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Abstract 

 

For centuries, plants have been used in the cosmetic, culinary and medicinal industries. Recently 

however, the use of plants in the medicinal industry has increased due to the widespread 

awareness of the harmful effects of synthetic drugs on humans. Withania somnifera (Dunal.) is an 

evergreen perennial shrub found in the drier parts of Africa, particularly South Africa and Asia. 

Since the phytochemical compounds within the extracts of W. somnifera act upon both the 

nervous and reproductive systems, it is used to treat a wide variety of ailments such as arthritis, 

stress, ulcers, and tremors. This species has therefore been cultivated to extract the 

phytochemicals produced. The aim of this study was to characterise the micromorphology of the 

foliar trichomes of W. somnifera as well as to elucidate the location and composition of the 

secretory products. Stereomicroscopy and scanning electron microscopy (SEM) were used to 

characterise the foliar trichomes. A series of histochemical and phytochemical tests were 

performed to determine the location and composition of the compounds that are responsible for 

the healing properties of the extracts of W. somnifera. Trichome density and length was also 

determined in three developmental stages of the leaves. Histochemically stained leaf sections and 

SEM showed the presence of four morphologically distinct trichome types: glandular capitate, 

non-glandular dendritic, non-glandular bicellular and non-glandular multicellular. Uniseriate, 

glandular capitate trichomes consisted of a six-celled secretory head, single-celled stalk and a 

single basal cell. Secretions from the glandular heads of capitate trichomes were visible on the 

leaf surface during ESEM and histochemical staining. Non-glandular dendritic trichomes, which 

appeared to emanate from single basal cells, consisted of 2-4 celled stalks and varying branch 

numbers. These dendritic trichomes exhibited cuticular warts which are involved in the “Lotus-

Effect”. Uniseriate, non-glandular bicellular and multicellular (3-6 cells) trichomes also appeared 

to emanate from single basal cells. Glandular capitate and non-glandular dendritic trichomes were 

aggregated on the mid-vein of young and mature leaves, possibly to protect underlying 

vasculature. Histochemical staining and phytochemical testing revealed the presence of two major 

phytochemical compounds of medicinal importance, i.e. alkaloids and phenolic compounds. 

These compounds are used to treat a wide variety of ailments, such as dysentery, TB, paralysis, 

asthma and inflammation, and also act as chemical deterrents in plants. The results of this study 

explain possible roles of glandular capitate, non-glandular dendritic, non-glandular bicellular and 

non-glandular multicellular trichomes based on their morphology and foliar distribution. Future 

studies should aim at determining the biosynthetic pathways, as well as the modes of secretion of 

alkaloids and phenolic compounds. 
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CHAPTER 1 

 

INTRODUCTION 

1.1. Traditional medicine and medicinal plants 

Plants have been used for centuries, not only for medicinal purposes, but also in the cosmetic 

and culinary industries (Joy et al., 1998; Lange et al., 2000; Debnath et al., 2006 Gairola et al., 

2008; Mahesh and Satish, 2008). In South Africa, there are over 30 000 plant species, of which 

approximately 3 000 are used in African traditional medicine (van Vuuren, 2008; van Wyk, 

2008). Many of these medicinal species are grown and harvested with the main aim of improving 

informal economic markets through the production of tea, tablets, ointments and tonics. The 

commercialization of medicinal species in South Africa has increased rapidly over the last 15 

years, accompanied by an increase in scientific research on these plants (van Wyk, 2008). Factors 

that have driven the increased interest in herbal medicines are the increasing world population, 

increased cost of living, higher rates of unemployment, increased awareness of the harmful 

effects of synthetic medication on humans, and the widespread acceptance and accessibility of 

traditional medical systems (Erasto et al., 2005; Khan et al., 2006). The increased acceptance of 

traditional medicine has also led to developed countries utilizing medicinal plants in the treatment 

of both old and emerging sicknesses. However, the commercialization of these species leads to 

overharvesting which results in many becoming endangered (Joy et al., 1998; Hoareau and 

DaSilva, 1999; Jäger and van Staden, 2000; Williams et al., 2000). 

 

The past few decades have seen traditional medicine being supported by phytochemical and 

pharmacological studies (Jäger and van Staden, 2000, Debnath et al., 2006). Micropropagation of 

the species has also increased due to the widespread interest of maintaining current populations 

and protecting genetic diversity (Jäger and van Staden, 2000, Amin, et al., 2013). Phytochemical, 

micromorphological, pharmacological and micropropagation studies have also been undertaken 

simultaneously to ensure that the micropropagated plants have the same, or enhanced medicinal 

traits compared to the wild varieties (Jäger and van Staden, 2000, Debnath et al., 2006).    

 

1.2. Description of Withania somnifera (L.) Dunal 

 Withania somnifera is an evergreen, perennial shrub (Fig. 1) found in the drier parts of 

South Africa, India, Pakistan, Mumbai, Sri Lanka, Congo, Egypt, Morocco, Jordan and 

Afghanistan (Atal and Schwarting, 1961; Khan et al., 2006; Singh et al., 2010; Kumar and 

Kumar, 2011). It is commonly known as Indian ginseng or Ashwagandha and belongs to the 
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family Solanaceae (Rahman et al., 2003; Khan et al., 2006; Senthil et al., 2009; Chatterjee et al., 

2010; Kumar et al., 2010a; Kumar et al., 2010b; Singh et al., 2010). The plant produces greenish 

or yellowish flowers and red “berry-like” fruit (Scartezzini and Speron, 2000; Kumar et al., 

2010a; Kumar and Kumar, 2011; Uddin et al., 2012). Contained within the fruit are yellow seeds 

that are 2.5 mm in diameter (Uddin et al., 2012). The leaves are simple and ovate and up to 10 cm 

in length (Scartezzini and Speron, 2000; Uddin et al., 2012). The leaves and roots are used in 

traditional medicine as both external applications and tonics (Atal and Schwarting, 1961; Senthil 

et al., 2009; Chatterjee et al., 2010; Singh et al., 2010). Concoctions of W. somnifera act upon the 

nervous and reproductive systems, having rejuvenative effects on the whole body (Chatterjee et 

al., 2010; Ram et al., 2012). It is therefore widely used to improve vitality, as well as to aid in the 

recovery of various illnesses (Khan et al., 2006; Chatterjee et al., 2010; Kumar and Kumar, 2011; 

Ram et al., 2012).  

 

Medicinal studies were conducted on W. somnifera as early as 1911, as this species was used 

as a sedative in Ayurvedic medicine (Atal and Schwarting, 1961; Scartezzini and Speron, 2000; 

Chaurasiya et al., 2007). Previous studies showed the presence of numerous alkaloids which are 

responsible for the plants’ sedative properties. The major alkaloid is withanine (Atal and 

Schwarting, 1961). There exists morphological variation within this species, especially between 

wild and cultivated plants (Atal and Schwarting, 1961). Drugs prepared from the alkaloids of 

different W. somnifera plant parts had both positive and negative sedative action on different 

animal species (Atal and Schwarting, 1961). This indicates that there may also be chemical 

variation in this species, related to both morphological and geographical variations (Atal and 

Schwarting, 1961; Mehboob, 2010).  
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Figure 1. a) Withania somnifera containing red fruit, b) fully expanded mature leaf of W. 

somnifera showing a pubescent surface (Courtesy of Prof. G. Naidoo). 
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1.3. Rationale for this study 

Much research has been done on the composition of the phytochemicals produced by W. 

somnifera, some in great detail; however, little or no work has been done on the foliar 

micromorphology and ultrastructure, as well as the mode of secretion of these phytochemicals. 

This study therefore will aim to describe the micromorphology of the trichomes present on the 

adaxial and abaxial surfaces of the leaves, determine the possible site of synthesis and the 

composition of phytochemicals in the secretions. Trichome morphology might assist as a useful 

diagnostic characteristic within the family.  

 

1.4. Aims and Objectives  

The aims and objectives of this study were to: 

i. describe the micromorphology and distribution of the foliar trichomes using light, stereo 

and scanning electron microscopy.  

ii. determine trichome density and dimensions in emergent, young and mature leaves. 

iii. describe the ultrastructure of the foliar trichomes by examining ultra-thin sections using 

transmission electron microscopy.  

iv. elucidate the location and composition of the phytochemical compounds produced by the 

trichomes using a variety of histochemical and phytochemical tests and thin-layer 

chromatography. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1. Family Solanaceae  

The family Solanaceae, also known as the nightshade or potato family, consists of 

approximately 90 genera and 3 000 species (Jacobs and Eshbaugh, 1983). Members of this family 

are usually herbaceous or woody, inhabiting a wide range of habitats. Some of the economically 

important genera are Solanum (potato and eggplant), Lycopersicon (tomato), Physalis (edible 

fruits such as Cape gooseberry and Chinese lantern) and Capsicum (chilli peppers) (D’ Arcy, 

1992). Species of this family flaunt an array of morphological variation which is brought about by 

gene flow during the simultaneous flowering seasons of species. This genetic variation has posed 

problems for taxonomists and has thus resulted in “poorly defined taxa” (Jacobs and Eshbaugh, 

1983). Solanaceae consists of two major subfamilies: Solanoideae, consisting of widely 

distributed species and Cestroideae, consisting of species restricted to America and Australia.  

The two largest genera of Solanaceae are Lycianthes and Solanum, with the latter comprising of 

approximately half of the total species of the family. Solanum is divided into five subgenera and 

55 sections, consisting of approximately 1 500 species (D’ Arcy, 1992).  

 

 Most species of Solanaceae produce alkaloids which, although poisonous to humans, offer 

commercial as well as medicinal value (Adedeji et al., 2007; Kumar et al, 2011). Solanum has 

been reported to produce steroidal saponins and glycoalkaloids. These secondary metabolites are 

important, both medicinally and ecologically. Species of this genus possess antimycotic, antiviral 

and cytotoxic properties (Khan et al., 2006; Kumar et al., 2011). 

 

2.2. Genus Withania (L.) Dunal 

The genus Withania comprises approximately 23 species, most of which are distributed 

between the east Mediterranean region and South Asia, especially India (Vashistha et al., 2010). 

Withania somnifera is the most important and commonly used medicinal species. It produces the 

highest amount of withanolides, a group of steroidal lactones that are unique to a few species of 

Withania (Chaurasiya et al., 2009; Senthil et al., 2009). Withania coagulans and W. aristata are 

also used to treat a wide variety of medical conditions owing to the very numerous healing 

properties of these withanolides. Due to the importance of withanolides in the medicinal industry, 

many studies are being undertaken to investigate the biological effects of the extracts of species 
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belonging to the genus (Khan et al., 2006; Martín-Herrera et al., 2007; Mathur and Argrawal, 

2011).   

 

2.3. Withanolides 

The molecular skeleton of withanolides is defined as 22-hydroxy ergostane-26-oic acid-26, 

22-olide. Modifications of the carboxylic skeleton or the side chains result in many new structural 

variations of withanolides. These variants are often referred to as modified withanolides or 

ergostane-type steroids related to withanolides. Withanolides are classified according to their 

chemical nature. These groups include withanolide glycosides, withaphysalins, physalins, 

nicandrenones, jaborols, acnistins, perculactones and withajardines (Mathur and Argrawal, 2011).  

 

Previous studies have revealed that the extracts of W. somnifera contained alkaloids, 

steroidal lactones, saponins and withanolides (Jayaprakasam et al., 2003; Khan et al., 2006; 

Chaurasiya et al., 2007; Senthil et al., 2009; Uddin et al., 2012). Withania somnifera is also 

known to contain the largest number of withanolides. This was due to the diverse functional 

groups and regio-/stereo-forms (Chaurasiya et al., 2007). The medicinal properties of W. 

somnifera were due to the presence of withanolides in the leaves and roots (Senthil et al., 2009; 

Uddin et al., 2012). Examples of these withanolides are withaferin A, which is known to possess 

anti-inflammatory and immunosuppressive properties, withanolide D which is believed to have 

antitumor activity and sitoindosides VII and VIII which were known to antioxidants (Dhar et al., 

2006; Khan et al., 2006; Chaurasiya et al., 2007). 

 

2.4. Phytochemical studies 

Phytochemical studies aid in identifying the specific classes of compounds that are of 

medicinal value. To date, random phytochemical screening of plants has proven most successful 

in discovering biologically active compounds e.g. antibiotics (Mahesh and Satish, 2008). This is 

due to the small percentage of the total species that have been screened for phytochemicals with 

potential medicinal value. Species that are selected for phytochemical screening are usually those 

that are predicted to possess antimicrobial activity (Hadi and Bremner, 2001). Withania somnifera 

also appeared to the candidate for phytochemical studies. Consequently it has been chosen by the 

author as it had been cited in Ayurvedic medicine and for its numerous alkaloids.     
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2.5. Previous studies on W. somnifera 

Cancer is one of the major diseases affecting human life and with current treatments being 

potentially harmful and expensive, natural alleviants are being sought. The antioxidant properties 

of W. somnifera leaf extracts were used to determine their effect on human tumor cell lines for 

breast and lung tissue and cells of the central nervous system. Three specific groups of 

withanolides: withaferin A, physagulin D and viscosalactone B showed antiproliferative activity 

against all four of these cell lines demonstrating that the species had the potential to reduce tumor 

growth or prevent cancer altogether (Jayaprakasam et al., 2003; Khan et al., 2006; Kumar and 

Kumar, 2011).  

 

Many studies have demonstrated the antioxidant and antimicrobial properties of W. 

somnifera extracts leading to the widespread use of this species in Ayurvedic systems to improve 

longevity and memory, and counteract stress. These extracts have thus been incorporated into the 

treatment of diseases such as Alzheimer’s, Parkinson’s and diabetes. Antioxidant behaviour of the 

extracts were a result of the production of withanolides such as sitoindosides VII-X and 

withaferin A, which was reported to contain the “oxidative free radical scavenging enzymes” 

superoxide dismutase, catalase and glutathione peroxidase (Bhattacharya et al., 1997). 

 

Methanol extracts of W. somnifera have shown antimicrobial activity against Candida 

albicans (Mahesh and Satish, 2008). A monomeric glycoprotein, WSG, also showed 

antimicrobial activity against bacterial and phytopathogenic fungi. It is important however, to 

consider that antimicrobial, antifungal and antibacterial activities differ depending on the plant 

parts that are used (Mahesh and Satish, 2008). 

 

2.6. Trichome types and functions 

Trichomes were generally described as ‘hair-like’ appendages present on the surfaces of 

leaves, stems, roots and floral structures. Trichomes appeared to differ in size, shape, location, 

capability to secrete and function; both between species and plant organs. There was also 

variability in the type and density of trichomes between the two sides of leaves, bracts, sepals and 

tepals (Wagner, 1991, Johnson, 1975; Werker, 2000: Wagner, 2004; Adedeji et al., 2007; Gairola 

et al., 2008; Ishida et al., 2008; Boix et al., 2011; Kim et al., 2011).  

 

Due to the diversity of trichomes and the different methods of classification, trichome 

classification has been quite subjective. However, trichomes could be classified into two major 
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categories, non-glandular and glandular (secretory). These were further sub-divided according to 

their morphological characteristics (Kim et al., 2012). Glandular trichomes might be capitate, 

peltate, sub-sessile or branched. Non-glandular trichomes might be unicellular, multicellular or 

branched (Fahn, 1988; Gairola et al., 2008; Kryvych et al., 2011; Osman; 2012). Typically, 

glandular trichomes consisted of a terminal secretory head, a stalk and a base, all comprised of 

one or many cells. In some cases, a neck cell might also exist between the secretory head and the 

stalk. Glandular trichomes have also been characterised according to the compounds that they 

excrete and the mode of secretion (Fahn, 1988; Werker, 2000; Gairola et al., 2008).  

 

According to Adedeji et al. (2007) and Osman (2012), trichomes have been an integral part 

of comparative studies as they usually showed unique morphological and distributional patterns 

among taxa. Simple trichome types might serve to prevent water loss, influence pollination or act 

as a mechanical barrier to herbivory. Glandular, secreting trichomes might be involved in the 

production and secretion of chemicals to ward off pests or attract pollinators. Plant protection by 

glandular trichomes could occur in four ways: by obstructing the movement of pests into leaf 

tissue; by capturing pests so that overall movement across/within leaves are prohibited; by 

producing and/or secreting volatile or non volatile secondary metabolites; as well as by producing 

proteins that directly poison or actively deter pests. In some desert species, glandular trichomes 

have been reported that they secreted high amounts of exudates onto the foliar surface to protect 

against water loss (Wagner, 1991; Fahn; 1986; Fahn, 1988; Ishida et al., 2008; Wagner, 2004; 

Lev-Yadun, 2006; Gairola et al., 2008; Kim et al., 2011; Kryvych et al., 2011; Weinhold and 

Baldwin, 2011). 
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Figure 2. Stalked-glandular (A-O) and non-glandular (1-14) trichomes of Solanaceae (adapted 

from Adedeji et al., 2007). 

 

(A-I) unicellular stalk, unicellular to multicellular head trichomes. 

(J-O) bicellular to multicellular stalk, unicellular to multicellular head trichomes. 

(1) Spine like trichome. 

(2) unicellular short trichome. 

(3) unicellular long trichome. 

(4) unicellular hooked trichome. 

(5) bicellular trichome (large basal cell). 

(6) bicellular trichome (normal basal cell). 

(7) bicellular trichome (large basal cell, apical cell hooked and pointed). 

(8) bicellular trichome (found on petals), 

(9) bicellular hooked trichome. 

(10) multicellular trichome. 

(11) multicellular trichome (large basal cell, 2shrivelled cells). 

(12) multicellular trichome (narrow topmost cell). 

(13) multicellular trichome (shrivelled middle cell). 

(14) multicellular trichome (one cell branching).
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Figure 3. Non-glandular branched (A-H) and non-glandular stellate trichomes of Solanaceae 

(adapted from Batterman and Lammers, 2004; Adedeji et al., 2007).  

 

(A) dendritic branched trichome. 

(B) multangulate branched trichome. 

(C) multangulate-dendritic branched trichome. 

(D) echinoid branched trichome. 

(E) echinoid-dendritic branched trichome. 

(F) stellate branched trichome. 

(G) furrcate branched trichome. 

(H) multiserriate- multangulate branched trichome. 

(1) triradiate stellate trichome. 

(2) tetraradiate or H-shaped stellate trichome. 

(3) - (4) multiradiate stellate trichome. 
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2.7. The importance of foliar trichomes 

Apart from the functions that trichomes served to plants and humans, these appendages also 

serve as a taxanomic tool for the classification of different species (Johnson, 1975; Wagner 1991; 

Wagner, 1994; Gairola et al., 2008). In the Coniferae for example, the variation of trichomes on 

the twigs of Picea allowed for the identification and characterisation of the different species 

(Johnson, 1975). Categorising plant species or families according to the unique trichome types 

they contain will assist in the classification of new species. The author has also predicted that W. 

somnifera would produce the results which would be trichome specific in structure and 

histochemical studies for the purpose of classification.     

 

Secondary metabolites, such as alkaloids, are produced and secreted by glandular trichomes 

when the leaves of W. somnifera are wounded by herbivores. The pungent smell of these 

alkaloids discouraged herbivores from feeding on the plant parts (Lev-Yaden and Ne’eman, 2003; 

Chaurasiya et al., 2007). These secretions have been reported to protect against phytophagus 

arthropods by producing toxic acylsugars (Kim et al., 2011; Weinhold and Baldwin, 2011).  

 

The essential oils that confer therapeutic properties are also synthesised and stored in 

glandular trichomes (Lange et al., 2000; Boix et al., 2011; Kim et al., 2011). Leaves of all species 

of Solanaceae contained trichomes, with trichome type and distribution varying among species. 

Many of these species are found to contain both glandular and non-glandular trichomes on both 

foliar surfaces, with Solanum torvum being the only species within the family to possess stellate 

(star-shaped) non-glandular trichomes (Adedeji et al., 2007; Weinhold and Baldwin, 2011).  

 

Kumar et al. (2010b) found that non-glandular branched trichomes were abundant on the 

leaves of W. somnifera. These trichomes are randomly distributed, and more dense on the abaxial 

surface. Although Kumar et al. (2010b) also mentioned the presence of glandular trichomes on 

the leaves; there is no indication of the distribution and density of these trichomes. The foliar 

trichomes varied in length and are between 100 and 450 μm wide (Kumar et al., 2010b). 

 

Besides the physical attacks from herbivores and other pests, climate might also influence the 

type and distribution of foliar trichomes. Garg and Varshney (1980) showed that the foliar 

trichomes of W. somnifera increased in length and density on adaxial surfaces of plants grown in 

a polluted area. Stomatal pores were also reduced by one third in the leaves of plants in an 

unpolluted area compared with those from a polluted area. This led to the assumption that the 
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plants grown in polluted areas would have slower growth rates due to the limited Co2/O2 

exchange between stomata and the atmosphere, which could be an adaptive characteristic of the 

plants to the environment. Thus seed production and the completion of the life cycle would also 

be delayed. Studies such as these are becoming prominent due to the increasing worldwide 

population, increased levels of pollution and climate change (Seinfeld and Pandis, 2012). Another 

topic of interest is the impact that these foliar micromorphological changes will have on the 

medicinal properties of species (Gairola et al., 2010).  

 

Advances in research on glandular secreting trichomes were also important for the enhanced 

accumulation of medicinally important exudates. Recombinant DNA approaches, for example, 

allowed for the genetic manipulation of enzymes that would modify the chemical nature of 

secretory products to enhance disease resistance or to allow for the improved metabolism of 

phytochemical compounds for medicinal use (Wagner, 1991; Wagner, 2004). Modification of 

secretory products might also prove useful to plants by increasing their attractiveness to 

pollinators.   

 

2.8. Trichome development  

Trichomes developed from specialised epidermal cells called protodermal cells. These cells 

have been reported to undergo differentiation or cell division to form the hair-like projections 

(Johnson, 1975; Werker, 2000; Wagner, 2004). With the process of trichome differentiation, 

specialised structures were formed. The cell walls of trichomes might be comprised purely of 

cellulose or might also become saturated and covered with lignin, carbonates and silicates. These 

substances within the cell walls determined the stiffness (or softness) of trichomes. Cell walls of 

trichomes might either be thin or thickened to a degree such that the lumen of the cell decreased 

in size. In trichomes that are shed, the thickening of cell walls is usually reduced at the site of the 

breakage (Johnson, 1975). The exterior surfaces of the cell walls might also display various types 

of ornamentation such as ripples, bumps striations or warts that resulted from changes in 

microfibril orientation or the accumulation of carbonates and silicates (Werker, 2000). Trichomes 

are also covered by a cuticular layer extending from the epidermis. With regard to the glandular 

structure of trichomes, a series of anticlinal and periclinal divisions resulted in the formation of 

auxiliary cells and glands (Wagner, 1991, Johnson, 1975; Werker, 2000).  

 

Developmental patterns of glandular and non-glandular trichomes varied between species. In 

some species trichomes might remain metabolically active throughout the life of the organ on 
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which they are found, whereas in others, the trichomes might senesce before maturity (Johnson, 

1975; Wagner, 2004).  Trichomes which became senescent might either persist or are shed. This 

is true for both glandular and non-glandular trichomes, where the non-glandular branched 

trichomes of Artemisia dracunculus (Asteraceae) and the glandular resin-secreting trichomes of 

Betula pendula (Betulaceae) are shed. In some species, trichomes reached maturity far sooner 

than the organ on which they existed. On the stems of Melampyrum nemorosum 

(Orobanchaceae), for example, trichomes reached maturity over a few days, whilst the trichomes 

of other species might take up to 30 days to reach maturity (Johnson, 1975). Senescent trichomes 

that remained on plant organs might play important roles in water absorption, seed dispersal and 

the mechanical protection of the specific tissue.   

 

One of the key questions related to trichome development was whether the density of 

trichomes on leaf surfaces remain fixed or changes with age (Werker, 2000). This was also 

species dependent. The glandular trichomes on leaf surfaces of Leonotis leonurus (Lamiaceae) 

decreased with leaf growth. This was consistent with the ‘leaf expansion’, which suggested that 

although trichomes might appear densely packed together on emergent or young leaves, 

expansion during leaf development resulted in the trichomes which became widely spaced in 

mature leaves. The leaves of Ocimum basilicum (Lamiaceae) however, had their own pattern of 

differentiation. Although glandular trichomes of O. basilicum are produced in the early stages of 

leaf development, mature leaves still contained meristematic regions. New glandular trichomes 

are therefore produced via the process of cell division (Werker et al., 1993; Ascensão and Pais, 

1998; Werker, 2000). 

 

Despite the vast amount of scientific information available on medicinal plants, there is still a 

need for ongoing studies to make sound decisions related to the commercial opportunities offered 

by the assortment of plant species (Williams et al., 2000). This research should be conducted in a 

multidisciplinary, collaborative manner and should involve taxonomy, biosystematics, 

ethnobotany, organic chemistry, agrotechnology, pharmacology, horticulture and studies on the 

reproductive biology of specific plant species and their relatives. Such research will allow for the 

determination of suitable species for large scale production, accurate identification and location 

of important chemicals, development of suitable protocols for micropropagation, and genetic 

preservation of medicinal plant species (Joy et al., 1998; van Vuuren, 2008; van Wyk, 2008). As 

an initial attempt, the author would address the micromorphology and chemical composition of 
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the trichomes of W. somnifera in order to elucidate some of the trichome characters which might 

be used in plant taxonomy classification.   
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CHAPTER 3 

 

MATERIALS AND METHODS 

3.1. Collection of leaf material 

Leaves of Withania somnifera were collected from a private residence in Umhlanga, KwaZulu-

Natal (29°43′31″ S, 31°5′9″ E). Withania somnifera plants were also grown from seeds in a private 

residence in Malvern, KwaZulu-Natal (29°53'0" S, 30°55'17" E). Leaves were classified as 

emergent (5‒9 mm), young (10‒40 mm) and mature (> 40 mm) based on their length.  

 

3.2. Microscopy 

3.2.1. Stereomicroscopy 

Stereomicroscopy was used to obtain information on trichome type and density on fresh leaves. 

Images of adaxial and abaxial leaf surfaces were obtained using a Nikon AZ100 stereomicroscope 

equipped with a Nikon Fiber Illuminator (Nikon, Japan) as well as the NIS-Elements Software 

(NIS-Elements D 3.00, SP 4 (Build 502)).  

 

3.2.2. Environmental scanning electron microscopy (ESEM) 

ESEM was used to view and image biologically functional leaf material as well as secretions 

on the foliar surfaces. Sections of approximately 4 mm2 in area of fresh emergent, young and 

mature leaves were mounted onto brass stubs using double-sided carbon tape. Adaxial and abaxial 

surfaces were viewed with a low vacuum Zeiss EVO LS 15 ESEM (at 20 kV and working distance 

of 7.5 ‒9 mm) and images were obtained.  

 

3.2.3 Scanning electron microscopy (SEM) 

SEM was used to examine the micromorphology of the foliar trichomes of chemically-fixed 

samples. SEM preparations involved fixing segments of fresh material in 2.5 % glutaraldehyde for 

24 hours. The material was subsequently subjected to three 5 minute washes with phosphate buffer, 

followed by a 1 hour post fixation with 0.5 % osmium tetroxide. Thereafter, the material was 

subjected to three 5 minute washes with distilled water and dehydrated in 30 %, 50 % and 70 % 

alcohol (two changes, each of 5 minutes); followed by two changes for 10 minutes in 100% alcohol. 

The segments were then dried to their critical point in a Hitachi Critical Point Dryer (Hitachi, LTD. 

Tokyo, Japan), mounted onto brass stubs using double-sided carbon tape and sputter coated with a 

layer of gold (at a vacuum of 0.1 Torr for 2.5 minutes) using a Polaron SC 500 Sputter Coater 



18 
 

(Quorum Technologies Ltd., United Kingdom) (Kim et al., 2011). Samples were viewed using a 

LEO 1450 SEM (at 5 kV and working a distance of 5‒31 mm) and a Zeiss Ultra-Plus FEG-SEM (at 

5 kV and a working distance of 3.7‒9 mm). Scanning electron micrographs were taken of the 

adaxial and abaxial surfaces of emergent, young and mature leaves.  

 

3.2.4. Transmission Electron Microscopy (TEM) 

  TEM was used to study the fine structure of the leaf tissue. TEM preparations involved fixing 

segments (approximately 2 mm2) of fresh material in 2.5 % glutaraldehyde for 24 hours. The 

material was subsequently subjected to three 5 minute washes with phosphate buffer, followed by a 

1 hour post fixation with 0.5 % osmium tetroxide (made up in 0.1 M phosphate buffer). Thereafter, 

the leaf sections were subjected to three additional 5 minute phosphate buffer washes and 

dehydrated in 20 %, 30 %, 50 % and 75 % acetone (two changes, each of 5 minutes), followed by 

two changes for 10 minutes in 75 % acetone and four changes for 10 minutes in 100 % acetone. The 

dehydrated leaf sections were infiltrated with equal parts of Spurr’s resin (Spurr, 1969) and acetone 

for 4 hours, thereafter in whole resin for 24 hours. The leaf sections were thereafter embedded in 

whole resin using silicone moulds, and polymerized at 70 °C in an oven for 8 hours. 

 

Sections were cut using a Reichert Jung Ultracut-E ultramicrotome (Reichert, Inc., USA) (Boix 

et al., 2011; Kim et al., 2011). Survey sections (1‒2 µm) were placed on a slide, stained with 

Toluidine Blue and viewed with a Nikon Eclipse 80i light microscope (Nikon, Japan) equipped with 

a Nikon DS-Fi1 camera and NIS-Elements imaging software package (NIS-Elements D 3.00, SP 4 

(Build 502) (Kumar et al., 2010b). Once trichomes were visible in survey sections, ultrathin 

sections (80 nm) were picked up onto copper grids and post-stained by being placed onto large 

drops of 2.5 % uranyl acetate. The sections were allowed to stain for 8‒10 minutes at room 

temperature and rinsed with cooled, freshly boiled distilled water. The copper grids were then 

placed onto drops of Reynold’s (1963) lead citrate solution in a closed petri dish with dry NaOH 

pellets (to prevent moisture or excessive oxygen causing the stain to precipitate) and allowed to 

stain for 5‒8 minutes at room temperature. The grids were then rinsed with distilled water and 

placed on filter paper. The sections were viewed (at 100 kV) and imaged using a Jeol 1010 TEM 

(Japan) equipped with an Olympus MegaView III CCD camera (Soft Imaging System GmBH, 

Münster, Germany).  
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3.3. Trichome density and length 

Selected images obtained from ESEM and SEM were analysed using the iTEM software 

programme (Soft Imaging System GmBH, Münster, Germany) to count the number of glandular 

and non-glandular trichomes present on both leaf surfaces, of emergent, young and mature leaves. 

The area of the leaf surface included in the image was also determined. Thereafter, the lengths and 

widths of all trichomes were measured. For the purpose of this study, non-glandular bicellular and 

multicellular trichomes were considered to be no different as both types look morphologically alike 

on scanning electron micrographs. Trichomes present on the emergent abaxial leaf surfaces were 

also excluded from the analysis as their dense arrangement poses problems in identification and 

counting. All data were analysed using PASW 18 statistics version 18.0.3 (SPSS Inc., Chicago, 

Illinois, USA). 
 

The differences in trichome density in different developmental stages, as well as between 

adaxial and abaxial surfaces were analysed, such that there were 5 different locations: emergent 

adaxial, young adaxial, young abaxial, mature adaxial and mature abaxial. Trichome density was 

compared using a Multivariate Analysis of Variance (MANOVA) using the statistical software 

package IBM SPSS Statistics for Windows (Version 21.0). Armonk, NY: IBM Corp.). The 

MANOVA was performed on ranked data as the data was not normally distributed (p<0.0005).  

 

A One-way Analysis of Variances (ANOVAs) was also undertaken to compare the lengths of 

glandular and non-glandular trichomes on both leaf surfaces, in the three stages of development. 

The assumptions of normality and equality of variances were met for all ANOVA tests. Tukey’s 

Post-hoc tests were used to make pair-wise comparisons of the trichome frequencies and 

dimensions. A p-value of <0.05 was recognised as being significant.  

 

3.4. Histochemistry 

Fresh emergent (80 μm) and young (100 μm) leaf sections were cut using an Oxford vibratome 

sectioning system. Histochemically stained sections were viewed and images captured with the 

Nikon Eclipse 80i light microscope. The following histochemical stains were used to identify and 

locate the various compound groups: 
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3.4.1. Alkaloids 

Sections were stained for 10 minutes each with Wagner’s reagent (1.27 g iodine and 2 g 

potassium iodide dissolved in 100mL dH2O) and Dittmar reagent (1 g potassium iodide and 1 g 

sodium nitrate dissolved in 30 mL HCl and 30 mL dH2O) (Furr and Mahlberg, 1981; Ascensão and 

Pais, 1987). Alkaloids stained orange/brown.   

 

3.4.2. Lipids, cutin and suberin 

Sections were placed in a saturated solution of Sudan Black B for 30 minutes. Excess solution 

was blotted using paper towel and replaced with 70 % ethanol. Sections were then rinsed with 70 % 

ethanol and mounted in glycerine. Cutinised/suberised cell walls stained blue. Lipids in cells stained 

dark blue-black. For control treatments, sections were pre-treated with methanol and chloroform 

and stained with Sudan Black B for 30 minutes (Ascensão and Pais, 1987). Excess solution was 

blotted off using paper towel and sections were rinsed with 70 % ethanol before mounting in 

glycerine. 

 

Sections were placed in Sudan III and IV for 20 minutes. Sections were then rinsed with 70 % 

ethanol and mounted in 70 % glycerol. Cutinised/suberised walls and lipid inclusions stained 

orange/red. For control treatments, sections were pre-treated with methanol and chloroform and 

stained with Sudan III and IV for 20 minutes (Ascensão and Pais, 1987). The sections were then 

rinsed with 70 % ethanol before mounting in 70 % glycerol. 

 

3.4.3. Esterified pectins 

Sections were placed in hydroxylamine hydrochloride solution, as well as in 1 part 

concentrated HCl and 2 parts 95 % ethanol. Excess solution was blotted using paper towel and 

sections flooded with ferric chloride in 60 % ethanol and 0.1 N HCl. Esterified pectins stained red.  

 

3.4.4. Lignin aldehydes 

Sections were mounted in a drop of saturated aqueous solution of phloroglucinol in 20 % HCl. 

Lignin aldehydes and cuticle components stained red (colour changes to brown in approximately 30 

minutes).  
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3.4.5. Lipids 

Sections were placed in 1% Nile blue at 37 °C for 1 minute and then 1% acetic acid at 37 °C 

for 1 minute before rinsing with distilled water. Neutral lipids (such as fats, oils and waxes) stained 

red, while acidic lipids (such as phospholipids) stained blue. For control treatments, sections were 

pre-treated with methanol and chloroform and stained with 1 % Nile blue for 1 minute followed by 

1 % acetic acid blue for 1 minute before rinsing with distilled water (Ascensão and Pais, 1987). 

 

3.4.6. Phenolic compounds 

Sections were placed in 10 % aqueous ferric trichloride and a dash of sodium carbonate for 15 

minutes at room temperature. In this test, orto-dihydroxyphenols react with ferric ions to produce 

green or black deposits.  

 

3.4.7. Polysaccharides and unesterified pectins 

Sections were placed in an aqueous Ruthenium Red solution (1:5000) for 10 minutes. Acidic 

polysaccharides stained pink. Unesterified pectins stained pink/red.  

 

3.4.8. Total proteins 

Sections were immersed in bromophenol blue (95 % ethyl alcohol with 10 g HgCl2 and 100 mg 

bromophenol blue per 100 ml) for 15 minutes at room temperature. Sections were then rinsed in 0.5 

% acetic acid for 20 minutes and treated with a sodium phosphate buffer (0.1 M, pH 7.0) for 3 

minutes. Total proteins stained blue.  

 

3.4.9. Carboxylated polysaccharides, phosphate groups and polyphenols  

Sections were placed in Toluidine Blue for 40 seconds. Excess stain was removed using water 

and sections mounted in 70 % glycerol. Carboxylated polysaccharides stained pink, phosphate 

groups on macromolecules stained purplish-greenish blue and polyphenols stained blue.  

 

3.4.10 Starch and cellulose 

Sections were mounted in KI/I2 for 10 minutes. Excess stain was then removed using water. 

Cellulose structures stained blue, Lignified walls and cutin stained yellow.  
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3.5. Fluorescence Microscopy  

Fresh, hand-cut sections of young leaves were viewed and imaged at different wavelengths 

using a Zeiss LSM 710 confocal microscope. Cells that contain phenolic compounds emit a blue 

fluorescence at excitation wavelengths between 330 and 380 nm (Ascensão and Pais, 1987). A red 

fluorescence emitted by sections indicated the presence of plastids (e.g. chloroplasts) within the 

cells (Ascensão and Pais, 1987).  

 

Fresh hand-cut sections were also stained with 2 % acridine orange for 2 minutes before rinsing 

with distilled water. The sections were mounted with water, viewed, and imaged at 488 nm using a 

Zeiss LSM 710 confocal microscope. Acridine orange is a fluorochrome stain that binds to the 

DNA of cells, thus indicating viability of cells (Mirrett, 1982; Winter et al., 2007). 

 

3.6. Phytochemistry 

Leaves were air-dried for 3 months, and then ground to a fine powder. Approximately 10 g of 

the powdered material was placed in a round-bottomed flask, together with 100 ml methanol (Fig. 

4) (Rahman et al., 2003). A series of four three-hour extractions were performed by heating and 

distilling by reflux, using a soxhlet apparatus. The extracts were filtered after each extraction (using 

Whatman No. 1 filter paper) after each extraction to separate the filtrate from the leaf material, and 

fresh methanol was added to the leaf material for further extractions. This process was repeated 

with hexane and chloroform. A variety of phytochemical tests were performed on the methanol, 

hexane and chloroform extracts to determine the presence of phytochemical compounds. 

  

3.6.1. Alkaloids 

Two drops of Dragendroff’s reagent were added to 1 ml of extract. A reddish-orange 

precipitate indicated the presence of alkaloids.  

 

Two drops of Hager’s reagent were added to 1 ml of extract. A yellow precipitate indicated the 

presence of alkaloids.  

 

Two drops of Wagner’s reagent were added to 1 ml of extract. A brown precipitate indicated 

the presence of alkaloids.  
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3.6.2. Amino acids 

A drop of Ninhydrin solution was added to 1 ml of extract. A purple colour indicted the 

presence of amino acids. 

 

 

3.6.3. Carbohydrates  

A drop of alcoholic solution of α-naphthol was added to 1 ml of extract. The mixture was 

shaken well, and 0.5 ml of concentrated sulphuric acid was added along the sides of the test tube. A 

violet-purple ring indicated the presence of carbohydrates.  

 

One ml of extract was boiled in a water bath with 1 ml of Fehling’s solution A and B. A red 

precipitate indicated the presence of carbohydrates.  

 

One ml of Benedict’s reagent was added to 1 ml of extract, and allowed to boil in a water bath 

for 2 minutes. A yellow-red precipitate indicated the presence of carbohydrates.  

 

3.6.4. Cardiac glycosides (Keller Killiani test)  

Five ml of extract mixed with 1 ml glacial acetic acid containing a drop of ferric chloride was 

slowly added to 1 ml of concentrated sulphuric acid, such that the acid remained underneath the 

mixture. The appearance of a brown ring indicated of the presence of cardiac glycosides. 

 

3.6.5. Flavones and flavonones  

Concentrated sulphuric acid (0.5 ml) was added to 1 ml of extract. A yellow to orange colour 

indicated the presence of flavones. An orange to crimson colour indicated the presence of 

flavonones.  

 

3.6.6. Phenolic compounds  

Two drops of ferric trichloride were added to 1 ml of extract. A dark green colour indicated the 

presence of phenolic compounds. 

 

Two drops of lead acetate were added to 1 ml of extract. A bulky white precipitate indicated 

the presence of phenolic compounds. 
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3.6.7. Sterols 

1.5 ml of chloroform was added to 1 ml of extract. A drop of concentrated sulphuric acid was 

added along the sides of the test tube. A red colour ring at the junction and a green fluorescent layer 

at the bottom of the solution indicated the presence of cholesterol. 

3.7. Thin Layer Chromatography (TLC) 

The leaf extracts were analysed using Thin Layer Chromatography (TLC) to separate the 

compounds present in the leaves. In separate beakers, 0.5 mg of the methanol, chloroform and 

hexane extracts were dissolved in 5 ml of methanol, chloroform and hexane respectively.  Each of 

the dissolved extracts was then filtered using a Whatman No. 1 filter. A drop of each extract was 

spotted separately onto a pre-coated silica gel 60 F254 TLC plate (Merck). The plate was placed 

upright in a beaker containing a mobile solution made up of 5 ml toluene, 5 ml glacial acetic acid 

and 1 ml formic acid. The mobile solution was allowed to run up the plate. Images of the plate were 

taken at 254 and 366 ultra-violet light. The plate was then sprayed with a solution made up of 0.05 

g vanillin, 1 g boric acid, 2 ml sulphuric acid and 100 ml methanol.  
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Figure 4. Process used to extract phytochemical compounds as methanol, chloroform and hexane extracts.
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CHAPTER 4 

 

RESULTS 

4.1. Leaf micromorphology 

The leaves of W. somnifera contained four morphologically distinct trichome types: glandular 

capitate, non-glandular dendritic (branched), non-glandular bicellular and non-glandular 

multicellular trichomes.  Stereomicrographs (Fig. 5 & 6) showed non-glandular dendritic trichomes 

on both adaxial and abaxial foliar surfaces, at all stages of development. Glandular capitate 

trichomes were not clearly visible on the stereomicrographs however, these were assumed to be the 

glossy, globular structures as observed on emergent leaves (Fig. 5a‒b). Non-glandular bicellular 

and non-glandular multicellular trichomes were initially observed only on the adaxial surfaces of 

mature leaves with stereomicroscopy (Fig. 6a) however, both trichome types were later identified 

on young leaf sections with SEM and histochemical procedures (Fig. 14a‒b & 20‒25).  

 

Cuticular striations were visible on both foliar surfaces (Fig. 10a & 12b). These striations 

radiated from the bases of capitate and dendritic trichomes as well as from stomata. Cuticular 

striations were more frequent on abaxial surfaces and decreased with increasing leaf development. 

The guard cells of stomata were surrounded by three subsidiary cells of differing sizes, thus the 

arrangement of stomata on adaxial and abaxial surfaces of W. somnifera leaves was classified as 

anisocytic (Fig. 7a‒b & 9b). Stomata on the adaxial surface were closed while those of the abaxial 

surface were open (Fig. 7a‒b).  

 

Broad mites (Fig. 8b) and scale insects (Fig. 8c) were commonly observed on                                                                                                                                                                                                                                                                                                                                                                     

leaves sampled during February 2013. Eggs of broad mites were also present on leaf surfaces (Fig. 

8a‒b). Movement of these mites was restricted across emergent leaf surfaces due to the intertwining 

of dendritic trichomes.  
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Figure 5. Stereomicrographs showing dendritic and glandular capitate trichomes on fresh leaves of 

W. somnifera.  

 

(a) Non-glandular dendritic (D) and glandular capitate (C) trichomes on emergent adaxial 

surface.  

(b) Non-glandular dendritic (D) and glandular capitate (C) trichomes on young adaxial 

surface. 
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Figure 6. Stereomicrographs showing non-glandular bicellular and non-glandular dendritic 

trichomes on mature leaves of W. somnifera.  

 

(a) Non-glandular bicellular (B) trichomes on adaxial surface. 

(b) Non-glandular dendritic (D) trichomes on abaxial surface.  
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Figure 7. SEM micrographs showing stomata on W. somnifera leaves. 

 

a) Closed stomata (indicated by arrows) on the adaxial surface of a young leaf. 

b) Open stomata (indicated by arrows) on the abaxial surface of a mature leaf.   
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Figure 8. Broad mites and scale insects associated with W. somnifera leaves. 

 

a) Stereomicrograph showing broad mite eggs on the abaxial surface of a young leaf. 

b) Stereomicrograph showing a broad mite egg and a broad mite (BM) present on the abaxial 

surface of a young leaf. 

c) SEM of a scale insect on the abaxial surface of a mature leaf. 
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4.1.1. Glandular secretory trichomes 

ESEM showed that the small structures observed using stereomicroscopy to be glandular 

capitate trichomes with single-celled stalks and a six-celled secretory head (Fig. 9a‒b). The 

secretions of glandular trichomes were also observed (Fig. 9a). Post-secretory trichomes did not 

appear to have a definitive rupture in the secretory head. Glandular capitate trichomes (Fig. 9, 10 & 

11) on mature leaves of W. somnifera were approximately 60.52 ± 7.64 µm in length, with 

secretory heads having an average diameter of 33.66 ± 5.85 µm. These secretory trichomes were 

uniseriate and arose directly from single protodermal cells (Fig. 20‒25) and were occasionally 

orientated parallel to the leaf surface (Fig. 9a‒b, 10b & 11a). Glandular capitate trichomes did not 

exhibit micro-ornamentations on outer surfaces. Histochemical staining of leaf sections showed that 

all cells of capitate trichomes contained one or more phytochemical groups (Fig. 11b‒c & 20‒25). 
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Figure 9. ESEM micrographs showing glandular capitate and non-glandular dendritic trichomes on 

fresh leaves of W. somnifera. 

 

a) Glandular capitate trichome with a single-celled stalk (St) and six-celled secretory head 

(Sh) and a non-glandular dendritic (D) trichome with a 2-celled stalk (St) and 4 branches 

(Br) on adaxial surface of emergent leaf section. 

b) Glandular capitate (C) and non-glandular dendritic (D) trichomes on adaxial surface of 

young leaf section. Stomata (Sm) are also visible.  
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Figure 10. SEM micrographs showing glandular capitate trichomes on adaxial leaf surfaces. 

 

a) Glandular capitate trichome with a single-celled stalk (St) and six-celled secretory head 

(Sh) on emergent leaf surface. Cuticular striations (Cs) are also visible on leaf surface. 

b) Glandular capitate trichome adjacent to a non-glandular dendritic trichome. Branches (Br) 

of dendritic trichome tower over capitate trichome; on young leaf surface. 
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Figure 11. SEM micrograph and histochemically stained sections showing the structure of 

glandular capitate trichomes. 

 

a) Six-celled glandular capitate (C) trichomes in close proximity to non-glandular dendritic 

(D) trichomes on emergent adaxial leaf surface. 

b) Glandular capitate trichome with single-celled stalk (St) and six-celled secretory head (Sh) 

on emergent leaf section stained with Nile blue. 

c) Glandular capitate trichome with single-celled stalk (St) and six-celled secretory head (Sh) 

on emergent leaf section stained with Wagner’s and Dittmar reagents. The secretion (sec) of 

the capitate trichome has been released from the secretory head. A prismatic crystal (Pc) is 

also present within the leaf section. 
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4.1.2. Non-glandular trichomes 

The non-glandular dendritic trichomes consisted of 2‒4 stalk cells and varying branch numbers 

(Fig. 12a‒b & 13a‒b). On mature leaves, the average length and width of dendritic trichomes are 

125.96 ± 52.11 µm and 155.15 ± 30.06 µm respectively. Non-glandular bicellular and multicellular 

trichome types were uniseriate with the uppermost cells being tapered (Fig. 14a‒b). These trichome 

types are approximately 138.85 ± 89.55 µm in length and 36.05 ± 10.75 µm in width. Non-

glandular multicellular trichomes consisted of approximately 3‒6 cells.   

 

All three non-glandular trichome types exhibited microornamentation known as cuticular warts 

on the outer surface (Fig. 12a‒b). Transverse sections cut for histochemical staining showed that the 

non-glandular dendritic, bicellular and multicellular trichomes originated from single protodermal 

cells. All three non-glandular trichome types were highly vacuolated (Fig. 13a‒b, 14b & 20‒25).  
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Figure 12. SEM micrographs showing non-glandular dendritic trichomes with cuticular warts. 

 

a) Side view of a non-glandular dendritic trichome on mature abaxial leaf surface. Cuticular 

warts (Cw) are present on the surface.  

b) Aerial view of a non-glandular dendritic trichome on emergent adaxial leaf surface. 

Cuticular warts (Cw) are present on the surface of the trichome and cuticular striations (Cs) 

are visible on the leaf surface.  
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Figure 13. Non-glandular dendritic trichomes on young leaves. 

 

a) Toluidine blue stained section containing non-glandular dendritic trichomes with various 

stalk cell numbers (1-, 2- & 3-c st) and prismatic crystals (Pc). 

b) Section stained with Sudan III and IV containing a non-glandular trichome with a single-

celled stalk, emanating from a single basal cell (Bc). 
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Figure 14. SEM micrograph and histochemically stained section showing the structure of non-

glandular bicellular and multicellular trichomes. 

 

a) Bicellular (B) and multicellular (M) trichomes on adaxial surface of mature leaf. 

b) Section stained with Sudan black containing a 4-celled uniseriate multicellular (M) 

trichome, bicellular trichomes emanating from single basal cells (Bc) and a non-glandular 

dendritic trichome (D) with a single-celled stalk, emanating from a single basal cell (Bc).  
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4.2. Trichome distribution and density  

  On close inspection of the images obtained of adaxial and abaxial surfaces, trichome density 

appeared to decrease with progressive leaf development (Fig. 15a‒f). Emergent leaves possessed a 

greater density of trichomes when compared to mature leaves. Abaxial surfaces also appeared to 

contain a higher trichome density than adaxial surfaces. Foliar trichomes on leaves at all stages of 

development appeared predominantly on the mid-vein, with non-glandular dendritic trichomes 

appearing to ‘arch over’ glandular capitate trichomes. On emergent leaves that were sampled 

around February of 2013, trichomes were so dense that it was difficult to view the leaf surface. 

Young and mature leaves sampled at this time also appeared to contain a higher trichome density as 

compared to those sampled during May‒July of 2012.  

 

The MANOVA statistical test confirmed that the density of glandular capitate trichomes was 

not the same across the five locations: emergent adaxial, young adaxial, young abaxial, mature 

adaxial and mature abaxial surfaces (df=4, F=44.519, p<0.0005). According to the Tukey’s test, 

glandular capitate trichome density was significantly different between the adaxial surfaces of 

emergent and mature leaves (p<0.0005) and the abaxial surfaces of young and mature leaves 

(p=0.023). The density of glandular capitate trichomes also differed between the adaxial and abaxial 

surfaces of young leaves (p<0.0005). The difference in glandular trichome density is also 

demonstrated in Figure 16, where glandular trichomes were absent on abaxial leaf surfaces at all 

stages of development. With respect to the adaxial surfaces, the marked decrease of glandular 

trichome density from emergent (34 ± 36 /mm²) to young (25 ± 15 /mm²) and mature (4 ± 5 /mm²) 

is also shown in Figure 16. 

 

The density of non-glandular dendritic trichomes was also significantly different across the five 

locations (p<0.0005). The Tukey’s test showed these differences to be between the adaxial and 

abaxial surfaces of young leaves (p=0.009) and mature leaves (p<0.0005). Figure 16 also showed 

the significant differences in dendritic trichome densities between adaxial and abaxial leaf surfaces, 

however there was no direct pattern across emergent, young and mature leaves. When comparing 

adaxial leaf surfaces, emergent leaves (19 ± 15 /mm²) have a greater density of dendritic trichomes 

compared to that of mature leaves (10 ± 16 /mm²), with the density on young leaves being 

intermediate (7 ± 3/mm²).      
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There was no significant difference in the densities of non-glandular bi-/multi-cellular 

trichomes across the five different locations (p=0.157). This was confirmed by the Tukey’s test 

where p<0.0005 across all comparisons. However, Figure 16a & b showed bi-/multi-cellular non-

glandular trichomes to be present only on emergent adaxial (1 ± 2 /mm²), mature adaxial (1 ± 1 

/mm²) and young abaxial leaf (1 ± 2 /mm²) surfaces.  

 

There was no significant difference in the length of glandular trichomes across the leaf 

developmental stages (df=3, F=0.000, P=1.000). According to the Tukey’s test, the length of 

glandular trichomes only differed between the adaxial surfaces of emergent and young leaves 

(P<0.0005). This difference however was relatively small. Figure 17a showed that the average 

length of glandular trichomes on abaxial surfaces of emergent leaves was 65 ± 12 µm whilst that of 

young leaves was 57 ± 9 µm. There was no difference in glandular trichome length between adaxial 

surfaces of emergent and mature (p=0.276) and young and mature (p=0.571) leaves. Due to a 

significantly low number of glandular trichomes on the abaxial surface mature leaves; the Tukey’s 

test did not take into account the comparisons between young abaxial and mature abaxial surfaces. 

Figure 17b however showed that glandular trichomes on abaxial surfaces of mature leaves (64 ± 3 

µm) were much longer than those of young leaves (65 ± 12 µm). 

 

There was also no significant difference in the length of bi-/multi-cellular trichomes across the 

leaf developmental stages (df=3, F=2.640, P=0.093). Due to there being a significantly low number 

of this trichome type on leaves, the Tukey’s test only showed significant results for the comparison 

between the adaxial surfaces of emergent and mature leaves. There was no difference in trichome 

length between these developmental stages (p=0.409). According to figure 17a however, bi-/multi-

cellular trichomes were absent on the adaxial surfaces of young leaves whilst the average length of 

this trichome type on the adaxial surfaces of emergent and mature leaves were 114 ± 38 µm and 157 

± 87 µm respectively. On abaxial surfaces, average length of bi-/multi-cellular trichomes were 69 ± 

15 µm and 48 ± 0 µm on young and mature leaves (Figure 17b).  

 

With regard to dendritic trichomes, there was a significant difference in length across the leaf 

developmental stages (df=4, F=8.189, P<0.0005). The only difference however, occurred between 

the adaxial surfaces of emergent and young leaves (p=0.002). According to figure 17a, dendritic 

trichomes on adaxial surfaces were greater in length on emergent leaves (181 ±78µm) as compared 

to young leaves (124 ± 54 µm). There was no significant difference in the length of dendritic 
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trichomes between adaxial surfaces of emergent and mature (p=0.204) and young and mature 

(p=0.673), as well as the abaxial surfaces of young and mature (p=0.328) leaves.  
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Figure 15. SEM micrographs showing the decrease in trichome density with increasing leaf 

development. 

 

a) Adaxial surface of emergent leaf. 

b) Abaxial surface of emergent leaf. 

c) Adaxial surface of young leaf. 

d) Abaxial surface of young leaf. 

e) Adaxial surface of mature leaf. 

f) Abaxial surface of mature leaf. 
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Figure 16. Frequency of glandular capitate (Capitate), non-glandular dendritic (Dendritic) and non-

glandular bicellular and multicellular (Bi-/Multi-cellular) trichomes at different leaf 

developmental stages, emergent, young and mature. 
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Figure 17. Average lengths of glandular capitate (Capitate), non-glandular dendritic (Dendritic) and 

non-glandular bicellular and multicellular (Bi-/Multi-cellular) trichomes at different leaf 

developmental stages, emergent, young and mature. 

 

a) Trichome lengths on adaxial surfaces. 

b) Trichome lengths on abaxial surfaces. 
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4.3. Trichome Ultrastructure 

TEM of the non-glandular dendritic trichomes appeared to be highly vacuolated with the 

cytoplasm restricted to a narrow peripheral band around the interior of the cell walls (Fig. 18a). 

Plastids were also found to be closely appressed to the cell walls of dendritic trichomes (Fig. 19a). 

Basal and stalk cells of dendritic trichomes appeared highly vacuolated (Fig. 19a). Nuclei were 

prominent in basal and stalk cells. The nuclei of the basal and stalk cells and the cells of the 

branches were appressed to the cell wall. Numerous vesicles were seen associated with the plasma 

membrane (Fig. 18 a‒b & 19). Multivesicular structures, probably artifactual in nature, were 

commonly observed within the vacuoles (Fig. 18b). Cuticular warts appeared as bumps or globular 

protrusions of the cells walls of dendritic trichomes, with cuticular thickening over raised surfaces 

(Fig. 19a). It was interesting to note the presence of cellulose microfibrils within the cell walls (Fig. 

19a).  

  

The heads of glandular trichomes are comprised of 6 cells. These cells appear densely 

cytoplasmic. Thin cell walls separated the cells of the glandular secretory head of capitate trichomes 

(Fig. 19b). These head cells contained large nuclei that were appressed to large vacuoles. 

Noticeable organelles in the cytoplasm include plastids, large nuclei, mitochondria and vacuoles of 

varying sizes (Fig. 19b). The secretory material within the glandular head appeared to be loosely 

fibrillar (Fig. 19b).  
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Figure 18. TEM micrographs of dendritic trichomes. 

 

a) Highly vacuolated (V) basal (Bc) and stalk (St) cells of dendritic trichome. Cuticle (Cu), 

nucleoli (N) and vesicles (Vs) are also visible.   

b) Vesicles (Vc) within stalk cell of dendritic trichome.  
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Figure 19. TEM micrographs of the glandular secretory head of a capitate trichome and cuticular 

warts of a dendritic trichome.   

 

a) Cuticular warts (Cw) of highly vacuolated (V) dendritic trichome. A plastid (P), vesicle 

(Vs) and cellulose microfibrils (Cm) are also visible.  

b) Glandular secretory head of capitate trichome with thin cell walls (Cw), numerous vacuoles 

(V), large nuclei (N) appressed to vacuoles and secretory material (Sec) appearing loosely 

fibrillar.  Plasmolysis (indicated by arrowheads) appears to be taking place. 
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4.4. Histochemistry   

Various histochemical stains (Table 2) were used to detect the presence and localisation of 

major chemical compound groups in glandular and non-glandular trichomes. Due to the orientation 

of branched trichomes, some trichomes in the images obtained appeared to be out of focus or 

damaged.  

 

Sections stained with toluidine blue showed that all cells of the non-glandular trichome types 

were lignified (Fig. 20b & 21a‒b). Staining with ruthenium red also showed that the cell walls of 

the secretory heads of glandular capitate trichomes and the basal cells of all non-glandular trichome 

types contained unesterified pectins (Fig. 25a). The stalk cells of capitate trichomes and all cells of 

non-glandular trichomes were cutinised/suberised, as shown with Sudan black (Fig. 25b) and Sudan 

III and IV (not represented in figures). Lignin aldehydes (not represented in figures) were present 

only in glandular capitate trichomes. Lignified and cutinised walls of both glandular and non-

glandular trichome types were verified by sections stained with KI/I2 (not represented in figures).  

 

The secretory head of capitate trichomes stained orange-brown with Wagner’s and Dittmar 

reagents, indicating the presence of alkaloids (Fig 22a‒b). All cells of non-glandular bicellular and 

multicellular, as well as the branches of dendritic trichomes contained alkaloids. The secretory head 

of capitate trichomes also contained phenolic compounds (Fig. 23b), indicated by the dark greenish-

black staining by ferric trichloride. Phenolic compounds were also present in all 3 non-glandular 

trichome types (Fig. 23a & 23c). Glandular capitate trichomes of sections stained with 

hydroxylamine hydrochloride solution stained reddish-brown, indicating the presence of esterified 

pectins (Fig. 24a). The non-glandular trichome types in these sections remained unchanged 

(unstained). All cells of glandular capitate trichomes and non-glandular dendritic, bicellular and 

multicellular trichomes contained lipids, as indicated by the blue stain of Nile blue (Fig. 24b). 

Staining with Sudan black (Fig. 25b), Sudan III and IV (not represented in figures) confirmed the 

presence of lipids in the secretory heads of capitate trichomes and all cells of the non-glandular 

trichome types. Polysaccharides were present in the stalk cells of dendritic trichomes, as well as in 

the lower cells of bicellular and multicellular trichomes (Fig. 25a). Total proteins were present in all 

cells of the glandular capitate and non-glandular trichome types (Fig. 25c‒d).  

  

Calcium oxalate (CaOx) crystals were also present in leaf sections. These crystals occurred in 

two forms, prismatic (Pc) (Fig. 13a & 20b) and druse (Dc) (Fig. 25a).
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Table 1. Observations of histochemical tests on fresh, emergent and young leaf sections of W. somnifera.  

Compound Group Stain/s Glandular 
 trichomes 

Non-
glandular  
trichomes 

Reaction observed 

Alkaloids Wagner’s and Dittmar + + Head cells of capitate trichomes stained orange-brown; non-
glandular trichomes stained orange-brown. 

Control: Cutin/Lipids Pre-treatment with chloroform 
& methanol; Sudan Black 

  Head cells of capitate trichomes stained brown; non-
glandular trichomes stained brown. 

 Pre-treatment with chloroform 
& methanol; Sudan III and IV 

  Glandular trichomes stained brown; non-glandular trichomes 
stained brown. 

Cutin/Suberin/Lipids Sudan Black + + Head cells of glandular trichomes stained dark blue-black; 
non-glandular trichomes stained blue. 

 Sudan III and IV + + Glandular trichomes stained orange-red; non-glandular 
trichomes stained orange-red. 

Esterified pectins Hydroxylamine hydrochloride 
solution 

+ - Glandular trichomes stained reddish-brown; non-glandular 
trichomes remained unstained.  

Lignin aldehydes Phloroglucinol + - Head cells of capitate trichomes stained reddish brown; non-
glandular trichomes remained unstained. 

Control: lipids Pre-treatment with chloroform 
& methanol; Nile Blue 

  Contents of glandular head stained blue, stalk and cells walls 
of capitate trichomes remained unstained; non-glandular 
trichomes stained light blue. 

Lipids Nile blue + + Glandular trichomes stained blue; non-glandular trichomes 
stained blue. 

Phenolic compounds 
 

Ferric trichloride 
 

+ + Head cells of capitate trichomes stained dark greenish- black; 
non-glandular trichomes stained dark-green. 
Head cells of glandular trichomes stained dark pink-red; 
basal and stalk cells of non-glandular trichomes stained dark 
pink-red.  

Polysaccharides/ 
Unesterified pectins 

Ruthenium red + + 

+/- indicates presence/absence of compound groups.  
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Table 1 (Continued). Observations of histochemical tests on fresh, emergent and young leaf sections of W. somnifera.  

 
Total proteins 

 
Bromophenol blue 

 
+ 

 
+ 

 
Capitate trichomes stained blue; non-glandular trichomes 
stained blue. 

Carboxylated 
polysaccharides/Lignin/ 
polyphenols 

Toluidine blue - + Glandular trichomes remained unstained; non-glandular 
trichomes stained blue 

Starch and cellulose KI/I2 - - Head cells of capitate trichomes stained orange-brown; non-
glandular trichomes stained orange-brown. 

+/- indicates presence/absence of compound groups.
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Figure 20. Unstained and toluidine stained emergent leaf sections of W. somnifera.  

 

a) Dendritic (D) trichomes on an unstained emergent leaf section.  

b) Lignified cells (stained blue) of dendritic trichomes on emergent leaf section stained with 

toluidine blue. Section also contains prismatic crystals (Pc). 
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Figure 21. Lignified cells of young leaf sections stained with toluidine blue.  

 

a) Lignified cells (stained blue) of dendritic trichome.  

b) Lignified cells (stained blue) of multicellular (M) and bicellular (B) trichomes. 
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Figure 22. Alkaloids in emergent and young leaf sections stained with Wagner’s and Dittmar 

reagents. 

 

a) Secretory head (Sh) of glandular capitate (C) trichome and branches (Br) of dendritic (D) 

trichomes containing alkaloids (stained orange-brown).  

b) Branches (Br) of dendritic trichome containing alkaloids (stained orange-brown). 
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Figure 23. Phenolic compounds in emergent and young leaf sections stained with ferric trichloride.  

 

a) Basal cells (Bc) and lower cells of multicellular trichomes containing phenolic compounds 

(stained green). 

b) Secretory head (Sh) of glandular capitate trichome containing phenolic compounds (stained 

dark-green). 

c) Lower cells of dendritic trichome containing phenolic compounds (stained green). 
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Figure 24. Emergent and young leaf sections showing the presence of esterified pectins and lipids. 

 

a) Secretory head (Sh) of glandular capitate trichome containing esterified pectins (stained 

reddish-brown with hydroxylamine hydrochloride solution). 

b) Non-glandular multicellular (M) and glandular capitate (C) trichomes containing lipids 

(stained blue with Nile blue) 
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Figure 25. Emergent and young leaf sections showing the presence of polysaccharides, total 

proteins druse crystals and cutinised cells. 

 

a) Basal (Bc) and lower cells of dendritic (D) and bicellular (B) trichomes containing 

polysaccharides (stained dark pink-red with Ruthenium red. Section also contains a druse 

crystal (Dc).  

b) Cutinised cell of dendritic (D) trichomes and stalk cell of a glandular capitate trichome 

(stained dark blue-black with Sudan Black). Secretory head (Sh) of capitate trichome 

contains lipids. 

c) Basal cell (Bc), stalk cells (St) and branches (Br) of dendritic trichome containing total 

proteins (stained blue with bromophenol blue). 

d) Secretory head (Sh) and stalk cell (St) of glandular capitate trichome containing total 

proteins (stained blue with bromophenol blue). 
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4.5. Fluorescence microscopy  

Sections stained with 2 % acridine orange and viewed using fluorescence microscopy depicted 

the viability of epidermal and mesophyll cells as well as the basal and stalk (St) cells of dendritic 

trichomes (Fig. 26a‒b). The branches of the non-glandular trichomes did not appear to be viable or 

metabolising as they did not autofluoresce.  

 

The epidermal cells, palisade mesophyll cells as well as the basal and stalk cells of dendritic 

trichomes exhibited red autofluorescence (Fig. 27a). The red autofluorescence indicated the 

presence of plastids within these cells (Ascensão and Pais, 1987; Köhler et al., 1997). Epidermal 

cells, as well as the stalk cells (St) and branches (Br) of dendritic trichomes exhibited blue 

autofluorescence (Fig. 27b) indicative of the presence of phenolic compounds (Ascensão and Pais, 

1987).  
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Figure 26. Autofluorescence of young leaf sections stained with acridine orange and viewed at a 

wavelength of 488 nm.  

 

a) Viable stalk (st) cells of dendritic trichomes autofluoresce green. Autofluorescent nucleus is 

also visible in stalk cells. 

b) Stalk cells (st) of dendritic trichomes and nuclei of epidermal emitting a green 

autofluorescence.  
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Figure 27. Autofluorescence of fresh sections of young W. somnifera leaves showing the presence 

of plastids and phenolic compounds.  

 

a) Red autofluorescence exhibited by cells of leaf section as well as stalk cells (St) of dendritic 

trichomes indicating the presence of plastids.  

b) Blue autofluorescence exhibited by epidermal layers as well as stalk cells (St) and branches 

(Br) of dendritic trichomes indicating the presence of phenolic compounds.  
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4.6. Preliminary phytochemistry 

Major phytochemical groups detected in leaves of W. somnifera are summarised in Table 1. 

The two major groups present within methanol, chloroform and hexane extracts were alkaloids and 

phenolic compounds. Cardiac glycosides were also present in all three extracts. Methanol, 

chloroform and hexane extracts did not contain carbohydrates, flavones and flavonones, proteins 

and amino acids. Figure 24 showed the separation of the different compound groups on a TLC plate 

viewed at 254 and 366 nm, as well as after exposure to vanillin-boric acid-sulphuric acid-methanol. 

 

Results of the phytochemical test reactions observed, for the methanol, chloroform and hexane 

extracts are shown in appendix 1‒3. 
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Table 2. Summary of phytochemical groups present/absent in chloroform, methanol and hexane extracts of W. somnifera (n=3).   

Compound group Phytochemical test Chloroform Methanol Hexane 

Alkaloids Dragendroff’s + + + 

 Hager’s + + + 

 Wagner’s + + + 

Phenolic compounds Ferric chloride  + + + 

 Lead acetate + + + 

Sterols Salkowski’s - + + 

Cardiac glycosides Extract was mixed with glacial acetic 

acid and concentrated sulphuric acid was 

slowly added  

+ + + 

Carbohydrates Benedict’s - - - 

 Fehlings A and B - - - 

 Molisch’s - - - 

Flavones and flavonones Concentrated sulphuric acid - - - 

Proteins and amino acids Ninhydrin - - - 

+/- indicates presence/absence of compound groups. 
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Figure 28. TLC plates showing the separation of major compound groups in methanol (m) 

chloroform (c) and hexane (h) extracts. 

 

a) Viewed at 254 nm. 

b) Viewed at 366 nm. 

c) Subsequent to spraying with vanillin-boric acid-sulphuric acid-methanol. 
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CHAPTER 5 

 

Discussion 

This study was undertaken to describe the morphology of the foliar trichomes of W. 

somnifera, as well as to determine the nature and localisation of the secretory products. Four 

morphologically distinct trichome types were observed on the foliar surfaces of W. somnifera; 

glandular capitate (Fig. 9, 10 & 11), non-glandular dendritic (Fig. 12 & 13), non-glandular 

bicellular and non-glandular multicellular trichomes (Fig. 14). All four trichome types have been 

reported previously within the family Solanaceae (Harisha and Switu, 2013; Adedji et al., 2007).  

 

Examination of the morphology, distribution and the phytochemistry of the secretion of the 

trichomes could assist in elucidating possible functions of the trichomes of W. somnifera 

(Werker, 2000; Dai et al., 2010). Physical properties, such as size, density and arrangement of 

trichomes on the leaf surface may allow for the protection against insect pathogens and 

herbivores, such as the broad mites observed on the leaves of W. somnifera (Fig. 8b‒c). Non-

glandular trichomes might also reduce transpiration rates and limit surface leaf exposure to 

extreme temperatures (Werker, 2000; Dai et al., 2010). Non-glandular trichomes, especially the 

dendritic type, observed on W. somnifera leaves would assume these roles as these trichomes 

were so dense on emergent leaves that it is difficult to view the leaf surface. The dense 

distribution of dendritic trichomes on W. somnifera leaves was also observed by Kumar et al. 

(2010b). Since W. somnifera might occur in dry regions, dendritic trichomes were likely to play a 

major role in water conservation (Hameed and Hussain, 2011).  

 

Even though non-glandular trichomes are considered to be non-secretory, autofluorescence 

microscopy of leaf sections stained with acridine orange showed that the basal and stalk cells of 

these trichomes are viable (Fig. 26). Histochemical analysis showed that the non-glandular 

trichome types accumulate phytochemical compounds, thus these trichomes also play a role in the 

chemical defence against insect herbivores and pathogens.  

 

Glandular capitate and non-glandular dendritic trichomes were found to be aggregated on the 

mid‒veins of leaves. This arrangement is consistent with that in Solanum aculeastrum (Koduru et 

al, 2006). Within Solanaceae, secondary metabolites such as alkaloids and phenolic compounds 

are synthesized in the roots and transported to the leaves (Sangwan et al., 2008, Senthil et al., 

2009). Glandular trichomes are therefore located on mid-veins for easy sequestration of these 
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compounds. The aggregated distribution of non-glandular dendritic trichomes on mid-veins will 

protect vascular tissue against UV damage (Bhatt et al., 2010). Due to the close proximity and 

much longer length of the dendritic compared to glandular trichomes, it is possible that the 

dendritic trichomes act as a form of physical protection to the underlying glandular trichomes.     

 

The density of glandular and non-glandular trichomes on leaves is also affected by insect 

herbivory or pathogen attack (Levin, 1973; Glas et al., 2012). The increase in density is activated 

by the octadecanoid pathway which results in increased jasmonic acid production. Jasmonic acid 

activates trichome formation, the expression of defense genes and the accumulation of secondary 

metabolites, such as those found in glandular trichomes (Glas et al., 2012). The high density of 

trichomes on leaf surfaces serves as a physical barrier to both movement and feeding by pests 

(Peiffer et al., 2009; Glas et al., 2012). Apart from herbivory, defoliation may also lead to 

increased glandular and non-glandular trichome density on newly-emerging leaves (Duke, 1994; 

Peiffer et al., 2009). As mentioned previously, leaves sampled in February 2013 appeared to 

contain a higher density of trichomes as compared to leaves sampled during May-July 2012. 

Individual plants of W. somnifera in early 2013 contained a substantial amount of leaves that 

turned yellow-brown and eventually became detached from the plants. Upon further investigation 

of the leaf surfaces, scale insects, broad mites and mite eggs were found (Fig. 8). According to a 

study conducted by Peña and Bullock (1994), some of the injuries induced upon S. tuberosum 

(potato) by broad mites included leaf curling, necrosis, bronzing, wilting as well as death of 

terminal and lateral apices. Despite the injury caused and the reduced heights of infected plants, it 

was also observed that S. tuberosum plants had an increased amount of leaves after exposure to 

the mites.  

 

Trichome density may be determined in early leaf development, and as leaves mature, the 

density across the leaf area decreases (Ascensão and Pais, 1987; Werker, 1993; Duke, 1994; 

Gairola et al., 2008). This was only true for the glandular capitate trichomes (Fig. 16). Another 

possible reason for the decrease in glandular trichome density is that once these trichomes have 

reached the post-secretory phase, they senesce, and are shed (Werker, 2000; Gairola et al., 2008). 

With regard to the non-glandular trichomes, there was no definite pattern seen between trichome 

density and level of leaf maturity. However, dendritic trichome density is much higher on adaxial 

surfaces of emergent leaves as compared to young and mature leaf surfaces. A possible reason for 

emergent leaves needing more protection by trichomes is that these leaves are more susceptible to 
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attack by insects and pathogens due to their higher nutritional value (Duke, 1994; Chaurasiya et 

al., 2007). 

 

The glandular trichomes of W. somnifera also appeared to be fully developed on emergent 

leaves (Fig. 17). Although, there were no statistical differences in length of the non-glandular 

bicellular and multicellular trichomes, the absence of these trichome types suggests that these 

trichomes developed later in leaf development. The length of non-glandular dendritic trichomes 

varied among the different leaf developmental stages, suggesting that these trichomes are not 

fully developed on emergent leaves. Both trichome development and density are variable between 

the different types of organs, such as leaf and sepals, as well as the different surfaces of these 

organs, such as the adaxial and abaxial leaf surfaces (Johnson, 1975; Werker, 1993; Gairola et al., 

2008). The development of non-glandular dendritic trichomes was also evident from the cellulose 

microfibrils observed in TEM micrographs (Fig. 19a). Randomly organized cellulose microfibrils 

are generally located at in the walls of the tips or uppermost cells of growing trichomes (Werker, 

2000). These “inextensible” microfibrils are surrounded by matrix polymers that rearrange and 

result in cell-wall expansion and cell growth (Cosgrove, 2000).  

 

The cuticular warts or bumps observed on non-glandular dendritic trichomes (Fig. 19a‒b) 

arise from the cell wall, cuticle or subcuticular inclusions (Werker, 2000; Gairola et al., 2008). 

Cuticular warts may be involved in a phenomenon known as the ‘Lotus-Effect’, in which the self-

cleaning properties of these structures ensure that trichomes and leaf surfaces remain clear of dust 

particles that may result from environmental conditions (Bhatt et al, 2010). This mechanism may 

also assist in defending leaves against pathogen attack (Barthlott and Neinhuis, 1997). Cuticular 

warts may sometimes be a sign of trichome maturity (Gairola et al., 2008).  

 

The stalk cells of capitate trichomes and all cells of non-glandular dendritic, bicellular and 

multicellular trichomes of W. somnifera were cutinized/suberised (Fig. 25b). All cells of the non-

glandular types were also lignified (Fig. 21). These substances in the cell walls of trichomes 

protect against water loss, extreme light and temperature, herbivory and pathogen attack by acting 

as a mechanical barrier of the surface of trichomes (Werker, 2000). The cutin or suberin within 

the trichome walls act as “casparian strips” and prevent exudates from flowing back into trichome 

once secreted (Fahn, 1986; Werker, 2000). Lignin also serves as a mechanical barrier to pests 

(Fordyce and Agrawal, 2001).  
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The major phytochemicals of medicinal importance found in both glandular and non-

glandular trichomes were alkaloids and phenolic compounds (Fig. 22 & 23). Alkaloids are 

synthesized in vacuoles, cytoplasm or chloroplasts and are translocated via the xylem or phloem 

and stored in the central vacuole of glandular trichomes (Wink, 1998). Although poisonous, 

alkaloids are used in low concentrations in the medicinal industry to treat a wide range of 

ailments such as fevers, dysentery, asthma and inflammation. In plants, alkaloids act as natural 

repellants against pests and even competitors (Robinson, 1974; Fordyce and Agrawal, 2001).  

 

Phenolic compounds are stored within glandular and non-glandular trichomes and are 

released when the trichomes are damaged by insects. Once released, the phenolic compounds are 

oxidized to quinines by polyphenol oxidase (released from plastids of the trichome) and ‘glue’ 

insects to the leaf surface so that they are unable to feed (Duke, 1994; Werker, 2000). The 

antioxidant properties of this compound also protect plants against bacterial or viral attack by 

counteracting excessive reactive oxygen species (ROS) production (Grassmann et al., 2002). 

These antioxidant properties have also been exploited in the cosmetic industry for use in skin care 

applications (Negro et al., 2003). In the medicinal industry, phenolic compounds are used in the 

treatment of heart diseases as these compounds appeared to inhibit the oxidation of specific 

proteins (Negro et al., 2003). These compounds have also been reported to have anti-

inflammatory and anti-carcinogenic properties.  

 

Exudates that are produced or released by the trichomes may also be toxic or act as 

“gustatory repellents” to insect attackers (Levin, 1973; Peiffer et al., 2009). Aphids such as Myzus 

persicae and Macrosiphum euphorbiae are common pests of wild potatoes, S. polyadenium, S. 

berthaultii and S. tarijense. When the cell walls of glandular trichomes are ruptured by these 

aphids, the clear, water-soluble phenols that are released are converted to a black water-insoluble 

compound upon contact with oxygen. This black compound accumulates on the legs of the 

aphids, resulting in immobilization and starvation (Levin, 1973; Yu et al., 1992; Werker, 2000; 

Peiffer et al., 2009, Glas et al., 2012). 

 

Fluorescence microscopy and TEM (Fig. 19a) showed the presence of plastids in the basal 

and stalk cells of dendritic trichomes (Ascensão and Pais, 1987; Köhler et al., 1997). Plastids 

were also present in the head cells of glandular capitate trichomes (Fig. 19b). Plastids have been 

reported to carry out a wide range of cellular functions, depending on the type of plastid and the 

cells they are contained within (Pyke and Howells, 2002). Plastids within trichomes play a role in 
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the biosynthesis, accumulation and secretory processes of various compounds (Turner et al., 

2000; Pyke and Howells, 2002). Some plastids, such as those located in the glandular trichomes 

of S. berthaultti, contain PPOs. These copper metalloproteins are involved in the reduction of 

phenols to quinines, resulting in the entrapment of insect herbivores (Yu et al., 1992). 

 

Apart from alkaloids and phenolic compounds, the glandular and non-glandular trichomes 

were found to accumulate lipophillic material, polysaccharides, protein, cardiac glycosides and 

sterols (Tables 1 & 2). Cardiac glycosides, a group of steroid-like compounds are used in the 

treatment of heart disorders such as congestive heart failure and arrhythmia (Newman et al., 

2008; Prassas and Diamandis, 2008).    

 

Due to the accumulation of alkaloids and phenolic compounds, the trichomes of W. 

somnifera also play a role in chemical defence against attack by insect herbivores and pathogens. 

Trichomes are ideal structures for the storage of alkaloids and phenolic compounds, ensuring the 

rapid release of these compounds at the time of attack (Wink, 1998). The storage and release of 

these exudates by trichomes are more beneficial to plant species rather than having the 

phytochemicals sequestered within leaf tissue. This is because insects and other herbivores can be 

deterred before they feed on and cause physical damage to plant parts (Levin, 1973).   

 

Cuticular ruptures were not visible on post-secretory glandular capitate trichomes during 

ESEM. This suggests that the glandular capitate trichomes of W. somnifera may release the 

secretory material through cuticular pores, as seen in the Lamiaceae (Fahn 1988; Ascensão et al., 

1995). These glandular trichomes however, also release the secretory material once the cuticle 

has been ruptured by insects and herbivores (Fahn, 1988; Duke, 1994; Ascensão et al., 1995). 

This was evident when the glandular trichomes were abraded during histochemical sectioning.    

 

Histochemical sectioning and staining revealed the presence of prismatic (Fig. 13a & 20b) 

and druse (Fig. 25a) crystals in leaves of W. somnifera. These crystals are composed of calcium 

oxalate (CaOx) and are present in many plant families including Araceae, Rosaceae, 

Boraginaceae, Lauraceae, Leguminosae, Myrtaceae, Pinaceae and Orchidaceae (Franceschi and 

Horner, 1980). Calcium oxalate, as crystal deposits, occur in specialized vacuoles, called 

idioblasts, and have a range of functions depending on the amount, distribution, morphology and 

production (Franceschi and Nakata, 2005). Functions of crystals include plant protection, calcium 

regulation and metal detoxification. Plant protection by calcium oxalate crystals can take place in 
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two ways: passive or active. Active protection involves the accumulation of needle-shaped 

crystals on outer plant parts so that physical damage occurs when touched or brushed upon by 

insects and herbivores (Arnott and Webb, 2000; Franceschi and Nakata, 2005). The accumulation 

of crystals within plant parts (passive protection), as seen in W. somnifera, protect the plant 

against herbivore attack by causing irritations or burning sensations in the mouth and throat.  A 

common example of this type of protection is seen when collard peccaries, pig-like mammals, 

avoid feeding on populations of prickly pears that contain calcium oxalate crystals (Franceschi 

and Nakata, 2005). Many of our plant foods such as spinach, peppers, beans, berries, chocolate, 

Colocasia esculenta (commonly known as amadumbies) and some types of nuts also contain 

calcium oxalate crystals. The calcium oxalate contained within these foods can negatively affect 

human health by acting as toxins and increasing kidney stone formation (Franceschi and Horner, 

1980; Arnott and Webb, 2000; Franceschi and Nakata, 2005).  

 

Therefore, with the theory of insect-induced increase in trichome density and the 

phytochemical constituents of the trichomes, it is possible that the non-glandular trichomes of W. 

somnifera provide both mechanical and chemical protection to leaves, while the glandular 

trichomes serve to accumulate and secrete phytochemicals containing alkaloids and phenolic 

compounds. It is also interesting to note that the dendritic trichomes of W. somnifera are 

considerably longer than the glandular capitate trichomes. Since the dendritic trichomes are 

lignified and contain phytochemicals, it is possible that these trichomes provide a first line of 

defence against insect herbivores (Levin, 1973; Werker, 2000). However, if this line of defence 

fails, the accumulation of the phytochemicals within the glandular trichomes would form the 

second line of defence.  

 

The stomatal type classified from leaves used in this study was anisocytic. Although this 

contradicted the animocytic stomatal arrangement discussed by Kumar et al. (2010a), Palei and 

Harisha (2012) confirm the anisocytic arrangement. However, Hameed and Hussain (2011) 

discuss another stomatal type, anomotetracytic (guard cells surrounded by four irregularly shaped 

subsidiary cells), on both surfaces of W. somnifera leaves, with stomatal density being relatively 

higher on abaxial leaf surfaces. These studies also confirmed the closed stomata of adaxial 

surfaces and opened stomata of abaxial surfaces. This could correlate with the increased density 

of dendritic trichomes on abaxial surfaces. The higher density of dendritic trichomes would 

provide a ‘shading affect’ and reduce transpiration rates. Cuticular striations were also observed 
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on leaves of W. somnifera. As with stomatal arrangement, trichome type and cuticular warts, 

cuticular striations serve as diagnostic features of plant species (Ahmad, 1962; Shahbaz, 2008).  

 

The study of the chemical constituents of trichome exudates is important as these chemicals 

act as natural deterrents against herbivores and other pests. A common example is citronella oil, a 

mosquito repellent, extracted from Andropogon nardus (Levin, 1973). Information from such 

studies will allow plant breeding programmes to “incorporate trichome-based resistance” into 

species (Duke, 1994; Peiffer et al., 2009). This would result in the natural enhancement of pest 

resistance, as well as the enhanced production of medicinally important phytochemicals such as 

phenolic compounds and alkaloids.  

 

Characterising the morphology and the chemical constituents of the leaves of W. somnifera 

has not only highlighted the importance of studies of this nature, but has also emphasized the 

need for future research on this species. This research will allow for the optimization of 

phytochemical yields for medicinal uses by means of biotechnological approaches. 

Biotechnological applications depend on knowledge that is based on exploratory research. It is, 

therefore, vital to determine the constituents or chemical groups of exudates and the ultrastructure 

of the cells they are contained within, in order to advance research capabilities and improve yields 

of medicinally important compounds (Duke, 1994).     

 

An important point to consider for future research is that the same species from different 

geographic regions may differ in compound composition and concentration (Mehboob, 2012). 

Therefore, there is a need for comparative phytochemical, as well as multidisciplinary studies.  

Understanding the contents of glandular and non-glandular trichomes on a cellular, biological and 

biochemical level together with plant biotechnology will most likely boost the production of the 

medicinally important compounds localized within trichomes (Duke, 1994).  
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CHAPTER 6 

 

Conclusion 

This study described the micromorphology and trichome density of the leaves of Withania 

somnifera. The major phytochemical constituents of the exudates produced that were claimed to 

be responsible for the extensive healing properties of this species were also determined.  

 

Stereomicroscopy, SEM and histochemical staining of leaves showed the presence of four 

distinct trichome types on W. somnifera: glandular capitate, non-glandular dendritic, non-

glandular bicellular and non-glandular multicellular trichomes. The capitate trichomes were 

uniseriate and consisted of a single basal cell, single-celled stalk and a six-celled secretory head. 

Non-glandular dendritic trichomes consisted of a single basal cell and 2‒4 stalk cells with varying 

branch numbers. Non-glandular bicellular and multicellular (3‒6 cells) trichomes were uniseriate 

and also appeared to emanate from a single basal cell. Capitate trichomes on fully developed 

leaves were considerably shorter than the non-glandular trichome types, with capitate trichomes 

having an average length of 60.52 ± 7.64 μm while the average length of dendritic trichomes was 

125.96 ± 52.11μm. The average length of bicellular and multicellular trichomes was 138.85 ± 

89.55 μm.  

 

Glandular capitate and non-glandular dendritic trichomes occurred on both adaxial and 

abaxial leaf surfaces of emergent, young and mature leaves. Glandular capitate and non-glandular 

dendritic trichomes were aggregated on the mid-veins of leaves. Non-glandular bicellular and 

multicellular trichomes were present at all stages of development, however at a significantly 

lower density in comparison to dendritic and glandular capitate trichomes. Non-glandular 

trichome density varied between emergent, young and mature leaves, suggesting that trichome 

number is not established at the onset of leaf development. Glandular trichome density was 

higher on emergent leaves in comparison to mature leaves showing that the number of these 

trichomes is determined early in leaf development.  

 

Phytochemical and histochemical tests were used to identify and locate major compound 

groups that were of medicinal importance within trichomes. Alkaloids and phenolic compounds 

were present in all four trichome types. These compounds have been reported to be used in the 

treatment of a range of illnesses such as arthritis, inflammation, paralysis, TB and asthma (Atal 

and Schwarting, 1961; Chaurasiya et al., 2007; Kumar et al., 2010a). Histochemical staining of 
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leaves also showed the presence of calcium oxalate in the form of prismatic and druse crystals. 

These crystals are believed to act as a deterrent to insect herbivores, causing irritations in the 

mouth and throat (Franceschi and Horner, 1980).    

 

TEM of leaves showed the presence of cellulose microfibrils within the cell walls of the non-

glandular dendritic trichomes. These microfibrils are involved in cell-wall expansion and growth. 

The presence of plastids within glandular trichomes might play a role in the accumulation and 

secretion processes of the phytochemical compounds. Plastids present in non-glandular dendritic 

trichomes is also claimed to play a role in the accumulation of phytochemical compounds (Turner 

et al., 2000; Pyke and Howells, 2002).  

 

Due to the presence of lignin in the non-glandular trichomes and phytochemicals in both 

glandular and non-glandular trichomes, the foliar trichomes of W. somnifera appeared to provide 

both mechanical and chemical protection against insect herbivores. Glandular trichomes are 

assumed to secrete the protective chemicals when the secretory heads are ruptured by pests. In 

this manner, it is suspected that when these trichomes are damaged, insect herbivores are exposed 

to the phytochemicals stored within glandular trichomes.  

 

Although this study has identified the major classes of compounds and the site at which these 

compounds were present within trichomes, it is still unclear whether these compounds are 

produced by cells of the trichomes or elsewhere in the plant and transported to the trichomes.  

Future studies should therefore be focussed on identifying the specific cells that may contribute to 

the production of exudates. This could be achieved by employing ultracytochemical techniques as 

described by Naidoo et al. (2011).   
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Appendix 

 

Appendix 1. Phytochemical groups present/absent in the methanol extract of W. somnifera.  

 

Compound Group Phytochemical Test Present (+) / 

Absent (-) 

Observation 

 

Alkaloids Dragendroff’s + Turned reddish-brown 

 Hager’s + Turned brown 

 Wagner’s + Turned yellow-brown 

Phenolic compounds Ferric chloride  + Turned dark green 

 Lead acetate + Turned milky 

Sterols Salkowski’s - Turned light green 

Cardiac glycosides Extract was mixed with glacial acetic acid 

and concentrated sulphuric acid was added  

+ Formation of red ring between the acid and 

extract 

Carbohydrates Benedicts - Remained dark green 

 Fehlings A and B - Turned milky-green 

 Molisch’s - Remained dark-green 

Flavones and flavonones Concentrated sulphuric acid - Turned dark-green to black 

Proteins and amino acids Ninhydrin - Turned light green 
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Appendix 2. Phytochemical groups present/absent in the chloroform extract of W. somnifera.  

Compound Group Phytochemical Test Present (+) / 

Absent (-) 

Observation 

 

Alkaloids Dragendroff’s + Reddish-brown precipitate at the top 

 Hager’s + Yellow precipitate at the top 

 Wagner’s + Pinkish-brown oily precipitate at the top 

Phenolic compounds Ferric chloride  + Orange precipitate at the top 

 Lead acetate + Clear precipitate at the top 

Sterols Salkowski’s + Formation of a red ring 

Cardiac glycosides Extract was mixed with glacial acetic acid 

and concentrated sulphuric acid was added  

+ Red ring between the acid and extract 

Carbohydrates Benedict’s - Blue precipitate at the top 

 Fehlings A and B - Blue precipitate at the top 

 Molisch’s - Purple precipitate at the top 

Flavones and flavonones Concentrated sulphuric acid  Milky-oily precipitate at the top 

Proteins and amino acids Ninhydrin - Turned milky 
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Appendix 3. Phytochemical groups present/absent in the hexane extract of W. somnifera.  

Compound Group Phytochemical Test Present (+) / 

Absent (-) 

Observation 

 

Alkaloids Dragendroff’s + Reddish-brown precipitate at the bottom 

 Hager’s + Yellow precipitate at the bottom 

 Wagner’s + Dark pink-brown oily precipitate at the bottom 

Phenolic compounds Ferric chloride  + Orange precipitate at the bottom 

 Lead acetate + Clear precipitate at the bottom 

Sterols Salkowski’s + Formation of a red ring  

Cardiac glycosides Extract was mixed with glacial acetic acid 

and concentrated sulphuric acid was added  

+ Formation of red ring between the acid and 

extract 

Carbohydrates Benedict’s - Blue precipitate at the bottom 

 Fehlings A and B - Blue precipitate at the bottom 

 Molisch’s - Light purple precipitate at the bottom 

Flavones and flavonones Concentrated sulphuric acid - Clear-oily precipitate at the bottom 

Proteins and amino acids Ninhydrin - Turned clear-light yellow 

 


