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Abstract

The eradication of poverty and malnutrition is the main objective of most societies

and policy makers. But in most cases, developing a perfect or accurate poverty and

malnutrition assessment tool to target the poor households and malnourished people

is a challenge for applied policy research. The poverty of households and malnutri-

tion of children under five years have been measured based to money metric and this

approach has a number of problems especially in developing countries. Hence, in this

study we developed an asset index from Demographic and Health Survey data as an

alternative method to measure poverty of households and malnutrition and thereby

examine different statistical methods that are suitable to identify the associated fac-

tors. Therefore, principal component analysis was used to create an asset index for

each household which in turn served as response variable in case of poverty and ex-

planatory (known as wealth quintile) variable in the case of malnutrition. In order to

account for the complexity of sampling design and the ordering of outcome variable,

a generalized linear mixed model approach was used to extend ordinal survey logis-

tic regression to include random effects and therefore to account for the variability

between the primary sampling units or villages. Further, a joint model was used

to simultaneously measure the malnutrition on three anthropometric indicators and

to examine the possible correlation between underweight, stunting and wasting. To

account for spatial variability between the villages, we used spatial multivariate joint

model under generalized linear mixed model. A quantile regression model was used

in order to consider a complete picture of the relationship between the outcome vari-

able (poverty index and weight-for-age index) and predictor variables to the desired

quantiles. We have also used generalized additive mixed model (semiparametric) in

order to relax the assumption of normality and linearity inherent in linear regression

models, where categorical covariates were modeled by parametric model, continuous
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covariates and interaction between the continuous and categorical variables by non-

parametric models. A composite index from three anthropometric indices was created

and used to identify the association of poverty and malnutrition as well as the factors

associated with them.

Each of these models has inherent strengths and weaknesses. Then, the choice of

one depends on what a research is trying to accomplish and the type of data being

used. The findings from this study revealed that the level of education of household

head, gender of household head, age of household head, size of the household, place

of residence and the province are the key determinants of poverty of households in

Rwanda. It also revealed that the determinants of malnutrition of children under five

years in Rwanda are: child age, birth order of the child, gender of the child, birth

weight of the child, fever, multiple birth, mother’s level of education, mother’s age

at the birth, anemia, marital status of the mother, body mass index of the mother,

mother’s knowledge on nutrition, wealth index of the family, source of drinking water

and province. Further, this study revealed a positive association between poverty of

household and malnutrition of children under five years.

xii



CHAPTER 1

Introduction

The eradication of poverty and malnutrition is the first target of the Millennium

development goals (eradicate extreme hunger and poverty). But developing a gold

standard for poverty and malnutrition measurement is a challenge for applied policy

research. This measure is very useful not only in estimating poverty and inequality

within the society but also can be used as a control variable in assessing the effect of

other variables associated with wealth (Filmer and Pritchett, 2001)

Most measurements and analyses of poverty have been done based on income in de-

veloped countries, but on consumption or expenditure in developing countries (Sahn

and Stifel, 2003). However, collecting data on income and expenditure in developing

countries can be both time and money consuming (Vyas and Kumaranayake, 2006).

In addition, in low-income countries, measurement of consumption and expenditure

is fraught with difficulties such as the problem of recall and reluctance to divulge in-

formation. Additionally, prices are likely to differ substantially across time spans and

areas, necessitating complex adjustment of the expenditure figures to reflect these

price differences. Sahn and Stifel (2003) studied the theoretical framework underpin-

ning household income or expenditure as a tool for classifying socio-economic status in

developing countries. Their theoretical framework underscored five problems. Firstly,

the quality of income and expenditure data is most likely to be poor. Secondly, these

data are collected on the basis of recall memory. The recall data are prone to mea-

surement errors. Thirdly, prices of goods, nominal interest rates and depreciation

rates for semi-durable or durable goods are difficult to discern when constructing

consumption aggregates. Fourthly, consumer price indices in developing countries are

unavailable and unreliable, especially when inflation tends to be high or variable. In

addition, regional and seasonal price indices in most developing countries are greatly

variable and rare to find. Problems of sampling bias, under-reporting of income and

difficulties of converting household products into money terms are also raised. For
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this reason, measuring poverty of household based on asset index approach is es-

sential to determine socio-economic status as an alternative tool for classifying the

households in their socio-economic status. A measure of the socio-economic status

of households is an important element in most economic and demographic analyzes.

All indices used to measure poverty have some strength and weaknesses, where some

are used to only measure absolute poverty ( refers to a set standard which is the

same in all countries and which does change over time) which requires money-metric,

for instance Gini index (it measures the degree of inequality in the distribution of

family income in developed countries or consumption in developing countries in a

country), and others used to measure relative poverty (refers to a standard which

is defined in terms of society in which individuals lives and which therefore differs

between countries and overtime) which does not necessarily require money-metric for

instance(asset index) (Palmer, 2010). The detailed strength and some weaknesses of

asset index compared to other indices are thoroughly discussed in Falkingham and

Namazie (2002) and Sahn and Stifel (2003). Likewise malnutrition is a very serious

problem for public health in developing countries. Children are more prone to suffer

from malnutrition deficiencies than adults because they are in a physiologically less

stable situation. Child malnutrition is a clinical sign of nutrient deficiency manifested

as stunting, underweight and wasting. These manifestations are often measured us-

ing biomedical or anthropometric indicators. However, anthropometric indicators are

mostly used for its affordability and relation availability. Commonly used anthropo-

metric indicators of child malnutrition under the age of five years (WHO, 1995) are:

height-for-age, known as stunting which is an indicator of child’s long-term or chronic

nutritional status and is also affected by the current or chronic illness. Wasting is

weight-for-height index which measures body mass in relation to body height and de-

scribes current nutritional status of the child. Wasting represent the failure to receive

adequate nutrition in the period immediately preceding the survey and may be the

result of inadequate food intake or a recent episode of illness causing loss of weight

and the onset of malnutrition. The third one is underweight which is a composite

index given by weight-for-height and height-for-age. Depending on the purpose of

the assessment and the nature of intervention, the above three indices can either be
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used separately or together. When anthropometric measurements are taken regularly

over time, they could provide information on how the health status of the population

is changing and provide a timely warning on the food supply of a given area. If

the purpose is to obtain a quick picture of a community or large body of population

to understand the extent of the problem, the measurement of wasting alone would

provide sufficient information. However, if the purpose is to obtain information to

decide what type of programs are needed in the specific area, the study involves all

three indices of anthropometric measurements.

The demographic and health survey (DHS) data is the most used survey in many de-

veloping countries, and is generally done each five years. The data are collected using

multistage sampling (including stratification, clustering and unequal probability of

selection). Therefore fitting the DHS data without considering the survey sampling

design may lead to biased estimates of parameters and incorrect variance estimates

(Anthony, 2002; Liu and Koirala, 2013). Das and Rahman (2011) determined the risk

factors of malnutrition using proportional odds model but they never included the

complexity of sampling design. On our knowledge there is no researcher in literature

used multivariate joint model to account for possible correlation of anthropometric

indices. Kandala et al. (2011a) used geo-additive semi-parametric mixed model to

find out whether the geographic location can affect malnutrition, however they only

considered one anthropometric index and did not account for possible correlation

between different anthropometric indices. All these studies considered binary or

ordinal response variable but they never considered the whole distribution of the

response variable and this can help to reveal the information which can be hidden

by binary variable or ordinal variables (Koenker and Basett, 1978).

The main objective of this study was develop an alternative method for measuring

poverty of household and malnutrition of children under five years together with their

determinants from demographic and health survey.

The findings from this study will help the researchers and scholars to model the

demographic and health survey data and therefore perfectly assess the determinants

of poverty and malnutrition of children under five years based on demographic and

3



health survey data (DHS). We seek to test different statistical methods which in turn

can help to propose suitable techniques and to appropriately fit future work from

the demographic and health survey data and any other related data. Therefore the

specific objectives are:

• To computer a reliable asset index and composite index of three anthropo-

metric indicators using principal component analysis

• To account for complexity from sampling design and to make valid statistical

inference using survey logistic regression

• To deal with ordered categorical data by extending classical proportional

odds model to include sampling design

• To deal with symmetric distribution of the data by fitting the quintile re-

gression at different parts of the distribution of the response variable

• To account for variability between primary sampling units by fitting the

generalized linear mixed model (GLMM)to the data

• To account for correlation between the anthropometric indices using Multi-

variate joint model under GLMM

• To develop a model that account for joint effect and spatial autocorrelation

• To deal with nonlinear effects of continuous covariates by fitting simipara-

metric generalized additive mixed model to the data

The thesis is structured as follows: in Chapter 2, we discuss poverty index and clas-

sification of households in socio-economic status.

Chapter 3 presents a review of generalized linear models (GLM) which accounts for

the complexity of the survey. Chapter 4 presents a review of generalized linear mixed

model as an alternative to GLM to handle survey data analysis. Chapter 5 presents a

comprehensive review of joint modelling of three anthropometric indicators known as

stunting, wasting and stunting. In chapter 6, we extend chapter 5 to include spatial

variability and also produce the smooth maps of prevalence of malnutrition. Chapter

7 presents quantile regression model and its application to poverty of households

as well as malnutrition of children under five years in Rwanda. In chapter 8 we

review generalized additive mixed model and apply it to poverty of households as

well as malnutrition of children under five years in Rwanda. In chapter 9 we discuss

4



the composite index and joint modelling of poverty and malnutrition. Chapter 10

presents the discussion and conclusion as well as the possible future researches.
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CHAPTER 2

Poverty index and classification of households

As previously discussed in Chapter 1, the measurement of poverty and malnutrition

based on income and expenditure or consumption has a number of problems. In order

to solve these problems, in this chapter we create an asset index that can be used as

an alternative approach to measure poverty of households. This index can also be

used in malnutrition as wealth quintile.

2.1. Data

There are many surveys used to collect data. Examples of such surveys are: the

Demographic Health Survey (DHS) which is done every five years, the Census of the

population which is generally done every 10 years (but is too expensive compared to

the demographic and health survey) and Household Budget Surveys done in general

every five years. The DHS is available in many countries. DHS has earned worldwide

repute for collecting and disseminating accurate, nationally representative data on

households’characteristics, fertility, family planning, early childhood mortality, ma-

ternal and child health, maternal and child nutrition, malaria and HIV/AIDS and

it usually includes Global positioning system (GPS) coordinates. The data used in

this study is from Rwanda Demographic Health Survey (2010). The sampling in this

survey was done in two stages. In the first stage 492 villages, known also as clusters

or primary sampling units or enumeration areas, were considered with probability

proportional to the village size (the number of households residing in the village).

Then, a complete mapping and listing of all households existing in the selected vil-

lages was conducted. The resulting lists of households served as the sampling frame

for the second stage of sample selection. Households were systematically selected from

those lists for participation in the survey. A total of 12,792 households were selected,

of which 12,570 households were identified and occupied at the time of the survey.

Among these households 12,540 completed the household questionnaire of which 2009
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and 10531 households were urban and rural respectively; yielding a response rate of

99.76 %. In the 12,540 households surveyed, 13,790 women were eligible for the indi-

vidual interview and 13,671 of them completed interviews; yielding a response rate of

99.13 %. A total of 6,414 men aged 15-49 were identified in subsample of households

and 6,329 of them completed individual interviews, yielding a response rate of 98.67

%. interviews were completed by 13,671 The survey had various types of question-

naires developed for households, for men and for women. The man’s questionnaire

did not contain questions on maternal and nutrition and these questions were con-

tained in women’s questionnaire (NISR et al., 2012). Therefore, in this study, only the

households and women questionnaires are considered. The missingness in this data is

negligible (0.24 % for household questionnaire and 0.87 % for women questionnaire).

2.1.1. Baseline characteristics of the study.

Independent variable poverty case: The predictor variables considered in this

study are from household head characteristics such as: education level, gender and

age of household head, household characteristics such as the size (number of family

member) of household and environmental characteristics such as place of residence

and province or region. The levels and coding of the categorical variables are given

in Table 2.1.

Table 2.1. Table of predictor variables used in poverty

Variable Level and coding

Province/Region 1=Kigali, 2=South, 3=West, 4=North, 5=East

place of residence 1=urban, 2=rural

Gender of the household head 1= male, 2=female

Education level of household head 1= Higher, 2= secondary, 3= primary, 4= no education

Size continuous

Age of household head continuous

The characteristics of households heads, the number of household members and their

proportions in percentages are presented in Table 2.2. We observe from this table

that 66.8 % of households in Rwanda were headed by males while 33.2 % were headed

by female. The biggest proportion of households heads ( 58.2 %) attained primary

7



Table 2.2. Characteristics of Head of Households

Characteristic Category Number of household heads Percent

Gender of the household head Male 8382 66.8

Female 4158 33.2

Education level of household head No education 3668 29.3

Primary 7377 58.2

Secondary 1182 9.5

Tertiary 279 2.2

education only, followed by 29 % who did not have any former education, 9.5 %

households heads attained secondary education and only 2.2 % managed to attain

education beyond secondary school. The minimum age of household head was 13, the

mean age of household head was 43.7 and the maximum age of household head was

98 years old Table 2.3. We observe from the same table that the minimum number

of household member was 1, mean of household members was 4 and the maximum

number of household members was 20.

Table 2.3. Continuous variables for household head and household

Variable Minimum Mean Maximum

Age household head 13 43.7 98

Size of household 1 4.5 20

Table 2.4. Environmental Characteristic of the Household

Characteristic Category Number of household Percentage

Place of residence Rural 10531 84.0

Urban 2009 16

Province Kigali 1522 12.1

South 3262 26.0

West 2840 22.6

North 2047 16.3

East 2869 22.9

The biggest proportion of households (84.0 %) were from rural while 16 % were urban

Table 2.4. In the same table we observe that the big proportion of households was

from Southern province (26.0 %), followed by Eastern province (22.9 %), and a smaller

proportion of households was from Kigali city (12.1 %).
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Independent variables used in malnutrition: In this research, it was considered

the following covariate variables: child age, gender of the child, birth order, multiple

birth, birth weight, mother’s level of education, mother’s knowledge on nutrition,

body mass index of the mother, incident of anemia, mother’s age at the birth, as-

sistance of the mother at the delivery, place of residence (urban or rural), province

or region, source of drinking water, toilet facilities, wealth index, sickness such as

cold, cough, diarrhea, whether the child had fever or not in two weeks before the

survey, child caretaker, breastfeeding, feeding index. It is reported in Table 2.5, any

covariate that is at least significantly associated to one of the three response variables

(stunting, wasting and underweight) and then finally used in the analysis. The level

and coding of the categorical variables are given in Table 2.5

Table 2.5. Table of predictor variables used in malnutrition

Variable Level and coding
Child age in moths 1=0 -11 months, 2= 12-23 months, 3=24-59 months
Birth order 1=first order, 2=2-3rd order, 3=4-5th order, 4=6th order and more
Mother’s age at the birth 1= less than 21 years old, 2= 21 years old and more
Mother’s education 1= secondary and higher, 2= primary, 3= no education
Gender of child 1= male,2=female
Wealth index 1=rich, 2= middle, 3=poor
Birth weights 1= weight greater or equal to 2500g, 2= weight less than 2500g
Province/region 1=Kigali, 2=South, 3=West, 4=North, 5=East
Knowledge on nutrition 1= has knowledge on nutrition, 2= no knowledge on nutrition
Multiple birth 1=singleton, 2= first multiple, 3=second multiple and more
Anemia 1= no anemic mother, 2= anemic mother
Marital status of the mother 1=married, 2= never in union, 3=separeted, 4= widow
Body Mass Index 1= greater or equal to 18.5, 2= less than 18.5
Had fever in last two weeks 1= no fever, 2= had fever
Source of drinking water 1= piped in dwelling, 2=public tape,3=protected spring, 4= other sources

Children belonging to aged group 24-59 months were 61.8 % of all other children

considered in the survey, the children belonging to infant were 19.0 % and 19.2 %

were children belonging to the age group 12-23 months Table 2.6. Most of children in

Rwanda were born with higher birth weight 95.8 % while the children born with lower

birth weight were 4.2 %. The children who did not have fever in the last two weeks

prior to the survey were 84.2 % whereas 15.8 % of children considered in the survey

had fever. The proportion of male children was 50.9 % while 49.1 % of children were

9



Table 2.6. Child’s Characteristic

Characteristic Category Number of children Percentage

Child age in months 0-11 786 19.0

12-23 794 19.2

24-59 2553 61.8

Birth order first 2253 25.0

Two and third 3078 34.2

Fourth and fifth 1940 21.6

sixth and more 1731 19.2

Province Kigali 991 11.0

South 2244 24.9

West 2167 24.1

North 1374 15.3

East 2227 24.7

Gender of the child Male 4586 50.9

Female 4416 49.1

Birth weights ≥ 2500g 8599 95.8

< 2500g 379 4.2

Had fever in last two weeks Yes 1332 15.8

No 7085 84.2

female.

Most of women at birth had 21 years old or more (95.5 % ) while 4.5 % of women had

less than 21 years old at the birth Table 2.7. In the same table, we observe that 71.9

% of mothers had primary education, 18.9 % of mothers had no formal education and

9.4 % had higher school education or more. The proportion of incident of anemia was

4.5 % of all mothers considered in the survey. The proportion of mothers who had

knowledge on nutrition was 64.0 % while 36.0 % had no knowledge on nutrition.
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Table 2.7. Mother’s Characteristic

Characteristic Category Number of mothers Percent

Mother’s age in years at the birth < 21 383 4.5

≥ 21 8101 95.5

Mother’s education No education 1702 18.9

Primary 6451 71.9

Secondary and higher 849 9.4

Incident of anemia No anemic 2305 61.7

Anemic 1428 38.7

Knowledge on nutrition No 2497 36.0

Yes 4443 64.0

Body mass index ≥ 18.5 4326 95.5

< 18.5 205 4.5

2.2. Principal components analysis and computation of asset index

Introduction

The technique of principal components analysis was first described by Pearson (1901).

He apparently believed that this was the correct solution to some of the problems

that were of interest to biometricians at the time, although he did not propose a

practical method of calculation for more than two or three variables. A description

of practical computing methods came much later from Hotelling (1933). Even then,

the calculations were extremely daunting for more than a few variables because they

had to be done by hand. It was not until the electronic computer became generally

available that the principal components technique achieved widespread use. This

allowed the applications of PCA in many application, such as dimension reduction.

2.2.1. Mean and covariance matrices.

Population and sample values for single random variables are often summarized

by the values of the mean and variances. Therefore, if a sample of size n yields

x1, x2, x3, ..., xn then its sample mean and variance are given respectively by

x̄ =
n∑

i=1

xi/n (2.1)

s2 =
n∑

i=1

(xi − x̄)2 /(n− 1) (2.2)
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where x̄ and s2 are the estimates of the corresponding population mean µ and pop-

ulation variances σ2. In a similar way, multivariate populations and samples can be

summarized by mean vector and covariance matrices. Let us consider p variables

x1, x2, x3, ..., xp and that a sample of n values for each of these variables is available,

using the equations (2.1) and (2.2), the sample mean x̄i and variance s2
i , are given

respectively by

cjk =
n∑

i=1

(xij − x̄j) (xjk − x̄k) /(n− 1) (2.3)

where cjk is the sample covariance between variables xj and xk, xij is the value

of the variable xj for the ith multivariate observation. This covariance is therefore a

measure of the extent to which there is a linear relationship between xj and xk, where

a positive value indicates that the large value of xj and xk tend to occur together,

whereas a negative value indicates that large values for one variable tend to occur

with the small values of the other variable. The equation (2.3) is related to ordinary

correlation coefficient between two variables and given by

rjk =
cjk
sjsk

(2.4)

Moreover, the definitions suggest that ckj = cjk, rkj = rjk, cjj = s2
j and rjj = 1. Fur-

thermore, the sample matrix of variances and covariances, or the covariance matrix,

is given

C =



c11 c12 . . . C1p

c21 c22 . . . C2p

. . . .

. . . .

. . . .

cp1 cp2 . . . cpp



where cii = s2
i and the population covariance matrix is given by
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Σ =



σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p

. . . .

. . . .

. . . .

σp1 σp2 . . . σpp


and finally, the sample correlation matrix is given by

R =



1 r12 . . . r1p

r21 1 . . . r2p

. . . .

. . . .

. . . .

rp1 rp2 . . . 1


2.2.2. Principal component analysis.

Principal Component Analysis (PCA) is a multivariate statistical technique that lin-

early transforms an original data set of variables into a substantially smaller set of

uncorrelated variables that represents most of information in the original set of vari-

ables (Jolliffe, 1986; Stevens, 1986; Jobson, 1992; Manly, 2005). The basic idea is to

present a set of variables by a smaller number of variables called principal compo-

nents. A small set of uncorrelated variables is much easier to understand and use in

further analysis than a larger set of correlated variables (Lewis-Beck, 1994).

Computation of principal components: The principal components can be calcu-

lated on either a sample variance-covariance matrix (with raw data) or a correlation

matrix (with standardized data) (Jolliffe, 1986; Johnson and Wichern, 2002). The

correlation matrix is used when the variables have different units (for instance: the

number of fridges owned by a household, annual income, education level), while co-

variance matrix is used when the units are homogeneous. Let us consider a subset

of variables X∗
1 , X

∗
2 , ..., X

∗
p taken from n households. In order to avoid one or two

variables having an undue influence on principal component, it is better to start by
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specifying each variable normalized by its mean and its standard deviation at the start

of the analysis (Jolliffe, 1986; Stevens, 1986; Jobson, 1992; Manly, 2005) as follows

X1 =
X∗

1 − X̄∗
1

S1

, X2 =
X∗

2 − X̄∗
2

S2

, ..., Xp =
X∗

p − X̄∗
p

Sp

(2.5)

where X̄∗
i is the mean of X∗

i and Si is its standard deviation. Therefore, the pth

principal component can be written as a linear combination of original variables given

by

PCp = γp1X1 + γp2X2 + ...+ γppXp (2.6)

where γpp represents the weight for the pth principal component and the pth variable.

The principal components are chosen such that the first component

PC1 = γ11X1 + γ12X2 + ...+ γ1pXp (2.7)

accounts for as much of the variation in the original data as possible subjected to the

constraint that

γ2
11 + γ2

12 + ...+ γ2
1p = 1 (2.8)

The second component is completely uncorrelated with the first component, and

explains additional but less variation than the first component, subjected to the

same constraint. The subsequent components are uncorrelated with the previous

components; therefore, each component captures an additional dimension in the data,

while explaining smaller and smaller proportions of the variation of original variables

in the data.

The number of principal components: When computing a principal component

analysis, we need to determine the actual dimensionality of the space in which the data

falls. Several methods have been proposed in literature for determining the number

of components to retain. But the most widely used methods are the following:

Kaiser’s rule (Kaiser-Guttman rule): The most used criterion in deciding the

number of components to retain is that of Kaiser-Guttman rule also called eigenvalue-

one criterion or simply Kaiser criterion (Kaiser, 1960). This criterion retains only

those components whose eigenvalues are greater than 1.00. This is the default rule

used by SPSS and BMDP packages. Although generally using this rule will result in
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retention of only the most important factors, blind use could lead to retaining factors

which may have no practical significance (in terms of % variance accounted for). The

cut off point for the number of principal components is based on the magnitude of

the variances of the principal components. Any principal component whose variance

is less than 1 (eigenvalue) is not selected.

Scree plot test: A graphical method called the scree test has been proposed by

Cattell (1966). In this method the magnitude of the eigenvalues (vertical axis) are

plotted against their ordinal number (whether it was the first eigenvalue, the second,

etc.). Generally what happens is that the magnitude of successive eigenvalues drops

off sharply (steep descent) and then tends to level off. The recommendation is to

retain all eigenvalues (and hence components) in the sharp descent before the first

one on the line where they start to level off. Several studies have investigated the

accuracy of scree test. Tucker et al. (1969) found it to yield the correct number of

factors in 12 of 18 cases. Linn (1968) found it to yield the correct number of factors

in 7 of 10 cases, while Cattel and Jaspers (1967) found it to be correct in 6 of 8 cases.

The extensive study on the number of factors problem by Hakstian et al. (1982)

adds additional information. They note that for N > 250 and a mean communality

(the proportion of each variable’s variance that can be explained by the principal

component) ≥ .60, either the Kaiser or scree rules will yield an accurate estimate

for the number of factors. They add that such an estimate will be that much more

credible if Q/P ratio is < .30 (P is the number of variables and Q is the number of

factors). With mean communality .30 or Q/P > .30, the Kaiser rule is less accurate

and the scree rule much less accurate (Stevens, 1986).

Alternatively, the graphical method called scree diagram or scree plot is used. The

eigenvalues are ordered from largest to smallest and then a scree plot is constructed

by plotting the value of each eigenvalue against its number. The appropriate number

of components is given by the elbow in the scree plot. Look for the points (com-

ponents) after which the remaining eigenvalues decreases in the linear fashion and

retains only those points above the elbow (Johnson and Wichern, 2002). So what

criterion should be used in deciding how many factors to retain? Since Kaiser crite-

rion has been shown to be quite accurate when the number of variables is < 30 and
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the communalities (amount of the variance in each variable that is accounted for)

are> .70, or when N > 250 and the mean of communality is ≥ .60, we would use it

under these circumstances. For other situations use the scree test when an N > 200

will probably not lead us too far astray, provided that most of the communalities are

reasonably large (Stevens, 1986).

Proportional of variance accounted for: A third criterion in solving the num-

ber of factors problem involves retaining a component if it accounts for a specified

proportion (percentage) of variance in the data set; for instance, you may decide to

retain any component that accounts for at least 6% or 10% of the total variance.

The proportion of variance criterion has a number of positive features. For instance,

in most cases, a researcher might not want to retain a group of components that,

combined, account for only a minority of the variance in the data set (say, 25%). But

this method is also sometimes criticized for its subjectivity (Kim and Mueller, 1978).

Increasing the interpretability by rotation: Although principal components are

adequate for summarizing most of the variance in a large set of variables with a small

number of components, often the components are not easily interpretable. The com-

ponents are artificial covariates designed to maximize the variance accounted for, and

are not designed for interpretability. To aid in interpreting, there are various so-called

rigid rotations that are available. They are rigid in the sense that orthogonality (un-

correlatedness) of the components is maintained for the rotated factors. This can be

done by:

Quartmax: Here the idea is to clean up the variables, that is, the rotation is done so

that each variable loads mainly on one factor. Then that variable can be considered

to be a relatively pure measure of the factor. The problem with this approach is that

most of the variables tend to load on a single factor, making interpretation on the

factor difficult.

Varimax: Kaiser (1960) designed a rotation to clean up the factors. That is, with

his rotation each factor tends to load high on a smaller number of variables and low

or very low on the other variables. This will generally make interpretation of the

resulting factors easier. The Varimax rotation is the default option in the SPSS and
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BMDP packages. It should be noted that when Varimax rotation is done the maxi-

mum variance property of the original components is destroyed. The rotation essen-

tially reallocates the loadings. Thus, the first rotated factor will no longer necessarily

account for the maximum amount of variance. The amount of variance accounted for

by each rotated factor has to be recalculated (Stevens, 1986).

Let B = (bij) be the matrix of rotated factors. Therefore, the goal of Varimax is to

maximize the following quantity

Q =
k∑

i=1

(
p
∑p

i=1 b
4
ij −

∑p
i=1 b

2
ij

p

)
(2.9)

The equation (2.9) gives the raw varimax rotation and this has the disadvantage of

not spreading the variance among the new factors. However, this is corrected by using

the normalized-varimax rotation and equation (2.9) becomes

Q =
k∑

i=1

p
∑p

i=1

(
bij

hi

)4

−
∑p

i=1

(
bij

hi

)2

p2

 (2.10)

where hi is the square root of the communality of the variable i.

Bartlett’s sphericity test: The Bartlett’s test compares the observed correlation

matrix to the identity matrix. In other words, it checks if there is a certain redundancy

between the variables that we can summarize with a small number of factors. If the

variables are perfectly correlated, only one factor is sufficient. The Bartlett’s test

statistic indicates to what extent we deviate from the references situation |R| = 1. It

uses the following formula

χ2 =

(
n− 1− 2p+ 5

6

)
× ln|R| (2.11)

where p is the number of variables, n is the number of observations and ln|R| is the

natural logarithm of the determinant of R (correlation matrix if correlation matrix is

used). Under H0, it follows a χ2 distribution with a [p× (p− 1)/2] degree of freedom.

However, the Bartlett’s test has a strong drawback. It tends to be always statistically

significant when the number of instances n increases. It is however advised to use it

when the ratio n/p is lower than 5.

Kaiser-Meyer-Olkin measure of sampling adequacy: The Kaiser-Meyer-Olkin
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(KMO) measure of sampling adequacy is an index for comparing the magnitude

of the observed correlation coefficients to the magnitudes of the partial correlation

coefficients. The overall KMO index is computed as follows:

KMO =

∑
i

∑
j 6=i r

2
ij∑

i

∑
j 6=i r

2
ij +

∑
i

∑
j 6=i a

2
ij

(2.12)

where rij is the observed correlation coefficient of ith and jth and aij is the corre-

sponding partial correlation coefficients given by

aij = − vij√
vii × vjj

(2.13)

where vij is the inverse of the correlation matrix.

If the partial correlation is near to zero, the PCA can perform the factorization

efficiently because the variables are highly related and as results KMO ≈ 1. KMO

index per variable is given by

KMOj =

∑
j 6=i r

2
ij∑

j 6=i r
2
ij +

∑
j 6=i a

2
ij

(2.14)

This index is used to detect those variables which are not related to the others. If the

KMO index is high (≈ 1), the PCA can act efficiently; if KMO is low (≈ 0), the PCA

is not relevant. The Bartlett’s sphericity test and KMO index enable us to detect if

we can or cannot summarize the information provided by the initial variables in a few

number of factors. However, they do not provide an indication about the appropriate

number of factors to retain.

Reliability test of asset index: A reliable index has to be internally coherent; this

means that it has to consistently produce a clear separation across poor, middle and

rich household for each asset included in the index. It has also to be robust; that

means the asset index produces very similar classifications when different subsets of

variables are used in its construction (Filmer and Pritchett, 2001).

2.2.3. Application to computation of poverty index.

The main objective of this section is to create an asset index of each household

included in 2010 Rwanda demographic and health survey and thereafter classify the

households into socio-economic status (poor or not)(Habyarimana et al., 2015a; Vyas
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and Kumaranayake, 2006; Filmer and Pritchett, 2001, 1998) that measures whether

a household is poor or not.

2010 RDHS gathered information on households’ ownership of durable goods, school

attendance, source of drinking water, sanitation facilities, washing places, housing

quality, etc. In this study, when computing the socio-economic index, we have only

considered the ownership of durable goods, toilet facilities, quality of house (floor,

roof and wall material) and source of drinking water (Filmer and Pritchett, 2001).

SPSS 22 was used in the analysis and computation of asset index

2.3. Results from PCA and socio-economic index

Tables 2.8 and 2.9 report the scoring factors of 53 variables and their corresponding

percentage in the wealth quintile. Generally, a variable with a positive factor score or

weights contributes to higher socio-economic status (SES), and conversely a variable

with a negative factor score weighs towards lower SES. Usually, the richest households

(20% or fifth quintile) have the assets with higher factor scores. For instance 8.1% of

richest households have flush toilet whereas poorest and middle households are 0%;

85.2% of richest households have a cement floor against 0% of poorest households

and 1.7% of middle households; 81.0% of richest households have metal roof against

53.2% of middle households and 34.4% of poor households, 53.5% of fifth quintile own

electricity against 0.8% of third and fourth quintile and 0% of first and second quintile

have a refrigerator; 86.6% of richest households own a mobile phone against 56.6% of

middle and 3.3% of poor households; 9.5% of fifth quintile own a personal computer

against 0% of poor and middle households. The higher percentage of poor households

(40% first and second quintile) would have assets with lower scores (negative), 98.9%

of poor households own latrine toilet against 87.3% of richest; 100% of poor households

own earth/sand floor against 10.0% of richest households; 7.7% of poor households

own a thatch roof against 0.0% of richest households; 82.1% households of poor use

wood as cooking fuel whereas 44.6% of richest households use wood for cooking;

97.7% households of poor own land usable for agriculture against 53.3% of richest

households.

For instance 8.1% of richest households have flush toilets whereas poorest and middle

households are 0%; 85.2% of richest households have a cement floor against 0% of
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poorest households and 1.7% of middle households; 81.0% of richest households have

a metal roof against 53.2% of middle households and 34.4% of poor households; 53.5%

of fifth quintile own electricity against 0.8% of third and fourth quintile and 0% of first

and second quintile; 86.6% of richest households own a mobile phone against 56.6% of

middle and 3.3% of poor households; 9.5% of fifth quintile own a personal computer

against 0% of middle and 0% of poor households Table 2.8. The higher percentage

of poor households (40% or first and second quintile) would have assets with lower

scores. For instance 98.9% of poor households own a latrine toilet against 87.3% of

richest households; 100% of poor households own earth/sand floors against 94.3% of

middle households and 10.0% of richest households; 7.7% of poor households own a

thatch roof against 0.0% of richest households; 82.1% of poor households use wood

as cooking fuel whereas 44.6% of richest households use wood for cooking; 97.7 % of

poor households own land usable for agriculture against 53.3% of the fifth quintile

Table 2.8.

In our analysis we have excluded ethnicity because it is not applicable to Rwanda. We

did not include religion because it is not listed in the household data set of Rwanda,

even though religion seems to be more individual than household characteristics.

However, religion was used in some research such as Achia and Khadioli (2010).

Asset indexes derived from DHS data can be subjected to a number of tests (Filmer

and Pritchett, 1998). For instance a good index has to be internally coherent, which

means that it has to consistently produce a clear separation across the poor, the

middle and rich household for each asset included in the index. This means that each

of the variables included in the index can be compared across households that fall into

the poorest 40%, middle 40% and richest 20% of the population based on the asset

index. The internal coherence is tested in Tables 2.8 and 2.9. From these tables we

can see a clear separation of an asset among poorest households, middle and richest

households;for instance 85.2% of richest households have a cement floor against 0%

of poorest households and 1.7% of middle households Table 2.8. It has also to be

robust, that means produce similar classifications of households or individuals across

constructions of asset index based on different subsets of variables Booysen (2002).

The robustness is tested respectively in Tables 2.8 and 2.9.
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Table 2.8. Component scores and classification into wealth quintile

Variables Component score Poorest40% Middle 40% Richest 20%

Toilet facilities

Flush toilet .465 0.0 0.0 8.1

Latrine -.262 98.9 92.3 87.3

Ventilated .075 0.0 2.9 3.7

Other -.027 0.6 2.0 0.6

Floor material

Earth/Sand -.736 100 94.3 10.0

Dung -.004 0.0 1.5 0.6

Ceramic tiles .339 0.0 0.0 2.6

Cement .710 0.0 1.7 85.2

Other .005 0.0 2.5 1.6

Roof material

Thatch/Palm leaf -.132 7.7 3.7 0.0

Rustic/Plastic -.038 0.8 0.9 0.1

Metal .434 34.4 53.2 81.0

Ceramic tiles -.383 55.7 41.2 17.6

Cement .072 0.1 0.1 0.6

Other .001 1.4 0.9 0.7

Wall material

Dirt -.084 5.6 5.1 1.0

Bamboo /stone/trunks with mud -.235 43.6 37.0 12.7

Uncovered adobe -.113 9.7 10.3 1.3

Reused -.039 2.9 2.3 1.6

Cement .378 1.6 3.9 24.2

Covered adobe .124 33.2 38.4 54.9

Other -.041 3.4 2.9 1.7

Cooking fuel

Biogas .016 0.0 0.0 0.1

Kerosene .078 0.0 0.0 0.6

Charcoal .763 0.7 3.7 47.0

Wood -.512 82.1 83.3 44.6

Straw -.107 16.7 11.4 3.3

Other .079 0.5 1.0

The scree plot in Figure 2.1 is used to show the proportion of the variance explained

by each principal component. It is observed that only 2 components suffice to explain

the original variables. In the creation of the household asset index, the first factor
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Table 2.9. Component scores and classification into wealth quintile (continuation)

Variables Component score Poorest 40% Middle 40% Richest 20%

Source of drinking water

Piped into dwelling .285 0.0 0.0 1.7

Piped to yard .647 0.0 0.6 24.3

Public tap water .147 12.6 33.2 37.7

Borehole -027 1.7 3.2 2.0

Protected well -.032 2.4 2.7 2.2

Unprotected well -.054 2.3 1.9 0.9

Protected spring -.288 52.4 32.3 19.1

Unprotected spring -.157 18.3 14.4 5.0

River/dam/lake/pond water -.085 9.6 9.7 3.1

Rain water -.009 0.3 0.5 0.3

Bottled .139 0.0 0.0 0.7

Other .55 0.3 1.6 2.9

Ownership of durable goods

Has electricity .804 0.0 0.8 53.5

Has radio .287 38.7 75.2 87.4

Has television .760 0.0 0.1 30.8

Has bicycle .065 4.8 21.8 20.9

Has motorcycle/scooter .194 0.0 0.2 5.1

Has watch .293 6.8 30.9 40.6

Has refrigerator .569 0.0 0.0 7.9

Has car/truck .471 0.0 0.0 5.4

Has mobile phone .503 3.3 56.6 86.6

Own land usable for agriculture -.463 97.7 77.3 53.3

Own livestock -.196 60.4 59.6 43.7

Has computer .562 0.0 0.0 9.5

Number of rooms for sleeping .247 18.0 35.7 47.0

KMO 0.786

Bartlett test χ2=238721.7 p-value< .0001

score of the first principal component is used.

The reliability test of asset index: The internal coherence is tested in Tables 2.8

and 2.9, where the last three columns compare the average ownership of each asset

across the poor, middle and richest households. The robustness is tested in Table 2.10

and can be found by comparing the differences between the ranking of the poorest
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Table 2.10. Difference in the classification of the households on the

original index two assets indexes constructed from different sets of vari-

ables

Full asset index index with 12 asset ownership variables

Full asset index Bottom 40 % Middle 40 % Richest 20 %

Bottom 40 % 83.5 16.5 0.0

Middle 40 % 11.8 74.7 13.5

Richest 20 % 4.5 25.3 70.2

Full asset index index with 6 housing infrastructure

Full asset index Bottom 40 % Middle 40 % Richest 20 %

Bottom 40 % 63.8 35.7 0.5

Middle 40 % 35.9 58.1 6.1

Richest 20 % 0.8 12.4 86.9

Figure 2.1. Scree plot test
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40% of the households of the original asset index and their ranking based on the in-

dexes constructed using some subsets of different variables. We have used 12 variable

indicators of durable goods and seven variable indicators from housing infrastructure

(toilet facility, wall material, floor material, roof material, source of drinking water,

source of cooking fuel) Table 2.10. The asset index produced a similar classification

when different subsets of variables were used Table 2.10. Therefore, this asset index

is robust.

Assessment of the demographic and spatial profiles of the poor is based on the prin-

cipal component scores and household ranking into five quintiles from the poorest to

the richest, where the first two quintiles are commonly classified as poorer and poor

(40%), the third and fourth quintiles as middle (40%) and the fifth quintile as richest

(20%). Therefore, in this study, the first two quintiles are considered as cut-off points

(40%) and computed a dichotomous variable (socio-economic status or SES) indi-

cating whether the household is poor or not (Habyarimana et al., 2015a; Achia and

Khadioli, 2010; Vyas and Kumaranayake, 2006; Filmer and Pritchett, 2001, 1998). A

household is classified as poor if the household poverty index is below 40% percentile,

otherwise it was classified as not poor. It is given by

SES =

1, if household is poor

0, otherwise
(2.15)

2.4. Summary

In this study the 2010 Rwanda demographic and health survey data is used. The data

of interest is from the household questionnaire in case of poverty study and women

questionnaire in case of malnutrition.

The poverty index was created based on principal component analysis, and thereafter

it was used to classify each household in socio-economic status (whether a household

is poor or not).

The prevalence of poverty is higher in households headed by female 50.5% and it is

also higher in rural household, where 54.9% of households are poor. The main ad-

vantage of this method over the classical methods based on income and consumption

expenditure is that it avoids many of the measurement problems associated with the
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classical method, such as recall and seasonality. This method may be very important

for countries which lack the requisite household survey data to design policies and

evaluate program effectiveness, but also do not have the financial or human resources

to generate such information. However, the use of asset index has some limitations

such as the DHS data sets which are more reflective of longer-run household wealth

or living standards (Filmer and Pritchett, 2001). Therefore, if we are interested in

current resources available to households an asset based index may not be the right

measure (Falkingham and Namazie, 2002)
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CHAPTER 3

Ordinal survey logistic regression in the measure of poverty

and malnutrition

There are some situations where the response variable has more than two categories

such in nutrition status case, where nutrition status of the child can be categorized

as severely malnourished, moderately malnourished and nourished. This outcome

variable may be ordinal when considering ordered categorical outcomes or multinomial

when non-ordered categorical outcome is considered. The data from Demographic

and Health Survey are collected using multistage sampling with complex sampling

design. Therefore, in order to get valid statistical inferences it is essential to account

for the complexity of sampling design as failure to do so may result in biased estimates

and underestimation of the variabilities. Therefore, in this chapter, we use binary and

ordinal survey logistic regression models. These models offer an option for accounting

for complexity of sampling design. In addition ordinal survey logistic regression also

accounts for ordering level of outcome variables that are more than two.

3.1. Ordinal logistic regression

The ordinal logistic regression falls into the class of generalized linear models. This

approach is used when the outcome variables are three or more and when the infor-

mation from ordered categorical outcomes are for interest. The widely used ordinal

logistic regression models are proportional odds models, partial proportional odds

model without restriction (PPOM-UR) and with restriction (PPOM-R), continua-

tion ration model (CRM) and stereotype model (SM) (Abreu et al., 2008; Ananth

and Kleinbaum, 1997).

Proportional odds model

The proportional odds model (POM) also called ordinal logistic regression or cumu-

lative logit model (McCullagh, 1980; Powers and Xie, 2000; Agresti, 2002; William,
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2006; Freese and Long, 2006; Agresti, 2007; O’Connel, 2006; Liu, 2009) is a commonly

used model for the analysis of ordinal categorical data and comes from the class of

generalized linear models. It is a generalization of binary logistic regression model

when the response variable has more than two ordinal categories. The proportional

odds model is used to estimate the odds of being at or below a particular level of

response variable. For instance, if there are j levels of ordinal outcome, the model

makes J −1 predictions, each estimating the cumulative probabilities at or below the

jth level of the outcome variable. This model can also estimate the odds of being at

or beyond a particular level of the response variable. The ordinal logistic regression

is expressed in logit form as

logit [Pr(Y ≤ j|X)] = ln

{
Pr(Y ≤ j|x1, x2, ..., xp)

Pr(Y > j|x1, x2, ..., xp)

}
= γj+β1x1+β2x2...+βpxp (3.1)

where Pr(Y ≤ j|X) = Pr(Y ≤ j|x1, x2, ..., xp) = Prj(X) is the probability of being

at or below category j, given a set of predictors X = (x1, x2, ..., xp), γj are the cut

points (intercepts) and β = β1, β2, ..., βp are the logit coefficients. The cumulative

logits associated with being at or below a particular category j can be exponentiated

to arrive at the estimated cumulative odds and then used to find the estimated cu-

mulative probabilities associated with being at or below category j. Equation (3.1)

is POM in SAS formulation using the ascending option. We can also use descending

option to get

logit [pr(Y ≥ j|X)] = ln

{
Pr(Y ≥ j|x1, x2, ..., xp)

Pr(Y < j|x1, x2, ..., xp)

}
= γj+β1x1+β2x2...+βpxp (3.2)

where Pr(Y ≥ j|X) = Pr(Y ≥ j|x1, x2, ..., xp) represent the probability that a re-

sponse falls in a category equal or bigger than the jth category, γj, X, β are the same

as in equation (3.1). In this model, the effect of each predictor is assumed to be the

same across the categories of the ordinal dependent variable. This means that for

each predictor, the effect on the odds of being at or below any category remains the

same within the model. This restriction is known as the proportional odds, or the

parallel lines assumption, and is explained in the next subsection.

Partial proportional odds model

As the proportional odds assumption is difficult to achieve in practice and generalized

ordered logit regression model sometimes gives more parameters than is needed, the
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alternative way is to fit the data with partial proportional odds model (Koch et al.,

1985; Peterson and Harrel Jr, 1990; Ananth and Kleinbaum, 1997; William, 2006).

This model allows some co-variables included in the model to be modeled with the

proportional odds assumption, but for those variables in which this assumption is not

satisfied it is increased by a coefficient(α), which is the effect associated with each jth

cumulative logit, adjusted by the other co-variables.

The general form of the model is the same as the proportional odds model, but now

the coefficients are associated with each category of the response variable. The partial

proportional odds model can be classified as unrestricted partial proportional odds

(PPOM-UR) and restricted partial proportional odds model (PPOM-R).

Unrestricted partial proportional odds model

Let us consider X = (x1, x2, ..., xp) as a vector of p explanatory variables and assume

that the first q co-variables do not satisfy the proportional odds assumption. The

unrestricted partial proportional odds model is used when proportional chances as-

sumption is not valid and the coefficients are associated with each category of the

response variable (in the case of both parallel and linear assumption are not fulfilled).

The PPOM-UR is given by

logit [Pr(Y ≤ j|X)] = ln

[
Pr(Y ≤ j|x1, x2, ..., xp)

Pr(Y > j|x1, x2, ..., xp)

]
(3.3)

= γj + (β1 + αj1)x1 + ...+ (βq + αjq)xq

+ βq+1xq+1 + ...+ βpxp, j = 1, ..., J − 1

where Y is the response variable, X = (x1, x2, ..., xp) is the vector of explanatory

variables, Pr (Y ≤ j|X) = Pr (Y ≤ j|x1, x2, ..., xp),γj are intercepts, j = 1, 2, ..., J−1,

and β1, β2, ..., βp are logit coefficients and α = (αj1, αj2, ..., αjq) are the increased

coefficients to the covariate which failed the proportional odds model. The equation

(3.3) is valid when the proportional odds assumption is not valid. Note that when

α = 0, the equation (3.3) reduces to proportional odds model equation (3.1).

Restricted partial proportional odds model

When the relationship between covariate and response variable is not proportional,

a kind of tendency is frequently expected (Abreu et al., 2008). In this case Peterson

and Harrel Jr (1990) proposed a model that is applicable when there is a linear
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relationship between the logit for a co-variable and the response variable (Ananth

and Kleinbaum, 1997; Abreu et al., 2008; Abreu, 2009).

In this case, restrictions (represented by α parameters and which are fixed scalars)

can be inserted as parameter in order to incorporate this linearity and the model is

given by

logit [Pr(Y ≤ j|X)] = ln

[
Pr(Y ≤ j|x1, x2, ..., xp)

Pr(Y > j|x1, x2, ..., xp)

]
= γj + ωj [(β1 + α1)x1 + ...+ (βq + αq)xq]

+ βq+1xq+1 + ...+ βpxp, j = 1, ..., J − 1 (3.4)

where Y is the response variable, X = (x1, x2, ..., xp) is the vector of explanatory vari-

ables, Pr (Y ≤ j|X) = Pr (Y ≤ j|x1, x2, ..., xp), γj are intercepts, j = 1, 2, ..., J − 1,

and β1, β2, ..., βp are logit coefficients, ωj are fixed scale parameters that take the forms

of restrictions allocated to the parameters and α = (α1, α2, ...., αq) are the increased

coefficients to the covariate which failed the proportional odds model. The equation

(3.4) is used when the proportional odds assumption is not satisfied and there is a lin-

ear relationship for odds ratio between co-variates and the response variable (Ananth

and Kleinbaum, 1997; Abreu et al., 2008).

Continuation odds ratio

Fienberg (1980) proposed the continuation ratio logistic regression model, that com-

pares the probability of a response variable equal to a given category. The odds are

found by considering the probability of being at or below a category relative to the

probability of being beyond that category. Suppose instead of comparing each re-

sponse to the next larger response we compare each response to all lower responses

that is Y = j versus y < j, j = 1, 2, ..., J . This model is called the continuation

ratio logistic model and is defined in logit form (Hosmer et al., 2000). The CR model

also estimates odds of being in a particular category j relative to being that cate-

gory or beyond. In this situation, the CR model can be formulated as (Ananth and

Kleinbaum, 1997; Hosmer et al., 2000)

ln

[
Pr(Y = j|x1, x2, ..., xp)

Pr(Y > j|x1, x2, ..., xp)

]
= γj + β1x1 + β2x2 + ...+ βpxp (3.5)
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where Pr (Y = j|x1, x2, ..., xp) is the conditional probability of being in category j,

conditional on being that category or beyond, given a set of predictors, αj, j =

1, 2, ..., J are the cut points, and β1, β2, ..., βp are logit coefficients. The CR model can

also estimate the conditional probability of being beyond a category given that indi-

vidual has attained that particular category, that means, Pr (Y > j|Y ≥ j), the CR

model can be expressed in the form (Allison, 1999; Hosmer et al., 2000; O’Connell,

2006; O’Connel and Liu, 2011; Agresti, 2007):

ln

[
Pr(Y ≥ j|x1, x2, ..., xp)

Pr(Y = j|x1, x2, ..., xp)

]
= γj + β1x1 + β2x2 + ...+ βpxp, j = 1, ..., J, (3.6)

where Pr (Y ≥ j|x1, x2, ..., xp) is the conditional probability of being beyond a cat-

egory j, conditional on being in that category, given a set of predictors, γj, j =

1, 2, ..., J−1 are the cut points, and β1, β2, ..., βp are logit coefficients. The advantage

of CRM is that the CRM can be adjusted according to k binary logistic regression

models (Hosmer et al., 2000; Abreu et al., 2008). This model is more appropriate

when there is intrinsic interest in a specific category of the response variable, and

not merely an arbitrary grouping of continuous variables (Ananth and Kleinbaum,

1997; Abreu et al., 2008). However, the CRM is affected by the direction chosen to

model the variable; this means the property of coding invariance does not hold for

this model (Greenland et al., 1994) and this is its main weakness. The OR is ob-

tained when modeling increasing severity is not equivalent to the reciprocal obtained

when modelling decreasing severity (Abreu et al., 2008). Therefore, one cannot sim-

ply invert the coefficient’s signal to change directions in the comparison, as happens

in proportional odds models or binary logistic regression models (Scott et al., 1997;

Abreu et al., 2008).

Stereotype logistic model

The stereotype logistic model (SLM) must be used when the outcome variable is in-

trinsically ordinal and not a discrete version of some continuous variables. It is the

most flexible model for analyzing ordinal responses. SLM can also be considered as

an extension of the multinomial regression model (Greenland et al., 1994) and is given

by

ln

[
P (Y = j|X)

P (Y = 0|X

]
= γj + ωj (β1x1 + βpx2...+ βpxp) (3.7)
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Because of the ordinal nature of the data, a linear structure is imposed on this model.

In other words, weights are assigned to the coefficients given by βjl = ωjβl, j =

1, 2, ..., k & l = 1, 2, ..., p equation (3.7). In addition to the weights (ωk) for the

response variable Y, there is a beta parameter for each explanatory variable. These

weights are straightforward related to the effect of the covariates. Therefore, the OR

that is obtained will have an increasing trend, as the weights are normally constructed

by the ordering (0 = ω1 ≤ ω2 ≤ ... ≤ ωj (Mery, 2009). Then the effect of the

covariates on the first OR is less than the effect on the second, and so on (Walter

et al., 2001). The main challenge with this modelling is to determine these weights,

but some possibilities exist (Mery, 2009). Greenland et al. (1994) suggests that the

weights can be decided in advance; this means that values are appropriately chosen

or estimated, based on data from a pilot study, or using generalized linear model

(McCullagh and Nelder, 1983) that estimate the weights as additional parameters in

the model.

Binary logistic regression

The above theory of ordinal logistic regression can be easily modified to account for

binary logistic regression. In this case the outcome variable has two levels (for instance

experiencing an event=1 and not experiencing the event=0). It is formulated as

logit [Pr(Y = 1|X)] = ln

[
Pr(Y = 1|x1, x2, ..., xp)

Pr(Y = 0|x1, x2, ..., xp)

]
(3.8)

= γ + β1x1 + β2x2 + ...+ βpxp

3.1.1. Maximum likelihood model fitting for cumulative logit models.

Let us consider a subject i and let yi1, yi2, ..., yic be binary indicators of the response,

with yij = 1 for the category j in which the response falls. This means that if Yi = j

then yij = 1 and yik = 0; for; k 6= j. Let πj(xi) denote P (Yi = j|X = xi). Therefore,

for independent observations, the likelihood function is based on the product of the

multinomial mass functions for n subjects (Hosmer et al., 2000; Agresti, 2010) and is
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given by

L =
n∏

i=1

[
c∏

j=1

πj(xi)
yij

]
=

n∏
i=1

{
c∏

j=1

[P (Yi ≤ j|xi)− P (Yi ≤ j − 1|xi]
yij

}
(3.9)

=
n∏

i=1

{
c∏

j=1

[
exp(αj + β′xi)

1 + exp(αj + β′xi)
− exp(αj−1 + β′xi)

1 + exp(αj−1 + β′xi)

]yij

}
We obtain each likelihod equation by differentiating L with respect to a particular

parameter and equating the derivative to zero. For simplicity, let us denote

G(z) =
exp(z)

1 + exp(z)
,

g(z) =
exp(z)

[1 + exp(z)]2

Therefore, the log-likelihood equation for an effect parameter βk is given in Agresti

(2010) as
n∑

i=1

c∑
j=1

yijxik
g (αj + β′xi)− g (αj−1 + β′xi)

G (αj + β′xi)−G (αj−1 + β′xi)
= 0 (3.10)

where g is the derivative of G. Iteratively methods such as Fisher scoring algorithm

are then used to solve equation (3.10) and obtain the ML estimates of the model

parameters.

Model selection

There are several models that can describe a given data set, therefore it is very

crucial to select the simplest reasonable model that satisfactorily describes such data

(Lindsey, 1997). The most frequently used approaches to select the variable that enter

the model are forward, backward and stepwise. Forward selection algorithm starts

with the null model (no explanatory variables) and enters one explanatory variable

at a time whereas backward selection starts with a saturated model (a model with

all explanatory variables) and drops one explanatory variable at time (Hosmer et al.,

2000). The stepwise selection procedure uses almost the same procedure as forward

selection, however stepwise has the advantage over the forward selection algorithm

in that the variables already in the model are also considered for exclusion each time

a new variable enters the model. Therefore, if there exists a large data set under

the study, the stepwise procedures are more preferred because of their advantages

of minimizing the chances of keeping redundant variables and leaving out important
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variables in the model. However, backward elimination is commonly used when there

are only a few key predictor variables and a limited number of other potentially

useful predictor variables. This means that these procedures have to be used with

great caution.

In all these procedures a variable that leads to a significant change in deviance when

entered or dropped from the model is retained otherwise it is dropped. The con-

tribution of each variable to the deviance reduction is given by type 1 and type 3

analysis of effects. The type one analysis of effects depends on the sequence in which

variables enter the model, whereas type 3 considers the overall model and assess the

contribution of each variable to the deviance reduction regardless of the sequence in

which variables enter the model. The stepwise selection of the variables terminates

when all variables in the model meet the criterion to stay and no variable outside the

model meet the criterion to enter.

Model checking

After fitting a model to a set of data, it is very important to enquire about the extent

to which the fitted values of the outcome variable under the considered model com-

pare with the observed values. When the agreement between the observations and

the corresponding fitted values is good, then the model may be acceptable, otherwise

the model is not accepted and requires to be revised. The adequacy of a model is

commonly referred to as goodness-of-fit (Hosmer et al., 2000; Collet, 2003).

The goodness-of-fit in generalized linear model is mainly assessed by the log-likelihood

ratio (deviance) and Pearson’s chi-square statistics (Fahrmeir and Tutz, 1994; Hosmer

et al., 2000; Fahrmeir and Tutz, 2001; Jiang, 2001; Collet, 2003; Kutner et al., 2005).

They measure the discrepancy of fit between the maximum log-likelihood achievable

and the achieved log-likelihood by fitted model. The deviance is presented below to

illustrate the use of these measures. It is given by

D(Y, µ̂) = 2 {`(y; y)− `(µ̂, y)} (3.11)

where `(y; y) is the log-likelihood under the maximum achievable (also known as

saturated) model and µ̂, y) is the log-likelihood under the current model. The aim is
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to minimize D (i.e D( ˆy, µ)) by maximizing (µ̂, y). The hypothesis about the goodness-

of-fit of the model is given by Ho:model is adequate vs H1 model is not adequate. Ho

is rejected if D > χ2
m−p,α where m is the number of observations, p is the number of

parameters and α is the given level of significance. In the case of sparse or ungrouped

data the deviance is unreliable (Collet, 2003) to measure the goodness of fit. But

the deviance can still be used to identify important predictors. In this case, the

appropriate test is the Hosmer-Lemeshow goodness of fit test (Collet, 2003). For this

test firstly, the predicted probabilities (µ̂i
′s, i = 1, 2, ...,m) obtained using current

model being checked are used to form g groups with approximately m/g subjects.

One grouping strategy is the percentile strategy and it is given by Hosmer et al.

(2000) as

i) Group 1 subjects are approximately m/g subjects whose µ̂i
′s are less or equal to

the 100/gth percentile of all µ̂i
′s.

ii) Group 10 subjects are approximately m/g subjects whose µ̂i
′s are more than

(1− 1
g
)× 100th percentile of all µ̂i

′s.

iii) For J = 2, 3, ..., g − 1 group j subjects are approximately m/g whose µ̂i
′s are

greater than the j−1
g
×100th percentile and less than or equal to the j

g
×100th percentile

of all µ̂i
′s. In case of large m, the frequently recommended g is 10 (Hosmer et al.,

2000; Dobson, 2001; Vittingoff et al., 2005) in order for the different analyses to

get consistent conclusions. Thereafter, for each group, the observed and expected

frequencies of the responses y = 0 and y = 1 are determined (Hosmer et al., 2000).

Then, the Hosmer-Lemeshow goodness-of-fit X2
HL statistic is obtained by calculating

the Pearson chi-square statistic from 2×g tables of observed and expected frequencies,

where g is the number of groups. Therefore, the statistics can be written as

X2
HL =

g∑
i=1

(Oi −Niπ̄i)

Niπ̄i (1− π̄i)
(3.12)

where Ni is the number of total frequency of subjects in the ith group, Oi is the

total frequency of event outcomes in the ith group, and π̄i is the average estimated

probability of an event outcome for the ith group and π̄i =
∑

j=1 (mjπ̂j) /Ni and mj

is the number of subject of xj and 0i =
∑ci

j=1 yj is the number of responses among

the ci covariates patterns. The Hosmer-Lemeshow statistic is then compared to a
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critical value of the χ2 distribution chi-square distribution with (g − n) degrees of

freedom, where the value of n can be specified. Therefore, if the X2
HL is statistically

significant, then it indicates lack of fit of the model, whereas a non-significant one

indicates goodness-of-fit of the model.

The appropriateness of the link function can be assessed by refitting the model with

linear predictor obtained from the original model and the square of linear predictor as

explanatory variables (Collet, 2003; Vittingoff et al., 2005). When the linear predictor

is statistically significant and its square linear predictor term is insignificant, the link

function is appropriate. This means that the prediction given by the linear predictor

is not improved by adding the square linear predictor which is basically used to

evaluate the null hypothesis that the model is adequate. Alternatively, the original

model can be estimated with an extra constructed variable, where for an adequate

model the extra variable will be statistically insignificant (William, 2006). Moreover,

the appropriateness of the link function can also be checked graphically by plotting

the residuals against the fitted values and for an appropriate link, the plot should not

have any systematic pattern (Collet, 2003).

Other criteria besides significance tests can help to select a good model in terms of

estimating quantities of interest. The best and most commonly used is the Akaike

information criterion (AIC) (Agresti, 2002, 2010). It judges a model by how close

its fitted values tend to be to the true values, in terms of a certain expected value.

Therefore, the estimated optimal model is the model that minimizes

AIC = −2 (log l-p) (3.13)

where p is the number of parameters in the model. In the case of cumulative response

models, p = k + s, where k is the total number of response levels minus one and

s is the number of explanatory effects. This penalizes a model for having many

parameters. It attempts to find a model that is closest to reality. A simple model

that fits adequately has an advantage of model parsimony.

Schwartz criterion (SC) or Bayesian Information Criterion (BIC) is also a measure

of goodness-of-model-fit. It is given by SC = −2Logl + p
(∑

j fj

)
where p is the
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number of parameters in the model and fj is the frequency value. In the case of

cumulative responses and generalized logit model, p, k and s are the same as in

equation (3.13).

The concordance index is given by

C =
[
(nc + 0.5)(t− nc − nd)t

−1
]

(3.14)

where t is the total number of pairs with different outcomes given by n(n − 1)/2,

nc is the number of concordance pairs, nd is the number of discordance pairs and

t − nc − nd is the number of tied pairs. According to Agresti (2002), a value C=0.5

means that the predictions were not better than random guessing, between 0.6 and

0.7 is termed as moderate, between 0.7 and 0.8 acceptable and finally and excellent

if C is greater than 0.8. But as the value of c approaches 1, the better the model

predictive power. Wald test(Z-test) is used to test the statistical significance of in-

dividual estimated coefficients of the ordered logit regression or partial proportional

odds logit regression. For ML estimators are distributed asymptotically. This means

that as sample size increases, the sampling distribution of an ML estimator becomes

approximately normal. So the hypothesis is H0 : βm = 0, and the z-statistic follows

the standard normal distribution N(0, 1) given as

Z =
β̂m

σ̂β̂m/
√

n

(3.15)

where βm is the mth coefficient of the model, and β̂m is the estimator of βm; σ̂β̂m
is the

estimator of standard deviation of the coefficient βm; n is the number of observations.

If H0 is true, the coefficient βm of the model is not statistically significant. If H0 is

rejected at a confidence level (usually is 0.05), the coefficient βm is significant to the

response. When the sample size is small, the distribution of β̂k−βk

SE
need not be close

to standard normal. Therefore, it is better to use likelihood ratio test and confidence

intervals based on the profile likelihood function.

It is very important to find an overall test for all coefficients of the model, in other

words, to test whether all coefficients are simultaneously equal to zero or not. The

hypothesis may be written as H0 : βm = 0. The likelihood ratio test can be used to
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test this hypothesis. It makes the comparison between the estimates obtained after

the constraints implied by the hypothesis (β = 0) have been imposed to the estimates

obtained without the constraints. To define the test, let Mβ be the unconstrained

model that includes constant γM and slope coefficients βM . Let Mγ be the constrained

model that excludes all slope coefficients. To test the hypothesis, the test statistic is

used:

G2(Mβ) = −2 (lnL(Mγ)− lnL(Mβ)) (3.16)

where LMβ is the likelihood function of the model containing all the predictor vari-

ables and LMγ is the likelihood function of the model containing only the intercept.

When the null hypothesis is true, the test statistic is distributed as chi-square with

degrees of freedom equal to the number of slope coefficients. When the test statistic

falls into the rejection region, p-value is less than a confidence level (usually is 0.05),

then the null hypothesis is rejected. Therefore, as conclusion not all slope coefficients

are equal to 0. This means that at least one predictor variable significantly affects

the model response.

Model diagnostic is very important; it helps to identify observations which may have

undue influence on the model fit or that might be outliers. An outlier is a datum

point that differs from the general trend of the data and is not necessarily influential

(Lindsey, 1997). With an influential point, a small amount change or omitted, will

change considerably the parameter estimates of the model. The magnitude of influ-

ential is measured by the leverage denoted by hii, which is the ith diagonal element

of the hat-matrix, with 0 ≤ hii ≤ 1 (Lindsey, 1997; Kutner et al., 2005). In the case

of generalized linear models, the hat-matrix is given by

H = V
−1
2 X (X ′V X)X ′V

−1
2 (3.17)

where X is the design matrix of the known covariates and W is a diagonal weight

matrix with ith diagonal element given by

V =
1

var(Yi)[g′(µi)]2
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The most frequently used measure for detection of influential data points is the Cook’s

distance given by Lindsey (1997) as follows

Ci =
r2
pi
hii

(1− hii)2
=

r2
pis
hii

(1− hii)
(3.18)

with rpi = (1− hii) yi-the Pearson’s residual and rpis = rpi/
√

1− hii is the standard-

ized Pearson’s residual (Lindsey, 1997; Kutner et al., 2005). A large Ci means that

the ith observation has undue influence on the set of parameter estimates and most

commonly used cut-off value of Ci is 1.

The score test statistic is used to test the validity of the proportional odds model. A

nonsignificant test is taken as evidence that the logit surfaces are parallel and that

the odds ratios can be interpreted as constant across all possible cut points of the

outcome. If this assumption is violated it may lead to wrong interpretations (Ananth

and Kleinbaum, 1997). This test is nonconservative (that is, it rejects the assumption

very often) (Peterson and Harrel Jr, 1990; Bender and Grouven, 1998). Therefore, it

is convenient to use other tests such as Brant test to find the single score test for each

explanatory variable; this test can show which variable violated or did not violate the

proportional odds assumption.

Brant (1990) proposed a Wald test to assess the parallel lines or proportional odds

assumption of the ordinal regression model. This test allows both overall tests; that

the coefficients for overall variables are equal and tests the equality of the coefficients

for individual variables.

For overall test, k − 1 binary regression are constructed as following: zj = 1 if Y > j

and 0 otherwise with j = 1, 2, 3, ..., k − 1. Therefore, we have

logit [Pr (zj|X)] = αj +Xβj (3.19)

The hypothesis of overall test is

H0 : β1 = β2 = β3 = ... = βk−1 = β (3.20)

A Wald test statistic is derived as chi-square with (k−2)m degrees of freedom, where

m is the number of explanatory variables. For the mth individual variable, the null

hypothesis is

Hm
0 : βm,1 = βm,2 = βm,3 = ... = βm,K−1 = βm (3.21)
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The resulting test statistics follows χ2 distribution with k − 2 degrees of freedom. If

the probability of these tests (p-value) is less than 0.05 (usually), the hypothesis is

rejected; in other words, this indicates that there are evidences for the violation of

the assumption for overall variables or individual ones.

When the proportional odds assumption is not valid the alternative way is to fit the

data with partial proportional odds model (Koch et al., 1985; Peterson and Harrel Jr,

1990; Ananth and Kleinbaum, 1997). Another alternative is to dichotomize the ordi-

nal outcome variable by means of several cut-off points and then use separate binary

logistic regression model for each dichotomous outcome variable (Bender and Grou-

ven, 1998). However, Gameroff (2005) suggested that the separate binary logistic

regression model should be not used if possible because of the loss in statistical power

and reduced generality of analytical solution.

3.2. Ordinal survey logistic regression

Some standard statistical methods used when analyzing the data collected under sim-

ple random sampling, where each sampling unit has the same probability of being

chosen from the population, are not convenient for analyzing the data collected using

complex survey sampling designs, where stratified sampling and clustered sampling

are used (Anthony, 2002; Liu and Koirala, 2013). Therefore the survey logistic re-

gression models are needed to adjust the classical logistic regression models in order

to account for complexity of sampling designs. The survey sampling design may

induce correlation among observations, especially when clusters samples are drawn.

To appropriately estimate standard errors associated with the model parameters and

estimated odds ratios, it is very crucial to account for sampling design. The survey

logistic regression models have the same theory as classical logistic regression mod-

els. The only difference is the estimation of the variance. However, when these two

models are used to the data collected using simple random sampling, the results are

identical.

Therefore, the main objective of this section is to extend ordinal logistic regression

models to ordinal survey logistic regression models that accounts for the complexity

of survey design, in other words, it takes into account the effects of stratification and
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clustering used in the survey design.

Model overview

Let Yijh be the response variable, with i = 1, 2, 3, ...,mhj, j = 1, 2, 3, ..., nh and

h = 1, 2, 3, ..., H, where h is the stratum, j is the cluster and i is the household and

denote the sampling weight for ijhth observation as wijh and xijh the row vector of the

design matrix corresponding to the ith household in jth PSU, nested in hth stratum.

Therefore, the survey logistic model is given by

logit(πijh) = x′ijhβ (3.22)

where β is the vector of unknown parameters.

When the survey data have been collected under complex sampling design, straight-

forward application of classical maximum likelihood estimation (MLE) is no longer

convenient, for various reasons. The first one is that the probabilities of selection for

the i = 1, 2, ..., n sample observations are no longer equal. Sampling weights are then

required to estimate the finite population values of the logistic regression model pa-

rameters. Secondly the stratification and clustering of complex sample observations

violates the assumption of independence of observations that is essential to the stan-

dard MLE method (Heeringa et al., 2010). There are two main approaches developed

for estimating the logistic regression parameters and standards errors for complex

samples survey data.

Grizzle et al. (1969) developed an approach based on weighted least square estimation

and later Binder (1983) proposed pseudo maximum likelihood estimation (PLME) as

the second general approach framework for fitting logistic regression and other gener-

alized linear models to complex sample survey data. PLME approach was combined

with linearized estimator of the variance-covariance matrix for the parameter esti-

mates and taking complex sample design into consideration.

Generally, there are many methods in literature used to estimate the variance of the

parameter estimates in survey logistic. The most used are Taylor series (known as

linearization method), Jackknife method, bootstrap and balanced repeated replica-

tion(BRR) methods. The pseudo-likelihood approach to the estimation of the model

parameters involves maximizing the following pseudo-likelihood function (Heeringa
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et al., 2010):

PL
(
β̂|X

)
=

n∏
i=1

{
K∏

k=1

π̂k(xi)
y
(k)
i

}wi

(3.23)

where y
(k)
i = 1 if y = k for sampled unit i and 0 otherwise,wi is the survey weight for

sampled unit i and π̂k(xi) is the estimated probability that yi = k|xi. The maximiza-

tion involves application of the Newton-Raphson algorithm to solve the estimating

equations (3.24). Assuming as before a complex design with strata indexed by h and

clusters within strata indexed by j:

S(β) =
∑

h

∑
j

∑
i

whji

(
y

(k)
hji − πk(β)

)
x′hji = 0 (3.24)

where y
(k)
hji = 1 ify = k for sampled unit i, 0 otherwise; xhji is a column vector of

design matrix; β = {β2,0, ..., β2,p, ..., βK,0, ..., βK,p} is a vector of unknown parameters

and

πk(β) =
exp(x′hjiβk)

1 +
∑K

k=1 exp(x
′
hjiβk)

(3.25)

The above theory of ordinal survey logistic regression can be modified to include the

case of binary outcomes.

In the literature, there are a number of methods used to estimate the variance-

covariance matrix of the estimated parameters. The most used are Taylor lineariza-

tion method and replicated or resampling methods (Jackknife, bootstrap, balanced

replication, random groups)(Wolter, 2007).

Variance estimation

Because of the variability of characteristics between items in the population, re-

searchers use sample designs in the sample selection process to reduce the risk of

distorted view of the population, and they make inference about the population based

on the information from the sample survey data. In order to make statistically valid

inferences for the population, they must incorporate the sample design in the anal-

ysis. There are a number of techniques used to estimate the variance, but they are

often classified into the following two categories: model based methods and resam-

pling methods. Model based methods include Taylor series approximation whereas

resampling methods include Jackknife, balanced repeated replication (BRR) methods

and numerous variant thereof (Efron and Tibshirani, 1993).
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Taylor Series(linearization) method

The Taylor series approximation is the most frequently used method to estimate the

covariance matrix of the regression coefficients for complex survey data. This method

relies on simplicity associated with estimating the variance of linear statistics, even

with a complex sample design. By applying the Taylor linearization method, non-

linear statistics are approximated by linear forms of observation by taking the first-

order terms in an appropriate Taylor series. Extending the Taylor series expansion

could develop second-order approximations. However, in practice, the first-order ap-

proximation usually yields satisfactory results, with the exception of highly skewed

population (Wolter, 1985). The estimation of variance of the general estimator is

adapted from the Taylor series expansion. To use the Taylor series expansion, con-

sider a finite population of size N . Let k-dimensional parameter vector be denoted

by Y = (Y1, Y2, ..., Yk)
′ and let Ŷ =

(
Ŷ1, Ŷ2, ..., Ŷk

)′
be the corresponding vector of

estimators based on a sample size s of n(s) (Lehtone and Pahkinen, 2004). Then, the

estimators Ŷi, i = 1, 2, ..., k depend on the sampling design generating the samples

(Wolter, 2007). In many applications of Taylor series methods, Yi represent popu-

lation totals or means for k different survey characteristics and Ŷi denote standard

estimators of Yi. Generally, Ŷi are unbiased estimators for Yi, however in some appli-

cations they might be biased but consistent estimators. Suppose that the population

parameter of interest is θ = h(Y ) and its consistent estimator is denoted by θ̂ = h(Ŷ ).

Then, the main interest is to find the approximate expression for the design variance

of θ̂ and constructing an appropriate estimator of the variance of θ̂ (Wolter, 2007).

Let us assume that h(Y ) is twice continuously differentiable. Then, based on Tay-

lor series principles, specifically the linear terms of the Taylor-series expression, the

approximate linearized expression is given (Wolter, 2007) by

θ̂ − θ =
k∑

i=1

∂h(Y )

∂Yi

(
Ŷi − Yi

)
(3.26)

where, as usual, ∂h(Y )
∂Yi

refer to partial derivative of h(Y ) with respect to yi. Using

equation (3.26), the variance approximation of θ̂ can be defined as

V (θ̃) = V

(
s∑

i=1

∂h(Y )

∂Yi

(
Ŷi − Yi

))
=

s∑
i=1

s∑
j=1

∂h(Y )

∂Yi

∂h(Y )

∂Yj

V
(
(Ŷi, Ŷj)

)
(3.27)
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where V
(
Ŷi, Ŷj

)
are variances and covariances of the estimators Ŷi and Ŷj. Therefore,

the variance of a non linear estimator θ̂ is now reduced to a function of variances and

covariance of s linear estimators Ŷi (Wolter, 2007). Further, the variance estimator

V̂ (θ̂) is obtained from equation (3.27) by substituting the variance and covariance es-

timators v̂
(
Ŷi, Ŷj

)
for the corresponding parameters V

(
Ŷi, Ŷj

)
(Skinner et al., 1989).

The resulting variance is called first order approximation. Extending the Taylor se-

ries expansion could develop second or even higher order approximations. However,

in practice, the first order approximation usually yields satisfactory results, with the

exception of highly skewed populations (Wolter, 1985, 2007). Standards variance

estimation techniques can then be applied to the linearized statistic. The Taylor

linearization method is a widely applied method, quite straightforward for any case

where an estimator already exists for totals. Its bias originates from its tendency to

underestimate the true value and it relies on the size of the sample as well as the

complexity of the estimated statistic. However, if the statistic is fairly simple, for

instance like the case of the weighted sample mean, then the bias is negligible even

for small samples, while it becomes nil for large samples (Sarndal et al., 1992). On

the other hand for a complex estimator such as the variance, large samples are needed

before the bias becomes small.

Replication method/resampling method

Replicate variance estimation is a robust and flexible method which can reflect a

number of complex sampling and estimations used in practice. Replication approach

can be used with a wide range of sample designs such as multi-stage, stratified and

unequal probability samples. It can also reflect the effects of various type of estima-

tion technique. The main concept of replication approach is based on the originally

derived sample (full sample) from which we take a number of small samples (replicate

samples). From each replicate we estimate the statistic of interest, and the variability

of these replicates estimates is used in order to derive the variance of the statistic of

the full sample.

Let θ be an arbitrary parameter of interest, θ̂ = f(data) its estimate (the statistic of

interest) and v(θ̂) its corresponding variance given by
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v̂(θ̂) = c

H∑
k

hk

(
θ̂(k) − θ̂

)2

(3.28)

where θ̂(k) is the kth replicate sample estimate of θ, H is the total number of the

replicates, c is a constant that depends on the replication method and hk is a stratum

specific constant (needed only for some sampling structures). There are various meth-

ods for drawing these replicate samples, leading then to a large number of replication

methods for variance estimation. The most frequently used are Jackknife, bootstrap,

balanced repeated replication and random groups.

Jackknife

The Jackknife technique originated outside the field of survey sampling. It was first

developed by Quenouille (1949, 1956) as a method of reducing bias of an estimator

in an infinite population setting. Durbin (1958) is one who first introduced it for

finite population, and then the procedure was adopted to estimate variance and asso-

ciated confidence intervals. Miller (1974) reviewed the possible uses of the Jackknife

technique in a range of statistical applications. In the case of variance estimation,

Jackknife technique consists of splitting the total sample into a set of equal-sized,

disjoint, exhaustive subsamples, dropping out each of the samples in turn, and es-

timating the population parameter of interest from the remaining units each time.

The variability between the estimates can therefore be used to estimate the variance

of the original sample estimator (Rust, 1985). The dropped part is re-entered in the

sample and the process is repeated successively until all parts have been removed once

from the original sample. These replicated statistics are used in order to calculate the

corresponding variance. With stratified cluster data each cluster is deleted in turn,

and then the variance calculations are done inside the strata. Then, the Jackknife

bias and variance estimates are given by

bJ =
H∑

h=1

(nh − 1)
(
θ̂h − θ̂

)
,

vJ =
H∑

h=1

(1− fh) (nh − 1)

nh

nh∑
j=1

(
θ̂hj − θ̂h

)2

(3.29)
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where fh is the proportion of clusters sampled in the hth stratum, θ̂hj is the estimate

recalculated without the jth cluster of stratum h and θ̂h is the average of the estimates

for that stratum and this needs a total of Σhnh recalculations of the statistic.

Disjoint parts mentioned above can be either single observation in a simple random

sampling or clusters of units in multistage cluster sampling schemes. The choice of the

way that sampling units are entered and re-entered in the sample leads to a number

of different expressions of Jackknife variance. For instance in Jackknife-1 method

(that is more suitable for unstratified design) one sampling unit or element or cluster

is excluded at each time. But in Jackknife-2 (more suitable for stratified samples

with two primary sampling units per stratum) and Jackknife-n (more appropriate for

stratified samples with more than two primary sampling units per stratum) a single

primary sampling unit is deleted from a single stratum in each replication. It should

be noted that the Jackknife method for variance estimation is more applicable in

with-replacement designs, though it can also be used in without-replacement surveys

when the sampling fraction is small (Wolter, 1985, 2007).

Shao and Tu (1995) mentioned that the application of Jackknife requires a modifica-

tion to account for sampling fractions only when the first stage sampling is without

replacement. In any case, due to their nature, Jackknife variance estimation methods

seem to be more appropriate for single or multistage cluster designs, where in each

replicate a single cluster is left out of the estimation procedure (neglecting, though,

the finite population correction).

If the number of disjoint parts (for example clusters) is large, the calculation of repli-

cate estimates is time consuming, making the whole process rather time-demanding

in the case of large-scale surveys (Yung and Rao, 2000). So alternative Jackknife

techniques have been developed (Efron, 1982).

Jackknife linearization: The idea of this technique is to replace repeated calcula-

tion of the statistic (practically numerical differentiation) by analytic differentiation.

The resulting formula is simple to calculate. In addition, in large samples it yields a

good approximation compared to the standard Jackknife technique. This technique

is also called nonparametric delta method and the infinitesimal Jackknife (Davison

and Hinkley, 1997). In the case of unstratified sample of size n, the nonparametric
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delta method variance approximation is

vL = n−2Σl2j .

The empirical influence value lj, the infinitesimal change in the statistic because

of inclusion of the jth observation, is closely related to the influence function cen-

tral to classical robust statistics (Hampel et al., 1986). Further, replacing n−2 by

(n(n− 1))−1 reduces the slight downward bias of vL.

For stratified cluster data the bias-adjusted variance formula in case of sampling

without replacement is given by Canty and Davison (1999) as,

v̂ =
H∑

h=1

(1− fh)
1

nh (nh − 1)

nh∑
j=1

l2hj (3.30)

where l2hj is the empirical influence value for the jth cluster in stratum h l2hj (Canty

and Davison, 1999). The effort needed for calculating l2hj is based on the complexity

of statistic. For the linear estimator in stratified cluster sampling:

θ̂ =
∑
h,j

y′hj

where

y′hj =
∑

k

ωhjkyhjk

is the sum of y′s in every cluster j in each stratum h, and ωhjk is the design weights

then

l2hj = nhy
′
hj −

∑
j

y′hj

For the ratio of two calibrated estimators,

θ̂ =
1TWy

1TWz

, the chain rule gives

l2hj =
lyhj − θ̂lzhj

1TWz

where where lyhj, l
z
hj are the empirical influence values calculated from the data ana-

lytically, y and z are the vectors of the observations in the data set.
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When the sampling fractions fh are small the formula (3.30) may be also used for

sampling without replacement. Its main advantage is that it is less computation-

ally demanding, while it usually retains the good properties of the original Jackknife

method. But, if non-linear statistics are considered, the derivation of separate for-

mulae is needed, as is the case with all linearized estimators. Then, its usefulness

for complex analysis of survey data or elaborate sample designs has some limitations

(Rao, 1997; Canty and Davison, 1999).

Bootstrap estimator

The bootstrap was originally designed for use with independent observations. It was

developed outside the field of survey sampling theory by Efron (1979, 1982). There

are still some issues that need to be investigated such as non-independence between

observations in the case of sampling without replacement as well as other complex-

ities. Several studies have been carried by Sarndal et al. (1992) and Shao and Tu

(1995) among others.

However, the bootstrap main idea consists of drawing a series of independent samples

from the sampled observations, using the similar sampling design as one by which the

initial sample was drawn from the population and calculating an estimate for each

of the bootstrap samples. Therefore, in order to get an unbiased result the variance

of the bootstrap estimator is multiplied with an appropriate constant. In the case of

stratified sample designs, resampling is carried out independently in each stratum.

Its main disadvantage is that it is too time consuming.

Balanced repeated replication method

Balanced repeated replication (BRR) was originally developed for stratified multi-

stage designs where in each stratum two primary sampling units (PSUs) or clusters

are drawn with replacement at the first stage (McCarthy, 1969). A replicate sample or

a half-sample is obtained by deleting one PSU per stratum and doubling the original

weight of the remaining PSU. The BRR variance estimation of a full sample estimator

θ̂ is given by Wolter (2007), Rust (1985) and Shao and Tu (1995)

V (θ̂) = H−1

H∑
h=1

(
θ̂h − θ̂

)
(3.31)
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where θ̂h is an estimator of θ using hth balanced half sample and H is the total number

of replicates. For more details we refer to Wolter (2007); Rust (1985) and Shao and

Tu (1995).

In a case where the clusters have variable number of units, the division of them into

two groups is required and thus modifications have been developed. For example, for

the stratified designs one has to treat each stratum as if it were a cluster, and to use

divisions of the elements into two groups.

In non-linear cases, one or more replicate estimators θ̂r may be undefined but the

full sample estimator θ̂ is defined. Fay’s BRR method adjusts the original weight

by a coefficient ε, with 0 ≤ ε < 1 so that the replicate estimators are defined for all

replicate samples. The Fay’s BRR variance estimator of θ̂ is given by Fay (1989);

Judkins (1990) and Rao and Shao (1999) as

V (θ̂) =
[
H (1− ε)2]−1

H∑
h=1

(
θ̂h − θ̂

)
(3.32)

If ε = 0, then Fay’s BRR method reduces to the traditional BRR method in equation

(3.31).

But, if there is an odd number of elements in the stratum the results are biased, and

ways of reducing this bias but not eliminating it are described in Slootbeek (1998).

Rao and Shao (1996) shows that only by using repeated division (repeatedly grouped

balanced half samples) can an asymptotical correct estimator be obtained.

The main advantage of BRR method over the Jackknife is that it leads to asymp-

totically valid inferences for both smooth and non-smooth function (Rao, 1997), but

it is not simply applicable for arbitrary sample sizes nh like the bootstrap and the

Jackknife techniques.

Random groups method

The main idea of random groups method of variance estimation consists of drawing

a number of samples (replicates) from the population, usually using the same sam-

pling design for each sample; estimating the parameter of interest for each replicate

and assessing its variance based on the deviations of these statistics from the cor-

responding statistics derived from the combination of all replicates (Wolter, 1985,
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2007). The random groups technique can be divided into two main fundamental vari-

ations, based on whether the replicates are mutually independent or whether there

is a dependency between random groups (Sarndal et al., 1992). The independent

random groups method has its origin in the work by Mahalanobis (1939, 1944, 1946)

and Deming (1956). Mahalanobis called it interpenetrating samples whereas Dem-

ing called it replicated samples. This technique provides unbiased linear estimators.

However, in the case of nonlinear estimator, a small technical bias may occur (WHO,

1995).

The idea of dependent random group was first described by Hansen et al. (1953). The

dependent random group technique is an attempt to adapt the independent random

technique to a sample that does not satisfy the requirements of independent random

groups.

In the case of dependent random groups, a bias is introduced in the results, but this

bias tends to be negligible for large-scale surveys with small sampling fraction. In

this condition the uniformity of the underlying sampling design of each replicate is

a prerequisite for safeguarding the acceptable statistical properties of the random

groups variance estimator.

3.3. Application

Introduction

In this application, we have used households data in the case of poverty. The main

interest was to identify the factors associated to the poverty of households, where

the outcome variable was binary (a household is poor or not), and malnutrition was

measured on ordinal scale (severely malnourished if z-score < −3.0, moderately mal-

nourished if −3.0 ≤ z-score < −2.0 and nourished if z-score ≥ −2.0).

We considered both classical and survey binary and ordinal logistic regression in the

analysis of the data and compared the results.

3.3.1. Analysis of demographic and health survey to measure poverty

of household in Rwanda.

Let the response variable be 1 if the household is poor and 0 if the household is not
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poor. Therefore the fitted logistic regression model is given by

logit(µi) = log

(
µi

1− µi

)
= X ′

iβ (3.33)

where µi = E(Yi) = Pr(Yi = 1), X ′
i is a vector of explanatory variables and β is a

vector of unknown parameters. We considered as explanatory variables the character-

istic of household head (level of education, gender, age), characteristic of household

(size or number of household members) as well as spatial characteristics (province and

place of residence of household) and their interaction. We used the deviance analysis

for the model selection. The potential confounder was controlled by retaining all the

main effects in the model. Thereafter we examined the fitting of each interaction

effect one at time.

The deviance of the model with all main effects was 7256.980 and the deviance for

the model with all main effects and three interactions was reduced to 7181.518. This

deviance is smaller than all other nested models.

Table 3.1. Pearson chi-square statistics test for association between
demographic characteristics with SES

Explanatory variable χ2-value df P-value

Province/Region 1115.776 4 < .0001

Place of residence 707.616 1 < .0001

Gender of the household head 283.262 1 < .0001

Education level of household head 1001.810 3 < .0001

Age of the household head 294.376 84 < .0001

Size of the household 243.376 17 < .0001

Before accepting the final model, we carried out diagnostics to see whether the model

fits the data well. The goodness-of-fits was tested by Hosmer-Lemeshow test and it

was 7.3263 with 8 degree of freedom with p-value=0.5019. As the value of p-value is

large and nonsignificant, this shows that the model fits the data well. The observed

and expected frequencies are given in Table 3.2 We tested the appropriateness of

linear predictor by refitting the model with a linear predictor and its square as pre-

dictor variables. The results shown in Table 3.3 suggests that the link function is

appropriate as the linear predictor was significant (p-value< .0001) whilst its square

linear predictor is insignificant (p-value=0.1821) Table 3.3.
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Table 3.2. Partition for the Hosmer and Lemeshow test

Group Total Event=poor Non-event=not poor
observed expected observed expected

1 1244 20 28.40 1224 1215.60
2 1245 192 179.52 1053 1065.48
3 1248 335 342.17 913 905.83
4 1244 431 423.73 813 820.27
5 1244 506 503.85 738 740.15
6 1244 544 547.87 700 696.13
7 1244 628 614.15 616 629.85
8 1244 653 680.07 591 563.93
9 1245 772 762.45 473 482.55
10 1242 891 889.79 351 352.21

Table 3.3. Criteria for assessing the link function

Effect Estimate Standard error Wald χ2 df P-value

Intercept 0.0076 0.0217 0.127 1 0.7261

Linear predictor 0.9700 0.0346 788.05 1 < .0001

Square linear predictor -0.0234 0.0176 1.78 1 0.1821

Figure 3.1. Index plot of the Cook’s distance for the fitted model
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From Figure 3.1, we see that none of the Cook’s distance for the fitted model is

bigger than 1; this suggests that there are no observations with undue influence on

parameter estimate. Therefore the final fitted model is given by

logit (Pr(yi = 1|Xi)) = β0 + β1Educationi + β2Provincei (3.34)

+ β4Place of residencei + β5Sizei

+ β6Agei + β7Provincei ∗ Place of residencei

+ β8Genderi ∗ Agei + β9Agei ∗ Sizei

The characteristics of the household head are important to the living conditions of

all household members. From Table 3.4, the logistic regression results show that

the poverty increases with decreasing the level of education of the household head.

A household headed by a household head with secondary education is 6.481 (p-

value=0.0017) times more likely to be poor than a household headed by a household

head with a higher education. A household headed by a household head with primary

education is 24.416 (p-value < .0001) times more likely to be poor than a household

headed by a household head with a higher education, and a household headed by a

household head with no education is 41.971 (p-value < .0001) more likely to be poor

as compared to a household headed by a household with a higher education.

Interaction effect

The joint effect of gender and age of the household head is presented in Figure 3.2.3.a.

From Figure 3.2.3.a, we observe that a household headed by a female is more likely

to be poor as compared to a household headed by a male from 21-72 years old. Fur-

thermore, from 72 years old a household headed by a female is less likely to be poor

than a household headed by a male. It is also interesting to note the relationship

between age of household head and the size of the household. Figure 3.2.3.c shows

that poverty decreases with the increasing age of the household head regardless of

the size of the household. Furthermore, for a household headed by a young person

of 21 years old, poverty increases as the size of the household increases. This result

suggests that old people should not live alone and that households headed by young

household head should be monitored by experienced household members.
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The relationship between provinces (Kigali city, Southern, Western, Northern and

Eastern) and place of residence (urban or rural) is presented in Figure 3.2.3.b. Each

province of Rwanda has urban and rural places. As Figure 3.2.3.b indicates, an ur-

ban household is less likely to be poor compared to a rural household in all provinces.

These results revealed that a rural household from Southern province is the poorest

Figure 3.2.3.b, while rural households from Western and Northern provinces are al-

most the same but more likely to be poor compared to a rural household from Eastern

province. A rural household from Kigali is less likely to be poor as compared to a

rural household from Eastern province Figure 3.2.3.b.
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Figure 3.2. Interaction effects 
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Table 3.4. Parameter estimates from binary logistic regression with
main effect for poverty of households

Indicator Estimate S.E P-Value OR

Intercept -3.6762 .6079 < .0001 .025

Province

Eastern reference

Kigali -.9591 .1864 < .0001 .383

South .8497 .0575 < .0001 2.339

West .5415 .0584 < .0001 1.719

North .5796 .0636 < .0001 1.785

Gender of the household head

Female reference

Male -.8678 .1356 < .0001 .420

Education of Household head

Higher reference

Secondary 1.8689 .5945 .0017 6.481

Primary 3.1952 .5870 < .0001 24.416

No education 3.7370 .5880 < .0001 41.971

Age of the household head .012 .003224 .0002 1.012

Size of household .0777 .0348 .0257 1.081

Place of residence

Rural reference

Urban -.2323 .2156 .2811 .793

3.3.2. Binary survey logistic regression applied to the risk factors as-

sociated to the poverty of households.

As previously stated, the main objective of this study is to identify the key deter-

minants of poverty of households in Rwanda based on 2010 RDHS. As the data was

collected under multistage sampling, this study extends Habyarimana et al. (2015a)

to include the design effect.
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Table 3.5. Parameter estimates from binary logistic regression with
interaction effects for poverty of households

Indicator Estimate SE P-Value OR

Intercept -3.6762 .6079 < .0001 .02

Province and place of residence

Eastern and rural reference

Kigali and urban -1.2489 .3284 .0001 .287

South and urban -.6758 .2470 .0062 .509

West and urban -7730 .3115 .0131 .462

North and urban .1123 .3092 .7164 1.119

Gender and age of the household head

Female reference

Male and age of the household .012 .00282 < .0001 1.012

Size of household and age of household head continuous variable no reference

size and age of the household head -.00461 .000727 < .0001 .995

Let the response variable be yijh = 1 if the ithhousehold is poor and be 0 otherwise.

Then, the fitted survey logistic regression model is given by

logit (πijh) = log

(
πijh

1− πijh

)
= x′ijhβ (3.35)

where πijh = E(yijh|x′ijh), x′ijh is a vector of explanatory variables and β is a vector

of unknown parameters.

Data analysis

We have used SAS 9.3 PROC SURVEYLOGISTIC procedure to analyze the data,

where the deviance was used to select the best model. The model was fitted to

each predictor one at time, where the significant predictor variables were used in

multivariate logistic regression model. Besides the main effect, we have also included

the two-way interaction effects. Afterwards, the selected model was the one of smallest

changes in deviance from all nested models and it is reported in Table 3.6 and this is

the full model including two-way interaction effects.

3.3.3. Results and Interpretation.

In this study we have not only considered the main effects but also the two way in-

teraction effects.

Main effects
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From Table 3.9, the logistic regression results show that poverty increases with de-

creasing the level of education of the household head. A household headed by a

household head with secondary education is 6.859 (p-value=0.0015) times more likely

to be poor as compared to a household headed by a household head with a higher

education (tertiary level); a household headed by a household head with primary

education is 25.175 (p-value < .0001) times more likely to be poor as compared to

a household headed by a household head with a higher education; and a household

headed by a household head with no education is 42.512 (p-value < .0001) more likely

to be poor as compared to a household headed by a household with a higher educa-

tion.

Interaction between gender and age of household head

The results of joint effect of gender and age of household head on household asset

index are presented in Figure 3.5. From this figure, it is observed that a household

headed by a female is 1.012 times more likely to be poor than a household headed by

a male. This is in line with NISR et al. (2012); Habyarimana et al. (2015a).

Interaction between the size of household and age of the household

The joint effect of size of household and age of household head on the household

asset index is presented in Figure 3.4. Figure 3.4 shows that poverty decreases with

increasing age of the household head regardless of the size of the household. Further-

more, for a household headed by a young person 24 years old, poverty increases as

the size of the household increases. As Figure 3.4 indicates, the poverty of household

of one person increases with increasing age.

Interaction between province and place of residence

The relationship between provinces (Kigali city, Southern, Western, Northern and

Eastern) and place of residence (urban or rural) of the household head is presented

in Figure 3.3. Each province of Rwanda has urban and rural places; as Figure 3.3

indicates, a household from urban is less likely to be poor than a household from

rural in all provinces of Rwanda, this is in line with RDHS NISR et al. (2012). This

result revealed that a rural household from Southern province is the poorest, while a

rural household from Western and Northern province are almost the same but more

likely to be poor as compared to a rural household from Eastern province. A rural
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household from Kigali is less likely to be poor as compared to a rural household from

Eastern province Figure 3.3. From Figure 3.3, we see that the urban household from

Kigali, Western and Southern province are less likely to be poor compared to eastern

province. The urban and rural households from Southern and Western province dif-

fer largely whereas the urban and rural household from Kigali, Northern and Eastern

provinces the disparities are small Figure 3.3.

Figure 3.3. Interaction effect between province and place of residence
of household head

Table 3.6. Type 3 Analysis of effects for the survey logistic model

Effects Waldχ2 df P-value

Province/Region 91.9929 4 < .000

Place of residence 10.0542 1 0.3045

Gender of the household head 37.9931 1 < .000

Highest level of education of household head 300.7408 3 < .000

Age of the household head 14.8441 1 < .000

Size of the household 3.7271 1 .0535

Region/Province*place of residence of household head 10.1946 1 0.0373

Gender*Age of the household head 16.4472 1 < .000

Age of the household head*size of the household 33.7280 1 < .000
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Figure 3.4. Interaction effect between size of the household and age
of household head

Figure 3.5. Interaction effect between age and gender of household head

The concordance index in Table 3.7 suggested that 73.9 % of the probability of poverty

of household is predicted correctly which is very good prediction for the survey logistic

model. Table 3.8 shows the likelihood ratio, the efficient score test, and the Wald

test for testing the significance of the explanatory variable. As a result all these tests

are highly significant.
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Table 3.7. Model fit statistics

Criterion Intercept only Intercept and covariates

AIC 16801.469 14559.562

SC 16808.898 14693.284

-2log L 16799.469 14523.562

C 0.739

Table 3.8. Testing global null hypothesis

Test Wald χ2 DF p-value

Likelihood Ratio 2275.9068 17 < .0001

Score 1873.1809 17 < .0001

Wald 94.7871 17 < .0001

The results from Table 3.10 show that the estimates are the same when Taylor and

Jackknife estimation for variance are used. However, the standard deviation are

higher when the Jackknife is used, as a result the p-values also for some covariates

are significant in Taylor case and not significant for Jackknife method. This means

that Taylor method may underestimate the variance. For this reason we used Jack-

knife approximation technique to estimate the variance in the following analysis.

Comparison between the results from classical and survey logistic regres-

sion

Table 3.11 presents the comparison of results from classical binary logistic regression

and survey logistic regression. In general the results from these two methods are dif-

ferent due to sampling stratification and sampling weights. The standard deviation

from the classical binary logistic regression model are small compared to the standard

deviation produced by survey logistic regression. This means that the classical logistic

regression model tends to underestimate the variance, as consequence some explana-

tory variables may be statistically significant when the classical logistic regression

model is fitted to the data but no significant when the survey logistic regression is

used. This is the case where the variables such as household from urban Western and

household from Northern province are not statistical significant in the case of survey
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Table 3.9. Parameter estimate from binary survey logistic regression

for poverty of household

Indicator Estimate S.E P-Value OR

Province and place of residence

Eastern reference

Kigali -0.9473 .3400 .0053 .388

South 0.8295 .0.0978 < .0001 2.292

West 0.5137 .1124 < .0001 1.671

North .0.5635 .1068 < .0001 1.757

Gender of household head

Female reference

Male -0.8583 .1393 < .0001 .424

Education of Household head

Higher reference

Secondary 1.9255 .6069 .0015 6.859

Primary 3.2258 .6082 < .0001 25.175

No education 3.7498 .6061 < .0001 42.512

Age of the household head .0121 .00313 .0001 1.012

Size of household .0698 .0361 .0535 1.072

Place of residence

Rural reference

Urban -.2307 .2247 .3045 .794

Province and place of residence

Eastern and rural reference

Kigali and urban -1.3403 .5356 .0123 .262

South and urban -.6979 .3290 .0339 .498

West and urban -0.8477 .5548 .1265 .428

North and urban .0591 .5151 .9086 1.061

Gender and age of the household head

Female reference

Male and age of the household .0119 .00293 < .0001 1.012

Size of household and age of household

Size and age of the household head -.00445 .000767 < .0001 .996

Intercept -3.6771 .6382 < .0001
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Table 3.10. Comparison between the results from binary survey logis-
tic regression with Taylor and Jackknife variance estimation for poverty
of household

Taylor Jackknife

Indicator Estimate S.E P-Value Estimate S.E. P-value

Intercept -3.6771 .6382 < .0001 -3.6771 .7566 < .0001

Province and place of residence(Eastern=ref)

Kigali -0.9473 .3400 .0053 -0.9473 .3950 .0165

South 0.8295 .0.0978 < .0001 .8295 .0979 < .0001

West 0.5137 .1124 < .0001 .5137 .1126 < .0001

North .0.5635 .1068 < .0001 .5635 .1069 < .0001

Gender of household head(Female=ref)

Male -0.8583 .1393 < .0001 -0.8583 0.1399 < .0001

Education of Household head(higher=ref)

Secondary 1.9255 .6069 .0015 1.255 0.7273 .0081

Primary 3.2258 .6082 < .0001 3.2258 0.7295 < .0001

No education 3.7498 .6061 < .0001 3.7498 0.7272 < .0001

Age of the household head .0121 .00313 .0001 0.121 0.00315 0.0001

Size of household .0698 .0361 .0535 0.0698 0.0364 0.0549

Place of residence(rural=ref)

Urban -.2307 .2247 .3045 -0.2307 0.2747 0.4009

Province and place of residence (Eastern and rural=ref)

Kigali and urban -1.3403 .5356 .0123 -1.3403 0.6185 0.0302

South and urban -0.6979 0.3290 0.0339 -0.6979 0.3743 0.00623

West and urban -0.8477 0.5548 0.1265 -0.8477 0.7165 0.2368

North and urban 0.0591 0.5151 0.9086 0.0591 0.6653 0.9292

Gender and age of the household head(female=ref)

Male and age of the household 0.0119 0.00293 < .0001 0.0119 0.00294 < .0001

Size and age of household head no reference

Size and age of the household head -0.00445 0.000767 < .0001 -0.00445 .000771 < .0001

logistic model (p-value=.7730 and p-value= 1123 respectively) whereas in logistic re-

gression without sampling design only the household from urban Northern was not

statistically significant (p-value=.716).
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Table 3.11. Comparison between the results from binary logistic re-
gression and binary survey logistic regression for poverty of household

Survey Logistic classical logistic

Indicator Estimate S.E P-Value Estimate S.E. P-value

Province and place of residence

Eastern reference

Kigali -0.9473 .3400 .0053 -0.991 .14 < .0001

South 0.8295 .0.0978 < .0001 .8497 .0575 < .0001

West 0.5137 .1124 < .0001 .5415 .0584 < .0001

North .0.5635 .1068 < .0001 .5796 .0636 < .0001

Gender of household head

Female reference

Male -0.8583 .1393 < .0001 .-.8678 .1356 < .0001

Education of Household head

Higher reference

Secondary 1.9255 .6069 .0015 1.8689 .5945 .0017

Primary 3.2258 .6082 < .0001 3.7370 .5880 < .0001

No education 3.7498 .6061 < .0001 3.7370 .5880 < .0001

Age of the household head .0121 .00313 .0001 .0122 .00324 .0002

Size of household .0698 .0361 .0535 .0777 .0348 .0257

Place of residence

Rural reference

Urban -.2307 .2247 .3045 -.2323 .2156 0.2811

Province and place of residence

Eastern and rural reference

Kigali and urban -1.3403 .5356 .0123 -1.2489 0.3284 .0001

South and urban -.6979 .3290 .0339 -.6758 .2470 .0062

West and urban -0.8477 .5548 .1265 -.7730 0.3115 .0131

North and urban .0591 .5151 .9086 .1123 .3092 .7164

Gender and age of the household head

Female reference

Male and age of the household .0119 .00293 < .0001 .0122 .00282 < .0001

Size of household and age of household head

Size and age of the household head -.00445 .000767 < .0001 -.00461 .000727 < .0001

Intercept -3.6771 .6382 < .0001 -3.6762 .6079 < .0001

3.3.4. A proportional odds model with sampling design to identify the

determinants of malnutrition of children under five years in Rwanda.

Introduction

The main objective of this subsection is to extend classical ordinal logistic regres-

sion to ordinal logistic regression with complex sampling weights to identify the key

determinants of underweight among children under five years in Rwanda. We have
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considered the anthropometric indicator for underweight (weight-for-age). Stunt-

ing and wasting can be modeled in a similar way. The children’s nutrition sta-

tus can be categorized as nourished (z-score ≥ −2.0), moderately undernourished

(−3.0 ≤ z-score < −2, 0) and severely undernourished (z-score < −3.0) which made

response variable to be ordinal from a continuous variable data. Therefore, nutrition

status in this research is an ordinal response variable obtained from grouped contin-

uous variables. Therefore, it is convenient to use ordinal logistic regression models

(McCullagh, 1980; Ananth and Kleinbaum, 1997; Hosmer et al., 2000; Agresti, 2002;

Collet, 2003; Agresti, 2007; Das and Rahman, 2011; Habyarimana et al., 2014). How-

ever, it can also be categorized as malnourished ( z-score < −2.0) and nourished

(z-score ≥ −2.0) and in this case the binary (survey) logistic regression model can be

used.

Data analysis

The data analysis was firstly done using SAS 9.3 with PROC LOGISTIC procedure

in case of proportional odds model without sampling design. We have also used Brant

test command of Stata Spost package to find the single score test for each explanatory

variable.

Table 3.12. Model fit statistic

Criterion Intercept only Intercept and covariates

AIC 2490.263 2359.929

Sc 2502.185 2467.221

-2LOGL 2486.263 232.929

Table 3.13. Testing global null hypothesis:β = 0

Test χ2 DF Pr>ChSq

Likelihood Ratio 162.3344 16 < .0001

Score 158.6541 16 < .0001

Wald 137.9101 16 < .0001

However due to the nature of sampling technique used in Demographic Health Survey,

we have extended proportional odds model without sampling design to proportional

odds model with sampling design to account for complexity of sampling design (Liu
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Table 3.14. Type 3 analysis of effects for POM without sampling
weight for malnutrition of children under five years

Effect DF Wald Chi-Square Pr>ChSq

Birth order 3 29.3769 < .0001

Mother’s education 2 21.3041 < .0001

Gender of the child 1 11.3570 0.0008

Knowledge on nutrition 1 4.6247 0.0315

Birth weights 1 22.7213 < .0001

Multiple birth 2 13.1069 0.0014

Anemia 1 7.9663 0.0048

Marital status 3 9.9613 0.0189

BMI 1 18.5003 < .0001

Had fever 1 7.1224 0.0076

and Koirala, 2013) where the variance was estimated by replicated sampling methods

(Jackknife). Finally SAS 9.3 with PROC SURVEYLOGISTIC procedure was used to

fit ordinal logistic regression with sampling design. The final model in both models

is the same and is given by

logitP (Y ≤ j|X) = γj + β1BMI + β2Birth order + β3Gender of the child

+ β4Birth weight + β5Fever + β6Multiple births

+ β7Mother’s education level + β8Mother’s marital status

+ β9Anemia + β10Knowledge on nutrition, j = 1, 2, 3

Results and interpretations from POM with sampling weights

The score test of proportional odds assumption is found not significant at 5% level

of significance(p-value=0.6421) see Table 3.19; this means that the proportional odds

assumption is satisfied. The single score test for each explanatory variable is also not

significant at 5% level of significance which also confirmed the validity of proportional

odds model Table 3.15. The results in Table 3.19 revealed that the children born at

2-3, 4-5 and 6+ birth order were found 2.183 (p < .0001), 2.235(p=0.0002) and 3.062
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Table 3.15. Parameter estimate from POM without sampling design

for underweight

Indicator Estimate S.E P-Value OR Single p-value

Intercept1 -5.554 0.5391 < .0001

Intercept2 -3.6564 0.5258 < .0001

Birth order(first=ref) 0.133

2-3 0.7505 0.1789 < .0001 2.118(1.492,4.196)

4-5 0.7300 0.1980 0.0002 2.075(1.408,3.059)

6+ 1.0492 0.1964 < .0001 2.855(1.943,4.196)

Mother’s education(secondary or higher=ref) 0.413

Primary 1.9191 0.4535 < .0001 6.815

No education 2.1339 0.4650 < .0001 8.448

Gender of the child(male=ref) 0.996

Female -0.4013 0.1191 0.0008 0.669

Knowledge on nutrition(No=ref 0.4171

Yes -0.2768 0.1287 0.0315 0.758

Birth weights(≥ 2500g=ref) 0.837

< 2500g 1.1848 0.2467 < .0001 3.270(2.016,5.304)

Multiple birth(singleton=ref) 0.539

First multiple 1.3445 0.4198 0.0014 3.836

Second multiple and more 0.7221 0.3980 0.0696 2.059

Anemia(No=ref) 0.492

Anemic 0.3327 0.1179 0.0048 1.395

Marital status(divorced/separated=ref) 0.757

Never in union -0.2268 0.3258 0.4864 0.797

Married/ partner -0.6268 0.2186 0.0041 0.53

Widowed -0.4261 0.4132 0.3024 0.653

BMI(≥ 18.5=ref) 0.538

BMI< 18.5 0.9272 0.2158 < .0001 2.527

Had fever(No=ref) 0.282

Yes -0.3842 0.1440 0.0076 0.681

Score test for proportional odds assumption χ2 = 14.868 Df=16 p-value=0.5343

Goodness of fit(likelihood ratio) χ2 = 162.334 Df=16 p-value< .0001

(p < .0001) times more likely to be in worse nutrition status respectively as compared

to children born at first order. The risk of having worse nutrition status were 12.247

(p < .0001) and 10.555 (p < .0001) times higher for children born to mother without

education and mother with primary education respectively as compared to children

born to mother with secondary or higher education see Table 3.19. In the same

Table, it was found that the female children were 0.687(p < .0001) times less likely
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to be in worse nutrition status as compared to male children. The risk of having

worse underweight status were 3.192 (p-value=0.0033) times higher among children

born with lower weight (< 2500g) as compared to children born with higher weight

≥ 2500g Table 3.19.

A child born at first multiple (twin) is 3.574 (p=0.0020) times more likely to be

in worse nutrition status than a singleton child at birth and the effect of second

multiple birth was not significant (p=0.1302). The incident of anemia significantly

affects the nutrition status of the child. The risk of having worse underweight was

1.403 (p-value=0.0045) times higher among the children born to anemic mother than

children born to non-anemic mother. A child born to married mother or mother

living with a partner was 0.577 (p=0.0166) times less likely to be in worse nutrition

status as compared to child born to divorced or separated mother; however, the effect

of child born to widower or mother who has never been in union was not significant

as compared to child born to divorced or separated mother. A child born to thin

mother (BMI < 18.5) was 2.601 (p-value=0.0002) times more likely to be in worse

nutrition status as compared to a child born to normal or obese mother (BMI ≤ 18.5).

Children who did not have a fever during the two weeks before the survey were 0.705

(p=0.0283) times less to be in worse nutrition status than a child who was reported

to have had fever in two weeks prior to the survey.

Table 3.16. Model fit statistic POM with sampling weights for underweight

Criterion Intercept only Intercept and covariates

AIC 2529.518 2394.885

Sc 2541.439 2502.177

-2LOGL 2525.518 2358.885

Table 3.17. Testing global null hypothesis:β = 0 for POM with sam-
pling weights for underweight

Test Chi-Square DF Pr>χ2

Likelihood Ratio 166.6333 16 < .0001

Score 159.0842 16 < .0001

Wald 126.3620 16 < .0001
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Table 3.18. Type 3 analysis of effects: POM with sampling weights
for underweight

Effect DF Wald Chi-Square Pr> χ2

Birth order 3 31.8592 < .0001

Mother’s education 2 19.8760 < .0001

Gender of the child 1 8.6546 0.0033

Knowledge on nutrition 1 3.7666 0.0523

Birth weights 1 20.5149 < .0001

Multiple birth 2 10.5369 0.0052

Anemia 1 8.0582 0.0045

Marital status 3 8.8754 0.0310

BMI 1 13.9095 0.0002

Had fever 1 4.8104 0.0283
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Table 3.19. Comparison of the POM with and without complex sur-

vey design for underweight

POM unweighted POM weighted

Indicator Estimate SE P-Value Estimate OR SE P-VALUE

Intercept1 -5.554 0.5391 < .0001 -6.1520 0.6432 < .0001

Intercept2 -3.6564 0.5258 < .0001 -4.2422 0.6318 < .0001

Birth order(first=ref)

2-3 0.7505 0.1788 < .0001 0.7807 2.183 0.1711 < .0001

4-5 0.7320 0.1980 0.0002 0.8043 2.235 0.2190 0.0002

6+ 1.0510 0.1964 < .0001 1.1190 3.062 0.2050 < .0001

Mother’s education(secondary or higher=ref)

Primary 1.9191 0.4535 < .0001 2.3566 10.556 0.5649 < .0001

No education 2.1339 0.4650 < .0001 2.5053 12.247 0.5637 < .0001

Gender of the child(male=ref

Female -0.4013 0.1191 0.0008 -0.3753 0.687 0.1276 0.0033

Knowledge on nutrition(No=ref)

Yes -0.2768 0.1287 0.0315 -0.2806 0.765 0.1380 0.0523

Birth weights(≥ 2500g=ref)

< 2500g 1.1736 0.2462 < .0001 1.1607 3.192 0.2563 < .0001

Multiple birth(singleton=ref)

First multiple 1.3445 0.4198 0.0014 1.2737 3.574 0.4129 0.0020

Second multiple and more 0.7221 0.3980 0.0696 0.6080 1.837 0.4018 0.1302

Anemia(No=ref)

Anemic 0.3327 0.1179 0.0048 0.3389 1.403 0.1194 0.0045

Marital status(Divorced/separated=ref)

Never in union -0.2268 0.3258 0.4864 -0.0568 0.945 0.3435 0.8687

Married/ partner -0.6268 0.2186 0.0041 -0.5494 0.577 0.2293 0.0166

Widowed -0.4261 0.4132 0.3024 -0.2960 0.744 0.5003 0.5541

BMI(< 18.5=ref)

BMI< 18.5 0.9272 0.2156 < .0001 0.9559 2.601 0.2563 0.0002

Had fever(Yes=ref)

No -0.3842 0.1440 0.0076 -0.3497 0.705 0.1595 0.0283

Score test for proportional odds assumption χ2 = 14.8680 Df=16 p-value=0.5343 χ2 = 13.4160 Df=16 p-value=0.6421

Goodness of fit(likelihood ratio) χ2 = 162.334 Df=16 p-value< .0001 χ2 = 166.633 DF=16 p-value< .0001

3.4. Summary

In this chapter we have considered classical binary and ordinal logistic regression

models as well as binary and ordinal survey logistic regression models to fit the

households (poverty case) and women data (in malnutrition case).

In poverty case, we used classical binary and survey binary logistic regression model

to identify the factors associated to the poverty of households. Taylor linearization

method and Jackknife method were used to estimate the variance and the results were

compared. It was found that the standard errors from Taylor linearization is smaller

than the standard error produced by Jackknife. Taylor linearization method tends
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to underestimate the variance. For this reason we have considered the results found

under Jackknife variance estimation method. Further, the results from this study

revealed that the demographic and spatial profile of poor households are: education of

household head, gender of household head, age of household head, place of residence

(urban or rural), region(province), and size of household. In addition, this study

found that the majority of poor households have low standards of education. This

suggests that there is a need to improve existing access to higher education. We have

also considered the two way interaction effects between place of residence (urban

or rural) and province, gender of household head and age of household head, size

of the household and age of household head. It was then found that a household

from rural is more likely to be poor compared to a household from urban in all

provinces. This supports the existing policy of grouped settlement where people

are advised to build their house in a township known as Imidugudu. But this also

suggests a special policy for targeting poverty reduction in rural households. The

rural household from Southern province was found to be more likely poor compared

to other households from other provinces; this suggests provincial targeting in poverty

reduction. The findings from comparison of the results from classical binary logistic

regression and binary survey logistic regression discouraged the use of binary logistic

regression without sampling weights. Therefore, when using DHS data it is advised

to account for complexity of sampling design.

The malnutrition indicator considered in this chapter was underweight. The analysis

based on stunting and wasting can be done in a similar way. The anthropometric in-

dicator for underweight (weight-for-age) was considered in this study and categorized

as severely malnourished, moderately malnourished and nourished and this made the

response variable to be ordinal. The proportional odds model with sampling weights

and without sampling weights were used and their results were compared. This study

revealed that the determinants of malnutrition (underweight case) of children under

five years in Rwanda are birth order, mother’s education, gender of child, birth weight,

multiple birth, body mass index, anemia, marital status and whether the child had or

had not fever in two weeks before the survey. The findings from the comparison of the

results from proportional odds model with sampling weights and without sampling
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weights revealed as in binary case that it is better to include sampling weights when

the data was collected using multistage sampling in order to make statistically valid

inferences from the finite population.

The primary sampling units might have variability between them. In order to account

for this variability, in the next chapter we use generalized linear mixed model(GLMM).
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CHAPTER 4

Generalized Linear Mixed Model

The ordinal and binary survey logistic regression models discussed in chapter 3 assume

all the variables effect as fixed effect. They do not have options to include the random

effects. However these are situations in which the effect of the variable is random. For

instance in the poverty determinants study using the DHS data, the primary sampling

units (clusters) are considered to be a random effect. Therefore this chapter uses

generalized linear mixed model (GLMM) which offers an option to include random

effect.

4.1. Model formulation

Let Yij be the outcome measured for cluster i, i = 1, 2, ..., N, j = 1, 2, ..., ni and Yi be

the ni-dimensional vector of all measurements available for cluster i, conditionally on

random effects bi, it is assumed that the elements of yij for yi are independent and

yij has the following density

fi(yij|bi, β, φ) = exp

[
yij(θij)− ψ(θij)

φ
+ c(yij, φ)

]
(4.1)

where µij, the conditional mean of yij is modeled through a linear predictor containing

both fixed and random factors given by g(µij) = g(E[yij|b]) = x′ijβ + z′ijbi, where g(.)

is the link function, x′i is the ith row matrix for the fixed effects, z′ij is the ith row

matrix for the random effects, β is the fixed effect parameter vector, b is the random

effect parameter vector and b ∼ N(0, D), φ is a scale parameter and θ is the natural

parameter. The marginal mean, variance and co-variances are given in McCulloch

(2001) as follows. The marginal mean of y is given by

E[yij] = E[E[yij|bi]]

= E[µi]

= E[g−1
(
x′ijβ + z′ijbi

)
] (4.2)

72



In general the equation (4.2) cannot be simplified because of nonlinearity of the

function g−1(.). In a linear mixed model, the induced marginal mean is reduced to

E(yij) = X ′
ijβ. The marginal variance of yij is given by

var(yij) = var(([yij|b]) + E [var(yij|b)] (4.3)

= var(µi) + E
[
τ 2ν(µij)

]
= var

(
g−1

[
X ′

ijβ + Z ′ijbi
])

+ E
[
exp{X ′

iJβ + Z ′ijbi}
]

where the equation (4.3) cannot be simplified without making precise assumption

about the form of g(.) and/or conditional distribution of yij. The use of random

effects introduces a correlation between the observations that have any random effect

in common. Assuming conditional independence on yi, the marginal covariance is

given by

cov(yij, yik) = cov (E [yij|bi] , E [yik|bi]) + E [cov (yij, yik|bi)] (4.4)

= cov
(
g−1

[
X ′

ijβ + Z ′ijbi
]
, g−1 [X ′

ikβ + Z ′ikbi]
)

4.2. Model parameter estimation

The generalized linear mixed model is fitted using either Bayesian or likelihood ap-

proaches. In the Bayesian case, there is a need to specify the prior densities and

thereafter the posterior distribution can be found (Molenberghs and Verbeke, 2005).

The advantage of Bayesian is the flexibility for full assessment of uncertainty in the

estimated random effects and functions of models parameters; but it has also a major

drawback of intensive computation which require sophisticated computer programs

and questions about when the sampling process has achieved convergence (Breslow

and Clayton, 1993; Agresti, 2002). The Bayesian approach is not considered in this

study.

4.2.1. Maximum likelihood estimation.

The generalized linear mixed model is fitted by maximizing the marginal likelihood,

obtained by integrating out the random effects. The likelihood contribution of the ith
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subject is given by Molenberghs and Verbeke (2005)

fi = fi(yi|β,D, φ) =

∫ ni∏
j=1

fij (Yij|bi, β, φ) f (bi|D) dbi (4.5)

From equation (4.5) the likelihood for β,D and φ can be given as

Li = fi(yi|β,D, φ) =

∫ ni∏
j=1

(yij|bi, β, φ) f (bi|D) dbi (4.6)

Therefore, the likelihood function L is written as follows

L =
N∏

i=1

Li =
N∏

i=1

∫ ni∏
j=1

fij (yij|bi, β, φ) f (bi|D) dbi (4.7)

The key problem when maximizing equation (4.7) is the presence of N integrals over

the k-dimensional random effects bi. In some cases, the equation (4.7) can be worked

out analytically, for example linear mixed models for continuous outcomes, probit-

normal model (Molenberghs and Verbeke, 2005). However, in general, there are no

analytical solutions available for integral (4.7) and therefore numerical approximations

are needed to evaluate the integral (4.7). These numerical approximations can be,

in general, classified into three approaches as follows: approximation of integrand,

approximation of integral and approximation of the data (Molenberghs and Verbeke,

2005).

4.2.1.1. Approximation of Integrand.

The main objective of approximation of integrand is to obtain a tractable integral

such that a closed-form can be obtained to make the numerical maximization of the

approximated likelihood possible. Many approaches have been proposed but basi-

cally all come down to Laplace type approximations of the function to be integrated

(Molenberghs and Verbeke, 2005).

Laplace approach

The Laplace approximation is the most convenient approach to approximate integrals

(Tierny and Kadane, 1986) of the form

I =

∫
eK(b)db (4.8)

where K(b) is a known, unimodal, and bounded function of a k-dimensional variable

b. Let us consider b̂ to be the value of b for which K is minimized. Therefore, the
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second order Taylor series expansion of K(b) around b̂ can be written as

K(b) ≈ K(b̂) +
1

2
(b− b̂)′K ′′(b̂)(b− b̂) (4.9)

where K ′′(b) is equal to the Hessian of K, that means the matrix of the second order

derivative of K, evaluated at b̂. The integral I can be approximated by replacing K(b)

in equation (4.8) by its value from equation (4.9) and becomes

I ≈ (2π)k/2| −K ′′(b̂)|−1/2eK(b̂) (4.10)

The integral (4.7) is proportional to an integral of the form (4.10), for functions K(b)

and is given by:

K(b) = (φ)−1Σni
j=1

[
yij

(
x′ijβ + z′ijb

)
− ψ

(
x′ijβ + z′ijb

)]
− 1

2
b′D−1b (4.11)

such that Laplace’s approximation approach can be used. The Laplace approximation

is exact if K(b) is a quadratic function of b, that means if the integrands in (4.8) are

exactly to normal kernels. Raudenbush et al. (2000) extended the Laplace method by

including higher-order Taylor expansion of equation (4.9) for K up to order six, where

in the simulations study they show that this considerably improves the approximation.

4.2.1.2. Approximation of integral.

When the above approximation methods fail, then numerical integration proves to be

very useful. Consider Gaussian and adaptive Gaussian quadrature, mainly designed

for the approximation of integrals of the form

∫
f(z)c(z)dz (4.12)

for a known function f(z) and c(z) the density of univariate or multivariate standard

normal distribution. Thus, the random effects have to be standardized such that they

get identity covariance matrix. Let δi be equal to δi = D−1/2bi. Then δi is normally

distributed with mean 0 and covariance I, and then the linear predictor becomes

θij = x′ijβ + zijD
1/2δi. As a result, the variance components in D are now contained
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in the linear predictor. Therefore the likelihood contribution for subject i is given by

fi (yi|β,D, φ) =

∫ ni∏
i=1

fij (yij|bi, β, φ) f(bi, D)dbi (4.13)

=

∫ ni∏
i=1

fij (yij|δi, β, φ) f(δi, D)dδi (4.14)

where the random effects bi are assumed to be normally distributed with mean 0 and

covariance D. The expression (4.14) is of the form (4.12) as required to apply the

Gaussian quadrature (Molenberghs and Verbeke, 2005; Antonio and Beirlant, 2007).

Gaussian quadrature

The classical Gaussian quadrature approximates an integral of the form (4.12) by a

weighted sum, namely ∫
f(z)c(z)dz '

K∑
k=1

ωkf(zk) (4.15)

where K is the order of the approximation, the higher K, the more accurate the

approximation will be. In addition, zk are solutions of the Kth order Hermite poly-

nomial and ωk are corresponding weights. In the case of univariate integration, the

approximation involves subdividing the integration region into intervals, and approx-

imating rectangles.

Adaptive Gaussian quadrature

In the adaptive Gaussian quadrature approach, the quadrature points are centered

and scaled as if f(z)c(z) were a normal distribution. The mean of this normal distri-

bution would be the model ẑ of ln [f(z)c(z)], and the corresponding variance would

be [
− ∂2

∂z2
ln [f(z)c(z)] |z=ẑ

]−1

(4.16)

The new quadrature points are given by

z∗k = ẑ +

[
− ∂2

∂z2
ln [f(z)c(z)] |z=ẑ

]−1/2

zk (4.17)

with corresponding weights

w∗k =

[
− ∂2

∂z2
ln [f(z)c(z)] |z=ẑ

]−1/2
c(z∗k)

z(zk)
wk (4.18)
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In this case, the integral is now approximated by

∫
f(z)c(z)dz ≈

K∑
k=1

w∗kf(z∗k) (4.19)

The adaptive Gaussian quadrature needs less quadrature points than classical Gauss-

ian quadrature. On the other hand, adaptive Gaussian quadrature needs calculation

of ẑ for each unit in the dataset, then for the numerical maximization of N func-

tions of the form (4.12) and makes Gaussian quadrature much more time consuming

(Molenberghs and Verbeke, 2005). It has been shown that when (4.19) is applied with

only one node, the result is equivalent to approximating the integral using Laplace

approximation (Liu and Pierce, 1994). Some simulation results suggest that in the

classical Gaussian quadrature, a large number of quadrature points (100 or more)

are necessary to obtain high accuracy while the adaptive quadrature provides good

accuracy with 20 or fewer quadrature points (Diggle et al., 2002). Nonetheless, the

adaptive Gaussian quadrature is much more time consuming than the classical Gauss-

ian quadrature. This is due to the fact that the adaptive Gaussian quadrature requires

calculation of ẑ for each unit in the dataset, hence the numerical maximization of N

functions of the form (4.12) (Molenberghs and Verbeke, 2005). Moreover, since these

functions (4.12) depend on unknown parameters β,D and φ, the quadrature points

as well as the weights used in the adaptive Gaussian quadrature depend on those

parameters, and hence need to be updated in every step of the iterative procedure

(Molenberghs and Verbeke, 2005). Once the problem of intractable integral is solved,

the actual maximization of the likelihood is carried out using algorithms such as

Newton-Raphson and Fisher scoring. The numerical integration methods work rela-

tively well with GLMM that have low-dimensional random effects distributions such

as single random effect or two or three nested random effects (Diggle et al., 2002).

However, none of the numerical methods have been made computationally practical

for models with random effects distribution with k > 5.

4.2.2. Pseudo-likelihood approach.

Suppose Y represents the (n× 1) vector of observed data and b is a (r× 1) vector of
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random effects

E [Y |b] = g−1 (Xβ + Zb) = g−1(η) = µ (4.20)

where b ∼ N(0, D) and var [Y |b] = A1/2RA1/2 following (Wolfinger and O’Connell,

1993) a first order Taylor series of µ about β̂ and b̂ yields

g−1(η) = g−1(η̂) + ∆̂X(β − β̂) (4.21)

where ∆̂ =
(

∂g−1(η)
∂η

)
β̂,b̂

is a diagonal matrix of derivatives of the conditional mean

evaluated at the expansion locus. Rearranging terms we get ∆̂−1 (µ− g−1(η̂) +

Xβ̂ + Zb̂
.
= Xβ + Zb, the left-hand side is the expected value, conditional on b,

of ∆̂−1 (Y − g−1(η̂)+Xβ̂+Zb̂ ≡ P and var [P |b] = ∆̂−1A1/2RA1/2∆̂−1. You can thus

consider the model

P = Xβ + Zb+ ε (4.22)

equation (4.22) is a linear mixed model with pseudo-response P , fixed effects β,

random effects b, and var(ε) = var[P |b]. Therefore, the marginal variance in the

linear mixed pseudo-model is given by

V (θ) = ZDZ ′ + ∆̂−1A1/2RA1/2∆̂−1,

where θ is the (k × 1) parameter vector containing all unknowns in D and R. Based

on this linearization model, an objective function can be defined, assuming that the

distribution of P is known. The maximum log pseudo-likelihood and restricted log-

pseudo-likelihood for P are therefore given by

l (θ, P ) = −1

2
log|V (θ)− 1

2
r′V (θ)−1r − f

2
log(2π)

lR (θ, P ) = −1

2
log|V (θ)− 1

2
r′V (θ)−1r − 1

2
log|X ′V (θ)−1X − f − q

2
log(2π)

where r = P −X (X ′V −1X)
−1
X ′V −1P , q denotes the rank of X and f denotes the

sum of frequencies used in the analysis. At convergence, the fixed and random effects

parameters are predicted as follows

β̂ =
(
X ′V (θ̂)−1X

)−1

X ′V (θ)−1P b̂

b̂ = D̂Z ′V (θ̂)−1r̂
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Therefore, these parameters estimates are used to update the linearization that re-

sults in a new linear mixed model. Then the process continues until the relative

change between parameter estimates at two successive iterations is sufficiently small

(SAS, 2005). In general, there are two widely used approximations based on Taylor’s

expansion of the mean. A subject specific expansion, referred to as the penalized

quasi-likelihood approximation, uses β̃ = β̂ and b̃ = b̂, that are the current estimates

of fixed effects and predictors of random effects. The population average expansion

referred to as the marginal quasi-likelihood (MQL) uses β̃ = β̂ and b̃ = 0, which

are the same as current estimates of fixed effects and the random effects are not

incorporated in the linear predictor.

4.2.2.1. Approximation of the data.

This approach is based on a decomposition of the data into the mean and an appropri-

ate error term, with Taylor series expansion of the mean that is a non-linear function of

the linear predictor. In generalized linear mixed models the penalized quasi-likelihood

(PQL) estimate is obtained from the optimization of the quasi-likelihood function that

only includes first- and second-order conditional moments augmented with a penalty

term on the random effects (Molenberghs and Verbeke, 2005; Breslow and Clayton,

1993). There are many versions of PQL developed by different authors such as Schall

(1991), Breslow and Clayton (1993) and Wolfinger et al. (1994). In this study we

will discuss Breslow and Clayton (1993); Wolfinger et al. (1994) and Schall (1991).

The penalized quasi-likelihood of Breslow and Clayton (1993) is, in general, similar

to GLM the setting and its general form is given by

QL(y, β, b) = QL(y|b)L(b) (4.23)

and a quasi-likelihood function based on yi, i = 1, 2, ...,m can be written (Jiang, 2007)

as

LQ ∝ (2π)−k/2|D|−1/2

∫
exp

(
− 1

2φ
ΣM

i=1di(yi, µi)−
1

2
b′D−1b

)
db (4.24)

where the subscript Q indicates quasi-likelihood, and

di(yi, µi) = −2

∫ µi

yi

yi − u

ai(φ)v(u)
du (4.25)
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and equation (4.25) is called (quasi-) deviance. In the case where y is Gaussian and

g−1 is the identity the equation (4.25) can be solved in closed form otherwise numerical

methods are needed. Equation (4.24) is Laplace’s form of integral, therefore Laplace

approximation can be used. Using the results from (4.10)

ιQ ≈ c− 1

2
log|D| − 1

2
log|k′′(b̂)| − k(b̂) (4.26)

with k(b) = 1
2
(Σm

i=1di(yi, µi) + b′D−1b) and b̂ minimizes k(b). Typically, b̂ = b̂(β, θ) is

the solution to the following first derivative of k(b)

D−1b− Σn
i=1

yi − µi

ai(φ)v(µi)g′(µi)
zi = 0 (4.27)

and second derivative of k(b) is given by

k′′(b) = D−1 +
ziz

′
i

ai(φ)v(µi)[g′(µi)]2
+ r (4.28)

where the remainder r has expectation 0. If the denominator of equation (4.28) is

w−1
i , and the term r is ignored then equation (4.28) reduces to

k′′(b) ≈ D−1 + Z ′WZ (4.29)

where Z is the matrix whose ith row is z′i, and W = diag(w1, w2, ..., wm), where the

quantity wi is well known in GLM as iterated weights (McCullagh and Nelder, 1989).

Thus the log-quasi-likelihood is written (Jiang, 2007) as

ιQ ≈ c− 1

2
|D| − 1

2
log|I + Z ′WZD| − 1

2φ
Σm

i=1di(yi, µ̂i)−
1

2
b̂′D−1b̂ (4.30)

where b̂ is chosen to maximize the sum of the last two terms and I is the identity

matrix (Breslow and Clayton, 1993).

Thus (β̂, b̂) =
(
α̂(θ), b̂(θ)

)
, with b̂(θ) = b (α̂(θ))), jointly maximize the Green (1987)

PQL

− 1

2φ
Σm

i=1di(yi, µ̂i)−
1

2
b̂′D−1b̂ (4.31)

Differentiating the expression (4.31) with respect to β and b leads to the following

score equations for the mean parameters:

Σm
i=1

(yi − µ̂i)xi

φaiv(µ̂i)ig′(µ̂i)
= 0 (4.32)
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and

Σm
i=1

(yi − µ̂i)zi

φaiv(µ̂i)ig′(µ̂i)
= D−1b (4.33)

Green (1987) developed the Fisher scoring algorithm for solving equations (4.32) and

(4.33) as iterated weighted least squares but later on Breslow and Clayton (1993)

modified it to include the close correspondence with the normal theory calculations

of Harville (1977). Defining the working vector Y to have the components ỹi =

η̂i + (yi − µ̂i)g
′(µ̂i), then solution to equations (4.32) and (4.33) based on Fisher

scoring can be given as iterative solution to the following system: X ′WX X ′WZ

Z ′WX Z ′WZ +D−1

 β

b

 =

 X ′Wỹ

Z ′Wỹ

 , (4.34)

Harville (1977) derived the expression (4.34) for the best linear unbiased estimator

(BLUE) of β and b in the associated normal theory model ỹ = Xβ + Zb + ε, with

ε ∼ N(0,W−1) and b ∼ N(0, D), ε and b are independent. Equivalently, one may

first solve for β in (
X ′V −1X

)
β = X ′V −1ỹ,

where V = W−1 + ZDZ ′ and therefore set

β =
(
X ′V −1X

)−1
X ′V −1ỹ

b̂ = DZ ′V −1(Y −Xβ̂)

and this suggests that one takes as an approximate covariance matrix for β̂ the matrix

(X ′V −1X)
−1

.

Schall (1991) developed the other version of the PQL algorithm but it is based on the

longitudinal setting. This method is mainly based on the decomposition of the data

into the conditional mean and appropriate error term with Taylor series expansion

of the mean which is a non linear function of the linear predictor (Molenberghs and

Verbeke, 2005). More specifically, one considers the following decomposition

Yij = µij + εij = h
(
x′ijβ + z′ijbi

)
+ εij (4.35)

in which h(.) equals the inverse link function, and where the error terms have the ap-

propriate distribution with the variance equals to var(Yij|bi) = φv(µij). If the natural
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link function is used then

var(µij) = h′
(
x′ijβ + z′ijbi

)
.

Let us consider the Taylor expression of yij = µij + εij = h(x′ijβ + zijbi) + εij (Mc-

Culloch, 2001; Molenberghs and Verbeke, 2005) around current estimates β̂ and b̂i of

the fixed and random effects. This yields

Yij ≈ h
(
x′ijβ̂ + z′ij b̂i

)
+ h′

(
x′ijβ̂ + z′ij b̂i

)
(β − β̂)

+ h′
(
x′ijβ̂ + z′ij b̂i

)
(bi − b̂i) + εij

= µ̂ij + v(µ̂ij)x
′
ij(β − β̂)

+ v(µ̂ij)z
′
ij(bi − b̂i) + εij (4.36)

where µ̂ij is the current predictor h
(
x′ijβ̂ + z′ij b̂i

)
for the conditional mean E(Yij|bi).

In vector notation, the equation (4.36) reduces to

Yi ≈ µ̂i + V̂ Xi(β − β̂) + V̂ zi(bi − b̂i) + εi (4.37)

with suitable design matrix Xi and Zi, and with V̂i equal to the diagonal entries of

v(µ̂ij). Rearranging the terms the expression (4.37) becomes

Y∗
i ≡ V̂−1

i (Yi − µ̂ij) + Xiβ̂ + Zib̂i ≈ Xiβ + Zibi + ε∗i (4.38)

where ε∗i = V̂ −1
i εi, and has zero mean. Equation (4.38) can be viewed as a linear

mixed model for the pseudo data Y ∗
i with fixed and random effects as β and bi and

error terms ε∗i . This, therefore, produces an algorithm for fitting generalized linear

mixed model for these pseudo-data. Given starting values for the parameters β, D

and φ in the marginal likelihood, then empirical Bayes estimates are calculated for bi,

and pseudo data Y ∗
i are computed. Therefore, the approximate linear model equation

(4.38) is fitted, yielding updated estimates for β, D and φ. These are then used to

update the pseudo data and this whole scheme is iterated until convergence is reached.

Marginal quasi-likelihood(MQL)

The alternative approximation is very similar to the PQL method, but is based on a
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linear Taylor expression of the mean µij given in (Molenberghs and Verbeke, 2005)

as

Yij = µij + εij = h
(
x′ijβ + Z ′ijbi

)
+ εij (4.39)

around the current estimates β̂ for the fixed effects and around bi = 0 for the random

effects; where h(.) is the inverse of link function. This produces a similar result as

above and the current predictor of the mean µ̂ij is now of the form h(x′ijβ̂) instead of

h(x′ijβ̂ + z′ij b̂i). Therefore the pseudo-data is now of the form

Y ∗
i ≡ ˆV −1

i (Yi − µ̂ij) +Xiβ̂

and satisfies the approximate linear mixed model

Y ∗
i ≈ Xiβi + Zibi + ε∗i (4.40)

The model is fitted by iterating between the calculation of the pseudo-data and the

fitting of the approximate linear mixed model. The resulting estimates are known as

marginal quasi-likelihood estimates (MQL)(Breslow and Clayton, 1993; Molenberghs

and Verbeke, 2005). As the PQL estimates are obtained by optimizing a quasi-

likelihood function that only involves the first and second conditional moments, in

MQL the estimates are evaluated in the marginal linear predictor x′ijβ̂ instead of the

conditional linear predictor x′ijβ̂ + z′ij b̂i see (Breslow and Clayton, 1993) and even

though MQL and PQL are similar in underlying key ideas, they also have some dif-

ferences. MQL completely ignores the random effects variability in the linearization

of the mean; as a result it provides the reasonable approximation when the variance of

the random effects is very small, even when the number of measurements per cluster

is increased. In contrast, PQL is consistent when both number of subjects as well as

the number of measurements per subject approach infinity, even for binary outcomes

(Molenberghs and Verbeke, 2005). Littel et al. (2006) argue that Breslow and Clayton

(1993) and Wolfinger and O’Connell (1993) approaches are similar in that they both

use generalized mixed model equations (4.38) for solutions of β and bi. The main dif-

ference between Wolfinger and O’Connell (1993) and Breslow and Clayton (1993) ap-

proaches is that Breslow and Clayton motivate their procedure from a quasi-likelihood

viewpoint using approximations based on Laplace’s method whereas Wolfinger and
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O’Connel’s approach pseudo-likelihood(PL) or restricted pseudo-likelihood (REPL)

is based on a Gaussian approximation and Taylor’s expansion.

In addition, Littel et al. (2006) indicate that the other difference which comes from

what Breslow and Clayton (1993) call PQL and what Wolfinger and O’Connell (1993)

term PL/REPL lies in the estimation of the scale parameter φ, where φ = 1 in the

case of Breslow and Clayton (1993) method and φ has to be estimated if Wolfinger

and O’Connell (1993) approach is considered.

4.3. Inference

Since fitting of GLMM is mainly based on maximum likelihood principles, there-

fore inferences for the parameters are obtained from standard maximum likelihood

theory (Molenberghs and Verbeke, 2005). If the fitted model is appropriate, then

the obtained estimators are asymptotically normally distributed with the correct val-

ues as means, and with the inverse Fisher information matrix as covariance matrix.

Therefore, Wald-type test, comparing standardized estimates to the standard normal

distribution can be used. Alternatively Likelihood ratio test and score tests can also

be used.

The inference on the fixed effects can be done using Wald-type test (also called Z-test),

the approximate t-tests and F-tests (Verbeke and Molenberghs, 2000). The approxi-

mate Wald test is obtained from approximating the distribution of
(
β̂j − βj

)
/s.e(β̂j)

by a standard univariate normal distribution of each parameter βj in β, j = 1, 2, ..., p.

Generally, it may be of interest to construct confidence intervals and tests of hypothe-

ses about certain linear combinations of the component β. For instance, given any

unknown matrix L, a test for hypothesis

H0 : Lβ = 0 and HA : Lβ 6= 0 (4.41)

follows from the fact that the distribution of

(
β̂ − β

)′
L′

L( N∑
i=1

X ′
iV

−1
i (α̂)Xi

)−1

L′

−1

L
(
β̂ − β

)
(4.42)

follows asymptotically a chi-square distribution with rank (L) degrees of freedom.

Dempster et al. (1981) pointed out that the Wald test is based on estimated standard
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errors that underestimate the true variability in β̂; since the variability introduced

by the variance parameter is not considered. To circumvent this downward bias of

standard errors it is advised to use t-and F-tests approximates for testing hypothesis

about β. For each parameter βj in β, j = 1, 2, ....p, an approximate t-test and

associated confidence interval can be obtained by approximating the distribution

of
(
β̂j − βj

)
/s.e(β̂j) by a suitable t-distribution (Verbeke and Molenberghs, 2000),

where the degrees of freedom needed are estimated from the data. Testing general

linear hypotheses of the expression (4.41) is mainly based on an F-approximation to

the distribution of

F =

(
β̂ − β

)
L′
[
L
(∑N

i=1X
′
iV

−1
i (α̂)Xi

)−1

L′
]−1

L
(
β̂ − β

)
rank(L)

(4.43)

where rank (L) is the numerator degree of freedom and the denominator degrees

of freedom have to be estimated from the data. There are a number of methods

in literature used to estimate the appropriate degrees of freedom for t-or F-test,

among others. Satterthwaite approximation is commonly used in SAS (Verbeke and

Molenberghs, 2000).

The likelihood ratio test is also used for comparison of nested models with different

mean structures. Suppose that null hypothesis of interest is given by

H0 : β ∈ Θβ0 ,

for some subspace Θβ0 of the parameter space Θβ of fixed effects β. Let LML denote

the ML likelihood function and let −2lnλN be the likelihood ratio test statistic

defined as

− 2lnλN = −2ln

[
LML(θ̂ML,O)

LML(θ̂ML)

]
(4.44)

where θ̂ML,O and θ̂ML are maximum estimates obtained from maximizing LML over

Θβ0 and Θβ, respectively (Verbeke and Molenberghs, 2000). It then follows from clas-

sical likelihood theory that, under some regularity conditions, −2lnλN follows asymp-

totically under H0 a χ2 distribution with degrees of freedom equal to the difference

between the dimensions k and of Θβ and the dimension of θ̂ML,O. The likelihood ratio

tests result is valid if the model is fitted using ML and not valid when REML is used.
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This is because REML log-likelihood functions are based on different observations,

which makes them no longer comparable (Verbeke and Molenberghs, 2000).

When the interest is also in inference for some of the variance components in D,

standard asymptotic Wald, likelihood ratio, and score tests can be used, as long as the

hypotheses to be tested are not on the boundary of the parameter space (Molenberghs

and Verbeke, 2005). The classical Wald, likelihood ratio or score test are not suitable

for testing whether the variance τ 2 of the single random effect in GLMM equal to

zero; this means that H0 : τ 2 = 0 versus HA : τ 2 > 0. In this case, the null

hypothesis is on the boundary of the parameter space where τ 2 ≥ 0. Therefore,

under H0, the Z-statistic cannot be normally distributed with mean zero because the

estimation of τ 2 is strictly positive normal distribution in 50% of the cases, and will

be equal to zero in the other 50% of the cases. Therefore the null distribution is

given by a mixture of chi-squared distributions. Equivalent properties can be derived

from the one-sided likelihood ratio test (Self and Liang, 1987; Stram and Lee, 1994;

Verbeke and Molenberghs, 2000) and one-sided score test (Silvapulle and Silvapulle,

1995; Verbeke and Molenberghs, 2003). Nevertheless, the general theory on test of

hypotheses on the boundary of the parameter space is much more general, and can be

applied equally well to GLMM settings (Self and Liang, 1987; Stram and Lee, 1994;

Silvapulle and Silvapulle, 1995). Furthermore, even with the information criteria,

there are still concerns about the boundary effects and estimation of the degrees of

freedom for random effects (Vaida and Blanchard, 2005).

4.4. Generalized linear models applied to binary outcomes

The mixed-effects logistic regression model is a common choice for the analysis of

multilevel dichotomous data and is the most used in GLMM. In GLMM setting, this

model uses the logit link and is given by

g (µijk) = logit(µijk) = log

[
µijk

1− µijk

]
= ηijk (4.45)

The conditional expectation µijk = E (Yijk|bi, xi) equals P (Yijk|bi, xijk), namely, the

conditional probability of a response given the random effects and the covariates

values, where Yijk is the ith response in the jth household with kth primary sampling
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unit. This model can also be written as

P (Yijk|bi, xijk, zijk) = g−1 (ηijk) (4.46)

where g−1 (ηijk) is commonly known as logistic cumulative distribution function (cdf)

and is given by

g−1 (ηijk) = [1 + exp (−ηijk)]
−1

The logistic distribution simplifies parameter estimation because its probability den-

sity function is related to its cdf in a simple way (Agresti, 2002). The probit model

that is based on the standard normal distribution is frequently proposed as an alter-

native to the logistic model. For the probit model, the normal cdf and pdf replace

their logistic counterparts.

4.4.1. Application to the determinants of poverty of household in

Rwanda.

In the previous chapter, the survey logistic regression model was used but this model

is survey based. The data was collected using multi-stage sampling where the pri-

mary sampling units or villages were selected at random and this may result in some

variability among these primary sampling units. Therefore, in order to account for

the possible variability between the primary sampling units, we used GLMM that

includes the random effects.

Data analysis

The data was analyzed using SAS 9.3, where various approaches of estimation such as

pseudo-likelihood, maximum likelihood with classical Gaussian and Adaptive quad-

rature and maximum likelihood with Laplace approximations were considered. The

GLIMMIX procedure distinguishes two types of random effects. Depending on

whether the variance of the random effect is contained in D matrix (commonly known

as G in SAS notation) or in R matrix. They are referred to as ”G-side” and ”R-side

”random effects. R-side effects are also called ”residual” effects.

The models without G-side effects are known as marginal or population-averaged

models. Models fit with the GLIMMIX procedure can have none, one or more of

each type of effects. Note that R-side effect in GLIMMIX procedure is equivalent to

a repeated effect in the MIXED procedure.
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The analysis was done based on classical Gaussian and adaptive Gaussian quadrature

and Laplace approximations. In order to find the effect of difference, a number of

quadrature points (Q=2,6,8,9,10,15,25) were considered. However, the use of differ-

ente quadrature point did not lead to considerable difference for parameter estima-

tion. But for quadrature less than 9, there were slightly difference for estimation

of parameters. But from 10 and above no difference between parameter estimates

was found. The Log pseudo-likelihood and chi-square test were used to assess the

model goodness-of-fit. The statistical inferences for the covariance parameters were

performed based on the likelihood ratio test. Model selection was achieved by first

including into the model all predictor variables and then evaluating whether or not

interaction terms needed to be incorporated. This was achieved by fitting model ef-

fects one at time, each of the interaction terms formed from the predictor variables.

Finally, only three significant two way interactions were retained and the final model

is given by.

log

(
µj

1− µj

)
= β0 + β1Educationj + β2Genderj (4.47)

+ β3Place of residencej + β4Provincej + β5Sizej

+ β6Provincej ∗ Place of residencej + β7Agej ∗Genderj + b0j

where β1, β,..., β7 are the unknown parameter coefficients of fixed effects and b0j is the

random intercept.

4.4.2. Results and Interpretations.

The ratio of generalized chi-square statistic and its degrees of freedom is 0.94 and is

close to 1. This is the measure of the residual variability in the marginal distribution

of the data. Since the value is close to 1, this indicates that the variability in the

data has been properly modeled and then there is no residual over-dispersion. Age,

level of education, and gender of household head, size of the household, province and

place of residence of household head were found to significantly affect the household

socio-economic status. The results of the main effect are in Table 4.2 and the results

of interaction effects are in Table 4.3. From Table 4.2 it is observed that the level

of education of the household head significantly affects the socio-economic status of
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the household, where the poverty of the household increases by decreasing the level

of education of the household head. Furthermore, it is observed that a household

with a household head with secondary education, primary education or no formal

education is 4.7242, 15.830 or 26.7651 times more likely to be poor respectively than

a household headed by a household head with tertiary education.

Interaction effects

The relationship between provinces (Kigali city, Southern, Western, Northern and

Eastern) and place of residence (urban or rural) is presented in Figure 4.1. Each

province of Rwanda has urban and rural places. As Figure 4.1 indicates, an urban

household is less likely to be poor compared to a rural household in all provinces.

These results revealed that a rural household from Southern province is the poorest

Figure 4.1, while rural households from Western and Northern provinces are almost

the same but more likely to be poor compared to a rural household from Eastern

province. A rural household from Kigali is less likely to be poor as compared to a

rural household from Eastern province Figure 4.1. The joint effect of gender and age

of the household head is presented in Figure 4.2. From Figure 4.2 we observe that a

household headed by a female is more likely to be poor than a household headed by a

male. From Figure 4.3, it is observed that poverty decreases with the increasing age

of household head regardless of the size of the household.

Table 4.1. Type III analysis of effects for GLMM

Effect Numb Df F value Pr > F

Size 1 4.50 < 0.0339

Age of household head 1 37.03 < .0001

Education of household head 3 99.87 < .0001

Province of household head 4 28.74 < .0001

Place of residence of household head 1 27.84 < .0001

Gender of household head 1 39.42 < .0001

Size*Age of household head 1 38.41 < .0001

Province *place of residence of household head 4 2.37 0.0512

Gender * age of household head 1 15.47 < .0001
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Table 4.2. Parameter estimates of main effect for poverty of household

Indicator Estimate S.E P-Value OR

Intercept -3.2855 0.6367 < .0001

Province (reference=Eastern)

Kigali -1.0610 0.3010 0.0005 0.3461

South 0.9026 0.1101 < .0001 2.4660

West 0.5613 0.1115 < .0001 1.7529

North 0.6232 .06119 < .0001 1.8649

Gender of the household head (reference=female

Male -.8897 0.1417 < .0001 0.41078

Education of Household head(reference=higher)

Secondary 1.5527 0.6178 0.0120 4.7242

Primary 2.7619 0.6109 < .0001 15.830

No education 3.2871 0.6120 < .0001 26.7651

Age of the household head 0.0132 0.0034 < .0001 1.0133

Size 0.0775 0.0365 .0339 1.0806

Place of residence (reference= rural)

Urban -0.2405 0.3877 0.5354 0.7862

Table 4.3. Parameter estimates with two way interaction effects for
poverty of household

Indicator Estimate S.E P-Value OR

Province * place of residence (ref.=East and rural)

Kigali * urban -1.3518 0.5375 0.0122 0.2588

South * urban -0.7866 0.4504 0.0814 0.4554

West * urban -0.9796 0.5576 0.0796 0.3755

North * urban -0.0294 0.5716 0.9590 0.9710

Gender * age of the household head (ref.=Female)

Male * age of the household 0.0116 0.0029 < .0001 1.0117

Size * age of the household head -0.0047 0.0008 < .0001 0.9953
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Figure 4.1. Province and place of residence

Figure 4.2. Age and gender of household head
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Figure 4.3. Size of household and age of household head
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4.5. Summary

In this chapter, based on 2010 Rwanda Demographic and Health Survey data, we

used generalized linear mixed model to identify the key determinants of poverty of

households in Rwanda. The chapter extended the binary survey logistic to include

the random effect. However, the findings of this study supported the findings of

Habyarimana et al. (2015a) and the findings from binary survey logistic regression,

where all these studies revealed that the key determinants of poverty are age of the

household head, level of education of the household head, gender of household head,

place of residence (urban or rural) of the household, province of residence of household

and the size of the household (number of members of household). The current study

also investigated the variability between the villages by including the random effects.

Further, the magnitude of the effects of the above determinants is reduced in this

study. In the next chapter we use multivariate joint model under GLMM in order to

simultaneously measure the malnutrition on three anthropometric indictors and to

examine the possible correlation between them.
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CHAPTER 5

Multivariate joint modelling of the measures of malnutrition

Introduction

In chapter 3, we used proportional odds model without and with complex sampling

design to identify the risk factors of malnutrition of children under five years, where

only weight-for-height (known as underweight) was considered. In this chapter, the

main objective is to utilize the multivariate joint model under GLMM in order to

simultaneously identify the key determinants of malnutrition of children under five

years based on three anthropometric indicators known as weight-for-height (under-

weight), height-for-age (stunting) and weight-for-age (wasting), to include random

effects and to find out the possible correlation among these anthropometric indica-

tors. In other words, a child might be in stunting status, or underweight status,

or wasting status, or stunting and underweight, underweight and wasting or their

combination. A separated generalized linear mixed model cannot determine the as-

sociation between these three outcomes. The advantages of the joint model over the

separate models include better control of type I error rates in multiple tests, possible

gains in efficiency in the parameter estimates and the ability to answer intrinsically

multivariate questions (Gueorguieva, 2001; Kandala et al., 2011b).

5.1. Model overview

Let us first consider a bivariate response variable and thereafter we will extend it

to more than two response variables. The joint model formulation can be done in

various approaches, such as Probit nomal formulation, Plackett-Dale formulation and

generalized linear mixed model formulation among others. In this study we consider

only the generalized linear mixed model formulation

Generalized linear mixed model formulation

In this case, the formulation uses both random effects and serial correlations. It is in
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general given by Molenberghs and Verbeke (2005) as

Yi = µi + εi (5.1)

where

µi = µi(ηi) = h (Xiβ + Zibi) (5.2)

Assume bi ∼ N(0, D) are the q-dimensional random effects. In this case, the com-

ponents of the inverse link functions h are allowed to change with the nature of the

various outcome variables in Yi. Further, the variance of εi depends on the mean-

variance links of the different outcome variables; in addition it contains a correlation

matrix Ri(α) and the over-dispersion parameter φ. Once there is no random effects

in expression (5.2), then it reduces to a marginal model referred to as marginal gen-

eralized linear models (MGLM). However, when there are no residual correlations in

Ri(α), then it reduces to a purely random effects model or a conditional independence

model that is also a generalized linear mixed model.

The variance-covariance matrix of Yi is obtained from a general first order approxi-

mate expression (Molenberghs and Verbeke, 2005) given by

Vi = V ar(Yi) ' ∆iZiDZ
′
i∆

′
i + Σi (5.3)

where

∆i =

(
∂µi

∂ηi

)
|bi=0 (5.4)

and

Σi ' Φ
1/2
i A

1/2
i Ri(α)A

1/2
i Φ

1/2
i (5.5)

where Ai is a diagonal matrix containing the variance following from the generalized

linear specification of Yik, k = 1, 2 for a given random effects bi = 0; in other words

the diagonal elements are given by v (µij|bi = 0). Similarly, Φi is also a diagonal ma-

trix however with the overdispersion parameters along the diagonal. Σi captures the

variance-covariance in residual error εi and first term of the right hand side of expres-

sion (5.3) corresponds to the random effects structure of h (Xiβ + Zibi). Ri(α) is the

correlation matrix. Furthermore, if the outcome component is normally distributed
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then the overdispersion parameter is σ2
i and the variance function is 1 (Molenberghs

and Verbeke, 2005). In the case of binary outcome variable with logit link, we get

µij(bi = 0) [1− µij(bi = 0)] (5.6)

The evaluation under bi = 0 derives from a Taylor series expansion of the mean

component around bi = 0. When the exponential family specification is considered

for all components, with canonical link, ∆i = Ai, then variance covariance matrix of

Yi can be written as follows

V ar(Yi) ' ∆iZiDZ
′
i∆

′
i + Φ

1/2
i ∆

1/2
i Ri(α)∆

1/2
i Φ

1/2
i (5.7)

under conditional independence Ri vanishes and

var(Yi) = ∆iZiDZ
′
i∆

′
i + Φ

1/2
i ∆

1/2
i Φ

1/2
i (5.8)

A model with no random effects for the marginal generalized linear model (MGLM)

has the form  yi1

yi2

 =

 µ1 + λbi + αX

exp[µ2+bi+βXi]
1+exp[µ2+bi+βXi]

+

 εi1

εi2

 (5.9)

where λ is the scale parameter included in the continuous of an otherwise random-

intercept model, given the continuous and binary outcome are measured on different

scales. Therefore, in this case

Zi =

 λ

1

 ,∆i =

 1 0

0 vi2

 ,Φ =

 σ2 0

0 1


with vi2 = µi2(bi = 0)(1 − µ12(bi = 0)). In addition let ρ be the correlation between

εi1 and εi2. However, Zi is not a design matrix as it contains unknown parameters.

The variance-covariance matrix of Yi from (5.1) becomes

Vi =

 λ2 vi2λ

vi2λ v2
i2

 τ 2 +

 σ2 ρσ
√
vi2

ρσ
√
vi2 vi2


=

 λ2τ 2 + σ2 vi2λ
2τ 2 + ρσ

√
vi2

vi2λτ
2 + ρσ

√
vi2 v2

i2τ
2 + vi2

 (5.10)
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Thus, the derived approximate marginal correlation function is given by

ρ(β) =
vi2λτ

2 + ρσ
√
vi2√

λ2τ 2 + σ2
√
v2

i2τ
2 + vi2

(5.11)

The equation (5.11) depends on the fixed effects through vi2. The model with no

random effects is written as follows: yi1

yi2

 =

 µ2 + βXi

exp[µ1+bi+βXi]
1+exp[µ1+βXi]

+

 εi1

εi2

 (5.12)

and equation (5.10) reduces to ρ, by virtue of its fully marginal specification. Under

conditional independence, ρ in equation (5.10) satisfies ρ ≡ 0 and equation (5.11)

reduces

ρ(β) =
vi2λτ

2

√
λ2τ 2 + σ2

√
v2

i2τ
2 + vi2

(5.13)

Equation (5.13) is simpler than equation (5.11) but equation 5.13 is a function of the

fixed effects.

If both end points are binary, equation (5.13) can be reduced to

ρ(β) =
vi2vi2τ

2 + ρσ
√
vi1vi2√

v2
i1τ

2 + vi1

√
v2

i2τ
2 + vi2

(5.14)

with again a constant correlation ρ when there are no random effects and with no

residual correlation we get

ρ(β) =
vi2vi2τ

2√
v2

i1τ
2 + vi1

√
v2

i2τ
2 + vi2

(5.15)

The equation (5.15) can be performed with general random effects design matrices

Zi and for more than two components of arbitrary nature not necessarily continuous

and binary.

Two binary responses

Similarly, when both sequences of outcomes are binary, a generalized linear mixed

model (GLMM) can be assumed with correlated random effects (Faes et al., 2008) as

follows  yi1

yi2

 =

 exp[α1+β1Xi+bi1]
1+exp[α0+β1Xi+bi1]

exp[α2+β2Xi+bi2]
1+exp[α0+β2Xi+bi2]

+

 εi1j

εi2j


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where the random effect bi1and bi2 are normally distributed, εi1j and εi2j are indepen-

dent. It is assumed that V ar(εi1j) = vi1j = πi1j (bi1 = 0) [1− πi1j(bi1)]

and V ar(εi2j) = vi2j = πi2j (b2i = 0) [1− πi2j(bi2)]. The approximate variance-

covariance matrix of the two binary measurements for subject i at time j is given

by

Vi1 =

 v2
i1jτ

2
1 + vi1jρτ2vi1jvi2j

vi1jρτ2vi1jvi2j + v2
i2jτ

2
2 + vi2j

+

 εi1j

εi2j


and the correlation between the two outcomes in this case is given by

ρY1Y2 =
ρτ1τ2vi1jvi2j√

v2
i1jτ

2
1 + vi1j

√
v2

i2jτ
2
2 + vi2j

(5.16)

Two continuous responses

If both responses variables are continuous, a linear mixed model can be used with

correlated random effects. The correlation between the two response variables in this

case is given by

ρY1Y2 =
ρτ1τ2√

τ 2
1 + σ2

1

√
τ 2
2 + σ2

2

(5.17)

It is possible to perform easily the above calculations in the case of general random

effects design matrices Zi and for more than two components of arbitrary nature and

which are not necessarily continuous and binary.

In the case of general model, there is no need to specify full joint distribution, even

when it is assumed that the first one is continuous and the second one to be Bernoulli

distributed. We can still leave the specification of the joint moments to the second

one, by way of marginal correlation.

A full joint specification would need full bivariate model specification, conditional

upon the random effects, together with normality assumptions made about the ran-

dom effects.
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5.1.1. Maximum likelihood estimation.

The marginal likelihood in bivariate GLMM is obtained as in usual GLMM by inte-

grating out the random effects (Gueorguieva, 2001)

n∏
i=1

∫ ∫ [ ni1∏
j=1

f1 (yi1|b1i; β1, φ1)

ni2∏
j=1

f2 (yi2|b2i; β2, φ2)

]
f (bi1, bi2; Σ) dbi1dbi2 (5.18)

where f denotes the multivariate normal density of the random effects. The integral

(5.18) is usually intractable and some numerical, stochastic or analytical approxi-

mation must be used. Methods for model fitting of the univariate GLMM include

marginal maximization using Gaussian quadrature or Monte Carlo approximation

Fahrmeir and Tutz (1994), penalized quasi-likelihood Breslow and Clayton (1993);

Wolfinger et al. (1994), Monte Carlo EM algorithm (McCulloch, 1997; Booth and

Hobert, 1999), Monte Carlo Newton-Raphson algorithm and simulated maximum

likelihood (McCulloch, 1997). All these methods can be extended to multivariate

GLMM. However, the maximum likelihood maximization is criticized when the num-

ber of outcomes increasing the computation becomes cumbersome; it is only fea-

sible when the number of outcomes is sufficiently low (typically dimension 2 or 3

at most)(Molenberghs and Verbeke, 2005). In order to overcome this problem the

next subsection presents model fitting procedure that is applicable irrespective to the

dimensionality problem.

5.2. Extension to higher-dimensional data

Let m be the dimension or number of outcomes variables needed to be modeled

jointly, defined as follows: Yik = (Yik1, Yik2, ..., Yikmi
) , k = 1, 2, ...,m. The sequences

Yik is a vector of mki measurements taken on subject i, for outcome k and Yik is not

restricted to outcome of the same type; it can be either continuous or binary or mixed

(Faes et al., 2008). Therefore, the m outcomes variables can then be simultaneously

modeled by specifying a joint distribution for the random effects, in similar way as

in the case of binary outcomes; however with an m × q dimensional random effects

vector bi.

All outcomes are not supposed to have the same type of model; a combination of

linear, generalized linear, and non-linear mixed model is possible (Molenberghs and
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Verbeke, 2005). Generally, in most applications, it will be assumed that conditionally

on the random effects b1i, b2i, ..., bmi, y1i, y2i, ..., ymi are independent. Finally, the

model is completed by assuming that the vector bi of all random effects for subjects

i is multivariate normal with mean zero and covariance Σ given by

bi =



b1i

b2i

.

.

.

bmi


∼ i.i.d.MV N (0,Σ) = MVN





0

0

.

.

.

0


,



Σ11 Σ12 . . . Σ1m

Σ12 Σ22 . . . Σ2m

. . . . . .

. . . . . .

. . . . . .

Σm1 Σm2 . . . Σmm




The matrices Σrs represent the covariances between bri and bsi, r, s = 1, 2, ...,m.

Finally, Σ is the matrix with blocks Σrs as entries.

The estimation and inference are based on the marginal model of vector Yi of all mea-

surements of subject i. Therefore, assuming independence of outcomes conditional on

the vector bi of random effects, the likelihood contribution for subject i then becomes

(Molenberghs and Verbeke, 2005; Fieuws and Verbeke, 2006; Faes et al., 2008)

Li (Θ|Yi1, Yi2, ..., Yim) =

∫
Rmq

ni∏
j=1

fij (yi1j, yi2j, ..., yimj|bi,Θ) f(bi|Σ)dbi (5.19)

with Θ = (β, α,Σ). However, computational problems often arise when m increases,

owing to the m × q-dimensional integral, especially when outcomes are of different

type. In this case, rather than considering the full likelihood contribution for each

subject i, one can avoid the computational complexity by using pseudo-likelihood

approach, similar to the pairwise modelling approach proposed by Fieuws and Verbeke

(2006). The full likelihood contribution for subject i is replaced by the pseudo-

likelihood function

PLi =
m−1∏
k=1

m∏
l=k+1

Likl (Θ|Yik, Yil) =
m−1∏
k=1

m∏
l=k+1

∫
R2q

ni∏
j=1

fij

(
yikj, yilj|bkl

i ,Θ
)
f(bkl

i |Σ)dbkl
i

(5.20)
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where each contribution Likl is equal to the bivariate likelihood function for outcomes

k and l. Therefore, the m × q-dimensional integration problem reduces to 2 × q-

dimensional integrations. In practice, this is achieved by restructuring the data in all

possible pairs of outcomes, and assuming, as working assumption, that conditional n

random effects, all combinations of pair (k, l) and subject i are independent. Then, the

inference for Θ follows from pseudo-likelihood theory, and is based on a sandwich-type

robust variance estimator (Arnold and Strauss, 1991). The asymptotic multivariate

normal distribution for Θ̂ is given by

√
N
(
Θ̂−Θ

)
∼MVN

(
0, J(Θ)−1K(Θ)J(Θ)−1

)
(5.21)

where J = J(Θ) is a matrix with elements defined by

Jpq = −
m−1∑
k=1

m∑
l=k+1

E

(
∂2lnLikl(Θ|Yik, Yil)

∂θp∂θq

)
(5.22)

and K = K(Θ) is symmetric matrix with elements

Kpq = −
m−1∑
k=1

m∑
l=k+1

E

(
∂lnLikl(Θ|Yik, Yil)

∂θp

∂lnLikl(Θ|Yik, Yil)

∂θq

)
(5.23)

The main advantage of pseudo-likelihood approach is the close connection with like-

lihood that enabled Geys et al. (1997) to construct pseudo-likelihood ratio test sta-

tistics. As it is known that Wald tests can yield erroneous results, especially when

a variable has a large effect in the model (Geys et al., 1997), the pseudo-likelihood

ratio test statistic is preferable in this situation. Suppose we are interested in test-

ing the null hypothesis H0 : γ = γ0, where γ is an r-dimensional subvector of the

p-dimensional vector of regression parameters β and write β as
(
γT , δT

)T
. Therefore,

the pseudo-likelihood ratio test statistic, in this case is given by

G∗2 =
2

λ

[
PL(β̂N)− PL

(
γ0, δ̂(γ0)

)]
(5.24)

and is approximately χ2
r distributed, where β̂N is the pseudo-likelihood parameter

estimate of β and δ̂(γ0) denotes the maximum pseudo-likelihood estimator in the

subspace where γ = γ0. In addition, λ is the mean of the eigenvalues of (Jγγ)−1Σγγ,

where Jγγ is the r × r submatrix of the inverse of J and Σγγ is the submatrix of

Σ = J−1KJ−1.
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5.3. Application to the determinants of malnutrition of children under
five years in Rwanda

Introduction

In literature, there are many studies done on determinants of malnutrition of chil-

dren under five years of age, for instance Das and Rahman (2011); Kandala et al.

(2011a) and Habyarimana et al. (2014) among others. All these studies considered

underweight, stunting or wasting separately. However, a child may be well nourished

or malnourished (stunted, or underweight, or wasted, or wasted and underweight,

or underweight and stunted). A separate model cannot determine the association

between these three outcomes. For this reason, the current research utilizes a joint

model for a multivariate generalized linear mixed model to simultaneously identify

the key determinants of stunting, wasting and underweight and to find out the possi-

ble correlation among them. The advantages of the joint model over separate models

include better control of the Type I error rates in multiple tests, possible gains in effi-

ciency in the parameter estimates and the ability to answer intrinsically multivariate

questions (Gueorguieva, 2001; Kandala et al., 2011b).

Model formulation for three outcomes

Let us denote the response vector for the ith subject as Yi = (Y ′
i1, Y

′
i2, Y

′
i3)

′, where

Yi1 = (yi11, yi12, ..., yi1ni1
), Yi2 = (yi21, yi22, ..., yi2ni2

), Yi3 = (yi31, yi32, ..., yi3ni3
) and

are the repeated measurement of the first and the second variable. We assume that

yi1j, j = 1, 2, ..., ni1, are conditional independent given bi1 with the density func-

tion f1(.) in the exponential family, yi2j, j = 1, 2, ..., ni2, are conditional indepen-

dent given bi2 with the density function f2(.) in the exponential family. Similarly,

yi3j, j = 1, 2, ..., ni3, are conditional independent given bi3 with the density function

f3(.) in the exponential family also Yi1,Yi2 and Yi3 are conditional independent given

bi = (b′i1, b
′
i2)

′, b′i3)
′ and the response on different subjects are independent. The con-

ditional means of yi1j,yi2j and yi3j are denoted as µi1j,µi2j and µi3j respectively. Let

µi1 = (µi11, µi12, ..., µi1ni1
)′, µi2 = (µi21, µi22, ..., µi2ni2

)′ and µi3 = (µi31, µi32, ..., µi3ni3
)′.

Thus, at first stage the mixed model specification is assumed to be

g1(µi1) = Xi1β1 + Zi1bi1 (5.25)
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g2(µi2) = Xi2β2 + Zi2bi2 (5.26)

g3(µi3) = Xi3β3 + Zi3bi3 (5.27)

where β1, β2 and β3 are (k1×1), (k2×1) and (k3×1) dimensional unknown parameter

vectors, Xi1, Xi2 and Xi3 are (ni1 × k1), (ni2 × k2) and (ni3 × k3) dimensional design

matrices for the fixed effects, Zi1, Zi2 and Zi3 are (ni1 × q1), (ni2 × q2) and (ni3 × q3)

dimensional design matrices for the random effects and g1, g2 and g3 are applied

componentwise to µi1,µi2 µi3. At second stage,

bi =


bi1

bi2

bi3

 ∼ i.i.d.MV N(0,
∑

) = MVN




0

0

0

 ,

∑

11

∑
12

∑
13∑′

12

∑
22

∑
23∑′

13

∑′
23

∑
33


 ,(5.28)

where
∑
,
∑

11,
∑

22 and
∑

33 are unknown positive definite matrix. If
∑

12 =
∑

13 =∑
23 = 0 then the above model is equivalent to three separate GLMMs for the three

outcome variables. Advantages of joint model include the better control of type I error

rates in multiple tests. This may lead to possible gains in efficiency in the parameter

estimates and the ability to answer intrinsically multivariate questions (Gueorguieva,

2001; Molenberghs and Verbeke, 2005).

The marginal means and the marginal variance of Yi1, Yi2 and Yi3 for the model

defined by equation(5.25), (5.26) and (5.27) are the same as those of the GLMM

considering one variable at time

E(yi1) = E[µi1(β1, bi1)]

E(yi2) = E[µi2(β2, bi2)]

E(yi3) = E[µi3(β3, bi3)]

var(yi1) = E[φ1V (µi1)] + V ar[µi1]

var(yi2) = E[φ2V (µi2)] + V ar[µi2]

var(yi3) = E[φ3V (µi3)] + V ar[µi3]

where V (µi1), V (µi2) and V (µi2) denote the the variance functions corresponding

to the exponential family distributions for the three response variables, V ar[µi1] =

var[E(yi1|bi1)], V ar[µi2] = var[E(yi2|bi2)] and V ar[µi3] = var[E(yi3|bi3)].
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Data analysis

Several procedures are available for estimating the parameters involved in joint mod-

els. The parameter estimation in the joint models can be done using either nu-

merical approximation such as Gaussian quadrature, adaptive Gaussian quadrature

or Laplace approximation or approximation of the data by the pseudo-likelihood in

which pseudo data are created based on linearization of the mean. More specifically,

the pseudo-likelihood approach is used when estimating the parameters in marginal

models and random effects with or without serial correlation, whilst quadrature or

Laplace approximations can only estimate parameters in conditional independent ran-

dom effects models. SAS procedure PROC GLIMMIX (SAS 9.3) can be used for es-

timating the parameter in case of a pseudo-likelihood approach while the NLMIXED

procedure can be used for parameters estimation using Laplace approximation or

Gaussian quadrature. In the current study PROC GLIMMIX (SAS 9.3) is utilized.

5.4. Results and interpretations

The current research considered many child malnutrition factors such as child char-

acteristics (gender of the child, birth weight, birth order, child’s age, incidence of

fever during the two weeks prior to the survey, diarrhea), mother’s characteristics

such as: education level, mother’s age at the birth, body mass index, incidence of

anemia, mother’s knowledge of nutrition, assistance at delivery, antenatal visits; envi-

ronmental characteristics such as: region or province, source of drinking water, place

of residence, toilet facilities; and household characteristics such as: size of household

and household wealth index. In Table 5.3 any variable that is at least significant at

one of the three anthropometric indicators is considered as a determinant of malnu-

trition and is hence reported. From Table 5.4 a strong positive correlation is observed

between underweight and wasting as well as between underweight and stunting. This

is not surprising because underweight is known to be the composite index between

stunting and wasting; this is supported by the findings of the current study and is

also consistent with the findings of other researchers (Onis, 2000; Nguefac-Tsague

and Dapi, 2011; Nguefac-Tsague et al., 2013).

Stunting: This study reveals that child’s age, birth order, mother’s age at childbirth,

mother’s education, gender of the child, birth weight, province, mother’s knowledge
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of nutrition and wealth index are the determinants of stunting (low height-for-age).

These results are reported in Table 5.3. The age of the child significantly affects the

height-for-age of the child. A child aged between 12 and 23 months is 3.428 (p-value

< .0001) times more likely to be stunted than an infant (aged 0-11 months). Birth or-

der significantly affects the height-for-age of the child. Sixth born children and those

born thereafter are 1.652 (p-value=0.0002) times more likely to be stunted than first

born children. Mother’s age at childbirth significantly affects the height-for-age of the

child Table 5.3. A child born to mother aged younger than 21 years old is 1.737 (p-

value=0.0096) times more likely to be in stunting status than a child born to mother

older than 21 years of age. A mother’s level of education also significantly affects

the height-for-age of the child. The z-score of height-for-age increases with increasing

education levels of the mother Table 5.3. Therefore, stunting reduces as the mother’s

level of education increases. Further, a child born to a mother with a primary edu-

cation or a secondary or higher education level is 0.0518 (p-value < .0001) or 0.0406

(p-value < .0001) times less likely to be underweight than a child born to a mother

with no education, respectively. The gender of the child significantly affects his/her

height-for-age Table 5.3.

The risk of having a low height-for-age z-score is 0.639 (p-value < .0001) times lower

among female children than male children. Birth weight also significantly affects the

weight-for-age of the child Table 5.3. A child born with low weight (< 2500g) is

1.786 (p-value =0.0115) times more likely to be underweight than a child born with

a higher weight (≥ 2500g).

Province of birth significantly affects the height-for-age of the child Table 5.3. The

risk of having a lower height-for-age z-score is 1.544 (p-value=0.0409) times higher

among children born in Western province than children born in Eastern province. A

child born in Southern province is 1.403 (p-value=0.023) more likely to be stunted as

compared to a child born in Kigali city.

The mother’s knowledge of nutrition is also seen to significantly affect the height-for-

age of the child. A child born to a mother without knowledge of nutrition is 1.296

(p-value=0.0047) times more likely to be stunted than a child born to a mother with

some knowledge of nutrition. The wealth index significantly affects the height-for-age
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of the child Table 5.3, as stunting increases with a decreasing wealth index. A child

born into a poor family is 1.543 (p-value=0.0079) times more likely to be stunted

than a child born into a rich family.

Wasting: The findings of this research show that a child’s age, birth order, the birth

weight of the child, wealth index, body mass index of the mother, recent incidence

of fever, and source of drinking water all significantly affect the height-for-weight of

the child Table 5.3. The age of the child is seen to significantly affect the height-for-

weight of the child. A child aged between 12 and 23 months is 0.406 (p-value=0.0028)

times less likely to be wasted than an infant (aged 0 to 11 months). Similarly, a child

aged between 23 and 59 months is 1.826 (p-value=0.0442) times more likely to be

wasted than an infant. The birth order also significantly affects the height-for-weight

of the child Table 5.3. A sixth (or later) born child is 2.651 (p-value=0.0311) times

more likely to be wasted than a first born child. Further, birth weight significantly

affects the height-for-weight of the child Table 5.3. A child born with a higher weight

(≥ 2500g) is less likely to be wasted than a child born with a lower weight (< 2500g).

The wealth index significantly affects the height-for-weight of the child Table 5.3.

A child born into a poor family is 3.680 (p-value=0.0194) times more likely to be

wasted than a child born into a rich family. Body mass index of the mother is also

an indicator of wasting Table 5.3. A child born to an underweight mother (BMI

< 18.5) is 3.222 (p-value=0.0052) times more likely to be wasted than a child born

to a normal or obese mother ( ≥ 18.5). In other words, these results show that there

is an association between weight of the mother and nutrition status of the child.

Incidence of fever is also seen to significantly affects the height-for-weight of the child

Table 5.3. A child reported to have had a fever in the two weeks prior to the survey

is 1.763 (p-value=0.0427) times more likely to be wasted than a child who did not

have a fever during the last two weeks before the survey.

Source of drinking water is also associated with nutrition status (weight-for-height)

(Table 5.3. A child born to a mother from a family where piped water is delivered

into their dwelling or yard is 0.130 (p-value=0.0045) times less likely to be wasted

than a child born into a family where water comes from other sources (not piped in

dwelling/yard, public tap and protected spring or well).

106



A child born into a family where they use water from a public tap is 0.259 (p-

value=0.0007) less likely to be wasted than a child from a family where they use

water from other sources (not piped in dwelling/yard, not from protected spring or

well). In other words, water that is not piped in dwelling/yard, water that is not from

public taps or which is not from a protected spring or well may be associated with

childhood diseases such as diarrhea, among others. Potable water is very important

in order to fight wasting and other related consequences.

Underweight: The results from this study reveal that the child’s age, birth order,

education level of the mother, gender of the child, birth weight of the child, mother’s

knowledge of nutrition, multiple births, incidence of anemia and body mass index

of the mother are the key determinants of malnutrition of the child Table 5.3. The

child’s age significantly affects the weight-for-age of the child Table 5.3. A child aged

23 months and more is 0.798 (p-value=0.0411) times less likely to be underweight

than an infant. Birth order also significantly affects the weight-for-age of the child

such that underweight increases with increasing the birth order Table 5.3. A second or

third born child is at a 1.296(p-value=0.0473) times greater risk of being underweight

first born. Similarly, a fourth or fifth born child is 1.346 (p-value=0.0341) times more

likely to be underweight than first born. Further, a sixth or later born child is 2.948

(p-value< .0001) times more likely to be underweight than first born.

The mother’s level of education significantly affects the weight-for-age of the child.

The degree to which a child is underweight decreases with an increase in the mother’s

level of education Table 5.3. Further, a child born to a mother with primary education

or a secondary or higher education level is 0.097 (p-value < .0001) or 0.058 (p-value

< .0001) less likely to have an underweight status than a child born to a mother with

no education, respectively.

The gender of the child significantly affects the weight-for-age of the child Table

5.3. A female child is 0.617 (p-value < .0001) less likely to be underweight than a

male child. Birth weight significantly affects the weight-for-age of the child, as well

Table 5.3. A child born with low birth weight (weight < 2500g) is 3.16 (p-value

< .0001) times more likely to be underweight than a child born with a higher weight
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(≥ 2500g). The mother’s knowledge of nutrition significantly affects the weight-for-

age of the child Table 5.3. A child born to a mother without knowledge of nutrition

is 1.416 (p-value=0.0015) times more likely to be underweight than a child born to

a mother with some knowledge of nutrition. Multiple births significantly affect the

weight-for-age of the child Table 5.3, where the degree of underweight increases with

increasing the incidence of multiple birth. A child born as the first multiple (twin) is

3.842 (p-value=0.0002) times more likely to be underweight than a singleton child.

Incidence of anemia also significantly affects the weight-for-age of the child. A child

born to a non-anemic mother is 0.691 (p-value=0.0002) less likely to be underweight

than a child born to an anemic mother. The body mass index of the mother is

seen to significantly affect the weight-for-age of the child Table 5.3. A child born to

an underweight mother (BMI < 18.5) is 3.096 (p-value < .0001) more likely to be

underweight him/herself than a child born to a normal weight, overweight or obese

mother (BMI≥ 18.5). Incidence of fever is also seen to significantly affect the weight-

for-age of the child Table 5.3. A child who had a fever in the two weeks prior to the

survey is 1.667 (p-value < .0001) times more likely to be underweight than a child

who did not have a fever during the same time frame.

Table 5.1. Type 3 tests of fixed effects

Explanatory variable Num. Df Den. Df F value Pr > F
Child’s age in months 6 9759 19.66 < .0001
Birth order 9 9759 7.74 < .0001
Mother’s age at the birth 3 9759 2.4 0.0663
Mother’s education level 6 9759 10.24 < .0001
Gender of child 3 9759 18.14 < .0001
Wealth index 6 9759 2.31 0.0311
Birth weights 3 9759 14.54 < .0001
Province/region 12 9759 2.53 0.0025
Knowledge on nutrition 3 9759 5.71 0.0007
Multiple birth 6 9759 3.13 0.0046
Incident of Anemia 9 9759 5.88 0.0005
Mother’s marital status 9 9759 3.02 0.0013
Body Mass Index 3 9759 13.24 < .0001
Incidence of fever in last two weeks 3 9759 7.27 < .0001
Source of drinking water 9 9759 2.4 0.0043
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Table 5.2. Fit statistics conditional distribution

-2log L(response—r.effect) 47534.31
Pearson Chi-square 7909.36
Pearson Chi-square/DF 0.94

Table 5.3. Parameter estimates for a joint marginal model for an-
thropometric measurements of malnutrition

Wasting Underweight Stunting

Indicator Estimate SE P-Value Estimate SE P-VALUE Estimate SE P-value

Intercept -1.232 0.686 0.0726 3.186 2.054 0.121 1.181 0.971 0.224

Child’s age in moths

0-11 months reference

12-23 months -0.901 0.3017 0.0028 0.004 0.1583 0.9799 1.232 0.1529 < .0001

24+ months 0.602 0.299 0.0442 -0.225 0.1099 0.0411 -0.145 0.0960 0.1302
Birth order

First reference

2-3 0.095 0.3533 0.7882 0.259 0.1307 0.0473 0.142 0.1214 0.2424

4-5 -0.380 0.362 0.2944 0.297 0.14 0.0341 0.130 0.1315 0.3236

6+ 0.975 0.4521 0.0311 1.081 0.1659 < 0.0001 0.5029 0.137 0.0002

Mother’s age at the birth

21 > reference

≤ 21 years 0.379 0.673 0.573 0.131 0.2641 0.6209 0.552 0.2129 0.0096

Mother’s education level

Secondary & higher reference

No education -0.547 0.4822 0.2566 -2.334 0.3685 < .0001 -0.658 0.1857 0.0004

Primary -0.3232 0.552 0.5582 -2.829 0.3816 < .0001 -0.902 0.2064 < .0001

Gender of the child

Male reference
Female -0.3342 0.2452 0.1633 -0.482 0.0943 < .0001 -0.447 0.0833 < .0001

Birth weights

≥ 2500g reference

< 2500g 1.4 0.4481 0.0018 1.151 0.2095 < .0001 0.580 0.2294 0.0.0115

Province/region

Eastern reference
Kigali -0.259 0.4973 0.6028 0.2905 0.3128 0.3531 -0.159 0.212 0.3641

Southern 0.246 0.3746 0.5110 0.3516 0.222 0.1137 0.339 0.1491 0.023

Western 0.65 0.3756 0.836 0.0493 0.2137 0.8176 0.435 0.7142 0.0409

Northern 0.924 0.511 0.0701 0.414 0.2485 0.0954 -0.150 0.1618 0.3549

Knowledge on nutrition

No reference
Yes -0.141 0.2543 0.58 0.348 0.1096 0.0015 0.259 0.0916 0.0047

Wealth index

Rich reference

Middle 0.562 0.3548 0.1129 0.144 0.1335 0.2821 0.194 0.1105 0.0784

Poor 1.303 0.5574 0.0194 0.228 0.2056 0.2681 0.434 0.1636 0.0079

Multiple birth

Singleton reference

First multiple 0.027 1.0951 0.9804 1.346 0.364 0.0002 0.409 0.4299 0.3413

Second multiple and more 0.043 1.3326 0.9743 0.445 0.4542 0.3272 0.138 0.5582 0.8046

Incident of anemia

No anemic reference

Anemic -0.494 0.2591 0.0568 -0.370 0.0992 0.0002 -0.093 0.0882 0.2922

Body mass index

BMI ≥ 18.5 reference

BMI < 18.5 1.117 0.3993 0.0052 1.130 0.1914 < .0001 0.131 0.1961 0.5028

Incident of the fever

Had fever last two weeks reference

No fever 0.567 0.2795 0.0427 0.511 0.119 < .0001 0.010 0.1134 0.9273
Source of drinking water

Others/yard reference

Piped into dwelling/yard -2.041 0.718 0.0045 -0.157 0.4249 0.7115 0.436 0.3186 0.1714

Public tap -1.352 0.4005 0.0007 -0.288 0.1588 0.0699 -0.019 0.1288 0.8802

Protected spring/well -0.462 0.3185 0.1472 0.081 0.1246 0.514 -0.010 0.1038 0.336
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Table 5.4. Variance components

Label Estimate SE. P-value

Var(stunting) 0.3161 0.07284 < .0001

Var(underweight) 0.8065 0.3639 0.0133

Var(wasting 1.3923 0.1785 < .0001

Correlation between stunting and underweight 0.9665 0.0947 < .0001

Correlation between wasting and underweight 0.9903 0.1778 < .0001

5.5. Summary

This study used joint multivariate generalized linear mixed model to identify simul-

taneously the key determinants of malnutrition of the child under age five in Rwanda

on three anthropometric indices: underweight, wasting and stunting. These three

response variables (underweight, stunting and wasting) could have been used sepa-

rately but as the correlation between underweight and wasting and underweight and

stunting is significant, it is better to use the joint model. If the correlation was not

significant, we would have simply used GLMM. However, joint model has a number

of advantages over separate fitting such as better control of the type I error rates in

multiple tests, possible gains in efficiency in the parameter estimates and the ability

to answer intrinsically multivariate questions (Kandala et al., 2011b; Verbeke and

Molenberghs, 2003; Gueorguieva, 2001). This study measured simultaneously the

determinants of underweight, stunting and wasting. Our findings revealed a posi-

tive correlation between underweight and wasting and underweight and stunting; this

means that increasing height-for-age and height-for-weight increases the weight for

height or decreasing height-for-age and height-for-weight also decreases the weight-

for-age. In other words, reducing stunting has a positive consequence of reducing

underweight.

The findings of this study revealed that the age of child, gender of child, birth weight,

birth order, fever, mother’s education level, mother’s age at the birth, body mass

index of the mother, anemia, knowledge on nutrition by mother, province, source

of drinking water, multiple birth and wealth index of the household are the key

determinants of malnutrition of children under five years in Rwanda. This research

revealed that stunting and underweight are lower in female children compared to

110



male children. This finding is consistent with other authors (Habyarimana et al.,

2014; Kandala et al., 2011a). It also revealed that the nutrition status of the mother

affects the nutrition status of the child, where a thin mother is more likely to deliver

a wasted or underweight child; this finding is in line with Das and Rahman (2011).

Mother’s knowledge on nutrition is a very import factor of nutrition of the child. Some

variables such as birth weights of the child and birth order significantly affect all three

anthropometric indices. It was also found that malnutrition decreases with increasing

the mother’s level of education especially in the case of stunting and underweight;

these results are in line with Habyarimana et al. (2014) and Kandala et al. (2011a).

Improving the access (distance traveled to feature) to potable water may help to

reduce wasting; sensitization to the population about nutrition may reduce stunting

and underweight. Also improving education level of women may reduce underweight

and stunting; to continue sensitizing women to get pregnant when they are mature

enough (aged 21 years or more) may also contribute to reduce stunting; sensitizing

how to take care of children may reduce not only stunting but also underweight

and wasting. The birth order significantly affects all three anthropometric indices,

where malnutrition increases with birth order; maybe improving the existing planning

policy about limitations of birth might reduce the negative effect on nutrition. But

the spatial variability was not considered. Therefore, in the next chapter we use

spatial multivariate joint model to account for spatial variability that might exist

between households.
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CHAPTER 6

Accounting for spatial variability in modelling malnutrition

Introduction

In previous chapters the data was analyzed using classical binary and ordinal logis-

tic regression models, binary and ordinal survey logistic (proportional model with

sampling weight), generalized linear mixed model, and multivariate joint model (un-

derweight, stunting and wasting) under GLMM; however none of these included the

spatial random variability effects. Therefore, this chapter extends chapter 5 to include

spatial variability and to produce the smooth maps of joint malnutrition prevalence

of stunting, wasting and underweight.

6.1. Model overview

Spatial statistics is mainly divided into three methods such as point pattern analysis,

methods of lattice data and geostatistics (Schaberger and Gotway, 2005; Cressie and

Cassie, 1993).

We consider the basic terminology first.

Variogram: A variogram 2γ(h) represents the average variance between observa-

tions separated by the distance h, γ(h) is the semivariogram. A variogram plays an

important role in the description and interpretation of the structure of the spatial

variability. It is given by (Journel, 1978) as

2γ(h) =
1

N(h)

N(h)∑
i=1

{Z(si)− Z(si + h)}2 (6.1)

where Z(si) is the measurement at location si with N(h) the number of sampled

points of distance(lag) length h.

The non-Gaussian spatial problems can be analyzed in the context of generalized

linear mixed models, where the specification of the likelihood of the random variable

is required. The spatial process can be incorporated as y(si|α), and this assumed to

be conditionally independent for any location si with the conditional mean µ(si) =
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E[Y (si|α)], where the parameter α is used to define the distribution of s. Therefore,

the spatial correlated random effect is incorporated into the linear predictor as

g(µ(si)) = η(Si) = X ′(Si) + w(si) (6.2)

where X and W are the design matrices. The random effect at location (si), α ∼

N (0,
∑

α(θ)) and ε ∼ N (0, σ2
ε I), where the spatial correlation is parameterized by θ

in
∑

α(θ) (Schaberger and Gotway, 2005).

There are three major functions used to describe the spatial correlation in Geostatis-

tics. These functions are the correlogram, the covariance and semivariogram. A var-

iogram represents the structural and random aspects of the data. A variogram has a

number of properties to satisfy for instance, assuming that the mean is constant, and

define

var[Z(s1)− Z(s2)] = 2γ(s1 − s2)

; the variance of s1 and s2 is through their difference. A process that satisfies this

property is called intrinsically stationary. If the semivariogram depends only its

vector argument h through its length ||h||, then the process is called isotropic. A

process that is both intrinsically and isotropic is known as homogeneous. Isotropic

processes are more convenient to deal with because there are a number of commonly

used parametric forms of semivariogram. semivariograms γ increase monotonically

to reach a peak (sill) at range (r) with spatial variance called partial-sill σ2
1 and non

random variance starting at (h > 0) referred to as nugget (c1). Some of the examples

are:

Spherical : γ(h) =


0, if |h| = 0

c1 + σ2
1

[
3
2
|h|
r

1
2

(
|h|
r

)3
]
, if 0 < |h| ≤ r

c1 + σ2
1, if |h| ≥ r

(6.3)

This is valid in (Rd, d = 1, 2, 3). The spherical function reaches the sill at |h| = r.

The model looks nearly linear at small lags. The spherical model is a commonly used

variogram structure in practice, particularly for modelling spatial correlation that

decreases linearly with the separation distance.
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Exponential : γ(h) =

0, if |h| = 0

c1 + σ2
1

[
1− exp(− |h|

r
)
]
, if |h| > 0

(6.4)

This function is valid for all dimension. However, it reaches the sill asymptotically

when |h| → ∞.

Gaussian : γ(h) =

0, if |h| = 0

c1 + σ2
1

[
1− exp(− |h|2

r
)
]
, if |h| > 0

(6.5)

This is valid for all dimension; the Gaussian model reaches the sill asymptotically.

It is used when the data exhibit strong continuity at short lag distance, in other

words when spatial correlation between two nearby points is very high. The Gaussian

semivariogram is S-shaped, much like one-half of the Gaussian distribution.

Exponential power form : γ(h) =

0, if |h| = 0

c1 + σ2
1

[
1− exp(−

∣∣h
r

∣∣q)] , if |h| > 0
(6.6)

where 0 ≤ q ≤ 2. Note that the Gaussian and exponential forms are special cases of

the exponential power form, in other words model (6.6) generalizes models (6.4) and

(6.5).

Cubic : γ(h) =


0, if |h| = 0

c1 + σ2
1

[
7
(
|h|
r

)2

− 35
4

(
|h|
r

)3

+ 7
2

(
|h|
r

)5

− 3
4

(
|h|
r

)7
]
, if 0 < |h| ≤ r

c1 + σ2
1, if |h| ≥ r

(6.7)

Power law : γ(h) =

0, if |h| = 0

c1 + σ2
1h

p, if |h| > 0
(6.8)

This is valid for all dimensions. But the power model does not reach the sill. Any

power between 0 and 2 may be used to constract a valid power variogram model. The

power model is only appropriate if there is long-range correlation or if sample were

not collected at a sufficiently large distance to reach the point where pairs of points

are uncorrelated.
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Pentaspherical : γ(h) =


0, if |h| = 0

c1 + σ2
1

[
15
8
|h|
r
− 5

4

(
|h|
r

)3

+ 3
8

(
|h|
r

)5
]
, if 0 < |h| ≤ r

c1 + σ2
1, if |h| ≥ r

(6.9)

The pentaspherical semivariogram behaves like cubic and spherical models in that

γ(h) increases with the distance until reaches the sill value c1 + σ2
1 at the distance h

equals to the model range r.

Sine hole effect : γ(h) =

0, if |h| = 0

c1 + σ2
1

[
1− r sin(|h|/r)

|h|

]
, if |h| > 0

(6.10)

The wave or hole-effect mode is generally used when there is some periodicity in the

data resulting in a hole-effect. The range in the hole-effect is the shortest distance

at which the semivariogram equals c1. This will occur on the initial rise in the

variogram function. Because of periodicity, this model contains both positive and

negative correlation.

Mathéron : γ(h) =

0, if |h| = 0

c1 + σ2
1

[
1− 2

Γ(ν)

(
|h|
√

ν
r

)ν

Kν2
(
|h|
√

ν
r

)]
, if |h| > 0, ν > 0

(6.11)

Kν is the modified bessel function of order ν. This model is a highly flexible model

around nugget effect, and is the best when modelling complicated behaviour near the

nugget effect (Handcock and Stein, 1993).

6.2. Valid covariance and semivariogram functions

Consider isotropic models for the covariance function and semivariogram of a spatial

process. Let C(h) be isotropic covariance function of the second order stationary field

and γ(h) the isotropic semivariogram of a second order or intrinsically stationary field.

A valid covariance C(h) is a positive-definite function, that is

m∑
i=1

m∑
j=1

aiajC(si − sj) ≥ 0 (6.12)
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for any finite configurations of spatial locations {si : i = 1, 2, ...,m} and all real

numbers {ai : i = 1, 2, ...,m}. Based on Bochner’s theorem, the equation (6.12) means

that the covariance function C(h) can be represented in spectral form as follows∫ ∞

−∞
...

∫ ∞

−∞
exp (iω′h) dS(ω) (6.13)

where S(dω) = s(ω)dω the integral is over Rd and S is a positive bounded spectral

measure. In isotropic case, the spectral representation of the covariance function in

Rd becomes (Cressie and Cassie, 1993; Schaberger and Gotway, 2005)

C(h) =

∫ ∞

0

Ωd(hω)dH(ω) (6.14)

with

Ωd(t) =

(
2

t

)ν

Γ(d/2)Jν(t)

and Ωd is commonly known as basis function of the covariance model in Rd, where

ν = d
2
−1, Jν is the Bessel function of the first kind of order ν andH is a non-decreasing

function on the interval [0,∞) with
∫∞

0
dH(ω) <∞ (Schaberger and Gotway, 2005).

In addition, the model validity can also be defined based on the variogram theory as

in Cressie and Cassie (1993) and Schaberger and Gotway (2005) by

2
m∑

i=1

m∑
j=1

aiajγ(si − sj) ≤ 0 (6.15)

for any finite configurations of spatial locations {si : i = 1, 2, ...,m} and all real

numbers {ai : i = 1, 2, ...,m} and satisfying Σm
i=1ai = 0. A valid semivariogram as in

the case of covariance has also a spectral representation given by

γ(h) =
1

2

∫ ∞

0

ω−2 (1− Ωd(ωh)) dH(ω) (6.16)

with
∫∞

0
(1 + ω2)

−1
dH(ω) < ∞. A necessary condition for γ(h) to be a valid semi-

variogram is 2γ(h) grows more slowly than ‖h‖2 which is often referred to as the

intrinsic hypothesis.
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6.3. Estimating semivariogram functions

The main idea is to find a valid variogram that, as a measure of the spatial dependence,

is closest to the spatial dependence present in the data Z = (Z(s1), Z(s2), ..., Z(sn))′

Fitting semivariogram and covariance models

After estimating the empirical semivariogram, the next step is to fit the theoret-

ical model (for instance, spherical, Gaussian, exponential, etc.) to the empirical

semivariogram. There are three main approaches for estimating the parameters of

the semivariogram model: Visual, (weighted) least squares, and likelihood meth-

ods. The estimation of semivariograms is mainly based on the method of moments

known as Matheron’s estimator, the Cressie-Hawkins robust estimator, estimators

based on order statistics and quantiles. However, the simplest method is Matheron’s

estimator also known as classical estimator; it was proposed by Matheron (1962).

Let Z(s1), ..., Z(sn) be a set of spatial data, one could plot the squared differences

(Z(si)− Z(sj))
2 against the lag distance h. This graph is referred to as the empirical

semivariogram cloud. However, (Z(si)− Z(sj))
2 estimates unbiasedly the variogram

at lag h = si − sj if the mean of the random field is constant. A more useful estima-

tor is obtained by summarizing the squared differences. The semivariogram estimator

which averages the squared differences of point that are distance si − sj = h part is

generally known as classical or Matheron estimator.

γ̂ =
1

2|N(h)|
∑
N(h)

(Z(si)− Z(sj))
2 (6.17)

where the set N(h) = {(si, sj) : ‖si − sj‖ = ‖h‖; i, j = 1, 2, ..., n} consists of all

location pairs (si, sj) separated by the distance ‖h‖ and |N(h)| is the number of

distinct pairs in N(h). In the case of sparse data, it is usually recommended to

group the distances into bins according to chosen distance lags and lag tolerances.

Therefore, the corresponding averaged 1
2
(Z(si)− Z(sj))

2 in each bin is taken as the

semivariogram estimate for that distance lag. The lag tolerance must be chosen in

such a way that adequate spatial resolution and stability in the smoothed estimator

are retained. Journel (1978) proposed choosing lag tolerance such that at least 30

locations-to-location pairs fall within each bin.
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Cressie and Hawkins (1980) proposed an estimator that alleviates the negative impact

of outlying observations by eliminating squared differences from the evaluations. This

estimator is commonly known as the robust semivariogram estimator or the Cressie-

Hawkins (CH) estimator formulated in Cressie and Cassie (1993) and Schaberger and

Gotway (2005) as

γ(h) =
1

2|N(h)|

(∑
N(h) |Z(si)− Z(sj)|

1
2

)4

0.47 + 0.494
|N(h)|

(6.18)

This estimator was derived under the assumption that the differences Z(si) − Z(sj)

are normally distributed for all station pairs (si, sj) and the denominator in equation

(6.18) is the bias correction (Genton, 1998). However, this estimator is not a resistant

estimator, since is not stable under gross contamination of the data (Schaberger and

Gotway, 2005). The CH and Matheron estimators have unbounded influence functions

and a breakdown point of 0%. The influential function of an estimator measures the

effect of infinitesimal contamination of the data on the statistical properties of the

estimator (Hampel et al., 1986) and the breakdown point is the percentage of the

data that can be replaced by arbitrary values without explosion of the estimator.

The median absolute deviation (MAD), is an estimator of scale with 50% breakdown

point and a smooth influence function. For a set of numbers {x1, x2, ..., xn}, the MAD

is given by

MAD = d mediani (‖xi −medianj(xj)‖) (6.19)

where mediani(xi) is the median of the xi and d is chosen to produce approximate

unbiasedness and consistency. Rousseeuw and Croux (1993) proposed a robust esti-

mator of scale which also has a 50% breakdown point and smooth influence function.

Their Qn estimator is given by the kth order statistic of the n(n − 1)/2 inter-point

distances. Let h = n/2 + 1 and k =

 h

2

. Then Qn = c{‖xi− xj‖ : i < j}(k). This

method has positive small-sample bias that can be corrected (Croux and Rousseeuw,

1992). Genton (1998, 2001) considers the modification that leads from equations

(6.17) to(6.18) not sufficient to impart robustness and develops a robust estimator of

the semivariogram based on Qn. If the spatial data {Z(s1), ..., Z(sn)}are observed,

let N(h) denote pairwise difference Ti = Z(si) − Z(si + h), i = 1, 2, ..., n(n − 1)/2.
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Next, calculate Q‖N(h)‖ for the Ti and return as the semivariogram estimator at lag

h

γ(h) =
1

2
Q2
|N(h)| (6.20)

Since Qn has 50% breakdown points, γ(h) 50% also has breakdown points in terms of

process of differences in Ti, but not necessarily in terms of the Z(si). Genton (2001)

established through simulation that roughly equation (6.20) will be resistant to 30%

of outliers among the Z(si).

Another method used for robustness of the empirical semivariogram estimator is to

consider the quantiles of the distribution of {Z(si)−Z(sj)}2 or |Z(si)−Z(sj)| instead

of considering the arithmetic averages as in equation (6.17) and (6.18) (Schaberger

and Gotway, 2005). If [Z(si), Z(si + h)]′ are bivariate Gaussian with common mean,

therefore

1

2
(Z(si)− Z(si + h))2 ∼ γ(h)χ2

1

1

2
‖Z(si)− Z(si + h)‖ ∼

√
1

2
γ(h)|U |, U ∼ G(0, 1)

Let q
(p)
|N(h)| denote the pth quantile. Therefore,

γ̂p(h) = q
(p)
|N(h)|{

1

2
(Z(si)− Z(si + h))2} (6.21)

estimates γ(h) × χ2
p,1. If p = 0.5, then equation (6.21) reduces to median estimator

as:

γ̂(h) =
1

2
median|N(h)|{

1

2
(Z(si)− Z(si + h))2}/0.455 (6.22)

=
1

2

(
median|N(h)|{

1

2
(Z(si)− Z(si + h))

1
2}
)4

/0.455 (6.23)

then q
(p)
|N(h)| reduces to median based estimator. The empirical variogram provides a

description of how the data are related with distance. The variogram function γ(h)

was originally defined by Matheron (1963) as a half of the average squared difference

between points separated by a distance h. The semivariogram is 1/2γ(h).

The empirical semivariogram γ̂(h) is unbiased estimator of γ(h), however, it only

provides estimates at a finite set of lags or lag classes. In order to obtain estimates

of γ(h) at any arbitrary lag, the empirical semivariogram must be smoothed. A non
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parametric kernel smoother will not suffice because it is not guaranteed that the re-

sulting fit is a conditionally negative-definite function. The common approach is to

fit the parametric semivariogram models or to apply non parametric semivariogram.

Although fitting a parametric semivariogram model to empirical semivariogram by

the least squares method is by far the most common approach, it is not the only

parametric technique. Maximum likelihood and restricted (residual) maximum like-

lihood (REML) estimation use observed data directly, usually assuming a Gaussian

random field (Schaberger and Gotway, 2005). Other estimating function based meth-

ods such as generalized estimating equations (GEE) and composite likelihood also

utilize pseudo-data. No single method can claim uniform superiority. To distinguish

the empirical semivariogram γ(h) from

the semivariogram model being fit, we introduce the notation γ(h, θ) for the latter.

The vector θ contains all unknown parameters to be estimated from the data and its

estimate γ̂(H)

Least square estimation

Suppose that the semivariogram is estimated by γ(h) at finite set of values of h, and

wish to fit model specified by parametric function γ(h, θ) with respect to a finite

parameter θ. Let us assume that the method of moment (MoM) estimator γ̂(h) has

been used and let γ̂ denote the vector of estimates of γ(θ), the vector model values

at the same vector of h values. Generally, there are three common approaches of

least squares estimator in literature known as Ordinary least squares (OLS): in this

approach θ can be minimized using (γ̂ − γ(θ))′ (γ̂ − γ(θ)).

The second approach is Generalized least squares or GLS, in this approach θ can

be minimized using (γ̂ − γ(θ))′ V (θ)−1 (γ̂ − γ(θ)) where V (θ) denotes the covariance

matrix of γ̂. This estimator depends on an unknown θ because the problem is non-

linear. The third approach is Weighted least squares or WLS. In this approach θ can be

minimized using the following expression (γ̂ − γ(θ))′W (θ) (γ̂ − γ(θ)), whereW (θ) is a

diagonal matrix whose diagonal entries are the variances of the entries of γ̂. Therefore

weighted least squares allows for the variance of γ̂ but not the covariance, while GLS

allows for both. Also the weights in matrix W (θ) may be proportional to |N(h)|

or inversely proportional to approximate variance of γ̂ for more details see (Cressie,
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1985). OLS is the most convenient estimator to use, it is immediately implementable

by nonlinear least squares procedure, while WLS and GLS need specification of the

matrices W (θ) and V (θ). However, in general, OLS, WLS and GLS are in increasing

order of efficiency (Cressie and Cassie, 1993). Based on Gaussian process we get the

following expressions (Cressie and Cassie, 1993):

E
(
[Z(si + h)− Z(si)]

2) = 2γ(h), (6.24)

var
(
[Z(si + h)− Z(si)]

2) = 2 [2γ(h)]2 , (6.25)

corr
(
[Z(s1 + h)− Z(s1)]

2 , [Z(s2 + h)− Z(s2)]
2) = (6.26)[

corr
(
{Z(s1 + h)− Z(s1)}2 , {Z(s2 + h)− Z(s2)}2)]2 = (6.27)

[γ (s1 − s2 + h1) + γ (s1 − s2 − h2)− γ (s1 − s2 + h1 − h2)− γ (s1 − s2)]
2

2γ(h1)2γ(h2)

The equation (6.27) may be used to find the matrices W (θ) and V (θ). Therefore, gen-

eralized least squares can be used in principle, however it is complicated to implement,

for instance it is not guaranteed that the resulting minimization has a unique solu-

tion. Schaberger and Gotway (2005) proposed the following weighted least squares

criterion for solving complicated∑
j

|N(hj)|
(

γ̂(hj)

γ̂(hj, θ)
− 1

)2

(6.28)

equation (6.28) can be derived as the WLS solution under the approximation

var (γ̂(h)) ≈ 8γ2(h)

|N(h)|
(6.29)

This follows from equation (6.25) if we assume that the individual Z(si)−Z(sj) terms

are independent. This assumption is not exactly satisfied but may be a reasonable

approximation if the pairs (si, sj) lying in N(h) are widely spread over the sampling

space. The WLS in equation (6.28) is not difficult to implement than OLS and is

more efficient.

Maximum likelihood

Maximum likelihood estimator for spatial model is only developed for the Gaussian

case (Mardia and Marshall, 1984), and the Gaussian assumption for spatial model

is given by Z(s) ∼ N (X(s)β,Σ(θ)), where
∑

= αV (θ), α is a scale parameter and
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V (θ) is a vector of standard covariance and θ is an unknown parameter. Maximum

likelihood (ML) is a simultaneous estimation of mean and covariance parameters,

where the ML estimates are the simultaneous solution to the problem of minimizing

the negative of twice the Gaussian log likelihood

ϕ (β; θ;Z(s)) = ln (|Σ(θ)|) + nln(2π) + (Z(s)−X(s)β)′ Σ(θ)−1 (Z(s)−X(s)β)

(6.30)

To profile β, differentiate equation (6.30) with respect to β and solve. The result is

the GLS estimator

β̂ =
(
X(s)′Σ(θ)−1X(s)

)−1
X(s)′Σ(θ)−1Z(s) (6.31)

Equation (6.31) in (6.30) yields an objective function for minimization profiled for β

given by

ϕβ (θ;Z(s)) = ln
(∣∣σ2Σ(θ∗)

∣∣)+ nln(2π) + σ−2r′Σ(θ∗)−1r (6.32)

where

r = Z(s)−
(
X(s)′Σ(θ)−1X(s)

)−1
X(s)′Σ(θ)−1Z(s)

where r is the GLS residual. σ2 can be profiled from the objective function (6.32),

note that its MLE is

σ̂2
ml =

1

n
r′Σ(θ∗)−1r

substituting again yields the negative of twice the profiled log likelihood as

ϕβ,σ (θ∗;Z(s)) = ln (|Σ(θ∗)|) + n (ln(2π)− 1) (6.33)

Therefore minimizing equation (6.33) is an optimization problem with only (q − 1)

parameters. Upon convergence we obtain θ̂ml from σ̂2
ml and σ̂∗ml ,and β̂ml by evaluating

equation (6.34) at the maximum likelihood estimates θ̂ml of θ:

β̂ =
(
X(s)′Σ(θ̂ml)

−1X(s)
)−1

X(s)T Σ(θ̂ml)
−1Z(s) (6.34)

One of the advantages of likelihood estimation is the ability to estimate the variance-

covariance matrix of the parameter estimates based on the observed or expected

information matrix.

Restricted maximum likelihood
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Restricted maximum likelihood (REML) estimation is a method employed to esti-

mate variance-covariance parameters from data that follow a Gaussian linear model.

Restricted maximum likelihood estimates are frequently preferred over maximum like-

lihood estimates (MLE) since the latter exhibit greater negative bias for estimates of

covariance parameters. In the case of the spatial model

Z(s) ∼ N (X(s)β,Σ(θ))

the REML adjustment consists of performing maximum likelihood estimation not for

Z(s), but for KZ(s),where the ((n− k)× n) matrix K is chosen so that E [KZ(s)] =

0 and the rank of K = n − k. Because of these properties the matrix K is called a

matrix of error contrast. An objective function about θ is given by

ϕR (θ;KZ(s)) = ln{|KΣ(θ)K ′|}+ (n− k)ln(2π) + Z(s)′K ′ (KΣ(θ)K ′)
−1
KZ(s)

(6.35)

and

β̂reml =
(
X ′Σ(θ̂reml)

−1X
)
X ′Σ(θ̂reml)

−1Z(s) (6.36)

If E[KZ(s)] = 0, then KX(s) = 0, in addition if Σ(θ) is positive definite, then

equation (6.35) can be reduced (Searle et al., 1992) to

K ′ (KΣ(θ)K ′)
−1
K = Σ(θ)−1 (6.37)

where Σ(θ) = (X(s)′Σ(θ)−1X(s))
−1

. This is identity and ΣX(s)′Σ(θ)−1Z(s) = β̂

yields

Z(s)′K ′ (KΣ(θ)K ′)KZ(s) = r′Σ(θ)−1r

where

r = Z(s)−
(
X(s)′

∑
(θ)−1X(s)

)−1

X(s)′
∑

(θ)−1Z(s)

is the GLS residual. Harville (1974) based on the following identities

KK ′ = I −X(s) (X(s)′X(s))
−1
X(s)′

and

KK ′ = I
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reduced the minus twice the log likelihood of KZ(s) to

ϕR (θ;KZ(s)) = ln (|Σ(θ)) + ln{|KΣ(θ)K ′|}+ (n− k)ln(2π)

+ Z(s)′K ′ (KΣ(θ)K ′)
−1
KZ(s)

− ln (|X(s)′X(s)|)− r′Σ(θ)−1r + (n− k)ln(2π) (6.38)

He also pointed out that (n − k) × n matrices whose rows are linearly independent

rows of I−X(s) (X(s)′X(s))−1X(s)′ will lead to REML objective function that differ

by a constant amount and this amount does not depend on θ or β. The obvious choice

as a REML objective function for minimization is

ϕR (θ;KZ(s)) = ln (|Σ(θ)) + ln{|KΣ(θ)K ′|}+ (n− k)ln(2π) (6.39)

+ Z(s)′K ′ (KΣ(θ)K ′)
−1
KZ(s) + r′Σ(θ)−1r + (n− k)ln(2π)

In this form the minus twice the REML log likelihood differ by the terms

ln (|X(s)′Σ(θ)−1X(s)|) and kln(2π). As with ML estimation, a scale parameter can

be profiled from Σ(θ) and the REML estimator of this parameter is given by

σ̂2
reml =

1

n− k
r′Σ(θ∗)−1r

and upon substitution one obtains minus twice the profile REML log likelihood as

follows

ϕR (θ∗;KZ(s)) = ln (|Σ(θ∗))+ln{|KΣ(θ∗)K ′X(s)|}+(n−k)ln(σ̂2)+(n−k) (ln(2π)− 1)

(6.40)

Wolfinger et al. (1994) give expression for the gradient and Hessian of the REML log

likelihood with and without profiling of σ2.

Minimum norm quadratic estimation

Minimum norm quadratic (MINQ) estimation was developed by Rao (1979) for the

spacial case where the variance matrix of the data is linear in its parameters and is

given by

Σ(θ) = θ1Σ2 + θ1Σ1 + ...+ θmΣm (6.41)

This is used when finding an estimator of θj between those that can be written as

θ̂j = W ′FjW , with W = A′Z ( a vector of orthogonal contrast to X). The minimum
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norm estimator is obtained by minimizing E
(
θ̂j − θj

)
. Generally it is subjected to

unbiasedness or invariance restrictions. The formula of MINQ estimator in spatial

setting was given by Kitanidis (1985), where the data are sampled from a random

process in Rd, but he used the mean squared-error as norm. The minimum norm

quadratic approach is particularly suitable for variance component model, however,

in spatial setting
∑

(θ) might be a nonlinear function of the small scale variation

parameter θ

The advantage of this method over maximum likelihood estimator or restricted max-

imum likelihood estimator and WLS procedure is that for a fixed α it is a linear

procedure and for this reason it does not need any iterated procedure.

The spatial autocorrelation measurements

Moran’s I: Moran’s I coefficient of autocorrelation is similar to Pearson’s correlation

coefficient, and quantifies the similarity of outcome variable among areas that are

defined as spatially related (Moran, 1950; Pfeiffer et al., 2008) and is given by

I =
n
∑

i

∑
j wij

(
Zi − Z̄

) (
Zj − Z̄

)(∑
i

∑
j wij

)∑
k

(
Zk − Z̄

)2 (6.42)

where Zi could be the residual (Oi − Ei) and wij is a measure of closeness of the areas

i and j. Moran’s I is approximately normally distributed and has an expected value

of −1
(N−1)

, where N equals the number of area units within a study region. Moran’s

I generally lies between +1 and −1, Moran’s I is not bound by these limits unlike

Pearson’s correlation coefficient. A Moran’s I of zero indicates the null hypothesis of

no clustering, whereas a positive Moran’s I indicates positive spatial autocorrelation

(this means clustering of areas of similar attribute values), while a negative coefficient

indicates a negative spatial autocorrelation (this means that neighbouring areas tend

to have dissimilar attribute values).

Geary’s C

Geary’s contiguity ratio commonly known as Geary’s C is another weighted esti-

mated of spatial autocorrelation (Geary, 1954; Pfeiffer et al., 2008), whereas Moran’s

I considers similarity between pairs of regions. The Geary’s range from 0 indicat-

ing perfect positive spatial autocorrelation and 2 indicating perfect negative spatial
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autocorrelation for any pair of regions. Geary’s C statistic is given by

C =
(n− 1)

∑n
i=1

∑n
j=1wij (yi − yj=1)

2

2
(∑n

i=1 (yi − ȳ)2) (∑n
j=1

∑n
j=1wij

) (6.43)

where n is the number of polygons in the study area, wij is the (i, j)th value of the

spatial proximity matrix, yi the attribute under investigation, and ȳ is the mean of

the attribute under investigation.

Geary’s approach considers similarities between the pairs of regions and C varies

between 0 (highest value of positive autocorrelation) and 2 (strong negative autocor-

relation. Moran’s I is a more global measurement and sensitive to extreme values,

but Geary’s C is more sensitive to differences in small neighbourhoods. Generally,

Moran’s I and Geary’s C result in similar conclusions. However, Moran’s I is preferred

in most cases.

6.4. Application to the risk factors of malnutrition of children under five
years

Let us consider yijk to be child nutrition status (1 in malnourished case and 0 in

nourished case) of the anthropometric indicators, with k = 1 for wasting, k = 2 for

underweight and k = 3 for a stunting for a child j, in district i, i = 1, 2, , 30. Let

us consider that the observed outcomes arise from a trivariate Bernoulli distribution,

with pijk as the probability of anthropometric indicator k occurring in child j in

district i, therefore the outcome is modeled using GLMM with spatial random effect

as follows

g(µk) = Xijkβk + Zjkαk (6.44)

Where k = 1, 2, 3, βk are vectors of fixed regression parameters, Xijk and Zjk are the

design matrices and αk are random spatial variation.


α1

α2

α3

 ∼ i.i.d.MV N
(
0,
∑)

= MVN




0

0

0

 ,

∑

11

∑
12

∑
13∑′

12

∑
22

∑
23∑′

13

∑′
23

∑
33


 , (6.45)

Where the above equation (6.45) is the covariance matrices of the spatial effects,

Σ11,Σ22, Σ33 are the variance components of wasting, underweight and stunting status
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respectively and Σ12, Σ13 and Σ23 are correlation components between wasting and

underweight, wasting and stunting and underweight and stunting respectively.

6.4.1. Data analysis.

The data was analyzed by fitting generalized linear mixed using SAS 9.3 PROC

GLIMMIX procedure, several covariance structures were considered such as SP(EXP)

(Exponential), SP(EXPA) (Anisotropic Exponential), SP(EXPGA) (2D Exponen-

tial), Geometric Anisotropic, SP(GAU) (Gaussian), SP(GAUGA) (2D Gaussian, Ge-

ometrically Anisotropic) SP(SPH) (Spherical ), SP(SPHGA) (2D Spherical, Geomet-

rically Anisotropic), SP(LIN) (Linear), SP(LINL) (Linear Log), SP(Matern) (Matrn)

and SP(MATHSW) (Matrn (Handcoks-Stein-Wallis)) and ArcGIS was used to pro-

duce smooth maps of malnutrition prevalence corresponding to each outcome variable.

6.4.2. Interpretation of the results.

The results from Figure 6.1 represent the scatter plot for malnutrition prevalence for

joint distribution of stunting, underweight and wasting. As can be seen from the

figure, the plot suggested that the distribution is not an indicative of uniform distri-

bution. The distribution is an indication of random spread of the response. Classical

representation of Gaussian semivariogram is presented together with the robust semi-

variogram Figure 6.2. Based on this graphical representation, the Gaussian structure

was found to perform better than any other spatial structure considered. Therefore,

the variogram analysis was performed based on Gaussian structure given in equation

(6.5). It is observed from the figure, that the origin of Y-axis does not correspond to

that of x-axis; this indicates the possible presence of nugget effect. The estimate of

the range was estimated based on SP(GAU) spatial structure and is given by 1.5864

Table 6.2. In the Gaussian model, the variance parameter estimated by 0.7574 in

Table 6.2 is known as the partial sill. The null hypothesis states that the spatial

distribution of feature values is the result of random spatial process. The results

from Moran’s I (Z=-129.81 and p-value< .0001) and Geary’s C(Z-value=-9.32 and p-

value< .0001, indicate that the spatial distribution of feature values is not the result

of random spatial processes. The Z values are negative for Moran’s I and Geary’s C;

this is an indication that spatial distribution of higher values and low values in the

127



dataset is more spatially dispersed than would be expected if underlying processes

were random. However, if the z-value for Moran’I and Geary’s C were positive with

significant p-values, these would mean that the spatial distribution of high values

or low values in the dataset is more spatially clustered than would be expected if

underlying spatial processes were random.

The spatial autocorrelation was measured by this study which considered different

child malnutrition factors such as gender of the child, birth weight, birth order, child

age, child had fever in two weeks before the survey, diarrhea, mother’s education

level, mother’s age at the birth, body mass index of the mother, anemia, mother’s

knowledge on nutrition, assistance at delivery, antenatal visits, region or province,

source of drinking water, place of residence, toilet facilities, wealth index, access

to toilet, the size of household and household wealth index. But in Table 6.1, any

variable which is at least significant at one of the three anthropometric indicators

is considered as a determinant of malnutrition and is reported. For the test of

model fit, the AIC and -2log likelihood (deviance) are the same and smaller for

Gaussian, Exponential power and Spherical than AIC and -2log likelihood of any

other considered model. However, based also on graphical representation, Gaussian

was found to be the best spatial covariance structure for this study.

Stunting: This study revealed that birth order, mother’s age, mother’s education,

child’s age, gender of the child, birth weight, province, mother’ s knowledge on nu-

trition and wealth index are the determinants of stunting of children under five years

in Rwanda. From Table 6.1, we observe that the age of a child significantly affects

height-for-age of the child. A child aged between twelve months and twenty three

months is 3.8768(p-value< .0001) times more likely to be stunted than infant. But

a child aged twenty three months or more was not significant as compared to infant.

Birth order significantly affects height-for-age of the child Table 6.1. It was found that

a child born at sixth order or more is 1.7092 (p-value=0.0003) times more likely to

be stunted than infant. Mother’s age at the birth significantly affects height-for-age

of the child. A child born to mother aged less than twenty one years old is 1.8738

(p-value=0.0066) times more likely to be stunted than a child born to mother aged
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twenty one years old or more. Mother’s education level significantly affects height-

for-age of the child. A child born to mother with primary education or mother with

secondary or higher level is 0.4781 (p-value < .0001) or 0.3798 (p-value=0.0002) re-

spectively times less likely to be in stunting status than a child born to mother with

no formal education. This means that the stunting status decreases with increasing

the mother’s level of education.

Gender of child also affects height-for-age of the child Table 6.1. We observe from

the same table that a male child is 1.6537 (p-value < .0001) times more likely to be

stunted than a female child. Birth weight significantly affects height-for-age of the

child. A child born with low weight (weight < 2500g) is 1.7212 (p-value=0.0271)

times more likely to have stunting status than a child born with weight greater or

equal to 2500g (weight ≥ 2500g). Province also affects height-for-age of the child. A

child born in Southern or Eastern province is 1.7109 (p-value=0.0061) or 1.9484 (p-

value=0.0147) respectively times more likely to be stunted than a child born in Kigali

city. Mother’s knowledge on nutrition significantly affects height-for-age of the child.

A child born to mother with some knowledge on nutrition is 0.7240 (p-value=0.0009)

less likely to be stunted than a child born to mother without knowledge on nutrition.

Wealth index also significantly affects height-for-age of the child. A child born in rich

family is 0.6460 (p-value=0.0143) times less likely to be stunted than a child born

in poor family. The prevalence of stunting is higher in Northern province and lower

in Kigali city Figure 6.3; this is consistent with other findings such as NISR et al.

(2012).

Wasting: This study revealed that source of drinking water, fever, wealth index,

birth weight, birth order and age of the child are the determinants of wasting of

children under five years of age in Rwanda. The age of the child significantly affects

height-for-weight of the child Table 6.1. A child aged between twelve months and

twenty three months or twenty three months and more is 0.3712 (p-value=0.0011) or

1.800 (p-value=0.0499) respectively times more likely to be wasted than infant. But

a child aged twenty three months or more was not significant as compared to infant.

Birth order also significantly affects height-for-weight of the child. A child born at
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sixth order is 2.6406 (p-value=0.0317) times more likely to have wasting status than

a child born at the first order.

Birth weight of the child also significantly affects height-for-weight of the child

Table 6.1. A child born with low weight is 3.1018 (p-value=0.0035) times more

likely to be wasted than a child born with weight ≥ 2500g. The wealth index

is also significantly affecting height-for-weight of the child. A child born in rich

family is 0.2658 (p-value=0.0181) times less likely to have wasting status than a

child born in poor family. Body mass index of the mother is significantly affecting

height-for-weight of the child. A child born to thin mother (BMI< 18.5) is 3.8923

(p-value=0.0007) times more likely to be wasted than a child born to normal

mother or obese (BMI ≥ 18.5). Source of drinking water significantly affects

height-for-weight of the child Table 6.1. A child born in a family who use water

piped in their dwelling or from public tap is 4.0390 (p-value=0.0045) or 7.3749

(p-value=0.0058) respectively times more likely to have wasting status than a child

born in family where they use water from not piped and protected spring. The preva-

lence of wasting is higher in Western province and lower in Kigali city Figure 6.4.

However, the current research was expecting the highest prevalence of wasting in Ki-

gali city. This difference might be the effect of other covariates included in the model.

Underweight: This study revealed that birth order, mother’s education, gender

of the child, birth weight of the child, province, mother’s knowledge on nutrition,

multiple birth, anemia, body mass index of the mother and fever are the determinants

of underweight of children under age five in Rwanda. Birth order significantly affects

weight-for-age of the child. A child born at fourth to fifth order or sixth order or more

is 1.3445 (p-value=0.0285) and 2.8405 (p-value < .0001) respectively times more likely

to be in underweight status than a child born at the first order. Mother’s level of

education significantly affects weight-for-age of the child Table 6.1. A child born to

mother with primary education or mother with secondary or higher level is 0.1139

(p-value < .0001) and 0.0954 (p-value < .0001) respectively times less likely to be in

underweight status than a child born to mother with no formal education. This means

that the underweight status decreases with increasing the mother’s level of education.
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Gender of the child also significantly affects weight-for-age of the child Table 6.1. A

male child is 1.5809 (p-value < .0001) times more likely to be in underweight status

than a female child. Birth weight of the child is also significantly affecting weight-

for-age of the child. A child born with low weight is 3.1018 (p-value < .0001) times

more likely to be underweight than

a child born with weight ≥ 2500g. Province significantly affects weight-for-age for

child. A child born in Western province is 0.6518 (p-value=0.0389) times less likely

to be underweight than a child born in Kigali. Mother’s knowledge on nutrition sig-

nificantly affects weight-for-age of the child Table 6.1. A child born to mother with

some knowledge on nutrition is 0.7160 (p-value=0.0014) less likely to be underweight

than a child born to mother without knowledge on nutrition. Multiple births signifi-

cantly affects weight-for-age of the child Table 6.1. A child born at the first multiple

is 3.6988 (p-value=0.002) times more likely to be in underweight status than a sin-

gleton child. Anemia significantly affects the weight-for-age of the child Table 6.1.

A child born to anemic mother is 1.4519 (p-value< .0001) times more likely to be in

underweight status than a child born to no anemic mother. Body mass index of the

mother significantly affects weight-for-age of the child. A child born to thin mother

(BMI< 18.5) is 3.2197 (p-value < .0001) times more likely to be in wasting status

than a child born to normal mother or obese (BMI ≥ 18.5). Fever also significantly

affects weight-for-age of the child. A child who had no fever two days before the

survey is 0.6083 (p-value< .0001) times less likely to be underweight than a child

who had fever two days before the survey. The prevalence of underweight is higher in

Northern Province and Lower in Kigali city Figure 6.5. These findings are consistent

with (NISR et al., 2012).
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Table 6.1. Parameter estimates for a spatial joint marginal model for
anthropometric measurements of malnutrition

Wasting Underweight Stunting

Indicator Estimate Std.Error P-Value Estimate Std.Error P-VALUE Estimate Std.Error P-value

Intercept -.817 0.790 0.3012 2.644 2.113 0.2108 1.250 1.063 0.2396

Child age in months

0-11 months reference

12-23 months -0.991 0.304 0.0011 -0.015 0.1539 0.9207 1.355 0.1625 < .0001

24+ months 0.588 0.300 0.0499 -0.200 0.107 0.0617 -0.148 0.1028 0.1507

Birth order

1 reference

2-3 0.040 0.3542 0.9109 0.239 0.1252 0.056 0.137 0.1308 0.2935

4-5 -0.388 0.3625 0.2847 0.296 0.1351 0.0285 0.148 0.1409 0.2922

6+ 0.971 0.4521 0.0317 0.1.044 0.1602 < 0.0001 0.536 0.1472 0.0003

Mother’s age

21 ≥ reference

< 21 0.280 0.6759 0.6781 0.109 0.2576 0.6724 0.628 0.3213 0.0066

Mother’s education

No education & reference

Primary -0.482 0.4857 0.3212 -2.172 0.0.3556 < .0001 -0.738 0.1992 0.0002

Secondary & more -0.3069 0.5555 0.5806 -2.350 0.3676 < .0001 -0.968 0.222 < .0001

Gender of the child

Female reference

Male 0.361 0.2469 0.1436 -0.458 0.0918 < .0001 0.503 0892 < .0001

Birth weights

≥ 2500g reference

< 2500g 1.132 0.2013 0.0035 1.132 0.2013 < .0001 0.543 0.2458 0.0271

Province/region

Kigali reference

South -0.603 0.5163 0.2428 -0.043 0.2068 0.8356 0.537 0.1955 0.0061

West -1.000 0.5126 0.0511 -0.428 0.2071 0.0389 0.118 0.1975 0.5502

North -0.384 0.5246 0.4646 -0.332 0.2021 0.1008 -0.030 0.193 0.8777

Eastern -1.178 0.6444 0.0667 -0.167 0.2885 0.5625 0.667 0.2736 0.0147

Knowledge on nutrition

Yes reference

No 0.112 0.2564 -0.334 0.1045 0.0.0014 -0.323 -0.323 0.0996 0.0009

No reference

Yes -0.141 0.2543 0.58 0.348 0.1096 0.0015 0.259 0.0916 0.0047

Wealth index

Poor reference

Rich -1.325 0.5604 0.0181 -0.307 1944 0.1145 -0.437 0.1785 0.0143

Middle -0.805 0.4784 0.0924 -0.122 0.1688 0.4692 -0.260 0.1549 0.0.0931

Multiple birth

Singleton reference

First multiple 0.029 1.0717 0.9781 1.308 0.3479 0.0002 0.376 0.4534 0.4063

Second multiple and more -0.019 1.3151 0.9883 0.411 0.4473 0.3584 0.016 0.5875 0.9777

Incident of anemia

No anemic reference

Anemic 0.490 0.2593 0.0586 0.3729 0.0958 < .0001 0.173 0.0948 0.2841

Body mass index

BMI ≥ 18.5 reference

BMI < 18.5 1.359 0.4006 0.0007 1.1693 0.1813 < .0001 0.173 0.2124 0.4144

Incident of the fever

Had fever last two weeks reference

No fever -0.533 0.2814 0.0582 -0.497 0.1149 < .0001 -0.0005 0.1216 0.9697

Source of drinking water

Others/yard reference

Piped into dwelling/yard 1.396 0.696 0.0045 0.096 0.4057 0.8122 -0.601 0.3427 0.079

Public tap 1.998 0.7249 0.0058 0.056 0.4071 0.891 -0.463 0.3431 0.1774

Protected spring/well 0.633 0.3236 0.1472 -0.219 0.3934 0.578 -0.046 0.1329 0.1571
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Table 6.2. Random effect estimates

Effect Estimate SE. Pr>z

Variance 0.7571 0.0924 < .0001

SP(GAU) 1.5864 0.4224 0.0165

Figure 6.1. Scatter plot for the malnutrition prevalence for joint dis-

tribution of stunting, underweight and wasting

 

6.5. Summary

In chapter 5, we used multivariate joint model of three anthropometric indices. How-

ever, this model does not allow us to include the spatial variability. This chapter
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Figure 6.2. Classical and robust semivariogram for joint distribution

of stunting, underweight and wasting
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Figure 6.3. Predicted average spatial effects from the joint model for stunting
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Figure 6.4. Predicted average spatial effects from the joint model for wasting

 

136



Figure 6.5. Predicted average spatial effects from the joint model for underweight
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extended chapter 5 to include spatial variability and to produce the smooth maps

of prevalence of malnutrition by predicting at unsampled location. Based on spa-

tial generalized linear mixed model to wasting, stunting and underweight, we have

identified the significant covariates and produced the prevalence map of each of the

three responses. The findings of this study revealed that child age, birth order of the

child, gender of the child, birth weight of the child, fever, multiple birth, mother’s

level of education, mother’s age at the birth, anemia, body mass index of the mother,

mother’s knowledge on nutrition, wealth index of the family, source of drinking water

and province are the key determinants of malnutrition of children under age five in

Rwanda.

The findings of this study are consistent with previous studies (Das and Rahman,

2011; Kandala et al., 2011a; Habyarimana et al., 2014). This study found that preva-

lence of wasting is higher in Western province and lower in Kigali city, the prevalence

of stunting is higher in Northern province and lower in Kigali city and the prevalence

of underweight is higher in Northern Province and lower in Kigali city. These maps

may be used for targeting programs in efforts to reduce children malnutrition. The

findings of this study highlight, unexpected relationships which would be overlooked

in analysis with separation of models or in cross-sectional analysis. The anthropo-

metric indices and asset index are continuous distributions. In the next chapter we

use quantile regression to account for the desired quantiles.
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CHAPTER 7

Quantile regression models

7.1. Introduction

In the previous chapters, we have used binary logistic regression and survey logistic

regression, ordinal logistic regression (proportional odds model with and without

sampling design), generalized linear mixed model, multivariate joint model under

GLMM and multivariate spatial joint model to include spatial variability. But all

these methods estimate how the predictor variables are related to the mean value of

the outcome variable. In this chapter we are interested to use the whole distribution

of asset index in case of poverty of household and weight-for-height anthropometric

index in the case of malnutrition of children under five years. Therefore in this chapter

we consider quantile regression that allows for studying the impact of predictors on

different desired quantiles of the response distribution, and thus provides a complete

picture of the relationship between the response and predictor variables. Quantile

regression is a flexible model in the sense that it does not involve link function that

relates the variance and the mean of the response variable. The quantile regression

method is robust to extreme points in the response space (outlier) but not to extreme

points in the covariate space (leverage points); quantile regression is also a robust

method in the sense that it makes no assumption about the distribution of error term

in the model. These abilities of quantile regression, as introduced by Koenker and

Basett (1978) to characterize the impact of variables on the whole distribution of the

outcome of interest, motivated the use of quantile regression when assessing the risk

factors associated to the poverty of households as well as the risk factors associated

with the malnutrition of children under five years.

7.2. Model formulation and definition

Before defining the quantile regression, we highlight some of the notions of quantile

function and give the definition of a sample quantile. Therefore, the word quantile is
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a synonym of percentile (Yu et al., 2003) and refers to the general case of dividing

the population into 100 segments or sub-populations. A quartile separates the set

into four sub areas or sub-populations containing an equal amount of observations

within each sub-population, where the lower quarter is called the first quartile. The

second quartile is well known as median. A quintile divides the reference population

into five sub-population or groups, and a decile divides the population into ten sub-

populations or groups; the median divides the population into two sub-populations.

In quantile regression, equations are designed to estimate the relation of X with Y,

conditional on quantiles (percentiles) of Y. In other words, this technique examines

how the relation of X with Y changes depending on the score of Y. The quantile

regression model is defined in Koenker and Basett (1978) as

yi = x′iβθ + uθi
(7.1)

with

Qθ(yi|xi) = x′iβθ (7.2)

and

Qθ(uθi
|xi) = F−1

u (θ|xi) = 0 (7.3)

where yi is the ith observation of the outcome variable, Xi is a vector of predictor

(independent) variables, βθ is a vector of unknown regression parameters and uθi

are independent identically distributed error terms with unspecified distribution; the

quantities Qθ(yi|xi) and Qθ(uθi
|xi) mean the θth conditional quantile (percentile) of

yi and uθi
given xi, respectively.

The θth sample quantile is given by QY (θ) = ξτ , 0 ≤ θ ≤ 1, of a random variable Y is

the inverse of the cumulative distribution function written as FY (y) = θ defined as

QY (θ) = F−1
Y (θ) = inf{y : FY (y) ≥ θ} (7.4)

The models in equation (7.1) and (7.2) are referred to as the linear location model

where predictor variables affect only the location of the conditional distribution of

the outcome variable. When the error terms are independent identically distributed

(iid) the θth regression parameter

βθ = β +
(
F−1

u (θ), 0, 0, ..., 0
)′
.
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In this case the conditional quantile planes are parallel and all parameters in β except

the intercept, are similar for every value of θ. As a result the quantile regression slopes

are constant for every quantile θ. In contrast, when error terms are not iid the quantile

regression model is the linear location-scale model of heteroscedasticity, that can be

defined as

yi = x′iβθ + (x′iγ)uθi
(7.5)

with

Qθ (yi|xi) = x′iβθ + x′iγF
−1
u (θ) (7.6)

with γ, an unknown scale parameter. The case of the linear location scale model of

heteroscedasticity is essential for general class of quantile regression models (Koenker

and Basett, 1982b). In this model the predictor variables affect the location as well as

the scale of the response variable distribution and results change in the distribution

since regression slopes vary across all parts of the distribution of the response variable.

Therefore the θth regression parameter is given by βθ = β + φF−1
Y (θ).

7.2.1. Parameter estimation.

The θth regression quantile estimator β̂θ, also called regression quantile, is obtained by

minimizing an asymmetric sum of weighted absolute deviation for the θth regression

quantile (0 ≤ θ ≤ 1) defined by

min
β∈Rp

 ∑
i:yi≥xiβθ

θ|yi − x′iβθ|+
∑

i:yi<x′iβθ

(1− θ)|yi − x′iβθ|

 = min
β∈Rp

n∑
i=1

ρθ(yi − x′iβθ) (7.7)

where ρθ(u) = θ|u|I (u ≥ 0)+(1− θ) |u|I (u < 0), or simply ρθ(u) = (θ − I (u < 0))u

is known as the check function, with the indicator function I(.) that gives 1 to a

positive residuals and 0 to a negative residuals (Koenker and Basett, 1978). The

Least absolute deviation (LAD ) estimator of β obtained by minimizing a symmetric

sum of weighted absolute deviation is a special case of quantile for θ = 0.5, which

is the median and its estimate is also known as L1-norm estimate. In the case of

weighted quantile regression, it is straightforward by simply including the weight in

equation (7.7) as

141



min
βw∈Rp

 ∑
i:yi≥xiβθw

wiθ|yi − x′iβθwi
|+

∑
i:yi<x′iβθw

wi(1− θ)|yi − x′iβθw|

 (7.8)

where wi, i = 1, 2, ..., n are the weights.

The minimization of the weighted sum of absolute deviations in equations (7.7) and

(7.8) can be formulated as a linear programming problem, which can be solved using

a linear programming algorithm.

There are a number of algorithms in literature used to solve the linear programming

problems for quantile regression. The simplex algorithm for median regression devel-

oped by Barrodale and Robert (1974) and extended to quantile regression by Koenker

and D’Orey (1993), reduces the computing time required by the general simplex algo-

rithm and it is suitable to the data sets less than 5000 observations and 50 variables.

The interior point algorithm of Karmakar (1984), also known as the Frisch-Newton

algorithm, was extended to quantile regression by Portnoy and Koenker (1997) and

Koenker and Hallock (2000). This algorithm was developed as an alternative to solve

large to huge linear programming problems. The finite smoothing algorithm was first

developed by Clark and Osborne (1986) and later by Madsen and Nielsen (1993) to

solve linear programming problems of L1 regression and it was extended to quantile

regression by Chen (2007). Each of these three algorithms has its own advantages;

none of them can fully dominate the others. Based on the advantages of each of them

Chen (2004) developed an adaptive algorithm combining these three algorithms. In-

terpretation of quantile regression parameter estimates is not different from that of

the general linear model estimates as they are all rates of change when the effects

of some variables in the model are adjusted for. The classical regression coefficient

reflects the change in the mean of the distribution of the response variable Y, associ-

ated with a unit change in the predictor variable X that corresponds to the coefficient.

However, the quantile regression coefficient reflects the change in a specified quantile

of the response variable associated with a unit change in the predictor variable X that

corresponds to the coefficient. The use of quantile regression allows for comparison

of how some percentiles of the response variable may be more affected by the change

in the size of the regression coefficients of different percentiles.
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7.3. Properties of quantile regression

The quantile regression estimates have a number of equivariance properties, that are

very important for meaningful interpretation of results from regression analysis, espe-

cially for transformed data. Koenker and Basett (1978) formulated four equivariance

properties of quantile regression. Once we denote the quantile estimate for a given

θ ∈ (0, 1) and observations (y,X) by β̂(θ; y,X), then for any p×p nonsingular matrix

A, γ ∈ Rk, and a > 0 holds

β̂ (θ; ay,X) = aβ̂ (θ; y,X) (7.9)

β̂ (θ;−ay,X) = aβ̂ (θ; y,X) (7.10)

β̂ (θy +Xγ,X) = aβ̂ (1− θ; y,X) + γ (7.11)

β̂ (θ; y, AX) = A−1β̂ (θ; y,X) (7.12)

where properties (7.9) and (7.10) imply a form of scale equivariance, (7.11) is normally

called shift or regression equivariance, and property (7.12) is known as parametriza-

tion of design.

Invariance to monotonic transformations: Quantiles exhibit, besides usual

equivariance properties, equivariance to monotone transformations. Let f(.) be a

nondecreasing function on R, then for any random variable Y

Qf(Y )(θ) = f{QY (θ)} (7.13)

This means that the quantiles of the transformed random variable in equation (7.13)

are simply the transformed quantiles of the original variable Y. This is not the case

of the conditional expectation E{f(Y )} 6= f(EY ) unless f(.) is affine function. The

property (7.13) follows immediately from the elementary fact that for any monotone

function f then

P (Y ≤ y) = P (f(Y ) ≤ f(y)) (7.14)

holds; for more detail see (Koenker and Hallock, 2000; Koenker, 2005).

Robustness: The linear programming of quantile regression problem has many im-

portant implications from theoretical and practical points of view (standpoints). It

is certain that the estimate of quantile regression will be obtained in a finite number

of simplex iterations (Barrodale and Robert, 1974). Unlike the case of the mean type
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regression, the parameter vector estimate is robust to outliers. This means that if

yi−x′iβ̂θ > 0, then yi increases towards ∞, or yi−x′iβ̂θ < 0, then yi decreases towards

−∞, without varying the solution of β̂θ (Buchinsky, 1998). In quantile regression, it

is not the magnitude of the outcome variable that matters but on which side of the

estimated hyperplane the observation is, which is not the case in the least squares es-

timates. However, quantile regression estimates lack robustness against observations

that are extreme with respect to covariate variables known as higher leverage points.

7.4. Quantile regression goodness-of-fit

The goodness-of-fit of quantile regression as defined by Koenker and Machado (1999)

derives from the familiar R2 (coefficient of determination) of the classical ordinary

least squares regression. It compares the quantile regression model fitted with in-

tercept only and the quantile regression model fitted to a given number of predictor

variables including the intercept. Let us consider the linear model for the conditional

quantile function (Koenker and Machado, 1999) given by

Qθ (yi|xi) = x′iβθ (7.15)

the model (7.15) can be partitioned as follows

Qθ(yi|xi) = x′i1β1θ + x′i2β2θ (7.16)

The partitioned model presented above results from partitioning the design matrix X

into (X1, X2) and vector of parameter βθ into β1θ and β2θ . The components xi1 and

x2 of the model are the ith rows of X1 and X2, which are the m× (p− k) and m× k

design matrices, respectively. The components β1θ and β2θ are (p− k)× k and k × 1

vectors of parameters respectively. The unrestricted θth quantile regression estimate

β̂θ of the full model, minimizes the weighted sum of absolute deviations given by

V̂θ = min
β̂θ∈Rp

n∑
i=1

ρθ(yi − x′iβ̂θ) (7.17)

Consider the restricted model, that can be defined as Qθ(yi|xi) = x′i1β1θ. Thus the

restricted estimator β̃θ =
(
β̂′1θ, 0

′
)′

, that is the θth quantile estimate under the k-
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dimensional linear restriction corresponding to null hypothesis

H0 : β2θ = 0, (7.18)

minimizes

Ṽθ = min
β̂θu∈Rp−k

n∑
i=1

ρθ(yi − x′1iβ̂1θ) (7.19)

The goodness-of-fit criterion may be defined (Koenker and Machado, 1999) as

R1
θ = 1− V̂θ

Ṽθ

(7.20)

like the classical R2, 0 ≤ R1
θ ≤ 1, since V̂θu ≤ Ṽθ. Unlike R2 that measures the

relative success of the two models for the conditional mean function in terms of

residual variances, R1
θ measures the relative success of the unrestricted and restricted

quantile regression models at a specific quantile in terms of an appropriately weighted

sum of absolute residuals. Therefore, R1
θ is a local measure of goodness-of-fit for a

particular quantile rather than a global measure of goodness-of-fit over the entire

conditional distribution as in classical R2 from least squares regression. It is possible

that under some circumstances a covariate might significantly affect one tail of the

conditional distribution of the response variable and might have no effect in other

tail. If R1
θ is high at one tail of the distribution than at the other tail, this might be

an indication of heteroscedasticity. If the full model in equation (7.16) is better at

the θth quantile than the restricted model constrained by (7.18), then V̂θ should be

significantly smaller than Ṽθ as results R̂1
θ will be higher indicating a better model fit.

Better in this case means that the predictor variables X2 has a significant influence

at the θth quantile (Koenker and Machado, 1999).

7.5. Inference for quantile regression

The conditional quantile functions of the response variable given predictor variables in

the model are all supposed to be parallel to one another. In other words, the effects of

covariate variables in the model shift the location of the conditional distribution of the

outcome variable only, but do not alliterate its scale or shape and therefore the slope

coefficients of different quantile regressions are equal. But in several applications of

quantile regression, estimated slopes often differ considerable through quantiles and

145



this makes the test of equality of slope parameters across quantiles to form a central

component of inference in quantile regression (Koenker, 2005).

Even though there are no practical statistical inferences in the case of finite sample

for quantile regression, like it is in least squares methods, the asymptotic theory

offers practical statistical inferences for quantile regression. This is the foundation of

several statistical approaches to inference such as asymptotic covariance matrix, the

Wald test, rank tests and likelihood ratio tests as well as construction of some of the

confidence intervals for regression quantiles.

7.5.1. Asymptotic distribution of quantile regression.

The asymptotic distribution of quantile regression estimator β̂θ results from that of

sample quantiles. The asymptotic distribution of the sample quantile, ξ̂θ, calculated

from the n independent identical distributed (iid) observations of the outcome variable

with the distribution F is given by

√
n
(
ξ̂θ − ξθ

)
→ N

(
0, ω2

)
(7.21)

with ω2 = θ(1−θ)/ (f 2 (F−1(θ))). There are two influences on the precision of the θth

quantile of interest from the sample. The numerator θ(1− θ) effect tends to make ξ̂θ

more precise in the tail, however this would be dominated by the effect of the density

term 1/f2 (F−1(θ)), that tends to make ξ̂θ less precise in the region of low density

(Koenker, 2005); this term is the reciprocal of a density function referred to as the

sparsity function by Turkey (1965) or quantile density function by Parzen (1979).

The sparsity function s(θ) reflects the density of observations near ξθ, such that the

estimation of the quantile becomes difficult when the observations are very sparse at

the close proximity of the quantile. Conversely, the quantile is precisely estimated

when the sparsity of the data near ξθ is low, such that there are many observations

near the quantile. In other words the sparsity of the data at the quantile of interest

ξθ determines how precise is the estimated value of the quantile.

To generalize the asymptotic distribution of sample quantiles of regression quantiles,

consider the quantile linear regression model yi = x′iβθ +uθi with independent identi-

cally distributed error terms uθi. These terms have a common distribution function F

associated with the density function f , and f (F−1(θi)) > 0, for i = 1, 2, ..., n. Then
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the asymptotic distribution of the quantile regression estimator β̂θ can be estimated

as

√
n
(
β̂θ − βθ

)
→ N

(
0, θ(1− θ)K−1

θ GK−1
θ

)
= N (0,Λθ) (7.22)

where G = limn→∞ n
−1
∑

i xix
′
i

and Kθ = limn→∞ n
−1
∑

i xix
′
ifi(ξθi). The matrix G is a positive definite p×p matrix.

If the error terms are assumed to be iid, then the density functions fi(ξθi) are identical

and the sandwich covariance matrix Λθ collapses to a simplified expression given by

Λθ = ω2 = θ(1−θ)
f2(F−1(θ))

limn→∞ n (
∑

i xix
′
i)
−1

such that the asymptotic distribution of β̂θ is

√
n
(
β̂θ − βθ

)
→ N

(
0, ω2G−1

)
(7.23)

The simplified expression of Λθ shows that under the iid error regression model, the

asymptotic precision of quantile regression estimates depends on the sparsity function

and the term θ(1 − θ). In the quantile regression model the sparsity function takes

the role similar to that of the standard deviation of the error terms, σ, in the least

squares estimation procedure of the iid error regression model.

But the assumption of iid error terms is very restrictive and sometimes it does not

hold in practical application when the assumption holds the conditional quantiles

are simple shifts of one another since all conditional quantiles planes are parallel.

Therefore, the application of quantile regression does not provide any additional in-

formation to that provided by the least squares estimator since estimated regression

coefficients for different quantiles β̂θj, have a common value, β̂θ. However, in real life

problems it is almost impossible to justify the assumption of iid error terms.

The asymptotic distribution of estimated regression coefficient in equation (7.22) can

be extended to several regression coefficient vectors calculated at different quantiles

see Koenker (2005) for more details.

7.5.2. Estimation of covariance matrix.

The precision of the θth quantile is measured by the covariance matrix. This covari-

ance matrix can be estimated by several different methods. Some methods are direct

and asymptotic that need the estimation of the sparsity function, whilst others are
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bootstrap mainly based on resampling. To estimate the precision of the θth quantile

regression estimate directly, the nuisance quantity

s(θ) = [f (F (θ))]−1 (7.24)

must be estimated. There is a large literature on estimating equation (7.24), for

instance Siddiqui (1960), Bofinger (1975) and Sheather and Maritz (1983). Differen-

tiating the identity F (F−1(t)) = t, it is found that the sparsity function is just the

derivative of the quantile function and is given by

s(t) =
d

dt
F−1(t) (7.25)

Based on Siddiqui (1960) ideas, s(t) is estimated using simple difference quotients of

the empirical quantile functions (Koenker and Machado, 1999) as

ŝn(t) =
[
F̂−1

n (t+ hn)− F̂−1
n (t− hn)

]
/2hn (7.26)

with F̂−1, an estimate of F−1, and hn is a bandwidth that tends to zero as n → ∞.

Hall and Sheather (1988) proposed a bandwidth rule based on Edgeworth expansions

for studentized sample quantiles as

hn = n−1/3z2/3
α [1.5s(t)/s′′(t)]

1/3
(7.27)

where zα satisfies Φ(zα) = 1 − α/2. In the absence of other information about the

form of s(.), we may use Gaussian model to select the bandwidth hn, that produces

hn = n−/3z2/3
α

[
1.5φ2 (Φ−1(t))

2 (Φ−1(t))2 + 1

]1/3

(7.28)

When the bandwidth is chosen, then F̂−1 can be estimated using the empirical quan-

tile function residual from quantile regression fit or the empirical quantile function of

Bassett and Koenker (1982) can be used to to estimate F̂−1.

The estimate of the asymptotic covariance matrix of β̂θ is simply obtained by sub-

stituting the estimate of the sparsity function in the simplified equation of Λθ. The

Powell (1986) estimator for censored regression quantiles can be modified and used in

the quantile regression to estimate both the sparsity function for an independent and

identically distributed error and non independent and identically distributed error.
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In the case of the iid error terms assumption, the sparsity function can be estimated

by one sided estimator given by

f̂
(
F−1(θ)

)
= (ĉnn)−1

n∑
i

I (0 ≤ ûθi ≤ ĉn) (7.29)

where ûθi = yi − x′iβ̂θ and cn is the kernel bandwidth. Then the cross validation

methods such as log-likelihood and least squares may be used to obtain the optimal

selection of cn. Therefore, the resultant kernel estimator of the covariance matrix for

βθ may be given by

Λ̂θ =
θ(1− θ)

f̂ 2(F−1(θ))

(
1

n

n∑
i=1

xix
′
i

)
(7.30)

The two sided kernel estimator in which the indicator function given in equation (7.29)

is replaced by I (−ĉn/2 ≤ ûθi ≤ ĉn/2) may be used to estimate Λθ. When the error

terms are heteroscedastic, Kθ can be estimated by (ĉnn)−1
∑n

i I (0 ≤ ûθi ≤ ĉn)xix
′
i.

Instead of estimating the sparsity function, bootstrap method based on varying as-

sumption about error terms and the form of the asymptotic covariance matrix may

be used. He and Hu (2002) proposed the Markov chain marginal bootstrap (MCMB)

method that differs from other bootstrap methods in two main aspects. The method

solves one dimensional equations for parameters of any dimension, and produces a

Markov chain instead of an independent sequence. The aim of the MCMB method is

to simplify the computation problems associated with bootstrap in higher-dimensional

problem.

7.5.3. Test of linear hypothesis.

After reviewing the estimation of parameters, it is very crucial to also review the

statistical tests used in these methods.

Wald test: The Wald test is based on the regression coefficients estimated from

unrestricted model (Koenker and Basett, 1982a). It tests the general linear hypothesis

for p× 1 vector of parameters, βθ, in the case of single quantile regression coefficient,

stated as H1 : Kβθ = h against H0 : Kβθ 6= h, where K is a k × p matrix of the

coefficient, h is a k × 1 vector of constants that are commonly zeros (Koenker, 2005)

and its test statistic is given by
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T = n
(
Kβ̂θ − h

)′ (
KΛ̂−1

θ K ′
)−1 (

Kβ̂θ − h
)

(7.31)

The test (7.31) is asymptotically χ2
q, with q the rank of the matrix K. This test of

one quantile was generalized by Koenker and Basett (1982b) to account for several

different quantiles and is defined as H0 : Kζ = h and its test statistic is given by

T = n
(
Kζ̂ − h

)′ (
K
(
Ω⊗G−1

)−1
K ′
)−1 (

Kζ̂ − h
)

(7.32)

which is asymptotically non-central χ2 with rank q degree of freedom and noncen-

trality

η = (K (Qθ(u)⊗ γ0))
(
K
(
Ω⊗G−1

)
K ′)−1

(K (Qθ(u)⊗ γ0)) (7.33)

In the case of homoscedastic model, the slope parameters are identical at every quan-

tile (Koenker and Basett, 1982b), and the test statistic T is asymptotically central

χ2 with (n− 1)× (k− 1) degrees of freedom, where k is the number of parameters in

the model, and n is the number of quantiles for which the model is fitted (Koenker,

2005; Koenker and Basett, 1982b).

This formulation of the Wald test accommodates a wide variety of testing situations,

from simple tests on one quantile regression coefficient to joint tests that involve dif-

ferent quantiles and several covariates. Therefore, based on this test, it is possible

to test the equality of several slope coefficients across different quantiles. These tests

provide a robust alternative to the classical least-squares based tests of heteroscedas-

ticity as they are insensitive to the outliers in the response variable observations.

Similar formulation can be used to accommodate nonlinear hypotheses (Koenker,

2005). Further Newey and Powell (1987) discussed the test for symmetry based on

this approach.

Likelihood ratio test

The likelihood ratio (LR) test is based on the objective function values in the re-

stricted and unrestricted models. The linear hypothesis to be tested in the case of

the likelihood ratio test is the same as stated under Wald test above. Koenker and

Machado (1999) adapted the Koenker and Basett (1982a) method and showed that

under H0 when the error terms are iid but drawn from the distribution function, the
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test statistic is given by

Ln(θ) =
2(Ṽθ − V̂θ)

θ(1− θ)s(θ)
(7.34)

where Ṽθ and V̂θ are given by (7.17) and (7.19), and s(θ) is the sparsity function. Lm(θ)

is asymptotically χ2
q as in the Wald test statistics. Similarly, consider a location and

scale form of the asymmetric Laplacean density

fσ(u) = θ(1− θ)exp (−ρθ(u)/σ) (7.35)

that produces the LR statistics

− 2logλ∗n(θ) ≡ 2nlog
(
Ṽ (θ)/V̂ (θ)

)
(7.36)

The asymptotic behaviour of this version of Likelihood ratio statistic follows from

equation (7.34) results (Koenker and Machado, 1999)

− 2logλ∗n(θ) = 2nlog
(
1 +

(
Ṽ (θ)− V̂ (θ)

)
/V̂ (θ)

)
(7.37)

= 2n
(
Ṽ (θ)− V̂ (θ)

)
+ 0p(1) (7.38)

= 2
(
Ṽ (θ)− V̂ (θ)

)
/σ(θ) + 0p(1)

where σ(θ) = Eρθ(u) < ∞ and σ̂(θu) =
bV (θ)
n
→ σ(θ). Therefore, based on the null

hypothesis H0 in (7.35), the test statistic becomes

Λn(θ) =
2nσ(θ)

θ(1− θ)s(θ)
log
(
Ṽ (θ)/V̂

)
(7.39)

is also asymptotically χ2
q . Therefore, the likelihood ratio test can be used to test

the global hypothesis that quantile regression slopes coefficients are identical across

quantiles.

Koenker and Machado (1999) showed that the Wald test and the likelihood ratio test

are asymptotically equivalent and that the distributions of the test statistics converges

to χ2
k. Rank test of linear hypothesis

Gutenbrunner et al. (1993) introduced tests of a general linear hypothesis for the

linear regression model that are based on regression rank scores of Gutenbrunner and

Jureckova (1992). The tests are robust to observations that are outlying with respect

to the response variable, and are asymptotically distribution free; this means that no
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nuisance parameters that depend on the error term distribution need to be estimated

for the computation of the test statistic.

The regression rank score process of the restricted form of linear location-scale model

is given by

ân(θ) = argmax{y′a|X ′
1a = (1− θ)X ′

1e, au[0, 1]n} (7.40)

with e, an n- vector of 1’s and n by p matrix, X is partitioned into (X1 : X2) as

well as the vector of parameter,βθ into β1θ and β2θ. Therefore the linear hypothesis

can be tested as H0 : β2θ; β1θ unspecified, against the local alternative Hn : β2nθ =

β0θ/
√
n; with β0θ ∈ Rq, fixed. The regression rank scores are n × 1 vector, ân(θ) =

(ân1(θ), ..., ânn(θ)). The test statistic for testing H0 against Hn is given by

Tn =
S ′nM

−1
n Sn

A2(φ)
(7.41)

where

Sn = n−1/2
(
Xn2 − X̂n2

)′
b̂n,

Mn = n−1
(
X2 − X̂2

)′ (
X2 − X̂2

)
,

X̂2 = X1 (X ′
1X1)

−1
X ′

1X2,

b̂n =

(
−
∫
φ(t)dâin(t)

)n

i=1

A2(φ) =

∫ 1

0

(
φ(t)− φ̄

)2
dt

,

φ̄ =

∫ 1

0

φ(t)dt

and φ is a score generating function bounded variation. The test is based on the

asymptotic distribution of Tn under the null hypothesis H0. Under H0, Tn is asymp-

totically distributed as central χ2
q, whereas under the local alternatives hypothesis

Hn, Tn is a noncentral χ2
q and noncentral parameter η, defined under the Wald test.

Koenker and Machado (1999) extended the work of Gutenbrunner et al. (1993) to

the location scale linear model. In their approach, they replaced an ordinary least

squares fit by a weighted least squares. Then the test statistic is defined as

Tn =
S ′nM

−1
n Sn

θ(1− θ)
(7.42)
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Under the null hypothesis the modified Tn has a central χ2
q distribution, however

based on the local alternative hypothesis it has a noncentral χ2
q distribution with

non-centrality parameter, η(φ, ξ). Then, this test statistic can be used to identify a

global effect of the covariate variables on the outcome variable across quantiles, or

local effect by choosing the score function φ to apply only on one quantile of interest

θ (Koenker, 2005).

7.5.4. Confidence intervals of quantile regression.

There are different approaches in literature for constructing confidence intervals and

bands for regression quantile parameter β(θ). These approaches are mainly classi-

fied into three methods: sparsity or direct estimation, rank score, and resampling

(Kocherginky et al., 2005). The sparsity is the most direct and the fastest, but in-

volves estimation of sparsity function, that is not robust for the data that are not iid.

To circumvent this problem, a Huber sandwich estimate is computed using a local

estimate of the sparsity function. Rank score methods avoid direct estimation of the

error densities. It was first introduced by Gutenbrunner and Jureckova (1992) for

an iid error model and Gutenbrunner et al. (1993) used it to construct a rank test

for the null hypothesis and later on Koenker (1994) proposed an attractive method

for constructing the confidence intervals based on inversion of a rank score test. This

approach does not need the estimation of the sparsity function. Unlike the confidence

intervals based on the estimation of the sparsity function, the confidence interval re-

sulting from the inversion of rank tests are not symmetric. However, they are centered

on the point estimate β̂2θ of the partitioned model consisting of one predictor variable

X2, y = X1β1θ + X2β2θ + uθ, in the sense that Tn(β̂2θ) = 0. Koenker and Machado

(1999) extended this method to location-scale regression model. However, the rank

score method uses the simplex algorithm which is computationally expensive with

large data sets.

The Bootstrap approach can be used to compute the most reliable confidence intervals

for quantile regression estimates. Chen (2004) noted that resampling methods are

not recommended for small data sets with sample size n < 5000, and the number of

predictor variables, p < 20, as they can only achieve the stability for relatively larger

data sets.
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Parzen et al. (1994) proposed a general and simple resampling method based on piv-

otal estimating function for inferences about the true parameter β. This method can

be adapted and used to construct confidence intervals for quantile regression esti-

mates. The approach achieves robustness to some heteroscedastic quantile regression

models by exploiting the asymptotical pivotal role of the quantile regression (Koenker,

1994).

He and Hu (2002) developed a new general resampling method, referred to as the

Markov chain marginal bootstrap (MCMB). This method has an advantage over other

bootstrap methods instead of solving a p-dimension system (or its equivalent) for each

replication it solves only p one-dimensional equations, for moderate to large data

sets. MCMB uses the same time needed for usual bootstrap method. Kocherginky

et al. (2005) adapted MCMB to quantile regression which aims to provide faster

computations, to construct confidence intervals for quantile regression and called it

MCMB-A method.

7.6. Application on Demographic and Health Survey data to identify the

determinants of poverty of household and malnutrition of children

under five years in Rwanda

In this study, as application we have used the households data in case of poverty

and women data in case of malnutrition. We first consider poverty and thereafter

malnutrition.

7.6.1. Determinants of poverty of households.

In previous studies (Habyarimana et al., 2015a), we have used logistic regression and

in chapter 4, we have used GLMM but in all these studies the response variable

poverty was categorized into two levels namely poor and not poor. In the present

study the main objective is to consider the whole outcome distribution based on

quantile regression.

Model fitting: As the RDHS data was collected using multistage sampling, the

researchers included sampling weights in the analysis to account for complex sam-

pling design. PROC QUANTREG in SAS 9.3 was used to compute parameter esti-

mates, statistical inferences as well as to plot quantile plots. As the data set is large
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enough 12540 > 5000, the researchers used a resampling method to compute the con-

fidence intervals (Koenker and Machado, 1999) and the interior algorithm was used

to compute the quantile regression estimates in SAS. The non-linearity between size

of household head and the asset index was assessed by including the quadratic term

for size in the analysis and their significance was then examined. The goodness-of-fit

and the equality of slopes were tested as in Koenker and Machado (1999). Various

researchers (Filmer and Pritchett, 1998; Booysen, 2002; Lokosang et al., 2014; Hab-

yarimana et al., 2015a) created asset index, where households were classified into five

quintiles as follows: first quintile (20%) as poorest, second quintile (20%) as poor,

third quintile (20%)as middle, fourth quintile (20%) as rich and the fifth quintile

(20%) as richest (highest). Based on this classification and the results from Tables

2.8 and 2.9, we used 10th (lowest), 20th, 40th, 50th and 80th percentiles and Ordinary

Least Square (OLS) was reported for comparison purposes.

Results and interpretations

The Wald test was used to test the hypothesis of pure location shift that all the

slopes coefficients of the quantile regression model fitted to the household data are

the same across the five quantiles. The joint test for equality slopes coefficients of

household data for the following quantiles 0.10, 0.20, 0.40, 0.50 and 0.80 was signif-

icant (p-value< .0001); which means that the effects of explanatory variables on the

household data are not the same across the five quantiles. This is the evidence that

the quantile regression can show more information from different quantiles. There-

fore, it is reasonable to use quantile regression. The goodness-of-fit of the quantile

regression to the household data at each of the selected quantiles was assessed using

pseudo R-square by Koenker and Machado (1999). The values of pseudo R-square

at 10th, 20th, 40th, 50th and 80th quantiles, together with the value of the measure

of goodness-of-fit for the OLS R2, are shown in the last row of Table 7.1; where the

value of pseudo R-square increases with the quantile being increased by almost the

same amount.

In the interpretation that follows any variable that is positively associated with house-

hold asset index decreases the poverty of the household, and conversely any variable

that is negatively associated with the household asset index increases the poverty
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of the household. The level of education of the household head is highly significant

at all five quantiles of the distribution. In addition, the coefficient increases with

increasing the quantiles in all levels of education, where it is the highest at the upper

quantile. The asset index is lower at the lower end (10th percentile) and higher in the

upper end (80th percentile) in all levels of education. The household headed by an

individual with primary, secondary or tertiary education level is found to increase the

asset index, as compared to a household headed by a person with no formal education

from 0.135 to 6.973, 0.185 to 7.779, 0.322 to 10.13, 0.407 to 11.21 and 0.695 to 15.54

for 0.10, 0.20, 0.40 and 0.50 and 0.80 quantiles respectively.

From Table 7.1, the researchers observe that a household headed by a female is nega-

tively associated with the asset index, as compared to a household headed by a male.

It is interesting to note that it decreases with increases from 10th to 50th percentiles.

The size of the household is also negatively associated with asset index, but is only

significant at the upper quantile (80th percentile) and at the conditional mean from

OLS. The place of residence of household is highly associated with household asset

index (Table 7.1). From this table, it can be observed that an urban household is

positively associated with household asset index in all five quantiles as compared to

a rural household, where it increases from 0.424 (p-value< .0001) of 10th percentile

to 3.361 (p-value< .0001) of 80th percentile.

From Table 7.1, it can be observed that the province is highly associated with the

household asset index; a household from Kigali increases the asset index from lower

tail to upper tail as compared to a household from Eastern province, whilst a house-

hold from Southern, Western or Northern province decreases the asset index, as com-

pared with a household from Eastern province in all percentiles. It is interesting to

note that in all provinces except Kigali, the asset index is higher at the lower quan-

tile and lower at the upper quantile when compared to Eastern province. Whereas

Southern province most negatively affects the household asset index. This means that

Southern province is the poorest, compared to other provinces.

The quadratic term of household size is statistically significant in all quantiles as well

as in OLS. The researchers examined the possible interaction effects and found only

one significant interaction between gender of household head and the age of household
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head. From Figure 7.4 it can be observed that the asset index increases with increasing

percentiles, but the effect is not significant at 80th percentile. Figures 7.1 to 7.4 present

a summary of quantile regression results that show quantile regression estimates for

the entire distribution and their confidence band.

Table 7.1. Quantile regression parameter estimates and OLS for

poverty of household

Indicator Q.10 Q.20 Q.40 Q.50 Q.80 OLS

Indicator β P β P β P β P β P β P

Intercept -2.967 < .0001 -2.682 < .0001 -1.977 < .0001 -1.679 < .0001 -0.445 0.023 -1.856 < .0001

Province

Eastern reference

Kigali 1.185 < .0001 1.355 < .0001 3.971 < .0001 4.488 < .0001 6.052 < .0001 4.175 < .0001

South -0.318 < .0001 -0.359 < .0001 -0.551 < .0001 -0.626 < .0001 -0.739 < .0001 -0.625 < .0001

West -0.192 < .0001 -0.252 < .0001 -0.342 < .0001 -0.412 < .0001 -0.505 < .0001 -0.266 < .0001

North -0.207 < .0001 -0.288 < .0001 -0.378 < .0001 -0.435 < .0001 -0.637 < .0001 -0.526 < .0001

Gender of the household head

Female reference

Male -0.261 < .0001 -0.300 < .0001 -0.479 < .0001 -0.514 < .0001 -0.372 0.0491 -0.580 0.0007

Education of Household head

No education reference

Primary 0.135 < .0001 0.185 < .0001 0.322 < .0001 0.407 < .0001 0.695 < .0001 0.648 < .0001

Secondary 0.889 < .0001 1.355 < .0001 1.987 < .0001 2.873 < .0001 5.032 < .0001 3.859 < .0001

Higher 6.973 < .0001 7.779 < .0001 10.13 < .0001 11.21 < .0001 15.54 < .0001 11.52 < .0001

Age of the household head -0.001 0.124 -0.002 0.0883 -0.004 0.0036 -0.004 0.0030 -0.003 0.2055 -0.0001 0.9805

Size of household 0.0041 0.872 0.007 0.8163 -0.048 0.1889 -0.064 0.0751 -0.264 0.0002 -0.093 0.0247

Place of residence

Rural reference

Urban 0.424 < .0001 0.583 < .0001 1.039 < .0001 1.107 < .0001 3.361 < .0001 2.137 < .0001

Size*Size 0.007 0.0078 0.008 0.0048 0.016 < .0001 0.018 < .0001 0.048 < .0001 0.030 < .0001

Age by gender 0.003 0.0120 0.003 0.474 0.006 0.0048 0.006 0.0030 0.005 0.1686 0.009 0.0116

R1
T and R2 0.107 0.147 0.220 0.267 0.446 0.540
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Figure 7.1. Summary of quantile regression estimates with 95% con-

fidence bands by education level

Figure 7.2. Summary of quantile regression estimates with 95% con-

fidence bands by place of residence
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Figure 7.3. Summary of quantile regression estimates with 95% con-

fidence bands by province
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Figure 7.4. Summary of quantile regression estimates with 95% con-

fidence bands by family size and gender

7.6.2. Application to Demographic and Health Survey data to identify

the factors associated to malnutrition of children under five years.

Introduction

The anthropometric indicators are measured in Z-score for stunting, wasting and

underweight and are defined as

Zi =
AIi −MAI

σ
(7.43)

where AIi refers to the individual anthropometric indicator, MA and σ refer to the

median and the standard deviation of the reference population. Note that higher

values of Z-scores indicate better nutrition and vice versa. Therefore a decrease of

Z-score indicates an increase in malnutrition and vice versa. In a recent study by

Habyarimana et al. (2014), we have considered the anthropometric measurements

for underweight where the distribution of weight-for-age was categorized as severe
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underweight, moderate underweight and not underweight. In this chapter we

consider the entire distribution of weight-for-age (underweight) and the quantiles for

interest are 10, 25, 40, 50, 90, where 10th quantile is the lower tail and 90th quantile

is the upper tail. In this analysis we only consider underweight; the analysis for

stunting and wasting is done in a similar way.

Results and interpretation

In the interpretation that follows any variable that is positively associated with an-

thropometric index decreases the malnutrition of the child under five years, and con-

versely any variable that is negatively associated with the anthropometric index in-

creases the malnutrition of the child under five years. The results are presented in

Table 7.2.

The birth order significantly affects the weight-for-age Z-score of the child Table 7.2.

However, it is not significant at the bottom of the distribution (10th percentile)and

at the top of distribution (90th percentile). Further, the weight-for-age Z-score of the

child decreases with increasing the child’s birth order Figure 7.5.

Gender of child significantly affects the weight-for-age Z-score of the child. From

the same Table, it is observed that the weight-for-age Z-score of the child decreases

with increasing the quantiles; this is underestimated by least squares regression. It is

observed that province slightly affects Z-score of weight-for-age of the child. However,

it is only significant in 20th percentile. Further, a child born in Southern province

has a positive Z-score weight-for-age as compared to that of a child born in Eastern

province.

Mother’s knowledge on nutrition positively affects Z-score of weight-for-age of the

child as compared to Z-score of weight-for-age of a child born to mother without

some knowledge on nutrition.

Assistance of the mother at the delivery significantly affects the child Z-score. How-

ever, it is only significant in 40th,50th and 90th quantiles.

Mother’s level of education significantly affects the Z-score of the child. The weight-

for-age z-score of the child increases with increasing the level of education of the
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mother. However, the Z-score decreases with increasing the quantiles, this hidden in

the case of OLS.

Marital status of the mother significantly affects weight-for-age Z-score of the child.

However it is significant only in 40th and 50th quantiles. A child born to a married

mother or to a mother living with a partner has a positive weight-for-age Z-score as

compared to child born to divorced or separated mother. In addition, weight-for-age

Z-score decreases with increasing percentiles from 40th to 50th.

Fever significantly affects the weight-for-age Z-score of the child. It is observed that

the weight-for-age Z-score for a child who had fever two weeks before the survey was

found to decrease as compared to that of a child who did not have fever in the same

time frame. Further, the coefficients decrease with increasing the quantiles.

Anemia is significantly affecting the z-cores of the child. A child born to anemic

mother has a negative Z-score as compared to a child born to non anemic mother;

this means that a child born to anemic mother is more likely to be underweight than

a child born to non anemic mother. However, this effect is only significant in 20th

and 50th quantiles.

Birth weight significantly affects the Z-score of the child in all quantiles. The Z-score

of a child born with a weight bigger or equal to 2500g are positive as compared to

Z-score of a child born with lower birth weight. It is higher in 20th quantile and lower

in 10th quantile.

The wealth index of the mother also affects the Z-score of the child. The Z-score of

the child increases with increasing the wealth index of the mother. However, it is

higher in 40th quantile and lower in 50th quantile and elsewhere is not significant.

Mother’s age negatively affects the child’s Z-score in lower tail (10th quantile) and is

not significant elsewhere Figure 7.7.

The age of the child significantly affects the Z-score of the child from 40th quantile to

90th quantile. The Z-scores of a child from age group 13 to 23 months and 23 months

and more is positively affecting the child Z-score as compared to a child from 0 to 11

month age group. Further, the coefficients of a child belonging to age group 12-23

months are higher than the coefficients of a child aged 23 months and more. However,
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the coefficients are lower in 40th quantile for a child aged 12-23 and 50th quantile for

a child aged 23 months and more Figure 7.8.

Body mass index of the mother significantly affects the Z-score of the child in all

quantiles. The effect is smaller in lower tail and higher in upper tail (80th quantile).

Table 7.2. Quantile regression parameter estimates and OLS for underweight

Indicator Q.10 Q.20 Q.40 Q.50 Q.90 OLS

Indicator β P β P β P β P β P β P

Intercept -4.064 < .0001 -4.221 < .0001 -3.543 < .0001 -3.274 < .0001 -2.2279 0.3442 < .0001

Birth order(6 and more=ref)

4-5 -0.122 0.4092 -0.274 < .0001 -0.371 0.0014 -0.442 < .0001 -0.033 0.8362 -0.0622 0.03335

2-3 -0.064 0.5751 -0.138 0.158 -0.284 0.0003 -0.301 < .0001 -0.038 0.7594 -0.0400 0.0773

first -0.124 0.1158 -0.135 0.0933 -0.196 0.0023 -0.205 < .0001 -0.027 0.7719 -0.0531 0.0019

Gender(Male=ref)

Female 0.202 0.0004 0.174 0.0011 0.134 0.0031 0.096 0.0321 0.209 0.0021 0.0362

Province

Eastern reference

Kigali 0.0100 0.9520 -0.070 0.5916 -0.054 0.6327 -0.004 0.9691 0.122 0.3955 0.0076 0.7814

South 0.145 0.1236 0.172 0.0471 0.108 0.1467 0.114 0.0914 -0.073 0.5156 0.0421 0.0291

West 0.048 0.5988 -0.029 0.7077 -0.015 0.8258 -0.007 0.9077 -0.114 0.3053 0.021 0.2387

North 0.2131 0.0308 0.116 0.1796 0.043 0.5509 0.042 0.5381 -0.115 0.1870 0.0337 0.0969

Knowledge on nutrition(no=ref)

Yes 0.152 0.0177 0.196 0.0005 0.0053 0.091 0.0313 0.0709 0.0.113 0.1307 0.0272 0.0404

Assistance(No=ref) Yes -0.066 0.5950 -0.046 0.5831 0.132 0.0053 -0.148 0.0381 -0.229 0.0119 -0.0255 0.2280

Mother’s education level(no education=ref)

Primary 0.115 0.1670 0.060 0.4609 0.004 0.9463 0.063 0.5726 0.134 1093 0.0.1164 < .0001

Secondary& higher 0.570 < .0001 5138 < .0001 0.219 0.0169 0.242 0.0086 263 0.1628 0.0135 0.4057

Mother’s marital status(divorced/separated=ref)

Widowed 0.055 0.7889 0.176 0.2597 0.017 0.911 0.-0.0587 0.6987 0.303 0.2236 0.0355 0.3402

Married/living with partner 0.143 0.2003 0.435 0.0003 0.2850 0.0174 0.1929 0.1127 0.297 0.1633 0.0689 0.0101

Never in union -0.274 0.2760 0.561 0.117 0.337 0.1520 0.3929 0.0898 0.577 0.3600 0.06200 < .0001

Had fever last two weeks(yes=ref) No 0.331 0.0003 0.162 0.0345 0.139 0.0257 0.158 0.0056 0.153 0.0.0687 0.0474 0.0042

Source of drinking water(Others=ref)

Piped into dwelling/yard 0.060 0.8403 0.249 0.2336 0.164 0.3363 3175 0.0539 0.3417 0.071 -0.0365 0.3833

Public tap -0.056 0.5111 -0.000 0.9959 -0.046 0.4483 -0.009 0.8982 -0.078 0.3737 -0.0381 0.0353

Protected spring/well 0.113 0.0989 0.109 0.0562 0.058 0.2635 0.073 0.1730 0.134 0.0957 -0.0045 0.7650

Anemia(noanemic=ref) Anemic -0.130 0.0599 -0.122 0.0249 -0.059 0.2048 -0.096 0.0414 -0.096 0.1316 -0.0034 0.0126

Toilet facilities(Yes=ref)

No 0.125 0.0783 0.0.0937 0.2127 0.015 0.8119 0-0.036 0.5352 -0.122 0.1198 0.0157 0.3281

Birth weight(≥ 2500g=ref)

less< 2500g 0.398 0.0206 0.636 < .0001 0.615 < .0001 0.509 0.0005 0.509 0.0306 0.1581 < .0001

Wealth index(poor=ref)

Middle 0.141 0.0710 0.111 0.0867 0.125 0.0319 0.111 0.0678 -0.049 0.6980 0.0279 0.2321

Rich 0.157 0.2178 0.1930 0.1188 0.285 0.0007 0.2350 0.0018 0.006 0.9471 0.0358 0.0254

Mother’s age -0.023 0.0049 -0.014 0.0802 0.005 0.3700 0.004 0.5728 -0.008 0.3718 -0.0001 0.9805

Child age(0-11months=ref

12-23 months 0.006 0.9715 0.099 0.2965 0.316 < .0001 0.298 < .0001 0.677 < .0001 0.0249 0.1965

23+ months 0.104 0.1344 0.082 0.1778 0.174 0.0016 0.184 0.0003 0.393 < .0001 0.0141 0.3303

BMI 0.063 < .0001 0.067 < .0001 0.068 < .0001 0.067 < .0001 0.079 < .0001 0.0145 < .0001

R1
T and R2 0.107 0.147 0.220 0.267 0.446 0.6207
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Figure 7.5. Summary of quantile regression estimates for the entire

distribution and confidence band for underweight
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Figure 7.6. Summary of quantile regression estimates for the entire

distribution and confidence band for underweight
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Figure 7.7. Summary of quantile regression estimates for the entire

distribution and confidence band for underweight
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Figure 7.8. Summary of quantile regression estimates for the entire

distribution and confidence band for underweight
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7.7. Summary

The quantile regression model allows us to study the impact of predictors on different

desired quantiles of the response distribution, and therefore to get a complete picture

of the relationship between the response variable and the predictor variables. This is

one of the drawbacks of OLS and logistic regression. Therefore, quantile regression

procedures can reveal information about the dependence of the conditional distri-

bution of the response variable on the predictor variable that are most of the cases

hidden by OLS and logistic regression.

Based on the asset index and quantile regression, this chapter identified the deter-

minants of poverty of households in Rwanda. The results confirmed the findings of

the previous studies. In both studies, the key determinants of poverty are age of

the household head, level of education of household head, gender of household head,

place of residence (urban or rural), province of residence and the size of the house-

hold(number of the members of household). However, in this study, the findings from

quantile regression method are more specific at each quantile of interest,

The level of education of the household head is highly significant at all five quantiles

of the distribution. In addition, the coefficient increases with increasing the quantiles

in all levels of education, where it is the highest at the higher level of education and

in upper quantile. This means that education has a stronger effect on asset index in

richer households.

A household headed by a female is negatively associated with the asset index, as com-

pared to a household headed by a male. The size of the household is also negatively

associated with the asset index. A household from Kigali was found to increase the

asset index, as compared to a household from Eastern province, however, a household

from Southern, Western or Northern provinces was found to decrease the asset index,

compared to a household from Eastern province. This means that a household from

Kigali is less likely to be poor as compared to a household from Eastern province.

From Table 7.1, a household from Southern province is seen to most negatively affect

the asset index; this shows that this province is the most poor as compared to other

provinces. An urban household is positively associated with the asset index, whereas

a rural household is negatively associated with asset index.
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In malnutrition case, the results from this chapter supported the findings of Habyari-

mana et al. (2014). However in this chapter, as expected from the theory, it revealed

some new information. It was found that some predictor variables were significantly

affecting the weight-for-age Z-score of the child in some quantiles but these predictors

were not significant in Habyarimana et al. (2014). These predictors are province of

birth of the child, wealth index of his/her family and mother’s age at the birth. In

addition to these predictor variables, the study revealed that the key determinants of

underweight among children under five years in Rwanda are birth order of the child,

age group of the child, gender of the child, birth weight of the child, fever, mother’s

level of education, mother’s marital status, assistance at the delivery, toilet facilities

and source of drinking water. But almost all the results found at 50th quantile are

similar to the results from OLS.
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CHAPTER 8

Generalized Additive Mixed Models

8.1. Introduction

In previous chapters, we modeled the households data as well as malnutrition data

using various statistical models such as: generalized linear models through classical

logistic regression and survey logistic regression(binary logistic regression and propor-

tional odds models with complex survey designs) (Habyarimana et al., 2014), gener-

alized linear mixed models, multivariate joint model, spatial multivariate joint model

and quantile regression (Habyarimana et al., 2015b). All these models are paramet-

ric. The parametric models offer a strong tool for modelling the relationship between

the outcome variable and predictor variables when their assumptions meet. However,

these models may suffer from inflexibility in modelling complicated relationships be-

tween the outcome variable and the predictor variables in some applications and

the parametric mean assumption may not always be desirable, as suitable functional

forms of the predictor variables may not be known in advance and the response vari-

ables may depend on the covariates in a complicated manner (Lin and Zhang, 1999).

The generalized additive mixed model (GAMM) relaxes the assumption of normality

and linearity inherent in linear regression. The flexibility of nonparametric regression

for continuous predictor variables, coupled with linear models for predictor variables,

offers ways to reveal structure within the data that may miss linear assumptions.

This flexibility of GAMM motivated the current research to use semiparametric lo-

gistic mixed model to assess the determinants of poverty of households as well as the

risk factors associated to the malnutrition of children under five years. In literature

there exists many nonparametric regression models and smoothing methods for in-

dependent data. The most commonly used are splines smoothers, kernel smoothers,

locally-weighted running-line smoothers and running-mean smoothers. These meth-

ods are well detailed in Hastie and Tibshirani (1990); Hardle (1999) and Green and

Silverman (1993).
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8.2. Generalized additive mixed model

Generalized additive mixed model (GAMM) can be seen as an extension of GAM to

incorporate random effect or an extension of generalized linear mixed models (GLMM)

of Breslow and Clayton (1993) to allow the parametric fixed effects to be modeled

nonparametrically using additive smooth functions in a similar spirit to Hastie and

Tibshirani (1990). Suppose that observations of the jth of k units consists of an

outcome variable yj and p covariates xj = (1, xj1, ..., xjp)
T associated with fixed effects

and q × 1 of covariates zj associated with random effects. Therefore, Lin and Zhang

(1999) formulated GAMM as follows

g(µj) = β0 + f1(xj1) + ...+ fp(xjp) + zib (8.1)

where g(.) is a monotonic differentiable link function,µj = E(yj|b), fj(.) is a centred

twice-differentiable smooth function, the random effect b is assumed to be distributed

as N{0, K(ϑ)} and ϑ is a c× 1 vector of variance components.

A fundamental feature of GAMM (8.1) over GAM is that the additive nonparametric

functions are used to model covariate effects and random effects are used to model

the correlation between observations (Lin and Zhang, 1999; Wang, 1998). If fj(.)

is a linear function, then GAMM (8.1) reduces to generalized linear mixed model

(GLMM) of Breslow and Clayton (1993).

For a given variance component ϑ, the log-quasi-likelihood function of

(β0, fj, ϑ, j = 1, 2, ..., k) is given (Lin and Zhang, 1999) by

exp[ι{β0, f1(.), ..., fk(.), ϑ}] ∝ |K|
−1
2

∫
exp

{
−1

2φ

k∑
j=1

dj(yj;µj)−
1

2
b′K−1b

}
db (8.2)

where yj = (y1, y2, ..., yk) and dj(yj;µj) ∝ −2
∫ µj

yj
mj(yj − u)/v(u)du defines the con-

ditional deviance function of {β0, fj(.), ϑ} given b. Statistical inference in GAMM

includes inference on the nonparametric functions fj(.), that needs the estimation of

smoothing parameter as well as inference on the variance components ϑ. The linear

mixed models and the smoothing spline estimators have close connections (Green and

Silverman, 1993; Lin and Zhang, 1999; Verbyla et al., 1999; Wang, 1998).
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8.2.1. Natural cubic smoothing spline estimation.

Following the derivation of Greenland et al. (1994) and Lin and Zhang (1999), with

a given λ and ϑ, the natural cubic smoothing spline estimators of the fj(.) maximize

the penalized log-quasi-likelihood as follows

ι {β0, f1(.), ..., fk(.), ϑ} −
1

2

k∑
i=1

λi

∫ ti

sj

f”i(x
2)dx (8.3)

= ι {β0, f1(.), ..., fk(.), ϑ} −
1

2

k∑
i=1

λif
T
i Hifi

where (si, ti) defines the range of the ith covariate and λi are smoothing parameters

that regulate the tradeoff between the goodness-of-fit and smoothness of the estimated

functions. In addition, fi(.) is an ri×1 unknown vector of the values of fi(.), calculated

at the ri ordered distinct values of the xji(i = 1, 2, ...,m) and Hi is the corresponding

nonnegative definite smoothing matrix (Green and Silverman, 1993). GAMM, given

in equation (8.1) can be formulated in matrix form as

g(µi) = 1β0 +M1f1 +M2f2 + ...+Mkfk + Zb, (8.4)

where g(µi) = {g(µ1), g(µ2), ..., g(µm)}, 1 is an m × 1 vector of 1s, Mi is an k ×

ri incident matrix defined in a way similar to that given in Green and Silverman

(1994) such that the ith component of Mjfj is fj(xij) and Zi = (z1, z2, ..., zm)T .

The numerical integration is needed to estimate equation (8.2) except for Gaussian

outcome. The natural cubic smoothing spline estimators of fi(.), evaluated by explicit

maximization of equation (8.4), is sometimes challenging. To solve this problem, Lin

and Zhang (1999) proposed the double penalized quasi-likelihood approach as an

alternate approximation approach discussed in subsection 8.2.2.

8.2.2. Double penalized quasi-likelihood.

Since fi is a centred parameter vector, it can be parameterized in terms of βi and

ai((ri − 2)×)1 in a one-to-one transformation as

fi = Xiβi + βiai, (8.5)

where Xi is an ri × 1 vector containing the rh centred ordered distinct values of the

xij (i = 1, 2, ...,m), and βi = Li(L
T
i Li)

−1 and Li is an ri × (ri − 2) full rank matrix
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satisfying Hi = LiL
T
i and LT

i Xi = 0 using the identity fT
i Hifi = aT

i ai, the double

penalized quasi-likelihood with respect to (β0, fi) and b is given by

− 1

2ϕ

m∑
i=1

di(y;µi)−
1

2
bTK−1b− 1

2
aT Γ−1a (8.6)

where a =
(
aT

1 , a
T
2 , ..., a

T
k

)T
and Γ = diag (τ1I, τ2I, ..., τkI) with τi = 1

λi
. A small value

of τ = (τ1, τ2, ..., τk)
T corresponds to over-smoothing. Plugging equation (8.5) into

(8.4), expression (8.4) suggests that given ϑ and τ , the DPQL estimators f̂i can be

obtained by fitting the following GLMM using (Breslow and Clayton, 1993) penalized

quasi-likelihood approach:

g(µ) = Xβ +Ba+ zb, (8.7)

where X = (1,M1X1,M2X2, ...,MkXk), B = (M1B1,M2B2, ...,MkBk), β =

(β0, β1, β2, ..., βk)
T is a (k + 1) × 1 vector of regression coefficients and a and b are

independent random effects with distributions a ∼ N(0,Γ) and b ∼ N(0, K). There-

fore DPQL estimator f̂j is calculated as f̂i = Xiβ̂i +βiâi, that is a linear combination

of the (Breslow and Clayton, 1993) penalized quasi-likelihood estimators of the fixed

effect β̂i and the random effects âi in the working GLMM (8.7). The maximization

of the expression (8.6) with respect to (β, a, b) can be proceeded by using the Fisher

scoring algorithm to solve
XTWX XTWB XTWZ

BTWX BTWB + Γ−1 BTWZ

ZTWX ZTWB ZTWZ +K−1




β

a

b

 =


XTWY

BTWY

ZTWY

 , (8.8)

where Y is the working vector defined as Y = β01 + Σp
j=1Mifi + Zb + ∆(Y − µ)

and ∆ = diag [g′(µi)], W = diag [{ϑv(µi)g
′(µi)

2}−1]. An examination of the equation

(8.8) shows that it corresponds to the normal equation of the best linear unbiased

predictors (BLUPs) of β and (a, b) under linear mixed model

Y = Xβ0 +Ba+ Zb+ ε, (8.9)

where a and b are independent random effects with a ∼ N(0,Γ), b ∼ N(0, K) and

ε ∼ N(0,W−1). This suggests that the DPQL estimators f̂j and the random effects

estimators b̂ can be easily obtained using the BLUPs by iteratively fitting model (8.9)

to the working vector Y (Lin and Zhang, 1999).
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To compute the covariance matrix of f̂j, it is more convenient to calculate β and a

using

 XTR−1X XTR−1B

BTR−1X BTR−1B + Γ−1

 β

a

 =

 XTR−1Y

BTR−1Y

 , (8.10)

where R = W−1 + ZKZT . Denoting by H the coefficient matrix on the left hand

side of the equation (8.10) and H0 = (X,B)T R−1 (X,B), the approximate covari-

ance matrix of β̂ and â is cov(β̂, â) = H−1H0H
−1. It follows that the approximate

covariance matrix of f̂j is (Xj, Bj) cov(β̂, â) (Xj, Bj)
T , where cov(β̂, â) can be easily

found from the corresponding blocks of H−1H0H
−1. It is assumed that the f̂j(.) are

smooth functions in calculating the covariances of the f̂j.

8.3. Estimating parameters and variance components

Previously, it was assumed that the smoothing parameters λ and the variance compo-

nent ϑ are known when estimation was made on nonparametric function fj. However,

they usually need to be estimated from the data. Under the classical nonparametric

regression model

y = f(X) + ε, (8.11)

where ε are independent random errors distributed as N(0, σ2), Whaba (1985) and

Kohn et al. (1991) proposed to estimate the smoothing parameter λ by maximizing

a marginal likelihood. The marginal likelihood of τ = 1
λ

is constructed by assuming

that f(X) has a prior specified in the form of equation (8.5) with a ∼ N(0, τI) and

a flat prior for β and integrating out a and β as follows:

exp
{
ιM
(
y; τ, σ2

)}
∝ τ

1
2

∫
exp

{
ι(y; β, a, σ2)− 1

2τ
aTa

}
dadβ, (8.12)

where ι(y; β, a, τ 2) is the log-likelihood of f under model (8.11). Robinson (1991) and

Silverman (1985) pointed out that the marginal likelihood (8.12) of τ is indeed the

restricted maximum likelihood (REML) under the linear mixed model

y = 1β0 +Xβ1 +Ba+ ε, (8.13)

where a ∼ N(0, τI) and ε ∼ N(0, σ2I) and B was defined earlier; τ is regarded as

covariance component. Hence the marginal estimator of τ is a REML estimator.
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Kohn et al. (1991) found that the maximum marginal likelihood estimator of τ can

sometimes perform better than the generalized cross validation (GCV) estimator in

estimating nonparametric function.

Zhang et al. (1998) extended these results to estimate the smoothing parameter λ

and variance component ϑ jointly using REML in case of longitudinal data with

normally distributed outcome and a nonparametric mean function and their model is

formulated as follows

y = f(X) + Zb+ ε, (8.14)

where f(X) denotes the values of nonparametric function f(.) evaluated at the design

points of X(m×1), b ∼ N(0, K(ϑ))and ε ∼ n(0, V (ϑ)). When f(.) is estimated using a

cubic smoothing spline (8.5), Zhang et al. (1998) rewrote the model (8.14) as a linear

mixed model

y = 1β0 +Xβ1 +Ba+ Zb+ ε, (8.15)

where a ∼ N(0, τI) and distribution of b and ε are the same as those in model

(8.14). They therefore proposed τ as an extra variance component in addition to ϑ

in model (8.15) and to estimate ϑ and τ jointly by using REML. In this case, REML

corresponds to the marginal likelihood of (τ, ϑ) constructed by assuming that f takes

the form of (8.5) with a ∼ N(0, τI) and a flat prior for β and integration out a and

β as follows:

exp{ιM(y; τ, ϑ)} ∝ K
−1
2 τ

−1
2

∫
exp

{
ι(y; β, a, b)− 1

2
bTK−1b− 1

2τ
aTa

}
dbdadβ,

(8.16)

where ι(y; β, a, b) = ι(y; f, b) is the conditional likelihood (normal) of f given the ran-

dom effects b under the model (8.14). Note that the marginal log-likelihood ιM(y; τ, θ)

in (8.16) has a closed form. Whaba (1985) and Zhang et al. (1998) proposed to extend

the marginal likelihood approach to GAMM (8.4) and to estimate τ and ϑ jointly by

maximizing a marginal quasi-likelihood. Specifically, the GLMM representation of

GAMM in (8.7) suggests that τ may be treated as extra variance components in ad-

dition to ϑ. Similarly to REML (8.16) the marginal quasi-likelihood of (τ, ϑ) can be

constructed under the GAMM (8.4) by assuming that fj takes the form (8.5) with

aj ∼ N(0, τjI)(j = 1, 2, ..., p) and integrating aj and β out as follows:

175



exp{ιM(y; τ, ϑ)} ∝ |Λ|
−1
2

∫
exp

{
ι(y; β, a, ϑ)− 1

2
aT Γ−1a

}
dadβ (8.17)

∝ |K|
−1
2 |Γ|

−1
2

∫ { n∑
i=1

− 1

2φ
di(yi;µi)−

1

2
bTK−1b− 1

2
aT Γ−1a

}
where ι(y; β, a, ϑ) = ι(y; β0, f1, f2, ..., fk, ϑ) was defined in (8.2). Based on the Gauss-

ian nonparametric mixed model (8.14) the marginal quasi-likelihood reduces to the

Gaussian REML (8.16). An evaluation of the marginal quasi-likelihood (8.16) for non

Gaussian outcomes is humped after intractable numerical integration. The Laplace’s

approximation method is an alternative method used to circumvent this problem.

Specifically, taking the quadratic expansion exponent of the integrand of the ex-

pression (8.18) about its mode before integration and approximating the deviance

statistic di(y;µi) by the Pearson χ2-statistic (Breslow and Clayton, 1993), then the

approximate marginal log-quasi-likelihood is given by

ιM(y; τ, ϑ) ≈ −1

2
log|V | − 1

2
log|XTV −1X| − 1

2
(Y −Xβ̂TV −1)(Y −Xβ̂), (8.18)

where V = BΓBT + ZKZT +W−1. The equation (8.18) corresponds to the REML

log-likelihood of the working vector y under the linear mixed model (8.9) with both

a and b as random effects and τ and ϑ as variance components. Therefore τ and ϑ

can be estimated by iteratively fitting model (8.9) using REML.

8.4. Application to the determinants of poverty of household in Rwanda

Introduction

In previous studies Habyarimana et al. (2015a), Habyarimana et al. (2015b) and in

chapter 4, we have used GLMM. However, all these studies are based on parametric

models. The main aim of this study is to model the effects of age of household head

and the interaction of gender and age of household head nonparametrically while

other covariates remain parametric using generalized additive mixed models.

8.4.1. Model fitting and interpretation of the results.

The various procedures for estimation discussed for fitting GAMM can be used when

fitting the semiparametric logistic mixed model (8.19). The library mgcv from R

package was used to fit the data. R package has many options for controlling the model
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smoothness, using splines such as cubic smoothing splines, locally-weighted running

line smoothers, and kernel smoothers. For more details, see the following authors:

Ruppert et al. (2003); Green and Silverman (1993); Hardle (1999) and Hastie and

Tibshirani (1990). The shrinkage smoothers have several advantages, for instance,

helping to circumvent the knot placement. In addition, the method is constructed

to smooth any number of covariates. Moreover, the creation of shrinkage smoothers

is made in a way that smooth terms are penalized away altogether (Wood, 2006).

In this study, the main effect is considered, and also possible two-way interaction

effects, where the AIC of each model is examined, the inference of smooth function

and the p-value of the individual smooth term. Finally, the model with smaller AIC

and higher value of degree of freedom and highly statistically significant was selected

as follows

g(µj) = β0 + β1Educationj + β2Genderj + β3Place of residencej (8.19)

+ β4Provincej + β5Sizej + β6Provincej ∗ Place of residencej

+ f1(Agej) + f2(Agej) ∗Genderj + b0j

where g(µi) is the logit link function, β′s are parametric regression coefficients, f ′js are

centered smooth functions and b0i is the random effect distributed as N(0, K(ϑ)). The

common widely used methods for estimating additive models include cubic smoothing

splines, locally-weighted running line smoothers, and kernel smoothers (Hardle, 1999;

Hastie and Tibshirani, 1990; Ruppert et al., 2003).

The results from model (8.19) are presented in Tables 8.1, 8.2 and 8.3 and in Figure

8.1 and Figure 8.2.

From Table 8.1, it is observed that the level of education of the household head sig-

nificantly affects the socio-economic status of the household, where the poverty of

the household increases by decreasing the level of education of the household head.

Furthermore, it is observed that a household with a household head with secondary ed-

ucation, primary education or no formal education is 4.1850 (e1.4315), 14.2008 (e2.6533)

or 24.5154 (e3.1993) respectively, times more likely to be poor as compared to a house-

hold headed by a household head with tertiary education.
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A household from an urban area is 0.7703 (e−0.2061) times less likely to be poor than

a household from a rural area.

The size of the household significantly affects the socio-economic status of the house-

hold, also shown in Table 8.1. A family of four members or less is 0.6433 (e−0.4411)times

less likely to be poor than a family of five members or more Table 8.1.

Interaction effects

In this study, not only are the main parametric effects considered, but the two-way

interaction effects are also considered. Of interest are the interaction effects between

province or region and place of residence (urban or rural). Figure 8.1 shows that in

all provinces a rural household is more likely to be poor as compared to an urban

one. In the same figure, it is observed that there is a big gap, in terms of poverty,

between a rural and urban household from Southern province and Western province.

However, this gap is smaller in Kigali and Eastern province.

Approximate smooth function

In Figure 8.2, the estimated smoothing components for household socio-economic

status are observed. The Y-axis represents the contribution of smooth function to

the fitted values for household socio-economic status. In each figure, the smooth

curve denotes the estimated trend of GAMM; s is a smooth term and the number in

parentheses represents the estimated degree of freedom (edf). The effects of age and

gender (female) on household socio-economic status is presented in Figure 8.2 B; the

trend shows that the poverty of a household headed by a younger female increases

with the age of the household head to approximately 35, and from there, the poverty

decreases up to the age of approximately 60 years. The test statistics is 2.110 with

3.7492 degrees of freedom with a high significance (p-value=0.000184) against the

assumption that the interaction of age and female gender is linearly associated to the

socio-economic status of the household Table 8.3. In Figure 8.2 panel D the poverty of

a household headed by young male decreases with increasing age up to approximately

30 years old. However, the poverty decreases with the increasing age of the head from

approximately 35 to 60 years old. In addition, from 60 years of age, the poverty of

a household increases with the increasing age of the household head regardless of

the gender of the household head. The statistic test is 1.484 with 4.0044 degrees of
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freedom (p-value=0.004930) against the assumption that the interaction of age and

male gender is linearly associated to the socio-economic status of the household.

Table 8.1. The parameter estimates of the poverty of households for

the fixed part of GAMM

Variables Estimate S.E t-Value P-value

Intercept -2.9738 0.5666 -5.249 1.56e-07***

Education(Tertiary=ref

Secondary 1.4315 0.5675 2.523 0.011663*

Primary 2.6533 0.5608 4.732 2.25e-06***

No education 3.1993 0.5618 5.694 1.27e-08***

Province (Eastern=ref)

Kigali -1.1111 0.3021 -3.678 0.000236***

South 0.9197 0.1094 8.409 <2e-16***

West 0.5754 0.1113 5.168 2.40e-07***

North 0.6429 0.1214 5.297 1.19e-07***

Gender (female=ref)

Male -004408 0.0462 -9.550 <2e-16***

Place of residence(rural=ref)

Urban -0.2061 0.3814 -0.540 0.588879

Size of household(> 4=ref)

1-4 member(s) -0.4398 0.0448 -9.810 <2e-16**
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Figure 8.1. Log odds associated with asset index and province with

place of residence (urban or rural)

Figure 8.2. Smooth function of household socio-economic status with

age by gender and confidence interval
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Table 8.2. The parameter estimates of GAMM in two way interaction

effect for poverty of households

Variables Estimate S.E t-Value P-value

Province and place of residence

Eastern and rural=ref

Kigali and urban -1.4308 0.5232 -2.735 0.006253**

South and urban -0.8129 0.4436 -1.831 0.067144.

West and urban -0.9656 0.5530 -1.746 0.080820.

North and urban -0.0693 0.57064 -0.121 0.903381

Table 8.3. Approximate significance of the smooth term

Smooth terms Edf F-value P-value

S(Age) 0.4882 0.0318 0.062208.

S(Age):Female 3.7492 2.110 0.000184***

S(Age):Male 4.0044 1.484 0.004930**

8.5. Application to the determinants of risk factors of malnutrition of

children under five years: case of Rwanda

Introduction

In previous studies (Habyarimana et al., 2015a), we used proportional odds models

with complex sampling design, and in chapter 5, we used multivariate joint model

to simultaneously identify the risk factors of height-for-age, weight-for-height and

weight-for-age; in chapter 6 spatial multivariate joint model is used, and in chapter

7 quantile regression is used. However, all these models are parametric models and

sometimes they may suffer from inflexibility in modelling complicated relationships

between outcomes variables. In this study the main objective is to model the effect

of body mass index of mother and child’s age nonparametrically while keeping other

covariates parametric using generalized additive mixed model.
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The analysis of the data and the model testing was done in mgcv from R package.

8.5.1. Results and interpretations.

The main effect is considered, and also possible two-way interaction effects, where

the AIC of each model is examined and also the inference of smooth function and

the p-value of the individual smooth term. Finally, the model with smaller AIC and

higher value of degree of freedom and highly statistically significant was selected as

follows:

g(µj) = β0 + β1Educationj + β2Gender of the childj (8.20)

+ β3Marital status of the motherj + β4Multiple birthj + β5Anemiaj

+ β6Birth orderj + β7Kwoldge on nutritionj + β8Feverj

+ f1(Age of childj) + f2BMIj of the motherj + b0j

where g(.) is the logit link function, β′s are parametric regression coefficients, f ′js are

centered smooth functions and b0i is the random effect distributed as N(0, K(ϑ)).

The results from model (8.20) are presented in Table 8.4, Table 8.5 and Figure 8.3.

It is observed that the mother’s education level significantly affects weight-for-age

(underweight) of the child Table 8.4. Underweight reduces with increasing the level

of education of the mother. The degree to which a child is underweight decreases with

an increase in the mother’s level of education. Further, a child born to a mother with

primary education or a secondary or higher education level is 0.12916 (e−2.0467) (p-

value= 1.48e-06***) or 0.10105 (e−2.2921)( p-value= 1.68e−07∗∗∗) less likely to have

an underweight status than a child born to mother with no education, respectively.

A child born to a widow is 1.94391(e0.6647) with (p-value=0.001802**) times more

likely to be underweight than a child born to a mother who has never been in union.

The gender of a child significantly affects the weight-for-age of the child Table. A male

child is 1.51286 (e0.4140) (p-value= 0.000205∗∗∗) times more likely to be underweight

than a female child.

Incident of fever significantly affects weight-for-age of the child. A child who

did not have fever in the two weeks prior to the survey is 0.62556(e−0.4691) (p-

value=0.000755***) times less likely to be underweight than a child who had a fever
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during the same time frame. The birth weight significantly affects weight-for-age

of the child. A child born with low birth weight (< 2500g) is 3.00928(e1.1017) with

(p-value=5.30e-06***) times more likely to be underweight than a child born with a

higher weight(≥ 2500g).

The mother’s knowledge on nutrition significantly affects weight-for-age of the child.

A child born to a mother without knowledge of nutrition is 1.35256(e0.3020) with (p-

value=0.015787*) times more likely to be underweight than a child born to a mother

with some knowledge of nutrition.

Incident of anemia significantly affects weight-for-age of the child. A child born to

an anemic mother is 1.43763(e0.3630)(p-value=0.001680**) times more likely to be

underweight than a child born to a non-anemic mother.

Multiple birth significantly affects the weight-for-age of the child. The degree of

underweight increases with increasing the incident of multiple birth. A child born

as the first multiple (twin) is 04014(e−0.9128) times less likely to be underweight than

a child born at second or more multiple with (p-value=0.021325*). Whilst, a child

born as singleton is 0.26232(e−1.3382) with (p-value=0.0011625**) times less likely to

be underweight than a child born at the second or multiples.

The birth order significantly affects the weight-for-age of the child. A fourth or

fifth born child is 0.47043 (e−0.7541) (p-value=4.32e-05***) times less risk of being

underweight than a sixth or later born child. Similarly, a second or third born child

is 0.46213 (e−0.7719) times less likely to be underweight than a sixth or later born

child. Further, a first born child is 0.34480 (e−1.0648 (p-value=1.09e-08***) times less

likely to be underweight than a sixth or later born child.

Approximate smooth function: In this study we have also fitted continuous co-

variates (age of the child and body mass index of the mother nonparametricaly.

From Figure 8.3, the estimated smoothing components of weight-for-age status are

observed. The Y-axis represents the contribution of smooth function to the fitted

values for weight-for-age status. In each figure, the smooth curve denotes the esti-

mated trend of GAMM; s is a smooth term and the number in parentheses represents

the estimated degree of freedom (edf). The statistic test is 2.673 (p-value=0.000112)

with 4.300 degrees of freedom against the assumption that the age of the child is
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linearly associated to underweight status Table 8.5. The test statistics for BMI is

8.018 (p-value=5.91e-16***) that is highly significant with 3.016 degrees of freedom

against the assumption that the body mass index of the mother is linearly associated

to underweight status.

From Figure 8.3 we observe that underweight increases with increasing BMI of the

mother up to approximately 20 and thereafter it decreases. This is in line with

common knowledge on the effect of BMI of the mother where a child born to a normal

or obese mother ( 18.5 ≤ BMI ≤ 25.5) is better than a child born to underweight

(thin) mother (BMI < 18.5). Child’s age significantly affects the weight-for-age of

the child Figure 8.3.

It is observed from the same figure that malnutrition increases with increasing age of

child from 0 to approximately 12 months (one year) and then decreases with increasing

age up to 26 months. From 26-36 months it is increasing with increasing age and then

underweight sharply decreases with increasing age up to 48 months and thereafter it

increases up to 59 months.
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Table 8.4. The parameter estimates of the fixed part of GAMM for

malnutrition (underweight) of children under five years

Variables Estimate S.E t-Value P-value

Intercept 2.7987 0.5330 5.251 1.62e-07***

Mother’s education(no education=ref)

Secondary &higher -2.2921 0.4370 -5.245 1.68e-07***

Primary -2.0467 0.4242 -4.825 1.48e-06***

Marital status (never in union=ref)

Married/living with partner 0.4079 0.3939 1.036 0.300503

Widowed 0.6647 0.2128 3.124 0.001802*

Divorced/separated 0.2134 0.3120 0.684 0.494100

Gender of child (female=ref)

Male 0.4140 0.1114 3.718 0.000205***

Had fever(yes=ref)

No -0.4691 0.1391 -3.373 0.000755***

Birth weights(≥ 2500g=ref)

< 2500g 1.1017 0.2415 4.561 5.30e-06***

Knowledge on nutrition(Yes=ref)

No 0.3020 0.1250 2.415 0.015787*

Anemia (Anemic mother=ref)

No anemic 0.3630 0.1154 3.145 0.001680**

Multiple birth(second multiple and more=ref)

First multiple -0.9128 0.3963 -2.303 0.021325*

Singleton -1.3382 0.4242 -3.154 0.001625**

Birth order(6 and more=ref)

4-5 -0.7541 0.1841 -4.096 4.32e-05***

2-3 -0.7719 0.1643 -4.700 2.73e-05***

1 -1.0648 0.1857 -5.733 1.09e-08***
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Table 8.5. Approximate significance of the smooth term

Smooth terms Edf F-value P-value

S(Age of child) 4.300 2.673 0.000112***

S(BMI of the mother) 3.016 8.018 5.91e-16e-16***

Figure 8.3. Smooth function of underweight with age of the child and

BMI of the mother
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8.6. Summary

In this chapter, we used GAMM to identify the risk factors associated to the poverty

of households as well as malnutrition of children under five years.

The results from generalized additive mixed models validate the results from previous

other models fitted to the households data as well as malnutrition data. Furthermore,

the results from GAMM give more insight (understanding) concerning especially the

distribution of continuous covariates.

In the case of household data, the results from parametric part supported that poverty

is higher among rural households than urban households. The results from this study

also confirmed that poverty decreases with increasing the level of education of house-

hold head. In addition, the findings from this study also supported that poverty of

household increases with increasing the number of household members. The results

from nonparametric part of the model support that the poverty is higher among the

households headed by female. However, the use of semiparametric logistic mixed

model revealed that it is only true when both male and female are young (approxi-

mately up to 35 years old) and this finding is hidden when parametric model is used.

Otherwise, the household headed by a female is slightly better off than a household

headed by a male.

In malnutrition case, the results confirmed the findings from previous studies espe-

cially the parametric part model. The results from this study confirmed that un-

derweight decreases with increasing the mother’s level of education. The gender of

the child significantly affects the weight-for-age of the child in such a way that the

prevalence of underweight is higher among male children than female children. Fur-

ther, this study confirmed that birth weight significantly affects weight-for-age of the

child, where the prevalence of underweight is higher among children born with low

birth weight. It has also supported the previous findings where the prevalence of

underweight increases with increasing birth order.

The results from nonparametric part model also validated the findings on child’s age.

However, the results of BMI revealed that underweight increases with increasing the

BMI of the mother up to approximately 20 and thereafter it decreases.

187



CHAPTER 9

Joint modelling of poverty of households and malnutrition of

children under five years

In previous chapters we have measured poverty of households and malnutrition sep-

arately. We have identified the factors associated with malnutrition using separate

anthropometric indices (Habyarimana et al., 2014) or using a multivariate joint model

of three anthropometric indices (Habyarimana et al., 2015d,e). In addition we have

also studied the poverty of households separately to malnutrition of children under

five years (Habyarimana et al., 2015a,b,c). In this chapter we are interested in creating

a composite index from the classical three anthropometric indices as an alternative

for measuring malnutrition and thereafter use it to study jointly poverty and malnu-

trition of children under five years. According to our knowledge there is no current

study in literature using DHS data for studying the correlation between malnutrition

of children under five years and poverty of households.

9.1. Composite index of malnutrition

In this section, based on the principal component analysis technique, we create a

composite index from the three commonly used anthropometric indices known as

height-for-age (stunting), weight-for-age (underweight) and weight-for-height (wast-

ing). The theory of principal component technique discussed in chapter 2 is also

used to compute the composite index of malnutrition. We have used SPSS 22 to

compute the index and the results are in Table 9.1 and Table 9.2. We observe from

Table 9.1 that the first component alone explains 99.386 % of the total variation of

all anthropometric indices and Table 9.2 presents Kaiser-Meyer-Olkin (KMO) mea-

sure of sampling adequacy which is good and Bartlett’s test of sphericity which is

significant. The scree plot presented in Figure 9.1 is used to show the number of

components needed and the proportion of the variance explained by each principal
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component. It is observed from this Figure that the first component suffices to ex-

plain the total variation of the original data. Therefore, the first component in this

study is used as the composite index of malnutrition.

Table 9.1. Total variance explained

Component Total % Variance Cumulative %

1 2.982 99.386 99.386

2 0.0189 .598 99.984

3 0.000 0.16 100.00

Table 9.2. KMO and Bartlett’s test

KMO measure of sampling adequacy .534

Bartlett’s test of approximate χ2 43454.952

df 3

Significance .000

Figure 9.1. Scree plot test for composite anthropometric index
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9.2. Model formulation

The theory of joint model of two binary outcomes discussed in Chapter 5 is also

considered in this chapter. Let us consider the response vector of ith subject to be

yi = (y′i1, y
′
i2)

′, where yi1 is the child nutrition status (1= malnourished child and

0= nourished child) and yi2 is the socio-economic status of the household (1=poor

household and 0=otherwise). Therefore joint multivariate binary generalized linear

mixed model can be formulated as follows:

g1(µi1) = Xi1β1 + Zi1bi1 (9.1)

g2(µi2) = Xi2β2 + Zi2bi2 (9.2)

where β1 and β2 are vectors of unknown fixed effects, bi1 and bi2 are the vectors of

random effects, Xi1 , Xi2, Zi1 and Zi2 are the designs matrices for fixed effects and

random effects respectively

bi =

 bi1

bi2

 ∼ i.i.d.MV N(0,
∑

) = MVN

 0

0

 ,
 ∑11

∑
12∑′

12

∑
22

 , (9.3)

where equation (9.3) is the covariance matrices of the random effects,
∑

11,
∑

22 are

the variance components of malnutrition and poverty respectively.
∑

12 =
∑

21 is the

correlation component between malnutrition of children under five years and poverty

of household. If
∑

12 =
∑

21 = 0, then the above model is equivalent to the separate

generalized linear mixed model for two outcome variables. This means that the two

outcomes are independent (Gueorguieva, 2001; Molenberghs and Verbeke, 2005).

Data analysis

We have used SAS 9.3 PROC GLIMMIX procedure to fit two binary outcomes (com-

posite of malnutrition and asset index of household). The SAS GLIMMIX 9.3 allows

to jointly model two outcomes with the same distributions or different distributions

or the same link functions or different link functions. In this study same distributions

are considered and the same link functions for both outcome variables. We have con-

sidered various covariance structures but Unstructured (UN) was found to be suitable

to our analysis; based on the convergence criteria some of the covariance structures

led to non-convergence.
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9.3. Results and interpretations

The findings obtained from joint modelling of poverty and malnutrition revealed a

significant positive correlation between poverty and malnutrition Table 9.6. This

means that poverty and malnutrition change in same direction; when the poverty

of a household increases malnutrition of children under five years in that household

also increases, or in contrast, when the poverty of household reduces, in general the

malnutrition also reduces.

The results are presented in Table 9.4 and Table 9.5. The findings of the study

confirms the findings from chapter 5 and chapter 6. From the same Tables, it is

observed that mother’s level of education significantly affects the nutrition status

of child as well as the socio-economic status of the household. The malnutrition

of children under five years and poverty of household reduces with increasing the

mother’s level of education.

The age of the child significantly affects the child’s nutrition status. A child aged

between 12 and 23 months is 0.5689 (p-value=0.0049) times less likely to be mal-

nourished than infant (0-11 months). The birth order of the child positively affects

malnutrition. A first born child is 0.4742 (p-value < .0001) times less likely to be

malnourished than a sixth born child or those born thereafter.

The gender of child is found to significantly affect the nutrition status of the child.

A male child is 1.6242(p-value < .0001) times more likely to be malnourished than a

female child.

Birth weight significantly affects the children’s nutrition status. A child born with a

higher weight is 0.3128 (p-value < .0001) times less likely to be malnourished than a

child born with a lower weight(weight < 2500g).

The mother’s knowledge on nutrition also significantly affects the child’s nutrition

status. A child born to a mother with some knowledge of nutrition is 0.6880 (p-

value=0.0036) times less likely to be malnourished as compared to a child born to a

mother without knowledge on nutrition.

Multiple births significantly affect the children nutrition status. A child born singleton

is 0.3712 (p-value=0.0317) times less likely to be malnourished as compared to a child

born second multiple or more.
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The incident of anemia of the mother significantly affects the nutrition status of the

children under five years . A child born to anemic mother is 1.3661 (p-value=0.0088)

times more likely to be malnourished than a child born to a non-anemic mother.

The body mass index of the mother is found to significantly affect the nutrition status

of the child. A child born to normal or obese mother (BMI≥ 18.5) is 0.3723 (p-value

< .0001) times less likely to be malnourished compared to a child born to underweight

mother (BMI< 18.5). This result shows that there is an association between weight

of the mother and nutrition status of the child.

The incident of fever is also seen to significantly affect the nutrition status of the

child. A child who did not have a fever during the two weeks before the survey is

0.6623 (p-value=0.0043) times less likely to be malnourished than a child who was

reported to have had a fever in the two weeks prior to the survey.

The age of household head is found to positively affect the malnutrition of children

under five years.

The place significantly affects the poverty of household. A urban household is 0.7718

(p-value < .0001) times less likely to be poor than a rural household.

The province significantly affects the household socio-economic status. A household

from Western, Northern and Eastern provinces is 15.7053, 7.8853, and 3.5715 respec-

tively poorer ( p-value< .0001) as compared to Kigali city.

Gueorguieva (2001) proposed an approach for validating the correlation between two

outcomes. However, asset index (known as wealth index) in the case of malnutrition

was considered as predictor variable in previous studies (Habyarimana et al., 2014,

2015d,e), but the results from all the models fitted show that poverty of household

and malnutrition of children under five years are positively correlated. In addition it

was observed that reducing the poverty of household also reduces the malnutrition

of children under five years (Habyarimana et al., 2015e).
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Table 9.3. Type 3 tests of fixed effects

Effect Num. Df Den. Df F value Pr > F

Child’s age in moths 4 4656 2.82 0.0237

Birth order 6 4656 3.37 0.0026

Mother’s education level 4 4656 9.27 < .0001

Gender of child 2 4656 8.78 0.0002

Birth weights 2 4656 11.57 < .0001

Province 8 4656 13.42 < .0001

Knowledge on nutrition 2 4656 5.51 0.0041

Multiple birth 4 4656 1.94 0.1005

Incident of Anemia 2 4656 5.14 0.0059

Place of residence 2 4656 12.82 < .0001

Body Mass Index 2 4656 10.88 < .0001

Incidence of fever 2 4656 4.41 0.0122

Source of drinking water 6 4656 32.99 < .0001

Toilet facilities 6 4656 3.73 0.001

Age of household head 2 4656 5.16 0.0058
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Table 9.4. Parameter estimates for a joint model of malnutrition and poverty

Malnutrition Poverty

Indicator Estimate Std.Error P-Value OR Estimate Std.Error P-VALUE OR

Intercept 2.901 1.420 0.043 17.779 -0.564 0.200 0.0049 0.5689

Child age in months

0-11 months reference

12-23 months -0.564 0.200 0.0049 0.5689 0.344 0.215 0.1097 1.4106

24+ months -0.167 0.129 0.1928 0.8462 0.002 0.148 0.9818 1.0020

Birth order

6&more reference

4-5 -0.108 0.160 0.5007 0.8976 -0.085 0.199 0.6702 0.9185

2-3 -0.213 0.171 0.2122 0.8081 -0.188 0.204 0.3588 0.8286

1 -0.746 0.187 < .0001 0.4743 -0.139 0.212 0.5105 0.8702

Mother’s education

Secondary & more &reference

Primary 1.678 0.399 < .0001 5.3548 1.479 0.357 < .0001 4.3885

No education 1.788 0.413 < .0001 5.9775 1.612 0.383 < .0001 5.0128

Gender of the child

Female reference

Male 0.485 0.116 < .0001 1.6242 -0.029 0.128 0.8219 0.9714

birth weights

< 2500g reference

≥ 2500g -1.162 0.255 < .0001 4.0552 0.516 0.348 0.1379 3.1613

Province

Kigali reference

South 0.036 0.313 0.9073 1.0366 -0.264 0.667 0.6929 0.7680

West 0.060 0.170 0.7198 1.0618 2.754 0.301 < .0001 15.784

North -0.225 0.180 0.2132 0.7985 2.065 0.300 < .0001 7.8853

Eastern -0.343 0.209 0.0997 0.7096 1.273 0.328 0.0001 3.5715

Knowledge on nutrition

No reference

Yes -0.374 0.129 0.0036 0.6880 -0.246 0.148 0.0969 0.7819

Multiple birth

2nd&more reference

First multiple -0.350 0.609 0.5657 0.7047 -0.655 0.839 0.4355 0.5194

Singleton -0.991 0.461 0.0317 0.3712 -0.815 0.691 0.2386 0.4426
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Table 9.5. Continuation of parameter estimates for a joint model of

malnutrition and poverty

Incident of anemia

No anemic reference

Anemic 0.312 0.119 0.0088 0.312 0.260 0.138 0.0596 1.2969

Place of residence

Rural reference

Urban -0.259 0.278 0.352 0.7718 -2.530 0.503 < .0001 0.0796

Age of household head 0.016 0.005 0.0027 1.0161 0.007 0.006 0.2271 1.0070

Body mass index

BMI < 18.5 reference

BMI ≥ 18.5 -0.988 0.221 < .0001 0.3723 0.374 0.303 0.217 1.4535

Incident of the fever

Had fever last two weeks reference

No fever -0.412 0.144 0.0043 0.6623 0.132 0.171 0.4401 1.1411

Source of drinking water

Others/yard reference

Piped into dwelling/yard -0.319 0.419 0.446 0.7276 0.531 0.624 0.3951 1.7006

Public tap 1.531 0.807 0.058 4.6228 -5.282 2.682 0.049 0.0051

Protected spring/well 0.865 0.584 0.1384 2.3750 -0.051 0.85 0.9518 0.9503

Toilet facilities

Other toilets reference

Latrine -0.318 0.419 0.4482 0.7276 0.59 0.620 0.3416 1.8040

Ventilated 1.541 0.807 0.0561 4.6692 0.-5.268 0.2.612 0.0438 0.0051

Flushed 0.870 0.584 0.1364 2.3869 0.093 0.849 0.9131 1.0975

Table 9.6. Covariance parameter estimates

Covariance parameter Estimate SE. P-value

Var(Malnutrition) 0.223 0.124 0.0362

Var(Poverty) 2.403 0.395 < .0001

Correlation between malnutrition and poverty of household 0.417 0.191 0.0293

9.4. Summary

In this chapter we have created a composite index from height-for-age, weight-for-age

and weight-for-height. This index is good when one is interested to assess the factors
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associated to malnutrition and to identify the correlation between malnutrition of

children under five years and the poverty of the households.

We have used multivariate joint model to assess the possible correlation between the

asset index and malnutrition as well as to assess the factors associated to malnutrition

of children under five years. The findings of this study revealed a positive correlation

between malnutrition of children under five years and poverty of household. This

means that malnutrition and poverty increase or decrease in the same direction. This

suggests that any policy change made to poverty also affects malnutrition. The find-

ings of this chapter confirmed other findings obtained in the previous chapters. The

factors associated to malnutrition are child’s age, birth order of the child, mother’s

education level, gender of the child, birth weight of the child, mother’s knowledge

on nutrition, incident of anemia, body mass index of the mother, incident of fever,

multiple birth, age of household head. It was also found that mother’s education level

affects poverty of household as well as malnutrition in the same direction.
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CHAPTER 10

Conclusion and discussion

The measurements of poverty of household and malnutrition of children under five

years are commonly measured based on income of household in developed countries

whereas in developing countries they are measured by expenditure or consumption.

However, collecting data on income and expenditure can be time and money consum-

ing. In addition, in low-income countries, measurement of consumption and expendi-

ture is fraught with difficulties such as the problem of recall and reluctance to divulge

information. Additionally, prices are likely to differ substantially across times and

areas, necessitating complex adjustment of the expenditure figures to reflect these

price differences. Therefore, the main objective of this study was to develop an al-

ternative method for measuring poverty of household and malnutrition and thereby

examine the various statistical methods which are suitable to identify the risk factors

associated to the poverty of households as well as the risk factors associated to the

malnutrition of children under five years. To achieve these objectives we have used

principal components analysis technique to create the poverty index of each household

included in the survey and thereafter based on the household ranking into five quin-

tiles from the poorest to the richest; we classified the households into socio-economic

status as poor or not. We have tested the reliability of asset index by first testing the

internal coherence and then testing robustness. We fitted various statistical models

to poverty data and malnutrition data. Binary logistic regression and binary survey

logistic regression were first applied to the household data to identify the key de-

terminants of poverty of households and their results were compared. The findings

from the comparison of the results showed that the sampling weights and sampling

stratification have significant effects on parameter estimates and standards errors.

Therefore, in order to get valid statistical inference, it is better to use survey logistic

instead of classical logistic regression when the data were collected under multi-stage

stratified sampling design. However, survey logistic regression does not account for
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the variability between the villages. Therefore, generalized linear mixed model was

used to include the random effects.

While generalized linear models and generalized linear mixed models estimated how

the predictor variables are related to the mean value of the dependent variable, quan-

tile regression allows for studying the impact of predictors on different desired quan-

tiles on the asset index distribution, and thus provides a complete picture of the

relationship between the asset index and predictor variables. Therefore, quantile re-

gression method was used in order to reveal some information that may be hidden

when binary logistic regression, binary survey logistic and GLMM were used. In or-

der to relax the assumption of normality and linearity inherent in linear regression

models, we have used generalized additive mixed model (semiparametric), where the

categorical covariates were modeled parametrically and continuous covariates non-

parametrically. GAMM can reveal some information that may be hidden when only

parametric models are used. The findings from all these models revealed that, in

general, the level of education of household head, gender of household head, age of

household head, size of the household, place of residence and the province are the

key determinants of poverty of households in Rwanda. The asset index based model

has a number of advantages over the money metric (income, expenditure or con-

sumption) based model. The asset based index avoids many measurement problems

associated with the classical method based on income and expenditure such as recall

bias and seasonality and this is one of its main advantages over the classical meth-

ods based on income and expenditure. This method also may be very important for

countries which not only lack the requisite household survey data to design policies

and evaluate program effectiveness, but which also do not have the financial or hu-

man resources to generate such information. It is also very useful when considering

inequality between households. However, it also has some limitations such as the

Demographic and Health Survey data set is more reflective of longer-run household

wealth or living standards. Therefore, in the case of Rwanda, if the need is knowledge

of the current resources available to households an asset index may not be the most

appropriate measure. The asset index cannot also provide information on absolute

levels of poverty within the community. We were interested to compare the results
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from asset index to other results from other indices used to measure poverty such as

Gini index (it measures the degree of inequality in the distribution of family income in

developed countries or consumption in developing countries in a country) and poverty

gap index (is a measure of the intensity of poverty) but these indices require infor-

mation on income or consumption expenditure which are not available in DHS data.

Malnutrition is measured based on anthropometric indices known as stunting (height-

for-age), wasting (weight-for-height) and underweight (weight-for-age) variable. We

have categorized the nutrition status of the child as severely malnourished, moder-

ately malnourished and nourished and we have also considered the whole distribution

of the index.

However, the Demographic and Health Survey data do not provide information on

household income (household economic level). To circumvent this problem we created

a household asset index based on ownership of consumer items and the characteristic

of dwelling. Thereafter, a proportional odds model without and with complex sam-

pling design was fitted to the data and the results were compared. It was also found

that when multistage sampling was used to collect data, in order to get valid statis-

tical inference, it is better to use a model that accounts for complexity of sampling

design.

The malnutrition of children under five years is usually measured based separately on

the three anthropometric indices, namely weight-for-age (underweight), height-for-age

(stunting) and weight-for-height (wasting). We have used joint multivariate general-

ized linear mixed model to simultaneously identify the risk factors of malnutrition and

also to possibly investigate the correlation between them. This model has a number

of advantages over the separate models, such as: better control of type I error rates,

possible gain in efficiency in parameter estimates and the ability to answer intrinsi-

cally multivariate question. The findings of this study revealed a positive correlation

between stunting and underweight, wasting and underweight. The results from joint

model showed that all significant covariates for underweight were still almost the

same except mother’s marital status which is not significant. In order to account for

spatial variability between primary sampling units, we have used extended multivari-

ate joint model to spatial multivariate joint model. But the results from this model
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confirmed the results from multivariate joint model. A quantile regression model was

also used in order to study the impact of predictors on different quantiles of weight-

for-age distribution, and therefore to provide a complete picture of the relationship

between weight-for-age and predictor variables. In contrast, ordinary least squares,

generalized linear models and generalized linear mixed models estimate how predictor

variables are related to the mean value of the dependent variable. In order to relax

the assumption of normality and linearity inherent in linear regression models, we

have used generalized additive mixed model (semiparametric), where the categorical

covariates were modeled parametrically and continuous covariates nonparametrically.

GAMM can reveal some information which is hidden when only parametric models

are used.

This study revealed that the key determinants of malnutrition of children under five

years in Rwanda are: child’s age in months, gender of child, birth weight, birth order,

incident of fever, mother’s education level, mother’s age at the birth, body mass index

of the mother,incident of anemia, knowledge on nutrition by mother, province, source

of drinking water, multiple birth and wealth index of the household. In addition, in

multivariate spatial joint model, we produced smooth maps showing the prevalence

of stunting, wasting and underweight.

Further, we used principal component analysis technique to create a composite index

of malnutrition from three anthropometric indices. Thereafter, multivariate joint

model was used to ascertain the relationship between poverty and malnutrition and

the risk factors of malnutrition and poverty simultaneously. The findings showed

a positive correlation between them and this correlation means that the poverty of

household and malnutrition of children from these households go in the same direction.

This index is very good when identifying the risk factors of malnutrition; however it

is also limited to identify the specific type of malnutrition.

The findings of this study recommended the following:

To continue supporting the existing policy of grouped settlements where people are

advised to build their houses in townships known as Imidugudu. Since poverty lev-

els are different by province it is important to understand poverty from a provincial

perspective.

200



Improving access to potable water may help to reduce wasting. Also improving sen-

sitization to the population about nutrition may reduce stunting and underweight.

Improving the education level of women may reduce stunting and underweight. Sen-

sitizing on how to take care of children may reduce not only stunting but also under-

weight and wasting. The sensitizing may be in the form of education that includes

workshops, pamphlets, mobile clinics disseminating appropriate information on mal-

nutrition and visits by malnutrition experts and health workers, or alternatively it

can be done through Umuganda(community service of each last Saturday of every

month). It could be better if DHS can collect GPS data at household level instead of

primary sampling unit level. One must be aware of the fact that the Demographic and

Health Survey data is cross-sectional and may not be able to address causality, hence

longitudinal studies which will solve the problem of causality are recommended for fu-

ture research. In malnutrition case, our future study is the structured additive model

that includes the semiparametric (quantile regression) and the spatial variability to

identify the risk factors of malnutrition.
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