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Abstract

All groups considered in this dissertation are finite. A group G is said to be factorizable if

G = AB is the product of two proper subgroups A and B of G, i.e. every element g of G can

be expressed in the form g = ab for some a ∈ A and b ∈ B. If N is a normal subgroup of a

finite group G we are guaranteed that the product NH of N and H is a subgroup of the group G

for every subgroup H of G. However, normality of one factor is a sufficient and not a necessary

condition for the product NH to be a subgroup of G.

In this dissertation, conditions under which a proper subgroup H of a group G has a proper

supplement in G have been investigated. We have also investigated conditions under which a fi-

nite group is factorizable. A special factorization called an exact factorization is also investigated

in this dissertation. This is a factorization of the form G = HK where H and K are subgroups

of G such that H ∩K = {1}; here H is said to be complemented in G by K.

The last chapter briefly reviews the applications and contributions of group factorizations to

the study of group theory and abstract Algebra in general.
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Notation and conventions

N set of natural numbers

Z set of integers

Q set of rational numbers

R set of real numbers

C set of complex numbers

G a group

H,K subgroups

1, 1G the identity element of G

H ≤ G H is a subgroup of G

N �G N is a normal subgroup of G

H ∼= K H is isomorphic to K

HK the product of H and K

Hg the right coset of G

xG a conjugacy class of x in G

CG(x) the centralizer of x in G

Z(G) the center of the group G

NG(H) the normalizer of the subgroup H in G
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StabG(x) stabilizer of x in G

OrbG(x) orbit of x in G

[G,G] , G′ the commutator subgroup of G

Kerf kernel of homomorphism f

Imf image of homomorphism f

Φ(G) the Frattini subgroup of G

GS the residual subgroup of G

〈g〉 the subgroup generated by g

hg conjugation of h by g

o(g) order of g

|G| order of the group G

p|m p divides m

(p,m) = 1 p and m are coprime

Dn the dihedral group of order 2n

V4 the Klein 4−group

Cn cyclic group of order n

Sn the symmetric group on n symbols

An the alternating group on n symbols

Q8 quaternion group of order 8

F a formation
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CHAPTER 1

Introduction

In this dissertation we study factorisable groups and subgroups with proper supplements. Let H

and K be subgroups of a finite group G and suppose G = HK. If any of H or K is equal to G,

then G = HK is called a trivial factorization of G, and by a proper factorization (or non-trivial

factorization) we mean G = HK with both H and K being proper subgroups of G. If G admits

a proper factorization say G = HK, then we call G a factorizable group while H and K are

called factors.

In our study, two closely related problems shall be distinguished and dealt with in two sepa-

rate chapters. The first problem is to determine conditions under which a proper subgroupH of a

group G has a proper supplement in G. Though only proper normal subgroups were considered,

the first problem is also addressed in [12]. The second problem is to investigate conditions under

which a finite group G admits a proper factorization. Joseph in [13] tackled the second problem

using an approach involving aS−groups.

By defining that a groupG is called factorizable if it has two proper subgroupsH andK such

that G = HK, it is clear that finite groups of prime order are not factorizable as they do not have
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a single non-trivial proper subgroup. These are not the only groups that do not admit a proper

factorization. Cyclic p−groups are not factorizable too. It is an interesting problem to know the

groups which admit proper factorizations.

Group factorizations have produced influential results in group theory. For example, Kegel

proved that if G = HK with H and K nilpotent, then G is solvable, and Ito showed that if G =

HK with H and K abelian, then G is metabelian. Consider the factorization A4 = V4〈(123)〉

of the alternating group A4 into the Klein 4−group V4 and 〈(123)〉. Since the factors V4 and

〈(123)〉 are both nilpotent, Kegel’s observation can be used to deduce that A4 is solvable without

using the traditional definition of solvability. Similarly, since the factors V4 and 〈(123)〉 are both

abelian, we could conclude that the alternating group A4 is metabelian by simply using Ito’s

observation.

In Chapter 2 we start by presenting basic group theoretical results and definitions that will be

required in our study.

In Chapter 3 we revise products of groups and the subgroups useful to our study. This chapter

is simply the pivot of the dissertation as a whole. We recall that if H and K are subgroups of

a group G, then the product HK of H and K is defined by HK = {hk | h ∈ H, k ∈ K}.

It is known that even if H and K were subgroups of a group G, the product HK of H and K

might not be a subgroup of G. One of the main results for Section 3.1 (Theorem 3.1.9) asserts

that the product HK of two subgroups H and K of a group G is a subgroup of G if and only if

HK = KH .

In the next sections of Chapter 3 we continue to revise important concepts to group factoriza-

tions. We shall prove in this dissertation that if G is a non-cyclic group with G 6= G′, then G is

factorizable. Sylow p−subgroups are equally useful to group factorizations as we may observe

from Frattini’s argument (Lemma 3.5.16).

The Frattini subgroup, defined to be the intersection of all the maximal subgroups of a group,

is arguably one of the most important subgroups as far as determining proper factorizations is

concerned. Thus, in Section 3.5 we recall the Frattini subgroup and its properties such as the
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Frattini subgroup is nilpotent and normal in G. We also show that the Frattini subgroup Φ(G) of

a group G has no proper supplement in G.

If G is a non-trivial group, then G is called an aS−group if every non-trivial subgroup of G

has a proper supplement inG. The smallest example of a non-abelian aS−group is the symmetric

group S3. The residual subgroup of a group G is simply the smallest normal subgroup N of G

such that the factor groupG/N is an aS−group. The importance of this subgroup can be realised

in many results of our work. In Theorem 4.1.16, we observe that if N is a normal subgroup of a

group G and if every subgroup of G/N had a proper supplement in G/N , then every subgroup

H of G containing N would have a proper supplement in G. Therefore, the search for proper

factorizations of a group G is extremely assisted by finding a normal subgroup N of G such that

G/N is an aS−group.

Chapter 4 is devoted to investigating conditions under which a proper subgroup H of a group

G will have a proper supplement in G. Condition 1 states that if H is a normal subgroup of a

group G and if H is not contained in the Frattini subgroup of G, then H has a proper supplement

in G. Using the residual subgroup GS of a group G, we obtain a similar but stronger condition in

Theorem 4.1.17. The condition in this theorem asserts that if {1} < H is a proper subgroup of

G and if H is not contained in the residual subgroup GS of G, then H has a proper supplement

in G. It is a stronger condition than Condition 1 because it does not limit H to being a normal

subgroup of G.

In Chapter 5 we study conditions under which a finite group G will be factorizable. The first

condition states that if G is a non-cyclic group and if G 6= G′, where G′ denotes the commutator

subgroup of G, then G is factorizable. Nilpotent groups and p−groups share several important

theoretical properties in group theory. One of the properties is the fact that every maximal sub-

group of a nilpotent group or a p−group is normal. Furthermore, both nilpotent groups and

p−groups satisfy the normalizer condition. That is, if G is either a nilpotent group or a p−group,

then every proper subgroup of G is properly contained in its normalizer. The two properties

mentioned above made it possible for us to prove, in Chapter 5, that every non-cyclic p−group

and every non-cyclic nilpotent group are factorizable.
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In Chapter 6 we explore a special type of factorization: a factorization of the form G =

HK where H and K are subgroups of G and H ∩ K = {1}. In such a factorization, H is

said to be complemented in G by K and if every subgroup of G is complemented, then G is

called a complemented group. The notion of subgroup complementation has produced important

characterisation results in group theory. Arad and Ward in [2] proved that a group G is soluble

if and only if every Sylow 2−subgroup and every Sylow 3−subgroup of G are complemented in

G.

In Chapter 7, we demonstrate how group factorizations can help us solve problems in group

theory. This chapter is simply meant to illustrate that group factorizations is an interesting ap-

proach through which to study group theory.
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CHAPTER 2

Basic Results and Definitions

2.1 Normal subgroups and Series of groups

A subset of a group G may or may not be a subgroup of the group G. If H is a subgroup of the

group G then H is a group under the operation of the group G. Below is the formal definition:

Definition 2.1.1. [19] Let G be a group G with the binary operation ′∗′ and identity element 1.

A nonempty subset H of G is called a subgroup if the conditions below are satisfied:

(i) 1 ∈ H;

(ii) If x, y ∈ H then x ∗ y ∈ H;

(iii) If x ∈ H then x−1 ∈ H .

A group G always has at least two subgroups, namely G itself and the subgroup {1} consisting

of the identity element alone. We call {1} the trivial subgroup of G, and we call H a non-trivial

subgroup of G if H 6= {1}. If H is a subgroup of G, we write H ≤ G; if H is a proper subgroup

of G, that is, if H 6= G, then we write H < G.
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Below is the subgroup criterion:

Theorem 2.1.2 (Subgroup criterion). Let H be a subset of a group G. Then H is a subgroup of

G if and only if H is not empty and xy−1 ∈ H whenever x, y ∈ H .

Proof. See [6].

Definition 2.1.3. LetG be a group. ThenG is called abelian if for all a, b ∈ G, ab = ba. If two

elements x and y of G are such that xy = yx, then the elements x and y are said to commute.

Definition 2.1.4. Let G be a group. If G contains an element x such that for every g ∈ G,

g = xk

for some k ∈ N, then G is called a cyclic group.

Definition 2.1.5. Let G be a group. Then, the center of G denoted by Z(G) is defined by

Z(G) = {z ∈ G | gz = zg ∀g ∈ G}. That is, Z(G) is a set of those elements of G which

commute with every other element of G.

Definition 2.1.6. Let x be an element of a group G. Then, the subset

{g ∈ G | gx = xg}

of G denoted by CG(x) is called the centralizer of x in G.

Definition 2.1.7. A subgroup K of a group G is called a normal subgroup of G if gkg−1 ∈ K

for every element k ∈ K and for every element g ∈ G. If K is a normal subgroup of G, we write

K �G.

Definition 2.1.8. Let {1} < K � G. Then K is said to be a minimal normal subgroup of G if

there is no normal subgroup L of G such that {1} < L < K.

If G is a group it can be easily verified that the trivial subgroup {1} and the whole group G

are normal subgroups of G. A group G 6= {1} is called simple if G has no normal subgroups

other than {1} and G itself. We also recall the following theorem:
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Theorem 2.1.9. Every subgroup of an abelian group G is normal in the group G.

Proof. See [6].

Definition 2.1.10. A subgroupH of a groupG is said to be subnormal inG if there exists a chain

of subgroups H0, H1, H2, . . . , Hr such that

H = H0 �H1 �H2 � · · ·�Hr = G.

This is called a subnormal chain from H to G.

Definition 2.1.11. Let H be a subgroup of a group G. Then the normalizer of H in G denoted

by NG(H) is the subgroup

NG(H) = {g ∈ G | gHg−1 = H}.

It can be easily noticed that if H is a subgroup of G, then H ≤ NG(H). If it turns out that every

proper subgroup H of a group G is properly contained in its normalizer, then G is said to satisfy

the normalizer condition.

Maximal subgroups shall be needed in this thesis and so the definition below is in order.

Definition 2.1.12. A proper subgroup M of a group G is called a maximal subgroup if there is

no subgroup L of G such that M < L < G.

Definition 2.1.13. Let H be a subgroup of a group G and g be any element of G. Then the set

Hg = {hg | g ∈ G} is called a right coset of H in G generated by g. Putting the element g to

the left of H would give the coset gH the name left coset of H .

Cosets of a subgroup can be used to determine whether the subgroup is normal or not as we

may see in the next lemma:

Lemma 2.1.14. A subgroup K of a group G is normal if and only if

gK = Kg

for every g ∈ G.
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Proof. See [19].

We observe, from Lemma 2.1.14, that if K is a normal subgroup of a group G, then every

right coset of K is also a left coset of K.

Remark 2.1.15. Let G/K denote the family of all the left cosets of a subgroup K of G. It turns

out that if K is a normal subgroup of G, then

(xK)(yK) = xyK

for all x, y ∈ G, and G/K is a group under this operation. The group G/K is called the quotient

group G mod K.

Definition 2.1.16. Let H be a subgroup of a finite group G. Then the index of H in G, denoted

by [G : H], is the number of left cosets of H in G.

Theorem 2.1.17. Let H and K be subgroups of the group G such that H ≤ K. Then [G : H] =

[G : K]× [K : H].

Proof. See [20].

Theorem 2.1.18 (The Correspondence Theorem). Let K � G. Then every subgroup of G/K is

of the form H/K where K ≤ H ≤ G. That is, there is a one to one correspondence between the

subgroups of G/K and those subgroups of G which contain K.

Proof. See [18].

Theorem 2.1.19. Let K �G. Then K is a maximal subgroup of G if and only if

|G/K| = [G : K] = p

for some prime p.

Proof. SinceK is normal and proper inG, we have that |G/K| > 1. Now by the correspondence

theorem, K is a maximal subgroup of G if and only if G/K has no non-trivial subgroup; that is

if and only if |G/K| = p for some prime p.
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Below are the definitions of a subnormal series and a normal series of a finite group:

Definition 2.1.20. A subnormal series of a group G is a finite sequence of subgroups

{1} = G0 ≤ G1 ≤ G2 ≤ . . . ≤ Gn−1 ≤ Gn = G

in which Gi is a normal subgroup of Gi+1 for all i = 0, 1, 2, . . . , n− 1.

The collection G1/G0, G2/G1, . . . , Gn/Gn−1 are the factors of the series and n is the length of

the series.

Definition 2.1.21. A normal series of a group G is a finite sequence of subgroups

{1} = G0 ≤ G1 ≤ G2 ≤ . . . ≤ Gn−1 ≤ Gn = G

in which Gi is a normal subgroup of Gi+1 and Gi �G for all i = 0, 1, 2, . . . , n− 1.

2.2 The Isomorphism Theorems

Definition 2.2.1. [6] Let A and B be non-empty sets. Then a mapping f : A→ B from set A to

set B is called

(a) injective (or one-to-one) if, for all x1, x2 ∈ A, x1 6= x2 implies f(x1) 6= f(x2).

(b) surjective (or onto) if, for every y ∈ B, y = f(x) for some x ∈ A.

A mapping that is both injective and surjective is said to be bijective.

Definition 2.2.2. Let G and H be groups. A map φ : G→ H is called a homomorphism if

φ(xy) = φ(x)φ(y)

for all x, y ∈ G. If the homomorphism φ is bijective, then we call φ an isomorphism. If φ : G→

H is a surjective homomorphism, then H is called a homomorphic image of G.
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Definition 2.2.3. Let G and H be groups and let f : G→ H be a homomorphism from G to H .

The kernel of f , denoted by Kerf , is defined to be the set

Kerf = {g ∈ G | f(g) = 1H},

where 1H is the identity element in H . From the definition, we note that Kerf is a subset of G.

In fact, it can be easily shown that Kerf is a subgroup of G.

Remark 2.2.4. If f : G→ H is a homomorphism from a group G to a group H , then the image

of f , denoted by Imf , is a subgroup of H .

Below are the three well-known isomorphism theorems:

Theorem 2.2.5 (The First Isomorphism Theorem). Let G and H be groups and let φ : G → H

be a homomorphism. Then

G/Kerφ ∼= Imφ.

Hence, in particular, if φ is surjective, then G/Kerφ ∼= H .

Proof. Consider the map ϕ : G/K → Imφ given by ϕ(xK) = φ(x), where K = Kerφ.

Then for all x, y ∈ G, we have that

xK = yK ⇔ y−1x ∈ K ⇔ φ(y−1x) = 1H ⇔ φ(x) = φ(y)⇔ ϕ(xK) = ϕ(yK).

Hence, ϕ is well defined and injective. Furthermore,

ϕ((xK)(yK)) = ϕ(xyK) = φ(xy) = φ(x)φ(y) = ϕ(xK)ϕ(yK).

Thus, ϕ is a homomorphism. Since ϕ is obviously surjective, we conclude that ϕ is an isomor-

phism between G/Kerφ and Imφ and hence the proof.

Theorem 2.2.6 (The Second Isomorphism Theorem). Let H and N be subgroups of G, and

N �G. Then

H/(H ∩N) ∼= HN/N.

This theorem is also known as the ”diamond isomorphism theorem”.
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Proof. See [6].

Theorem 2.2.7 (The Third Isomorphism Theorem). Let H and K be normal subgroups of a

group G such that K ⊂ H . Then

(G/K)/(H/K) ∼= G/H.

This theorem is also known as the ”double quotient isomorphism theorem”.

Proof. See [6].

2.3 The class equation

Before we end this section, we discuss briefly the class equation of a group.

Definition 2.3.1. Let G be a group. Two elements a and b are said to be conjugate if there

exists an element g in G such that gag−1 = b.

Definition 2.3.2. Let x be an element of a group G. Then, the subset

{gxg−1 | g ∈ G}

is called the conjugacy class of x and is denoted by C(x).

Below are the definitions of the stabilizer and the orbit of an element of a group:

Definition 2.3.3. Let G be a group acting, by left multiplication, on a non-empty set X , and let

x ∈ X . Then the set

StabG(x) = {g ∈ G | gx = x},

which can be easily shown to be a subgroup of G, is called the stabilizer of x in G.

Definition 2.3.4. Let G be a group acting, by left multiplication, on a non-empty set X , and let

x ∈ X . Then the set

OrbG(x) = {gx | g ∈ G},

is called the orbit of x in G.
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Theorem 2.3.5 (Orbit-stabilizer theorem). Let G be a group acting on a set X , and let x ∈ X .

Then,

|OrbG(x)| = [G : StabG(x)] .

Proof. Fix x ∈ X and let S = StabG(x). Consider the map

φ : G/S → OrbG(x)

given by φ(gS) = gx for all g ∈ G. Then we note that for all g, h ∈ G,

gS = hS ⇔ h−1gS = S ⇔ h−1g ∈ S ⇔ h−1gx = x⇔ gx = hx.

Hence, the map φ is well defined and injective. Moreover, φ is obviously surjective. Therefore,

φ is a bijection and so |OrbG(x)| = |G/S| = [G : S].

Corollary 2.3.6. Let G be a finite group acting on a set X , and let x be an element of X . Then,

|G| = |StabG(x)||OrbG(x)|.

Proof. The proof follows from the Orbit-stabilizer theorem (above) and Lagrange’s theorem.

If a group G acts on itself by conjugation and if x ∈ G, then the stabilizer of x

{g ∈ G | gxg−1 = x}

is simply the centralizer of x in G, while the orbit {gxg−1 | g ∈ G} of x is precisely the

conjugacy class of x in G.

If G is a group, then the number h of distinct conjugacy classes of G is known as the

class number of G. Suppose that C1, C2, · · · , Ch are the conjugacy classes of a group G

and let ni be the number of elements in the conjugacy class Ci for all i = 1, 2, · · · , h. Then, the

integers n1, n2, · · · , nh satisfy the equation

|G| = n1 + n2 + · · ·+ nh. (2.1)

Equation (2.1) is called the class equation of G.
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Remark 2.3.7. We observe that an element x of a group G belongs to the center Z(G) of G if

and only if the conjugacy class C(x) of x consists of only one element, namely x itself. For

this reason, G is the disjoint union of Z(G) and all conjugacy classes containing more than one

element. Hence with the help of the Orbit-stabilizer theorem, the class equation can be expressed

as

|G| = |Z(G)|+
∑
x∈C

[G : CG(x)]

where C contains exactly one element from each conjugacy class with more than one element.

2.4 The Commutator subgroup

The commutator subgroup is one of the subgroups we cannot do without in this thesis and so the

need to remind ourselves of what it is.

Definition 2.4.1. [18] LetG be a group and let g1, g2 ∈ G. Then the commutator of the elements

g1 and g2 is the element

[g1, g2] = g1g2g
−1
1 g−12 ∈ G.

Definition 2.4.2. Let G be a group. Then the commutator subgroup (or derived subgroup) of G,

denoted by [G, G] or G′, is the subgroup generated by all the commutators of G. That is

[G, G] =
〈

[g1, g2] = g1g2g
−1
1 g−12 | g1, g2 ∈ G

〉
.

Theorem 2.4.3. Let G be a group and G′ be the commutator subgroup of G. Then G′ �G.

Proof. With the notation at = t−1at, it suffices to prove that [x, y]t ∈ G′ for all x, y, t ∈ G.

Since conjugation obeys the multiplicative rule, i.e. since (xy)t = xtyt, we have that

[x, y]t = (xyx−1y−1)t = xtyt(x−1)t(y−1)t = xtyt(xt)−1(yt)−1 = [xt, yt] ∈ G′.

And this completes the proof.
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Theorem 2.4.4. Let G be a group and let K �G. Then the factor group G/K is abelian if and

only if G′ ≤ K.

Proof. LetK�G. ThenG/K is abelian if and only if (xK)(yK) = (yK)(xK) for all x, y ∈ G;

that is, if and only if xyK = yxK, or, equivalently, x−1y−1xyK = K; that is, if and only if

[x, y] ∈ K for all x, y ∈ G. Thus G/K is abelian if and only if G′ ≤ K.

Definition 2.4.5. Let G be a group. Then the higher commutator subgroups of G are defined

inductively as:

G0 = G; G(i+1) = (Gi)′;

that is, G(i+1) is the commutator subgroup of G(i). The series

G = G(0) ≥ G(1) ≥ G(2) ≥ · · ·

is called the derived series of G.
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CHAPTER 3

A Review of Groups

The aim of this chapter is to assemble a selection of basic results from group theory which will

be needed to understand the main topic of this thesis. Not every result will be proved as most of

these can be found in standard group theory text books such as [20], [17], [11], [18] and [14].

3.1 Products of Groups

We start this chapter by discussing products of groups or subgroups:

Definition 3.1.1. If G is a finite group with proper subgroups H and K, the product of H and K

is defined by HK = {hk | h ∈ H, k ∈ K}.

The question that arises almost naturally is: If H and K are subgroups of a group G, is the

product HK always a subgroup of G? It turns out that this is not always the case. Below is an

example illustrating this fact:

Example 3.1.2. TakeG to be the symmetric group S3 = {(1), (12), (13), (23), (123), (132)}.

This group has subgroups, among others, H = {(1), (12)} and K = {(1), (13)}; yet the
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product HK = {(1), (12), (13), (132)} of H and K is clearly not a subgroup of S3 since the

order of HK does not divide the order of S3.

Before we go any further, it may be of help to define something closely related to the concept

of products of groups: the direct product of two groups.

Definition 3.1.3. [20] Let (H, ∗1) and (K, ∗2) be two groups. Then the direct product of H and

K, denoted by H × K, is the group with elements all ordered pairs (h, k) where h ∈ H and

k ∈ K, and with operation

(h, k) ◦ (h′, k′) = (h ∗1 h′, k ∗2 k′).

The operations ′∗′1 and ′∗′2 may or may not be different. It is easy to check that H × K is

indeed a group: the identity element is (1H , 1K) while the inverse (h, k)−1 of the element (h, k)

is (h−1, k−1) in this group. We also notice that even though neither H nor K is a subgroup of

H ×K, the group H ×K does contain isomorphic replicas of H and K, namely, H × {1K} =

{(h, 1K) | h ∈ H} and {1H}×K = {(1H , k) | k ∈ K}. The example below is an illustration of

how this group can be formed from two groups with different structures.

Example 3.1.4. Let H be the quaternion group of order 8 denoted by Q8 and defined by

Q8 =
〈
−1 , i , j , k | (−1)2 = 1 , i2 = j2 = k2 = ijk = −1

〉
= {1 , −1 , i , −i , j , −j , k , −k}

and let K be the alternating group A3 = {(1), (123), (132)}. Then examples of elements of

H ×K include (1, (1)), (−1, (123)), (i, (132)) and (j, (123)). Since the inverse of the element

j in the group H is −j and the inverse of (123) in the group K is (132) we have that the inverse

of the element (j, (123)) ∈ H×K is (−j, (132)) ∈ H×K. It can be easily verified that (1, (1))

is the identity element of the group H × K since 1 is the identity element of H and (1) is the

identity element of K.

Even if H and K are subgroups of a group G, the direct product H × K of H and K

need not be isomorphic to the group G or to any subgroup of G. As an example, consider the
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symmetric group S3. Clearly H = 〈(123)〉 and K = 〈(12)〉 are subgroups of S3; yet H ×K is

not isomorphic to S3 since H ×K is an abelian group while S3 is not abelian. However, under

certain conditions, the direct product H ×K of two subgroups of a group G may coincide with

the group. Below is the theorem which states clearly when this coincidence happens.

Theorem 3.1.5. If G is a group containing normal subgroups H and K with H ∩K = {1} and

HK = G, then G ∼= H ×K.

Proof. See [19].

Theorem 3.1.6. Let G1 and G2 be groups, and N1 �G1, N2 �G2. Then

(G1 ×G2)/(N1 ×N2) ∼= (G1/N1)× (G2/N2).

Proof. See [6].

Remark 3.1.7. Let H and K be subgroups of a group G. Then, in this thesis, when we say that

G is factorised into H and K we mean that G = HK is the product of H and K and not the

direct product of H and K.

Definition 3.1.8. [3] LetH andK be subgroups of a groupG. ThenH andK are said to permute

if HK = KH .

Theorem 3.1.9. Let H and K be subgroups of a group G. Then the product HK is a subgroup

of G if and only if HK = KH (i.e. if and only if H and K permute).

Proof. Suppose HK = KH . We use the subgroup criterion to show that HK is a subgroup

of G. Pick a, b ∈ HK and let a = h1k1, b = h2k2 with h1, h2 ∈ H and k1, k2 ∈ K. Then

b−1 = k−12 h−12 . Thus, ab−1 = h1k1k
−1
2 h−12 . Let k3 = k1k

−1
2 ∈ K and h3 = h−12 ∈ H , then

ab−1 = h1k3h3. Since HK = KH , we have that k3h3 = h4k4 for some h4 ∈ H and k4 ∈ K,

and so ab−1 = h1h4k4 ∈ HK.

Conversely, suppose HK is a subgroup of G. Since K ≤ HK and H ≤ HK, we have that

KH ⊆ HK by the closure property of a group. It remains to show that HK ⊆ KH . Let

hk ∈ HK. Since HK is a subgroup write hk = b−1 for some b ∈ HK. If b = h1k1, then

hk = (h1k1)
−1 = k−11 h−11 ∈ KH . Thus, HK ⊆ KH and so HK = KH .
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Definition 3.1.10. Let H be a subgroup of G. Then H is said to be permutable if the product

HK is a subgroup of G for all subgroups K of G.

Corollary 3.1.11. Let N be a normal subgroup of a group G. Then N is permutable (i.e. NK is

a subgroup of G for all subgroups K of G).

Proof. Let N be a normal subgroup of a group G and K be a subgroup of G. Since N is normal

we have Ng = gN for all g ∈ G. Thus Nk = kN for all k ∈ K since k ∈ K ⇒ k ∈ G. Hence,

NK = KN for all subgroups K of G and the proof follows by Theorem 3.1.9.

Below are the definitions of a supplement and a complement to a subgroup of a group:

Definition 3.1.12. LetH andK be proper subgroups of a groupG. ThenH is said to be a proper

supplement to K (or to be supplemented by K) in G if G = HK.

Definition 3.1.13. Let H and K be proper subgroups of a group G. Then H is said to be a

complement to K (or to be complemented by K) in G if G = HK and H ∩K = {1}.

Definition 3.1.14. Let H and K be proper subgroups of a group G. Then H is called a minimal

supplement to K if H is a supplement to K in G and there does not exist a proper subgroup L of

H such that G = KL.

We observe from Corollary 3.1.11 that if N is a normal subgroup of a group G and H is any

subgroup of G, then we are guaranteed that the product NH is a subgroup of G. However, it

should be noted that N being a normal subgroup of a group G is a sufficient condition, and not

a necessary condition, for the product NH to be a subgroup of G for any other subgroup H of

G. What this means is that the product HK of two subgroups H and K may be a subgroup of G

even when none of the two subgroups is normal in G. The example below verifies this fact:

Example 3.1.15. The dihedral group

D4 =
〈
r, s | r4 = s2 = 1, srs−1 = r−1

〉
= {1, r, r2, r3, s, sr, sr2, sr3}
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has subgroups H = {1, s} and K = {1, sr2}. Both H and K are not normal subgroups of

D4. H is not normal since r−1(s)r = srs−1(s)r = srr = sr2 /∈ H . Also K is not normal since

r−1(sr2)r = srs−1(sr2)r = srr2r = s /∈ K. However the product HK = {1, s, sr2, r2} is a

subgroup of the group D4.

A product HK is a way of combining two subgroups of a group G to get a new subset which

may or may not be a subgroup ofG. In that sense it is worthy discussing intersections and unions

of subgroups briefly. We note the two theorems below:

Theorem 3.1.16. Let H and K be two subgroups of a group G. Then the intersection H ∩K is

also a subgroup of G.

Proof. Since 1G ∈ H and 1G ∈ K, we have that 1G ∈ H ∩ K and so H ∩ K is non-empty.

Now let a, b ∈ H ∩K. We need to show that ab−1 ∈ H ∩K. But a, b ∈ H ∩K ⇒ a, b ∈ H

and a, b ∈ K. Since H and K are groups themselves, b ∈ H and b ∈ K implies that b−1 ∈ H

and b−1 ∈ K. Hence, ab−1 ∈ H and ab−1 ∈ K by closure. Thus, ab−1 ∈ H ∩K and the proof

follows by the subgroup criterion.

Theorem 3.1.17. Let H and K be subgroups of a group G. Then the union H ∪K is a subgroup

of the group G if and only if H ≤ K or K ≤ H .

Proof. Suppose H ⊆ K or K ⊆ H . Then H ∪ K = K or H ∪ K = H correspondingly. In

either case H ∪K is a subgroup of G since both H and K are subgroups of G.

Conversely, suppose that H ∪K is a subgroup of G. To show that H ⊆ K or K ⊆ H we need

only show H * K implies K ⊆ H . Suppose H * K. Then there is an h ∈ H such that h /∈ K.

Let k ∈ K. Then h, k ∈ H ∪ K which means that hk ∈ H ∪ K since H ∪ K is a group in

its own right. If hk ∈ K, then (hk)k−1 = h(kk−1) = he = h ∈ K, a contradiction. Thus,

hk ∈ H which means h−1(hk) = (h−1h)k = ek = k ∈ H . Since k was picked arbitrarily from

the subgroup K we have shown that K ⊆ H and this completes the proof.

Lemma 3.1.18 (Dedekind’s Lemma). [18] Let H, K and L be subgroups of a group G such that

K ⊆ L. Then (HK) ∩ L = (H ∩ L)K.
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Proof. Since H ∩ L ⊆ H , then (H ∩ L)K ⊆ HK. Similarly, since H ∩ L ⊆ L, we have that

(H ∩ L)K ⊆ LK = L. Thus,

(H ∩ L)K ⊆ HK ∩ L. (3.1)

Choose an element x ∈ (HK) ∩ L. Then x = hk for some h ∈ H and k ∈ K and x ∈ L.

Thus, h = xk−1 ∈ LK = L. Now since H ∩ L ⊆ L, it follows that h ∈ H ∩ L, and so

x = hk ∈ (H ∩ L)K. Therefore

(HK) ∩ L ⊆ (H ∩ L)K. (3.2)

Now combining (3.1) and (3.2) gives that (HK) ∩ L = (H ∩ L)K.

3.2 Nilpotent groups

If G is a group we recall that the center of G, denoted by Z(G), is the set of all elements of G

which commute with every element of G. That is Z(G) = {z ∈ G | zg = gz ∀g ∈ G}. We also

remember that Z(G) is a subgroup of the group G, a normal subgroup for that matter.

Definition 3.2.1. Let G be a group. We define inductively the n-th center of G, denoted by

Zn(G), as follows:

Zn(G) = {x ∈ G | xyx−1y−1 ∈ Zn−1(G) ∀y ∈ G}.

For n = 0 we have Z0(G) = {1} and so we observe that

Z1(G) = {x ∈ G | xyx−1y−1 ∈ {1} ∀y ∈ G} = {x ∈ G | xy = yx ∀y ∈ G} = Z(G).

The ascending series

{1} = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ · · · ⊂ Zn(G) ⊂ . . .

of subgroups of the group G is called the upper central series of G.

A nilpotent group can be defined using the upper central series as below:
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Definition 3.2.2. A group G is said to be nilpotent if Zm(G) = G for some positive integer m.

The smallest m such that Zm(G) = G is called the class of nilpotency of G.

It is well known from elementary group theory that if G is an abelian group, then Z(G) = G.

Thus, trivially, every abelian group is nilpotent since Z1(G) = Z(G).

Theorem 3.2.3. If G is a nilpotent group and H is a proper subgroup of G then H is also a

proper subgroup of the normaliser NG(H) of H in G.

Proof. Let G be a nilpotent group of class r. It is trivial that {1} = Z0(G) ≤ H . It is also

obvious that G = Zr(G) � H . Hence there exits a unique integer k with 0 ≤ k ≤ r − 1 such

that

Zk(G) ≤ H, Zk+1(G) � H.

Thus there is an element u such that u ∈ Zk+1(G) and u /∈ H . It suffices to show that

u ∈ NG(H). Let h1 ∈ H . Then [u, h1] ∈ [Zk+1(G), G] ≤ Zk(G) ≤ H. This means that

u−1h−11 uh1 = h2 for some h2 ∈ H . Hence u−1h−11 u ∈ H . Since h−11 runs through H together

with h1, we have shown that u−1Hu ⊂ H . Using the same argument with u replaced by u−1

we have that uHu−1 ⊂ H; that is H ⊂ u−1Hu which then imply that u−1Hu = H . Thus,

u ∈ NG(H).

Corollary 3.2.4. Every maximal subgroup of a nilpotent group G is normal in the group G.

Proof. Let M be a maximal subgroup of the group G. Since M is properly contained in G

we have that M < NG(M) ≤ G by Theorem 3.2.3. Now the maximality of M implies that

NG(M) = G. Thus M �G.

Theorem 3.2.5. Let G be a group. Then G is nilpotent if and only if G′ ≤ Φ(G), where Φ(G)

denotes the Frattini subgroup of G.

Proof. Suppose G is nilpotent and let M be a maximal subgroup of G. Then by Corollary 3.2.4,

we have that M � G. Also by Theorem 2.1.19 of Chapter 2, we have that G/M is cyclic of

prime order and so G/M is an abelian group. Therefore G′ ≤M . This is true for every maximal
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subgroup M of G and so, by definition of the Frattini subgroup we deduce that G′ ≤ Φ(G).

Conversely, suppose G′ ≤ Φ(G). We need to show that G is nilpotent. But G′ ≤ Φ(G) implies

that G′ ≤ M for every maximal subgroup M of G. Thus, M/G′ is a subgroup of an abelian

group G/G′ and so M/G′ � G/G′ as every subgroup of an abelian group is normal. Therefore,

M �G and so we have that every maximal subgroup of G is normal. Hence G is nilpotent.

3.3 Solvable groups

Definition 3.3.1. A groupG is said to be solvable (or soluble) if it has a solvable series, by which

we mean a series

{1} = G0 �G1 � · · ·�Gn = G

in which each factor Gi+1/Gi is abelian. The length of a shortest solvable series of the group G

is called the derived length of G.

Remark 3.3.2. Trivially every abelian group G is solvable (with solvable length 1) since the

series

{1}�G

is already a solvable series of G.

Theorem 3.3.3. Every subgroup H of a solvable group G is itself solvable.

Proof. Since G is solvable, let {1} = G0 � G1 � · · · � Gn = G be a solvable series of G.

Consider the series

{1} = (H ∩G0) ≤ (H ∩G1) ≤ (H ∩G2) ≤ · · · ≤ (H ∩Gn) = H. (3.3)

This is a subnormal series of H since H ∩ Gi = (H ∩ Gi+1) ∩ Gi �H ∩ Gi+1. By the second

isomorphism theorem, we have that

(H ∩Gi+1)/(H ∩Gi) ∼= Gi(H ∩Gi+1)/Gi ≤ Gi+1/Gi.
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Now since the factor groups Gi+1/Gi are abelian for all i, the subgroups (H ∩Gi+1)/(H ∩Gi)

are also abelian for all 1 ≤ i ≤ n− 1. Therefore, the series given in (3.3) is a solvable series of

H and so H is solvable.

Theorem 3.3.4. Let G be a group and let H � G. If both H and G/H are solvable, then G is

solvable.

Proof. See [20].

3.4 Sylow p−subgroups

We recall Lagrange’s theorem which states that if H is a subgroup of a finite group G, then the

order ofH divides the order ofG. We also know that the converse of Lagrange’s theorem is false:

that is, if G is a finite group and d divides |G|, it is not always true that G contains a subgroup

of order d. An example of this is the alternating group A5 whose order is 60; and yet it has no

subgroup of order 30.

However, the Norwegian mathematician Peter Ludwig Sylow discovered that the converse of

Lagrange’s theorem is partially true as we shall see later in this section. Sylow subgroups will be

needed in this dissertation and so the need to revisit them. Since Sylow subgroups are p−groups

we first define a p−group.

Definition 3.4.1. Let p be a prime. A group G is called a p−group if every element g of G has

order pk for some k ∈ N.

Theorem 3.4.2 (Cauchy’s Theorem). Let p be a prime. If G is a finite group such that p divides

|G|, then G contains an element of order p.

Proof. See [19].

The corollary below suggests that the converse of Lagrange’s theorem is true if the divisor d

is a prime.

Corollary 3.4.3. Let p be a prime. If G is a finite group such that p divides |G|, then G contains

a subgroup of order p.
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Proof. Let G be a finite group and let p be a prime such that p divides the order of G. Then

by Cauchy’s Theorem G contains an element x of order p. Thus, the cyclic subgroup H = 〈x〉

generated by the element x has order p.

Theorem 3.4.4. A finite group G is a p−group if and only if |G| = pm, where p is a prime and

m is a non-negative integer.

Proof. Let G be a group and suppose |G| = pm. Then if g ∈ G we have that o(g)| pm by

Lagrange’s theorem. That is, every element of G has order pk for some positive integer k ≤ m.

Hence, G is a p−group.

Conversely, suppose that G is a p−group. Assume that there is a prime q 6= p which divides the

order of G. By Cauchy’s theorem, G contains an element of order q, which contradicts the fact

that G is a p−group. Thus, there does not exist such a prime as q and so |G| = pm.

Lemma 3.4.5. Let G be a finite p−group. If H is a proper subgroup of G, then H < NG(H).

Proof. See [20].

Theorem 3.4.6. Let G be a finite p−group. Then every maximal subgroup of G is normal and

has index p.

Proof. Let M be a maximal subgroup of the p−group G. Then by Lemma 3.4.5, we have that

M < NG(M) ≤ G. Consequently, the maximality ofM gives thatNG(M) = G, that is, M�G.

Now thatK is both a maximal and normal subgroup ofG, the index [G : K] is prime by Theorem

2.1.19.

Definition 3.4.7. Let G be a finite group and p be a prime. If |G| = pkq, where k is a non-

negative integer and q is a positive integer such that p does not divide q, then a subgroup of G of

order pk is called a Sylow p−subgroup of G or Sylow subgroup for short.

From the definition of a Sylow p−subgroup of a group, we note that an equivalent definition

of a Sylow p−subgroup would be the definition below:

Definition 3.4.8. Let p be a prime. A Sylow p−subgroup of a finite group G is a maximal

p−subgroup P .
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The fact that Sylow p−subgroups are maximal subgroups helps us prove the following theo-

rem:

Theorem 3.4.9. Let P be a Sylow p−subgroup of a finite group G, then every conjugate of P is

also a Sylow p−subgroup of G.

Proof. Let g ∈ G, then gPg−1 is a p−subgroup of G. If gPg−1 is not maximal then there exists

a maximal p−subgroup Q with gPg−1 < Q. Hence, P < g−1Qg, which is a contradiction since

P is a maximal subgroup. Thus, gPg−1 is a maximal p−subgroup and the proof follows by

Definition 3.4.8.

Corollary 3.4.10. Let p be a prime. Then a finite group G has a unique Sylow p−subgroup P if

and only if P �G.

Proof. Assume that P , a Sylow p−subgroup of G, is unique. By Theorem 3.4.9, for each g ∈ G,

the conjugate gPg−1 is also a Sylow p−subgroup of G. Now by uniqueness of P , we have that

gPg−1 = P for all g ∈ G, and so P �G.

Conversely, assume that P �G. If Q is any Sylow p−subgroup of G, then Q = bPb−1 for some

b ∈ G as we shall see in Theorem 3.4.12 that any two Sylow p−subgroups are conjugate. But

since P is normal, we deduce that bPb−1 = P , and so Q = P .

Below are the three major Sylow’s theorems:

Theorem 3.4.11. (Sylow I). Let G be a finite group and p be a prime. If |G| = pkq with p and q

coprime, then G contains a subgroup of order pk, that is, Sylow p−subgroups always exist.

Proof. See [19].

Theorem 3.4.12. (Sylow II). Let G be a finite group of order pkq where p is a prime. Then all

Sylow p−subgroups are conjugate to each other.

Proof. See [19].

Theorem 3.4.13. (Sylow III). For each prime p let np denote the number of Sylow p−subgroups.

If |G| = pkm where (p,m) = 1, then np ≡ 1 mod p and np|m.
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Proof. See [19].

There are various applications of Sylow subgroups in group theory. Sylow subgroups can be

used to characterise certain types of groups as we may see in the following lemma and in the

subsequent theorem:

Lemma 3.4.14. Let G be a group. The following statements are equivalent:

(i) G is nilpotent.

(ii) Every Sylow p−subgroup of G is normal in G.

Proof. See [18].

Theorem 3.4.15. A finite group G is nilpotent if and only if it is the direct product of its Sylow

subgroups.

Proof. See [20].

3.5 The Frattini Subgroup

Definition 3.5.1. Let G be a group. The intersection of all the maximal subgroups of G is called

the Frattini subgroup of G, and denoted by Φ(G).

Remark 3.5.2. Let G be a group. If G 6= {1} and G is finite, then G certainly has at least one

maximal subgroup. After all every proper subgroup of a group G is either a maximal subgroup

of G or is contained in a maximal subgroup of G. However, if G is infinite it may have no

maximal subgroups. If an infinite group G does not have a single maximal subgroup, then we

define Φ(G) = G. Also, if G = {1}, we define Φ(G) = {1} = G.

Definition 3.5.3. IfG is a group, an automorphism ofG is an isomorphism fromG toG. The set

of all automorphisms of G, denoted by Aut(G), forms a group under functional composition.
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Remark 3.5.4. A subgroup K of a group G is called characteristic if φ(K) = K for every

automorphism φ of G. Since any automorphism of G sends a maximal subgroup into another

maximal subgroup, the set of all maximal subgroups of G is invariant under any automorphism

of G, and so is the Frattini subgroup Φ(G) of G. Thus, Φ(G) is a characteristic subgroup and

since characteristic subgroups are normal, we deduce that Φ(G) �G.

Definition 3.5.5. An element x of a group G is called a non-generator of G if for every subset S

of G such that 〈S, x〉 = G, then 〈S〉 = G.

Theorem 3.5.6. For every finite group G the Frattini subgroup of G is the set of all non-

generators of G.

Proof. Let x be a non-generator of the group G and suppose that x /∈ Φ(G). Then by definition

of Φ(G) there must exist a maximal subgroup M of G such that x /∈ M . Hence M 6= 〈x,M〉

and so G = 〈x,M〉 as M is maximal in G. But since x is a non-generator of G we have that G =

〈M〉 = M , which is a contradiction. Thus, our supposition is defeated and so x ∈ Φ(G).

Corollary 3.5.7. Let G be a group and K be a subgroup of G. If G = Φ(G)K, then G = K.

Proof. If G = Φ(G)K, then we have that G = 〈Φ(G), K〉. Now by Theorem 3.5.6 we obtain

that G = 〈K〉 = K.

Corollary 3.5.8. Let G be a group. If G/Φ(G) is cyclic, then G is cyclic.

Proof. Let x ∈ G such that the coset xΦ(G) generates the quotient group G/Φ(G). Then we

have that G = 〈x,Φ(G)〉 and so by Theorem 3.5.6, we deduce that G = 〈x〉. Therefore G is

cyclic.

Lemma 3.5.9. Let G be a group and N �G. Then Φ(N) ≤ Φ(G).

Proof. Since Φ(N) is a characteristic subgroup of N and N � G, we have that Φ(N) is normal

in G. Suppose Φ(N) � M , where M is a maximal subgroup of G. Since M ≤ Φ(N)M ≤ G,

maximality of M gives that Φ(N)M = G. Now since Φ(N) ≤ N , Dedekind’s Lemma gives

that N = (Φ(N)M) ∩N = (M ∩N)Φ(N). By Corollary 3.5.7 we obtain M ∩N = N , so that

28



Φ(N) ≤ N ≤ M . But this contradicts our assumption that Φ(N) � M . Hence Φ(N) ≤ M for

any maximal subgroup M of G, and so Φ(N) ≤ Φ(G).

Remark 3.5.10. It is not true in general that if H is a subgroup of G then Φ(H) ≤ Φ(G). As a

counter example, consider the symmetric group S4. It can be easily checked that Φ(S4) = {(1)}.

However, consider the Sylow 2−subgroup

H = {(1), (1234), (13)(24), (1432), (13), (12)(34), (24), (14)(23)}

of S4 isomorphic to the dihedral group D4. The maximal subgroups of H are

〈(1234)〉, 〈(13)(24), (13)〉 and 〈(13)(24), (12)(34)〉. Thus, Φ(H) = {(1), (13)(24)}, and so

Φ(H) � Φ(S4).

Lemma 3.5.11. Let G be a group and let K�G. If K 
 Φ(G), then K has a proper supplement

in G.

Proof. K not contained in Φ(G) implies that K is not contained in M for some maximal sub-

group M of G. Since K � G, we deduce that the product KM is a subgroup of G. Thus,

M < KM ≤ G. Now, since M is maximal in G and since KM contains M properly, we have

that KM = G. Hence, K has a proper supplement in G.

Theorem 3.5.12. LetG be a group such thatH ≤ G andK�G. IfK ≤ Φ(H), thenK ≤ Φ(G).

Proof. We shall prove the contra-positive of this statement: that is, if K � Φ(G) then K �

Φ(H). Suppose K � Φ(G). Then, by Lemma 3.5.11, there is a proper subgroup J of G such

that G = JK.

Assume that K ≤ Φ(H). Then

K ≤ H ≤ G = JK.

Now, by Dedekind’s Lemma we have that

H = H ∩G = H ∩ (JK) = (H ∩ J)K.
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By Lemma 3.5.11 again, the assumption that K ≤ Φ(H) implies that H ∩ J = H which would

further imply that

K ≤ H ≤ J.

Therefore, G = JK = J < G, a contradiction. Hence, if K � Φ(G), it follows that

K � Φ(H).

Theorem 3.5.13. Let G be a group and let K�G. If H is a minimal supplement to K in G, then

H ∩K ≤ Φ(H).

Proof. Since H is a supplement to K in G, we have that G = HK. Suppose, to the contrary,

that H ∩K � Φ(H). Then, by Lemma 3.5.11, there exists a proper subgroup L of H such that

H = (H ∩K)L. Now, Dedekind’s Lemma gives that

H = (H ∩K)L = H ∩ (KL),

which then implies that G = KL. But this contradicts the fact that H is a minimal supplement

to K.

Lemma 3.5.14. Let N �G. Then the following are true:

(i) Φ(G)N/N ≤ Φ(G/N).

(ii) If N ≤ Φ(G), then Φ(G/N) = Φ(G)/N .

Proof. (i) Let K be a maximal subgroup of G/N , then by the correspondence theorem there

exists a maximal subgroup M of G such that N ≤ M < G and K = M/N . Now

Φ(G/N) =
⋂

(M/N), where M is maximal in G. Since Φ(G) ≤ M , we have that

Φ(G)N ≤MN = M . Thus, Φ(G)N/N ≤M/N for all M maximal in G. Therefore,

Φ(G)N/N ≤
⋂

(M/N) = Φ(G/N).

(ii) By the correspondence theorem there is a one-to-one correspondence between the sub-

groups of G/N and those subgroups of G that contain N . Now N ≤ Φ(G) implies that N
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is contained in every maximal subgroup M of G. Hence,

Φ(G/N) =
⋂

(M/N),where M runs through all maximal subgroups of G

=
(⋂

M
)
/N = Φ(G)/N.

Corollary 3.5.15. Φ (G/Φ(G)) = {1}.

Proof. Since Φ(G) is a normal subgroup of G, by Lemma 3.5.14 part (ii) we have that

Φ (G/Φ(G)) = Φ(G)/Φ(G) = {1}.

The lemma below is usually referred to as Frattini’s argument.

Lemma 3.5.16. Let H be a normal subgroup of a group G and let P be a Sylow p−subgroup of

H . Then G = HNG(P ), where NG(P ) is the normalizer of P in G.

Proof. We know that HNG(P ) ≤ G since H is a normal subgroup of G. Now, to show that

G = HNG(P ) it remains to show that G ≤ HNG(P ). Since P ≤ H we have that gPg−1 ≤

gHg−1 = H . The equality gHg−1 = H holds because H �G. Since all Sylow p−subgroups of

H are conjugate in H there exists h ∈ H such that

P = h−1gPg−1h = h−1gP (h−1g)−1.

Now, P = h−1gP (h−1g)−1 implies that h−1g ∈ NG(P ) which further mean that hh−1g = g ∈

HNG(P ). Thus, G ≤ HNG(P ) and so G = HNG(P ).

Lemma 3.5.17. If G is a finite group, then the Frattini subgroup Φ(G) of G is nilpotent.

Proof. Let P be a Sylow subgroup of Φ(G). Since Φ(G) �G, Frattini’s argument (See Lemma

3.5.16) attest that

G = NG(P )Φ(G).
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Hence, by Corollary 3.5.7, NG(P ) = G. Thus P � G, and so P � Φ(G). Now we have shown

that every Sylow subgroup of Φ(G) is normal in Φ(G) and it follows from Lemma 3.4.14 that

Φ(G) is nilpotent.

Theorem 3.5.18. The Frattini factor group G/Φ(G) of a finite p−group G is an elementary

abelian p−group.

Proof. LetM denote the set of all maximal subgroups of G. Since G is a p−group, we have that

M � G and G/M is a cyclic p−group of order p for all M ∈ M. Since G/M is a cyclic group

of order p for all M ∈ M, it follows that (gM)p = gpM = M and so gp ∈ M for all M ∈ M.

Thus we deduce that gp ∈ Φ(G) for every g ∈ G. Hence for every g ∈ G we have that

(gΦ(G))p = gpΦ(G) = Φ(G).

Therefore, the factor group G/Φ(G) is an elementary abelian p−group.

Lemma 3.5.19. Let G1, G2, . . . , Gr be finite groups. Then

Φ(G1 ×G2 × · · · ×Gr) = Φ(G1)× Φ(G2)× · · · × Φ(Gr).

Proof. See [7].

3.6 The Residual subgroup

Before we end this chapter, we define a vital subgroup to group factorizations, the residual sub-

group. Here is the motivation for this concept: Let A and N be subgroups of a group G such

that N < A and N �G. We shall prove, in Chapter 4 (See Theorem 4.1.4), that if A/N < G/N

has a proper supplement in G/N , then A has a proper supplement in G. Consequently, if every

subgroup of G/N had a proper supplement in G/N , then every subgroup H of G which contains

the subgroup N would have a proper supplement in G.

A non-trivial group G is called an aS−group if every non-trivial subgroup of G has a proper

supplement in G. The search for a proper factorization of a group G is therefore highly assisted
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by the existence of a proper normal subgroup N of G such that G/N is an aS−group. The

residual subgroup of a group G is, in simplest terms, the smallest normal subgroup N such that

G/N is an aS−group, which is why we want to study it. A few definitions will be given before

we finally define the said concept.

Below is the definition of a formation:

Definition 3.6.1. A class of finite groups F is said to be a formation if every homomorphic image

of an F−group is an F−group and ifG/(N∩M) belongs to F wheneverG/N andG/M belong

to F .

Below are some examples of formations:

• The class of finite solvable groups;

• The class of finite nilpotent groups;

• The class of finite abelian groups.

Definition 3.6.2. A formation F is called a saturated formation if G ∈ F whenever G/Φ(G) ∈

F , where Φ(G) denotes the Frattini subgroup of G.

Below we give an example of a saturated formation and an example of a non-saturated formation:

Example 3.6.3. The class S of finite solvable groups is a saturated formation.

Proof. Let G be a finite group and assume that G/Φ(G) ∈ S. With this assumption, we should

show that G ∈ S, that is, we should show that G is solvable. By Lemma 3.5.17, we deduce that

Φ(G) is solvable since every nilpotent group is solvable. Thus, so far we have that both G/Φ(G)

and Φ(G) are solvable and the proof follows by Theorem 3.3.4.

Example 3.6.4. The formation of finite abelian groups denoted by Ab is a non-saturated forma-

tion. To justify this claim consider the group

G = D4 =
〈
r, s | r4 = s2 = 1, srs−1 = r−1

〉
= {1, r, r2, r3, s, sr, sr2, sr3}
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The maximal subgroups of G are M1 = {1, r, r2, r3}, M2 = {1, r2, s, sr2} and M3 =

{1, r2, sr, sr3}. Thus Φ(G) = M1 ∩M2 ∩M3 = {1, r2}. With this example we observe that

G/Φ(G) ∈ Ab (since every group of order 4 is abelian); yet G does not belong to Ab as it is not

abelian.

Definition 3.6.5. A group G is an aS−group if it has order 1 or if every non-trivial subgroup H

of G has a supplement in G.

It turns out that the collection of all aS−groups, denoted by aa forms a formation.

Theorem 3.6.6. Every subgroup of an aS−group is an aS−group.

Proof. Let G be an aS−group and H ≤ G. If H = {1} or G, then the result follows trivially.

Suppose that H is non-trivial and proper in G. Let K be a non-trivial subgroup of H . Since K

is a non-trivial subgroup of G, there exists a proper subgroup L of G such that G = KL. By the

Dedekind’s Lemma,

H = G ∩H = (KL) ∩H = K(L ∩H).

If L ∩ H = H , then H ≤ L. This would then imply that K ≤ L and G = L, a contradiction.

Thus, L ∩H is a proper subgroup of H , and H is an aS−group.

Theorem 3.6.7. If G is an aS−group, then the Frattini subgroup of G is trivial.

Proof. Suppose that Φ(G) 6= {1}. Let x ∈ Φ(G), such that x 6= 1. Since G is an aS−group,

there is a proper subgroupH ofG such thatG = 〈x〉H . Consequently, G = 〈x,H〉 = 〈H〉 = H ,

a contradiction. Thus, Φ(G) = {1}.

Definition 3.6.8. Let G be a group. Then G is supersolvable (or supersoluble) if there exists a

normal series

{1} = G0 �G1 �G2 � · · ·�Gk = G

such that each quotient group Gi+1/Gi is cyclic for all 0 ≤ i ≤ k − 1.
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Theorem 3.6.9. Suppose G is a finite group with the property that all its maximal subgroups are

of index a prime. Then G is supersolvable.

Proof. See [9].

We recall that an elementary abelian group G is an abelian group in which every non-trivial

element has order p, where p is a prime. The elementary groups have the property that the Frattini

subgroup, Φ(G), of the group G is the identity and each element x ∈ G is not only a generator of

G, but also of each subgroup of G containing it. Bechtell in [5] has defined an elementary group

as below:

Definition 3.6.10. A group G is an elementary group if the Frattini subgroup of each subgroup

H of G, Φ(H), is the identity.

Below is the characterisation theorem of aS−groups.

Theorem 3.6.11. A group G is an aS−group if and only if G is supersolvable with elementary

abelian Sylow subgroups.

Proof. First suppose G is an aS−group, and let x ∈ G, x 6= 1. If G = 〈x〉, then G is supersolv-

able. SupposeG 6= 〈x〉. Then there exists a proper normal subgroupN ofG such thatG = 〈x〉N

for G is an aS−group. Let M be a normal subgroup of G maximal with respect to x /∈ M and

N ⊆M . We claim that G/M has prime order:

SinceG = 〈x〉M , we deduce thatG/M ∼= 〈x〉M/M ∼= 〈x〉/〈x〉∩M by the second isomorphism

theorem. Thus, G/M is cyclic and so abelian. To prove our claim, it now remains to show that

G/M is simple. Suppose, to the contrary, that G/M is not simple, then there is a non-trivial

proper subgroup K/M such that K/M � G/M . Consequently, K is a proper normal subgroup

of G with M ⊆ K. If x ∈ K, then 〈x〉M = G ⊆ K, a contradiction. Thus, x /∈ K, which

again contradicts the maximality ofM . This implies thatG/M is simple and the claim is proved.

Hence, M has prime index. Since M was arbitrary, we have that every maximal subgroup of G

has prime index. Therefore, G is supersolvable by Theorem 3.6.9.

Conversely, suppose G is supersolvable and every Sylow subgroup of G is elementary abelian.
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By Theorem 1.1 of [12], the condition that all the Sylow subgroups of G are elementary abelian

is equivalent to G being elementary itself. Since all elementary groups have trivial Frattini, we

have that Φ(G) = {1}. If H is a non-trivial normal subgroup of G, then H has a proper supple-

ment in G by Theorem 3.5.11. Otherwise, suppose H is a non-trivial permutable subgroup of G.

Then since Φ(G) = {1}, Theorem 2.1 of [12] asserts that H has a proper supplement in G and

so G is an aS−group.

Corollary 3.6.12. Let H and K be aS−groups. Then, the direct product H ×K of H and K is

also an aS−group.

Proof. Since H and K are aS−groups, by Theorem 3.6.11 we have that both H and K are

supersolvable groups. Hence, H × K is supersolvable. It remains to show that all the Sylow

p−subgroups of H ×K are elementary abelian. By Theorem 1.1 of [12], we have that H and K

are elementary groups. Now since H and K are elementary groups, we have that Φ(H) = {1H}

and Φ(K) = {1K}. Furthermore, by Theorem 3.5.19 it follows that Φ(H × K) = Φ(H) ×

Φ(K) = {1} and so H × K is an elementary group. Hence, the proof follows by Theorem

3.6.11.

Example 3.6.13. Here we give an example of an aS−group. It is easy to check that all the

subgroups of the symmetric group S3 of order 2 are supplemented by the alternating subgroup

A3 = 〈(123)〉. Thus, every non-trivial subgroup of S3 has a proper supplement in S3 and so

the symmetric group S3 is an aS−group by definition. Also using the characterisation theorem

it is easy to see that S3 is an aS−group as it is supersoluble and all its Sylow subgroups are

elementary abelian.

Example 3.6.14. A non-example of an aS−group is the alternating group A4. Two reasons will

be given to justify this claim:

• The series {1} �V4 � A4 is the longest normal series of the alternating group A4. Now

since the quotient factor V4/{1} ∼= V4 is not cyclic we have that A4 is not supersoluble.

Hence, by the characterisation theorem,A4 cannot be an aS−group as it is not supersoluble

in the first place.
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• By using the definition we also observe that A4 cannot be an aS−group. This is be-

cause the three subgroups A = {(1), (12)(34)}, B = {(1), (13)(24)} and C =

{(1), (14)(23)} of A4 do not have proper supplements in the group A4.

Definition 3.6.15. Let G be a group. Then the residual subgroup of the group G denoted by GS

is the intersection of all the normal subgroups N of G such that G/N is an aS−group.

The example below is an illustration of how to find the residual subgroup of a group.

Example 3.6.16. Suppose we want to find the residual subgroup of the alternating groupA4. The

first thing we do is to find all the normal subgroups N of A4 such that A4/N is an aS−group.

Clearly A4 will be one of such normal subgroups since A4/A4 is a group of order 1 and we know

that all groups of order 1 are aS−groups. The next one will be the Klein 4−group V4 since

A4/V4 is an aS−group. Though normal, the trivial subgroup {1} does not qualify in our list

because A4/{1} ∼= A4 is not an aS−group as we saw from the previous example. Thus, the

residual subgroup of A4 is AS
4 = A4 ∩V4 = V4.

From the small example above we observe that the process of calculating the residual sub-

group of a group can be tedious especially when the order of the group large enough. Lucky

enough there are some properties that one can use to find it without going through the process of

finding all the normal subgroups N such that G/N is an aS−group and taking the intersection.

Below are some important properties of the residual subgroup GS of a non-trivial group G.

Lemma 3.6.17. Let G be a group and GS be the residual subgroup of G. Then the following

properties hold:

(i) Φ(G) ≤ GS .

(ii) G′ is a proper subgroup of G if and only if GS is a proper subgroup of G.

(iii) If N �G, then NS ≤ GS and GSN/N = (G/N)S .

(iv) For a group L with residual LS , (G× L)S = GS × LS .

(v) GS ∩ Z(G) ≤ Φ(G).
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(vi) For any subgroup H of G, Φ(H) ≤ GS .

Proof. (i) Since GS is a normal subgroup of G, by part (i) of Lemma 3.5.14 we have that

Φ(G)GS/GS ≤ Φ(G/GS). Since G/GS is an aS−group, Theorem 3.6.7 asserts that

Φ(G/GS) = {1}. Hence, Φ(G)GS/GS = {1} and so Φ(G)GS = GS . Therefore, Φ(G) ≤

GS .

(ii) Suppose G′ is a proper subgroup of G. Since G/G′ is abelain and all abelian groups are

supersolvable, we have that G/G′ is supersolvable. By Theorem 3.6.11, it follows that

G/G′ is an aS−group. Hence, GS ≤ G′.

The converse follows from the fact that G/GS is supersolvable.

(iii) Note that the result follows if N ≤ GS . If N is not contained in GS , then GSN/GS is a

non-trivial subgroup of the aS−groupG/GS . By Theorem 3.6.6, we have thatGSN/GS is

also an aS−group. The second isomorphism theorem gives that GSN/GS ∼= N/(GS ∩N)

and so N/(GS ∩ N) is an aS−group. By definition of the residual subgroup, NS ≤

GS ∩N ≤ GS . Thus, NS ≤ GS .

To prove the second part: Let (G/N)S = S/N . Given that (G/N)/(S/N) ∼= G/S, which

is an aS−group, GS ≤ S. Thus,

GSN/N ≤ S/N = (G/N)S.

To obtain equality, it remains to show that (G/N)S ≤ GSN/N . If GSN = G, then

(G/N)S ≤ G/N = GSN/N and GSN/N = (G/N)S .

Now suppose that GSN < G. Then it follows, by the third isomorphism theorem, that

(G/N)/(GSN/N) ∼= G/GSN . Since GS ≤ GSN < G and since G/GS is an aS−group,

we deduce that G/GSN is an aS−group by Theorem 3.6.6, that is (G/N)/(GSN/N) is

an aS−group. Therefore, (G/N)S ≤ GSN/N and so GSN/N = (G/N)S .

(iv) SinceGS�G and LS�L, Theorem 3.1.6 gives that (G×L)/(GS×LS) ∼= G/GS×L/LS .

Furthermore, since G/GS and L/LS are aS−groups, the direct product G/GS × L/LS is

also an aS−group by Corollary 3.6.12. Hence, (G× L)S ≤ GS × LS by definition of the
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residual subgroup of a group.

Secondly, by part (iii) both GS and LS are contained in (G × L)S . Thus, GS × LS ≤

(G× L)S and GS × LS = (G× L)S .

(v) Let GS ∩ Z(G) = K 6= {1} and assume that K is not contained in Φ(G). Thus, there

is a maximal subgroup M of G such that K 
 M . Since both GS and Z(G) are normal

subgroups of G, we have that K �G. Now the maximality of M gives that KM = G. Let

g ∈ G. Then g = km, where k ∈ K and m ∈M , and M g = Mkm. Since k ∈ Z(G),

M g = Mkm = Mm = M

and M � G. Since M is maximal in G, Theorem 2.1.19 asserts that [G : M ] = p for

some prime p. Given that G/M is an aS−group, we have that GS ≤ M , which implies

that K = GS ∩ Z(G) ≤ GS ≤ M , a contradiction. Thus, the assumption that K is not

contained in Φ(G) is false. Hence, K = GS ∩ Z(G) ≤ Φ(G).

(vi) If H ≤ GS , then the proof follows immediately. Consider the case that H is not contained

in GS . Then HGS/GS is a non-trivial subgroup of G/GS . Since G/GS is an aS−group

and since HGS/GS ∼= H/(H ∩ GS) is a subgroup of G/GS , Theorem 3.6.6 asserts that

H/(H ∩GS) is an aS−group too. Thus HS ≤ H ∩GS ≤ GS . By part (i) of this lemma,

we deduce that Φ(H) ≤ GS .

If G is a group, then the Frattini subgroup, Φ(G) of G is contained in the residual subgroup

GS of G by part (i) of Lemma 3.6.17. However, the Frattini subgroup and the residual subgroup

may coincide as the theorem below indicates.

Theorem 3.6.18. [13] If G is nilpotent group then Φ(G) = GS .

Proof. By part (i) of Lemma 3.6.17, all that needs to be shown is that GS ≤ Φ(G). Since G is

nilpotent, it is the direct product of its Sylow subgroups. That is, G = S1×S2× · · · ×St, where

for each i, 1 ≤ i ≤ t, Si is a Sylow pi−subgroup of G. Now by Lemma 3.5.19 we have that

39



Φ(G) = Φ(S1 × S2 × · · · × St) = Φ(S1)× Φ(S2)× · · · × Φ(St) and so

G/Φ(G) ∼= S1/Φ(S1)× S2/Φ(S2)× · · · × St/Φ(St).

Since Sylow subgroups are p−groups, by Theorem 3.5.18 we obtain that Si/Φ(Si) is elementary

abelian for all i, where 1 ≤ i ≤ t. So far we have shown that the Sylow subgroups of G/Φ(G)

are elementary abelian. Theorem 3.5.17 asserts that Φ(G) is nilpotent. Since all nilpotent groups

are supersolvable, we deduce that bothG and Φ(G) are supersolvable. Consequently, G/Φ(G) is

supersolvable and so is an aS−group by Theorem 3.6.11. Therefore, GS ≤ Φ(G) by definition

of residual subgroup.
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CHAPTER 4

Subgroup supplementation

4.1 Subgroups with proper supplements

This chapter is dedicated to investigating conditions under which a subgroup H of a group G has

a proper supplement in G. Here is the motivation behind this topic:

The dihedral group

D4 =
〈
r, s | r4 = s2 = 1, srs−1 = r−1

〉
= {1, r, r2, r3, s, sr, sr2, sr3}

has eight non-trivial subgroups:

(i) Three of order 4 : H1 = {1, r, r2, r3}, H2 = {1, r2, s, sr2} andH3 = {1, r2, sr, sr3}.

(ii) Five of order 2: K1 = {1, s}, K2 = {1, sr}, K3 = {1, sr2}, K4 = {1, sr3} and

N = {1, r2}.

41



We know clearly that when a subgroup H of a finite group G is normal, we are guaranteed by

Corollary 3.1.11 that the product HK is a subgroup of the group G for all subgroups K of G.

The subgroup N = {1, r2} is normal in D4 which implies that the product NK is a subgroup

of D4 for all subgroups K of D4. The trouble here is that out of the eight subgroups listed above

there does not exist a single subgroup K of D4 such that D4 = NK. Something should be

wrong with this particular subgroup N . This is why we have chosen to investigate conditions

under which a proper subgroup has a proper supplement in the group.

Below is the first condition under which a normal subgroup will have a proper supplement in

a finite group.

Theorem 4.1.1. (Condition 1)· A normal subgroup N of G will have a proper supplement in G

if and only if N is not contained in the Frattini subgroup Φ(G) of G.

Proof. Suppose N has a supplement H in G. Then H is contained in a maximal subgroup M

of G. Now since G = NH and H ≤ M , we have that G = NM . Suppose to the contrary that

N ≤ Φ(G), then N ≤ M since Φ(G) ≤ M for all maximal subgroups M of G. But N ≤ M

implies NM = M 6= G, a contradiction. Hence, N is not contained in Φ(G).

Conversely, let N be a normal subgroup of a group G and suppose that N is not contained in

Φ(G). Then N is not contained in M for some maximal subgroup M of G. Since N � G, we

are guaranteed that the product NM is a subgroup of G. Thus, M < NM ≤ G. Since there is

no proper subgroup between M and G containing M , we have that NM = G; and so N has a

supplement in G.

Remark 4.1.2. Condition 1 gives an explanation to the problem presented in the motivation

behind this topic: The subgroups H1, H2 and H3 are the maximal subgroups of the dihedral

group D4. Since the Frattini subgroup of a group is calculated by taking the intersection of all

the maximal subgroups of the group, we observe that Φ(D4) = H1 ∩H2 ∩H3 = {1, r2} = N ;

which implies that N is contained in Φ(D4), no wonder N has no proper supplement in D4.

Below is the second condition:
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Theorem 4.1.3. (Condition 2)· LetN�G. IfN is non-nilpotent thenN has a proper supplement

in G.

Proof. Since N is non-nilpotent, we have that |N | is divisible by at least two primes. Further-

more, by Lemma 3.4.14, there exists a Sylow p−subgroup P of N which is not normal in N . By

the Frattini’s argument,G = NNG(P ) whereNG(P ) is the normalizer of P inG. IfNG(P ) = G,

then P would be normal in G which would eventually mean that P �N , a contradiction. Thus,

NG(P ) < G and so N has a proper supplement in G.

Theorem 4.1.4. (Condition 3)· LetN andA be subgroups of a groupG withN�G andN < A.

If A/N has a proper supplement in G/N then A has a proper supplement in G.

Proof. Suppose A/N has a proper supplement B/N in G/N . Then, G/N = (A/N)(B/N) =

AB/N and so G = AB.

Theorem 4.1.5. (Condition 4)· If A is an abelian normal subgroup of a group G such that

A ∩ Φ(G) = {1}, then A has a supplement in G. In fact, this supplement is a complement.

Proof. Suppose that A is a non-trivial subgroup of G, for otherwise the proof would follow

immediately. Now, A ∩Φ(G) = {1} implies that A � Φ(G). By definition of Φ(G), A � Φ(G)

implies that there is some maximal subgroup M of G such that A � M . Since M does not

contain A and since A�G, we have that M < AM ≤ G, and so the maximality of M gives that

G = AM . So far, we have shown that M is a supplement to A. To show that M is a complement

to A it remains to show that A∩M = {1}. If M is a minimal supplement to A, then by Theorem

3.5.12 we have A ∩M ≤ Φ(M) and by Theorem 3.5.13 it follows that

A ∩M ≤ Φ(G). (4.1)

But from elementary set theory we also have

A ∩M ≤ A. (4.2)

Thus, combining (4.1) and (4.2) we deduce that

A ∩M ≤ A ∩ Φ(G) = {1},
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and so A∩M = {1}. If M is not a minimal supplement to A, then we choose a proper subgroup

K of M such that K is a minimal supplement to A so that the same argument we used to show

that A ∩M = {1} would be applied to K to obtain A ∩K = {1}.

The example below illustrates and verifies Theorem 4.1.5.

Example 4.1.6. Consider the alternating group

G = A4 = {(1), (123), (124), (134), (234), (132), (142), (143), (243), (12)(34),

(13)(24), (14)(23)}.

Apart from the Klein 4−group V4 = {(1), (12)(34), (13)(24), (14)(23)}, all the four sub-

groups of A4 of order 3 are maximal subgroups of the group A4. Hence, the Frattini subgroup

Φ(A4) of A4 is {(1)} which implies that V4 ∩ Φ(A4) = {1}. Now since V4 is both a normal

subgroup of A4 and abelian it satisfies the role of the subgroup A in the hypothesis of Theorem

4.1.5. Now, to verify the theorem it remains to check if there is such a subgroup B of A4 with

V4B = A4 and V4 ∩B = {1}. Choosing B = {(1), (123), (132)} verifies the theorem.

Before we give the next condition under which a proper subgroup will have a proper supple-

ment in a group G we need to define a normal Hall subgroup.

Definition 4.1.7. Let d and n be positive integers, then d is said to be a Hall divisor of n if d is a

factor of n and n
d

is coprime to d. As an example, 2 is a Hall divisor of 6 since 2 and 6
2

= 3 are

co-prime.

Definition 4.1.8. Let H be a subgroup of a group G, then H is called a Hall subgroup of G if the

order |H| of H is a Hall divisor of the order |G| of the group G.

Below is an equivalent definition of a Hall subgroup.

Definition 4.1.9. A Hall subgroup of a finite group G is a subgroup whose order is coprime to

its index.

Example 4.1.10. As a quick example: the Klein 4−group V4 = {(1), (12)(34), (13)(24), (14)(23)}

is a Hall subgroup of the alternating group A4 since the order |V4| = 4 of V4 is a Hall divisor of

the order |A4| = 12 of A4.
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Now we can define a normal Hall subgroup of a group.

Definition 4.1.11. A subgroup H of a group G is called a normal Hall subgroup if H � G and

H is a Hall subgroup of G.

Below is the fifth condition under which a subgroup H of a group G will have a proper

supplement in G. It is known as Schur-Zassenhaus Theorem.

Theorem 4.1.12. (Condition 5)· If K is a normal Hall subgroup of a group G, then K has a

proper supplement in G. In fact, this proper supplement is a complement to K.

Proof. Let |G/K| = n and |K| = m. Then it suffices to show that G has a subgroup H of order

n: for then, since (m,n) = 1, H ∩K = {1}, by the second isomorphism theorem, |HK| = mn

and so G = HK.

We prove by induction on m that G has a subgroup of order n. Assume m > 1, for the result

follows trivially if m = 1. Let p be a prime divisor of m and P be a Sylow p−subgroup of

K. Then, by Frattini’s argument, G = NK, where N = NG(P ). By the second isomorphism

theorem, N ∩K � N and N/(N ∩K) ∼= G/K, of order n. If N < G then N ∩K < K, and

so |N ∩K| is a proper divisor of m. Then, by the induction assumption, N has a subgroup H of

order n. Thus, also H is a subgroup of G of order n.

Example 4.1.13. This example is meant to verify Schur-Zassenhaus Theorem. Let G be the

special linear group SL(2, 3), i.e., the group of invertible 2 × 2 matrices having determinant 1

over the field F3 = {0, 1, 2}. The subgroup

K =


1 0

0 1

 ,

2 0

0 2

 ,

0 2

1 0

 ,

0 1

2 0

 ,

2 2

2 1

 ,

1 2

2 2

 ,

1 1

1 2

 ,

2 1

1 1


is the commutator subgroup of G and so it is normal in G. We also note that |K| = 8 is

a Hall divisor of |G| = 24, thus H is a normal Hall subgroup of G. To verify the Schur-

Zassenhaus Theorem we should find a complement to K. The element

1 1

0 1

 has order 3 and

so the subgroup H =

〈1 1

0 1

〉 has order 3. It can be easily checked that G = HK and

H ∩K = {1}. Hence, H is a complement to K and so the theorem is verified.
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Remark 4.1.14. If the subgroup K is not normal, Schur-Zassenhaus Theorem is not true in

general: That is, even if K was a proper subgroup of G such that |K| is relatively prime to its

index [G : K], K might not have a proper supplement in G. Consider the sporadic simple group

M22. It has a maximal subgroup K of order 5760 = 27325, which is relatively prime to its index

[M22 : K] = 77. However, K has no proper supplement in M22 as M22 is non-factorizable.

By the previous remark, it is clear that Schur-Zassenhaus Theorem is limited to normal sub-

groups. The next condition is an attempt to generalise Schur-Zassenhaus Theorem:

Theorem 4.1.15. (Condition 6)· Let G be a group with GS 6= G, and let {1} < H < G such

that (|H|, [G : H]) = 1. If H is not properly contained in G′, then H has a proper supplement

in G.

Proof. Given that GS < G, part (ii) of Lemma 3.6.17 implies that G′ < G. If G = G′H , then

H has a proper supplement in G. Assume that G 6= G′H . If H = G′, then H � G and H has

a proper supplement in G by Schur-Zassenhaus Theorem. Suppose H 6= G′. Since H 
 G′,

G′H/G′ is a non-trivial subgroup ofG/G′. Furthermore, G′H/G′�G/G′ forG/G′ is an abelian

group. Let |G′H/G′| = |H/(H ∩G′)| = d. By the third isomorphism theorem,

|(G/G′)/(G′H/G′)| = |G/G′H| = |G|
|G′H|

.

Since |G′H| = |G′||H|
|H∩G′| > |H|, let |G|

|G′H| = m. Then, (m, |H|) = 1. Since d divides |H|, we have

that (m, d) = 1 and by Schur-Zassenhaus Theorem, G′H/G′ has a proper supplement K/G′ in

G/G′. As a result, G = HK and H has a proper supplement in G.

Theorem 4.1.16. [13] (Condition 7)· Let A and H be subgroups of a group G such that A is

proper in G and A < H . If A has a proper supplement in G, then A has a proper supplement in

H .

Proof. The proof follows immediately ifH = G. SupposeH is a proper subgroup ofG. SinceA

has a proper supplement inG, it follows thatG = AB for some subgroupB ofG. By Dedekind’s

Lemma, we have that

H = H ∩G = H ∩ (AB) = (H ∩B)A.
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Now we consider the two cases below:

(i) Case 1: If H ∩B = {1}, then A = H; which is a contradiction by hypothesis.

(ii) Case 2: If H ∩ B = H , then A < H ≤ B, another contradiction (since A ≤ B would

imply that G = AB = B).

Thus, H ∩B is a proper supplement to A in H .

The converse of this Condition is not true as the group G = 〈x, y | x9 = y9 = 1, xy = yx〉

indicates. Consider the subgroups H = Φ(G) = 〈x3, y3〉 and A = 〈x3〉 = {1, x3, x6}. The

subgroup A has a proper supplement B = 〈y3〉 = {1, y3, y6} in H since H = AB; yet A has

no proper supplement in G as A is contained in the Frattini subgroup of G.

Theorem 4.1.17. (Condition 8)· Let G be a group and let {1} < H < G. If GS ∩H 6= H , then

H has a proper supplement in G.

Proof. Since GS ∩ H 6= H , it must be that GS 6= G. If HGS = G, then the proof follows

immediately. Suppose HGS 6= G, then HGS/GS is a non-trivial proper subgroup of the group

G/GS , which is an aS−group. Since in an aS−group every non-trivial subgroup has a proper

supplement, there is a proper subgroup K/GS of G/GS such that

G/GS = (HGS/GS)(K/GS) = (HGSK)/GS = HK/GS.

Consequently, G = HK where K is a proper subgroup of G, and hence the proof.

Theorem 4.1.18. (Condition 9) · LetG be a non-cyclic group withGS 6= G. Then every maximal

subgroup M of G has a proper supplement in G.

Proof. Let M be a maximal subgroup of G. If G = MGS , then M has a proper supplement

right away. We therefore suppose G 6= MGS . If M < GS , then GS = G which would contradict

the hypotheses. If GS < M , then GS ∩M 6= M and M would have a proper supplement in G

by Theorem 4.1.17. Finally, if M = GS , then M � G. Suppose M = Φ(G), then G/Φ(G) has

prime order and so is a cyclic group. But G/Φ(G) being cyclic implies, by Corollary 3.5.8, that
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G is also a cyclic group, which contradicts the hypotheses of the theorem. Thus, M 6= Φ(G).

Also since M is maximal in G, we have that M * Φ(G), and by Theorem 4.1.1, M has a proper

supplement in G.

Theorem 4.1.19 (Condition 10). Let G be a finite group, and let p be a prime. Then a normal

Sylow p−subgroup of G has a proper supplement in G.

Proof. Let G be a finite group and let P be a Sylow p−subgroup of G. By definition of a Sylow

p−subgroup, we observe that |P | is relatively prime to [G : P ]. Thus, P is a Hall subgroup of

G. Now since P is normal in G, we have that P is a normal Hall subgroup of G and by Theorem

4.1.12, the proof follows.

Suppose N is a normal subgroup of a group G. Then Theorem 4.1.1 asserts that N has a

proper supplement provided it is not contained in the Frattini subgroup of G. Thus, if the Frattini

subgroup Φ(G) of G is trivial then we obtain the following result.

Theorem 4.1.20 (Condition 11). Let G be a finite group. If Φ(G) = {1}, then every non-trivial

normal subgroup of G has a proper supplement in G.

Proof. Since Φ(G) = {1}, G admits maximal subgroups. Suppose that there is a non-trivial

normal subgroupN ofG that has no proper supplement inG. Then, for every maximal subgroup

M of G, NM 6= G. Now since NM 6= G and M is maximal in G, we have that NM = M .

Thus N ⊆M , for every maximal subgroup M of G. Consequently, N ⊆ Φ(G), a contradiction,

since Φ(G) = {1} and N is non-trivial. Thus, N has a proper supplement in G.

4.2 Subgroups without proper supplements

In as much as this chapter is dedicated to investigating conditions under which a subgroup has

a proper supplement; it is equally useful to understand conditions under which a subgroup of a

group has no proper supplement. Below are a few such conditions:

Theorem 4.2.1 (Condition 1). Let N � G. If N ≤ Φ(G) (i.e if N is contained in the Frattini

subgroup of G), then N has no proper supplement in G.
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Proof. Already proved in Theorem 4.1.1.

Theorem 4.2.2. (Condition 2)· Let H and K be subgroups of the group G such that H < K. If

K is a cyclic p−group then H has no proper supplement in G.

Proof. In Chapter 5 we have explained why all cyclic p−groups are not factorizable. Thus, K

is not factorizable, that is, there does not exist a proper subgroup L of K such that K = HL.

So far, we have established that H has no proper supplement in K. Hence, by considering the

contra-positive of Theorem 4.1.16, the proof follows.

The example below illustrates and verifies Theorem 4.2.2.

Example 4.2.3. The subgroup H = {1, −1} of the Quaternion group

Q8 =
〈
−1 , i , j , k | (−1)2 = 1 , i2 = j2 = k2 = ijk = −1

〉
= {1 , −1 , i , −i , j , −j , k , −k}.

has no proper supplement in the group Q8 because it is contained in the cyclic p−group K =

〈i〉 = {1, −1, i, −i}.

Theorem 4.2.4 (Condition 3). Let N, B ≤ G such that N �G and N ≤ B. If N has no proper

supplement in B then N has no proper supplement in G.

Proof. Since N � G we have that N � B. Thus, by Theorem 4.1.1 N not having a proper

supplement in B implies that N ≤ Φ(B). Hence, by Theorem 3.5.12, N is contained in the

Frattini subgroup of G. Therefore, the proof follows by Theorem 4.1.1.

Theorem 4.2.5 (Condition 4). Let G be a finite group. Then, the Frattini subgroup Φ(G) of G

has no proper supplement in G.

Proof. See Corollary 3.5.7.
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CHAPTER 5

Factorizable Groups

In this chapter, we investigate conditions under which a finite group G admits a proper factor-

ization. Before we start looking at conditions under which a group is factorizable, we give some

examples of non-factorizable groups.

5.1 Groups without proper factorizations

Definition 5.1.1. A group G is called non-factorizable if |G| 6= 1 and for all proper subgroups

H of G, there does not exist a proper subgroup K of G such that G = HK.

With the demand that H and K be proper subgroups in the definition above it is clear that

abelian simple groups are non-factorizable as they have only one proper subgroup, the trivial

subgroup consisting of the identity element alone. Another family of finite groups that is non-

factorizable is the family of cyclic p−groups. This is because all proper subgroups of a finite

p−group G are contained in the Frattini subgroup, Φ(G), of G.

The example below helps us visualize this fact.
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Example 5.1.2. Consider the cyclic p−group below:

G =
〈
x | x16 = 1

〉
= {1, x, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}

The group G has three non-trivial subgroups:

H2 =
〈
x2
〉

= {1, x2, x4, x6, x8, x10, x12, x14}

H4 =
〈
x4
〉

= {1, x4, x8, x12}

H8 =
〈
x8
〉

= {1, x8}.

We observe that H2 is the only maximal subgroup of the p−group G and it contains all the

other proper subgroups of G. Hence Φ(G) = H2, and so the proper subgroups H2, H4 and

H8 are all contained in the Frattini subgroup of G. Thus as we proved, in the previous chapter,

that a normal subgroup has a proper supplement if and only if it is not contained in the Frattini

subgroup of the group, none of the subgroups H2, H4 and H8 has a proper supplement in G.

This therefore implies that the group G is non-factorizable. The explanation in this particular

example is not the proof but it is the reason all finite cyclic p−groups are not factorizable.

From Table 4.1 of [13], we note that among the simple groups of Lie type the unitary groups

Un(q) with n odd are non-factorizable except for U3(3), U3(5) and U9(2). The same table also

confirms that the sporadic simple groups

M22, Mc, CO3 , CO2 , F i23, F i
′
24, HN, Th, B, M, J1, O

′N, Ly, J3

and J4 are all non-factorizable.

5.2 Groups with proper factorizations

A group G is said to be factorizable (or to admit a proper factorization) if G = HK is a product

of its proper subgroups H and K. Below is the first condition under which a finite group G is

factorizable:

Theorem 5.2.1 (Condition 1). If G is a non-cyclic group and G′ 6= G then G admits a proper

factorization.
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Proof. Consider the commutator subgroup G′ of G. If G′ is a proper subgroup of G, then two

cases arise:

(i) Case 1: If G′ * Φ(G). Since G′ is a normal subgroup of G, the result follows by Theorem

4.1.1 which states that a normal subgroup N of a group G has a proper supplement in G if

and only if N * Φ(G).

(ii) Case 2: If G′ ⊆ Φ(G). Then G is nilpotent by Theorem 3.2.5. Let M be a maximal

subgroup of G. Then M � G since by Corollary 3.2.4 every maximal subgroup of a

nilpotent group is normal. Now let x ∈ G such that x /∈ M and let H = 〈x〉, then MH

is a subgroup of G as M � G and M < MH ≤ G. Since M is maximal the chain

M < MH ≤ G implies that MH = G and so G is factorizable.

Example 5.2.2. Condition 1 above gives an explanation why all symmetric groups are factor-

izable. Consider the symmetric group Sn. We know that the group Sn is non-cyclic and that

[Sn, Sn] = An 6= Sn. Hence, the symmetric group satisfies the hypotheses of the theorem (Con-

dition 1) above and so we expect it to be factorizable. We observe that Sn = An 〈x〉 is a product

of the alternating group An and any subgroup generated by some element x ∈ Sn where x /∈ An,

and so it is factorizable verifying the theorem.

The condition below is called Frattini’s argument.

Lemma 5.2.3 (Condition 2). If a group G has a normal subgroup H and if H has a Sylow

p−subgroup P then G admits a proper factorization. In fact, G = HNG(P ), where NG(P ) is

the normalizer of P in G.

Proof. This is Frattini’s argument already proved in Lemma 3.5.16.

Example 5.2.4. This example is meant to illustrate and verify the Frattini’s argument. Let the

group G be the symmetric group S4 and let the subgroup H be the Alternating subgroup A4.

Then H �G and since the order |A4| of A4 is 12 = 22.3, we have that P = {(1), (123), (132)}
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is a Sylow 3−subgroup of H . So the subgroups H and P satisfy the hypothesis of the theorem.

It remains to check whether S4 = A4NS4(P ). Now since

NS4(P ) = {(1), (12), (13), (23), (123), (132)} = S3,

it can be easily seen that S4 = A4S3 = A4NS4(P ), and so the Frattini’s argument is verified.

Theorem 5.2.5 (Condition 3). A non-cyclic p−group is factorizable.

Proof. Let G be a non-cyclic p−group and let M be a maximal subgroup of G. Since G is a

p−group, by Theorem 3.4.6, we deduce that M �G. Since M is normal in G, the product M 〈g〉

is a subgroup of G for every g ∈ G. Pick x in G such that x /∈ M . Since G is non-cyclic, 〈x〉 is

a proper subgroup of G. Furthermore,

M < M 〈x〉 ≤ G.

Hence, the maximality of M gives that G = M 〈x〉, and so G is factorisable.

Theorem 5.2.6 (Condition 4). Let G be a non-cyclic group containing a normal subgroup M

of prime index. Then G admits a proper factorization. In fact, G = M 〈x〉 for every element

x /∈M .

Proof. We consider two cases:

(i) Case 1: Suppose M is a maximal subgroup of G. Then M < M 〈x〉 ≤ G for all x in G

and x /∈M . Since M is maximal in G and since M 〈x〉 contains M properly, we have that

M 〈x〉 = G.

(ii) Case 2: Suppose M is not maximal in G. Then the series M < M 〈x〉 ≤ G of subgroups

of G still holds only that, this time, the subgroup M 〈x〉 does not need to be equal to G

since M is not maximal. Let [G : M ] = p and [G : M 〈x〉] = q. Then q < p since

M < M 〈x〉. In fact q divides p by Theorem 2.1.17. Now, since p is prime there are two

possibilities: either q = p or q = 1. But q = p would imply that M = M 〈x〉 which is not

possible since x /∈M . Thus, we have that q = [G : M 〈x〉] = 1 and so M 〈x〉 = G.
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Theorem 5.2.7 (Condition 5). Let G be a non-cyclic group with GS 6= G. Then G admits a

proper factorization where one of the proper subgroups is cyclic.

Proof. Since G 6= GS it follows that there exists an element g 6= 1 such that g ∈ G and g /∈ GS .

We also note that since G is not cyclic the subgroup 〈g〉 is a proper subgroup of G. Now since

g /∈ GS , we have that GS ∩ 〈g〉 6= 〈g〉 and by Theorem 4.1.17 the subgroup 〈g〉 has a proper

supplement in G.

Theorem 5.2.8 (Condition 6). A non-cyclic nilpotent group is factorizable.

Proof. Let G be a non-cyclic nilpotent group. Since G is nilpotent, by Corollary 3.2.4 , M �G,

for M maximal in G. Now M normal in G implies that the product M 〈g〉 is a subgroup of G

for every g ∈ G. Choose an element b in G such that b /∈ M , then M < M 〈b〉 ≤ G. The

maximality of M gives that G = M 〈b〉. Since G is non-cyclic, we are guaranteed that 〈b〉 6= G,

and so G is factorizable.

Theorem 5.2.9 (Condition 7). Let p and q be distinct primes. Then every group of order pq is

factorizable.

Proof. Let G be a group such that |G| = pq and suppose, without loss of generality, that p < q.

By Cauchy’s Theorem, G has an element a of order p and an element b of order q. Let P = 〈a〉

andQ = 〈b〉. These subgroups have size p and q respectively. By Theorem 3.4.13, nq ≡ 1 mod q

and nq| p. Thus since p is prime, the only choices for nq are nq = 1 or p. Since 1 < p < q,

the congruence condition on nq implies that nq = 1. Therefore Q is the only Sylow q−subgroup

of G and by Corollary 3.4.10, we deduce that Q is normal in G. Since P and Q are Sylow

subgroups, they are maximal in G. Hence, the normality of Q in G gives that G = PQ.

Theorem 5.2.10 (Condition 8). Let p and q be distinct primes such that q < p. Then every group

of order pnq is factorizable for any positive integer n.

Proof. Let G be a finite group such that |G| = pnq. Since Theorem 3.4.11 asserts that Sylow

p−subgroups always exist, let H be a subgroup of G of order pn. By Cauchy’s Theorem, G has
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a subgroup K = 〈b〉, where b is an element of G of order q. Now, by Theorem 3.4.13, we have

that np ≡ 1 mod p and np| q. Since q is a prime, np is either 1 or q. Besides, the congruence

condition on np together with the condition that q < p eliminate the possibility of np being q.

Thus, np = 1 and by Corollary 3.4.10, it follows that H � G. Since q does not divide pn, we

have that K is a Sylow q−subgroup of G. Hence, both H and K are maximal subgroups of G

and by the normality of H we deduce that G = HK.
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CHAPTER 6

On Complemented groups

If G is a group and H and K are subgroups of G with G = HK, then H is said to be supple-

mented in G by K. In this chapter we explore a special type of factorization: a factorization

which insists that H and K meet trivially. Let G be a finite group and H a subgroup of G. If

there exist a subgroup K of G such that G = HK with H ∩ K = {1}, then H is said to be

complemented by K in G. If H is a non-trivial normal subgroup of G and is complemented in

G by K, then G is said to split over H and is written G = [H]K.

6.1 Complemented subgroups

Definition 6.1.1. Let G be a group and H a subgroup of G. If H is complemented in G by a

subgroup K, then the factorization G = HK is called an exact factorization.

It can be easily observed that if G = HK and H ∩ K = {1}, then every element g ∈ G

has a unique expression g = hk where h ∈ H and k ∈ K. This justifies why the factorization

G = HK with H ∩K = {1} is termed exact.
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Definition 6.1.2. If every subgroupH of a finite groupG is complemented inG, thenG is called

a complemented group.

A quick example of a complemented group would be the symmetric group S3. In this group,

we note that all the subgroups of order 2 are complemented by A3.

Lemma 6.1.3. Let G be a group and H,K and N subgroups of G with N �G.

(i) If H < K and H is complemented in G, then H is complemented in K.

(ii) If N < H and H is complemented in G, then H/N is complemented in G/N .

Proof. (i) Let J be a subgroup ofG such thatG = HJ andH∩J = {1}. Then by Dedekind’s

Lemma, we have that

K = G ∩K = (HJ) ∩K = (J ∩K)H.

If J ∩ K = K, then K ≤ J which implies that H ≤ J which further implies that

G = HJ = J , a contradiction. Hence, J ∩K is a proper subgroup of K. To show that H

is complemented in K by J ∩K, it remains to show that H ∩ (J ∩K) = {1}. But

H ∩ (J ∩K) = (H ∩ J) ∩K = {1} ∩K = {1}.

(ii) Let L be a subgroup of G and suppose H is complemented in G by L. Then G = HL and

H ∩L = {1}. Now, we note that (H/N)(L/N) = (HL)/N = G/N . Since H ∩L = {1},

we also have that H/N ∩ L/N = {1G/N}. Thus H/N is complemented in G/N .

Theorem 6.1.4. If G is an aS−group which satisfies the descending chain condition on sub-

groups, then G is a complemented group.

Proof. Let H be a subgroup of G and let K be minimal among subgroups which supplement

H in G. Let H1 = H ∩ K, and suppose that H1 6= {1}. By Theorem 4.1.16 H1 has a proper

supplement K1 in K. Thus

G = HK = H(H1K1) = (HH1)K1 = HK1.

This contradicts the minimality of K. Therefore, H1 = {1} and H is complemented in G.
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Below is the Schur-Zassenhaus Theorem restated in the light of subgroup complementation:

Theorem 6.1.5. Let H be a normal subgroup of G such that (|H|, [G : H]) = 1. Then H is

complemented in G.

Definition 6.1.6. Let H ≤ G. Then H is called a normal p−complement of G for a prime p if

H is a normal subgroup of G of order coprime to p and index a power of p.

Definition 6.1.7. Let G be a finite group, p a prime dividing the order of G and P a Sylow

p−subgroup of G. Then G is called a p−nilpotent group if P is complemented in G.

Theorem 6.1.8. If H is a normal p−complement of a group G, then H is complemented by any

Sylow p−subgroup of G.

Proof. Let H be a normal p−complement of a finite group G and suppose |H| = m. Then

(m, p) = 1 by definition of a normal p−complement. Let [G : H] = pk, then by Lagrange’s

theorem we have that |G| = mpk. If P is a Sylow p−subgroup ofG, then |P | = pk. SinceH�G

and P is maximal in G, we deduce that HP = G. To complete our proof, it remains to show

that P ∩H = {1}. Let x ∈ P ∩H and let o(x) denote the order of x. Then o(x) divides |P | and

o(x) divides |H|. Since (|H|, |P |) = 1, we have that o(x) = 1. Therefore, P ∩H = {1}.

Theorem 6.1.9. Let G be a finite group such that |G| = pq where p and q are distinct primes

with q < p. Then G is p−nilpotent.

Proof. Let G be a finite group with |G| = pq, where p and q are primes. Then by Cauchy’s

theorem G contains an element h of order p and an element k of order q. Let P = 〈h〉 and K =

〈k〉. Then P is a Sylow p−subgroup of G and by Theorem 3.4.13, we have that np ≡ 1 mod p

and np|q. Since q < p, it follows that np = 1. Consequently, P �G. Furthermore, P ∩K = {1}

since it is a group of order dividing both p and q. Since P �G, we deduce that PK is a subgroup

of G. The product formula asserts that

|PK| = |P ||K|
|P ∩K|

= |P ||K| = pq = |G|.

Thus G = PK, and P is complemented.
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CHAPTER 7

Applications of Group Factorizations

In this chapter we discuss, briefly, some contributions of group factorizations to the understand-

ing of group theory. The main purpose of this chapter is to demonstrate how group factorizations

can be used to tackle group theory problems.

7.1 Group factorization approach

Group factorizations can be used to characterise some groups. The theorem below was proved

by Bertram Huppert:

Theorem 7.1.1. [1] If G = AB with A and B cyclic, then G is supersolvable.

Consider the dihedral group

Dn = 〈r, s | s2 = 1, rn = 1, s−1rms = r−m〉.

If we wanted to determine whether the groupDn is supersolvable or not, Huppert’s theorem could

be of help. All we need to observe is that the subgroups 〈s〉 and 〈r〉 are cyclic. In fact, the latter
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is normal in Dn as it is a subgroup of index 2. Hence, Dn can be factorized into Dn = 〈r〉〈s〉.

Therefore, by Huppert’s theorem (Theorem 7.1.1) we have thatDn is supersolvable. If we use the

traditional definition of a supersolvable group to solve the same problem, we note that the series

{1}� 〈r〉�Dn is a normal series of Dn in which all the quotient groups are cyclic, confirming

that Dn is indeed supersolvable.

Remark 7.1.2. If G = AB with A and B cyclic, that does not mean that G is cyclic too.

A counterexample would be obtained from the factorization S3 = A3〈(12)〉 of the symmetric

group S3. Certainly, A3 and 〈(12)〉 are cyclic subgroups of S3; yet S3 is not cyclic.

The theorem below is called Ito’s Theorem. It is a highly celebrated result in group theory.

Theorem 7.1.3 (Ito’s Theorem). If G = AB is a product of abelian subgroups A and B then G

is metabelian, i.e. it is solvable with derived length at most 2.

Suppose we wanted to determine whether the quaternion group

Q8 = {1, −1, i, −i, j, −j, k, −k}

is metabelian or not: First we note that the subgroups A = 〈i〉 = {1, −1, i, −i} andB = 〈j〉 =

{1, −1, j, −j} are cyclic subgroups of Q8 and that Q8 = AB. Since cyclic groups are abelian,

we deduce thatA andB are abelian and soQ8 is metabelian by Ito’s theorem. Furthermore, since

Q8 is not abelian we know that its derived length is not 1. Hence, by Ito’s theorem we conclude

that Q8 has derived length 2.

Remark 7.1.4. Even if a group G = AB was a product of two abelian subgroups A and B, it

would not imply that G is also abelian. Consider the factorization Q8 = AB of the quaternion

group Q8, where A = 〈i〉 and B = 〈j〉. We note that the subgroups A and B are both abelian;

yet the product AB = Q8 is not abelian.

Kegel in [3] made the following observation:

Theorem 7.1.5. If G = AB is a product of nilpotent subgroups A and B then G is solvable.
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Consider the general linear group GL(2, 3) of degree two: the group of 2 × 2 invertible

matrices over the field F3 = {0, 1, 2} with three elements. Suppose we wish to determine

whether GL(2, 3) is solvable or not. Let A be the subgroup of GL(2, 3) of order 8, isomorphic

to the quaternion group and let B =

〈2 2

0 2

〉 be the subgroup of order 6, isomorphic to the

cyclic group Z6. Then A�GL(2, 3) and we obtain the factorization GL(2, 3) = AB. Now since

A is a p−group, it is nilpotent; B is also nilpotent as it is cyclic. Hence, by Kegel’s theorem

(Theorem 7.1.5) we have that GL(2, 3) is solvable.

Remark 7.1.6. Let G be a finite group. Even if G = AB was a product of two nilpotent

subgroups A and B, it would not guarantee that G is also nilpotent. Here is a counterexample:

Consider the factorization A4 = V4〈(123)〉 of the alternating group A4 into the Klein 4−group

V4 and 〈(123)〉. Definitely, V4 and 〈(123)〉 are nilpotent. Nonetheless, the product V4〈(123)〉 =

A4 is not nilpotent.

From Remark 7.1.6, we observe that a group G = AB which is a product of nilpotent

subgroups A and B does not always inherit the property of nilpotency from the factors. Troubled

by the same observation, Kegel introduced, in 1961, the notion of a triple factorization. This is a

factorization of a group involving three subgroups A, B and C of the type

G = AB = BC = CA.

The evidence is that the existence of a triple factorization can have greater consequences for the

group structure than does a single factorization. For example, Kegel in [1] proved the theorem

below:

Theorem 7.1.7. A finite group G which has a triple factorization G = AB = BC = CA with

A, B and C all nilpotent is nilpotent.

Motivated by Theorem 7.1.7, we tried (in this dissertation) to check whether a group which is

a triple factorization by abelian subgroups would be abelian itself. The following counterexample

shuttered our hopes: Consider the quaternion group Q8 which has the triple factorization

Q8 = AB = BC = CA,
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where A = 〈i〉, B = 〈j〉 and C = 〈k〉. The subgroups A, B and C are all abelian as they are

cyclic; yet the group Q8 is not abelian.

The methods presented in this chapter are given to show that group factorizations is equally

an effective approach through which to study group theory.
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CHAPTER 8

Conclusion

The study was set out to explore the concept of group factorizations. Throughout our study we

have tried to answer the two major questions stated below:

(i) Question 1: under what conditions does a proper subgroup H of a group G have a proper

supplement in G?

(ii) Question 2: under what conditions does a finite group G admit a proper factorization?

The Frattini subgroup and the residual subgroup, among others, are crucial in answering these

questions.

Answers to Question 1 are given in Chapter 4 and the first answer states that if N is a normal

subgroup of a group G, then N has a proper supplement in G provided that N is not contained in

the Frattini subgroup of G. In fact, the Frattini subgroup Φ(G), itself, of a group G has no proper

supplement in G. The Schur-Zassenhaus Theorem which states that if K is a normal subgroup

of a finite group G and if |K| is relatively prime to its index, then K has a proper supplement in

G is also an adequate answer to Question 1.
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Chapter 5 is devoted to answering Question 2. We proved in this chapter that both non-cyclic

nilpotent groups and non-cyclic p−groups are factorizable. One of the most general answers to

Question 2 was obtained with the help of the commutator subgroupG′ of a groupG. It states that

ifG is a non-cyclic group and ifG 6= G′, thenG admits a proper factorization. We also attempted

to address this question by simply using the order of a group. We managed to show that if p and

q are distinct primes and if G is a finite group such that |G| = pq, then G is factorizable.

Most properties of a group G carry on to the subgroups of G. For example if G is nilpotent

and if H is a subgroup of G, then H is also nilpotent. If G = HK is a factorizable group, a

natural path of inquiry opens up when one asks how the structure of the factors H and K affects

the structure of G. Obviously, if H and K are finite subgroups of G, then G is finite and its order

is given by

|G| = |H||K|
|H ∩K|

.

Thus, a group which is the product of two finite p−groups is itself a finite p−group. Another

property which carries over from the factors of a factorizable group to the group itself is the

property of being perfect, i.e., coinciding with the commutator subgroup.

Nonetheless, this occurrence seems to be quite uncommon. Surely if one experiments with

properties such as solubility, finite exponent, being abelian, or nilpotency, one soon realizes the

difficulty of using the factorization to obtain information about the structure of the group. There

are in fact some quite evident counterexamples:

(i) The subgroups A3 and 〈(12)〉 of the symmetric group S3 are clearly nilpotent, yet the

product A3 〈(12)〉 = S3 is not nilpotent.

(ii) The subgroups A3 and the Klein 4−group V4 of the alternating group A4 are undoubtedly

abelian, yet the product A3V4 = A4 is not abelian.

(iii) The factors A4 and Z5 of the factorization A5 = A4Z5 where Z5 = 〈(12345)〉 are undoubt-

edly soluble, yet the product A5 is not soluble.
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The concept of group factorizations therefore needs to be revisited in order to understand the

extent to which we may know the structure of a factorizable group G = HK by simply using

properties of the factors H and K.

To show how worthy of studying group factorizations is, consider the following problem: If

we wanted to determine whether the special linear group SL(2, 3) is soluble or not, we would

look for a normal series

{1} = G0 �G1 � · · ·�Gn = SL(2, 3)

of SL(2, 3), by using the traditional definition, in which the quotient groups Gi/Gi−1 are abelian

for all i. By using group factorizations to solve the same problem, we would simply consider the

fact that SL(2, 3) can be factorized into the dihedral group D4 and the cyclic group Z3 as we saw

in Example 4.1.13. Since the factors D4 and Z3 are nilpotent, we deduce right away (by using

Theorem 7.1.5) that the group SL(2, 3) is soluble. Hence, group factorizations has not only

produced influential results to group theory but also is undisputedly one of the best approaches

to studying group theory.
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