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Abstract 

Invasive alien plants (IAP) are considered as one of the major causes of global change. Parthenium 

hysterophorus is recognized as one of the world’s most aggressive, harmful and extremely resilient 

invasive plant species. It has adverse impacts on the environment, economies, biodiversity, human 

health and agriculture. Identification and modelling of areas vulnerable to Parthenium invasion is 

critical for proactive control and site- specific management of its spread. This study sought to test 

the performance of Maxent algorithm in modelling habitats susceptible to Parthenium invasion 

using selected environmental and physical variables and remotely sensed data. Specifically, the 

study sought to identify key physical and bio-climatic variables that influence the distribution of 

Parthenium. Furthermore, the study sought to determine the value of the freely available Sentinel 

2 multispectral instrument (MSI) datasets in concert with environmental variables in modelling 

habitat susceptible to Parthenium invasion. The Maximum Entropy model (MaxEnt) machine 

learning algorithm was used to model Parthenium invasion using presence - only records (n = 274). 

Results showed that landscapes characterized by low elevation, close proximity to roads and high 

precipitation were the most susceptible to Parthenium invasion. An Area under curve (AUC) value 

of 0.946 was attained, indicating that the model derived using the aforementioned optimal physical 

and bio-climatic variables performed better than random. Based on the high AUC values, results 

also showed that all the model scenarios derived from spectral bands and environmental variables, 

vegetation indices and environmental variables and a combination of spectral bands, vegetation 

indices and environmental variables performed better than random, with AUC values of 0.976, 

0.970 and 0.974, respectively.  The higher accuracy exhibited by the optimal model (bands and 

environmental variables) can be attributed to the integration of red edge band centered at 705 nm 

in Sentinel 2 MSI and environmental variables in predicting areas susceptible to Parthenium. 

Overall, these results demonstrate the potential of integrating the freely available Sentinel 2 MSI 

data and environmental variables to improve the mapping of habitat susceptibility to Parthenium 

invasion. These results could be beneficial for early detection, site -specific weed management and 

long-term monitoring. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Introduction 

 

 Invasive plant species are non-indigenous or exotic plants introduced outside their natural adapted 

environments and dispersal potential (Baran, 2011, Van Kleunen et al., 2015). According to the 

World Conservation Union (IUCN, 2000) invasive plant species are defined as organisms that 

become established in indigenous ecosystems or habitats by rapidly multiplying and modifying 

the landscape, thereby threatening native biodiversity. Globally, studies have shown that alien 

invasive species can among others change soil nutrients (Vitousek and Walker, 1989, Daehler and 

Strong, 1994) and increase carbon absorption rate (Le Maitre et al., 1996) thereby posing a risk to 

native plant species. Generally, invasive species are a key risk to among others biodiversity, 

landscape productivity and animal and human health.  

Parthenium (hysterophorus) is one of the major problematic invasive plant species across the world 

(McConnachie et al., 2011, Dhileepan, 2007, Mahmoud et al., 2015). It is a noxious invasive 

species which degrades natural ecosystems, invade agricultural and rangeland habitats and 

outcompetes native species through allelopathy (Belz et al., 2007, Patel, 2011). Studies have also 

demonstrated its harmful effects on human health, agriculture, and environment (Dhileepan, 2007, 

McConnachie et al., 2011). The weed has a major impact on grazing land and expands 

exponentially to new areas (Bhowmik and Sarkar, 2005, Khan et al., 2012). 

Parthenium is an erect and annual herbaceous invasive plant species thought to have originated 

from South and Central America and Mexico. The weed invasion has been reported in India, 

Eastern and Southern Africa, the Caribbean, Australia and North America (Dhileepan and Wilmot 

2009, Patel, 2011). It is an annual herb growing up to 1.5m high, with longitudinal groove, hairy 

stem, and deep tap root (Bhowmik and Sarkar, 2005). In climatic conditions characterised by 

rainfall greater than 500mm per annum and temperature ranging from 10 to 250C, the weed grows 

rapidly and produces flowers at any time of the year. Plant growth and seed production are reduced 

by low temperature, causing a reduction in net assimilation rate and leaf area index (Navie et al., 

1996a, Pandey et al., 2003). Flowering starts between 6 to 8 weeks after germination and soil 



2 
 

moisture is hypothesized as an important factor of flowering (Navie et al., 1996a). Each plant 

produces about 20 000 seeds which can survive for years (Khan et al., 2012, Dhileepan and Wilmot 

2009).  

Parthenium invades roadsides, water courses, cultivated fields and overgrazed lands. Seeds can 

travel long distances due to their light weight. Seeds can also be easily spread by humans, 

livestock, winds, flood, farm machinery or flowing water (Navie et al., 1996a, McConnachie et 

al., 2011, Javaid et al., 2009). The seeds persist in the soil and are viable for long periods (Navie 

et al., 1996a). Parthenium weed is not easy to eradicate due to its small size, persistence of the 

seed in soil, germination rate, and adaptability in dry conditions. 

Literature has demonstrated the weed’s significant impact on human health, agriculture, 

environment, and biodiversity (Patel, 2011, Strathie et al., 2011, Bromilow, 2001). Dhileepan 

(2007), for instance, showed that Australian native grazing land has declined due to an increase in 

Parthenium. The weed releases toxic allelochemicals which inhibit the growth of surrounding 

vegetation (McConnachie et al., 2011). It’s fine hairs and pollens have been found to cause severe 

allergic reactions in people, and causes dermatitis, hay fever and asthma among other diseases 

(Bromilow, 2001). Reports of domestic animals, as well as wildlife, feeding on Parthenium with 

serious health hazards in the animals have been noted. For instance, Patel (2011) reported 

degenerative liver and kidney changes in wildlife, while Navie et al. (1996a) and Strathie et al. 

(2011) found a reduction in the quality of milk and death in livestock after consuming a significant 

amount of the weed. Parthenium is known to cause severe economic losses to agricultural 

production by invading cropping land and grazing lands. Khosla and Sobti (1981) reported a 40% 

decline in agricultural crops due to Parthenium invasion in India. While Adkins et al. (2010) 

reported a reduction in Australia’s grazing land. 

In Africa, Parthenium has widely invaded Swaziland, Mozambique, Zimbabwe, Tanzania, Kenya 

and Ethiopia. Predictive modelling has shown that most areas of sub-Saharan Africa are suitable 

for the growth of Parthenium (McConnachie et al., 2011, Kija et al., 2013). In South Africa, 

Parthenium weed, also known as Maria-Maria and more recently ‘famine’ weed or 

“Umbulalazwe”, has invaded KwaZulu-Natal, Mpumalanga, North West and Limpopo provinces, 

and continues to spread rapidly (Belz et al., 2007, Strathie et al., 2011). According to Nanni et al. 

(2016a), the weed expanded from 3 cells (invasion sites) in 1980 to 76 in 2014 in the country, 



3 
 

thereby making it a weed of national significance. Due to its impact on biodiversity, human health 

and agriculture, a national strategy was initiated by the South African government for its 

eradication and control. Due to the aforementioned adverse effects, up-to-date information on the 

weed’s distribution and areas of susceptible invasion is necessary for designing appropriate 

mitigation and landscape rehabilitation measures. 

Identification and modelling of areas vulnerable to Parthenium invasion is critical for proactive 

control and management of its spread. Generally, monitoring and modelling of the potential range 

of Parthenium focuses on the physical and climatic variables that influence its invasion. Hence, 

these variables could be used model the spatial distribution of invasion under the present 

environmental conditions and vulnerable areas. Physical and bioclimatic variables (climate, 

topography, elevation, temperature etc) are quantitative or descriptive measures of different 

environmental features. These variables can be collected during field sampling (assisted by remote 

sensing) to produce maps showing their distribution in an area (Keshavarzi et al., 2013). Such 

maps are important inputs to spatial planning, decision making and land evaluation. According to 

Franklin (1995), the spatial distribution of species have been modelled using these variables. 

Hijmans and Graham (2006) and Václavík and Meentemeyer (2012), for instance used climatic 

and physical variables to predict vegetation patterns globally, while Apan et al. (2008) and Evans 

et al. (2007) modelled suitable areas for Blackberry (Rubus fruticosus agg.) distribution in 

Australia. The studies showed that Blackberry was affected by factors like mean rainfall, distance 

from New South Wales border and land use (disturbed areas).  In a similar study in the Cape 

Peninsula,  South Africa, Higgins et al. (1999) developed a model to predict the landscape-scale 

distribution of invasive plant species plants such as Acacia cylops, P.pinaster, A.longifolia, using 

physical and climatic variables. Hence, it can be concluded that the distribution of invasive plant 

species are influenced by these variables.  

Traditional methods e.g. field surveys and map interpretation have been used to acquire spatial 

data of invasive plant species (McConnachie, 2015). Mapping of  plant species for a large area can 

be laborious, time-consuming, date lagged, and costly, especially in difficult terrain using 

traditional methods (Taylor et al., 2011). To mitigate these challenges, remote sensing and GIS 

have been proposed as quicker, timely and economical approaches to determining the distribution 

of vegetation at a landscape scale (Langley et al., 2001, Odindi et al., 2016, Galidaki et al., 2017). 
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Remotely sensed image spectral properties are increasingly becoming valuable in the  

advancement of empirical techniques such as vegetation indices for estimating forest canopy gaps 

and perimeter,  leaf area index and biomass (Merzlyak et al., 1999, Baret and Guyot, 1991). Hence, 

knowledge of the spectral signatures of invasive plant species allows informed assessment of 

infested sites before mapping. A growing body of literature has demonstrated the success of 

hyperspectral remotely sensed imagery in the discriminating and mapping the spatial distribution 

of invasive plant species (Robinson et al., 2016, Niphadkar and Nagendra, 2016, Skowronek et al., 

2017, Gairola et al., 2016). However, hyperspectral sensors are expensive, spatially restricted and 

require longer processing time. Hence, the shortfalls of hyperspectral sensors have paved way for 

readily and freely available broadband multispectral sensors with a large swath width, such as 

Sentinel 2 MSI and the Landsat series (Mathieu et al., 2013).  

Sentinel 2 MSI datasets for instance allows for timely and regional mapping of vegetation 

(Delegido et al., 2011, Clevers and Gitelson, 2013, Majasalmi and Rautiainen, 2016). The sensor 

is characterised by additional red edge bands that have high potential to discriminate subtle 

variation in vegetation (Frampton et al., 2013, Delegido et al., 2011, Richter et al., 2012, Atzberger 

and Richter, 2012, Gil et al., 2013).  Successful adoption of Sentinel 2 in several studies has also 

been achieved using vegetation indices. However, a combination of derived vegetation indices and 

spectral bands in modelling Parthenium remains largely unexplored. 

Studies have previously integrated environmental variables with remotely sensed data to detect 

and map invasive plant species (Joshi et al., 2005, Malahlela et al., 2015). For instance, Joshi et al. 

(2005) integrated environmental data with Landsat ETM + imagery to map the likely occurrence 

of C. odorata in south central Nepal forest while Malahlela et al. (2015) integrated World View- 

2 vegetation indices and ancillary environmental data to map Chromolaena odorata in South 

Africa. In a similar study, Bradley and Mustard (2006) mapped Cheat grass (Bromus tectorum) 

using Landsat MSS, TM, and ETM remotely sensed data and landscape variables in north central 

Great Basin . 

Existing studies have demonstrated that GIS techniques, integrated with powerful statistical 

algorithms enables the spatial modelling of invasive plant species and helps in determining 

environmental variables that determine occurrence of species (Franklin, 1995, Yang et al., 2006). 

Spatial Distribution Models (SDMs) for instance have been used to describe the relationship 
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between observed species distribution, their environment and the ecological change in the 

environment (topographic, vegetation and bioclimate). SDMs also relate a species occurrence to 

environmental conditions for prediction of the species in un-sampled locations. Numerous 

statistical methods have been used to develop SDMs for modelling the spatial distribution of 

invasive plants using environmental variables, these include; logistic regression (Gallardo, 2003), 

fuzzy envelope models (Guisan and Zimmermann, 2000), maximum entropy (Kija et al., 2013), 

random forest (Adam et al., 2013),  and support vector machine (Guo et al., 2005). In most SDMs, 

presence and absence data are required in modelling species, but where presence only data is 

available (i.e. the species occurrence points are known but non-occurrence points are not known), 

pseudo -absences are generated as a substitute for the absence data. Absences could be due to 

unsuitable location or the site has not yet been invaded, two possibilities that are often 

indistinguishable for invasive plant species (Jarnevich and Reynolds, 2011).  

The Maximum Entropy model (MaxEnt) developed by Phillips et al. (2006) is a presence-only  

machine learning algorithm with simple arithmetic formulation. MaxEnt estimates the maximum 

entropy of a target probability distribution based on the input environmental data in predicting 

areas of likely invasion of the species. The approach has become popular due to its robust 

predictive performance with a range of sample sizes and ability to reduce overfitting using its 

regularization setting (Ficetola et al., 2007, Merow et al., 2013, Phillips and Dudík, 2008). Also, 

the Maxent algorithm has the ability to fit complex responses to environmental variables 

(continuous and categorical) (Barry and Elith, 2006, Phillips et al., 2006). Several works (Padalia 

et al., 2014, Truong et al., 2017, Suárez-Mota et al., 2016) have used MaxEnt in modelling invasive 

plant species. Wakie et al. (2014) for instance, used MaxEnt to map the current and potential 

distribution of Prosopis using Moderate Resolution Imaging Spectro-radiometer (MODIS) 

vegetation indices and top-climatic predictors in Ethiopia, while Hoffman et al. (2008) tested the 

capabilities of the MaxEnt algorithm in predicting the likely occurrence and distribution of five 

invasive plant species along the North Platte River, Nebraska. Hence, due to adverse socio-

economic threat posed by Parthenium invasion in KwaZulu-Natal province, and indeed the rest of 

South Africa, this study sought to test the performance of MaxEnt to modelling habitat susceptible 

to Parthenium invasion using bio-climatic, topographic variables and remotely sensed data 

(Sentinel 2 MSI).  
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Previously, the potential distribution of Parthenium has been modelled using bioclimatic variables 

(temperature, rainfall) to predict areas highly susceptible invasion (Kija et al., 2013, McConnachie 

et al., 2011). However, the relationship between vegetation phenology, physical and climatic 

variables on the spatial distribution of Parthenium remains unexplored. Hence, the need for this 

study. Different remotely sensed measure of vegetation such as derived vegetation indices e.g. 

Normalized difference vegetation index (NDVI), Soil adjusted vegetation indices (SAVI), 

Enhanced Vegetation Index (EVI) have been explored in evaluating differences in habitat quality 

at a finer scale. In this study, Sentinel 2 MSI spectral bands and vegetation indices were adopted 

to model areas susceptible to Parthenium invasion in KwaZulu-Natal using selected physical and 

bioclimatic variables. To the best of our knowledge, no study has been carried in modelling the 

likely invasion of Parthenium using the above.  

1.2 Aim 

 

The main aim of this study was to test the performance of Maxent algorithm in modelling habitats 

susceptible to Parthenium invasion using selected environmental, physical and remotely sensed 

data in KwaZulu-Natal, South Africa.  

1.3 Objectives 

 

The objectives of this study were; 

1) To determine the performance of Maxent in modelling areas susceptible to Parthenium 

invasion using physical and bio-climatic variables. 

2) To determine the value of freely available Sentinel 2 multispectral instrument (MSI) datasets 

in concert with environmental variables in modelling habitats susceptible to Parthenium. 

1.4 Research questions 

 

1. Which physical and climatic variables best describe the habitats for Parthenium?  

2. How do the selected variables influence future invasion of Parthenium? 
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3. Does the integration of remotely sensed data (Sentinel 2) improve predictions of invasion over 

models generated from environmental variables? 

1.5 Thesis Structure 

 

CHAPTER ONE:  GENERAL INTRODUCTION 

The chapter presents a general background to Parthenium, its spread and effects. The chapter also 

presents the benefits of using physical and environmental variables, remotely sensed data and 

algorithms in predicting areas susceptible to invasive plant species. Furthermore, description of 

the study area and research objectives are summarised. 

CHAPTER TWO: DETERMINING THE VULNERABILITY OF SOUTH AFRICAN 

LANDSCAPES TO PARTHENIUM HYSTEROPHORUS INVASION USING BIO-CLIMATIC 

AND PHYSICAL VARIABLES. 

This chapter focuses on physical and bioclimatic variables in modelling the areas susceptible to 

Parthenium invasion. The chapter focuses on predicting landscapes vulnerable to Parthenium using 

bio-climatic and physical variables. A robust machine learning algorithm, Maxent was used to 

predict the relationship between Parthenium occurrence points, physical and climatic variables. 

The model performance was evaluated using the area under curve (AUC). 

CHAPTER 3:  MODELLING PARTHENIUM HYSTEROPHORUS INVASION IN KWAZULU-

NATAL USING REMOTELY SENSED DATA AND ENVIRONMENTAL VARIABLES.  

This chapter explores the utility of integrating the freely available Sentinel 2 MSI and 

environmental variables in modelling habitats susceptible to Parthenium invasion.  In evaluating 

the strength of Sentinel 2 MSI, this study compared the results obtained using (i) spectral bands; 

(ii) derived vegetation indices as well as (iii) the combination of spectral bands and vegetation 

indices based on the Maxent algorithm. The choice of Sentinel 2 MSI was based on the additional 

unique spectral bands and finer spatial resolution. 

CHAPTER 4:   SYNTHESIS AND CONCLUSION    

The chapter presents a synthesis of the major findings of study, the significance of the results, the 

limitations and further recommendations. 
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CHAPTER TWO 

DETERMINING THE VULNERABILITY OF SOUTH AFRICAN LANDSCAPES TO 

PARTHENIUM HYSTEROPHORUS INVASION USING BIO-CLIMATIC AND 

PHYSICAL VARIABLES 

 

This chapter is based on: 

 

Arogoundade, M.A, Odindi, J., O. Mutanga, & Sibanda, M.  Determining the vulnerability of 

South African landscapes to Parthenium hysterophorus invasion using bio-climatic and physical 

variables. South African Journal of Science, In Review.   

Abstract 

Parthenium (Parthenium hysterophorus) is one of the most problematic and devastating weed 

globally. It is a noxious alien plant species which, among others, degrades natural ecosystems, 

compromises agricultural and rangeland productivity and affects human and animal health. Hence, 

knowledge on its locality and area of invasion is important to develop early control strategies and 

site-specific mitigation measures. This study sought to determine areas susceptible to Parthenium 

invasion using a range of physical and environmental variables in KwaZulu-Natal province. 

Maximum entropy, a robust machine learning algorithm was used to predict the relationship 

between Parthenium occurrences and topographic and climatic characteristics. The area under the 

curve (AUC) was used to assess model performance when different climatic and topographic 

variables were used. Based on the optimal model, landscapes that were at a low elevation 

(<1500m), closer to roads and characterized by high precipitation were the most susceptible to 

Parthenium invasion. The study demonstrates the value of Maxent in providing robust and precise 

spatial framework to aid policy makers and land managers in controlling and long-term monitoring 

of areas susceptible to Parthenium invasion, and indeed other invasive species.  

Key words: invasive species, Parthenium, MaxEnt, spatial distribution models, modelling, 

climatic variables, physical variables. 
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2.1 Introduction 

 

Globally, invasive species are key risks to biodiversity, ecosystem functioning and socio- economy 

(Barik et al., 2011, Monty et al., 2013). One of such species is Parthenium hysterophorus 

(Parthenium), an annual herbaceous plant native to tropical America but invasive in over 20 

countries in five continents (Bhowmik and Sarkar, 2005, Mahmoud et al., 2015). In South Africa, 

the number of Parthenium invaded sites has steadily increased. Nanni et al. (2016a) for instance, 

notes that the weed was found in only 3 cells (invasion sites) in 1980, 15 cells in 2000, 62 cells in 

2007 and 76 cells in 2014. Its attributes such as rapid growth and distributive ability, allelopathy, 

high phenotypic plasticity and the ability to adapt to a wide range of environmental conditions aid 

its aggressive invasive ability (Ayele, 2007, Belz et al., 2007, Navie et al., 1996a). The weed has 

been reported to reduce rangeland, meat and milk quality and quantity (Bromilow, 2001, 

Dhileepan, 2007, Evans, 1997, Patel, 2011, Strathie et al., 2011). Severe allergic reactions such as 

dermatitis, hay fever and asthma have also been reported in people and animals in close contact 

with Parthenium (Patel, 2011). Hence, identification and modelling of potentially susceptible 

habitats to Parthenium weed is critical for proactive control and cost-effective mitigation of its 

spread.  

In South Africa, Parthenium has invaded KwaZulu-Natal, Limpopo, North West and  Mpumalanga 

provinces and continues to spread rapidly (Belz et al., 2007, Strathie et al., 2011). Its negative 

impact on animal and human health, agricultural production and biodiversity (Wise et al., 2007), 

as well as aggressive growth, have made it a weed of national concern. Hence, up-to date 

information on its distribution and vulnerable areas to invasion are critical in designing appropriate 

mitigation measures. In 2003, a national strategy was implemented by the South African 

government to control the weed (Nanni et al., 2016a, Strathie et al., 2011). This programme 

involved site specific biological and chemical control, containment plans, usage of competitive 

plant species and cultural methods (Goodall et al., 2010, Strathie et al., 2011).  

In addition to the above-mentioned efforts, monitoring and modelling of vulnerable landscapes 

and habitats remains critical for designing optimal mitigation approaches. Based on the ecological 

niche theory, environmental and physical conditions form an important ecological niche 

appropriate for the survival and reproduction of species (Pearson and Dawson, 2003). Several 
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authors e.g. Cadenasso and Pickett (2001), Soberon and Peterson (2005), Pauchard and Alaback 

(2004) and Dimitrakopoulos et al. (2017) have demonstated that physical variables (e.g disturbed 

sites, corridors for disperal and landscape structure) and climate (temperature and precipitation) 

have significant impact in the establishment and dispersal of invasive plant species (Blois et al., 

2013). These variables have become important in predicting current and potential areas of plant 

invasion. Climate change for instance, alters temperature and precipitation pattern, thereby 

affecting biomass, land use practices and management decisions (Bradley et al., 2012, Hellmann 

et al., 2008). According to Pino et al. (2005), several invasive plant species grow in different 

settings (climate and habitats) , but only under specific ecological conditions do they become 

agrresive invaders, thus the need to identify key predictor varaiables. Temperature and rainfall 

variability influence establishment and growth of invasive plant species. Apan et al. (2008) and 

Evans et al. (2007) for instance modelled suitable habitats for Blackberry (Rubus fruticosus agg.) 

distribution in Australia using climatic and physical variables. These studies showed that 

Blackberry was affected by factors like mean rainfall, distance from New South Wales border and 

land use (disturbed areas). A similar study Higgins et al. (1999) in the Cape Peninsula, South 

Africa, developed a model to predict the landscape-scale distribution of invasive plant species such 

as Acacia cylops, P. pinaster, A. longifolia using physical and climatic variables. In this regard, 

spatial distribution models (SDMs) have increasingly become popular in describing the 

relationship between existing physical and  environmental conditions and the occurrence of species 

(Adhikari et al., 2015, Apan et al., 2008, Barik et al., 2011, Rameshprabu and Swamy, 2015, 

Williams et al., 2009). 

A number of spatial distribution models make use of presence and absence data in modelling 

species  (Boyce et al., 2003, Hirzel and Le Lay, 2008).  However, due to significant efforts required 

to collect absence data, there has been a growing awareness in modelling species distribution using 

presence only data (Phillips et al., 2009, Elith et al., 2011, Fourcade et al., 2014). The Maxent 

entropy model, a correlative approach has been identified as one of the best SDM for presence-

only data analysis (Ficetola et al., 2007, Hernandez et al., 2006, Elith et al., 2011, Yang et al., 

2013). The approach has become particularly popular due to its robust predictive performance with 

a range of sample sizes and ability to reduce overfitting using its regularization setting (Elith et al., 

2011, Fourcade et al., 2014, Merow et al., 2013, Ortega-Huerta and Peterson, 2008, Phillips et al., 
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2006). In this study, we seek to predict landscape vulnerability to Parthenium using bio-climatic 

and physical variables within the Maxent entropy modelling environment. 

2.2 Materials and methods 

2.2.1 Study area 

 

This study was conducted in KwaZulu- Natal province, South Africa. The province occupies 

approximately 92,285 km2 and lies between 26°50′ and 31°10′ South and 28°50′ and 32°50′ East. 

Altitudes ranges from sea level to 3400m, with topography ranging from coastal plains to mountain 

slopes of the Drakensberg mountain range. The study area is characterised by rainfall and 

temperature ranging from 500 mm to 2000mm and 11 oC to 28 oC, respectively. The entire 

province lies in the summer rainfall belt (Schulze and McGee, 1978). The province is mainly 

covered by grasslands, savannah woodlands, bush thickets and forest. Geological formations such 

as Arenite, Basalt, Tillite, Mudstone, Granite, Siltstone, Sand, and Shale underlie the sampling 

areas. The study area comprises of different land use types i.e. agriculture (commercial and 

subsistence, crop and animal farming), low and high residential settlements and ecotourism. 

Parthenium was first noticed in the KwaZulu-Natal province in 1880 and later in 1984 after the 

flood caused by Cyclone Demoina (McConnachie et al., 2011). Currently, Parthenium infestation 

is prevalent in among others along the physical infrastructure networks like roads and railways, 

croplands, plantations, grazing land, homesteads and fallow and abandoned lands. Existing 

literature (McConnachie et al., 2011, Nanni et al., 2016b) and field surveys have shown that 

KwaZulu-Natal is heavily invaded by Parthenium.  
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Fig 2.1: Map of the study area and Parthenium invaded areas. 

2.2.2   Field data collection 

 

Parthenium occurrence data were collected in various locations in KwaZulu-Natal province 

including, Mtubatuba, Durban, Vryheid, Richards Bay and Pietermaritzburg during the period 

between January and March 2017 (Figure 2.1). A total of 274 sites were sampled. Purposive 

sampling approach was used to identify Parthenium patches greater than 10m2, as invasive plants 

are not uniformly distributed in their habitat. XY co-ordinate records of weed locations were 

determined using a handheld Trimble GeoXH 6000 global positioning system with a sub-meter 
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accuracy. Also, the percentage cover of Parthenium patches within the quadrat were recorded. 

Specifically, only Parthenium patches greater than 10m2 were considered in this study as they were 

regarded as hot spots. Data from the field survey were captured in Microsoft excel spreadsheet and 

used to create point maps in a GIS environment. The dataset (n = 274) was then randomly split 

into 70% training dataset and 30% test dataset. The GPS points were used to extract weed patches 

and areas around the patches. 

2.2.3 Physical and environmental variables  

 

Environmental variables (Table 2.1) used to determine landscapes susceptible invasion in this 

study area were chosen based on their biological relevance to Parthenium. The bioclimatic 

variables were derived from the 30 arc-seconds spatial resolution of the current WorldClim 

climatic conditions dataset. These climatic datasets are an average of long-term measurements (30 

years of data) and contain grids of rainfall, temperature and derived bioclimatic summary 

variables. The bioclimatic data were resampled to the spatial resolution of the DEM (20m). The 

20m spatial resolution DEM was created from the 20m contours extracted from the South African 

1: 50,000 topographic maps. Slope (percentage), aspect (Northness and Eastness) and topographic 

wetness index (wetness index) were then derived from the DEM. Distances from rivers (metres), 

roads (metres) and households were derived from the river, road shapefile and Eskom database 

(2016) of KwaZulu- Natal. The distances in meters were calculated using Euclidean distance in 

ArcGis 10.2 and resampled to DEM’s pixel size. 
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Table 2.1: Variables used in modelling Parthenium 

Variables Abbreviation Description Unit Year 

Topographic wetness index          TWI                 steady state wetness index                         n/a  

Elevation  elevation         ground height                                            m  

Slope slope   steepness of the ground                            % rise  

Aspect    aspect              slope direction                                          degrees  

Distance from households           dis_to_hse       Eskom database for households                       m 2016 

Distance from roads                     dis_to_roads     distance from major or gavel roads         m  

Distance from water body            dis_to_river     distance from water bodies                      m  

Bio1   bio_1 annual mean temperature                       °C 1960-1990 

Bio5 bio_5 maximum temperature of warmest month °C 1960-1990 

Bio 6                                               bio_6 minimum temperature of coldest month   °C 1960-1990 

Bio7 bio_7 annual temperature range                          °C 1960-1990 

Bio9                                                bio_9 mean temperature of driest quarter           °C 1960-1990 

Bio10                                              bio_10 mean temperature of warmest quarter   °C 1960-1990 

Bio11                                               bio_11 mean temperature of coldest quarter     °C 1960-1990 

Bio 12                                             bio_12 annual precipitation                             °C 1960-1990 

Bio13  bio_13 precipitation of wettest quarter           mm 1960-1990 

Bio14   bio_14 precipitation of driest quarter              mm 1960-1990 

Bio 16                                              bio_16 precipitation of wettest quarter          mm 1960-1990 

Bio17   bio_17 precipitation of driest quarter            mm 1960-1990 

Bio 18                                              bio-18 precipitation of warmest quarter        mm 1960-1990 

Bio 19                                            bio_19 precipitation of coldest quarter        mm 1960-1990 

 

 

2.2.4 Model description 

 

2.2.4.1 Maximum entropy algorithm (MaxEnt) 

 

Parthenium was modelled using the freely available MaxEnt version 3.3.3 software 

(http://www.cs.princeton.edu/~schapire/maxent) (Phillips et al., 2004). The software is a machine 

learning algorithm that models the likelihood of species presence based on environmental 

constraints and estimates the probability distribution with the maximum entropy, which is the 

distribution that is most spread out. The selection of environmental predictors is a guideline for 

habitat susceptibility as they clarify aspects that would likely influence susceptible sites (Phillips 

et al., 2006, Araujo and Guisan, 2006). Typically, MaxEnt produces an estimate of a probability 

of occurrence that ranges from 0 to 1, with 1 being the highest and 0 the least likely probability. It 

is a concise mathematical definition, hence amenable to analyse and has efficient deterministic 

algorithms that are certain to give optimal probability distribution. The model is known to performs 

http://www.cs.princeton.edu/~schapire/maxent
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efficiently even with small sample sizes (Kija et al., 2013, Hernandez et al., 2006). When absence 

data exist for the species, a conditional model can be used to enable presence/absence modelling 

(Phillips et al., 2006, Franklin, 2010, Elith et al., 2011). Maxent uses background /pseudo-absence 

and presence points that evaluate the environmental space for model testing. Environmental 

variables (continuous and categorical) and species presence data are used to run the model and the 

influence of each variable can be determined from the jacknife tool in Maxent (Phillips et al., 

2006).  

2.2.4.2 Predictor variable selection 

 

The geospatial analyst tool in ArcGIS 10.2 was used to extract points, which were assigned to each 

variable. Pearson’s correlation coefficient was used to minimize highly redundant and correlated 

variables after data was tested for normality. If two variables had a high correlation (r > 0.8), then 

only one of the pair was selected for further analysis, based on relative importance of each variable 

and knowledge of Parthenium in the study area (Table 2.2). The collinearity threshold was set at  

r >.0.8 as recommended by Graham (2003). Removal of highly correlated variables was executed 

using the Pearson’s correlation in IBM SPSS Statistics (Morgan et al., 2012). This process reduced 

the variables from 21 to 9.  The 9 variables were then used for the analysis.
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Table 2.2: Pearson’s correlation coefficient for all the environmental variables. 
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dis_to_road 1 -0.023 0.025 0.033 .161** .269** -0.020 -0.029 -0.004 -0.054 0.019 -0.041 0.018 .150* 0.023 0.035 .269** 0.038 -0.095 0.058 -0.105 

dis_to_hse   1 .137* -.244** -.206** .130* .614** .601** .577** .494** .625** .616** .626** -.390** .453** -.596** .130* .520** -.223** .148* -0.079 

aspect     1 0.016 0.041 -0.032 0.065 -0.001 .140* -0.045 .145* 0.040 .145* -0.044 .155** -.124* -0.032 .162** -.150* .121* -0.067 

bio1       1 .852** .607** -.466** -.489** -.190** -.671** -.197** -.559** -.199** .827** .150* .450** .607** -0.065 -.725** -.236** .202** 

bio10         1 .740** -.343** -.402** -0.040 -.559** -0.068 -.488** -0.070 .857** .328** .403** .740** -.170** -.714** -.134* .133* 

bio11           1 0.099 -0.040 .345** -.182** .344** -0.096 .344** .494** .622** -0.064 1.000** 0.072 -.785** -0.051 0.032 

bio12             1 .891** .926** .911** .933** .946** .933** -.680** .690** -.922** 0.099 .406** -.167** .194** -.225** 

bio13               1 .772** .907** .778** .916** .779** -.632** .498** -.799** -0.040 .358** -0.035 0.106 -.145* 

bio14                 1 .709** .994** .791** .994** -.455** .875** -.886** .345** .411** -.443** .168** -.194** 

bio16                   1 .709** .950** .710** -.756** .385** -.773** -.182** .252** .175** .168** -.193** 

bio17                     1 .805** 1.000** -.475** .864** -.901** .344** .459** -.451** .177** -.202** 

bio18                       1 .805** -.730** .495** -.839** -0.096 .441** -0.001 .162** -.205** 

bio19                         1 -.477** .864** -.902** .344** .460** -.449** .177** -.201** 

bio5                           1 -.118* .754** .494** -.278** -.429** -.187** .261** 

bio6                             1 -.681** .622** .322** -.694** .135* -.133* 

bio7                               1 -0.064 -.450** .182** -.177** .228** 

bio9                                 1 0.072 -.785** -0.051 0.032 

dis_to_river                                   1 -.256** 0.113 -0.112 

elevation                                     1 0.082 -0.042 

slope                                       1 -.212** 

twi                                         1 
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2.2.4.3 Model setting 

 

The default MaxEnt settings was used to run the model. To validate the model, 30% of the dataset 

was withheld as recommended by Phillips et al. (2004). Visual inspection on the response curve 

and difference between test and train area under curve (AUC) values of the model was assessed to 

determine over-overfitting. Since, there were no overfitting detected, the default regularization 

was adopted. For the probabilistic model output, the 10 percentile training presence logistics 

threshold rule in MaxEnt was used to generate Parthenium binary map of habitat suitability and 

unsuitability (Escalante et al., 2013, Pearson et al., 2007). This threshold makes certain that 90% 

of the occurrence data has been predicted as present and omission error does not surpass 10%. 

2.2.4.4 Evaluation and validation 

 

Using the random test percentage settings in MaxEnt, 70% of the dataset was used to train and 

30% to test the performance of the model. Evaluation and validation of the model was done using 

the AUC of the receiver operating curve (ROC) to classify the landscape as suitable or unsuitable 

(Bradley, 1997, Phillips and Dudík, 2008). The area under the ROC curve shows the likelihood 

that presence (sensitivity) is correctly ordered by the classifier as compared to the absence 

(specificity) of Parthenium. Sensitivity is the probability of true positive predictions in the actual 

positive observations. The ROC is generated by a two-dimensional space by plotting the sensitivity 

as Y and the specificity as X. Sensitivity and specificity were calculated for each of the likely 

significant thresholds for the entire range of predicted probabilities, 0 – 1  (Pearce and Ferrier, 

2000).  Models with high accuracy have AUC value close to 1 whereas a value equal or less than 

0.5 shows models that perform no better than random (Hanley and McNeil, 1982).  

2.3. Results 

2.3.1 Predictor variables contribution 

 

Table 2.3 shows the predictor variables and their percentage predictive contribution in the model. 

The higher the percentage contribution, the higher the influence in predicting the species 

occurrence. As shown in the table, distance to roads (33.2%) had the highest predictive 

contribution, hence the most influential variable in modelling areas prone to Parthenium invasion. 



18 
 

Other influential variables were elevation (19.9%) and bio13 (16.2%). Topographic wetness index 

(TWI) did not have any contribution to the model, whether run on its own or removed. Slope 

decreased in permutation value, hence a negligible role in predicting habitat susceptibility to 

Parthenium.  

Table 2.3: Showing analysis of variable contribution.  

Variable Abbreviation Percent 

contribution 

Permutation 

importance 

Distance to road dis_to_road2 33.2 21.3 

Elevation elevation 19.9 26.8 

Precipitation of the wettest month Bio 13 16.2 10.8 

Distance to river Dis_to river 9.8 6.3 

Slope slope 7.7 23.1 

Distance to houses Dis_to_hse 7.3 4 

Mean temperature of driest quarter Bio 9 3.9 6.4 

Aspect aspect 1.5 1 

Topographic wetness index twi 0.5 0.4 

 

The omission/commission analysis results (Figure 2.2a) showed that omission on test samples 

(turquoise blue line) matched the predicted omission rate (black line) from the MaxEnt 

distribution. This showed that habitat that are suitable exists above the threshold. A cumulative 

threshold value is set by the modeller in Maxent. The omission on training samples (blue line) lies 

below the predicted omission (black line). Figure 2.2b shows the model evaluation for habitat 

susceptible to Parthenium invasion using the ROC of the randomly selected training and test data. 

The area under curve (AUC) results indicates that the model performed better than a random model 

(P <0.005).  
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Fig 2.2: MaxEnt testing and training omission analysis and predicted area for Parthenium (a) and 

receiver operating curve (AUC) for training and test data (b). 

Figure 2.3 illustrates the contribution of a variable to the model based on the jacknife of training 

and the percent contribution table (Table 2.3). The red line represents all the predictors run 

together, the blue line indicates the amount of model gain with only one variable, and the turquoise 

line an indication of model gain when a specific variable is excluded. Distance from road had the 

highest gain when used alone, implying its highest value information compared to other variables. 

When distance from roads were omitted from the model, it had the highest decrease in gain, 

showing its significance to the model. Topographic wetness index (TWI) had the least contribution 

to the model, hence had no significant role in predicting habitat susceptible to Parthenium. 
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Fig 2.3: The jacknife of variable importance in modelling the spatial distribution of Parthenium 

 2.3.2 Visualisation of distribution 

 

Figure 2.4 shows the likely occurrence of Parthenium based on the field observation points, 

environmental and physical variables. An overlay analysis of the resultant map and Parthenium 

distribution shows that probability of invasion is higher in the interior landscapes than the low-

lying coastline, and the north-eastern and south-western parts of the province (Figure 2.4). Also, 

landscapes of high susceptibility were characterised by low lying to intermediate elevation as well 

as high precipitation prevalence, which facilitates plant growth compared to higher elevation areas 

with low susceptibility. Furthermore, the model also predicted potential invasion in the north- 

western and midlands, where the presence of Parthenium is presently low. However, climatic 

variable (precipitation of wettest month) and physical variable (low to mid elevation and distance 

to roads) indicated a high probability of future invasions. Specifically, results showed that these 

areas have higher probability to Parthenium invasion during precipitation of the wettest months 

(summer precipitation).  
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Figure 2.4: Habitat susceptibility to Parthenium invasion.  

2.4.      Discussion 

 

Results in this study indicate that habitat susceptibility to Parthenium can be reliably modelled 

using selected climatic and physical variables. In this study, habitat susceptibility to Parthenium 

was reliably determined as shown by the high AUC value when using 30% test data set. Variables 

with the highest contributions were; distance from roads, precipitation of the wettest quarter 

(bio13) and elevation. Since MaxEnt does not explain the relationship between these selected 

variables and the presence of the weed, the jacknife result test was used to estimate the input of 

each variable to the likelihood of invasion. 

As aforementioned, our model identified distance to roads, with 33.2% model contribution, as the 

strongest determinant of invasion, indicating that areas close to roads were most vulnerable to 

invasion. This finding is consistent with Ayele (2007), Navie et al. (1996a) and McConnachie et 

al. (2011) who noted that the probability of Parthenium invasion increases with proximity to the 
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roads. This relationship can be attributed to the fact that vegetation close to the roads are more 

disturbed due to increased movements compared to those further away from the road. Furthermore, 

the highly connected nature of road networks and road construction provides corridors for the 

expansion of Parthenium from highly infested areas to vulnerable habitats.  Auld et al. (1982) and 

Navie et al. (2004) also reported that the dispersal of the Parthenium was caused by construction 

vehicles, animals and human movements along tarred and major roads. Several studies e.g. 

Christen and Matlack (2009), Trombulak and Frissell (2000), Parendes and Jones (2000), and 

Gelbard and Belnap (2003) have demonstrated that disturbed habitats are more vulnerable to plant 

invasion due to lack of interspecies competition, regular disturbance, sunlight and soil nutrients 

availability. Trombulak and Frissell (2000), also noted that invaders may gain a competitive 

advantage as native species are continually supressed by pollutants and grazing along roadsides. 

According to Myers et al. (2004), vehicles along roads, surface runoff and increased exposure 

enables the movement of wind, animals and water that transport seeds of non-native plants along 

road corridors, hence a higher probability of invasion.    

The results in this study also illustrated the influence of altitude on Parthenium distribution. Low 

probabilities of invasion were predicted for areas with high altitude (>1500m) while high 

probabilities were predicted for low lying areas (<1500m). In Figure 4, north-eastern and midlands 

of KwaZulu-Natal, with low lying areas have high probabilities while the south-eastern areas e.g 

the Drakensberg mountain range, with high altitude have low probabilities of Parthenium invasion. 

These findings concur with McConnachie et al. (2011) who noted that Parthenium invasion is more 

prevalent at lower to intermediate altitudes (<1500m) in South Africa. The distribution of 

Parthenium in our study can be attributed to the fact that low lying areas favour plant growth due 

to optimal soil development conditions that may include erosion of nutrient rich topsoil from 

higher grounds that are deposited in low lying areas. As noted by Hijmans and Graham (2006), 

most low lying areas have deeper soil depth, higher moisture content and soil nutrients compared 

to higher grounds. Hijmans and Graham (2006) further notes that higher elevations are 

characterized by extreme environmental conditions which hinder growth of plants due to absence 

of symbiotic relationships with microorganisms that nourish the soil. In the Drakensberg Alpine 

Centre, South Africa, Carbutt et al. (2013), noted that at high altitude, there were limited beneficial 

soil microorganisms resulting in a decline or unavailability of nitrogen content, which is a crucial 

element for plant growth. 
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The distribution of Parthenium can also be attributed to the influence of altitude on microclimate, 

as low-lying areas have optimal temperature for growth, compared to high-lying areas. The 

relationship between altitude and temperature in this study is consistent with Kija et al. (2013) and 

Tamado et al. (2002) who tested the viability of Parthenium seeds in Tanzania and eastern 

Ethiopia. The study concluded that temperatures ranging from 10 °C to 25 °C, that characterise 

most low-lying areas, are suitable for seed germination. Also, Tamado and Milberg (2000) 

established that Parthenium infestation were more prevalent in lowland and intermediate altitude 

(1600m to 1900m) farms, characterised by high temperatures, but rare in highlands ( >1900m) of 

eastern Ethiopia. This is further explained by principle of decreasing temperatures with altitude 

that hinders the growth of weeds that are adapted to warmer temperatures. In agreement with this 

study, Navie et al. (1996a) and  Pandey et al. (2003) found that low temperature related factors 

reduces leaf area index and net assimilation rate of Parthenium. Dispersal strategies might explain 

the association between invasions and increasing elevation through wind, human and animal 

dispersal, for instance, seeds are easily dispersed by the winds in areas with low altitude. Although 

wind can transport the seeds to a few meters, whirlwinds at low altitude can carry many seeds to 

an extensive distance (Okubo and Levin, 1989). Jones (2013), demonstrated that altitude affects 

wind flow, the amount of shelter and precipitation received by plants. 

Our model showed that Parthenium occurrence increased with precipitation of the wettest quarter 

(bio 13). Precipitation of the wettest quarter (November to January) is in the summer (>500m). 

During the summer months, there is high rainfall and both rainfall and temperature have little 

fluctuation, which is conducive for plant growth in the coastal and interior regions (Eeley et al., 

1999). Similarly, Parthenium was reported to thrive during flooding, as lack of moisture is a major 

factor hindering its growth during the dry season (Goodall et al., 2010, Navie et al., 2004). 

Numerous studies e.g. Baret and Guyot (1991), Adkins et al. (2010) and Laporte et al. (2002) have 

demonstrated that soil moisture is a strong driver of plant species distribution and an essential 

factor determining the relative abundance of vegetation. Increased precipitation changes soil water 

content, thereby favouring plant growth. Ayele (2007) noted that Parthenium seeds germinate at 

the start of the rainy season, however, when there is adequate soil moisture, germination could 

occur at any time of the year.  
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2.5 Conclusion 

Understanding the interactions that make the habitat suitable for Parthenium is important to reduce 

uncertainty in modelling its spatial distribution. Results from this study have shown that the 

presence of Parthenium is influenced by specific physical and environmental conditions. Based on 

the findings of this study, it is concluded that landscapes that are in close proximity to roads, 

characterized by low to mid elevation and higher precipitation are more susceptible to invasion by 

Parthenium. Results from this study are paramount to the land managers, ecologist and relevant 

stakeholders in understanding the spatial distribution of alien invasive plants such as Parthenium. 

These results provide a robust and precise spatial framework to aid policy makers and land 

managers in control and long-term monitoring of areas highly susceptible to Parthenium invasion. 

The result will aid in planning and early rapid response to areas susceptible to invasion. 
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CHAPTER THREE 

MODELLING PARTHENIUM HYSTEROPHORUS INVASION IN KWAZULU-NATAL 

USING REMOTELY SENSED DATA AND ENVIRONMENTAL VARIABLES 

 

This chapter is based on: 

Arogoundade, M.A, Odindi, J., O. Mutanga, & Sibanda, M., 2018.  Modelling Parthenium 

hysterophorus invasion in Kwazulu-Natal using remotely sensed data and environmental 

variables. International Journal of Remote Sensing, (In preparation). 

Abstract 

Globally, infestations of invasive species impact negatively on the environment and economies. 

Therefore, modelling their potential distribution is valuable in designing appropriate mitigation 

measures and efficient management practices. Due to limitations of traditional field surveys, 

remotely sensed data provides feasible, timely, cost- effective and robust means in mapping and 

classifying vegetation characteristics. Hence, this study sought to model habitats susceptible to 

Parthenium invasion using environmental variables and remotely sensed data. The newly launched 

multi-spectral Sentinel 2 imagery with additional unique spectral bands and finer spatial resolution 

and the advanced Maximum Entropy (MaxEnt) machine learning algorithm were used to model 

habitat susceptible to Parthenium invasion. The MaxEnt model was run using occurrence points, 

selected vegetation indices and bands. In evaluating the performance of Sentinel 2 in modelling 

habitat susceptible to Parthenium invasion, we tested the utility of (i) spectral bands; (ii) derived 

vegetation indices and (iii) the combination of spectral bands and vegetation indices based on the 

Maxent algorithm. The area under curve (AUC) values were used to evaluate the performance of 

the models. Findings of this study shows that environmental variables combined with spectral 

bands yielded the best AUC value of 0.976. Sentinel 2 red edge band (705nm) and the normalized 

red edge vegetation indices were the most influential variables in predicting habitat susceptible to 

Parthenium invasion. These results illustrate the potential of new Sentinel 2 MSI with strategically 

positioned bands and the advanced machine learning algorithm (Maxent) in predicting habitats 

susceptible to Parthenium invasion. 

Key words: Parthenium, MaxEnt, Sentinel 2 MSI, modelling, vegetation indices, spectral bands, 

environmental variables. 
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3.1. Introduction 

 

Invasive species are the second most important threat to biodiversity after habitat destruction 

(Holmes et al., 2009). Globally, invasive plant species have spread rapidly impacting ecosystem 

processes, native species, human health and local and national economies (Vilà et al., 2011, Levine 

et al., 2003, Mahmoud et al., 2015). According to  Richardson et al. (1997), invasive plants are a 

major environmental problem in South Africa’s ecosystem, with nearly two million hectares of 

land invaded by invasive plants (van Wilgen et al., 2012). According to Richardson and Van 

Wilgen (2004) invasive plant species have  led to a reduction in South Africa’s rangelands to feed 

livestock and wildlife, and significantly reduced biodiversity. 

Parthenium hysterophorus is an aggressive invader due to its allelopathic characteristics and 

adaptation to wide environmental conditions (McConnachie et al., 2011, Navie et al., 1996b). It is 

known to successfully invade disturbed areas like roadsides, crop and fallow lands, home steads 

and water courses. Parthenium invasion result in among others; decrease in rangelands, 

biodiversity and ecosystems (Patel, 2011) and affect human and animal health (Dhileepan, 2007). 

Due to the harmful environmental and economic impacts, Parthenium has been declared a 

Category One weed in South Africa (invader plant that must be removed and destroyed 

immediately). Due to the weed’s adverse effects, there has been an increased interest in mitigation 

of its spread as shown by the increasing number of published research papers in the last five years 

(Kriticos et al., 2015, Mainali et al., 2015, Adkins and Shabbir, 2014, Mahmoud et al., 2015, 

Jayaramiah et al., 2017, Nguyen et al., 2017).  

Due to the weed’s adverse impacts on the socio- economy, and biodiversity of grazing lands in 

Africa, a four-year project on the integrated control of Parthenium was introduced in 2005 in 

eastern and southern Africa. This project was supported by the United States Agency for 

International Development (USAID)- which funded the Integrated Pest Management 

Collaborative Research Support Program (IPMCRSP) (Strathie et al., 2011). This project was able 

to prove that most of sub- Saharan Africa is prone to invasion by Parthenium (McConnachie et al., 

2011). Likewise, in 2003 the South Africa  government initiated a nationwide strategy for the 

management of the weed, developed by key stakeholders to investigate distribution, potential 
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spread of the weed, and containment strategies (Nanni et al., 2016b). Early detection and mapping 

of the weed is important to formulate effective containment strategies.  

 

Commonly, the detection of invasive plant species has been undertaken using traditional field 

surveys. Although these approaches are accurate, they are labour intensive, require expert 

interpretation, time-consuming, and costly for regional mapping (Taylor et al., 2011, Xie et al., 

2008).  Nevertheless, the advent of remotely sensed data has made ecological studies in large 

spatial extent achievable (Mansour et al., 2013). In comparison to traditional approaches, remote 

sensing technology offers feasible, timely, robust and cost- efficient means of mapping and 

classifying vegetation characteristics (Mansour et al., 2013). Remote sensing provides a wide 

range of continuous data at high temporal and spatial resolution, which enables the assessment of 

ecologically relevant processes (Andrew et al., 2014, Lulla, 1981, Mushore et al., 2017, Turner et 

al., 2003). Hence, datasets from remotely sensed imagery have been used to estimate vegetation 

biophysical characteristics e.g. chlorophyll estimation (Cho and Skidmore, 2009), leaf area index 

(Chen and Cihlar, 1996) and plant phenology (Reed et al., 2009).  

Numerous authors (Lawrence et al., 2006, Skowronek et al., 2017, Chance et al., 2016, Meijninger 

and Jarmain, 2014, Bradley, 2014) have demonstrated the importance of  vegetation indices and 

raw bands in the modelling of invasive plant species. Lawrence et al. (2006) for example mapped 

invasive plants species in North America using hyperspectral datasets with 84 -86 % accuracy 

while Mutanga and Skidmore (2004) estimated grass biomass using hyperspectral datasets. In a 

related study, Skowronek et al. (2017) mapped invasive bryophytes using air borne hyperspectral 

images and Chance et al. (2016) mapped the English ivy (Hedera helix) and Himalayan 

blackberry( Rubus armeniacus) using hyperspectral datasets in an urban area. However, 

hyperspectral datasets are spatially restricted, expensive, and require longer processing time, thus 

the need for cheap datasets that permit regional mapping (Tong et al., 2014, Eitel et al., 2007). 

A large body of literature has demonstrated the potential of freely available multi-spectral remotely 

sensed imagery in vegetation mapping (Gudex-Cross et al., 2017, Joshi et al., 2005, Bradley and 

Mustard, 2006). For instance, Gudex-Cross et al. (2017) used Landsat 8 multispectral imagery and 

ground data to map Prosopis juliflora in Somaliland with 84% accuracy. Furthermore, newly 

launched multi-spectral sensors like Sentinel 2, characterised by additional red edge bands are 
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increasingly becoming popular in discriminating subtle variations in vegetation (Frampton et al., 

2013, Delegido et al., 2011, Richter et al., 2012, Atzberger and Richter, 2012, Gil et al., 2013). 

Delegido et al. (2011), for instance, utilized Sentinel 2 red edge bands in estimating leaf area index 

and chlorophyll content of crops while Frampton et al. (2013), assessed the strength of Sentinel 2 

to estimate biophysical variables in vegetation. Also,  Ramoelo et al. (2015) tested the capabilities 

of Sentinel 2 spectral data to evaluate the quality of range land. However, there is paucity in 

literature on the adoption of Sentinel 2 in estimating invasive plant species such as Parthenium.  

The use of remotely sensed dataset integrated with robust prediction algorithms could provide 

unique tools for mapping of invasive plant species at local and regional levels. One of the most 

widely used algorithms is the Maximum Entropy (MaxEnt). MaxEnt utilises presence- only data, 

thus appropriate in modelling the spread of species when there are no absence data. It is a popular 

algorithm due to its ability to fit complex responses to environmental variables, predictive 

accuracy and the use of environmental variables (categorical and continuous) (Phillips et al., 2006, 

Barry and Elith, 2006). Furthermore, Maxent’s popularity is attributed to its regularization settings 

which is able to reduce over- fit models when using small species occurrences (Phillips et al., 2006, 

Pearson et al., 2007). A number of studies have used the algorithm in mapping and predicting of 

invasive plants species. Wakie et al. (2014), for instance, used MaxEnt to map the current and 

potential distribution of Prosopis using Moderate Resolution Imaging Spectro-radiometer 

(MODIS) vegetation indices and topo-climatic predictors in Ethiopia. In a related study,  Hoffman 

et al. (2008) tested the capabilities of the MaxEnt algorithm in modelling the occurrence and 

distribution of five invasive plant species along the North Platte River, Nebraska.  

 Recent studies have demonstrated that remotely sensed data with the aid of Geographic 

Information Systems (GIS), enhances the performance of spatial distribution models (Rocchini et 

al., 2015, Mairota et al., 2015). Whereas various studies have modelled invasive plant species 

using remotely sensed data and environmental variables (Malahlela et al., 2015, Joshi et al., 2005, 

Bradley and Mustard, 2006), no studies, to the best of our knowledge has documented vulnerability 

to Parthenium invasion using geo-information datasets and MaxEnt algorithm. Topographic 

variables such as elevation and slope have a significant impact in the distribution of invasive plant 

species, because elevation is an important variable that influences the spatial variability of 

microclimate, soil nutrient, light availability, and propagule dispersal in plant species distribution 
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(Wang et al., 2016, Yavitt et al., 2009). Additionally, climatic variables (precipitation and 

temperature) have strong impact on the growth and distribution of invasive plants species (Merow 

et al., 2017). Parthenium is likely to respond to climate and topographic variations due to its high 

reproductive and distributive ability. Hence, the integration of environmental variables combined 

with multispectral data that contain unique band settings to predict susceptible habitat to 

Parthenium might be further explored. Hence, this study sought to model the vulnerability to 

Parthenium invasion in KwaZulu-Natal using Sentinel 2 MSI datasets, environmental variables in 

a Maxent environment. Specifically, the study sought to determine the value of Sentinel 2 MSI 

raw bands and selected vegetation indices in modelling Parthenium invasion. 

3.2 Methodology 

3.2 .1 Study area 

 

This research was conducted in KwaZulu- Natal province, South Africa and covers an area of 

approximately 92,285 km2. The province lies between 26°50′ and 31°10′ South and 28°50′ and 

32°50′ East (Figure 3.1). Altitudes within the province varies from sea level to 3400m, with 

topography ranging from coastal plains to mountain slopes in the Drakensberg mountain range. 

The province receives an annual rainfall ranging from 500 mm to 2000mm. The average midday 

temperature is 11 o C to 28 o C in the winter and summer months, respectively. The area is 

characterised by geological formations such as Sand, Arenite, Mudstone, Tillite, Basalt, Granite, 

Siltstone, and Shale. Parthenium infestation was first recorded in the KwaZulu-Natal province, 

South Africa in 1880 (McConnachie et al., 2011). Hence the province is known for its long history 

of Parthenium infestation which is prevalent along physical infrastructure networks such as roads, 

croplands, plantations, grazing land, homestead, as well as abandoned lands (Nanni et al., 2016b).  
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Fig 3.1: Map of the study area 
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3.2.2 Field data collection 

 

 Parthenium occurrence data were randomly collected around Mtubatuba, Durban, Vryheid, 

Richards Bay and Pietermaritzburg between January and March 2017 (Figure 3.1). Purposive 

sampling approach was used to identify Parthenium patches greater than 10m2, because invasive 

plants are not uniformly distributed in their habitat. XY co-ordinate records of weed locations was 

taken using a handheld Trimble GeoXH 6000 global positioning system with a sub-meter 

accuracy. At each Parthenium observation, 10 by 10m quadrat was demarcated to accommodate 

the 10 by 10-pixel size of Sentinel 2 within the sampling sites, and their percentage cover within 

the quadrat recorded. A total of 274 Parthenium presence-only sites were sampled. Parthenium co-

ordinates were recorded at sampled plots.  After the field survey, data were captured in Microsoft 

excel spreadsheet and used to create point maps in a GIS environment. The dataset (n = 274) was 

then randomly split into 70% training and 30% test dataset. The training dataset was used to train 

the Maxent model, while accuracy and validation of the model was tested using the test dataset. 

The GPS points were used to extract weed patches and areas around the patches. 

3.2.3 Satellite image acquisition and processing 

 

Sentinel 2 multispectral satellite was launched on 23 June 2015 by the European Space Agency 

(ESA), designed with an improved bandwidth and spectral resolution. It provides a global coverage 

of the earth’s surfaces with great potential in coastal and terrestrial mapping application (Delegido 

et al., 2011). The satellite made up of two sensors with a swath width of 290km, and a 5 days 

temporal resolution, ideal for frequent and broad scale vegetation mapping  (Immitzer et al., 2016). 

It is positioned at an orbital angular distance of 1800 and images are acquired at a nadir position. 

The satellite has 13 spectral bands ranging from the visible, near infrared (NIR), red edge and the 

short-wave infrared-red (SWIR) at 10, 20 and 60m spatial resolutions. Sentinel 2 MSI comprises 

of four bands at 10m, six bands at 20m and three bands at 60m spatial resolution. The sensor has 

three novel bands in the red- edge region (705, 740 and 783 nm) of the electromagnetic spectrum, 

that were absent in former multispectral sensors. The red-edge bands are assumed to have potential 

in identifying and discriminating subtle variation in vegetation.  
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The freely-available Sentinel imagery was assessed from the Sentinel Scientific Data Hub website 

(https://scihub.copernicus.eu/). Twenty scenes of Sentinel 2 imagery were acquired from January 

to March to cover the study area and were mosaicked using QGIS 2.18 software. Sentinel 2 

atmospheric correction was done using the Sen2Cor version 4.0 software (Main-Knorn et al., 

2015). This correction converts the TOP-Of Atmosphere level 1C product to Bottom-Of 

Atmosphere and terrain corrected product (Vuolo et al., 2016). Excluded from this analysis are 

bands acquired at 60m which are designed for detecting atmospheric features. 

Sentinel 2 datasets used in this study are vegetation indices and spectral bands. Tables 3.1 and 3.2 

show the vegetation indices and raw bands used in this study. The selected vegetation indices used 

in this analysis were based on their performance in previous studies on invasive plant species  

(Matongera et al., 2017, Lambert et al., 2017, Potter, 2017, Liu et al., 2017). Also, these indices 

were chosen based on their ability to minimize the effect of soil background or to enhance 

greenness in vegetation. Sentinel -2 MSI bands (2,3,4,5,6,7,8,11,12,13) and vegetation indices 

(Enhanced Vegetation Index, green chlorophyll index, Normalized Difference Vegetation Index, 

simple ratio, Red edge normalized vegetation index1, Red edge normalized vegetation index2, and 

Soil Adjusted Vegetation Index) were used to model habitats susceptible to Parthenium invasion. 

The Spatial Analyst toolbox in ArcGIS10.4 (Environmental Systems Research Institute) was used 

to extract Sentinel 2 bands and vegetation indices. 

3.2.4 Extraction of Environmental variables 

 

Elevation, distance to roads and precipitation of the wettest months environmental variables were 

used in this study. These variables were chosen based on their relevance in the ecology and 

distribution of Parthenium-: distance to roads (Ayele, 2007, Navie et al., 2004, McConnachie et 

al., 2011), elevation (McConnachie et al., 2011, Tamado et al., 2002), and precipitation of the 

wettest month  (Goodall et al., 2010, Kija et al., 2013).  A 20m spatial resolution DEM was created 

from the 20m contours extracted from the South African 1: 50,000 topographic maps. Distance (in 

meters) away from roads was calculated using Euclidean distance in ArcGIS 10.2 based on the 

road shape file of KwaZulu- Natal and resampled to the 10m spatial resolution of Sentinel 2. The 

bioclimatic variable (precipitation of the wettest months) was derived from the 30 arc-seconds 

spatial resolution of the current WorldClim climatic conditions dataset. These climatic datasets are 

https://scihub.copernicus.eu/
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an average of long-term measurements (30 years of data) and contain grids of rainfall, temperature 

and derived bioclimatic summary variables. Precipitation of the wettest months was resampled to 

fit Sentinel 2 10m pixel size. 

Table 3.1: Sentinel bands 

Band Name Wavelength (nm)      Resolution 

Band 1 Coastal aerosol      443                             60 

Band 2 Blue      490                             10 

Band 3 Green      560                             10 

Band 4 Red      665                             10 

Band 5  Vegetation red edge      705                             20 

Band 6  Vegetation red edge      740                             20 

Band 7   Vegetation red edge      783                             20 

Band 8 Near Infra-red      842                             20 

Band 8a Near Infra-red      865                             10 

Band 9              Water vapour      945                             60 

Band 10               Cirrus      1,375                          60 

Band 11 Short wave infra-red      1,610                          20 

Band 12 Short wave infra-red      2,190                          20 

 

 

Table 3.2: Selected vegetation indices 

Indices Formula References 

Enhanced vegetation index 

(EVI) 
2.5*((NIR-R)/ (1+NIR+6R – 7.5B)) Huete et al. (1997) 

Green chlorophyll index (G Ch 

index) 
(NIR/G) - 1 Viña et al. (2011) 

Normalized vegetation index 

(NDVI) 
(NIR -R) / (NIR + R) Tucker (1979) 

Red edge normalized vegetation 

index1 (ndvi _red 1) 
(NIR -RE1) / (NIR + RE1) Kross et al. (2015) 

Red edge normalized vegetation 

index 2 (ndvi _red 2) 
(NIR -RE2) / (NIR + RE2) 

Gitelson and 

Merzlyak (1994) 

Simple ratio (NIR/R) Brown et al. (2000) 

Soil adjusted vegetation index 

(SAVI) 
((NIR2 -R) *(1 + L))/ (NIR2 +R + L) Huete (1988) 

*B, G, R, NIR, RE represent blue, green, red and near infrared and red edge spectral bands of Sentinel 2 respectively. 

To test the value of selected predictors in modelling Parthenium, Maxent was run with three 

different model scenarios (Table3.3). The first model assessed the utility of Sentinel 2 bands and 

environmental variables, the second model assessed the utility of vegetation indices and 
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environmental variables and the third model integrated al1 variables. The model scenarios were 

chosen to determine the performance of each dataset and their combined strength in predicting 

susceptible habitats to Parthenium invasion. 

Table 3.3: Parthenium model scenarios with different environmental input. 

 

 

3.3 Model description 

3.3.1 Maximum Entropy algorithm 

 

Habitats susceptible to Parthenium invasion were modelled using the maximum entropy algorithm 

(MaxEnt) (Phillips et al., 2006). MaxEnt is a machine learning approach that estimates the 

maximum entropy of a target probability distribution based on the input environmental variables 

in order to predict the areas of likely invasion of the species (Phillips et al., 2006). In previous 

studies by Elith and Graham (2009) and Phillips et al. (2006), the MaxEnt model outperformed 

other presence-only modelling methods, like Genetic Algorithm for – Rule set Prediction (GARP), 

ecological niche factor analysis (ENFA), bio-climatic envelope algorithm (BIOCLIM) and 

DOMAIN, especially with small sizes (Hernandez et al., 2006). The Maxent model performs a 

jacknife test to assess which environmental variables contributes most to the distribution of 

species. Background pseudo-absence and presence points are used by the model to evaluate the 

environment for model calibration and testing. To identify the most influential variables to the 

MaxEnt model, each variable was excluded in turn, and a model created with the other variables, 

then a model created using each variable in isolation. Finally, a model is created using all variables 

(Phillips et al., 2006). 

Model                                                     Variables  

Model 1 Distance to roads, elevation, and precipitation of the wettest 

months, band 2, band 3, band 4, band 5, band 6, band 7, band 8, 

band 11, and band 12. 

 

 

 

Model 2 

 

Distance to roads, elevation, and precipitation of the wettest 

months, selected Sentinel 2 indices. 

 

 

 

 

  Model 3            Elevation slope, TWI, aspect, band 2, band 3, band 4, band 5, band 

6, band 7, band 8, band 11, band 12, selected Sentinel 2 indices. 
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3.3.2 Model setting 

 

The default settings in MaxEnt were used to run the model. As recommended by Phillips et al. 

(2004), 30% of the dataset was withheld to validate the model. The model was examined for over 

fitting by testing regularization values of 1, 1.5 and 2. The default setting of 1 was used, after 

visual inspection of response curves for complexity and difference between the train and test AUC 

were checked. The 10-percentile training presence logistics threshold rule was used, as this 

threshold classifies 90% of occurrence data as suitable and classifies 10% as unsuitable (Escalante 

et al., 2013). 

3.3.3 Model evaluation 

 

The performance of the models were evaluated using the area under curve (AUC) of receiver 

operating characteristics (ROC) analysis (Phillips et al., 2004). AUC values ranging from  >0.6, 

06 – 0.7, 0.7 – 0.8, 0.8 – 0.9 or 0.9 – 1.0 , predicts the model to fail, poor, fair, good or excellent, 

respectively (Hanley and McNeil, 1982). 

3.4 Results 

3.4.1 Model accuracy 

The threshold independent AUC values from the ROC analysis model scenario in figure 2 indicate 

that all models performed well with AUC values greater than 0.9, which is excellent. The 

sensitivity and specificity test show the AUC values for each model, (Figure 3.2a) using the 

Sentinel bands and physical variables yielded a value of 0.976. Figure 3.2b shows that using 

indices and physical variables yielded an accuracy of 0.970 while, figure 3.2c shows that a 

combination of all variables produced a value of 0.974. Our results show that the highest accuracy 

was obtained using the Sentinel 2 bands and environmental variables, with a slight decrease when 

all variables are combined.  
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Figure 3.2: The receiver operator characteristic curve derived usng the(a) environmental variables and bands 

(0.976)  (b) environmental variables and vegetation indices (0.970) (c) as well as all variables combined (0.974) 
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3.4.2 Jacknife result 

 

The jacknife of training (Figure 3.3) illustrates that across all the training models, the most 

influential variables were elevation, distance to roads and precipitation of the wettest months. The 

results in Figure 3.3a shows that the blue band (490nm) and the red edge band centred at 705nm, 

were the most influential variables in the model, while band 6 had the least contribution to the 

model. Figure 3.3b, illustrates that Sentinel 2 red edge bands indices (NDVI red1 and NDVI red2) 

were the most influential in the model. SAVI had the least contribution to the model, hence had 

no significant role in predicting the habitat susceptible to Parthenium.  

Notably, figure 3.3c indicates that elevation is the principal determinant of Parthenium 

distribution. Furthermore, results from the analysis (Figure 3.3c) confirmed that NDVI-red 2 

indices and band 5 (red edge band) of Sentinel 2 MSI data outperformed the other input variables 

when all variables were combined. These results show that the red edge normalized difference 

vegetation indices contributed the most to the model, implying its vital role in discriminating 

invasive plant species. 
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Figure 3.3: Jacknife variable contribution for (a) bands (b) vegetation indices (c) combined variables. The dark 

blue colour shows the regularized training gain for each variable, light blue without the variable while the red 

show the regularized training gain with all the variables. 
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An overlay analysis of the habitat susceptibility maps indicates that the model output maps were 

visually similar, which makes comparison between the three models difficult. However, from all 

the predicted maps (Figure 3.4), high susceptibility was predicted in the north-eastern part and the 

midlands of KwaZulu-Natal. The south-western part of KwaZulu-Natal has low probability of 

Parthenium invasion. All model scenarios also show that the south-western part has low invasion 

as they are in higher altitude with lower precipitation and higher population compared to the north- 

eastern part and the midlands region. 
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Figure 3.4: Map of the predicted potential distribution of Parthenium (a) environmental variables and bands 

(b) environmental variables and indices and (c) as well as all variables combined. 
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3.5 Discussion. 

 

The aim of this study was to test the value of integrating Sentinel-2 multispectral imagery and 

environmental variables in modelling habitats susceptible to Parthenium invasion in KwaZulu-

Natal. Results in this study prove that Sentinel-2 imagery, with strategically positioned red edge 

bands can be used to reliably map and model Parthenium invasion. All the models had AUC values 

>0.9, which illustrates that our models were able to predict suitable and unsuitable habitats for 

Parthenium establishment. 

This study shows the potential of integrating Sentinel 2 datasets and environmental variables to 

improve the mapping and prediction of habitat susceptible to invasive plant species. Sentinel 2 

datasets and environmental variables yielded a value of 0.976, the integration of vegetation indices 

and environmental variables yielded a value of 0.970 and, all variables combined yielded 0.974. 

The results from this study show that the model with bands and environmental variables yielded 

the highest accuracy of 0.976 at predicting Parthenium. This model gave the highest accuracy 

compared to vegetation indices or a combination of all variables with environmental variables. 

The high accuracy can be attributed to the integration of environmental variables (elevation, 

distance to roads and precipitation of the wettest month) and the red edge band (band 5) in 

modelling habitats susceptible to Parthenium invasion.  

The results show the importance of the jacknife in Maxent algorithm in identifying the most 

important variables which illustrates the differences in the models. Environmental variables 

(elevation, distance to roads and precipitation) which were the important predictor variables are 

shown to be crucial in mapping and predicting the likely invasion of Parthenium. The high 

predictive power of environmental variables is because variables used are of essential importance 

to the distribution of the species being modelled. A body of literature has been able to prove the 

influence of elevation (McConnachie et al., 2011, Tamado et al., 2002), distance from roads 

(Ayele, 2007, Navie et al., 2004) and precipitation (Auld et al., 1982, Kija et al., 2013, Tamado et 

al., 2002) in the spatial distribution of Parthenium. As stated by Lambert et al. (2017) and 

supported by Othman et al. (2015), elevation is an important variable that influences the spatial 

variability of microclimate, soil properties, propagule dispersal and plant species distribution. 

Parthenium has been documented to establish in lowlands and intermediate altitudes farms with 
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high temperatures, and rare in the high lands (Tamado and Milberg, 2000). Also, road networks 

have been demonstrated to serve as corridors of invasion and distribution to Parthenium invasion 

(Ayele, 2007, McConnachie et al., 2011). Additionally, moisture availability is a major 

determinant in the distribution of Parthenium. For example, Ayele (2007) and Goodall et al. (2010) 

found that the growth and distribution of Parthenium was highly influence by high rainfall.  

The red edge band, which is also an important predictor to Parthenium invasion, is sensitive to 

subtle vegetation changes and characteristic variations which are prominent in these portions of 

the electromagnetic spectrum. In a previous study, Immitzer et al. (2016) successfully mapped 

crop and trees in Europe with the red edge bands of Sentinel 2. Numerous studies have highlighted 

the potential of Sentinel 2 red edge bands in vegetation mapping (Delegido et al., 2011, Dhau et 

al., 2017, Immitzer et al., 2016, Sibanda et al., 2015, Ramoelo et al., 2015, Richter et al., 2012). 

Our results concur with Majasalmi and Rautiainen (2016) who also reported that the red edge 

spectral bands in Sentinel 2 yielded optimal results in estimating boreal forest canopy cover and 

LAI, whereas Delegido et al. (2011) and Cho and Skidmore (2006) demonstrated that the 

reflectance near 705nm was sensitive to changes in chlorophyll concentration. According to 

Gitelson and Merzlyak (1994) the band has shown great potential for detecting subtle difference 

in vegetation species. Young et al. (2015) demonstrated that the red edge band in Worldview-2 

imagery successfully mapped tamarisk invasive plants while,  Tesfamichael et al. (2017) noted 

that Sentinel 2 red edge band were able to map and detect invasive plant species from 

morphologically similar plants. In a related study, Lantz and Wang (2013) demonstrated that 

Worldview2 imagery red edge bands have high capacity of detecting Phragmites australis 

(common reed) with an accuracy of 94%.  In addition to the aforementioned, the model’s high 

accuracy can be attributed to the strategically positioned and additional bands in improving the 

ability of Sentinel 2 MSI in discriminating plant species and vegetation monitoring  (Frampton et 

al., 2013, Immitzer et al., 2016). 

Interestingly, in the models with vegetation indices and all variables combined (Figure 3c), the red 

edge vegetation indices from the jack knife results performed better than individual bands, albeit 

not giving the highest accuracy. This could be due to their ability to minimize atmospheric effects 

and soil background better than individual spectral bands  (Adelabu et al., 2014, Byrd et al., 2014).  

Also, in figures 3b and 3c the EVI, NDVI, SAVI, simple ratio vegetation indices have little 
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contribution in predicting the occurrence of Parthenium. Our result also shows that all variables 

combined did not improve model accuracy among all the models. This defies our hypotheses, as 

we projected a stronger response to this model combination both in terms of training gain and 

higher AUC. According to Adam et al. (2012) and  Adelabu et al. (2014), this may be attributed 

to the introduction of unnecessary noise into a model as the input variables increases, thereby 

reducing the model accuracies.  

This study illustrates the utility of incorporating remotely sensed data and environmental variables 

to improve the prediction of invasive plant species. Previous studies have modelled habitats 

susceptible to Parthenium invasion using bio-climatic and environmental variables (Kija et al., 

2013, Nanni et al., 2016b, McConnachie et al., 2011, Tamado et al., 2002), without incorporating 

remotely sensed data. According to our results, these variables have individual high contribution 

in all the models compared to remotely sensed data, indicating their significance to the ecology of 

Parthenium. Similar results were obtained by Malahlela et al. (2015), who used  ancillary 

environmental variables and Worldview2 datasets to map and predict Chromolaena odorata (L.).  

Malahlela et al. (2015), showed that environmental variables (distance from rivers and distance 

from roads) and mPSRI, SAVI and EVI generated from Worldview2 demonstrated the potential 

to predict the invasive plant C. odorata in forest canopy gaps with 71% accuracy. Habitat 

susceptibility maps serve as a spatial guide to relevant stakeholders and ecologist to make timely 

and cost-effective decisions in mapping invasive plants. This study also demonstrates the 

importance of advanced machine learning algorithm such as Maxent in identifying the significant 

predictor variables which improve the prediction and mapping of invasive plant species. 

3.6 Conclusion 

  

The aim of this study was to examine the strength of the freely available new generation 

multispectral imagery (Sentinel 2) and environmental variables in modelling invasive plant 

species. Thus, the results are important for early detection, monitoring and mitigation with minimal 

cost. This study concludes:  

 The newly launched Sentinel 2 imagery provide more bands that are capable of mapping 

and modelling invasive plant species. 
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 The red edge band in Sentinel 2 performs better in predicting areas susceptible to 

Parthenium invasion. 

 Environmental variables (elevation, temperature and distance from roads) are important 

predictor variables in predicting habitat susceptible Parthenium invasion. 

 The integration of Sentinel 2 spectral bands and environmental variables yielded a high 

AUC value of 0.976 in predicting habitat susceptible to Parthenium invasion using the 

Maxent algorithm. 
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CHAPTER 4 

SYNTHESIS 

4.1 Introduction 

 

Invasive plant species are a global problem that requires repeatable monitoring to design 

appropriate mitigation measures and efficient management practices. Parthenium is prevalent in 

northern KwaZulu-Natal, thus affecting crop production, animal husbandry, eco-system 

functioning, human health and biodiversity. Its aggressive distribution can be attributed to 

reproductive ability, as well as tolerance to a wide range of physical and environmental factors. 

The weed has been reported to have adverse effects on biodiversity, sustainable development, 

economic growth, poverty alleviation and food scarcity (Matthews and Brand, 2004). This study 

focused on the use of bioclimatic, physical variables and multi-spectral remotely sensed data in 

modelling landscapes that are susceptible to invasion by Parthenium. In this chapter, the aims and 

respective objectives which were set out in the first chapter are reviewed against the major 

findings. Also, major conclusions, recommendations for future research are highlighted. 

4.2 Objectives of the study 

 

The first objective, presented in chapter two, was to model Parthenium weed distribution and 

potential areas of future invasion using physical and bio-climatic variables. To achieve this 

objective, firstly, landscapes that are susceptible to Parthenium invasion were modelled using 

physical and climatic variables based on the Maxent algorithm and secondly, the key predictor 

variables that best describe the habitat of Parthenium were identified. 

The second objective, presented in chapter three, was to test the accuracy of integrating remotely 

sensed data and environmental variables in modelling susceptible habitat to Parthenium invasion. 

To achieve this, two specific objectives were assessed. First, the utility of integrating Sentinel 2 

MSI spectral bands, derived vegetation indices and environmental variables in predicting 

susceptible habitat to Parthenium using Maxent algorithm was evaluated. Secondly, the relative 

importance of Sentinel 2 datasets and environmental variables in modelling Parthenium invasion 

were determined. 
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4.3 General findings of the study  

 

Identification and modelling of vulnerable habitats to Parthenium weed infestation is important for 

early detection, cost effective and appropriate mitigation measures. Selected physical and climatic 

variables were used to model vulnerable habitats to Parthenium invasion. The jacknife results from 

this study shows that physical and climatic variables have different percentage contribution to the 

model. The results indicate that areas closer to roads, with low elevation (<1500m) and high 

precipitation had the most influence and play a crucial role in explaining the spatial distribution of 

Parthenium. From the high AUC value, the Maximum entropy algorithm was able to successfully 

model susceptible and insusceptible habitats to Parthenium invasion. Findings in this study also 

showed that the model with integration of spectral bands and environmental variables had the 

highest AUC value amongst all the models. This can be attributed to the Sentinel 2’s strategically 

positioned and additional. The results illustrate the value of integrating the red edge bands and 

environmental variables for predicting habitats susceptible to Parthenium invasion. In determining 

the most important variables influencing the spatial distribution of Parthenium, results showed that 

the relative significance of environmental variables was generally consistent across all the models. 

These results illustrate that environmental variables play a more crucial role in explaining the 

distribution of Parthenium compared than Sentinel 2 data. 

In conclusion, this study has demonstrated the value of integrating freely available Sentinel 2 MSI 

with environmental variables in monitoring and modelling of Parthenium. The results are valuable 

to policy makers and environmental mangers for early detection and appropriate mitigation 

measures. Furthermore, the results in this study illustrates the ability of Maxent algorithm to 

determine the relative importance of the predictor variables. 

4.4 General Conclusion  

 

The essence of this study was to assess the utility of the newly launched multispectral imagery and 

environmental variables in modelling susceptible habitat to Parthenium using the Maxent 

algorithm.  Based on these findings, the following conclusions were drawn: 

1 The Maxent algorithm was effective in predicting areas susceptible to Parthenium invasion 

with models having AUC values > than 0.9. 
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2 Sentinel 2 data improved the model accuracy; however, environmental variables had a higher 

individual influence in predicting Parthenium invasion.  

3 The freely available Sentinel 2 MSI is cost effective for mapping and modelling of Parthenium 

at a regional scale, especially in resource scarce areas. Hence, this study is useful for future 

researchers and policy maker in early rapid response and long-term monitoring of invasive 

plant species. 

4.5 Limitations and recommendations of the study 

 

  Future research should include more predictor variables like soil, the use of high resolution 

time series images and future landscape dynamics, which may change the occurrence of 

Parthenium and give new insights on current and potential distribution of the weed. Moreover, 

climate change may result in conditions that facilitates the growth of invasive plant species, 

hence, future studies should consider changes in climatic conditions to understand how it 

affects the invasive plant species.  

 This study can be further refined by testing different sensors across numerous spatial scale. 

Also, the performance of other presence only algorithm in comparison to Maxent should be 

tested.   

 It is important to note that some predictor variables may not accurately represent current 

conditions (e.g bioclimatic represent mean values from 1960- 1990). Also, bioclimatic 

variables are interpolated datasets from the global weather station and developing countries do 

not have good weather station, thereby producing generalized description of environmental 

variability. Accurate datasets of current conditions can be included into Maxent model to 

improve results. Climate changes continuously across broad spatial scales, thus capturing 

climatic variations of species diversity at landscape level is difficult.  

  The Maxent model requires enough space for storage of raw and processed data, and longer 

processing time (resampling) for each model to run. 

 To improve model and management utility, dispersal variables should be evaluated. Predictor 

variables that influence dispersal processes directly e.g road density, grazing pressure, 
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precipitation volume should be assessed. For example, propagule pressure (Rouget and 

Richardson, 2003) that explain with ease how invasive plant species overcome environmental 

barriers to become invasive are not included. These variables can produce models that have 

direct impact on management of invasive plant species. 

 Extrapolation of results to new areas may be problematic because spatial distribution models 

such as Maxent are correlative and not mechanistic, thus limiting the inference we can draw 

from them. Hence, transferability of predicted model from a sampled area to broad geographic 

area may not be reliable. 

 The mapping of Parthenium in this study was carried out during the summer. The weed has 

different stages of phenology which influence their spectral response, and subsequently 

discrimination. Thus, identifying the optimal period to map these invasive species is important 

to provide a better knowledge of their spatial and temporal distribution for effective 

monitoring.  

 Spatial data from different sources rarely have the same spatial resolution which is a 

requirement of spatial distribution models. Uncertainties might be introduced when resampling 

datasets to same spatial resolutions in SDMs. Hence, a careful selection of spatial, temporal 

and spectral data used in SDMs should be undertaken with caution. 

 

- 
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