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Abstract

Malaria is one of the most important public health issues that is still affecting millions of
people around the world, especially in Africa. Africa accounted for 80% of the 216 million
cases worldwide and 91% of deaths. It poses serious economic burdens on communities and
countries at large. However, through temporal and spatial mapping of the disease populations

at risk can be identified timeously and resources distributed accordingly.

Since malaria is a climatic disease geostatistical approaches can be utilised in modelling its
spatial distribution. Bayesian geostatistical methods enable the mathematical descriptions of
the environment-disease association. Significant environmental predictors of malaria
transmission can be identified which can also allow for the development of a malaria
epidemic prediction model. This model can serve as a surveillance system for early detection
and containment of the disease. Therefore, it is crucial to understand the complex dynamics
of malaria transmission so malaria control programmes can be more effective and efficient in

managing this public health issue.

In South Africa, malaria is transmitted in 3 provinces: KwaZulu-Natal, Mpumalanga and
Limpopo. Although malaria is highly seasonal in these areas and KwaZulu-Natal has
experienced tremendous achievements in decreasing morbidity and mortality due to malaria,
it still remains in an unstable condition that needs constant control and surveillance. The aim
of this study was to investigate which environmental/climatic variables are drivers of malaria
incidence in KwaZulu-Natal and subsequently develop methods to produce risk maps using

Bayesian spatio-temporal modelling.

It emerged from the research that the main environmental/climatic drivers of malaria
incidence in KwaZulu-Natal were the day temperature of the previous month, altitude and
forest land cover type. This was due to the different ways these three factors affect the three-
way interaction of the vector, the parasite and the human host. The predicted risk maps
showed that incidence rates ranged from 0.2 to 5 per 1000 inhabitants in the study area. This
prediction was based on only the climatic factors, however, non-climatic factors also affect
malaria transmission through vector control strategies like Indoor Residual Spraying among

others.



Declaration

I, Noluthando Ndlovu declare that

Vi.

Signed:

The research reported in this dissertation, except where otherwise indicated, is my

original work.

This dissertation has not been submitted for any degree or examination at any other

university.

This dissertation does not contain other persons’ data, pictures, graphs or other
information, unless otherwise specifically acknowledged as being sourced from other

researchers.

This dissertation does not contain other persons’ writing, unless acknowledged as
being sourced from other researchers, where other written sources have been quoted,
then:
a) Their words have been re-written but the general information attributed to
them as been referenced;
b) Where their exact words have been used, their writing has been places in
quotation marks, and referenced.

Where | have reproduced a publication of which | am an author, co-author or editor, |
have indicated in detail which part of the publication was actually written by myself
alone and have fully referenced such publications.

This dissertation does not contain text, graphics or tales copied and pasted from the

internet, unless specifically acknowledged, and the source being detailed in the
dissertation and in the References sections.

Date:



Acknowledgments

I would like to thank both my supervisors, Dr Michael Gebreslasie and Dr Penelope
Vounatsou, very much for the amount of support they gave me during the course of this
project. It is an understatement to say that | would not have been able to do this without them.
Learning Bayesian statistics (and I’'m STILL learning) was probably one of the hardest things
I’ve had to learn so thank you for your patience, understanding and expertise at all times.

I would also like to express sincere gratitude to Federica Giardina who was always willing to

help me with statistics in any way she can whenever | needed it, | really appreciate it.

Thank you to my mother and Zola, for always being a positive source of light, love and

guidance. And thank you to everyone who was always encouraging me to keep going.

| would also like to thank the Malaria Research Unit of the Medical Research Council for the
data and for offering me the opportunity to be part of this collaboration. This thesis was fully
funded by the Swiss South Africa Joint Research Programme (SSAJRP) and the National
Research Foundation (NRF). The opinions expressed and conclusions arrived at, are those of

the author and are not necessarily attributed to the NRF.



Table of Contents

[T P 2 £ [0 OSSPSR PRSP i
ACKNOWIBAGEMENTS ...ttt e b e et se e be et e aneesreeeeenee e ii
LIST OF FIQUIES ...ttt ettt sttt sttt e e e re e st e et e sne e beenbeaneenne s Vil
LIS OF TADIES ... ettt sre e e viii
LiSt OF ADDIEVIALIONS .....oviiiieieee e bbb iX

Chapter One: Introduction

1.1, BACKGIOUNG ...t bbbt 1
N 0L ) o LA o] USSP 4
1.3. AIM AN ODJECLIVES ...t be e te e e nreenee e 5
1.4, STIUCLUIE OF thESIS ..vveieiecii et st ens 6

Chapter Two: Literature Review

20 O 101 0o 1 £ ] o SRR 7
2.2. Malaria TraNMISSION .....cveieieiieiiee sttt b e bbbt b et e et sresbesbesbeene e 8
2.2.1. The Life-cyle of the Malaria Parasite ............ccocvveiiriiriiiiie e 9
2.3. The Malaria Parasite in the VECION .........ccce i 11
2 N Y = Tor (o] gl = ot ] [0 | AR SPRTSTRSN 12
2.4. Determinants of Malaria TranSMiSSION. .......cccviiiiiirieieieie e 14
2.4. 1. TEMPEIALUIE ...ttt bbbttt b e b e e e b e e e 14
2.4.2. Rainfall and HUMIGITY.........ooiiiiieieie e 15
Y LT T=1 v LA o] TSP 16
2.4.4. EI Nino Southern OSCHIAtION .......ccoeiiieieiiiiceseiee e 17
2.4.5. ANThropOgENIC FaCIOIS........iiiiiiieiieieee e 20
2.5. Malaria Immunity, Morbodity, Mortality and EndemicCity ............c.ccoovvoiiiiiniieniicnee 20
2.5.1. Classification of Malaria ENAemICIty ........c.cccevieviiiieii e 20
2.6. Malaria Control INtErVENTIONS. .........cviiiieeie et 23
2.6.1. VECIOI CONLIOL ...ttt esraete e e e nnaenee s 24
2.6.1.1. INSECtICIAE-Treated NELS. .....ecvecieieeie et nas 24
2.6.1.2. Ind0oor reSidual SPraying........cceiuieiieiieeiie et nrees 25
2.6.2. INSECLICIAE RESISTANCE .....c.veiviiiie ittt sttt 26
2.6.3. ElMINALION.......oiieiieie ettt e e e ste e sreesaeenaesraeneeneenneeneeas 27



2.7. Spatial EPIdemiolOgy ......c.ccueiieieiieie et 29

2.7.1. GIS and REMOLE SENSING ...c.veiveeiieieiiesieeie s se e ste e sreesre e sraesae e e e sreesnesneesreenee s 30
2.7.2. Spatial Statistical MOGEIS..........ccooiiiiiii e 32
2.7.2.1. Spatio-temporal Modelling .........ccooiiiiiiiii s 33
2.7.2.2. Spatial DEPENUENCY .....cveivieiecrieie ettt e te e te e e ne e sreeneeas 33
2.7.2.3. Spatial PrediCtion .......cc.ciieiiie ettt sre e 34

Chapter Three: Study Area

3.1. LOCAtiON OF STUAY ATBA......c.ociieii ettt be et a e te e sneennas 36
3.2. DEMOGIAPNICS ..veeviiieiiieee et e et e e anaern 37
TR V=T 1=l L[] E USRS S PP TP 37
3.4, TOPOZIAPNY. ... e 38
T T O 1111 LTRSS 39
3.6, MAIAIIA CASES ....vevieiierieieie ittt sttt bbbt et bbbt st e bt et e b bbb reens 39
IS Tox To =Yoo g o] 0 (o = Tod o £ TSR 40

Chapter Four: Materials and Methods

I 01 (oo (0ot T o TSSOSO 42
4.2. Data Description and ACQUISITION ..........coiiiiiriiriiiriisiieieie e 42
O N\ - g T W I - USSR 42
4.2.2. POPUIALION DALA .....vecvviiieeiiicie ettt re e sre e raeae s 43
4.2.3. Environmental/Climatic Data ..........cccooeiiiiiiiieieiese e 44
4.2.3.1. TEMPEIALUIE ...ttt b et nb e ab b ns 45
e B N | 1 45
G T T I 14 o [ 001V =T Y/ o T OSSR 45
4.2.3.4, ATIEUAR ..ottt ettt 46
4.2.3.5. RAINTAIL.....oooiiiece e 46
G A T L= Tl = o T L= 46

4.3, PrE-PrOCESSING ... eeiuteeieeitieetee ettt et e st et e e see e be e s teeabeesseeabeesseeebaesaeeasseesseeesseessseanbeeaseeanseens 47
B T - WAV, LT T (=] 01T o PRSP 47
4.4.1. Conversion of Database FileS ........cccovviieiiiiiieeee e 47
4.4.2. Data ManagemENT........cuiiiiiiiieiieeie ettt 48
4.5, StAtiStICAl ANAIYSIS.....viiiiiiiiiece e e 48
4.5.1. EXPIOratory ANAIYSIS .....c.uoiiiiiiiiiiie it 48



4.5.2. Bayesian Geostatistical Methods ............cooviiiiiiiice e 49

4.5.2. Bayesian Distributed Lag MOUEI ...........ccoeoiiiiiiieie e 50
4.5.2.1. Model FOrmMUIATION ......ociiiieii et 50
4.5.2.2. Implementation iIN BUGS ... 51
4.5.2.3. PTEOICTION....c.eiiiitiitiiiceeee ettt bbb 52

Chapter Five: Results and Discussion

T8 I 11T (8Tt A o] o U TRTRR 53
5.2. DESCIIPLIVE ANAIYSIS ..viiiiiiiieieeie ettt te et e e sbe s e raenteeneeeneenras 53
5.3. EXPIOratory ANAIYSIS ....ccviiieiieiecie sttt sttt st ns 57
5.4. Distributed Lag MO ..o 58
ST B AN 1 {1 (0o OSSPSR 58
I S =T 0 0oL L (U (PRSP 59
5.4.3. LANG COVEL ...ttt ettt sttt st e et e st bentesbesbenreas 60
5.5. Model-based PrediCtion IMaPS ........ccoiiiiiiiiiiiiie et 61
5.5.1. The Impact of CHMALIC FACIOIS .........cooiiiiiiiiieieee e 61
5.5.2. The Impact of NON-CliMatiC FaCLOrS..........ccccoviiiieiicie e 62
5.6. ACCUIACY ASSESSIMIENT ...eiiiiiiiiieeitie ettt e sttt e st e st e st e e st e e e st e e s b e e e srb e e e ssb e e e nsb e e e nabeeebbeeenes 70
ST ©0] o] 131 [ o OSSPSR 71

Chapter Six: Conclusions and Recommendations

G T0 I )T [Tt A o o SR 72
6.2. Summary of Key FINQINGS .....cvciiiieieee et 72
6.4. Limitations Of ThiS StUY .......c.coiiiiiiciecc et 73
6.5. Recommendations fOr FULUIE STUAIES.........cccveuiiieieee e 74
G TR T 0] o] 131 [ ] o SR 75
REFERENGCES........coo ottt a et sttt st st e s e et st e e e senne e 76
APPENDICES ... ..ot e et e et e et e e st e e st e e e anb e e e s e e e nneeeenes 96
APPENDIX A: OpenBUGS COUE .....oouiiiiiiiiieieiiesie ettt 96
APPENDIX B: R Code fOr PrediCtion ........cccooiieiieiiiieiieeeie e 98

Vi



List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

Figure 5.5

KwaZulu-Natal

Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

The life —cycle of the malaria parasite in the human host........................ 9
Anopheles adults showing typical resting position...................c.ceveee.n. 13
Functionality of a GIS..... ... 30
Map showing Study ar€a.........c.oovuiiiiiiiiiiie i ee e ieeaass 36
Map showing range of altitude in study area..................ccoevveiniiinnnnnn. 37
Map showing KwaZulu-Natal vegetation...............cooveveiriininieeennnn.n 39
Map showing cases in study area............oooviiiiiiiiiiiiiiniineeeenn, 42
Population Map for the Study Area for 2010..............ccooiiiiiiiininn... 46
The total number of cases per year in the KwaZulu-Natal Province............ 55

Monthly averages of cases & rainfall over 2001-2010 in KwaZulu-Natal...55
Monthly averages of cases & NDV1 over 2001-2010 in KwaZulu-Natal....56

Monthly averages of cases & day temperature over 2001-2010 in KwaZulu-

............................................................................................. 57
Monthly averages of cases and night temperature over 2001-2010 in
........................................................................................... 57
Predicted Malaria Risk Map 01/2010-02/2010..........cccoviiininiiieinnnn.n. 64
Predicted Malaria Risk Map 03/2010-04/2010............cccoiviiniinineinnnn... 65
Predicted Malaria Risk Map 05/2010-06/2010.............ccovvviiiieinnnnn... 66
Predicted Malaria Risk Map 07/2010-08/2010...........cceovvviriniiieennen.n. 67
Predicted Malaria Risk Map 09/2010-10/2010...........ccovviviriiiiiennn.n. 68
Predicted Malaria Risk Map 11/2010-12/2010..........cccoviiiiiniieinnn... 69
Scatterplot showing Incidence Rates...............ccoooiiiiiiiiiiiiiiiinnns, 69

Vil



List of Tables

4.1
5.1
5.2
53

Land Cover Classification Scheme..............coiiiiiiiiiiiiiiiieee 48
DeSCTIPtIVE StATISTICS . . u vttt ettt e e et e e e e et e e e e e e e e eaeenneeeanns 54
Results of Negative Binomial Analysis............coooeiiiiiiiiiiiiiiiiiieiee, 58
Posterior Estimates of the Coefficients in the Distributed Lags Model............... 59

viii



List of Abbreviations

ACT

AIC

BIC

CAR

CDC

DDT
DOH

ENSO

GIS

IRS

ITN

LST

MCMC

MODIS

NASA
NDVI
SAWS
STATTSA

WHO

Artemisinin Combination Therapy
Akaike Information Criterion

Bayesian Credible Interval

Conditional Autoregressive

Centres for Disease Control

Dichloro Diphynl Trichloroethane

Department of Health

El Nino Southern Oscillation phenomenon
Geographic Information System
Indoor Residual Spraying
Insecticide-treated Nets
Land Surface Temperature
Markov Chain Monte Carlo
Moderate Resolution Spectroradiometer

National Aeronautics and Space Administration

Normalized Difference Vegetation Index

South African Weather Service

Statistics South Africa

World Health Organization



Chapter One: Introduction

1.1. Background

Malaria is an ancient disease that has been affecting people since the beginning of recorded
time. It poses serious economic, social and health burdens in tropical and subtropical
countries where it is predominantly found (Mandal et al., 2011). Malaria still remains a huge
public health issue regardless of how many years of research has been conducted on how to
combat this disease. The WHO 2012 report showed that malaria is presently endemic to 104
countries worldwide and is transmitted in 99 of them. Seventy-nine of those countries are
classified as being in the control phase, 10 are in the pre-elimination phase and another 10 in
the elimination phase. Another 5 countries do not have ongoing transmission and are
classified as being in the prevention of re-introduction phase (WHO, 2012). Although efforts
of combating malaria have yielded dramatic decreases in malaria cases and deaths in most
endemic regions, in its 2012 World Malaria Report, the WHO reported devastating statistics
that in 2010 655,000 people died from this disease, with 86 percent of the victims being
children under 5 years of age. The vast majority of cases (80%) and 91% of the total deaths
of the 216 million cases worldwide occurred in Africa (WHO, 2012).

In 2011, an estimated 3.3 billion people were found to be at risk of malaria, although out of
all the affected geographical regions, the population in sub-Saharan Africa is at the highest
risk of contracting the disease due to a variety of socio-economic factors (WHO, 2012).

The majority of the population in Southern Africa lives in areas that are free of malaria,
whilst countries like Mozambique and Zimbabwe are in the control phase and South Africa is
in the pre-elimination phase while Namibia, Botswana and Swaziland are in the elimination
phase. Malaria is highly seasonal in these parts, usually occurring during the rainy summer
months. During the transmission season, parts of the population in these countries are
temporarily at high risk (with the exception of Swaziland) (Coleman et al., 2010; Moonasar et
al., 2012). In 1957 MacDonald described the malaria epidemic as: “an acute exacerbation of
disease out of proportion to the normal to which the community is subject” (MacDonald,
1957). Epidemics are common in zones of unstable malaria (Hay et al., 2001). As a result of
the seasonality of malaria in these parts communities do not acquire immunity from the

disease (Gerritsen et al., 2008). Thus it remains in an unstable condition that can only be



controlled by providing the necessary control measures to deal with it when transmission

levels are elevated (Moonasar et al., 2012).

Malaria is caused by a parasite that is transmitted from one person to another through the bite
of the Anopheline mosquito. Humans contract malaria from the bite of the malaria-infected
mosquito. When the mosquito bites an infected person, it ingests microscopic malaria
parasites found in the person’s blood. The malaria parasite must grow in the mosquito for a
few or more days before infection can be passed to another person. Therefore, if the mosquito
bites another person, the parasites go from the mosquito’s mouth into the person’s blood.
They feed on the blood cells, multiply inside the liver, thereby destroying the red blood cells
causing a cut off in blood circulation which could lead to premature death (Abeku, 2006).
Symptoms of malaria include fever, shivering, pain in the joints, vomiting, anaemia,
hemoglobinuria, retinal damage, and convulsions. The classic symptom of malaria is the
cyclical occurrence of coldness followed by rigor then fever and sweating lasting four to six
hours. This occurs every two days in plasmodium vivax (P.vivax) and plasmodium ovale
(P.ovale) infections, while every three days for plasmodium malariae (P.malariae) (Dongus
et al., 2009).

Malaria can be prevented by the use of mosquito coils and repellants, spraying the insides of
houses (where most Anopheles species feed and rest) with insecticides (indoor residual
spraying) and by sleeping under the bednets that have been treated with long-lasting
insecticides (Alonso et al., 2011). Mass screening and treatment (MSAT) with effective anti-

malarial drugs can also reduce malaria transmission (Griffin et al., 2010).

The biggest challenge that faces any success of all the numerous interventions in trying to
control this disease remains the parasites fast adaptation to anti-malarial drugs and
insecticides. With no foreseeable vaccine in sight control programs are the way in which
communities can fight against the disease, however, action must not slow down as it has been
proven that the disease re-emerges if interventions cease or are no longer effective (Mandal et
al., 2011).

However, the level of malaria risk and transmission intensity exhibits significant spatial and
temporal variability related to variations in climate, altitude, topography, and human

settlement pattern (Gosoniu, 2008). The advent of a new generation of Remote Sensing
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technologies and the increase in the Geographic Information Systems (GIS) modeling
capability have led to developments in modeling the spatial distribution of malaria. This has
made it possible to explore and characterize different sets of spatial and temporal disease
patterns at a very fine geographic resolution. Spatial and temporal mapping of the malaria
disease can help in the detection of populations at risk (Zacarias and Andersson, 2011).
Malaria risk maps can guide malaria control at areas of highest need; the distribution of
limited resources can assist in the evaluation of the effectiveness of intervention programmes.
The maps can also help decision-makers to objectively assign resources to areas where they
are most needed (Riedel et al., 2010). GIS-generated maps provide visual information
regarding the location of epidemic-prone areas and vulnerable population groups (Thomson
and Connor, 2000). Geographic modelling of malaria distribution is central to understanding
spatial and/or spatio-temporal patterns. The patterns often reflect a range of human host
factors, diversity in vector distribution and human-vector contact (Zacarias and Andersson,
2010).

Bayesian approaches in particular have been adopted by a number of studies modelling the
spatial distribution of malaria due to their flexibility and robustness in disease mapping,
spatial statistics and decision-making (Zacarias and Andersson, 2010). Bayesian
geostatistical analysis has been applied widely in malaria and used also to estimate
parasitaemia risk for a number of countries and regions in Africa, including West and central
Africa, Somalia, Zambia, Kenya, Angola and Tanzania (Stensgaard et al., 2011). Using
statistical modelling mathematical descriptions can be given of the environment-disease
relation, can identify significant environmental predictors of malaria transmission and can
also provide predictions of malaria risk. The Bayesian approach also has uncertainty
assessment capabilities which have increased its usage in disease mapping (Zacarias and
Andersson, 2010).

Thomas and Connor (2001) state that early detection, containment of the disease and
prevention of malaria epidemics are all constituents of one of the four elements from the
global malaria strategy. Therefore, by understanding the complex dynamics of malaria
transmission, early warning systems can be developed to ensure that communities at risk are
provided with the adequate resources needed to protect themselves against the disease and

control programs will thus be more effective and efficient. The Bayesian approach to spatio-



temporal modelling has been identified to be the superior method in analysing malaria

transmission and mortality (Thomas and Connor, 2001).

1.2. Justification

From the global point of view, malaria is the most important vector-borne disease (WHO,
2009). The use of remote sensing and GIS in mapping vector-borne diseases such as malaria
has been explored in Africa (Thomas and Connor, 2001). Spatial prediction of malaria vector
distribution has been undertaken for large areas over the African continent using remotely
sensed data to map temperature, moisture and vegetation cover. These coarse spatial
resolution data are currently being used in early warning systems for malaria epidemics
(Thomson et al. 1999). Remotely sensed coverage can provide information in a more accurate
and timely fashion than do alternative methods such as spatial interpolation of e.g.

widespread rainfall data (Hay et al. 2001).

Disease mapping is carried out to summarise spatio-temporal variation in risk. This
information may be used for simple descriptive purposes, to provide information on the
health needs of the population so as to provide context for further studies or to compare the
estimated risk map with an exposure map to gain understanding the cause of the disease
(Elliot et al., 2000).

This has resulted in a fast growing trend of modelling, such as mathematical and statistical
modelling, as a way for prediction of future disease transmission. The type of modelling that
can be done can be described in two categories: (1) mathematical and statistical modelling as
has been previously mentioned or deterministic models. Deterministic models are based on
how certain biological factors are influenced by climatic factors such as temperature and
rainfall (Yang et al., 2010). For example, the malaria parasite requires certain temperatures

and moisture levels to reproduce and survive.

The mathematical or statistical approach proposed for this study requires the development of
a new environmentally driven mathematical dynamic model which takes into account known
risk factors quantitatively. By developing such models combined with population, morbidity
and mortality data the burden of disease can be estimated and enhance malaria control (Yang
et al., 2010). Furthermore, the identification of which key environmental factors that govern

malaria transmission can give a deeper understanding of malaria transmission and in future
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provide methods for forecasting future trends. Malaria can be transmitted in a wide range of
eco-epidemiological settings because a wide range of vectors are able to transmit the disease.
As a result of the range of eco-epidemiological settings, variations in malaria transmission
can occur across relatively small areas (Reid et al., 2010), thus trying to map transmission at
a community level becomes more significant whereas other studies have focused more at
country, provincial or district level. With Bayesian geostatistics in disease mapping both
environmental covariates and spatial autocorrelation will be estimated simultaneously and
this in the process the model identify by variable selection which environmental covariate is

significantly associated with transmission.

Finally, the model developed will allow for routine and repeated spatio-temporal modelling
of regions in risk of malaria by altering the environmental inputs of the model to fit the
specified area. This will provide accurate and timeous transmission maps for malaria control
programs and ultimately ensure resources are being allocated to the areas of greatest need. In
regions such as South Africa where malaria transmission is highest depending on seasons and
how well control programs are being managed, it will be important to understand exactly

which environmental covariate makes a contribution to high transmission and when.

1.3. Aims and Objectives
This research is aimed at using Bayesian spatio-temporal modelling in determining the
geographical patterns of malaria transmission in KwaZulu-Natal, South Africa. By mapping
the geographical patterns and estimating the disease burden more efficient malaria control
programs can be designed, implemented and evaluated.
The objectives of this study are to:

e estimate and map malaria seasonality in KwaZulu-Natal based on environmental and

clinical malaria case data

e develop rigorous statistical models for identifying which climatic variables are

associated with malaria transmission.

e produce incidence maps based on the climatic variables significantly correlated with

malaria transmission

e assess spatio-temporal patterns of malaria transmission in KwaZulu-Natal and

produce transmission maps adjusted for seasonality and climate factors



Maps of malaria seasonality will indicate the start and length of transmission season in
KwaZulu-Natal which will assist in timing malaria control interventions and in mapping
malaria risk. Maps of malaria transmission and its spatio-temporal changes adjusted for
seasonality and ecological predictors will help in judging the needs of malaria control
programs and act as a baseline for estimating effectiveness of national control programs.
Rigorous statistical methods for variable selection will be developed. Models that can explain
temporal patterns of mortality and its causes; assess effects of health system changes on
mortality and predict mortality in a given site and Bayesian spatio-temporal methods enabling

the risk factor analyses and mapping of malaria.

1.4. Structure of the Thesis

Chapter two reviews the relevant literature on how the geographical patterns of malaria
transmission can be analysed. Firstly, malaria as a disease will be outlined and its impacts
globally and locally. The use of Geographical Information Systems and Remote Sensing in
disease mapping will be reviewed and how it can contribute to spatio-temporal modelling.
Subsequently, Bayesian approaches will be outlined and reviewed in the geo-statistical
framework. Finally, the selected environmental determinants of malaria transmision and

control measures will be discussed to show their relevance to the study.

Chapter three describes the background to the study area.

Chapter four provides a detailed description of the materials and methods employed for the
study by firstly outlining the data used and the techniques used in data management, model

formulation and development.

Chapter five presents and discusses the main findings pertinent to this study. The results of
the spatio-temporal modelling are outlined. Malaria incidence maps produced will be
presented.

Chapter six will conclude the study. The aim and objectives presented initially are reviewed
to establish if they were achieved by this study. A brief overview of the key findings and
implications of the study will be provided. Finally, the limitations of this study are evaluated

and recommendations for future research in this field are suggested.



Chapter Two: Literature Review

2.1. Introduction

Malaria is a serious public health issue in sub-Saharan African countries. It is estimated that it
kills a child every 30 seconds in Africa (Florens et al., 2002). The endemicity of malaria
varies substantially in these countries and at times only affecting certain districts or areas
predominantly (Da Silva et al., 2004), leaving the population with little or no acquired
immunity (Mabaso and Ndlovu, 2012). In South Africa, three provinces are affected by
malaria: KwaZulu-Natal, Limpopo and Mpumalanga with malaria affecting mostly the
Northern areas that are closer to the Mozambican, Swaziland and Zimbabwean borders.
Although it has been noted that malaria cases have been decreasing in South Africa since the
year 2000 as a result of malaria control programs, an estimated 10% of the population still
live in malaria-endemic areas and are at risk of contracting the disease (Moonasar et al.,
2012).

Epidemics such as malaria pose huge economic losses at country, community and household
level (Mabaso and Ndlovu, 2012) and depress economic growth. Malaria also retards social
development through effects such as reduced working hours due to sickness or attending to
the sick, income spent on financing health care, which in turn leads to impacts at national
level because of massive health care budgets, reduced productivity of the work force and so
on. Malaria is also estimated to have cost endemic countries in Africa 3% of their economic
growth every year (Craig, 2009). Malaria has furthermore been recognized as a disease of
poverty by institutions such as the World Health Organization (WHO) and UNICEF as it is
concentrated in the world’s poorest countries: 90% of malaria deaths have occurred in sub-
Saharan Africa (Worrall et al., 2005). Coleman et al. (2010) suggest that many of the factors
affecting malaria incidence are directly or indirectly linked to the socio-economic status of a
household (Coleman et al., 2010). The discovery of an interactive effect between HIV
infection and malaria morbidity exacerbates the potential for devastating health consequences
in populations with large numbers of individuals who are co-infected. In resource-poor
countries in Africa, malaria prevention and treatment consume large proportions of health
budgets, and since it poses a threat to indigenous populations as well as visitors, it acts as a
deterrent to tourism and foreign investment in these countries (Kleindschmidt, 2001). The

local variation in factors such as altitude, climate, house construction, distance from vector



breeding sites, use of personal protection measures and household crowding index lead to

malaria incidence to vary at very small adjoining geographical areas (Coleman et al., 2010).

Consequently, in these countries it is crucial that resources are allocated effectively and
efficiently. In addition, the potential value of predicting malaria outbreaks and epidemics has
been recognised, thus malaria early warning systems can be put in place so protection
measures are distributed timeously (Coleman et al., 2008). The variations in climatic
conditions and malaria incidence have an impact on the effectiveness of interventions.
Malaria endemicity is also not homogenous at country level, so complementary local systems
are required to allow redistribution of local resources to areas experiencing outbreaks. If all
these mechanisms are adequately understood, health officials will be in a better position to
respond with preventative measures (Mabaso et al., 2006).

The extensive application of Geographical Information Systems (GIS) and spatial statistical
methods in mapping and modelling the distribution of vector borne diseases like malaria has
led to a number of risk maps being produced at country and regional level (Bhunia et al.,
2012). By analysing geo-referenced malaria case data against environmental data using a
systematic and repeatable staged process of variable selection we can determine which
factors contribute to transmission and mortality in different geographical settings (Craig et
al., 2007).

2.2. Malaria Transmission
It is imperative to understand the stages of the life cycle of the parasite that are relevant in the
study of transmission of the disease before we discuss the factors that determine the spatial

and temporal distribution of malaria.

Several insects are known to be vectors of human diseases but mosquitoes were the first
insects to be associated with the transmission of a disease. Our understanding of the malaria
parasites began with the discovery of the parasites in the blood of malaria patients by
Alphonse Laveran. William MacCallum discovered the sexual stages in the blood of birds
infected with a related haemotozoan, Haemoproteus columbae (Cox, 2010). In 1878,
Manson, a British doctor practising in China showed that mosquitoes transmitted human

filariae (Chernin, 1983). Later on, in 1897, Ronald Ross discovered oocysts on the gut wall



of a mosquito that fed on a malaria patient (Hagan and Chauhan, 1997). A year later, Italian
zoologist G.B. Grassi and his colleagues were the first to describe the complete cycles of the
human malaria parasites, and indicated that the species of genus Anopheles was responsible
for malaria transmission (Esposito and Habluetzel, 1997; Cox, 2010). There are hundreds of
species of the Anopheles genus but only 40 transmit malaria (Morrow, 2007). Parasites are
transmitted from person to person by the female mosquitoes of the genus Anopheles (Bray
and Garnham, 1982; Florens et al., 2002; Eckhoff, 2011).

Different species of the parasite occur in different regions (Gemperli, 2003). Of the five
species of the protozoan parasites of the genus Plasmodium that cause malaria in humans,
P.falciparum is the most widely distributed and Pathogenic in Africa. The other four
(P.malariae P.vivax, P.knowlesi and P.ovale) have limited distribution in Africa and are
generally less life-threatening (Abeku, 2006). P.vivax is less dangerous but more widespread
(WHO, 2012).

2.2.1. The Life-Cycle of the Malaria Parasite

The human malaria parasite has a complex life-cycle that requires both a human host and an
insect host (Eckhoff, 2011). The humans and other vertebrates act as the intermediate host for
the parasite, and sexual reproduction takes places in the mosquito (Matteelli and Castelli,
1997). The life cycle of P.falciparum can be divided into three stages: exo-erythrocytic cycle
(A'in Figure 2.1), erythrocytic cycle (B in Figure 2.1) and the sporogonic cycle (C in Figure
2.1). The sporogonic cycle takes place within the mosquito vector and it is affected by
environmental factors. This is an important stage of the life-cycle as it determines the
probability of transmission (Abeku, 2006).
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Figure 2.1 The life-cycle of the malaria parasite in the human host (Source: Centers for

Disease Control)

The life cycle of the parasite begins with the inoculation of the parasite into the human body
by the female Anopheles mosquito (Eckhoff, 2011). The sporozoites reach the liver and
invade each liver cell within 30 minutes. The trophozoites then start their intracellular asexual
division within the liver and after completion of this phase; thousands of erythrocytic
merozoites are released from each liver cell. The time taken for the completion of the tissue is
variable, depending on the infecting species (5-6 days for P. falciparum). The merozoites
invade the red blood cell (RBC), and develop through the stages of rings, trophozoites, early-
and mature shizonts; each mature schizont consists of thousands of erythocytic merozoites
(Florens et al., 2002). These merozoites are released by lysis of the RBC and immediately
invade uninfected red cells. This whole cycle of invasion — multiplication — release — invasion
takes about 48 hours in P. falciparum infections (Fujioka and Aikawa, 2002). This repeating
cycle depletes the body of oxygen and causes fever, triggering the onset of disease symptoms
(Gosoniu, 2008). The contents of the infected cell that are released with the lysis of the RBC
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stimulate the Tumor Necrosis Factor and other cytokins, which results in the characteristic
clinical manifestations of the disease. A small proportion of the merozoites undergo
transformation into gametocytes (Florens et al., 2002). Mature gametocytes appear in the
peripheral blood after a period of 8-11 days of the primary attack in P. falciparum, they rise
in number until three weeks and decline thereafter, but circulate for several weeks (Cuesters
and Smith, 2009). When a female mosquito bites an infected human the gametocytes are
ingested. The gametocytes undergo sexual reproduction in the mosquito’s stomach forming a
zygote then the zygote multiples to form sporozoites which in turn make their way into the
mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates

the malaria life cycle (Gosoniu, 2008).

2.3. The Malaria Parasite in the Vector

Anophelines are found worldwide, except in Antarctica, but the transmission of malaria
occurs predominantly in tropical and subtropical regions (CDC, 2009). Among these, the
Anopheles gambiae complex and Anopheles funestus are the primary vectors in Africa.
Anopheles gambiae sensu stricto and Anopheles arabiensis are the most widely distributed
species of the Anopheles gambiae complex in sub-Saharan Africa (Walker, 2008; Pock Tsy et
al., 2003).

Although these siblings are morphologically distinguishable, they exhibit different
behavioural attributes. Anopheles gambiae sensu stricto is predominant in humid areas,
prefers feeding on humans (anthropophilic) and rest mainly indoors (endophilic) (Walker,
2008). Anopheles arabiensis on the other hand is more tolerant in the drier savannah regions;
it feeds on animals (zoophilic) and rests outdoors. Both species breed in temporary habitats
such as pools, puddles and rice fields. Anopheles funestus prefers permanent water bodies
with vegetation such as swamps and marshes, feeds both indoors and outdoors, mainly on
humans and rests indoors (Levine et al., 2004). Identification of the distribution of particular
species is important since malaria vector control measures may have to take into account the
behavioural difference between species to be effective (Walker, 2008). For example, indoor
biting and indoor resting habits make mosquitoes more susceptible to control by residual
insecticide on interior walls of houses, and to other insecticide treated materials such as
bednets (Kleinschmidt, 2001; Levin et al., 2004; Mabaso, 2007).
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After the blood meal, the malaria parasite enters the mosquito and the gametocytes continue
their development (Sporogony). Uninfected Anopheles mosquitoes become infected if they
feed on a person with mature gametocytes in their peripheral blood (Kleinschmidt, 2001).
The male and female gametes fuse and form into a zygote. These transforms into an ookinete
which penetrates the gut wall and becomes an oocyst. The oocyst divides asexually into
numerous sporozoites which reach the salivary gland of the mosquito, where they can be
transmitted when the mosquito next takes a blood meal. The sporogony in the mosquito takes
about 10-20 days dependent on air temperature and thereafter the mosquito remains infective
for 1-2 months, if it survives. There is no sporogony at temperatures below 15° C (Florens et
al., 2002; Morrow, 2007). The incubation period of the parasite in the vector takes 13 days to
complete at 24° C for P.falciparum. The vector will only become infective if it survives this
sporogonic cycle (Kleinschmidt, 2001).

Only the female mosquito takes a blood meal (male Anopheles feed on nectar) which is
necessary for the development of eggs. Two to three days after the blood meal, which is taken
during the night or at dawn, the female anopheline lays around one hundred eggs. During her
life of several weeks, she can therefore produce more than 1000 eggs (CDC, 2009). The eggs
are always laid on the water surface, with preference for swamps or shallow water. They may
also breed in water containers or tree holes. The oval eggs are one millimetre long and
require about two weeks to develop into adult mosquitoes. They fly only short distances of a

few kilometers. Their preferred location is close to human houses (Gemperli, 2003).

2.3.1. Vector Ecology

Anopheline mosquitoes are generally small, about 8mm long with dark-spotted or dappled
wings. Their posture when resting or feeding is distinctive- head down, body at an angle and
hind legs raised (Figure 2.2). This is in contrast with the horizontal position maintained by
most other mosquito species (DOH, 2008; CDC, 2009).
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Figure 2.2: Anopheles adults showing typical resting position (SOURCE: Centers for

Disease Control)

The short fly range and the preferred locations for hosting and breeding are responsible for
large local differences in the geographical distribution of the anopheline. The adults are
carried by wind but few are found further than 1-2 km from their larval site. They fly more
quietly and bite more subtly than other mosquitoes. They generally prefer clean water for the
development of their larval stages in contrast to the dirty water found in drains, and rubbish
preferred by the Culicine family (DOH, 2008). Adults may also rest inside motor vehicles,
aircraft and trains, and can be transported considerable distances. In this way infected
mosquitoes have been responsible for local transmission of malaria infections in non-malaria
areas, particularly near airports and major truck stopovers. Anopheles prefer to feed near
ground level and feed selectively on the lower leg rather than the arms or upper body, thus it
is especially important that insect repellent is applied to the lower leg and foot when in a
sitting or standing position (Walker, 2008; CDC, 2009).

The effect the environment has on the malaria vector is further determined by rainfall and
temperature which affect mosquito survival and the duration of the parasite life cycle in the
vector (Takken and Lindsay, 2003).The vectorial capacity of Anopheles funestus can often
exceed that of Anopheles gambiae in some localities (Minakawa et al., 2001). Anopheles
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funestus breeds in permanent or semi-permanent swamps or in pools along streams and river
systems, and Anopheles gambiae complex prefer temporary aquatic habitats (Lyons et al.,
2013). Consequently, Anopheles funestus are less dependent on rains and become abundant
during the dry seasons when Anopheles gambiae are low. Thus, Anopheles funestus is often
considered a vector species that bridges malaria transmission during the dry season (Mabaso
et al., 2007).

2.4. Determinants of Malaria Transmission

Malaria transmission is affected by different factors such as environmental conditions (Musa
et al., 2012), the socio-economic status of the individual (Coleman et al., 2009), population
movement and urbanization (Tatem et al., 2013), restricted access to health services, poor
quality of health services (Snow et al., 2003) or water management methods (e.g. irrigation,
dam constructions that increase the mosquitoes population near human habitats (Matthys et
al., 2006). Several authors such as Montosi et al. (2012), Lyons et al. (2013) and Tanser et al.
(2003) among others have identified climate to be the main driver of malaria transmission
and climate variability influencing the level of transmission intensity. Malaria is affected by

climate variability at both seasonal and inter-annual scales (Montosi et al., 2012).

According to Gemperli (2003), the main effect the environment has on the malaria vector is
the influence factors such as temperature and rainfall have on the mosquito’s survival and the
duration of the parasites life cycle in the vector. Malaria transmission will thus depend on
whether the mosquito vector and parasite had the ability to coexist long enough for
transmission to occur (Gemperli, 2003).

2.4.1. Temperature

Temperature can affect malaria transmission in several ways (Abeku, 2006) as it can
manipulate the distribution of malaria transmission through its effect on sporogonic duration
and mosquito survival (Musa et al., 2012). When temperatures increase up to approximately
30° C the sporogonic period or the Plasmodium parasite within the vector will be shortened
(Abeku, 2006). However, temperatures above 30° C result in a high turnover of vector
populations which will impact the survival of the vector negatively as there will be a
production of weak individuals and high mortality (Musa et al., 2012). The increased

temperature can in contrast also accelerate the development period of the aquatic stages of the
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vector from 20 to 7 days resulting in transmission rates being higher as the parasite will most
likely reach an infective stage before the vector dies (Abeku, 2006). When the temperature is
as low as 16° C the parasites will cease to grow and thus be unable to complete their cycle
and further spread the disease (Snow et al., 1999; Musa et al., 2012). The vectorial capacity
of the Anopheles is also modified by temperature. Temperature ranges between 22° C and 30°
C are optimal as they lengthen the life-span of the mosquitoes and increase the frequency of
blood meals taken by the female, as well as an increased frequency of host-vector contact.
The female can then have a blood meal once every 48 hours (Snow et al., 1999; Gemperli,
2003; Montosi et al., 2012). Thermal induced death occurs between 40 ° C and 42 ° C
depending on the mosquito species (Musa et al., 2012). When temperatures reach a
minimum, African vector populations can be obliterated. As a consequence of all the
temperature requirements, malaria transmission becomes less frequent at high altitudes. For
example, there are no Anopheles species near the equator above 2500 meters altitude and

above 1500 meters altitude in other regions (Gemperli, 2003).

2.4.2. Rainfall and Humidity

Musa et al. (2012) states that although rainfall does not affect the parasite directly it does play
a critical role for malaria transmission by providing a medium for aquatic mosquito stages.
Abeku (2006) agrees with this by stating that heavy rain or floods can also cause an outbreak
of malaria, especially in areas in the vicinity of large rivers. Rainfall also increases relative
humidity which is important for the survival and behaviour of all anopheline mosquitoes.
Thus rainfall and humidity impact on the living conditions of the Anopheles to a great extent
by providing breeding sites for mosquitoes to lay their eggs, increasing the vector population.
Mosquitoes are usually found in areas with annual average rainfall between 1100 mm and
7400 mm (Snow et al., 1999; Gosoniu, 2008; Musa et al., 2012). Temporary breeding pools
that get created by increasing rainfall provide ideal conditions for vector breeding.
Conversely, excessive rainfall can be negative for the transmission cycle as it can flush out
the mosquito larvae and destroy breeding places by changing the breeding pools into streams.
An exceptional drought can also just turn the streams into pools which would be favourable
for the breeding sites again and at times such opportunistic mosquito breeding sites have

preceded epidemics (Gemperli, 2003).

The interaction between rainfall, runoff, evaporation and temperature controls the ambient air

humidity which in turn affects the survival and behaviour of Anopheles mosquitoes
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(Gemperli, 2003). Rainfall and humidity effects are inherently linked as they both have a
significant effect on the longevity of adult vectors (Abeku, 2006). When the average monthly
relative humidity is less than 60% the lifespan of the mosquito is shortened enough to make it
unsuitable for it to transmit malaria (Musa et al., 2012). Higher values lengthen the lifespan
of the mosquito and enable it to infect more people. The vegetation index has been shown to

be a successful indicator as a proxy for rainfall and humidity (Gemperli, 2003).

Hay et al. (2001) demonstrated that it takes three months before malaria incidence reaches a
peak following a significant rainfall when they conducted a study in north-western Kenya.
However, it has been noted that the relationship between rainfall and malaria has been
confounded by population movements, environmental changes and also changes in malaria

control measures (Abeku, 2006).

2.4.3. Vegetation

The remotely sensed normalized difference vegetation index (NDVI) is the most widely used
index for vegetation coverage. It has been found to have broad applications as it fluctuates
along with other meteorological and environmental variables which determine biomass and
photosynthesis reflecting the distribution of plants and trees. NDVI can facilitate the
identification of high risk zones for various vector-borne diseases such as malaria (Bhunia et
al., 2012).

Gosoniu (2008) discussed how vegetation type and the amount of green vegetation are
important factors in determining mosquito abundance, as they provide feeding provisions and
protection from climatic conditions. The author further states that this can affect the presence
or absence of the human hosts and the therefore the availability of blood meals (Gosoniu,
2008). Although vegetation density generally has a favourable impact on malaria
transmission, Kleindschmidt (2001) argues that forest vegetation may inhibit An. gambiae
because of a lack of sunlight.

Montosi et al (2012) also recently considered the role, in addition to the other determinants,
that soil water can contribute in driving malaria incidence. They hypothesized that hydro-
climatic variability should be an important factor in controlling the availability of mosquito

breeding habitats; thereby governing mosquito growth rates (Montosi et al., 2012).
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2.4.4. El Nifio Southern Oscillation

The term EI Nifio (or “Christ Child” in Spanish) apparently originated in the 19" century as a
name fishermen gave to an anomalously warm current that appears off the Peruvian coast
around Christmas (Katz, 2002). In the 1960s a link was made between the atmospheric
Southern Oscillation and the oceanic El Nifio and is now referred to as the El Nifio Southern
Oscillation (Moonasar et al., 2012). The ENSO phenomenon can be described as the cyclic
warming and cooling of the equatorial Pacific Ocean coupled with changes of the
atmospheric pressure across the Pacific. Although at first it was thought to be a local
phenomenon, it has been recognised to be the most important climatic cycle contributing to
worldwide inter-annual variability in climate and the likelihood of climatic anomalies. The
two extremes of ENSO are El Nifio (a warm event) and La Nifia (a cold event) which create
rainfall and temperature fluctuations. Their impact varies across the world and can result in

droughts in some areas and flooding in others (Kovats, 2000; Katz, 2002).

According to the Climate Prediction Center (CPC) and Kovats (2000) during a strong El Nifio
ocean temperatures can average 2 ° C to 3.5 ° C above normal between the date line and the
west coast of South America. These areas of exceptionally warm waters coincide with
regions of above-average tropical rainfall. The El Nifio and La Nifia episodes typically last
approximately 9 to 12 months. They often form during June to August, reach peak strength
during December to April, and then decay during May to July of the following year.
However, some episodes have been known to last two years and even as long as three to four
years. While their periodicity is quite irregular, EI Nifio and La Nifia occur every 3 to 5 years
on average (CPC, 2012).

The fluctuations in ocean temperatures during El Nifio and La Nifia are accompanied by even
larger-scale fluctuations in air pressure known as the Southern Oscillation. The negative
phase of the Southern Oscillation occurs during EI Nifio episodes, and refers to the situation
when abnormally high pressure covers Indonesia and the western tropical Pacific and
abnormally low air pressure covers the eastern tropical Pacific with the opposite mechanism
occurring for La Nifia episodes (Jones et al., 2007; CPC, 2012; Delgado-Petrocelli, 2012).

A number of studies investigating climatic parameters that affect malaria incidence have

found a correlation between the ENSO phenomenon and malaria incidence. There is strong
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evidence to suggest that ENSO is associated with heightened risk of malaria in regions of the
world where climate is linked to the ENSO cycle and disease control is limited (Kovats,
2000; Abeku, 2006). Bouma and van der Kaay (1996) demonstrated that epidemics were
more prevalent in a year with a wet monsoon following a dry Nino year during the period
1868-1943 in Sri Lanka. The same correlation was found by Bouma et al. (1997) in Columbia
where malaria cases increased by 17% during an EI Nifio year and 35% in post El Nifio years
(Kovats, 2000; Abeku, 2006). Based on the relationships established in that study it was
proposed that this EI Nifio-malaria relationship can be used to predict high- and low-risk
years for malaria in Columbia. Bouma and Dye (1997) also presented findings that in
Venezuela malaria mortality and morbidity increased by more than 36% between 1975 and
1995 post-El Nifio years. In 1997 an El Nifio caused abnormally high rainfall that resulted in
a severe epidemic (Abeku, 2006). Heavy El Nifio rains were also associated with the 1998
malaria epidemic in Tanzania (Jones et al. 2007). Abeku (2006) reported that rainfall during
and following EI Nifio was found to much higher than normal in Kenya in 1997. A positive
correlation was established between the increased rainfall and vector density one month later
leading to conclusions that heavier than normal rainfall associated with El Nifio may have
initiated epidemics (Abeku, 2006).

Delgado-Petrocelli (2012) found that during El Nifio there was a shortening of the life cycles
of the two vectors and a corresponding extension during La Nifia which could result in fewer
cases of malaria and dengue fever in the latter. Kiang et al. (2006) concur that malaria is
correlated with the rainy season and thus the ENSO events may either increase or decrease
malaria transmission. In parts of Southern Africa, a strong El Nifio event is typically followed
by drought and a La Nifia proceeded by flooding. Rainfall patterns change due to ENSO
events which can affect mosquito breeding sites and thus can subsequently affect variation in
malaria transmission. However, ENSO appears to have the opposite effect in Southern Africa
during El Nifio conditions with La Nifia in fact coinciding with heightened incidence
(Mabaso et al., 2007). Mabaso (2007) also noted that while South Africa and Swaziland may
have demonstrated the strongest associations of epidemics with ENSO, other oceanic systems
such as the Quasi-Biennial and Quasi-Periodic Oscillations in the Indian Ocean, which have a

moderating effect on the impact of ENSO, could distort the exact effects.

El Nifio is a fairly complex climatic phenomenon, and since it is not the same as an extreme

weather event it is difficult to attribute any single epidemic to it. No two events are alike,
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with each event being different in magnitude and in duration (Kovats, 2000). The difficulty
with the indices used to quantify the strength of the ENSO events is that they are not always
the same; therefore you cannot have standard thresholds for all regions. What could appear to

be a weak event could have devastating impacts and vice versa.

2.4.5. Anthropogenic Factors

Land use changes can alter the physical and chemical characteristics of mosquito breeding
habitats as they can influence climatic conditions like temperature or evapotranspiration
which are determinants of the abundance and longevity of mosquitoes (Abeku, 2006;
Gosoniu, 2008). Development activities can also affect malaria transmission as they could
result in ecological changes that could be favourable to malaria transmission. Deforestation is
a product of development that mosquitoes are very sensitive to as the changes in
environmental conditions like humidity and temperature that occur affect species distribution,
density and survival. These changes will consequently influence the incidence and prevalence
of malaria (Rubio-Palis et al., 2013).

Conversely, Tatem et al. (2013) argue that urbanization has reduced malaria transmission
significantly. Urbanization involves the physical landscape modification and transformation
of environments as a result of a demand for resources. Generally urbanization results in
significant socio-economic changes which will improve health, wealth and housing. These
factors in turn cause significant parasitological, entomological and behavioural effects that
result in reduced malaria transmission within the urban core and surrounding peri-urban areas
(Matthys et al., 2006; Tatem et al., 2013).

Urban agriculture, which is common across Africa, has also been linked to malaria
transmission. Some crop systems create ideal mosquito breeding sites and thus promote
malaria transmission. Matthys et al. (2006) observed that Anopheles larval habitats increased
in rice paddies and agricultural trenches in the lvory Coast. Lindblade et al. (2000) suggested
that the cultivation of natural swamps increase malaria transmission after conducting a study
in the Ugandan highlands. Another study conducted by Minakawa (1999, 2001) in the
Kakamega forest located at an altitude between 1500 — 1700 meters in Kenya, reported that
the survival of Anopheles gambiae larvae was drastically reduced in forest habitats compared
to habitats exposed to direct sunlight suggesting deforestation facilitates malaria transmission
in the highlands (Omukunda et al., 2012).
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2.5. Malaria Immunity, Morbidity, Mortality and Endemicity

Malaria is the most important parasitic and vector-borne disease with an estimated 3.3 billion
people living in areas that have some risk of malaria transmission and about 1.2 billion
people (one-fifth of the world’s population) living in areas with a high risk of transmission
(more than one reported case per 1,000 inhabitants per year) (Alonso et al., 2011).

Globally, there are about 300 million clinical episodes of malaria and between 1 to 3 million
deaths per year (Coleman et al., 2008). Approximately 80% of cases and 90% of deaths are
estimated to have occurred in the African region, with children under five years of age and
pregnant women being the most severely affected (Abeku et al., 2003; Gemperli et al., 2004;
Worrall et al., 2005). Pregnancy compromises a woman’s immune system making her more
vulnerable to malaria as it suppresses her immunity (Worrall et al., 2005). High parasitemia is
observed during the first pregnancy and declines with subsequent pregnancies. When a
mother is infected with malaria there is a higher chance of a termination of pregnancy,
stillbirth and a reduction of the chances of survival of a new-born (Gemperli, 2003). Infants
are, however, protected due to maternal anti-bodies in the first 3 — 6 months of life. After
that, they are vulnerable to clinical malaria episodes until they have developed their own
immunity. Depending on the intensity of exposure to the parasite, children can develop

relative tolerance to malaria infections in their first few years of life (Kleindschmidt, 2001).

2.5.1. Classification of Malaria Endemicity

Malaria was endemic in most countries around the world until the mid-19" century. In the
Northern hemisphere it was distributed as far as the Arctic Circle, with an estimated 90% of
the world’s population living in malarious areas. The few countries that did not have malaria
included the Pacific Islands. By the second half of the 19™ century, large parts of northern
and central Europe and North America were free of malaria as a result of changes in
agricultural land practices and an improvement of the housing structures. By the late 19"
century, after the discovery of the malaria parasite in 1880 and its mode of transmission in
1897, most of the northern countries in Western Europe had virtually eliminated malaria
before World War 11 (Mendis et al., 2009).
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The four levels of endemicity, in increasing order of transmission intensity are as follows:
hypoendemic, mesoendemic, hyperendemic and holoendemic malaria, respectively (Abeku,
2006).

¢ In hypoendemic areas there is very little malaria transmission. The parasite and spleen
rates typically do not exceed 10% in children aged 2-9 years (Icchpujani and Batia,
2002; Morrow 2007). As result of the low risk in infection, most of the populations in
these areas lack effective immunity against the disease (Carmago et al., 1996).

e Mesoendemic areas have moderate transmission. The parasite and spleen rates range
between 11% and 50% in children aged 2-9 years (Icchpujani and Batia, 2002;
Morrow, 2007).

e Areas that have intense seasonal transmission but that is not sufficient enough for a
very high proportion of the population to develop protective immunity are called
hyperendemic areas (Morrow, 2007; Mathew, 2008). The spleen and parasite rates are
between 51% and 75% in children aged 2-9 years. The adult spleen rates are usually
high (>25%) (lcchpujani and Batia, 2002; Morrow, 2007).

e Holendemic areas have perennial, intense transmission resulting in a considerable
degree of immunity outside of early childhood (Mathew, 2008). Spleen rates are over
75% in children 2-9 years but low in adults. Parasite rates are over 75% among infants
0-11 months (Icchpujani and Batia, 2002; Morrow, 2007).

High endemicity levels characterize stable malaria (Mathew, 2008). Epidemics are unlikely
to occur in these areas and any fluctuations in incidence, besides normal seasonal changes,
are not likely to be pronounced (Abeku, 2006). In areas with stable malaria, adults usually
show a high level of immunity to malaria, and therefore, only the children are often at risk of
severe disease and death due to malaria. The effects of changes in weather conditions such as

rainfall or temperature have little or no bearing on transmission (Aguas et al., 2008).

Areas with unstable malaria, conversely, have low to moderate transmission. Any
fluctuations in incidence are highly likely to be noticeable. If there are any slight changes in
transmission, major epidemics can ensue (Abeku, 2006). The disease affects the whole
population, regardless of age, due to the low levels of immunity as a result of fluctuations in

transmission or low intensity of transmission (Mathew, 2008).
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However, in reality, there are several situations where conditions do not necessarily fit into
these broad classes of transmission. For example, in some areas of unstable malaria,
transmission is highly seasonal but intensive. Meaning, there is usually a predictive pattern
each year associated with occasionally explosive epidemics. Some areas are characterized
with highly seasonal but very little or no transmission for several years. Areas with intense
seasonal transmission can also be affected by true epidemics followed by successive

abnormally dry periods (Abeku, 2006).

According to Snow et al. (2005) malaria has been geographically restricted; however, it
remains entrenched in the poor areas of the world where climates are favourable for
transmission. Within countries, parasite prevalence rates in children are the highest among
the poorer populations living in rural areas (WHO, 2012). Infant mortality is high in endemic
regions (Gemperli, 2003). Although malaria is endemic in three provinces in South Africa,
almost all South Africans (including residents of seasonal malaria transmission areas) are
non-immune and are consequently at increased risk for developing severe malaria (Moonasar
etal., 2011).

The incubation period (the time between the inoculation of the parasite and the first medical
symptoms) for P. falciparum malaria is approximately 8 — 15 days (Gemperli, 2003). The
mild clinical symptoms of P. falciparum infection often present as a fever and a variety of
other associated symptoms such as headaches, body pains, rigors, diarrhoea, coughing and
myalgia (Snow et al., 1999; Moonasar et al., 201