- _ _ ___-

regime B
point of switching
nCNV occurs here

a =1

*xA ~----------------------

t

Figure 8.3 Approximated point of switching

In the previous case studies a convolution model was used to predict the futme states of the system

using past/present moves. Using a convolution model however was found to be not viable for systems

with physicochemical discontinuities. The main drawback is the reliance of the model on the past

input history. hl the event that a new regime of operation is entered into, moves from the past regime

cannot be used to predict the present state in the new regime. A convolution model is linear in nature

and is generated from continuous step responses. When a new regime is entered into, their impact in

the new regime will change. Even if a different convolution model is used in each regime, the past

history of the system will still have to be known in order to determine the rate of change in the new

regime. This effectively rules out using DMC for the control of systems with physicochemical

discontinuities.
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State space equations, the discretised version of the differential equations 8.1 and 8.2, are therefore

suggested and used in the present work for the control of systems with state discontinuities. The

numerical integration only relies on system variables one step back in time. This proves to be ideal,

especially when a discontinuity is crossed, as minimal information from the previous regime is

required.

8.2 Case Study - Non-uniform tank with overflow

The theory in section 8.1 was developed based on the simulation of a hypothetical tank system as

shown in figure 8.4. The system, effectively a single tank, consisted of two tanks, one on top of

another. The diameters of the two tanks were different, thereby giving the entire system a

discontinuous cross sectional area. At the point where the two tanks met, was an overflow (F2). Liquid

continuously drained through restriction k] from the bottom tank according to the head of liquid in the

system Flow (Fa) was the continuous inlet to the system The overflow height was set at height hv,

which was the height of the bottom tank. The aim of this case study was to simulate the closed loop

control of level (h]) by manipulating the inflow (Fo)'

~1.2
.. .....-------.--.-.........".. k

v

\............__. .-.-........-/ kTI
F2

E ••••••{>

Figure 8.4 Hypothetical tank with discontinuous cross sectional area and overflow

Systems such as the above are cOlllillonly used for illustrating the conh'ol of hybrid systems that have

discontinuities based on the state. In the literature, Torrisi et al. (2001) and Kowalewski et al.(1997)

have followed similar approaches. The former citation was a time-optimal control problem that
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compared a heuristic approach for controlling the levels in three tanks, to a systematic approach using

model predictive control. The latter used it as a benchmark example for comparing different computer

tools with respect to the validation oflogic control programs.

The geometry of this system divided it into two regimes of operation i. e. when the level was below

the overflow (in tank of area Av) and when it was above the overflow (in tank area A1,2).

Two separate differential equations were thus required to describe the level in the tank (equation 8.7).

Equations 8.8 and 8.9 were derived from the mass balance of liquid in the tank. It was these

equations, which resemble 8.1 and 8.2, that collectively made up the system model and were

individually activated based on system state variable hj.

d/; d/;,1 d/;,2
-=--+--
dt dt dt

(8.7)

d/;,1 = _1 [F _ F. ]
dt A 0 I

1,1

=_1[F - k !'j;"JA 0 I '\j fll,l
1,1

d/;,2 = 0
dt

d/;,1 = 0
dt

(8.8)

d/;,2 = _1 [F _ F. - F ]
dt A 0 1 2

1,2

=_1[F -k h. +h -k ~J (8.9)A 0 1'V''1,2 v v "\j''l,2
1,2

For discrete time modelling and simulation, equations 8.8 and 8.9 have to be discretised.

If dx =f (x, t) is an ordinary differential equation, then the state variable (x) at every time step
dt

!:c.t can be calculated by the Eu1er method as:

xn+1 i'::J x n + f(xn ,tJI1t
where tn+1 =tn +!:c.t

The differentials in equations 8.8 and 8.9 can be discretised, using fixed integration step I1t, to yield

8-6



Chapter 8: Physicochemical Discontinuities

~,l (t) =~,l (t -1) + ~~l {F;, - k1~~,l (t -I)}

~,2(t) = ~,2(t -1) + ~t {Fo - k1~hl,2(t -1) + hv -kV~~,2(t -1)}
1 '1,2

(8.10)

(8.11)

Due to the presence of the square root function, the model had to be linearised before programming

into GAMS. Nonlinear functions can be linearised by expanding them in a Taylor series, to one term,

arOtmd a nominal operating point (x). If f (x) is a nonlinear ftmction in x, then expansion with

truncation up to the fIrst term, about its steady state operating point yields the following

approximation.

f(X)~f(x)+dfl (x-x)
dx -x

Consequently

kj ) ~,Jt) ~ kj -!i7 + ~(~ (t -1) - hO) for ~ ~ hv

2\/ hO

k.M ~ k,.jh, - h. ~ k...)ho - h. + 2..)h:·_h. [h, (t -1) - h" ]

kj)~,2(t)+hy =kl~~(t) ~1sJi1 + ~(~(t-1)-ho) for~ '2hy

2\/ hO

where ~ (t) = hv (t) + ~,2 (t); if ~ (t) '2 hy

~ (t) =~,j (t); if ~ (t) ~ hy

hO is the steady state operating point around which the Taylor expansion is done. For the current

simulations, hO for the present control cycle, was assigned the height (h]) from the past cycle. All

predictions for the future state of the system were thus evaluated relative to this assignment of hO.

With a and ~ being binary variables for regime! and regime2 respectively, the equation block for

the simultaneous solution for process variables was therefore:
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~ (t) =~ (t -1) + a(t).~,l (t) + [J(t).~,2 (t) (8.12)

(8.13)

~2(t) =~{Fa(t)-[~Jjj + Jjj~ (~(t-l)-ha)]-[dhO -h, + ~ k, C'ICt-!J-hOJ]} (8.14)
, 11 2 hO 2 ha - h

.E4.,2 v

aCt) + [J(t) =1 (8.15:

~ (t) - a(t)hy - [J(t)hmax sO (8.16:

~ (t) - a(t)hnw1 - [J(t)hy :2: 0 (8.17;

Fa(t) s F
IlliIX

(8.18)

Fa(t):2:0 (8.19:

Equations 8.13 and 8.14 reveal that, hO cannot be allowed to be equal to zero, and in regime2, hO-h y

cannot be less than or equal to zero. In feedback ha was prevented form being equal to zero. A .

nominal value for hO-hy was predefined (e.g. equal to 1) while in regimel and when the operation

switched to regime2, this nominal value was used in equation 8.14, until hO was updated at the next

time step.

Figure 8.5 shows the control loop and sequence of events as executed in MATLAB for the simulation

and control of this system MATLAB was used for the plant block, where the nonlillearised version of

the discretised differential equations (8.10,8.11) were used, while GAMS, using equations 8.12-8.19,

was executed at every time step to evaluate the optimum plant input Fo ' In this procedure it was the

controller that switched the regime of operation of the system i.e. it evaluates a and f3 and then passes

it to the plant model (equation 8.20). Using equation 8.20 as the plant model implies that there is a fair

match (depending on the accuracy of the linearisation) between the plant and the controller. See.

Appendix RI for the executable MATLAB code.

~ (t) =~ (t - I) +a ~t [Fo - ~ ~~ (t - 1) ] + j3 ~t [ Fo - k} ~~ (t - I) - ky~~ (t - 1) - hy ]

1 2

8-8
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The files for interfacing MATLAB and GAMS were freely downloaded from the intemet. 1 With these

come a document that explains the details for linking these two packages. By linking these two

modelling software packages, a single environment was created that combined the best of both

languages. MATLAB is superior in data manipulation and visualisation, while GAMS has the ability

to perfonn large-scale non-linear optimisations, which is generally beyond the capacity of the

optimisation tools in MATLAB. MATLAB optimisation tools are useful for small scale nonlinear

models and to some extent for large linear models. It however lacks the ability to perform automatic

derivatives, which makes it impractical for large scale nonlinear optimisation. GAMS with its wide

variety of solvers (MINOS, DICOPT, CONOPT, OSL, CPLEX) has got this capability and has been

used in many practical large scale nOlllinear applications. Refer to the website2 for the online GAMS

model library that presents examples of models.

1 http://www.cs.wisc.edu/math-prog/matlab.html
2 www.gams.com/modlib/modlib.htm.
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Initialisation
Tank properties

• Aj,J~ Aj,2; hv; hmax

• k/, kv" Fmax

Controller properties
• nt - size ofoptimisation horizon
• no - size of control horizon
• T - number of simulation loops
• hsp - setpoint trajectory over simulation loops

• initial conditions - [Fo

o ;h;]

Spawn controller ill GAMS with equations
8.12 - 8.19

[ Get hsp )

Plant - Tank
Equation 8.20

T exceeded?

yes

plot

no

• hO=h/
• if hO-hv :;' 0

hO-hv =1

Figure 8.5 Flowchart for closed loop simulation in MA TLAB
for tank with overflow and discontinuous cross sectional area
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8.3 Simulations

The procedure in figure 8.5 was utilised to simulate open/closed loop tests for the tank system The

aim of these tests was two-fold. Firstly it was to show the effect ofthe discontinuities (cross sectional

area and overflow) on the operation of the system Secondly it was also to illustrate the predictive

capabilities of the control algorithm when the regime of operation was switched.

The following tank and controller properties were used in the simulations:

d],lm) 2.5

d],2(m) 1.5

A],lm2) 4.9

A],2(m2) 1.8

kdm3.h -1/m0 5) 0.009

kv(rr/ hr-l /m0 5
) 0.004

hlm) 5

hma:lm) 15

nt(-) variable

no(-) variable

T(s) variable

Fmax(m3/hr) 150

/1t (s) 60

Table 8. 1 Controller and system parameters used in simulations

8.3.1 Openloop tests

Open loop tests were done in order to observe the effect of the discontinuities on the tank dynamics.

The controller was used in open loop to fill or empty the tank. It initiated just one control action i.e.

either setting Fa to zero or its maximum flow, depending on whether the tank was being fIlled or

emptied. No further regulatory action was necessary thereafter.

Figure 8.6 shows the discontinuous dynamics caused by a change in diameter when the tank was

being filled. No overflow was allowed, but the tank. diameter above 5m was changed from 2.5m (cross

sectional area 4.9 m
2
) to 1.5m (cross sectional area 1.8 m2

). Tank level will obviously increase at a

greater rate for a smaller cross sectional area. This was reflected in the simulation, where the dotted

line was what the level would have been if no change in diameter had occurred. Notice that the

switching, as depicted generally in figure 8.3 and explained on page 8-3, occurs before the point of

discontinuity (time step 13).
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Figure 8.7 shows the effectof the overflow when the tank is being filled. The tank diameter was kept

constant (2.5m), but overflow was now allowed at the height of 5m The simulation shows that after

the point of discontinuity was initially crossed, there was little difference caused by the presence of

the overflow. However in time, when the level in regime2 started to increase and the flow from the

overflow increased as well (due to the greater head), the effect of the overflow became apparent.

Figure 8.8 illustrates the combined effect of both discontinuities. Both effects on the state essentially

become superimposed. The effect of diameter change was prominent early in the second regime.

However in time when the level started to increase, the effect of the overflow could be seen. Unlike

figure 8.6 the level in the tank started tending towards a steady state. This was due to the overflow.

The presence of the discontinuities still caused a major change in the filling dynamics, as shown by

the offset between the curves in the second regime. As before, as the tank fills and the point of

discontinuity is crossed, the model is switched prior to the actual point.

tank level
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Non-uniform diameter
Uniform diameter

_.-.-- disconti nu ity

12 r-;======:::========:::=::::::::;----,-----,---~
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E 8.......,
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.9 .-.-. -.-.- .-.-._.-.__.-._. -.-.- .-. -._._. -' -._.- .-.-.-.-._._._.- .-. -.-.- '-:..... :-:.::.~ ...-."...~:c·::·: -.:::':~: ~:=.-.-. -.-.-.-. -.-.-.-. -.-.- .-. -._.-.
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o"""'--__---L. ...L- ---L -l...- ---.J
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. Figure 8.6 Effect of non-uniform diameter when filling tank
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Figure 8.7 Effect of overflow when filling tank
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Figure 8.8 Combined effect of non-uniform diameter and overflow when filling
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Figme 8.9 shows the combined effect of the discontinuities when emptying the tank from an initial

level that was above the overflow. Fa was set to 0, and the tank drained through the bottom line (F1)

and overflow (F2). For the comparison (dotted line), tank diameter was kept uniform at 1.5m and there

was no overflow. The effect of the overflow was clearly apparent in regime2 (h1>5m). Although the

effect was not significant when filling the tank (figme 8.7), it had a much greater influence on the rate

of level change when the tank was eU1ptied. Below the point of discontinuity, due to the increased

diameter, the rate of decrease was more gradual.

tank level

- with discontinuities
with out discontinuities

....... discontinuity

. .
"'"

. .

..... .....
........

........
..........

...................................................._.='.'.'.:~:'::::::':'::::~:~:"'~"S:".'.'-'-'.::;;'-'.'-'-;;;;'.'.'.'.'.;=' =.__=._._._~_._._..........

15 ..

0
2 4 6 8 10 12 14 16 18 20

inlet flow

150
----.....
.r::
---'"-S 100
3::
0

;:;:::
....... 50Q)

c

0
2 4 6 8 10 12 14 16 18 20

time step

Figure 8.9 combined effect of non-uniform diameter and overflow when emptying

8.3.2 Closedloop Tests

Closed loop tests were undertaken to show that, by switching model states at the points of

discontinuity, the internal controller model was able to evaluate closed loop trajectories that extended

across regimes. Afterwards, the controller must use the appropriate model for the regulation of the

system state. These tests involved variations in the size of the optimisation horizon and the number of

optimised moves.
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8.3.2.1 Forward Control

MPC is an attractive control strategy because it is able to anticipate the future demands on a system

and hence plan accordingly. In the following tests the size of the optimisation horizon together with

the control horizon was varied, to show the anticipation capabilities of the conh'oller. This proved to

be challenging as the predications had to be done across a system state discontinuity, which required

switching the model states. At every control instant, the algorithm had a forecast view, extending over

the optimisation horizon, regarding the system demands i.e. level setpoint tracking. With this forward

conh'ol approach, it was expected that the algorithm would plan ahead and thus base changes made at

the present moment in time, on the future demands of the system Most notably it had to do this

planning across regimes, each of which was defined by its own set of equations.

The following simulations show step changes in the tank level about the point of discontinuity. Figure

8.10 shows the sequence with the control algorithm allowed a single step optimisation and control

horizon. (Recall that the optimisation horizon is the number of steps extending into the future where

the model is used to project the evolution of the state. On the other hand, the control horizon is the

number of initial steps of the optimisation horizon on which control moves are allowed). Figures 8.11

and 8.12 had the same setpoint step sequence, but the controller in this case had an optimisation

horizon of 5 steps. The control horizon for the conh'oller in figure 8.11 was 1 step, while that for

figure 8.12 was 3 steps.

The controller in figure 8.10, due to its limited horizon, did not show any anticipation regarding the

future. Despite this, it was still able to control the inlet flow to the tank (Fo), so that the level could

initially approach setpoint and track it thereafter. In doing so, it showed the ability to switch models at

the point of discontinuity.

Increasing the optimisation horizon immediately introduced the anticipation effect. In figure 8.11, the

state never got to the setpoint when filling because the decrease in setpoint was anticipated over the

subsequent time steps. The algorithm planned ahead for the decrease in setpoint, by reducing Fo

before the change in setpoint was made. A comparison between the controller action on Fo' in figures

8.10 and 8.11 shows that the extended horizon resulted in far more conservative and smoother

changes on system input. Consequently the state's approach to setpoint was extended. For the

controller with a single optimisation horizon, changes in the plant input were more precise. This is

because the single control step horizon did not involve any future predictions, so the single move was

based entirely on the next step.

In figure 8.12, the controller was also able to anticipate the change in operating point (see time step

10). A larger control horizon however meant that system objectives were fulfilled on the first move,

while the subsequent moves allowed for fulfilling demands further on in the optimisation horizon.

This was not the case in figure 8.11, where the controller had a single control step. In that case a
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single control action had to acconmlodate for the demands on the next time step and those extending

into the future.

Together with validating the switching capacity of the internal model regarding the model state, these

closed loop tests also allowed two further subtle observations. Firstly, a single step horizon was

shown to be sufficient for control purposes, especially when the system is single-input-single-output

like this one. In addition, a smaller optimisation horizon resulted in shorter solution times every time

the control algorithm was executed. Secondly, due to the success the controller had in getting the level

to track setpoint, there obviously was a good match between the intemal model of the controller and

the plant model. Recall that the intemal model was a linearised version of the actual discretised

differential equations 8.10 and 8.11. The linearisation, based on expansion about the state from tlle

last time step, was thus a good approximation of the actual non-linear model.
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Figure 8.10 Control sequence with 1 step optimisation horizon and

single control move
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8.3.2.2 Multiple-input-multiple-output

In order to test the predictive natme of the algoritlul1, another hypothetical tank system as shown in

figme 8.13 was devised. The outlets (F1 and F2) from tank! drain into tank2. Tank2 was similar to the

lower half of tank! i.e. in diameter and drained in the same way, but it did not have an overflow. The

line coefficient (k2) was set at O.008m3.hr-1/mo 5
. To give the system inputs a hybrid natme, the bottom

line from tank! had a binary valve that was either open or closed. Flow Fo into the first tank was still

continuous and the controlled variables were now the two tank levels h1 and h2 .

/...---------.........,

I
~~······ .v••__-#/

Tank1

V (0/1)

Tank2

Figure 8.13 Two tank system

The dynamics of tank2 were simulated in the same way as that for tank!. Ta:nk2 also had a

physicochemical discontinuity depending on whether the liquid level in tankl was above or below the

overflow. The differential equations according to the alillotations in figme 8.13, for tank2 were thus:
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dhz = _1 (F _ F ).
dt A j 3'

z

=_1 (V(t).k j jh; - kzfh;)
Az

or

(8.21)

where V(t} is a binary variable, whose state at every time step determined whether there was flow

from the bottom of tankl or not. A2 is the cross sectional area of tank2.

Equations 8.21 and 8.22 were discretised and linearised a,s before. The same equations were used for

tankl as that for feed forward control in the previous section. See appendix E.2 for the equation block

describing the controller in GAMS. In order to demonstrate a model predictive control strategy, the

controller was used to direct the filling of both tanks, from an initially empty state, up to a desired

level. However, a greater penalty was placed on the offset of h2 from its setpoint. In this instance the

control algorithm would therefore favour the level in tank2 ahead of that in tankl. The desired

setpoint for tankl was 4m i.e. below the point of discontinuity, while the setpoint for tank2 was 6m

Figure 8.14 shows the control action and resulting tank level responses when the algorithm was

allowed a 2-step optimisation horizon with 1 controlled move. Due to the greater penalty on the level

in tank2 (Wj =3;W2=20), the level in tankl remained slightly above its setpoint ensuring that, without

deviating too much from setpoint, the head for flow into tank2 (Fj ) was as high as possible. When h2

reached setpoint, h j was returned to setpoint.

On the other hand if the optimisation algorithm was allowed a future optimisation horizon of 5 steps

and a 2-move control horizon, then a different control action was observed. The same tuning

parameters as those used previously were used. Figure 8.15 shows that, by keeping Fa at its maximum

flowrate for a longer period, tankl was filled above the point of discontinuity, so that tank2 could get

fIlled through the overflow as well. Simultaneously, a greater level in tankl meant that there was

greater head for the flow from the bottom of tankl.

Notice the slight inflection in the level response of tank2 at time step 14, indicating that tank2 was

also being filled via the overflow (F2) as well. With the level in tank2 approaching setpoint, the inflow

to tankl, Fa' was stopped. As a result of this action, both levels got to setpoint thereafter. Tankl

drained and the excess liquid now passed to tank2, which in turn got the level in tank2 to setpoint. In

the mean time, the position of the discrete valve was set accordingly. When both states reached
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setpoint, Fa was activated periodically together with the discrete valve, to account for the loss from

tank2 via F3 .

Also notice that it took a smaller number of control cycles for both levels to reach their respective

setpoints in figure 8.15 as compared to figure 8.14. If this were a minimal time problem, then this

strategy would thus be the optimal one.

This test shows the predictive capability of the controller. It was because of the greater optimisation

horizon, that it took the decision to fill tank1 above Srn With a smaller horizon, as for the first

simulation, the algorithm did not have a "far" enough view into the future to know that tank2 would

fill faster due to the overflow, if the level in tank1 exceeded Srn Consequently it had no reason to

overfill tank1, except maybe for greater head, which would cause a larger flow out of the bottom of

tank1. This would however depend on tuning. With the set tuning parameters, the algorithm however

did not allow the level in tank1 to. exceed the setpoint by too much in preference for greater head. The

predictive nature, for the extended horizon, was also apparent when the controller made changes prior

to both states approach to setpoint. The flow into tank1 (Fa), contrary to the sequence with a two step

optimisation horizon, was set to zero before both states reached setpoint. (time step 26 in figure 8.15)
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8.4 Conclusion

In order to correctly predict the output trajectories of systems with physicochemical discontinuities,

model predicitve controllers have to be able to switch model states. These switches are based on when

output variables cross points of discontinuity. This chapter presents the design and validation of a

MPC aimed at controlling the level in a tank that had discontinuities in the form of cross-sectional

area and an overflow at a given height.

With the aid of binary variables, the control algorithm was able to switch the model state when the

system state crossed certain threshold values. State space models of the system were used for future

closed loop predictions instead of the usual convolution model. This is because state space models

require minimal information concerning the history of the system As a result each regime of

operation is dealt with separately, with the only interaction occuring when the state "jumps" across

the boundry. Convolution models oh the other hand, require information from the past in order to

predict the future and when it comes to simulation across boundries, there exists no systematic

approach to expressing the effect of moves made in one regime on the states in another.

Closed loop simulations were performed by interfacing MATLAB and GAMS. The tests show that

the controller was able to successfully switch the model state over the optimisation horizon. This

allows it to maintain its most important property which is control based on future predictions.
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9. Conclusions and Recommendations

This chapter comprises two parts. Firstly the conclusion summarises in point form, the main findings

from this research study. Thereafter the recommendation section raises questions and presents further

ideas regarding the extension of this work.

9.1 Conclusions

From this investigation into MPC of hybrid systems, the following can be concluded:

1. The DMC algorithm can be modified to accommodate integer variables. TIns mixed integer

control algorithm can be used for the optimal control of systems that have discontinuous inputs.

However where there are discontinuities on the system output, DMC was found not to be

applicable. In this case state space models are necessary.

2. Control of the interacting tank system, showed that the mixed integer predictive controller was

able to optimally select the operating position of an input that could only take on positions from

an integer set, while also accoilllting for a continuous input. The algorithm was shown to retain all

the features from standard DMC i.e. constraint handling, multivariable interaction and tmling

capability i.e. as tested with 1,2,3 optimised moves; setpoint elTor weights 1,10; and move

suppression weights 0.1,1,10.

3. Through appropTiate stmcturing of the t1iJi vector in equation (3.4), the control algorithm could be

used to optimally switch the modes of operation of a thermal circuit comprising 3 modes. In this

case the step response data for the convolution model had to be generated by switching between

the modes of operation. In this format, the controller also possessed the ability to deal with

asymmetric responses.

4. On a gasifier system, the controller was shown to be able to prioritise and sequence events in an

optimal way. The DMC strategy proved to be useful, as its characteristics i.e. tuning parameters

and ability to deal with constraints could be used to bring about the desired sequencing effect. It

was found that constraints may become violated, due to mismatch or timing of the control cycle.

In this case a soft constraint was employed. A soft constraint prevents the algorithm from failing,

while at the same time ensuring that the constraint is still part of the· optimisation.

5. A model predictive control approach was furthermore us ed to control systems with

physicochemical discontinuities e.g. a hypothetical tank system. Control of such systems is

challenging for predictive conh'ollers, as the state of the internal model has to be switched at

certain thTeshold values. Being able to cOlTectly predict the future behaviour of a system was

shown to improve its dynamic performance, as it allows for future planning and anticipation.
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6. A convolution mode~ as warranted by the DMC framework, could not be adapted to control

systems that have discrete outputs owing to physicochemical discontinuities. Discrete outputs

partition the operation of a system into distinct regimes of operation. DMC is unable to deal with

regimes of operation because of the manner in which the convolution model is generated. A

convolution model is linear in nature and is generated from continuous step responses. When a

new regime is entered into, their impact in the new regime will change.Thus information from the

past cannot be used, because it pertains to a different model. In this instance, state space equations

describing the system are proposed while the integration cycle is initiated from the past state of

the system

9.2 Recommendations

1. GAMS proved to be a satisfactory environment for the design and development of the mixed

integer controller. Together with being easily interfaced with an external package, the program

was able to deal with both dynamic and mixed integer aspects necessary for hybrid system

modelling and control. GAMS also allows selection from a wide range of internal solvers that

could be used for the numerical solution of the MIDO problem There were however times when

GAMS could not solve for an integer solution at a specific control cycle i.e. the problem became

infeasible or the allowed number of iterations was exceeded. In the event of there not being a

solution, there does not exist any form of error reporting nor any time out mechanism This is of

concern in real time control, because the plant awaits inputs from the controller and when a

solution cannot be found, then. there will be a break in the control loop. Suggested strategies to

account for the event when an integer solution may not exist are: to reuse the inputs from the

previous time step; or if more than 1 optimal move is being solved for, the second move from the

previous time step could then be used.

2. This thesis presents a model predictive approach to prompt selections, initiate switches and dn:ect

sequences. There exits uncertainty as to whether this approach is superior to a heuristic approach

and if so, by what measure. A hellristic approach involves "hard wiring" of the control algorithm

based on specific rules derived from the process. In some instances this might provide more

effective control. On the other hand, a MPC approach is more general and therefore easier to

"port" between different applications.

3. The thermal circuit provides an opportunity to develop a control algorithm based on a hierarchy.

In this case, separate controllers, each with its own model, could be used for controlling each

regime. A separate controller can be assigned to control each individual mode and these can be

switched when the system changes mode. There will thus be a need for a supervisory conh'oller,

which monitors the entire structure and is able to select the appropriate controller based on the

specific mode. If implemented, the question of optimality when switching conh'ol strategies

according to modes, needs to be investigated.
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Chapter 9: Conclusion and Recommendations

4. DMC was not able to solve the real problem of coal lock sequencing in industry. This is because

standard DMC is linear, producing the same change at any operating point, while for the coal lock

problem, temperature returns to a base value, regardless of the initial state. A model predictive

approachto this sequencing problem is still thought to be a good solution. It is suggested that

when a sequence is initiated, then the internal model is reset and the state returns to a base value.

From this value, it should start to follow the usual trajectory until it is reset again.

5. Although MPC was shown to deal with systems having physicochemical discontinuities, there is

still uncertainty about crossing the point of discontinuity. In this thesis, the model from the initial

regime was used to transfer the state from the present regime into the adjacent one. Other

researchers use a reduction in integration step in order to determine the exact point of crossing.

How much more accurate this approach is, is uncertain. In this thesis, it was the conh'oller that

initiated the crossing of the boundary when model states were switched. A further condition to be

considered is when between control updates, the system output state itself1n feedback, causes the

controller to switch model states.

6. This research considers using DMC as a direct means of controlling hybrid systems. However in

industry MPC usually operates from a layer that resides above the base layer comprising PID

controllers. Further research may include an investigation into the effect of an intermediate PID

layer between the hybrid process and proposed algoritIm1.

7. This research showed that tIle available manipulated variables for a predictive controller could be

generalised in a useful way for hybrid systems. An input could have discrete levels or be

continuous. Furthermore selected discrete/continuous combinations and transitions could be

disallowed by choice. It is felt that these concepts could be taken further in a generalised

approach, even being influenced by the distinct physicochemical behavioural states that the

controlled process might find itself in.
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Appendix A

Control loop

A.I Extract from file CEXTobject for interfacing SCAD and CAMS

(with acknowledgements to T.Brazier and M.Mulholland)

void CEXTObjecl::limerUpdate (OWORD dwlime)
(

iNumlnputs = m_cslnputStreamNames.GeISlze 0; // Inpuls 10 EXTObject (PV's)
INumOutputs = m_csOutpuIStreamNames.GetSlze 0; 11 outputs from EXTObjecl (MV's)

// EXT updale code
double Deltalime = (dauble)«lnl)dwlime - (Int)m_dwPrevlime) /1000.0;
if (Dellalime >= m_mmelnlerval)
(

// updale time
m_dwPrevlime += (int)mJfimelnterval ' 1000;

11 cascade myPaslOulputChanges
for (Int I = 1; i <= INumOulputs; 1++)

for (1nl j = 1; j < m_ISlaredSleps; j++)
('myPasIOutpuIChanges)[U-l) • INumOutputs + i] =

('myPasIOutputChanges)u' iNumOutputs + iJ;

// cascade myPaslOutpulLevels
for (i = 1; 1<= INumOutputs; i++)

for (Intj = 1; j < m_iStaredSteps; j++)
('myPasIOutpuILevels)[U-l)' INumOutputs + I] =

('myPastOutputLevels)U • INumOutputs + I];

11 move up most recent output
for (I = 1; I <= iNumOulpuls; 1++)
(

###MM010225

('myPastOulpuIChanges)[(m_iStoredSteps-l) • iNLfTlOulputs + I] =
«CIOStream')myOulpuISlreams[I-1J)->Read ("$Use(') ('myPreviausOulpul)[I]:

('myPasIOulpuILevels)[(m_iStoredSleps-l)' iNumOulpuls + I] = ('myPreviausOutput)[il:
('myPreviausOulpul)[l] = «CIOSlream')myOutpulSlreamsp-1J)->Read ("$Use('); 11 Was m_csName ####MM010225

// cascade m_pPastlnputLevels
for (I = 1; I <= INurnlnpuls; 1++)

far (1nl j = 1; j <mJSlaredSleps; j++)
('myPastlnputLevels)[U-l)' iNurnlnpuls + i) = ('myPastlnputLevels)u' iNumlnpuls + i);

/1 store previous and find current state vector
far (I = 1; I <= iNumlnputs; 1++)
(

(·mJ'PastlnputLevels)[(m-.JStoredSleps-l)'INumlnputs +IJ = ('myPreviauslnpul)[i];
(·mJ'Previauslnpul)[iJ = «CIOSlream')mylnputSlreams[i-1J)->Read("$Use~'): 11 Was m_csName ####MM010225

if (m_bEnabled) 11 actually an-line
(

// Update the external call Index
ExtCalllndex = ExtCalllndex + 1;

// calculate InputMIN. InpuIMAX, Measuredlnpul and InputSetpoint Veclors
CVeclar Measuredlnpuls (INumlnputs);
CVeclar InpulSelpalnts (INumlnputs);
CVeclor InputMIN (INumlnpuls):
CVectar InpulMAX (iNumlnputs);
CVeclar InpuISPdelNV1 (iNumlnputs);
CVectar PresenlOutpuls (iNumOutputs):
CVectar OulputMIN (iNumOutputs);
CVectar OUlputMAX (INumOulputs);
CVector OutputChangeMAX (INumOulputs);
CVeclor OutputMaveWt (INumOutputs);
CVeclar NewOutputs (INumOutputs);

far (Int i = 1: i <= iNumlnputs; 1++)
{

Measuredlnputs[l] = «CIOSlream')mylnpuISlreams[I-1J)->Read (m_csName);
InputSetpalntsPJ = d(m_fSelpaints[I-1J);
InputMIN[I] = d(m_flnpuIMinsP-1J);
InpulMAX[I] = d(m_rtnpulMaxs[I-1J);
InpulSPdelNVIPJ = d(m_rtnputSPdelNVts[i-1J);
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for (I; 1; i <; iNumOulpuls; i++)
{

PresenIOutpuls[i]; «CIOStream')mJlOutputStreams[i-1])->Read (''$Use(l; IIWas m_csName####MM010225
OutputMIN[i]; d(m_fOutputMins[i-1]);
OutputMAX[i]; d(m_fOutputMaxs[i-1]);
OutputChangeMAX[iJ; d(m_fMaxChanges[i-1]);
OutputMoveWt[i] ; d(m_fOutputMoveWts[i-1]);

if (m_bAlgoDMC)
(

II;;;;START
Algorithm;;;;;;;;;;;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;=;;;;;;;;;;;;;;;;;;;;

11 Try to open "PUT' file for writing to..

11 Tesl if EXT put File is still open
ofsIream EXTpuI(m_cEXTpuIFile, 105: oul, liIebuf::sh_none);
it (EXTpuI)
{

of DMC

else

II------construct GAMS file---------------------­
EXTput.closeO;
FILE' EXTputFile ; fopen (m_cEXTputFile, 'W");

11 Write to EXTputFiie
fprintf(EXTputFile:"GAMS Program for Real-time Closed-loop Oplimisation\n\n"};
fprintf(EXTpuIFile:'$ONEMPTY\n\n"); 11 To allow declaration wilh emply sets

11 Index 10 check whelher relum tile is respense to this spec
fprintf(EXTputFile,"Scalar ExtCaillndex I %d 1;\n\n",ExtCaillndex);

11 Present Inputs
fprintf(EXTputFile,"'Real-time data input from SCAD\n\n'l;
fprintf(EXTputFile,""Presenl Inputs x(nx)\n"};
fprinlf(EXTputFile,"Scalar nxl %d 1;\n",iNumlnpuls);
if (INumlnputs< 10)
(

fprintf(EXTputFile,"Sel ix I ix1'ix"lod 1;\n",iNuminputs);
)
else
(

fprin1f(EXTputFile,"Set ix I ix01'ix"lod 1;\n",iNuminputs);

I

fprin1f(EXTpuIFile,"Parameler xlix) I"};
for (i; 1; i<;iNumlnpuls; i++I
(

if (Measuredlnpuls[i] !; 0.0)
{

if ((iNumlnputs< 10)[{i>9))
fprinlf(EXTpuIFile,'\nix"lod %12.4e",i,Measuredlnputs[i]);

else
fprin1f(EXTpuIFile,'\nixO%d %12.4e",i,Measuredlnputs[i]);

)
)
fprintf(EXTputFlle," 1;lnln");

11 Present Outputs
fprin1f(EXTputFile,"'Present Outputs u(nu)ln");
fprintf{EXTputFile,"Scalar nu I %d 1;\n",iNumOutputs);
if (iNumOulpuls<10)
(

fprin1f(EXTpuIFile,"Sel iu I iu1'iu%d 1;\n",iNumOulputs);

I
else
(

fprin1f{EXTputFile,"Set iu I iu01'iu%d 1;\n",iNumOutputs);
}

fprin1f(EXTpuIFile,"Parameler u(iu) f"};
for (i;l; i<;iNumOulputs; i++1
{

if (PresentOutputs[l] I; 0.0)
(

if ((iNumOutputs<l O)I(i>g»
fprin1f(EXTputFile,'\niu%d %12.4e",i,PresentOutputs[i]);

else
fprin1f(EXTputFile,'\niuO%d % 12.4e",i,PresentOulputs[i]);

}

I
fprin1f(EXTpuIFile," 1;\n\n'l;

11 Input Setpoints
fprin1f(EXTputFile,""lnput Setpoinls xsp(nx)\n"};
fprin1f(EXTputFile,''Parameter xsp(ix) I"};
for(i;l; i<;iNumlnpuls; i++)
{

if (InputSelpoints[i] !; 0.0)
(

if (iNumlnpuls<10)[(i>9»
fprinlf(EXTputFi le, '\nix"/,d %12.4e",i,inputSetpoints[i]);

fprin1f(EXTputFile,'\nixO%d %12.4e",i,lnputSetpoints[i]);

)
fprin1f(EXTpuIFile," 1;lnln");

Illnpul Maxima
fprin1f(EXTputFile,''"lnpul Maxima xmax(nx)ln");
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fprintf(EXTputFile,"Parameler xmax(ix) n;
far(i~1; i<~iNumlnpuls; i++)
(

if (InputMAX[i)!~0.0)
{

if «iNumlnputs<1 0)1(1)9))
fprintf(EXTputFile,'\nix"/od %12.4e",i,lnputMAX[ij);

else
fprintf(EXTputFile:\nixO%d %12.4e",i,lnputMAX[i]);

)

l
fprintf(EXTpulFile:' I;\n\n');

IlInput Minima
fprintf(EXTputFile:"lnput Minima xmin(nx)\n');
fprintf(EXTputFile,"Parameter xmin(ix) n;
far (i~1; i<~iNumlnputs; iH )
{

if (InpuIMIN[i] !~ 0.0)
(

if «iNuminputs<10)I(i>9))
fprintf(EXTputFile:\nix"/od %12.4e",i,lnputMIN[i]);

else
fprintf(EXTputFile, '\nixO%d % 12.4e",i,lnputMIN[i]);

)
)
fprintf(EXTputFile:'I;\n\n");

IIlnpul SPdevWls
fprinlf(EXTpuIFile,"'lnpul Setpainl DevialianWeighls xw(nx)\n');
fprintf(EXTputFile,"Parameler xw(ix) n;
far (i~1; i<~iNumlnputs; iH )
(

if (InputSPdevWt[i] !~ 00)
(

if «iNumlnpuls< 10)I(i>9))
fprintf(EXTputFile,'\nix"/od %12.4e",i,lnpuISPdevWt[iJ);

else
fprintf(EXTputFile:\nixO%d % 12.4e",i,lnputSPdevWtp]);

)
)
fprintf(EXTputFile,"I;\n\n");

11 Output Maxima
fprintf(EXTputFile:"Output Maxima umax(nu)\n");
fprinlf(EXTputFile:'Parameter umax(iu) f');
far(i~1; i<~iNumOutpuls; iH )
(

if (OutputMAXPl !~ 0.0)
(

if «iNumOutputs<1 0)1(1)9))
fprintf(EXTputFile,'\niu%d %12.4e",i,OutputMAXPJ);

else
fprintf(EXTpuIFile:\niuO%d %12.4e",i,OutpuIMAXPJ);

)
)
fprintf(EXTputFile:'I;\n\n");

11 Output Minima
fprintf(EXTputFile:"Output Minima umin(nu)\n");
fprintf(EXTputFile,"Parameter umin(iu) I");
far (i~l; 1<~iNumOutpuls; iH )
{

if (OulputMIN[i] != 0.0)
(

if «iNcrnOutputs<10)1(i>9)
fprintf(EXTputFile:\niu%d % 12.4e",i,OutputMIN[iJ);

else
fprintf(EXTputFile:\niuO%d %12.4e",i,OutputMIN[iJ);

)
}
fprintl(EXTpuIFile,"I;\n\n");

11 Output Change Maximum
fprintf(EXTputFile:"Oulput Change Maxima dumax(nu)\n");
fprintf(EXTputFile,"Parameter dumax(iu) 1");
far (i~1; i<~iNumOutputs; iH)
{

if (OutputChangeMAX[i] != 0.0)
(

if «iNumOulputs<10)I(i>9))
fprintl(EXTpulFile,'\niu'lod %12.4e",i,OutpulChangeMAX[iJ);

else
fprintf(EXTputFile,'\niuO%d %12.4e",i,OutputChangeMAX[i]);

)
)
fprintf(EXTputFile," I;\n\n");

11 Output Mave Weighls
fprintf(EXTpuIFile:"Oulpul Mave Weighls lJN(nu)\n");
fprintf(EXTputFile:'Parameter lJN(iu) f');
far (i~1; i<=iNumOutpuls; iH)
{

if (OutputMaveWt[i]!= 0.0)
(

if ((iNumOutputs<10)l(i>9))
fprintf(EXTputFile:\niu%d % 12.4e",i,OutputMaveWt[iJ);

else
fprinlf(EXTputFile,'\niuO%d % 12.4e",i,OutpuIMaveWt[i]);

)
)
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IINumber of Stored Steps

fprinlf(EXTputFile," I;\n\n");

IINumber of Stored Steps
fprinlf(EXTputFile,"'Set for past limes stored\n');
fprintf(EXTputFile,"Scalar ntl %d 1;\nln",m_iStoredSteps);

11 Sel for past inputs stored
1nl mJnxnt ; mJStoredSteps'iNumlnputs;

fprintf(EXTputFile,"'Set for pasllnputs slored\n');
fprinlf(EXTputFile,"Scalar nxnt I %d 1;\n\n",mJnxnt);
If (mJnxnt<10)
(

fprinlf(EXTputFile,"Sel ixt I ixtl'ixt%d I;\n",m_inxnt);
}
else
( 11#### Beware if this goes over 99 !!I

fprintf(EXTputFile,"Set ixt I ixtOI'ixt%d 1;\n",mJnxnt);
)
fprinlf(EXTpuIFile,'\n");

11 Past Input Values
fprintf(EXTputFile,'''Previous Input Values xt(ixt)\n");
fprinlf(EXTputFile,''Parameter xt(ixt) 1");
for (i=1; i<=mjnxnt; i++)
(

If (('myPasllnputLevels}li] !; 0.0)
{

if ((m_inxnt<10)I(i>9))
fprintf(EXTputFile, '\nixt%d %12.4e",i,('myPastlnputLevels)Ii]);

else
fprinlf(EXTputFile,'\nixtO%d %12.4e",I,('myPasllnpulLevels}Ii]);

)
}
fprintf(EXTputFile," I;\n\n");

11 Set for past oUlputs stored
Int m_Inunt ; m_iStoredSleps'iNumOutpu1s;
fprinlf(EXTputFile,'"Set for past oUlputs storedln");
fprintf(EXTputFile,"Scalar nunt I %d I;\n\n",m_inunt);
if (mJnunt<10)
(

fprinlf(EXTputFile,"Set lut I iull'iut%d 1;\n",mJnunl);
)
else
{ 11#### Beware if this goes over 99 I!!

fprintf(EXTputFile,"Set iut I iutOl'iut%d 1;\n",mJnunt);
}
fprinlf(EXTputFile,'\n');

II Past Output Values
fprintf(EXTputFile,"'Previous Output Values ul(iut)\n");
fprinlf(EXTpuIFile,"Parameter ut(iul) 1");
for (;;1; i<;mJnunl; I++)
{

if «('myPastOulputLeveis)[iJ!; 0.0)
(

If ((mJnunt<1 0)I(i>9))
fprintf(EXTputFi le,'\niU1%d %12.4e", i, ('myPastOutputLevels)[i]);

else
fprintf(EXTpUIFile.'\niulO%d %12.4e",i,('myPaslOulputLevels}II]);

)
)
fprinlf(EXTputFile," I;\n\n');

11 Past Output Changes
fprintf(EXTputFile,'''Previous Output Changes dUI(iul)\n');
fprinlf(EXTputFile,"Parameter dul(iut)!');
for 0=1; i<=mjnunt; i++)
{

if (('myPastOutputChanges)liJ !; 0.0)
(

If ((mJnunt<10)I(i>9))
fprinlf(EXTputFile,iniLA%d %12.4e".i,('myPaslOutputChanges)[I]);

else
fprintf(EXTpU1File, '\niulO%d %12.4e",i,('myPastOulpulChanges )[1]);

}
}
fprinlf(EXTpulFile," I;\n\n");

fclose(EXTputFile);
11----------------------

11 CALL the EXT program HERE

char 'args[2J;
argslOJ ; "c:\\gams\\gamsI9.0\\gams.exe";
args[l J ; "c:W researlOh\\gams\\gams_scad\\Scad.gms";

char· environmentO =
(

II
11
11
11
11

11
11

"curdlr-c:\~ research\\gams\\gams_scad",
"inputdir-c:\~research\\gams\\gams scad".
"inpuldir-c:W research\\gams\\gams=s cad",

"11 bi ncdi r-c:W research\\gams\\gams_scad",
"putdi r-c:W research\\gams\\gams_scad",
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"sysdiFc:\\gams\\gams 19.0",
"relpath=O",
"suppress=O", //#### 1
NULL

//
//
//
//
// );
// #### Original_spawn/pe( _P_WAIT, args[OI, args[O], args[1J, NULL, environment);

int spawnfiag = _spawnlp( _P_WAIT, args[O], args[O], args[1], NULL);

// char Buffer(80];
// sprintf(Buffer, "enmo = %d\n",enmo);
1/ «CMainWnd·)AfxGetMainWnd O)->SetStatusBarText (Buffer);
// MessageBeep (MBJCONASTERISK);

// Test if EXT get File exists and is not stilt open
ifstream EXTget(m_cEXTgetFile, ios::nocreate, filebuf::sh_none);
if (EXTget)
{

//------------------------------------
EXTget.c1oseO;
int ExtCalllndex returned;
FILE· EXTgetFile = fopen (m_cEXTgetFile, Y);
fscanf(EXTgetFile,"%d",&ExtCalllndex_returned};
if (ExtCalllndex_returned == ExtCalllndex)
(

for (i = 1; i <= iNumOutputs; i++)
(

fscanf(EXTgeIFile,'%If",&NewOutputs[iJ);

}
else
(

char Buffer(80);
sprintf(Buffer, "EXT Call Index MISMATCH ! : Returned %d 1= Sent %d

(errno=%d)\n",ExtCalllndex_returned,ExtCalllndex,enmo);
«CMainWnd·)AfxGetMainWnd ())->SeIStatusBarText (Buffer);
MessageBeep (MBJCONASTERISK);

)
fclose(EXTgetFile);

}
else
(

1/ Notify user that file is not ready
char Buffer(80);
sprintf(Buffer, "Return file is not ready for Index Call Sent! : %d\n",ExtCalllndex);
«CMainWndO)AfxGetMainWnd O)->SetStatusBarText (Buffer);
MessageBeep (MB_ICONASTERISK);
//----------------------

I/=====END of DMC Algorithm===============================================================

if (m_bAlgoFuzzy)
{

//=====START
Algorithm======================================================================

of Fuzzy

//=====END of Fuzzy Algorithm===============================================================

1/ set outputs of EXTObject
for (i = 1; i <= iNumOutputs; i++)
(

double m_fOutput = NewOutputspl;
m_fOutput = max (d{m_fOutputMins[i-1]) ,m_fOutput); 1/ Clip in case went out
m_fOutput = min (d(m_fOutputMaxs[i-1]), m_fOutput);
«CIOStreamO)rnJlOutputStreams[i-1 ])->Write (m_csName, m_fOutput);
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Appendix A: Control loop

A.2 Logic diagram showing spawning of control algorithm in GAMS
from MATLAB

Open GAMSfile
for appending.

Call external file
Clineput in GAMS,
with present
plant I model data

Construct B, Bol

& B matrices and
pass to GAMS

Define matrices for re-arranging plant
data to match size of control problem
and pass to GAMS.

Call integrater file
in GAMS that sums
all moves older than
nt steps back.

Equation block with
variables and equations for

optimisation -» optimisation

Extract first optimised move
and pass to external file
Clineget to be then passed to
plant
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Appendix B: Interacting Tanks

Appendix B

Interacting Tanks

B.l Step response Data

Figure 8.1 Level response for step in V1 (-30%)
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Figure 8.2 Level response for step in V2 (-30%)
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Appendix B: Interacting Tanks

Table B.1 Step data used for dynamic matrix extending over 10 step horizon

V1 V2 .

-0.06614 -0.0018
-0.34063 -0.0916
-0.46202 -0.1096
-0.54345 -0.1335

L1 -0.57648 -0.144
-0.58104 -0.1489
-0.62612 -0.155
-0.62017 -0.1581
-0.6311 -0.16
-0.6311 -0.16
-0.006 0.0356

-0.0395 0.2291
-0.1016 0.4089
-0.1445 0.5604

L2 -0.1844 0.6334
-0.2067 0.6996
-0.2368 0.7265
-0.2596 0.744
-0.2616 0.773
-0.2616 0.773

B.2 Operability region

Figure 8.3 Operability region in terms of levels
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Appendix B: Interacting Tanks

B.3 Equation block from CAMS for optimal continuous evaluation
of V1 and discrete selection of V2

Parameter xol openloop trajectory(ixt);
xol(ixt) = xo_meas(ixt) - sum(iut,(Bo(ixt,iut)*dut(iut))) + sum(iut,(Bol(ixt,iut)*dut(iut)));

binary variable binvectdup binary vector for discrete inputs(ido);

Variables
contvect continuous vector for continuous inputs(iuo)
contvectdup duplicates continuous vector for continuous inputs(ino)
binvect binary vector for discrete inputs(iuo)
absolvect sum of binary and continuous vectors - absolute input to the plant/ model(iuo)
dm change in inputs over optimization horizon(iuo)
ecl closed loop error(ixt)
absol absolute inputs(iuo)
J value of objective function

*

* Optimisation Equations
Equations
errorcl closed loop error{ixt)
discinput matrix of discrete positions acting on discrete vector(iuo)
selection ensures that only one selection per discrete input is made (ico)
continput matrix for arranging continuous inputs for summation with discrete inputs(iuo)
superimpose combines continuous and binary vector(iuo)
inputchange change between present and past input(iuo)
lower lower bound on input(iuo)
upper upper bound on input (iuo)
rampupper upper change in input per timestep(iuo)
ramplower lower change in input per timestep(iuo)
objective cost function

* ............ , '" '" '" - '" .

errorcl(ixt).. ecl(ixt) =e= xol(ixt) - setpoint(ixt) + sum(iuo,(B(ixt,iuo)*dm(iuo)));

discinput(iuo).. binvect(iuo) =e= sum(ido,(binmat(iuo,ido)*binvectdup(ido)));

selection(ico).. sum(ido,selmat(ico,ido)*binvectdup(ido» =e= 1;

continput(iuo).. contvect(iuo) =e= sum(ino,(contmat(iuo,ino)*contvectdup(ino»);

superimpose(iuo).. absolvect(iuo) =e= binvect(iuo)+contvect(iuo);

inputchange(iuo).. dm(iuo) =e= absolvect(iuo)-absolvect(iuo-2)-outpres(iuo)$FirstMove(iuo);

lower(iuo).. absolvect(iuo) =g= outmin (iuo);

upper(iuo).. absolvect(iuo) =1= outmax(iuo);
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rampupper(iuo)..dm(iuo) =1= dm_max(iuo);
ramplower(iuo).. dm(iuo) =g= -dm_max(iuo);

objective .. J =e= sum(iuo,(sqr(dm(iuo))*lamda(iuo))) + sum(ixt,(sqr(ecl(ixt))*weight(ixt)));

model dmc_scad JallJ

option mip = osl

solve dmc_scad using minlp minimizing J;

where:
• ixt - set defining the optimisation horizon.
• iut - set defining size of optimisation horizon.
• iuo - set defining size of control horizon
• ido - set defining number of integer positions for V2.

• ico - set having size as defined by number of optimised moves.
• ino - duplicated set from iuo.
• setpoint - vector with setpoints for input states.
• binmat -matrix that contains all discrete positions for input V2 over the optimisation

horizon.
• selmat -matrix with ones, enforcing only one position selection per discrete input.
• contmat - matrix with ones, arranges continuous input vector for summation with integer

input vector.
• outpres - vector of duplicated present input states.
• firstMove -binary vector for determining first time step in optimisation horizon.
• outmin - vector for lower bound on outputs.
• outmax - vector for upperbound on outputs.
• dm_max - vector for limit on the absolute change in outputs.
• lamda - vector with weights on outputs.
• weight - vector for weights on inputs.
• xo_meas - vector of present plant states.
• dut - vector of past input states.
• B, Bo, Bol- sub-matrices making up the dynamic matrix.
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Appendix C: Thermal Circuit

Appendix C

Thennal Circuit

C.l Non - symmetrical switch step response data

Figure C.1 Temperature response for mode switch from heating to recycle
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Appendix C: Thermal Circuit

Figure C.3 Temperature response for mode switch from heating to cooling

65 , _ _ ,

0-60
m
Cl)

~55

Cl)

;; 50
(lJ

;;; 45
0..

E
~ 40

35

1200

heating

1400 1600

time(s)

cooling

1800 2000

Figure CA Temperature response for mode switch from cooling to heating

55 .-- -- ---- -----..-..- ~-.- ----- ---- -- - ~..--..-- -..- ..----- ~

50
u
Cl
CD

~ 45
CD....
::J..
~
CD 40
Q.

E
Gl..

35

30

o

cooling

200

C-2

400

time(s)

heating

600 800



Appendix C: Thermal Circuit

Figure C.5 Temperature response for mode switch from cooling to recycle
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Appendix C: Thermal CirCIJit

Table C.1 Non symmetric switch step data used for dynamic matrix extending over 15 step horizon

C~R H~R R~C H~C R~H C~H

1 0.867 -2.654 -1.688 -5.938 -0.526 0.931
2 2.020 -5.461 -8.144 -14.154 -3.145 4.710
3 2.861 -6.650 -9.600 -14.882 -0.424 11.801
4 3.216 -7.496 -6.479 -14.440 -0.336 17.484
5 4.089 -8.336 -4.729 . -15.157 0.148 19.712
6 4.895 -8.972 -5.601 -17.520 0.645 20.691
7 5.079 -9.632 -7.343 -19.152 2.073 21.352
8 5.781 -10.371 -7.922 -20.219 5.088 21.826
9 6.392 -10.970 -7.687 -21.318 7.945 22.162
10 6.828 -11.702 -7.608 -22.798 9.581 22.538
11 7.325 -12.390 -7.986 -24.203 10.315 23.199
12 8.163 -13.106 -8.407 -25.424 10.606 23.921
13 8.681 -13.743 -8.714 -26.648 11.001 25.063
14 9.364 -14.323 -9.098 -27.976 11.081 26.656
15 10.059 -14.904 -9.339 -29.070 11.301 28.202

C.2 Symmetrical switch step response data

Table C.2 Symmetric switch step data used for dynamic matrix extending over 15 step horizon

C~R H~R R~C H~C R~H C~H

1 1.688 0.526 -1.688 -1.162 -0.526 1.162
2 8.143 3.145 -8.144 -4.999 -3.145 4.999
3 9.599 0.424 -9.600 -9.176 -0.424 9.176
4 6.478 0.336 -6.479 -6.143 -0.336 6.143
5 4.729 -0.148 -4.729 -4.877 0.148 4.877
6 5.601 -0.645 -5.601 -6.247 0.645 6.247
7 7.343 -2.073 -7.343 -9.416 2.073 9.416
8 7.921 -5.088 -7.922 -13.010 5.088 13.010
9 7.687 -7.945 -7.687 -15.632 7.945 15.632
10 7.607 -9.581 -7.608 -17.189 9.581 17.189
11 7.986 -10.315 -7.986 -18.301 10.315 18.301
12 8.407 -10.606 -8.407 -19.014 10.606 19.014
13 8.714 -11.001 -8.715 -19.715 11.001 19.715
14 9.097 -11.081 -9.098 -20.178 11.081 20.178
15 9.339 -11.301 -9.339 -20.640 11.301 20.640
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C.3 Equation blockfrom CAMS for optimal switching of modes

parameter sumtoBol adds on effect of integration onto open loop response(ixt);
sumtoBol(ixt) = sum(iim,(ramp_matrix(ixt,iim)*100*accum_moves(iim)));

Parameter xol open loop response(ixt);
xol(ixt)=xo_meas(ixt)-
sum(iut, (BO(ixt, iut)*1OO*dut(iut)))+sum(iut, (BOL(ixt, iut)*1OO*dut(iut)))+sumtoBol(ixt);

binary variable nmodeswitch vector for mode switches over control horizon(imo);

Variables
dm absolute plant inputs(iuo);
ecl closed loop error(ixt);
mode_var modes over control horizon(mno);
xci closed loop response over optimisation horizon (ixt);
sofhi constraint(ixt);
soflo constraint (ixt);
J value of objective function

* Optimisation Equations
*
Equations
ecll evaluation of closed loop error(ixt)
update_mode updating future modes based on switches made in the future(mno)
c1oseloop(ixt)
softhi upper bound soft constraint equation(ixt)
softlo lower bound soft constraint equation(ixt)
hardhi upper bound hard constraint equation(ixt)
hardlo lower bound hard constraint equation (ixt)
rule equality constraint on the modes that ensures logical selection(nno)
objective penalty function

ecll(ixt).. ecl(ixt) =e= xol(ixt) - setpoint(ixt) + sum(imo,(B(ixt,imo)*nmodeswitch(imo)*100));

update_mode(mno).. mode_var(mno)=e=mode_var(mno-modes)
+past_mode_stored(mno)$Firstmode(mno)+
sum(imo,(mode_to_switchmode(mno,imo)*nmodeswitch(imo)));

closeloop(ixt) ..xcl(ixt) =e= xol(ixt)+ sum(imo, (B (ixt, imo)*nmodeswitch (imo)* 100));

softhi(ixt).. sofhi(ixt) =e= max«xcl(ixt)-softconshi(ixt)),O) ;

softlo(ixt).. soflo(ixt) =e= max«-xcl(ixt)+softconslo(ixt)),O) ;

hardhi(ixt).. xcl(ixt) =1= xmaxt(ixt) ;

hardlo(ixt).. xcl(ixt) =g= xmin(ixt) ;
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rule(nno)..sum(mno,(rulemode(nno,mno)*mode_var(mno))) =e=1;

objective..J=e=sum(imo,((nmodeswitch(imo))*lamda(imo)))+
sum(ixt,(sqr(ecl(ixt))*weight(ixt)))+sum(ixt,(sqr(sofhi(ixt))*weighthi(ixt)))+sum(ixt,(sqr(soflo(ixt)
)*weightlo(ixt)));

model dmc scad fallf

option mip = osl2

solve dmc_scad using minlp minimizing J;

where:

• ixt - set defining the optimisation horizon.
• mno - set defining modes over control horizon.
• iuo - set defining primary inputs over optimisation horizon.
• iim - set defining number of possible mode switches in a single time step.
• mno - set defining modes over control horizon.
• imo - set defining mode switches over control horizon.
• nno - size of control horizon.
• accum_moves - vector accumulating changes per switch later than nt steps in time.
• ramp_matrix - matrix where rows are duplications of row vector i1Band each row is

multiplied by the row number.
• xo_meas - vector of present plant states.
• B, Bo, Bol- sub-matrices making up the dynamic matrix.
• dut - vector of past input states.
• setpoint - vector with setpoints for input states.
• modes - scalar defining number of modes.
• past_mode_stored - mode from past time step.
• softconshi - vector of upper limit soft constraint.
• softconslo - vector of lower limit soft constraint.
• firstMove -binary vector for determining first time step in optimization horizon.
• mode_to_switchmode - matrix relating modes and switches between modes.
• xmaxt - upperbound on state.
• xmint - lower bound on state.
• rulemode - matrix of 1's ensuring that only 1 mode is selected per time step.
• lamda - vector with weights on outputs.
• weight - vector for weights on inputs.
• weighthi - weighting factor on upper bound of soft constraint.
• weightlo - weighting on lower bound of soft constraint.
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AppendixD

Coal Lock Sequencing

D.l Step response data for 3 coal locks

Table D.1 step data for coal lock sequencing extending over 5 step horizon

CL1 CL2 CL3 rate

-2 0 0 0.5
-4 0 0 1

T1 -6 0 0 1.5
-8 0 0 2
-8 0 0 2.5

0 -10 0 1
0 -10 0 2

T2 0 -10 0 3
0 -10 0 4
0 -10 0 5

0 0 -1 0.5
0 0 -2 1

T3 0 0 -3 1.5
0 0 -4 2
0 0 -4 2.5

0 0 0 0
2 3 7 0

Fcleg 2 0 7 0
0 0 0 0
0 0 0 0

D.2 . Equation block from CAMS for optimal sequenclng of coal
locks using soft constraint

parameter sumtoBol(ixt);
sumtoBol(ixt) = sum(iiu,(ramp_vector(ixt,iiu)*accum_moves(iiu)));

Parameter xol open loop response(ixt);
xol(ixt) = xo_meas(ixt) - sum(iut,(BO(ixt,iut)*dut(iut))) + sum(iut,(BOL(ixt,iut)*dut(iut))) +
sumtoBol(ixt) ;

binary variable dm(iuo);
Variables
ecl closed loop error(ixt);
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absol absolute plant input(iuo);
e Iinearr(iuo);
bin duplication for binary variable dm (iuo);
xci closed loop response(ixt);
sofhi upper limit of soft constraint(ixt);
soflo lower limit of soft constraint(ixt);
J value of objective function
* Optimisation Equations
*
Equations
ecll closed loop error(ixt)
absoll absolute controller output to plant(iuo)
softhi upper limit for soft constraint (ixt)
softlo lower limit for soft constraint(ixt)
c1oseloop closed loop evaluation(ixt)
linear direct assignment for linear purposes(iuo)
objective objective function;

*
* Equality and inequality constraints

ecll(ixt).. ecl(ixt) =e= xol(ixt) - setpoint(ixt) + sum(iuo,(B(ixt,iuo)*dm(iuo)));

absoll(iuo).. absol(iuo) =e= absol(iuo-nu) + outpres(iuo)$FirstMove(iuo) + dm(iuo);

closeloop(ixt) ..xcl(ixt) =e= xol(ixt) + sum(iuo,(B(ixt,iuo)*dm(iuo)));

softhi(ixt).. sofhi(ixt) =e= max((xcl(ixt)-softconshi(ixt)),O) ;

linear(iuo).. bin(iuo) =e=dm(iuo);

softlo(ixt).. soflo(ixt) =e= max((-xcl(ixt)+softconslo(ixt)),O) ;

objective.. J =e= sum(iuo,(sqr(bin(iuo))*lamda(iuo))) +
sum(ixt,(sqr(ecl(ixt))*weight(ixt)))+sum(ixt,(sqr(sofhi(ixt))*weighthi(ixt)))+sum(ixt,(sqr(soflo(ixt)
)*weightlo(ixt)));

*
model dmc scad /all/

option mip = osl2

solve dmc_scad using minlp minimizing J;

where:
• ixt - set defining the optimisation horizon.
• iiu - set defining number of controller outputs
• iuo - set defining primary inputs over optimisation horizon.
• accum_moves - vector accumulating initiations later than nt steps in time.
• ramp_matrix - matrix where rows are duplications of row vector ~B and each row is

multiplied by the row number.
• xo_meas - vector of present plant states.
• B, Bo, Bol- sub-matrices making up the dynamic matrix.
• dut - vector of past initiations extending nt steps back in time.
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• firstMove -binary vector for determining first time step in optimization horizon.
• softconshi - vector of upper limit soft constraint.
• softconslo - vector of lower limit soft constraint.
• lamda - vector with weights on outputs.
• weight - vector for weights on inputs.
• weighthi - weighting factor on upper bound of soft constraint.
• weightlo - weighting on lower bound of soft constraint.
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AppendixE

Physicochemical Discontinuities

E.1 Matlab code, initially spawns control algorithm into CAMS and
then simulates control loop with a single tank.

%Matlab file simulating the closed loop operation of a tank and controller.
%Tank is fitted with an overflow at height hv and thus has 2 regimes of operation.
%Input to the tank is inflow Fo. The tank drains due to gravity
%Tank also has discontinuous cross sectional area at height hv

%This file does the following:
% a. contains information describing the system dynamics and controller.
% b. spawns the Gams file for control of the system.
% c. generates system state data (matlab) by using the controller output for the controller which %
% operates in feedback.
% d. prompts the storage and recall of system states and inputs for the system and controller.
% e. controller has a forward horizon of nt on setpoint i.e. forward control

0/0---- _

clear all

%open 2 files: one for the controller called at every timestep and the
% other for exchanging data between the model and the controller

%Gams file--->controller
filetank = fopen('C:\WINDOWS\Desktop~asmeer\state_space\tank\filetank.gms','w');

fprintf(filetank,'*Gams file spawned from Matlab for control');
fprintf(fiIetank,'of a tank system having 2 regimes\n\n');

0/0---- ----------------------1 nput data---------------------------------------------

% tank data governing dynamics

d1r1 =2.5; %tank diameter below overflow [m]
A1r1 = pi*d1r1 A2/4; %cross sectional area of the tank

d1r2 =1.5; %tank diameter above overflow [m]
A1r2 = pi*d1r2A2/4;

k1 =ge-3; % orifice constant forthe bottom bottom line
kv =4e-3; % valve constant for overflow line
hv = 5; %height of withdrawal[m]
hmax = 15; %height of tank [m]
Fmax =150; % max flow allowed into tank [m3/hr]
g = 9.8;%gravity [m2/s]

%pass these to Gams
fprintf(filetank, '*Tank parameters \n');
fprintf(fiIetank.'Scalars \n');
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fprintf(fiIetank,'d 1r1 diameter of the tank below overflow/ %d /\n' ,d 1r1);
fprintf(fiIetank,'A1r1 diameter of the tank below overflow/ %d /\n' ,A1r1);

fprintf(filetank, 'd 1r2 diameter of the tank above overflow/ %d /\n',d 1r2);
fprintf(filetank, 'A1r2 diameter of the tank above overflow/ %d /\n' ,A1r2);

fprintf(fiIetank,'k1 flow coefficient for bottom line/ %d /\n',k1);
fprintf(fiIetank,'kv flow coefficient for overflow line/ %d /\n',kv);

fprintf(fiIetank,'Fmax max flow into tank! %d /\n' ,Fmax);
fprintf(filetank,'hv height of overflow/ %d /\n',hv);

fprintf(filetank, 'hmax max height of tank! %d /\n',hmax);

fprintf(filetank,' ;\n\n');

fprintf(filetank, '* \n');

%

nt = 5; %size of controller horizon
no = 3; % no. of optimized moves
dt = 60; %time step [s]
T = 20; % number of control time steps

hsp = zeros(T, 1); % level setpoint [m]
hsp(1:10) = 6;
hsp(11 :20) =4;

controller parameters and initial conditions

Fin_nought = 0; %initial inflow to the tank [m3/hr]
ho = 4; %initial height in the tank at start of simulation [m]
h=ho;
Fin=Fin_nought;
alpha=1; % regime at startup
beta= 1-alpha;

0/0 ----------------------

%Pass this control data to filetank.....spawning of filetank for system control

%Pass set to Gams - size of optimization interval
if nt<=10

fprintf(filetank,'Set t optimisation horizon / t1*t%d /;\n',nt);
else

fprintf(fiIetank,'Set t optimisation horizon / t01 *t%d /;\n' ,nt);
end
fprintf(fiIetank,' \n\n');

%Pass set to Gams - size of control horizon
if no<10
fprintf(filetank,'Set n optimisation horizon / n1*n%d /;\n',no);
else

fprintf(filetank,'Set n optimisation horizon / n01*n%d /;\n',no);
end
fprintf(filetank,' \n\n');

fprintf(fiIetank,'Scalar dt time step interval/ %d /;\n',dt);
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fprintf(fiIetank,' \n\n');

fprintf(filetank, 'parameter firststep(t) ;\n');
fprintf(filetank,'firststep(t)=yes$(ord(t) le 1 );\n');

fprintf(filetank, '\n\n');

%In filetank, call file cycle as included file with data from past timestep and setpoints

fprintf(filetank,'$INCLUDE C:\\WINDOWS\\Desktop\~asmeer\\state_space\\tank\\cycle.gms\n\n');

% matrix for arranging optimised moves
moveopt=zeros(nt,no);
id=eye(no);
moveopt(1 :no, 1:no)=id;

if (nt-no)-=0
for i=no+1:nt

moveopt(i,no)=1 ;
end

end

% protection for (hst-hv) from being less than 0
fprintf(filetank, 'scalar diffh2;\n');
fprintf(filetank, 'diffh2 = hst-hv;\n');
fprintf(filetank, 'if( ');
fprintf(filetank,'(diffh2 <= O),\n');
fprintf(fiIetank,'diffh2 = 1;\n');
fprintf(fiIetank, ');\n');

fprintf(fiIetank, '\n\n');

%Pass this to Gams--------------------------------------------------

fprintf(filetank, ,* matrix for arranging optimised moves\n');

what='Table';name='moveopt';
rowsno=nt;columnsno=no;rowset='t';columnset='n';matrix=moveopt;
write2gams(what,name,rowsno,columnsno,rowset,columnset,matrix); %function for writing table to
GAMS

fprintf(filetank, 'binary variables\n');

fprintf(filetank,'alpha binary variable for the selection of regime1 (t)\n');
fprintf(fiIetank,'beta binary variable for the selection of regime2(t)\n');

fprintf(filetank,' ;\n\n');

fprintf(fiIetank, 'variables\n\n');
fprintf(filetank, 'h tank level(t)\n');
fprintf(filetank,'dh1 change in tank level in regime1 (t)\n');
fprintf(filetank,'dh2 change in tank level in regime2(t)\n');
fprintf(fiIetank, 'Finh continuous feed into the tank over optimisation horizon (t)\n');
fprintf(fiIetank,'Fin continuous feed into the tank over control horizon(t)\n');
fprintf(filetank,'er error in level(t)\n');
fprintf(filetank,'alphal linear variable for alpha(t)\n');
fprintf(filetank, 'betallinear variable for beta(t)\n');
fprintf(filetank, 'reg1 continuous variable(t)\n');

E-3



Appendix E: Physicochemical Discontinuities

fprintf(filetank, 'reg2 continuous variable(t)\n');

fprintf(filetank, 'J value of objective function\n');

fprintf(filetank,' ;\n\n');

fprintf(filetank, 'equations\n\n');

fprintf(filetank, 'I evel (t)\n');
fprintf(fiIetank, 'regcont1 (t)\n');
fpri ntf(filetank,'regcont2(t)\n');
fprintf(filetank, 'f1owopt(t)\n');
fprintf(filetank, 'regime1 (t)\n');
fpri ntf(filetank,'regime2(t)\n');
fprintf(fiIetank, 'flowhi(n)\n');
fpri ntf(filetank,'flowlo(n)\n');
fprintf(filetank, 'exclusive(t)\n');
fpri ntf(filetank,'Iessthan(t)\n');
fprintf(filetank,'greaterthan(t)\n');
fprintf(filetank, 'error(t)\n');
fprintf(filetank, 'objective\n');
fprintf(filetank.' ;\n\n');

fprintf(fiIetank,'level(t) .. h(t) =e= h(t-1 )+ho(t)$firststep(t)+ reg1 (t)*dh1 (t)+ reg2(t)*dh2(t);\n');

fprintf(fiIetank,'regcont1 (t) ..alpha(t) =e= reg1 (t);\n');

fprintf(filetank,'regcont2(t) ..beta(t) =e= reg2(t);\n');

fprintf(filetank,'f1owopt(t) ..Fin(t) =e= sum(n,(Finh(n)*moveopt(t,n))); \n');

fprintf(fiIetank,'regime1 (t) ..dh1 (t) =e=dt/A1r1 * (Fin(t) - (k1 *sqrt(hst) + k1/(2*sqrt(hst))*(h(t­
1)+ho(t)$firststep(t)-hst))); ;\n');

fprintf(filetank, 'regime2(t) ..dh2(t) =e= dt/A1r2*(Fin(t)-(k1 *sqrt(hst)+k1 /(2*sqrt(hst) )*(h(t-
1)+ho(t)$firststep(t)-hst)) - (kv*sqrt(diffh2)+kv/(2*sqrt(diffh2))*(h(t-1 )+ho(t)$firststep(t)-hst))) ;\n');

fprintf(filetank, 'f1owhi(n)..Finh(n) =1= Fmax/3600; \n');

fprintf(fiIetank,'f1owlo(n) ..Finh(n) =g= 0/3600; \n');

fprintf(filetank, 'exclusive(t) ..alpha(t)+beta(t) =e= 1; \n');

fprintf(fiIetank,'lessthan(t) ..h(t)-hv*alpha(t)-hmax*beta(t) =1= 0; \n');

fprintf(fiIetank, 'greaterthan(t) .. h(t)-O*alpha(t)-hv*beta(t) =g= 0; \n');

fprintf(filetank, 'error(t)..er(t)=e= sqr(h(t)-hsp(t)); \n');

fprintf(fiIetank, 'objective.. J =e= 1*sum(t,er(t)); \n');

fprintf(filetank, 'model tank1 /all/\n');

fprintf(fiIetank, 'option solprint = off \n');

fprintf(filetank,'option minlp = dicopt \n');

fprintf(filetank,'option mip = osl2 \n');
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fprintf(fiIetank, 'solve tank1 using minlp minimizing J ;\n');

% for Gams call when the controller intervenes
fprintf(filetank,'scalars \n');
fprintf(filetank,'Finpass\n');
fprintf(filetank,'alphapass\n');
fpri ntf(filetank, 'betapass\n');

fprintf(filetank,' ;\n\n');

if nt <=10
fprintf(filetank, 'Finpass=Fin.1 (lit1"); \n');

fprintf(fiIetank,'alphapass=alpha.I("t1 "); \n');
fprintf(fiIetank, 'betapass=beta.I("t1 "); \n');
else
fprintf(filetank, 'Finpass=Fin.I("to1 "); \n');
fprintf(fiIetank, 'alphapass=alpha.I("to1 "); \n');
fprintf(filetank, 'betapass=beta.I("to1 "); \n');

end

fprintf(fiIetank, '$Iibinclude matout Finpass\n');
fprintf(fiIetank,'$libinclude matout alphapass\n');
fprintf(filetank, '$Iibinclude matout betapass\n');

fprintf(fiIetank, 'display alpha. I, beta.1 ,Fin.l, h.1 ;\n');

fclose(filetank);

0/0*************************************** SIMULAliON LOOP *************************************************

for i= 1:T % main loop determining number of time steps

O/ostorage file-----------------------------------------CyCLE--------------------------------- _

cycle = fopen('C:\WINDOWS\Desktop~asmeer\state_space\tank\cycle.gms','w');

% read setpoint trajectoty extending nt steps ahead
counter=1 ;
for ii=i:i+nt-1

if i<=T-nt
setpoint(counter)=hsp(ii);

else
setpoint(counter)=hsp(i);

end
counter=counter+ 1;

end
fprintf(cycle,'parameter hsp(t)/ \n');

%pass to GAMS
forj=1:nt

if nt==10 &j-=10
fprintf(cycle, '\nt%d' ,j);

elseif ((nt<10)IU>9))
fprintf(cycle, '\nt%d',j);
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else
fprintf(cycle,'\nto%d' ,j);
end

fprintf(cycle,' %12.4e ',setpointU));
end

fprintf(cycle,' /;\n\n');

fprintf(cycle,' \n\n');

% now store the past inputs and states for use by the controller
fprintf(cycle, 'parameters\n');
fprintf(cycle, 'Fin_nought present inflow(t)\n');
fprintf(cycle,'ho present level(t)\n');
fprintf(cycle, '; \n\n');

fprintf(cycle, 'Fin--.:nought(t)=%d;\n',Fin);

%protection againt division by °
h=max(h,O.1 );

fprintf(cycle, 'ho(t)=%d;\n', h);

fprintf(cycle,'scalar hst; \n');
fprintf(cycle, 'hst=ho("t1 "); \n');

fcl0 se(cycle); % -----------------------------------------------------------------------------------------------------

if i>1 %....start loop only on second cycle
%-------------------------------------------------Contro 11 er---------------------------

gams_output='std';
[Fin,alpha,beta]=gams('filetank');

O/o------------------------------------------------Model------------------------------------
diffh2=h-hv;
diffh2=max(diffh2,O);

h = h + alpha*dtlA1r1 *(Fin-k1 *hAO.5) + beta*dtlA1r2*(Fin-k1 *(h)AO.5-kv*(diffh2)AO.5);

end

heightplot(i)=h;
f1owplot(i)=3600*Fin;
alphaplot(i)=alpha;
betaplot(i)=beta;

0/0--- _

step=i;
fprintf('timestep: %6.3f \n' ,i)

end
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time=(1 :T);
discont=hv*ones(T,1 );

time=(1 :T);
discont=hv*ones(T,1 );

sUbplot(2,1,1), plot(time,heightplot,time,hsp,':',time,discont,'-.');
title('tank level');
ylabel('height (m)');
AXIS([1 T 3 7]);

d=legend('height','setpoint' ,'discontinuity', 1);

subplot(2,1,2), plot(time,f1owplot);
title('inlet flow');
ylabel('inlet flow (m3/hr)');
xlabel('time step ');

AXIS([1 TO 1.1*Fmax])

£.2 Control Algorithm executed in GAMS every time the controller
is called for 2 tank filling.

*Gams file spawned from Matlab for control of 2 tank system having 2 regimes

*Tank parameters .
Scalars
d1r1 diameter of the tank below overflow/ 2.500000e+000 /
A1r1 area of the tank below overflow/ 4.90873ge+000 /
d1r2 diameter of the tank above overflow/ 1.500000e+000 /
A1r2 area of the tank above overflow/ 1.767146e+000 /
d2 diameter of the tank 2 / 2.500000e+000 /
A2 area of the tank 2 / 4.90873ge+000 /
k1 flow coefficient for bottom line tank1/ 9.000000e-003 /
k2 flow coefficient for bottom line tank2/ 8.000000e-004 /
kv flow coefficient for overflow line/ 6.000000e-003 /
Fmax max flow into tank! 150/
hv height of overflow/ 5 /
hmax max height of tank! 15 /
hmin max height of tank! 0 /

*
Set t optimization horizon / t1 *t5 /;

Set n optimization horizon / n1*n2 /;
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Scalar dt time step interval/ 60 /;

parameter firststep(t);
firststep(t)=yes$(ord(t) le 1 );

$INCLUDE C:\WINDOWS\Desktop\jasmeer\state_space\tank\cycle.gms

scalar diffh2;
diffh2 = hst1-hv;
if( (diffh2 <= 0),
diffh2 = 1;
);

* matrix for arranging optimised moves ahead in time
Table moveopt(t,n)

n1 n2
t1' 1.0000e+000 O.OOOOe+OOO
t2 O.OOOOe+OOO 1.0000e+000
t3 O.OOOOe+OOO 1.0000e+000
t4 O.OOOOe+OOO 1.0000e+000
t5 O.OOOOe+OOO 1.0000e+000

binary variables
alpha binary variable for the selection of regime1 (t)
beta binary variable for the selection of regime2(t)
Vh binary valve operation(n)

variables

h1 tank1 level(t)
h2 tank2 level(t)
dh1 change in tank1 level in regime1 (t)
dh2 change in tank1 level in regime2(t)
dht2 change in level in tank2(t)
Finh continuous feed into the tank (t)
Fin continuous feed into the tank over control horizon(t)
V valve controlling out flow from tank1 (t)
er1 error in level1 (t) .
er2 error in leveI2(t)
alphal linear variable for s1(t)
betallinear variable for s2(t)
reg 1 continuous variable(t)
reg2 continuous variable(t)
J value of objective function

equations

level1 integration for level in tank1 (t)
level2 integration for level in tank2(t)
level2min(t)
regcont1 (t)
regcont2(t)
flowopt(t)
Vopt(t)
regime1 change in tank1 level in regime1 (t)
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regime2 change in tank2 level in regime2(t)
tank2change change in tank2 level(t)
f1owhi(n)
flowlo(n)
exclusive(t)
lessthan(t)
greaterthan(t)
Vmax(t)
Vmin(t)
error1 error between level and setpoint in tank1 (t)
error2 error between level and setpoint in tank2(t)
objective

level1 (t) .. h1 (t) =e= h1 (t-1 )+ho1 (t)$firststep(t)+ reg 1(t)*dh1 (t)+ reg2(t)*dh2(t);

leveI2(t) ..h2(t) =e= h2(t-1 )+ho2(t)$firststep(t)+ dht2(t);

tank2change(t) ..dht2(t) =e= dt/A2*(reg 1(t)*(V(t)*(k1 *sqrt(hst1) + k1/(2*sqrt(hst1 ))*(h1 (t-
1)+ho1(t)$firststep(t)-hst1))) + reg2(t)*(V(t)*(k1 *sqrt(hst1 )+k1/(2*sqrt(hst1))*(h1(t-1 )+ho1(t)$firststep(t)­
hst1)) + (kv*sqrt(diffh2)+kv/(2*sqrt(diffh2))*(h1 (t-1 )+ho1 (t)$firststep(t)-hst1))) - (k2*sqrt(hst2) +
k2/(2*sqrt(hst2))* (h2(t-1 )+ho2(t)$firststep(t)-hst2)));

regcont1 (t) ..alpha(t) =e= reg1 (t);

regcont2(t) .. beta(t) =e= reg2(t);

f1owopt(t) ..Fin(t) =e= sum(n,(Finh(n)*moveopt(t,n)));

Vopt(t) ..V(t) =e= sum(n,(Vh(n)*moveopt(t,n)));

regime1(t) ..dh1(t) =e=dt/A1r1* (Fin(t) - V(t)*(k1*sqrt(hst1) + k1/(2*sqrt(hst1))*(h1(t­
1)+ho1(t)$firststep(t)-hst1)));

regime2(t) ..dh2(t) =e= dtlA1r2*(Fin(t) - V(t)*(k1 *sqrt(hst1 )+k1/(2*sqrt(hst1 ))*(h1 (t-1 )+ho 1(t)$firststep(t)­
hst1)) - (kv*sqrt(diffh2)+kv/(2*sqrt(diffh2))*(h1(t-1 )+ho1(t)$firststep(t)-hst1))) ;

f1owhi(n) ..Finh(n) =1= Fmax/3600;

f1owlo(n) ..Finh(n) =9= 0/3600;

exclusive(t) ..alpha(t)+beta(t) =e= 1;

lessthan(t) .. h1 (t)-hv*alpha(t)-hmax*beta(t) =1= 0;

greaterthan(t) .. h1 (t)-hmin*alpha(t)-hv*beta(t) =g= 0;

leveI2min(t) .. h2(t) =9= 0;

Vmin(t).V(t) =g= 0;

Vmax(t). V(t) =1= 1;

err'or1 (t)"er1 (t)=e= sqr(h1 (t)-hsp1 (t));

error2(t) .. er2(t)=e= sqr(h2(t)-hsp2(t));

objective.. J =e= 3*sum(t,er1 (t)) + 20*sum(t,er2(t));
* note weighting parameters '3' and '20' above
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model tank1 /all/

option solprint = off
option minlp = dicopt
option mip = osl2
solve tank1 using minlp minimizing J ;
scalars
Finpass
Vpass
s1pass
s2pass
h1pass

Finpass=Fin.1 ('t1 ');
Vpass=V.I('t1');
s1 pass=s1.I('t1 ');
s2pass=s2.I('t1 ');
h1 pass=h1.I('t1 ');
$Iibinclude matout Finpass
$Iibinclude matout Vpass
$Iibinclude matout s1pass
$Iibinclude matout s2pass
$Iibinclude matout h1 pass
display s1.I,s2.I,Fin.l,h1.I,h2.I,V.I;
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