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Thesis Abstract 

 

Maize (Zea mays L.) is one of the most important food security crops in Tanzania. It is annually 

cultivated in an area of 2 million hectares representing 45% of the total area allocated to crop 

production. However, maize yields are very low in the country due to several biotic and abiotic 

stresses and socio-economic constraints. Among the biotic factors, maize streak disease caused by 

the maize streak virus (MSV) inflicts significant yield losses reaching up to 100%. Development of 

farmers’ preferred, high yielding and MSV resistant cultivars is the best strategy to boost maize 

productivity in Tanzania. Therefore, the objectives of this study were to: (1) determine farmers’ 

preferred traits of maize and production constraints limiting maize production in the northern areas of 

Tanzania, (2) determine agro-morphological diversity present among 80 local and introduced maize 

inbred lines under maize streak virus (MSV) prone environments of the northern zone of Tanzania, 

(3) assess the genetic diversity and genetic relationship among 79 maize inbred lines collected from 

five different origins using 30 polymorphic simple sequence repeat (SSR) markers, (4) determine 

combining ability and heterosis for grain yield and related traits and resistance to maize streak virus 

(MSV) among 10 elite maize inbred lines and their hybrid progenies, and (5) investigate the GXE 

interaction for grain yield and MSV resistance among newly developed maize hybrids in Tanzania 

using AMMI and GGE biplot methods. 

A participatory rural appraisal (PRA) study was conducted in 2012 at Babati, Arumeru and Hai 

Districts in northern Tanzania. Data were collected involving 500 farmers using structured interviews 

and focused group discussions (FGD). Results showed that maize was the most important crop in the 

study areas and ranked first among other food crops. Grain yield potential, disease resistance and 

drought stress tolerance were farmers preferred traits with relative importance of 71.9, 70.0 and 

69.9%, respectively. Through FGD farmers identified ear rot, MSV and common rust as most 

important diseases affecting maize production. High costs of production inputs and low price of maize 

were also among the challenges to maize production in the study areas. Knowledge of the farmers’ 

preferences and production constraints is required by breeders to enhance the productivity of maize 

in the northern areas of Tanzania.  

Eighty maize inbred lines were evaluated using ago-morphological traits. Field experiment was 

established during 2011/2012 at maize streak virus (MSV) prone environment of Ngaramtoni 

Research Farm of Selian Agricultural Research Institute in northern Tanzania using a 10 x 8 alpha 

lattice design with two replications. Analyses of variance on seven quantitative traits revealed highly 

significant (P ≤ 0.001) variations among inbred lines. TL2012-42 and TLl2012-41 were identified as 
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superior lines with grain yields of 3.52 and 2.46 t/ha respectively. These genotypes showed low (< 

30%) level of MSV reaction suggesting their suitability for hybrid breeding to achieve high grain yield 

and MSV resistance. Principal component analysis revealed 68.9% of the total variation explained by 

four principal components. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

cluster analysis grouped the inbred lines into nine clusters consistent with their heterotic patterns. The 

study identified the following inbred lines: TL2012-53 and TL2012-61 from cluster II and TL2012-20, 

TL2012-70, and TL2012-78 from cluster IV for breeding. 

Genetic diversity and relationships of 79 maize inbred lines collected from five diverse sources were 

subjected to SSR analysis using 30 polymorphic markers. The mean numbers of observed and 

effective alleles were 4.70 and 2.40, respectively. The markers displayed high Shannon’s information 

index of 0.96 and polymorphic information content (PIC) of 0.51. The mean values of observed and 

expected heterozygosity among lines were 0.136 and 0.508, respectively. A dendrogram constructed 

based on UPGMA clustered the inbred lines into three main genetic groups with varied sub-clusters. 

The principal coordinate analysis (PCA) explained 20.4% of the total genetic variation detected 

among inbred lines and separated them into two main clusters. Analysis of molecular variance 

(AMOVA) showed that 72% of the total variation was attributed to differences among inbred lines 

across locations, 26% of the total variation was due to inbred lines within sub-populations/locations 

and 2% was attributed to variation between the five geographic origins of inbred lines. The study 

identified inbred lines such as TL2012-20, TL2012-24 and TL2012-54 (from cluster I) and TL2012-25, 

TL2012-21 and TL2012-12 (from cluster III) showing genetic difference for hybrid breeding to exploit 

heterosis. 

Ten selected inbred lines were crossed and 45 F1 hybrids developed using a 10x10 half diallel mating 

design. Parents, F1 hybrids and five standard checks were evaluated using a 6 x 10 lattice design 

with two replications at Ngramtoni, Inyala and Igomelo during 2012/13 and 2013/14. General 

combining ability (GCA) of parents, specific combining ability (SCA) of hybrids, heritability and 

heterosis of grain yield and related traits and MSV resistance were calculated. The mean squares of 

GCA and SCA effects showed significant differences for all the traits except days to 50% anthesis 

and silking. The SCA effect was important for all traits except for MSV, number of ears per plant and 

husk cover while the GCA effect was most important for resistance to MSV. Heritability estimates of 

traits were high associated with high GCA effects. Line TL2012-42 was a good general combiner for 

grain yield showing highly significant positive GCA effect of 0.695 while lines TL2012-41, TL2012-1 

and TL2012-42 had significant negative GCA effects of -10.926, -10.792 and -10.748 respectively for 

MSV reaction. These inbred lines could be exploited in hybrid breeding to develop high yielding and 
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MSV resistant varieties. Hybrids TL2012-38/TL2012-55 and TL2012-25/TL2012-6 had highest 

negative significant SCA effect of -10.892 and -19.451, respectively for MSV reactions (desirable 

direction). Maximum mid-parent heterosis for grain yield was recorded for hybrid TL2012-7/TL2012-

38 at 138 while TL2012-25/TL2012-26 had the lowest and negative heterosis of -38.2 for MSV 

reaction. Crosses TL2012-7/TL2012-42 and TL2012-7/TL2012-68 had significant positive SCA effects 

for grain yield which can be used for direct production as single cross hybrids or developed further as 

three way hybrids for large scale production. 

Genotype by environment interaction (GXE) of grain yield and MSV resistance was investigated 

among newly developed maize hybrids in Tanzania. Forty five novel single cross hybrids and five 

standard check three-way cross hybrids were evaluated using a 5x10 alpha lattice design with two 

replications across six environments. The Additive Main Effects and Multiplicative Interaction (AMMI) 

and genotype, and genotype by environment (GGE) biplot models were used to assess the 

magnitude of GXE interaction of grain yield and reaction to MSV disease among test genotypes. 

Results from the AMMI analysis of variance revealed high (52.06%) contribution of the environmental 

effect on grain compared to genotypes and GXE interaction which, respectively accounted for 12.4% 

and 17.76% of the total variation on this trait among hybrids tested. Genotypes and GXE contributed 

to 12.4% and 17.76% of the total variation of hybrids of this trait, respectively. Genotypes explained 

45.52% of the total variation of hybrids for MSV resistance while the contribution of environments was 

minimal (2.77%). Hybrid G43 was identified with relatively high mean grain yield of 6.70 t/ha with low 

MSV severity of 31.88% across environments. Experimental hybrids such as G10, G14 and G28 had 

high yield performance of 6.72, 6.00, and 6.23 t/ha, in that order across environments but with highly 

susceptible reaction to MSV. Conversely, hybrid G31 expressed low MSV infection but yielded the 

lowest at each environment. Hybrids such as G23 with low grain yields of 4.84 t/ha, G18 (5.14 t/ha), 

and G34 (1.94 t/ha) showed relatively low MSV infection levels which are useful genetic resources for 

resistance breeding. Experimental hybrids with high grain yield and MSV resistance selected in this 

study are good candidates for direct production or for future three-way hybrid development in 

Tanzania.  

Overall, the current study selected valuable maize inbred lines with high combining ability for grain 

yield and related traits and MSV resistance. Also, new experimental maize hybrids were generated 

for direct production or further development of three-way hybrids.  
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Introduction to Thesis 

 
Production and importance of maize 

Maize (Zea mays L.) is one of the most important cereal crops in the world serving as human food, 

feed, industrial uses and bio-energy (M’mboyi et al., 2010; Ranum et al., 2014). In developing 

countries such as in sub-Saharan Africa maize is predominantly grown for food by smallholder 

farmers under rain-fed condition and with minimal production inputs such as fertilizers and crop 

protection chemicals (Carns et al., 2013). The leading maize producers of the world include the 

United States of America, China, Brazil and Mexico (Ranum et al., 2014). The current global mean 

maize yield stands at 4.9 tons per hectare.  

Maize is the most important cereal food crop in sub-Saharan Africa (SSA). In the eastern and 

southern Africa maize occupies 53% of the total area allocated to cereal production (Erenstein et 

al., 2011; Carns et al., 2013). It accounts for 30-70% of calories consumed in SSA (Erenstein et 

al., 2011). About 69.6% of countries in the world with the highest per capita consumption of maize 

are located in SSA (Sibiya et al., 2013). Maize yields in SSA are very low by virtue of frequent 

droughts, low soil fertility, and diseases and pests (Vivek et al., 2010). In the region supply of 

maize grain is below the present demand due to low productivity and high population growth 

(Erenstein et al., 2011; Sibiya et al., 2013). The global demand for maize as food is projected to 

increase by 45% in 2020 and expected to double by 2050 (CIMMYT and IITA, 2010). During the 

past years maize production areas have grown by 72% in developing countries and 18% in 

developed countries. Despite the increase in areas of production, maize productivity is low without 

meeting the present and projected demand especially in developing countries. Therefore there is a 

need to increase maize production and productivity in SSA.  

In Tanzania, maize is grown by 4.5 million smallholder farmers (Minot, 2010; Keya and Rubaihayo, 

2013) accounting for > 90% of the total maize production (Minot, 2010; Lyimo et al., 2014, 

Magehema et al., 2014). Unlike paddy rice and sorghum which are grown in limited agro-

ecologies, maize is produced across all 26 mainland regions of the country (Minot, 2010; Barreiro-

Hurle, 2012). Westengen and Brysting (2014) reported that maize was produced on 58% of the 

total area allocated to cereal production in 2010. Maize growing belts in Tanzania include: Iringa, 

Ruvuma, and Rukwa in the Southern Highland Zone (SHZ); Tabora, Kigoma, and Kagera in the 

west; Manyara and Arusha in the north and Tanga and Morogoro in the east. Shinyanga and 

Mwanza represent the major maize producing regions in the Lake Zone. Maize accounts for >30% 

of the total food production and constitutes >75% of cereal consumption in the country (Seth et al., 

2011; Magehema et al., 2014). According to Barreiro-Hurle (2012) maize is consumed in different 
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forms both in rural and urban areas but it is usually processed into flour to make the local food 

‘ugali’. Maize is contributing to >30% of the total gross domestic products (GDP) attributable from 

agricultural production. Overall, maize is a valuable crop with the greatest political will and 

acceptability due to its excellent share in trade and value addition in Tanzania (Barreiro-Hurle, 

2012). Other important staple crops grown in the country include sorghum, millet, cassava, 

sweetpotato, banana, pulses (common bean and pigeon pea), rice, and wheat (Minot, 2010; Lyimo 

et al., 2014). 

Productivity of maize in Tanzania is considerably low with mean grain yields varying from 1.2 to 1.6 

t/ha (Mrutu et al., 2014; Magehema et al., 2014). However, trends of maize production have 

increased over the past 10 years (Manot, 2010; Rowhania et al., 2011) with varying yield levels 

across seasons (Figure A). Maize yield during 2000/2001 was 2000 million tons and increased to 

more than 2500 MTs in 2002/2003. Low yields (< 2500 MTs) were recorded in 2003/2004. After 

2004 maize yields increased considerably above 3000 MTs. During 2009/2010 maize yield 

reduced significantly (< 300 MTs) (Figure A). The low yields of maize during 2003/2004 and 

2009/2010 growing season were attributed to drought and various diseases and pests (Rowhania 

et al., 2011; ICID, 2011; Ahmed et al., 2012; FAOSTAT, 2013; Lyimo et al., 2014).  

 

 

Figure A: Trends of maize production in Tanzania during 2000 to 2012 (source: FAOSTAT 2013) 
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The low and variable yield of maize in the country is attributed to biotic and abiotic stresses and 

socio-economic constraints. However, occurrence and magnitude of these factors vary among 

production areas and between seasons (Barreiro-Hurle, 2012). Low adoption rate of seeds of 

improved varieties by farmers has also been reported as a major factor for low productivity of 

maize in Tanzania (Ahmed et al., 2012; Lyimo et al., 2014; Magehema et al., 2014).  

Among the biotic stresses, foliar diseases such as maize streak virus (MSV), maize lethal necrosis 

(MLN), grey leaf spot (GLS) (Cercosporazeae maydis Tehon & Daniel), rust (Puccini sorgi 

Schwein. and P. polysora Underw.) and northern corn leaf blight (Exerohilum turcicum Pass. 

Leornard & Snuggs) and ear rot (Fusarium and Diplodia spp.) inflict devastating yield losses in the 

country (Lyimo, 2006; Bucheyeki, 2012; Lyimo et al., 2013). Insect pests such as stem and grain 

borers, weevils and parasitic weeds cause significant yield losses in Tanzania. Abiotic constraints 

of maize production include recurrent drought, low soil fertility and salinity (Mmbaga and Lyamchai, 

2001, Temu et al., 2011). The aforementioned stress factors are expected to increase due to 

global climate change affecting crop production and needing development of resilient crop varieties 

(Temu et al., 2011; Rowhania et al., 2011; Hellin et al., 2012).  

Among biotic constraints, MSV is the most devastating disease of maize with yield losses reaching 

up to 100% on susceptible varieties. Recently maize lethal necrosis disease (MLN) becomes a 

menace to maize production in Tanzania, Kenya and other East African countries (Lyimo, 2006; 

Wangai et al., 2012; Lyimo et al., 2013; Kitenge et al., 2013; Adams et al., 2013). MLN is caused 

by a combined infection of sugarcane mosaic virus (SCMV) and maize chlorotic mottle virus 

(MCMV) (Uyemoto, 1983; Adams et al., 2013). In Tanzania, prevalence and severity of MLN is yet 

limited to the northern part of the country including areas of Lake Victoria to central regions in 

Singida, and Arusha, Manyara and Kilimanjaro in the north (Kitenge et al., 2013). Yield losses due 

to MLN disease are variable but reported to be low to 100% (Kitenge et al., 2013). Unlike MLN, 

MSV is common across the country and its epidemic occurrence, epidemiology and severity 

resulted significant crop damage and yield losses under many smallholder farmers’ fields (Lyimo, 

2006) (Figure B). 
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Figure B: Maize fields severely infected by MSV at Igomelo in Mbeya (1) and by MLN at 
Ngaramtoni in Arusha (2). 

 

The symptoms and severity of both MSV and MLN are shown in Figure B (1 and 2). Breeding for 

resistance against MSV and MLN disease are essential to boost productivity and combat losses 

and to ensure food security both at household and national level. There are several control 

strategies to minimize losses caused by foliar diseases such as: use of resistant cultivars, 

biological control, phytosanitary measures, cultural practices such as early planting, crop rotation, 

mixed cropping, rouging off diseased plants and plant parts and use of insecticides to control 

leafhoppers which are principal vectors of MSV (Uyemoto, 1983; Ndhlela, 2012; Adams et al., 

2013; Mengesha, 2013; Oppong, 2013). Development and use of resistant maize hybrids has been 

recognized as the cheapest, sustainable, and environmentally friendly control method of maize 

streak virus (Shepherd et al., 2010; Karavina et al., 2014). Good levels of resistance to MSV in 

high yielding commercial maize hybrid were reported (Shepherd et al., 2014). Maize germplasm 

with complete or partial resistance to MSV has been reported by various workers at the IITA-

Nigeria, CIMMYT and South Africa.  

 

Genetic gain for yield and stress tolerance could be realized through breeding (Aaron, 2013; 

Sharma et al., 2012). This is achieved through incorporation of desired attributes from chosen 

parents with high agronomic importance into a maize genotype via crosses and subsequent 

selection (Bello et al., 2012, Wilson et al., 2014). Complementary inbred lines are the most 

valuable germplasm for maize breeding. They carry desirable complementary genes and upon 

crossing they could provide hybrids with improved yield, disease resistance, and nutritional 

1 2 

A 
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qualities due to heterosis (Ferdous et al., 2011; Sharma et al., 2013; Aaron, 2013). Therefore, 

diversity assessment, genetic enhancement, inbred line development, combining ability tests, 

genotype x environment and stability analyses are important aspects for successful maize 

breeding and cultivar release.  

Rationale of the study 

The northern Tanzania is one of the major maize producing areas of the country. It is the second 

maize growing zone after the Southern Highlands. Most rural farming households dispose of their 

maize easily to Kenya where demand of maize is usually the highest in East Africa. However, 

outbreaks of MSV and MLN diseases severely curtail maize yields in northern Tanzania. The 

maize research program at Selian Agricultural Research Institute (SARI), located in the northern 

zone of Tanzania is mandated for maize research and development for the mid-altitude agro-

ecologies of the country. This program has developed germplasm with broad genetic base which 

can be used to combat both MSV and MLN diseases through resistance breeding using 

conventional and molecular approaches. Maize productivity could be enhanced through effective 

breeding using locally adapted and introduced germplasm, having resistance genes for MSV and 

MLN, and agronomic attributes preferred by farmers’. This requires a well-designed hybrid cultivar 

development program. Therefore, development of high yielding, MSV and MLN resistant cultivars 

remains important for improving maize productivity and quality in Tanzania. 

Research Objectives 

The specific objectives of this study were to: 

1) determine farmers’ preferred traits of maize and production constraints limiting maize 

production in the northern areas of Tanzania. 

2) determine agro-morphological diversity present among 80 local and introduced  maize inbred 

lines under maize streak virus (MSV) prone environments of the northern zone of Tanzania 

3) assess the genetic diversity and genetic relationship among 79 maize inbred lines  collected 

from five different origins using 30 polymorphic simple sequences repeat (SSR) markers 

4) determine combining ability and heterosis for grain yield and related traits and resistance to 

maize streak virus (MSV) among 10 elite maize inbred lines and their hybrid progenies 

5) investigate the GXE interaction for grain yield and MSV resistance among newly  developed 

maize hybrids in Tanzania using AMMI and GGE biplot methods 

  



6 
 

Research Hypotheses 

The study was developed based on the following hypotheses: 

1) Smallholder farmers in the northern Tanzania could identify their key maize production 

constraints which hamper successful production of maize in their areas. 

2) There is abundant genetic diversity for both grain yield and resistance to MSV in the test 

genotypes assembled for breeding which can be detected using agro-morphological and 

simple sequence repeat DNA markers 

3) There is high combining ability among genotypes helpful for hybrid breeding to exploit heterosis 

both for grain yield and disease resistance 

4) There is high and stable yielding and MSV resistant new experimental hybrids that can be 

selected for release or furher breeding when tested across different environments in Tanznia. 

Thesis Outline 

This thesis consists of six distinct chapters (Table A) reflecting a number of activities related to the 

above-mentioned objectives. Chapters 2 to 6 are written in the form of discrete research chapters, 

each following the format of a stand-alone research paper. The referencing system used in the 

chapters of this thesis is based on the Journal of Crop Science system of referencing. This is the 

dominant thesis format adopted by the University of KwaZulu-Natal. As such, there is some 

unavoidable repetition of references and some introductory information between chapters.  

Table A. Thesis structure  

Chapter Title 

- Introduction 

1 A Review of the Literature 

2 Key maize production constraints and identification of farmers’ preferred traits in 

the mid-altitude maize agro-ecologies of northern Tanzania 

3 Agro-morphological characterization of maize inbred lines under maize streak 

virus prone environment 

4 Genetic diversity analysis of maize inbred lines collected from diverse origins 

using SSR markers 

5 Combining ability and heterosis among maize genotypes for yield and yield 

components and resistance to maize streak virus disease 

7 Genotype by environment interaction of grain yield and MSV resistance among 

novel maize hybrids in the mid-altitude agro-ecologies of Tanzania 

8 An overview of research findings 
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CHAPTER ONE: 

A review of the literature 

 

1.1 Introduction 

This chapter presents a review of the literature in three different sections. The first section 

highlights importance of maize (Zea mays L.), origin and biology, production trends and 

constraints. The second section focuses on one of the most important production constraints that 

limit maize productivity in Tanzania – maize streak virus (MSV) and provides a detailed account on 

its economic importance, symptoms and epidemiology, distribution and control methods. The third 

section covers breeding maize for MSV resistance and improved grain yield, genotype by 

environment interaction, and the role of farmers in maize breeding and cultivar adoption. 

1.2 General importance of maize  

Maize is one of the most important cereal crops in the world serving as human food, feed and 

industrial uses such as in manufacturing corn starch and oil. Recently, maize is being widely used 

in the bio-fuel sector (Fischer et al., 2014; Ranum et al., 2014). The crop has wide adaptation and 

multiple uses (Sharma and Misra, 2011). Maize displays the highest productivity per unit area and 

occupies a relatively large global production area when compared to other cereals. Yields of maize 

in 2012 was estimated at 875 million tons (FAO, 2012; Edmeades, 2013), being higher than that of 

rice (690 M tons) and wheat (675 M tons). The United States, China, and Brazil are the major 

producers of maize accounting for 31, 24 and 8% of the world total production, respectively (FAO, 

2012; Ranum et al., 2014). The global annual maize yields are two and three fold than that of rice 

and wheat, respectively (Edmeades, 2013; Fischer et al., 2014).  

In sub-Saharan Africa (SSA), maize is the most preferred staple food crop serving over 900 million 

people (AGRA, 2014; Fischer et al., 2014; Ranum et al., 2014). It is produced in an area of 27 

million ha representing 30% of the area under cereal production (Fischer et al., 2014; Kalinda et 

al., 2014) but yields remain low in SSA (Shiferaw et al., 2011; Westengen et al., 2014). In the 

region maize is predominantly grown by small-scale farmers under rain-fed condition with limited 

production inputs (Carns et al., 2013; AGRA, 2014). In SSA, the demand for maize is far beyond 

the level of production suggesting further production and productivity of this crop. The major 

factors attributing to low yields of maize in SSA include: unavailability of seeds of improved 

cultivars, diseases, pests, weeds, drought stress, low soil fertility, input unavailability and use, poor 

storage system and postharvest losses (Carns et al., 2013; Khan et al., 2014). It has been 

estimated that maize yield gaps in SSA are in excess of 100% across locations and farmers owing 
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to these constraints (Fischer et al., 2014). Therefore, use of improved cultivars and production 

inputs could boost maize productivity in the region.  

 

In Tanzania, maize is the most important cereal food crop consumed by the entire population of 

apprximatetly 45 million people. Maize is grown across all eight agro-ecological zones (Mbirinyi et 

al., 2013). It occupies >2 million hectares representing 45% of the total land area allocated to 

annual crop production (Lyimo et al., 2014). In 2010, maize covered 58% of the total area allotted 

to cereal production (Westengen and Brysting, 2014) predominantly grown by smallholder farmers 

who contribute 85% of the total maize production (Minot, 2010; Lyimo et al., 2014). Maize accounts 

for 50 to 60% of the dietary food calories and proteins in Tanzania. It is an important commodity 

crop contributing to nearly 50% of the cash income by rural households. The crop plays an 

important role in the national economy contributing to close to 30% of GDP along other crops. 

Overall, maize is a key food security crop being maintained by the Strategic Grain Reserve (SGR) 

program in Tanzania to ensure sustainable food supply (Ashimogo, 2008). However, maize yields 

are considerably low under small-scale production systems (Minot, 2010; Magehema et al., 2014). 

The average national yields of maize have been fluctuating between 1.2 and 1.7 t/ha since 1990 

due to a number of yield limiting factors such as diseases, drought, low soil fertility and poor 

adoption to improved agricultural technologies by farmers (Bucheyeki, 2012; Kathage et al., 2012; 

Westengen and Brysting, 2014; Mrutu et al., 2014). 

1.3 Origin and biology of Maize 

Maize has been classified as a monocot, determinate, and monoecious annual tall plant that 

belongs to the grass family Graminae or Poaceae in the tribe Maydeae with a chromosome 

number of 2n=2x=20 (Edward and Stevens, 2005). Maize is presumed to have been evoloved from 

the wild grass relative, teosinte and is the only economically important species in the genus Zea 

(Edward and Stevens, 2005: Ranum et al., 2014). It is believed that maize originated from central 

Mexico some 7000 years ago. The rapid distribution of maize from its center of origin to other 

places of the world is attributed to the high level of genetic plasticity determining its wide 

adaptability and economic importance (Ranum et al., 2014). Maize has been a model crop and 

extensively studied in plant genetics, genetic engineering and plant breeding due to its 

considerable genetic diversity (Edward and Stevens, 2005; Prasanna, 2012).  
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1.4 Maize production constraints in Tanzania 

The major maize production constraints in Tanzania include biotic stresses caused by maize 

streak virus (MSV), maize lethal necrosis (MLN) and abiotic stresses such as drought and poor soil 

fertility and socio-economic constraints (Mmbaga and Lyamchai, 2001; Lyimo, 2006; Mbirinyi et al., 

2013; Bucheyeki, 2012; DFID, 2014). The low adoption rate of improved technologies by farmers is 

reported to be a major challenge to agricultural production and productivity in Tanzania and sub-

Saharan Africa (Minot, 2010; Miti et al., 2011; Kathage et al., 2012; Ceccarelli, 2012; Lyimo et al., 

2014). In Tanzania the adoption rate of hybrid maize seeds is estimated at 27% (Lyimo et al., 

2014) while in Kenya it is > 70% (Keya and Rubaihayo, 2013). The low adoption rate of improved 

seeds of hybrid maize in Tanzania could be attributed to limited access, high price and poor 

performance of some cultivars when grown under farmers’ field conditions (Bucheyeki, 2012). This 

has prompted farmers to use landrace varieties which are poor yielders and susceptible to various 

biotic and abiotic stresses (Bucheyeki, 2012). Among the biotic stress factors, maize streak virus is 

a number one production challenge severely limiting maize yields in Tanzania and sub-Sahara 

African countries (Bucheyeki, 2012; Lyimo et al., 2013; Shepherd et al., 2010; Karavina et al., 

2014). Yield losses are often associated with cultivation of susceptible maize varieties or virulence 

shift of the virus (Shepherd et al., 2010; Karavina, 2014). This suggests the need for development 

of resistant cultivars for strategic control of this erratic but devastating disease of maize (Shepherd 

et al., 2010; Ruschhaupt et al., 2013). 

1.4.1 Maize streak virus (MSV) disease 

Origin, classification and mode of transmission of MSV 

MSV is classified in the genus Mastrevirus of the family Geminiviridae (Tefera et al., 2011; 

Karavina et al., 2014; Karavina, 2014). It is naturally confined in African grasses (Owor et al., 

2007). The disease is solely transmitted by leafhoppers (Cicadulina mbila Naude) (Oluwafemi et 

al., 2007; Shepherd et al., 2010). Several potential species in the genus Cicadulina including C. 

mbila, C. storey, C. bipunctella, C. latens, and C. Parazeae have been reported to transmit MSV 

disease (Oluwafemi et al., 2007). Of these vectors, C. mbila is the most important for transmission 

of MSV disease in Africa (Magenya et al., 2008, 2009; Shepherd et al., 2010). 
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Mechanism of MSV disease transmission 

MSV disease is not transmitted mechanically, or via pollen grains or seeds. It is exclusively 

transmitted through its main vector, leafhoppers. Thus knowledge on the ecology and 

epidemiology of the disease and its vector is important. Leafhoppers readily move, feed and 

reproduce on most cereal crops and annual grass weeds (Antwerpent et al., 2011). Leafhoppers 

lay eggs at higher temperatures and during the wet season or on irrigated crops (Oluwafemi et al., 

2007). The vector acquires MSV through feeding on the diseased maize plant and transmits the 

virus when feeding on the healthy plants. Studies have demonstrated that the virus once acquired 

by the leafhoppers remains in the insect’s gut during the life span of the vector. MSV acquisition 

and transmission by the vectors is reportedly genetically inherited. Transmission of the virus has 

been attributed to a simple sex linked dominant gene present in the vector (Antwerpent et al., 

2011). Differential transmission rate by the Cicadulina spp has been reported (Karavina, 2014). 

Symptoms and epidemiology of MSV disease 

Disease symptoms of MSV have been reported by many authors (Martin and Shepherd, 2009; 

Karavina, 2014). Maize streak symptoms are characterized by the development of chlorotic spots 

and streaks in longitudinal lines on maize leaves (Figure 1.1).The streaks on the leaves often fuse 

laterally, resulting in narrow broken chlorotic stripes, which extend over the entire length of the 

affected leaves (Mawere et al., 2006; Taiwo et al., 2006; Oluwafemi et al., 2008; Shepherd et al., 

2010). The chlorosis is caused by failure of chloroplasts to develop in the tissue surrounding the 

vascular bundles, which results in reduced photosynthesis and increased respiration (Mawere et 

al., 2006). Severe chlorosis occurs in very susceptible maize cultivars, leading to stunted growth 

and premature death, poor ear formation, reduced seed set, and heavy yield losses (Shepherd et 

al., 2010).  
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Figure 1.1: Photos depicting the severity of infection by the maize streak virus disease at Igomelo 
in southern Tanzania 

.  

The epidemic of MSV disease is often erratic and may not be predicted (Martin and Shepherd, 

2009). Environmental and ecological factors favoring the vectors are the key components for the 

spread of the MSV disease in epidemic proportions. Presence of susceptible hosts at earliest 

growth stage is an important factor enhancing MSV disease epidemics (Martin and Shepherd, 

2009). Further, the virulence of MSV and transmission ability of vectors is necessary conditions for 

disease epidemics and development. According to Martin Antwerpent et al., 2011 and Shepherd 

(2009), the complex biological interactions of viral strains with their multiple transmitting vectors, 

host species and environment are essential factors for MSV disease epidemics. In addition to 

maize, MSV has been reported to infect a wide range of other cultivated crop species such as 

wheat, oat, sugarcane, millet, rice, barley, rye and sorghum (Owor et al., 2007; Magenya et al., 

2009; Shepherd et al., 2010).  

 

Environmental factors favouring distribution of MSV and its vectors 

According to Magenya et al. (2008), the distribution of leafhopper vector populations and the viral 

diseases they transmit are inherently influenced by agro-ecological factors. The influence of soil 

nutrients, altitude and temperature on the biology of maize streak virus (MSV) vector populations is 

discussed in previous papers (Magenya et al., 2008; Martin and Shepherd, 2009). These 
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environmental conditions have profound effect on the growth and survival of annual wild grass 

species which hosts both the disease and the vector, leafhoppers (Martin and Shepherd, 2009). 

 

Yield loss due to MSV infection 

Yield loss due to MSV infection in maize varies from 40-100% (Makenya et al., 2009; Antwerpent 

et al., 2011). Shepherd et al. (2010) reported that during high MSV epidemics, the disease can 

cause 100% yield losses. Also, extensive cultivation of susceptible maize varieties is considered to 

be the major cause for disease epidemics and subsequent yield loss (Oluwafemi et al., 2008). In 

Tanzania, yield losses due to MSV are common in areas encompassing Morogoro, Mbeya, 

Sumbawanga, Arusha and Manyara (Lyimo, 2006). Other authors reported total crop losses due to 

MSV infections (Mawere et al., 2006; Asea et al., 2009; Abalo et al., 2009; Gichuru et al., 2011). 

There are different options available to minimize losses incurred by MSV disease such as cultural 

practices, chemical control, biological control and host resistance (Pratt et al., 2003; Shepherd et 

al., 2010). 

1.5 Integrated pest management (IPM) of MSV disease  

1.5.1 Cultural method 

Various cultural management controls have been suggested to minimize losses inflicted by maize 

streak virus disease (Oluwafemi et al., 2007; Shepherd et al., 2010). These include early planting, 

crop rotation and intercropping with non-host species. These are important MSV avoidance 

methods to reduce infection but may not be a sustainable option. During early crop stages the viral 

inoculum loads are to too low to cause infection (Shepherd et al., 2010). The population dynamics 

of the vector account for the occurrence and epidemics of maize streak, which in turn is influenced 

by rainfall, temperature, and availability of alternate host plants (Mawere et al., 2006). It has been 

studied that maize streak disease is very common in wet areas e.g. where irrigation is used for 

crop production. Wet environments facilitate the over-wintering of both the virus and the vectors. 

Previous studies reported that maize mono-cropping and the presence of wild grass species serve 

as hosts to the virus and vectors which facilitate the spread of MSV disease between crops 

(Mawere et al., 2006; Kwena, 2007). Cultural control strategies have been found to be effective 

when combined with the use MSV tolerant or resistant cultivars (Oluwafemi et al., 2007; Shepherd 

et al., 2010). 

1.5.2 Chemical control method 

Crop protection chemicals have been used to control various insect pests and diseases (Kwena, 

2007). Insecticides such as carbofuran are reported to provide maximum MSV disease 
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management in maize through controlling leafhoppers (Karavina, 2014). However, use of 

insecticides as means of controlling MSV disease vary in their efficacy and economic feasibility 

(Kwena, 2007; Oluwafemi et al., 2007; Shepherd et al., 2010; Karavina, 2014). Correct timing of 

insecticide application, number of sprays, prevailing climatic conditions, and efficacy of the 

chemical group and the level of host resistance are important factors in determining the 

effectiveness of chemical control methods in crop plants (Kwena, 2007). Use of chemical control 

method in farmers’ fields exposes them to health risks and can result in environmental pollution 

(Martin and Shepherd, 2009). Furthermore, insecticides are expensive for poor subsistence 

farmers and their application demands technical knowledge on time, method and rates of 

application (Karavina et al., 2014).  

 

1.5.3 Biological control method 

Biological control has been considered to be a viable tool where beneficial biological agents occur 

naturally or can be artificially developed (Kananji, 2007; Karavina, 2014) to infect or parasitize 

other crop pests (Kananji, 2007). For example, Dinarmus basalis (Rondani) was found to be a 

promising control agent against bruchids in beans (Schmale et al., 2002). There is little information 

regarding the use of biological control method to manage the MSV vector (Karavina, 2014). 

Therefore, further research is needed to identify natural enemies against leafhoppers, the potential 

vector for maize streak virus disease in cereals. 

1.5.4. Host resistance 

Development and use of resistant maize hybrids has been recognized as the cheapest, 

sustainable, and environmentally friendly control method of maize streak virus (Pratt et al., 2003; 

Taiwo et al., 2006; Niks et al., 2011; Sheperd et al., 2010; Karavina, 2014). Good level of 

resistance to MSV in high yielding commercial maize hybrid was reported (Lyimo, 2006; Karavina 

et al., 2014). Maize germplasm with complete or partial resistance to MSV has been reported by 

various workers at the IITA-Nigeria, CIMMYT and South Africa. Resistance in host plants is often 

associated with fleck like reactions or immunity to infection (Niks et al., 2011). MSV tolerant 

genetic stocks express a reduced disease development and comparatively better yield levels when 

compared to susceptible genotypes which displays progressive necrotic lesion with increased 

disease development (Kwena, 2007; Martin and Shpherd, 2009). A number of genotypes with MSV 

reactions ranging from fleck type to necrotic lesions have been observed in various studies under 

field conditions. 
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1.6. Breeding for MSV resistance 

Source of resistance to MSV  

Resistance to maize streak virus disease is an essential trait for breeding (Vivek et al., 2010; Niks 

et al., 2011). Different sources of resistance to MSV have been identified in maize (Mawere et al., 

2006) such as inbred lines Tzi4 and CML202 at the IITA and CIMMYT, respectively (Gichuru et al., 

2011; Ndhlela, 2012). Subsequently, IITA, CIMMYT and other national research systems in Africa, 

have produced a good number of breeding lines with varied levels of resistance to MSV ranging 

from highly resistant (HR), resistant (R), to moderately resistant (MR) reaction (Stevens, 2008).  

Among these Tzi3, Tzi4, Tzi15, and Tzi17 were the most resistant inbred lines which were 

released by IITA/Nigeria. The CIMMYT lines CML217-238, CML195-CML215, CML442 and the 

population ZM607 were resistant to maize streak virus disease (Olaoye et al., 2009; Gichuru et al., 

2011; Ndhlela, 2012). In Tanzania, most disease resistant commercial maize varieties were 

developed and released in the early 1980s. These varieties succumbed to the MSV disease over 

time due to the emergence and outbreak of new strains. Therefore, new sources of resistance to 

MSV and other maize diseases should be identified to breed resistant maize hybrids in the country.  

1.6.2 Screening for resistance to MSV disease 

Both natural and artificial inoculation techniques are widely employed to screen and identify maize 

genotypes with disease resistance against MSV or other foliar pathogens (Leuschner and 

Buddenhaggen, 1980; Antwerpent et al., 2011). Natural infection is cost effective and applicable 

in places where MSV and other foliar diseases are prevalent (Leuschner and Buddenhaggen, 

1980). Hot spot areas are important for evaluation of viral diseases like MSV which are obligate 

pathogens that need living vectors for transmission onto their host (Lagat et al., 2008). Preparation 

of viral pathogen inoculum for artificial inoculation is difficult and cannot be made from dead or 

diseased plant materials. Artificial inoculation for MSV infection using controlled colony of 

viruliferous insects is possible. However, this is a demanding and long selection process requiring 

establishment of mass rearing cages, catching of leafhoppers and testing for harboring and virus 

transmission ability, all needing  a long term investment (Lagat et al., 2008). The Kenyan 

Agriculture Research Institute (KARI) based at Muguga has established an artificial MSV disease 

screening structure and various test results were reported (Lagat et al., 2008). Similar structure is 

being established at Selian Agricultural Research Institute (SARI) based at Arusha in Tanzania for 

future germplasm screening and development for MSV resistance.  
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MSV disease assessment  

Yield loss due to MSV disease is associated with lesion development on the leaf surface of plants 

inhibiting photosynthesis (Wang et al., 2014). The MSV disease severity or infection rate is visually 

assessed (Bigirwa et al., 2003). This is commonly performed on both young and old leaves from 

early growth to grain filling stages (Wang et al., 2014). For MSV disease evaluation the method of 

Wang et al. (2014) has been adopted which was developed to assess corn leaf blight resistance. 

Wang et al. (2014) used a visual rating scale of 1-9 (expressed in percentage). A score of 1 

indicated highly resistant (HR) reaction and denoted none to scattered lesions, covering less than 

5% of the leaf area. A score of 3 indicated resistant (R) reaction and denoted by a few lesions on 

leaves covering 6 to 10% while 5 represented moderate resistant (MR) reaction; the plant had 

large, coalesced lesions on its leaves covering 11 to 30%. A score of 7 represented susceptible 

(S), and denoted large coalesced lesions covering 31 to 70% of the leaf area and a score of 9 

implied highly susceptible (HS) reaction which denoted extensive, large coalesced lesions covering 

almost the entire leaf surface. 

 

1.7 Breeding maize for grain yield and disease resistance 

Genetic gain for yield and stress tolerance could be realized through breeding. These are achieved 

through incorporation of desired attributes from chosen parents with high agronomic importance 

into a maize genotype via crosses and subsequent selection (Bello et al., 2012; Aaron, 2013). 

Complementary inbred lines are the most valuable germplasm for maize breeding. They carry 

desirable complementary genes and upon crossing they could provide hybrids with improved yield, 

disease resistance, and nutritional qualities due to heterosis (Lamkey and Lorenz, 2014; Bello et 

al., 2012). Therefore, diversity assessment, genetic enhancement, inbred line development, 

combining ability tests, genotype x environment and stability analyses are important aspects for 

successful maize breeding and cultivar release.  

1.7.1 Genetic diversity assessment  

Development of maize hybrids with enhanced yield and stress tolerance requires novel and 

genetically unrelated inbred lines to exploit heterosis (Reid et al., 2012; Mengesha, 2013). 

Utilization of inbred lines in genetic and breeding studies requires proper knowledge of their 

genetic diversity and heterotic relationships (Wang et al., 2014). This necessitates efficient 

characterization or assessment of the genetic diversity present among breeding lines to design 

crosses, to assign inbred lines into heterotic groups, and to identify potential cultivars for release. 

Different approaches are available which have been widely used in genetic diversity assessment of 
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maize genotypes (Duan et al., 2007; Legesse et al., 2007). This review focused on genetic 

diversity analysis using agro-morphological and molecular markers. 

Diversity assessment using agro-morphological traits  

Genetic diversity assessment using agro-morphological traits involves extensive field evaluation of 

genotypes, data collection and analysis to select unique and superior genotypes. Agro-

morphological traits are genetically controlled and traceable in the next generations (Mollin et al., 

2013). Selection based on morphological traits allows identification of ideotypes under the existing 

farming practices but its efficiency is high for traits with the highest heritability. Morphological 

characterization is a first step in description and classification of maize germplasm (Shrestha, 

2013) and remains useful in conventional breeding (Karanja et al., 2009). This method has been 

extensively used in identifying and grouping accessions with desirable characteristics such as 

earliness, disease resistance or other improved agronomic traits. However, morphological 

descriptors have limitations because phenotypic traits do not often express as expected due to the 

influence of the environment (Karanja et al., 2009; Prasanna, 2012; Reid et al., 2012). 

 

Diversity assessment using molecular markers 

Molecular characterization of genotypes is frequently used by maize breeders as an alternative 

method to select unique genotypes or lines for hybrid development (Mollin et al., 2013). Presently, 

molecular markers are becoming cost-effective and provide high throughput data because they are 

able to detect genetic variations at a DNA level (Mondini et al., 2009) and they are less influenced 

by environmental effects (Stevens, 2008). Assessment of genetic diversity is performed at 

molecular level using various techniques such as allozyme or DNA analysis (Flamingh et al., 

2014). Different DNA markers are available for assessing genetic diversity in various crops 

including maize but their choice depends on the objectives and availability of resources. Some of 

the commonly used markers include random amplified polymorphism DNA (RAPD), simple 

sequence repeats (SSRs), amplified fragment length polymorphism (AFLP) and single nucleotide 

polymorphism (SNP). The RAPD markers have been widely used in diversity analysis of maize 

owing to their cost effectiveness and rapid detection of polymorphism. Microsatellites or simple 

sequence repeats (SSRs) are among the molecular markers which have been widely used in 

genetic studies of maize (Legesse et al., 2007). They are composed of DNA sequence motif of 2-6 

bases in length (Flamingh et al., 2014). They feature high level of reproducibility, accuracy, 

discrimination and polymorphism. They are also abundant, uniformly distributed, co-dominant, and 

rapidly produced by PCR and give outputs which are easy to interpret in a biological sense. 

Genetic markers are useful for assigning lines to heterotic groups and genetic finger printing 
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(Jambrovic et al., 2008; Mollin et al., 2013). The SNP markers are the most abundant molecular 

markers in the genome, and are widely dispersed throughout the genome with variable distribution 

among species. The SNPs are more prevalent in the non-coding regions of the genome (Mollin et 

al., 2013). 

1.8 Mating designs and their application in maize breeding  

Various mating designs are employed in maize breeding to recombine favorable traits from chosen 

parents and for genetic analyses (Khan et al., 2009; Nduwumuremyi et al., 2013). Overall mating 

designs are used to: (1) provide information on the genetic control of the character under 

investigation, (2) to generate breeding populations for selection and development of potential 

cultivars, (3) provide estimates of genetic gains and (4) provide information for evaluating the 

parents used in the breeding programs (Acquaah, 2012). Several mating designs are available but 

the choice depends mainly on breeding objectives and the amount of information needed (Kearsey 

and Pooni, 1996). Other factors that affect choices of mating designs include:  reproduction system 

of the crop; types of crossing (artificial or natural), and presence of male sterility system (Acquaah, 

2012; Nduwumuremyi et al., 2013). Breeders perform several crosses to induce and determine 

genetic variations and the gene actions involved (Nduwumuremyi et al., 2013). Breeders also 

perform progeny testing to identify superior parents as judged by the performance of their progeny. 

Often suitable maize inbred lines are selected based on combining ability effects which are 

responsible in controlling the trait of interest. Information on the estimates of combining ability 

effects and gene actions is vital for successful breeding (Panhwar et al., 2008). Analysis of data 

from appropriate mating and experimental designs using appropriate statistical tool can provide 

better estimates of information present between the parents used in the cross and their cross 

combinations (Acquaah, 2012). 

The commonly used mating designs in maize breeding include: paired crosses or bi-parental 

mating design; top crosses, North Carolina design I, II and III, and diallel designs (Hallauer et al., 

2010). All these mating designs have been used in maize breeding and the information generated 

through them varies between studies. In this review, however, only diallel mating design was 

discussed which is widely used in studying inheritance of traits and heterotic patterns of inbred 

lines in maize (Hallauer et al., 2010). 

1.8.1 Diallel mating designs   

A complete diallel mating design allows the selected parents to be crossed in all possible 

combinations generating all direct crosses, reciprocals and selfs (Schlegel, 2010). Diallel mating 

design utilizes both random and fixed models which reflect the actual status of the parents used. A 

random model involves crossing random parents which are obtained from a random population 
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resulting to random model analysis which estimates the general combining ability (GCA) and 

specific combining ability (SCA) variances. Diallel design may also involve crossing sets of parents 

which have fixed effects in order to estimate the GCA effects for each parent and the SCA effect 

for each pair of crosses as applied in the present study. In practice, however, application of the 

diallel design varies depending on whether all generated crosses are used plus their parents 

(selfs). For this reason, four types of diallel analyses have been established which include: 1) 

direct and reciprocal crosses and parents, 2) direct crosses and parents, 3) direct and reciprocal 

crosses without parents and 4) direct crosses only without parents. This review was focused on 

half-diallel mating design involving direct crosses (F1s) and parents only. 

1.8.2 Half diallel mating design  

Griffing (1956) established this design to compare the relative performance of parents against their 

respective progenies, especially for traits that have no maternal effects (Olfati et al., 2011). This 

type of analysis allows estimation of heterosis based on either mid-parents or better-parent values 

and has been widely used in maize breeding. With this design, fixed and random model effects are 

estimated straightforward. The mathematical models for analyzing combining abilities for fixed and 

random effects are given below following Griffing (1956) (Table 1.1):  

Fixed effect model I: Method II 

This method includes parents and F1’s without reciprocals. The total number of genotypes used is 

given by          , where   is the number of parents used.  Estimation of GCA and SCA for 

fixed model is: 

                 
 

  
         . 

 

Where,   is a population mean,    and    are general combining ability effects for ith and jth 

parents;     is the specific combining ability effects of the cross between ith and jth parents such 

that    =     and       is the experimental error due to environmental effect associated with ijklth. 

For restriction,        and            .  The mathematical equation for analysis of combining 

ability for random model, i.e., model II is:                 
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Table 1.1: Variance analysis of half diallel, Method II 
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(Griffing, 1956). 

 

1.9 Combining ability analysis  

Estimates of combining ability are useful in determining breeding value of maize inbred lines and 

their progenies (Gichuru et al., 2011; Olfati et al., 2011; Aly et al., 2011). It has been widely used to 

select suitable parents in hybrid breeding programs (Machikowa et al., 2011). The concepts of 

general and specific combining ability were introduced by Sprague and Tatum (1942) and have 

been extensively applied in maize breeding. The general combining ability (GCA) is defined as the 

mean performance of a line when crossed to an array of other lines and the deviation of this value 

to the overall mean performance of all crosses is termed as GCA effects (Sprague and Tatum, 

1942; Olfati et al., 2011). Whereas the specific combining ability (SCA) refers to the performance 

of a specific combination of inbred lines and its effects is estimated as the deviation from the mean 

performance of the lines involved in that particular cross (Olfati et al., 2011). In statistics GCA is 

the main effect of the lines while SCA is their interaction (Olfati et al., 2011). The variance of GCA 

measures the additive gene action whereas that of SCA measures the non-additive gene actions 

(Gichuru et al., 2011; Olfati et al., 2011). The relative importance of gene actions involved in the 

expression of the traits determines the type of breeding approaches to be adopted (Akinwale et al., 

2014). The SCA effect is also important parameter that has been used to evaluate the usefulness 

of a cross to exploit heterosis (Sprague and Tatum, 1942; Griffing, 1956; Machikowa et al., 2011; 

Aly et al., 2011). Combining ability for grain yield and resistance to foliar diseases in maize have 

been previously reported (Gichuru et al., 2011).  

Source of variation          Expected Mean Squares 

Model  I Model II 
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1.10 Heterosis for grain yield and resistance to MSV 

Plant breeders attempt to increase yields of maize through hybrid breeding to exploit heterosis or 

hybrid vigor (Abdel-Moneam et al., 2014). Heterosis is the biological phenomenon that has been 

exploited by breeders to increase crop productivity (Tuhina-Khatun et al., 2010; Thiemann et al., 

2014). This biological or genetic parameter (hybrid vigor) has been known since the early 1900s 

and is defined as biological phenomenon in which the progeny (F1 hybrid) exhibits enhanced 

mean performance compared to its parents for a given trait (Ali et al., 2012; Ding et al., 2014; 

Thiemann et al., 2014). Three types of heterosis are known in hybrid breeding such as: mid-parent 

heterosis (MPH), better-parent heterosis (BPH) and heterosis calculated based on the standard 

check cultivar (Tuhina-Khatun et al., 2010; Ali et al., 2012; Rajesh et al., 2014; Abdel-Moneam et 

al., 2014). 

Estimation of heterosis 

The mid-parent (average) heterosis (MPH) is calculated as follows:    
     

  
    ; Where F1 

is the mean performance of the F1 hybrid, and MP is the mean performance of the two parents, 

that is,  
     

 
 ; while the better-parent heterosis (BPH) is calculated as the increase (+) or 

decrease (-) exhibited by the F1 hybrid over the better parent:    
     

  
; where BP is the mean 

performance of the better parent.  The third type of heterosis is calculated as the increase or 

decrease of F1 hybrid compared to the standard check variety (cv);    
     

  
     ; where Hcv 

is heterosis calculated based on a standard check variety, cv is the mean performance of the 

check variety. All forms of heterosis are important in hybrid breeding systems and helpful to 

identify crosses with improved grain yield (Tuhina-Khatun et al., 2010). Rajesh et al. (2014) were 

able to identify crosses with high heterosis based on standard check.  

 

1.11 Genotype by environment interaction and stability of grain yield and related 

traits and resistance to MSV disease 

Changing environmental or growing conditions, expansion of maize production into new agro-

ecologies, and unavailability of high yielding and stably performing maize varieties across different 

environments necessitate a rigorous analysis of the genotype by environment interaction (GXE). 

This is helpful for cultivar development and release (Delghani et al., 2009; Adu et al., 2013). 

Studies on GXE interaction have been conducted elsewhere in order to determine the stability in 

yield performance of new genotypes bred for growing in wider or specific target growing 

environment(s) (Hooyer, 2012; Kamutando et al., 2013). Selection of potential or superior 
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genotypes is not always adequate, especially when genotype by environment interaction is 

significant. The presence of GXE interaction frequently changes the genotype ranks in different 

environment making selection difficult (Beyene et al., 2011; Abuali et al., 2014). Evaluating 

candidate cultivars across seasons, and locations before large scale recommendation is important 

because the environment has great effect on the performance of the new cultivar (Beiragi et al., 

2011; Arulselvi and Selvi 2010; Kamutando et al., 2013).   

There are a number of statistical methods to assess the magnitude of GXE interaction (Yan et al., 

2007; Bujak et al., 2014). Analysis of variance (ANOVA), stability parameters, and multivariate 

methods are the commonly used methods (Fan et al., 2007; Beiragi et al., 2011; Adu et al, 2013). 

Other approaches include the Additive Main Effect and Multiplicative Interaction (AMMI) and 

genotype main effect and genotype x environment interaction (GGE) biplot. The AMMI and GGE 

biplot analyses are widely used and considered to be powerful to estimate genotype by 

environment interaction and stability (Vargas and Crossa, 2000; Dagnachew et al., 2014). 

AMMI analysis  

The AMMI analysis partitions the effects of genotype (G) and environment (E) additive main effects 

and their interaction as a multiplicative interaction component separately and submits to principal 

component analysis for partitioning (Adu et al., 2013). The advantage of AMMI model is that the 

interaction can be modeled by only one or two principal component axis (Vargas and Crossa, 

2000). Genotypes or environments with large interaction principal component (PC) scores (positive 

or negative) have high interaction while those with small scores are considered to be stable. Abuali 

et al. (2014) using AMMI biplot models were able to identify genotypes with large and small GXE 

interaction on grain yield of inbred lines and F1- hybrids in maize.  

GGE biplot analysis  

The genotype G and genotype x environment (GE) interaction biplot analysis provides visual 

interpretation of GXE interaction effects on each genotype evaluated. This model does partitioning 

of GGE through GGE biplot analysis into two principal components (Ezatollah et al., 2011; Tonk et 

al., 2011). GGE biplot has the ability to identify areas of adaptations of genotypes through its utility 

view of which won where pattern of multi-environmental yield trials. It is also a useful tool for visual 

identification of mega environments within a large target region, least discriminating and 

representing environments (Tonk et al., 2011; Reza and Ahmed, 2012). Grain yield performance 

and stability of genotypes are clearly examined by the average environment coordination (AEC) 

method (Yan, 2007; Tonk et al., 2011). The PC1 and PC2 determine the relative per se 

performance of genotypes and their yield stability, respectively. The longer the distance from AEC 

line in either direction the higher the unstability of the genotype and vice versa. GGE biplot has 
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also an ability to identify the ideal genotypes possessing the highest mean performance and 

stability (Ezatollah et al., 2011; Tonk et al., 2011; Reza and Ahmed, 2012). 

1.12 The role of farmers in maize breeding 

Adoption rate of high yielding and disease resistant maize varieties is low by many stallholder 

farmers in marginal ago-ecologies in sub-Saharan Africa (Bucheyeki, 2012; Ceccarelli, 2012). This 

is because the newly bred varieties are highly productive only in the favorable environments. Also 

growing these varieties require the use of production inputs such as fertilizers. Often the cost of 

improved seeds and production inputs are high and unfordable to smallholder farmers who do not 

have access to cash or credits (Ceccarelli, 2001; Miti et al., 2011). Consequently, these varieties 

were poorly accepted and adopted by farmers (Abakemal et al., 2013; Machida et al., 2014). 

Farmers have continued growing their landraces which are characterized by low productivity and 

susceptibility to disease and pests (Bucheyeki, 2012).  

 

Participatory rural appraisal (PRA) offers rapid cost-effective strategy for developing and selecting 

farmer-preferred superior varieties for large scale production (Ceccarelli, 2012).  PRA is among the 

few approaches that are usually applied to capture farmers’ indigenous knowledge and has been 

extensively used in plant breeding (Dorward et al., 2007). PRA gives greater opportunity for 

conventional breeders to understand the farmers’ potential constraints, perception and preferences 

and to include them in breeding programs which would enhance adoption rate of newly developed 

technologies (Thijssen et al., 2008; Kudi et al., 2011; Ceccarelli, 2012; Machida et al., 2014).  

Various studies have shown that PRA is an active multi-disciplinary research approach that uses 

many different tools to facilitate detection and collection of farmers’ preferences on particular traits 

in maize (Bellon, 2001; Witcombe, 2003). Through physical field visit (transect walk), Gichuru 

(2013) identified high incidence of MSV disease in Mwea village of Embu district in Kenya and 

through focused group discussions farmers in that study area were able  differentiate the two 

commonly grown hybrids H513 and 614 based on their attributes. Preferred cultivars and traits of 

economic importance to farmers were also identified using focused group discussions and ranking 

in studies conducted by Abakemal et al. (2013) and Machida et al. (2014) in Ethiopia and 

Zimbabwe, respectively. PRA tools provide insights into farmers thoughts and a deeper 

understanding of the phenomena being studied, and have been extensively used in maize 

breeding (Bellon, 2001; Nkongolo et al., 2008). Matrix and pair-wise rankings are important tools in 

focus group discussions that aid scientists to assess and rank the relative importance of farmers’ 

traits of economic importance, their preferences and production constraints (Bellon, 2001; Sibiya et 

al., 2013). A semi- structured interview is an important survey technique used to identify farmers’ 
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ideas. It works best as a complement to other qualitative research such as focus group discussions 

(FGD) (Nkongolo et al., 2008). Most PRA studies have started to give positive results because 

farmers’ views regarding development and utilization of a given maize variety is being highly 

considered in maize breeding (Ceccarelli et al., 2001; Ceccarelli, 2012; Machida et al., 2014). For 

example, in the current study, farmers’ views were captured and incorporated in breeding, testing 

and selection of the most preferred high yielding and MSV resistant maize hybrids evaluated 

across six different environments. 
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CHAPTER TWO: 

Key maize production constraints and identification of farmers’ preferred traits 

in the mid-altitude maize agro-ecologies of northern Tanzania 

 

Abstract: 

The objective of this study was to determine and rank farmers ‘preferred traits of maize and their 

perceived constraints which limit maize production in the northern areas of Tanzania. The study 

was conducted in 2012, at 12 villages selected from Babati, Arumeru and Hai Districts. 

Participatory rural appraisal (PRA) and survey methods were used to collect data from 500 farmers 

sampled across the study areas.  Of these, 180 farmers were interviewed and 320 participated in 

the focused group discussions (FGD). Data collected were summarized and analyzed using 

various analytical tools such as matrix and pair-wise ranking and SPSS program. The most 

preferred traits according to farmers’ criteria, ranks and matrix mean scores were high yield 

(71.9%), disease resistance (70.0%), drought tolerance (69.9%), good grain milling quality 

(65.3%), grain palatability (60.7%), dense grain (59.0%) and early maturity (55.8%). Other 

important traits were large grain size (50.3%), intercropping suitability (49.7%), large cob size 

(48.5%) storage pests’ resistance (48.1%) and multiple ears (39.4%). Major biotic constraints 

limiting maize production in the study area were maize streak virus (MSV) and cob rot diseases 

while the important abiotic constraints were drought and poor soil fertility.  High costs of production 

inputs and low price of maize were also among the challenges to maize production in the study 

area. Knowledge of the farmers’ preferences and production constraints is required by breeders to 

enhance the productivity of maize in the northern areas of Tanzania.  

Keywords: Farmers’ traits preferences, focus group discussions, maize, PRA, survey. 
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2.1 Introduction 

Maize (Zea mays L.) is an important food security crop in sub-Saharan Africa (SSA) and the 

developing world (De Groote et al., 2013). It is produced in different parts of SSA under diverse 

climatic and ecological conditions owing to its widespread adoption and adaptation (Tiwari et al., 

2009a, 2009b; Kudi et al., 2011; Prasanna, 2012; Ureta et al., 2013). The crop has become a 

major staple and cash crop for approximately three hundred millions smallholder farmers in SSA 

(Langyintuo and Setimela, 2009; Mbuya et al., 2011; Mather et al. 2013; Homann-Kee et al., 2013; 

Mathenge et al., 2014). It has also been providing about 30% of the daily calories for more than 4.5 

billion people in 94 developing countries (Bolade, 2010; Ismaila et al., 2010; Oyewo, 2011). 

According to FAOSTAT (2007), the daily per capita consumption of maize is estimated to be 53.2g 

and its demand is projected to double globally by 2050 (CIMMYT and IITA, 2010). In Tanzania, 

maize is the primary staple food crop consumed by 42 million people (Sokoni, 2008; Msuya and 

Isinika, 2011; Kwayu et al., 2014). The livelihoods of the majority of farmers in the country are 

based largely on maize (Mateko, 2013; Kwayu et al., 2014; Lyimo et al., 2014). The crop has also 

been an important commodity for improving farmers’ income and the national economy as a whole. 

It also accounts for about 30% of the total agricultural derived gross domestic product (GDP) and 

is sold throughout the country (Mateko, 2013; Kwayu et al., 2014). Maize is now considered to be 

as a focal or priority crop for speeding up agricultural development in Tanzania through the 

national ‘Kilimo Kwanza’ declaration (SAGCOT, 2011; Kwayu et al., 2014). 

Despite the significant importance of maize in the SSA, its yield levels have remained low relative 

to the global mean of 4.5 t ha-1 (Joshi and Witcombe, 1996; Bellon and Reeves, 2002; Lunduka et 

al., 2012; Motsumi et al., 2012; Mueller et al., 2012; Cairns et al., 2013; Khonje et al., 2014; 

Whitfield et al., 2014). In Tanzania, the mean yields vary from 1.19 to 2.3 t ha-1 (Makurira et al., 

2007; Magehema et al., 2014). In general, low productivity in developing countries is attributed to 

outbreaks of foliar diseases such as maize streak virus (MSV), grey leaf spot (GLS), and maize 

lethal necrotic (MLN) disease, unfavorable climatic conditions, poor or declined soil fertility, and 

socioeconomic constraints (e.g. low adoption to improved seed) (McGuire, 2008; Tiwari et al., 

2009a; Temu et al., 2011; Lunduka et al., 2012; Sibiya et al., 2013; Khonje et al., 2014). High costs 

and the unavailability of production inputs reduce farmers’ opportunity to use them, leading to low 

crop yields (Mukanga et al., 2011; Abera et al., 2013). There has also been a low adoption rate of 

some improved cultivars because they lack one or more of the critical traits of farmers’ preference, 

and most perform poorly under typical farmers low input conditions (Witcombe et al., 2003; 

Thijssen et al., 2008; Amudavi et al., 2009; vom Brocke et al., 2010; Trouche et al., 2012; 

Gebretsadik et al., 2014). As a result, most of the farmers have continued using their own 
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landraces (Thijssen et al., 2008; van de Steeg et al., 2010) which are low yielding. Participatory will 

rapdly improve food security through improved adoption of farmers to newly imporved crops 

cultivars (Joshi et al., 2012). 

Farmers should therefore be involved not only in identification of their key preferences, but also in 

developing, testing and selection of new crop cultivars to increase their adoption rate (Reece, 

2007; Kudi et al., 2011; Ceccarelli, 2012; Trouche et al., 2012; van Herzele et al., 2013; Herrero et 

al., 2014). The use of formal participatory research appraisal (PRA) can facilitate detection and 

collection of farmers’ information for research (Reece, 2007; Rusinamhodzi et al., 2012), preferably 

when different tools such as semi structured survey and FGD are used in combination (Witcombe 

et al., 2003; Ceccarelli, 2012). Participatory research appraisal is an active multi-disciplinary 

research approach that uses a wide range of techniques or tools such as matrix and pairwise 

ranking, focus group discussions, transect walks, seasonal calendars and historical times to 

extract information from farmers (Joshi et al., 1996; Bellon, 2001; Witcombe et al., 2003; Bellon 

and Hellin, 2011). This approach is powerful in data collection and flexible because it can be done 

in parallel with other survey techniques such as semi-structured interviews to determine the 

farmers’ views regarding the use of a particular technology or product (Khan et al., 2008; De 

Groote et al., 2010; Herrero et al., 2014). A focused group discussions is a form of interactive 

qualitative research in which a group of people are asked about their perceptions, opinions, beliefs, 

and attitudes towards a product, service, concept, advertisement, or idea. The tool provides 

insights into farmers thoughts and a deeper understanding of the phenomena being studied, and 

has been extensively used in maize breeding (Bellon, 2001; Bellon and Reeves, 2002; Nkongolo et 

al., 2008; Gebretsadik et al., 2014; Whitfield et al., 2014).  

Matrix and pairwise rankings are important tools in focus group discussions that aid scientists to 

assess and rank the relative importance of farmers’ traits of economic importance, their 

preferences and production constraints. The tools can produce sound results if they are used in 

combination with some techniques, e.g., triangulation or probing (Amudavi et al., 2009; Bellon, 

2001; Bellon and Reeves, 2002; Sibiya et al., 2013). A semi- structured interview is an important 

survey technique used to identify farmers’ ideas. It works best as a complement to other qualitative 

research such as focus group discussions (FGD) (Bellon and Reeves, 2002; Nkongolo et al., 2008; 

Trouche et al., 2011). 

Therefore, the objective of this study was to determine farmers’ preferred traits of maize and 

production constraints limiting maize production in the northern areas of Tanzania.  
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2.2 Materials and Methods 

2.2.1 Description of study areas 

The study was conducted in three selected districts: Babati, Arumeru and Hai of northern Tanzania 

during 2012. The study sites represent the major maize producing agro-ecologies of the Manyara, 

Arusha and Kilimanajaro regions of northern Tanzania (Figure 2.1). The sites were selected based 

on the relative importance of maize in the livelihoods of smallholder farmers, and the prevalence of 

major maize diseases such as MSV and other constraints. The sites also host diverse farmers with 

various ethnic backgrounds, socio-economic circumstances and farming systems, making them 

suitable for conducting a regionally representative PRA study.  

 

 

Figure 2.1: Map of northern Tanzania showing the study areas 
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The soils of the study area are variable with volcanic ash soils at the high altitude volcanic plateaus 

and clay soils on the slopes. Most of the soils are fertile and farmers grow a range of food crops 

including coffee, banana, sweet potato, sesame, sunflower, beans, tea, vegetables, flowers, 

wheat, barley, sugarcane, maize, pigeon pea and sisal.  

The study areas receive bimodal rains, which vary in intensity with altitudes. For example, in the 

Babati District, rainfall varies from 500 in the lowlands to 1200 mm year-1 in the highlands. Daily 

mean temperatures range from 22 to 250C. In the study areas, the short rainy season is from 

November to December, while the long season is from February to May. The short rains are 

adequate to give good crop harvests, especially on the slopes of mountains. The lowlands of 

northern Tanzania receive unreliable and poorly distributed rainfall and at times they are not 

suitable for crop production (Tanzania Metrological Agency, 2008).  

2.2.2 Sampling 

A multistage sampling procedure was used to identify the study sites.  Three different 

administrative districts were selected (Table 2.1). Two wards were chosen per district to give a 

total of six wards, namely: Magugu and Ayasanda in the Babati District; King’ori and Leguruki in 

the Arumeru District and Masama Kusini and Masama Magharibi in the Hai District. From each 

ward, two villages were selected, providing a total of 12 villages for the study (Table 2.1). These 

villages include: Magugu, Masware, Ayasanda, Bonga, King’ori, Malula, Leguruki, Maruango, 

Kwasadala, Mungushi, Kware and Mbocho (Table 2.1). The study sites and corresponding altitude, 

geographical coordinate and population are summarized in Table 2.1. For semi-structured 

interviews, 15 female and male farmers were sampled per village, providing a total of 180 

respondents (Table 2.2). For group discussions 320 famers (109 female and 211 male) 

participated, after sampling representative farmers across the twelve villages (Table 2.2). 
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Table 2.1 Districts, wards and villages selected for the study with corresponding altitude, geographical coordinates and population in 

northern Tanzania.  

District Ward Village Altitude (m) Coordinates Population 

Babati 

Magugu 
Magugu 1177 04000’040’’S and 0350 46’120’’E 

32774 
Masware 1041 040 08’603’’S and 035095’974’’E 

Ayasanda 
Ayasanda 1400 040 22’060’’S and 035043’817’’E 

12429 
Bonga 1433 040 62’060’’S and 035043’807’’E 

Arumeru 

King’ori 
King’ori 1130 30 14’552’’S and 036077’ 810’’E 

23280 
Malula 940 030 35’662’’S and 037001’136’’E 

Leguruki 
Leguruki 1328 03015’422’’S and 036057’275’’E 

17637 
Maruango 1343 03014’667’’S and 036057’108’’E 

Hai 

Masama Kusini 
Kwasadala 1018 03021’458’’S and 037019’846’’E 

13572 
Mungushi 1005 03017’908’’S and 0370 07’570’’E 

Masama Magharibi 
Kware 1025 030 22’786’'S and 0360 39’352’E 

13084 
Mbosho 1208 030 11’622’’S and 0360 58’417’’E 

Source: The United Republic of Tanzania (URT) National Bureau of Statistics (2013) 
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Table 2.2 Farmers interviewed and participated during focus group discussions in three districts and 

corresponding wards and villages in northern Tanzania. 

District Ward Village Female Male Total 

Survey respondents 

Babati 

Magugu 
Magugu 5 10 15 

Masware 9 6 15 

Ayasanda 
Ayasanda 4 11 15 

Bonga 7 8 15 

Arumeru King'ori King'ori 4 11 15 

 Malula 7 8 15 

Leguruki Leguruki 5 10 15 

 Maruango 7 8 15 

Hai Masama Kusini Kwasadala 4 11 15 

 Mungushi 7 8 15 

Masama Magharibi Kware 5 10 15 

 Mbosho 3 12 15 

Total   67 113 180 

Group discussions 

Babati Magugu Magugu 11 15 26 

 Masware 9 16 25 

Ayasanda Ayasanda 4 23 27 

 Bonga 7 20 27 

Arumeru King'ori King'ori 9 18 27 

  Malula 12 15 27 

 Leguruki Leguruki 9 18 27 

  Maruango 10 17 27 

Hai Masama Kusini Kwasadala 12 15 27 

  Mungushi 9 18 27 

 Masama Magharibi Kware 10 17 27 

  Mbosho 7 19 26 

Total   109 211 320 

 



40 
 

2.2.3 Data collection and analysis 

Data sources 

Both primary and secondary data were collected. However, the primary data formed the core data 

used in this study. Primary data was collected through interview questionnaires of male and female 

farmers, key informants and focus group discussions. The questionnaires were developed and refined 

to suit collection of relevant information from target farmers. Four enumerators were selected from a 

government socio-economic and farming systems research unit, and trained on data collection from 

farmers. Data collected included farm size, mean yields of maize harvested by farmers, incidence and 

severity of maize diseases and insect pests, household characteristics and other important limitations 

or factors affecting maize production in their locality. 

To understand about potential constraints to maize production and farmers’ preferred maize traits, 

various PRA tools were used including focused group discussions (FGD), transect walks, matrix 

scoring and pair-wise ranking. Farmers listed the maize varieties they grew and constraints to maize 

production, and ranked these constraints according to their relative importance. The facilitators used 

pictures and cards that had drawings representing various maize traits to assist farmers during 

discussions and in drawing conclusions. They also used checklists to stimulate and guide discussions 

among farmer groups. Gender balance was taken into account, especially during focus group 

discussions. Transect walks were used to collect information about the physical and biological 

characteristics of the study area; a group of six energetic men and women farmers were involved. 

During discussions, farmers were encouraged to express their opinions, using their own languages. 

The Agricultural and Livestock Development Officers (DALDOs), village extension workers and local 

leaders played a major role in conducting this study.  The information collected from farmers was then 

enhanced by the contributions of the key informants who were assumed to have knowledge about the 

people and problems affecting maize productivity. The key informants included maize researchers, 

experienced farmers in the villages, local leaders and agricultural agents. 

A matrix scoring was done and participating farmers placed their criteria. Each criterion was scored 

using scores of 1 to 8 to rank their importance traits: where 1 = worse, 2 = very poor, 3 = poor, 4 = 

average, 5 = satisfactory, 6 = good, 7 = and 8 = excellent.  

Data analysis 

Data collected were subjected to analysis using the SPSS computer package (SPSS, 2009). 

Relationships were explored through frequencies, descriptive statistics and analysis of variance 

(ANOVA) for data collected in each village followed by mean comparisons between villages.  
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2.3 Results 

2.3.1 Administered survey  

Household characteristics in the study areas 

Table 2.3 summarizes the household characteristics of the study areas. Of the total number of farmers 

interviewed in the study area, 62.8% were male while 37.2% were female. Farmers aged between 31 

and 50 years accounted for 56.7% in the Babati District, 70% in the Arumeru District and 61.7% in the 

Hai District. Farmers aged less or equal to 30 years and above 50 years varied significantly across the 

three districts. For example, 40% of farmers were below 30 years in Babati, 18.3% in Arumeru and 

8.3% in Hai, while farmers aged 51 years of age and above accounted for 30% in Hai and ranged 

between 3 to 11.7% in the other two districts. Male farmers who were also heads of households 

accounted for 95% in Babati, 98.3% in Arumeru and 96.7% in Hai districts while female household 

heads ranged between 1.7 to 5% in all districts (Table 2.3).  Family size of households >4 accounted 

to 70.0% in Babati, 65.0% Arumeru and 68.3% in Hai. Results on education background indicated that 

76.7, 78.3 and 51.7% of farmers interviewed had primary education in Babati, Arumru and Hai, 

respectively. Farmers who reached secondary and tertiary education were at 25 and 20% in Hai, 

respectively and were comparably higher than in Arumeru and Babati. On average farmers who did 

not have any formal education accounted for 3.9% in all the districts (Table 2.3). 

  

Table 2.3 Household characteristics of respondent farmers in three districts of northern Tanzania 

Variable    District Mean (%) 

 
Babati  (N=60) (%) Arumeru (N=60) (%) 

Hai (N=60)  
(%) 

Gender         

Male  55 75 58.3 62.8 

Female 45 25 41.7 37.2 

Total 100 100 100 100 

Age         

≤30 years 40 18.3 8.3 22.2 

31-50 56.7 70 61.7 62.8 

≥ 51 years 3.3 11.7 30 15 

Total  100 100 100 100 

Household head         

Male 95 98.3 96.7 96.7 

Female 5 1.7 3.3 3.3 

Total 100 100 100 100 

Family size         

One member 1.6 3.3 0 1.6 

Two members 6.7 8.3 11.7 8.9 

Three members 21.7 23.4 20 21.7 

≤ 4 members 70 65 68.3 67.8 

Total 100 100 100 100 

Formal education level         

Primary 76.7 78.3 51.7 68.9 

Secondary 15 13.3 25 17.8 

College 5 3.3 20 9.4 

No education  3.3 5 3.3. 3.9 

Total 100 100 100 100 
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2.3.2 Farming system 

Seed source, area of maize production and utilization  

The sources of maize seed for farmers in the study areas are presented in Table 2.4. About 29.4% of 

farmers obtained maize seed from their own fields, 27.2% from agro dealers and 26.7% from markets, 

while 4 to 8% acquired seeds from private seed companies and public research institutions. Maize 

was cultivated on farms ranging in size from 1 to 10 ha. The data showed that about 72.8% of farmers 

grew maize on small plots of land ranging in size between 1.5 and 3 ha. Only 3.3% of farmers grew 

maize on more than 10 ha (Table 2.4).  In terms of production and utilization of maize in the study 

area, 76% of farmers produced 1.1 to 3 t ha-1 of maize. Levels of maize production ranged from 1 to 

10 tons per hectare. About 75% of maize produced was directly consumed as food, while 21.1% was 

sold and approximately 4% of maize produced was used as feed for animals (Table 2.4). 

 

Table 2.4 Source of maize seed, production area, yield and uses of produce in three districts of 

northern Tanzania. 

 

Variable Percent 

Source of maize seed  
Farmers’ own field 29.4 
Private seed companies   4.4 
Local market 27.2 
Agro-dealers 26.7 
Public research institutions    8.3 
Total 100.0 

Farm size (in ha) used for maize production  
≤1 10.6 
1.5-3 72.8 
3.5 -10 13.3 
>10   3.3 
Total 100.0 

Maize production (in tones)  
≤ 1 6.7 
1.1-3 76.1 
3.1 -10 14.4 
>10    2.8 
Total 100.0 

Use of maize  
Household food 76.1 
For sale to earn cash  20.0 
Feed for animals    3.9 
Total 100.0 
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Production inputs and markets for maize 

Table 2.5 summarizes the perceptions of farmers on the cost of inputs used in maize production and 

the availability of markets for their maize produced. About 67.8% of the interviewed farmers reported 

that the fertilizers were too expensive to use in maize production. Only 32.2% of farmers purchased 

fertilizers and used them in maize production (Table 2.5). Farmers in the study area reported various 

markets where they sold their maize. About 19.4% of the interviewed farmers reported that there was 

an established formal market for selling of their maize, while roughly 40% sold maize at local markets 

or sold their maize to buyers directly from the farm (Table 2.5). 

Table 2.5 Cost of fertilizer and markets for maize produced in the three districts of northern Tanzania  

 

 

2.3.3 Focus group discussions (FGD) 

2.3.4 Major crops grown in the study area 

Through pair-wise ranking scores farmers with researchers identified the major crops grown in the 

study area (Table 2.6). Maize scored the highest (7.9) mean value across all the districts, followed by 

common bean (7.3), pigeon pea (6.5), sunflower (6.3) and sweet potato (5.7) (Table 2.6). Overall 

scores ranged from 1 to 5 based on their perceived importance. Ranks for all crops varied significantly 

between locations, however, maize was ranked first throughout the areas of study. Pigeon pea and 

sunflower equally ranked 4th and 3rd in the Babati and Hai Districts respectively, but they were also 

respectively second and fourth in the Arumeru District (Table 2.6). Some crops like rice, banana, 

coffee, sugarcane, sorghum and cotton were limited to one or two districts only (Table 2.6). 

Variable Percent 

Affordability of fertilizer for maize production  

Too expensive to use   67.8 

Affordable   32.2 

Total 100.0 

Markets of maize grain produced  

Established formal markets   19.4 

Local markets   40.6 

Direct sales from the farm   40.0 

Total 100.0 
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Table 2.6 Pair-wise ranking of major crops grown in the study areas using 42 focus group discussions across the three districts of northern 

Tanzania  

SD = standard deviation 

 

District 

 Babati (N=11) Arumeru (N=19) Hai (N=12) Overall 
Mean 

Overall 
Rank Crop Mean SD Rank Mean SD Rank Mean SD Rank 

Maize 8.0 0.0 1 8.0 0.0 1 7.8 0.0 1 7.9 1 
Common bean 7.8 1.5 2 7.0 1.2 3 7.3 0.5 2 7.3 2 
Pigeon pea 7.0 2.9 4 7.3 0.6 2 5.3 0.5 4 6.5 3 
Sunflower 7.3 1.0 3 6.0 1.2 4 5.5 1.0 3 6.3 4 
Sweet potato 6.3 1.3 7 5.5 0.6 5 5.3 1.2 4 5.7 5 
Vegetable 5.5 1.5 9 3.8 - 6 4.5 4.6 6 4.6 6 
Sesame 6.1 0.5 8 2.8 1.2 9 - - 14 2.9 7 
Ground nut 4.8 0.0 13 - 5.2 11 2.5 - 7 2.4 8 
Banana - - 14 3.3 4.0 8 2.3 5.3 8 1.8 9 
Cassava 5.1 2.6 10 - 3.5 12 - - 15 1.7 10 
Rice 6.6 6.3 5 - 0.0 10 0.5 4.1 9 1.3 11 
Coffee - - 15 3.5 4.0 7 0.5 5.8 9 1.3 12 
Sorghum 3.1 2.6 13 - 0.0 15 - - 11 1.0 13 
Cotton 5.1 4.9 10 - - 14 - - 12 0.9 14 
Sugarcane 4.6 3.8 12 - - 13 - - 13 0.8 15 

Mean 5.3   5.2   4.1     

With ANOVA F-value         10.58  
 P-value         <0.001  
 LSD (0.05)         2.031  
 CV (%)         18.1  
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2.3.5 Maize varieties grown in the study area 

Farmers grow a range of maize varieties across the different districts of Babati, Arumeru and Hai. The 

varieties differed significantly (P<0.001) across the locations (Table 2.7). Farmers grew the hybrids, 

open pollinated varieties (OPVs) and landraces. However, maize hybrids were planted by 69.2% 

compared to the OPVs (23.1%) and landraces (7.7%). The hybrid ‘Pannar 4M-19’ was grown 

throughout the three districts and had an overall mean score of 9.3 followed by the PHB 3253 (8.4), 

Kitale 513 (7.4) and DK8031 (7.4). Other prominent hybrids in the study areas were SC 627 (6.8) and 

SC 407 (6.7) (Table 2.7). Situka, Kilima and TMV1 were the open pollinated varieties (OPVs) of 

maize, which had overall, mean scores of 5.3, 3.9 and 2.3 respectively. Kienyeji (landrace) scored 

nearly as high as SC 407 with mean score of 7.0 in the Babati; therefore it was a prominent variety in 

this district. 

Table 2.7 List of maize varieties grown in the study areas according to 44 farmers who participated in 

focus in focus group discussions (FGD) across three districts of northern Tanzania 

Variety Type District   

Babati (N=14) Arumeru (N=13) 
 

Hai (N=17)   Overall 
mean  Mean SD Mean SD Mean SD 

Pannar 4M-
19 Hybrid 10.0 2.0 8.8 1.3 9.3 2.1 9.3 

PH 3253 Hybrid 8.5 2.1 9.3 2.4 7.5 1.9 8.4 

DK 8031 Hybrid 9.3 2.6 6.5 2.5 6.5 2.5 7.4 

Kitale 513 Hybrid 9.0 0.0 6.7 0.6 6.7 2.3 7.4 

SC 627 Hybrid 6.0 0.8 6.5 3.1 7.8 1.3 6.8 

SC 407 Hybrid 7.5 1.9 7.0 1.6 5.5 1.3 6.7 

Situka OPV 4.5 4.0 6.5 6.4 5.0 2.6 5.3 

DK 8053 Hybrid 6.3 4.0 5.5 1.7 3.3 1.5 5.0 

Kienyeji Landrace 7.0 1.4 2.7 1.5 3.0 0.0 4.2 

SC 403 Hybrid 5.5 1.9 4.0 5.2 2.5 1.3 4.0 

Kilima OPV 3.8 1.0 3.3 0.5 4.8 2.2 3.9 

SC 513 Hybrid 4.0 3.6 4.3 2.9 2.0 1.4 3.4 

TMV1 OPV 3.3 1.0 3.0 0.0 0.7 0.6 2.3 

Mean 
 

6.50 
 

5.69 
 

  4.95 
  With ANOVA:     F-value          18.08   

 

  
P-value 

   
<0.001 

  

  

LSD (0.05) 

   

1.62 

      CV (%)        22.5   

 
 OPV=open pollinated variety; SD = standard deviation 
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2.3.6 Farmers-preferred traits of maize 

Matrix score results for farmers-preferred traits of maize are presented in Table 2.8. Highest mean 

scores were given to high yield (71.9%), disease resistance (70.0%), and drought tolerance (69.9%) 

traits. Farmers also gave first, second and third overall rank scores to these traits respectively (Table 

2.8). About 50% of farmers preferred traits studied ranked differently within and between the three 

districts. Grain palatability for example, was ranked 10th in the Babati, 4th and 5th in the Arumeru and 

Hai, respectively. The rest 50% of traits of economic importance to farmers ranked equally between 

the two districts or locations. For instance, grain milling quality ranked 4th in Babati and Hai districts 

while early maturity ranked 7th in the Arumeru and Hai. Drought tolerance, large cob size and multiple 

ears had the same ranks in the Babati and Arumeru (Table 2.8). Other identified traits were dense 

grain (59.0%), early maturity (55.8%), large grain size (50.3%) suitability for intercropping (49.7%), 

large cob size (48.5%), resistance to storage pests (48.1) and multiple ears per plant (39.4%) (Table 

2.8). Standard deviations (SD) for farmers-preferred traits scores varied significantly within and 

between districts. They ranged from 4 to 21.3 in the Babati, 5 to 12.3 in the Arumeru and 4 to 15.1 in 

the Hai. Small standard deviations of 4.4, 5 and 4 were recorded to resistance to storage pests alone, 

while relatively large SD values of 21.3, 12.3 and 15.1 were respectively recorded to disease 

resistance, large cob size and intercropping suitability (Table 2.8). 
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Table 2.8 Average matrix ranking scores of farmers-preferred maize traits according to 90 farmers who participated in the focus group 

discussions (FGD) across the three districts of northern Tanzania  

Preferred traits  District Overall 
mean 
(%) 

Overall 
rank 

 Babati 
(N=27)     Arumeru (N=34)   Hai (N=29)     

  

 Mean %) SD Rank Mean (%) SD Rank Mean (%) SD Rank   

High yield 72.8 4.5 1 65.5 6.7 2 77.5 10.5 1 71.9 1 

Disease resistance 68.5 21.3 2 67.0 7.9 1 74.5 9.7 3 70.0 2 

Drought tolerance 67.7 16.1 3 64.5 5.4 3 77.5 7.2 1 69.9 3 

Good milling quality 64.3 16.6 4 60.3 8.9 6 71.5 10.1 4 65.3 4 

Grain palatability 51.3 7.8 10 63.8 5.9 4 67.0 6.2 5 60.7 5 

Dense grain 53 16.2 8 62.5 6.2 5 61.5 5.7 6 59.0 6 

Early maturity 58.5 12.5 5 52.0 6.4 7 57.0 11.8 7 55.8 7 

Large grain size 56.3 8.8 6 46.5 11.2 8 48.0 3.4 9 50.3 8 

Intercropping suitability 55.8 11.9 7 46.0 6.4 9 47.3 15.1 11 49.7 9 

Large cob size 47.8 7.5 11 43.8 12.3 11 54.0 6.2 8 48.5 10 

Storage pests resistance   52.5 4.4 9 44.8 5.0 10 47.0 4.0 12 48.1 11 

Multiple ears 43.8 6.1 12 26.5 8.1 12 48.0 10.1 10 39.4 12 

Mean 57.7 
  

53.2 
  

60.9 
    With ANOVA: F-value                 13.47   

 
P-value 

        
 <0.001 

 

 
LSD (0.05) 

        
  9.37 

   CV (%)                   7.8   

OPV=open pollinated variety; SD=standard deviation, CV = coefficient of Variation; LSD = Least significance difference 
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2.3.7 Biotic and abiotic constraints of maize production in Babati, Arumeru and Hai districts 

Tables 2.9 and 2.10 present the pair-wise ranking on biotic and abiotic constraints affecting maize 

production in the study area. Cob rot diseases scored the highest within and between locations. It 

scored 4.3 in the Babati and 5.5 in the Arumeru and Hai Districts (Table 2.9). MSV ranked second 

after cob rot diseases with overall mean score of 4.5. Common rust and stalk borer scored slightly the 

same with overall mean scores of 3.7 and 3.6 respectively. In addition, ranks for many constraints 

considered varied slightly between locations. However, stalk borer was ranked throughout with 5th 

position (Table 2.9). The highly ranked abiotic constraints to maize production identified were drought 

(4.5), high cost of maize production inputs (4.3) and lack of improved cultivars of farmers’ preference 

(3.8) (Table 2.10). Overall, mean scores for other reported abiotic constraints were as follows: poor 

soil fertility (3.0) low price of maize (2.9), low market access (1.2) and poor storage facilities (1.1) and 

(Table 2.10). 
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Table 2.9 Ranks for major biotic constraints affecting maize production, as per 66 farmers who participated in focus group discussions 

(FGD) in the Babati, Arumeru and Hai Districts 

Biotic constraints District Overall 
Rank 

Overall 
Mean 

 

Babati (N=24)   Arumeru (N=19) Hai (N=23)   

 

Mean SD Rank Mean SD Rank Mean SD Rank 

Cob rot 4.3 1.3 2 5.5 2.2 1 5.5 1.0 2 5.1 1 

Maize streak virus  5.5 0.8 1 3.4 2.5 3 5.3 1.0 1 4.5 2 

Common rust 3.0 1.6 5 3.3 0.6 4 4.8 1.3 3 3.7 3 

Stalk borer 3.8 1.3 4 2.5 1.4 6 4.5 0.8 4 3.6 4 

Leaf blight 3.0 1.0 5 3.2 1.5 5 3.0 0.8 5 3.2 5 

Grain borer 4.0 1.0 3 3.5 1.5 2 2.0 1.3 6 3.1 6 

Grey leaf spot 2.8 1.3 7 1.5 2.1 8 1.5 1.3 7 1.9 7 

Head smut 1.0 1.0 8 2.8 1.3 7 1.5 0.8 8 1.8 8 

Mean 3.4 

  

3 

  

3.5 

    With ANOVA: F-value 

        

7.32 

 

 

P-value 

        

<0.001 

 

 

LSD (0.05) 

        

1.161 

 

 

CV (%) 

        

10.5 

 
SD=standard deviation; CV = coefficient of Variation; LSD = Least significance difference  
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Table 2.10 Ranks for important abiotic and socio-economic constraints affecting maize production reported by 42 farmers during group 

discussions (FGD) in the Babati, Arumeru and Hai Districts 

 

 

 

 

 

 

 

 

 

 

 

SD=standard deviation; CV = coefficient of Variation; LSD = Least significance difference  

 

 

Constraints 

District 
Overall 
Mean 

Overall 
Rank 

Babati (N=11)   Arumeru (N=17) Hai (N=14)   

Mean SD Rank Mean SD Rank Mean SD Rank 

Drought 4.3 1.0 2 4.8 1.5 1 5.3 1.0 1 4.5 1 

High cost of agro-inputs 4.3 1.0 1 4.5 1.3 2 4.3 0.5 2 4.3 2 

Lack of improved cultivars 3.8 1.0 4 4.0 0.8 3 3.5 0.6 3 3.8 3 

Poor soil fertility 4.3 0.5 3 1.8 1.0 6 3.0 1.4 4 3.0 4 

Low price of maize   2.3 0.5 5 4.0 1.6 4 2.5 0.6 6 2.9 5 

Low market access 1.0 0.8 7 2.0 0.8 5 0.5 1.0 7 1.2 6 

Poor storage facilities  1.3 1.3 6 0.0 0.0 7 2.0 1.4 5 1.1 7 

Mean 3.0     3.0     3.0         

With ANOVA: F-value                 23.5   

 

P-value 

        

 <0.001 

 

 

LSD(0.05) 

        

1.31 

   CV (%)                 6.2   



51 
 

2.4 Discussion 

Maize production in the northern areas of Tanzania is dominated by smallholder farmers 

(SHFs). Farmers identified maize as one of the major crops for their food security, income and 

livelihoods improvement. The high percent of male farmers (62.8%) compared to female 

farmers (37.2%) who are engaged in maize production (Table 2.3) reflects the high commercial 

values of maize in the study areas. In Africa, men tend to grow crops which are considered 

profitable and women grow other food crops that are less profitable but useful for home 

consumption (Kaaria et al., 2007). About 76% of maize produced in the study area is consumed 

while 20% is sold (Table 2.4). Findings like these were also reported by Mpogole et al. (2013) 

who conducted a study on the importance of maize to the SHFs in Tanzania.  Ahmed et al. 

(2011) also reported that Tanzania earned a sizable income from exporting about five million 

tons of maize to other countries; thereby reflecting the importance of maize at a national level. 

The use of matrix and pair wise ranking tools during group discussions (FGD) aided 

identification of most farmers–preferred traits, the predominately grown maize varieties and 

production constraints in the northern areas of Tanzania (Tables 2.7, 2.8 and 2.9). Farmers 

identified high grain yield, disease resistances, good grain milling quality and drought tolerance 

to be the most important traits in the study areas. These farmers-preferred traits were ranked 

number one, two and three respectively (Table 2.8). Results showed significant variation in 

ranks within and between locations for some traits under investigations, this indicates that the 

farmers’ perceptions vary among themselves within and between locations. According to Abera 

et al. (2013), maize traits of preferences to farmers influence the direction of breeding research 

and have been widely used in cultivar development and selection.  Temu et al. (2011) evaluated 

maize producing households in the Manyoni and Chamwino Districts in Tanzania, and found 

that high yield potential, disease resistance and drought tolerance were the most important traits 

for the farmers.    

Farmers reported that cob rot and MSV diseases are important biotic constraints to maize 

production in the northern areas of Tanzania. High incidence of this disease is a result of many 

factors including environmental conditions which led to the increase of ear feeding insects and 

prolification of fungal and bacterial diseases. On the other hand, there has been no critical 

reaserch which has been done focusing on ear rot diseases therefore most of the released 

varieties might have been selected without taking much consideration on this disease. Whereas 

drought, high cost and limited supply of agricultural inputs (seed and fertilizer) were perceived 

as important abiotic constraints limiting maize production in the study area (Table 2.9). Several 
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PRA studies have reported similar constraints to maize production (Bamire et al., 2010; Onuk et 

al., 2010; Temu et al., 2011). This study suggests that to improve maize productivity in the study 

areas, farmers have to use maize varieties with improved resistance for MSV disease, insect 

pests (stalk borer in particular) and drought stresses.  

High cost of maize production inputs and a limited supply of seed of improved varieties and 

fertilizers are potential barriers which restrict farmers’ opportunities to use these important 

production inputs (Abera et al., 2013). Most farmers in developing countries face financial 

constraints that stopping them from buying seed of improved varieties and fertilizers for crop 

production (Miti et al., 2011). Key informants who participated in this study also added that 

some farmers face shortage of food in their stores especially during the cropping season. 

Hence, they spend their remained cash to purchase food rather than to buy fertilizers.  To 

increase the usage of fertilizers and improved varieties by at least 20%, the Government of 

Tanzania has to review its policy on input supply and distribution, and to look at the possibility of 

subsidizing. It also has to consider the establishment of farmers’ financial credit services to 

empower them with enough cash to access the inputs for increased their maize productivity and 

livelihoods. According to Druilhe and Barreiro-Hurle (2012), subsidization of agricultural inputs 

is one of the effective ways for improving agricultural productivity through increased farmers’ 

access to fertilizer and other necessary inputs. Minot (2009) who conducted a study on fertilizer 

use in Tanzania and indicated that 63% of farmers could not use fertilizer due to the fact that the 

price of fertilizers was too costly and unaffordable while 20% respondents said that fertilizers 

were not available.  

Despite the good number of farmers involved in the PRA study and their response on various 

issues petaining maize production, most of them failed to give the actual yield estimates from 

their fields because they account only the final crop yield harvested and not considering the 

maize easten as a green cob. This is a challenge that needs to be considered when conducting 

survey with farmers. Another challenge was the fact that female farmers could not talk with full 

freedom in presence of their husbands especially in some villages of Hai and Arumeru districts. 

  

2.5 Conclusions 

The current study identified the most important farmers-preferred traits and constraints that limit 

maize production in the study areas. Farmers reported that high grain yield, disease resistances, 

good grain milling quality and drought tolerance are the most preferred traits for maize in the 
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northern areas of Tanzania. Farmers’ preferences play a role in the adoption process of new 

products or technologies and have been widely studied elsewhere. To enhance maize 

productivity, farmers-preferences need to be integrated from the initial stages of breeding and 

technology development for successful adoption by end-users. Both cob rot and maize streak 

virus (MSV) diseases were considered to be the most important biotic constraints to maize 

production in the study.   About 67.8% of farmer respondents perceived that both fertilizers and 

improved seed were too expensive. Other constraints to maize production were infestation of 

stalk and grain borers, recurrent drought, and poor soil fertility. Knowing farmers’ preferences 

and production constraints identified in the study area will be useful to maize breeders to 

enhance the productivity of maize in the northern areas of Tanzania. 
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CHAPTER THREE: 

Agro-morphological characterization of maize inbred lines under 

maize streak virus prone environment 

 

Abstract: 

Genetic diversity is one of the important success factors in crop breeding programs. The 

objective of this study was to determine the genetic diversity present among 80 maize inbred 

lines using ago-morphological traits to select promising parents for breeding. Field experiment 

was established during 2011/2012 at maize streak virus (MSV) prone environment of 

Ngaramtoni Research Farm of Selian Agricultural Research Institute in northern Tanzania using 

a 10 x 8 alpha lattice design with two replications. Qualitative and quantitative data on agro-

morphological characters and MSV reaction were collected and analysed. Analyses of variance 

on seven quantitative traits revealed highly significant (P ≤ 0.001) variations among inbred lines. 

TL2012-42 and TLl2012-41 were identified as superior lines with grain yields of 3.52 and 2.46 

t/ha respectively. These genotypes showed respectively low (21.80% and 26.20 %) level of 

MSV reaction suggesting their suitability for hybrid breeding to achieve high grain yield and 

MSV resistance. Principal component analysis captured 68.9% of the total variation explained 

by four principal components. The Un-weighted Pair Group Method with Arithmetic Mean 

(UPGMA) cluster analysis grouped the inbred lines into nine clusters consistent with their 

heterotic patterns. Crosses between lines TL2012-53 and TL2012-61 from cluster II with 

TL2012-20, TL2012-70, and TL2012-78 from cluster IV may provide considerable level of 

heterosis or novel recombinants for further breeding in northern areas of Tanzania where maize 

productivity has substantially decreased in recent years due to biotic constraints such as MSV 

and maize lethal necrosis (MLN) diseases and other abiotic stresses.  

Keywords: agro-morphological characterization, genetic diversity, inbred line, maize, maize 

streak virus. 
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3.1 Introduction 

Maize (Zea mays L., 2n=2x=20) is the most important food security crop in sub-Saharan Africa. 

It is being produced on nearly hundred million hectares of land across 125 developing countries 

(FAOSTAT, 2010; Prasanna, 2012). In Tanzania, maize is one of the most important food 

security crops serving as a major source of food and income for majority of smallholder farmers 

(Barreiro-Hurle, 2012; Kage et al., 2013, Mrutu et al., 2014). In the country annual maize 

cultivation covers about two million hectares, representing more than 45% of the arable land 

available for crop production (Kage et al., 2013; Mrutu et al., 2014). However, maize yields are 

substantially low due to biotic stresses caused by maize streak virus (MSV), maize lethal 

necrosis (MLN) and other abiotic stresses (Bucheyeki, 2012; M’mboyi et al., 2011; DFID, 2014).  

Maize streak virus is a number one biotic production challenge severely limiting potential yields 

in Tanzania and sub-Sahara African countries (Bucheyeki, 2012; Shepherd et al., 2010, 

M’mboyi et al., 2010; Prasanna, 2012; DFID, 2014; Karavina, 2014). Yield losses are often 

associated with cultivation of susceptible maize varieties or virulence shift of the virus 

(Shepherd et al., 2010). This suggests the need for development of resistant cultivars for 

strategic control of this erratic but devastating disease of maize (Shepherd et al., 2010; 

Ruschhaupt et al., 2013; Karavina et al., 2014). 

Favourable genes that can contribute to high yield and disease stress tolerance may be 

available among maize inbred lines (Prasanna, 2012; Gichuru, 2013; Shepherd et al., 2014). 

However, the genes are scattered over a wide array of germplasm suggesting that critical 

characterization should be done in order to identify potential germplasm for breeding 

(Subramanian and Subbraman, 2010; Prasanna, 2012; Edmeades et al., 2013). Genetic 

diversity analysis among elite inbred lines is essential for hybrid breeding to exploit heterosis or 

hybrid vigour and for germplasm enhancement against biotic or abiotic stresses (Aghaee et al., 

2010; Prasanna, 2012; Mengesha, 2013; Edmeades et al., 2013). Different methods are 

available to characterise and select parental inbred lines and to assign them into heterotic 

groups (Kundu and Pal, 2011; Song et al., 2013; Akinwale et al., 2014; Salazar-Salas et al., 

2014). Among these methods are: characterisation using agro-morphological traits, pedigree 

analysis, genetic analysis with designed crosses, and genetic distance estimates using 

molecular markers (Glaszmann et a., 2010; Parasanna, 2012; Semagn et al., 2012; Fischer et 

al., 2014; Lopez-Morales et al., 2014). 

 Assessment of genetic diversity using morphological characterization is relatively a cheaper 

option where genomic tools are underdeveloped or not readily available such as in Tanzania 
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(Mbuya et al., 2012, Semagn et al., 2012 Khan et al., 2014). Morphological traits are genetically 

controlled and heritable (Shrestha, 2013; Molin et al. 2013) which remain useful in distinguishing 

genetic variability for selection (Aghaee et al., 2010; Molin et al., 2013; Shrestha, 2013). Elezi et 

al. (2013) studied morphological characterization of maize landraces and found significant 

variation in days to flowering, plant height, ear height, stem colour and tassel type. Shrestha 

(2013) reported significant variation (34.9%) in tassel branch number, ear height (29.8%) and 

plant height (20.1%) when studying agro-morphological characterization of maize inbred lines. 

Morphological characterization has been extensively used as an important tool to aid 

identification and selection of diverse parents suitable for hybrid combinations and in 

broadening the genetic base of breeding populations (Subramanian and Subbraman, 2010; 

Mbuya et al., 2012; Semagn et al., 2012; Parasanna, 2012; Fischer et al., 2014; Lopez-Morales 

et al., 2014).  

The most commonly used agro-morphological descriptors are grain yield, plant height, ear 

height, cob length, days to 50% flowering, grain type and grain colour. Further a wide range of 

qualitative traits are available in phenotypic characterisation of maize germplasm (CIMMYT, 

1991; Bode et al., 2012; Ranawat et al., 2013; Shrestha, 2013). 

A number of statistical software is available for analysis of both quantitative and qualitative 

characters including XLSTAT, BMS, SAS, and GENSTAT (Shrestha, 2013; Osawaru et al., 

2013). Statistical analysis tools have utilities to estimates genetic variation and compare 

differences between genotypes for a range of attributes (Malosetti et al., 2013; Crossa et al., 

2014). They also conveniently cluster genetic resources into recognisable groups based on 

genetic dissimilarity or similarity using genetic distances. For instance, principal component 

analysis and hierarchical cluster analysis by Un-weighted Pair Group Method and Arithmetic 

Average (UPGMA) depict the relationships among inbred lines using phenotypic descriptors 

(Subramanian and Subbaraman, 2010; Lekgari and Dweikat, 2014). 

The maize research program at Selian Agricultural Research Institute (SARI), located in the 

northern zone of Tanzania is mandated for maize research and development for the mid-altitude 

agro-ecologies of the country. During the past ten years, the program focused on maize 

breeding to enhance productivity through hybrid breeding and open pollinated variety (OPV) 

development. The program has developed suitable germplasm against abiotic stress particularly 

for low nitrogen and drought tolerance. Recently, the program has embarked on a dedicated 

MSV and MLN resistance breeding initiatives. Subsequently several genotypes were collected 

from local and exotic sources for effective genetic characterisation and breeding. The objective 



61 
 

of this study was to determine agro-morphological diversity present among 80 local and 

introduced maize inbred lines under maize streak virus (MSV) prone environments of the 

northern zone of Tanzania. Promising parents will be used for hybrid breeding or to broaden the 

genetic base of resistance against biotic stresses such as MSV and MLN or abiotic stress 

factors.  

 

3.2 Materials and methods 

3.2.1 Study site 

The study was carried at Ngaramtoni Research Farm of Selian Agricultural Research Institute 

situated in northern Tanzania (3º 18’ S and 36º 36’ E), during the 2011/2012 summer season. 

This site lies at an altitude of 1520 m above sea level and receives mean annual temperature 

and rainfall of 19.15ºC and 819 mm, respectively. The area is dominated by fine volcanic clay 

soils. 

3.2.2 Plant material 

The experimental material used in the present study comprised of 80 maize inbred lines 

collected from various sources. Of which, 27% of inbred lines were collected from the 

International Maize and Wheat Improvement Centre (CIMMYT)/Kenya; 25% from Selian 

Agricultural Research Institute (SARI) Tanzania, 16% from CIMMYT/Zimbabwe, 26% from the 

International Institute of Tropical Agriculture (IITA)/Nigeria and 6% from University of KwaZulu-

Natal/South Africa. The list and details of maize inbred lines used in the study are presented in 

Table 3.1. Most of the exotic inbred lines are reported to be tolerant against the MSV disease. 

All the lines are stable and homozygous descended through controlled selfing.  
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Table 3.1 List of maize inbred lines used in the study 

No Name/designation/pedigree Code Source No Name/designation/pedigree Code Source 

1 CML505 TL2012-1 CIMMYT/Kenya 41 CML390 TL2012-41 CIMMYT/Kenya 
2 CML202-BB TL2912-2 CIMMYT/Zimbabwe 42 SML125 TL2012-42 SARI/Tanzania 
3 CML442 TL2012-3 CIMMYT/Kenya 43 KSO3-OB15-1 TL2012-43 SARI/Tanzania 
4 MAS[MSR/312]-119-5-1-4-3-B TL2012-4 CIMMYT/Zimbabwe 44 KSO3-OB15-188 TL2012-44 SARI/Tanzania 
5 MAS[MSR/312]-119-5-1-4-1-B TL2012-5 CIMMYT/Zimbabwe 45 A-LINE TL2012-45 SARI/Tanzania 
6 CML488 TL2012-6 CIMMYT/Kenya 46 KSO3-OB15-53 TL2012-46 SARI/Tanzania 
7 MAS[MSR/312]-119-5-1-4-1-BB TL2012-7 CIMMYT/Zimbabwe 47 KSO3-OB15-45 TL2012-47 SARI/Tanzania 
8 TZEE-W Pop x LD S6 (Set B) Inb.23 TL2012-8 IITA/Nigeria 48 KSO3-OB15-83 TL2012-48 SARI/Tanzania 
9 TZE-W Pop STR Co S6 Inb.136-3-3 TL2012-9 IITA/Nigeria 49 KSO3-OB15-85 TL2012-49 SARI/Tanzania 
10 P100C6-200-1-1-H-H-B-B-B-B-B TL2012-10 CIMMYT/Kenya 50 TS6GF2-38-1-3-3-1-BBB TL2012-50 SARI/Tanzania 
11 CML440 TL2012-11 CIMMYT/Kenya 51 KSO3-OB15-92 TL2012-51 SARI/Tanzania 
12 ZM523A-16-2-1-1-B*5-B TL2012-12 CIMMYT/Kenya 52 KSO3-OB15-111 TL2012-52 SARI/Tanzania 
13 CML538 TL2012-13 CIMMYT/Kenya 53 TZE-W Pop X 1368 STR S7 Inb.13 TL2012-53 IITAI/Nigeria 
14 MAS[202/312]-20-1-1-4-1-BB TL2012-14 CIMMYT/Zimbabwe 54 09MAK 17-36 TL2012-54 UKZN/South  Africa 
15 CML312 TL2012-15 CIMMYT/Kenya 55 09MAK 1-77 TL2012-55 UKZN/South  Africa 
16 CML206 TL2012-16 CIMMYT/Kenya 56 09MAK 17-15 TL2012-56 UKZN/South  Africa 
17 V547-1-VL0835 TL2012-17 SARI/Tanzania 57 09MAK 17-5 TL2012-57 UKZN/South Africa 
18 CML489 TL2012-18 CIMMYT/Kenya 58 CML443 TL2012-58 CIMMYT/Kenya 
19 CML539 TL2012-19 CIMMYT/Kenya 59 MAS[202/312]-20-1-1-4-2-B TL2012-59 CIMMYT/Zimbabwe 
20 CML78 TL2012-20 CIMMYT/Kenya 60 MAS[206/312]-159-2-3-4-1-B TL2012-60 CIMMYT/Zimbabwe 
21 MAS[MSR/312]-119-5-1-1-1-BB TL2012-21 CIMMYT/Zimbabwe 61 WEC STR S7 Inb.12 TL2012-61 IITA/Nigeria 
22 MAS[202/312]-20-11-2-1-BB TL2012-22 CIMMYT/Zimbabwe 62 MAS[MSR/312]-117-2-2-1-B*4 TL2012-62 CIMMYT/Zimbabwe 
23 MAS[MSR/312]-119-5-1-4-2-B TL2012-23 CIMMYT/Zimbabwe 63 TZE-W Pop STR Co S6 Inb.143-3-3 TL2012-63 IITA/Nigeria 
24 MAS[MSR/312]-119-5-1-3-2-B TL2012-24 CIMMYT/Zimbabwe 64 CML395 TL2012-64 CIMMYT/Kenya 
25 MAS[MSR/312]-119-5-1-1-3-B TL2012-25 IITA./Nigeria 65 WEC STR S7 Inb.9 TL2012-65 IITA/Nigeria 
26 TZE-W Pop x 1368 STR S7 Inb.6 TL2012-26 IITA/Nigeria 66 CML444 TL2012-66 CIMMYT/Kenya 
27 TZEE-W SR BC5 x 1368 STR S6 Inb.33 TL2012-27 IITA/Nigeria 67 CML204 TL2012-67 CIMMYT/Kenya 
28 TZEE-W Pop x LD S6 (Set A) Inb.26 TL2012-28 IITA/Nigeria 68 CML509 TL2012-68 CIMMYT/Kenya 
29 TZE-W Pop x LD S6 Inb.3 TL2012-29 IITA/Nigeria 69 CML202 TL2012-69 CIMMYT/Kenya 
30 KAT2/2-92-1-1-2 TL2012-30 SARI/Tanzania 70 TZEE-W SR BC5 X 1368 STR S7 Inb.76 TL2012-70 IITA/Nigeria 
31 TUX5-50-1-2-6-1 TL2012-31 SARI/Tanzania 71 TZEE-W SR BC5 X 1368 STR S7 Inb.85 TL2012-71 IITA/Nigeria 
32 KIL4-78-2-3-2 TL2012-32 SARI/Tanzania 72 TZEE-W SR BC5 X 1368 STR S7 Inb.91 TL2012-72 IITA//Nigeria 
33 MV501-6-86-3-1-1 TL2012-33 SARI/Tanzania 73 TZEE-W SR BC5 X 1368 STR S7 Inb.100 TL2012-73 IITA/Nigeria 
34 TZE-W Pop X LD S6 Inb.4 TL2012-34 IITA/Nigeria 74 CML206-BB TL2012-74 CIMMYT/Zimbabwe 
35 WEC STR S8 Inb.4 TL2012-35 IITA/Nigeria 75 TZEE-W Pop X LD S6 (Set A) Inb.41 TL2012-75 IITA/Nigeria 
36 TZE-W Pop X 1368 STR S7 Inb.2 TL2012-36 IITA/Nigeria 76 MAS[MSR/312]-119-5-1-4-3-BB TL2012-76 CIMMYT/Zimbabwe 
37 KAT 12-1-4-2-1 TL2012-37 SARI/Tanzania 77 TZEE-W Pop Co S6 Inb.35-2-3 TL2012-77 IITA/Nigeria 
38 P43-1-1-1-BBB TL2012-38 SARI/Tanzania 78  TZEE-W Pop Co S6 Inb.96-2-2 TL2012-78 IITA/Nigeria 
39 F-LINE TL2012-39 SARI/Tanzania 79 TZEE-W SR BC5 X 1368 STR S7 Inb.80 TL2012-79 IITA/Nigeria 
40 CML197 TL2012-40 CIMMYT/Kenya  80  KSO3-OB15-12  TL2012-80  SARI/Tanzania 

CIMMYT= International Maize and Wheat Improvement Centre, IITA= International Institute of Tropical Agriculture, SARI= Selian Agricultural Research Institute 
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3.2.3 Experimental design and MSV infection 

An 8 x 10 alpha lattice design with two replications was used for the study. Plants were 

established involving two row plots of 5 m length with an inter-row spacing of 0.75 m and intra-

row spacing of 0.3 m. Diammonium Phosphate (DAP) was applied at a rate of 150 kg/ha at 

planting and 150 kg/ha of Urea was top dressed at knee height. Other trial management 

practices were based on the recommendation of the location.  The MSV infection was studied at 

Ngaramtoni Research Farm. This site is a hotspot for foliar diseases of maize including MSV, 

MLN, and gray leaf spot; consequently, screening using natural disease epidemic was followed 

for this study. Disease screening through natural epidemics can provide adequate assessment 

among inbred lines (Shepherd et al., 2010; Benardo et al., 2013). During this experiment, the 

disease pressure was very high that facilitated collection of adequate data (Figure 3.1). Also a 

susceptible genotype, UH615, was planted at border rows to increase inter-plot infection of MSV 

disease among tested inbred lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.1 Maize inbred lines showing MSV infection during the study at Ngarmtoni Research Farm 
of Selian Agricultural Research Institute of northern Tanzania  
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3.2.4 Data collection  

Thirty four morphological characters consisting of seven quantitative and 27 qualitative traits 

were collected for assessment of genetic diversity of 80 maize inbred lines. The quantitative 

data were measured in metric unit systems and the qualitative characters were collected 

according to the descriptors of CIMMYT (1991) as indicated in Table 3.2. The MSV disease 

severity progress was scored using the area under disease progress curve (AUDPC) approach. 

AUDPC is frequently used to combine multiple observations of disease progress into a single 

value (Craven and Fourie, 2011; Simko and Pipho, 2012). Disease severity progress over time 

was calculated using the following formula:  
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AUDPC ; where n is the number of observations, ti days after planting 

for the ith disease assessment and yi disease severity. 
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Table 3.2 Quantitative and qualitative agro-morphological characters and their descriptions assessed in the study  

Characters Description 

Quantitative   

Grain yield [ [YLD]  Calculated using field weight at 12.5%  moisture content 

Days to 50% tasseling (male flowering) [ADF] Number of days from sowing to when 50% of the plants have shed pollen per plot 

Days to 50% silking (female flowering) [DSL] Number of days from sowing to when silks have emerged on 50% of the plants per plot 

Plant height [PHT]  Measured from ground level to the base of the tassel in cm,  after milk stage of the plant growth 

Ear height [EHT] Measured from ground level to the node bearing the uppermost ear in cm, after milk stage  

Number of tassel branches [NTB] Measured at milk stage, 1 = primary, 2 = primary-secondary, 3  = primary-secondary-tertiary tassel 
types  

Ear diameter [EDM]  

MSV reaction  

Measured at central part of the uppermost ear  in cm 

Scored using a scale of 1-5,  1 =    resistant and 5 = susceptible 

Qualitative   

Anthocyanin colouration of glume of cob 1 = absent, 2 = weak, 3 = strong, 4 = very strong 

Angle between blade and stem  1 = small (<25 degree), 2 = medium (25-75 degree) and 3 = large >75 degree 

Width of blade  1= narrow, 2 = medium, 3 = wide 

Attitude of blade  1 = straight,  2 = slightly  curved, 3 =curved, 4 = strongly curved 

Stem degree of zigzag  1 = straight, 2 = slightly curved, 3 = curved, 4 = strongly curved 

Anthocyanin coloration of base of glume  1 = present, 2 = absent 

Anthocyanin colouration of glume without base 1 = absent, 2 = weak, 3 = strong, 4 = very strong 

Anthocyanin colouration of sheath of stem  1 =weak, 2 = strong, 3 = absent, 4 = present 

Anthocyanin colouration of brace root  1 = absent, 2 = weak, 3 = strong, 4 = very strong 

Anthocyanin colouration of internodes 1 = absent, 2 = weak, 3 = strong, 4 = very strong 

Anthocyanin coloration of anthers  Was taken in the middle 3rd of the main axis, 1 = present, 2 = absent 

Anthocyanin color of silks  1 = absent, 2 = present 
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Intensity of anthocyanin colouration of silks  1 = weak, 2 =strong, 3 = very strong 

Density of spikelet of tassel  It was taken in the middle 3rd of the main axis 1 = dense, 2 = medium,,3 = lax 

Angle between main axis and lateral branch of tassel  1 = small (<25 degree), 2 = medium (25-75 degree), 3 = large (>75 degree) 

Attitude of lateral branches of tassel  1 = straight, 2 = slightly curved, 3 = curved, 4 = strongly curved 

Number of primary lateral branches of tassel  1= few, 2 = medium, 3 = many 

Length of main axis above lower branch of tassel  Measured in cm 

Length of main axis above upper  branch of tassel  Measured in cm 

Length of peduncle of the ear  Measured in cm or classified as 1 = short, 2 = medium, 3 = long or 4 = very long 

Length of husks off the tip of the ear  Measured in cm  upper side of the ear,  1 =  short, 2 = medium, 3 = long, or 4 = very long 

Length of ear  1 = small, 2 = medium, 3 = long, 4 = very long 

 Number of ear rows Number of kernel rows in the central part of the uppermost ear 

Shape of the ear 1 = conicacal, 2 = conical-cylindrical, 3 = cylindrical 

Type of grain  1 = flint, 2 = flint-like,  3 = intermediate,  4 = dent, 5 = dent-like 

Colour of grain  1 = white, 2 =yellow, 3 = purple, 4 = variegated, 5 = brown, 6 = orange, 7 = mottled, 8 = white cap, 
9 = red 

 Anthocyanin colouration of dorsal side of grain  1 = absent,  2= present 
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3.2.5 Data analysis 

A total of 34 agro-morphological traits were assessed in the study. Seven were quantitative and 

27 qualitative traits (Table 3.2). The quantitative data were subjected to analysis of variance to 

test significant differences between lines using the Breeding Management Systems (BMS) 

software version 2.1 (MacLaren, 2014). Principal component and cluster analyses were done to 

determine influential components and traits relationships. The cluster analysis was done using 

un-weighted pair group method with arithmetic mean (UPGMA) to yield a dendrogram depicting 

the morphological relatedness of inbred lines. The XLSTAT software developed by Addinsoft 

(2010) for Microsoft Excel was used in both analyses. Principal component analysis was 

performed using seven quantitative data while clustering of inbred lines was done using 27 

qualitative characters. The XLSTAT program has utilities to calculate the similarity matrix using 

the Euclidean genetic distances between lines (Cana et al., 2011). 

 

3.3 Results  

3.3.1 Analysis of variance of quantitative traits 

Analysis of variance on seven morphological characteristics was done using the BMS statistical 

analysis tool version 2.1 (MacLaren, 2014). Results showed significant differences between 

inbred lines for all traits evaluated except EDM (Table 3.3). The mean, minimum, and maximum 

values of inbred lines for each trait are shown in Table 3.4. 
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Table 3.3 Mean square and significant differences of eight traits of 80 maize inbred lines  

    YLD ADF DSL PHT 

Source of variation DF MS F-value MS F-value MS F-value MS F-value 

Replications 1 0.208 0.208 0.23 0.20 3.025 1.44 26.41 21.37 

Genotypes 79 0.185 3.74*** 38.2 34.07*** 42.94 20.47*** 2355.1 1905.9*** 

Blocks 18 0.632 0.19 14.59 13.01 10.85 5.17 346.92 280.75 

Error 61 9.88 0.13 1.12 

 

2.10 

 

1.236 

 

    

EHT EDM NTB MSV 

MS F-value MS F-value MS F-value MS F-value 

Replications 1 0.16 0.00 5.776 2.49 2.525 0.26 0.29 0.58 

Genotypes 79 1431.9 32.63*** 1.754 0.76ns 18.75 1.94*** 2.72 5.46*** 

Blocks 18 3.598 0.19 3.95 1.70 7.314 0.76 1.90 3.82 

Error 61 9.88   2.32   9.693   0.50   
***= Significantly different at p- <0.001, ns =non-significant,  DF= Degrees of freedom, MS= Mean squares, YLD= Yield (t/ha), ADF= Days to 50% 
anthesis, DSL= Days to 50 % silking, PHT= Plant height (cm), EHT= Ear height (cm), EDM= Ear diameter (cm), NTB= Number of tassel branches, 
and MSV= Maize streak virus 
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3.3.2 Mean performance of inbred lines  

The summary statistics of mean performance for 80 inbred lines studied are given in Table 3.4. 

Grain yield (YLD) among inbred lines varied significantly from 0.02 t/ha to 3.52 t/ha, with a 

grand mean of 0.93 t/ha. The highest grain yielder genotypes were TL2012-42 and TL2012-17 

at 3.52 and 2.76 t/ha, respectively. These were followed by TLl2012-41 and TL2012-26 with 

grain yields of 2.46 and 2.08 t/ha; respectively. These genotypes had also low (< 40%) reaction 

levels of MSV except for TL2012-17 which had susceptible reaction (Table 3.4).  Lines: TL2012-

25, TL2012-24, TL2012-55 and TL2012-68 showed low MSV reactions of 29.80%, 35.40%, 

34.60, and 27.20, respectively; hence were considered as resistant genotypes. Lines: TL2012-2 

and TL2012-23 had low susceptibility to MSV at 27.20% and 28.00%, respectively except their 

poor yields. YLD had the highest coefficient of variation (CV) of 73.6% as compared to other 

variables such as ADF and DSL which recorded a coefficient of variation of about 6% only. The 

high percentage of coefficient of variation in YLD might be attributed to poor performances and 

adaptability of test inbred lines. 

Inbred lines showed significant differences for ADF and DSL. The number of days of pollen 

shedding (50% anthesis) was the highest at 77.8 for TL2012-9 followed by 76.1, 74.8 and 74.2 

for TL2012-66, TL2012-58 and TL2012-69, respectively. Highest days of silk emergence were 

75.8 displayed by TL2012-57, followed by 75.6 and 75.2 days by lines TL2012-4 and TL2012-

63, respectively (Table 3.4). For this reason, most breeders have been classifying their study 

materials into different maturity groups to facilitate development of cultivars for specific 

environments. 

PHT varied significantly among inbred lines, the shortest inbred line was TL2012-65 that 

showed a height of 81.3 cm while the tallest was TL2012-42 at 222.4 cm. The overall mean 

plant height of inbred lines was 151.6 cm. Likewise EHT, varied from 10.6 cm (TL2012-65) to 

126.3 cm (TL2012-38) with a grand mean of 72.7 cm. The number of tassel branches showed 

the greatest variation at 82.5%. The largest branch numbers were 19.9 and 19.6 displayed by 

TL2012-29 and TL2012-31 respectively, while the lowest was 1.9 expressed by TL2012-54 

(Table 3.4). EDM was not significantly different among inbred lines but varied from 0.48 cm for 

TL2012-6 to 8.6cm for TL2012-80, with an overall mean of 2.4 cm (Table 3.4). 
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Table 3.4 Mean performance of 80 maize inbred lines for eight quantitative traits  

S/N Genotype YLD ADF DSL PHT EHT NTB EDM MSV 

1 TL2012-42 3.52 68.80 68.30 152.90 110.30 14.30 2.37 21.80 
2 TL2012-17 2.76 65.50 64.90 129.00 65.60 7.90 1.89 95.40 
3 TL2012-41 2.46 68.70 68.30 150.90 91.20 16.10 2.19 26.20 
4 TL2012-26 2.25 66.40 66.10 135.80 72.60 12.10 2.11 41.20 
5 TL2012-25 2.19 66.40 66.00 135.20 66.80 17.50 3.40 29.80 
6 TL2012-55 1.97 70.50 70.20 165.70 85.30 10.40 3.49 34.60 
7 TL2012-49 1.90 69.70 69.30 158.30 48.40 13.80 3.31 92.20 
8 TL2012-68 1.89 72.50 72.60 183.30 31.90 10.30 1.66 27.20 
9 TL2012-48 1.70 69.60 69.20 158.20 91.30 10.00 2.40 72.60 
10 TL2012-30 1.69 67.00 66.70 141.80 90.30 12.70 3.28 85.60 
11 TL2012-15 1.64 64.60 63.40 124.10 60.90 10.10 2.07 53.40 
12 TL2012-38 1.63 68.50 67.50 148.20 126.30 16.50 2.21 87.80 
13 TL2012-27 1.58 66.60 66.40 138.20 69.30 15.50 1.50 69.80 
14 TL2012-43 1.57 68.80 68.50 153.20 68.70 8.80 2.16 73.40 
15 TL2012-24 1.48 66.40 65.70 134.80 63.10 13.90 1.94 35.40 
16 TL2012-11 1.45 64.10 62.40 119.40 83.40 10.10 1.85 36.20 
17 TL2012-54 1.39 70.40 70.10 162.30 115.50 13.40 2.78 30.60 
18 TL2012-44 1.28 69.00 68.50 153.70 71.30 11.00 2.30 87.60 
19 TL2012-61 1.27 71.20 71.40 172.30 58.70 4.40 2.64 64.80 
20 TL2012-16 1.23 64.70 64.70 128.10 51.00 8.40 2.14 96.40 
21 TL2012-76 1.18 74.20 75.00 209.10 68.90 12.80 2.71 53.60 
22 TL2012-46 1.12 69.20 68.70 154.00 66.10 11.40 1.63 83.20 
23 TL2012-31 1.12 67.20 66.80 141.90 110.10 19.60 2.39 69.00 
24 TL2012-52 1.12 69.80 69.50 160.10 92.60 17.20 3.20 73.60 
25 TL2012-57 1.11 70.80 70.40 167.30 73.70 16.40 2.56 72.00 
26 TL2012-47 1.10 69.50 69.20 157.30 89.00 13.60 1.28 94.80 
27 TL2012-7 1.07 60.70 61.00 110.60 79.00 13.30 0.53 67.00 
28 TL2012-14 1.02 64.60 63.00 122.00 28.50 7.50 1.85 46.60 
29 TL2012-65 0.96 71.80 72.00 176.40 19.60 10.90 2.15 43.80 
30 TL2012-78 0.96 76.10 75.30 215.30 68.90 13.30 2.56 68.60 
31 TL2012-19 0.95 65.70 65.20 130.40 65.60 10.00 1.71 102.60 
32 TL2012-29 0.93 66.90 66.60 140.80 67.40 12.90 1.27 91.40 
33 TL2012-35 0.89 68.30 67.00 143.60 84.20 17.70 2.02 76.80 
34 TL2012-36 0.88 68.30 67.20 147.00 117.10 12.20 2.65 102.00 
35 TL2012-72 0.86 73.20 73.70 186.80 72.10 10.90 2.05 38.80 
36 TL2012-62 0.86 71.30 71.40 174.70 33.70 1.90 4.06 72.00 
37 TL2012-22 0.79 66.20 65.50 131.00 70.30 12.00 1.48 47.60 
38 TL2012-50 0.78 69.70 69.30 158.80 85.80 14.60 2.77 87.00 
39 TL2012-37 0.78 68.30 67.30 147.80 117.00 14.60 2.61 63.00 
40 TL2012-59 0.77 71.10 71.00 170.30 36.30 11.80 3.74 62.20 
41 TL2012-45 0.73 69.10 68.60 153.80 108.60 10.40 1.66 71.00 
42 TL2012-63 0.70 71.40 71.60 174.80 38.90 4.00 1.83 41.60 
43 TL2012-67 0.69 72.40 72.50 183.20 36.10 11.30 2.47 73.00 
44 TL2012-51 0.68 69.70 69.50 159.60 86.00 10.50 1.52 84.40 
45 TL2012-23 0.65 66.30 65.70 133.30 70.50 11.40 2.48 28.80 
46 TL2012-60 0.63 71.10 71.00 170.90 59.10 7.60 7.31 53.80 
47 TL2012-4 0.63 59.80 60.40 98.30 96.10 13.00 2.02 50.20 
48 TL2012-73 0.61 73.50 73.70 194.30 71.40 16.70 2.95 57.00 
49 TL2012-1 0.60 59.20 57.80 104.00 81.30 14.80 1.23 37.00 
50 TL2012-3 0.59 59.40 59.80 91.00 54.00 15.30 1.43 107.00 
51 TL2012-71 0.59 72.90 73.00 186.80 79.60 13.90 2.15 73.80 
52 TL2012-77 0.58 74.80 75.20 211.00 73.60 13.90 2.75 50.80 
53 TL2012-32 0.58 67.90 66.90 142.40 114.90 10.90 1.97 76.40 
54 TL2012-70 0.55 72.70 72.90 186.70 78.60 14.80 0.57 88.00 
55 TL2012-28 0.54 66.60 66.50 138.70 54.50 16.70 2.12 65.60 
56 TL2012-20 0.54 65.80 65.30 130.60 55.60 5.40 2.24 50.40 
57 TL2012-10 0.53 63.90 62.40 114.60 40.90 13.10 2.32 103.40 
58  TL2012-80 0.50 77.80 75.80 222.40 63.60 8.30 8.60 60.80 
59 TL2012-56 0.50 70.60 70.20 166.40 72.60 11.70 2.95 58.60 
60 TL2012-40 0.49 68.70 68.30 150.10 87.10 11.20 2.65 42.00 
61 TL2012-33 0.49 67.90 66.90 143.00 88.80 11.40 3.17 86.20 
62 TL2012-79 0.49 77.10 75.60 217.20 60.70 9.10 2.26 80.00 
63 TL2012-75 0.46 74.00 74.80 203.90 69.00 12.90 2.38 50.80 
64 TL2012-34 0.42 68.10 67.00 143.60 61.90 13.30 2.55 99.40 
65 TL2012-12 0.39 64.40 62.40 119.40 55.10 10.00 1.96 87.00 
66 TL2012-53 0.38 70.40 70.10 160.80 80.90 14.30 2.29 55.60 
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67 TL2012-64 0.36 71.40 72.00 176.20 29.10 10.10 3.81 63.80 
68 TL2012-6 0.33 60.40 60.60 108.20 44.00 10.80 0.48 77.00 
69 TL2012-74 0.33 73.60 73.90 194.40 94.20 13.70 2.31 57.20 
70 TL2012-21 0.28 66.10 65.50 130.90 60.40 8.60 2.01 40.20 
71 TL2012-58 0.27 70.90 70.90 169.10 58.50 9.80 1.51 72.20 
72 TL2012-13 0.27 64.40 63.00 120.00 25.20 5.70 1.83 57.80 
73 TL2012-8 0.26 62.80 61.60 111.40 30.40 12.60 1.28 94.80 
74 TL2012-9 0.24 63.70 61.60 112.90 93.50 16.30 2.37 39.80 
75 TL2012-69 0.23 72.60 72.60 185.70 51.90 14.30 2.08 64.40 
76 TL2012-18 0.14 65.60 65.10 130.10 77.30 11.50 1.33 77.60 
77 TL2012-5 0.08 60.30 60.60 108.20 40.40 8.60 1.58 54.80 
78 TL2912-2 0.07 59.20 59.40 88.00 83.60 13.80 2.12 26.60 
79 TL2012-66 0.06 72.00 72.20 176.40 129.40 16.60 2.83 40.80 
80 TL2012-39 0.04 68.50 67.70 148.50 117.50 19.90 4.04 79.60 

Mean 0.93 68.40 67.90 151.60 72.70 12.10 2.38 64.46 

Minimum 0.040 59.200 57.800 81.300 19.600 1.900 0.480 21.800 
Maximum 3.52 77.80 67.80 222.40 125.30 19.90 8.60 107.00 
LSD (0.05) 0.326 2.401 2.71 15.8 11.57 2.368 1.4 0.8 
%CV 73.6 6.1 6.4 20.3 34.1 28.3 48.7 34.2 

YLD= Yield (t/ha), ADF= Days to 50% anthesis, DSL= Days to 50 % silking, PHT= Plant height (cm), EHT= Ear height 
(cm), EDM= Ear diameter (cm), TB = Number of tassel branches, and MSV= Maize streak virus 

 

 

3.3.3 Variation of qualitative characters 

Variation was observed among inbred lines in all the qualitative characters considered in the 

study except for anthocyanin colouration of glumes of cob (Table 3.5). Distribution of the 

average angle leaf inclination classified the studied inbred lines into three distinct groups, those 

with small angle constituted 52.5%, medium angle size were 45% and those with large angle 

were 2.5% of the total number of inbred line. The size of blade width varied between narrow 

(42.5%) and medium (57.5%) among the inbred lines. About 96.2% of genotypes had slightly 

curved blades or leaves while only 3.8% had straight attitude. Close to 70% of stems for most 

inbred lines were straight but 23.8% and 6.2% were slightly and strongly curved sideways in 

their appearance, respectively. The anthocyanin colouration on the base of glumes varied 

among inbred lines, however, 46.2% of the inbred lines showed no colouration at the base side 

of their glumes. With regards to anthocyanin colouration, 8.8% had weak colouration, 28.8% 

medium and 16.2% strong colouration at the base of their glumes. The anthocyanin colouration 

of glumes per se without base distributed differed among the inbred lines, with 15% showing no 

colouration of glumes. About 46.3% and 26.2% had weak and medium colouration, respectively; 

while 2.5% had glumes with strong colouration (Table 3.5). Regarding the anthocyanin 

colouration of sheath of stem, more than 60% of inbred lines had none colouration on their leaf 

sheath of stems. However, 33.7% of them demonstrated weak and 2.5% strong colouration of 

their leaf sheath of stems. The anthocyanin colouration of brace root differed significantly 

among germplasm with 35% showing absent, however, weak and strong anthocyanin 

colouration were 52.5% and 12.5%, respectively. Similarly, anthocyanin colouration of the 
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internodes of stem was showen by 51.3% of germplasm, while weak and medium colouration 

constituted 30% and 16.2% of the inbred lines, respectively. Strong internodes colouration was 

observed by 2.5% of germplam with anthocyaninin colouration on their internodes. 

The distribution of anthocyanin colouration of anthers differed substantially between the study 

materials although 38.8% of them showed absent. The proportions of plants with weak, medium 

and strong colouration of their anthers were 18.8%, 30.0% and 12.4%, respectively (Table 3.5). 

Silks exhibited absence of anthocyanin colouration by 67.5% of the entries while 32.5% of 

inbred lines recorded anthocyanin colouration on their silks. The intensity of silks anthocyanin 

colouration varied significantly from 15.0% (weak), 43.8% (medium), 20.0% (strong), and 21.2% 

of very strongly colouration. Density of spikelets of tassel showed 12.5% (lax) and 87.5% 

(medium).  

The distribution of average angel between main axis and lateral branch of tassel ranged from 

small to large angle. The proportion of the small angle size was 61.2%, 37.5% for medium size 

and 1.3% for large angles. The altitudes of these lateral branches of tassels were also not 

uniformly distributed among the inbred lines because over 68% was slightly curved, 2.7% was 

curved while 28.8% was not curved. Similarly, tassel size or the number of primary lateral 

branches of tassel differed from a few (56.5%), medium (41.2%) to many (2.5%) (Table 3.5). 

Over 90% and 80% of inbred lines used exhibited medium length of the main axis above lower 

and upper branch of tassel respectively. Inbred lines with short length of main axis above lower 

branch of tassel were only 7.5% while those with long length of main axis above upper branch 

of tassel were 16.2% (Table 3.5). 

Some characters such as length of peduncle of the ear, length of ear, number of ear rows and 

length of husks off the tip of the ear showed binary distribution system because they had only 

two classes. The length of peduncle of the ear among inbred lines was 37.5% short and 62.5% 

medium; number of ear rows for most inbred lines was few (12.5%) and medium (87.5%). 

Likewise inbred lines with short length of husks off the tip of the ear were 7.5% and 92.5% 

medium. About 73.8% of inbred lines described short ear length, 23.7% medium and 2.5% had 

long ear length (Table 3.5). The shapes of ears of inbred lines studied were variable. The most 

dominating shape was cylindrical accounted for 92.5% while the conical and intermediate 

shapes had relatively low proportions of 2.5% and 5.0%, respectively (Table 3.5). The type of 

grain ranged from flint (2.5%), to flint-like (46.3%) to intermediate (17.5%) to 21.3% dent-like 

and to 12.4% dent type grain. About 64.2% of grains of these inbred lines was white in colour, 
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34.5% yellow and 1.3% was orange in colour. The dorsal side of grain showed significant 

variation with 58.8% being yellow, 3.8% orange and 37.5% intermediate (Table 3.5). 

 

Table 3.5 Classification of 80 maize lines using 27 qualitative morphological traits 

Trait Class                                              Percent 

Anthocyanin coloration of glumes of cob  Absent 100 

Angle between blade and stem 

Small 52.5 

medium  45 

Large 2.5 

Width of blade 
Narrow 42.5 
medium  57.5 

Attitude of blade 
Straight 3.8 

slightly curved 96.2 

Stem degree of zigzag 
Straight 70.0 
slightly zigzag 23.8 
strongly zigzag 6.2 

Anthocyanin coloration on base of glumes 

Absent 46.2 

Weak 8.8 

medium  28.8 

Strong 16.2 

Anthocyanin colouration of glume without base 

Absent 15 
Weak 46.3 
medium  26.5 
Strong 2.5 

Anthocyanin colouration of sheath of stem 

Absent 63.8 

Weak 33.7 

Strong 2.5 

Anthocyanin colouration of brace root 
Absent 35 
Weak 52.5 
Strong 12.5 

Anthocyanin colouration of internodes 

Absent 51.3 

Weak 30 

medium  16.2 

Strong 2.5 

Anthocyanin coloration of anthers 

Absent 38.8 

Weak 18.8 

medium  30.0 

Strong 12.4 

Anthocyanin color of silks 
Absent 67.5 
Present 32.5 

Intensity of anthocyanin colouration of silks  

Weak 15 

Medium 43.8 

Strong  20.0 

very strong                                                        21.2 

Density of spikelet of tassel 
Lax 12.5 
Medium 87.5 

Angle between main axis and lateral branch of 
tassel 

Small 61.2 

Medium 37.5 

Large 1.3 

Attitude of lateral branches of tassel 
straight  28.8 
slightly curved  68.5 
Curved 2.7 

Number of primary lateral branches of tassel 

Few 56.3 

Medium 41.2 

Many 2.5 
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Length of main axis above lower branch of 
tassel 

Short 7.5 
Medium 92.5 

Length of main axis above upper  branch of 
tassel 

Medium 83.8 

Long 16.3 

Length of peduncle of the ear 
Short 37.5 
Medium 62.5 

Length of husks off the tip of the ear 
Short 7.5 

Medium 92.5 

Length of ear 

Short 73.8 

Medium 23.8 

Long 2.5 

Number of ear rows  
few  12.5 
Medium 87.5 

Shape of the ear 

Conical 2.5 

Intermediate 5.0 

Cylindrical 92.5 

Type of grain 

Flint 2.5 
flint-like 46.3 
Intermediate 17.5 
dent-like 21.3 
Dent 12.4 

Colour of grain 

White 64.2 

Yellow 34.5 

Orange 1.3 

Anthocyanin colouration of dorsal side of grain 

Yellow 58.8 

Yellow-orange 37.4 

Orange 3.8 

 

3.3.4 Cluster analysis 

Cluster analysis was done based on 27 qualitative phenotypic traits which grouped the study 

materials into nine different clusters (Figure 3.2). The clusters are designated as I, II, III, IV, V, 

VI, VII, VIII and IX. Clusters with largest number of inbred lines were IV, VI, and III, consisting of 

30, 18 and 14 inbred lines, respectively (Table 3.6). Clusters III, IV and VI represented 77.5% of 

inbred lines (Table 3.6). The dendrogram (Figure 3.1) reflects the pattern of genetic relationship 

between inbred lines. Overall, crosses involving inbred lines TL2012-53 and TL2012-61 (cluster 

II) with TL2012-20, TL2012-70, TL2012-78 (cluster IV) may provide considerable heterosis or 

novel recombinants for further breeding. Other uniquely identified inbred lines were TL2012-1 

and TL2012-11 from cluster VIII and lines TL2012-5, TL2012-6, TL202-55 and TL2012-56 from 

cluster III (Figure 3.2).  
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Figure 3.2: Dendrogram based on 27 qualitative phenotypic traits showing genetic relationship of 80 maize inbred lines when 
evaluated at MSV prone environment in northern Tanzania 
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Table 3.6 Nine clusters identified in the study with their corresponding number and codes of genotypes. 

Clusters 
No of 
genotypes Codes of genotypes* 

I 1 TL2012-12       

II 2 TL2012-53 TL2012-61     

III 14 TL2012-50 TL2012-5 TL2012-6 TL2012-2 TL2012-48 TL2012-52 TL2012-80 

    TL2012-10 TL2012-60 TL2012-79 TL2012-68 TL2012-65 TL2012-55 TL2012-56 

    TL2012-15 TL2012-71 TL2012-13 TL2012-14 TL2012-21 TL2012-3 TL2012-31 

  
TL2012-19 TL2012-20 TL2012-63 TL2012-66 TL2012-16 TL2012-18 TL2012-28 

IV 30 TL2012-64 TL2012-72 TL2012-69 TL2012-70 TL2012-39 TL2012-40 TL2012-51 

  
TL2012-57 TL2012-58 TL2012-78 TL2012-32 TL2012-45 TL2012-4 TL2012-9 

    TL2012-7 TL2012-8           

V 2 TL2012-17 TL2012-67 

  
  

 
  

    TL2012-43 TL2012-44 TL2012-41 TL2012-42 TL2012-29 TL2012-38 TL2012-30 

V1 18 TL2012-36 TL2012-35 TL2012-37 TL2012-74 TL2012-75 TL2012-76 TL2012-33 

    TL2012-34 TL2012-77 TL2012-46 TL2012-47       

VII 7 TL2012-26 TL2012-23 TL2012-24 TL2012-25 TL2012-22 TL2012-27 TL2012-73 

VIII 2 TL2012-1 TL2012-11           

IX 4 TL2012-54 TL2012-62 TL2012-49 TL2012-59       

                 * See Table 3.1 for codes of genotypes; 
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Principal components analysis  

Principal component analysis revealed four important principal components (PCs) with 

eigenvalues greater than 1. These components explained 67.9% of the total variation among 80 

inbred lines (Table 3.7). The first principal components explained 28.9% of the total variation 

with eigenvalue of 3.181. The eigenvectors with significant contribution to this component were 

YLD (0.395), PHT (0.485), EHT (0.465), EDM (0.960) and NTB (0.385). The second principal 

component had eigenvector of 1.945 accounting for 17.7% of the total variation. Eigenvector 

loading with significant contribution to this component was ADF (0.680) and DSL (0.678). PC3 

and PC4 had eigenvalues of 1.210 and 1.129, respectively. The two explained about 10% of the 

total variation. The most contributing eigenvector loadings to these components were EDM and 

MSV; they contributed 0.250 and -0.635, respectively (Table 3.7). 

 

Table 3.7 Principal components, eigenvalues, proportion of total variance, and cumulative 

variance and eigenvector loadings of 8 characters used level of probability 

 

+Refer Table 3.4 for variable name;    aBold eigenvector loadings are significant at ≤ 0.05 

 

 

 

 

Principal Components 

PC1 PC2 PC3 PC4 

Explained variance(Eigenvalue) 3.181 1.945 1.210 1.129 

Proportion of total variance (%) 28.917 17.682 11.001 10.260 

Cumulative variance (%)  28.917 46.599 57.600 67.860 

Traits+ aEigenvector loadings 

YLD 0.395 0.118 0.293 -0.053 

ADF -0.126 0.680 0.093 -0.005 

DSL -0.121 0.678 0.120 -0.014 

PHT 0.485 0.052 -0.247 0.103 

EHT 0.465 0.093 -0.277 0.119 

EDM 0.296 0.010 0.250 0.096 

NTB 0.385 0.127 -0.159 0.057 

MSV 0.164 0.114 -0.233 -0.537 
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3.4 Discussion 

The present study characterized 80 maize inbred lines using agro-morphological traits in MSV 

prone environment in Tanzania. Results showed highly significant differences among inbred 

lines (Table 3.3) for most agro-morphological attributes. This suggests the presence of high 

level of genetic diversity among the inbred lines for breeding. Detailed analysis of genetic 

diversity permits efficient utilization of the available maize germplasm to enhance yield and 

stress tolerance for breeding (Subramanian and Subbaraman, 2010; Shrestha, 2013; Oleyede-

Kamiyo et al., 2014). The significant variations observed for YLD, ADF, SDL, PHT, EHT, and 

NTB (Table 3.3) among inbred lines are attributed to differences in their genetic background. 

Also environment significantly plays an important role in affecting the performance of 

quantitative traits (Yadav and Singh, 2010; Alam et al., 2013; Charles et al., 2013; Singh et al., 

2014). DNA markers are robust in genetic characterisation studies which are less influenced by 

environmental effects (Semagn et al., 2012; Yadav et al., 2013). Previous studies reported 

significant variation in quantitative traits like grain yield, ear height, plant height and earliness in 

maize (Abrha et al., 2013; Charles et al., 2013). In this study grain yields varied significantly 

among the studied maize inbred lines. The highest yielding genotypes were TL2012-42 and 

TLl2012-41 at 3.52 and 2.76 t/ha, respectively (Table 3.4). These inbred lines were also 

associated with low reaction to MSV suggesting their potential for developing new cultivars with 

improved grain yield and resistance to MSV disease.  

Variation in the amount and distribution of rainfall has significant effect on yield variability among 

smallholder farmers in Tanzania (Bello et al., 2012). For instance the annual rainfall at the 

Selian Agricultural Research Institution where this study was conducted declined over the past 

three years from 830 to 400 mm (Bello et al., 2012; Ruane et al., 2013). Therefore, variation in 

ADF and DSL reported in this study will help breeders in developing cultivars for early maturity 

at different agro-ecologies. The number of days to 50% anthesis and silk emergence were 77.8 

and 75.8, respectively, suggesting that the inbred lines are generally early maturing suitable for 

growing in those environments which receive relatively low rainfall.  

Plant height is an important character that will influence grain yield and dry matter production 

(Bello et al., 2012; Zheng and Liu, 2013). The present result revealed highly significant 

variability in plant height (Table 3.3). The tallest inbred line was TL2012-42 at 222.4 cm and the 

shortest was TL2012-65 at 81.3 cm. Shorter plant height is desirable for lodging resistance 

(Abrha et al., 2013). Nazir et al., (2010) reported that plant height was positively correlated with 
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days to flowering. Internodes formation stop during floral initiation consequently early flowering 

maize varieties are usually shorter in plant heights. 

Previous studies showed highly significant variability in ear height in maize genotypes (Nazir et 

al., 2010). Ear height has been described to be one of the most important selection criteria in 

maize breeding especially for root and stock lodging resistance and increased grain yield (Nazir 

et al., 2010; Bello et al., 2012; Zheng and Liu, 2013). High ear position could be susceptible to 

root and stock lodging, therefore most breeders usually prefer selecting for lower ear position in 

maize (Bello et al., 2012). 

Mean NTB varied from 1.9 (TL2012-54) to 19.9 (TL2012-29) (Table 3.4). Tassel size is 

positively correlated with pollen production and consequently of seed set therefore has great 

implications in breeding programmes. Few tassel branches implies less pollen production this in 

turn can affect controlled pollination process in breeding programmes. For example, if a pollen 

parent has low pollen production ability it will not sufficiently pollinate the desired number of 

female parents therefore lowering the desirable number of crosses to be generated. However a 

desirable female parent could have a lesser number of tassel branches to avoid assimilates 

being invested in excessive pollen production than grain yield (Bello et al., 2012). 

Principal component analysis 

The principal component analysis measures important characters which have significant 

contributions to the total explained variation (Sinha and Mishra, 2013). The first few principal 

components with eigenvalues of >1 are often of most important in reflecting the variation pattern 

among study materials and differentiation of their associated characters (Sinha and Mishra, 

2013). In this study, the first four principal components (PCs) captured about 67.9% of the total 

variation hence were considered as the most important components. This result was 

comparable to that of Lopez-Morales (2014) who reported 54% of the total variation which was 

attributed to three components, when studying the morphological diversity of native maize in the 

humid tropics of Puebla, Mexico. 

Variability of inbred lines based on qualitative characters 

The results presented in Table 3.5 reflect the variability of studied inbred lines based on 27 

qualitative characters used. Knowledge on these variables can be useful for several applications 

including site-specific crop management in precision agriculture (Shrestha, 2013). The present 

result shows that about 40% and 50% of these inbred lines had narrow leaf width and small 

average angle of inclination (< 250), respectively. Narrow leaves and small leaf angle of 
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inclination are associated with low interception to sun light thereby reduced photosynthesis and 

subsequently of decreased yields (Torres et al., 2011). Inbred lines with small angle of 

inclination (< 250) and narrow leaves may not be grown in places where light is limiting. Plants 

with large leaf width and angle of inclination are preferable. Because they are efficient in light 

interception, provide good ground surface cover to minimize loss of moisture due to evaporation 

and to supress weeds. In the current result, 70% of the lines had upright or straight stems 

desirable for mechanical harvesting. Genotypes with curved stems do not show uniformity and 

good physical appearance. Often qualitative morphological characters are used to differentiate 

morphotypes. However, these traits may not have direct contributions to yield. Some characters 

such as length of peduncle of the ear, length of ear, number of ear rows and length of husks off 

the tip of the ear, shapes of ears, grain type and colour have direct implications for breeding and 

end users preferences.  

Genetic relationships among 80 maize inbred lines used in the study 

The classification and expression of inbred lines using dendrogram provide visual assessment 

of genetically unrelated individuals for use in maize breeding. Inbred lines within the same 

cluster are genetically related in one or several traits and should not be sampled for cross 

formation. The UPGMA cluster analysis (Figure 3.2) generated a dendrogram of 80 inbred lines 

germplasm using 27 morphological qualitative data revealing nine different clusters. This 

suggests that the tested lines showed considerable genetic diversity. Similar result was reported 

by Azad et al. (2012). The major clusters identified in this study were III, IV and VI, consisting of 

77.5% of the inbred lines evaluated (Table 3.6). Crosses involving parents belonging to the 

maximum divergent clusters are expected to manifest maximum heterosis and also wide genetic 

variability on agronomic traits. Thus, cross combinations of genotypes TL2012-53 and TL2012-

61 (from cluster II) with TL2012-20, TL2012-70, and TL2012-78 (cluster IV) may provide 

considerable degree of heterosis or novel recombinants for further breeding and genetic 

analysis. Also inbred lines such as TL2012-1 and TL2012-11 from cluster VIII and TL2012-5, 

TL2012-6, TL2012-55 and TL2012-56 (cluster III) could be considered as potential parents for 

breeding owing to their genetic divergence.  

Limitations of morphological descriptors 

Assessment of genetic diversity using morphological characterization is relatively a cheaper 

option where genomic tools are underdeveloped or not readily available such as in Tanzania 

(Mbuya et al., 2012; Semagn et al., 2012; Khan et al., 2014). In conventional breeding, this 

method has been extensively used as an important tool to aid identification and selection of 
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diverse parents suitable for hybrid combinations (Subramanian and Subbraman, 2010; Mbuya 

et al., 2012; Semagn et al., 2012; Parasanna, 2012; Fischer et al., 2014; Lopez-Morales et al., 

2014) despite its limitations. Morphological characterization is greatly limited by several factors 

such as seasons and growth stage and results can be unrealistic especially when working with 

quantitative traits because they are influenced by environments. Therefore in order to increase 

the efficiency of genetic diversity characterization molecular characterization techniques should 

compliment the weakness of the conventional approach. 

 

3.5 Conclusions 

Genetic diversity was studied among 80 inbred lines using agro-morphological characters. The 

high level of genetic diversity identified in this study will permit efficient utilization of the inbred 

lines in maize breeding programs for increased productivity. The study is of particularly 

important in the northern areas of Tanzania, where maize productivity has substantially 

decreased in recent years due to biotic constraints such as MSV and the maize lethal necrosis 

(MLN) diseases, and other random stresses. This study has identified high yielding lines 

TL2012-42 (3.52 t/ha), and TLl2012-41 (2.46 t/ha), and TL2012-26 (2.08 t/ha) which had low 

reaction to MSV disease. These lines can be used in developing high yielding and MSV 

resistant maize hybrids. The UPGMA cluster analysis grouped inbred lines into nine divergent 

clusters. Crosses made from most divergent parents are expected to manifest maximum 

heterosis in yield and generate more variability. In summary, the study identified unique inbred 

lines such as TL2012-53 and TL2012-61 (from cluster II), TL2012-20, TL2012-70, and TL2012-

78 (cluster IV), TL2012-1 and TL2012-11 (cluster VIII) and TL2012-5, TL2012-6, TL2012-55 and 

TL2012-56 from cluster III for breeding.  
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CHAPTER FOUR: 

Genetic diversity analysis of maize inbred lines collected from 

diverse origins using SSR markers 

 

Abstract: 

Understanding the genetic diversity and genetic relationships among diverse genetic resources 

is important in crop improvement programmes and for strategic conservation of genetic 

resources. The objective of this study was to assess the genetic diversity and genetic 

relationships among 79 maize inbred lines collected from five origins using 30 SSR markers. 

The mean numbers of observed and effective alleles were 4.70 and 2.40, respectively. The 

markers displayed high Shannon’s information index of 0.96 and polymorphic information 

content (PIC) of 0.51. The mean values of observed and expected heterozygosity among lines 

were 0.136 and 0.508, respectively. A dendrogram constructed based on UPGMA clustered the 

inbred lines into three main genetic groups with sub-clusters especially in group II. The principal 

coordinate analysis (PCA) explained 20.4% of the total genetic variation detected among inbred 

lines and separated them into two main clusters. The present study demonstrated that SSR 

markers successfully detected the genetic diversity present in the maize inbred lines of varied 

origins. Analysis of molecular variance (AMOVA) showed that 72% of the total variation was 

attributed to differences among inbred lines over all locations, 26% of the total variation was due 

to inbred lines within subpopulations/locations and 2% was attributed to variation between the 

five geographic origins of inbred lines. The study identified inbred lines such as TL2012-20, 

TL2012-24 and TL2012-54 (from cluster I) and TL2012-25, TL2012-21 and TL2012-12 (from 

cluster III) showing clear genetic difference for hybrid breeding of maize to exploit heterosis.  

Keywords: genetic diversity, diverse origins, inbred line, Maize, SSR markers. 
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4.1 Introduction  

Maize (Zea mays L.) is one of the most important cereal food crops in the world. It is a monocot, 

C4 plant, predominantly cross pollinated and cultivated in diverse agro-ecologies (Prasanna, 

2012; Li et al., 2014). Maize belongs to the tribe Maydeae of the grass family Poaceae 

(Gramineae) and consists of chromosome number of 2n=20 (Kumar et al., 2012) whose genetic 

length is estimated to be 1500cm (Li et al., 2014). Due to cross pollination, maize portrays the 

highest phenotypic and genetic variability (Parasanna, 2012; Mollin et al., 2013), which 

determine its wide geographical adaptations (Handi et al., 2013; Li et al., 2014). Global demand 

for maize is high due to fast increasing population (Linehan et al., 2013) and utilization of maize 

in various dynamics such as bio-energy production (Miranowski et al., 2011; Ranum et al., 

2014) signalling for increased productivity and production (Amar et a., 2011). In view of this, 

most breeders worldwide, especially in recent years are using molecular technology in 

assessing genetic diversity and relationships among the available germplasm for improved 

selection of suitable parental materials for breeding. Thus knowledge on germplasm diversity is 

fundamentally important for germplasm improvement and ultimately for hybrid breeding (Li et 

al., 2008; Phumichai et al., 2008; Hu et al., 2009; Singh et al., 2013). It also facilitates accurate 

classification of breeding materials into specific heterotic groups (Choukan et al., 2006; Bidhendi 

et al., 2012; Kanyamasoro et al., 2012). Genetic diversity has also been utilized in enhancement 

of biotic and abiotic stress tolerance and to improve traits such as quality, maturity, and yield 

potential in maize (Baranek et al., 2006; Choukan et al., 2006; Xie et al., 2010; He et al., 2012; 

Ramu et al., 2013; Xu et al., 2013). Genetic diversity also offers opportunity for general genetic 

enhancements in various crops because it provides insight on genetic base for sustained 

genetic improvement and conservation (Lee et al., 2010; Yadavi and Singh, 2010; He et al., 

2012; Semagn et al., 2012; Nikhou et al., 2013; Ramu et al., 2013).  

Genetic diversity is defined as the result of variations in DNA sequences which exist within and 

among crop species (Pagnotta et al., 2009; Huang et al., 2010; Lamia et al., 2010; Wang et al., 

2013). This variation is substantial because each of the individual plants in a given crop species 

has unique DNA sequence (Pagnotta et al., 2009). In conventional breeding, genetic diversity 

and genetic relationships among maize inbred lines are usually assessed based on 

morphological data and pedigree records of inbred lines (Baranek et al., 2006; Lee et al., 2010). 

However, the uses of these descriptors present several limitations because they are 

confounded by the influence of environment, hence, they often do not portray the exact genetic 

background or estimates of the germplasm under study (Shetaha et al., 2009; Lee et al., 2010). 



87 
 

This necessitates the use of molecular markers based technology in accurate characterisation 

of maize inbred lines. Markers are not influenced by factors such as environments, growing 

seasons or growth stage of the crop (Yao et al., 2007; Wu et al., 2014; Semagn et al., 2012). 

Inbred lines are important, they form key primary input in maize breeding programmes (Zou et 

al., 2010; Abera et al., 2012) because they possess numerous attributes or genes for  disease 

resistance and traits of economic importance (Wu et al., 2010b: Chen et al., 2011; Ali et al., 

2012; CGIAR, 2012). Successful exploitation of inbred lines in any breeding program requires 

accurate characterization using molecular and phenotypic markers (Goodman et al., 2008; 

Yadavi and Singh, 2010; Amar et al., 2011; Kage et al., 2012; Prasanna, 2012; Xu et al., 2013).  

Molecular markers have been widely used to determine the genetic diversity present in major 

crops such as wheat, maize, rice and common beans (Yao et al., 2007; Shetaha et al., 2009; He 

et al., 2012; Simko et al., 2012; Wang et al., 2013; Zaccardell et al., 2013). The most common 

molecular markers used to assess the genetic diversity in maize include restriction fragment 

length polymorphism (RFLP), random amplified polymorphic (RAPD), microsatellite or simple 

sequence repeats (SSRs), amplified fragment length polymorphism (AFLP) and single 

nucleotide polymorphism SNP (Semagn et al., 2012; Sharma et al., 2010; Molin et al., 2013). 

The SSR markers are known for their dominant inheritance, locus specificity, extensive genome 

coverage and simple detection of locus using labeled primers (Wu et al., 2010a, 2010b; Daniel 

et al., 2012; Xu et al., 2013). Over 400 CIMMYT maize lines have been genetically 

characterized using SSR markers (Xie et al., 2007; Semagn et al., 2012; Zeid et al., 2012). 

However, despite the importance of the markers and their wide application in a range of crop 

species, yet the use of this technology in some countries like Tanzania is limited. In Tanzania, 

conventional plant breeding relies on phenotypic characterisation. Most breeders still use poorly 

characterized inbred lines in their breeding programms when developing cultivars. The 

consequence of which, has been reflected by low farmers’ acceptability of newly bred released 

varieties and have showed significant susceptibility to various crop diseases including the maize 

streak virus (MSV) caused by Geminivirus, leaf blight caused by Exserohilum turcicum Pass 

Leonard & Suggs, grey leaf spot (Cercospora zeae-maydis Tehon & Daniels) and common leaf 

rust (Puccinia sorghi Schr) (Lamia et al., 2010; Parasanna, 2012). Therefore, the objective of 

this study was to assess the genetic diversity and genetic relationship among 79 maize inbred 

lines collected from five different origins using 30 polymorphic simple sequences repeat (SSR) 

markers. 
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4.2 Materials and methods   

4.2.1 Genetic materials and DNA sampling 

The experimental materials used in the current are listed in Table 3.1 in the previous chapter 

except genotype KSO3-OB15-12. About 26.6% of which were collected from CIMMYT/Kenya; 

22.8% from Selian Agricultural Research Institute (SARI)-Tanzania; 19.0% from 

CIMMYT/Zimbabwe; 26.6% from IITA/Nigeria and 5.1% from the University of Kwa-Zulu 

Natal/South Africa (Table 3.1). These materials were planted in northern Tanzania at 

Ngaramtoni research site of SARI in 2012 to collect leaf samples. Leaf samples of 5-6 cm long 

were randomly harvested from 10 young maize plants of about 3 to 4 weeks old and bulked in 

the 50 cm3 centrifugal falcon tubes. Sampling was done using a single use 25K size carbon 

steel (surgical blades) sterilized by GAMMA radiation using GY while DNA extraction was done 

using the solvent method procedures as described below. 

4.2.2 DNA extraction   

The leaf samples were stored overnight at -80oC for DNA extraction. About 100mg freeze-dried 

leaf samples were grinded into fine powder using GenoGrinder-2000 (SPEX Sample Prep, LLC, 

NJ,USA) at a speed of 500 strokes per minute by shaking for 4 minutes. The samples were 

grinded for an additional 2 minutes after the addition of 600 µl of freshly prepared modified 

CTAB DNA extraction buffer. This served to disperse or homogenize the powdered tissue with 

the extraction buffer. The samples were incubated at 65˚C water bath for 30 minutes with 

continuous gentle shaking. The tubes were then removed and cooled for 5-10 min in a fume 

hood and subjected to centrifugation at 3500 rpm for 10 min at 15˚C. The supernatant was 

transferred into fresh microtubes and 400 µl chloroform: isoamylalcohol (24:1) was added into 

the side of the tubes and mixed gently. Samples were shaken for up to 30 minutes at room 

temperature. The corrosive chloroform was removed carefully using pipette to avoid destruction 

of DNA in the samples. The aqueous layer was transferred to fresh strip tubes and the 

chloroform: isoamylalcohol was washed repeatedly to produce a clean DNA solution.  

To each sample 300 µl of isopropanol was added and mixed very gently for DNA precipitation 

while keeping the tubes in the -20˚C freezer overnight. The samples were then centrifuged at 

3500 rpm for 30 min and the supernatant was discarded to obtain the DNA pellet. Each DNA 

pellet was further washed with 70% ethanol and centrifuged for 15 min. The supernatant was 

discarded and traces of ethanol were removed by air dry the DNA pellet for about 15-20min. 

The DNA was suspended in 150 µl of 10mM Tris-HCl ph 8.3 and the samples were incubated 

for about 45 min at 45˚C water bath with gentle tapping every 10 min. Each samples was 
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treated with 3 µl RNAse and the RNAse was spanned down with centrifuge (3500 rpm for 1-2 

min). The DNA was incubated at 37˚C water bath for 3 hours and finally the DNA extracted was 

stored in 4˚C fridge for further use. 

 
4.2.3 Genotyping and DNA fragments analysis  

The study used 30 SSR markers to genotype 79 maize inbred lines. Markers were selected 

from the maize genome database (http://www.agron.missouri.edu) based on their degree of 

polymorphisms and distribution among the maize genome. Genotyping was done using a 

standard PCR protocol for maize SSR markers (CIMMYT, 2005). The SSR analysis involved 

preparation of the cocktail mix composed of PCR products, highly deionized (Hi-Di) formamide 

and GENESCAN 500 internal lane size standard (LIZ-500) labeled with N, N, N’, N’-tetramethyl-

6-carboxyrhodamine (TAMARA) (Perkin Elmer-Applied Biosystems). The PCR mix was 

prepared in a total reaction volume of 15µl containing 2µl (50 ng) genomic DNA, 2.5mM 

magnesium chloride (MgCl2), 0.4mM of  dNTPs,  50 ng of each forward and revers primers,  2µl 

of 1 x reaction buffer, 0.1ml Taq DNA polymerase and sterile water to bring volume to 15 ul. 

Samples containing 1.2 µl of the PCR products, 1.0 ml (Hi-Di) formamide and 12 µl of LIZ-500 

internal lane size standard was denatured at 950C for 3 minutes and placed on ice for 5 

minutes. DNA samples were electrophoresed on an ABI-3730 automatic DNA sequencer 

(Applied Biosystems, USA) equipped with GENESCAN 672 software v. 1.2 (PE-Applied 

Biosystems). The 2 µl of each DNA sample was loaded in the polymerase chain reaction (PCR) 

and the resultant PCR fragments were resolved on the genetic analyzer, the ABI 3730. A total of 

2362 data points was captured out of the expected 2370 data points using the 

Genscan®software giving an overall success rate of 99.7%. 

 

4.2.4 Data analysis 

Genetic diversity analysis 

Genetic diversity of 79 maize inbred lines was analyzed using GenAlex version 6.5 (Peakall and 

Smouse, 2007) software program. The x2 test was also performed to determine if the allelic 

frequencies among the 30 SSR markers used were significant. The genetic diversity parameters 

considered in this study were: the total number of alleles per locus (Na), the number of effective 

alleles per locus (Ne), observed and expected heterozygosity denoted by (Ho) and (He), 

respectively. Other genetic parameters estimated were: total gene diversity (Ht), polymorphic 

information content (PIC), Shonnan’s Information Index (I) and fixation index (F) (Nei’s, 1978). 
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The polymorphic information content was estimated according to Smith et al. (1997):    

     
   , where pi is the frequency of the ith allele. 

Genetic distance and cluster analysis 

To examine the degree of population differentiation among the study material, the  Nei’s 

unbiased genetic distance (Nei, 1978) was estimated using the GenAlex while the genetic 

relationships or relatedness of 79 sampled inbred lines were estimated using neighbour-joining 

algorithm using the unweighted pair group method (UPGMA) in DARwin 5.0 software (Perrier 

and Jacquemoud-Collet, 2006). A dendrogram for 79 inbred lines was then generated based on 

the dissimilarity matrix to visualize pattern of clusters within and among inbred lines. Further, a 

principal coordinate analysis was also performed to complement clustering or grouping patterns 

revealed by the dendrogram. The genetic structure was investigated as described by Nei’s 

(1978) analysis  

Analysis of molecular variance (AMOVA) 

Analysis of Molecular Variance (AMOVA) was performed to estimate population genetic 

structure and differentiation among and within the sets of inbred lines based on their geographic 

locations of origin. AMOVA uses the estimated fixation indexes such as FST, FIS, and FIT to 

compare the genetic structure among and within populations. It has potential to apportion the 

total molecular variances into different sources or populations which attributed to the variations 

and differentiate the study materials into various clusters for easy management and utilization. 

The AMOVA procedures were done using GenALex and the effect of spatial separation on 

genetic structure was tested by the Mantel test (Mantel and Valand, 1970) on genetics matrices 

(Nei, 1978) between populations.   

 

4.3 Results  

4.3.1 Summary statistics of the SSR markers 

Polymorphism among the 79 maize inbred lines was investigated using 30 SSR markers. These 

markers, revealed a total of 140 alleles. The observed number of alleles (Na) varied from 2 

(when using markers umc2250, umc1266 and phi062) to 11 (phi96100) with a mean of 4.7; and 

the effective numbers of alleles (Ne) detected varied from 1.0 (umc 1266) to 4.7 (phi031) with a 

mean of 2.4 per locus (Table 4.1). Over 50% of the total (140) numbers of observed alleles in 

this study was detected by 43.3% of the markers used suggesting the existence of significant 

polymorphism among the markers. The results further showed that the observed heterozygosity 
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(Ho) varied from zero (umc2250) to 0.861(phi031) with a mean of 13.6%, being lower than that 

of expected heterozygosity (50.8%). The expected heterozygosity also varied slightly similar to 

the observed heterozygosity with values ranging between 0.013 (1266) and 0.793 (phi031). This 

analysis also showed that the polymorphic information content (PIC) values for all markers, 

ranged from 0.013 (umc1266) to 0.788 (phi063) (Table 4.1). Again, 46.7% of all loci used 

manifested PIC values greater than the overall mean of 50.5% indicating that most of the 

markers used had high polymorphic information content. The most polymorphic loci were 

phi063, phi96100 and phi063; providing PIC values of 0.788, 0.775 and 0.753, respectively. The 

results of the χ2 test showed significant differences in major allele frequencies at all loci for all 

sets of inbred lines. The total genetic diversity (Ht) varied from 0.026 (umc1266) to 1.648 

(phi031) with high mean of 0.641.  The Shannon’s information index (I) also varied significantly 

from 0.039 (umc1266) to 1.711 (phi031), with high mean of 0.962. This reflects high genetic 

differences among the inbred lines evaluated. The fixation index level (F) which measures the 

level of inbreeding among and within inbred lines varied significantly from -0.093 (phi031) to 1.0 

(umc2250) with substantial mean of F at 72%, indicating the presence of appreciable levels of 

homozygosity among the study materials (Table 4.1).  
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Table 4.1 Genetic parameters of the 30 SSR markers used in the study of 79 maize inbred lines 

collected from five sources    

Na = number of observed alleles, Ne = Number of effective alleles, I = Shannon’s Information Index,  
Ht = Total gene diversity, Ho = Observed heterozygosity, He = Average gene diversity within genotypes, 
F= Fixation index, PIC= Polymorphic information content. 
  

Marker Na Ne  I Ht Ho He F PIC 

umc 130 4 1.7 1.370 0.026 0.329 0.418 0.207 0.415 
phi 014 4 2.3 1.711 0.140 0.190 0.564 0.661 0.560 
phi 029 4 2.1 1.454 0.218 0.076 0.519 0.853 0.516 
phi 031 7 4.7 0.642 0.230 0.861 0.793 -0.093 0.788 
phi 041 5 3.6 1.009 0.345 0.167 0.728 0.770 0.723 
phi 046 4 1.5 0.605 0.401 0.089 0.315 0.717 0.313 
phi 056 8 2.5 1.371 0.417 0.403 0.607 0.332 0.603 
phi 062 2 1.2 1.551 0.424 0.038 0.193 0.802 0.192 
phi 063 6 4.1 1.706 0.444 0.165 0.758 0.782 0.753 
phi 069 3 2.7 0.825 0.472 0.101 0.635 0.839 0.631 
phi 072 5 3.2 0.947 0.520 0.139 0.692 0.798 0.688 
phi 075 4 2.0 1.047 0.571 0.076 0.501 0.848 0.498 
phi 084 4 1.8 0.818 0.574 0.038 0.437 0.913 0.434 
phi 093 4 3.0 0.341 0.592 0.076 0.674 0.887 0.670 
phi 112 4 2.0 1.301 0.636 0.025 0.498 0.949 0.495 
phi 114 5 3.5 1.362 0.648 0.127 0.720 0.823 0.716 
phi 96100 11 4.4 0.781 0.732 0.101 0.776 0.869 0.771 
phi 102228 3 1.3 0.039 0.744 0.089 0.258 0.654 0.256 
phi 108411 3 1.9 0.906 0.746 0.091 0.483 0.811 0.480 
phi 227562 6 2.7 0.269 0.750 0.247 0.639 0.612 0.635 
phi 299852 9 3.7 0.808 0.827 0.139 0.732 0.809 0.727 
phi 308707 5 3.6 1.292 0.838 0.114 0.729 0.843 0.724 
phi 331888 4 2.4 0.965 0.842 0.051 0.589 0.913 0.585 
phi 374118 5 2.3 1.278 0.867 0.076 0.575 0.867 0.572 
umc 1266 2 1.0 0.980 0.872 0.013 0.013 -0.006 0.013 
umc 1304 4 1.6 1.242 0.882 0.051 0.368 0.862 0.366 
umc 1367 5 1.2 0.491 0.890 0.051 0.168 0.697 0.167 
umc 1917 5 1.5 0.739 0.918 0.101 0.325 0.687 0.323 
umc 2047 3 1.6 0.609 1.005 0.051 0.396 0.871 0.394 
umc 2250 2 1.2 0.412 1.648 0.000 0.141 1.000 0.140 

Overall mean 4.7 2.4 0.962 0.641 0.136 0.508 0.719 0.505 

SE 0.4 0.2 0.078 0.317 0.030 0.039 0.049 0.210 
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4.3.2 Cluster and principal component analyses 

The dendrogram discriminated and clustered the genotypes into three major clusters (clusters I, 

II and III) with few sub-clusters in cluster II (Figure 4.1). The distribution of the inbred lines into 

these three main clusters was not homogeneous. Cluster I consisted of 12 inbred lines that is 

15.2% of the total number of all genotypes evaluated, and were genetically diverse within the 

cluster. Most of inbred lines contained in this cluster were from SARI/Tanzania, CIMMYT/Kenya, 

CIMMYT/Zimbabwe and UKZN/South Africa in order of magnitude but no genotype was found 

from IITA/Nigeria entries. Cluster II encompassed 36 (45.6%) of the total inbred lines studied. 

This cluster was broadly divided into two sub-clusters (IIA and IIB) (Figure 4.2). The IIA 

consisted of 22 (27.8%) genotypes of the total study materials but it was further subdivided into 

two small clusters IIA-1 and IIA-2, respectively. Each of these sub-clusters IIA-1 and IIA-2 

consisted of 11 genotypes, which were relatively similar. Sub-cluster IIB consisted of 14 (17.2%) 

inbred lines, which were fairly diverse. Most inbred lines in cluster II were from IITA/Nigeria, 

CIMMYT/Kenya and SARI/Tanzania only. Cluster III comprised of highly variable, 31 inbred 

lines (Figure 4.2). Most of these inbred lines in this cluster were from SARI/Tanzania, IITA and 

CIMMYT/Zimbabwe, IITA/Nigeria, and SARI/Tanzania in order of magnitude. CIMMYT/Kenya 

and UKZN/South Africa had few genotypes in this cluster.  Moreover, a principal coordinate 

analysis (PCA) constructed to examine genetic clustering of all 79 inbred lines using the genetic 

distances (Figure 4.2) explained a total of 20.4% of genetic variation of the data. It also 

discriminated the 79 inbred lines into two major clusters only.  
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Figure 4.1: Dendrogram showing the genetic relationship of 79 maize inbred lines using 30 SSR 
markers  
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Figure 4.2: Principal coordinate analysis showing genetic grouping of 79 maize inbred lines 
assessed by 30 SSR markers 
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respectively. The lowest values 2.1 and 1.8 for the same parameters respectively were recorded 

by the inbred line populations from South Africa. Similarly, the highest values of these 

parameters (Na and Ne) were found to be 3.8 and 2.4, recorded in IITA, Nigeria respectively. 

Both observed heterozygosity (Ho) and expected heterozygosity (He) were 3% and 5% 

respectively across all populations, with overall mean values of 0.136 and 0.48. Their respective 

lowest values were 0.12 and 0.45, recorded in CIMMYT/Kenya and South Africa. The highest 

value of Ho = 0.15 was recorded by IITA/Nigeria, and He was the highest (0.50) among inbred 

lines collected from Tanzania and IITA/Nigeria (Table 4.2). The F- statistics or fixation indexes 

estimates of genetic differentiation (FST = 0.022), coefficient of inbreeding among inbred lines 

within regions of origin/subgroups (FIS = 0.733) and heterozygosity indicator of individual inbred 

lines over the total population (FIT = 0.738) were highly significant (P<0.001). 

 

Table 4.2 Genetic diversity of 79 inbred lines among five regions of origins 

  Genetic parameters 

Regions of origin N Na Ne I Ho He %Polymorphism 

CIMMYT/Kenya 20 3.6 2.3 0.88 0.12 0.49 93.3 

IITA/Nigeria 22 3.8 2.4 0.92 0.15 0.50 96.7 

South Africa 4 2.1 1.8 0.61 0.14 0.45 86.7 

Tanzania 17 3.5 2.3 0.89 0.14 0.50 96.7 

CIMMYT/Zimbabwe 16 3.3 2.2 0.81 0.13 0.47 90 

Mean 15.8 3.26 2.2 0.82 0.136 0.48 92.7 

SE 0.51 0.12 0.08 0.034 0.015 0.018 1.9 
N = Population size, Na = number of observed alleles, Ne = Number of effective alleles, I = Shannon’s 
Information Index, Ho = Observed heterozygosity, He = Average gene diversity within genotypes, F= 
Fixation index, PIC= Polymorphic information content. 

 

4.3.4 Analysis of molecular variances (AMOVA) and fixation index estimates 

The analysis of molecular variance (AMOVA) partitioned the total molecular variances within 

and among the sets of inbred lines evaluated based on their geographic regions of origin. About 

72% of the total genetic variation was attributed to variation among inbred lines within regions of 

origins, while 26% of the total variation was explained by variation within inbred lines and 2% of 

total genetic variation was explained by variation between regions of origins (Table 4.3). This 
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gives an indication that the origins of inbred lines had little contribution to the total molecular 

variances detected and that the highest variation explained by variation among the inbred lines.  

 

Table 4.3 Analysis of molecular variance (AMOVA) among 79 maize inbred lines assembled 

from five geographic origins using 30 SSR markers 

Source of variation 

 DF SS MS EVAR 

Variation 

 (%) 

Among geographic origins/regions 4 73.1 18.3 0.2 2 

Among individual lines within regions 74 971 13.1 5.6 72 

Within individual lines 79 160 2 2 26 

Total 157 1204.1 33.4 7.7 100 

DF= Degree of freedom, SS= sum of squares, MS= mean sum of squares, EVAR= estimated variance,  

 

4.3.5 Genetic correlation of inbred lines among their regions of origins 

The pair-wise correlation coefficient estimates of some selected parameters showed that 

genetic differentiation, FST, ranged from 0.03 (IITA/Nigeria and CIMMYT/Kenya) to 

approximately 0.08 (UKZN/South Africa and CIMMYT/Zimbabwe) (Table 4.4, above diagonal 

within brackets). The low variability of FST imply that there is high frequency of identical alleles 

among inbred lines between regions of origins, hence, low genetic differentiation of inbred lines 

among regions. Gene flow (Nm) or gene migration coefficient varied considerably among the 

regions of origins of the inbred lines with high value of 1.79 in SARI/Tanzania and 

CIMMYT/Zimbabwe to 6.0 in Tanzania and CIMMYT/Kenya (Table 4.4, above diagonal) 

showing that allele or gene transfer between inbred lines among regions of origins was high, 

this could be caused by exchange of genetic materials. The genetic distance (GD) of inbred 

lines among regions of origins were small, ranging from 0.03 (UKZN/South Africa and 

IITA/Nigeria) to 0.08 in CIMMYT/Zimbabwe and SARI/Tanzania), (lower diagonal within 

brackets) suggesting that there is substantial genetic relationships of inbred lines despite the 

fact that they originated from different regions. Similarly, the genetic identity (GI) also varied 

from 0.92 to 0.97 (lower diagonal). This concludes that most of the inbred lines obtained from 

different sources were closely related. 
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Table 4.4 Pair-wise estimates of gene flow (Nm) (above diagonal, without brackets), genetic 

differentiation, FST (above diagonal); genetic distance GD (lower diagonal without brackets) and 

genetic identity, GI, (lower diagonal)  

Regions of origins  CIMMYT/ 
Kenya 

IITA/Nigeria UKZN/South 
Africa 

SARI/Tanzania CIMMYT/ 

Zimbabwe 

CIMMYT/Kenya   4.593(0.030) 5.641(0.058) 6.003(0.028) 2.270(0.053) 

IITA/Nigeria 0.963(0.038)  5.767(0.048) 4.361(0.031) 4.061(0.027) 

UKZN/South Africa  0.954(0.047) 0.971(0.030)  4.288(0.055) 2.114(0.075) 

SARI/Tanzania 0.970(0.031) 0.957(0.044) 0.962(0.039)  1.785(0.055) 

CIMMYT/Zimbabwe 0.924(0.079)  0.974(0.026) 0.928(0.074) 0.920(0.084)   

Nm = gene flow = 0.25 (1-FST)/FST, CIMMYT= International Maize and Wheat Improvenment Centre, IITA 
= International Institute of Tropical Agriculture, UKZN = University of KwaZulu Natal and SARI= Selian 
Agricultural Research Institute 

 

  

4.4 Discussion 

 Genetic diversity among 79 maize inbred lines as revealed by SSR markers 

The thirty SSR markers used in this study revealed a total of 140 observed numbers of alleles, 

with an average of 4.7 (Table 4.1). This result is in agreement to the report of Gichuru (2013), 

who reported a total number of observed alleles at 135 with a mean of 4.8 during a 

characterization study of 40 maize inbred lines for their resistance to MSV using 28 SSR 

markers. Mora et al. (2013) also reported a mean of observed number alleles (Na = 4.8) when 

analyzing the genetic structure of a Brazilian popcorn germplasm using SSR markers. The large 

mean of the expected heterozygosity (He = 0.508), gene diversity (Ht = 0.641), effective number 

of allele per locus (Ne = 2.41) and PIC (0.505) detected by the 30 SSR markers in this study 

reflects the high level of genetic diversity present among the maize inbred lines used. Similar 

results were also reported by Rupp et al. (2009) in their study of genetic structure and diversity 

among sweet corn (su1-germplasm) progenies using SSR markers. They identified mean 

heterozygosity (He) 0.509 and effective number of alleles (Ne = 2.16) per locus which are 

consistent to the present findings. In general, the high level of genetic diversity identified in the 

current work will assist maize breeders to set out their breeding objectives and to select 

potential parents to be used in their breeding programmes. Xu et al. (2013) reported that genetic 

diversity if well managed can be used to enhance biotic and abiotic stress tolerance in any crop 
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species. Also, Kanagarasu et al. (2013) added that successful adaptation to certain agro-

climatic conditions and improvement of any crop species depends on the availability of genetic 

diversity within the available breeding material. Hence, molecular characterization of the 

available germplasm would facilitate development of high yielding maize varieties and will 

improve the limitations present in conventional breeding systems. Information about the genetic 

diversity and relationships among diverse genetic resources is very valuable in crop 

improvement programmes and for strategic conservation of genetic resources (Abera et al., 

2012; Kage et al., 2013; Wu et al., 2014).  

Polymorphism and discrimination power of SSR markers 

The polymorphism information content (PIC) demonstrates the informativeness of the SSR loci 

used. The PIC values ranged from 0.013 to 0.788, with an overall mean value of 50.5% 

indicating that the chosen markers have high levels of polymorphism. The average PIC value 

determined in this investigation agrees with the earlier findings reported by Oppong et al. 

(2014), who showed an average PIC value of 0.504 in bulk genetic characterization of Ghanaian 

maize landraces using microsatellite markers. Moreover, some markers showed significant 

discrimination than others in this study, for example, umc1367 and phi 041 both detected the 

same number of alleles (Na = 5), but they had different PIC values (0.167) and (0.723), 

respectively.  This implies that marker phi041 has higher discriminatory capability or is more 

informative than umc 1367 (Table 4.1). Discriminatory power of a locus depends on many 

factors such as rate of amplification, length of repeat and detection ability of loci. Missing values 

in the dataset could also affect differently the polymorphism and hence discrimination ability of 

markers. 

 Cluster analysis and relationships of inbred lines 

The dendrogram (Figure 4.1) grouped the inbred lines into three major clusters (I, II and III) 

using the UPGMA algorithm on genetic distance, which is an indication that substantial genetic 

variability exist among the study materials. Grouping of individual inbred lines into different 

clusters is very important because it facilitates formation of various heterotic groups which are 

useful in hybrid breeding. For example, the first five genotypes coded as TL2012-29, TL2012-

63, TL2012-19, TL2012-61 and TL2012-42 in cluster III fall in the same heterotic group 

(genetically similar) relative to genotypes TL2012-25, TL2012-21, TL2012-53, TL2012-12 and 

TL2012-23, also in cluster III. Therefore any cross made between the two groups will produce 

superior yield but not crosses made from within groups. This is the potential of assessing 

genetic diversity and grouping individual germplasm into different specific heterotic groups. 
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Classification of inbred lines into different or genetically dissimilar (heterotic) groups facilitates 

exploitation of heterosis in maize and has been widely studied (Abera et al., 2012; Bidhendi et 

al., 2012; Kanyamasoro et al., 2012; Wu et al., 2014). Cluster analysis with the dendrogram 

showed that the inbred line coded by TL2012-20 from cluster I (Figure 4.1) was identified with 

highest difference in genetic diversity relative to TL2012-25, TL2012-21, TL2012-53, TL2012-12 

and TL2012-23 all from cluster III, which means any possible crosses made between this line 

with other lines would produce significant measurable yield due to hybrid vigour or heterosis.  

Genetic structure and differentiation of 79 inbred lines based on geographic regions of 

origins  

Analysis of molecular variance (AMOVA) was performed to estimate or quantify variations within 

and among the sets of populations based on their geographic origins. The results showed that 

percentage of polymorphism among the populations varied with a mean of 92.7%. The F 

statistics showed low but significant genetic differentiation, FST = 0.022 relatively similar to 0.017 

reported by van Heerwaarden et al. (2010). This implies that genetic differentiation among the 

inbred lines does exist but at low level. The pair-wise correlation estimates of FST ranged 

between 0.03 and 0.08, while those of Nm ranged from 1.79 to 6.0 (Table 4.5) indicating very 

little genetic isolation. Kashiani et al. (2012) reported strong genetic isolation when 

characterizing tropical sweet corn inbred lines using microsatellite markers. They reported mean 

values of 0.96 and 0.01 of genetic differentiation (FST) and gene flow (Nm), respectively. The low 

level of genetic differentiation or high gene flow of the inbred lines with respect to their 

geographic regions of origins is attributed to the exchange of genetic materials between 

CIMMYT and member countries for germplasm evaluation, breeding and release. 

4.5 Conclusions 

This study demonstrated the presence of genetic diversity among maize inbred lines adapted to 

the mid altitude maize growing conditions of northern Tanzania and exotic inbred lines using 30 

SSR markers. The microsatellites were found to be informative because they revealed the total 

genetic variations that existed among the inbred lines studied. The variations were mostly due 

to differences between inbred lines, showing the presence of varied heterotic groups, which 

help in selection of best parents for further breeding. Overall, inbred lines such as TL2012-20, 

TL2012-24 and TL2012-54 (from cluster I) and TL2012-25, TL2012-21 and TL2012-12 (from 

cluster III) were identified from varied genetic groups showing clear genetic differences useful in 

hybrid breeding of maize to exploit heterosis. Although the use of molecular markers offers good 
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identification and selection of best genotypes in breeding programs yet challenges such as low 

availability and access to analytical tools is low in some countries like Tanzania. This may 

reduce research progress and its expected impacts.  
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CHAPTER FIVE: 

Combining ability and heterosis among maize genotypes for yield and yield 

components and resistance to maize streak virus disease 

 

Abstract: 

Combining ability analysis of maize (Zea mays L.) inbred lines and their hybrids are essential to 

develop novel recombinants or hybrid varieties to exploit heterosis. The objective of this study 

was to determine combining ability and heterosis for grain yield and related traits and resistance 

to maize streak virus (MSV) among 10 elite maize inbred lines and their hybrids when tested 

across six environments in Tanzania. Ten inbred lines were crossed and 45 F1 hybrids 

developed using a 10x10 half diallel mating design. Parents, F1 hybrids and five standard 

checks were evaluated using a 6 x 10 lattice design with two replications at Ngramtoni, Inyala 

and Igomelo during 2012/13 and 2013/14. General combining ability (GCA) of parents, specific 

combining ability (SCA) of hybrids, heritability and heterosis of grain yield and related traits and 

MSV resistance were calculated. The mean squares of GCA and SCA effects showed 

significant differences for all the traits except days to 50% anthesis and silking. The SCA effect 

was important for all traits except for MSV, number of eras per plant and husk cover while the 

GCA effect was most important for resistance to MSV. Heritability estimates of traits were high 

associated with high GCA effects. Line TL2012-42 was a good general combiner for grain yield 

showing highly significant positive GCA effect of 0.695 t/ha whileTL2012-41, TL2012-1 and 

TL2012-42 had significant negative GCA effects of -10.926%, -10.792% and -10.748%, 

respectively for MSV reaction. These inbred lines could be exploited in hybrid breeding to 

develop high yielding and MSV resistant varieties. Hybrid TL2012-7/TL2012-38 had highest 

positive SCA effect of 4.803 t/ha while TL2012-38/TL2012-55 and TL2012-25/TL2012-26 had 

negative significant SCA effect of -10.892 and -19.451%, respectively for MSV reaction which 

were in a desirable direction. Maximum mid-parent heterosis for grain yield was recorded in 

hybrid TL2012-7/TL2012-38 at 138% while TL2012-25/TL2012-26 had the lowest and negative 

heterosis of -38.2% for MSV reaction. Crosses TL2012-7/TL2012-42 and TL2012-7/TL2012-68 

had significant positive SCA effects for grain yield which can be used for direct production as 

single cross hybrids or developed further as three way hybrids for large scale production.  

Keywords: Combining ability, Diallel analysis, GCA, Heterosis, inbred lines, maize, maize 

streak virus, SCA. 
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5.1 Introduction 

Maize (Zea mays L.), is one of the most important cereal crops with the highest yield potential 

per unit area. It is grown throughout the world (Langyintuo et al., 2010; Ranum et al., 2014) with 

the United States, China and Brazil contributing to 31, 24 and 8% of the world total production, 

respectively (M’mboyi et al., 2010; FAO, 2012; Edmeades, 2013). It is the most important staple 

food crop supporting the livelihoods of more than 1.2 billion people in sub-Saharan Africa (Cains 

et al., 2013). In Tanzania, maize is one of the food security crops consumed by approximately 

45 million people. In the country, it is grown in all the seven agro-ecological zones covering a 

total area of two million hectares. Maize occupies about 45% of the total land area allocated to 

food crops in Tanzania. It is a major source of income for smallholder farmers who constitute 

the majority of Tanzanian population (M’mboyi et al., 2010; Kage et al., 2013). Also, it 

substantially contributes to the national economy due to its outstanding share in the global trade 

(FAO, 2012) owing to the growing demand for food, feed, bio-energy production and other 

industrial uses (M’ mboyi et al., 2010; Lineham et al., 2014; Ranum et al., 2014). 

Despite the significance of maize in Tanzania and other many countries of sub-Saharan Africa 

region, its yield has remained low (<2.2 t/ha) (Temu et al., 2011, Barreiro-Hurle, 2012). Low 

yield in Tanzania is attributed to stress factors such as foliar leaf diseases (MSV, MLN, GLS, 

NLB, and common rust), random stresses and poor soil fertility (Bucheyeki, 2012; Meseka et al., 

2013). This requires genetic improvement of maize germplasm to identify novel genotypes with 

high grain yield and resistant to multiple disease and pests (Williams et al., 2011; Ali et al., 

2012; Mengesha, 2013; Sibiya et al., 2011; Ding et al., 2014; Mrutu et al., 2014). 

Establishing the genetic relationships among maize inbred lines and their crosses is crucial in 

hybrid breeding programs (Sher et al., 2012; Khalid et al., 2013; Li et al., 2013). Parents with 

significant general combining ability (GCA) effect and crosses with high specific combining 

ability (SCA) effects are selected for breeding (Balestre et al., 2011). The variance for the GCA 

effect is associated with additive genetic effect while that of SCA is related with non-additive 

genetic effect arising largely from dominance and epistasis (Falconer and Mackay, 1996; Khalid 

et al., 2013). Diallel mating design has been widely used in plant breeding programmmes to 

determine general and specific combining ability effects (Griffing, 1956; Musila et al., 2010; Lou 

et al., 2011; Ze-su et al., 2012; Ketthaisong et al., 2014). The diallel analysis is useful to select 

superior parents for hybrid formation (Mostafavi et al., 2012), identify experimental hybrids, and 

to assign inbred lines into new heterotic groups (Blank et al., 2012; Ze-su et al., 2012; Fan et al., 
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2014; Ketthaisong et al., 2014; Mrutu et al., 2014). Data from diallel can be easily analyzed and 

interpreted in genetic concept (Blank et al., 2012; Lv et al., 2012; Mostafavi et al., 2012). 

Heterosis or hybrid vigour predicts the value of a hybrid variety relative to its parental inbred 

lines (Goff and Zhang, 2013; Singh et al., 2014). Heterosis is often associated with improved 

performance of traits of economic importance (Ali et al., 2012; Ding et al., 2014). Two types of 

heterosis are known: mid-parent or better-parent heterosis. Mid-parent heterosis is an increase 

in a given character of the hybrid compared to the mean of the parents. Better-parent heterosis 

is an increase in the character of the hybrid compared to that of the better-parent for the 

character (Falconer and Mackay, 1996; Marcon et al., 2013; Goff and Zhang, 2013; Singh et al., 

2014). Heterosis is regarded as the driving factor that contributed to a remarkable success of 

the commercial hybrid maize industry in the world (Stuber, 1992; Marcon et al., 2013). Overall, 

information on genetic variability and genetic relationship among inbred lines and their crosses 

remains important for hybrid maize development in Tanzania or other target production 

environments (Prasanna, 2012; Welsh and McMillan, 2012; Oloyede-Kamiyo et al., 2014). 

Among the biotic stresses, MSV is the most destructive viral disease of maize which can cause 

yield losses reaching up to 100% in susceptible varieties (Martin and Shepherd, 2009; Karavina, 

2014). The MSV disease is cosmopolitan than any other maize diseases in the world (Olaoye, 

2009; Gichuru et al., 2011). Diseased plant manifests pronounced continuous parallel chlorotic 

streaks on leaves, with severe stunting which usually fails to produce complete cobs or seed 

set. According to Martin and Shepherd (2009), mildly infected maize plants show 25% less seed 

set than healthy plants.  

MSV is found in all places in Africa where maize is growing due to the presence of its vectors, 

the leaf hoppers (Cicadulina mbila, Naunde). The epidemiology of this disease is erratic; but it is 

influenced mostly by high temperatures, moisture and availability and population build up of its 

vectors (Martin and Shepherd, 2009; Antwerpent et al., 2011; Oppong, 2013). High incidences 

of the MSV disease has been reported in Kenya, Tanzania, Uganda, Zambia, Mozambique, 

South Africa, Nigeria, Cameroon and in the Island of La Reunion (Olaoye, 2009; Shepherd et 

al., 2010; Gichuru et al., 2011; Karavina, 2014). Globally MSV is ranked the third devastating 

foliar diseases of maize after NLB and GLS (Martin and Shepherd, 2009).  

Various integrated management options are recommended to minimize the damaging effects of 

the MSV disease under farmers’ field conditions. These include: 1) the use of cultural practices 

such as early planting as an avoidance mechanism. However, this does not always hold 
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effective because of delayed rains during the cropping season, 2) the use of insecticides such 

as carbofuran to control the vector. This option is associated with high costs to resource poor 

farmers and has negative impact to the environment and users and 3) development and use of 

MSV resistant cultivars. This is probably the most effective, economic and environmentally 

friendly method of minimizing epidemics (Shepherd et al., 2010; Gichuru et al., 2011).  

Breeding for resistance to MSV disease has been actively pursued by CIMMYT and a number 

of national breeding programs for the past 30 years including Tanzania. In Tanzania, studies on 

MSV resistance commenced some 10 years ago focusing open pollinated varieties only. 

However, these varieties are low yielders and most of them succumbed to MSV disease.  

Genes conferring resistance for the MSV disease and their inheritance have been identified in 

maize germplasm (Gichuru et al., 2011). Mafu (2013) working on CIMMYT inbred lines identified 

CML505 and CML509 to be resistant to MSV disease using single nucleotide polymorphisms 

(SNPs) DNA markers. These genetic resources can be exploited by breeders to develop 

cultivars with enhanced resistance to MSV disease. Therefore there is a need to embark on 

development of high yielding and MSV resistant maize hybrids in order to enhance maize 

productivity in MSV disease prone areas of northern Tanzania using newly identified sources of 

resistance. The objective of this study was to determine combining ability and heterosis for grain 

yield and related traits and resistance to maize streak virus (MSV) among 10 elite maize inbred 

lines and their hybrid progenies when tested across six environments in Tanzania. Good 

combiners may be used for direct production or their genes incorporated in resistance breeding 

programs to minimize yield losses incurred by the MSV disease in Tanzania. 

5.2 Materials and methods 

5.2.1 Plant material, mating design and trial management 

The study used ten inbred lines (Table 5.1) selected in the preceding study. Lines were crossed 

using a half-diallel mating design to generate 45 F1 hybrids. Hybrids, inbred parents and five 

standard check three-way hybrids largely grown in Tanzania were evaluated at Ngramtoni, 

Inyala and Igomelo during 2012/13 and 2013/14 representing six environments. A 6 x 11 

unbalanced lattice design with two replications was used to evaluate 60 entries. Each plot 

consisted of 2 rows of 5.0 m length, with 75 cm and 30 cm spacing between and within rows 

respectively. Seedlings were thinned after two weeks keeping a healthy and vigorous plant per 

hill. Di-amonim phosphate (DAP) of 150kg ha-1 P2O5 was used at planting and the same rate of 
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Calcium Amonium Nitrates (CAN) was top dressed six weeks after planting. Trials in the first 

season were established in December across all sites while in the second season it was done in 

December for Ngaramtoni, January for Igomelo and February for Krishna trials at Babati district. 

Trials were conducted during the main cropping season under rain fed conditions. Supplemental 

irrigation was applied as required. The present study sites are known hot spot areas of MSV 

infection allowing reliable scoring of MSV reaction under natural disease infection. 

Table 5.1 List of parental inbred lines used in the study, their yield potential and MSV reaction 

SN Pedigree Code Origin a YP+ 
(t/ha) 

Reaction type 

1 09MAK1-77 TL2012-55 UKZN/South Africa 1.97 Resistant 

2 V457-1-VLO835 TL2012-17 SARI/Tanzania 2.76 Susceptible 

3 CML390 TL2012-41 CIMMYT/Kenya 2.46 Moderate resistance 

4 CML505 TL2012-1 CIMMYT/Kenya 0.60 Resistant 

5 WPopX1368 STR S7 Inb.6 TL2012-26 IITA/Nigeria 2.08 Moderate resistance 

6 MAS[MSR/312]-119-5-1-1-3-B TL2012-25 CIMMYT/Zimbabwe 2.19 Resistant 

7 P43-1-1-1-BBB TL2012-38 SARI/Tanzania 1.63 Moderate resistance 

8 SML125 TL2012-42 SARI/Tanzania 3.52 Resistant 

9 CML509 TL2012-68 CIMMYT/Kenya 1.89 Resistant 

10 MAS[MSR/312]-119-5-1-4-1-BB TL2012-7 CIMMYT/Zimbabwe 1.07 Moderate resistance 

a
SARI = Selian Agricultural Research Institute; CIMMYT= International Maize and Wheat Improvement 

Centre, IITA = International Institute of Tropical Agriculture; UKZN=University of KwaZulu-Natal; 
b
See 

YP= Yield  potential of inbred lines from Table 3.4. 

 
 

5.2.2 Data collection 

Data collected included grain yield, MSV disease severity, maize lethal necrosis (MLN) and 

other agronomic traits of economic importance. Grain yield (YLD) per plot was measured at 

12.5% moisture content and later converted into t/ha. The MSV incidence was collected as 

percentage of diseased plants per plot while disease severity was measured using a visual 

scale of 1-5, where 1 indicates as highly resistant and 5 highly susceptible (Kyetere et al., 

1999). Disease assessment was taken from two weeks after germination and continued in the 

interval of 8 days up to flowering. Days to 50% anthesis (DA) and silking (DSL) were obtained 

by counting the number of days from planting to when 50% of the plants in each experimental 

plot attained anthesis or silking. Plant height (PHT) was measured from the ground level to the 
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first tassel branch and expressed in centimetres (cm); ear height (EHT) was measured as a 

distance from ground level to the upper most ears bearing node and expressed in centimetres 

(cm). The last two variables were determined from 10 randomly selected and tagged plants from 

each experimental plot and measured at 50% anthesis. Also the number of eras per plant (EPT) 

was counted while husk cover (HSC) was assessed using a visual scale of 1-5; where 1 

designated very short husks and 5 very long as the best husk cover of cob 

5.2.3 Data analysis 

Data were subjected to a half-diallel analyses following model I method II described by Griffings 

(1956) using SASprogram version 9.3 (SAS Institute, 2012). The total sums of squares were 

partitioned into replication, environment, genotypes and genotypes x environment interaction. 

The sum of squares of genotypes were further portioned into general and specific combining 

ability effects using the following model:                            . Where    

               ;   = population mean. The term     = observed entry mean of the ith and jth 

genotypes    = the general combing ability effects of ith parent and   = the general combining 

ability of the jth parent. The    = the specific combining ability of the cross between ith and jth 

parents, such that slj=slji, and       = the environmental effects associated with the 

observation ijkth  

Estimation of general combining ability (GCA) and specific combining ability (SCA) 

effects, heritability and mid-parent heterosis 

The general combing ability (GCA) of inbred lines and specific combining ability (SCA) among 

the crosses were estimated using a general linear model (GLM) procedure ofs SAS software 

version 9.3 (SAS Institute, 2003) whereas their relative importance, measured by GCA to SCA 

ratio was calculated according to Baker (1978) as follows
      

            

; where       and 

      were the mean squares for GCA and SCA, respectively. The mid parent-heterosis (MPH) 

for grain yield and MSV reaction was also estimated based on the method described by 

Falconer and Mackay (1966):       
     

  
     ; where F1=Mean performance of F1 hybrid, 

MP = (P1+P2)/2 in which P1 and P2 are the means of the inbred lines involved the cross. The 

narrow sense heritability was calculated according to the formula proposed by Hallauer et al 

(2010); h2
n    

   

             
     ; where h2

n = narrow sense heritability, GCA and SCA are 

general and specific combining ability, respectively. 
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5.3 Results  

5.3.1 Analysis of variance  

The combined analysis of variance (ANOVA) revealed significant differences among crosses 

and inbred parents (Table 5.2). The GCA and SCA effects for grain yield and MSV reaction 

were highly significant (Table 5.2). Records of mean squares (MS) of GCA and SCA for most of 

traits studied suggests that both additive and dominance effects were important. The relative 

importance of GCA and SCA, measured by Baker’s ratio showed that about 51.1% of SCA 

effects determined grain yield (YLD) expression while GCA effects contributed approximately 

48.9% only (Table 5.2; Figure 5.1). About 97.7% of GCA effects determined the expression of 

MSV reaction among study materials whereas the effects attributed to SCA was only 2.3%. In 

contrast, the influence due to dominance gene effects on ear height was at 98.3% while an 

additive gen effect was only 1.7%. This result also showed that plant attributes such as plant 

height (PHT), ears per plant (EPT) and husk cover of cob (HSC) were mainly controlled by 

additive gene effects compared to dominance effects as reflected by their respective ratios of 

62.3%, 79.6% and 70.8%, respectively. However, dominance gene influence was prevailed 

more than 50% on days to anthesis and silking. Preponderance of GCA variance demonstrates 

the role of additive gene effects while the predominance of SCA denotes the high influence of 

dominance gene action. The narrow sense heritability varied significantly among the 

experimental materials for the traits considered. Heritability was the highest (95%) for MSV 

reaction, followed by EPT (61.3%). However, grain yield and other agronomic traits 

demonstrated low heritability below 50% (Table 5.2). 
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Table 5.2 Combined analysis of variance of grain yield, yield components and MSV reaction of maize genotypes evaluated across six 

environments.  

Source of Variation                                                                                       

DF Mean squares 

 

YLD MSV PHT EHT EPT HSC DA DSL 

Replication (within E) 6 0.16 31.02 4396.86 35.17 0.46 0.45 1.32 3.29 

Environments (E) 5 360.79*** 545.70*** 19321.83** 1361.13*** 11.01*** 9.37*** 567.57*** 539.90*** 

Genotype (G) 54 30.51*** 4416.22*** 17010.05*** 4661.01*** 1.79*** 4.23*** 71.58*** 112.69*** 

GXE interaction 270 3.41*** 157907.67*** 5986.716* 1269.41*** 0.71*** 2.20*** 36.40*** 37.22*** 

GCA 9 16.14*** 20802.20*** 14835.02** 32.85*** 2.87*** 4.56*** 30.60ns 40.51ns 

SCA 45 33.75*** 1001.23*** 17921.590*** 3896.76*** 1.47*** 3.77*** 79.80*** 118.30*** 

Error 324 0.71 88.65 4942.79 1219.92 0.34 0.8667 3.09367 5.68906 

Total 982 450.86 39814.06 4259407 19075.19 10.99 30.29 790.36 857.6 

h2
n (%) - 31.9 95.0 39.4 0.6 61.3 49.6 27.0 24.6 

GCA/SCA (Baker ratio) 
% 

- 48.9 97.7 62.3 1.7 79.6 70.8 43.4 40.6 

*, **, and *** denote significance differences at P≤0.05, P≤ 0.01; and P≤0.001, respectively; DF=Degree of freedom; YLD= Grain yield (t/ha); 
MSV=MSV disease reaction in %; PHT=Plant height in cm; EHT= Ear height in cm; EPT= Number of ears per plant; HSC= Husk cover of cob; 
DA= Days to 50% anthesis; DSL= Days to 50% silking; h

2
n  is narrow sense heritability 
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Figure 5.1: The ratio of GCA to SCA effect in percentage of yield, yield components and MSV 
reaction.  

 

5.3.2 Mean performance of yield, yield components and MSV reaction of 10 parents, 45 

hybrids and five standard check maize genotypes  

The mean performances of 45 F1 hybrids, the 10 parents and five standard check maize 

genotypes for yield, yield components and MSV reaction when evaluated across six 

environments is presented in Table 5.3. Grain yield varied significantly among genotypes from 

1.92 to 7.75 t/ha. The grand mean yield of entries was 4.45 t/ha. Hybrid TL2012-68/TL2012-42 

yielded the highest at 7.73 t/ha, followed by TL2012-41/TL2012-17, TL2012-42/TL2012-1, and 

TL2012-42/TL2012-17; yielding 6.78, 6.16 and 6.06 t/ha, respectively. The lowest yielder hybrid 

was TL2012-25/TL2012-26 at 1.92 t/ha. However, this hybrid showed lowest (21.53%) reaction 

to MSV disease (Table 5.2). Interestingly, the parents of this hybrid, i.e., TL2012-25 and 

TL2012-26 showed low MSV reactions of 28.20% and 39.90%, respectively suggesting their 

value for resistance breeding. Other hybrids with relatively low MSV disease reaction (<40%) 

were TL2012-68/TL2012-41, TL2012-1/TL2012-41, TL2012-42/TL2012-41, TL2012-26/TL2012-

41, TL2012-68/TL2012-42, TL2012-42/TL2012-26, TL2012-25/TL2012-1, TL2012-68/TL2012-

26, TL2012-42/TL2012-25, TL2012-25/TL2012-41, TL2012-26/TL2012-1, and TL2012-

42/TL2012-55.  
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In this study hybrid TL2012-68/TL2012-1 was the tallest with plant height of 345.08 cm while the 

shortest was TL2012-68/TL2012-25 at 104.53 cm. The inbred parents of this hybrid are TL2012-

68 and TL2012-1 showing plant height of 197.42 cm and 180.38 cm, respectively (Table 5.2). 

Ear height (EHT) also varied significantly among 45 single cross hybrids (Table 5.2). The 

maximum height was 157.17 cm recorded to TL2012-1/TL2012-41 and the lowest was 83.2 cm 

displayed by TL2012-7/TL2012-25. Other hybrids with relatively high ear heights were TL2012-

42/TL2012-1 (156.5 cm), TL2012-38/TL2012-55 (134.92 cm) and TL2012-68/TL2012-55 and 

TL2012-7/TL2012-68 with the same height of 130 cm. Ear prolificacy is an important selection 

criterion of genotypes. In this study, hybrid TL2012-1/TL2012-17 had the highest number of ears 

per plant (3.5), followed by TL2012-7/TL2012-17 (2.83), TL2012-38/TL2012-17 (2.75) and 

TL2012-7/TL2012-42 (2.71). The hybrid with lowest number of eras per plant was TL2012-26/1 

with 1.67. Husk cover of cob ranged from one for hybrid TL2012-17/TL2012-55 to four recorded 

to TL2012-7/TL2012-55. Other hybrids with good husk cover of cobs were TL2012-1/TL2012-

55, TL2012-42/TL2012-26 and TL2012-26/TL2012-41 with values of 3.33, 3.29, and 2.88, 

respectively. Hybrid TL2012-38/TL2012-41 had shortest days to 50% flowering of male 

inflorescence at 65.75 days followed by TL2012-42/TL2012-55 (68.07), TL2012-38/TL2012-1 

(68.97) and 2012-41/TL2012-55 (69.78). The late flowering hybrid was TL2012-26/TL2012-17 

which took 76.82 days to flower. Days to 50% silking (formation of female inflorescence) was 

the shortest (< 70 days) for TL2012-68/TL2012-42, TL2012-38/TL2012-17, TL2012-25/TL2012-

1, TL2012-42/TL2012-55, TL2012-38/TL2012-1, TL2012-1/TL2012-41, and TL2012-41/TL2012-

55. 

.          
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Table 5.3 Mean performance of parents, F1 hybrids and standard checks of grain yield, yield 

components and MSV reaction of maize when evaluated across six environments 

 

SN 

Genotypes Traits  

Parents YLD MSV PHT EHT EPT HSC DA DSL 

1 TL2012-42 2.83 20.32 202.17 107.25 3.00 2.13 72.00 79.17 

2 TL2012-41 1.79 33.73 196.33 89.28 2.46 1.42 70.73 84.17 

3 TL2012-25 1.72 28.20 191.67 73.90 1.92 2.00 70.04 73.42 

4 TL2012-17 1.71 78.40 213.33 61.64 2.50 1.00 67.26 73.00 

5 TL2012-26 1.70 39.90 148.26 76.10 1.29 1.25 67.25 80.25 

6 TL2012-55 1.61 44.00 208.92 86.00 1.63 3.84 72.35 78.00 

7 TL2012-68 1.61 27.27 197.42 56.58 1.63 1.42 72.68 68.83 

8 TL2012-1 1.56 33.18 180.38 81.08 1.58 2.00 65.9 75.67 

9 TL2012-7 1.36 83.24 227.25 82.03 1.63 3.00 64.39 71.58 

10 TL2012-38 1.06 67.33 109.8 116.58 2.33 2.54 72.00 76.17 

 

Hybrids 

1 TL2012-68/TL2012-42 7.73 32.31 158.41 114.14 2.50 2.04 70.62 68.33 

2 TL2012-41/TL2012-17 6.78 64.48 210.08 94.83 2.54 2.38 72.88 73.08 

3 TL2012-42/TL2012-1 6.16 41.06 191.92 156.5 1.75 2.42 74.32 74.08 

4 TL2012-42/TL2012-17 6.06 71.80 210.00 100.03 2.42 2.30 72.41 72.00 

5 TL2012-26/TL2012-1 5.99 38.10 184.00 101.85 1.67 2.41 71.75 72.5 

6 TL2012-38/TL2012-17 5.95 89.66 193.67 101.18 2.75 2.54 72.30 68.58 

7 TL2012-42/TL2012-41 5.94 27.51 190.25 99.32 2.17 1.88 72.88 70.33 

8 TL2012-17/TL2012-55 5.78 73.24 179.67 117.08 2.38 1.00 71.56 77.58 

9 TL2012-26/TL2012-17 5.74 55.66 228.83 104.33 2.54 2.58 76.82 74.25 

10 TL2012-7/TL2012-38 5.65 76.57 202.58 123.89 2.50 1.63 73.24 70.33 

11 TL2012-25/TL2012-17 5.45 73.20 128.35 94.43 2.33 1.46 74.06 72.00 

12 TL2012-7/TL2012-42 5.42 68.59 191.33 113.67 2.71 2.46 74.69 72.83 

13 TL2012-38/TL2012-41 5.34 61.55 231.83 87.35 1.67 2.27 67.75 70.08 

14 TL2012-26/TL2012-41 5.28 28.66 188.33 104.38 2.17 2.88 74.96 73.25 

15 TL2012-38/TL2012-26 5.24 73.54 188.00 101.79 1.83 2.58 71.52 70.75 

16 TL2012-41/TL2012-55 5.20 51.16 194.25 103.55 2.17 2.18 69.78 69.83 

17 TL2012-68/TL2012-1 5.20 41.44 345.08 91.60 2.33 1.58 71.77 72.50 

18 TL2012-68/TL2012-55 5.14 47.14 194.92 130.73 1.96 2.67 72.71 73.50 

19 TL2012-1/TL2012-41 5.08 25.33 230.5 157.17 2.21 2.75 72.31 69.58 

20 TL2012-42/TL2012-25 5.03 34.50 147.81 109.19 2.28 2.38 75.77 72.58 

21 TL2012-26/TL2012-55 5.02 63.38 253.00 110.00 2.04 2.67 72.29 71.33 

22 TL2012-42/TL2012-38 4.98 55.79 199.08 120.17 2.42 2.63 74.23 74.92 
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23 TL2012-68/TL2012-17 4.97 64.48 171.50 93.11 2.42 2.25 72.56 71.00 

24 TL2012-25/TL2012-1 4.93 33.41 162.33 113.38 2.00 2.08 70.52 68.67 

25 TL2012-25/TL2012-41 4.92 37.23 162.92 98.39 2.13 2.02 72.93 74.58 

26 TL2012-68/TL2012-41 4.92 24.33 190.58 113.28 2.38 2.68 72.75 73.50 

27 TL2012-25/TL2012-55 4.91 60.46 170.92 110.08 2.50 2.08 71.83 72.67 

28 TL2012-68/TL2012-25 4.91 43.22 104.53 108.25 2.33 2.70 73.37 75.17 

29 TL2012-38/TL2012-25 4.89 70.63 198.25 112.88 2.43 2.00 72.36 75.58 

30 TL2012-1/TL2012-55 4.88 43.48 193.42 123.78 2.25 3.33 71.92 72.00 

31 TL2012-7/TL2012-1 4.87 50.05 184.67 84.17 2.38 2.21 72.43 74.25 

32 TL2012-42/TL2012-26 4.85 32.54 244.50 116.58 1.92 3.29 71.54 72.42 

33 TL2012-38/TL2012-55 4.81 61.23 188.50 134.92 2.38 2.04 73.53 75.08 

34 TL2012-7/TL2012-55 4.80 76.33 180.00 120.25 2.13 4.00 76.71 71.92 

35 TL2012-7/TL2012-41 4.79 67.91 128.08 106.62 2.21 2.78 72.74 72.83 

36 TL2012-42/TL2012-55 4.73 39.23 180.00 102.94 2.29 2.13 68.07 68.83 

37 TL2012-38/TL2012-1 4.69 65.93 186.75 93.58 2.25 2.08 68.97 69.50 

38 TL2012-7/TL2012-17 4.57 82.53 206.33 129.32 2.83 2.53 71.01 70.17 

39 TL2012-7/TL2012-68 4.55 51.65 178.17 130.17 2.17 2.79 74.72 72.42 

40 TL2012-7/TL2012-26 4.39 72.54 190.42 93.22 2.36 2.50 75.25 73.67 

41 TL2012-7/TL2012-25 4.30 79.29 125.59 83.20 2.33 2.28 72.04 74.25 

42 TL2012-68/TL2012-38 4.24 70.51 203.25 99.64 2.58 2.67 71.09 70.08 

43 TL2012-1/TL2012-17 2.38 51.24 192.00 125.42 3.50 2.33 73.10 70.42 

44 TL2012-68/TL2012-26 2.03 33.46 159.58 84.41 2.58 1.88 72.08 70.75 

45 TL2012-25/TL2012-26 1.92 21.53 136.59 109.53 1.96 1.88 73.20 71.58 

 

Standard checks 

1 PANNAR 4M-19 5.60 61.23 188.50 134.92 2.38 2.04 73.53 75.08 

2 H308 5.06 76.33 180.00 120.25 2.13 4.00 76.71 71.92 

3 H208 4.98 67.91 128.08 106.62 2.21 2.78 72.74 72.83 

4 SC627 4.50 39.23 180.00 102.94 2.29 2.13 68.07 68.83 

 5 UH615 5.30 82.53 186.75 93.58 2.25 2.08 68.97 69.50 

Grand mean 4.45 52.43 188.44 188.3 104.63 2.310 72.00 72.83 

Minimum 1.06 20.21 104.53 56.58 1.29 1.00 64.39 68.33 

Maximum 7.73 89.66 345.08 157.17 3.50 4.00 76.82 84.17 

SE 0.843 9.415 70.305 0.581 5.732 0.931 1.759 2.385 

CV (%) 19.14 17.96 37.34 25.83 5.48 40.39 2.44 3.28 

YLD= Grain yield (t/ha), MSV=Disease reaction in %, PHT =Plant height in cm, EHT= Ear height in cm, 
EPT= Number of ears per plant, HSC= Husk cover of cob, DA= Days to 50% anthesis and DSL= Days to 
50% silking SE=Standard error; CV=coefficient of variation 
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5.3.3 Estimates of GCA and SCA effects  

Estimates of GCA effects  

The GCA effects of grain yield were generally not significant different among inbred lines (Table 

5.4). However, inbred lines like TL2012-42 showed significantly high positive (p < 0.001) GCA 

effects of 0.695 while TL2012-26 and TL2012-25 had significant but negative GCA effects of -

0.46 and -0.38, respectively (Table 5.4). Inbred lines were highly significant different (p <0.001) 

with variable GCA effects for MSV disease resistance. About 60% of these lines demonstrated 

significant and negative GCA effects while the remaining 40% showed positive GCA effects. 

The lines with negative general combining ability effects were TL2012-41(-10.926%), TL2012-1 

(-10.792%), and TL2012-42 (-10.748%), followed by TL2012-68 (-9.533%), TL2012-26 (-

7.182%) and Tl2012-25 (-4.045%). Lines those with positive GCA effect estimates were 

TL2012-55, TL2012-17, TL2012-38 and TL2012-7 (Table 5.4). Positive and negative GCA 

effects have great implication in breeding because their interpretation is determined by the trait 

under consideration. In disease resistance breeding significant and negative GCA effects are 

desirable. 

Lines TL2012-17 and TL2012-26 exhibited highly significant (p <0.001) GCA effects estimates 

of 0.346 and -0.225 for ears per plant, respectively and were considered as best general 

combiners. The first line has a tendency to increase the number of ears per plant in its hybrid 

combinations while the second line was a poor general combiner due to its negative contribution 

on the number ears per plant implying their relative significance for breeding. Significant positive 

or negative GCA effects were observed to husk cover of cob. TL2012-55 and TL2012-7 

revealed positive GCA effects of 0.266 and 0.290, respectively while TL2012-17 and TL2012-25 

had negative estimates of -0.292 and -0.241, respectively. Ninety percent of the inbred lines 

evaluated did not show significant differences of GCA effects on days to 50% anthesis and 

silking (Table 5.4).whileTL2012-1 and TL2012-68 showed significant negative GCA effects of -

0.955 and -0.906 to days to 50% anthesis (DA) and silking (DSL), respectively (Table 5.4).  
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Table 5.4 Estimates of GCA effects of ten parental inbred lines used in the study 

*, **, and *** denote significance differences at P≤0.05, P≤ 0.01; and P≤0.001, respectively; DF=Degree of freedom; YLD= Grain yield (t/ha); MSV=MSV disease 
reaction in %; PHT=Plant height in cm; EHT= Ear height in cm; EPT= Number of ears per plant; HSC= Husk cover of cob; DA= Days to 50% anthesis; DSL= Days to 
50% silking 
 
 
 
 

Lines YIELD MSV PHT EHT EPT HSC DA DSL 

TL2012-55 0.010ns         2.822* 1.299ns 7.143*** -0.104ns  0.266** -0.179ns 0.561ns 

TL2012-17 0.260ns 17.356*** 16.448** -4.653* 0.346*** -0.292** 0.143ns -0.306ns 

TL2012-41 0.326ns -10.926*** -9.694ns -1.373ns -0.066ns -0.006ns -0.281ns 0.611ns 

TL2012-1 -0.104ns -10.792*** 5.265ns 6.0627** -0.083ns -0.015ns -0.955* -0.597ns 

TL2012-26 -0.463** -7.182*** -9.716ns -6.572*** -0.225*** 0.064ns 0.414ns 0.561ns 

TL2012-25 -0.378* -4.047** -13.076* -5.466** -0.054ns -0.241* 0.359ns 0.534ns 

TL2012-38 0.008ns 16.161*** -4.115ns 2.408ns 0.039ns -0.031ns -0.554ns -0.406ns 

TL2012-42 0.695*** -10.748*** 15.128* 7.188*** 0.069ns 0.035ns 0.40ns 0.036ns 

TL2012-68 -0.147ns -9.533*** 3.439ns -4.599* 0.013ns -0.070ns 0.183ns -0.906* 

TL2012-7 -0.206ns 17.757*** -4.978ns -0.138ns 0.063ns 0.290** 0.470ns -0.089ns 
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Estimates of SCA effects  

The SCA effects are presented in Table 5.5. About 45% of the crosses showed significant SCA 

effects for YLD. The crosses between inbred line TL2012-7 with TL2012-55, TL2012-17, 

TL2012-41, TL2012-1, TL2012-26, TL2012-25, TL2012-38, TL2012-42, and TL2012-68 

manifested significant (p<0.001) positive SCA effects of 3.412, 3.325, 3.536, 3.413, 2.437, 

2.406, 4.803, 3.501 and 3.003 respectively. Other crosses with positive SCA effects were 

TL2012-41/TL2012-17 (1.517), TL2012-26/TL2012-17 (1.261) TL2012-26/TL2012-1 (1.877), 

and TL2012-68/TL2012-42 (2.504) (Table 5.5). According to Fan et al. (2014) hybrid with 

significant positive SCA effects contributes substantially and directly to the increased 

performance of traits under consideration. Therefore these hybrids involving inbred parent 

TL2012-7 have high or good specific combining ability. Conversely, hybrids TL2012-1/TL2012-

17 (-2.457), TL2012-25/TL2012-26 (-1.912) and TL2012-68/TL2012-26 (-2.041) had significant 

but negative SCA effects hence were considered to have low or poor specific combining ability 

for grain yield (Table 5.5).  

The SCA effects for MSV disease reaction showed significant difference among the 45 hybrids 

evaluated across six environments. TL2012-38/TL2012-55 and TL2012-25/TL2012-26 had 

significant negative SGA effects of -10.892 and -19.451 respectively implying their suitability to 

suppress MSV infection On the other hand, TL2012-26/TL2012-55 (14.592), TL2012-

25/TL2012-55 (9.440), TL2012-7/TL2012-55 (17.428), TL2012-42/TL2012-17 (12.078), TL2012-

42/TL2012-1 (9.485), TL2012-38/TL2012-26 (11.450), TL2012-7/TL2012-25 (28.377), and 

TL2012-68/TL2012-38 (10.768) were poor combiners for MSV resistance due to their positive 

SGA effects (Table 5.5). 

With regards to plant height, five hybrids: L2012-42/TL2012-17, TL2012-7/TL2012-17, TL2012-

1/TL2012-41, TL2012-7/TL2012-1 and TL2012-7/TL2012-68 displayed significant high SCA 

estimates at 119.981, 126.518, 63.902, 86.493 and 69.850, respectively which is not desirable 

for breeding for short plant stature (Table 5.5). 

About 33.3% of the hybrids had considerable differences on SCA effects for ear height. Of 

which ten hybrids exhibited positive while five had negatively significant SCA effects (Table 5.5). 

Hybrids with positive SCA effects were TL2012-38/TL2012-55 (18.5757), TL2012-68/TL2012-55 

(21.392) and TL2012-7/TL2012-55 (41.531) which all had one male parent in common. The 

hybrids with negative SCA effects were TL2012-42/TL2012-55 (-18.179), TL2012-68/TL2012-1 

(-16.653), TL2012-38/TL2012-41 (-13.289), TL2012-38/TL2012-1 (-21.678), and TL2012-

38/TL2012-41 (-20.475) which are not preferred due to small ear heights. 
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Seven hybrids out of the 45 showed significant differences with regards to their SCA effects on 

the number of ears per plant (EPT). The hybrids with significant positive estimates were 

TL2012-1/TL2012-17 (0.962), TL2012-7/TL2012-17 (0.617), TL2012-7/TL2012-1 (0.646), 

TL2012-68/TL2012-26 (0.520), and TL2012-7/TL2012-26 (0.922) while those with negative 

estimates were TL2012-38/TL2012-41 (-0.581) and TL2012-42/TL2012-1 (-0.511). Nine hybrids 

evaluated showed marked differences of SCA effects for husk covers of cob. Six hybrids had 

positive SCA effects and the remaining three had negative values. The hybrids with significant 

positive SCA estimates were TL2012-1/TL2012-55 (1.0747), TL2012-7/TL2012-41 (1.071), and 

TL2012-42/TL2012-26 (0.866) whereas others had negative estimates including TL2012-

17/TL2012-55 (-1.301), TL2012-68/TL2012-1 (-0.675) and TL2012-7/TL2012-38 (-1.238). 

Both positive and negative SCA effects were observed for days to anthesis (DA) and silking 

(DSL). Eight hybrids had significantly high SCA effects for DA, of which only two hybrids viz. 

TL2012-42/TL2012-55 (-4.406) and TL2012-38/TL2012-41 (-3.666) revealed negative SCA 

effects suggesting that they were good specific combiners. The remaining six hybrids which 

exhibited positive and significant SCA effects were considered as poor combiners. These 

hybrids were TL2012-26/TL2012-17 (4.008), TL2012-1/TL2012-41 (2.574), TL2012-42/TL2012-

1 (2.620), TL2012-7/TL2012-1 (5.1), TL2012-7/TL2012-26 (7.94) and TL2012-42/TL2012-25 

(2.756) (Table 5.5). 

Thirteen hybrids had significant SCA effects for DSL. Seven of which were considered as best 

combiners because they had negative SCA effects for days to 50% silking. These hybrids are 

TL2012-42/TL2012-55 (-4.277), TL2012-38/TL2012-17 (-3.219), TL2012-38/TL2012-41 (-

2.636), TL2012-42/TL2012-41 (-2.827), TL2012-7/TL2012-41 (-10.633), TL2012-68/TL2012-42 

(-3.311) and TL2012-7/TL2012-42 (-6.208). The hybrids with positive estimates of SCA effects 

were TL2012-17/TL2012-55 (4.814), TL2012-41/TL2012-55 (3.852), and TL2012-7/TL2012-55 

(5.433), TL2012-1/TL2012-41 (2.944), TL2012-25/TL2012-1 (3.786) and TL2012-7/TL2012-26 

(5.933) (Table 5.5). 
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Table 5.5 Estimates of the SCA effects of 45 single cross hybrids for yield and yield components when evaluated across six 

environments.  

No. Cross YLD MSV PHT EHT EPT HSC DA DSL 

1 TL2012-17/TL2012-55 0.832ns -0.080ns -1.190ns 7.796ns -0.1421ns -1.301*** -0.657ns 4.814*** 

2 TL2012-41/TL2012-55 0.188ns 6.119ns 6.785ns -9.009ns 0.0621ns -0.403ns -2.016ns 3.853** 

3 TL2012-1/TL2012-55 0.294ns -1.698ns 9.909ns 3.788ns 0.1621ns 0.747* 0.799ns -0.477ns 

4 TL2012-26/TL2012-55 0.794ns 14.592** -1.109ns 2.639ns 0.095ns 0.010ns -0.195ns -2.303ns 

5 TL2012-25/TL2012-55 0.602ns 9.440* 11.916ns 1.617ns 0.383ns -0.268ns -0.607ns -0.944ns 

6 TL2012-38/TL2012-55 0.115ns -10.892** -0.461ns 18.576*** 0.165ns -0.520ns 2.006ns 2.414ns 

7 TL2012-42/TL2012-55 -0.655ns -5.984ns -30.287ns -18.179** 0.051ns -0.502ns -4.406*** -4.277** 

8 TL2012-68/TL2012-55 0.598ns 0.709ns 30.569ns 21.392*** -0.225ns 0.136ns 0.453ns 1.331ns 

9 TL2012-7/TL2012-55 3.412*** 17.428* 51.602ns 41.531*** 0.333ns 0.134ns 3.709ns 5.433** 

10 TL2012-41/TL2012-17 1.517*** 4.940ns -8.947ns -5.930ns -0.013ns 0.346ns 0.762ns 0.264ns 

11 TL2012-1/TL2012-17 -2.457*** -8.436ns 16.594ns 17.217** 0.962*** 0.305ns 1.661ns 1.194ns 

12 TL2012-26/TL2012-17 1.261* -7.629ns -11.924ns 8.768ns 0.145ns 0.476ns 4.008*** 1.481ns 

13 TL2012-25/TL2012-17 0.886ns 7.678ns -8.899ns -2.237ns -0.234ns -0.336ns 1.305ns 0.744ns 

14 TL2012-38/TL2012-17 1.008ns 3.029ns -11.609ns -3.362ns 0.089ns 0.538ns 0.460ns -3.219** 

15 TL2012-42/TL2012-17 0.425ns 12.078** 119.981*** -9.300ns -0.274ns 0.230ns -0.386ns -0.244ns 

16 TL2012-68/TL2012-17 0.180ns 3.547ns -18.496ns -4.428ns -0.217ns 0.277ns -0.018ns -0.302ns 

17 TL2012-7/TL2012-17 3.325*** 3.724ns 126.518*** 63.16*** 0.617* 0.952ns 3.422ns 3.050ns 

18 TL2012-1/TL2012-41 0.178ns -6.070ns 63.902*** 45.687*** 0.083ns 0.4357ns 1.293ns 2.944* 

19 TL2012-26/TL2012-41 0.740ns -6.347ns 24.967ns 5.530ns 0.183ns 0.498ns 2.574* -0.436ns 

20 TL2012-25/TL2012-41 0.297ns -0.015ns 0.743ns -1.558ns -0.030ns -0.063ns 0.604ns 0.923ns 

21 TL2012-38/TL2012-41 0.332ns 3.203ns -17.384ns -20.475*** -0.581** -0.023ns -3.666** -2.636* 

22 TL2012-42/TL2012-41 0.238ns -3.931ns -36.044ns -13.289* -0.111ns -0.481ns 0.513ns -2.827* 
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23 TL2012-68/TL2012-41 0.061ns -8.329ns 3.3123ns 12.466* 0.154ns 0.416ns 0.597ns 1.2808ns 

24 TL2012-7/TL2012-41 3.536*** 5.501ns 21.459ns 9.293ns -0.379ns 1.0708* 1.265ns -10.633*** 

25 TL2012-26/TL2012-1 1.877*** 2.9614ns 9.175ns -4.431ns -0.3015ns 0.043ns 0.039ns 0.022ns 

26 TL2012-25/TL2012-1 0.738ns -3.966ns 7.701ns 5.997ns -0.138ns 0.004ns -1.139ns 3.786** 

27 TL2012-38/TL2012-1 0.110ns 7.444ns -10.01ns -21.678*** 0.019ns -0.206ns -1.776ns 2.011ns 

28 TL2012-42/TL2012-1 0.886ns 9.485* 30.581ns 36.459*** -0.5112** 0.062ns 2.61983* 2.131ns 

29 TL2012-68/TL2012-1 0.777ns 8.654ns -13.73ns -16.653** 0.129ns -0.675* 0.2873ns 1.489ns 

30 TL2012-7/TL2012-1 3.413*** -11.683ns 86.493** 16.098ns 0.6457* -0.088ns 5.100** 1.925ns 

31 TL2012-25/TL2012-26 -1.912*** -19.451*** 9.266ns 14.773* -0.038ns -0.275ns 0.1748ns 2.027ns 

32 TL2012-38/TL2012-26 1.014ns 11.450**  7.055ns -0.835ns -0.256ns 0.223ns -0.595ns 1.919ns 

33 TL2012-42/TL2012-26 -0.059ns -2.642ns 7.396ns 9.176ns -0.203ns 0.866** -1.524ns -0.694ns 

34 TL2012-68/TL2012-26 -2.041*** -2.940ns -9.082ns -11.210ns 0.520** -0.454ns -0.765ns 1.419ns 

35 TL2012-7/TL2012-26 2.437** 7.702ns 58.912ns 10.683ns 0.922*** 1.024* 7.944*** 5.933** 

36 TL2012-38/TL2012-25 0.580ns 6.298ns 26.914ns 9.143ns 0.173ns -0.055ns 0.301ns 2.939ns 

37 TL2012-42/TL2012-25 0.039ns -2.918ns 6.588ns 0.6798ns -0.015ns 0.254ns 2.756* -0.502ns 

38 TL2012-68/TL2012-25 0.758ns 4.583ns 8.111ns 11.526ns 0.099ns 0.676* 0.573ns 3.022ns 

39 TL2012-7/TL2012-25 2.406** 28.387*** 30.561ns 3.972ns 0.299ns -0.247ns 1.889ns 1.458ns 

40 TL2012-42/TL2012-38 -0.396ns -2.734ns -8.206ns 3.780ns 0.0329ns 0.294ns 2.127ns 2.772ns 

41 TL2012-68/TL2012-38 -0.295ns 10.768* -1.184ns -4.957ns 0.256ns 0.433ns -0.788ns -1.119ns 

42 TL2012-7/TL2012-38 4.803*** 7.636ns 42.913ns 9.855ns 0.143ns -1.237** 0.217ns 6.150ns 

43 TL2012-68/TL2012-42 2.504*** -0.524ns -3.176ns 4.763ns 0.143ns -0.258ns -2.218ns -3.311** 

44 TL2012-7/TL2012-42 3.501*** 19.770ns 74.314ns 13.743ns -0.285ns 0.078ns 2.622ns -6.208** 

45 TL2012-7/TL2012-68 3.003*** -2.907ns 66.850* 69.130*** 0.492ns 1.023* 1.7458ns 2.767ns 

*, **, and *** denote significance differences at P≤0.05, P≤ 0.01; and P≤0.001, respectively; DF=Degree of freedom; YLD= Grain yield (t/ha); MSV=MSV disease 
reaction in %; PHT=Plant height in cm; EHT= Ear height in cm; EPT= Number of ears per plant; HSC= Husk cover of cob; DA= Days to 50% anthesis; DSL= Days to  
50% silking 
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5.3.4 Heterosis  

The mid-parent heterosis was calculated following Falconer and Mackay (1966) and 

summarized for grain yield and MSV reaction considering the best 21 F1 maize hybrids only 

(Figures 5.2 and 5.3). The MPH for grain yield varied from 8% for TL2012-42/TL2012-1 to 138% 

for TL2012-7/TL2012-38 among the top yielding genotypes. Some 47.62% of these hybrids had 

heterosis above 50% (Figure 5.2).  Hybrids such as TL2012-68/TL2012-42, TL2012-41/TL2012-

17 and TL2012-7/TL2012-38 exhibited MPH above 50% and had also positive significant SCA 

effects for grain yield of 2.50, 1.52 and 4.80 t/ha, respectively (Table 5.5). Hybrid TL2012-

7/TL2012-38, showed significantly high SCA effect among all hybrids (Table 5.5) which also 

demonstrated the highest MPH of 138% (Figure 5.2). Hybrids such as TL2012-42/TL2012-1, 

TL2012-1/TL2012-41, TL2012-42/TL2012-25, and TL2012-68/TL2012-1 had poor (< 20%) MPH 

and revealed non-significant SCA effects (Table 5.5). As expected heterosis and SCA effects 

are positively correlated. 

Heterosis for MSV disease reaction varied from -38.2% for hybrid TL2012-25/TL2012-26 to 

67.6% for TL2012-68/TL2012-25 amongst 18 best selected genotypes (Figure 5.4). Hybrids 

which exhibited negative heterosis in a desirable direction for MSV reaction were TL2012-

68/TL2012-41, TL2012-26/TL2012-41, and TL2012-1/TL2012-41 (Table 5.5). These hybrids had 

one common male parent, TL2012-41, (Figure 5.3). Negative heterosis for MSV reaction is 

desirable and hence all genotypes with negative heterosis are considered for breeding because 

they are presumably resistant to MSV. In contrast, hybrids TL2012-68/TL2012-25, TL2012-

42/TL2012-1, TL2012-42/TL2012-25, TL2012-68/TL2012-42 and TL2012-68/TL2012-55 

revealed substantial mid-parent hetersosis above 35% (Figure 5.3) but with non-significant SCA 

effects except TL2012-68/TL2012-42 (Table 5.5). 
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 Figure 5.2: The magnitude of mid-parent heterosis (%) of grain yield among 21 best selected maize hybrids when evaluated across 
six MSV prone environments 
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Figure 5.3: The magnitude of mid-parent heterosis (%) of MSV reaction of 18 best selected maize hybrids when evaluated across six 
MSV prone environments 
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5.4 Discussion 

Genetic variability of parental inbred lines and their respective F1 hybrids 

Assessment of general and specific combining ability in maize is important for yield 

enhancement and stress tolerance (Khalid et al., 2013; Aly, 2013; Ali et al., 2014). Better 

utilization of parental inbred lines and their progenies in breeding depends on their general 

combing ability (GCA) and specific combing ability (SCA), respectively (Lou et al., 2011; Singh 

et al., 2014). In the current study, ten parental inbred lines were crossed using a half diallel 

design to determine estimates both GCA of the parents and SCA for their respective 45 cross 

progenies for MSV resistance, grain yield and other agronomic traits. Analysis of variance 

revealed that the mean squares of these two genetic parameters were significantly different 

(P<0.001) for most attributes studied. This implies that the importance of additive and non 

additive types of gene actions was prevailed among the experimental materials. Detection of 

genetic variability for GCA and SCA may facilitate selection of novel genetic materials (best 

combiners) for genetic improvement in maize because the success of any crop improvement is 

dependent on the amount of genetic variability available in the breeding materials (Ali et al., 

2011; Bello, 2012). The results were in general agreement with previous reports (Nzuve et al., 

2013; Ali et al., 2014; Moradi, 2014). The GCA/SCA ratio ranged from 1.7% for ear height to 

97.7% for MSV resistance implying that both GCA and SCA were involved in genetic control of 

the traits. Similar results were reported by Zare-Kohan and Heidari (2014) in wheat. This ratio 

measures the relative importance of the two genetic parameters in the control of the traits’ 

expressions; when the ratio approached unity it shows high predictability of GCA alone (Baker, 

1978; Abdel-Moneam et al., 2014; Karaya et al., 2014). GCA/SCA ratio was high (97.7%) on 

MSV reaction suggesting that additive gene action was important for this trait and  selection-

based strategies of accumulating additive gene effects would be appropriate and effective. High 

Baker’s ratio on MSV resistance was also reported by Mutengwa et al. (2012) who reported that 

GCA to SCA ratio was 83% in dwarf maize germplasm. Narrow sense heritability is directly 

related to the proportion of additive gene effects (Zare-Kohan and Heidari, 2014). The high 

narrow sense heritability of 97.7% on MSV resistance suggests that it is possible to obtain 

genetic gains through selection for MSV resistance from F1 maize hybrids since; some parents 

were able to transmit favourable genes to their subsequent cross progenies (Abrha et al., 2013). 

Recurrent and backcross breeding can therefore be used to develop maize varieties with 

resistant to MSV disease. High narrow sense heritability can also imply that selection for 

resistance to MSV can be effective.  
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Estimates of GCA effects among inbred lines 

The GCA effect is a good measure of additive gene action and it varies among the parental 

inbred lines. The line TL2012-42 was the best general combiner for grain yield. Hybrid 

combinations involving this parent produced significant mean yield performance suggesting that 

it transmits greatest favourable genes to its progenies (Badu-Apraku and Oyekunle, 2012). 

Therefore, deployment of this inbred line in breeding would result in increased grain yield of 

maize in Tanzania. Lines TL2012-41 and TL2012-1 were identified with significant negative 

GCA for resistance to MSV implying that they are good combiners for MSV resistance. Their 

cross progenies have a tendency to reduce infection for MSV thus they should be selected for 

use in resistance breeding programmes. Selection procedures such as recurrent and backcross 

breeding will maximize resistance genes. TL2012-42 and TL2012-55 were considered as best 

general combiners for PHT and EHT due to their significant positive GCA effects, respectively 

and can be selected for increasing yield in their hybrid combinations. Tall maize genotypes with 

high ear positioning or placement may offer opportunity for more ears to develop on the nodes 

below and ultimately increasing final yield (Estakhr and Heidari, 2012; Ali et al., 2012) even 

though they may be susceptible to lodging (Amiruzzaman et al., 2010; Estakhr and Heidari, 

2012). Number of ears per plant is an indicator for increased grain yield while genotypes with 

long tipped off husk covers of maize cob provide maximum protection of the ear against birds’ 

damage, fungal infection and early germination of kernel when moisture and conditions suitable 

for germination occurred in the field, the reason why breeders prefer genotypes with long husk 

covers of cob. Therefore lines TL2012-17 and parents TL2012-55 are best candidates for 

breeding towards these two traits and increased final grain yield. These results are consistently 

similar with those reported by Paven et al. (2011) and Abrha et al. (2013). Of all inbred lines, 

TL2012-1 and TL2012-68 were selected with negative significant GCA effects for reduced days 

to anthesis and silking, respectively. Breeding for early maturity is important especially in recent 

decades due to undesirable effects of climate change on the amount and distribution of rainfall.  

Estimates of SCA effects and mean performance of 45 F1 hybrids 

Hybrid performance can be predicted mostly on the basis of SCA of progenies (Mutengwa et al., 

2012). TL2012-68/TL2012-42 and TL2012-7/TL2012-42 had positive significant SCA effects for 

grain yield suggesting that these hybrids can be directly released as single cross hybrids or 

developed further as three way hybrids before being released for production in Tanzania or 

similar agro-ecologies in sub-Saharan Africa. The role of three way hybrids is to improve seed 

production because single cross hybrids are usually poor seed producers because the female 
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parent is an inbred line (MacRobert et al., 2014). These results were in harmony with previous 

studies (Amiruzzman et al., 2010; Ali et al., 2012; Kamara et al., 2014). 

For MSV reaction, inbred lines TL2012-25 and TL2012-26 were identified as good combiners 

useful in MSV resistance breeding of maize. Similar result was reported by Mutengwa et al 

(2012) when studying genetic analysis of resistance to MSV in dwarf maize germplasm. Hung 

and Holland (2012) also reported similar findings in their diallel analysis of resistance to 

Fusarium ear rot and Fumonisin contamination in maize. Tall maize genotypes are important not 

only for increase grain yield but also for high biomass production for silage production.  Hybrids 

TL2012-42/TL2012-17 (119.981 cm) and TL2012-7/TL2012-17 (126.52 cm) showed good 

specific combining ability for plant height and can be released for silage production in intensive 

livestock production agro-systems like in Arusha and Manyara regions. These results were 

consistent with those reported by Bertoia and Aulicino (2014) and Ertiro et al. (2013). 

Hybrids with large number of ears per plant and long husk cover off the tip of the cob are 

desirable for increased yield and cob protection from several disease and pests.Therefore 

hybrids such as TL2012-1/TL2012-17 (0.962) and TL2012-1/TL2012-55 (1.075) had significantly 

high positive SCA effects and were considered as best combiners for ears per plant and husk 

covers, respectively. TL2012-42/TL2012-55 (-4.406 days) and  TL2012-42/TL2012-41 (-2.636 

days), were good specific combiners for DA and DSL, respectively and can be grown in places 

like in Monduli, Simanjiro and Hai districts in Tanzania that receive short rains. Akinwale et al. 

(2014) reported similar findings when studying heterotic grouping of tropical early maturing lines 

based on combing ability.  

Heterosis 

Maize exhibits great potential for heterotic expressions to which selection of superior genotypes 

can be made (Ali et al., 2012; Goff and Zhang, 2013; Marcon et al., 2013; Shen et al., 2014). 

Analysis of mid-parent heterosis for grain yield and MSV reaction in the current study showed 

significant variations among selected F1 hybrids. This suggests the positive role of non-additive 

gene effects in the expressions of heterosis (Abdel-Moneam et al., 2014). Mid-parent heterosis 

in the current study ranged from 8 to 138%. Crosses TL2012-7/TL2012-38 and TL2012-

38/TL2012-17 manifested the highest MPH of 118% and 138% respectively than other hybrids 

tested for grain yield (Figure 5.2). These hybrids can be selected for increased grain yield. This 

result was in line with that of Oppong (2013) who reported MPH for grain yield between -2.40 to 

111.48% for TZE117/LA276 and CML442/LA80, respectively. Drinic et al. (2012) also reported 

that the values of mid-parent heterosis for grain yield of some lines evaluated were 136.72 and 

144.46% when studying heterosis of maize hybrids. However, this result disagrees the reports 
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of Abdel-Moneam et al. (2014) who found the highest mid-parent heterosis of 295.73%. 

Differences in heterosis are common among maize populations because they differ significantly 

in many aspects including potential yield, genetic diversity, levels of combining ability and 

production environments (Offermann and Peterhansel, 2014). The relative low levels of MPH of 

the test materials could be greatly caused by MSV infection stresses since they were evaluated 

under high MSV disease prevalence. For MSV resistance, hybrids with negative mid-parent 

heterosis are desirable because they have potential to reduce damage caused by the disease. 

Hybrid combinations involving a common male parent TL2012-41 with TL2012-1, TL2012-68 

and TL2012-26 manifested negative MPH ranging from 0.0 to -38.2% with TL2012-25/TL2012-

26 exhibiting highest negative value. This implies that these hybrids are considered to be 

resistant against MSV disease. Therefore these crosses can be selected for production in MSV 

stricken areas of Tanzania. This result was in harmony with that of Mengesha (2013) who found 

0.0 to -25% MPH for corn leaf blight resistance in Ethiopia. 

5.5 Conclusions 

Combining ability analysis of maize (Zea mays L.) inbred lines and their hybrids are essential to 

develop novel recombinants or hybrid varieties to exploit heterosis. Estimates of both GCA and 

SCA have provided important information about the value of inbred lines and hybrids. This will 

facilitate development of new hybrids to enhance maize production and productivity in the 

northern Tanzania or throughout the country at large. The significant variation of GCA and SCA 

effects revealed that considerable genetic variations exist among genotypes. This information 

will be used to develop hybrids with high heterosis for yield and MSV resistance in Tanzania.  

Inbred line TL2012-42 had significant positive GCA effects for yield, and selected as good 

general combiner while lines TL2012-41 (-10.926), TL2012-1 (-10.792), and TL2012-42 (-

10.748) were good general combiners expressing low MSV reactions. These lines will be 

exploited in maize breeding program for developing cultivars with improved grain yield and MSV 

resistance. In addition, crosses such as TL2012-7/TL2012-42, and TL2012-7/TL2012-68 had 

significant (P <0.001) positive SCA effects for  grain yield suggesting that these hybrids have 

good specific combining ability for yield and can be selected for use as single cross hybrids or 

developed further as three way hybrids before being released for large-scale production. While 

TL2012-38/TL2012-55 (-10.892%) and TL2012-25/TL2012-26 (-19.451%) had negative 

significant SCA effects for MSV reaction and were selected with good specific combining ability. 

Heterosis for yield and MSV resistance revealed considerable genetic variation among hybrids. 

Maximum heterosis for grain yield at 138% was displayed by TL2012-7/TL2012-38 while 

TL2012-25/TL2012-26 had lowest desirable negative heterosis of -38.2% for MSV resistance. 
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CHAPTER SIX:  

Genotype by environment interaction of grain yield and MSV resistance 

among novel maize hybrids in the mid-altitude agro-ecologies of Tanzania 

 

Abstract: 

Maize (Zea mays L.) is among the main food security crops grown in a wide range of 

environments in Tanzania. In the country, grain yields of maize are considerably affected by 

genotype x environment interaction (GXE) and MSV disease. The objective of this study was to 

investigate the GXE interaction for grain yield and MSV resistance among newly developed 

maize hybrids in Tanzania. Forty five novel single cross hybrids and five standard check three-

way cross hybrids were evaluated using a 5 x10 alpha lattice design with two replications across 

six environments. The Additive Main Effects and Multiplicative Interaction (AMMI) and genotype, 

and genotype by environment (GGE) biplot models were used to assess the magnitude of GXE 

interaction of grain yield and reaction to MSV disease among test materials. Results from the 

AMMI analysis of variance revealed a significant contribution of the environmental effect on 

grain yield accounting to 52.06% of the total variation among hybrids. Genotypes and GXE 

contributed to 12.4% and 17.76% of the total variation of hybrids of this trait, respectively. 

Genotypes explained 45.52% of the total variation of hybrids for MSV resistance while the 

contribution of environments was minimal (2.77%). Hybrid G43 was identified with relatively high 

mean grain yield of 6.70 t/ha with low MSV severity of 31.88% across environments. 

Experimental hybrids such as G10, G14 and G28 had high yield performance of 6.72, 6.00, and 

6.23 t/ha, in that order across environments but with highly susceptible reaction to MSV. 

Conversely, hybrid G31 expressed low MSV infection but yielded the lowest at each 

environment. Hybrids such as G23 with low grain yields of 4.84 t/ha, G18 (5.14 t/ha), and G34 

(1.94 t/ha) showed relatively low MSV infection levels which are useful genetic resources for 

resistance breeding. Experimental hybrids with high grain yield and MSV resistance selected in 

this study are good candidates for direct production or for future three-way hybrid development 

in Tanzania.  

Keywords: AMMI analysis, GXE interaction, GGE biplot, Hybrid, Maize, MSV. 
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6.1 Introduction 

Maize (Zea mays L.) is the most important cereal crop grown throughout the world for food, 

livestock feed and other industrial uses. In Tanzania, maize is a key food security crop 

supporting approximately 45 million people (Barreiro-Hurle, 2012; Kage et al., 2013). The crop 

is commonly grown in a wide range of environmental conditions covering 45% of the total 

cultivated land. Maize contributes to about 50% of cash income in the rural areas of Tanzania 

(Barreiro-Hurle, 2012; Kage et al., 2013; Mrutu et al., 2014). Smallholder farmers are the key 

maize producers and account for about 85% of the total maize production in Tanzania. These 

farming systems predominantly depend on rain-fed agriculture and often achieve low yields due 

to several production constraints (Barreiro-Hurle, 2013; Mrutu et al., 2014) including the 

influence of genotype by environment (GXE) interaction (Adu et al., 2013; Fischer et al., 2014). 

GXE interaction is defined as the differential response or ranking of genotypes when grown 

across environments, i.e., across locations or multiple seasons (Kamutando et al., 2013; 

Mohamed et al., 2013; Mustapha and Bakari, 2014).  

The main causes of GxE are differences among genotypes, environmental factors such as biotic 

and abiotic entities and their interaction (Dari, 2011; Rashidi et al., 2013). Previous studies have 

reported that GXE interaction is greatly exacerbated by the outbreak of crop stresses such as 

drought or diseases thereby causing significant reduction in yield stability of genotypes 

(Bazinger et al., 2006; Kassa et al., 2013; Mengesha, 2013; Carns et al., 2013; Badu-Apraku et 

al., 2014).  GxE interaction reduces selection efficiency (Comstock and Moll, 1963; Badu-

Apraku et al., 2014) and complicates cultivar recommendations, especially when crossover 

interaction and rank differences occur (Mengesha, 2013; Rashidi et al., 2013; Dagnachew et al., 

2014) leading to minimal selection responses (Grishkevic and Yanai, 2013; Badu-Apraku et al., 

2014). Thus rigorous data collection and analysis across representative test environments is 

important in order to understand GXE effects (Nyoka et al., 2012; Trouche et al., 2014).  

Breeding for high yielding and stable cultivars is important in maize based farming communities 

such as in Tanzania (Liu et al., 2011; Badu-Apraku et al., 2014, Bujak et al., 2014). Yield 

stability assessment is especially important in the northern parts of the country due to the 

complex and poor performing farming systems and high infestations of foliar viral diseases such 

as maize streak virus (MSV) and maize lethal necrosis (MLN) (Liu et al., 2011; Dagnachew et 

al., 2014). 

There is little information that reported the effect of GXE interaction and stability of newly 

developed maize cultivars when grown under maize streak virus stressed conditions. GxE 
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studies will facilitate identification of possible adaptation areas of test genotypes for large scale 

production or further evaluation (Liu et al., 2011; Adu et al., 2013; Bujak et al., 2014). 

Genotypes with relatively high mean grain yield across environments and minimum GXE 

interaction are best candidates for wide-area production (Lopez et al., 2012: Mengesha 2013). 

Stable genotypes often show superiority in yield, quality and other desirable agronomic 

characteristics across target test or production environments (Adu et al., 2013; Kamutando et 

al., 2013; Mengesha, 2013). Identification of cultivars with consistently high mean yield 

performance across environments (over time and locations) would bring a good return on 

investment by maize growers who uses production inputs such as fertilizers and agro-chemicals 

(Hans, 2010).  

Different statistical or stability models are available to estimate the magnitude of GXE 

interaction (Khalil et al., 2011; Jalala, 2011; Bujak et al., 2014; Badu-Apraku et al., 2012). The 

commonest and widely used statistical models include the Additive Main Effects and 

Multiplicative Interaction (AMMI) and the Genotype main effect and Genotype by Environment 

interaction effects (GGE) (Jandong et al., 2011; Mukherjee et al., 2013; Munawar et al., 2013; 

Shiri, 2013). These statistical tools are powerful to determine the pattern of genotypic responses 

across environments and have been widely used by plant breeders (Balestre et al., 2009; 

Habliza, 2010; Dehghani et al, 2009; Oliveira et al., 2010; Dagnachew et al., 2014). The AMMI 

and GGE biplot analyses models capture GXE interaction sum of squares and separate the 

main and interaction effects (Badu-Apraku et al., 2012). They also allow sensible biological 

interpretations of the data (Gurmu et al., 2009; Beyene et al., 2012; Kato et al., 2013; Rad et al., 

2013; Rashidi et al., 2013). GGE biplot is based on environment centred principal component 

analysis (PCA) whereas AMMI uses double centered PCAs (Gordon-Mendoza et al., 2010; 

Oliveira et al., 2011; Farshadfar et al., 2013). Both analyses are suitable especially in 

delineating suitable mega-environments for production (Balestre et al., 2009; Oliveira et al., 

2011). GGE biplot analysis provides a more complete visual evaluation of the data by 

simultaneously representing mean performance and stability (Yan et al., 2007). It also displays 

the won where pattern of the data leading to the identification of high yielding and stable 

genotype (Araus et al., 2008; Rad et al., 2013). 

Multi environmental trials and subsequent data collection and analysis involving experimental 

hybrids is helpful to identify genotypes with high and stable yield performance and to select test 

environments (Kandus et al., 2010). Therefore, the objective of this study was to investigate the 

GXE interaction for grain yield and MSV resistance among newly developed maize hybrids in 

Tanzania using AMMI and GGE biplot methods.   
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6.2 Materials and methods 

6.2.1 Study sites  

The study was conducted across six different environments, consisting of three locations and 

two seasons in Tanzania (Table 6.1 and Figure 6.1). The three locations are known hot spots 

for MSV disease. The locations vary significantly in soils, mean annual temperatures, amount 

and distribution of rainfall. Variation in growing environments allows testing of the newly 

developed hybrids for GXE interaction and their stability towards yield and MSV resistance. 

 

                  Ngaramtoni Arusha   

 

                      

                  Krishna Babati 

 

 

                 Igomelo Mbeya  

 

 

Figure 6.1: Map of Tanzania showing sites of the study  
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Table 6.1 Descriptions of the six environments used for the study 

Environment 
Codes Site Season District Region 

Geographic position Mean 
annual 
rainfall 
(mm) 

Temperature 
(
0
C Soil 

type 
Longitude Latitude Elevation 

(masl) 
Min Max 

E1 Ngaramtoni 2012/13 

Arusha Arusha 3
0
 18’S 36

0
34’E 1520 

214 17 29 Clay 
silt 
loam E2 Ngaramtoni 2013/24 400 14 30 

E3 Krishna 2012/13 

Babati Manyara 4
.0  
22’S 35

0
 77’E 1100 

650 25 30 Red 
clay 
loam E4 Krishna 2013/14 650 25 30 

E5 Igomelo 2012/13 

Mbarali Mbeya 8
0
46’S   34

0
23’E 1118 

450 25 31.8 Red 
sandy 
loam E6 Igomelo 2012/14 650 23.7 30 

Source: Environmental Benchmark (2012); East African Community Figures and Facts Report (2014) 

6.2.2 Plant material and experimental design 

 
The study used a total of 50 maize hybrids consisting of 45 newly developed and five standard 

check three-way hybrids (Table 6.2). The standard checks are commonly growing three-way 

hybrids which were obtained from the local markets. The 50 hybrids were field planted in a 5 

x10 lattice design with two replications across the six environments. The plot consisted of 2 

rows of 5.0 m length. The spacing between rows were 75 cm and between plants of 30 cm. A 

healthy and vigorous seedling was established per hill. A 150 kg ha-1 Di-amonim phosphate 

(DAP) fertilizer was applied during planting while an equal amount of Calcium Amonium Nitrates 

(CAN) was top dressed at six weeks after planting. The trials were conducted under rain-fed 

conditions with supplemental irrigation when required.  
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Table 6.2 Fifty maize hybrids used in the study showing pedigree and sources of parents used in cross formation.  

No GID Genotype/hybrid Pedigree Origin of parents/hybrids  

1 G1 TL2012-68/TL2012-55 CML509/09MAK1-77 CIMMYT/Kenya X UKZN/South Africa 

2 G2 TL2012-42/TL2012-55 SML125/09MAK1-77 SARI/Tanzania X UKZN/South Africa 

3 G3 TL2012-42/TL2012-25 SML125/MAS[MSR/312]-119-5-1-1-3-B SARI/Tanzania X  CIMMYT/Zimbabwe 

4 G4 TL2012-26/TL2012-1 TZE-W Pop x 1368 STR S7 Inb.6/CML505 IITA/Nigera X CIMMYT/Kenya 

5 G5 TL2012-38/TL2012-1 P43-1-1-1-BBB/CML505 SARI/Tanzania X CIMMYT/Kenya 

6 G6 TL2012-42/TL2012-41 SML125/ CML390 SARI/Tanzania X CIMMYT/Kenya 

7 G7 TL2012-1/TL2012-17 CML505/CML505 CIMMYT/Kenya X CIMMYT/Kenya 

8 G8 TL2012-68/TL2012-38 CML509/P43-1-1-1-BBB CIMMYT/Kenya X SARI/Tanzania 

9 G9 TL2012-68/TL2012-26 CML509/TZE-W Pop x 1368 STR S7 Inb.6 CIMMYT/Kenya X IITA/Nigeria 

10 G10 TL2012-41/TL2012-17  CML390/CML505 CIMMYT/Kenya X CIMMYT/Kenya 

11 G11 TL2012-7/TL2012-26 MAS[MSR/312]-119-5-1-4-1-BB/TZE-W Pop x 1368 STR S7 Inb.6 CIMMYT/Zimbabwe X IITA/Nigeria 

12 G12 TL2012-42/TL2012-1 SML125/CML505 SARI/Tanzania X CIMMYT/Kenya 

13 G13 TL2012-41/TL2012-55  CML390/09MAK1-77 CIMMYT/Kenya X UKZN/South Africa 

14 G14 TL2012-42/TL2012-26 SML125/TZE-W Pop x 1368 STR S7 Inb.6 SARI/Tanzania X IITA/Nigeria 

15 G15 TL2012-68/TL2012-17 CML509/CML505 CIMMYT/Kenya X CIMMYT/Kenya 

16 G16 TL2012-7/TL2012-68 MAS[MSR/312]-119-5-1-4-1-BB/CML509 CIMMYT/Zimbabwe X CIMMYT/Kenya 

17 G17 TL2012-26/TL2012-55 TZE-W Pop x 1368 STR S7 Inb.6/09MAK1-77 IITA/Nigera X UKZN/South Africa 

18 G18 TL2012-42/TL2012-38 SML125/P43-1-1-1-BBB SARI/Tanzania X SARI/Tanzania 

19 G19 TL2012-7/TL2012-1 MAS[MSR/312]-119-5-1-4-1-BB/CML505 CIMMYT/Zimbabwe X CIMMYT/Kenya 

20 G20 TL2012-38/TL2012-26 P43-1-1-1-BBB/TZE-W Pop x 1368 STR S7 Inb.6 SARI/Tanzania X IITA/Nigeria 

21 G21 TL2012-7/TL2012-25 MAS[MSR/312]-119-5-1-4-1-BB/MAS[MSR/312]-119-5-1-1-3-B CIMMYT/Zimbabwe X CIMMYT/Zimbabwe 

22 G22 TL2012-26/TL2012-17 TZE-W Pop x 1368 STR S7 Inb.6/CML505 IITA/Nigera X CIMMYT/Kenya 

23 G23 TL2012-68/TL2012-42 CML509/SML125 CIMMYT/Kenya X SARI/Tanzania 

24 G24 TL2012-17/TL2012-55 CML505/09MAK1-77 CIMMYT/Kenya X UKZN/South Africa 

25 G25 TL2012-25/TL2012-17 MAS[MSR/312]-119-5-1-1-3-B/CML505 CIMMYT/Zimbabwe X CIMMYT/Kenya 

26 G26 TL2012-38/TL2012-25 P43-1-1-1-BBB/MAS[MSR/312]-119-5-1-1-3-B SARI/Tanzania X  CIMMYT/Zimbabwe 

27 G27 TL2012-25/TL2012-55 MAS[MSR/312]-119-5-1-1-3-B/09MAK1-77 CIMMYT/Zimbabwe X UKZN/South Africa 

28 G28 TL2012-42/TL2012-17 SML125/CML505 SARI/Tanzania X CIMMYT/Kenya 
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29 G29 TL2012-68/TL2012-1 CML509/CML505 CIMMYT/Kenya X CIMMYT/Kenya 

30 G30 TL2012-1/TL2012-41 CML505/ CML390 CIMMYT/Kenya X CIMMYT/Kenya 

31 G31 TL2012-25/TL2012-41 MAS[MSR/312]-119-5-1-1-3-B/ CML390 CIMMYT/Zimbabwe X CIMMYT/Kenya 

32 G32 TL2012-38/TL2012-17 P43-1-1-1-BBB/CML505 SARI/Tanzania X CIMMYT/Kenya 

33 G33 TL2012-25/TL2012-26 MAS[MSR/312]-119-5-1-1-3-B/TZE-W Pop x 1368 STR S7 Inb.6 CIMMYT/Zimbabwe X IITA/Nigeria 

34 G34 TL2012-7/TL2012-38 MAS[MSR/312]-119-5-1-4-1-BB/P43-1-1-1-BBB CIMMYT/Zimbabwe X SARI/Tanzania 

35 G35 TL2012-68/TL2012-25 CML509/MAS[MSR/312]-119-5-1-1-3-B CIMMYT/Kenya X CIMMYT/Zimbabwe 

36 G36 TL2012-26/TL2012-41 TZE-W Pop x 1368 STR S7 Inb.6/ CML390 IITA/Nigera X CIMMYT/Kenya 

37 G37 TL2012-7/TL2012-55 MAS[MSR/312]-119-5-1-4-1-BB/09MAK1-77 CIMMYT/Zimbabwe X UKZN/South Africa 

38 G38 TL2012-38/TL2012-41 P43-1-1-1-BBB/ CML390 SARI/Tanzania X CIMMYT/Kenya 

39 G39 TL2012-1/TL2012-55 CML505/09MAK1-77 CIMMYT/Kenya X UKZN/South Africa 

40 G40 TL2012-25/TL2012-1 MAS[MSR/312]-119-5-1-1-3-B/CML505 CIMMYT/Zimbabwe X CIMMYT/Kenya 

41 G41 TL2012-7/TL2012-41 MAS[MSR/312]-119-5-1-4-1-BB/ CML390 CIMMYT/Zimbabwe X CIMMYT/Kenya 

42 G42 TL2012-7/TL2012-42 MAS[MSR/312]-119-5-1-4-1-BB/SML125 CIMMYT/Zimbabwe X SARI/Tanzania 

43 G43 TL2012-68/TL2012-41 CML509/ CML390 CIMMYT/Kenya X CIMMYT/Kenya 

44 G44 TL2012-38/TL2012-55 P43-1-1-1-BBB/09MAK1-77 SARI/Tanzania X UKZN/South Africa 

45 G45 TL2012-7/TL2012-17 MAS[MSR/312]-119-5-1-4-1-BB/CML505 CIMMYT/Zimbabwe X CIMMYT/Kenya 

 
Standard checks 

  
46 G46 SC627 SEEDCO 

47 G47 UH615 ARI- Uyole 

48 G48 SARI H308 ARI-Selian, ASA 

49 G49 SARI H208 ARI-Selian, ASA 

50 G50 PANNAR 4M-19 Pannar seed company 

GID = Genotype identifier, ASA= Agricultural Seed Agency; ARI = Agricultural Research Institute 
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6.2.3 Data collection and analysis 
 
Data collected included grain yield (t/ha) and MSV reaction expressed in %. Data were first 

subjected to the combined analysis of variance (ANOVA) using the SAS standard GLM 

procedure (SAS Institute, 2012). This was followed by AMMI and GGE biplot analyses. The 

breeding view statistic utility in the BMS software was used for AMMI and GGE biplot analyses 

(McLaren, 2014).  

MMI analysis 

The AMMI analysis combines the significant results of analysis of variance with principal 

component analysis. It first fits the additive main effects such as genotypes and environmental 

main effects using the analysis of variance (ANOVA) procedure followed by the multiplicative 

effects of GXE interaction using the principal component analysis (PCA). The formula for AMMI 

model analysis was as follows:                         
   ; where Yij is the mean 

performance of genotype ith in environment jth;   is the grand mean;       are the genotype 

and environmental deviation means from the grand mean, respectively;    is the square root of 

eigenvalue of the PC analysis axis n;            are principal component scores (eigenvectors) 

for axis n of the genotype ith and jth environment, respectively. The term n in the model is the 

number of principal component retained in the model and     = the error term. The environment 

and genotype PCA scores are expressed as the unit vector multiplied by the square root of 

    that is the environment PCA score =(√        and genotype PCA score = (√         

AMMI stability value (ASV) 

ASV is an important parameter that measures the relative stability of each genotype in each 

environment and across environments (Dagnachew et al. 2014). This parameter was calculated 

according to the formula suggested by Purchase (1997). The ASV is the distance of interaction 

principal component IPCA from coordinate point to the origin in a two dimensional plot of IPCA 1 

against IPCA 2 scores in the AMMI model. Because the IPCA1 contributes more to the GXE 

interaction sum of squares then a weighted value has to be estimated for each genotype and 

environment according to the relative contributions of the first two IPCAs. The following formula 

was used in the calculation of AMMI stability value (ASV).                

            
                

                ; Where  
       

       
 , represents the weight assigned to the first interaction principal 

component score due to its high contributions in the GXE model. The larger the ASV value in 

either direction positive or negative the more specifically adapted the genotype to a certain 
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environment. Smaller ASV indicates a more stable genotype across environments (Purchase, 

1997; Dagnachew et al., 2014). 

GGE biplot analysis  

The GGE-biplots (Yang et al., 2009) were generated using the first two symmetrical scaled 

principal components; PC1 and PC2 for an average tester coordinate (ATC) or average 

environment coordination (AEA) view biplots. To compare yield performance, adaptability and 

stability among genotypes a scatter diagram with two lines crossing each other at the original 

centre of the biplot was generated. The abscissa (i.e., x-axis) represented yield performance 

while the vertical line (y-axis) represented the level of variability from zero (i.e., centre of origin). 

Genotypes located in right hand side of this vertical line were considered to be adapted to high 

yielding environments while those which located on the left hand side of this line top or below 

the centre of origin were considered to be adapted to low yielding environments and any 

genotype situated far from the origin (y=0), was considered unstable in its performance. To 

visualize a correlation between environments and their discriminating ability a vector view biplos 

were generated while to identify mega environments and winning genotypes in each mega 

environments a polygon view was also generated. GGE biplot was also used to identify ideal 

test environments or genotypes using average environment coordination (AEA) view with 

concentric circles. All graphic summaries were done using the GENSTAT analytical software 

version 14. The applications of GGE biplot analysis have been described by other researchers 

(Yan and Tinker, 2006; Yan et al., 2007). 

 

6.3 Results and discussion 

6.3.1 Analysis of variance  

Across site and combined analyses of variance for grain yield and MSV resistance showed 

significant (p <0.05) differences among genotypes and their interaction with the environment 

(Table 6.3). The preliminary analysis of variance detected the presence of GXE interaction and 

allowed to assess the magnitude of GXE interaction among the maize hybrids.  
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Table 6.3 Combined analysis of variance (ANOVA) for grain yield and MSV reaction 

Source of variation DF 

GYD MSV 

SS MS F Value Pr > F SS MS F Value Pr > F 

Replication 1 0.00 0.00 0 0.9792 1187.8 1187.789 1.66 0.1982 

Block 18 15.73 0.87 0.9 0.578 12636.4 702.0206 0.98 0.4792 

Genotype (G) 49 486.12 9.92 10.23 <.0001 247804.109 5057.227 7.08 <.0001 

Environment (E) 5 2059.62 411.92 424.59 <.0001 8258.4 1651.686 2.31 0.0441 

GXE  interaction 245 679.14 2.77 2.86 <.0001 281115.918 1147.412 1.61 <.0001 

Error 281 272.62 0.97     200637.629 714.0129     

Total 599 3578.13  426.46     760138.784  10460.2     
DF = Degrees of freedom, GYD= Grain yield (t/ha), MSV= Maize streak virus disease severity scores (%), SS = Sum of squares, 
MS =Mean squares 

 
 

6.3.2 AMMI analysis  

Results from AMMI analysis revealed that both genotypes and environments were highly 

significantly different (P<0.001) for grain yield and MSV reaction (Table 6.4). Several previous 

studies conducted on GXE interaction in many crops reported significant variations of genotype, 

environment and their interactions (Mohamed et al., 2013; Adu et al., 2013, Grada and Ciulca, 

2013; Kamutando et al, 2013). The first and second interaction principal components (IPCA 1 

and 2) were highly significant (p< 0.001) for all traits. This was in general agreement with 

Mohamed et al. (2013). However, only IPCA2 exerted significant effect on MSV reaction (Table 

6.3). Both results indicated the existence of GXE interaction among genotypes for these traits. 

The IPCs explained 67.72% of the total GXE interaction effect on grain yield and 60.43% on 

MSV disease reaction, which were in agreement with that of Mohamed et al., 2013. The first 

principal component (IPCA 1) explained 40.97and 37.79% of the total variation of grain yield 

and MSV reaction among the hybrids while the second component (IPCA2) explained 26.73 and 

22.64% of the variation, in that order (Table 6.3). Therefore, there was a differential yield 

performance among the 45 newly developed F1 maize hybrids owing to considerable GXE 

interaction. Akter et al. (2014) reported similar results in a study of AMMI biplot analysis for 

stability of grain yield in hybrid rice. 

Genotype and GXE interaction contributed to 12.4 and 17.76% of the total explained variation of 

grain yield, respectively. This was relatively less when compared to the environmental 

contribution at 52.06%. This suggests that the environment contributed greatly to the observed 

GXE interaction of the test genotypes. The environmental effects in the current study explained 



144 
‘ 

52.06% of the total variation among genotypes on grain yield while 12.4% and 17.2% were due 

to genotype and GXE interaction, respectively. Mohamed et al. (2013) reported 9.48 and 15.5% 

were due to genotype and GEI respectively, typically the same results as what is presented in 

this study. Also, Nzuve et al (2013) reported that 64.5% of total variation was attributable to 

environments. Their result was comparable to this result although it is slightly higher in respect 

to what has been reported in this study. 

  

Table 6.4 AMMI analysis of variance for grain yield and MSV severity of 50 maize genotypes 

tested across six environments in Tanzania  

DF= Degree of freedom, SS=Sum of squares, TSS= Total sum of squares, MS= Mean squares; GYD= 
Grain yield (t/ha), MSV= Maize streak virus disease severity (%) 

 

 

6.3.3 Mean grain yields of genotypes  

The mean grain yields of the 45 experimental maize hybrids coded G1 to G45 across the six 

environments (E1-E6) are indicated in Table 6.5. Genotype, G10 had the highest overall mean 

grain yield of 6.72 t/ha and was ranked first across all environments. The same hybrid 

performed substantially high in E2, E3, and E6, with mean grain yield of 8.62, 7.37 and 7.54 

t/ha, in that order where it ranked the second. The AMMI stability values (ASV) among 

experimental materials ranged from -3.714 to 2.587 displayed by G6 and G45, respectively 

(Table 6.5 and Figure 6.2). Other genotypes with significant negative ASVs were G3, G11, G26 

and G50 while those with significant positive values were G28 and G37 (Table 6.5; Figure 6.2). 

Genotypes with large ASV are considered to be variable. Genotypes such as G12, G18, G19, 

G35, and G41 had relatively low ASV values of 0.157, 0.065, 0.038, 0.132 and 0.120, 

respectively and were considered stable. Dagnachew et al. (2014) reported similar results in a 

Source of variation DF 

GYD MSV 

SS MS % TSS %GEI SS MS %TSS %GEI 

Genotypes (G) 49 249.1 5.08*** 12.4   99157 2023.6*** 42.52   

Environments (E) 5 1043.9 208.77*** 52.06 

 

1829 365.8ns 2.77 

 GXE interactions 245 356.1 1.45 17.76 

 

66109 269.8 28.35 

  IPCA 1 53 145.9 2.75*** 

 

40.97 24984 471.4*** 

 

37.79 

 IPCA 2 51 95.2 1.87*** 

 

26.73 14970 293.5* 

 

22.64 

 Residuals 141 115 0.82     26155 185.5     

Total  543 2005.2 220.74     233204 3609.6     



145 
‘ 

study of additive main effects and multiplicative interaction (AMMI) and genotype by 

environment interaction (GGE) biplot analyses aid selection of high yielding and adapted finger 

millet varieties. G43 ranked the second in yield performance across all environment with a mean 

of 6.70 t/ha and found to be most adapted in E5 and E6 as reflected by its relatively high ASV 

value of 0.788. It produced a maximum grain yield of 8.04 and 7.65 t/ha at E5 and E6, 

respectively (Table 6.5). G28 and G15 were also among the best yielding genotypes identified 

in this study; they respectively yielded 6.23 and 6.07 t/ha across all environments and were 

ranked the 3rd and 4th. G28 performed the highest (8.62 t/ha) in E3 but attained second and third 

positions in E5 and E1 providing mean yields of 6.84 and 9.91 t/ha, respectively. The hybrid 

G15 displayed grain yield of 8.44 and 6.92 t/ha at E2 and E3, respectively and consistently 

ranked second in these environments. Genotype G31 yielded lowest (1.95 t/ha across all the 

environments except in E6 (Table 6.5). G18 was the second yielder in E1 with substantial yield 

of 9.58 t/ha but performed poorly in other environments. G25 and G26 were generally poor 

yielders across other environments but in E4 and E2 with maximum mean yields of 5.65 and 

8.88 t/ha, respectively (Table 6.5). 
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Table 6.5 Mean grain yield (t/ha) of newly developed 45 F1 maize hybrids (G1-G45) with five standard checks 

 (G46-G50) evaluated across six environments (E1-E5) with ranks, ASV and IPCA scores                

GID Genotype Mean Rank E1 E2 E3 E4 E5 E6 ASV IPCAg[1] IPCAg[2] 

G1 TL2012-17/TL2012-55 5.70 8 7.82 8.00 5.19 4.50 3.03 5.65 0.557 -0.135 -0.553 

G2 TL2012-41/TL2012-55 5.18 21 9.41 7.19 4.15 2.66 3.03 4.64 0.130 0.343 -0.359 

G3 TL2012-1/TL2012-55 4.88 37 8.77 7.99 3.31 1.49 4.46 3.23 -0.654 0.373 -0.118 

G4 TL2012-26/TL2012-55 5.04 25 8.77 7.32 3.33 3.13 4.01 3.66 0.490 0.101 -0.493 

G5 TL2012-25/TL2012-55 4.90 32 8.33 7.29 3.40 3.06 3.04 4.30 0.543 0.119 -0.546 

G6 TL2012-38/TL2012-55 4.73 38 5.02 4.88 5.37 3.94 4.94 4.25 -3.714 -1.113 0.100 

G7 TL2012-42/TL2012-55 4.69 39 7.11 7.60 4.70 1.24 3.04 4.47 0.261 0.187 0.124 

G8 TL2012-68/TL2012-55 5.26 16 9.46 7.47 3.98 3.00 3.46 4.18 0.365 0.307 -0.445 

G9 TL2012-7/TL2012-55 4.68 40 8.73 6.75 5.27 0.29 3.07 3.98 0.717 0.521 0.404 

G10 TL2012-41/TL2012-17 6.72 1 9.50 8.62 7.37 2.96 4.33 7.54 0.343 0.216 0.287 

G11 TL2012-1/TL2012-17 2.42 48 3.31 2.75 2.69 0.43 2.50 2.84 -1.401 -0.843 0.293 

G12 TL2012-26/TL2012-17 5.60 11 9.16 6.89 5.29 2.82 3.95 5.49 0.157 0.093 -0.031 

G13 TL2012-25/TL2012-17 5.43 13 8.49 6.91 5.45 4.48 3.87 3.35 0.452 -0.148 -0.444 

G14 TL2012-38/TL2012-17 6.00 5 9.78 7.77 5.56 4.12 4.05 4.69 0.363 0.156 -0.377 

G15 TL2012-42/TL2012-17 6.07 4 8.48 8.44 6.92 4.42 3.48 4.70 0.278 0.039 -0.278 

G16 TL2012-68/TL2012-17 5.01 27 9.26 7.17 4.71 0.62 3.72 4.57 0.742 0.515 0.293 

G17 TL2012-7/TL2012-17 4.58 41 8.55 7.55 4.78 1.08 1.56 3.93 -1.779 0.665 -0.093 

G18 TL2012-1/TL2012-41 5.14 22 9.58 6.96 4.38 2.78 3.36 3.78 0.065 0.327 -0.331 

G19 TL2012-26/TL2012-41 5.20 20 7.77 7.09 5.63 2.94 3.51 4.26 0.064 -0.038 -0.056 

G20 TL2012-25/TL2012-41 4.91 30 9.20 7.47 2.23 3.33 3.45 3.79 0.805 0.228 -0.814 

G21 TL2012-38/TL2012-41 5.21 18 8.75 7.39 5.17 1.37 3.16 5.44 0.598 0.379 0.166 

G22 TL2012-42/TL2012-41 5.84 7 7.94 7.35 7.16 2.33 6.18 4.06 0.639 -0.205 0.649 

G23 TL2012-68/TL2012-41 4.88 36 8.63 8.17 4.66 0.22 4.35 3.23 0.784 0.562 0.377 

G24 TL2012-7/TL2012-41 4.91 31 8.24 7.45 6.18 0.90 2.32 4.34 0.732 0.515 0.311 

G25 TL2012-26/TL2012-1 5.96 6 9.45 6.96 5.24 5.65 3.84 4.62 0.754 -0.185 -0.748 

G26 TL2012-25/TL2012-1 4.94 29 8.29 8.88 3.86 1.63 2.12 4.85 -0.722 0.595 -0.333 

G27 TL2012-38/TL2012-1 4.90 33 7.75 8.27 5.33 3.80 0.98 3.26 0.693 0.339 -0.731 
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G28 TL2012-42/TL2012-1 6.23 3 9.19 7.50 8.62 0.76 6.84 4.44 1.287 0.159 1.286 

G29 TL2012-68/TL2012-1 5.21 19 7.84 7.86 6.77 1.31 2.84 4.61 0.522 0.364 0.384 

G30 TL2012-7/TL2012-1 4.90 34 8.25 7.09 5.51 1.11 4.06 3.35 0.431 0.272 0.360 

G31 TL2012-25/TL2012-26 1.95 49 2.05 2.69 1.27 0.09 2.35 3.26 -2.412 -1.033 0.188 

G32 TL2012-38/TL2012-26 5.28 14 8.52 7.91 5.53 0.60 4.64 4.50 0.618 0.370 0.536 

G33 TL2012-42/TL2012-26 5.05 23 8.50 7.17 5.49 0.86 3.73 4.56 0.515 0.348 0.400 

G34 TL2012-68/TL2012-26 1.94 50 3.87 2.88 1.44 1.05 1.13 1.25 0.842 -0.579 -0.319 

G35 TL2012-7/TL2012-26 4.38 45 7.13 6.91 3.41 0.99 4.26 3.56 0.132 0.027 0.131 

G36 TL2012-38/TL2012-25 4.52 43 7.61 5.15 5.59 1.09 3.84 3.82 0.506 -0.072 0.507 

G37 TL2012-42/TL2012-25 5.24 17 8.92 8.25 5.21 1.59 3.47 3.98 1.607 0.512 0.052 

G38 TL2012-68/TL2012-25 5.01 26 8.92 7.81 5.41 0.44 3.08 4.40 0.954 0.646 0.339 

G39 TL2012-7/TL2012-25 4.34 47 8.32 4.58 5.36 0.42 2.48 4.89 0.505 0.195 0.490 

G40 TL2012-42/TL2012-38 4.88 35 8.93 6.68 2.43 2.29 3.77 5.19 0.388 0.126 -0.394 

G41 TL2012-68/TL2012-38 4.36 46 8.41 4.68 4.60 1.72 3.39 3.38 0.120 -0.002 0.120 

G42 TL2012-7/TL2012-38 5.69 9 9.08 6.71 4.56 4.54 4.46 4.76 0.512 -0.213 -0.492 

G43 TL2012-68/TL2012-42 6.70 2 7.87 6.18 7.65 2.80 8.04 7.65 0.788 -0.811 1.061 

G44 TL2012-7/TL2012-42 5.51 12 8.97 6.79 5.12 3.54 4.23 4.39 0.214 -0.039 -0.213 

G45 TL2012-7/TL2012-68 4.55 42 3.37 6.44 4.89 4.11 3.52 4.94 2.587 -1.096 -0.198 

G46 UH615 5.28 15 6.73 7.97 2.96 2.42 5.38 6.22 0.804 -0.366 -0.077 

G47 SARI H208 4.95 28 6.00 4.49 4.71 3.98 6.39 4.11 -3.310 -1.165 0.144 

G48 SARI H308 5.05 24 6.51 6.25 4.74 4.73 3.98 4.07 0.921 -0.664 -0.457 

G49 SC627 4.50 44 7.28 6.34 4.36 2.33 2.89 3.80 0.159 -0.041 -0.158 

G50 PANNAR 4M-19 5.62 10 7.11 6.04 4.71 4.02 6.48 5.38 -3.348 -0.849 0.055 

Environmental mean [EM] 5.00 

 

7.90 6.82 4.83 2.32 3.76 4.35 

    IPCAe[1] 2.151 

 

1.488 0.035 -1.662 -1.479 -0.532 

     IPCAe[2] 0.409 

 

0.571 -1.613 2.231 -1.25 -0.349 

    GID= Genotype identifier 

     

 
 

  1st rank   2nd rank   3rd rank   least 
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Figure 6.2: Variation of AMMI stability values (ASV) of 50 genotypes evaluated across six environments for grain yield. See code 
descriptions of genotypes in Table 6.5 
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Genotypes ID selections per environment 

The AMMI analysis identified four best hybrids in terms of grain yield performance across six 

environments. Hybrids G10 was selected as number one in environments E1 and E2. It was 

also selected as second in E6 and third in E3 (Table 6.6). G43 was selected number one in E3, 

E5 and E6. Other genotypes with multiple selections were G3, G25, G14, G28 and G22. All 

these hybrids with multiple selections of choices can be recommended for production in a wide 

range of environments as opposed to hybrids G26, G15, G1, G37, G42 and G50 which had only 

one choice, limited to a single location or environment therefore could be recommended for 

cultivation and production in that specific environment (Table 6.6). Related findings were 

documented by Mengesha (2013) when studying genotype by environment interaction the mid 

altitude sub-humid agro-ecologies of Ethiopia 

 

Table 6.6 First four AMMI genotype ID selections per environment 

Number Environment Mean Score 1st 2nd 3rd 4th 

1  E1 7.90 2.151  G10  G14  G26  G37 

2  E2 6.82 1.488  G10  G14  G15  G25 

3  E3 4.83 0.035  G43  G28  G10  G22 

4  E4 2.32 -1.662  G25  G48  G1  G42 

5  E5 3.76 -1.479  G43  G28  G22  G50 

6  E6 4.35 -0.532  G43  G10  G28  G22 

 

 

6.3.4. GXE interaction and identification of stable genotypes using AMMI biplot analysis 

The biplot of the AMMI model presented in Figure 6.3 depicts the means of genotypes and 

environments against their respective interaction principal component (IPCA) scores. G11 and 

G10 appeared to have similar interaction with environment but differ significantly in yield. Yield 

performance of G10 was higher than that of G11 by 47.05% and was above average by 34.4% 

while G11 was below average by 51.6%. More than 40% of all tested hybrids performed above 

average such as G28, G43, and G10, G14, G15, G42 and G25. In the AMMI biplot, these 

hybrids were adapted to high yielding environment while about 22% of all the genotypes tested 

were below average including G11, G36, G8, G17, G25, G40, G35 and G45 and located or 

adapted to lower yielding environments (Figure 6.3). Such types of relationships among 

genotypes were reported by Abuali et al. (2014) and Kandus et al. (2010). Among the test 
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environments, E1 and E2 were considered as high yielding environments as were located in the 

right hand side of the AMMI biplot while the rest four environments (E3, E4, E5, and E6) were 

lower performers (Figure 6.3). The first two environments performed above average with highest 

mean environmental mean yield of 7.90 t/ha and 6.23 t/ha, respectively (Table 6.5).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3: AMMI biplot with IPCA1 scores against means of genotypes and environments 
showing patterns of distribution of 45 F1 hybrids (G1-G45) across six environments (E1-E6). 
See code descriptions of environments and genotypes in Tables 6.1 and 6.5, respectively. 

 

6.3.5 GGE biplot analysis 

Relationships among test environments and their discriminating ability 

The GGE biplot (Figure 6.4) accounted 67.695 of the total phenotypic variation. The first 

principal component explained 40.97% while the second explained 26.72%. Tonk et al. (2011) 

found that 61.2% of total variation resulting from the two principal components in their GGE 

studies. The length of vectors of each environment and their cosine angles among them were 

analyzed. Environments, E1 and E2 had relatively long vectors and their cosine angle between 

them was significantly small indicating that they are positively strongly correlated and had high 

discriminating ability about the genotypes (Figure 6.4). These two environments can be used in 
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evaluation studies because they have ability to discriminate the genotype and they give more 

information about them. Similar finding were reported by (Dagnachew et al., 2014). But the 

same environments showed had negative relationships with the remaining environments (E3, 

E5, D6 and E4) as reflected by the obtuse cosine angle between them. Yan and Tinker (2006) 

studied that strong negative correlation of this type causes significant crossover in performance 

of genotypes and therefore affect areas of recommendation for cultivation and production of the 

developed genotypes. E3 and E5 had moderately long vectors 450 angle between them. This 

implies that their correlation was 0.707 because cosine of 450 is approximately to 0.707. E6 was 

considered to have low discriminating ability because of its shortest vectors (Figure 6.4). This 

environment   gives little information about the performance of the genotypes under study thus 

should not be used in evaluation studies. A similar pattern of environments was reported in 

Ethiopia when Rezene et al.(2014) studying GGE biplot anlaysis on grain yield of pea.  

 

 

Figure 6.4: GGE Biplot showing relationships of the test environments and their discriminating 
ability. See code descriptions of environments and genotypes in Tables 6.1 and 6.5, 
respectively. 

 

Stability and representativeness of environment s and genotypes 

The concentric circles drawn on the biplot assisted breeders to visualize the stability of 

environments and genotypes in yield performance (Asnake et al., 2013, Dagnachew et al., 

2014). Environments or genotypes that fall onto the centre of the innermost concentric smallest 

circle are considered ideal while those located closer to it (innermost circle) are considered 
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desirable and discriminating (Naroui et al., 2013). In the present study, E1 was most stable and 

representative because it was found in the innermost concentric small circle (Figure 6.5). E2 

located on the second circle next to this smallest circle suggests that it was relatively most 

desirable. In contrast, E3, E4, E5 and E6 located far away from the concentric innermost circle 

hence were considered undesirable with E4 and E5 being the most undesirable. These 

environments were neither representative nor discriminating (Figure 6.5). On the other hand, 

hybrids G44, G12, G19, G12, G1, G13 and G42 were found within the innermost concentric 

smallest circle and had performance above average suggesting that they are most ideal hybrids 

(Figure 6.6). Such genotypes are considered to be stable and can be used as reference 

genotypes or hybrids for evaluating (Karimizadeh et al., 2013; Mohamed et al., 2013). G14, G4, 

G46 and G25 were located in the concentric circle next to the inner most concentric smallest 

circle therefore were considered more desirable. Other genotypes such as G31 were 

undesirable with G34 and G11 being the most undesirable (Figure 6.6). Several studies have 

reported similar phenomenon (Jandong et al., 2011; Asnake et al., 2013). 

 
 
 

 

Figure 6.5: GGE Biplot showing ranking of environments based on ideal test environments or 
representativeness. See code descriptions of environments and genotypes in Tables 6.1 and 
6.5, respectively 
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Figure 6.6: GGE biplot showing genotypes based on ideal genotype. See code descriptions of 
environments and genotypes in Tables 6.1 and 6.5, respectively. 

 
Identification of superior genotypes in each mega environments  

Figure 6.7 presents the which won where pattern view of the GGE biplot. This biplot accounted 

65.72% of the total variation of the data with each component 44.69% for the first and 21.03% 

for the second component. This biplot is important it is used to indicate the most performing 

genotypes (superior) in each of the possible mega environments identified. The vertices of the 

irregular polygon drawn on the GGE biplot represent the yield potential of the wining genotypes 

(Yan et al., 2007). Hybrids G43 and G10 were considered superior because they were located 

at the vertices of the polygon. These hybrids were also very close to E5, E3 and E6 suggesting 

that they adapted well to these environments (Figure 6.7). G31 and G34 were also among the 

superior hybrids but in lower yielding environments. 
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Figure 6.7: The polygon view of the GGE biplot analysis showing the which won where pattern 
for selecting superior genotypes. See code descriptions of environments and genotypes in 
Tables 6.1 and 6.5, respectively. 

 

Ranking of genotypes and environments based on yields and stability  

Figure 6.8 presents the average environment coordination (AEC) or average environment axis 

(AEA) view of the GGE biplot showing stability and mean performance ranking of genotypes. 

The biplot view consisted of two principal lines. The single arrowed line is the AEC or AEA 

abscissa points to higher mean yield across environments and the crossing line that points to 

greater variability (poor stability) in either direction. This biplot explained 64.19% of the total 

variation with the first and second PCs contributing to 43.43 and 20.77%, respectively.  G10 had 

highest mean yield, followed by G28 and G43 but were unstable. G31 appeared to have the 

same variability levels with G10 but differed considerably in yield performance (Figure 6.8). 

These two hybrids had grain yields of 1.95 and 6.70 t/ha, respectively (Table 6.5). The hybrid 

G43 demonstrated highest level of variability in yield performance because it had lower (2.80 

t/ha) than expected yield in E3 but produced highest yield in E5 and E6 (Table 6.5). Tonk et al. 

(2011) and Nzuve et al. (2013) reported similar finding when analyzing multi-environment trial 

data using GGE biplot.  
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Figure 6.8: The average environment coordination (AEC) view showing mean performance and 
stability of 45 F1 hybrids tested across six environments (E1-E6). See code descriptions of 
environments and genotypes in Tables 6.1 and 6.5, respectively. 

 

6.3.6 Means of MSV disease reaction of F1 maize hybrids and standard checks evaluated 

across six environments  

The mean MSV, ASV and IPCAs scores of newly developed 45 F1 maize hybrids and five 

standard checks evaluated across six different environments are presented in Table 6.7. Among 

the checks, hybrids UH615 and SC627 were the only checks that were used to compare 

disease reaction with the newly developed test materials (Table 6.2) the rest three were checks 

were for grain yield comparison. About 33.3% of the test hybrids had substantially low reaction 

to MSV disease, some of which include G31 (21.96%), followed by G23 (23.49%), G18 

(25.07%) and G22 (26.06%). Others were G33 (28.89%), G34 (29.70%), G19 (30.07%), G26 

(31.55%) and G43 (31.88%). Mukherjee et al. (2013) reported similar mean severity of blast in 

rice. In general, most of these hybrids had ASV value ranging between below one and a value 

greater than -1 (Figure 6.9) indicating that their performance does not differ significantly among 

the testing locations. 
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Table 6.7 Mean MSV disease severity (%) of 45 F1 maize hybrids (G1-G45) and five standard checks (G46-G50) evaluated across 

six environments (E1-E5) with ranks, ASV and IPCA scores 

GID Genotype E1 E2 E3 E4 E5 E6 Mean Rank ASV IPCAg[1] IPCAg[2] 

G1 TL2012-17/TL2012-55 75.00 66.20 77.65 78.30 76.73 71.9 74.3 6 1.968 -0.662 -0.075 
G2 TL2012-41/TL2012-55 61.13 77.69 35.17 27.33 44.14 59.72 50.86 31 -5.579 2.945 -0.804 

G3 TL2012-1/TL2012-55 31.79 22.01 71.94 43.89 52.47 43.18 44.21 34 -6.395 -2.563 0.410 

G4 TL2012-26/TL2012-55 62.97 49.66 71.47 64.50 65.73 63.60 62.99 22 2.602 -1.080 -0.187 

G5 TL2012-25/TL2012-55 62.18 64.81 60.13 63.21 48.72 71.65 61.78 23 -1.515 0.935 -0.339 

G6 TL2012-38/TL2012-55 77.37 37.30 21.79 83.20 67.97 67.88 59.25 24 3.077 -0.256 -3.076 

G7 TL2012-42/TL2012-55 42.26 41.09 44.78 35.70 44.20 38.84 41.15 37 -0.243 -0.104 0.019 

G8 TL2012-68/TL2012-55 65.56 55.69 58.41 39.35 22.39 37.18 46.43 33 2.223 1.253 1.988 

G9 TL2012-7/TL2012-55 83.68 91.33 80.54 92.13 87.73 23.79 76.53 5 3.577 -0.504 3.582 

G10 TL2012-41/TL2012-17 84.41 97.13 47.68 58.49 24.39 76.13 64.71 19 15.061 4.470 0.394 

G11 TL2012-1/TL2012-17 61.69 56.51 13.71 46.73 68.82 56.23 50.62 32 2.635 1.228 -2.759 

G12 TL2012-26/TL2012-17 51.93 63.91 36.78 77.68 27.34 78.65 56.05 27 -2.954 2.275 -1.167 

G13 TL2012-25/TL2012-17 55.54 33.89 86.66 81.55 100.74 78.43 72.80 9 6.118 -3.861 -1.660 

G14 TL2012-38/TL2012-17 98.23 95.70 81.38 82.42 83.04 101.37 90.36 1 -1.148 1.308 -0.981 

G15 TL2012-42/TL2012-17 41.99 81.78 66.19 93.40 53.58 92.18 71.52 12 -1.588 1.274 -0.690 

G16 TL2012-68/TL2012-17 39.38 93.57 78.65 81.02 26.55 68.46 64.61 20 3.308 2.320 2.392 

G17 TL2012-7/TL2012-17 64.55 97.15 74.30 98.48 99.33 83.94 86.29 2 0.613 0.242 -0.631 

G18 TL2012-1/TL2012-41 13.18 21.09 32.23 34.87 18.69 30.36 25.07 48 -0.713 -0.304 0.055 

G19 TL2012-26/TL2012-41 35.80 30.69 23.80 25.00 19.98 48.70 30.66 44 0.875 1.102 -1.331 

G20 TL2012-25/TL2012-41 51.83 21.63 38.59 28.13 44.71 39.57 37.41 39 1.240 -0.850 -0.941 

G21 TL2012-38/TL2012-41 73.45 80.66 71.78 58.07 47.76 79.86 68.60 17 5.860 1.800 0.170 

G22 TL2012-42/TL2012-41 22.18 20.55 40.50 23.28 28.55 21.27 26.06 47 -0.875 -0.878 0.601 

G23 TL2012-68/TL2012-41 24.39 30.48 24.90 8.310 27.74 25.12 23.49 49 -0.600 0.514 -0.301 

G24 TL2012-7/TL2012-41 80.03 29.90 90.71 82.81 74.07 55.05 68.76 16 -6.897 -3.367 0.792 

G25 TL2012-26/TL2012-1 27.10 10.57 46.03 35.12 63.00 38.13 36.66 41 4.199 -2.765 -1.333 
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G26 TL2012-25/TL2012-1 24.84 27.13 42.95 38.63 23.05 32.69 31.55 43 0.472 -0.370 0.560 

G27 TL2012-38/TL2012-1 50.60 28.90 101.48 85.81 78.80 61.26 67.81 18 -10.075 -4.190 0.721 

G28 TL2012-42/TL2012-1 43.76 46.02 45.56 49.06 19.35 44.36 41.35 36 1.382 1.005 0.781 

G29 TL2012-68/TL2012-1 67.13 63.23 24.45 50.06 15.91 10.68 38.58 38 3.579 2.552 2.460 

G30 TL2012-7/TL2012-1 69.34 41.63 74.74 48.17 64.06 31.66 54.93 28 -1.032 -1.803 1.607 

G31 TL2012-25/TL2012-26 18.96 23.66 19.57 36.36 10.98 22.22 21.96 50 0.678 0.469 0.265 

G32 TL2012-38/TL2012-26 66.42 79.37 98.81 93.33 74.76 29.36 73.68 7 4.106 -1.429 4.190 

G33 TL2012-42/TL2012-26 20.87 21.47 31.96 41.95 21.73 35.36 28.89 46 0.448 -0.325 -0.241 

G34 TL2012-68/TL2012-26 20.42 34.63 26.79 39.63 25.64 31.09 29.70 45 -1.628 0.430 -0.03 

G35 TL2012-7/TL2012-26 74.21 48.47 93.02 92.31 54.31 58.15 70.08 15 0.924 -1.763 1.924 

G36 TL2012-38/TL2012-25 71.70 75.73 87.47 76.26 67.20 63.18 73.59 8 1.471 -0.219 1.473 

G37 TL2012-42/TL2012-25 35.83 36.51 18.68 20.23 50.97 58.70 36.82 40 3.043 0.674 -3.059 

G38 TL2012-68/TL2012-25 48.38 74.02 36.38 12.69 27.73 63.20 43.73 35 -7.120 3.407 -0.771 

G39 TL2012-7/TL2012-25 90.58 83.89 81.19 86.13 62.72 70.96 79.25 3 1.382 0.807 1.215 

G40 TL2012-42/TL2012-38 69.41 66.65 24.26 63.36 64.65 38.39 54.45 29 -1.853 1.224 -0.498 

G41 TL2012-68/TL2012-38 89.34 36.29 97.02 66.16 74.60 69.03 72.07 11 -9.377 -2.721 0.229 

G42 TL2012-7/TL2012-38 74.63 86.18 78.24 84.79 56.56 80.24 76.77 4 1.856 1.265 0.678 

G43 TL2012-68/TL2012-42 36.43 32.94 39.12 36.37 22.10 24.32 31.88 42 1.082 0.147 1.081 

G44 TL2012-7/TL2012-42 72.68 75.55 89.75 67.23 52.68 76.85 72.46 10 1.149 0.556 1.077 

G45 TL2012-7/TL2012-68 74.97 21.93 37.13 49.90 68.25 56.83 51.50 30 2.697 -1.444 -2.459 

G46 UH615 83.46 70.10 85.07 62.99 64.49 61.34 71.24 14 1.273 -0.114 1.273 

G47 SARI H208 66.09 42.80 57.63 87.97 77.98 96.04 71.42 13 3.250 -1.251 -3.153 

G48 SARI H308 55.23 48.36 75.22 67.25 63.29 75.49 64.14 21 1.593 -1.123 -0.684 

G49 SC627 54.46 41.68 58.30 66.52 50.30 80.03 58.55 25 1.619 -0.399 -1.607 

G50 PANNAR 4M-19 39.22 58.72 53.76 62.28 59.98 70.13 57.35 26 1.158 0.144 -1.159 

Environmental means [EM] 56.13 52.74 57.09 58.57 51.41 55.86 55.3 
     

  1st rank   2nd rank   3rd rank   Least 
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Figure 6.9: Variation of AMMI stability value (ASV) among 50 F1 maize hybrids evaluated across six environments for resistance to 
MSV disease. See description of codes for genotypes in Table 6.5 
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6.3.7 GGE biplot analysis of genotypes based on MSV severity (%) 

The GGE biplot (Figure 6.10) represent the distributions of genotypes based on their relative 

mean severity (%) performance and IPCA scores.  G7 was located on horizontal line having 

IPCA score value close to zero together with G5 and G48 indicating that all had low variability 

but G7 had lower disease severity performance than G5 and G6. Similarly, G28 exhibited the 

same IPCA scores with G27 and G24 but had different disease severity levels (Figure 6.10). On 

the other hand, all G28, G7 and G38 were located on the same perpendicular line of the biplot 

suggesting that they have equal disease severity performance. Similarly, G16 and G10 had the 

same performance in disease severity because were located on the same perpendicular line of 

the biplot. Furthermore G28, G3, G7, and G38 resided in lower disease reaction side of the 

biplot suggesting that they were resistant whereas G27 and G28 were most susceptible 

followed by G16, G10, G4, G48 and G5 since were located on the right hand side of the biplot. 

These results did not differ from those that reported by Mukherjee et al. (2013) in rice blast. 

Interestingly, E3, E1 and E6 were located on the same perpendicular line of the biplot indicating 

that they had similar performance in disease severity but differed significantly in terms of 

stability because E1 was more stable than E3 and E6, had IPCA score value close to zero 

(Figure 6.10).  To depict clearly the most resistant and susceptible genotypes the which won 

where pattern view of GGE biplot was generated (Figure 6.11). This biplot accounted 75.52% of 

the total variation attributable to GGE biplot model on the data with its first and second PC 

scores contributing to 60.60% and 14.92%, respectively. This indicates that the model described 

adequately the variation present among the tested genotypes. From this graph G31, G23, G22, 

G25 and G38 were superior genotypes but adapted to lower disease increasing environment 

while G14, G27 and G10 were also superior candidates but adapted to high disease increasing 

environment (Figures 6.10 & 6.11). These types of results were reported by Mukherjee et al. 

(2013) in rice blast pathosystem and Farshadfar et al. (2013) in chickpea. 
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Figure 6.10: The GGE biplot view showing distribution of genotypes and environments based on 
their respective mean severity (%) performance for MSV disease and IPCA scores. See Tables 
6.1 and 6.5 for descriptions of environments and genotypes codes, respectively 

 

 
Figure 6.11: The which won where pattern view of GGE biplot showing most resistant and 
susceptible genotypes to MSV disease. See Tables 6.1 and 6.5 for descriptions of environments 
and genotypes codes, respectively. 
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The GGE biplot (6.12) shows the MSV severity % of 50 genotypes and their relative GXE 

interaction. It accounted 74.72% of the total variation of the data with its two IPCs contributing 

60.63% and 14.09%, respectively (Figure 6.12). The average environment coordination (AEC) 

line with an arrow passes through the biplot origin line gives estimates performance of each 

genotype while other line crossing AEC estimates variation due to GXE interaction. From this 
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biplot G21, G15, G42, and G5 although showed low variability, yet performed substantially high 

above average indicating that they had high level of susceptibility while G20, G7, G3, G22 and 

G25 recorded low MSV severity and had low variability suggesting that these hybrids are 

resistant and could be selected for production across the target environments, especially in 

areas of Tanzania where MSV incidence is frequently high. Consistently low disease 

expressions were reported by Hamidou et al. (2014) in a study of aflatoxin contamination. 

Additionally, G14 was the most susceptible genotype and relative unstable followed by G14, 

G10 and G17 which showed high levels of susceptibility and were most unstable (Figure 6.12).  

 

 

 

 

Figure 6.12: GGE biplot view showing ranking of genotypes based on their reaction to MSV 
disease and stability across environments. See Tables 6.1 and 6.5 for descriptions of 
environments and genotypes codes, respectively 
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and G33 were considered ideal or representative because were located in the smaller innermost 

concentric circle while G44 and G35 were found within the second concentric implying that they 

were desirable. G23, G18, and G22 were among the most undesirable genotypes on MSV 

reaction (Figure 6.13). Similarly, environment E1 was plotted in the smallest and innermost 

circle of the concentric GGE biplot (Figure 6.14) suggesting that it was an ideal environment for 

further evaluation of foliar diseases like MSV. Results further indicated that E6 was located next 

to the ideal environment found within second concentric  circle thus was considered most 

desirable environments while the remaining environments were undesirable; with E5 being the  

most undesirable one followed by E2 (Figure 6.14).  

 

 
 

 
 
Figure 6.13: The GGE biplot view showing ranking of genotypes based on ideal or reference 
genotypes 
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Figure 6.14: GGE biplot view showing ranking of environments based on the ideal test 
environment for MSV reaction. See Tables 6.1 and 6.5 for descriptions of environments and 
genotypes codes, respectively. 

 

6.4 Conclusions 

Maize is widely grown in a wide range of diverse agro-ecologies in Tanzania. It accounts 

significantly for food security, income generation and rural livelihood of the majority poor 

smallholder farmers. However, productivity of maize is greatly affected by GXE interaction. GXE 

interaction is the most important factor that causes substantial yield variations under the 

smallholder farming systems and among maize growing agro-ecological zones in the country. 

GxE is also accelerated by the outbreaks of biotic stresses such as maize diseases like MSV, 

MLN and GLS and occurrence of random stresses and variability in soil fertility. Yield 

performance of genotypes is often confounded by GXE interaction and therefore reduces 

selection efficiency and response. Using the AMMI model the grain yield response of 45 novels 

F1 maize hybrids were evaluated across six environments. Results showed that environment 

accounted for 52.06% of the total variation in grain yield among genotypes. Therefore 

environments could be the major source of GXE interaction for grain yield observed among the 

test genotypes evaluated in this study although it was less important in the variations of MSV 

disease severity. The present study identified genotypes such as G10, G43, G14 and G28 

showing respectively high mean grain yields of 6.72, 6.00, and 6.23 t/ha across environments 

showing minimal GXE interaction. These genotypes could be recommended for direct large 

scale production in northern Tanzania or similar environments. However some of these hybrids 
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were highly susceptible to the MSV disease. For example hybrids G14 and G10 had disease 

severities of 90.36 and 64.71%, respectively; hence they would not be recommended in MSV 

prone environments. Furthermore, hybrid G43 had good mean yield of 6.70 t/ha with 

consistently low reaction to MSV disease across locations except its variable yield expression 

across environments. This hybrid can be recommended in E5 and E6. In these environments, it 

yielded significantly high at 8.04 and 7.65 t/ha, respectively. Interestingly, most of MSV resistant 

hybrids identified in the current study were poor in yield performances. For example G31 had 

the least MSV infection but it yielded consistently low across environments. Other hybrids such 

as G23 with grain yield of 4.84 t/ha, G18 (5.14 t/ha), and G34 (1.94 t/ha) were not suitable for 

grain production but they can be exploited in MSV resistance breeding programs. In general, 

genotype by environment interaction is a big challenge for plant breeders.  In this study, GGE 

biplot and AMMI models were particularly useful that revealed the magnitude of GXE interaction 

present in the study materials. 
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General overview 

 

7.1 Introduction and objectives 

Maize (Zea mays L.) is the principal food security crop in Tanzania predominantly gown by 

smallholder farmers who account for more than 85% of the total maize production. Foliar 

diseases especially maize streak virus (MSV) remains the major challenge to maize productivity 

in Tanzania and east Africa. Yield losses due to MSV are substantially high reaching up to 

100% on susceptible varieties. Different MSV management strategies have been identified and 

recommended including cultural method (early planting, crop rotation, intercropping with non-

host species), phytosanitation, and chemicals to control its vectors, biological control and host 

resistance. Breeding farmers’-preferred, high yielding and MSV resistant maize varieties is 

probably the cheapest and the most practical means in Tanzania because chemicals are 

generally expensive, phytosanitation and cultural measures are difficult to apply, and biological 

control agents are not commercially available. This overview highlights the study objectives with 

subsequent summary of major findings of each objective. Finally, the implications of the findings 

are presented for maize breeding to MSV resistance and improved agronomic attributes 

according to the needs of the growers. 

 

Objectives 

The objectives of this study were to:  

 determine farmers’ preferred traits of maize and production constraints limiting maize 

production in the northern areas of Tanzania. 

 determine agro-morphological diversity present among 80 local and introduced maize inbred 

lines under maize streak virus (MSV) prone environments of the northern zone of Tanzania. 

 assess the genetic diversity and genetic relationship among 79 maize inbred lines collected 

from five different origins using 30 polymorphic simple sequence repeat (SSR) markers. 

 determine combining ability and heterosis for grain yield and related traits and resistance to 

maize streak virus (MSV) among 10 elite maize inbred lines and their hybrid progenies, and  

 investigate the GXE interaction for grain yield and MSV resistance among newly developed 

maize hybrids in Tanzania using AMMI and GGE biplot methods. 
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7.2 Main findings of the study 

7.2.1 Key maize production constraints and identification of farmers’ preferred traits in 

the mid-altitude maize agro-ecologies of northern Tanzania 

A participatory rural appraisal (PRA) study was conducted in 2012 at Babati, Arumeru and Hai 

Districts in northern Tanzania. Data were collected involving 500 farmers using structured 

interviews and focused group discussions (FGD).  

 Results showed that maize was the most important crop in the study areas and ranked first 

among other food crops. Grain yield potential, disease resistance and drought stress 

tolerance were farmers preferred traits with relative importance of 71.9, 70.0 and 69.9%, 

respectively. 

 Through FGD farmers identified ear rot, MSV and common rust as most important diseases 

affecting maize production. 

 High costs of production inputs and low price of maize were also among the challenges to 

maize production in the study area.  

 Knowledge of the farmers’ preferences and production constraints is required by breeders to 

enhance the productivity of maize in the northern areas of Tanzania 

7.2.2. Agro-morphological characterization of maize inbred lines under maize streak virus 

prone environment 

Eighty maize inbred lines were evaluated using ago-morphological traits. Field experiment was 

established during 2011/2012 at maize streak virus (MSV) prone environment of Ngaramtoni 

Research Farm of Selian Agricultural Research Institute in northern Tanzania using a 10 x 8 

alpha lattice design with two replications.  

 Lines TL2012-42 and TLl2012-41 were identified as superior lines with grain yields of 3.52 

and 2.46 t/ha respectively. These genotypes showed low (< 30%) level of MSV reaction 

suggesting their suitability for hybrid breeding to achieve high grain yield and MSV 

resistance. 

 Principal component analysis revealed 68.9% of the total variation explained by four 

principal components. 

 The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis 

grouped the inbred lines into nine clusters consistent with their heterotic patterns 
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 The study identified the following inbred lines: TL2012-53 and TL2012-61 from cluster II and 

TL2012-20, TL2012-70, and TL2012-78 from cluster IV for breeding. 

7.2.3 Genetic diversity analysis of maize inbred lines collected from diverse origins using 

SSR markers 

Genetic diversity and relationships of 79 maize inbred lines collected from five diverse sources 

were subjected to SSR analysis using 30 polymorphic markers. 

 The mean numbers of observed and effective alleles were 4.70 and 2.40, respectively. The 

markers displayed high Shannon’s information index of 0.96 and polymorphic information 

content (PIC) of 0.51.  

 The mean values of observed and expected heterozygosity among lines were 0.136 and 

0.508, respectively. 

 A dendrogram constructed based on UPGMA clustered the inbred lines into three main 

genetic groups with varied sub-clusters. 

 The principal coordinate analysis (PCA) explained 20.4% of the total genetic variation 

detected among inbred lines and separated them into two main clusters. 

 Analysis of molecular variance (AMOVA) showed that 72% of the total variation was 

attributed to differences among inbred lines across locations, 26% of the total variation was 

due to inbred lines within sub-populations/locations and 2% was attributed to variation 

between the five geographic origins of inbred lines. 

 The study identified inbred lines such as TL2012-20, TL2012-24 and TL2012-54 (from 

cluster I) and TL2012-25, TL2012-21 and TL2012-12 (from cluster III) showing genetic 

difference for hybrid breeding to exploit heterosis. 

7.2.4 Combining ability and heterosis among maize genotypes for yield and yield 

components and resistance to maize streak virus disease 

Ten selected inbred lines were crossed to generate 45 F1 hybrids using a 10 x10 half diallel 

mating design. Parents, F1 hybrids and five standard checks were evaluated using a 6 x 10 

lattice design with two replications at Ngramtoni, Inyala and Igomelo during 2012/13 and 

2013/14. General combining ability (GCA) of parents, specific combining ability (SCA) of 



172 
 

hybrids, heritability and heterosis of grain yield and related traits and MSV resistance were 

calculated. 

 The SCA effect was important for all traits except for MSV, number of ears per plant and 

husk cover while the GCA effect was most important for resistance to MSV. 

 Heritability estimates of traits were high associated with high GCA effects. Line TL2012-42 

was a good general combiner for grain yield showing highly significant positive GCA effect 

of 0.695 t/ha while lines TL2012-41, TL2012-1 and TL2012-42 had significant negative GCA 

effects of -10.926, -10.792 and -10.748, respectively for MSV reaction. These inbred lines 

could be exploited in hybrid breeding to develop high yielding and MSV resistant varieties. 

 Hybrids TL2012-38/TL2012-55 and TL2012-25/TL2012-26 had negative significant SCA 

effect of -10.892 and -19.451%, respectively for MSV reactions.  

 Maximum mid-parent heterosis for grain yield was recorded for hybrid TL2012-7/TL2012-38 

at 138% while TL2012-25/TL2012-26 had the lowest and negative heterosis of -38.2% for 

MSV reaction. 

 Crosses TL2012-7/TL2012-42 and TL2012-7/TL2012-68 had significant positive SCA effects 

for grain yield which can be used for direct production as single cross hybrids or developed 

further as three way hybrids for large scale production. 

7.2.5 Genotype by environment interaction of grain yield and MSV resistance among 

novel maize hybrids in the mid-altitude agro-ecologies of Tanzania 

Genotype by environment interaction (GXE) of grain yield and MSV resistance was investigated 

among newly developed maize hybrids in Tanzania. Forty five novel single cross hybrids and 

five standard check three-way cross hybrids were evaluated using a 5x10 alpha lattice design 

with two replications across six environments. The Additive Main Effects and Multiplicative 

Interaction (AMMI) and genotype, and genotype by environment (GGE) biplot models were used 

to assess the magnitude of GXE interaction of grain yield and reaction to MSV disease among 

test genotypes. 

 Results from the AMMI analysis of variance revealed high (52.06%) contribution of the 

environmental effect on grain compared to genotypes and GXE interaction which, 

respectively accounted for 12.4% and 17.76% of the total variation on this trait among 

hybrids tested. 
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 Genotypes explained 45.52% of the total variation of hybrids for MSV resistance while the 

contribution of environments was minimal (2.77%). 

 Hybrid G43 was identified with relatively high mean grain yield of 6.70 t/ha with low MSV 

severity of 31.88% across environments. 

 Experimental hybrids such as G10, G14 and G28 had high yield performance of 6.72, 6.00, 

and 6.23 t/ha, in that order across environments but with highly susceptible reaction to MSV. 

 Hybrid G31 expressed low MSV infection but yielded the lowest at each environment. 

Hybrids such as G23 with low grain yields of 4.84 t/ha, G18 (5.14 t/ha), and G34 (1.94 t/ha) 

showed relatively low MSV infection levels which are useful genetic resources for resistance 

breeding. 

 Experimental hybrids with high grain yield and MSV resistance selected in this study are 

good candidates for direct production or for future three-way hybrid development in 

Tanzania. 

7.3 Implications for breeding 

The high level of genetic diversity present among 80 inbred lines examined in this study. This 

will aid sustainable selection and development of superior hybrids in the northern Tanzania or 

similar environments. Lines TL2012-42, TL2012-41 and TL2012-1 have good general combining 

ability which are ideal genotypes to develop maize varieties with resistance to MSV and good 

characteristics preferred by farmers. Hybrids TL2012-7/TL2012-42 and TL2012-7/TL2012-68 

have positive and high SCA effects for grain yield which will be released for direct production as 

single cross hybrids or converted into three-way hybrid before release.  
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Appendix No. 1: Survey questionnaires 

Questionnaires used during survey to identify farmers’ key maize constraints and 

preferences for MSV resistant maize cultivars conducted in 2012 in northern Tanzania 

(specific districts were Arumeru, Babati and Hai) 

By Lameck Nyaligwa 

 

District: ______________ Village: _________________________ 

Questionnaire Number: __________ 

Enumerator: __________________________________ 

1. Household characteristics: 

 Gender :   Male                                          Female  

 Age of respondent: What is your age?  ≤ 30 years                 31-50 years                      

above 50 years 

 Who is the head of the household:   male                female   

 How many people are present at your family?   one                two             three            

4 and above 

 What level of education you have?  primary                secondary               college        

no education  

2. Faming system: 

 Where do you obtain maize seed? Farmers’ own fields              private seed 

company              local market                 agro dealers              public research 

institutes 

 What size of land do you grow maize (acres)? ≤  1             1.5-3               3.5- 10           

> 10   

 By average how many bags of maize do harvest from your farm    ≤ 1                 

1.1-3                  3.1 -10          > 10  

 3 Maize traits of economic importance: 

 What are the maize traits of economic importance? List................................ 

 What are the uses of maize in your area? List them...................................... 
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 Which maize varieties do you grow in your area? List them........................... 

4. Maize production constraints 

 What are the major maize production constraints in your area? ...................... 

 What are the maize diseases are you facing? ............................................. 

 What measures do you use to overcome the crop diseases problems?............. 

5. Trait  preferences 

 Which MSV resistant cultivar have you planted in recent years? List ................ 

 Which MSV resistant maize cultivar you did not like to grow it again? Name and 

give reason for not rowing....................................................................................... 

 What other traits of maize do you prefer? List..................................................... 

6. Types of Fertilizer used 

 What types of fertilizer do you use and why?   ................................................     

 Where do you get the fertilizer?.......................................................................... 

 And how do you see its cost?................................................................................. 

     

 


