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ABSTRACT 
Medicinal plants are valuable natural resources used as traditional medicine and have economic 

significance. African ginger (S. aethiopicus) (Schweinf.) B.L. Burtt is one of the most 

important rhizomatous plants, highly-valued for its medicinal properties and wide distribution 

in many regions of southern Africa. The plant is currently listed on the Red List of South 

African endangered species due to overharvesting. The increased demand for plant material has 

led to extinction in other areas of South Africa. The loss of wild populations harvested will 

destroy the natural habitats and genetic diversity in the long term. The demand for S. 

aethiopicus plant parts, particularly the rhizome is associated with the medicinal remedies 

possessed by the plant. The rhizomes have been traditionally used for the treatment of coughs, 

colds, asthma, headaches, pain, inflammation and malaria. Currently, there is limited scientific 

evidence on the cultivation and response of secondary metabolites of S. aethiopicus to 

agronomic practices. Cultivation of medicinal plants is a good approach to conserve species 

biodiversity and meet current demands for plant based products. This study investigated the 

variations in growth, yield and metabolites of S. aethiopicus in response to cultivation practices 

for commercial production and further development of medicinal products. In this study, total 

phenolic content, flavonoid content and antioxidant activity of S. aethiopicus leaf, rhizome and 

root from varying areas (Mpumalanga, KwaZulu-Natal, Limpopo and North West) were 



 
 

xv 

 

evaluated. Total phenolic and flavonoid contents were investigated by Folin-Ciocalteu and 

aluminium chloride (AlCl3) colorimetric methods, respectively. Antioxidant activity in different 

parts of S. aethiopicus was evaluated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical 

scavenging activity and ferric reducing power (FRAP). Furthermore, the study determined the 

variations in soluble sugars in the leaf, rhizome and root as influenced by varying growing 

areas. The results showed high concentration of sucrose, glucose and fructose in the leaf and 

root as influenced by different growing areas. A higher content of both total phenolics and 

flavonoids were found in the root from Mpumalanga (54.5±2.0 mg GAE/g and 14.83±0.06 µg 

QE/g, respectively) compared to the leaf and rhizome from other growing areas. KwaZulu-

Natal also exhibited high flavonoids in the leaf (12.72±1.18 µg QE/g), rhizome (14.21±1.98 µg 

QE/g) and root (12.88±0.57 µg QE/g) compared to other growing areas. In both methods, the 

leaf exhibited higher antioxidant activity than the root and rhizome. The high antioxidant 

activities exhibited in the leaf from Mpumalanga suggest its adaptive capabilities to different 

environments. S. aethiopicus parts could be used as a potential source for antioxidant properties 

and encourage cultivation under different growing areas to conserve its biodiversity and 

increase species populations. 

 

The effect of nitrogen levels and irrigation regimes on biomass yield, stomatal conductance, 

chlorophyll content and leaf area index was investigated under the rainshelter for two growing 

seasons. The results of this study conclusively reveal that the plant height and number of leaves 

per plant were significantly higher towards maturity. Plants grown with 50 and 100 kg N/ha had 

greater plant height, number of leaves per plant, LAI, SPAD values and biomass yield that 

eventually resulted in higher dry matter production. Stomatal conductance was higher 

throughout the growing period and decline in response water stressed treatment. The high 

amount of water utilized from well watered treatment (30% ADL) compared to moderate (50% 

ADL) and severe (70% ADL) treatments could be attributed to improved water availability and 

superior plant canopies. Further experiments should be conducted to evaluate different 
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combinations of agronomic practices to fully exploit the growth of S. aethiopicus under 

different conditions.  

 

The high amount of water utilized from the well watered treatment (30% ADL) compared to 

moderate (50% ADL) and severe (70% ADL) treatments could be attributed to improved water 

availability and superior plant canopies. The well watered treatment (30% ADL) had a 

significantly higher total biomass, fresh and dry rhizome yield compared to other water stressed 

treatments. The response of water stress and nitrogen levels showed significant accumulation of 

plant flavonoids and phenolics in leaf, rhizome and root. In plant carbohydrates, root had high 

sucrose content with the application of low N under severely stressed (70% ADL) treatment. 

 

The investigation of volatile components of leaf, rhizome and root in response to irrigation 

regimes and nitrogen levels were analysed by GC-MS. The results showed that the highest 

volatile components in the root and rhizome were terpenes, as compared to the increased 

components of aliphatic acids, benzenoids and aliphatic aldehydes in the leaf. In all treatments 

and parts, the odorant sesquiterpene (1E)-5-Methyl-1-(2, 6, 6-trimethyl-2, 4-cyclohexadien-1-

yl)-1, 4-hexadien-3-one was the most abundant volatile compound. The 4-Hydroxy-4-methyl-2-

pentanone was detected under severely stressed (70% ADL) treatment with the application of 

100 kg N/ha. Severely stressed (70% ADL) treatment with minimal application of N induced 

the terpenes components in all plant parts. The study showed that volatile components of S. 

aethiopicus vary with plant sources, water stress and mineral nutrient deficiency. Knowledge 

on the impact of S. aethiopicus parts will provide a useful guide for selection towards 

identifying profiles of volatile compounds and explore the additional bioactive compounds for 

therapeutic use. Taken together, this study represents the importance of cultivation methods as 

an alternative approach to wild harvesting, conserving S. aethiopicus for commercial 

production and exposure to water stress conditions for high secondary metabolites. 

Keywords: Nitrogen, water stress, medicinal plant, cultivation, part
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

 

The recent global increases in food and medicine prices have added pressure on the agricultural 

production and health care system. As a result, there is a growing interest in derivatives of plant 

origin for food, fuel and medicine. Plants containing inherent active ingredients used to cure or 

relieve pain are regarded as medicinal plants (Lucy and Edgar, 1999). These are valuable 

natural resources used as traditional medicine based on the indigenous knowledge, beliefs, and 

theoretical practices of different cultures. Approximately 80% of the world’s inhabitants 

depend on traditional medicine for primary health care due to the extraordinary healing 

benefits, popularity as safe, cost effectiveness and easy accessibility (Owolabi et al. 2007). 

 

There is a growing interest in traditional medicine due to their relevance as an alternative health 

care system in developed and developing countries. Modern therapeutic medicine based on 

indigenous therapies and ethno-pharmacological uses has become an important tool to identify 

new sources of pharmaceuticals (Cragg and Newman, 2013). The identified medicinal 

properties of plants contain chemical compounds exhibiting properties which are responsible 

for curative action of plants (Lambert et al. 1997). However, the information on the 

identification of bioactive compounds through isolation, purification and characterization of 

active ingredients in crude extracts using various analytical methods is still limited in many 

parts of Africa. Research and development for identification of many plants for medicinal 

benefits still have to be explored.  

 

Due to the growing demand of plant-based drugs and advancement of research in medicine, 

heavy pressure is created on some medicinal species which results in over-exploitation. The 

global market for medicinal plants and pharmaceuticals, spices/herbs and cosmetics indicates 

the rapid growing demand expanding by 20% annually and projected to increase to USD 8 
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billion (ZAR 112 billion), USD 3 billion (ZAR 42 billion) and USD 1.5 billion (ZAR 2 billion), 

respectively (Mafimisebi et al. 2013). The high demand is due to the extensive use of 

traditional medicine. The unprecedented plea for herbal products, cosmetics, pharmaceuticals 

and food supplements posing a threat to biodiversity and genetic conservation of medicinal 

populations (Street and Prinsloo, 2012). Most medicinal plants are prone to extinction due to 

slow growing rates; reduced population densities and narrowed geographic ranges (Nautiyal et 

al. 2002). To maintain the endangered medicinal populations, it is important to cultivate many 

plant species at large scale. This may contribute to growing the economy and financial viability 

of medicinal plant species (Street and Prinsloo, 2012).  

 

A number of medicinal plants still need to be studied with an intention to discover valuable 

phytochemicals. This is because their over-harvesting from the wild has led to their extinction 

and scarcity (Anon, 1998). Most traditional practitioners have the spiritual believes that 

medicinal plants harvested from the wild contain healing medicinal value than cultivated ones 

(Ngarivhume et al. 2015). The same finding was also reported in Kenya (Bussmann, 2006), 

Uganda (Okello and Ssegawa, 2007), Cameroon (Simbo, 2010) and Sudan (Musa et al. 2011). 

Evaluation and cultivation of these plants is necessary, both to substantiate the use of these 

plants by inhabitants, conserve the species biodiversity and also for possible lead in drug 

discovery from medicinal plant. This study has investigated the antioxidant properties of 

African ginger (S. aethiopicus) from different agro-ecological regions and the response of 

different parts to irrigation regimes and nitrogen levels under experimental trial. The study will 

provide valuable information about the cultivation practices as an effort to eliminate limitations 

of over-exploitation and drawbacks of herbal medicine.  
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1.1 Aims 

The aim of the study was to investigate antioxidant properties of African ginger (S. aethiopicus) 

in response to cultivation practices for commercial production for further development of 

medicinal products. 

 

1.2 Objectives of the study 

 

The specific objectives were to: 

 Evaluate the changes in phenolic composition, antioxidant activity and soluble sugars of 

S. aethiopicus parts grown in different regions of South Africa. 

 

 Investigate the physio-morphological responses and plant growth of S. aethiopicus to 

irrigation regimes and fertilizer application. 

 

 Determine the antioxidant activity and soluble sugars of S. aethiopicus in response to 

irrigation regimes and nitrogen levels. 

 

 Investigate volatile profiling in different tissues of S. aethiopicus in response to 

irrigation regimes and nitrogen levels. 

 

1.3 Rationale and justification for the study 

In this study agronomic practices of African ginger (S. aethiopicus), including the response of 

irrigation regimes and nitrogen levels on the morphological and physiological parameters; and 

assessment of biochemical analysis and characterisation of bioactive compounds using HPLC-

RID and GC-MS analyses were investigated. The significance and focus of various aspects of 

this study included the medicinal potential of S. aethiopicus, which depends entirely on the 

successful cultivation using agronomic practices. The thesis presents an overview of the 

variations in phenolic composition, antioxidant activity and soluble sugars of S. aethiopicus 
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parts grown from different growing regions of South Africa. The section describes the variation 

in phytochemical profiling and biochemical analysis of S. aethiopicus parts from varying 

growing regions. This section also attempts to identify the agro-ecological location suitable for 

cultivation of S. aethiopicus. The information acquired in this study is important and will 

contribute to knowledge as few studies have reported on the phytochemical and biochemical 

screening of medicinal plants from varying locations in Africa.  

 

The second section describes the influence of irrigation regimes and nitrogen application rates 

on the morphological (i.e., plant height, leaf area index, number of leaves per plant) and 

physiological (i.e., crop growth rate and stomatal conductance) parameters of S. aethiopicus 

grown under rain shelter. This section focused on the cultivation practices of S. aethiopicus, 

using different irrigation regimes and nitrogen application rates. The plant species was selected 

based on its medicinal value according to traditional practitioners from varying locations in 

South Africa, who harvested the rhizome from the wild and utilized it for medicinal purposes 

(van Wyk et al. 1997). Furthermore, S. aethiopicus is also listed in the African Herbal 

Pharmacopea, among the 51 most important medicinal plants in sub-Saharan Africa (Brendler 

et al. 2010). Increasingly, S. aethiopicus have received scientific and commercial attention 

which also increased the demand and pressure on the wild populations. Over-exploitation and 

indiscriminate collection has placed S. aethiopicus at risk of total extinction, hence the plant 

was listed on the Red List of South African endangered plants species. Populations remaining 

in the wild are critically low in many widespread areas of South Africa (The Red list of South 

African plants version 2015.1). Monitoring of subpopulations has indicated that unsustainable 

harvesting resulted in 84% decline in Mpumalanga Province in a period of only four years (The 

Red list of South African plants version 2015.1). The lack of programmes, legislation and 

policy for conservation and protection of S. aethiopicus will result in complete extinction of the 

species in the wild. It is important to incorporate wild species into the cultivation systems to 

reduce the loss of medicinal species biodiversity and over-exploitation (Lambert et al. 1997). 
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The approach of cultivating wild species is also advocated as a means to meet current and 

future demands and to reduce pressure of harvesting wild populations. Furthermore, cultivation 

of medicinal plants can reduce degradation and loss of genetic diversity (Cunningham, 1991). 

Analysed results clearly indicated that different N application rates and irrigation regimes has a 

significant effect on the growth and composition of S. aethiopicus plant. Application of 

nitrogen fertilizers and varying irrigation regimes increased biomass production and yield; 

however increased rates could compromise the accumulation of secondary metabolites and 

other elements which significantly contribute to medicinal properties.  

 

Scientific investigation and validation of medicinal plants as a source of medicine is imperative 

for their safety, efficacy, quality and the appropriate dose of the plant material. This section 

explains the effect of irrigation regimes and nitrogen application levels on the antioxidant 

activities and soluble sugars of S. aethiopicus. The study attempts to investigate the 

antioxidants and soluble sugars produced in the leaf, rhizome and root of the plant. This 

information is important as few studies have investigated phytochemical profiling and soluble 

sugars secreted by different parts of medicinal plants from Africa and particularly South Africa. 

The results will contribute positively to the current information on the antioxidant capabilities 

and identified sugars to enhance utilization of the plant species.  

 

The characterization of volatile compounds in most medicinal plants has resulted to the 

possible synthesis of potent drugs. This section investigated the bioactive agent from different 

plant parts (leaf, rhizome and root) to ascertain the volatile compounds.  This research is an 

effective method to understand the ongoing research on phytochemistry of numerous medicinal 

plants, and demonstrate noteworthy of compounds. The information may also provide insight 

for potential future compound synthesis directives. Additionally, the data can also provide 

reliable botanical identification as a biotechnology tool to develop plant materials with 

agronomically and commercially desirable traits. 



 
 

6 

 

While scientific investigation has discovered phytochemistry of several medicinal plants, it is 

still vital to study in-detail the scientific evaluation of plants to identify suitable production 

practices, demonstrate the significant compounds and medicinal potential of S. aethiopicus. 

Cultivation of medicinal plants can assist to meet the current demand and contribute to the 

conservation of biodiversity of wild populations and endangered species. 

 

1.4 Structure of the thesis 

This thesis is divided into seven chapters as follows;  

 

 Chapter One: This chapter covers the general introduction and background on the 

importance of medicinal plants. Focus is given to the medicinal plant industry and the 

importance of cultivation practices of medicinal plants. The rationale for the study, aim 

and objectives are also included in this chapter. 

 Chapter Two: A review of literature regarding the origin, taxonomy, distribution, 

biodiversity conservation applications as well as cultivation practices importance of S. 

aethiopicus is discussed. 

 

 Chapter Three: This chapter deals with the phenolic composition, antioxidant activity 

and soluble sugars of S. aethiopicus parts grown from different agro-ecological regions 

of South Africa.  

 

 Chapter Four: This chapter describes influence of irrigation regimes and varying levels 

of nitrogen on the morphological (i.e., plant height, leaf area index and number leaves 

per plant) and physiological (i.e., crop growth rate and stomatal conductance) 

parameters. 

 

 Chapter Five: This section illustrates the antioxidant activity and soluble sugars of S. 

aethiopicus parts in response to irrigation regimes and nitrogen levels. 
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 Chapter Six: This chapter deals with volatile profiling using GC-MS in different parts of 

S. aethiopicus in response to irrigation regimes and nitrogen levels. 

 

 Chapter Seven: General discussion, conclusion and recommendations on the 

interconnectivity of all the results and findings are interpreted and discussed; 

suggestions for further research are provided.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

Medicines derived from plants are widely prominent due to their low costs, easy availability 

and perceived safety (Wachtel-Galor and Benzie, 2011). Medicinal value lies in bioactive 

phytochemical constituents from different plant species and most are derived from the leaves, 

roots, rhizomes, seeds and flowers of plants (Kumar et al. 2010). Medicinal plants are 

considered a rich source of ingredients used in the drug development. They also play a crucial 

role in the development of human cultures, important source of nutrition and recommended for 

their therapeutic values (Ekor, 2014). 

 

The Zingiberaceae is an important family, well-known for its medicinal properties, distributed 

widely throughout the world due to its important natural resources, which provide many useful 

products for food, spices and medicines. The family consist of 53 genera and 1200 species 

which makes it the largest family of the plant kingdom (Kress, 1990). Zingiberaceae are 

pantropical perennial terrestrial, rarely epiphytic, aromatic rhizomatous herbs with simple 

deciduous leaves. African ginger (S. aethiopicus) (Schweinf.) B.L. Burtt is a perennial 

rhizomatous herb and is classified as a member of the Zingiberaceae family due to its 

morphological characteristics (Makhuvha et al. 1997). Although, the plant is indigenous to 

South Africa (Makhuvha et al. 1997), it is regarded as an important medicinal plant in many 

regions of southern Africa. The plant is widely distributed in other regions of Africa (Figure 

2.1), occurring from Senegal, Nigeria and Ethiopia to Zimbabwe, Malawi and Zambia 

(Makhuvha et al. 1997). The plant is reported to be extinct in many regions of southern Africa 

(Figure 2.1), specifically in South Africa (Jackson, 1990).  The distribution patterns of S. 

aethiopicus in South Africa are restricted in areas of Mpumalanga, KwaZulu-Natal and 

Limpopo Province (van Wyk et al. 1997). As more plants are harvested and over-exploited for 
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financial gain, the need for cultivation to increase production levels of S. aethiopicus is 

imperative to conserve the biodiversity of its wild populations. Cultivation of medicinal plants 

through agronomic practices with the inclusion of fertilizers rates and irrigation regimes is 

advocated as a means of meeting current and future demands for large quantities of herbal 

drugs and relieve the pressure of harvesting wild populations. 

 

Figure 2.1: Geographical distribution of African ginger (S. aethiopicus) in regions of South 

Africa and across southern Africa regions. Source: SANBI distribution data (2013). 

 

2.2 Phylogeny and classification of Zingiberaceae species 

Some members of Zingiberaceae have been utilized and cultivated for their attractive flowers, 

as spices, food, medicines, perfumes, dyes and aesthetics to man. Zingiberaceae is a family of 

flowering plants with many species of aromatic perennial herbs with tuberous rhizomes (Kress, 

1990). Classifications of the family is mostly based on morphological traits such as height and 
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size. Although the family is still poorly known taxonomically with many species, current 

distribution of genus Renealmia are found in the Neotropics, while three genus Aframomum, 

Aulotandra and Siphonochilus are widely distributed and recognized in Africa (Kress et al. 

2002). The distribution of Zingiberaceae from different zones across the world is distinguished 

by their various characteristics which make them adaptable to several climatic, geographic and 

topographic conditions.  

 

The phylogenetic studies of Zingiberaceae have proceeded slowly from many genera and 

remain to be fully explored. Four sub-families namely Siphonochiloideae, Tamijioideae, 

Alpinioideae and Zingiberoideae and four tribes Siphonochileae, Tamijieae, Alpinieae and 

Zingibereae have been reported and recognized under the Zingiberaceae (Kress et al. 2002). 

African ginger (S. aethiopicus) (Schweinf.) B.L. Burtt forms part of Siphonochilus genera 

widely recognized and distributed in Africa (Kress et al. 2002). Taxonomy and classification of 

the Zingiberaceae will determine detailed understanding of species relationships within the 

family. Also, future studies to investigate and increase taxonomic sampling within the 

Siphonochilus subgenera will characterize patterns in the evolution within the subgenera.  

 

2.3 Siphonochilus aethiopicus origins, description and current distribution levels 

The genus Siphonochilus is the major group of angiosperms in the Zingiberaceae family 

(Makhuvha et al. 1997). The generic name Siphonochilus is derived from the Greek siphono 

meaning tube, and chilus referring to the edge shape of the flower. The specific name 

aethiopicus means the plant originated from southern Africa (Hutchings, 1996). Current 

distribution of African ginger in South Africa is restricted to Mpumalanga, Limpopo and 

KwaZulu-Natal (Figure 2.1). The plant is also considered important in other regions of Africa, 

including Zimbabwe, Swaziland, Malawi, and Zambia (van Wyk et al. 1997). 
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S. aethiopicus produces deciduous and sprout leaves that develop in spring from the 

underground rhizome. The leaves are lanced shaped and may grow to a height of up to 40 mm 

(Figure 2.2 B). The plant also produces purplish and yellowish attractive flowers, which are 

borne at ground level; they emerge before the leaves in spring and are very short-lived (Figure 

2.2 A). S. aethiopicus has a coned-shaped rhizome which is borne to the ground (Figure 2.2 C) 

and the roots have been determined to reach up to 400 mm (Figure 2.2 D).  

 

Some members of Zingiberaceae such as Hedychium and Alpinia species have become 

naturalized in certain areas (Smith, 1998). The increasing demand of herbal medicine 

worldwide has led to indiscriminate harvesting and as a result many plant species are becoming 

extinct and endangered (Diederichs et al. 2002). S. aethiopicus is also enlisted as a critically 

endangered species in South Africa and in other parts of Swaziland (The Red list of South 

African plants version 2015.1).  As a result of the species extinction, the Venda tribe in 

Limpopo province are starting to travel to Zimbabwe to harvest the plant from the wild 

(Masevhe, 2004). The numbers remaining in the wild are critically low with 60% of the 

subpopulations consisting of fewer than 100 mature individuals (The Red list of South African 

plants version 2015.1). The medicinal value of the plant might be affected due to the 

geographical differences in different production locations throughout southern Africa 

(Ngarivhume et al. 2015). The primary ecological factors affecting the active ingredient 

contents could include temperatures, precipitation, radiation, soil pH and water levels. 

 

Conservation of endangered medicinal plants using techniques such as plant part harvest 

substitution, agronomic practices and biotechnological interventions such as micro propagation, 

is imperative and will aid in future conservation of the species.  

 

http://www.sciencedirect.com/science/article/pii/S0378874114007946


 
 

14 

 

2.4 Utilization and contribution of Siphonochilus aethiopicus in the economy 

Many members of the Zingiberaceae family are widely used as spices, flavouring agents, and 

medicines due to their unique flavour and medicinal properties (Crouch et al. 2000). As a 

species of Zingiberaceae, the ethno-botanical use of S. aethiopicus against a wide variety of 

ailments prompted our investigation of the rhizome of this plant with a view to isolating the 

compounds responsible for its medicinal value. In the S. aethiopicus producing areas of Africa, 

the rhizomatous part of the plant is mostly used. The rhizomes possess great medicinal benefits 

due to the presence of a medicinally significant compound siphonochilone (Gericke and van 

Wyk, 1997).  

 

The herb has been traditionally used for the treatment of coughs, colds, asthma, headaches, 

pain, inflammation and malaria (van Wyk, 2008). The rhizome extracts contain anti-bacterial 

(Light et al. 2002), anti-inflammatory (Gericke, 2001), antimalarial (Lategan et al. 2009), and 

anti-candida properties (Verotta and Rogers, 1997). According to Fouché et al. (2008), a novel 

herbal extract from S. aethiopicus developed is BP4 which has potential for the treatment of 

asthma and allergies.  

 

S. aethiopicus rhizomes and roots serve as a good source of spice, treat diarrhoea and stomach 

infections in East Africa (Burkill, 2000). In Nigeria the rhizome of S. aethiopicus serve as spice 

and flavour to enhance yam (Igoli et al. 2012). Traditionally, the mixture of rhizomes and roots 

has been reported to be used to treat hysteria and relieve dysmenorrhoea (Igoli et al. 2012). 

According to Lock (1999), the dried root of Siphonochilus decorus (Druten) can also be burned 

as incense and insect repellent. In Benin, the aqueous decoction of the roots and rhizomes of S. 

aethiopicus serve as the traditional medicine for treating female infertility and endometriosis 

(Noudogbessi et al. 2012). 
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S. aethiopicus production and processing is a valuable and lucrative business in South Africa. 

The plant is sold either as pieces or as dry powder and earns a decent income for traditional 

practitioners and shop owners. S. aethiopicus has been reported to have commercial production 

and financial viability potential (Street and Prinsloo, 2012). 

 

 It is also regarded as the second most frequently traded medicinal plant at muthi shops and by 

street vendors in different regions of South Africa. According to Mander (1998), it is estimated 

that between R140/kg and R450/kg (USD 10.08 and 32.40, respectively) could be obtained 

when selling S. aethiopicus. As a result of increased extinction and scarcity of plant species, in 

the Limpopo Province up to ZAR 800.00/kg (USD 59.59) could be obtained from the muthi 

shops and street traders (Moeng and Potgieter, 2011).  
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Figure 2.2: African ginger (Siphonochilus aethiopicus) flowers (A), deciduous leaves (B), cone- 

shaped rhizomes (C) and roots (D). (Photo by Mokgehle S.N., 2016). 

 

2.5 Biodiversity conservation applications of Siphonochilus aethiopicus 

Current trend of population growth, deforestation, overharvesting and bush fires have resulted 

in biodiversity loss for many medicinal plant species. Awareness and attempts on the 

importance of medicinal plant biodiversity has been considerably raised in the last decade both 

in developed and developing countries in Africa (Kokwara, 1993). However, the current 

biodiversity loss is as a result of no action. S. aethiopicus received the most attention in terms 

A B 

C D 



 
 

17 

 

of commercialization due to the rapid demand and short supply (Cunningham, 1993). In the 

search for cultivation and commercialization of the plant species, it is crucial that conservation 

efforts be adopted to preserve the natural habitats of endangered species. Fay (1992), suggest 

that effective conservation methods such as vitro techniques (plant propagation, seed 

germination, micro propagation and tissue culture) can play an essential role in the conservation 

of vulnerable plants.  

 

A clear understanding of the plant propagation methods suitable for optimum response of 

medicinal plants will generate knowledge that will form the basis for genetic transformation 

research in plant improvement programmes. Suitable cultivation methods for conservation 

purposes (e.g. propagation, nutrient and irrigation managements) of S. aethiopicus are highly 

important.  

 

2.5.1 Propagation and multiplication of medicinal plants 

Several factors such as extinction, indemnity, restricted distribution and biodiversity loss have 

made it necessary to take steps to conserve medicinal plant species. Vegetative or asexual 

propagation is one of the methods of reproducing progeny of plants identical in genotype to a 

single source plant (Bedir et al. 2003). The method is recognized as a conservation strategy for 

plant species which are economically important and difficult to grow through seed 

multiplication process. Vegetative propagation is the most preferred and effective method of 

propagating S. aethiopicus due to the fact that the rhizome develops and mature underground. 

Cultivation and propagation of S. aethiopicus from rhizomes is happening in the warm areas of 

South Africa under small-scale (van Wyk, 2008). Efforts have been developed for propagation 

by using rhizome cuttings to assist in increasing cultivation of valuable medicinal plants. The 

results on vegetative propagation of Paris polyphylla through rhizome segments suggest 

increased opportunities for large scale production and reduced biodiversity loss (Danu et al. 

2015).  
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To satisfy growing market demands for S. aethiopicus and other plant species, studies suggest 

that finding an alternative propagation protocol to produce large number of planting material 

for better yield and quality is essential. Micro propagation using tissue culture technique offers 

a rapid means of producing large numbers of clonal plants which can be used for restoration 

and conservation of endangered species (Chan and Thong, 2004). The method is considered a 

good approach because it ensures mass production and healthy seedlings with desirable 

characters. The method is not without hindrances. It is a complex technique involving multiple 

stages, precise formulations of nutrient media, careful surface sterilization and specific 

environmental growing conditions (Zheng et al. 2008). The type and age of plant material, time 

of year collected and treatment after collection are critical. Morphological characteristics can be 

visualized by looking at the plant. However, other plant characteristics such as shape, size, 

fruits and flower colour can only be assessed by transplanting and growing the plants under 

field conditions until flowering stage. The success of micro propagation for true ginger (Z. 

officinale Roscoe) from vegetative buds has been reported (Sharma and Singh, 1997). Plant 

regeneration of Hedychium coronarium through callus mediated somatic embryogenesis from 

leaves (Huang and Tsai, 2002); rhizome (Verma and Bansal, 2012) and axenic shoot tip (Bisht 

et al. 2012) have been reported.  

 

Field assessment of tissue cultured plants indicated that two crop seasons are required in order 

to develop rhizomes that can be used for commercial cultivation. Although there are reports on 

micro propagation of true ginger (Z. Officinale) that has been established and utilized mostly 

for commercial production of high-quality plant-based medicines, to date the method is not 

widely used and incorporated on large scale for production. Micro propagation of Hedychium 

coronarium using rhizome buds, showed shoot proliferation with simultaneous rooting of the 

shoots (Huang and Tsai, 2002). This rapid and cost-effective micro propagation protocol 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781277/#CR17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781277/#CR34
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781277/#CR4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781277/#CR17
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of Hedychium coronarium can reduce degradation of biodiversity species and be utilized in 

pharmaceutical industries (Mohanty et al. 2013).  

 

2.5.2 Cultivation of medicinal plants 

The increased demand for utilization and harvesting of medicinal plants from the wild is 

reducing the number of natural populations and leading to local extinction of many species and 

degradation of their habitats. Additionally, inadequate cultivation fields, the increased growth 

of medicinal trade, and lack of regulation of harvesting and overharvesting have led to reduced 

biodiversity of natural resources (Lambert et al. 1997). Medicinal plant production through 

cultivation can be an effective strategy for preservation of the plant populations and elevating 

the level of knowledge for sustainable utilization of these plants as traditional medicine. To 

date there is limited information on the cultivation and guidelines of medicinal plants in 

response to water levels and fertilizer requirements of most species.  

 

Cultivation recommendations in most plant species are based on the plants with similar growth 

habits (Boyle and Craker, 1991). Cultivation of medicinal plant species under experimental 

conditions is one of the approaches that can clearly determine the fertilizer requirements (i.e. 

type of nutrient, rate of application and formulation) and soil water levels. Nutrients and 

moisture uptake from the soil influence growth development and phyto-nutritional status of the 

plant (Lichtenthaler, 1996). It is essential that recommended nutrients rates are applied to the 

soil to avoid yield reduction and impact on the biochemical and genetic functioning of the 

plant. Fertilizers such as nitrogen (N), phosphorus (P) and potassium (K) are of greatest 

significance for the balanced nutrition in the plant species production. They are categorized as 

organic and inorganic fertilizers, with the differences attributed to the source (Naguib, 2011). 

Nitrogen forms an integral component of many essential plant compounds. Although nitrogen 

is regarded as a deficient mineral nutrient limiting the productivity of different plant species in 

most African soils (Fricke, 1997), P and K are also essential for root development and promote 
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plant growth. Addition of nutrients, particularly K, can increase chlorophyll content. 

Photosynthetic organs are also protected to complete their role and increase the photosynthesis 

to avoid crop yield reduction under dry conditions. Nitrogen is an essential component of 

chlorophyll, proteins, carbohydrates and enzymes within a plant species. Application of 

fertilizers has been reported to enhance the yield, increase biosynthesis of carbon based 

secondary metabolites and benefit the primary functioning of plants (Marschner, 1995). Some 

investigations on the growth of thyme (Thymus vulgaris) found that N fertilizer increased herb 

yield, but essential oil content was not significant (Baranauskienne et al. 2003). The application 

of N fertilizer on Davana (Artemisia pallens) increased in the oil content, plant height, number 

of lateral shoots, fresh and dry weight (Kumar et al. 2009). Furthermore, significant increase in 

vegetative growth and oil yield content of dill (Anethum graveolens) in response to N 

fertilization was observed (Hellal et al. 2011).  

 

A study on the cultivation of true ginger (Z. officinale) with nitrogen addition revealed 

markedly improved productivity in oil content and yield by enhancing the amount of biomass 

yields and photosynthetic rate (Sangwan et al. 2001). The role of nitrogen on vegetative growth 

and yield attributes is well documented by different studies. According to Akbarinia et al. 

(2006), the application of up to 90 kg N/ha significantly increased seed yield, essential oil 

content and fatty acids of coriander (Coriandrum sativum). The concentration of N, P and K 

(%) in different plant parts of true ginger (Z. officinale) showed significant yield by up to 

32.8% and restricted rhizome rot disease occurrence (Sadanandan and Hamza, 1996). 

 

Significant fraction can be saved by subjecting crops to periods of moisture stress with minimal 

effects on yields (Vandoorne et al. 2012). The technique requires knowledge of the soil 

characteristics, plant species rooting depth and water requirement (Sadras et al. 2005). The 

disproportion levels may be attributed to underdeveloped root system, low soil moisture 

availability and salts present in the irrigation water. Consequences of water stress may occur at 
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any stage of plant species development and growth. Furthermore, water stress may cause 

difference in morphological, physiological and biochemical changes of the plant. Reduced 

evapo-transpiration could result in stomatal closure, leaf senescence and canopy. Furthermore, 

reduced assimilation of carbon and cell development has decreased biomass production 

(Vandoorne et al. 2012). Some investigations on water stress reported increased yield of 

Chamomile (Matricaria Chamomilla) under 100% of field capacity and no significant variation 

on the yield of plants irrigated with 55% of field capacity (Pirzad et al. 2006). Effect of drought 

stress on yield and morphological parameters of Dracocephalum decreased shoot yield from 

4126 to 2477 kg/ha. There was also an increase in water stress levels of 100% to 40% of field 

capacity (Safikhani et al. 2007). The two Curcuma species subjected to different irrigation 

levels showed that C. Aromatic recorded maximum values of the leaf, fresh and dry weight of 

rhizome when compared to C. domestica (Mohamed et al. 2014). A study that investigated the 

three irrigation treatments (100%, 80% and 60% of field capacity) of Rosmarinus officinalis 

(L.) reported a gradual increase in the chlorophyll content with increasing irrigation frequency 

(Hassan and Bazaid, 2013). 

 

The investigations of medicinal species have discovered biological-active components such as 

morphine, cocaine, aspirin, codeine and guanine which contribute to traits of drug discovery 

today (Anon, 1996). Several secondary metabolites such as alkaloids, phenolic compounds, 

flavonoids, acids, aldehydes, alcohols, monoterpenes and sesquiterpenes, have been reported in 

different plants (Wink, 2015). The response of fertilizer applications and water regimes has 

been reported to produce variations in the secondary metabolites of different plant species 

during their development. Few studies have revealed the impact of environmental stress on the 

production of several secondary metabolites by plants (Jaleel et al. 2007). The accumulation of 

secondary metabolites has also been reported to be induced with exposure to nutrient deficiency 

(Stewart et al. 2001). In contrast, excess nitrogen application can result in excessive vegetative 

growth, increased susceptibility to diseases and delayed maturity (Gustfson, 2010). The 
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rhizome of S. aethiopicus possesses great medicinal benefits due to the presence of a 

medicinally significant compound siphonochilone (Gericke and van Wyk, 1997). Extracts of S. 

aethiopicus rhizome contains anti-bacterial, anti-inflammatory, antimalarial and anti-candida 

properties (Light et al. 2002; Lategan et al. 2009). 

 

Soluble sugars, including monosaccharide and oligosaccharides play a major role in regulating 

metabolism, growth and development of plants. Plants have developed various adaptive 

strategies for their survival in nature and to avoid environmental stresses. However, the 

decrease in the efficiency of photosynthesis in source tissues may reduce the supply of soluble 

sugars to sink tissues due to variations in environmental factors such as light, water stress and 

temperature (Rosa et al. 2009). Plants are subjected to a combination of adaptive mechanisms 

such physiological and biochemical processes, hence plant’s response to different stresses are 

unique. High concentration of soluble sugars in different tissues promote growth and 

carbohydrate storage, while, reduced soluble sugar status enhances photosynthesis and reserve 

mobilization (Rosa et al. 2004). The high levels of soluble sugar contents suggest a good 

regulated metabolic status of the plant, with low amounts of sugars indicating a potential 

metabolic deregulation. Soluble sugars increase during the winter season when temperatures are 

low and decrease in spring when plants are subjected to the gradual change in the environment. 

A study on the various parts of C. Intybus exhibited high total sugars and non-reducing sugar 

content compared to the seeds (Al-Snafi, 2016). The concentration of sucrose, glucose, and 

fructose for two varieties of ginger (Z. officinale) was significantly influenced by CO2 

concentration (Ghasemzadeh et al. 2014). 

 

The characterization and proportion composition of volatile organic compounds (VOCs) 

provide an essential parameter for the classification and identification of the plant species. 

Characterization of VOCs is important to reveal the active ingredients which will show various 

useful compounds essential as fragrance and pharmacologically agents. The quality of VOCs 
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composition of plants can be influenced by agronomic practices, climatic conditions, cultivar, 

harvest time, storage, processing methods and agro ecological region (Asensio et al. 2007). 

Furthermore, the composition of different chemical constituents varies from one species to 

another, age and tissue type. Factors such as water stress, mineral nutrient deficiency, 

aluminium tolerance and plant microbe interactions have been reported to influence organic 

compounds in the root of varying plant species. Terpenoids, commonly monoterpenes and 

sesquiterpenes are some of the most important constituents identified in different plant species 

(Figure 2.3). The essential oil compositions of true ginger (Z. officinale) from different agro-

ecological areas have been identified and reported (Wohlmuth et al. 2006). Investigation of 

chemical constituents in essential oils of true ginger exhibited the presence of zingiberene, α-

curcumene, β-sesquiphellandrene camphene, from varying agro-ecologies (Singh et al. 2008). 

A study on Polygonum minus detected most volatiles as sesquiterpenes in the leaf and stem, 

followed by aliphatic and monoterpenes compounds (Ahmad et al. 2014). The most abundant 

sesquiterpenes in the leaf stem and root was β-caryophyllene, at 5.78%, 34.71% and 22.92%, 

respectively. Monoterpenes, such as eucalyptol, linalool, camphor, α-pinene, β-pinene, α-

terpineol, borneol and many others, are the principal components of plant volatile oils (Figure 

2.3). Production of most terpenes constituents in aerial parts increased with an increase in 

temperature regimes. The results obtained on P. hydropiper emitted more decanal and 

dodecanal constituents in the stems as compared to the presence of monoterpenoids emitted in 

the extracts of the rhizome contributed to the bioactivity of the plant species (Gabriel and 

Kesselmeier, 1999). 

 

2.6 Quality analysis of medicinal plants 

Various methods have been established for qualitatively and quantitatively, identification, 

separation and purification of several compounds and essential oils in different medicinal plant 

species. The choice of a particular analytical technique depends on the nature of the compounds 

involved and the plant species in question. The actual amounts of chemical constituents in 
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medicinal plants are known to be affected by the harvest season, plant parts collected, 

environmental factors (soil type, water availability, and temperature), drying method, plant 

origins and extraction procedure. One of the most important reasons for variation in estimated 

amounts of identified bioactive compounds is, however, the method employed (Siddiqui et al. 

2013). 

 

A spectrophotometric assay is a direct method which requires small sample volume of the plant 

materials. It allows the assay to be determined in a fast turn and could be applied to a single or 

several treatment samples at a time (Siddiqui et al. 2013). Antioxidant activities such as 2, 2’-

diphenyl-1-picryl hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) can be 

determined using spectrophotometric assays for plant materials. Assays are measured 

spectrophotometerically and amounts expressed using the recommended standard at the 

applicable wavelength. 

 

Thin layer chromatography (TLC) has been designed for the analysis and identification of 

herbal products and quality control of medicinal plants. The technique is responsible for rapid 

characterization of natural products in extracts for an efficient and selective isolation procedure. 

The technique provides a multiple detection of compounds on the same plate and can also 

handle a high number of samples in a short analysis time (Wink, 2015). Hyphenated techniques 

such as High performance liquid chromatography (HPLC) and gas chromatography (GC) can 

provide useful structural information compounds prior to isolation. Several studies have 

described the use of HPLC for characterization and quantification of secondary metabolites in 

plant extracts, mostly phenol compounds, flavonoids and alkaloids (Khoddami et al. 2013). 

HPLC technique is regarded as the best due to its simplicity, versatility, and its ability to handle 

compounds of a diverse polarity and molecular mass (Wink, 2015). Gas chromatography (GC) 

is also useful in the discovery of novel compounds, metabolomics and synthesis of pathways. 

The technique is characterized by a high-sensitivity and better resolution on the identification 
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of specific compounds. The method remains the most powerful discovery tool for defining 

compounds and is considered imperative for isolation of volatile oil compounds analysis, but 

cannot be performed in high performance liquid chromatography (Pongsuwan et al. 2007).  

 

 

Figure 2.3: Chemical diversity of the different volatile organic compounds (VOCs) and related 

compounds present in the plant.  
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CHAPTER THREE 
 

PHENOLIC COMPOSITION AND ANTIOXIDANT ACTIVITY OF 

AFRICAN GINGER (SIPHONOCHILUS AETHIOPICUS) FROM 

DIFFERENT AREAS OF SOUTH AFRICA 
 

ABSTRACT 

African ginger (S. aethiopicus) is used as a medicinal plant containing bioactive constituents 

which provide health benefits. However, there is limited information describing its antioxidant 

properties from different parts and growing areas of South Africa. In this study, total phenolic 

content, flavonoid content and antioxidant activity of S. aethiopicus leaf, rhizome and root from 

varying areas (Mpumalanga, KwaZulu-Natal, Limpopo and North West) were evaluated. Total 

phenolic and flavonoid contents were investigated by Folin-Ciocalteu and aluminium chloride 

(AlCl3) colorimetric methods, respectively. Antioxidant activity in different parts of S. 

aethiopicus was evaluated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging 

activity and ferric reducing power (FRAP). Furthermore, the study determined the variations in 

soluble sugars in the leaf, rhizome and root as influenced by varying growing areas. The results 

showed high concentration of sucrose, glucose and fructose in the leaf and root as influenced by 

different growing areas. A higher content of both total phenolics and flavonoids were found in 

the root from Mpumalanga (54.5±2.0 mg GAE/g and 14.83±0.06 µg QE/g, respectively) 

compared to the leaf and rhizome from other growing areas. KwaZulu-Natal also exhibited high 

flavonoids in the leaf (12.72±1.18 µg QE/g), rhizome (14.21±1.98 µg QE/g) and root 

(12.88±0.57 µg QE/g) compared to other growing areas. In both methods, the leaf exhibited 

higher antioxidant activity than the root and rhizome. The high antioxidant activities exhibited 

in the leaf from Mpumalanga suggest its adaptive capabilities to different environments. S. 

aethiopicus parts could be used as a potential source for antioxidant properties and encourage 

cultivation under different growing areas to conserve its biodiversity and increase species 

populations. 

Keywords: Phytochemical screening, Phenolic, Medicinal plants, Free radicals 
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3.1 Introduction 

The recent global increases in food and medicine prices have added pressure on the agricultural 

production and health care system. As a result, medicinal plants are screened for their phyto-

constituents that can be used as drugs and various pharmaceutical products. Naturally occurring 

phyto-constituents such as tocopherols, carotenoids, polyphenolics and terpenoids from 

medicinal plants are effective in preventing various diseases caused by oxidative stress which 

generate free radicals (Saeed et al. 2012). 

 

Medicinal species possess antioxidant properties with potential to prevent and treat diseases and 

maintain human health (Sofowora et al. 2013). Amongst them, S. aethiopicus is one of the 

mostly sought-after medicinal used for a variety of respiratory ailments. The plant is considered 

important and most popular of most traditional medicinal plants (Gericke et al. 2001). 

Chemical compounds isolated from the plant include sesquiterpenoids of the furanoid type 

(Holzapfel et al. 2002). The plant contains up to 0.2% of dry weight of the Siphonochilus 

siphonochilone (Viljoen et al. 2002). 

 

S. aethiopicus has high popularity due to its medicinal properties and has been identified as one 

of the South African species with commercialization potential as a result of high demand and 

reduced supply. The plant is reported to contain health-promoting compounds and functional 

properties which prevent and treat several health conditions. Scientific studies have shown that 

various extracts of S. aethiopicus possess a wide range of pharmacological properties such as 

antimicrobial (Verotta and Rogers, 1997), anti-inflammatory (Gericke et al. 2001), and anti-

candida properties (Light et al. 2002). Furthermore, some health benefits of S. aethiopicus 

rhizome and root include coughs, colds, asthma, headache, candida and malaria (van Wyk and 

Gericke, 2000). 

 



 
 

36 

 

The composition and concentration of soluble sugars have been of interest due to significant 

components in medicinal species and as food crops contributing to their nutritive value. Soluble 

sugars play a significant role as primary messengers and regulate the growth and metabolism in 

both sugar source and sink tissues (Rolland et al. 2006).  Accumulations and variations in the 

levels of soluble sugars in different plant parts depend on a number of factors, such as 

environmental conditions in growing areas and the degree of maturity at harvest. Variations in 

soluble sugar concentrations exist not only among variant species, but also within the different 

plant parts of the same species. Plants employ several adaptive strategies in response to 

environmental stresses associated with metabolic adjustments which results in the accumulation 

of phenols and sugars (Tesfay et al. 2011).  

 

The response of plant parts and soluble sugar concentration from varying growing regions will 

provide information fundamental data on physiological and biochemical mechanisms. 

Consequently, it is imperative to understand response of growing areas in relation to the plant 

secondary metabolites. The objective of this study was to investigate phenolic and flavonoid 

content, antioxidants activity and soluble sugars of different parts of S. aethiopicus from 

different growing areas in South Africa. 
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3.2 Materials and methods 

 

3.2.1 Geographical description of study sites 

S. aethiopicus plant materials were collected in April/May 2014 season from different growing 

areas in South Africa (namely; Mpumalanga, Limpopo, KwaZulu-Natal and North West). 

About 10-15 plants were randomly sampled from each site by walking in a zigzag manner 

across the length of the field starting from one corner. The areas have a unimodal rainy season 

that starts in October each year and ends in April the following year. Total rainfall received 

during the corresponding site was obtained from nearby automatic weather stations (Table 3.1)  

 

Table 3.1: Site description study areas for S. aethiopicus. 

 Limpopo Kwazulu-Natal North West  Mpumalanga 

Geographical 

location (latitude 

and longitude) 

23° 49' 59"S  

30° 9' 48"E 

28° 84' 52"S  

31° 09' 99"E 

25° 63' 44"S  

27° 78' 11"S 

25° 26' 25.3"S 

30° 58' 55.9"E 

Annual rainfall 600 mm 871 mm 540 mm 800 mm 

Average 

Temperature  

19–30 °C 16–26 °C 16–27 °C 15–28 °C 

Frost occurrence 

(*during data 

collection)  

None Moderate None Moderate 

Soil texture classes Sand Clay Clay Sandy loam 

 

3.2.2 Harvesting and sample preparation 

Fresh plant samples were harvested from the different growing areas and separated into leaf, 

rhizome and root. Plant materials for determination of soluble sugars were freeze-dried (Model 

FM25, St. Louis, Missouri) until analysis. The plant parts used for determination of antioxidant 

activity were oven-dried separately at 50 °C for 48 h, ground into fine powder and extracted 

with 50% aqueous methanol in an ultrasonic bath for 1 h. The infusions were filtered under 

vacuum through Whatman number 1 filter paper. The extracts were evaporated to dryness 

under vacuum at 30 °C using a rotary evaporator (Model RE300, Staffordshire, ST15 OSA, 
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UK) and entirely dried under a stream of air. Fresh extracts of 50% aqueous methanol were 

used in the antioxidant assays. 

 

3.2.3 Determination of total phenolics and flavonoids 

The concentration of total phenolics in plant parts was determined using the Folin-Ciocalteu 

colorimetric assay according to method by Li et al. (2008). The total phenolic content was 

expressed using Gallic acid as the standard (mg GAE/g dry weight basis). Flavonoids were 

quantified using aluminium chloride (AlCl3) colorimetric according to method by Ordon et al. 

(2006). Quercetin was used as a standard. The absorbance was measured in triplicates at 765 

and 510 nm using a spectrophotometer, for phenolics and flavonoids, respectively. 

 

3.2.4 Determination of total antioxidant activities using DPPH assay 

The antioxidant activity of S. aethiopicus leaf, rhizome and root was determined by the (DPPH 

2, 2’-diphenyl-1-picryl hydrazyl) radical scavenging method according to Ndhlala et al. (2014). 

The reaction mixture consisted of 15 µL for each plant extract and diluted with 735 µL absolute 

methanol at different concentrations 0.39, 0.78, 1.56, 3.12, 6.25, 12.5, 25, and 50 mg/mL. In 

addition, the freshly prepared DPPH solution (750 µL; 50 µM in methanol) was added to give a 

final volume of 1.5 mL in the mixture. The assay was run in triplicate and repeated twice with 

concentrations varying as follow; 0.065, 0.26, 0.52, 1.04, 6.25, 12.5, 25 and 50 mg/mL. The 

assay was performed under dimmed light and plates containing the reaction solution were 

incubated in the dark at room temperature for 30 minutes to complete the reaction mixture. 

Thereafter, the absorbance of the solution was measured at 517 nm using a UV/VIS 

spectrophotometer (Varian Cary 50, Varian Australia Pvt LTD, Sydney, Australia) with 

methanol as a blank. A standard antioxidant, ascorbic acid was used as positive control at 

different concentrations. DPPH scavenging activity was calculated as percentage (%) inhibition 

of DPPH.  
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Where; Abs517nm sample is the absorbance of the reaction mixture, which contains the 

resuspended extract or positive control and Abs517nm Neg control is the absorbance of the 

negative control. RSA (%) = 1- (Abs 517nm sample/ Abs517nm Neg Control) 

×100……………………. [Eq.1] 

 

2.3.5 Determination of total antioxidant activity using FRAP assay 

The ferric reducing antioxidant power assay (FRAP) of each plant part was measured according 

to Ndhlala et al. (2014). Each 96 well microtiter plate contained 30 μL of methanol and 

resuspended plant extract of 30 μL at a concentration of 50 mg/mL, a positive control (BHT 

dissolved in methanol) was added also and two-fold serial dilution was used in triplicate. About 

40 μL potassium phosphate buffer (0.2 M, pH 7.2) and 40 μL potassium ferricyanide (1% in 

phosphate buffer, w/v) were added in each well. The plate was covered with aluminium foil and 

incubated at 50 °C for 20 min. After incubation 40 μL trichloro-acetic acid (10% in phosphate 

buffer, w/v), 150 μL distilled water and 30 μL FeCl3 (0.1% in phosphate buffer, w/v) were 

added. Then again the plate was re-covered with foil and incubated at room temperature for 30 

min to complete the reaction. The assay was repeated twice with absorbance read at 630 nm 

using a microtiter plate reader (Opsys MRTM, Dynex Technologies Inc., Palm City, FL, USA). 

The reducing antioxidant power of the extract and ascorbic acid were expressed by graphically 

plotting absorbance against concentration.  

 

3.2.6 Determination of soluble sugar concentration 

Freeze-dried, plant powder (0.05 to 0.10 g in dry weight basis) was mixed with 10 mL of the 

extraction solvent ethanol 80% (v/v). The solution was homogenized using an Ultra-Turrax 

(Model T25D, IKA, Germany) for 60 s, incubated in an 80 °C water bath for 60 min and kept at 

4 °C overnight. Thereafter, tubes were centrifuged (12, 000 g, 4 °C), for 15 min and the 

supernatant was filtered through glass wool and dried in a Savant Vacuum Concentrator 

(SpeedVac, Savant, NY, USA). Dried samples were resuspended with 2 mL ultra-pure water, 
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filtered through 0.45 μm nylon filters and analysed using an HPLC-RID system (LC-20AT, 

Shimadzu Corporation, Kyoto, Japan) equipped with a refractive index detector (RID-10A, 

Shimadzu Corporation, Kyoto, Japan) and a Rezex RCM-Monosaccharide column (300 mm x 

7.8 mm) (8-micron pore size; Phenomenex®, Torrance, CA, USA). The concentration of 

individual sugars was determined by comparison with authentic sugar standards (Tesfay et al. 

2011).     

 

3.2.7 Data analysis 

All data was subjected to analysis of variance using GenStat software 17.1 editions (VSN 

International, Hemel Hempstead, UK). GraphPad Prism version 5.00 for Windows (GraphPad 

Software Inc., San Diego, CA) was used construction of graphs and calculation of IC50/EC50 

values. The treatment means were separated using (p < 0.05) Duncan’s multiple range test 

(DMRT). The results from different growing areas are presented as means ± standard error of 

six replicates. 

 

3.3 Results and discussion 

 

3.3.1 Total phenolic and flavonoid content 

 

The total phenolic and flavonoid content of S. aethiopicus extracts are compiled and presented 

in Table 3.2. The result of the phytochemical screening carried out on the methanolic extracts 

of the leaf, rhizome and root revealed the presence of various levels of phenolic content from 

different growing areas. As indicated in Table 3.2, the total phenolic content of S. aethiopicus 

ranged from 10.50±2.4 to 56.69±6.9 mg GAE/g for rhizome and root from Limpopo province, 

respectively. Generally, high phenolic contents were observed in the root and lowest in the leaf 

and rhizome (Table 3.2). Among the plant parts sampled and analyzed, the root from 

Mpumalanga and Limpopo showed the highest phenolic content (56.6±6.9 mg GAE/g and 

54.5±2.0 mg GAE/g), respectively. Significant amounts on total phenolic content were also 

obtained in other plant parts from Limpopo and Mpumalanga.  
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There was no significant effect on total phenolic content for the leaf, rhizome and root from 

North West province. The results showed the highest total flavonoids for the leaf, rhizome and 

root from KwaZulu-Natal province (Table 3.2). The highly significant amount of total phenolic 

content recorded in this study, suggest a strong influence of the environment from different 

varying areas on the biological performance of S. aethiopicus root (Table 3.2). These results 

indicate that the total phenolic content in this study had noticeable differences according to 

each agro-ecological location. This is due to environmental variations such as e.g. rainfall and 

temperature (Table 3.1) that may exert stress on the plant parts and exhibit expression of high 

phenolic content. Recent report indicated the expression of more plant secondary metabolites in 

response to environmental stressed conditions (Sampaio et al. 2016). The present results are 

comparable to total phenolic content reported on varieties of ginger (Z. officinale) varieties 

(Ghasemzadeh and Jaafar, 2011). The findings strongly suggest that phenolics are important 

components of medicinal plants and their pharmacological effects could be attributed to the 

presence of valuable constituents. The phenolic content exhibited in the leaf and rhizome of S. 

aethiopicus was within the same range as those of commonly consumed Z. officinale 

(Ghasemzadeh et al. 2010). 

 

Accumulations of total flavonoids in different parts of S. aethiopicus from different areas are 

summarized in Table 3.2. The significant variations of flavonoid content (for the root) ranged 

from 4.73±0.86 µg QE/g for North West to 14.83±0.06 µg QE/g for Mpumalanga province. 

The flavonoid content followed an increasing trend for the leaf, followed by the rhizome and 

root from KwaZulu-Natal (Table 3.2). The high flavonoid content observed for the leaf from 

North West (13.34±1.18 µg QE/g), KwaZulu-Natal (12.72±1.18 µg QE/g) and Mpumalanga 

(10.41±1.41 µg QE/g) could be associated to rich flavones, which have been reported to play an 

essential role in plant leaf extracts (Mohamed et al. 2013). KwaZulu-Natal showed high 

flavonoid content in the leaf (12.72±1.18 µg QE/g), rhizome (14.21±1.98 µg QE/g) and root 

(12.88±0.57 µg QE/g) as compared to other sites (Table 3.2). The high total flavonoid content 
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for North West and KwaZulu-Natal are similar with reported content ginger (Z. officinale) leaf 

than the rhizome (Ghasemzadeh et al. 2010). This could be associated with flavonoids as agents 

for antioxidant activity which act as constituents involved biological activities such as anti-

inflammatory processes (Rahman, 2007). Despite the lower rainfall amounts in North West and 

Limpopo (Table 3.1), highest phenolic and flavonoid content were reported for the root and 

leaf. The increase of flavonoid content could also be associated with plant mechanism to adapt 

to various environmental conditions. Furthermore, Jaleel et al. (2007) reported the high 

production of secondary metabolites in plants when subjected stressed environmental 

conditions. Several environmental conditions including the exposure to nutrient deficiency 

could offer a good strategy to induce and improve flavonoid content in different plant parts 

(Stewart et al. 2001). 

 

Table 3.2: Total phenolic and flavonoid content of S. aethiopicus leaf, rhizome and root from 

different growing areas in South Africa. 

 

Location  Plant part  Total phenolics Total flavonoids 

  (mg GAE/g) ( µg QE/g) 

Mpumalanga Leaf 28.8±5.0
b
 10.4±1.4

ab
 

 Rhizome 27.0±7.9
b
 9.5±1.8

bc
 

 Root 54.5±2.0
a
 14.8±0.06

a
 

    

Limpopo Leaf 22.1±6.7
bc

 9.9 ± 0.24
bc

 

 Rhizome 10.5±2.4
c
 10.7±1.4

ab
 

 Root 56.6±6.9
a
 8.9 ± 1.06

bc
 

    

KwaZulu-Natal Leaf 14.4±2.4
c
 12.7±1.1

a
 

 Rhizome 32.5±4.2
b
 14.2±1.9

a
 

 Root 32.7±7.0
b
 12.8±0.57

a
 

    

 North West Leaf 31.0±3.2
b
 13.3±1.1

a
 

 Rhizome 27.6±9.1
b
 4.8±1.3

c
 

 Root 24.5±1.7
bc

 4.7±0.86
c
 

F-statistics  4.29** 3.15** 
Values are Mean±SE (n=6) with dissimilar letters in a column are significantly different at p < 0.05 

(**). Gallic acid (GAE) and Quercetin (QE).  
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3.3.2 DPPH 2, 2’-diphenyl-1-picryl hydrazyl radical scavenging activity 

The EC50 values for the DPPH radical scavenging ability of S. aethiopicus leaf, rhizome and 

root are presented in Table 3.3. All plant parts showed a propensity to quench the free radicals, 

as indicated by low EC50 values. A low EC50 value is indicative of the stronger inhibitor of the 

biological process. The leaf and root extracts from Mpumalanga showed the lowest EC50 

values, depicting its good antioxidant potential. Antioxidant activity of plants has been partly 

ascribed to phenolic compounds (Robards et al. 1999). However, high yield of phenolic 

compounds does not necessarily accompany high antioxidant, as the bioactivity of extracts can 

be influenced by structure and interactions between extracted phenolic compounds. For 

example extracts of the leaf from Mpumalanga exhibited the lowest EC50 values indicating high 

antioxidant activity (Table 3.3) with low phenolic content (Table 3.2) as compared to other 

plant parts. In contrary, the most active DPPH radical scavenger, the root from Mpumalanga 

exhibited the highest total phenolic and flavonoid content resulting in prominent antioxidant 

activity (Table 3.2 and 3.3). The presence of high total phenolic compounds in the root could be 

associated with high antioxidant properties (Table 3.2 and 3.3). According to Shad et al. 

(2013), the leaf of Cichorium intybus possessed good free radical scavenging capacity due to 

higher DPPH radical inhibition and lower EC50 values.  

 

Table 3.3: Antioxidant activity of S. aethiopicus leaf, rhizome and root different growing areas 

in South Africa. 

 

S. aethiopicus extracts with EC50 values (<78.41 μg/mL) are a measure of potent DPPH radical 
scavengers. The lower the EC50, is indicative of the stronger inhibitor.  
 

 

 Mpumalanga Limpopo KwaZulu-Natal North West 

Plant part EC50 (µg/mL) 

Leaf 10.56±0.15
a
 33.52±0.09

c
 28.52±0.10

ab
 24.94±0.14

a
 

Rhizome 20.91±0.15
a
 27.64±0.14

b
 20.77±0.10

a
 20.51±0.14

a
 

Root 16.62±0.11
a
 30.19±0.12

b
 17.26±0.13

a
 17.22±0.12

a
 

Ascorbic acid 78.41±0.22 μg/mL 
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3.3.3 Total antioxidant activity by FRAP 
 

The FRAP assay was used to evaluate the antioxidant activity in the leaf, rhizome and root 

from four areas in South Africa (Figure 3.1, 3.2 and 3.3). Generally, the greater antioxidant 

depicts the reduction of Fe
3+

 to various shades of blue ferrous form and higher absorbance 

values after the assay (Gülçin et al. 2007). The difference between the antioxidant activity of S. 

aethiopicus parts and growing areas differed significantly (p < 0.05). The FRAP values were 

higher in the leaf from Mpumalanga (0.53±0.03 mg/mL) and North West (0.46±0.06 mg/mL), 

however they did not differ significantly from each other. The leaf displayed a stronger 

antioxidant activity at all concentrations than the rhizome and root, irrespective of the where it 

was collected. As expected, reducing activity increased with the increase in the concentration of 

all plant parts. The investigation of antioxidant activity in the leaf grown from KwaZulu-Natal 

was significantly lower at all the concentrations (Figure 3.1).  

 

The antioxidant activity decreased significantly irrespective of the growing area for the root. 

Therefore, the differences obtained in this study clearly indicate that FRAP assay has the 

potential for high precision measurement of antioxidant activity in different parts of medicinal 

plants. The reducing capacity of a plant is much related to the presence of biologically active 

compounds with potent donating abilities (Kasote et al. 2015). The increase in secondary 

metabolites and antioxidant activity from one growing area to another might be due to the 

variability of environmental conditions. The antioxidant potency observed in this study 

indicates the adaptation mechanism to varying growing areas by different parts of S. 

aethiopicus (leaf, rhizome and root). Their adaptation makes them ideally suitable to contribute 

to agronomic practices, which can potentially be cultivated and utilized in the future. 
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Figure 3.1: Ferric reducing power of leaf from Mpumalanga, North West, Limpopo and 

KwaZulu-Natal in South Africa. Positive controls (BHT and Ascorbic acid). 
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Figure 3.2: Ferric reducing power of rhizome from Mpumalanga, North West, Limpopo and 

KwaZulu-Natal in South Africa. Positive controls (BHT and Ascorbic acid). 
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Figure 3.3: Ferric reducing power of root from Mpumalanga, North West, Limpopo and 

KwaZulu-Natal in South Africa. Positive controls (BHT and Ascorbic acid). 

 

3.3.4 Effect of growing areas and soluble sugars content on plant parts 

The soluble sugar (sucrose, glucose and fructose) were detected in the leaf, rhizome and root 

from different sites and the sugar composition varied with accession reflecting the variations 

among the plant parts (Table 3.4). Fructose was detected in all plant parts and from all areas, 

while sucrose and glucose were below the limit of detection. Sucrose content was high in the 

rhizome (7.48±0.46 mg/g DW) from North West and present in lower concentration in the 

rhizome from KwaZulu-Natal (Table 3.4). Soluble sugar concentrations in the rhizome from 

North West were three times higher than in the rhizome from KwaZulu-Natal and Mpumalanga 

(Table 3.4). The sugar composition reported in this study is similar to other storage plant parts 

investigated by other studies. For example, the rhizomes of bulrush (Schoenoplectus lascustris 

L.) contained high sucrose as the major soluble sugar. Furthermore; Cyr et al. (1990), reported 

sucrose as the main soluble sugar in the root of perennial plants chicory (Cichorium intybus L.) 

and dandelion (Taraxacum officinale L.). Glucose content was not detected in the rhizome and 

root from KwaZulu-Natal, Mpumalanga and Limpopo (Table 3.4). 
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 Accumulation of glucose content in the leaf, rhizome and root of S. aethiopicus from North 

West followed the descending trend leaf > rhizome > root (Table 3.4). Ghasemzadeh et al. 

(2014) reported high sucrose content in the leaf and rhizome followed by glucose and fructose. 

Glucose content declined in the root from different sites but sucrose content was still high 

(Table 3.4). The variations in the leaf, rhizome and root could be attributed by the 

modifications of soluble sugars (sucrose, glucose and fructose) levels which do not follow the 

same patterns, signalling and developmental impact in a number of cases (Weber et al. 2005). 

As shown in Table 3.4, the increase in fructose content was greater in leaf, rhizome and root 

from KwaZulu-Natal and Mpumalanga, respectively. S. aethiopicus recorded highest fructose 

content in the leaf as compared to the rhizome and root (Table 3.4). Among the studied sugars, 

fructose content was higher compared to sucrose and glucose, although there were no 

significant variations between the study areas (Table 3.4). A number of studies suggest that 

soluble sugars could be part of groups useful to the plant as defenses and signalling agents 

(Brouquisse et al. 1991).  

 

Although, fructose concentration was highest in all the growing areas and plant parts, the 

preferential effects of sucrose may be related to qualitative and quantitative importance of 

sucrose in higher plants as a major carbon structure and a form of transport throughout the 

plant. Understanding the mechanisms involved in soluble sugars concentrations can be used as 

a marker for providing insights on the ability and response of different plant parts and 

environmental conditions.   
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Table 3.4: Sucrose, glucose and fructose content in different tissues of S. aethiopicus from 

varying geographical locations. 

Locations Tissue Sucrose Glucose Fructose 

 

  mg/g DW   

Kwazulu-Natal Leaf 1.45 ± 0.40
cd

 0.54 ± 0.02
bcd

 16.94 ± 1.49
a
 

Rhizome ND ND 13.77 ± 1.97
ab

 

Root 1.28 ± 0.28
d
 ND 10.00 ± 4.39

cd
 

Mpumalanga Leaf 1.72 ± 0.14
cd

 1.00 ± 0.21
b
 11.34 ± 1.05

bcd
 

Rhizome 1.39 ± 0.13
d
 ND 12.75 ± 3.75

ab
 

Root 1.25 ± 0.28
d
 ND 11.00 ± 2.49

bcd
 

North West Leaf ND 4.46 ± 0.34
a
 1.00 ± 0.06

d
 

Rhizome 7.48 ± 0.46
a
 0.54 ± 0.04

bcd
 0.93 ± 0.60

d
 

Root 4.66 ± 0.28
ab

 0.32 ± 0.02
bcd

 11.24 ± 0.22
bcd

 

Limpopo Leaf 1.65 ± 0.62
cd

 0.36±0.06
bcd

 11.00 ± 1.71
bcd

 

Rhizome 2.97 ± 0.15
bcd

 ND 12.95 ± 1.14
ab

 

Root 3.09 ± 0.23
bcd

 ND 0.37 ± 0.01
e
 

 F Prob. (5%) < 0.0001*** < 0.0001*** 0.22
ns

 

 F-statistics 4.78 18.48 1.43 
Notes: Data are means of triplicate measurements ± standard deviation; Means not sharing a common single 

letter for each measurement were significantly different at p < 0.05; Unit of all measurement are mg/g DW. 

 

 

3.4 Conclusion 

In the present study, different assays were used to evaluate the antioxidant potential of S. 

aethiopicus leaf, rhizome and root from different areas. The high antioxidant activities in the 

leaf suggest the effectiveness of antioxidants activities as an important therapeutic agents. The 

root from Mpumalanga showed the high amounts of total phenolic and flavonoid content and 

antioxidant activity. The high antioxidant activities observed in the leaf from Mpumalanga 

suggest its adaptive capabilities to different environments.  

 

Soluble sugar content from different areas under stressed conditions is associated with 

adaptation of plants to various stresses.  The antioxidant activity in the leaf could provide an 

alternative harvestable plant part and reduce over-harvesting. Further investigations are needed 

to improve knowledge on the effect of different environmental stresses on the secondary 

metabolites in different plant parts.  
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CHAPTER FOUR 
 

PHYSIO-MORPHOLOGICAL AND YIELD RESPONSE OF AFRICAN 

GINGER (SIPHONOCHILUS AETHIOPICUS) TO IRRIGATION 

REGIMES AND NITROGEN LEVELS 
 

ABSTRACT 

Plant growth is adversely affected by various forms of biotic and abiotic stress factors. Water 

deficit is one of the major abiotic stresses which limits agricultural productivity and causes 

losses in crop yield. African ginger (S. aethiopicus) is an important medicinal plant with great 

potential for treatment of many ailments. Although its cultivation is regarded as a good 

approach to reduce pressure on species populations and meet the high demands, there is limited 

information on the cultivation practices. The study evaluated the physiological and 

morphological response of S. aethiopicus growth to irrigation regimes and nitrogen application 

rates. This research was conducted under a rainshelter and exposed to three irrigation regimes  

(30, 50 and 70% allowable depletion level, ADL) and five nitrogen levels (0, 50, 100, 150 and 

200 kg N/ha) for two cropping seasons. The data showed no significant interactions between 

the two seasons, however, the pooled data subjected to statistical analysis was significant (p < 

0.05). A significant interactive effect between irrigation regimes and nitrogen level was observed 

for parameters investigated, excluding stomatal conductance and biomass yield. The 

chlorophyll content, plant height, number of leaves per plant and leaf area index increased with 

an increase in  N applied at 50 and 100 kg/ha. The high utilization of water from well watered 

treatment (30% ADL) compared to moderate (50% ADL) and severe (70% ADL) treatments 

could be attributed to improved water availability and superior plant canopies. The well 

watered treatment had a significantly higher total biomass, fresh and dry rhizome yield 

compared to other water stressed treatments. Addition of N fertilizer improved the rhizome 

yield. Taken together, the findings show that, adequate yields can be contributed by irrigation 

and nitrogen management strategies in cultivation of S. aethiopicus. 

Keywords: medicinal plant, planting seasons, irrigation, allowable depletion level 
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4.1 Introduction 
 

African ginger (S. aethiopicus) is one of the most important medicinal plants required in large 

quantities for the treatment of various respiratory ailments in humans, financial viability and 

commercial production potential. The large demand in S. aethiopicus is associated with treating 

aliments such as asthma, headaches, pain, inflammation and malaria (van Wyk, 2008). The use 

of S. aethiopicus has become a great trend as a household remedy for coughs and colds. The 

plant possesses antioxidant properties, exerts anti-inflammatory, antimalarial effects and is an 

effective anti-bacterial and anti-candida agent (Lategan et al. 2009).  

 

Although, S. aethiopicus is regarded as an important medicinal plant with commercial potential 

and financial feasibility, the growing demand owing to its traditional use and local trade is 

putting a heavy pressure on the species populations. S. aethiopicus is listed on the Red List of 

South African endangered plants species due to over-exploitation and indiscriminate collection. 

Current populations in the wild are projected to be completely extinct if there are no approaches 

to conserve the species (The Red list of South African plants version 2015.1). Cultivation is an 

alternative and viable way to reduce the adverse situation on S. aethiopicus populations. This 

would enhance the limited information on the cultivation practices of medicinal plants, 

conserve biodiversity and ensure steady supply in the market.  

 

Suitable cultivation practices are associated with water and nutrient management as major 

detrimental factors for plant growth, chemical composition and metabolic processes in plant 

species (Farooq et al. 2009). Application of mineral nutrients enhances plant productivity, 

improves plant physiological activities and is a tool to ameliorate the quality of medicinal 

species. One essential plant  nutrient is nitrogen, which is commonly deficient in the soil and 

often contributing to reduced plant growth and decreased crop yields (Fricke, 1997). It plays 

several important roles in the improvement of leaf area index (LAI), metabolic and regulatory 

processes in plants (Hirel et al. 2007). Nitrogen shortage leads to loss of green pigmentation in 
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leaves, decrease leaf area and photosynthetic production in most plant species (Mofokeng et al. 

2015). This is due to high percentage of total leaf N allocated to the photosynthetic activity 

(Makino and Osmond, 1991).  

 

Inadequate supply of nitrogen may lead to environmental pollution matters, delay in crop 

maturation and encourage excessive vegetative growth of plants. Water deficit reduces plant 

growth and development, cause plant disorder such as reduction in photosynthesis and 

transpiration resulting in substantial yield reductions (Fereres and  Soriano, 2006). Plant dry 

matter (DM) is associated with leaf area (LA) and leaf photosynthetic rates. Water stress limits 

leaf area production and the rate of transpiration. Reduced transpiration may delay plant 

survival by extending the period of available soil water in the root zone (Taiz and Zeiger, 

2006). The stomatal closure is due to the reduced photosynthesis in water stressed leaves. 

Higher stomatal conductance increases CO2 diffusion into the leaf and results in higher 

photosynthetic rates which may lead to higher biomass and higher yields (Ashraf and Harris, 

2013).  

 

Water supply and nutrient efficiency are closely related, balanced application and determination 

of their type, amounts and methods should be based not only on the nutrient-supplying 

capacity, but also on water status of soil (Farooq et al. 2009). Nitrogen deficiency and water 

may result in variations in the morphological, physiological and biochemical changes of the 

plant species (Anjum et al. 2011). A few studies have shown the potential that medicinal plants 

can reveal under farmers’ fields or experimental plots (Mofokeng et al. 2015). However, the 

actual response of plant species to cultivation method can vary due to several biotic and abiotic 

factors (Gouinguene and Turlings, 2002).  

 

While a number of studies have evaluated the suitable agronomic practices for medicinal plants, 

the data on physiological and morphological approaches to improving productivity of S. 

http://jxb.oxfordjournals.org/search?author1=Elias+Fereres&sortspec=date&submit=Submit
http://jxb.oxfordjournals.org/search?author1=Mar%C3%ADa+Auxiliadora+Soriano&sortspec=date&submit=Submit
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aethiopicus is limiting. With the increased demand for S. aethiopicus material, there is a need to 

identify agronomic practices suitable for S. aethiopicus to increase production levels. The 

cultivation approach will provide information on agronomic parameters and also conserve the 

species biodiversity. The aim of this study was to evaluate morphological and physiological and 

parameters of S. aethiopicus in response of irrigation regimes and nitrogen application rates.  

 

4.2 Materials and methods 

 

4.2.1 Site description 
 

The trial was conducted in a rainshelter at the Agricultural Research Council – Roodeplaat 

Vegetable and Ornamental Plant (ARC-VOP), Pretoria, South Africa (25°59′S; 28°35′E and 1 

200 m.a.s.l.). The rainshelter (12 m × 24 m ground area and ridge height of 5.5 m) is designed 

to automatically open when there is no rain and close during a rainfall event, thus excluding 

rainfall factor from the experiment. Soil samples were collected from the experimental site at 

three depths of 0–20, 20–40 and 40–60 cm for physical and chemical properties analysis. The 

soil classification was sandy clay loam comprising of 56.6% sand, 9.5% silt and 21.0% clay 

(Soil Classification Working Group, 1991). Soil nutrient analysis (Total N, Mg and K) was 

determined using the ammonium acetate extraction (1 N NH40Ac) method (Araya et al. 2006). 

Analysis for Al, Ca, Fe and Mn was determined by atomic absorption spectroscopy (Araya et 

al. 2006). The physical and chemical properties of the soil are presented in Table 4.1 and 4.2. 

The weather data recorded by a weather station (Campbell Scientific, USA) at the experimental 

site during the experiment period is presented in Table 4.3.  
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Table 4.1: Physical properties of the soil at the experimental site. 

 

Soil depth  Sand  Silt Clay Texture PWP FC BD 

cm % (mg/m
3
) 

 

0–20 58.5 9.9 19.6 Sandy loam 10.3 19.9 1.59 

20–40 57.3 9.6 19.0 Sandy clay loam 12.9 25.5 1.56 

40–60 54.1 9.1 24.6 Sandy clay loam 15.2 25.3 1.45 

PWP-Permanent wilting point; FC-Field capacity and BD-Bulk density (BD was determined based on 
the calibration curves of soil profile) 

 

Table 4.2: Chemical characteristics of sandy clay loam soil collected from the experimental 

site. The data are average of duplicate analysis of soil samples collected. 

 

 

Tabl

e 

4.3: 

Summary of weather data collected during the experiment period. 

 

Months Temp 

(°C) 

Relative humidity 

(%) 

VPD 

(kPa) 

Rainfall 

mm 

ET0 

(mm) 

 Max Min Max Min    

September 28.1 11.0 79.4 23.3 1.61 29.9 165.7 

October 29.7 11.9 79.0 19.6 1.08 94.7 131.3 

November 27.8 14.3 86.2 34.7 0.99 175.2 147.2 

December 28.7 16.3 89.4 39.7 1.13 136.4 161.3 

January 30.1 16.5 89.2 35.2 1.35 32.5 151.6 

February 31.8 16.9 88.2 27.0 1.20 71.6 135.4 

March 30.1 14.7 88.1 29.2 0.94 43.6 101.4 

April 27.4 10.8 90.7 30.5 1.15 0.00 94.8 

May 27.5 6.1 83.9 18.5 0.77 1.02 71.0 

June 21.2 2.9 84.5 24.9 0.85 0.00 69.1 

July 22.2 3.1 83.0 22.7 1.35 0.00 89.5 

August 27.2 5.9 76.5 15.1 1.43 56.6 121.7 

*Rainfall and ET0 were not averaged but totalled. Max: maximum, min: minimum, VPD: vapour pressure deficit. 

 

Soil depth 

(cm) 

Fe Mn Ca Mg K Total N pH H20 

 mg/kg % 
 

0–20 30.9 85.6 1007 349 275 0.028 7.13 

20–40 42.8 99.3 1066 355 174 0.027 7.16 

40–60 29.3 71.9 1314 481 132 0.024 7.26 
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4.2.2 Experimental design and plant material 

The mother material used for this study was obtained from Mpumalanga province (23° 49' 

59"S and 30° 9' 48"E). The rhizomes were preserved for further use at ARC-VOP Gene bank 

(ARC-M2008/027) in Pretoria, South Africa. Rhizomes of S. aethiopicus were transplanted 

into the rainshelter in September 2014 and were established for four months, to ensure a good 

stand, before application of the treatments. The experiment was established in two seasons (1
st
 

season: 2014/2015 and 2
nd

 season: 2015/2016) in a randomised complete block design with 15 

treatments. Each treatment was replicated three times. An experimental plot with 3.9 m
2 

size, 

had a spacing of 25 cm between plants and 60 cm between rows, which gave a total of 66 667 

plants per ha. Each experimental plot per treatment was divided into five rows, the three centre 

rows were used for data collection, while the two rows on either side acted as border rows. The 

treatments were set up in factorial combinations of five nitrogen application rates (0, 50, 100, 

150 and 200 kg N/ha) and three irrigation regimes (30, 50 and 70% allowable depletion level, 

ADL). 

 

4.2.3 Irrigation and fertilizer application 

Soil moisture was monitored on a weekly basis using a neutron probe (Waterman, Probe 

Version 1.6, 2005, Geotech, USA) based on volumetric basis and calibrated against different 

soil water contents to a depth of 0.4 m and at intervals of 0.2 m. The three irrigation treatments 

were 30, 50 and 70% allowable depletion level (ADL) of plant available water (PAW). The 

experimental plots were irrigated when the respective allowable depletion level (ADL) 

threshold values for each treatment were reached. The concept requires that a certain percentage 

be depleted from the effective rooting depth (ERD) before refilling the soil profile back to field 

capacity. The study observations determined effective rooting depth (ERD) of S. aethiopicus as 

400 mm. The 30% ADL treatment was referred to as the well-watered control, while the 50% 

and 70% ADL were the moderately and severely stressed water treatments, respectively 

(Mofokeng et al. 2015). A controlled pressure-compensated drip irrigation system, with water 



 
 

58 

 

discharge rate of 2400 ml per hour at pressure range of 150–200 kPa was installed (Netafim, 

Cape Town, South Africa). The allowable soil water deficits for the three water levels were 

calculated based on the field capacity (FC), permanent wilting point (PWP) and bulk density 

(BD) as shown on Table 4.1. 

 

PAW (0 – 200 mm) = ((FC – PWP) × BD) × 200 mm 

     = ((0.199 – 0.103) × 1.59) × 200 mm 

    = 30.5 mm 

PAW (200– 400 mm) = ((FC – PWP) × BD) × 200 mm 

     = ((0.255 – 0.129) × 1.56) × 200 mm 

    = 39.3 mm 

Total PAW for ERD (40mm) = 30.5 mm + 39.3 mm 

    = 69.8 mm 

30% ADL of PAW = 69.8 × 30% 

          = 20.94 mm 

30% ADL of PAW = 69.8 × 50% 

          = 34.9 mm 

30% ADL of PAW = 69.8 × 70% 

          = 48.86 mm 

The nitrogen (N) treatments levels were applied at the following rates; control (0), 50, 100, 150 and 

200 kg/ha. The five nitrogen fertilizer rates were applied per plant (0, 0.75, 1.5, 2.25 and 3.0 g 

N/plant) as split application (25% before planting, 25% at planting and 50% at emergence). The 

source used was limestone ammonium nitrate (LAN, 28%N). The experiment received 

potassium chloride (50% K) at 50 kg/ha and single superphosphate (11% P) at a rate of 50 kg/ha 

at planting using the basal application method according to the soil nutrient status and estimated 

nutrient requirements of Turmeric (Haque et al. 2007). Weed control performed manually with 

hand hoes and continued when necessary. 
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4.2.4 Data collection 

4.2.4.1 Plant growth  

Plant growth and physiology data collected in this study included plant height, number of leaves 

per plant, leaf area index, stomatal conductance, chlorophyll content, total biomass yield, fresh 

and dry rhizome biomass yield. These growth parameters were recorded for the duration of the 

experiment during both cropping season. 

 

4.2.4.2 Plant height, fresh and dry mass   

Plant height (cm) was recorded using a tape measure and number of leaves was counted 

manually. The growth parameters were taken on a monthly basis after the treatment 

implementation. To determine yield parameters at harvesting, total biomass and rhizome yield 

were weighed for the whole nine data plant first and then rhizomes weighed separately on a 

field scale (Platform digital scale, W113, Richter scale). The rhizomes were then oven dried 

(Economy oven, 620 digital, Labotec) at 50 °C until constant mass to obtain rhizome yield. 

 

4.2.4.3 Leaf area index 

Leaf Area Index (LAI) was measured using LAI2200 plant canopy analyser (Li-Cor 

Bioscience, USA). The instrument has two cross calibrated sensors one devoted to above 

canopy measurements and the other moving below the canopy to calculate the light 

interception at five zenith angles. The 270° view cap was used to take one above canopy 

reading and four below readings replicated twice for all the treatments. LAI measurements 

were taken on a monthly basis after treatment implementation. 

 

4.2.4.4 Stomatal conductance  

Leaf stomatal conductance, was measured with a diffusion porometer (SC-1 Leaf porometer 

(Decagon Devices, USA) on a monthly basis. Stomatal conductance estimates the rate of 

passage of carbon dioxide or water vapour loss through the stomata of a leaf. Fully expanded 
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mature leaves for each treatment were measured on the abaxial (bottom) surface during midday 

when environmental conditions were at their peak. Without troubleshooting, each measurement 

took about 3 min, which was the minimum time allowed for the reading to stabilize before they 

were recorded. 

 

4.2.4.5 Leaf chlorophyll content  

Leaf chlorophyll content was measured on a fully matured leaf, with a chlorophyll content 

meter (SPAD 502 plus, Konica Minolta, Japan) at harvesting. Nine data plants per plot from the 

three replicates were used for this measurement.  

 

4.2.5. Data analysis 

All data was subjected to analysis of variance using GenStat software 17.1 edition (VSN 

International, Hemel Hempstead, UK). The treatment means were separated using (p < 0.05) 

Duncan’s multiple range test (DMRT).  

 

4.3 Results and Discussion 

Interactions between 2014/2015 (n=15) and 2015/2016 (n=15) cropping season for irrigation 

regimes and nitrogen levels application were not significantly different (p < 0.05) and data 

were therefore pooled (n=30) and subjected to statistical analysis. 

 

 

4.3.1 Irrigation applied and soil water depletion patterns 

The soil water deficits allowed per treatment before the amount of irrigation was initiated for two 

growing seasons of the experiment is presented in Figure 4.1, 4.2 and 4.3. The average amount of 

daily deficits and amount of water applied per nitrogen level for well watered treatment (30% 

ADL), moderately stressed (50% ADL) and severely stressed treatment (70% ADL) are presented 

in Table 4.4. The total relative evapotranspiration demand (ET0) for the treatment period was 

1440.48 mm (Table 4.3). In this study, well watered treatment (30% ADL) recorded the highest 
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water usage per nitrogen rate applied, followed by moderate (50% ADL) and least in severely 

stressed treatment (70% ADL).The recorded amounts of water supplied for each nitrogen level 

during the growth period is within the range reported by Darwish et al. (2006). 

 

Figure4.1: Changes in soil water deficits (top 400 mm root zone) for the well watered (30% 

ADL) and five nitrogen levels (0, 50,100,150 and 200 kg/ha). 

 

 

Figure 4.2: Changes in soil water deficits (top 400 mm root zone) for the moderately stressed 

(50% ADL) and five nitrogen levels (0, 50,100,150 and 200 kg/ha). 

0.0

5.0

10.0

15.0

20.0

25.0

5
-J

an

1
2
-J

an

1
9
-J

an

2
6
-J

an

2
-F

eb

9
-F

eb

1
6

-F
eb

2
3
-F

eb

1
-M

ar

8
-M

ar

1
5

-M
ar

2
2
-M

ar

2
9

-M
ar

5
-A

p
r

1
2

-A
p
r

1
9
-A

p
r

2
6

-A
p
r

3
-M

ay

1
0

-M
ay

1
7

-M
ay

2
4

-M
ay

3
1

-M
ay

7
-J

u
n

S
o

il
 w

at
er

 d
ef

ic
it

 (
m

m
) 

Date of measurement 

30%-0N 30%-50N 30%-100N 30%-150N 30%-200N

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

5
-J

an

1
2

-J
an

1
9

-J
an

2
6

-J
an

2
-F

eb

9
-F

eb

1
6
-F

eb

2
3

-F
eb

1
-M

ar

8
-M

ar

1
5

-M
ar

2
2

-M
ar

2
9

-M
ar

5
-A

p
r

1
2

-A
p

r

1
9

-A
p

r

2
6

-A
p

r

3
-M

ay

1
0

-M
ay

1
7
-M

ay

2
4

-M
ay

S
o
il

 w
a
te

r 
d
ef

ic
it

s 
(m

m
) 

Date of measurement 

50%-0N 50%-50N 50%-100N 50%-150N 50%-200N



 
 

62 

 

Figure 4.3: Changes in soil water deficits (top 400 mm root zone) for the severely stressed 

(70% ADL) and five nitrogen levels (0, 50,100,150 and 200 kg/ha). 

 

 

Table 4.4: Mean variation in soil water deficits (top 400 mm root zone) during cropping season 

for the well-watered (30% ADL), moderately stressed (50% ADL) and severely stressed (70% 

ADL) treatments. 
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4.3.2 Plant growth parameters 

4.3.2.1 Plant height  

Plant height ranged from 15.06 cm in January to 41.91 cm in May. The results indicate 

significant differences for plant height in response to the growing period (Table 4.5). There 

were significant differences between some nitrogen application rates and irrigation regimes. 

The results indicate a gradual increase in plant height throughout the growing period (Table 

4.5). Plant height was at its highest peak at 41 cm in May compared to other months after 

planting (Table 4.5). The morphological changes in the growth of S. aethiopicus can be 

considered as a morphological adaptation to species maturity. The maximum observed plant 

height (41 cm) is in agreement with the 40 cm reported for S. aethiopicus (Manzini, 2005).  

 

The comparison of plant height in response to irrigation regimes and nitrogen application rates 

did not differ significantly (Table 4.6). Plant height indicated an increased with the application 

rate of 100 kg N/ha for well watered treatment (30% ADL), followed by moderately stressed 

treatment (Figure 4.4). Reduced plant height under severely stressed treatment (70% ADL) can 

be attributed to deficit irrigation which altered the morphology of the species reducing plant 

height and shoot growth. The increase in water stress levels of Thymus daenensis resulted in a 

decrease of plant height (Bahreininejad et al. 2012). Similar results were reported by Alishah et 

al. (2006) and Hedayati et al. (2013) for basil and Jatropha curcas, respectively. Growth 

reduction as a result of water deficit has been widely reported (Bettaieb et al. 2009; Ekren et al. 

2012). 

 

Our findings did not show significant differences between the nitrogen application rates, 

however, other studies revealed high plant height of sweet pepper in response to application of  

100 and 150 kg/ha (Aminifard et al. 2012). Growth development of a plant species depend on 

the amount of inputs applied. Therefore, application of N coupled with irrigation management 
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in this study is significant for the development of production systems and profitability of the 

plant species.   

 

4.3.1.2 Number of leaves per plant   

This study examined the extent to which number of leaves is produced over a growing period. 

Number of leaves per plant increased significantly from March and reached the highest peak in 

May (Table 4.5). The results showed the same trend depicted for the plant height.  

 

The results showed no significant differences in response to irrigation regimes, but there was an 

interaction effect between nitrogen application rates and water stress levels regimes (Table 4.6 

and Figure 4.5). Well watered treatment (30% ADL) showed high number of leaves per plant 

with the application rate of 100 kg N/ha (Figure 4.5). Interpretation of number of leaves 

produced per plant can be associated with important physiological functions of individual 

leaves along environmental gradients including moisture and temperature. Moderately stressed 

(50% ADL) and severely stressed (70% ADL) treatment also showed high number of leaves per 

plant, though the variation was minimal (Figure 4.5). The reduced number of leaves for parsley 

and basil plants has been reported in response to water stressed levels (Petropoulos et al. 2008; 

Alishah et al. 2006). Hussain et al. (2006) reported the maximum number of branches per plant 

with the application of 90 kg N/ha on asparagus. Furthermore, Law and Egharevba (2009) 

indicated that increased application nitrogen rates can increased the yield and number of fruits 

per plant. 

 

4.3.1.3 Leaf area index (LAI) 

The mean leaf area index ranged between 1.17 and 1.64 (m
2
 leaf area·m

2
 ground area) for May 

and April, respectively. There was no significant variation for LAI over the growing period 

(Table 4.5). The plant recorded LAI in May, this is during the dormant stage that S. 

aethiopicus. 
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LAI of S. aethiopicus with different nitrogen application rates and irrigation regimes showed no 

substantial differences (Table 4.5). LAI increased reaching a peak of 1.80 (m
2
 leaf area·m

2
 

ground area) and then decrease in response 0 kg N/ha irrespective of the water stress levels 

(Figure 4.7). Shafiq (2002) reported the highest LAI for irrigated plants than water stressed 

plants. Furthermore, Eiasu et al. (2009) reported a significant decline in LAI between the well 

watered control and the water stressed treatments of rose-scented geranium. 

 

4.3.1.4 SPAD measurements  

The average results on the response of SPAD measurements over the growing period are 

presented in Table 4.5. SPAD measurements were not significantly different in all months after 

planting (growth period). A significant interactive effect of N application rates and irrigation 

regimes was observed for SPAD measurements (Table 4.6). Maximum SPAD values were 

observed at 150 kg N/ha and declined progressively reaching the lowest with the application 

rate of 200 kg N/ha for severely stressed 70% ADL (Figure 4.8). The higher SPAD values 

observed in our study, corroborate findings of Zhao et al. (2005). The lower SPAD values at 

200 kg N/ha might have been due to remobilization of N from leaves to reproductive organs as 

the rhizome mature and the effect of water stress levels. The reduction in SPAD values and 

chlorophyll content under severely stressed treatment has been reported in sunflower 

(Helianthus annuus) plants (Kiani et al. 2008). A low concentration of chlorophyll content is 

known to limit photosynthetic potential and directly decrease biomass production in plants 

(Mohammadian et al. 2005).  

 

4.3.1.5 Stomatal conductance  

Stomatal conductance of S. aethiopicus was evaluated in response to nitrogen application rates 

and irrigation regimes for better understanding and recommendation. The results showed 

significant variations in response to nitrogen application rates (Table 4.6). S. aethiopicus 

showed great tolerance to irrigation regimes, avoiding desiccation by decreasing stomatal 



 
 

66 

 

conductance as water became limiting. The results showed high stomatal conductance for well 

watered control (30% ADL) in February followed by moderately water stressed treatment (50% 

ADL). Decreases in stomatal conductance and assimilation values have been reported as some 

indicators of water stress in fruit trees (Machado et al. 1999).   

 

Water stress levels have been reported to reduce both stomatal conductance and biomass 

production of plant species (Mofokeng et al. 2015). Plants have mechanisms for preventing 

turgor loss through stomata closure and osmotic adjustment. Eiasu et al. (2012) reported lower 

stomatal conductance in response to water stress treatments of Pelargonium capitatum.  

 

The increase in stomatal conductance of S. aethiopicus reported in February irrespective of the 

water treatment is associated with vapor pressure deficits (VPD) during the growth period 

(Table 4.3). Conversely, the decrease in from March to May could be attributed to the dormant 

stage of the plant species. This period coincided with low demand for water by the plant as few 

leaves were transpiring. The higher stomatal conductance observed for the well watered control 

(30% ADL) can also be associated with the opening of stomata. Plants exposed to dormant 

conditions have been reported to partially close their stomata until lower shoot water potential 

is reached (Pembebleton et al. 2014). The lower stomatal conductance observed for severely 

stressed treatment is associated with the closing of stomata which limits water loss through 

transpiration and reduces intracellular carbon dioxide (CO2) availability (Zhao et al. 2014). The 

lack of significant effect of nitrogen application rates and water stress on stomatal conductance 

was reported by Green and Mitchell (1992). 

 

4.3.1.6 Total fresh and dry biomass yield  

 

The results showed no interactive effect of N application rates and water stress treatment on 

total fresh and dry biomass yield. Irrigation regimes, however showed significant variations for 

total fresh and dry biomass (Figure 4.9 and 4.10). Well watered treatment (30% ADL) showed 
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significantly higher total fresh and dry biomass compared to moderate (50% ADL) and severe 

stressed (70% ADL) treatments. Total fresh and dry biomass of plants decreased due to 

exposure to severe water stress (Figures 4.9 and 4.10). Bahreininejad et al. (2013) reported 

tremendously decreased in fresh yield of Thymus daenensis for moderate water stress (at 50% 

MAD) and severe water stress (at 80% MAD). The non-stressed control (20% MAD) recorded 

high fresh biomass production. The decrease could be associated with the lower leaves 

senescence (Graça, et al. 2010). The reduced yield can also be effected by water which 

stimulate and regulate the photosynthetic enzymes of plants. Abdul-Hamid et al. (1990) 

reported that the reduction in chlorophyll content and photosynthesis efficiency could also lead 

to reduced biomass yield. Fresh and dry biomass yield of Ocimum basilicum (L.) exposed to 

water stress level was significantly decreased as plant water deficit increased (Simon et al. 

1992). Furthermore, Baher et al. (2002) reported similar results on Satureja hortensis (L.) 

(Savory) plants whereby the fresh and dry weights significantly decreased under water stress 

conditions. This finding indicates that water stress is not a favorable component of increasing 

biomass production in most plant species.  

 

The results showed significant increase in total fresh biomass in response to nitrogen 

application rates at 50 to 100 kg N/ha (Figure 4.11). The biomass production was largely a 

function of photosynthetic surface, which was favorably influenced by nitrogen application 

rates. The lowest biomass yield observed in the control (0 kg N/ha) can be associated with 

depletion of nutrients in the soil.  

 

Plants with deficient nutrients exhibited stunted growth and were pale in colour when compared 

to greener plants. The increase in biomass production of S. aethiopicus due to nitrogen 

application rates was also reported by Magdatena (2003). The study increased leaf dry matter 

with an increase in nitrogen application rates.  As a result of application rate of 90 kg N/ha, 

asparagus showed increased plant weight (Hussain et al. 2006). The increase in biomass 
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production can also be associated to an increase in number of branches and plant height, which 

can effectively enhance photosynthetic activity (Hussain et al. 2006). Mofokeng et al. (2015) 

reported increased total biomass with an increase of nitrogen application rates from 0 to 50 

kg/ha for Pelargonium sidoides.  

 

4.3.1.7 Interrelationships among morphological and physiological characters of S. aethiopicus  

Plant characteristics are important because they reflect morphological and physiological 

functions of a species. They have the potential to summarize plant strategies in terms of water 

use efficiency, growth pattern and nutrient use. The results of this study show that functional 

growth traits (plant height and number of leaves per plant) are related to other physiological 

characteristics. The interrelationship is observed by the progressive increase of plant height, 

number of leaves per plant and leaf area index (LAI) over the growing period (Table 4.5). 

Nitrogen application rates also serve as determinant factor for photosynthetic ability of the 

leaves (Hussain et al. 2006). Nitrogen application is a functional factor in the increase of dry 

matter production. Dry matter production of S. aethiopicus increased with the application of 50 

and 100 kg/ha (Figure 4.11). 
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4.4. Conclusion 

The results of this study conclusively reveal that the plant height and number of leaves per plant 

were significantly higher towards maturity. Plants grown with 50 and 100 kg N/ha had greater 

plant height, number of leaves per plant, LAI, SPAD values and biomass yield that eventually 

resulted in higher dry matter production. Stomatal conductance was higher throughout the 

growing period and decline in response water stressed treatment. The high amount of water 

utilized from well watered treatment (30% ADL) compared to moderate (50% ADL) and severe 

(70% ADL) treatments could be attributed to improved water availability and superior plant 

canopies. Further experiments should be conducted to evaluate different combinations of 

agronomic practices to fully exploit the growth of S. aethiopicus under different conditions.  
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Table 4.5: Averages of leaf area index, plant height and number of leaves of S. aethiopicus over the growth period. 

 

 

 
 

 

 

 

 

 

 

 

    MAP=month after planting. Values with dissimilar letters in a column are significantly different at p <0.05 using Duncan Multiple Range test.   

 

 

Table 4.6: Comparison of plant height, number of leaves per plant, chlorophyll content, LAI and stomatal conductance of S. aethiopicus in response to irrigation 

regimes and nitrogen levels. 

 

 

 

 

p< 0.001 (***), p < 0.01 (**), p < 0.05 (*), ns=not significant. 

Growth period (*MAP) Plant height  Number of leaves/plant LAI (m
2
 leaf area·m

2
 ground area) SPAD values   

January 15.06
c
 16.5

c
 1.51

b
 25.39

b
 

February 22.93
bc

 21.5
b
 1.47

b
 27.91

ab
 

March 29.29
b
 25.5

b
 1.63

ab
 37.55

a
 

April 35.88
ab

 30.0
ab

 1.64
ab

 26.14
b
 

May 41.91
a
 34.0

a
 1.17

a
 26.35

b
 

F-statistics 1.83** 6.81*** 6.15** 1.54* 

  

Plant height 

(cm) 

Number of leaves per plant SPAD values LAI (m
2
 leaf area·m

2
 

ground area) 

Stomatal conductance  

(mmol m−
2
 s−

1
) 

Nitrogen (N) 61.4*** 19.5*** 1.3
ns

 2.15
ns

 1.3
ns

 

Irrigation  28.95*** 1.84
ns

 5.2
ns

 2.55
ns

 5.3** 

Nitrogen × Irrigation  61.7** 23.7*** 2.75* 2.8* 1.2
ns
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Figure 4.4: Interactive effect of nitrogen application rates × irrigation regimes on plant height 

of S. aethiopicus. Bars followed by dissimilar letters are significantly different at p < 0.05 and 

vertical lines on bars represent standard error (S.E). 

 
 

 

 

 
 

Figure 4.5: Interactive effect of nitrogen application rates × irrigation regimes on number of 

leaves per of S. aethiopicus. Bars followed by dissimilar letters are significantly different at p < 

0.05 and vertical lines on bars represent standard error (S.E). 
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Figure 4.6: Interactive effect of nitrogen application rates × irrigation regimes on leaf area 

index (LAI) of S. aethiopicus. Bars followed by dissimilar letters are significantly different at p 

< 0.05 and vertical lines on bars represent standard error (S.E). 

 

 

 

Figure 4.7: Interactive effect of nitrogen application rates × irrigation regimes on SPAD 

measurements of S. aethiopicus. Bars followed by dissimilar letters are significantly different at 

p < 0.05 and vertical lines on bars represent standard error (S.E). 
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Figure 4.8: Average stomatal conductance of S. aethiopicus over the growing period in 

response to irrigation regimes. Bars followed by dissimilar letters are significantly different at 

p < 0.05 and vertical lines on bars represent standard error (S.E). 

 

 

 

 

 

Figure 4.9: The effect of irrigation regimes on total fresh biomass yield of S. aethiopicus. 

Bars followed by dissimilar letters are significantly different at p < 0.05 and vertical lines on 

bars represent standard error (S.E).
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Figure 4.10: The effect of irrigation regimes on total dry biomass yield of S. aethiopicus. Bars 

followed by dissimilar letters are significantly different at p < 0.05 and vertical lines on bars 

represent standard error (S.E). 

 

 

Figure 4.11: The effect of nitrogen fertilizer on total dry biomass yield of S. aethiopicus. Bars 

followed by dissimilar letters are significantly different at p < 0.05 and vertical lines on bars 

represent standard error (S.E).
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Table 4.7: Effect of irrigation regime on the fresh and dry rhizome weights of S. aethiopicus 

 

Water depletion Fresh rhizome weight Dry rhizome weight 

(% ADL) g/plant g/plant 

30 45.26
a
 28.12

a
 

50 39.01
ab

 23.30
ab

 

70 37.72
ab

 15.20
b
 

F-statistics 3.19** 2.01** 
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CHAPTER FIVE 
 

Antioxidant Activity and Soluble Sugars of African ginger (Siphonochilus 

aethiopicus) in response to Irrigation Regimen and Nitrogen levels. 
 

This chapter has been published in Acta Agriculturae Scandinavica, Section B — Soil & 

Plant Science. 
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CHAPTER FIVE 

 

ANTIOXIDANT ACTIVITY AND SOLUBLE SUGARS OF AFRICAN 

GINGER (SIPHONOCHILUS AETHIOPICUS) IN RESPONSE TO 

IRRIGATION REGIMEN AND NITROGEN LEVELS. 
 

ABSTRACT 

African ginger (S. aethiopicus), as a medicinal plant, is known for its medicinal properties, 

which contains various antioxidant compounds and carbohydrates. Rhizome yield is 

improved by water regimens and fertilizers applied at plant phenological stages. However, 

the rhizomatous herb, which is traditionally used for the treatment of asthma, inflammation 

and malaria, has limited information on water and nitrogen requirements for its production. 

This study assessed the effect of irrigation regimens (30, 50 and 70% allowable depletion 

level (ADL) and nitrogen levels (0, 50, 100, 150 and 200 kg/ha) on antioxidant activity and 

carbohydrates on plant leaf, root and rhizome. The interaction treatment effect of severely 

stressed (70% ADL) with the application of 100 kg N/ha had significant effect on leaf 

phenolic concentration (87.02±2.51 mg/g Gallic Acid Equivalent (GAE) compared to other 

water stress treatments (30% and 50% ADL) and Nitrogen (N) application rates (0, 50,150 

and 200 kg N/ha). Interaction effect of moderately stressed (50% ADL) and severely stressed 

(70% ADL) treatment with application rate of 0 kg N/ha had significant effect on plant 

flavonoids and phenolics accumulated in leaf, rhizome and root parts. In plant carbohydrates, 

root had high sucrose content (47.68±9.0 mg/g DW, Dry Weight) with the application of low 

N (0 kg N/ha) grown under severely stressed (70% ADL) treatment. In conclusion, this 

implies that different S. aethiopicus parts can produce substantial amount of antioxidants and 

carbohydrates, as exhibited under low N and reduced water supply applied during the 

phenological cycle.  

Keywords: Fertilizer effects, plant secondary metabolites, water deficits, soil moisture 
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5.1 Introduction 

Medicinal plants play an essential role in the development of human culture, provide first-line 

and basic health to cure many ailments. The majority of the world's population in developing 

countries still rely on herbal medicines for health and healing needs (Ekor, 2014). While a 

significant portion of the South African population depend on synthetic drugs for medicine, 

utilization of herbs and medicinal plants remain the most affordable and easily accessible 

source of treatment for the primary health care system of resource poor communities 

(Hosseinzadeh et al. 2015). 

 

S. aethiopicus (Schweinf.) B.L. Burtt, commonly known as African ginger, a rhizomatous 

herb, belonging to the family Zingiberaceae. The plant is indigenous to South Africa (van 

Wyk et al. 2009), and widely distributed in other regions of Africa, occurring from Senegal 

and Ethiopia to Zimbabwe, Malawi and Zambia (van Wyk, 2008). Some members of 

Zingiberaceae such as Hedychium and Alpinia species are naturalized in certain areas (Kress 

et al. 2002). While S. aethiopicus showed commercial economic value, it is becoming scarce 

in the wild due to overharvesting (Diederichs et al. 2002).  

 

S. aethiopicus rhizomes possess great medicinal benefits due to the presence of a medicinally 

significant compound such as siphonochilone (van Wyk, 2008). The herb is used traditionally 

for the treatment of coughs, colds, asthma, headaches, pain, inflammation and malaria 

(Stafford et al. 2005). Furthermore, anti-bacterial (Coopoosamy et al. 2010), anti-

inflammatory (Gericke, 2001), antimalarial (Lategan et al. 2009) and anti-candida properties 

(van Wyk, 2008) have been investigated in the rhizome extracts. Moreover, several bioactive 

compounds have been isolated from the rhizome of S. aethiopicus including two 
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furanoterpenoids, which represents 20% of the oil composition of the extract (Holzapfel et al. 

2002).  

 

Bioactive compound synthesis is enhanced by numerous biotic and abiotic stress factors such 

as water availability, limited nutrients, temperature and radiation (Reddy et al. 2004). Among 

these factors, water and nutrient supply can influence growth, biomass yield, and phyto-

nutritional status of the plant (Mofokeng et al. 2015). In order to explore opportunities to 

improve the productivity and understand plant responses to varying factors, irrigation and 

nitrogen application has to be studied to achieve optimum production that is commercially 

viable. Application of fertilizers exhibit high yield and increase carbon based secondary 

metabolites syntheses, which are beneficial for the primary functioning in plants (Lemoine et 

al. 2013). Despite this finding, investigation of secondary metabolites from medicinal plants 

in response to fertilizer levels and water stress is limited. Few studies have revealed that 

under stressed conditions, plants exhibit high production levels of several secondary 

metabolites (Jaleel et al. 2007). The accumulation of secondary metabolites has also been 

reported to be induced with exposure to nutrient deficiency (Stewart et al. 2001), and high 

temperature (Couceiro et al. 2006). 

 

It is essential to understand the antioxidant system and carbohydrate mobilization in response 

to water requirement and nitrogen application in different plant parts. Thus, the current study 

is aimed at evaluating the antioxidant activity and soluble sugars content of different parts of 

S. aethiopicus in response to irrigation regimens and nitrogen application rates.  
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5.2 Materials and methods 
 

For details on site description, material source, experimental design, treatment application, 

harvesting and sample preparation please refer to Chapter Four.   

 

5.2.1. Determination of total phenolic and flavonoid content 

Total phenolic and flavonoid content of a crude extract was determined using the Folin-

Ciocalteu and aluminium chloride (AlCl3) colorimetric, respectively (Li et al. 2008; Ordon et 

al. 2006). The absorbance was measured in triplicates at 765 nm using a spectrophotometer 

and amounts were expressed using Gallic acid as the standard (mg GAE/g dry weight basis). 

The absorbance for total flavonoid content was measured at 510 nm in triplicates and a 

standard curve was plotted using Quercetin (mg QE/g dry weight basis). 

 

5.2.2. Total antioxidant activities using FRAP and DPPH assay  

 

 The antioxidant activity of plant part (leaf, rhizome and root) was determined using the ferric 

reducing power assay and 2, 2’-diphenyl-1-picryl hydrazyl (Ndhlala et al. 2014). Butylated 

hydroxytoluene (BHT) and Ascorbic acid dissolved in methanol and distilled water, was used 

as standards for ferric reducing power assay. Samples for the assay was prepared in triplicate 

and repeated twice. The absorbance was read at 517 nm and 630 nm for ferric reducing 

power assay and 2, 2’-diphenyl-1-picryl hydrazyl using a microtiter plate reader (Enzyme-

linked immunosorbent assay (ELISA), Microplate Reader, California, USA). The reducing 

antioxidant power of the extract, Butylated hydroxytoluene (BHT) and ascorbic acid were 

expressed by graphically plotting absorbance against concentration. The reaction mixture was 

incubated in the dark at room temperature for 30 minutes. 
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Percentage of DPPH scavenging activity was calculated as percentage (%) inhibition of 

DPPH [Eq. 1].  

Where; Abs517nm sample is the absorbance of the reaction mixture, which contains the 

resuspended extract or positive control and Abs517nm Neg control is the absorbance of the 

negative control. The free radical scavenging activity (RSA) was calculated as follows; 

RSA (%) = 1- (Abs 517nm sample/ Abs517nm Neg Control) ×100…………………….[Eq.1] 

 

5.2.3. Determination of soluble sugar concentration 

Plant soluble sugars concentration was determined according to Tesfay et al. (2011), with 

slight modifications. Briefly, freeze-dried, plant powder (0.05 to 0.10 g in dry weight basis) 

was mixed with 10 mL 80 % (v/v) ethanol and homogenized using an Ultra-Turrax (Model 

T25D, Germany) for 60 s. The mixture was incubated in an 80 °C water bath for 60 min and 

kept at 4 °C overnight. After tubes were centrifuged (12, 000 g for 15 min, 4 °C), the 

supernatant was filtered through glass wool and dried in a Savant Vacuum Concentrator 

(SpeedVac, Savant, New York, USA). Dried samples were resuspended with 2 mL ultra-pure 

water, filtered through 0.45 μm nylon filters and analysed using an HPLC-RID (High 

performance liquid chromatography-refractive index detector) system (Liquid 

chromatography (LC-20AT), Shimadzu Corporation, Kyoto, Japan) equipped with a 

refractive index detector (Refractive index detector (RID-10A), Shimadzu Corporation, 

Kyoto, Japan) and a Rezex Monosaccharide column (300 mm x 7.8 mm, millimetre) (8-

micron pore size; Phenomenex®, Torrance, California, USA). The concentration of 

individual sugars was determined by comparison with authentic sugar standards.     
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5.2.4 Statistical analysis 

All data was subjected to analysis of variance using GenStat software 17.1 edition (VSN 

International, Hemel Hempstead, United Kingdom). GraphPad Prism version 5.00 for 

Windows (GraphPad Software., San Diego, California) was used construction of graphs and 

calculation of IC50/EC50 (effective concentration) values. The treatment means were separated 

using (p < 0.05) Duncan’s multiple range test (DMRT).   

 

5.3 Results and discussion 

An interaction between 2014/2015 (n=15) and 2015/2016 (n=15) cropping season for 

irrigation regimes and nitrogen levels application were not significantly different (p < 0.05) 

and data were therefore pooled (n=30) and subjected to statistical analysis. 

 

The analysed data showed that various nitrogen levels and irrigation regimens (Table 5.4) 

influenced accumulation of total phenolics and flavonoids in different parts of S. aethiopicus. 

Generally, total phenolic content was highest in the leaf followed by root and rhizome. The 

results showed that leaf (87.02±2.51 mg/g GAE) had the highest total phenolic content, 

followed by rhizome (26.83±0.66 mg/g GAE) and root (23.06±0.60 mg/g GAE) with 

nitrogen and irrigation levels (Table 5.4). Total phenolic content showed an increasing trend 

for leaf (81.03±0.9 mg/g GAE), root (26.83±0.66 mg/g GAE) and rhizome (23.06±0.60 mg/g 

GAE) under severely stressed treatment (70% ADL). The current findings were in agreement 

with Ghasemzadeh et al. (2010) and Ibrahim et al. (2012), whereby high phenolic and 

flavonoid content was observed in the in the leaf, followed by rhizome and root extracts of 

Labisia pumile. As the plant received minimal nitrogen (N) levels (0 > 100 kg N/ha) the 

production of total phenolics and flavonoids was enhanced. It was apparent that optimum 

fertilization at 100 kg N/ha, increased high values in total phenolics and flavonoids 
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(87.02±2.51 mg/g GAE and 2.05 ±0.23 mg/g QE) of the leaf and root, respectively. Total 

flavonoids content followed the same trend as total phenolics where the highest content was 

observed in the root under moderately stressed (50% ADL; 377 mm per season) and severely 

stressed (70% ADL; 302 mm per season) water regimes (Table 5.2 and 5.4).  

The increase in the production of total phenolics and flavonoids under low-N conditions in 

this study might be due to an over flow mechanism for carbon not utilized for plant growth 

due to limited nitrogen (Coviella et al. 2002). The reduced application of water indirectly 

enhanced the biosynthesis of total phenolics and flavonoids of S. aethiopicus treated with 

minimal nitrogen fertilizer. Water stress has been reported to limit protein synthesis and 

could therefore regulate total phenolic and flavonoid content (Kumar and Pandey, 2013). This 

implies that reduced amounts of nitrogen and water supply can enhance production of plant 

secondary metabolites in different parts of S. aethiopicus. 

 

Antioxidant capacity of S. aethiopicus parts was significantly different, when plants were 

grown under various levels of nitrogen and irrigation regimens. Increasing the supply of 

nitrogen fertilization rates during the phenological cycle of the plant had significant effect on 

FRAP activity of S. aethiopicus parts. The FRAP values for the leaf, rhizome and root grown 

under two different nitrogen rates (150 and 200 kg/ha) were significantly lower than those 

under low-N levels (Figure 5.1A, B and C; Figure 5.2A, B and C; Figure 5.3A, B and C). 

Under low N-application (0 kg/ha) with moderately stressed (50% ADL; 286 mm per season) 

and severely stressed (70% ADL; 267 mm per season), leaf showed high reducing ability 

(Figure 5.1A, B and Table 5.2). Kovacik and Backor (2007) also reported similar results 

demonstrating that Matricaria chamomilla plants cultivated under nitrogen-poor condition 

contained more secondary metabolite compounds than under nitrogen-rich environment. The 

antioxidant activity of leaf and rhizome were higher than the root at 0 kg N/ha for severely 
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stressed (70% ADL) treatment (Figure 5.1A and 5.2A). The present study unambiguously 

demonstrates that, across three different irrigation regimens, high antioxidant activity was 

observed under moderately stressed (50% ADL) and severely stressed (70% ADL) for the 

leaf, rhizome and root. Water stress induced the accumulation of phenolic compounds in 

cultivars of Greek oil (Olea europaea L.), suggesting their role as antioxidants (Petridis et al. 

2012). It can be observed that reduced application of nitrogen levels and water significantly 

enhanced antioxidant activity in different parts of S. aethiopicus. The current study indicated 

that supplying S. aethiopicus with nitrogen fertilizer improves the secondary metabolites 

production and antioxidant activity of this plant especially under low N (<100 kg N/ha). 

 

Antioxidant capacity of S. aethiopicus parts was significantly different, when plants were 

grown under various nitrogen levels and irrigation regimens. In this study, the antioxidant 

activity measured by DPPH radical scavenging activity specifies that a decrease in 

absorbance of the plant extract indicate high antioxidant activity due to hydrogen atom-

donating ability (Moyo et al. 2010). The EC50 (Effective concentration) values showed no 

significant variation for the antioxidant activity of rhizome (2.00±0.77 µg/mL) leaf 

(2.02±0.68 µg/mL) and root (2.02±0.62 µg/mL) under severely stressed treatment (70% 

ADL). A reduction in level of nitrogen from 100 to 0 kg/ha, EC50 increased.  Irrigation 

regimens (70% ADL and 50% ADL) significantly increased DPPH antioxidant activity 

(Table 5.3). Relatively low amounts of water applied improved the bioavailability of 

secondary metabolites and the activities of antioxidant enzymes were increased during abiotic 

stress conditions (Tuteja et al. 2008). The EC50 values showed leaf (24.85±0.39 µg/mL) and 

root (8.30±0.47 µg/mL) had lower antioxidant activity under moderately stressed (50% ADL) 

treatment (Table 5.3). The free radical activities started to accumulate at 0 kg N/ha for the 

leaf, rhizome and root, and decreased gradually at 150 to 200 kg N/ha fertilization. Li et al. 
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(2008) showed that high nitrogen supply significantly reduced the DPPH radical scavenging 

activity of leaf Mustard genotypes. The high antioxidant activity recorded in the leaf, rhizome 

and root extracts across all irrigation regimens with low-N application indicate its rich source 

of antioxidants. Overall, the rhizomes displayed an increasing trend with the application of N 

between 0-100 kg/ha under all irrigation regimens (Table 5.3). 

 

Sucrose, glucose and fructose levels were influenced significantly (p < 0.05) by nitrogen 

levels and irrigation regimens. S. aethiopicus grown under low-N fertilization showed the 

highest root soluble sugars when compared with rhizome and leaf. Sucrose levels were 

highest in the root (47.68±9.0 mg/g DW) and rhizome (5.54±0.70 mg/g DW) under 0 N 

application followed by the leaf (Table 5.5). Ibrahim et al. (2013) observed and reported on 

this phenomenon. Sucrose accumulation under low nitrogen fertilization might be due to 

reduction in sink strength of the plant when nitrogen is limiting, hence the reduction in 

translocation of sugars to the other plant parts (Meyer et al. 2006). This could be associated 

with plants consisting of high sink strength to accumulate high starch and soluble sugar in 

their plant parts (Lemoine et al. 2013).  

 

S. aethiopicus sucrose content followed an ascending order of leaf (5.12±0.13 mg/g DW), 

rhizome (5.54±0.70 mg/g DW) and root (47.68±9.00 mg/g DW). Tognetti et al. (2013) 

reported that biosynthesis of carbon based metabolites played a significant role in root 

sucrose accumulation. It was predominantly found that the decrease in glucose content could 

be associated with glucose being directed towards synthesis of other major carbohydrates 

(Obendorf et al. 2008). The comparison of plant parts grown under 200 kg N/ha showed that 

the leaf (9.01±0.89 mg/g DW) and rhizome (2.27±0.33 mg/g DW) had higher glucose content 

than the root (Table 5.5). Under 100 kg N/ha, the root represents higher content of fructose 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993905/#bib67
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(24.24±6.45 mg/g DW) compared to the rhizome and leaf (Table 5.5). The high level of 

fructose concentration is an essential substrate responsible for lignin and phenolic compounds 

synthesis (Hilal et al. 2004).  

 

The investigated irrigation regimes significantly affected soluble sugar accumulation in 

different parts of S. aethiopicus (p < 0.05; Figure 5.4A, B and C). Less soluble sugars 

(sucrose and fructose) were observed for the leaf (4.15±0.64 mg/g DW) and rhizome 

(3.2±0.12 mg/g DW) under well-watered control (Figure 5.4A and C). The same trend was 

observed for the moderately stressed (50% ADL) and severe stressed treatments (70% ADL). 

In Alfalfa (Medicago sativa L.), leaf soluble sugar determinations highlighted that fructose 

content was reduced under low water availability conditions (Aranjuelo et al. 2011). Contrary 

to our result, the elevated sugar content in leaf of the plant could increase under drought 

conditions (Irigoyen et al. 1992). Among the studied sugars, percentage enhancement of 

glucose content was higher in the leaf (5.38±0.56 mg/g DW), root (5.29±0.61 mg/g DW) and 

rhizome (1.49±0.26 mg/g DW) under well-watered (30% ADL) treatment (Figure 5.4B). 

Generally, sucrose content was higher in the root as compared to the leaf and rhizome. The 

highest accumulation of sucrose concentration was recorded in the root (42.85±4.58 mg/g 

DW) under severely stressed water condition (70% ADL) compared to the leaf and rhizome 

(Figure 5.4A). The accumulation of high sucrose content could be associated with hexose 

phosphate known as progenitor for sucrose synthesis, whereby an increase in hexose 

phosphate concentration concurrently enhances the synthesis sucrose (Paul and Foyer, 2001). 

In addition, soluble sugar accumulation under low water availability condition helps to 

maintain and protect the stability of the membranes, and keep protein functional (Lipiec et al. 

2013). The current result implies that low-N and low water availability to different parts of S. 

aethiopicus plays an imperative role in the accumulation of soluble sugars. However, 
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variations in sugar concentrations do not follow a static model and vary with the plant part, 

variety and the stress factor (Castonguay et al. 1995). 

Table 5.1: Chemical characteristics of sandy clay loam soil collected from the experimental 

site. The data are average of duplicate analysis of soil samples collected. 

 

 

 

 

 

 

 

 

 

Table 5.2: Variation in soil water deficits (top 400mm root zone) for the well-watered (30% 

allowable depletion level, ADL), moderately stressed (50% ADL) and severely stressed (70% 

ADL) treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Soil depth (cm) 

Soil nutrient 0–20 20–40 40–60 

Ca 1007 1066 1314 

Fe 30.9 42.8 29.3 

K 275 174 132 

Mg 349 355 481 

Total N 0.028 0.027 0.024 

pH 7.13 7.16 7.26 

Allowable depletion 

(ADL) 

Nitrogen 

levels 

Average deficits 

(per day) 

Total irrigation 

amount (per season) 

% N (kg/ha) mm mm 

30 0 21.29 340 

 50 21.05 484 

 100 21.78 457 

 150 21.14 401 

 200 20.55 328 

50 0 31.81 286 

 50 34.82 348 

 100 34.33 377 

 150 33.91 305 

 200 34.19 410 

70 0 44.60 267 

 50 45.10 225 

 100 43.20 302 

 150 43.08 301 

 200 45.51 318 
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Table 5.3: Antioxidant activity of African ginger tissues (leaf, rhizome and root) in response 

to three irrigation regimens and nitrogen levels determined by the (DPPH 2, 2’-diphenyl-1-

picryl hydrazyl) scavenging activity. 

 

ADL Nitrogen levels  

 Antioxidant activity 

  Leaf Rhizome Root 

% N (kg/ha) EC50 (µg/mL) 

30 0 3.57±0.64
ab

 2.39±0.67
ab

 11.22±0.46
e
 

 50 7.27±0.46
bcd

 2.57±0.45
ab

 2.66±0.63
ab

 

 100 7.88±0.50
bcd

 3.00±0.57
bc

 3.92±0.38
bc

 

 150 10.44±0.45
de

 2.58±0.63
ab

 5.89±0.54
cde

 

 200 8.91±0.49
bcd

 3.75±0.63
bc

 5.17±0.37
cde

 

     

50 0 3.36±0.57
ab

 2.83±0.71
ab

 8.30±0.47
de

 

 50 24.85±0.39
e
 2.58±0.68

ab
 2.81±0.38

ab
 

 100 3.22±0.56
ab

 4.12±0.62
cde

 4.38±0.55
cde

 

 150 11.18±0.34
de

 4.16±0.58
cde

 3.07±0.61
bc

 

 200 7.64±0.53
bcd

 3.50±0.63
bc

 4.34±0.49
cde

 

     

70 0 2.02±0.68
a
 2.00±0.77

a
 2.02±0.62

a
 

 50 10.76±0.41
de

 2.14±0.50
a
 2.64±0.70

ab
 

 100 4.81±0.55
b
 4.55±0.55

cde
 2.67±0.63

ab
 

 150 9.61±0.48
de

 4.62±0.51
cde

 7.61±0.53
de

 

 200 10.28±0.48
de

 3.44±0.68
bc

 3.36±0.59
bc

 

Ascorbic acid   34.36±0.33
f
   

Plant parts with EC50 (Effective concentration) values (<34.36 μg/mL) are considered potent DPPH (2, 2’-

diphenyl-1-picryl hydrazyl) radical scavengers. The lower the EC50, the more rapidly the colour of DPPH 

radical was bleached and hence the more potent the antioxidant. F represents the antioxidant standard Ascorbic 

acid. Mean values (standard error-SE) in column with different letters are significantly different (p < 0.05). 
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Table 5.4: Total phenolic and flavonoid content of leaf, rhizome and root of African ginger in response to irrigation regimens and levels of 

nitrogen sampled from experimental field. 

Values (Mean ± SE) with dissimilar letters in a column are significantly different at p < 0.05 using Duncan Multiple Range test. All analyses are the mean of triplicate 

measurements ± Standard error (SE); Gallic Acid Equivalent (GAE), Quercetin (QE).

ADL Nitrogen levels Total Phenolic Content Total Flavonoid content 

% N (kg/ha) mg/g GAE mg/g QE 

  Leaf Rhizome Root Leaf Rhizome Root 

30  0 34.79±0.23
de

 3.83±0.22
cd

 1.71±0.24
d
 1.07±0.12

a
 0.32±0.06

c
 0.68±0.20

bcd
 

 50 46.98±2.09
d
 7.17±0.80

b
 3.17±0.50

bcd
 0.57±0.09

bcd
 1.57±0.01

a
 0.63±0.15

bcd
 

 100 47.04±1.36
d
 2.23±0.26

cd
 2.49±0.78

bcd
 0.33±0.05

bcd
 0.59±0.13

bcd
 0.91±0.38

bcd
 

 150 62.58±0.74
bcd

 2.39±2.29
cd

 2.91±0.02
bcd

 0.67±0.09
ab

 0.87±0.10
bcd

 1.73±0.30
ab

 

 200 65.43±0.32
bcd

 1.47±0.61
d
 2.73±0.07

bcd
 0.31±0.01

c
 0.60±0.07

bcd
 1.22±0.13

ab
 

50  0 75.89±1.61
ab

 3.83±0.27
cd

 1.30±1.52
d
 1.36±0.11

a
 1.86±0.01

a
 2.35±0.26

a
 

 50 76.56±0.52
ab

 0.94±0.32
d
 2.00±0.13

bcd
 0.42±0.06

bcd
 0.59±0.08

bcd
 1.82±0.39

ab
 

 100 31.51±1.76
de

 2.07±1.74
cd

 8.12±0.27
b
 0.64±0.10

ab
 0.60±0.16

bcd
 2.21±0.70

a
 

 150 50.65±1.39
bcd

 4.90±1.96
bcd

 7.26±0.50
b
 0.26±0.07

c
 1.25±0.28

ab
 0.54±0.10

bcd
 

 200 62.17±2.06
bcd

 0.21±0.50
e
 1.67±0.06

d
 0.66±0.19

ab
 0.64±0.04

bcd
 1.18±0.18

ab
 

70  0 64.20±2.68
bcd

 5.32±2.65
bcd

 6.45±1.41
b
 0.61±0.19

ab
 1.00±0.05

ab
 0.83±0.02

bcd
 

 50 81.03±0.92
a
 26.83±0.66

a
 23.06±0.60

a
 0.87±0.07

ab
 0.51±0.15

bcd
 0.58±0.06

bcd
 

 100 87.02±2.51
a
 4.32±0.46

bcd
 1.95±0.33

d
 0.77±0.42

ab
 1.22±0.23

ab
 2.05±0.23

a
 

 150 60.14±2.20
bcd

 1.99±0.24
d
 2.79±0.35

bcd
 0.78±0.07

ab
 1.71±0.06

a
 1.16±0.02

ab
 

 200 15.24±1.20
e
 1.97±2.40

d
 6.58±0.51

b
 0.73±0.07

ab
 0.54±0.03

bcd
 1.60±0.54

ab
 

F-statistics  6.65** 20.00** 0.12** 3.20** 24.46** 15.89** 
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Table 5.5: Amount of sucrose, glucose and fructose of S. aethiopicus tissues grown in the field 

in response to nitrogen application levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nitrogen levels Sucrose content 

(kg N/ha) (mg/g DW) 

  Root Leaf Rhizome 

0 47.68±9.0
a
 3.36±0.34

ab
 5.54±0.70

a
 

50 36.64±3.2
ab

 5.12±0.13
a
 2.80±0.43

ab
 

100 44.68±0.35
a
 4.80±0.35

a
 1.07±0.54

bc
 

150 26.85±0.43
ab

 3.05±0.43
ab

 1.93±0.44
bc

 

200 18.24±0.20
c
 4.85±0.20

a
 0.83±0.21

c
 

 Glucose content 

 (mg/g DW) 

 Root Leaf Rhizome 

0 ND 1.17±0.16
b
 0.29±0.11

ab
 

50 3.9±0.94
ab

 0.40±0.20
c 

1.03±0.32
ab

 

100 0.98±0.98
c
 0.95±0.17

c
 0.49±0.13

ab
 

150 7.80±1.26
a
 1.07±0.10

b
 0.72±0.25

ab
 

200 4.85±0.85
ab

 9.01±0.89
a
 2.27±0.33

a
 

 Fructose content 

 mg/g DW 

 Root Leaf Rhizome 

0 18.31±2.06
ab

 2.97±0.70
a
 0.96±0.34

ab
 

50 19.81±1.52
ab

 2.23±0.80
ab

 1.36±0.39
ab

 

100 24.24±6.45
a
 1.29±0.13

ab
 1.00±0.18

ab
 

150 21.82±1.83
a
 1.89±0.27

ab
 1.72±0.67

ab
 

200 14.53±1.82
ab

 3.01±0.42
a
 2.00±0.33

a
 

Values (Mean ± SE) with dissimilar letters in a column are significantly different at p < 0.05 using Duncan 

Multiple Range Test (DMRT). ND represents the non-detected; DW represents Dry weight. 
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B: 50% ADL
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C: 70% ADL
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Figure 5.1: Ferric reducing power of leaf in response to irrigation regimes (A) well-watered 30% ADL, (B) moderately stressed 50% ADL, (C) severely stressed 

70% ADL, different levels of nitrogen fertilizers and positive controls (BHT and Ascorbic acid). 
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B: 50% ADL
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C: 70% ADL
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Figure 5.2: Ferric reducing power of rhizome in response to irrigation regimes (A) well-watered 30% ADL, (B) moderately stressed 50% ADL, (C) severely 

stressed 70% ADL, different levels of nitrogen fertilizers and positive controls (BHT and Ascorbic acid). 
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B: 50% ADL
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C: 70% ADL
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Figure 5.3: Ferric reducing power of rhizome in response to irrigation regimes (A) well-watered 30% ADL, (B) moderately stressed 50% ADL, (C) severely 

stressed 70% ADL, different levels of nitrogen fertilizers and positive controls (BHT and Ascorbic acid)  
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Figure 5.4: Amount of (A) sucrose, (B) glucose and (C) fructose of S.  aethiopicus grown in the field in response to irrigation levels. Bars followed by dissimilar 

letters are significantly different at p < 0.05. Vertical lines on bars represent S.E. (n = 27). 
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5.4 Conclusion 

Our results indicate that the manipulation of fertilizer, especially nitrogen, can possibly be an 

effective method to increase the expression of secondary metabolites in African ginger. Higher 

flavonoids, phenolics and antioxidant (by FRAP and DPPH) were demonstrated in rhizome and 

leaf fertilized with low N (<100 kg/ha) under severely stressed (70% ADL) treatment. The high 

antioxidant properties expressed in different tissues are important as an additional value for the 

medicine and flavour. Cultivation of African ginger at lower N fertilizer rate with moderately 

stressed (50% ADL) and severely stressed (70% ADL) irrigation regimens have enhanced 

soluble sugar concentration of the root. These results clearly demonstrate the potential of 

exploring secondary metabolites and bioactive medicinal components in different parts 

(especially in the leaf and rhizome). 
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CHAPTER SIX 
 

VOLATILE PROFILING OF AFRICAN GINGER (SIPHONOCHILUS 

AETHIOPICUS) PARTS IN RESPONSE TO IRRIGATION REGIMES 

AND NITROGEN LEVELS 
 

ABSTRACT 

This study investigated the volatile organic compounds of different parts of African ginger 

(Siphonochilus aethiopicus) as affected by irrigation regimes (30; 50 and 70 Allowable 

depletion level) and nitrogen levels (0, 50,100,150 and 200 kg/ha). Gas chromatography/mass 

spectrometry was used for volatile analysis. A maximum number of thirty-five (35) volatile 

organic compounds were detected in the rhizome, followed by thirty-three (33) in the leaf and 

least in the root (28). The volatile compounds detected were characterized according to eight 

chemical classes. The most abundant volatile components in the root and rhizome were 

terpenes, as compared to the increased components of aliphatic acids, benzenoids and aliphatic 

aldehydes in the leaf. The odorant sesquiterpene (1E)-5-Methyl-1-(2, 6, 6-trimethyl-2, 4-

cyclohexadien-1-yl)-1, 4-hexadien-3-one was the most abundant across all treatments. 

Although 4-Hydroxy-4-methyl-2-pentanone (9.49%) was detected in all plant parts the 

concentration increased under severely stressed (70% ADL) with the application of 100 kg 

N/ha for the root. Low components of linalool was obtained from the rhizome (9.09%) and root 

(8.29%) grown without N application under severely stressed (70% ADL). Severely stressed 

(70% ADL) treatment with minimal application of N induced the terpenes concentration in all 

plant tissues. Knowledge on the impact of water stress and mineral nutrient deficiency of 

volatile components of African ginger parts provides a useful guide for selection towards 

improving phytochemical profiles of volatile compounds and explore the additional value of 

pharmacological properties. 

Keywords: β-caryophyllene, volatile compound, fertilizer, plant tissues, irrigation regimes, gas 

chromatography 
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6.1 Introduction 

Plants employ different strategies to accumulate a diverse group of natural products, which are 

significantly involved in interactions with the environment. Plant chemical products are 

important tools used in communications with microbes, animals, and other living species by 

emitting a blend of volatile organic compounds (Loreto and Schnitzler, 2010). The chemical 

composition and ratios of compounds in the blend constitute the plant scent induced by 

different stresses, both biotic and abiotic (Bruce et al. 2005). Volatile organic compounds 

(VOCs) are regarded as attractive or repellent to arthropods foraging for food. Plants emit 

VOCs which act as a signal to vascular in systemic responses (Niinemets et al. 2013).  

 

African ginger (S. aethiopicus) is one of the most important rhizomatous medicinal plants 

associated with treatment of asthma, hysteria, cold, flu, coughs, pain relief, dysmenorrhea, 

influenza and hysteria (van Wyk, 2008). The rhizome extracts possess anti-inflammatory, 

antimalarial, antimutagenic, antibacterial activities and have high antioxidant activity 

(Coopoosamy et al. 2010). The plant is listed as one of the endangered species and it is 

becoming extinct in the wild due to overharvesting, hence conservation strategies are important.  

 

Environmental stress such as physical damage, nutrient deficiency, salinity and drought alter 

the emission of volatile organic compounds (Jaleel et al. 2007). Variations in plant secondary 

metabolites and their composition were observed with water stress and nitrogen levels (Mirsa 

and Strivastava, 2000). Simon et al. (1992) reported reduced total fresh and dry weights for 

Ocimum basilicum (L.) as the plant water deficit increased. Essential oil content of Satureja 

hortensis (L.) was enhanced under severe water stress than moderate water stress treatment 

(Baher et al. 2002). The presence of volatile organic constituents of Origanum dictamnus (L.), 

were reported to be altered by nutrient levels (Economakis, 2005). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289706/#R85
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289706/#R21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289706/#R99
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Several studies have been conducted on the composition of the volatile components of S. 

aethiopicus. The main components of the rhizome and root were mostly the sesquiterpenes 

(70%) and monoterpenes (3.5%) including 1, 8-cineole, (E)-β-ocimene and cis-alloocimene 

(Viljoen et al. 2002). The essential oil of Curcuma sichuanensis contained major constituents 

of terpenes of up to 87% (Zhou et al. 2007).  Furthermore, the two furanoterpenoids 

representing 20% of the oil composition from the rhizome extracts were reported (Holzapfel et 

al. 2002). The antioxidant activities of Zingiber officinale and Labisia pumila cultivated under 

varying environmental conditions (Ghasemzadeh et al. 2011; Ibrahim et al. 2014).  

 

Volatile and phytochemical profiling of medicinal species have been reported (Viljoen et al. 

2002). However, information on the response of water deficits and nitrogen application rates of 

S. aethiopicus is limited. The objective of this study was to investigate the volatile components 

S. aethiopicus parts in response to nitrogen application and irrigation regimes. This study was 

designed to address this knowledge gap and gain a more integrated understanding of how 

volatile organic compounds production varies across nitrogen levels and water stress 

treatments. 
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6.2 Materials and methods 

 

For details on site description, material source, experimental design, treatment application, 

harvesting and sample preparation please refer to Chapter 4.   

 

6.2.1 Sample preparation 

 

Plant materials of the same treatments were collected in paper bags from the experimental 

plots. Plants were separated into leaves, roots and rhizomes. The leaf, rhizome and root samples 

were freeze-dried and stored at -20°C. Approximately 100-150 g of leaf, rhizome and roots 

samples were ground and pulverized into powdered form using a mortar and the fractions were 

freeze-dried at -20°C until further analysis. Finally the leaf, rhizome and root (0.5g) were 

diluted in 5 mL of pentane before analysed by gas chromatography/ mass spectrometry (GC/MS).  

 

6.2.2 Gas chromatography/ mass spectrometry (GC/MS) conditions 

 

Volatile compounds were analyzed using coupled Varian 3800 gas chromatography (Varian 

Palo Alto, California, USA) and Varian 1200 mass spectrometry (GC-MS). The GC was 

equipped with an Alltech EC-WAX column of 30 m x 0.25 mm internal diameter x 0.25 μm 

film thickness (Alltech Associates Inc., Deerfield, Illinois, USA). Helium was used as the 

carrier gas at a flow rate of 1 mL/min. From each sample, 2 μL was injected into a 

chromatoprobe trap prepared by cutting glass tubes equaling the size of chromatoprobe quartz 

microvials (length: 15 mm; inner diameter: 2 mm) and filled with 2 mg of a 50:50 mixture of 

Tenax TA (Alltech Associates, USA) and graphitized carbon (Carbotrap™, Supelco, USA) and 

closed on both ends with glass wool. The chromatoprobe traps were placed in a Varian 1079 

injector by means of a chromatoprobe fitting and thermally desorbed. The temperature of the 

injector was 40 °C, and was held for 2 minutes with a 20:1 split ratio and then increased to 200 

°C, and then held at 200 °C min-1 in splitless mode for thermal desorption. Compound 

detection was delayed for 6 minutes. After a 3 minute hold at 40 °C, the GC oven was ramped 

up to 240 °C at 10 °C/min and held there for 12 minutes. Compound identification was carried 
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out using the NIST05 mass spectral library and comparisons with retention times of chemical 

standards, as well as comparisons between calculated Kovats retention indices and those 

published in the literature. Clean chromatoprobe traps were run in GC-MS as controls to 

identify background contamination. Compounds present at higher or similar percentages in the 

blanks were considered as contaminants and excluded from the analysis. 

 

6.2.3 Data analysis 

 

All data was subjected to analysis of variance using GenStat software 17.1 edition (VSN 

International, Hemel Hempstead, UK) to compare the volatile profiles in the leaf, root and 

rhizome. The treatment means were separated using (p < 0.05) Duncan’s multiple range test 

(DMRT).   

 

 
 

6.3 Results and discussion 

6.3.1 Comparison of volatile components S. aethiopicus of plant parts 

The relative abundances (%) of volatile organic compounds of S. aethiopicus leaf, rhizome and 

root of were identified by GC-MS (Tables 6.1). The volatile profiles of different parts are 

shown in Table 6.1 with clear separation and variation noticed concerning the isolated 

compounds, their amounts and the class of the components. In total, 107 volatile compounds 

were separated by GC and the relative peak values of only 96 were identified by mass 

spectrometry. Table 6.1 indicate a broad spectrum of main components found in different parts 

of S. aethiopicus. 

 

 In this study, a maximum number of thirty-five (35) volatile organic compounds were detected 

in the rhizome, followed by thirty-three (33) in the leaf and least in the root (28). The volatile 

compounds detected were characterised according to the chemical classes of aldehydes, 

alcohols, ketones, acids, benzenoids, terpenes, sulphur and N-containing compounds (Tables 
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6.1), while others were unidentified components and impurities. The results indicate that the 

large group of volatile compounds detected in rhizome and root were from sesquiterpenes and 

monoterpenes (Table 6.1). Major volatile components belonging to the chemical class of 

aldehydes, alcohols, ketones, acids, and benzenoids were detected in the leaf (Table 6.1). 

Volatile phytochemical composition and composition is Zingiberene ginger rhizome has been 

reported (Bhuiyan et al. 2008). Riyazi at al. (2007) also documented abundant volatile 

compounds such as beta-pinene, terpinolene and alpha-phellandrene in the rhizome of ginger 

(Zingiber officinale). The main components found two aldehydes compounds including decanal 

(1.74%) and nonanal (0.82%) were emitted in relatively small amounts in the leaf (Table 6.1). 

As can be observed, alcohols were in relatively higher abundance, representing 0.13-8.32% of 

the VOCs in the root (Table 6.1). Decanal was reported as the dominant volatile compound in 

the leaf part (11.63%) of Polygonum minus compared to the stem and root (Ahmad et al. 2014). 

Wu and Yong (1994) reported abundant volatile compounds of ginger rhizome in response to 

irradiation. 
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Table 6.1: Volatile profiling of leaf, rhizome and root of S. aethiopicus by using gas chromatography mass spectrometry 

 

 
No Compound KRI Percentage 

   Leaf Rhizome Root 

 Alcohols     

1 1-butanol 1125 - -  0.13 

2 2-methyl-1-butanol 1179 - - 0.72 

3 2-hexanol 1189 - - 0.65 

4 1-Pentanol 1221 - - 2.42 

5 4-Hydroxy-4-methyl-2-pentanone 1349 2.90 0.44 0.46 

6 2,3-Butanediol 1568 - - 8.32 

7 1-Octanol 1552 0.19 - - 

 Aldehydes  - - - 

8 Nonanal 1381 0.82 - - 

9 Decanal 1498 1.74 - - 

 Acids  - - - 

10 Acetic acid 1450 6.67 0.40 3.32 

11 Nonanoic acid 2129 0.13 - - 

12 Decanoic acid 2214 0.21 - - 

13 Dodecanoic acid 2373 0.41 - - 

14 Tridecanoic acid 2450 0.23 - - 

15 Tetradecanoic acid 2532 3.38 - - 

 Ketones     

16 Crypton 1691 5.64 - - 

17 1-(1H-pyrrol-2-yl)-ethanone 1963 - - 0.44 

 Benzenoids     

18 Benzladehyde 1536 1.67 - 1.94 

19 Methyl benzoate 1637 0.29 - - 

20 Benzene acetaldehyde 1655 - - 0.45 

21 p-Isopropylbenzaldehyde 1800 1.72 - - 

22 2,5-dimethylbenzaldehyde 1828 0.27 - - 

23 Butylated Hydroxytoluene 1911 1.11 - - 

24 Phenol 1993 0.97 - 0.05 
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Table 6.1: Cont 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Compound KRI  Percentage 

   Leaf Rhizome Root 

 Terpenes (monoterpenes)     

25 β-Thujene 1062 - - 5.73 

26 α-Phellandrene 1072 1.78 0.64 - 

27 3-Carene 1102 - - 0.72 

28 Sabinene 1117 - - 1.05 

29 Eucalyptol 1167 - 3.42 24.50 

30 (Z)-3,7-dimethyl-1,3,6-Octatriene 1213 - - 9.80 

31 Cymene 1239 0.62 - - 

32 trans-β-Ocimene 1213 - 2.12 - 

33 (E,Z)-2,6-dimethyl-2,4,6-Octatriene 1352 - 4.24 1.81 

34 2,6-dimethyl-2,4,6-octatriene 1378 - 0.32 0.05 

35 Linalool 1540 - 0.22     0.31 

36 cis-β-terpineol 1544 - 0.12 0.21 

37 trans-β-Terpineol 1549 0.40 0.05 - 

38 Terpinen-4-ol 1606 - 0.81 2.57 

39 α-terpineol 1708 1.03 1.10  1.61 

40 p-Cymen-8-ol 1851 0.44  - - 

41 2-Hydroxycineol 1860 - - 0.39 

 Terpenes(Sesquiterpenes)     

42 E,E-Cosmene 1441 - 0.02 - 

43 β-Elemene 1600 3.44 1.10 2.78 

44 β-Caryophyllene 1611 7.68 - - 

45 Elixene 1644 - 0.49 0.36 

46 (E)-β-Farnesene 1672 9.24 0.05 - 

47 Germacrene D 1720 1.05 0.28 0.03 

48 Epiglobulol 1783 2.57 1.91 3.18 

49 Dihydro-β-agarofuran 1800 - 1.13 - 

50 γ-Elemene 1842 3.62 3.05 1.02 
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Table 6.1: Cont 

 

 

 

 

 

 

 

 

 

No Compound
a
 KRI Percentage 

   Leaf Rhizome Root 

 Terpenes (Sesquiterpenes)     

51 Curzerene 1876 - 0.32 0.04 

52 β-Vatirenene 1885 - 0.09 0.34 

53 Caryophyllene oxide 1986 6.66 0.13 0.30 

54 E-nerolidol 2032 - 0.03 - 

55 Humulene-1,2-epoxide 2036 0.12 - - 

56 Elemol 2054 - 1.27 0.58 

57 γ-Eudesmol 2078 - 1.04 - 

58 Guaiol 2086 - 4.09 - 

59 Cubenol 2115 - 0.27 - 

60 β-Eudesmol 2128 - 0.69 - 

61 α-Eudesmol 2138 - 0.29 - 

62 cis-Z-α-Bisabolene epoxide 2238 - 0.69 0.36 

63 Spathulenol 2293 - 0.75 0.09 

64 Corymbolone 2312 - 0.60 - 

65 Acorenone 1 2327 0.97 - - 

 (1E)-5-Methyl-1-(2,6,6-trimethyl-2,4- 2544 21.35 64.50 13.73 

66 cyclohexadien-1-yl)-1,4-hexadien-3-one     

67 Rhizoxin 2762 - 0.96 - 

 Sulphur-containing compounds     

68 Dimethyl Sulfoxide 1586 8.35 - - 

 Nitrogen-containing compounds     

69 Tetramethyl-pyrazine 1470 - - 0.20 

70 Methoxy-phenyl oxime 1748 - - 0.09 

71 N,N-Dimethylacetamide 1754 - - 0.26 

72 N-Ethylacetamide 1756 - - 0.15 
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6.3.2 Effect of nitrogen levels and irrigation regimes on volatile compounds 

The effect of nitrogen levels and irrigation regimes of S. aethiopicus leaf, rhizome and root are 

presented in Tables 6.2, 6.3 and 6.4. Most of the volatile components were identified below 1% 

for the leaf and rhizome across all the nitrogen application rates and irrigation regimes. The 

highest components of aliphatic acids detected for the leaf was the components of nonanal with 

50% ADL with 50 N kg/ha (Table 6.2). The distinct distribution of compounds between leaf, 

rhizome and root in this study suggest that different plant parts has the ability to detect varying 

chemical constituents (Aharoni et al. 2003).  

 

The irrigation regimes and N levels had a significant effect on aliphatic ketones and benzenoids 

volatile components detected from leaf and root (Tables 6.2 and 6.4). Volatile components in 

other studies increased under moderate and severe water stress (Jaleel et al. 2007). The 

presence of Crypton ranged from 1.27% to 9.55% for S. aethiopicus leaf at 150 and 0 kg N/ha, 

respectively. The percentage of the components increased under well-watered control (30% 

ADL) compared to severely stressed (70% ADL) treatment (Table 6.2). The leaf also emitted 

high components of benzenoids such as Benzladehyde, p-Isopropylbenzaldehyde, butylated 

hydroxytoluene and phenol (Table 6.2). The subsequent decrease of 0.05% of phenol in the root 

was observed, which varied significantly from the leaf (0. 97%). High phenol components 

protect plant parts against damage and contain antioxidant properties in various medicinal plant 

species (Sytar et al. 2016). 

 

Most of the volatiles components detected in the rhizome and root were sesquiterpenes and 

monoterpenes as shown in Tables 6.1 and 6.2. Volatile terpenes are mostly synthesized and 

accumulated in the root and rhizome of various plant species (Bos et al. 2002; Kovacevic et al. 

2002). (1E)-5-Methyl-1-(2, 6, 6-trimethyl-2, 4-cyclohexadien-1-yl)-1, 4-hexadien-3-one was 

the dominant compounds in the leaf, root and rhizome (Tables 6.1, 6.2, 6.3 and 6.4). The 

significant effect was observed at 70% ADL for the leaf (9.6) and root (7.4%) at the application 
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rate of 0-50 kg N/ha (Tables 6.2 and 6.4). The odorant (1E)-5-Methyl-1-(2, 6, 6-trimethyl-2, 4-

cyclohexadien-1-yl)-1, 4-hexadien-3-oneidentified in this study, is a sesquiterpenes previously 

isolated in honey (Blank, 1989) and in varying food and stimulants (Maarse and Vischer, 

1989). Among volatile components of sesquiterpenes emitted in the leaf, (E)-β-Farnesene 

(9.24%), β-Caryophyllene (7.68%) and Caryophyllene oxide (6.66%) were the dominant 

compounds (Table 6.2). The high concentration of β-Caryophyllene detected in the leaf relates 

to the concentration determined for S. salignus species (Sánchez-Muñoz et al. 2012). β-

Caryophyllene is well known for its potential as anti-inflammatory, insecticidal and fungicidal 

properties (Bayala et al. 2014). The high β-Caryophyllene in the leaf compared to the rhizome 

and root can be associated with exposure to oxidative stress and photosynthesis functioning.  

 

Most terpenes are produced in all photosynthetically active plant parts and stored in the sub-

epidermal compartments (Opitz et al. 2008). The differences in the volatile composition in 

different S. aethiopicus parts could be attributed to the method of extraction, geographic origin, 

irrigation and nitrogen levels. The results showed the presence of potent sesquiterpene volatile 

compound such as (1E)-5-Methyl-1-(2, 6, 6-trimethyl-2, 4-cyclohexadien-1-yl)-1, 4-hexadien-

3-one, Caryophyllene oxide, γ-Elemene, β-Elemene and α-terpineol in all plant parts.  

 

The presence of a high percentage of 4-Hydroxy-4-methyl-2-pentanone was emitted under 

severely stressed (70% ADL) for the root with the application of 100 kg N/ha (Table 6.4). 

Monoterpenes compounds abundant in the root and rhizome were eucalyptol, linalool, (E, Z)-2, 

6-dimethyl-2, 4, 6-Octatriene and Terpinen-4-ol (Tables 6.1, 6.3 and 6.4). The presence of a 

high percentage of eucalyptol was observed at 9.63% and 9.69% for the rhizome and root under 

severely stressed (70% ADL) treatment with N application of 100 kg/ha, respectively (Tables 

6.3 and 6.4). Nitrogen levels might have regulated the eucalyptol content due to the increasing 

trend in eucalyptol and N levels. According to Bayala et al. (2014) eucalyptol contributed about 

35% of the volatile compounds in the herbal plant hence its significance. The eucalyptol 
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components  in Chinese ginger showed a decreasing trend as compared to the increased 

components of 1, 3-cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl (Bayala et al.2014).  

 

The low linalool was emitted in the rhizome (9.09%) and root (8.29%) grown without N 

application under severely stressed (70% ADL) treatment (Tables 6.3 and 6.5). In contrast, 

Hymete et al. (2008) and Eyob et al. (2007) reported higher percentage of linalool in seed oil 

content for Aframomum giganteum (44.3%) and Aframomum corrorima (39.3%). The lowest 

components of monoterpenes and sesquiterpenes compounds such as linalool and eucalyptol in 

plant parts could be attributed to the N levels applied. These results are in accordance studies 

on true ginger (Z. officinale) and turmeric (Curcuma longa), whereby linalool was emitted in 

low amounts in the leaf and rhizome (Koo and Gang, 2012). The constituents obtained from 

Ocimum sp at 125% of field water capacity treatment increased the constituents of linalool 

(Khalid, 2006). Linalool is reported as a good phytochemical marker due to its anti-

inflammatory, antiseptic and glutamatergic neurons activities (Sytar et al. 2016). The 

constituents of linalool (9.09%), germacre (9.87%) and cubenol (9.03%) were high in the 

rhizome without N application under severely stressed (70% ADL) treatment (Table 6.3). 

 

In agreement with our findings, Kainulainen et al. (1996) reported the presence of a high 

concentration of monoterpenes and sesquiterpenes under limited nitrogen and mineral nutrients. 

The major constituents of terpenes including 1, 8-cineole, (E)-β-ocimene and cis-alloocimene 

were identified in the root and rhizome of S. aethiopicus (Viljoen et al. 2002). The 

characteristic of pleasant aroma in Chinese ginger analysed and identified using extracts 

dilution emitted the presence of odorant for volatile compounds such as linalool (Nishimura, 

1995). The two major constituents of monoterpenes recorded high percentage of (Z)-3, 7-

dimethyl-1, 3, 6-Octatriene (9.80%) and β-Thujene (5.73%). The highest components of 

sabinene were present in the root compared to the leaf and rhizome. The high percentage of 

sabinene was observed at 50% ADL (9.15%) and 70% ADL (7.87%) with low N application. 

Turtola et al. (2003) reported a decline in components of sabinene volatile oil for Cassumunar 
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ginger in response to days of water deficits. The high α-phellandrene content detected in the 

leaf (1.78%) was comparable to the α-phellandrene content that was abundant in the leaf of 

Schinus terebinthifolius and Schinus molle species (Ennigrou et al. 2011). The remaining 

chemical class of S-containing compound was only detected in the leaf (8.35%) compared to 

other plant parts. Some of the N-containing compounds identified in the root increased 

tetramethyl-pyrazine, methoxy-phenyl oxime, N, N-Dimethylacetamide and N-Ethylacetamide 

detected at different irrigation regimes and nitrogen level (Table 6.4). 

 

There were more terpenes in the rhizome and root as compared to the increased components of 

aliphatic acids, benzenoids and aliphatic aldehydes in the leaf. Severely stressed 70% ADL 

treatment with minimal application of N also induced the terpenes components in plant parts. 

These can be associated with the composition and variation upon species type, age of the plant 

and tissue type, geographical conditions and environmental factors.Although it is common to 

find diverse profiles of volatile compounds obtained from different plant parts, a comparison of 

S. aethiopicus parts revealed significant variations in response to water stress and N levels. 

Further analysis of volatile organic compounds of different plant parts in response to other 

environmental factors and using analytical tools should be carried out to substantiate these 

findings. 

 

6.4 Conclusion 

Volatile profiling of different parts showed that terpenes were the major compounds in the 

rhizome and root, and many of its proven pharmacological properties are attributed by varying 

environmental factors. The most abundant volatile compounds components were influenced by 

water stress level and some components increased significantly upon stress such as (1E)-5-

Methyl-1-(2, 6, 6-trimethyl-2, 4-cyclohexadien-1-yl)-1, 4-hexadien-3-one, γ-Elemene, β-

Elemene and α-terpineol geraniol, carvacrol, and diisobutyl phthalate. The desired 

pharmacological components of S. aethiopicus might be oriented by manipulating agronomy 

factors.
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Table 6.2: Relative concentrations of several classes of compound in S. aethiopicus leaf in response to irrigation regimes and 

nitrogen levels. 

 

 

 

 

 

 

 

  

   Nitrogen levels    (kg/ha)   

  0 50 100 150 200 

    Percentage  

No Compound
a
 30 50 70 30 50 70 30 50 70 30 50 70 30 50 70 

1 4-Hydroxy-4-methyl-2-

pentanone - 2.3 2.2 9.0 - 3.1 - 1.0 1.5 1.6 - - 1.1 1.0 6.9 

2 Decanal 6.4 - - 2.6 - - 4.4 - - 4.1 - - - - 6.7 
3 Nonanal - - - - 6.4 - - - - - - 4.3 - - 3.7 

4 Acetic acid 2.2 - - 7.2 5.2 - 7.8 - 1.0 2,2 - 1.8 - 8.9 1.4 

5 Crypton 9.5 1.6 1.8 1.1 2.1 7.7 2.1 2.2 2.6 1.6 2.4 1.2 1.4 5.5 2.6 

6 Benzladehyde 5.7 - 1.8 - - - - - - - - 4.5 - - 4.2 
7 p-Isopropylbenzaldehyde 3.7 3.4 4.9 - 7.9 7.1 9.9 5.7 1.0 1.9 1.0 9.7 2.7 5.4 5.5 

8 2,5-dimethylbenzaldehyde - - - 6.0 - - - - - - - 9.4 - 2.2 - 

9 Butylated Hydroxytoluene - - - - - - - - 4.2 - - - 2.8 - - 

10 Phenol - - - - - - 2.2 - - - - 1.6 - 1.5 - 

11 Phellandrene - - - - 2.1 - - - 3.6 - 3.5 - - - - 

12 trans-β-Terpineol - 5.3 3.1 - 2.5 5.3 - - 3.8 - 3.6 - - - - 

13 α-terpineol 2.2 7.3 2.2 1.0 2.5 6.1 4.6 3.2 2.5 1.0 5.2 2.0 1.9 - 9.5 

14 p-Cymen-8-ol - - - - 4.4 - - 2.6 4.1 - 3.6 1.0 - - - 

15 β-elemene 8.2 1.8 1.2 8.2 1.0 3.4 1.4 1.2 9.6 1.3 1.6 6.0 9.4 4.0 1.2 

16 beta-Caryophyllene 1.3 2.5 1.6 1.4 1.5 4.2 2.1 2.1 1.6 1.8 2.4 1.2 1.6 9.1 2.8 
17 (E)-β-Farnesene 2.2 4.4 2.7 2.7 2.1 9.9 4.1 4.1 2.1 3.2 3.6 2.9 3.1 - 5.8 
18 Germacrene D 2.5 6.4 2.7 - 3.4 1.0 6.5 5.3 3.1 - 5.4 5.9 3.1 - - 

19 Epiglobulol 4.5 1.9 1.0 - 1.1 3.1 1.4 5.8 7.7 1.2 1.4 7.1 6.2 - 8.3 

20 γ-Elemene 6.5 2.0 1.3 6.6 1.2 4.2 1.8 1.1 1.1 1.2 1.7 8.2 1.0 2.8 1.4 

21 Caryophyllene oxide 1.3 2.9 2.1 9.8 1.8 7.6 3.2 2.4 2.3 4.0 3.0 9.9 1.7 6.5 4.1 
22 (1E)-5-Methyl-1-(2,6,6-

trimethyl-2,4- 

cyclohexadien-1-yl)- 1,4-
hexadien-3-one 9.7 1.6 3.2 7.2 3.1 4.0 1.9 2.3 9.6 2.3 5.1 5.1 4.0 2.0 1.3 

23 Dimethyl Sulfoxide 1.7 - - 6.2 1.3 - 2.1 1.7 3.6 1.6 2.6 7.3 2.9 - 4.3 
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Table 6.3: Relative concentrations of several classes of compound in S. aethiopicus rhizome in response to irrigation regimes and nitrogen levels. 

 
   Nitrogen levels    (kg/ha)   

  0 50 100 150 200 

    Percentage  
No Compound  30 50 70 30 50 70 30 50 70 30 50 70 30 50 70 
1 4-Hydroxy-4-methyl-2-

pentanone 1.2 1.7 1.3 1.4 3.1 7.2 8.2 2.3 1.0 1.9 8.0 2.1 1.0 3.8 1.5 
2 Acetic acid 7.6 2.0 - 7.0 - - 3.5 - 9.7 1.1 - - 1.1 - 2.2 
3 Eucalyptol 7.3 1.9 1.1 4.7 1.0 1.4 1.1 1.8 9.6 8.8 7.2 2.1 1.2 4.0 3.9 
4 trans-β-Ocimene 3.9 1.1 8.5 2.3 1.0 7.0 1.7 1.2 9.1 5.7 2.3 1.7 5.8 2.8 3.3 
5 2,4,6-Octatriene, 2,6-

dimethyl-, (E,Z)- 9.1 2.2 2.0 4.7 2.0 1.7 4.2 3.3 2.0 1.5 3.4 3.6 1.1 4.8 5.0 
6 Linalool 8.4 1.4 9.0 2.5 1.0 7.9 1.8 1.5 8.2 6.8 2.7 1.3 7.2 2.4 1.9 
7 α-terpineol 6.6 6.8 4.2 1.7 4.4 4.1 1.8 8.0 4.7 3.4 1.0 6.2 4.0 9.3 9.1 
8 β-elemene 6.4 6.3 4.3 1.7 4.9 4.2 1.6 8.4 3.9 3.9 7.6 7.9 4.1 1.1 9.1 
9 Elixene 3.0 2.5 1.8 6.6 2.1 2.0 9.4 2.9 2.5 1.3 3.9 3.3 1.9 5.2 3.4 
10 Germacrene D 1.9 1.5 9.8 3.1 1.0 1.2 5.9 2.8 1.0 9.0 1.5 1.9 1.0 2.7 2.5 
11 Dihydro-β-agarofuran 7.8 6.2 4.2 1.6 4.3 4.4 2.0 9.1 4.6 4.7 6.6 6.8 4.8 1.1 8.1 
12 γ-Elemene 2.1 1.5 1.2 3.8 1.2 1.1 6.1 2.4 1.3 1.1 1.9 2.0 1.0 3.0 2.5 
13 β-Vatirenene 9.4 5.8 2.9 1.9 3.2 4.4 1.1 1.0 2.8 3.5 - 4.9 2.8 - 8.5 
14 Caryophyllene oxide 1.2 9.7 4.5 - 7.8 7.5 1.0 1.8 1.1 5.7 - 8.1 7.4 - 1.2 
15 Elemol 8.3 5.7 3.6 2.4 5.1 4.5 2.3 1.1 4.0 8.1 6.3 1.0 5.0 9.5 1.1 
16 γ-Eudesmol 7.1 5.0 3.3 1.8 3.9 4.3 2.4 7.8 4.5 5.8 4.4 7.3 4.1 7.4 8.0 
17 Cubenol 1.8 1.4 9.0 4.2 1.1 1.1 5.6 1.8 1.1 1.5 1.3 1.8 1.1 1.8 2.1 
18 β-Eudesmol 4.8 3.2 1.8 1.0 5.1 2.1 1.5 8.5 2.6 3.2 2.8 3.3 2.6 3.3 4.7 
19 cis-Z-α-Bisabolene epoxide 5.5 3.6 2.4 1.2 3.0 2.7 1.3 5.3 2.8 2.9 4.0 4.1 2.7 4.4 5.1 
20 Spathulenol 7.5 3.3 2.7 1.5 3.4 2.8 1.6 5.8 3.0 3.6 4.1 4.3 2.6 4.2 4.9 
21 (1E)-5-Methyl-1-(2,6,6-

trimethyl-2,4-cyclohexadien-
1-yl)-1,4-hexadien-3-one 4.1 3.2 2.1 1.5 2.7 2.9 1.3 4.0 2.5 3.2 3.1 4.1 2.4 4.9 5.8 
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Table 6.4: Relative concentrations of several classes of compound in S. aethiopicus root in response to irrigation regimes and nitrogen levels. 

  

   Nitrogen levels (kg/ha)   

  0 50 100 150 200 

  Percentage 

No Compound 30 50 70 30 50 70 30 50 70 30 50 70 30 50 70 
1 4-Hydroxy-4-methyl-2-pentanone 5.6 2.3 1.9 7.1 5.1 3.2 2.1 1.8 9.4 - 1.6 5.0 1.3 1.3 - 
2 2,3-Butanediol - 5.7 1.1 - - 3.2 - 2.3 4.3 - 5.1 3.4 3.4 6.5 4.0 
3 Acetic acid 3.0 9.3 1.0 1.7 1.2 3.1 2.5 9.9 4.6 3.3 1.9 4.4 1.3 6.4 1.2 
4 β-Thujene 8.7 1.5 1.4 1.0 2.9 1.4 3.2 1.1 9.6 2.5 1.2 1.2 7.8 9.5 2.6 
5 Sabinene - 2.2 1.6 - 9.1 2.1 - 4.2 7.8 2.9 2.6 1.9 1.5 2.1 - 
6 Eucalyptol 5.3 1.0 8.0 1.4 1.2 8.2 3.6 8.3 1.2 6.3 5.5 9.6 1.7 2.2 1.0 
7 1,3,6-Octatriene, 3,7-dimethyl-, 

(Z)- 1.7 4.4 3.5 7.1 6.2 2.3 1.2 3.5 5.5 2.3 2.7 3.9 5.3 1.0 3.6 
8 2,4,6-Octatriene, 2,6-dimethyl-, 

(E,Z)- 2.5 6.6 1.0 1.4 1.0 3.3 - 2.5 1.3 - 7.1 1.1 7.0 1.4 - 
9 Linalool 8.2 2.1 4.1 6.7 - - 7.7 - - 1.0 2.5 - - - - 

10 cis-β-terpineol 6.2 1.8 1.9 3.1 - - 9.4 - - 8.4 1.2 - - - - 
11 Terpinen-4-ol 3.9 1.0 1.0 3.6 1.1 9.6 3.5 1.1 1.5 4.7 8.5 1.2 1.0 2.0 2.3 
12 α-terpineol 2.6 8.2 6.4 3.4 5.5 5.8 3.7 7.6 7.2 3.4 4.0 5.9 7.3 - 6.7 
13 2-Hydroxycineol 8.1 1.4 1.5 2.3 1.4 1.5 1.7 2.4 1.0 8.0 7.9 7.9 1.5 1.3 6.7 
14 β-elemene 3.1 1.0 1.2 8.6 1.3 1.2 4.2 7.8 2.2 4.0 8.4 1.4 1.1 3.3 - 
15 Elixene 2.1 1.5 1.9 2.6 1.2 - - 1.4 3.5 - 1.3 2.6 2.0 2.2 - 
16 Epiglobulol 4.0 1.9 1.5 1.4 1.1 1.1 7.2 1.4 1.6 1.1 1.2 9.9 1.2 3.2 2.5 
17 γ-Elemene 1.0 3.0 5.2 1.6 3.4 1.3 9.9 3.5 6.2 - 3.4 4.3 2.4 2.1 7.2 
18 β-Vatirenene 2.3 - - - - - 7.3 - - 5.2 - - - 5.2 3.7 
19 Caryophyllene oxide 1.8 1.5 1.2 1.4 1.0 1.6 6.6 1.7 1.3 5.9 1.3 8.4 8.0 - - 
20 Elemol 6.2 1.8 1.8 4.5 1.8 2.5 1.4 2.4 3.1 1.1 2.1 1.6 1.7 2.0 4.7 
21 (1E)-5-Methyl-1-(2,6,6-trimethyl-

2,4-cyclohexadien-1-yl)-1,4-

hexadien-3-one 2.3 4.0 4.0 2.6 3.8 - 1.2 2.8 7.4 1.6 5.6 7.0 1.7 3.3 2. 
22 N,N-Dimethylacetamide - 1.6 1.6 - 1.0 2.0 1.9 2.4 3.0 8.8 - - 1.1 2.2 - 
23 N-Ethylacetamide 2.2 7.2 7.2 - 8.6 6.5 6.0 2.4 - - 4.6 - 1.1 1.5 5.1 
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CHAPTER SEVEN 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 
 

Africa is renowned for its high plant biodiversity and valuable natural resources used as 

traditional medicine for primary health care and nutrition. The long history of traditional 

healing, indigenous knowledge, beliefs, and theoretical practices of different cultures are still 

important aspects in administering medications for various kinds of infectious diseases that 

are common in rural areas. In the past harvesting of medicinal plants was restricted to 

traditional health practitioners, who understood the conservation practices of wild plants. The 

rate at which human population is increasing, the growing demand on plant-based drugs for 

therapeutic purposes will exert pressure on the plant natural habitats and genetic diversity. 

Also, over-harvesting and exploitation is regarded as the main driver of medicinal plant 

depletion because the majority of unemployed South Africans rely on collection of plant 

species for trading and profit to combat economic circumstances. African ginger (S. 

aethiopicus) (Schweinf.) B.L. Burtt is one of the most important rhizomatous plants highly-

valued due to its medicinal properties and widely used for respiratory ailments in many 

regions of the southern Africa. The current research on medicinal value of S. aethiopicus 

grown from different growing regions of South Africa was investigated, as well as the 

significance of cultivation practices through irrigation and nitrogen management and the 

assessment of plant metabolite content. 

 

A study was initiated with an effort to contribute valuable knowledge to the medicinal 

database information relating to the potential medicinal value and strategies to conserve its 

populations. The specific objectives of the study were to investigate medicinal potential of 

different plant parts from varying regions in South Africa; evaluate the crop water and 

nitrogen requirements suitable for cultivation of S. aethiopicus. Investigate medicinal potential 
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through metabolite content determination and profiling volatile compounds in response to 

cultivation management practices. 

 

In this study, total phenolic content, antioxidant activity and soluble sugars of Siphonochilus 

aethiopicus leaf, rhizome and root from varying growing areas (Mpumalanga, KwaZulu-

Natal, Limpopo and North West) were evaluated. The high antioxidant activities observed in 

the leaf from Mpumalanga suggest its adaptive capabilities to different environments. The 

results from this study indicate that Siphonochilus aethiopicus parts could be used as a 

potential source for antioxidant properties and encourage cultivation under different growing 

areas to conserve biodiversity and increase species populations. Cultivation of this plant 

species should be extrapolated to other regions of South Africa to clearly understand the 

potential of other plant parts (root and leaf).  

 

The importance of cultivation practices for commercial production and improvement of 

species biodiversity has made it necessary to investigate the relationship between water and 

nutrient required by the medicinal plants. The need for a better understanding of the irrigation 

and nutrient management, especially nitrogen, is important as they indirectly affect each other. 

Results from the two season data conducted under the rainshelter have shown a significant 

interactive effect between irrigation regimes and nitrogen levels. The high amount of water 

utilized from well watered treatment (30% ADL) than from the moderate (50% ADL) and 

severe (70% ADL) treatments could be attributed to improved water availability and superior 

plant canopies. Due to the increased temperatures and reduced rainfall as a result of climate 

change, understanding the correct shortage or excess of water to the plant is appropriate for 

irrigation management and saving water. The chlorophyll content, plant height, number of 

leaves per plant and leaf area index increased with increased N supply at 50 and 100 kg/ha. 
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The well watered treatment had a significantly higher total biomass, fresh and dry rhizome 

yield compared to other water stressed treatments. Addition of N fertilizer improved the 

rhizome yield. Taken together, the findings of this study show that, adequate yields can be 

contributed by irrigation and nitrogen management strategies in cultivation of S. aethiopicus. 

 

The present study sought to establish the response of irrigation regime and nitrogen levels to 

metabolite content. The interaction treatment effect of severely stressed (70% ADL) with the 

application of 100 kg N/ha had significant effect on leaf phenolic concentration compared to 

other water stress treatments and N application rates. The results indicate that when different 

parts of S. aethiopicus were stressed, their antioxidant activity increased. This is due to the plant 

secondary metabolites produced under environmental stress and dominant non-enzymatic plant 

antioxidants. The high antioxidant activity is a desirable trait to humans due to the ability to 

scavenge for free radicals attributed to mechanisms of antimalarial, antimicrobial properties and 

detoxification of enzymes in the human body. In plant carbohydrates, root had high sucrose 

content with the application of low N grown under severely stressed (70% ADL) treatment. 

The findings of the study that different S. aethiopicus parts can produce substantial amount of 

antioxidants and carbohydrates, as exhibited under low N and reduced water supply applied 

during the phenological cycle. It is recommended that the sugar content investigated in this 

study should be corroborated with amino acids, starch and proline content for further 

understanding of S.s aethiopicus biochemical analysis. 

 

The results showed that the highest volatile components in the root and rhizome were 

terpenes, as compared to the increased concentrations of aliphatic acids, benzenoids and 

aliphatic aldehydes in the leaf. In all treatments and samples, the odorant sesquiterpene (1E)-

5-Methyl-1-(2, 6, 6-trimethyl-2, 4-cyclohexadien-1-yl)-1, 4-hexadien-3-one was the most 
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abundant volatile compound. The 4-Hydroxy-4-methyl-2-pentanone was detected under 

severely stressed (70% ADL) treatment with the application of 100 kg/ha. Severely stressed 

(70% ADL) treatment with minimal application of N induced the terpenes components in all 

plant parts. The study showed several bioactive volatile components present in different parts 

of S. aethiopicus which could be isolated and used for the therapeutic purpose. The study 

showed that volatile components of S. aethiopicus vary with plant sources, water stress and 

mineral nutrient deficiency. It is recommended that essential oil of S. aethiopicus be 

investigated their bioactive compounds.   
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FUTURE RESEARCH  
 

 Evaluate emission of volatile organic compounds in response to abiotic stress 

 

 Isolation and characterisation of  bioactive compounds  

 

 Phylogenetic diversity of medicinal plant species 

 

 Evaluate  photosynthetic carbon accumulation and dry matter in response to plant age 

 

 

RESEARCH OUTPUTS  
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APPENDIX 1 
 Randomisation.gen 
 Randomised block design 
 3 sets (blocks or reps) 
 ========== of 15 random numbers for 3 irrigation x 5 nitrogen levels)   
  
  
 TMTCOMB  IRRIGATION  NITROGEN 
 1  30%  0 
 2  30%  50 
 3  30%  75 
 4  30%  100 
 5  30%  125 
 6  50%  0 
 7  50%  50 
 8  50%  75 
 9  50%  100 
 10  50%  125 
 11  70%  0 
 12  70%  50 
 13  70%  75 
 14  70%  100 
 15  70%  125 
  
  
 =====     BLOCK 1  =====    
  
  
 POSITION TMTCOMB 
 1  2 
 2  4 
 3  3 
 4  1 
 5  15 
 6  8 
 7  10 
 8  5 
 9  9 
 10  14 
 11  7 
 12  13 
 13  11 
 14  6 
 15  12 
  
  
 =====     BLOCK 2  =====    
  
  
 POSITION TMTCOMB 
 1  4 
 2  11 
 3  13 
 4  9 
 5  12 
 6  14 
 7  3 
 8  8 
 9  6 
 10  7 
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 11  2 
 12  1 
 13  5 
 14  10 
 15  15 
  
  
 =====     BLOCK 3  =====    
  
  
 POSITION TMTCOMB 
 1  10 
 2  4 
 3  12 
 4  5 
 5  13 
 6  14 
 7  15 
 8  7 
 9  1 
 10  3 
 11  8 
 12  9 
 13  11 
 14  2 
 15  6 
  
  
End of Ngoakoana Mokgehle - ARC-VOPI - Project no PDP034. Current data space: 1 block, peak 
usage 1% at line 15. 
  

GenStat 64-bit Release 15.1 ( PC/Windows 7) 24 March 2014 08:17:41 
Copyright 2012, VSN International Ltd.   
Registered to: ARC 
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