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ABSTRACT

Partial exchangeability is the fundamental building block in the subjective
approach to the probability of multi-type sequences which replaces the in­
dependence concept of the objective theory.

The aim of this thesis is to present some theory for partially exchangeable .
sequences of random variables based on well-known results for exchange­
able sequences.

The reader is introduced to the eo ncepts of partially exchangeable events,
partially exchangeable sequences of random variables and partially ex­
changeable o-fields, followed by some properties of partially exchangeable
sequences of random variables.

Extending de Finetti's representation theorem for exchangeable random
variables to hold for multi-type sequences, we obtain the following result
to be used throughout the thesis:

There exists a o-field, conditiona. upon which, an infinite partially ex­
changeable sequence of random variables behaves like an independent se­
quence of random variables, identically distributed within types.

Posing (i) a stronger requirement (spherical symmetry) and (ii) a weaker
requirement (the selection property) than partial exchangeability on the
infinite multi-type sequence of random variables, we obtain results related
to de Finetti's representation theorem for partially exchangeable sequences
of random variables.

Regarding partially exchangeable sequences as mixtures of independent and
identically distributed (within tYPE~S) sequences, we (i) give three possible
expressions for the directed random measures of the partially exchangeable
sequence and (ii) look at three possible expressions for the o-field men­
tioned in de Finetti's representation theorem.

By manipulating random measures and using de Finetti's representation
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theorem, we point out some concrete ways of constructing partially ex­
changeable sequences.

The main result of this thesis follows by extending de Finetti's represen­
. tation theorem in conjunction with the Chatterji principle to obtain the

following result:

Given any a.s. limit theorem for multi-type sequences of independent ran­
dom variables, identically distributed within types, there exists an analo­
gous theorem satisfied by all partially exchangeable sequences and by all
sub-subsequences of some subsequence of an arbitrary dependent infinite
multi-type sequence of random variables, tightly distributed within types.

We finally give some limit theorems for partially exchangeable sequences of
random variables, some of which follow from the above mentioned result.
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CHA~PTER 1

INTRODUCTION

The phrase events are independent with unknown .probabilit y p is of no value
in the subjective approach to probability, since learning through experience
is of prime importance. To the objectivist independence is of fundamental
importance. Clearly the subjectivist needed a basic concept to replace the
independence concept of the objective approach.

Should independence be relaxed .he next simplest thing is to continue
to regard the order of the events as irrelevant, Le. exchangeable (also
called symmetric, permutable) events. Exchangeability, from a probabilis­
tic point of view, was first introduced by J. Haag (1924a, 1928). He gave
a slight indication (1924b, 1928) of the well-known representation theorem
for exchangeable events (see Chapter 3). A precise statement and rigorous
proof of this theorem was given by de Finetti (1932), following a paper
he published in 1931 characterizing all stochastic processes which could be
regarded as mixtures of coin tossing processes, This result was generalized
by de Finetti (1937) so as to characterize mixtures of sequences of indepen­
dent, identically distributed random variables. Not until the publication
of this paper was the importance of the concept of exchangeability in the
subjective approach to probability first noted. (A translation of this paper
appears in Kyburg & Smokler (19ft4).)

Exchangeability is the fundamental building block in the subjective ap­
proach to probability which replaces the independence concept of the ob­
jective theory. Good background reading can be found in Link (1980),
Hamaker (1977) and Goldstein (1986).

In 1938 de Finetti introduced the idea of partial exchangeability (see Chap­
ter 2), often more appropriate than exchangeability. Partial exchangeability
has not, to date, received anywhere near as much attention as exchangeabil­
ity has. This thesis aims to provide some theory for partially exchangeable
sequences of random variables, leading to limit theorems by extending well­
known results for exchangeable sequences.
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In Chapter 2 examples, definitions and properties of partially exchange­
able sequences will be given.

Chapter 3 deals with de Finetti's .heorem, extended to hold for partially
exchangeable sequences. The proof, limitations and implications of this
important theorem are thoroughly discussed.

Viewing partially exchangeable sequences as mixtures in Chapter 4 we ob­
tain many more properties. Towards the end of this chapter, we construct
some partially exchangeable sequences.

The definition of statutes in Cha pter 5 leads to a whole new approach
to partially exchangeable sequences. In this chapter we obtain an exten­
sion of Chatterji's principle (to allow multi-type sequences) and then give
some limit theorems for partially exchangeable sequences.

TERMINOLOGY AND NOTllTION

The following terminology and notation will be used throughout this thesis:

R
N
[k]
B(R)

{reals}
{1,2,3, }
{1,2,3, ,k} VkEN
denotes the class of Borel sets in R.

Unless otherwise indicated S will denote a separable metrisable space.
Topological spaces will be equipped with the a-field generated by the open
sets and product spaces will be given product topologies and product a­
fields.

Let C(S) (LOO(S)) be the set of continuous (measurable), bounded, real
valued functions on S.

p (S) will denote the space of probability measures on S, equipped with
the weak topology
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if and only if

(1.1)'If E C{S) .li!f! f dAn =! f d);

Note that P{S) is itself a metrisable space (Parthasarathy (1967), Theorem
6.2). For measurable A C R, the map .\ ~ .\(A) from P{R) ~ R is
measurable. Conversely (Jagers (1974)), if Ra is a dense subset of R, then
the collection of maps

.\ ~ .\({-00, xl) xER

generates the o-field on P{R).

Throughout this thesis (O, A, P) will denote a probability space. A measur­
able function T : n~ S will be called a random measure when S = P{R);
a random variable when S = R and in general a random map.

We shall denote {w; X{w) E A} by [X E A] for arbitrary random vari­
able X and Borel set A.

Let L{T) denote the joint distribution of a countable sequence of random

maps T = {T,j; i E [g], j EN}, for some finite gEN. Write 1in~1i
for L{1in) => L{T,), Vi E [g]. Write 1(T) for the er-field generated by T
and I(A) for the indicator function of event A. For 8 E S, write 8[1 for the
measure 8,,(A) = 1(8 EA).

Let g E N be an arbitrary, finite number. By the term g-fold infinite
sequence we shall mean a sequence which contains an infinite number of
items of each of g types. A g-II,) sequence shall mean a g-fold infinite
sequence of independent random rariables, identically distributed within
types.

Vector X and matrix A will be denoted by X and A respectively.
f',.)

Statements of theorems and various other results referred to in the the­
sis will be given in Appendix AI. Conditional independence is discussed in
Appendix A2.
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CHAPTER 2

PARTIALLY EXCHANGEABLE SEQUENCES

The aim of this chapter is to introduce the concept of partially exchange­
able sequences for use in further cha.pters. This is done by giving definitions
and examples of sequences of exchangeable events, partially exchangeable
events, partially exchangeable random variables, the partially exchangeable
a-field, proving properties of parti.ally exchangeable sequences of random
variables and looking at sequences related to partially exchangeable se­
quences of random variables.

2.1 DEFINITIONS AND EXAMPLES
The following example gives an idea of what is meant by exchangeable
events, an idea first introduced by J. Haag (1924a, 1928).

Consider a sequence of tosses of CL single coin. There .are many cases in
which probabilities within each frequency group are equal. Suppose, for
example, the coin is tossed 9 times and HTH HTHTTH is obtained (H
= head, T = tail). The judgement of the probability of the event head on
the 1ri h toss is likely to be affected by the frequency of heads and tails in
the previous 9 tosses and not by .he particular order in which the heads
and tails were obtained. We are thus saying that all different sequences of 5
heads and 4 tails have the same probability and will all result in the same in­
fluence on the 10t h toss. This leads to the definition of exchangeable events.

Definition 2.1 (subjective viewp int)
A sequence of events is said to be ezchanqeabl« if the events are symmetric
in relation to our judgement of probability, Le. the probability that we
assign to a particular n of these events occurring depends only on nand
not on the particular events chosen.

The corresponding definition in the objective theory is:

Definition 2 .2 (objective viewpoint)
A sequence of events is exchangeable if the probability that any n of these
events occur depends only on n and. not on the particular events considered.
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Definitions, theorems, etc. will be considered in an objective context, the
corresponding subjective results fo .low by the obvious changes as demon­
strated by Definitions 2.1 and 2.2.

Now suppose g coins to be tossed. There are three different cases to be
considered:

(i) IT the coins are perfectly eq ral, then an exchangeable sequence of
events will be generated. .

(H) The extreme opposite case is that in which the g coins are all com­
pletely different. Each of the g coins will generate a sequence of
exchangeable events, with co:mplete independence between the g se­
quences.

(Hi) Between these two cases lies an intermediate case: The outcomes of
trials with one coin will influence the probability with respect to trials
with other coins, but this influence is in a less direct manner than in
(i), Le. we have g exchangeable sequences as in (H) but with some
interdependence between the sequences.

Case (Hi) above leads to the definition of a partially exchangeable sequence
of events.

Definition 2.3
A sequence of events is said to be g-fold partially exchangeable if the se­
quence of events splits into g types (Le. a g-fold sequence of events) and
events of the same type are exchangeable (permutable, symmetric) in re­
lation to probabilities, Le. the joint probability of the occurrence of a
particular n, events of type i, i E [g ], depends only on the ni's, and not on
the particular events chosen.

Remark
Note that a g-fold partially exchangeable sequence reduces to an exchange­
able sequence in the 9 == 1 case.
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Definition 2.4
A g-fold sequence of random variables, Z = {Zij; i E [g],jO EN}, is said to
be g-fold partially exchangeable if the joint distribution of any ni random
variables of type i, i E [g], depends only on the ni's, and not on the partic­
ular random variables chosen.

Note that the term "g-fold" may be dropped in future discussions.

Attention will be restricted to a study of partially exchangeable sequences of
random variables rather than parr ally exchangeable events since partially
exchangeable events can be found as a special case of partially exchangeable
random variables, by making use of indicator functions as demonstrated be­
low:

Suppose that E = {Eij; i E [g],i E N} is an infinite g-fold sequence of
events. Let

Zij=I(Eij) ViE [g] , ViEN.

Then E is a partially exchangeable sequence of events if the corresponding
g-fold infinite sequence of rando . variables, Z = {Zij; i E [g],jO EN}, is
partially exchangeable.

Now let us give a detailed definition of a g-fold partially exchangeable se­
quence of random variables for the finite as well as the infinite case.

Definition 2.5
Z = {Zij;i E [ni],i E [g]} is said to be a (g-fold) finite partially exchange­
able sequence of random variables if

where

L(Z = L(Z~)

Z~ = {Zi~i{j);j E [nil, i E [g] }

Vi E [g]

1ri is any permutation f {I, 2'0 00,ni} Vi E [g] 0

In order to get the corresponding result for an infinite sequence of random
variables we need the following definition.
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Definition 2.6
A finite permutation of {I, 2, ...} is a map 'If : N -+ N such that

# {i; 'If (i) =1= i} < 00

Le. 'If only permutes finitely many elements of the sequences, infinitely
. many retaining their original positions.

Definition 2.7
Z = {Zi; ; i E [g], j E N} is said to be a (g-/old) infinite partially exchange­
able sequence of random variables if

L{Z) = L{Z,..)

where
Z,.. = {Zi,..,U); i E [g],j EN}

for each finite permutation 'lfi of {1, 2, ...}, i E [g ].

Suppose that there are g urns, urn i containing ni balls, labelled Zib Zi2, • • • ,Zin"

Vi E [g]. Let Zij denote the result of the j th draw from urn i, then

(i) an infinite partially exchangeable sequence of random variables is
formed by {Zi;; i E [g ],j E N} when drawing with replacement from
the urns.

(ii) a finite partially exchangeabl ~ sequence of random variables is formed
by {Zi;;j E [n il , i E [g]} when drawing without replacement from the
urns.

Case (i) follows immediately from Definition 2.7. In order to obtain the
desired result for case (ii) note that Z = {Zi j;i E [ni] ' i E [g] } can have any

9

of IT ni! outcomes, assigning a different z = {Zij;J' E [nil, i E [g]} to Z. Now
,=1

let IT; be a variable, denoting a permutation of {I, 2, ... , n,} Vi E [g], so
9 . 9

that IT· = IT IT; denotes a rando . variable which has IT ni! outcomes, all
,=1 ,=1

equally probable. We may thus write
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and have indexing by means of a variable.

Now let 1r, be any of the n,! permutations of {I, 2, ... , nil, i E [g], then

L{Z) = L ({zi"'i(i);j E [nil, i E [g]})

- L ({Zi"' i["'i(i)];j E [n,],i E [g]})

- L ({Z,..})

where Z,.. is as in Definition 2.5. Hence the desired result follows from Def­
inition 2.5.

For the time being attention will be restricted to infinite partially exchange­
able sequences of random variables; asymptotic results will be discussed in
Chapter 5.

On extending the notion of an exchangeable a-field {Aldous (1985) and Tay­
lor, Daffer and Patterson (1985)) a definition for a partially exchangeable
a-field is obtained for use in furt .er chapters. The following preliminary
definition is required:

Definition 2.8
Call a subset B of XXR partiall.~ exchangeable if

i=1 i=1

x = {Xii; i E [g],j E N} E B :=> X,.. = {Xi"'i(i); i E [g ],j EN} E B

for each finite permutation 1ri of {I, 2, ...} , i E [g].

The corresponding B-partially ezc 'ianqeable event is then

[X E B] = {w;X(w) E B} = {w; {Xii(W); i E [g ],Jo E N} E B} .

Definition 2.9
Given a g-fold infinite sequence of random variables, X = {Xii; i E [g],j E N}
the partially exchangeable a-field, l~x, is the set of all B-partially exchange­
able events.
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Remark
The exchangeable u-field for a sequence of random variables X = {Xi; i E N}
may be found from the partially exchangeable u-field by taking the special
case g = 1.

2.2 SOME PROPERTIES 01' PARTIALLY EXCHANGEABLE
RANDOM VARIABLES

In this section some basic properties of partially exchangeable sequences are
presented for use in further chapte rs. To simplify the notation we consider
the g = 2 case only, the general theory follows by the obvious adjustments
to the results. Throughout this section Z = {Zij; i E [2],j E N} will denote
a 2-fold infinite sequence of random variables.

Theorem 2.1
If Z is partially exchangeable then Z is identically distributed within types.

Proof
Vi E [2], Zi = {Zii;j E N} is exchangeable, and hence Va, b E R, Vj EN,

P (Zil ~ a) = lim P (Zil s a, Zij s b)
b·-oo

- blim P (Zij ~ a, z., ~ b)
-00

The following counter example demonstrates that a partially exchangeable
sequence need not be independent. . The example is numbered for future
reference.

Example 2.1
Let Y = {Yij; i E [2],Jo E N} be a 2-IID sequence of random variables, and
let Y1 and Y2 be two random variables, independent of Y and also of each
other. Let

where E(Yij) = 0 = E(Yi)

Zij = Yij + Yi .

Vi E [2], Vj E N.

(2.1)



10

Then Z = {Zij; i E [2],i E N} is a partially exchangeable sequence of ran­
dom variables, and hence [Theorem 2.1) is identically distributed within
types, so that, Vi E [2], Vi E N,

Var (Zij) = Var (Yil) + Var (Yi) .

Cov (Zil' Zi2) = 14.; (ZiIZi2) - E 2(Zil) .

Using (2.1) and (2.2) we thus obtain

(2.2)

E (Y/) - E2 (Yi)

Var (Yi) .
(2.3)

From this last result we clearly only have independence between Z variables
of the same type if Var{Yi) = 0 Vi E: [2], which from the construction of the
partially exchangeable sequence, Z:I in (2.1) need not generally be true. We
are thus able to construct a partially exchangeable sequence which does
not have independent random variables since the random variables need
not even be independently distributed within types.

Remark
It follows immediately from the basic definitions that a 2-IID sequence is
partially exchangeable: that the r everse need not hold follows from The­
orem 2.1 and Example 2.1. The identical distribution within types of a
partially exchangeable sequence follows from Theorem 2.1 but the inde­
pendence of the random variables cannot be obtained in general. There is,
however, a partial solution to this problem as will be seen in §3.1.

Partially exchangeable sequences do however partake of some of the prop­
erties of 2-11:0 sequences as the following example shows.

Let {Zij; i E [2] ,i E N} be a partia.lly exchangeable sequence and let

Z {Zij; " E [nil, i E [2]}

Z~ {Zi~i(.i); i E [nil, i E [2]}

where Vi E [2] , ni E N , 7ri denotes anyone of the ni! permutations of
{1, 2, . . . , ni}.
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Suppose that X = q)(Z) is a function of {Zij;j E [nil, i E [2]}. Then clearly

L(X) = L(X,..)

where
X,.. ==q)(Z,..) .

We thus obtain
E(X) - (nl!n2!)-1 L E(X,..),..

= E[¥J(Z)]

where ¥J(Z) = (nl!n2!)-1 L q)(Z,..) and the summation extends over all nl!n2!,..
possible permutations IIi of {I, 2, ... , ni} , i E [2].

It immediately follows that if t/J(Z) = 0 then E[q)(Z)] = 0, a result which
is well-known when Z is a 2-IID sequence. The relationship between par­
tially exchangeable and 2-IID seqt ences will receive much more attention
in further chapters, especially in §~L3.

Another interesting result which may be used to generalize the results of
the following chapters is given in the next theorem.

Theorem 2~2

Let Z = {Zij; i E [2],j E N} be a partially exchangeable sequence of ran­
dom variables. IT hi : R -+ R , i E [2], is a Borel measurable function,
then {hi (Zij ); i E [2], j E N} is a partially exchangeable sequence of ran­
dom variables.

Proof
For any finite permutation ITi of {I, 2, ...}, t E [2] and Borel subsets
{Bi j ; i E [2]')' EN]},
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P LOl ;01 [h; (Z;..;(;)) E B;;]}

= p {.n .n [Zitri(i) E hi1(Bi; )]}
1=1,=1

= p tOl;OI [z, E h/
1(B;;)]

}

=P tOl ;01 [h;(Z;;) E B;;]} .

Remark
Note that by taking hi = h for i E [2] in Theorem 2.2 we see that a
Borel function of a partially exchangeable sequence preserves the partial
exchangeability.

2.3 SEQUENCES RELATEI~ TO PARTIALLY EXCHANGE­
ABLE SEQUENCES OF RANDOM VARIABLES

A brief discussion of the selection property, spherical symmetry and par­
tially exchangeable arrays of random variables now follows.

The selection property for a sequence of random variables (Kingman (1978))
is extended below to permit 2-fold sequences.

Definition 2.10
A 2-fold sequence of random varia.bles, X = {Xi;; i E [2],Jo EN}, has the
selection property if, for all integers

1 ~ m1 < m2 < ... < m1ci , Vi E [2], k, EN.

L {X,mj;;" E [ki], i E [21 } = L {Xi;; JOE [ki], i E [2] }

where it is to be understood that the values of m,· in X 1m . and X 2m . might
J J

differ, for any ;" E minimum {k1, k2} .

The following theorem presents the relationship between partial exchange­
ability and the selection property.
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Theorem 2.3
Suppose X to be a sequence of random variables which splits into two types.

(i) If X is a finite sequence, then X has the selection property if X is
partially exchangeable. The reverse need not hold.

(ii) If X is an infinite sequence (infinitely many of each type, Le. a 2-fold
infinite sequence), then X has the selection property if and only if X
is partially exchangeable.

Proof
It immediately follows from Definitions 2.5, 2.7 and 2.10 that X has the
selection property if it is partially exchangeable (for finite and infinite se­
quences X). It thus remains to be shown that

(a) for X a finite sequence, X need not be a partially exchangeable if it
has the selection property

(b) for X an infinite sequence, ) .. is partially exchangeable if it has the
selection property.

Consider case (a), Le. let X = {~~ii;j E [nil, ni E N, i E [2]} have the se­
lection property. For mi < ni V·t E [2], let TIi be any permutation of
{1, 2, ... , nil where

Vi E [2]

does not hold. Then {Xii; j E [mi], i E [2]} need not have the same distribu­
tion as {Xi1ri(i ) ; j E [mi], i E [2]}, i.e. X need not be partially exchangeable.

Case (b) will be proved in Chapter 3 (Theorem 3.4) since it \follows on
from an extension of the representation theorem as proved by Kingman
(1978) .

Remark
Comparing Definitions 2.7 and 2.10 it would seem that the requirement for
X, a 2-fold sequence of random variables, to have the selection property
is a weaker requirement than partial exchangeability. This is in fact true
if X is finite (Theorem 2.3 (i)), but if X has infinitely many variables of
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each type then extending the concept of spherical symmetry (discussed by
Kingman (1972 and 1978)) to permit 2-fold sequences, we obtain a stronger
requirement than partial exchangeability,

Let X and Y be two-fold infinite sequences of random variables and let
Xm(Ym) denote finite sequences of random variables, containing rn, ran­
dom variables of type i, rn, E N, i ~ [2], from X(Y), Le.

Suppose A == {aii; i E [ml + rn2] ,j E [rnl + rn2] ,aii E R} to be an array.
f"">..J

If

where

(

f Al
A== f"">..J

f"">..J 0
I-

for Al== {a'i; i E [ml], JO E [ml]}
f"">..J

then Y m is a linear transformation. of X m •

Assume the above terminology until further notice.

Definition 2.11
In the above notation, let Y m be a linear transformation of X m • If A is

f"">..J

orthogonal with determinant 1 then A is a rotation array and Y m is a
f"">..J

rotation of X m •

Definition 2.12
X m is said to have (2-fo1d) spherical symmetry if the joint distribution of
X m is the same as the joint distribution of Y m whenever Y m is a rotation
er x.;
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Note that the term 2-fold may be dropped in further discussions.

X is said to have spherical symme1~ry if Xm. has spherical symmetry
Vmi E N, i E [2].

Remark
It immediately follows from Definition 2.12 that if X has spherical symme­
try, then X also has spherical symrnetry within types, Le. {Xii;;' E N} has
spherical symmetry Vi E [2].

The following theorem shows that spherical symmetry implies partial ex­
changeability.

Theorem 2.4
IT X has spherical symmetry, then X is partially exchangeable.

Proof:
Let TI. be any permutation of {1, ~!, ... , m.} , m, E N, Vi E [2]. Then the
linear mapping, TI, defined by

may be viewed as a linear transformation with a rotation matrix and hence
{Xii;;' E [m.], i E [2]} has the same joint distribution as {Xi1rj(i );;' E [m.], i E [2]}.
Since this holds for any m, EN, we thus have X to be partially exchange-
able.

In Chapter 3 (Theorem 3.5) a representation theorem for spherically sym­
metric sequences is given.

Aldous (1981) dealt with partially exchangeable arrays of random vari­
ables. Even though it is beyond the scope of this thesis to deal with arrays,
the definitions below are given as interesting extensions of partial exchanga­
bility.
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Definition 2.13
For the random array X= {Xii; i E N,j EN}, say X is

rv rv

(i) row-exchangeable, if the joint distribution of X is unaltered by per-
rv

mutations within rows

(ii) column-exchangeable, if the joint distribution of X is unaltered by
rv

permutations within columns

(iii) row-and-column-exchangeable if the joint distribution of X is unal-
rv

tered by permutations within rows and columns.

Remark
Partial exchangeability clearly follows as a special case of row-exchangeability
where only finitely many rows are allowed (the i E [2] case is considered in
this thesis).

Next we define triangular arrays of exchangeable random variables, a very
interesting type of exchangeability.

Definition 2.14
An array of random variables X = {Xii; j E [i] , i E N} is a triangular array

rv

of exchangeable random variables if each row of X forms an exchangeable
rv

sequence.

Remark
The above definition is taken from Taylor, Daffer and Patterson (1985).
Chernoff and Teicher (1958) and Weber (1980) presented results for . trian­
gular arrays of exchangeable random variables.
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CHAPTER 3

A REPRESENTATION THEOREM FOR PARTIALLY
EXCHANGEABLE RANDOM VARIABLES

This chapter is devoted to proving de Finetti's representation theorem for
partially exchangeable sequences which gives a relationship between a par­
tially exchangeable sequence, Z= {Zij; i E [2],;" EN}, and a 2-IID se­
quence of random variables. Conditions under which the representation
theorem holds are discussed and finally further results concerning the tie­
up between partially exchangeable and 2-IID sequences of random variables
are given.

3.1 DE FINETTI'S REPRESENTATION THEOREM FOR
MULTI-TYPE SEQUENCES OF RANDOM VARIABLES

Let Xl, X 2 , ••• be a sequence of random variables taking values in {O, I}. De
Finetti's representation theorem (de Finetti (1932)) shows that {Xl, X 2 , ••• }

is exchangeable iff {Xl, X 2 , • • •} is a mixture of coin tossing processes, Le.
\:in EN, and all strings Xl, X2, ••• ,Xn of O's and 1's,

n

where t = E Xi, P is the probability of obtaining a 1 and J.L is a probability
i=l

on [0,1], uniquely determined by P.

This theorem has been generalized in several directions, the most famous
of which undoubtedly is de Finetti's representation theorem for a partially
exchangeable sequence of events (de Finetti (1937)) (see Appendix AI),
which leads to the following statement of de Finetti's representation theo­
rem for partially exchangeable random variables:

an infinite partially exchangeable sequence of random variables, {Zij, i E [g],j EN},
is a mixture of g-IID sequences.

Precisely what is meant by this mixture will be discussed in Chapter 4,
but loosely, it means that there exists a a-field conditional upon which the
g-fold partially exchangeable sequence behaves like a g-IID sequence.
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A precise statement and proof of this fundamental theorem for the 9 = 2
case follows in Theorem 3.1 (results reduce to work by Kingman (1978) for
the 9 = 1 case).

Throughout this chapter let Z = {Zij; i E [2],;" E N} be an infinite 2-fold
sequence of random variables.

Definition 3.1
A random variable is (n, m )-symmetric, for n, mEN, if it is a function
of Z which is unchanged if the first n variables of type 1 and the first m
variables of type 2 are permuted in any way (within types).

Remark:
Let 4J be a function of Z and let n, mEN. From Definition 3.1 it imme­
diately follows that if 4J is (n, m)-symmetric, then it is also (n - k, m -1)­
symmetric for any k E {a, 1, ... , n -I} and any I E {a, 1, ... , m - I}. Sim­
ilarly, if 4J is not (n, m)-symmetric, then it is not (n + k, m + I)-symmetric,
for any k, I E {a, 1,2, ...}, k and I not both zero.

Example

(i)

is (3,1)-symmetric but not (4,1)- or (3,2)-symmetric.

(ii)

is (2,4)-symmetric but not (3,1)- or (2,5)-symmetric.

Definition 3.2
Let f nm denote the a-field generated by all (n, m)-symmetric random vari­
ables and let

00 00

s: = n n i: .
n=l m=l

Note that (i) f n+l m C f nm and f n m+l C f nm

(ii) f 00 = lim lim 1nm •
n-oo m-oo

(3.1)

Vn, mEN (3.2)
(3.3)
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The following lemma presents a strong law of large numbers which will
be used to prove a representation theorem for partially exchangeable ran­
dom variables.

Lemma 3.1
Let Z be an infinite sequence of partially exchangeable random variables
and let f be a measurable function for which Elf(Z,d I < 00 , Vi E [2].
Then

n

J!.~ n-1L f(Zli) = E [f(Zll)/J:m] a.s. V'm E N (3.4)
i=1

and
m

J~m-I L f(Z2i) = E [f(Z21)/1n.] a.s. V'n E N (3.5)
i=1

where
00

t.; lim 1nm = n 1nm V'm E N
n-+oo n=1

(3.6)
00

lim 1nm = n l nm V'n EN.
m-+oo m=1

Proof:
Let Y = 9 (Zll' Z12, ... , Z21, Z22' ...} be a bounded function which is (n,m)­
symmetric for some n, mEN. Now {Zli;i E N} is exchangeable and
hence, Vi ~ n,

E [f(Zll)Y]

Hence
n

LE [f(Zli)Y] = nE [f(Zll)Y] .
i=1

Now take Y to be the indicator function of A E 1nm, so that

/ n-
1 i: !(Zli)dP = / !(Zll)dP

A )=1 A
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and hence

n
Since L: f(Z1i) is measurable w.r.t. 1nm ,

i=1

n

n-1L f(Z1i) = E [f (Zn )/1nm ] a.s. .
i=1

For any mEN, {1nm ; n E N} is a decreasing sequence of a-fields, so that
an elementary martingale convergence theorem (Appendix AI) yields

n

J~~ n-1 L f(Z1i) = E [f(Zn)/~m] a.s.
i=1

which is the desired result, (3.4). Using variables of type 2, (3.5) follows
similarly.

We are now in a position to prove a representation theorem for partially
exchangeable random variables by following the line of thought adopted
by Kingman (1978) but adapting his work to allow two types of random
variables.

Theorem 3.1
Let Z = {Zij; i E [2],;" E N} be a partially exchangeable sequence of ran­
dom variables. Then

where mi E N, Zii E R, Vi E [2], Vj E [m ile

a.s. (3.7)
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Proof:
Let f be a bounded measurable function on R ml +m2 and let Y = 9 (Z)
be (nl, n2)-symmetric for ni ~ mi, ni, mi E N, Vi E [2]. Now choose any
mi variables from the first ni variabies of type i, i E [2]. Denote the cho-

sen variables by {Z18(l)" '" Z18(md' Z2Q(l), ... , Z2Q(m2) }. There are clearly

(~lJ (:.~) ways of choosing the variables, the summation over all the poss i­
ble choices will be denoted by 2:.

e

Due to the partial exchangeability of Z,

E [f(Z18(1)" .. ,Z18(mI), Z2Q(l), ... ,Z2Q(m2))g(Z)]

=E [f(Zll'.' . Zlml' Z21,' .. ,Z2m2)g' (Z)] (3.8)

where g'(Z) is just g(Z) altered by interchanging Z18(k) and Za Vk E [m l]
and Z2Q(k) and Z2k Vk E [m2]'

Since g(Z) is (nil n2)-symmetric, we thus obtain

E [f(Z18(1}l.'" Z18(md' Z2Q(1)"'" Z2Q(m2))Y]

- E [f(Zll"'.' Zlml' Z21,'" , Z2m2)Y] . (3.9)

Anyone of the (~~) (~:) ways of choosing the variables would clearly satisfy
(3.9). Now take Y to be the indicator function of A E 1n1n2, so that,

f f (Zll"'" Zlml' Z21,"" Z2m,) dP = f [(:lJ (::)]-1~ f (Z19(l)"'"

and immediately then

E [I (Zll' ... ,Zlml' Z2b ... ,Z2m2) /1n1n2]

=E {[ (::.~) (:)] -1 ~ f (Z18(l)"'" Z19(m.) , Z2a(1) , ••• , Z2a(m,») / J"n1n,} a.s.

= [(::.~) (::.:)] -1 ~ f (Z19(l)"'" Z19(ml) , Z2a(1) , ••• , Z2a(m,)) a.s.. (3.10)



22

Using a martingale convergence theorem (Appendix AI), we get

= E [I (Zll"'" Zlml' Z21' ... ,Z2m 2) / ' 00 ] a.s.

and hence, from (3.10),

(3.11)

IT the mi variables chosen from ni for type i, i E [2], allow repeats, Le. need
not all be distinct, then (3.11) becomes

where

(3.12)

nl

L=L
D 8(1)=1

In particular if

2 mi

I (Zll"" ,Zlml' Z2b ... ,Z2m:J = IT IT lii (Zii) ,
i=l i=1

where
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then using (3.12),

P [i01 ;01 [Zi; ~ Z;;] /.TOO ]

=E[I (.n 0 [Zii ~ Z,i]) /100] a.s.
1=1,=1

• {m
l

( -1 nl ) m2 ( -1 n2 ) }= nll~~OO ig1 n1 i"f1 I [Z1i ~ Z1;] ig1 n2 j"f1 I [Z2; ~ Z2;] a.s . . (3.13)

Using Lemma 3.1, we thus see that the right hand side of (3.13) may be
replaced by

with probability one, and hence, using the martingale convergence theorem
again (Appendix AI), we find that (3.13) becomes

2 m;

= TI TI P [Zi1 ~ Zij / '00] a.s..
i=1 ;=1

Remark
Note that Theorem 3.1 shows that a partially exchangeable sequence Z =
{Zi;;i E [2],j E N} is conditionally 2-IID given ' 00 , Le. conditional on 100

the partially exchangeable sequence behaves like a 2-IID sequence.
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Corollary 3.1
Let Z = {Zij; i E [2],i E N} be a partially exchangeable sequence with

random distribution functions

z E R, i E [2],i EN. (3.14)

IT 9 is any sub-q-field of 100 with respect to which F1 (x) and F2(x) are
measurable Vx E R, then

P {[L01 [Zi; ~ Z;; ]/ 9} =gfi F;(Zi;)

Vm, E N, VZ,j E R, Vi E N, Vi E [2].

Proof:
Using Theorem 3.1,

E {p COl ;01 [z, ~ z;; 1/100 ) / 9}

=E [ig1]1 Fi(z;;)/ g]

(3.15)

(3.16)

Remark
Taking 9 = 1(FI, F2 ) in Corollary 3.1 we obtain

P (6;01 [z, ~ Zi;] / F1,F2) =gfi F;(z;;)

Vm, E N, VZij E R, Vj E [mi]' Vi E [2], a form of de Finetti's representation
theorem for partially exchangeable random variables which will be referred
to in Chapter 4.

Using (3.16) we have a general method for constructing partially exchange­
able sequences. First construct a sequence of 2-IID random variables having
common distribution functions within types F1 and F2• Then allow F1 and
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F2 to vary randomly. The randomisation destroys the independence while
preserving the partial exchageability (see §4.3). Every infinite partially ex­
changeable sequence can be constructed in this way (see §4.3).

We now present a lemma and definition which we shall use in order to ob­
tain an alternative representation theorem for partially exchangeable ran­
dom variables.

Lemma 3.2
Let Y be a random variable and let 1,9 be two a-fields such that 1 C 9.
IT

E(E(Yj9)]2 = E(E(Yj1)]2

then
E(Yj 9] = E(Yj 1] a.s. .

Proof

E(E{Yj9) -E(Yj1)]2

=E[E{Yj9)]2 - 2E[E(Yj9)E{Yj1)] + E[E(Yj1)]2

=0

since

E(E{Yj9)E{Yj1)] E{E(E{Yj 9)E{Yj1)j1]}

E{E{Yj 1)E(E{Yj9)j1]}

E(E(Y j 1)E(Yj 1)]

- E[E{Yj1)]2 .
Definition 3.3
Let Z be a 2-fold infinite sequence of random variables. The tail a-field of
Z is defined by

00 00r=nn 1n%
n=l m=l
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where

ln~ = 1 (Z1 n+1, Z1 n+2, ... , Z2 m+1, Z2 m+2' ...) Vn, mEN. (3.17)

Theorem 3.2
A partially exchangeable sequence of random variables, Z, is conditionally
2-lID given t .

Proof
Let

VnEN

and
' Vm E N

Using Theorem 2.3 (ii) we see that, for m, n EN,

and hence
(3.19)

Using the martingale convergence theorem (Appendix AI) and noting that
(3.19) holds Vm, n E N, we obtain the following

L [E (Zll/11e:' )] = L [E (Zll/r)] (3.20)

by taking the limit over all mEN and then over all n EN. Since r is
contained in l 1e:' we may use Lemma 3.2 to obtain

and thus

E (Zll/ lIe:') = E (Zll /r) a.s. (3.21)

E (Zll/r, ~e:') = E (Zll /r) a.s..

From this last result we conclude (Appendix A2, point A4 plus the remark
below it) that Zll and It: are conditionally independent given r .

Applying the same argument to Z18' ZlI+b in place of Zll, Z12, ... one ob­
tains, Vs E N,



Z18 and J:O: are conditionally independent given r .

Using similar arguments we see that Vt EN,

Z2t and 1.f are conditionally independent given r .

Let sEN. Then

so that

Z18 and J:c:" are conditionally independent given r Vm E N

follows from (3.22). Similarly, from (3.23) we see that, for tEN,

Zu and 1~ are conditionally independent given r Vn E N.
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

From (3.25), (3.26) and a property of conditional independence (Appendix
A2, point As) we see that Z is conditionally independent given t .

We shall now show that Z is identically distributed within types given
t . Due to partial exchangeability, Vm,n EN,

(3.27)

which leads to

(3.28)

for any bounded, measurable function, 4> .

Now

E{E [4>(Zll) /1': ]/r} = E{E [4>(Zlm) /l': ]/r} a.s,

and since r C J'~, (3.29) becomes

E [4> (Zll )/ r] = E [4> (Zlm)/r] a.s. Vm EN.

(3.29)

(3.30)
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Similarly
E [<p(Z21)/r] = E [<p(Z2n)/r] a.s. \In E N (3.31)

and hence, taking <p to be an indicator function, (3.30) and (3.31) show
that Z is identically distributed within types after conditioning on r, To­
gether with the conditional independence already shown, we thus get Z to
be 2-IID conditional on r .

Remark
Theorems 3.1 and 3.2 are both representation theorems for partially ex­
changeable random variables and are extensions of de Finetti's representa­
tion theorem for exchangeable random variables as found in Kingman(1978)
and Aldous (1985) respectively, the difference between these two state­
ments of the same theorem lying in the u-field upon which the space is
conditioned. An extension of de Finetti's representation theorem for ex­
changeable sequences to be applicable to a 2-fold partially exchangeable
sequence would state the existence of a u-field conditional upon which the
partially exchangeable sequence behaves like a 2-IID sequence, whether the
conditioning u-field is 100 (as in Theorem 3.1) or r (as in Theorem 3.2)
being irrelevant at this stage but to receive much attention in Chapter 4.

It is important to note that Theorems 3.1 and 3.2 cannot be applied to
finite sequences of partially exchangeable random variables. It is beyond
the scope of this thesis to consider finite sequences of random variables but
for the interested reader a finite form of de Finetti's representation theo­
rem for exchangeable random variables is to be found in Kendall (1967)
and Heath and Sudderth (1976).

A more general result than Theorems 3.1 and 3.2 is the following:

Theorem 3.3 de Finetti's Theorem
Let Z = {Zij; i E [2],j E N} be a partially exchangeable sequence of ran­
dom variables. Then there exists a u-field conditional upon which Z behaves
like a 2-lID sequence.

The above result follows immediately from either Theorem 3.1 or Theo­
rem 3.2.
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Remarks

1) Note that this theorem is an extension of de Finetti's representation
theorem for exchangeable sequences of random variables and thus not
really de Finetti's theorem, but it will be referred to as such since the
g = 1 case is commonly referred to as de Finetti's theorem.

2) Looking at Corollary 3.1 we find that there are many forms, other
than Theorems 3.1 and 3.2, of de Finetti 's representation theorem for
partially exchangeable random variables.

3) The obvious extension of Theorem 3.3 to multi-type sequences shows
that for a partially exchangeable sequence Z = {Zij, i E [g],j EN},
there exists a a-field conditional upon which Z behaves like a g-IID
sequence or, as will be discussed in Chapter 4, "Z is a mixture of
g-IID sequences".

3.2 SOME LIMITATIONS AND IMPLICATIONS OF DE FINETTI'S
THEOREM

De Finetti's theorem (Theorem 3.3) is a very useful result as it shows how
the possible lack of independence in a partially exchangeable sequence of
random variables (see Chapter 2, Example 2.1) can be partially overcome.
The corresponding fundamental result for the g = 1 case has attracted a
variety of generalizations, extensions and analogues as will be discussed
here and in further chapters.

De Finetti's theorem holds in compact metric spaces, S, but breaks down
in the absence of strong enough topological assumptions on S. In this re­
gard Dubins and Freedman (1979) gave an example of a separable space S
where de Finetti's theorem for exchangeable random variables cannot be
applied. It is thus possible to find a separable space S where Theorem 3.3
does not hold.

Further work on the exchangeable case was done by Freedman (1980) and
Dubins (1983).

Dacunha-Castelle (1974) and Kingman (1978) discussed the sufficiency of
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weaker requirements than exchangeability of Z to obtain de Finetti's the­
orem. Improving on these results, Aldous (1982) gave a minimal require­
ment.

We now prove de Finetti's theorem (Theorem 3.3) for a 2-fold infinite se­
quence which has the selection property (see Definition 2.10 in Chapter 2)
rather than partial exchangeability. The following result is given in King­
man [(1978), p.188] and will be used in Theorem 3.4.

Lemma 3.3
Let k E [n] for any n E N. IT, Vr ~ k, the bounded sequence of variables
{c, (J') ,i ~ I} has Cesaro limit

n

o, = lim n -1~ ar(i)
n-+oo L.-,

i=1

then

where
M = {(J'1, J'2, ... ,J'k) ; i1 < i2 < . .. < ik ~ n} .

Theorem 3.4
Let Z = {Zij; i E [2 ],J' E N} be a 2-fold infinite sequence of random vari­
ables, with E(Zit} < 00 Vi E [2], which has the selection property (Defini­
tion 2.10). Then there exists a a-field conditional upon which Z behaves
like a 2-lID sequence.

Proof:
It is sufficient to show that if Z has the selection property then Z is partially
exchangeable as the desired result then follows immediately from Theorem
3.3.

For all i E [2] let

where

\;in EN.
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Since Z has the selection property, Zi = {Zii j i E N} is stationary [Loeve
(1978), Vol. 11, p.83) Vi E [2], and hence by the Birkhoff ergodic theorem
(Appendix AI) we have

n

lim n-1 L Zii = E(Zil/Ci) c.s., Vi E [2] . (3.32)
n-oo

i=1

Taking! to be the indicator function of [- 00 , x] for some x E R, one finds
that {!(Zii); i E [2],i E N} has the selection property, so that

lim n-1# [i ~ n; z.; ~ x]= li(x) c.s. (3.33)
n-oo

where
li(x) - E (I[Zil ~ x]/Ci)

P [Zil ~ x/Ci]
follows from (3.32).

where

Vi E [2], x ER

(3.34)

M = {(il' i2' . . . ,J0Jc); il < i2 < . . . < J0Jc ~ n} .

Similarly, for any mEN and any 1 E [m ],

( )

- 1 l l

lim 7 ~!! I [Z 2il ~ xd =!! F2(x.)

where
M' = {(i 1, i 2, . ° • , i l); i 1 < i 2 < . . . < i, ~ m} .

Combining (3.34) and this previous result we obtain

(3.35)
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There are (7) (~) ways of choosing i l < i 2 < .. . < il ::; m and
il < i2 < ... < ilc ::; n from (1,2, ... ,m) and (1,2, ... , n) respectively. By
the selection property of Z, these choices will all result in

being equal to

so that, using (3.35) and noting that land k depend on m and n respec­
tively,

=E [.gl r. (Xt.) El F2(x2r)] .

The symmetry (permutability) of this last expression shows that Z is par­
tially exchangeable.

Following the line of thought adopted by Kingman (1972) in the 9 = 1
case we now present a theorem that demonstrates how a more specific re­
sult than de Finetti's representation theorem may be obtained by posing
a stronger condition than partial exchangeability on the infinite 2-fold se­
quence of random variables.

Theorem 3.5
Let Z = {Zij; i E [2], JO E N} be an infinite 2-fold sequence of random vari­
ables such that for all ni EN, i E [2], the distribution of the sequence of
random variables (Zll' Z12' . .. ,Zlnp Z21' Z22' ... , Z2n2) has spherical sym­
metry (Definition 2.12). Then there exist random variables Vl and V2 , real
and non-negative, such that, conditional on 1 (VI, V2), Z is independent and
identically distributed, within types as N(O, Vi).
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Proof
Z is partially exchangeable (Theorem 2.4) and hence conditionally 2-IID
given 100 (Theorem 3.1), so that we may define a joint random distribution
function for one variable of each type, as follows:

F(x, y) = p [ZU: ~ X, Z2j ~ vl ' 00 ] Vk,jEN,x,yER

(100 as in Definition 3.2). Now define the corresponding joint characteristic
function

00 00

4>(s, t) = I I exp[i(sx + ty)]dF(x, y)
-00 -00

(3.36)

Vk,j E Nand s,t E R.

Now 4>(s, t) is thus a random, ' oo-measurable, continuous function. Us­
ing the conditional independence of Z (Theorem 3.1) and (3.36) it follows
that

VS;, tj E R, Vn E N, J" E [n ],

E [exp i i~l (SiZl~ + tiZ2i)/.100] = ill </>(S;, ti)

and hence

(3.37)

(3.38)

Using a result from Lord (1954) (see Appendix AI) it follows that the right
n

hand side of (3.38) is a function of l: (t; + s;) only.
i=l

For any Ui, Vi E R, i E [2], define

(3.39)
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Then

E [14>(s, t) - 4> (Ub U2) 4> (Vb V2) 1

2]

= E {[4>(S,t) - 4>(Ub U2)4>(Vb V2)] [4>(S,t) - 4>(UI,U2)4>(Vb V2)]}

=E [4>(S, t)4>( -S, -t)] - E [4>(S, t)4>(-Ub -U2)4>( -VI, -V2)]

- E [4>(UI, U2) 4>(Vb V2)4>( -S, -t)]

+E [4>(UI, U2)4>(VI,V2)4>(-Ub -U2)4>(-VI, -V2)] .

Using (3.39) and applying the result from Lord (1954) to each of the four
terms in this last expression, it follows that they are all equal, so that

and hence

4> ((ui + vi)~, (U; + vi)~) = 4>(Ub U2)4>(VI, V2)

follows from (3.39).

Now let UI = VI and U2 = V2 in (3.40). Then

Now let
t/J (s, t) = In 4> (s, t) .

Then (3.41) and (3.42) show that

t/J(s, t) - 21/J (2-!s, 2-!t)

so that

a.s, (3.40)

(3.41)

(3.42)
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Now let m, = E(Z'i / 1(0 )

Vi = E(Z'i/1°o)2 - m;
'¥ii = (Z'i - m,)(Vi)-~ Vi E [2], Vj EN. (3.44)

Since Z behaves like a 2-IID sequence once conditioned on 100 (Theorems
2.4 and 3.1), it follows that

E(¥ii/ 100 ) = 0 and Var(Yii/100) = 1 Vi E [2], Vj EN. (3.45)

Now let
4>Yu;Y2j(S, t) = E [exp i(sYa + tY2i)/100]

s,t ER, Vk,j EN.

(3.46)

Using (3.37) and (3.44), we have

4>(s, t) = exp i(Sffll + tffl2)4>Y1.,Y2 j (SV1t, tV}) (3.47)

VS,t ER, Vk,j E N. Now let

(3.48)

Replacing Z by Y = {¥ii; i E [2],)' E N} [as in (3.44)] in (3.43) and using
L'Hospital's rule, (3.45) and (3.48), it follows that

( ) (
2 2) -1 1t/JYU;Y2 i S, t S + t = -2'

and hence

4>Ya Y2j(S,t) = exp [- ~ (S2 + t2)]

so that, from (3.47),

4>(s, t) = exp i(Sffll + tffl2) exp [-i(S2V1 + t2V2)]. (3.49)

Since Z has spherical symmetry the joint distribution of (Za, Z2i) is iden­
tical to the joint distribution of (-Zvo -Z2i) V)', kEN, and hence from
(3.36) Vs, t ER, 4>(s, t) = 4>( -s, -t), so that

1
4>(s, t) = 2' (4) (s, t) + 4>( -8, -t)] .
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From (3.49),

exp [i(sml + tm2)] exp [_~(S2Vl+ t2V2)]

This last equation only holds Vs, t E R, if ml = m2 = 0, and hence from
(3.44), conditional on 100 , Z elements have zero mean. Using this last result
and (3.49),

t/!(s, t) = exp [_~(S2Vl+ t2V2)]

Since <I>(s, t) = <1>( -s, -t), (3.50) yields

(3.50)

exp [_~(S2Vl+ t2V2)] = exp [_~(s2Vl + t2V2)] .

We thus conclude that Vl and V2 are real valued. Since 1<I>(s, t) I < 1 it
follows from (3.50) that Vl and V2 are non-negative.

From (3.50),

t/!(1,0) = exp ( -~Vl)

so that

Vl = -21n <1>(1,0)

and similarly

V2 = -21n <1>(0,1)

and hence (using (3.36)) it follows that Vl and V2 are 100 -measurable ran­
dom variables.

For any random variable X ,

(3.51)

Substituting X = exp [i rtl (SrZlr + trZ2r)] into (3.51) and using (3.50) and

(3.37), one has
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=E [E {exp [i r~l (SrZlr + tr Z 2r) ] /100 } tv; V2]

=E [El 4>(S., tr)/Vh v2]

== IT exp [-! (VIS; + V2t;)] .
r=l

For any Sr, t; E R, exp [-~(VIS; + V2t;)] is the characteristic function of

a N ((~), (~lV~)) distribution, so that, conditional on 100, Z is 2-IID as

N(O,Vi) for variables of type i, i E [2].

Remarks:

1. Theorem 3.5 has a close resemblance, on the one hand to de Finetti's
theorem (Theorem 3.3) and on the other hand to Maxwell's theorem
(Appendix AI) which gives a characterization of the normal distribu­
tion.

2. Theorem 3.3 ensures the existence of some a-field, conditional upon
which the partially exchangeable sequence behaves like a 2-IID se­
quence, no mention being made of the particular type of distribution.
Theorem 3.5 shows that posing the stronger requirement of spheri­
cal symmetry on the random variables enables us to know the exact
distribution of the 2-IID sequence mentioned in de Finetti's theorem.

3. Ressel (1985) looked at the necessary and sufficient conditions re­
quired for an exchangeable sequence of random variables to behave
like an lID sequence of a particular type (normal, exponential, Pois­
son, gamma) after conditioning on a a-field. Freedman (1962) also
gave many interesting examples in this regard.
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3.3 ERGODICITY AND THE RELATIONSHIP BETWEEN
PARTIALLY EXCHANGEABLE AND 2-IID SEQUENCES
OF RANDOM VARIABLES

We have established that even though partially exchangeable sequences
need not be 2-IID (Example 2.1), it is possible (Theorem 3.3) to regard
the partially exchangeable sequence as a 2-lID sequence by making use of
conditional probabilities. It is thus not surprising that the relationship be­
tween partial exchangeability and 2-IID leads to further results. In Chapter
5 we shall prove that all a.s, limit theorems for 2-IID random variables have
an analogue for partially exchangeable random variables.

The class of partially exchangeable sequences can be viewed as the class of
distributions invariant under certain transformations. Based on this idea
of invariant distributions and using ergodic theory we prove an extension of
the Hewitt-Savage zero-one law (Appendix AI) which gives a further con­
nection between the concepts of partial exchangeability and independent
identical distributions within types.

Assume the following general setting throughout this section:

Let S be a Polish space, let K denote a countable group of measurable
maps T : S ~ S and let P(S) be the set of probability measures on S.

Definition 3.4
For arbitrary map T define the induced map l' as follows:

(i) IT T E K then f : P(S) ~ P(S) where

T[L(X) ] = L[T(X)] .

(ii) I! T is any measurable map from S x S to S, then
T : S x P{S) ~ P{S) where -

1'[s,L{X) ] = L [T(s, X) ]

for any random element X and any s E S .

(3.52)

(3.53)
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X, a random element of S, is invariant if

L[T(X)] = L(X) VTEK (3.54)

J.L, a distribution on S, is an invariant distribution if

VTEK. (3.55)

Let M denote the set of invariant distributions and suppose that M is
non-empty. A subset A C S is an invariant subset if

T(A) = A VTEK. (3.56)

J is the invariant a-field made up by the family of invariant subsets.

An invariant distribution J.L is ergodic if

J.L(A) = 0 or 1 VAE J.

Definition 3.5
For X = {Xii; i E [2], j E N} an infinite two-fold sequence of random
variables, {w; X(w) E B} is a partially exchangeable event if B is a subset
of R 00 x R 00 such that

where 1T'i is any finite permutation of {I, 2, ...} , Vi E [2].

Ex, the partially exchangeable a-field is the set of all partially exchangeable
events.

Remark
In Chapter 4 (Theorem 4.9) we shall show that for a partially exchangeable
sequence X the tail a-field rx and Ex coincide, Le. we may condition on
Ex in Theorem 3.2.

If S = ROO x R?", K = {T?l"; T; finitely permutes Xii to Xi?l"j(j) , i E [2], j E N}
then X = {Xii; i E [2] , j E N} is partially exchangeable if and only if X
is invariant under K . The invariant a-field is the partially exchangeable
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a-field Ex and the next theorem shows that the ergodic processes are 2-IID
sequences.

We now present a result based on the Hewitt-Savage zero-one law (Ap­
pendix AI) but differing from the latter by allowing multi-type sequences.

Theorem 3.6
Let X = {Xii; i E [2], J" E N} be a 2-IID sequence of random variables.
Then P(A) = 0 or 1 for all A E Ex.

Proof
Let 1ri be any finite permutation of {I, 2, ...} , i E [2]. Let

A = [XE B]

1r(A) = [X~ E Bl .
For n EN, mEN and

let

For 1rl (1r2) any permutation of (n] ((mJ) respectively, let

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

X2?r2(m ) , X2m+1 , • •• }

1rnm(A) = [1rn m (X ) E B] .

(3.62)

(3.63)

Suppose that A E Ex. Then A is a partially exchangeable event and
hence

1r(A) = A (3.64)
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for all 1r = {1ri{j) ; i E [2], j E N} where tri is a finite permutation of
{1,2, ...}, Vi E [2].

For n, mEN, choose sets s.; E B (Rn X R m) such that

lim P (A~Anm) = 0 .n,m-oo

For B E B (ROO x ROO), let

Px{B) = P[X E B]

and for n E N,m E N, let

Since X is 2-IID, for any B EB (ROO x ROO), any n E N, mEN,

From (3.58) and (3.61),

(3.65)

(3.66)

(3.67)

(3.68)

- P {[X E B~Bnm]}

- Px{B~Bnm)

Using (3.68) we thus have

Since A is a partially exchangeable event,

A = 1rnm{A)

i.e.

(3.69)

(3.70)



so that (3."70) becomes

p (A~Anm) - P [1rnm{X) E B~Bnm]

- P {[1rnm{X ) E B]~ [1rnm{X ) E Bnm]}

P {[X E B]~1rnm(Anm)}

- P {A~1rnm(Anm)} .

Using (3.65) we thus have that

lim P [A~1rnm(Anm)] = 0 .n,m-oo

Now

42

(3.71)

P {A~[Anm n 1rnm{Anm)]}

- P {(A~Anm) n [A~1rnm(Anm) ]} + P {(A n Anm)~[A n 1rnm{Anm)]}

so that (3.65) and (3.71) show that

lim P {A~[Anm n 1rnm(Anm) ]} = 0n,m-oo

and hence

Since X is 2-IID,

= P {[(Xll , X 12, ••• , X ln, X 21, ••• , X 2m ) E Bnml
n [(XI?rl(I), .•• , XI?rl(n), X 2?r2(1), ... , X 2?r2(m) ) E Bnm]}

= P {[(Xll , X 12 , •• • , X1m X2b ... , X 2m ) E Bnm]
n [(X1n+b ••• , X 12n , X2m +b ... , X 22m ) E Bnm]}

(3.72)

(3.73)
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From (3.71) and (3.65) respectively

and
lim P(A"m) = P(A)

",m-oo

follows, so that (3.72) and (3.73) shows that

P(A) = [p(A) ]2 . (3.74)

The desired result follows immediately since only P(A) = 0 or P(A) = 1
satisfies (3.74).

Remark
Considering {Xi, i E N} (i.e. 9 = 1 case) Aldous and Pitman (1979) gave
a weaker assumption than lID of X which is sufficient for the exchangeable
a-field to be trivial (i.e. all events in this a-field have measure zero or
one). Sendler (1975) also published work on this topic but the Aldous and
Pitman results are more powerful.
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CHAPTER 4

ANALYSIS OF PARTIALLY EXCHANGEABLE SEQUENCES

De Finetti's representation theorem for exchangeable random variables is
commonly stated as:

an infinite exchangeable sequence is a mixture 0/ lID sequences.

In this chapter we shall investigate exactly what is meant by a mixture;
use this theory to draw conclusions about a 2-fold partially exchangeable
sequence (since it turns out to be a mixture of 2-IID sequences) and finally
construct partially exchangeable sequences.

4.1 MIXTURES AND DIRECTION

Definition 4.1
Given a family {JL"I; 1 E I'] of distributions on a space S, a distribution l/

is said to be a mixture of {JL"I; 1 E I'} if

11(0) = f J.l"l(o)e(d"()
r

for some distribution e on r.

A special case of the above definition describes the distribution of a se­
quence which is a mixture of 2-IID sequences:

Definition 4.2
Let Y = {lij; i E [2], } E N} be an infinite 2-fold sequence of random
variables. Suppose that e is a distribution on P(R) x P(R). Then the
distribution 0/Y is a mixture 0/ 2-IID sequences if

P(Y E A) = f 000 (A)e(dO)
P(R)xP(R)

VA E B(ROO x R OO
) (4.1)
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where

(J

A

(Joo(A)

2 00

X XAii
i=1 i=1

2 00

- X X (Ji ,
i=1 i=1

Aii C R, Vi E [2], Vi E N

the distribution on ROO x ROO of a 2-IID sequence,

variables of type i having distribution (Ji, Vi E [2].

Remark
Definition 4.2 merely gives the Bayesian idea that Y is 2-IID, variables of
type i having common distribution (Ji Vi E [2] , where (J = (J1 X (J2 has prior
distribution e.

We now discuss random measures and regular conditional distributions:
this will enable us to deal with mixtures of random variables rather than
mixtures of distributions.

Definition 4.3
A random measure a, is a P (R)-valued random variable, viewed as a func­
tion of two variables as follows:

a(w,.) : B(R) ~ R, is a probability measure for fixed wEn (4.2)

a(·, A) : n~ R, is a random variable for fixed A E B{R). (4.3)

Random measures a1 and a2 are a.s. equivalent if they are a.s. equiv­
alent when viewed as random variables in P(R), Le.

or equivalently,

a.s. VA E B(R) (4.4)

VA E B{R) .
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Definition 4.4
A regular conditional distribution (r.c.d.) for a random variable Y given a
e-field 1 is a random measure a such that

a(·, A) = P(Y E A11) a.s. VA E B(R) . (4.5)

Remark
An r.c.d. is thus a special type of random measure, one which is obtained
by conditioning on a C1-field (as the name suggests).

It is well known that r .c.d. 's exist and satisfy the fundamental property
stated in the following lemma. This property will frequently be used to
enable versions of conditional expectations to be computed.

Lemma 4.1 (Shirayayev (1984), page 231, exercise 3)
Let X and Y be random variables and suppose that a is an r .c.d. for Y
given a C1-field 1. IT X is 1-measurable and E lg(X,Y)! < 00, then

E [g(X ,Y) /1]=f g(X,y)a(w,dy) a.s .. (4.6)

We are now in a position to define a sequence which is a mixture of 2-IID
random variables.

Definition 4.5
Let a1 and a2 be random measures and let Y = {"fii; i E [2], j E N} be an
infinite 2-fold sequence of random variables. Then Y is a mixture of 2-IID
random variables, directed by al and a2 if

2
X a~ is an r .c.d. for Y given 1 (aI, a2)

i=1

or equivalently, if

2 00

P (Y E AIaI, a2) = IT IT ai(·, A i i ) a.s.
i=1 i=1

(4.7)

(4.8)

2 00

where A = X X A i i
i=1 i=1
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Remark
Definition 4.2 differs from Definition 4.5 in that it defines the distribution
of a sequence which is a mixture of 2-IID sequences.

Definition 4.6
Let Y = {¥ii; i E [2], i E N} be an infinite 2-fold sequence of random vari­
ables and let 1 be a o-field. Then Y is conditionally independent given 1
if

2 00

P [Y E All] = IT IT P [¥ii E Aii I1]
i=1 i=1

and Y is conditionally identically distributed within types given 1
if,

P [¥ii E Aii l l ] = P [¥i1: E Aij l l ] Vk,j E N,i E [2].

2 00

where A = X X ~j, A E B(Roo x Roo).
i=1 j=1

Y is conditionally 2-IID given 1 if both (4.9) and (4.10) hold.

(4.9)

(4.10)

Remark
Using Appendix A2 we may give various results, equivalent to (4.9), which
would result in Y being conditionally independent given 1.

Remark 4.1 (numbered for future reference)
Definition 4.5 may be re-stated as:

Y is a mixture of 2-IID random variables directed by a1 and a2 if Y is
conditionally 2-IID given 1(ab (2) and

Theorem 4.1
Let Y = {¥ij; i E [2], i E N} be an infinite 2-fold sequence of random vari­
ables and let 1 be an arbitrary C1-field. Suppose that Y is conditionally
2-IID given 1 and let a, be an r.c.d, for Yi1 given 1 Vi E [2]. Then

(i) Y is a mixture of 2-lID sequences of random variables directed by a1

and 0:2
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(ii) Y and 1 are conditionally independent given l(ab (2).

Proof
2 00

Let A = X X Aii for A E B(ROO x ROO). Clearly
i=1 i=1

and hence, using (4.9), (4.10) and (4.11),

2 00

P[Y E A/l] = IT IT P [Yii E Aii/l]
i=1 i=1

2 00

- IT IT Cl:i ( ., Aii ) .
i=1 i=1

Vi E [2], Vj E N (4.11)

(4.12)

From (4.11) we see that Cl:i is l-measurable Vi E [2] and hence 1(Cl:i) C 1
Vi E [2]. Using this and

we see that

From (4.12) and (4.14),

P [Y EA/ab a2] - E [P(Y E A/l)/ab a2]

which proves (i).

For any A E B(ROO x R OO ), (4.12), (4.14) and (4.15) yield

P[YEA/l,1(at, a2)] - P[YEA/l]

2 00

- IT IT Cl:i(., Aii )
i=1 i=1

(4.13)

(4.14)

(4.15)
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which is the desired result for (ii).

Suppose that Y = {Yij; i E [2], j E N} is a mixture of 2-IID sequences
for some unspecified random measures at and a2. The next theorem shows
that we can determine the directed random measures, but we first need to
prove the following Lemma.

Lemma 4.2
Let Y = {Yii; i E [2], j E N} be a 2-IID sequence. Suppose, Vi E [2], that
random variables of type i have distribution function Fi • Then there exist
empirical distribution functions {Fin; ; ni E N}, based on ni samples from
Fi , such that

Proof
Let i E [2]. Fix ni E N and for each W E 0, let the ni real numbers
{Yii(w); j E [nil} be arranged in non-decreasing order, denoted by
{Xii;)· E [nil} where

Now define a distribution function Fin; (" w) as follows:
For X E R,

0 if x < Xi1(w)

lin;(x,w) = s. if Xik(W) ~ x < Xik+t(W)n;

1 if x 2:: x.;
or equivalently

for 1 ~ k < ni

where
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Call Fin; (., w) the empirical distribution, based on ni samples from Fi. From
the Glivenko-Cantelli theorem (Appendix AI) we thus have

lim lin .(·,w) = Fi ( · ) a.s ..
n;-oo '

Theorem 4.2
Let Y = {Yi;; i E [2], j E N} be an infinite two-fold sequence of random

. variables. IT Y is a mixture of 2-IID sequences, then Y is directed by (}:1

and (}:2, where

for some function Ai from R 00 to P (R) .

a.s. Vi E [2] (4.16)

Proof:
Fix ni E N Vi E [2] and define the following empirical distribution func-
tion for x E R,w E fl:

by
n;

Ain; [li1 (w ), ... , lin;(w )] = ni 1 I: eYii (w)
;=1

where

€Yii(W) (A) = I [Yi; (w) E A]

for A c R, Vj E [nil. Also define

by

(4.17)

Ai ({Yi;(w);Jo EN}) = n~~ Ain; (Yi1(W), ... ,Yin;(W)) . (4.18)

Now let

A E B(Roo x R oo
) , A = XXAi; , Ai; c R

i=1 ;=1

Then, from (4.8),

Vi E [2], VJo E N.

2 00

P (Y E AI (}:b (}:2) = IT IT (}:i(·, Ai j ) a.s.
i=1 ;=1

(4.19)
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2 00

Now let QOO(., A) = n n ~(., Ai;) .
i=1 ;=1

From (4.19) and Lemma 4.1,

= J I [Y(w) E A] QOO(w, dY(w)] a.s ..

From Lemma 4.2, (4.17), (4.18) and (4.20) we thus have

Qi = Ai ({¥i;;j EN}) a.s. Vi E [2].

(4.20)

Remark
IT Y = {¥if; i E [2], J. E N} is a mixture of 2-IID sequences then we have
an expression for the directing random measures.

So we may speak of the set of directing random measures as Theorem 4.2
gives an expression for the directing random measures which holds with
probability one.

Corollary 4.1
Let Y = {¥if; i E [2], JO E N} be a mixture of 2-IID random variables. Then
the directing random measures Ql and Q2 are r-measurable, where T is the
tail a-field of Y.

Proof
From Theorem 4.2 we have

Qi = Ai ({¥ii; j E N}) a.s. .Vi E [2]

where Ai : Roo -+ P(R) is as defined in Theorem 4.2. Let i E [2]. Chang­
ing a finite number of random variables in {¥if; JOE N} will not change
Ai ({Yii' j E N}), hence Qi is measurable w.r. t. T, since '

00 00

T = n n 1 (Y1n+1 , Y1n+2 , ••• , Y2m+b Y2m +2, ••• ) •
n=1 m=1

The following very useful result will often be referred to.
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Theorem 4.3
Let Y = {Yi;, i E [2], ;' E N} be a mixture of 2-IID sequences and let al

and a2 be the directing random measures. Let T denote the tail a-field of
Y. Then the following are all a.s. equal:

(i) P [Yi; E Ai;;;' E [nil, Vi E [2]/Ylml' Y1m1+17 .. ·, Y2m2,Y2m2+17 ...]
. rn, > ni , Vi E [2]

(ii) P [Yi; E Ai;; J. E [nil, Vi E [2]/Y1ml' Y1m1+17.··, Y2m2,Y2m2+2, ... , ab a2]
rni > ni, Vi E [2]

(iii) P [Yi; E Ai;; ;' E [nil, Vi E [2]/T]

(iv) P [Yi; E Ai;; J. E [nil, Vi E [2]/ab a2]

where

Ai; E B(R), Vi E [2], V;' E N, rni E N, ni E N, Vi E [2] .

Proof:
From the definition of the tail a-field of Y (Definition 3.3) and Corol­
lary 4.1 it follows that (i) and (ii) are equal.

Remark (4.1) shows that Y is conditionally independent given 1 (ab (2), so
that {Yi;;J. E [nil, Vi E [2]} and {Yi;; ;' E {rni + 1, rni + 2, ...}, Vi E [2]} are
conditionally independent given 1 (aI, (2) (i.e. once conditioned on 1 (aI, (2) ,
any random variable from the first sequence is independent of anyone from
the second sequence). By a standard property of conditional independence
(Appendix A2, property A3) we see that (ii) = (iv). Also (iv) = (v) follows
immediately from Definition 4.5.

Now

so that
(4.21)
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since a1 and a2 are both r-measurable (see Corollary 4.1). From the defi­
nition of T it follows that

T C 1 (Y1ml ' Y1m1+b ... ,Y2m2, Y2m2+1, ... , ab a2) , mi E N, Vi E [2] .
(4.22)

Using (4.21), (4.22) and the fact that (H) = (iv),

P [Yi; E At; , i E [nil , Vi E [2]/T]

=E {E[I[Yi; E Ai;, i E [ni l, Vi E [2]]/ab a2]/T}

= E {I[Yi; E Ai;; i E [ni l, Vi E [2]]/ ab a2}

so that (Hi) = (iv).

Theorem 4.4
Let Y = {Yij; i E [2], i E N} be an infinite 2-fold sequence of random vari­
ables. IT Y is a mixture of 2-IID random variables then Y is conditionally
2-IID given T, the tail a-field of Y.

Proof:
Let Ai; E B(R) Vi E [nil, for ni E N, Vi E [2]. Then from Definition 4.5,

2 ni

P [Yi; E Ai;; i E [nil, Vi E [2 ]/a1a2] = IT IT ai(',Ai;) . (4.23)
i=1 ;=1

Let i E [ni],ni E N, Vi E [2]. Then from Remark 4.1 and Theorem 4.3
((Hi) = (iv)), VAii E B(R),

a·(· A··), , '1

(4.24)
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So that
2 ni 2 ni

IT IT lXi(·, A,j) == IT IT P [¥ij E A,jlr] a.s ..
,=1j=1 ,=1j=1

Now consider the right hand side of (4.23). Using (Hi) == (iv) in
Theorem 4.3 we obtain

(4.25)

and substituting this last result and (4.25) with (4.23) we see that

2 ni

P [¥ij E A,j; j E [nil, vi E [2]/r] == IT IT P [¥ij E A,jlr] .
,=1 j=1

So that Y is conditionally independent given t . The identical distributions
within types given r comes from (4.24) since

and the right hand side of this equation is independent of j as far as ¥ij is
concerned (see Remark 4.1).

Corollary 4.2
Let Y == {¥ij; i E [2], j E N} be an infinite 2-fold sequence of random vari­
ables. If Y is a mixture of 2-IID random variables, then it is directed by
random measures Ct1 and Ct2, and we have three possible expressions for
them

(i) Ct, == A, ({¥ij; J" E N}) a.s., where A, is as in Theorem 4.2.

(H) a; is an r .c.d. for ¥i1 given r .

(Hi) et; is an r.c.d. for ¥i1 given 1 (Y1m 1 , Y1m 1+b ... ,Y2m 2 , Y2m 2+1 , • • •)

rn, EN, Vi E [2].

Proof:
Expression (i) for the d.r.m.'s comes from Theorem 4.2. From (4.24),
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so that
(4.26)

and hence (ii) follows.

Taking n, = 1 , Vi E [2], using Theorem 4.3 (i) - (iii) and (4.26) gives
(iii) .

Remarks
Corollary 4.2 provides three expressions for the d.r.m.'s, they are all a.s,
equal (as the d.r.m.'s are a.s. unique). Each of the expressions is useful in
some circumstances.

4.2 PARTIALLY EXCHANGEABLE RANDOM VARIABLES,
MIXTURES AND DIRECTION

In this section we obtain results for partially exchangeable sequences by
applying the theory of §4.1.

Throughout this section Z = {Z,j; i E [2], j E N} will denote an infinite
(2-fold) sequence of random variables.

De Finetti's theorem for 2-fold partially exchangeable random variables
(Theorem 3.3) may be restated as follows:

Theorem 4.5
IT Z is partially exchangeable then it is a mixture of 2-IID sequences, di­
rected by Ql and Q2, where

Vi E [2], VJ' E N, VA,j E B(R) (4.27)

and T denotes the tail a-field of Z.

Proof:
The desired result follows immediately from Theorems 3.2 and 4.1 (i).

Remark'
Using Theorems 3.1 and 4.1 we could similarly show that a partially ex-
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changeable sequence Z is a mixture of 2-IID sequences, directed by

ai ( ., At;) = P [Zi1 E Ai; / 100 ] , i E [2]

where 100 is as in Theorem 3.1.

(4.28)

Corollary 4.3
Z is a mixture of 2-IID sequences directed by 0:1 and 0:2 (as in (4.27) or
(4.28)) if and only if Z is partially exchangeable.

Proof:
Suppose that Z is a mixture of 2-IID sequences, directed by 0:1 and 0:2 an.d
let

2 00

1 00
(., A) = IT IT 0:;(., Ai;)

i=1 ;=1

where

2 00

A = X X Ai;, Le. A E B(ROO x ROO) .
i=1 ;=1

Then, using Lemma 4.1 and Definition 4.5,

2 00 JIT IT 0:,(., Ai;) = I [Z(w) E A] FOO(w, dZ(w))
i=1 ;=1

(4.29)

(4.30)

The right hand side of (4.30) shows that Z is partially exchangeable. The
reverse implication follows from Theorem 4.5.

Remark
Partially exchangeable sequences are usually defined in terms of the invari­
ance of their joint distribution under permutations of the variables (see
Definition 2.7). In view of Corollary 4.3 however, Definition 2.7 may be
replaced by the following:

Z is (2-fold) partially exchangeable if there exist random mea­
sures 0:1 and 0:2 such that Z is a mixture of 2-IID sequences,
directed by 0:1 and 0:2.

Aldous ((1977), page 61) defines an exchangeable sequence in this manner.
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Theorem 4.6
IT1 is an arbitrary o-field such that Z is conditionally 2-IID given 1 then

(i) Z is partially exchangeable

(H) Z and 1 are conditionally iridependent given 1(ab (2) where

a ,(·, A) = P [Zll E A11] Vi E [2] VA E B(R) . (4.31)

Proof:
The desired result follows immediately from Theorem 4.1 and Corol­
lary 4.3.

Remark 4.2 (numbered for future reference)
IT there exists a zr-field 1 such that Z is conditionally 2-IID given 1, then
we may refer to Z as being partially exchangeable without particular ref­
erence to the two d.r.m's (bearing in mind that they are of the form given
in (4.31)).

Similarly, de Finetti's theorem can be loosely stated as:

Partially exchangeable sequences are mixtures of 2-IID sequences

Le. no reference to the two d.r .m, 'so

The next theorem however, gives various expressions for the d.r.m. 's of
partially exchangeable sequences.

Theorem 4.7
IT Z is a partially exchangeable sequence, then it is directed by random
measures al and 0:2 and we have three possible expressions for them.

(i) a, = Ai ({Zij; j E N}) a.s. where Ai is as in Theorem 4.2.

(ii) a; is an r.c.d. for Zil given T the tail o-field of Z.

(Hi) 0:, is an r.c.d. for Zil given 1 (Zlmp Zlml+b· •• , Z2m2' Z2m2+b···)
Vi E [2], ml E N, m2 E N .
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Proof:
The desired result follows immediately from Theorem 4.5 and Corollary 4.2.

Theorem 4.4 leads us to the following very useful result:

Theorem 4.8
If Z is partially exchangeable, then Z is conditionally 2-IID given t , the
tail o-field of Z.

Proof:
If Z is partially exchangeable then it is a mixture of 2-IID sequences (Re­
mark 4.2) and the result follows on application of Theorem 4.4.

The following definitions will be used to obtain other o-fields which can
replace the tail o-field in Theorem 4.8.

Definition 4.7
Let Z be a partially exchangeable sequence of random variables and let V
be any random variable. Then Z is partially exchangeable over V if

L(V, Z) = L(V, z.)

where
Z?r = {Zi?ri(j); i E [2] , j E N}

for 1ri a finite permutation of {I, 2, . ..} , i E [2].

(4.32)

Definition 4.8
Let Z be a partially exchangeable sequence of random variables and let 9
be any o-field. Then Z is partially exchangeable over 9 if (4.32) holds for
each random variable V which is measurable with respect to g.

Lemma 4.3
Let Z be a partially exchangeable sequence of random variables and let V
be a random variable such that Z is partially exchangeable over V. Then

(i) Z is conditionally 2-IID given (V, a b a2) where 0':1 and a2 are the
d.r .m.'s for Z
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(ii) Z and V are conditionally independent given 1 (ab (2)'

Proof:
Define a new 2-fold infinite sequence of random variables as follows:

where
t ii = (V, Zij) Vi E [2], Vj EN.

Then Z is clearly partially exchangeable. IT we denote the d.r.m.'s of Z by
0:1 and 0:2 then Z is conditionally 2-IID given 1 (0:1, 0:2) (see (4.28)). In
particular Z is conditionally 2-IID given 1 (O:b 0:2),

Applying Theorem 4.7 (i) to Z we see that for each i E [2]

where, VA E B(R2 ) ,

s4 (A) = {I Zii = (V, Zij) EA
z., 0 elsewhere.

IT A = Al X A2 for Ai E B(R) Vi E [2] then

fJzij(A) = fJZij (At}6v (A 2 ) Vj E N

where

so that (4.33) becomes

(4.33)

(4.34)
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and hence, from Theorem 4.7 (i),

(4.35)

We thus have a partially exchangeable sequence Z with d.r.m.'s 8yat and
8ya2. It thus follows that l(~) = l(V, ail Vi E [2], and hence

1 (at, a2) = 1 (V, at, a2) .

We have thus shown (i) since Z is conditionally 2-IID given l(at, a2).

From (i) and Theorem 4.6 we see that Z and 1 (V, at, a2) are conditionally
independent given 1 (at, a2), Le.

so that
P [Z E A/l(V), 1 (at, a2)] = P [Z E A/l (at, a2)]

and hence Z and V are conditionally independent given .1 (see Appendix
A2, point A3) so that we have shown (ii).

We are now in a position to prove a very important result.

Theorem 4.9
Let Z be a partially exchangeable sequence of random variables, directed
by at and a2. Then

(4.36)

where Ez and rz are the partially exchangeable and tail a-fields of Z re­
spectively, (see Definitions 3.3 and 3.5).

Proof:
Suppose that A E rz. Then A E .1n~ for infinitely many values of n, mEN,
where

ln~ = .1 (Ztn+t, Ztn+2' ... , Z2m+b Z2m+2' ...)

and hence A E Ez so that
rz C Ez . (4.37)
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For B E Ez, define random variable

IB(w) = { ~ wEB
wf/.B.

(4.38)

Then B is a subset of n which Z maps to ROO X ROO such that Vw E B,

Z{w) = Z~{w)

where
Z~ = {Zi~i(j); i E [2], j EN}

and sr, is any finite permutation of {1, 2, ...} , Vi E [2].

Clearly then, since Z is partially exchangeable we obtain
•

Definition 4.7 shows that Z is partially exchangeable over IB for B E Ez.
Lemma 4.3 then yields the following:

Z and I B are conditionally independent given 1{ab (2).

Using Definition 4.8, we thus have the following:

Z and Ez are conditionally independent given 1{a1' (2).

Clearly Ez C 1(Z) so that Ez is conditionally independent of itself given
1(ab (2). Hence

Ez C 1(ab (2) a.s. (4.39)

follows from A6 in Appendix A2. From Corollary 4.1 and Theorem 4.5,

1(ab (2) C rz a.s.

Equations (4.39) and (4.40) thus yield

Ez C 1(ab (2) C rz a.s.

Combining this with (4.37) we have

Ez = 1(a1,a2) = r(Z) a.s,

as required.

(4.40)

(4.41)
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Remarks
From Theorem 4.8, Corollary 4.3 and Theorem 4.9 we see that Z is partially
exchangeable, directed by a1 and a2, if and only if Z is conditionally 2-IID
given either

(i) rz, the tail a-field of Z
or

(H) Ez, the partially exchangeable a-field of Z
or

(iii) 1(a1,a2), where a1 and a2 are the d.r.m.'s of Z.

Theorem 4.6 thus gives the following three possible expressions for d.r.m. 's
G:i , i E [2].

Let A E B (R), then a,(., A), the d.r.m., is anyone of the following three
expressions:

(i) P (Zi1 E Alrz) (see Theorem 4.7 (ii) )

(H) P (Zil E AIEz)

(Hi) P (Z'1 E AIab (2).

Remark
The three expressions for the set of directed random variables are a.s. equal
as can be seen from Theorem 4.9. We may thus speak of the set of directed
random measures.

4.3 CONSTRUCTION OF PARTIALLY EXCHANGEABLE
RANDOM VARIABLES

The purpose of this section is to point out some concrete ways of con­
structing partially exchangeable sequences. Most of the results are direct
consequences of de Finetti's theorem (Theorem 3.3) and show how to ma­
nipulate random measures.
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Throughout this section Z = {Zij; i E [2], i E N} will denote an infinite
2-fold sequence of random variables. If Z is partially exchangeable, then
we denote the d.r.m. 's by €Xi, i E [2].

The next two examples may be considered to be degenerate partially ex­
changeable sequences:

(i) If Z is 2-IID, variables of type i having distribution 8i , Vi E [2], then
Z may be viewed as a partially exchangeable sequence directed by (Ji,

Vi E [2].

(ii) If Z has Zil = Zi2 = ... a.s. , Vi E [2], then Z may be viewed as a
partially exchangeable sequence with ai(', A) = [(Xi E A)
VA E B(R) for some fixed random variable Xi , Vi E [2].

A natural way to construct a partially exchangeable sequence (this was
hinted at after Corollary 3.1) is to take a parametric family of distribu­
tions, choose the parameters randomly and then take a 2-lID sequence
which has a distribution with these random parameters. The next example
demonstrates this method.

Example
Denote the Normal (8, (12) distribution by J.L6 ,u' Let X = {Xij; i E [2], J. E N}
be a 2-IID sequence, Xij "J N(O, 1) , Vi E [2], VJ' E N.

If Z is defined by

where El i and Si are random variables denoting the mean and standard
deviation of Zij, then Z is a partially exchangeable sequence of random
variables, directed by ai = J.Lei,Si , Vi E [2] (conditioning on El i = (Ji,

Si = a, , Vi E [2], clearly gives a 2-IID sequence).

In general however, Z is a more complicated mixture of parametric families
as the following examples demonstrate.
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Example
Let Y = {¥ii; i E [2], J' E N} and X = {Xii; i E [2], i E N} be 2-fold
infinite sequences of random variables. Suppose that X is a 2-IID se­
quence, independent of Y, such that {Xii; i E N} takes distinct values
from {I, 2, ...}, Vi E [2]. If Z is defined by

Zii = ¥iXi; Vi E [2], Vi EN.

then Z is partially exchangeable.

Using Theorem 4.7 (i) we next find expressions for the d.r.m.'s.

Let i ~ [2],

where
Pii = P(Xil = i) Vi E N.

The following simple method of construction also yields a partially ex­
changeable sequence.

Example 4.1 (numbered for future reference)
Let X = {Xii; i E [2], i E N} be a 2-fold infinite sequence of random vari­
ables. Suppose that X is a 2-IID sequence, variables of type i having
distribution 0i , Vi E [2]. Let Y be an arbitrary random variable, which is
independent of X, with distribution 4>. If Z is defined by

Zii = f(Y, Xii) Vi E [2], VJ' E N

for f : R x R ---7 R an arbitrary Borel-measurable function, then Z is
partially exchangeable. In order to find the d.r .m, 's of this sequence we re­
call the induced map as defined in Definition 3.4 for the special case S = R.
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If f has induced map j : R x P(R) -+ P(R) Jsee Definition 3.4 (ii)) then
Corollary 4.2 (i) shows that Z is directed by f (Y, 81) and f (Y, 82) ,

Remark
Let Z be a partially exchangeable sequence of random variables directed
by a1 and a2 and suppose that f : R -+ R is an arbitrary Borel measur­
able function. If f(Z) = {f(Zij); i E [2], j E N} then f(Z) is a partially
exchangeable sequence of random variables (see Theorem 2.2) and using
Corollary 4.2 (i) we see that f(Z) is directed by j(ad and j(a2)'
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CHAPTER 5

LIMIT THEOREMS

To conclude this thesis we present some limit theorems for partially ex­
changeable random variables. These limit theorems are immediate conse­
quences of the main result of this chapter:

#'

Given any a.s. limit theorem for 2-IID sequences of random variables, there
exists an analogous theorem satisfied by all (2-fold) partially exchangeable
sequences of random variables and by all sub-subsequenees of some infinite
subsequence of an arbitrary dependent 2-fold infinite sequence of random
variables, tightly distributed within types.

Section 5.1 is devoted to notation, definitions, results and a brief discus­
sion of the above mentioned theorem. This shows the curious link between
some of the limit theorems of partially exchangeable sequences and those
of sub-subsequences of arbitrary 2-fold infinite sequences.

The proof of the above mentioned main result appears in §5.2 while §5.3 is
devoted to limit theorems for partially exchangeable sequences which follow
from the main result.

5.1 NOTATION, DEFINITIONS AND DISCUSSION OF
RESULTS

Koml6s (1967) showed that if {Xi, i E N} is a sequence of random variables
such that sup EIXil < 00 then there exists an increasing sequence of integers

i
, {nI, n2, . . .} and a random variable V such that

N

limN- I ~ X n - = V a.s..N L.J,
I

This result was the prototype for the well-known Chatterji principle (Chat­
terji (1974a, 1974b, 1985 and 1986)):

For every a.s. limit theorem for lID random variables under cer­
tain moment conditions, there exists an analogous theorem such
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that an arbitrarily-dependent sequence (under the same moment
conditions) always contains a subsequence satisfying this anal­
ogous theorem.

Note that Koml6s' result demonstrates Chatterji's principle where the
limit theorem in question is the strong law of large numbers.

Chatterji's principle in conjunction with the relationship between lID and
exchangeable random variables (see Chapter 3) led to the following conjec­
ture of Kingman (1978):

Every limit property enJoyed by all exchangeable sequences is
shared by some subsequence of every tight sequence.

Aldous provided a counter example to the above conjecture (see King-
man (1978), p.190) and proved the following result in place of it:

For every a.s. limit theorem for lID random variables there ex­
ists an analogous theorem satisfied by all exchangeable sequences
and by all sub-subsequences of some subsequence of an arbitrar­
ily dependent tight sequence of random variables.

Following what Kingman calls "a brilliant display" by Aldous to prove
the previous result (see Aldous (1977)) we extend these results in §5.2 to an
infinite 2-fold sequence of random variables, a very powerful result which
is an extension of Chatterji's principle and forms the main result of this
chapter.

Unless otherwise indicated the following notation will be used here and
in §5.2:

For AE P (R), let A* E P (R(0) be the infinite product measure
A x A x 000. For a random measure J.L, let J.L* be the random map
into P(ROO) such that J.L*(w) == J.L(w) x J.L(w) x ....

We shall be dealing with 2-fold infinite sequences and we shall use J.L(v) to
denote the random measure associated with random variables of type 1 (2).

Remark
Clearly X == {Xi;; i E [2],;" E N} IS a 2-fold infinite sequence of random
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variables with L(X) = Ai X Ai , Ai E P(R) Vi E [2], is a concise way of
saying that X is a 2-IID sequence of random variables.

Introduce a special notation for subsequences of 2-fold sequences. Write
D = (Db D2) and m = [m., m2) where Dt = (nu, n12,nl3' ...) and ml =
(mu, ml2, ml3, ...) and these sequences denote strictly increasing sequences
of positive integers (similarly B2 and m-]. Write m C D to mean that IDi is
a subsequence of n, Vi E [2]. Write X; for the subsequence {X1n ll , Xl n 12 , ••• ,

X2n~H , X 2n 22 , •••} of X, a 2-fold infinite sequence of random variables.

The following result will often be referred to in §5.2.

Theorem 5.1
A 2-fold infinite sequence of random variables, Z = {Zij; i E [2],i EN}, is
partially exchangeable if there exist random measures p, and 1/ such that

p,. X 1/. is a r.c.d. for Z given 1(p,,1/) .

Proof
The result follows immediately from Corollary 4.3.

(5.1)

Remark
Call the pair (p"I/) of the above theorem the 2-fold canonical random mea­
sure (2-c.r.m.) associated with the partially exchangeable sequence Z.

Remark 5.1
Let X = {Xi; i E N} be a sequence of random variables. Then
Xi --+- Xu(L', LOO) for random variable X means that

li~E(Xi/B)= E(X/B),
for each B E B(R) , P(B) > o.

Remark 5.2

It is well known (Meyer (1966), T23) that for X = {Xi, i E N} to be
u(L', LOO) relatively sequentially compact it is necessary and sufficient that
X be uniformly integrable, and in particular it is sufficient that X be V­
bounded for some p > 1.



69

Definition 5.1
For A E P(R), write

00

IAIP = f IxIPA(dx)
-00

00

IA11 = f xA(dx)
-00

00

IA12 = f x2A(dx) - (IA11)2 .
-00

O<p<oo (5.2)

We refer to \All and IAI2 as the mean and the variance of Arespectively.
For definiteness write IAl1 = 00 if IA ll = 00 and IA\2= 00 if IAI 2 = 00.

Remark
Tjur (1980) discusses distributions of random measures on the metrisable
space (Parthasarathy (1967), T6.2) P(R). Billingsley ((1968), p.238) de­
fines moments of measures which are consistent with the definitions for IAll
and IAI2 as given in Definition 5.1.

For the remainder of this section and §5.2 (unless otherwise indicated)
assume X = {Xij; i E [2],j E N} to be a 2-fold infinite sequence of random
variables such that {L(Xii);Jo E N} is tight Vi E [2] (see Appendix AI).

The next two lemmas are extensions of work done by Aldous ((1977),
pp.61-62, Lemma 2 and equations (3.2) and (3.3)). We re-state his result
for each type of random variable separately, making the obvious adjust­
ments.

Lemma 5.1

E I(JL(w)) IP ~ li~supE IXlj lP , 0 < P < 00
1

E l(lI(w)) IP ~ lim sup E IX2i lP , 0 < P < 00
1

where
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Lemma 5.2
IT

,81 (w) = \J.L(w) 12, ,82(W) = Iv(w)12
then

supEIX1i l < 00 implies a1(w) < 00 a.s.
i

supEIX2i l < 00 implies a2(w) < 00 a.s.
i

supEIX1i \2 < 00 implies ,81(W) < 00 a.s.
i

sup E\X2i \2 < 00 implies ,82(W) < 00 a.s..
i

Remark
The previous two lemmas provide us with some technical results which ran­
dom measures J.L and v, which we construct in §5.2, satisfy.

Results in §5.2 are stated in terms of X, J.L and v, When applying these
results to specific theorems G:1 and ,8i , i E [2] play the role of means and
variances in the 2-lID case.

Consider the following special property B which X might possess:

Definition 5.2
X possesses property B if there exists a (2-fold) partially exchangeable se­
quence of random variables Z = {Zii; i E [2],j· E N} such that

(i) (J.L, v) is the 2-c.r.m. for Z

(ii) t f: IXimii - Ziil < 00 a.s. for some m.
,=1,=1

Remark
In §5.2 the results will be formulated so as to be almost obvious if X pos­
sesses property B. However, X need not generally possess property B (see
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Aldous (1977), p.81 for the trivial case where only one type of random vari­
able is considered).

In the introduction to Chapter 5 mention was made of the main result
of §5.2 which concerns a.s. limit theorems for 2-IID random variables. Ex­
actly what is meant by this statement will be made clear by the following
definition.

Definition 5.3
A statute A is a measurable subset of P(R) X P(R) X ROO X ROO such that
for each (Ab A2) E P(R) X P(R),

(Ab A2'X(W)) E A a.s. when L(X) = A~ X A; . (5.3)

This is equivalent to

(A~ X A;) {X(w) E R oo
X R oo

; (Ab A2'X(W)) E A} = 1 (5.4)

or
(5.5)

when X is a 2-IID sequence of random variables, Ai being the common
distribution of random variables of type i, Vi E [2].

'The following examples of statutes representing some well-known a.s, limit
theorems for lID random variables (Le. for the g = 1 case where only one
type of random variable is considered) appear in Aldous (1977):

Example 5.1
Let X = {Xi; i E N} be an infinite sequence of lID random variables,
then Kolmogorov's SLLN and the Law of the Iterated Logarithm (Shi­
rayayev (1984), pp.366, 372 respectively) may be represented by the fol­
lowing statutes:
For each A E P(R),

A l = {(A,X(w))j Ji.~n-l ~ X;(w) = IAI1} U {(A,X(w))j IAl l = 00 } (5.6)

I f:Xi(W)-N I~ll I
A 2 = (A,X(w));limsup 1 ~ = (IA I2)! U{(A,X(w)); IAI2 = oo}. (5.7)

N -00 (2N log log N) ~
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Remark
The above two statutes will be extended in §5.3 to allow two types of ran-
dom variables, Le. an analogue of Kolmogorov's SLLN and .the Law of
the Iterated Logarithm as a.s . limit theorems for 2-IID sequences will be
presented in statute form.

Definition 5.4
A statute A is said to be a limit statute if

2 00

(Ab A2'X{w)) E A and L L IX;;{w) - Xi;{w) \ < 00 (5.8)
i=1 i=1

implies
(5.9)

5.2 PARTIAL EXCHANGEABILITY AND SUBSEQUENCES
OF ARBITRARY DEPENDENT 2-FOLD INFINITE
SEQUENCES OF RANDOM VARIABLES

As mentioned in the introduction to this chapter and in §5.1, this section
contains a very powerful result which shows the link between a.s. limit
theorems for 2-IID sequences of random variables and those of (i) partially
exchangeable sequences and (ii) sub-subsequences of some subsequence of
an arbitrary 2-fold infinite sequence of random variables which have a tight
distribution (Appendix AI) for each type of random variable.

Any a.s. limit theorem for 2-IID random variables may be represented
in statute form (see §5.3) and it thus remains to be shown that partially
exchangeable sequences and the particular subsequences mentioned may be
used in any statute.

For the remainder of this section, unless otherwise indicated, assume
X = {Xi;; i E [2],j E N} to be a 2-fold infinite sequence of random vari­
ables, tightly distributed (Appendix AI) within types. To briefly describe
the technique used we extract a subsequence Y = {Yi;; i E [2],j E N} from
X and associate with it a partially exchangeable sequence Z = {Zii; i E [2] , j EN}.
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We will then show that certain types of properties of Z are shared by Y
(in particular some a.s. limit theorems).

Remark
Here follows a brief survey of related work for the g = 1 case:

(1) Given a sequence X = {Xi; i E N} of random variables with a tight
distribution, we can find a subsequence Y = {Yi; i E N} which is
asymptotically exchangeable, Le. for some exchangeable sequence of
random variables Z = {Zi; i EN},

This result was given independently by Dacunha-Castelle (1974) and
Figiel and Sucheston (1976).

(2) Berkes (1982) gave a survey of results concerning the structure of
subsequences of random variables. He showed that the strongest
exchangeability property that can be guaranteed for suitable sub­
sequences of general sequences of random variables is a certain form
of asymptotic exchangeability which he calls strong exchangeability at
infinity.

Theorem 5.2
Let Z = {Zij; i E [2],;" E N} be a partially exchangeable sequence of ran­
dom variables. IT Z has 2-c.r.m. (p,,1I) then

(p,(W),lI(W), Z(w)) EA a.s.

for any statute A.

Proof
From Lemma 4.1, using z for Z(w),

J I [(p,(w), lI(w), z) E A] p,* X lI*(w, dz)
RooxRoo

= E {I [(p" 11, Z) E A] /.1(p" 1I)} a.s..

(5.10)

(5.11)
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Also, from (5.4),

f I [(JL(w) ,v(w), z) E A] JL* X v*(w, dz)
RooxRoo

= 1-£* X v" {z; (1-£(w),v(w),z) EA}

= 1 .

From (5.11) and (5.12) we thus have

E (E{I[(1-£, v, Z) E A]/1(1-£, v)}) = 1

and hence
E {I(1-£, u, Z) E A} = 1

so that
(1-£(W),lI(W), Z(w)) E A a.s..

(5.12)

Remark 5.3
Theorem 5.2 shows that a.s. limit theorems for 2-IID sequences of ran­
dom variables extend immediately to (2-fold) partially exchangeable ran­
dom variables, a result which is not surprising in view of our earlier work
in Chapter 3 (in particular Theorem 3.3).

The following theorem shows that a.s, limit theorems for 2-IID sequences
of random variables, which can be represented by a limit statute, extend
immediately to all sub-subsequences of some particular subsequence of X.

Theorem 5.3
Let A be any limit statute. Then there exists m such that for each n C m,

(1-£(W),lI(W),Xn(W)) EA a.s.. (5.13)

Proof
The proof of this theorem will be given towards the end of this chapter as
it relies on many results that still need to be presented.
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Corollary 5.1
Theorem 5.3 is immediate if X has property fie

Proof
From Definition 5.2 it follows that there exists a partially exchangeable
sequence of random variables Z = {Zii; i E [2],j E N} with 2-c.r.m. (JL, 1I)
and m such that

2 00

L L IXimii - Zii\ < 00 a.s ..
i=1 i=1

Theorem 5.2, (5.14) and Definition 5.4 show that

(JL(w),lI(w),Xm(w)) EA a.s.

for any limit statute A.

(5.14)

(5.15)

Now suppose that n C m and choose Z' to be a subsequence of Z in­
dexed by the same subscripts as subsequence X n is from Xm •

From (5.14),

2 00 2 00

L L IXinii - Z;jl s L L IXimii - Zii\ < 00 a.s.
i=1i=1 i=1j=1

and hence
(JL(w),lI(w),Xn(w)) EA a.s.

follows by using the same argument as was used to obtain (5.15) (note that
Z' is partially exchangeable if Z is).

Combining the results from Theorem 5.2 and Theorem 5.3 we thus have
the main result of this section:

Given any a.s, limit theorem for 2-IID random variables, there
exists an analogous theorem satisfied by (2-fold) partially ex­
changeable sequences and by all sub-subsequences of some sub­
sequence of an arbitrarily dependent 2-fold infinite sequence of
random variables, tightly distributed within types.
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In order to prove Theorem 5.3 we need to construct the random measures
J.1. and l/ for variables of type 1 and 2 respectively. The method of construc­
tion reduces to a construction in Revesz (1967, Theorem 6.1.1) when only
one type of random variable is considered (i.e. the g = 1 case).

Using the Relative Compactness Criterion (Appendix AI) we see that
{L(Xi j ) ; ;" E N} is relatively compact Vi E [2] , and hence

L(Xij ) => li

where li E P(R), Vi E [2].

Vi E [2] (5.16)

The following notation will be used throughout this section:

Results will be stated for random variables of type i where i E [2]. Let
Dioo be a countably dense set of continuity points of li (see (5.16)). For
each kEN choose a finite set
D ik = {Xiki;;" E [qk + I]} such that

Xiki < Xiki+l < Xiki + 2- k
J" :s; qk

P [Xik 1 < x.; < Xikq,, ] ~ 1 - 2-k n E N

D ik C D ik+1

00

D ioo = UD ik "
k=l

(5.17)

(5.18)

(5.19)

(5.20)

Let .);k be the set of intervals (-00, Xik 1 ] , (Xik 1 , Xik'J ] , • " • , (Xikq" ' 00) and let

Define Pik : R -+ Dik by

Pik(X) = { inf {Xiki E D ik ; Xiki ~ x} for x s xkq"
X~~+ l e~e

for x E R.

(5.21)

(5.22)
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Note that Pik is a constant on each J E ~k, i E [2],kEN. For future
reference note that (5.17) and (5.18) imply both the next two results:

P [IPik(Xin) - Xinl ~ 2-k] ~ 2- k k, n E N, i E [2] (5.23)

and for any V = {Vi;; i E [2 ],j E N} with L(Vi;) 0= '1" "I. E P(R),
jEN,iE[2],

P [IPik(Vi;) - Vi; I ~ 2-k
] s 2-k Vj E N,k E N,i E [2] . (5.24)

The following result follows immediately from work published by Aldous
((1977), p.69) by applying Aldous' results to each type of random variable
separately.

Theorem 5.4
There exists a subsequence Y = X; and random measures JJ. and 1/ such
that

for each J E J1, lim E [I(Yl/c E J) / Jik-1] (w) = JJ.(w, J)
k-oo

for each J E J2, lim E [I(Y2k E J)/J2k-1](w) = 1/(w, J)
k-oo

where JJ. is Ji-measurable and 1/ is ]i-measurable. For

(5.25)

(5.26)

i E [2]. (5.28)

We now construct a partially exchangeable sequence Z whose 2-c.r.m. is
(JL,1/) and then compare properties of Y and Z (where Y, JJ., 1/ are as in
Theorem 5.4).

From (5.27) and (5.28) we note that

~ C 1(Y) i E [2] . (5.29)

For the remainder of this section let Z = {Zi;; i E [2],;" E N} be a sequence
of random variables such that

JJ.. X 1/. is a r .c.d . for Z given 1 (Y, JJ., 1/). (5.30)
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Since J.L is Ji-measurable and 1.1 is J2-measurable (see Theorem 5.4), it fol­
lows that (5.29) and (5.30) yield

p,. X 1.1. is a r.c.d, for Z given 1(Y).

Using (5.30) and (5.31) we see that

p,. X 1.1. is a r.c.d. for Z given 1(J.L, 1.1)

(5.31)

so that (J.L,1.I) is the 2-c.r.m. for the (2-fold) partially exchangeable se­
quence, Z.

Theorem 5.5
Let V be an 1 (Y)-measurable map into some separable, metrisable space,
S. For all i EN,

VnEN

VmEN.

(5.32)

(5.33)

Moreover suppose that f E LOO(S X R x R) is such that, for each 8 E S,
f (8, " Y2n) is a constant on each J E J1j , then

(Hi) lim E [f(V, Y1m , Y2n) ]= E [f (V,z.;Y2n)] Vi E N (5.34)
m-oo
and if f (8, Y1m , .) is a constant on each J E J2j , then

Proof
The proof of this theorem follows from Aldous' related result (Aldous
(1977), Lemma 12, p.72) for one type of random variable by making the
obvious changes to his proof.

Corollary 5.2
V and Zi = {Zij; i E N} are conditionally independent given ~ Vi E [2].

Proof
For i E [2], let J E ~ and let A be a measurable subset of S. Then, using
(5.29), we see that



P [V E A, Zii E J/lt]

=E [I (V E A, Zii E J)/]i]

= E {E [I(V E A, Zii E J)/Y] Ilt}

= E {1(V E A)E [I(Zii E J)/Y] /It}.
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(5.36)

Consider the i = 1 case and recall that J.L is Ji-measurable (Theorem 5.4).
From (5.31) and (5.36) then, Vj E N,

P [V E A, Zli E J/Ji]

= E [I[V E A]J.L(w, J)/11]

= J.L(w, J)E [I[V E A]/11 ]

=E [J.L(w, J)/Ji] E{I[V E A]/Ji)

= E [E{I[Zli E J]/Y)/Ji] E{I[V E A]/1d·

From (5.29) then,

P [V E A, z., E J/Ji] = P [Zli E J/Ji] P [V E A/1l ]

the i = 2 case follows similarly.

Remark
Since Y is an infinite subsequence of X, (5.16) shows that for i E [2],

L(Yii) => li \ljEN.

Hence, from Theorem 5.5 we obtain, for i E [2],

VjEN. (5.37)

Consider a function g : P (R) x P (R) x R 00 x R 00 -+ R. We aim to use
the asymptotic conditional independence property given by Theorem 5.5 to
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show that E [g(JL, 1I, Y n)] is close to E[g(JL, 1I, Z)] whenever n increases suf­
ficiently rapidly (exactly what is meant by this will be stated below). The
situation is simplest when 9 is continuous, but the alternative conditions
below will sometimes be needed.

For each x E R OO x R oo, y E ROO x Roo and Ai E P(R) i E [2],

lim inf g(Ab '\2, Xn, ••• ,XliI' X21, ••• , X2i2, Yli 1 +17 Yli 1+2, ••• ,
'1,'2

Y2i2+l, Y2i2+2," .) Vi; E N, j E [2]. (5.38)

IT

then
g(Ab '\2'X)

where Pi; is as in (5.22).

Vi E [2], VJ' E N

(5.39)

Definition 5.5
Let Q denote an assertion applicable to increasing sequences (within types)
n = {ni;;iE [2],jEN} of positive integers (Le. n, = {nij;jEN} is in­
creasing Vi E [2]) and let Q' denote the set of n E NOO x NOO for which Q
is true. IT there exist functions L l and L 2 ,

L, : {finite sequences in N} ~ N Vi E [2] such that, Vj E N, i E [2],

(5.40)

then we say that Q holds for all n increasing sufficiently rapidly. (Note
that we require the sequence to be increasing sufficiently rapidly for each
type of variable, separately).

Theorem 5.6
Let PJl}(R) and PJ2}(R) be two measurable subsets of P(R) such that

JL(w) E PJl}(R) a.s. and lI(w) E PJ2}(R) a.s.. (5.41)

Let pJi} (R) be equipped with the separable, metrisable topology, Ti such
that

Vi E [2] . (5.42)
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The weak topology and Ti generate the same a-field Vi E [2]. (5.43)

Let e> 0 be given. Let g : PJ1}(R) X PJ2}(R) X R oo X R oo ~ R sat­

isfy either
(i) g is bounded and continuous
or
(ii) g is bounded, measurable and satisfies (5.38) and (5.39).

Then
E[g(J.£, 11,Yn)] ~ E[g(J.£, 11, Z)] + e

for all n increasing sufficiently rapidly.

(5.44)

Proof
Suppose, inductively, that we have chosen the first k, variables of type
i, i E [2], Le. nil < ni2 < ... < ni1ci have been specified Vi E [2].

Define random variables

Goo = g(J.£, 11, Z) (5.45)

Zli+l, Zli+2, ... , Z2i+l, Z2i+2' .. .), i E [kl],j E [k2], ki E N
Vi E [2]. (5.46)

For rni > ni1ci Vi E [2], define

We shall prove
lim E(Bm 1 m,J = E(G1c11c2 ) (5.48)

ml,m2 '

in order to prove the theorem. We now proceed to show that if (5.48) holds
then the desired result follows. We thus accept (5.48) for the time being.

From (5.46), (5.47) and (5.48) we see that there exist functions L l and
L2 ,

L, : {finite sequences in N} ~ N Vi E [2], such that
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if
niki+1 ~ Li(nib ni2, ... ,nikJ Vi E [2]

then E(Gk1+1k:1) and E(Gk1k2+d can be brought as close to E(Gk1k:1) as
desired, Le. from Definition 5.5, we may say that for all n increasing
sufficiently rapidly, there exist ei > 0, Vi E [2], such that

E(Gk1+1k:1) ~ E(Gk1k:1) + e12- k1- 1 (5.49)

and
E(Gk1k:1+d ~ E(Gk1kJ + e22-k:1-1. (5.50)

Now suppose that n increases sufficiently rapidly, from (5.49) and
(5.50) there exist e> 0 such that

E(Gk1k:1) < E(Gkl- 1k:1 ) + e12-k1

< E(GOk:1) + el (2-k1 + 2-k1+1 + ... + 2-1)

< E(GOk:1) + el

< E(Gok:1-d + e22- k:1 + el

< E(Go,o) + e (5.51)

where e = el + e2. Since (5.51) holds Vki EN, Vi E [2], we may use
(5.45) to obtain the following:

IT n increases sufficiently rapidly then there exists e> 0 such
that

(5.52)

At the outset of the theorem it was assumed that g either satisfies (i) or (ii).
Assume that g satisfies (ii). From (5.38) with x = Y n = {Y1n11' Y1n12, ... ,
Y2n:11' Y2n22, ...}, y = Z = {Zll' Z12"'" Z2b Z22""} , i = k1 , J' = k2 ,
Al = J.L and A2 = 1I, we see that

g(J.L, 1I, Y n) ~ lim inf g{J.L, 1I, Y1nll, Y1n12, ... ,Y1nu: ,Y2n21,Y2n22, ... 'Y2n2k ,kl,.t2 1 2



and hence, from (5.46),

g(JL, 1I, Y n) ::;
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(5.53)

Since (5.53) follows immediately if 9 is continuous (which is assumed if 9
satisfies (i)) we thus have 9 to satisfy (5.53).

From (5.53) and Fatou's lemma (Appendix AI),

E[g(JL, 1I, Y n)] < E (Hm inf Gk1k'J)
k1 , k'J

(5.54)

Using (5.52) and (5.54) we thus see that for all n increasing sufficiently
rapidly, there exists e> 0 such that (5.44) follows, since

< E [g(JL, 1I, Z)] + e.
The proof will thus be complete if (5.48) is shown to hold. For all i,i E N,
define functions gii : PJ1)(R) x PJ2)(R) x Ri x Ri ~ R by

Jg(Ab A2' Yll, Y12,· .. ,Y1i, Y2b Y22,' .. ,Y2j, X1i+b X1i+2, ... ,x2i+b x2i+2,· . .)
R

Ai x A;d(x) (5.55)

where R = (.XR) x (.XR).
1+1 1+1

From (5.55) and the assumptions made on 9 it immediately follows that
gii is bounded and measurable Vi,j E N.
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i E [2] by

From (5.29) and the fact that fL is ]i-measurable we conclude that

fL is 1 (Y) -measurable.

Similarly for v, so that (5.56) shows that

V is 1(Y)-measurable.

(5.56)

(5.57)

(5.58)

For random variables W1 and W2 and k, EN, i E [2], we may regard
(V, W1, W2) as a rand~m map into PJ1}(R) x PJ2}(R) x Rkl+1 x R k1+1. Us­
ing Lemma 4.1, the definitions of the functions involved and (5.31), we see
that

(5.59)

(5.60)

(5.61)

We now show that if

(5.62)
holds, then (5.48) follows.

From (5.60) and (5.62),

Iim E [E(Bm 1 m 1/Y)]ml,m1

(5.63)

From a basic property of conditional expectations, (5.59), (5.61) and (5.63),



it follows that (5.48) holds, since

lim E(Bm1m'J) = E [gk1+1k'J+I(V, Z1k1+I , Z2k'J+t}1
ml.m'J

•

a.s,

85

E [gk1k'J (V)] a.s.

E [E(Gk1k'J/Y)] a.s.

- E(Gk1k'J) a.s ..

The proof of the theorem is thus complete if (5.62) can be shown to hold.
Once again, we consider the two cases separately.

Suppose that 9 satisfies (ii). Let kb k2 EN. From (5.55), for arbitrary
m,nEN,

gk1+lk'J+I (Ab A2' Yn, Y12, ... , Ylk1, Y2b Y22, ... , Y2k'J' YIm,Y2n)

= f 9 (Ab A2' Yn, Y12,·· ., Ylk1+I, Y21, Y22,· .. Y2k'J+b Xlk1+2, Xlk1+3,···, X2k'J+2, X2k'J+3' ...)
R

(5.64)

where R = (X R) x (X R).
k1+2 k'J+2

Now Piki+I is a constant on each J E Jiki+I Vi E [2] (this was noted just
below the definition of Pik(X), see (5.22)), so that (5.39) and (5.55) immedi-
ately show that if we fix (AI, A2' Yn, , Ylk1, Y2I, ... , Y2k'J' Y2n) and consider
gk1+lk'J+I (Ab A2' YIb Y12, ... , Ylk1, Y2b , Y2k'J' YIm,YIn) as a function of YIm
only, then the right hand side of (5.64) is a constant on each J1 E Jk1+1 .

We may thus use Theorem 5.5 (iii) to obtain

E [gk1+lk'J+I (Ab A2' Y ll , ••• , Y lk p Y21, ••• , Y2k'J' Zli, Y In)] Vi E N.

Using similar arguments we thus see that, Vi,;" E N,
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(5.65)

so that (5.62) holds as it is just a special case of (5.65).

We now show that (5.62) holds if g satisfies (i). For V as in (5.56), V
is an 1(Y)-measurable map into S = PJ1}(R) XPJ2}(R) x Rkl XR k2, and
we may thus use Theorem 5.5 (i) to see that

and
lim L(V, Y1m , Y2n) = L(V, Y1m , Z2i)

n--+oo

so that (5.66) and (5.67) yield

'Vi E N (5.66)

vi E N (5.67)

'Vi,j E N (5.68)

The continuity of gkl+1k2+1 'Vki EN, i E [2], follows from the continuity
of g and hence (5.62) is obtained from (5.68). The proof of Theorem 5.6 is
thus complete.

Remark
Theorem 5.6 reduces to a result by Aldous ((1977), Proposition 13, p.74)
when only variables of one type are considered.

We are almost in a position to prove Theorem 5.3 but we first need es­
tablish the following lemmas:

Lemma 5.3

Let {Q(illh)(k1Jk~}; 1 ~ k; ~ qii,i E [2], (;·1,i2) EN x N} be a collection of
properties, each of which holds for all n increasing sufficiently rapidly (see
Definition 5.5). Then there exists m which satisfies the following:

For each n C m and each (;·1, ;·2) E N x N, there exists



n(ll,h) satisfies properties Q( ° • )(le le )]l,]'}, 11 '},

n - nit
iJc - iJc for all k > Ji, i E [2].
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1 s ki ~ qi" i E [2] (5.69)

(5.70)

Proof
The desired result follows from Aldous' related result (Aldous (1977),
Lemma 14, p.76) since n increasing sufficiently rapidly requires n, = {nii; j E N}
to increase sufficiently rapidly Vi E [2] (see Definition 5.5).

Lemma 5.4
Let A be any limit statute, with A' as its complement in P(R) x P(R) x
Roo x ROO. Let Ji E N Vi E [2] be given. Then

P [(JL, v, Y n) E A'] s 2-il - h (5.71)

for all n increasing sufficiently rapidly.

Proof
We start off by showing that A' is a limit statute.

In this regard suppose that
2 00

(AI' A2' x) E A' and I:I: IXii - x;il < 00

i=1 i=1

for some x.x' E Roo x ROO and Ai E P(R) , Vi E [2].

(5.72)

Suppose that (AI, A2' x'] is not in A'. Then (Ab A2' X') E A, and from
the second part of (5.72), since A is a limit statute, we conclude that
(Al,A2'X) E A. Clearly then (Al,A2'X) ~ A', which contradicts the first
part of (5.72). We may thus conclude that A' is a limit statute if A is.

We cannot apply Theorem 5.6 directly to I(A') since (5.39) is not sat­
isfied, so we need a more .sophisticated approach.

Consider the functions Pii as defined in (5.22). From (5.37) and (5.24),
VJoE N, we have that

P [IPik(Zii) - Zii l2:: 2- k] ~ 2-k Vk E N, Vi E [2]



and hence, VJO EN, ,
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so that
2 00

E E IZi; - Pi; (Zi;) I < 00 a.s ..
i=1 ;=1

(5.74)

From Theorem 5.5, it follows that, vn c NOO X NOO , Vi E [2] , VJo E N,

so that
2 00

E E IYini; - Pi; (Yini;) I< 00 a.s.
i=1 i=1

follows from (5.73) in the same way that (5.74) did.

Now define P : ROO x ROO -+ ROO x ROO by

(5.75)

Due to the symmetry of (5.74) and the fact that A' is a limit statute, we
conclude that

(JL, v, Z(w)) E A' if and only if(JL, t/, P(Z(w))) E A'

for Z a partially exchangeable sequence with 2-c.r.m. (JL, z-), so that

P [(JL, u, Z) EA'] = P [(J.L, v, P(Z)) EA'] . (5.77)

Similarly, from (5.75),

However, from Theorem 5.2 and (5.77),

P [(J.L ,u, P(Z)) E A] = 1

so that
p[(J.L,V,P(Z)) EA'] =0. (5.79)



89

Since a probability measure on a metric space is regular, there exists an
open set G ~ A' such that (S.79) leads us to

Now let

P [(JL, £I, P{Z)) E G] ~ 2-il - h - 1 Vii E N, i E [2]. (S.80)

H = {(Ab A2'X); (Ab A2' P{x)) E G for Ai E P{R) Vi E [2] ,x E R oo x R OO
} •

(S.81)

For Ai E P(R) Vi E [2] ,x E Roo x Roo, let

_ _{1 if (Ab A2 P{X)) EG
g(A1' A2 , x) - I(H) - 0 if (Ab A

2
P(x)) tI. G. (S.82)

From (5.82) it follows that g(A17 A2'X) is bounded and measurable. Since
g(A17 A2 ,x) satisfies (5.38) and (5.39) we may use Theorem 5.6 (ii) to see
that, for all n increasing sufficiently rapidly,

E [g(JL, £I, Yn)] ~ E [g(JL, £I, Z)] + €.

From (5.82) we thus have,

E {I [(JL, £I, P(Yn)) E G]} ~ E {I [(JL, £I, P(Z)) E G]} + €

and hence

P [(JL, £I, P{Yn)) E G] ~ P [(JL, £I, P{Z)) E G] + €. (S.83)

From (S.80) and (5.83) we thus have that for all n increasing sufficiently
rapidly, '

P [(JL, £I, P(Yn)) E G] ~ 2-il - h . (5.84)

The lemma thus follows immediately from (S.78), (5.84) and the fact that
A' eG.

We are finally in a position to prove Theorem 5.3.
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Proof of Theorem 5.3
Let A be any limit statute. From Lemma 5.3 we know that :lm E NCO x Nco ,
such that, for all n C m and each (il X}2) EN x N, we can find a n(i!,h), as
in (5.70), which satisfies a particular set of properties for sequences which
increase sufficiently rapidly. From Lemma 5.4 then,

(5.85)

for Ji EN, Vi E [2].

From the construction of n (il ,h) it follows that

t f IYinil: - ~n~i I< 00 .
i=l k=l 11:

(5.86)

From the symmetry of (5.86) and the fact tha.t A' is a limit statute it
immediately follows that

(J.L, 1/, Y n) E A' if and only if (J.L, 1/, Y n(i!,j2») E A'

so that
p [(J.L, 1/, Y n) E A'] = P[(J.L, 1/, Y n(i! ,h») E A'] .

From (5.85) and (5.87) then, for all Ji EN, Vi E [2],

P [(J.L, 1/, Y n) E A'] ::; 2- il - h

so that
P [(J.L, 1/, Y n) E A] = 1

and hence the desired result follows.

(5.87)

5.3 LIMIT THEOREMS FOR PARTIALLY EXCHANGEABLE
SEQUENCES

We start off by extending some well-known limit theorems for lID ran­
dom variables to hold for 2-IID sequences. Limit theorems for partially
exchangeable sequences follow immediately (see Remark 5.3).

Let X = {Xii; i E [2],} E N} be a 2-IID sequence of random variables,



91

and let S = {SRIR2 = iE i~l x.;ni E N, Vi E [21}.

Definition 5.6
A tail event on S is an event which is independent of {Skl; 1 ~ k ~ nI, 1 ~ I ~ n2}

for any finite ni EN, i E [2].

The following corollary to the Hewitt-Savage zero-one law for 2-IID se­
quences (Theorem 3.6) reduces to a result in Breiman ((1968), p.64) when
only variables of one type are considered.

Corollary 5.3
Let X = {Xii; i E [2],;' E N} be a 2-IID sequence and S as defined above.
Then every tail event on S has probability zero or one.

Proof
Let A be a tail event on S. Then A is unaffected by finite permutations
(within types) of X, and hence A E Ex (see Definition 3.5). The desired
result follows from Theorem 3.6.

Example
Let X and S be as in Corollary 5.3, and let I n 1n 2 E B(R2 ) Vni EN, i E [2].
Then

A

are both tail events on S and hence, by Corollary 5.3, have measure zero
or one.

The following limit theorem for 2-IID sequences is an extension of Kol­
mogorov's inequality (Appendix AI).

Theorem 5.7
Let X = {Xii; i E [2],;, E N} be a 2-IID sequence of random variables with

Vi E [2], Vj E N
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Let

Then, Ve > 0,

ViEN, iE[2].

Proof ·
For all k; E [nil , i E [2]

and hence

max
l~l:i~ni

iE(2)

2 le,

2:2:X,; ~ e
,=1 ;=1

so that

< P [l~~l i~l x., 2: E/2] + P [l~2ar..2 i~l X 2i 2: E/2] . (5.88)

Now applying Kolmogorov's inequality (Appendix AI) to each term on
the right hand side of (5.88), we see that
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Lemma 5.5
Let X be a 2-IID sequence with zero means, finite second. moments, where

2 00 . 2 00

L: L: Vi; is convergent (Vi; = Var(Xi;)). Then L: L: Xi; is a.s. convergent.
i=1;=1 i=1;=1

Proof:
2 00

Since L: L: Vi; < 00 , it clearly follows that
i=1 ;=1

00

2: Vi; < 00

;=1
Vi E [2] ,

00

and hence, from Clarke (1975, Lemma 3, p.179) we see that L: Xi; is a.s.
;=1

convergent Vi E [2]. The desired result now follows immediately.

An idea obtained in a paper by Aldous ((1981), p.590) led to the following
extension of Kolmogorov's SLLN (see Appendix AI):

Theorem 5.8
Let X be a 2-IID sequence of random variables with EIXi11 < 00, Vi E [2]
and let E(Xid = P,i, Vi E [2]. Then

n

lim n -1 2: Xl/cX2k = P,1P,2 a.s.
n-oo

1:=1

Proof
Clearly {Xl/cX2k ; kEN} is an lID sequence. Now

so that Kolmogorov's above mentioned result yields

n

lim n -1 '" Xl/cX2k = P,1P,2 a.s.n-oo L-,
k=1

Using the notation of §5.1 and §5.2, in particular Definition 5.3, we now
present the previous theorem in statute form.
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{(,\b A2'X); IA1\1 = 00 or 1'\211 = oo}

Similarly a statute representing an extension of the Law of the Iterated
Logarithm (see Example 5.1) allowing 2-type sequences follows from statute
A2 in 'Example 5.1 in exactly the same way as A3 above generalizes A1 :

= [1'\112 ·IA212+ (1'\1Id 21'\212 + (IA2Id2IAlI2]~ } U

{(Al,A2'X); 1'\112 ·1'\212 + (I A1\1)2\'\212+ (I A2Id 21'\112= oo},

where we have used the fact (see Clarke (1975), p.107) that, for any two
random variables X and Y,

Yar(XY) = Yar(X)Yar(Y) + (E(X))2Yar(Y) + (E(y))2Yar(X) .

Remark
Theorems 5.2 and 5.3 and statutes A3 and A4 above demonstrate how a.s.
limit theorems for 2-IID sequences of random variables extend to partially
exchangeable sequences and to sub-subsequences of an arbitrary tight se­
quence of random variables.
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APPENDIX Al

De Finetti's representation theorem for partially exchangeable
events (Dale (1984), p.234)
For every infinite sequence of g-fold partially exchangeable events, there
corresponds a (unique) g-dimensional distribution function F on G =[O,l]fl
such that

where Vi E [g]

(Rl ,R:1 ,•••,Rg) d h b b I fm enotes t e pro a i ity 0 Tb T2, ••• , rg occurences
rl ,r:1, ... ,rg

in the nI, n2, ... ,ng events respectively.

Xi denotes the probability of an occurence of event of type i.

Birkhoff ergodic theorem for stationary processes [Loeve (1978),
p.76)
Let X = {Xi, i E N} be a stationary sequence of random variables. If
E(X1) exists, then

where C
00

n Cn
n=l

n
~E(Xl/C)

00
a.s.

VnEN.
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A result from Lord ((1954) pA5, result 2.2).
ITX = {Xi, i E N} has spherical symmetry, then

is a function of p only, where p = ITI = I(t l, t 2 , ••• , tn)1 (1·1 denotes modu­
lus).

Maxwell's theorem (Feller, (1971), Vol. 11, Chapter 3, §4)
An independent spherically symmetric sequence, {Xi; i EN}, has a N(O, (12)
distribution for some (12 > o.

Hewitt-Savage zero-one law [Loeve (1977), Vol. I, p.374)
Exchangeable events have a probability of 0 or 1 and exchangeable func­
tions are degenerate on a sequence of lID random variables.

Glivenko-Cantelli theorem (Chung (1974), p.132)
Let {Xn , n E N} be a sequence of lID random variables, with common dis­
tribution function F. Take {Xj(w); j E [n]} for some n E N and arrange
them in non-decreasing order, denoted by

Now define a discrete distribution function Fn(·,w) as follows:
For x E R,

i
0 if x < Yn 1 (w )

Fn(x,w) = ~ if YnA:(w) ~ X < YnA:+l (w) Vk E [n - 1]
1 if x ~ Ynn (w).

Call Fn ( · , w) the empiric distribution function based on n samples from F.

Now introduce indicator random variables,

e;(x,w) = I [X;(w) ~ x]

Then
1 n

Fn(x,w) = - L ej(x,w)
n ;=1
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and hence, from the SLLN (Chung (1974), Theorem 5.1.2),

lim Fn(x, w) = F(x) a.s..
n-+oo

Martingale convergence theorem
(Doob (1953), Chapter 7, Theorem 4.3)
Let Z be a random variable with EIZ\ < 00, and let··· C 1t c ~ c ...
be Borel fields of measurable w sets. Let 1-00 = nI n and let 100 be the

n

smallest Borel field of sets with 100 ::J UI n • Then
n

lim E(Z/ln ) = E(Z/l-oo ) a.s.
n-+-oo

lim E(Z/ In ) = E(Z/100 ) a.s..
n-+oo

Tight distributions of sequences of random variables
[Loeve (1977), Vol. 1 p.194 or Shirayayev (1984), p.315)
A family P of probabilities on A is tight if Ve > 0,3 compact Ke such that

P(K~) < e 'riP E P, where A = 1 (open sets of S) and S is a metric
space.

Relative Compactness [Loeve (1977), Vol. I, p.195)
Let S be a separable, complete, metric space with Borel field S. A family
P of probabilities on S is relatively compact if every sequence of members
of P contains a subsequence which converges weakly to a probability on S.

Relative Compactness Criterion [Loeve (1977), Vol. I, p.195)
For the notation above, P is relatively compact if and only if P is tight. In
fact the "if" part holds for general metric spaces S.

Fatou's Lemma (Feller (1971), Vol. 11, p.110)
Suppose {Un, n E N} to be a sequence of non-negative, integrable functions.
Then
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Kolmogorov's inequality (Clarke (1975), p.177)
Suppose that {Xi; i E [n], n E N} are independent random variables with
zero means and finite second moments, and let

k E [n].

Then, for any e< 0,

P [l~~ ~Xi ~ €] s €-2 Evk •

Kolmogorov's SLLN (Shirayayev (1984), p.366)
For {Xi; i E N} an TID sequence of random variables with EIXil < 00

Vi EN,
1 n

lim - LXi = E(Xd a.s.
n-oo n i=l .

APPENDIX A2
Listed below are properties of conditional independence taken from Aldous
(1985), p.183.

An excellent elementary verification of these properties is given by Pfeif­
fer (1979) and a measure theoretic account is given by Chow and Teicher
(1978).

In what follows sets are measurable and functions <Pi are bounded and
measurable Vi E [2].

Measurable, real valued random variables X and Y are conditionally in­
dependent given a-field 1 if

Al P[X EA, Y E Bll] = P[X E All]P[Y E Bll] VA,B E B(R)

Each of the following is equivalent to Al
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A3 P [X E A/1, Y] = P[X E A/1]

A4 E [4>i(X)/1, Y] = E [4>i(X)/1], Vi E [2].

In these definitions we can replace a random variable X by a e-field g, by
replacing events [X E A] with events G (G E g), and replacing functions
4>(X) with bounded random variables VEg.

A sequence of random variables, {Xi; i E N} is conditionally independent
given o-field 1 if the product form in Al holds for each finite subset of
{Xi, i EN}.

Here are some properties. Let 1 and C denote arbitrary e-fields.

AS Suppose that for each j ~ 1, Xi and 1 {Xi; i > j} are conditionally
independent given 1. Then {Xi; i E N} are conditionally indepen­
dent given 1.

A6 IT X is conditionally independent of itself given 1 then X E 1 a.s.

A7 Suppose X and 1 are conditionally independent given C and suppose
that X and C are conditionally independent given H where H cC,
then X and 1 are conditionally independent given H.
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