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ABSTRACT 

In recent years, the world has seen a surge in extended-spectrum β-lactamase (ESBL)-producing bacteria. 

Among antibiotic resistance mechanisms, the production of β-lactamase is the most rapidly developing and 

clinically significant in Gram-negative bacteria. In the present study, a total of 275 stool samples were 

collected from students of both sexes in three student residencies of Eduardo Mondlane University-

Mozambique from January to February 2016. All samples were cultured on MacConkey agar with 

ceftriaxone (1mg/L) and without ceftriaxone. The isolates were biochemically identified with API20E test. 

Confirmed E. coli and Klebsiella spp. isolates were subjected to antimicrobial susceptibility testing by the 

disc diffusion method and ESBL strains were confirmed with the disc approximation method. From these 

samples, 56 ESBL positive E. coli(n=35) and Klebsiella spp. (n=21) strains were isolated. Among the 

ESBL-positive isolates, 39.3% (22/56) were cefoxitin resistant and none were confirmed as carbapenemase 

producers. The frequency of ESBL colonization in both sex were similar for E. coli and Klebsiella spp. 

Among the ESBL-positive isolates, 50% (28/56) of the isolates only contained class A ESBLs, 5.4% (3/56) 

only class C ESBLs, and 44.6% (25/56) both class A and C ESBLs. Among the E. coli strains, 100% were 

resistance to ampicillin, and both E. coli and Klebsiella spp. demonstrated69.6% resistance to tetracycline 

and cotrimoxazole, 62.5% to ceftazidime, 33.9% to ciprofloxacin, and 34.8% to cefoxitin. None of the 

isolates showed resistance to meropenem. In total, 78.6 % of ESBL strains were defined as multi-resistant. 

The ERIC-PCR demonstrated low similarity among the strains. This study demonstrated that the carriage 

rates and the diversity of ESBL genes among the students are high.  
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CHAPTER I. INTRODUCTION AND LITERATURE REVIEW 

1.1.  INTRODUCTION 

In recent years, the world has seen a surge in extended-spectrum β-lactamase (ESBL) producing 

bacteria (1). Among resistance mechanisms, the production of β-lactamase is the most rapidly 

developing and clinically significant in Gram-negatives (2,3). 

 

Members of the Enterobacteriaceae family are inhabitants of the intestinal flora and are among 

the most common human pathogens that cause community and hospital-acquired infections. They 

have the propensity to spread easily between humans through hand carriage, contaminated food 

and water, and to acquire genetic material through horizontal gene transfer often mediated by 

plasmids and transposons (4). 

 

The transmission of ESBL-positive bacteria may also occur via the faecal-oral route and is 

facilitated by overcrowding. Among the risks factors for colonization with ESBL, the literature 

describes prolonged hospital stays, recent surgery, prior antibiotics use, particularly quinolones 

and third-generation cephalosporins, but also cotrimoxazole, aminoglycoside, and metronidazole 

(32,36). 

 

The commensal glut flora is a very highly populated ecosystem and its constituents may, at later 

stages, become a source of extra-intestinal infections. Resistance determinants may also spread to 

other members of the micro-biota, including potential pathogens (5). 

 

Among members of the Enterobacteriaceae family, the production of extended spectrum β-

lactamases (ESBL) is an important mechanism of resistance to β-lactam antibiotics (6).Escherichia 

coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are common opportunistic pathogenic 

species of Enterobacteriaceae that frequently incorporate ESBL-encoding genes (7).ESBL 

production is often encoded on plasmids (8) that have a high capacity for spread via horizontal 

gene transfer mechanisms (9). 

 

Β-lactamases are a large group of enzymes capable of hydrolyzing the β-lactam ring of various 

groups of β-lactam antibiotics thus rendering them inactive (10,11,12,35). Among the β-

lactamases, extended-spectrum β-lactamases have a broad substrate range including third 

generation cephalosporins, and are by the classical definition inhibited by clavulanic acid (13). 
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Since the early 1980s, third-generation cephalosporins have become an important weapon in the 

treatment of severe bacterial infections, and the acquisition of ESBL enzymes by a high number 

of bacterial species is thus a cause for great concern (14). 

Data on the spread of ESBL-producing bacteria in Sub-Saharan Africa is needed to assess the 

extent of this emerging health threat in resource-poor settings (1), but information about the 

epidemiology of ESBL-producing bacteria in this region of Africa is still limited. There are only 

sporadic reports about the prevalence of ESBL-producing bacteria in clinical isolates, and very 

few studies have systematically collected data on the prevalence of colonization with these 

pathogens (15).). 

Our knowledge about the prevalence of ESBL is even more limited concerning clinical isolates 

from Mozambique and particularly Maputo province. The prevalence of ESBL colonized subjects 

still remains unknown. 

 

No study has been done to determine the rate of faecal colonization of antibiotic resistance in E. 

coli and K. pneumoniae/Klebsiella spp. among students at Eduardo Mondlane University, Maputo. 

 

Research Question: What is the prevalence of colonization by ESBL-positive E. coli and K. 

pneumoniae/Klebsiella spp. among students at Eduardo Mondlane University, Maputo? 
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1.2. AIM & OBJECTIVES 

Aim 

 To explore the prevalence of ESBL-positive E. coli and Klebsiella spp. carriage in students 

living in the University residence at Eduardo Mondlane University. 

 

Objectives 

 To isolate and confirm the identity of E. coli and Klebsiella spp. from stool samples of 

University students. 

 To correlate the frequency of E. coli and Klebsiella spp. ESBL colonization with gender, 

use of antibiotics and hospitalization. 

 To ascertain the antibiotic susceptibility of ESBL-positive isolates against an appropriate 

panel of antibiotics by standardized agar disc diffusion and/or minimum inhibitory 

concentration (MIC) determinations using CLSI guidelines. 

 To phenotypically confirm the presence of ESBLs using the double-disc synergy test/E-

test.  

 To identify the ESBL genes by PCR and sequencing. 

 To undertake strain typing by ERIC-PCR to determine possible clonal relationship. 
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1.3.   LITERATURE REVIEW 

1.3.1. Enterobacteriaceae family 

The Enterobacteriaceae family is the most heterogeneous group of Gram-negative bacilli of 

medical importance. The Enterobacteriaceae are the cause of a large group of diseases in humans, 

including 30% to 35% of all bacteremias, more than 70% of urinary tract infections (UTI) and 

many intestinal infections (16). They are transmitted both from other animals or humans and from 

the inanimate environment. Many infections arise from the body’s normal flora when opportunities 

are provided by medical, surgical or other therapies (17). 

E. coli and Klebsiella pneumoniae are members of the Enterobacteriaceae family and commensal 

members of the intestinal glut flora that can cause opportunistic infection (16). 

 

1.3.2. Escherichia coli 

E. coli is a ubiquitous human pathogen (7,18). It is a common cause of urinary tract infections 

(UTI) (7,12) and bacteremia in humans of all ages. It is a frequent cause of varied organ infections, 

ranging from the biliary system to the CNS. The spectrum of pathology can range from a 

spontaneously resolving cystitis to a life-threatening sepsis syndrome. 

There is a variety of reasons for the increased prevalence of antibiotic resistant E. coli. One of 

them is that E. coli is an organism known for its flexible genome and propensity to exchange 

genetic material (7). 

E. coli is the main aerobic component of the mixed flora in intra-abdominal infections (12). E coli 

has concomitantly become the most prevalent species among ESBL-producing 

Enterobacteriaceae isolates in community. Such isolates have been recognized as a common cause 

of hospital and community-onset infections.  

 

1.3.3. Klebsiella pneumoniae 

Klebsiella pneumoniae is an important human pathogen, causing predominantly nosocomial 

infections (19,20). Its most common mechanism of resistance to oxyimino-cephalosporins is the 

production of extended-spectrum β-lactamases (19). 

In humans, K. pneumoniae is present as a saprophyte in the nasopharynx and the gastrointestinal 

tract. It is estimated that the rate of carriers varies from5-38% in faeces and from 1-6% in the 

nasopharynx (16). 
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Klebsiella pneumoniae is responsible for up to 10% of all nosocomial infections, and this 

proportion has been increasing due to the emergence and progressive spread of multidrug 

resistance and specifically the ESBL strains in hospital settings (21). In some countries the 

prevalence of Klebsiella pneumoniae ESBL-producer approaches 50%(22). 

 

1.3.4. Mechanism of resistance in Enterobacteriaceae 

Antibiotic resistance is now regarded as a major public health problem. In comparison with 

infections caused by susceptible bacteria, those caused by multidrug-resistant bacteria are 

associated with higher mortality, as well as increased costs because of prolonged hospital stay and 

the need for more expensive antibiotics as therapy (23). 

In many developed countries, the use of antibiotics is to some degree controlled. This is generally 

not the case in developing countries, where the treatment of bacterial infections is empirical 

(24,25). Hopefully, interventions to restrict and improve antibiotic use may slow down the problem 

of resistance. 

Enterobacteriaceae may become resistant to all β-lactam antibiotics and frequently co-resistant to 

most other antibiotics, leaving very few treatment options. Since the 1950s and 60s, when broad-

spectrum antibiotics became available for the treatment of Gram-negative infections, 

Enterobacteriaceae have acquired a growing range of mechanisms to evade these agents. In 

particular, β-lactam antibiotics such as penicillins and cephalosporins are vulnerable to hydrolysis 

by enzymes called β-lactamases (26). 

 

1.3.5. β-Lactam Antibiotics 

The β-lactam class of antibiotics constitutes the largest family of antibiotics, widely used in clinical 

practice for the treatment of community-acquired and hospital-acquired infections (27). Theβ-

lactams are classified into penicillins, cephalosporins, carbapenems, monobactams and β-

lactamase inhibitors (28).All β-lactam antibiotics interfere with bacterial cell wall synthesis by 

inhibiting the transpeptidase enzyme forming cross links between peptide chains linked to the 

peptidoglycan framework. Inhibition of this function leads to lysis of the bacterial cell. 

 

1.3.6.  Extended Spetrum β-Lactamase (ESBL) 

ESBLs were initially identified as variants of the common SHV-1 or TEM-1 β-lactamase, often 

differing from the parent enzymes by only one or two amino acids (27). Based on substrate 
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specificities, the β-lactamase family is divided into 4 functional groups: penicillinases, extended-

spectrum β-lactamases (ESBLs), carbapenemases, and AmpC-type cephalosporinases (24). 

Alternatively, β-lactamases can be classified on the basis of structural relationship into Ambler class 

A (serine β-lactamases including classical ESBLs inhibited by clavulanic acid), class B (metallo-β-

lactamases), class C (serine β-lactamases including AmpC enzymes not inhibited by clavulanic acid) 

and class D (OXA β-lactamase). β-lactamase production is the cardinal mechanism of resistance to 

β-lactams in Gram-negative organisms. Some species produce chromosomal β-lactamases, but 

plasmid-mediatedβ-lactamases have become prevalent among many Gram-negative bacteria 

during the past 50 year (29).  

Plasmid mediated production of enzymes inactivate modern expanded-spectrum cephalosporins 

by hydrolyzing their β-lactam ring. This is the most important mechanism of resistance in 

Enterobacteriaceae (24,30). The successful spread of these plasmids is often attributed to selective 

pressure resulting from long use of antibiotics in clinical and veterinary medicine (31). 

More than 200 types of ESBLs, the results of multiple mutations, have been described in various 

species of the Enterobacteriaceae family and other non-enteric organisms, including 

Pseudomonas aeruginosa and Acinetobacter spp. (32).High rates of intestinal ESBL colonization 

have been reported in Asia, with predominance of CTX-M enzymes (33). 

In Europe, there was an increase in invasive infections caused by Klebsiella pneumoniae and 

Escherichia coli resistant to third-generation cephalosporins between 1999 and 2008. The SMART 

study concluded that in Europe, the ESBL prevalence among E. coli and K. pneumoniae was 17.6% 

and 38.9%, respectively. In North America, the prevalence was 8.5% and 8.8%, respectively. In 

Asia, the prevalence of ESBL among E. coli was found to be 5% and among K. pneumoniae 0%, 

in New Zealand this prevalence varies between 67 and 61%, respectively  (34).  

 

Faecal carriage of ESBL in África 

 

In Africa, the prevalence of ESBL has been researched at local levels but not summarized for the 

continent as a whole (34). Some reported studies conduted in our continent have shown high 

prevalence of ESBL. A study conducted in Bangui, Central African Republic, revealed 59% of 

ESBL carriage, one of the highest reported worldwide (37).  Another study of ESBL carriage 

conducted in North Africa (Casablanca, Marrocos), in community setting has found 4.5% of 

carriage (38).  
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1.4. Chapter structure 

This research presents the following chapters: 

Chapter 2. Manuscript:for publication entitled “Faecal Carriage of Extended-Spectrum β-

Lactamase-Producing Escherichia coli and Klebsiella spp. in Mozambican University Students". 

The manuscript addresses the objectives stated above. 

Chapter 3. Conclusion: This chapter describes the conclusions, the limitations of the study, the 

recommendations and the significance of the study. 
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INTRODUCTION 

In recent years, the world has seen a surge in extended-spectrum β-lactamase (ESBL)-producing 

bacteria (1). Among antibiotic resistance mechanisms, the production of β-lactamase is the most 

rapidly developing and clinically significant in Gram-negative bacteria (2,3). ESBLs have a broad 

substrate range including third and fourth generation cephalosporins and are, by the classical 

definition, inhibited by clavulanic acid (4). ESBL genes are often carried on plasmids(5) that have 

a high capacity for spreading via horizontal gene transfer mechanisms(6,7). 

 

The commensal gut flora is a highly populated ecosystem, the bacterial constituents of which carry 

resistance genes that can spread to other members of the micro-biota (8). These include 

Escherichia coli and Klebsiella pneumoniae, which may, at later stages, become a source of extra-

intestinal infections. Both E. coli and K. pneumoniae are common opportunistic pathogens that 

frequently harbor ESBL-encoding genes (9).  

 

Among the risks factors associated with the colonization with ESBL are prolonged hospital stay, 

recent surgery, and prior antibiotics use, particularly quinolones, third-generation cephalosporins, 

cotrimoxazole, aminoglycoside, and metronidazole (10-11). 

 

Data on the epidemiology of ESBL-producing bacteria in Sub-Saharan Africa is still limited. There 

are only sporadic reports about the prevalence of ESBL-producing bacteria in clinical isolates, and 

very few studies have systematically collected data on the prevalence of colonization with these 

pathogens (12). 
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METHODOLOGY 

Ethical considerations 

Ethical approval was received from the Biomedical Research Ethics Committee of University of 

KwaZulu-Natal (BE214/16) and the Bioethical Council ISCISA-Mozambique 

(TFCMCSCLJ03/15). 

 

Study sample 

A total of 275 stool samples were collected from students of both sexes in three student residencies 

of Eduardo Mondlane University-Mozambique within a six-week period, from January to 

February 2016. All samples were cultured on MacConkey agar with ceftriaxone 1mg/L and 

without ceftriaxone. From these samples, 56 ESBL positive E. coli and Klebsiella spp. strains were 

isolated. Two strains were isolated from the same student. These putative ESBL-producers 

constituted the study sample. 

 

Identification and susceptibility test 

All the lactose-positive isolates growing on MacConkey agar impregnated with 1mg/L ceftriaxone 

were subjected to identification tests using API20E. Confirmed E. coli and Klebsiella spp. were 

subjected to antimicrobial susceptibility testing by disc diffusion method with the following 

antibiotics: ampicillin, cefoxitin, ceftazidime, ceftriaxone, meropenem, amikacin, gentamicin, 

ciprofloxacin and cotrimoxazole. The results were interpreted according to the CLSI breakpoints 

to determine their susceptibility profile (13). 
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Phenotypic detection of β-lactamases 

The disc approximation method that consists of ceftazidime and ceftriaxone in addition to 

amoxicillin/clavulanic acid discs was used for ESBL confirmation (14). ROSCO discs (Rosco 

Diagnostic, Taastrup, Denmark) were used for ESBL and AmpC production confirmation(15). E. 

coli ATCC 25922 and K. pneumoniae ATCC 700603 were used as negative and positive quality 

control strains, respectively. 

 

Genotypic characterization of β-lactamases 

For the DNA extraction, 18-24 hour-colonies grown on Muller Hinton agar were inoculated in 

Luria-Bertani(LB) broth (16) and incubated at 37°C with shaking. After 20 hours of incubation, 

extraction was done using Fungal/Bacterial DNA MiniPrep kit (Thermo Fisher Scientific, 

Lithuania). The PCR for detection of blaTEM, blaSHV, blaCTX,blaCMY, blaDHA, blaFOX and blaMOX 

was performed on a ThermalCycler T100TM (Bio-Rad, USA) with a final volume of 50µL (25µL 

of Master mix, 15µL of water, 4µL of each primer (Inqaba Biotechnology Industries, South Africa) 

and 2µL of the template DNA), with an initial denaturation temperature of 98oC for 10 seconds, 

extension at 72oC for 15 seconds and a final extension at 72oC for 1 minute. The annealing 

temperature for the genes was:blaTEM60oC, blaSHV56oC, and blaCTX57oC. The annealing 

temperature for blaCMY was 57oC, while that of blaDHA, blaFOX and blaMOX was 50oC. 

The PCR products were loaded on a 1.5 % (w/v) agarose gel. The products were visualized by UV 

transillumination (Bio-Rad ChemiDocTMMP System) after staining in 0.1 mg/mL Gel Red for 15 

min. PCR products were sent to Inqaba Biotech, South Africa for DNA sequencing. 
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TABLE 1. Primers used for amplification 

Target 
enzyme Primers  Sequence (5' to 3') Anealling temperature 

TEM-1 
TEMMF AAA  ATT  CTT  GAA  GAC  G 

60oC   (29) TEMMR TTA  CCA  ATG  CTT  AAT  CA 

SHV 
SHVMF TTA  ACT  CCC  TGT  TAG  CCA 

56oC   (29) SHVMR GAT  TTG  CTG  ATT  TCG  CCC 

CTX-1 
CTXMF GGT  TAA  AAA  ATC  ACT  GCG  TC 

57oC   (27) CTXMR TTG  GTG  ACG  ATT  TTA  GCC  GC 

CMY 
CMYMF GAT  TCC  TTG  GAC  TCT  TCA  G 

57oC   (28) CMYMR TAA  AAC  CAG  GTT  CCC  AGA  TAG  C 

FOX 
FOXMF CAC  CAC  GAG  AAT  AAC  CAT 

57oC   (28) FOXMR ATG  TGG  ACG  CCT  TGA  ACT 

DHA 
DHAMF AAC  TTT  CAC  AGG  TGT  GCT  GGG  T 

57oC   (28) DHAMR CCG  TAC  GCA  TAC  TGG  CTT  TGC 

MOX 
MOXMF GCT  GCT  CAA  GGA  GCA  CAG  GAT 

50oC   (28) MOXMR CAC  ATT  GAC  ATA  GGT  GTG  GTG  C 

 

 

Genomic DNA isolation 

Genomic DNA was isolated from 35 E. coli and 21Klebsiella spp. isolates and purified using the 

Gene Jet Genomic DNA purification Kit (Thermo Scientific). Antibiotic sensitive E. coli ATCC 

25922 and β-lactam-resistant K. pneumoniae ATCC 700603 were used as controls for comparison. 

 

ERIC-PCR analysis  

The total PCR reaction volume was 10 µL, which contained 2 µL of template DNA and 

0.1µLprimers and 5 µL of DreamTaq (Thermo Scientific). The primers ERIC 1 and ERIC 2 

(Versalovic et al., 1991)were used. PCR conditions were as follows: 94°C for 3 min, 30 cycles of 

30 s of denaturation at 94°C, 1 min of annealing at 50°C, 8 min of extension at 65°C and a final 

elongation at 16 min at 65°C, in an Applied Biosystems 2720 thermal cycler. The ERIC-PCR 

products were loaded onto 1% (w/v) agarose gels and subjected to electrophoresis at 80V using 

1× TAE buffer. Amplification products were visualized by UV transillumination (Syngene, UK) 
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after staining in 0.1 mg/mL ethidium bromide for 15 min. Genotypic variation were analyzed using 

the GelCompareII version 6.0 software package (Applied Maths) by Jacquard and Unweighted 

Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis to produce a dendogram. 

 

RESULTS 

 

Setting 

Among 275 collected samples, 159 (57.8%) were collected from male students and 116 (42.2%) 

from females, all varying from 19 to 32 years old. The students live in separated blocks and/or 

floors for male and female students. Each floor has one kitchen where students can prepare their 

own food. There are students from different courses: Engineering, medicine, political science, 

biology, sociology, and others. As we had to go room by room explaining the student about the 

research, there were not too much difficulties in giving sample. The challenge was in convincing 

the students that the samples were only for the objectives stated in the  research.  The issue was in 

health sciences students who demonstrated difficulties to give samples, but helped us in recruiting 

the other students to participate. the student that. All students who signed the informed consent, 

gave the sample. 

 

Frequency of E. coli and Klebsiella spp. ESBL colonization 

From a total of 275 samples collected, 140 bacterial colonies grew on the MacConkey+ceftriaxone 

agar (1mg/L). Among them, 25% (35/140) were confirmed as E. coli and 15% (21/140) as 

Klebsiella spp. Among the participants in this study, 50% of the carries (28/56) were male and 

50% female, and the frequency of colonization in both sex were similar for E. coli and Klebsiella 

spp. Thus 56/140 isolates (40%) isolates were used for subsequent tests. 
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ESBL confirmation by double disc synergy and by ROSCO discs 

All the 56 isolates identified as E. coli (n=35) and Klebsiella spp. (n=21) were confirmed as ESBL 

producers. Among the ESBL-positive isolates, 39.3% (22/56) were cefoxitin resistant and 

confirmed with the ROSCO discs containing cefotaxime, cefotaxime+boronic acid, ceftazidime 

and ceftazidime+boronic acid as AmpC producers. 

 

Carbapenemase confirmation by Carba NP-test 

Only two isolates showed reduced susceptibility to imipenem and meropenem by disc diffusion. 

These were confirmed as carbapenemase negative by the Carba NP-test, which means that among 

the strains enrolled in this study there were no carbapenemase producers. 

 

ESBL gene identification by PCR 

The PCR results are summarized in Table 2. 

Table 2: Distribution of the ESBL enzymes according to the species 

ESBL Enzymes E. coli Klebsiella spp. Total 

TEM 10(17.9%) 2(3.6%) 12 

CTXM1 32(57%) 9(16.1%) 41 
SHV 32(57%) 7(5.4%) 39 

CMY 9(16.1%) 3(5.4%) 12 

FOX 13(23%) 4(7.1%) 17 

MOX 7(12.5%) 4(7.1%) 11 

DHA 17(30.4%) 4(7.1%) 21 

TOTAL 120 33 153 

 

Among the ESBL-positive isolates, 61% were positive for at least two enzymes, 43% were positive 

for at least three, and 25% positive for at least 4 enzymes. On the other hand, 50% (28/56) of the 

isolates contained only class A ESBL, 5.4% (3/56) only class C ESBLs, and 44.6% (25/56) both 

class A and C ESBLs.  
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Antibiotic susceptibility 

The E. coli and Klebsiella spp. strains showed high resistance rates to ampicilin (100% 

respectively), followed by tetracycline and co-trimoxazol (69.6%), ceftazidime (62.5%), 

ciprofloxacin (33.9%), and cefoxitin (34.8%). None of the isolates showed resistance to 

meropenem. 

Table 3: Antimicrobial resistance of ESBL-producing E. coli and Klebsiella spp. 

  Isolates 

Drugs E. coli Klebsiella spp. 

Cefoxitin 37% 47% 

Ciprofloxacin 37.1% 28.6% 

Ceftazidime 71.4% 42.9% 

Ampicillin 100% 100% 

Gentamicin 14.3% 42.9% 

Tetracycline 65.7% 76.2% 

Ceftriaxone 100% 100% 

Cotrimoxazole 62.9% 76.2% 

Imipenem 0% 0% 

 

The percentage of multi-resistance, defined as resistance to three or more antibiotics, was high 

among the isolates, with 25% (14/56) showing resistance to six antibiotics, 46% (26/56) to five 

and 19.6% to three antibiotics. In total, 78.6 % of ESBL strains were defined as multi-resistant. 

 

Antibiotic consumption and hospitalization 

No participants declared a story of  hospitalization within six months prior to the study and 87.5% 

of them had not consumed any antibiotics for at least three months. 

 

 

ERIC-PCR results for E. coli 

Distinct ERIC-PCR profiles were obtained for the 35 E. coli isolates from university students 

residing in the same residencies (Fig. 1), compared to the antibiotic susceptible E. coli ATCC 



 

23 
 

25922 strain.  The absence or presence of a band was noted in determining variation among the 

strains and banding patterns comprised between 2 and 14 individual bands.  Polymorphisms based 

on fragment length were obtained as a means of differentiating E. coli isolates.  Fragments of 

different molecular weights were observed in the ERIC-PCR fingerprints, ranging from 0.5 – 20 

kb (Fig.1). Amplification of different intensities was observed and visual analysis of the ERIC 

profiles included primary, secondary and tertiary amplification (Fig. 1). Primary amplification 

products refer to those products of high intensity, which appear extremely bright on the gels. 

Secondary amplification products are those products that are not as bright as the primary 

amplification products but more intense that the tertiary amplification products, while the tertiary 

amplification products are the minor amplification products of low intensity.  All isolates were 

typeable using this fingerprinting technique and band profiles were reproducibly obtained under 

similar experimental conditions on repeat amplification.  

 

The ERIC–PCR profiles allowed the differentiation of the 35 E. coli isolates into 24 ERIC-PCR 

types which were grouped into 15 clusters (A – O), with each of the clusters being sub-divided into 

multiple sub-clusters (Fig. 1). Isolates demonstrated up to 35% similarity to E. coli ATCC 25922.  

CTX-M and SHV genes were amplified from isolates in different clusters and were the most 

prevalent of the β-lactamase genes identified.  Isolates with similar profiles demonstrated varying 

β-lactamase gene content. 

 

 

 

ERIC-PCR results for Klebsiella spp. 

Twenty-three Klebsiella spp. isolates were selected for ERIC-PCR analysis in comparison to SHV-

containing K. pneumoniae ATCC 700603. Distinct profiles were obtained for all isolates tested 
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using ERIC-PCR fingerprinting (Fig. 2). The absence or presence of a band was noted in 

determining variation among the strains and banding patterns comprised between 2 and 16 

individual bands. Polymorphisms based on fragment length were also used as a means of 

differentiating Klebsiella spp. isolates. Fragments of different molecular weights were observed 

in the ERIC-PCR fingerprints, ranging from 0.5 – 20 kb (Fig. 2). Amplification of different 

intensities was observed and visual analysis of the ERIC profiles included primary, secondary and 

tertiary amplification. Primary amplification products refer to those products of high intensity, 

which appear extremely bright on the gels. Secondary amplification products are those products 

that are not as bright as the primary amplification products but more intense than the tertiary 

amplification products, while the tertiary amplification products are the minor amplification 

products of low intensity. All isolates were typeable using this fingerprinting technique, and band 

profiles were reproducibly obtained under similar experimental conditions on repeat amplification.   

 

The ERIC–PCR profiles allowed the differentiation of the 23 isolates into 17 ERIC-PCR types 

which were grouped into 12 clusters (A – L), with each of the clusters being sub-divided into 

multiple sub-clusters (Fig. 2). Isolates demonstrated up to 34% similarity to K. pneumoniae ATCC 

700603. CTX-M and SHV genes were the most prevalent of the β-lactamase genes amplified and 

were identified in isolates from different clusters, predominantly clusters B-G.  Isolates with 

similar profiles demonstrated varying β-lactamase gene content. 
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DISCUSSION 

Antibiotic resistant microorganisms are an emerging cause of infection in Mozambique and 

worldwide, but information regarding the resistance mechanisms of extended-spectrum ß-

lactamase (ESBL)-producing Enterobacteriaceae in our country remains scarce. To our 

knowledge, there are no previous studies regarding gastrointestinal ESBL colonization that 

describes the frequency of carriage among students. 

 

We have systematically collected samples from healthy students to determine the level of 

colonization by E. coli and Klebsiella spp. ESBL producer and their antibiotic susceptibility. In a 

total of 140 ceftriaxone resistant isolates from faecal samples, 25% were identified as E. coli and 

Klebsiella spp. ESBL producers. Similar results were found in a study conducted in children 

attending pre-school childcare facilities in the Lao People’s Democratic Republic where the 

prevalence was 23% (17) and in a study conducted in Korea which found 28.2%, reporting the 

frequency of E. coli to be higher (78%) than the frequency of Klebsiella spp. (18%) (18).  

 

A study recently conducted in Madagascar (12) demonstrated lower rates of colonization by ESBL 

Gram-negative bacilli compared to this study despite the fact that more species were included 

whereas our study worked only with E. coli and Klebsiella spp. 

Colonization in the intestinal gut by ESBL-producing isolates has been associated with a high risk 

for developing infection due to ESBL producers (19). To screen for carriage is the key to predict 

the risk of ESBL infection by extra intestinal pathogenic E. coli (19). An example of community 

acquired ESBL infection is E. coli community associated strains that can reach high levels of 

prevalence such as 30% - 60% (20). 
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This study showed a high percentage of ESBL carriage compared to a study conducted in France 

where the frequency of ESBL carriage was 5.3% (21). This big difference may be because in 

developing countries, antibiotic consumption is poorly controlled and hygiene conditions are 

suboptimal (22). In Mozambique, antibiotic therapy is mostly empirical because of scarce 

microbiology facilities (30).  

 

A study conducted in United Kingdom (23)  demonstrated 31% resistance to cephalosporins, 20% 

to cotrimoxazole and 79% to tetracycline , while this study revealed higher resistance rates to 

cephalosporins and cotrimoxazole (81.3% and 69.6% respectively), but lower resistance rates to 

tetracycline.  

 

We have found 39.9% of co-existence of ESBL and AmpC β-lactamases. Our rate of ESBL/AmpC 

co-existence in Enterobacteriaceae is higher compared to the one clinically reported in Turkey as 

13.9% (36) and as 19.5% in Europe (35). 

 

Most of the isolates on this study carried blaCTX-M-15 (71.4%), followed by blaCTX-M-55 (14.3%), 

blaCTX-M-186 (9.5%) and blaCTX-M-3 (4.8%). These results are different from the findings in a study 

conducted in Kenya (28) which demonstrated 29% of the isolates carrying blaCTX-M-15, 4% carrying 

blaCTX-M-3 and no isolates carryingblaCTX-M-55 or blaCTX-M-186. However, our results are similar to 

the ones in a study conducted in Niger (21) and in Tanzania (33) that found blaCTX-M-15gene in 90% 

and 94.7% of the carriers, respectively. 

 

The blaCTX-M-15 seem to be the major type in humans (34) and exhibits enhanced catalytic 

efficiencies against ceftazidime (25). This fact can justify the reason why we have found high 

resistance rates to this antibiotic (59.5%), because in our study the blaCTX-M-15 was the most 



 

27 
 

predominant among the CTX-Ms. The CTX-M is most prevalent in E. coli, Klebsiella spp. and 

Proteus (26), but is mainly produced by E. coli and has become predominant in the community 

(27). 

 

In this study, we have found that no participants had a story of hospitalization within six months 

prior to the study and 87.5% of them had not consumed any antibiotics for at least three months. 

This suggests that the high antibiotic resistance rates found in this study are not related to antibiotic 

consumption or hospitalization, suggesting that the E. coli and Klebsiella spp. ESBL producers 

isolated in this study are probably community acquired. 

 

In the university residencies, there is a mix of students from different courses including medicine 

course and health sciences. These ESBL-colonized students are going to work in health 

institutions, which may constitute a reservoir of multi-resistant microorganisms that can spread 

among patients thus increasing the problem of antibiotic resistance.  

 

To control the rapid spread of ESBL among students and, consequently, among the general 

population, it is necessary to educate the students about the importance of personal and general 

hygiene and develop more studies in order to know the prevalence of colonization in different 

groups of the population. The prevalence in general may vary depending on socioeconomic status 

of individuals involved (29), which makes it difficult to estimate the prevalence in the general 

population as a whole. However, one may suppose that the prevalence in the students is high 

because of the condition they live under (eg.: many individuals sharing the same bath room and 

kitchen) .  
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The multiple different strains illustrated in the REP-PCR indicates that there is at present no 

outbreak at the strain level, although there could be dissemination of one or more plasmids. One 

may speculate that students are exposed to ESBL strains from some external source like 

dissemination in the food supply. The students eat food prepared at the general kitchen at the 

student residence, but there are other alternative kitchens in each residency block to allow the 

students to cook their own food. 

Very limited is known about dissemination of  ESBL strains in the food supply in Mozambique, 

but it is known from other countries that ESBL E. coli and Klebsiella spp. may disseminate among 

food animals and environmental sources (31,32,37,38). 
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Table 1: Resistance Genes Identified and Sensitivity Results of E. coli and Klebsiella spp. 

Isolat

e 

numb

er Specie 

CT

XM

1 SHV 

TE

M 

C

M

Y 

FO

X 

MO

X 

D

H

A 

FO

X CIP 

CA

Z 

AM

P 

GE

NT 

TE

T 

C

R

O 

COT

R 

I

M

IP 

2 

Klebsiel

la spp. + + - - - + + S R I R S R R R S 
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Figure 1:Dendrogram representing the genetic relatedness and cluster analysis of 35E. coli, 

isolated from stool samples of University residence students, based on ERIC-PCR fingerprinting 

patterns using Jacquard index and UPGMA algorithm. The scale at the top represents percentage 

similarity to E. coli ATCC 25922
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Figure 1:Dendrogram representing the genetic relatedness and cluster analysis of 21Klebsiella spp.,isolated from stool samples of University residence 

students, based on ERIC-PCR fingerprinting patterns using Jacquard index and UPGMA algorithm. The scale at the top represents percentage similarity 

to Klebsiella pneumoniae ATCC 700603. 
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CHAPTER 3. CONCLUSION 

3.1. Introduction 

We have collected 275 stool samples from students living at Eduardo 

Mondlane University residencies, Maputo-Mozambique. The sample collection 

was made during six weeks between February and March 2016. The demographic 

data regarding antibiotic consumption, previous hospitalization, age and gender 

were collected with a small questionnaire. The samples were tested for presence 

of ESBL producer E. coli and Klebsiella spp. 

 

3.2. Conclusion 

 This study demonstrated that the prevalence of colonization by ESBL E. 

coli and Klebsiella spp. strains among male and female students is high. 

 The prevalence of multi-resistance among ESBL-positive E. coli and 

Klebsiella spp. is demonstrated to be high. 

 The strains demonstrated low genetic similarity among them, what means 

that they are not related. 

 Were identified different ESBL genes with different strains containing 

both class A and C β-lactamase genes. 

 

3.3.  Limitations 

The main limitations on this study was that the strain typing was not done in all 

ESBL isolates and it was not possible to determine Minimum Inhibitory 

Concentrations (MIC) of isolates. 
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3.4. Recommendations 

Further studies should be carried out to monitor the ESBL carriage among the 

students living at the University residencies and identify the source of the ESBL. 

Similar studies should be done in other groups of population to explore the 

colonization in different groups. Complete sequencing of the strains should be 

done in all strains. 

 

3.5. Significance 

Our results bring new data about the carriage rate among University students in 

Maputo-Mozambique. This will help to understand the situation of colonization 

in this group of the population and to design strategies for monitoring this 

situation.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


