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Abstract 

Malaria is one of the most important public health issues that is still affecting millions of 

people around the world, especially in  Africa. Africa accounted for 80% of the 216 million 

cases worldwide and 91% of deaths. It poses serious economic burdens on communities and 

countries at large. However, through temporal and spatial mapping of the disease populations 

at risk can be identified timeously and resources distributed accordingly.  

Since malaria is a climatic disease geostatistical approaches can be utilised in modelling its 

spatial distribution. Bayesian geostatistical methods enable the mathematical descriptions of 

the environment-disease association. Significant environmental predictors of malaria 

transmission can be identified which can also allow for the development of a malaria 

epidemic prediction model. This model can serve as a surveillance system for early detection 

and containment of the disease. Therefore, it is crucial to understand the complex dynamics 

of malaria transmission so malaria control programmes can be more effective and efficient in 

managing this public health issue. 

In South Africa, malaria is transmitted in 3 provinces: KwaZulu-Natal, Mpumalanga and 

Limpopo. Although malaria is highly seasonal in these areas and KwaZulu-Natal has 

experienced tremendous achievements in decreasing morbidity and mortality due to malaria, 

it still remains in an unstable condition that needs constant control and surveillance. The aim 

of this study was to investigate which environmental/climatic variables are drivers of malaria 

incidence in KwaZulu-Natal and subsequently develop methods to produce risk maps using 

Bayesian spatio-temporal modelling.  

It emerged from the research that the main environmental/climatic drivers of malaria 

incidence in KwaZulu-Natal were the day temperature of the previous month, altitude and 

forest land cover type. This was due to the different ways these three factors affect the three-

way interaction of the vector, the parasite and the human host. The predicted risk maps 

showed that incidence rates ranged from 0.2 to 5 per 1000 inhabitants in the study area. This 

prediction was based on only the climatic factors, however, non-climatic factors also affect 

malaria transmission through vector control strategies like Indoor Residual Spraying among 

others. 
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Chapter One: Introduction 

1.1. Background 

Malaria is an ancient disease that has been affecting people since the beginning of recorded 

time. It poses serious economic, social and health burdens in tropical and subtropical 

countries where it is predominantly found (Mandal et al., 2011). Malaria still remains a huge 

public health issue regardless of how many years of research has been conducted on how to 

combat this disease. The WHO 2012 report showed that malaria is presently endemic to 104 

countries worldwide and is transmitted in 99 of them. Seventy-nine of those countries are 

classified as being in the control phase, 10 are in the pre-elimination phase and another 10 in 

the elimination phase. Another 5 countries do not have ongoing transmission and are 

classified as being in the prevention of re-introduction phase (WHO, 2012). Although efforts 

of combating malaria have yielded dramatic decreases in malaria cases and deaths in most 

endemic regions, in its 2012 World Malaria Report, the WHO reported devastating statistics 

that in 2010 655,000 people died from this disease, with 86 percent of the victims being 

children under 5 years of age. The vast majority of cases (80%) and 91% of the total deaths 

of the 216 million cases worldwide occurred in Africa (WHO, 2012).  

 

In 2011, an estimated 3.3 billion people were found to be at risk of malaria, although out of 

all the affected geographical regions, the population in sub-Saharan Africa is at the highest 

risk of contracting the disease due to a variety of socio-economic factors (WHO, 2012).  

The majority of the population in Southern Africa lives in areas that are free of malaria, 

whilst countries like Mozambique and Zimbabwe are in the control phase and South Africa is 

in the pre-elimination phase while Namibia, Botswana and Swaziland are in the elimination 

phase. Malaria is highly seasonal in these parts, usually occurring during the rainy summer  

months. During the transmission season, parts of the population in these countries are 

temporarily at high risk (with the exception of Swaziland) (Coleman et al., 2010; Moonasar et 

al., 2012). In 1957 MacDonald described the malaria epidemic as: “an acute exacerbation of 

disease out of proportion to the normal to which the community is subject” (MacDonald, 

1957). Epidemics are common in zones of unstable malaria (Hay et al., 2001). As a result of 

the seasonality of malaria in these parts communities do not acquire immunity from the 

disease (Gerritsen et al., 2008). Thus it remains in an unstable condition that can only be 
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controlled by providing the necessary control measures to deal with it when transmission 

levels are elevated (Moonasar et al., 2012).  

 

Malaria is caused by a parasite that is transmitted from one person to another through the bite 

of the Anopheline mosquito. Humans contract malaria from the bite of the malaria-infected 

mosquito. When the mosquito bites an infected person, it ingests microscopic malaria 

parasites found in the person’s blood. The malaria parasite must grow in the mosquito for a 

few or more days before infection can be passed to another person. Therefore, if the mosquito 

bites another person, the parasites go from the mosquito’s mouth into the person’s blood. 

They feed on the blood cells, multiply inside the liver, thereby destroying the red blood cells 

causing a cut off in blood circulation which could lead to premature death (Abeku, 2006). 

Symptoms of malaria include fever, shivering, pain in the joints, vomiting, anaemia, 

hemoglobinuria, retinal damage, and convulsions. The classic symptom of malaria is the  

cyclical occurrence of coldness followed by rigor then fever and sweating lasting four to six 

hours. This occurs every two days in plasmodium vivax (P.vivax) and plasmodium ovale 

(P.ovale) infections, while every three days for plasmodium malariae (P.malariae) (Dongus 

et al., 2009).  

 

Malaria can be prevented by the use of mosquito coils and repellants, spraying the insides of 

houses (where most Anopheles species feed and rest) with insecticides (indoor residual 

spraying) and by sleeping under the bednets that have been treated with long-lasting 

insecticides (Alonso et al., 2011). Mass screening and treatment (MSAT) with effective anti-

malarial drugs can also reduce malaria transmission (Griffin et al., 2010).  

 

The biggest challenge that faces any success of all the numerous interventions in trying to 

control this disease remains the parasites fast adaptation to anti-malarial drugs and 

insecticides. With no foreseeable vaccine in sight control programs are the way in which 

communities can fight against the disease, however, action must not slow down as it has been 

proven that the disease re-emerges if interventions cease or are no longer effective (Mandal et 

al., 2011). 

 

However, the level of malaria risk and transmission intensity exhibits significant spatial and 

temporal variability related to variations in climate, altitude, topography, and human 

settlement pattern (Gosoniu, 2008). The advent of a new generation of Remote Sensing 
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technologies and the increase in the Geographic Information Systems (GIS) modeling 

capability have led to developments in modeling the spatial distribution of malaria. This has 

made it possible to explore and characterize different sets of spatial and temporal disease 

patterns at a very fine geographic resolution. Spatial and temporal mapping of the malaria 

disease can help in the detection of populations at risk (Zacarias and Andersson, 2011). 

Malaria risk maps can guide malaria control at areas of highest need; the distribution of 

limited resources can assist in the evaluation of the effectiveness of intervention programmes. 

The maps can also help decision-makers to objectively assign resources to areas where they 

are most needed (Riedel et al., 2010). GIS-generated maps provide visual information 

regarding the location of epidemic-prone areas and vulnerable population groups (Thomson 

and Connor, 2000). Geographic modelling of malaria distribution is central to understanding 

spatial and/or spatio-temporal patterns. The patterns often reflect a range of human host 

factors, diversity in vector distribution and human-vector contact (Zacarias and Andersson, 

2010).  

 

Bayesian approaches in particular have been adopted by a number of studies modelling the 

spatial distribution of malaria due to their flexibility and robustness in disease mapping, 

spatial statistics and decision-making (Zacarias and Andersson, 2010).  Bayesian 

geostatistical analysis has been applied widely in malaria and used also to estimate 

parasitaemia risk for a number of countries and regions in Africa, including West and central 

Africa, Somalia, Zambia, Kenya, Angola and Tanzania (Stensgaard et al., 2011). Using 

statistical modelling mathematical descriptions can be given of the environment-disease 

relation, can identify significant environmental predictors of malaria transmission and can 

also provide predictions of malaria risk. The Bayesian approach also has uncertainty 

assessment capabilities which have increased its usage in disease mapping (Zacarias and 

Andersson, 2010).  

 

Thomas and Connor (2001) state that early detection, containment of the disease and 

prevention of malaria epidemics are all constituents of one of the four elements from the 

global malaria strategy. Therefore, by understanding the complex dynamics of malaria 

transmission, early warning systems can be developed to ensure that communities at risk are 

provided with the adequate resources needed to protect themselves against the disease and 

control programs will thus be more effective and efficient. The Bayesian approach to spatio-
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temporal modelling has been identified to be the superior method in analysing malaria 

transmission and mortality (Thomas and Connor, 2001).  

 

1.2. Justification 

From the global point of view, malaria is the most important vector-borne disease (WHO, 

2009).  The use of remote sensing and GIS in mapping vector-borne diseases such as malaria 

has been explored in Africa (Thomas and Connor, 2001). Spatial prediction of malaria vector 

distribution has been undertaken for large areas over the African continent using remotely 

sensed data to map temperature, moisture and vegetation cover. These coarse spatial 

resolution data are currently being used in early warning systems for malaria epidemics 

(Thomson et al. 1999). Remotely sensed coverage can provide information in a more accurate 

and timely fashion than do alternative methods such as spatial interpolation of e.g. 

widespread rainfall data (Hay et al. 2001).  

 

Disease mapping is carried out to summarise spatio-temporal variation in risk. This 

information may be used for simple descriptive purposes, to provide information on the 

health needs of the population so as to provide context for further studies or to compare the 

estimated risk map with an exposure map to gain understanding the cause of the disease 

(Elliot et al., 2000).  

 

This has resulted in a fast growing trend of modelling, such as mathematical and statistical 

modelling, as a way for prediction of future disease transmission. The type of modelling that 

can be done can be described in two categories: (1) mathematical and statistical modelling as 

has been previously mentioned or deterministic models. Deterministic models are based on 

how certain biological factors are influenced by climatic factors such as temperature and 

rainfall (Yang et al., 2010). For example, the malaria parasite requires certain temperatures 

and moisture levels to reproduce and survive.  

 

The mathematical or statistical approach proposed for this study requires the development of 

a new environmentally driven mathematical dynamic model which takes into account known 

risk factors quantitatively. By developing such models combined with population, morbidity 

and mortality data the burden of disease can be estimated and enhance malaria control (Yang 

et al., 2010). Furthermore, the identification of which key environmental factors that govern 

malaria transmission can give a deeper understanding of malaria transmission and in future 
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provide methods for forecasting future trends. Malaria can be transmitted in a wide range of 

eco-epidemiological settings because a wide range of vectors are able to transmit the disease. 

As a result of the range of eco-epidemiological settings, variations in malaria transmission 

can occur across relatively small areas (Reid et al., 2010), thus trying to map transmission at 

a community level becomes more significant whereas other studies have focused more at 

country, provincial or district level. With Bayesian geostatistics in disease mapping both 

environmental covariates and spatial autocorrelation will be estimated simultaneously and 

this in the process the model identify by variable selection which environmental covariate is 

significantly associated with transmission.  

 

Finally, the model developed will allow for routine and repeated spatio-temporal modelling 

of regions in risk of malaria by altering the environmental inputs of the model to fit the 

specified area. This will provide accurate and timeous transmission maps for malaria control 

programs and ultimately ensure resources are being allocated to the areas of greatest need. In 

regions such as South Africa where malaria transmission is highest depending on seasons and 

how well control programs are being managed, it will be important to understand exactly 

which environmental covariate makes a contribution to high transmission and when.  

 

1.3. Aims and Objectives 

This research is aimed at using Bayesian spatio-temporal modelling in determining the 

geographical patterns of malaria transmission in KwaZulu-Natal, South Africa. By mapping 

the geographical patterns and estimating the disease burden more efficient malaria control 

programs can be designed, implemented and evaluated.  

The objectives of this study are to: 

 estimate and map malaria seasonality in KwaZulu-Natal based on environmental and 

clinical malaria case data 

 develop rigorous statistical models for identifying which climatic variables are 

associated with malaria transmission. 

 produce incidence maps based on the climatic variables significantly correlated with 

malaria transmission 

 assess spatio-temporal patterns of malaria transmission in KwaZulu-Natal and 

produce transmission maps adjusted for seasonality and climate factors 
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Maps of malaria seasonality will indicate the start and length of transmission season in 

KwaZulu-Natal which will assist in timing malaria control interventions and in mapping 

malaria risk. Maps of malaria transmission and its spatio-temporal changes adjusted for 

seasonality and ecological predictors will help in judging the needs of malaria control 

programs and act as a baseline for estimating effectiveness of national control programs. 

Rigorous statistical methods for variable selection will be developed. Models that can explain 

temporal patterns of mortality and its causes; assess effects of health system changes on 

mortality and predict mortality in a given site and Bayesian spatio-temporal methods enabling 

the risk factor analyses and mapping of malaria. 

 

1.4. Structure of the Thesis 

Chapter two reviews the relevant literature on how the geographical patterns of malaria 

transmission can be analysed. Firstly, malaria as a disease will be outlined and its impacts 

globally and locally. The use of Geographical Information Systems and Remote Sensing in 

disease mapping will be reviewed and how it can contribute to spatio-temporal modelling. 

Subsequently, Bayesian approaches will be outlined and reviewed in the geo-statistical 

framework. Finally, the selected environmental determinants of malaria transmision and 

control measures will be discussed to show their relevance to the study.   

 

Chapter three describes the background to the study area.  

 

Chapter four provides a detailed description of the materials and methods employed for the 

study by firstly outlining the data used and the techniques used in data management, model 

formulation and development.  

 

Chapter five presents and discusses the main findings pertinent to this study. The results of 

the spatio-temporal modelling are outlined. Malaria incidence maps produced will be 

presented.  

 

Chapter six will conclude the study. The aim and objectives presented initially are reviewed 

to establish if they were achieved by this study. A brief overview of the key findings and 

implications of the study will be provided. Finally, the limitations of this study are evaluated 

and recommendations for future research in this field are suggested. 
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Chapter Two: Literature Review 

2.1. Introduction 

Malaria is a serious public health issue in sub-Saharan African countries. It is estimated that it 

kills a child every 30 seconds in Africa (Florens et al., 2002). The endemicity of malaria 

varies substantially in these countries and at times only affecting certain districts or areas 

predominantly (Da Silva et al., 2004), leaving the population with little or no acquired 

immunity (Mabaso and Ndlovu, 2012). In South Africa, three provinces are affected by 

malaria: KwaZulu-Natal, Limpopo and Mpumalanga with malaria affecting mostly the 

Northern areas that are closer to the Mozambican, Swaziland and Zimbabwean borders. 

Although it has been noted that malaria cases have been decreasing in South Africa since the 

year 2000 as a result of malaria control programs, an estimated 10% of the population still 

live in malaria-endemic areas and are at risk of contracting the disease (Moonasar et al., 

2012).   

 

Epidemics such as malaria pose huge economic losses at country, community and household 

level (Mabaso and Ndlovu, 2012) and depress economic growth. Malaria also retards social 

development through effects such as reduced working hours due to sickness or attending to 

the sick, income spent on financing health care, which in turn leads to impacts at national 

level because of massive health care budgets, reduced productivity of the work force and so 

on. Malaria is also estimated to have cost endemic countries in Africa 3% of their economic 

growth every year (Craig, 2009). Malaria has furthermore been recognized as a disease of 

poverty by institutions such as the World Health Organization (WHO) and UNICEF as it is 

concentrated in the world’s poorest countries: 90% of malaria deaths have occurred in sub-

Saharan Africa (Worrall et al., 2005). Coleman et al. (2010) suggest that many of the factors 

affecting malaria incidence are directly or indirectly linked to the socio-economic status of a 

household (Coleman et al., 2010). The discovery of an interactive effect between HIV 

infection and malaria morbidity exacerbates the potential for devastating health consequences 

in populations with large numbers of individuals who are co-infected. In resource-poor 

countries in Africa, malaria prevention and treatment consume large proportions of health 

budgets, and since it poses a threat to indigenous populations as well as visitors, it acts as a 

deterrent to tourism and foreign investment in these countries (Kleindschmidt, 2001). The 

local variation in factors such as altitude, climate, house construction, distance from vector 
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breeding sites, use of personal protection measures and household crowding index lead to 

malaria incidence to vary at very small adjoining geographical areas (Coleman et al., 2010).  

 

Consequently, in these countries it is crucial that resources are allocated effectively and 

efficiently. In addition, the potential value of predicting malaria outbreaks and epidemics has 

been recognised, thus malaria early warning systems can be put in place so protection 

measures are distributed timeously (Coleman et al., 2008). The variations in climatic 

conditions and malaria incidence have an impact on the effectiveness of interventions. 

Malaria endemicity is also not homogenous at country level, so complementary local systems 

are required to allow redistribution of local resources to areas experiencing outbreaks. If all 

these mechanisms are adequately understood, health officials will be in a better position to 

respond with preventative measures (Mabaso et al., 2006).  

 

The extensive application of Geographical Information Systems (GIS) and spatial statistical 

methods in mapping and modelling the distribution of vector borne diseases like malaria has 

led to a number of risk maps being produced at country and regional level (Bhunia et al., 

2012). By analysing geo-referenced malaria case data against environmental data using a 

systematic and repeatable staged process of variable selection we can determine which 

factors contribute to transmission and mortality in different geographical settings (Craig et 

al., 2007). 

 

2.2. Malaria Transmission 

It is imperative to understand the stages of the life cycle of the parasite that are relevant in the 

study of transmission of the disease before we discuss the factors that determine the spatial 

and temporal distribution of malaria. 

 

Several insects are known to be vectors of human diseases but mosquitoes were the first 

insects to be associated with the transmission of a disease. Our understanding of the malaria 

parasites began with the discovery of the parasites in the blood of malaria patients by 

Alphonse Laveran. William MacCallum discovered the sexual stages in the blood of birds 

infected with a related haemotozoan, Haemoproteus columbae (Cox, 2010). In 1878, 

Manson, a British doctor practising in China showed that mosquitoes transmitted human 

filariae (Chernin, 1983). Later on, in 1897, Ronald Ross discovered oocysts on the gut wall 
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of a mosquito that fed on a malaria patient (Hagan and Chauhan, 1997). A year later, Italian 

zoologist G.B. Grassi and his colleagues were the first to describe the complete cycles of the 

human malaria parasites, and indicated that the species of genus Anopheles was responsible 

for malaria transmission (Esposito and Habluetzel, 1997; Cox, 2010). There are hundreds of 

species of the Anopheles genus but only 40 transmit malaria (Morrow, 2007). Parasites are 

transmitted from person to person by the female mosquitoes of the genus Anopheles (Bray 

and Garnham, 1982; Florens et al., 2002; Eckhoff, 2011).  

 

Different species of the parasite occur in different regions (Gemperli, 2003). Of the five 

species of the protozoan parasites of the genus Plasmodium that cause malaria in humans, 

P.falciparum is the most widely distributed and Pathogenic in Africa. The other four 

(P.malariae P.vivax, P.knowlesi and P.ovale) have limited distribution in Africa and are 

generally less life-threatening (Abeku, 2006). P.vivax is less dangerous but more widespread 

(WHO, 2012).  

 

2.2.1. The Life-Cycle of the Malaria Parasite 

The human malaria parasite has a complex life-cycle that requires both a human host and an 

insect host (Eckhoff, 2011). The humans and other vertebrates act as the intermediate host for 

the parasite, and sexual reproduction takes places in the mosquito (Matteelli and Castelli, 

1997). The life cycle of P.falciparum can be divided into three stages: exo-erythrocytic cycle 

(A in Figure 2.1), erythrocytic cycle (B in Figure 2.1) and the sporogonic cycle (C in Figure 

2.1). The sporogonic cycle takes place within the mosquito vector and it is affected by 

environmental factors. This is an important stage of the life-cycle as it determines the 

probability of transmission (Abeku, 2006).  
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Figure 2.1 The life-cycle of the malaria parasite in the human host (Source: Centers for 

Disease Control) 

The life cycle of the parasite begins with the inoculation of the parasite into the human body 

by the female Anopheles mosquito (Eckhoff, 2011). The sporozoites reach the liver and 

invade each liver cell within 30 minutes. The trophozoites then start their intracellular asexual 

division within the liver and after completion of this phase; thousands of erythrocytic 

merozoites are released from each liver cell. The time taken for the completion of the tissue is 

variable, depending on the infecting species (5-6 days for P. falciparum). The merozoites 

invade the red blood cell (RBC), and develop through the stages of rings, trophozoites, early- 

and mature shizonts; each mature schizont consists of thousands of erythocytic merozoites 

(Florens et al., 2002). These merozoites are released by lysis of the RBC and immediately 

invade uninfected red cells. This whole cycle of invasion – multiplication – release – invasion 

takes about 48 hours in P. falciparum infections (Fujioka and Aikawa, 2002). This repeating 

cycle depletes the body of oxygen and causes fever, triggering the onset of disease symptoms 

(Gosoniu, 2008). The contents of the infected cell that are released with the lysis of the RBC 
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stimulate the Tumor Necrosis Factor and other cytokins, which results in the characteristic 

clinical manifestations of the disease. A small proportion of the merozoites undergo 

transformation into gametocytes (Florens et al., 2002). Mature gametocytes appear in the 

peripheral blood after a period of 8-11 days of the primary attack in P. falciparum, they rise 

in number until three weeks and decline thereafter, but circulate for several weeks (Cuesters 

and Smith, 2009). When a female mosquito bites an infected human the gametocytes are 

ingested. The gametocytes undergo sexual reproduction in the mosquito’s stomach forming a 

zygote then the zygote multiples to form sporozoites which in turn make their way into the 

mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates 

the malaria life cycle (Gosoniu, 2008).  

 

2.3. The Malaria Parasite in the Vector 

Anophelines are found worldwide, except in Antarctica, but the transmission of malaria 

occurs predominantly in tropical and subtropical regions (CDC, 2009). Among these, the 

Anopheles gambiae complex and Anopheles funestus are the primary vectors in Africa. 

Anopheles gambiae sensu stricto and Anopheles arabiensis are the most widely distributed 

species of the Anopheles gambiae complex in sub-Saharan Africa (Walker, 2008; Pock Tsy et 

al., 2003). 

 

Although these siblings are morphologically distinguishable, they exhibit different 

behavioural attributes. Anopheles gambiae sensu stricto is predominant in humid areas, 

prefers feeding on humans (anthropophilic) and rest mainly indoors (endophilic) (Walker, 

2008). Anopheles arabiensis on the other hand is more tolerant in the drier savannah regions; 

it feeds on animals (zoophilic) and rests outdoors. Both species breed in temporary habitats 

such as pools, puddles and rice fields. Anopheles funestus prefers permanent water bodies 

with vegetation such as swamps and marshes, feeds both indoors and outdoors, mainly on 

humans and rests indoors (Levine et al., 2004). Identification of the distribution of particular 

species is important since malaria vector control measures may have to take into account the 

behavioural difference between species to be effective (Walker, 2008). For example, indoor 

biting and indoor resting habits make mosquitoes more susceptible to control by residual 

insecticide on interior walls of houses, and to other insecticide treated materials such as 

bednets (Kleinschmidt, 2001; Levin et al., 2004; Mabaso, 2007).   
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After the blood meal, the malaria parasite enters the mosquito and the gametocytes continue 

their development (Sporogony). Uninfected Anopheles mosquitoes become infected if they 

feed on a person with mature gametocytes in their peripheral blood (Kleinschmidt, 2001). 

The male and female gametes fuse and form into a zygote. These transforms into an ookinete 

which penetrates the gut wall and becomes an oocyst. The oocyst divides asexually into 

numerous sporozoites which reach the salivary gland of the mosquito, where they can be 

transmitted when the mosquito next takes a blood meal. The sporogony in the mosquito takes 

about 10-20 days dependent on air temperature and thereafter the mosquito remains infective 

for 1-2 months, if it survives. There is no sporogony at temperatures below 15° C (Florens et 

al., 2002; Morrow, 2007).  The incubation period of the parasite in the vector takes 13 days to 

complete at 24° C for P.falciparum. The vector will only become infective if it survives this 

sporogonic cycle (Kleinschmidt, 2001).  

 

Only the female mosquito takes a blood meal (male Anopheles feed on nectar) which is 

necessary for the development of eggs. Two to three days after the blood meal, which is taken 

during the night or at dawn, the female anopheline lays around one hundred eggs. During her 

life of several weeks, she can therefore produce more than 1000 eggs (CDC, 2009). The eggs 

are always laid on the water surface, with preference for swamps or shallow water. They may 

also breed in water containers or tree holes. The oval eggs are one millimetre long and 

require about two weeks to develop into adult mosquitoes. They fly only short distances of a 

few kilometers. Their preferred location is close to human houses (Gemperli, 2003).  

 

2.3.1. Vector Ecology 

Anopheline mosquitoes are generally small, about 8mm long with dark-spotted or dappled 

wings. Their posture when resting or feeding is distinctive- head down, body at an angle and 

hind legs raised (Figure 2.2). This is in contrast with the horizontal position maintained by 

most other mosquito species (DOH, 2008; CDC, 2009). 
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Figure 2.2: Anopheles adults showing typical resting position (SOURCE: Centers for 

Disease Control) 

The short fly range and the preferred locations for hosting and breeding are responsible for 

large local differences in the geographical distribution of the anopheline. The adults are 

carried by wind but few are found further than 1-2 km from their larval site.  They fly more 

quietly and bite more subtly than other mosquitoes. They generally prefer clean water for the 

development of their larval stages in contrast to the dirty water found in drains, and rubbish 

preferred by the Culicine family (DOH, 2008). Adults may also rest inside motor vehicles, 

aircraft and trains, and can be transported considerable distances. In this way infected 

mosquitoes have been responsible for local transmission of malaria infections in non-malaria 

areas, particularly near airports and major truck stopovers. Anopheles prefer to feed near 

ground level and feed selectively on the lower leg rather than the arms or upper body, thus it 

is especially important that insect repellent is applied to the lower leg and foot when in a 

sitting or standing position (Walker, 2008; CDC, 2009). 

 

The effect the environment has on the malaria vector is further determined by rainfall and 

temperature which affect mosquito survival and the duration of the parasite life cycle in the 

vector (Takken and Lindsay, 2003).The vectorial capacity of Anopheles funestus can often 

exceed that of Anopheles gambiae in some localities (Minakawa et al., 2001). Anopheles 
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funestus breeds in permanent or semi-permanent swamps or in pools along streams and river 

systems, and Anopheles gambiae complex prefer temporary aquatic habitats (Lyons et al., 

2013). Consequently, Anopheles funestus are less dependent on rains and become abundant 

during the dry seasons when Anopheles gambiae are low. Thus, Anopheles funestus is often 

considered a vector species that bridges malaria transmission during the dry season (Mabaso 

et al., 2007).  

 

2.4. Determinants of Malaria Transmission 

Malaria transmission is affected by different factors such as environmental conditions (Musa 

et al., 2012), the socio-economic status of the individual (Coleman et al., 2009), population 

movement and urbanization (Tatem et al., 2013), restricted access to health services, poor 

quality of health services (Snow et al., 2003) or water management methods (e.g. irrigation, 

dam constructions that increase the mosquitoes population near human habitats (Matthys et 

al., 2006). Several authors such as Montosi et al. (2012), Lyons et al. (2013) and Tanser et al. 

(2003) among others have identified climate to be the main driver of malaria transmission 

and climate variability influencing the level of transmission intensity. Malaria is affected by 

climate variability at both seasonal and inter-annual scales (Montosi et al., 2012).  

 

According to Gemperli (2003), the main effect the environment has on the malaria vector is 

the influence factors such as temperature and rainfall have on the mosquito’s survival and the 

duration of the parasites life cycle in the vector. Malaria transmission will thus depend on 

whether the mosquito vector and parasite had the ability to coexist long enough for 

transmission to occur (Gemperli, 2003). 

 

2.4.1. Temperature 

Temperature can affect malaria transmission in several ways (Abeku, 2006) as it can 

manipulate the distribution of malaria transmission through its effect on sporogonic duration 

and mosquito survival (Musa et al., 2012). When temperatures increase up to approximately 

30° C the sporogonic period or the Plasmodium parasite within the vector will be shortened 

(Abeku, 2006). However, temperatures above 30° C result in a high turnover of vector 

populations which will impact the survival of the vector negatively as there will be a 

production of weak individuals and high mortality (Musa et al., 2012). The increased 

temperature can in contrast also accelerate the development period of the aquatic stages of the 
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vector from 20 to 7 days resulting in transmission rates being higher as the parasite will most 

likely reach an infective stage before the vector dies (Abeku, 2006). When the temperature is 

as low as 16° C the parasites will cease to grow and thus be unable to complete their cycle 

and further spread the disease (Snow et al., 1999; Musa et al., 2012). The vectorial capacity 

of the Anopheles is also modified by temperature. Temperature ranges between 22° C and 30° 

C are optimal as they lengthen the life-span of the mosquitoes and increase the frequency of 

blood meals taken by the female, as well as an increased frequency of host-vector contact. 

The female can then have a blood meal once every 48 hours (Snow et al., 1999; Gemperli, 

2003; Montosi et al., 2012). Thermal induced death occurs between 40 ° C and 42 ° C 

depending on the mosquito species (Musa et al., 2012). When temperatures reach a 

minimum, African vector populations can be obliterated. As a consequence of all the 

temperature requirements, malaria transmission becomes less frequent at high altitudes. For 

example, there are no Anopheles species near the equator above 2500 meters altitude and 

above 1500 meters altitude in other regions (Gemperli, 2003).  

 

2.4.2. Rainfall and Humidity 

Musa et al. (2012) states that although rainfall does not affect the parasite directly it does play 

a critical role for malaria transmission by providing a medium for aquatic mosquito stages. 

Abeku (2006) agrees with this by stating that heavy rain or floods can also cause an outbreak 

of malaria, especially in areas in the vicinity of large rivers. Rainfall also increases relative 

humidity which is important for the survival and behaviour of all anopheline mosquitoes. 

Thus rainfall and humidity impact on the living conditions of the Anopheles to a great extent 

by providing breeding sites for mosquitoes to lay their eggs, increasing the vector population. 

Mosquitoes are usually found in areas with annual average rainfall between 1100 mm and 

7400 mm (Snow et al., 1999; Gosoniu, 2008; Musa et al., 2012). Temporary breeding pools 

that get created by increasing rainfall provide ideal conditions for vector breeding. 

Conversely, excessive rainfall can be negative for the transmission cycle as it can flush out 

the mosquito larvae and destroy breeding places by changing the breeding pools into streams. 

An exceptional drought can also just turn the streams into pools which would be favourable 

for the breeding sites again and at times such opportunistic mosquito breeding sites have 

preceded epidemics (Gemperli, 2003).  

 

The interaction between rainfall, runoff, evaporation and temperature controls the ambient air 

humidity which in turn affects the survival and behaviour of Anopheles mosquitoes 
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(Gemperli, 2003). Rainfall and humidity effects are inherently linked as they both have a 

significant effect on the longevity of adult vectors (Abeku, 2006). When the average monthly 

relative humidity is less than 60% the lifespan of the mosquito is shortened enough to make it 

unsuitable for it to transmit malaria (Musa et al., 2012). Higher values lengthen the lifespan 

of the mosquito and enable it to infect more people. The vegetation index has been shown to 

be a successful indicator as a proxy for rainfall and humidity (Gemperli, 2003).  

 

Hay et al. (2001) demonstrated that it takes three months before malaria incidence reaches a 

peak following a significant rainfall when they conducted a study in north-western Kenya. 

However, it has been noted that the relationship between rainfall and malaria has been 

confounded by population movements, environmental changes and also changes in malaria 

control measures (Abeku, 2006). 

 

2.4.3. Vegetation 

The remotely sensed normalized difference vegetation index (NDVI) is the most widely used 

index for vegetation coverage. It has been found to have broad applications as it fluctuates 

along with other meteorological and environmental variables which determine biomass and 

photosynthesis reflecting the distribution of plants and trees. NDVI can facilitate the 

identification of high risk zones for various vector-borne diseases such as malaria (Bhunia et 

al., 2012).  

 

Gosoniu (2008) discussed how vegetation type and the amount of green vegetation are 

important factors in determining mosquito abundance, as they provide feeding provisions and 

protection from climatic conditions. The author further states that this can affect the presence 

or absence of the human hosts and the therefore the availability of blood meals (Gosoniu, 

2008). Although vegetation density generally has a favourable impact on malaria 

transmission, Kleindschmidt (2001) argues that forest vegetation may inhibit An. gambiae 

because of a lack of sunlight.  

 

Montosi et al (2012) also recently considered the role, in addition to the other determinants, 

that soil water can contribute in driving malaria incidence. They hypothesized that hydro-

climatic variability should be an important factor in controlling the availability of mosquito 

breeding habitats; thereby governing mosquito growth rates (Montosi et al., 2012).  
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2.4.4. El Niño Southern Oscillation  

The term El Niño (or “Christ Child” in Spanish) apparently originated in the 19
th

 century as a 

name fishermen gave to an anomalously warm current that appears off the Peruvian coast 

around Christmas (Katz, 2002). In the 1960s a link was made between the atmospheric 

Southern Oscillation and the oceanic El Niño and is now referred to as the El Niño Southern 

Oscillation (Moonasar et al., 2012). The ENSO phenomenon can be described as the cyclic 

warming and cooling of the equatorial Pacific Ocean coupled with changes of the 

atmospheric pressure across the Pacific. Although at first it was thought to be a local 

phenomenon, it has been recognised to be the most important climatic cycle contributing to 

worldwide inter-annual variability in climate and the likelihood of climatic anomalies. The 

two extremes of ENSO are El Niño (a warm event) and La Niña (a cold event) which create 

rainfall and temperature fluctuations. Their impact varies across the world and can result in 

droughts in some areas and flooding in others (Kovats, 2000; Katz, 2002). 

 

According to the Climate Prediction Center (CPC) and Kovats (2000) during a strong El Niño 

ocean temperatures can average 2 ° C to 3.5 ° C above normal between the date line and the 

west coast of South America. These areas of exceptionally warm waters coincide with 

regions of above-average tropical rainfall. The El Niño and La Niña episodes typically last 

approximately 9 to 12 months. They often form during June to August, reach peak strength 

during December to April, and then decay during May to July of the following year. 

However, some episodes have been known to last two years and even as long as three to four 

years. While their periodicity is quite irregular, El Niño and La Niña occur every 3 to 5 years 

on average (CPC, 2012).  

 

The fluctuations in ocean temperatures during El Niño and La Niña are accompanied by even 

larger-scale fluctuations in air pressure known as the Southern Oscillation. The negative 

phase of the Southern Oscillation occurs during El Niño episodes, and refers to the situation 

when abnormally high pressure covers Indonesia and the western tropical Pacific and 

abnormally low air pressure covers the eastern tropical Pacific with the opposite mechanism 

occurring for La Niña episodes (Jones et al., 2007; CPC, 2012; Delgado-Petrocelli, 2012).   

 

A number of studies investigating climatic parameters that affect malaria incidence have 

found a correlation between the ENSO phenomenon and malaria incidence. There is strong 
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evidence to suggest that ENSO is associated with heightened risk of malaria in regions of the 

world where climate is linked to the ENSO cycle and disease control is limited (Kovats, 

2000; Abeku, 2006). Bouma and van der Kaay (1996) demonstrated that epidemics were 

more prevalent in a year with a wet monsoon following a dry Nino year during the period 

1868-1943 in Sri Lanka. The same correlation was found by Bouma et al. (1997) in Columbia 

where malaria cases increased by 17% during an El Niño year and 35% in post El Niño years 

(Kovats, 2000; Abeku, 2006). Based on the relationships established in that study it was 

proposed that this El Niño-malaria relationship can be used to predict high- and low-risk 

years for malaria in Columbia. Bouma and Dye (1997) also presented findings that in 

Venezuela malaria mortality and morbidity increased by more than 36% between 1975 and 

1995 post-El Niño years. In 1997 an El Niño caused abnormally high rainfall that resulted in 

a severe epidemic (Abeku, 2006). Heavy El Niño rains were also associated with the 1998 

malaria epidemic in Tanzania (Jones et al. 2007). Abeku (2006) reported that rainfall during 

and following El Niño was found to much higher than normal in Kenya in 1997. A positive 

correlation was established between the increased rainfall and vector density one month later 

leading to conclusions that heavier than normal rainfall associated with El Niño may have 

initiated epidemics (Abeku, 2006).  

 

Delgado-Petrocelli (2012) found that during El Niño there was a shortening of the life cycles 

of the two vectors and a corresponding extension during La Niña which could result in fewer 

cases of malaria and dengue fever in the latter. Kiang et al. (2006) concur that malaria is 

correlated with the rainy season and thus the ENSO events may either increase or decrease 

malaria transmission. In parts of Southern Africa, a strong El Niño event is typically followed 

by drought and a La Niña proceeded by flooding. Rainfall patterns change due to ENSO 

events which can affect mosquito breeding sites and thus can subsequently affect variation in 

malaria transmission. However, ENSO appears to have the opposite effect in Southern Africa 

during El Niño conditions with La Niña in fact coinciding with heightened incidence 

(Mabaso et al., 2007). Mabaso (2007) also noted that while South Africa and Swaziland may 

have demonstrated the strongest associations of epidemics with ENSO, other oceanic systems 

such as the Quasi-Biennial and Quasi-Periodic Oscillations in the Indian Ocean, which have a 

moderating effect on the impact of ENSO, could distort the exact effects.  

 

El Niño is a fairly complex climatic phenomenon, and since it is not the same as an extreme 

weather event it is difficult to attribute any single epidemic to it. No two events are alike, 
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with each event being different in magnitude and in duration (Kovats, 2000). The difficulty 

with the indices used to quantify the strength of the ENSO events is that they are not always 

the same; therefore you cannot have standard thresholds for all regions. What could appear to 

be a weak event could have devastating impacts and vice versa. 

 

2.4.5. Anthropogenic Factors   

Land use changes can alter the physical and chemical characteristics of mosquito breeding 

habitats as they can influence climatic conditions like temperature or evapotranspiration 

which are determinants of the abundance and longevity of mosquitoes (Abeku, 2006; 

Gosoniu, 2008). Development activities can also affect malaria transmission as they could 

result in ecological changes that could be favourable to malaria transmission. Deforestation is 

a product of development that mosquitoes are very sensitive to as the changes in 

environmental conditions like humidity and temperature that occur affect species distribution, 

density and survival. These changes will consequently influence the incidence and prevalence 

of malaria (Rubio-Palis et al., 2013).  

 

Conversely, Tatem et al. (2013) argue that urbanization has reduced malaria transmission 

significantly. Urbanization involves the physical landscape modification and transformation 

of environments as a result of a demand for resources. Generally urbanization results in 

significant socio-economic changes which will improve health, wealth and housing. These 

factors in turn cause significant parasitological, entomological and behavioural effects that 

result in reduced malaria transmission within the urban core and surrounding peri-urban areas 

(Matthys et al., 2006; Tatem et al., 2013).  

 

Urban agriculture, which is common across Africa, has also been linked to malaria 

transmission. Some crop systems create ideal mosquito breeding sites and thus promote 

malaria transmission. Matthys et al. (2006) observed that Anopheles larval habitats increased 

in rice paddies and agricultural trenches in the Ivory Coast. Lindblade et al. (2000) suggested 

that the cultivation of natural swamps increase malaria transmission after conducting a study 

in the Ugandan highlands. Another study conducted by Minakawa (1999, 2001) in the 

Kakamega forest located at an altitude between 1500 – 1700 meters in Kenya, reported that 

the survival of Anopheles gambiae  larvae was drastically reduced in forest habitats compared 

to habitats exposed to direct sunlight suggesting deforestation facilitates malaria transmission 

in the highlands (Omukunda et al., 2012).  
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2.5. Malaria Immunity, Morbidity, Mortality and Endemicity 

Malaria is the most important parasitic and vector-borne disease with an estimated 3.3 billion 

people living in areas that have some risk of malaria transmission and about 1.2 billion 

people (one-fifth of the world’s population) living in areas with a high risk of transmission 

(more than one reported case per 1,000 inhabitants per year) (Alonso et al., 2011).  

 

Globally, there are about 300 million clinical episodes of malaria and between 1 to 3 million 

deaths per year (Coleman et al., 2008). Approximately 80% of cases and 90% of deaths are 

estimated to have occurred in the African region, with children under five years of age and 

pregnant women being the most severely affected (Abeku et al., 2003; Gemperli et al., 2004; 

Worrall et al., 2005). Pregnancy compromises a woman’s immune system making her more 

vulnerable to malaria as it suppresses her immunity (Worrall et al., 2005). High parasitemia is 

observed during the first pregnancy and declines with subsequent pregnancies. When a 

mother is infected with malaria there is a higher chance of a termination of pregnancy, 

stillbirth and a reduction of the chances of survival of a new-born (Gemperli, 2003). Infants 

are, however, protected due to maternal anti-bodies in the first 3 – 6 months of life.  After 

that, they are vulnerable to clinical malaria episodes until they have developed their own 

immunity. Depending on the intensity of exposure to the parasite, children can develop 

relative tolerance to malaria infections in their first few years of life (Kleindschmidt, 2001).  

 

2.5.1. Classification of Malaria Endemicity 

Malaria was endemic in most countries around the world until the mid-19
th

 century. In the 

Northern hemisphere it was distributed as far as the Arctic Circle, with an estimated 90% of 

the world’s population living in malarious areas. The few countries that did not have malaria 

included the Pacific Islands. By the second half of the 19
th

 century, large parts of northern 

and central Europe and North America were free of malaria as a result of changes in 

agricultural land practices and an improvement of the housing structures. By the late 19
th

 

century, after the discovery of the malaria parasite in 1880 and its mode of transmission in 

1897, most of the northern countries in Western Europe had virtually eliminated malaria 

before World War II (Mendis et al., 2009).   
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The four levels of endemicity, in increasing order of transmission intensity are as follows: 

hypoendemic, mesoendemic, hyperendemic and holoendemic malaria, respectively (Abeku, 

2006).  

 In hypoendemic areas there is very little malaria transmission. The parasite and spleen 

rates typically do not exceed 10% in children aged 2-9 years (Icchpujani and Batia, 

2002; Morrow 2007). As result of the low risk in infection, most of the populations in 

these areas lack effective immunity against the disease (Carmago et al., 1996).  

 Mesoendemic areas have moderate transmission. The parasite and spleen rates range 

between 11% and 50% in children aged 2-9 years (Icchpujani and Batia, 2002; 

Morrow, 2007).  

 Areas that have intense seasonal transmission but that is not sufficient enough for a 

very high proportion of the population to develop protective immunity are called 

hyperendemic areas (Morrow, 2007; Mathew, 2008). The spleen and parasite rates are 

between 51% and 75% in children aged 2-9 years. The adult spleen rates are usually 

high (>25%) (Icchpujani and Batia, 2002; Morrow, 2007).  

 Holendemic areas have perennial, intense transmission resulting in a considerable 

degree of immunity outside of early childhood (Mathew, 2008). Spleen rates are over 

75% in children 2-9 years but low in adults. Parasite rates are over 75% among infants 

0-11 months (Icchpujani and Batia, 2002; Morrow, 2007).  

 

High endemicity levels characterize stable malaria (Mathew, 2008). Epidemics are unlikely 

to occur in these areas and any fluctuations in incidence, besides normal seasonal changes, 

are not likely to be pronounced (Abeku, 2006). In areas with stable malaria, adults usually 

show a high level of immunity to malaria, and therefore, only the children are often at risk of 

severe disease and death due to malaria. The effects of changes in weather conditions such as 

rainfall or temperature have little or no bearing on transmission (Àguas et al., 2008).  

 

Areas with unstable malaria, conversely, have low to moderate transmission. Any 

fluctuations in incidence are highly likely to be noticeable. If there are any slight changes in 

transmission, major epidemics can ensue (Abeku, 2006). The disease affects the whole 

population, regardless of age, due to the low levels of immunity as a result of fluctuations in 

transmission or low intensity of transmission (Mathew, 2008).  
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However, in reality, there are several situations where conditions do not necessarily fit into 

these broad classes of transmission. For example, in some areas of unstable malaria, 

transmission is highly seasonal but intensive. Meaning, there is usually a predictive pattern 

each year associated with occasionally explosive epidemics. Some areas are characterized 

with highly seasonal but very little or no transmission for several years. Areas with intense 

seasonal transmission can also be affected by true epidemics followed by successive 

abnormally dry periods (Abeku, 2006).  

 

According to Snow et al. (2005) malaria has been geographically restricted; however, it 

remains entrenched in the poor areas of the world where climates are favourable for 

transmission. Within countries, parasite prevalence rates in children are the highest among 

the poorer populations living in rural areas (WHO, 2012). Infant mortality is high in endemic 

regions (Gemperli, 2003). Although malaria is endemic in three provinces in South Africa, 

almost all South Africans (including residents of seasonal malaria transmission areas) are 

non-immune and are consequently at increased risk for developing severe malaria (Moonasar 

et al., 2011).  

 

The incubation period (the time between the inoculation of the parasite and the first medical 

symptoms) for P. falciparum malaria is approximately 8 – 15 days (Gemperli, 2003). The 

mild clinical symptoms of P. falciparum infection often present as a fever and a variety of 

other associated symptoms such as headaches, body pains, rigors, diarrhoea, coughing and 

myalgia (Snow et al., 1999; Moonasar et al., 2011). Diagnosis is made by detection of the 

parasite with a microscopic examination of a blood smear, or with the use of rapid malaria 

antigen test (Moonasar et al., 2011). However, in endemic countries infected individuals such 

as older children and adults are often asymptomatic, or only exhibit mild, non-threatening 

clinical symptoms (Kleindschmidt, 2001; Snow et al., 2003). The most severe form of 

malaria morbidity is cerebral malaria, which is defined in clinical terms as the presence of 

coma due to malaria, and it is accompanied by obstruction of capillaries in the central 

nervous system (Snow et al., 1999). The major complications of malaria include: 

hypoglycaemia, renal failure, severe anaemia, acute respiratory distress syndrome (ARDS) 

and metabolic acidosis (Moonasar et al., 2011). Severe anaemia is a life-threatening condition 

in young children and often warrants a blood transfusion in a hospital setting (Snow et al., 

2003; Moonasar et al., 2011).  
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Acquired immunity is developed after repeated infections. Residents of tropical countries 

typically develop immunity where high levels of malaria transmission are present the whole 

year. However, this developed immunity can be lost if the individual leaves the endemic area 

for a long period of time and may be at risk of malaria if they are exposed again 

(Kleindschmidt, 2001).  

 

However, malaria is an entirely preventable and treatable disease, provided that 

recommended interventions are properly implemented (Florens et al., 2002; Griffith et al., 

2007). These include (i) vector control through the use of insecticide-treated nets (ITNs), 

indoor residual spraying (IRS) and, in some specific settings, larval control (Geissbuhler et 

al., 2009); (ii) chemotherapy for the most vulnerable populations, particularly pregnant 

women and children; (iii) confirmation of malaria diagnosis through microscopy or rapid 

diagnostic tests (RDTs) for every suspected case, and (iv) timely treatment with appropriate 

anti-malarial medicines (according to the parasite species and documented drug resistance) 

(Griffith et al., 2007; WHO, 2011; Davis et al., 2013).  

 

2.6. Malaria Control Interventions 

Several African countries have reported a decrease in malaria due to increased access to 

effective anti-malarial drugs and major upgrades and improvements of vector control 

measures (Protopopoff et al., 2013). Vector control currently remains the most effective tool 

to prevent and control malaria transmission. Control measures are targeted at each stage of 

the malaria transmission cycle: the mosquito vector, the parasite and the human host 

(Gosoniu, 2008). They work by reducing human-vector contact and the reduction of the 

lifespan of the adult female Anopheles mosquitoes so that they do not survive long enough to 

transmit the parasite (Mabaso et al., 2004). Delves et al. (2013) also discuss the potential 

significant effects of interventions that prevent parasite transmission from human host to 

vector. The primary vector control measures that have benefited large parts of southern 

Africa are Indoor Residual Spraying (IRS) and Long-Lasting Insecticide-Treated Nets 

(Alonso et al., 2011) which are both recommended by WHO (Mabaso et al., 2004). 

 

The WHO recommended particular focus on early diagnosis and prompt treatment as well as 

fast detection and containing of epidemics. However, neither disease risks, nor people, nor 

health systems are evenly distributed thus efforts need to target affected populations and high 
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risk areas first. As malaria control is a dynamic process that depends on the local 

epidemiological context and resources available the timing of interventions needs to coincide 

with high risk periods that are appropriate for those particular transmission settings to achieve 

maximum and equitable benefits (Gosoniu, 2008; Craig, 2009).  

 

2.6.1. Vector Control 

Chemical insecticides have been used for over 60 years to control malaria against Anopheles 

mosquitoes. In the beginning, pyrethrum that was extracted from flowers was sprayed in 

houses as a short-term knock down insecticide (Hargreaves et al., 2000). In southern Africa, 

the first experimental adult mosquito control with pyrethrum was carried out in 1931 in 

KwaZulu-Natal, which led the way for worldwide use of residual insecticides against adult 

mosquitoes (Mabaso et al, 2004). However, after World War II the more residual 

organochlorides ( e.g. DDT) were seen to be more effective (Hargreaves et al., 2000). The 

effectiveness of DDT against indoor resting mosquitoes led to the adoption of the Global 

Eradication Programme of Malaria in 1955 (co-ordinated and supported by the WHO). In the 

first 10 years of implementation, the results were spectacular, with malaria being eradicated 

in countries like the United States (Mabaso et al., 2004). IRS involves the application of 

insecticides on the walls and ceiling of a residential structure in areas affected by malaria in 

order to kill and repel the adult vector of mosquitoes that choose to rest on these surfaces. 

This implies that IRS is most effective against mosquito species that are resting indoors 

(Pluess et al., 2010; Hlongwana et al., 2013). 

 

2.6.1.1. Insecticide-treated Bednets 

The WHO recommends the use of four groups of insecticides: organochlorides, pyrethroids, 

organophosphates and carbamates for IRS (Hlongwana et al., 2013). Although historically 

organochlorines were the insecticide of choice for use in IRS, the majority of African 

countries now use pyrethroid insecticides for IRS (Fossog Tene et al., 2013). As suggested by 

Hill et al. (2006), Miller et al. (2007) and Shah et al. (2011), in an area of high malaria 

transmission intensity, the use of insecticide treated nets (ITNs) has been recognized as an 

effective means of malaria vector control for reducing mortality and severe morbidity in 

young children and pregnant mothers. Bednets were re-introduced in the latter part of the 

1980s. They were used as a protection of the user(s) against the bites of malaria infectious 

mosquitoes, and thus reduce the transmission risk. Untreated bednets, however, did not 

provide adequate protection, presumably because the mosquitoes were able to bite the 
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occupants through the netting, or the nets would eventually get torn as a result of excessive 

use, giving the mosquitos’ easy access to the blood host (Takken, 2002). By treating the 

bednets with a deposit of a quick-acting insecticide of low human toxicity between a sleeper 

and host-seeking mosquitoes, a chemical barrier is created to the often incomplete physical 

barrier provided by the net. Essentially, ITNs can be considered as mosquito traps to bait 

mosquitoes by the odour of the sleeper (Curtis et al., 2003). For ITNs to be effective, 

however, there needs to be active involvement from community members to ensure that the 

nets are being used, even during seasons when their use is uncomfortably hot and when there 

may not be enough irritation from nuisance insects to use them as there may still be enough 

vectors to make them dangerous (Curtis and Mnzava, 2000). 

 

2.6.1.2. Indoor Residual Spraying 

In areas of low transmission intensities, particularly in Southern Africa, house spraying with 

residual insecticide (IRS) like pyrethroids and DDT has been widely used as an effective 

vector control methods. IRS has also helped to eliminate malaria from great parts of Asia, 

Europe, Russia and Latin America between the 1940s and 1960s (Mabaso et al., 2004; Pluess 

et al., 2010; Kigozi et al., 2012). 

 

In South Africa, malarial epidemics used to extend as far as southwards down the east coast 

as Port St Johns (Eastern Cape) and as far inland as Pretoria in the northern part of the 

country (Mabaso et al., 2004). DDT was used in South Africa from 1946 but its use as a 

larvacide was discontinued in the early 1960s as a result of mounting pressure from 

environmentalists on the increasing scientific evidence of its adverse environmental effects. 

By 1996 DDT was completely phased out for malaria control and was replaced by 

Deltamethrin, a synthetic pyrethroid that was considered to be environmentally friendly and 

cost effective (Mabaso et al., 2004; Gericke et al., 2002; Maharaj et al, 2005). However, by 

the year 2000 parasite resistance to anti-malarial drugs, especially chloroquine, became 

evident after the highest number of cases (61 934) since the epidemics of the 1930s was 

recorded (Maharaj et al., 2005; N’Guessan et al., 2007; Bateman, 2008). According to the 

National Department of Health (DOH) (2007) other contributing factors were that the country 

had also experienced unusually heavy rains following several years of drought (which would 

have increased the number of breeding sites for mosquito vectors). As well as the large 

number of economic migrants from Mozambique and Zimbabwe, who could have potentially 

been carrying malaria parasites, which resulted in the large number of imported cases and 
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unexplained local upsurges and lacking of finding index cases during sporadic outbreaks 

(DOH, 2007).  

 

DDT was then reintroduced in March 2000 but only in traditional structures (mud, wood or 

reed). The western-type structures (cement-plastered and painted) were continued to be 

sprayed with pyrethroids. By March 2002, all structure types were sprayed with DDT and 

pyrethroid spraying was completely eliminated (Maharaj et al., 2005). Currently, IRS is the 

primary vector control measure in South Africa, with almost 100 % protection (WHO, 2012).  

 

Spraying needs to be carried out between once and three times per year; the timing is 

dependent on the insecticide and the seasonality of transmission in a given setting (Pluess et 

al., 2010). Malaria transmission has since been eliminated in most of the country, but it still 

continues to plague the populations living in the north-eastern border regions adjacent to 

Mozambique and Swaziland (Maharaj et al., 2012). This was attributed to the introduction of 

artemisinin-based combination therapy (ACT) in February 2001 that occurred to address the 

resistance of Plasmodium falciparum to monotherapies (Davies et al., (2013). Maharaj et al. 

(2005) argues that other factors such as the introduction of an effective drug, cross-border 

control and low rainfall could have attributed to the decrease in malaria cases. For IRS to be 

effective, however, community members need to make sure that they do not refuse spray 

teams to apply the insecticide on their homes. Another thing that hinders the effectiveness of 

IRS is that in some countries, people have a tendency to re-plaster mud walls as soon as they 

have been sprayed, thus covering up the insecticide deposit (Curtis and Mnzava, 2000).  

 

N’Guessan et al. (2007) also notes that the two approaches to malaria prevention (ITNs and 

IRS) are not mutually exclusive, and in malaria-endemic areas where ITN coverage is still 

limited, the feasibility of introducing IRS to reduce transmission would be ideal.  

 

2.6.2. Insecticide Resistance 

Currently, the main threat to effective malaria control is the selection of insecticide resistance 

measures (Asidi et al., 2012). Resistance is expressed as reduced excito-repellency and 

mortality of mosquitoes that are exposed to insecticide-treated materials (Takken, 2002). 

Several authors such as Protopopoff et al. (2013) and Hlongwana et al. (2013) have reported 

increasing resistance to pyrethroid insecticides in some African countries such as Tanzania 

and South Africa. Resistance against pyrethroids has also been recorded in Asia and South 
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America (Takken, 2002). WHO (2012) has also expressed concerns that resistance is now 

becoming widespread. The main factor thought to be driving resistance is the heavy reliance 

on a single class of insecticides (Moszynski, 2012). Edi et al. (2012) agree that to keep vector 

resistance from undermining control programs, insecticide-resistance management strategies 

must reduce the current overreliance on pyrethroids.  

 

Pyrethroid resistance in insects is complex and presents at different levels as pyrethroids can 

have three different effects- repellency, mortality and exiting behaviour. Resistance 

mechanisms can develop against each of these (Takken, 2002) or on multiple insecticide-

resistance mechanisms (Edi et al., 2012). The increase of drug resistant malaria parasites has 

been implicated in the spread of malaria to new areas and the re-emergence of malaria in 

areas where the disease was thought to be eradicated (Chanda et al., 2011). Insecticide-

resistant mosquitoes were one of the main obstacles that prevented the success of the Global 

Malaria Eradication plans in the middle of the last century. There are great concerns that 

currently nothing has changed as pyrethroid resistance was the cause of a malaria epidemic in 

KwaZulu-Natal in the year 2000 (Hargreaves et al., 2000; Hlongwana et al., 2013) and 

recently, in Mexico, pyrethroid resistant Anopheles went from effectively zero to 20 % after 

only three years of using IRS (Read et al., 2009). Read et al. (2009) suggested the use of 

“evolution-proof” insecticides. These insecticides would have properties that retard and even 

entirely prevent the spread of resistance which could subsequently provide sustainable 

control (Read et al., 2009).  

 

Case management has relied largely on anti-malarial drugs. The main antimalarials in use are 

chloroquine and sulfadoxine-pyrimethamine (SP), which are inexpensive and widely 

available (White, 2004). According to White (2004) resistance has emerged to all classes of 

anti-malarial drugs, with the exception of artemisinins. He states that if artemisinins are also 

lost to resistance, we may be faced with untreated malaria. Plasmodium falciparum is now 

highly resistant to chloroquine in most malaria-infected areas. Resistance to SP is also 

widespread and has developed more rapidly (White, 2004). 

 

2.6.3. Elimination 

According to WHO (2012), malaria elimination is defined as the reduction to zero of 

incidence of infection caused by human malaria parasites in a defined geographical zone as a 
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result of deliberate efforts. Continued measures are required to prevent the re-establishment 

of transmission (WHO, 2012). 

 

Kelly et al. (2011) states that out of the 99 countries with endemic malaria 32 are now 

committed to some kind of elimination strategy. However, a major obstacle to the upgrade of 

services in malaria-endemic countries is weak health information systems and surveillance 

needed to monitor the progress of effective public health responses and/or programme 

adjustments (Kelly et al., 2011). Maharaj et al. (2012) agree that malaria elimination in South 

Africa is possible given that certain criteria are met like the continued support of existing 

malaria programmes, cross border malaria control initiatives, as well as operational research 

on vector distribution and insecticide resistance. They also believe that surveillance systems 

need to be refined in order for information to be routinely collected (Maharaj et al., 2012).  

 

Given the effectiveness of antimalarial tools and interventions, it would be feasible to 

effectively control malaria in all parts of the world. Malaria could also be entirely eliminated 

from countries and regions where the transmission intensity is low to moderate and where 

health systems are strong (Mendis et al., 2009). Similar to Maharaj et al. (2012), Mendis et al. 

(2009) believe that elimination can be achieved with the re-orientation of control activities, 

moving away from a population-based coverage of interventions, to one that is based on a 

programme of effective surveillance and response.  

 

In South Africa in particular, malaria is transmitted along the northern and eastern borders, so 

there has been collaboration on malaria control with neighbouring countries. In the past 

decade two initiatives were established to deal with cross border malaria transmission, 

namely, the Trans-Limpopo Malaria Initiative (TLMI) and the Lubombo Spatial 

Development Initiative (LSDI). The TLMI was established to reduce transmission between 

south Zimbabwe and the Limpopo Province. The LSDI is a joint programme between the 

governments of Swaziland, Mozambique and South Africa. The rational for the establishment 

of the LSDI was that since the Lubombo area consists of poor communities that are affected 

by malaria, eradicating malaria in this region would subsequently increase tourism and thus 

aid in economic development in these areas (Moonasar et al., 2012).  

 

Current efforts explicitly acknowledge that for malaria to be eliminated, efforts need to be 

sustained in the long-term and should incorporate multiple activities, interventions, 
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approaches, organizations and disciplines. Seven distinct themes that have been recognised in 

securing malaria elimination include: (1) drugs and vaccines, (2) modelling, (3) vector 

control, (4) monitoring and surveillance systems, and (5) integration strategies (Hall and 

Fauci, 2009). According to Slutsker and Kachur (2013) the current challenge is to know 

where people are being infected and adapt the tools that programmes are currently running. 

Although malaria is being eliminated in many areas, it still remains a resilient and dangerous 

enemy. Some countries that previously had uniformly high levels of malaria transmission 

now have a varied malaria landscape: low transmission in some areas and malaria “hotspots” 

in others. Therefore, once it is known where people are being affected with malaria, 

approaches can be tailored to match the need (Slutsker and Kachur, 2013).  

 

2.7. Spatial Epidemiology  

Spatial epidemiology is concerned with the describing and understanding of geographic 

variation in disease with respect to environmental, genetic, demographic, behavioural and 

infectious risk factors (Elliott and Wartenberg, 2004). Disease mapping is conducted to 

understand spatial and spatio-temporal variation in risk. This information can be used for 

basic descriptive purposes, to provide information concerning the health needs of a 

population or, to compare estimated risk or exposure so as to obtain ideas as to disease 

aetiology (Elliott et al., 2000). Geographical correlation can be investigated to establish 

whether geographical variations in exposure to environmental variables like temperature and 

water have any relation to the health outcomes of individuals as measured on a geographical 

scale (Elliott et al., 2000).  

 

Spatial epidemiology began in 1855 with the seminal work of John Snow on the transmission 

of cholera. Snow mapped cases of cholera together with the location of water sources in 

London where he showed that contaminated water was the major cause of the disease. In the 

19
th

 and 20
th

 centuries spatial analysis was mostly employed by plotting the observed disease 

cases or rates (Frerichs, 2001). Nowadays, computer based cartographic methods, modern 

statistical methods and satellite derived data allow an integration to address both tasks and 

even go further by providing predictions at new locations (Gemperli, 2003).  
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2.7.1. GIS and Remote Sensing  

GIS has emerged as the core of spatial technology in spatial epidemiology studies. It is being 

used in various applications such as locating the study population by geocoding addresses 

(geo-referencing), using proximity analysis to contaminant source to establish a proxy for 

exposure, as well as integrating  environmental monitoring data into the analysis of the health 

outcomes (Nuckols et al., 2004). Essentially, a GIS is a powerful, computerized database 

management system that allows for the capture, storage, retrieval, analysis and display of data 

within a geographic context (Figure 2.3) (Vine et al., 1997). All methods of collecting 

information about the earth without actually being in contact with it are forms of Remote 

Sensing (RS). Remotely sensed data can be acquired via satellites, aerial photography and 

radars. Basically, remote sensing is the collection and analysis of radiant energy coming from 

different sources for the purpose of extracting useful information like the presence and 

distribution of patterns and objects (Nuckols et al., 2004).  

 

Figure 2.3: Functionality of a GIS (SOURCE: Nuckols et al., 2004) 
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The key strength, however, of Geographic Information Systems is their interdisciplinary 

approach to the solution of problems. They go beyond conventional methods of discovering 

and visualizing new patterns and relationships that would have otherwise remained invisible. 

They achieve this by classifying data coming from different sources into layers, and then link 

these layers by spatially matching them (Figure 2.3). These layers can then be queried and 

analysed to produce new information theories (Boulos et al., 2001). In order for survey data 

to be used in GIS, it must be geo-located or geo-referenced. This is often accomplished by 

using the Global Positioning System (GPS). The GPS is a system of 24 satellites that allows 

the co-ordinates of any point on or near the earth’s surface to be measured with high 

precision ((Boulos et al., 2001; Saxena et al., 2009). Further research is also often needed to 

investigate the relationship between satellite-derived proxies on environmental conditions 

and ground climate data (Gosoniu, 2008). Combined with data from surveillance activities, 

GIS and GPS tools are ideal for generating base maps, mapping breeding habitats and 

analysis of high disease prevalence (Saxena et al., 2009; Reid et al., 2012). 

 

Since the 1990s RS and GIS have provided useful tools for mapping malariological indicators 

in Africa. Craig et al. (1999) produced a climatic suitability map of malaria transmission in 

sub-Saharan Africa and Snow et al. (1999) estimated the number of people at risk of malaria 

worldwide, by continent. In addition some authors have integrated RS and GIS to produce 

maps of malaria vector distribution and maps of vector breeding sites. The relationships 

between the disease prevalence and vector distribution could never have been so completely 

studied without this technology (Saxena et al., 2009).  

 

Malaria mapping is based on estimating the relation between malaria transmission and 

environmental or climatic factors as the biological parameters are directly influenced by 

meteorological variables, therefore this relation can be used to predict malaria transmission at 

locations where information is not available (Thomson et al., 1997). GIS and remote sensing 

data from earth-observing satellites can facilitate this kind of epidemiological research by 

improving aptitudes for spatially-explicit risk profiling and early warning systems (Yang et 

al., 2010).  

 

2.7.2. Spatial Statistical Methods 

Since the pioneering work by Ross, in 1910 and MacDonald in 1957, significant progress has 

been made in understanding malaria through the development of deterministic and 
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mathematical models and their statistical inference with incidence (Eckhoff, 2011; Montosi et 

al., 2012). Deterministic models are usually called biology-driven models which typically 

rely on biological data and meteorological variables collected by ground-based or satellite-

driven observations. Mathematical and statistical models on the other hand require the 

development of new, weather dependent mathematical dynamic models, which take into 

account the known risk factors quantitatively (Yang et al., 2010). In recent years, biology-

driven and statistical models have been developed to improve our understanding of the likely 

impact of climate on malaria transmission. Craig et al. (1999), for example, developed a 

fuzzy-logic, climate based distribution model. Giardina et al. (2011) developed a Bayesian 

geostatistical model to estimate the burden of malaria in Senegal. Gemperli et al. (2004) 

constructed a Bayesian hierarchical geostatistical logistic model to investigate the spatial 

patterns of infant mortality in Mali. Abellana et al. (2008) also used the same methods to 

study the seasonal effect on the spatial distribution of the incidence of malaria in children 

under 10 years of age living in Mozambique.  

 

2.7.2.1. Spatio-temporal Modelling 

Even though the global distribution of malaria is affected by human anti-malarial 

interventions, the control of malaria also needs to take into account temporal and 

geographical patterns (Craig, 2009). 

 

In epidemiological studies, the reported cases of a disease are often expressed as daily, 

weekly or monthly counts (Hay and Pettit, 2001). Apart from the causal links, the 

relationships that exist between the host and the vector and the parasite illustrate the temporal 

element of malaria transmission (Mboera et al., 2010). The human life cycle is a matter of 

years, the mosquito life cycle a matter of days and weeks, while the interaction between the 

humans and mosquitoes waxes and wanes over weeks and months. The parasites life cycle 

plays out in the human in days, and days to weeks in the mosquito, while the interaction with 

the human host develops over months and years (Bray and Garnham, 1982).  

 

Spatial and temporal variation in transmission intensity is particularly important in low 

transmission areas where few infected mosquitoes are caught and focal “hotspots” of malaria 

transmission may exist (Oesterholt et al., 2006). A host of issues, however, make 

characterizing the natural phenomena underlying the spatial and temporal patterns in malaria 

risk difficult. The differences between malaria vectors mean that particular events, such as 
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the rainy season, can lead to an increase in vector capacity for most vectors but an initial 

decrease for others. When variability is due to ecological drivers, further complications can 

occur due to host immunity, which could be a possible explanation for intra-annual and inter-

annual variation (Reid et al., 2012).  

 

2.7.2.2. Spatial Dependency 

A particular issue when analysing spatial data is that geographical data are correlated in 

space. When data are in close geographical proximity, the risk estimates will tend to be 

positively correlated as the areas share a number of similar characteristics, including both 

social and physical environment (Elliot and Wakefield, 2000). That is to say, responses that 

are geographically close are assumed to be similar (Wakefield et al., 2000). In the case of 

malaria, spatial correlation exists in both small and large scales, reflecting the transmission of 

malaria infection by the mosquitoes which fly over short distances and  effects environmental 

factors which determine mosquito survival over large areas (Gemperli, 2003). Vector borne 

diseases in tropical countries are often not rare and the spatial correlation is often much 

stronger due to links with the climatic and environmental variables (Kleinschmidt, 2001). 

According to Elliot and Wakefield (2000) and Kleinschmidt et al. (2000), an analysis which 

does not take such dependencies into account may give false precision and potentially create 

bias in the estimates of effect.  

 

Many statistical methods assume independence of observations (Sainani, 2010). When using 

this method to analyse spatially correlated data, the standard error of the covariate parameters 

are underestimated and the statistical significance is overestimated (Ver Hoef et al., 2001; 

Gemperli, 2003; Gosoniu, 2008; Sainani, 2010).  

 

There are three kinds of spatial data: point level (geostatistical), areal (lattice) and point 

patterns (Vine et al., 1997). Spatial statistical methods incorporate spatial correlation 

according to the way geographical proximity is defined (Gemperli et al., 2003). Proximity 

further depends on the geographical information, which can be available at areal level or at 

point-location level (Vine at al., 1997). Areal unit data are aggregated over contiguous units 

(countries, districts, census zones) which partition the whole study area. Proximity in space is 

defined by their neighbouring structure. Point-referenced or geostatistical data are collected at 

fixed locations (households and villages) over a continuous study area. Proximity in 

geostatistical data is determined by the distance between sample locations (Diggle, 2000; 
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Gemperli, 2003). Questions of interest that arise concerning this kind of data are whether 

events are appearing sporadically or are they clustered and which risk factors are associated 

with such clusters (Diggle, 2000; Elliott and Wartenberg, 2004).  

 

Exploratory tools (variogram for geostatistical data, Moran’s I and Geary’s C for areal data 

and clustering statistics for point pattern data) describe the geostatistical pattern of the areal 

data and are available in most statistical packages (Cressie, 2000; Wakefield et al., 2000; 

Abellana et al., 2008). However, these statistics are unable to filter the noise present in the 

data due to variable sample size between locations and produce smooth maps highlighting 

disease patterns (Wakefield et al., 2000).  

 

2.7.2.3. Spatial Prediction 

Spatial and spatio-temporal distributions of both physical and socio-economic phenomena 

can be estimated by functions depending on location in a multi-dimensional space. Most 

interpolation and prediction methods were developed to predict values of spatial phenomena 

in unsampled locations (Mitas and Mitasova, 1999). Spatial interpolation can be conducted 

on the basis of many different assumptions and by many different methods. The simplest- and 

perhaps the most often used- is to assume that the unobserved value at any unsampled area is 

best described by that of the nearest observed values, or the average of the surrounding areas 

(Briggs, 2000).  

 

In geostatistics, spatial prediction is referred to as Kriging. Matheron (1963) coined this term 

in honour of the South African mining engineer D.G Krige. Prediction by kriging is based on 

the assumption that covariance between points is entirely a function of distance between them 

as modelled by means of the variogram. Another assumption is that the underlying mean of 

the quantity that is being predicted is constant (the assumption of stationarity) (Kleinschmidt 

et al., 2000). Bayesian kriging allows estimation of the prediction error, a feature which is not 

possible in kriging estimators (Diggle et al., 1998). Geostatistical methods have occasionally 

been applied to disease mapping. Diggle et al. (2002) used Bayesian kriging for mapping 

malaria prevalence. They applied MCMC to map malaria in the Gambia (Diggle et al., 2002).  
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Chapter Three: Study Area 

 

3.1. Location of Study Area 

The study area is located on the south east of South Africa (30°34´35´´ S, 30°34´35´´ E) and 

has a long shoreline along the Indian Ocean. The KwaZulu-Natal province borders three 

other provinces domestically (Mpumalanga, Free State and the Eastern Cape) and the 

countries of Mozambique, Lesotho and Swaziland (Figure 3.1). The districts outlined in red 

in Figure 3.1 were the ones selected for this study. 

 

Figure 3.1 Map showing study area 

 

Occasionally limited focal transmission may occur in the North West and Northern Cape 

Provinces along the Molopo and Orange Rivers as these water bodies provide favourable 
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breeding sites for survival of vectors such as Anopheline mosquitoes. The altitude varies 

between 3444 meters at the Drakensberg and 0 meters at the sea (Figure 3.2). 

 

Figure 3.2: Map Showing Range of Altitude in Study Area (Source of data: MODIS, 

2012) 

 

3.2. Demographics 

The population was estimated to be 10,819,130 in 2011 spread along eleven districts, one of 

which is a metropolitan district (eThekwini), which makes it the second most populous 

province in South Africa. With an average density of 110 people per km
2
 and occupying a 

total area of 94 361 km
2 

KwaZulu-Natal is a densely populated province. In terms of habitat 

54% of the population live in rural areas (STATSSA, 2011). 
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3.3. Vegetation 

KwaZulu-Natal’s vegetation (Figure 3.3) varies from tropical and subtropical types at the 

coast, through rolling grasslands and Tundra types in the Drakensberg. Bushveld is found in 

the low-lying hot and dry areas of Northern KwaZulu-Natal and in most of the river systems 

in the Midlands mistbelt, highland sourveld, mountains of the Drakensberg and in the high 

rainfall areas of the coastal belt, different forms of forest are found (Figure 2). Tall grassland 

is also characteristic in the northern plains of the province, while the grassland is typically 

short in the cold highland areas (Camp, 1999).  

 

Figure 3.3: Map showing vegetation types in study area (Low and Rebelo, 1996) 

3.4. Topography 

The province is divided into three different geographic areas: a lowland region, a central 

region and the two mountainous areas. The lowland region along the Indian Ocean is 

extremely narrow in the South, widening in the northern part of the province. The central 
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region is the Natal Midlands which is an undulating plateau rising toward the west.  The two 

mountainous regions are the Drakensberg Mountains in the west and the Lebombo mountains 

in the north. The Tugela River flows west to east across the centre of the province and is the 

region’s largest river (Camp, 1999).  

 

3.5. Climate 

KwaZulu-Natal has a varied climate due to the complex and diverse topography. The range 

of the topography levels goes from sea level to over 3000 meters, which results in a 

considerable range in temperature. The coast is subtropical with the inland regions becoming 

progressively colder. The mean annual rainfall exceeds 900 millimeters over most of the 

province with hot and humid summers (October-April) and mild winters (May to September). 

In South Africa the malarious provinces have rainfall measures between 500 millimeters and 

2000 millimeters annually (SAWS, 2010).  

 

Along the coastal areas the summer temperatures vary from 24°
 
C to 32°

 
C with winter 

temperatures averaging 20°
 
C. The Midlands generally has a mild climate with relatively high 

summer rainfall and dry winters. The high elevation of the Drakensberg that peaks over 3000 

meters means that the temperatures are more moderate all year round than the coastal areas. 

During the rainy summer season daily thunderstorms are likely and continuous rain for up to 

a week is not uncommon but this can be balanced out by long sunny stretches. Snow on the 

higher peaks is also not unusual during the summer months and there can also be heavy 

winter snow with temperatures plummeting below 0°
 
C at night (SAWS, 2010). 

 

3.6. Malaria Cases 

The Department of Health has in the past expressed the difficulties in quantifying the burden 

of malaria as the disease may be asymptomatic amongst migrant workers, reports being often 

inadequate and incomplete and in addition some patients (especially economic migrants from 

neighbouring countries) may give incorrect personal details. In addition, these migrants might 

not report to the formal health systems due to fear of being deported making the malaria 

estimates imprecise (DOH, 2008).  

 

The malaria case data are reported to the Epidemiology and Surveillance Directorate through 

two parallel systems, surveillance data from the three malaria high risk provinces viz. 

Mpumalanga, KwaZulu-Natal and Limpopo are sent quarterly to the Directorate. Data from 
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the other six provinces that have a relatively low to no risk malaria are received though the 

passive notification system (DOH, 2008).  

 

Figure 3.4: Map showing location of malaria cases in study area (Data Source: Medical 

Research Council, 2012) 

Figure 3.4 illustrates the passive malaria cases reported in the study area. This data was 

collected by the South African Medical Research Council from January 1998 to July 2011 but 

for the purposes of this study only the cases from the year 2000 to July 2011 were used as 

that is the period the environmental/climatic data is used. Each point on the map relates to all 

the residential areas where there were observed cases. In Figure 3.4 the endemic malaria area 

is shown separately from the rest of the study area. It is evident on the map that most of the 

cases were observed in the endemic malaria area.  
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3.7. Socio-economic Factors 

For many years the socio-economic status of a community has been used as an indicator to 

characterize malaria treatment behaviours and the community’s adherence to malaria control 

programs. Factors such as distance to health centres and education levels of the household 

heads can influence malaria treatment seeking behaviours and in the understanding and 

selection of malaria intervention for the household (Lowassa, 2012). 

 

Malaria contributes approximately 40% of all outpatient visits in rural areas, with children 

under five and pregnant women contributing the highest proportions (DOH, 2010). 

According to the census conducted in 2011 in South Africa, almost 26% of persons aged 

between 5 and 24 years of age are not attending any educational institution in KwaZulu-

Natal. The 2011 census also revealed that of the persons aged 20 years and older, only 30.8% 

of them had matriculated from high school in KwaZulu-Natal (STATSSA, 2011). The Census 

conducted in 2011 in South Africa concluded that 47.6% of the population in KwaZulu-Natal 

was unemployed. In addition, 28.4 % of the population still reside in informal dwellings and 

22.1% still have no access to electricity (STATSSA, 2011).  Malaria has been associated with 

poverty at the macroeconomic level according to Coleman et al. (2010) stating that in areas of 

hyperendemic malaria in Sub-Saharan Africa, risk has been associated with personal 

protection measures alongside with the location of the housing, as well as the structure of the 

home. In a study they conducted in South Africa, they found that people living in traditional 

mud-wall houses had increased risk of malaria than those who lived in Western-styled brick-

wall dwellings. These traditional types of houses also provide conditions that are favourable 

for mosquito and human contact as there are many potential access points for mosquitoes in 

mud walls, which would consequently increase the risk of malaria infection (Coleman et al., 

2010).  
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Chapter Four: Material and Methods 

 

4.1. Introduction 

The aim of the study is to analyse the geographical patterns of malaria incidence in KwaZulu-

Natal, South Africa. A correlation has been found to exist between environmental covariates 

and malaria transmission therefore in this study a number of environmental factors were 

required to assess the relationship between the environmental covariates and malaria 

transmission. This chapter will outline which data was used for the study, as well the methods 

that were used in order to achieve the aim of the study. This will include a detailed section on 

data description and finally the model formulation and analysis.   

 

4.2. Data Description and Acquisition  

4.2.1. Malaria Data 

For spatial analysis to be feasible health event data must be spatially located. The clinical 

cases of malaria were obtained from the malaria information system of the KwaZulu-Natal 

province. This system has been developed by the South African Medical Research Council 

(MRC), a national research organisation in South Africa, using Microsoft Access for data 

entry and validation. Malaria is a notifiable disease in South Africa. The case reporting 

system aims to capture all cases that have been confirmed parasitologically through both 

active and passive surveillance. Active surveillance is achieved through screening measures 

where teams would go into a community with known risk of malaria, or in areas where there 

was suspicion of parasite carriers. Blood smears would then be taken of all the community 

members with particular emphasis on those presenting with a fever or who had previously 

had a fever, those who had travelled to a malaria risk area and possible migrants from malaria 

endemic areas. After the introduction of RDT’s in 1998, the need for active surveillance 

decreased as all suspected malaria patients could now get a blood test at a primary health care 

facility. Only the cases that tested positive through either RDT or microscopy were notified 

and entered into the system.  

 

In the course of the passive surveillance process, patients visit health facilities, and after they 

are parasitologically diagnosed with malaria, the health worker notifies the case on the 

prescribed notification form and reports on the travel history of the patient. The health 
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facilities are visited twice a week in the malaria areas during high transmission periods to 

ensure that all notifications are collected and the availability of drugs is monitored.  

 

Clinical case data was collected for the period of 1998 to June 2011 for cases that have been 

reported in health facilities. In South Africa, a suspected malaria infection is confirmed or 

excluded with a blood test diagnosed using microscopy and/or RDTs. Only the passive, 

spatially referenced, local cases were considered for this study thus locations that were not 

geo-referenced in the database were eliminated from the study. Only the locations that fell 

into the selected districts (Umkhanyakude, Uthukela, Amajuba, Umzinyathi, Zululand and 

Uthungulu) were selected for analysis as these are the more malaria prone areas. The reason 

for this was that the malarial area in KwaZulu-Natal is in the northern areas close to the 

Mozambican and Swaziland borders and any cases found in the rest of the provinces are 

generally treated as imported cases from people who had travelled to malarious areas of the 

province. The clinical case data included information on the individual such as sex, age, the 

year of diagnosis, type of mosquito species that infected them and their residential name and 

health facility name where they were screened as well as the co-ordinates of the residential 

name. Cases or locations were also eliminated from the study if they had missing values for 

any of the climatic/environmental variables analysed in the study.  

 

4.2.2. Population Data 

The calculation of area-specific disease risk requires an accurate estimate of the population at 

risk. The estimated population for each district was obtained from the national statistics 

department, Statistics South Africa (STATSSA) and the AfriPop website 

http://www.afripop.org/  for population at sub-place level. The AfriPop project provides large 

area spatial demographic datasets that are per grid square estimates of numbers of people. 

AfriPop utilises satellite imagery for mapping settlements- specifically 30 meter resolution 

Landsat Enhanced Thematic Mapper (Edi et al., 2012) satellite imagery. The population data 

is available at a spatial resolution of approximately 100 meters (Figure 4.1) and was extracted 

for each individual place in the study area. For full details on the AfriPop project see Tatem 

et al. (2004, 2007) and Linard et al. ( 2010).  

http://www.afripop.org/
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Figure 4.1: Population Map for the Study Area for 2010 (SOURCE: AfriPop, 2010) 

The AfriPop population data was available for the year 2010 and the census data from 

STATSSA was available for the years 2001 and 2011. There was also a community survey 

performed in South Africa in 2007 by STATSSA. For the non-censual years population 

estimates were obtained by applying the annual population growth rate for each district 

obtained from STATTSA (2012). The population was extracted at each observed case 

location from the Afripop dataset and the population for each year was estimated by applying 

the annual growth rate to the Afripop dataset. 

 

4.2.3. Environmental Variables 

Environmental data was obtained from Moderate Resolution Imaging Spectroradiometer 

(MODIS). MODIS has a spatial resolution varying between 250 meters and 1 kilometer. 

Estimates of environmental and climatic factors like temperature, vegetation or land coverage 

can be obtained from the MODIS satellite. The available periods can be daily, 8-days, and 

16- days, monthly and/or yearly depending on the factor. The following meteorological data 

was obtained from the NASA’s EOSDIS Reverb Tool website  

(http://reverb.echo.nasa.gov/reverb/): 

 

http://reverb.echo.nasa.gov/reverb/
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4.2.3.1. Temperature 

The MODIS global land surface temperature and emissivity product was used for 

temperature. It is comprised of daytime and night-time land surface temperatures (LST). The 

data has been collected from March 5 2000 until July 2011 with a spatial resolution of 1 

kilometer. The data is composed of the daily 1 kilometer clear sky LSTs averaged over an 8 

day period. LST data were used as proxies of day (maximum) and night (minimum) 

temperature. 

 

4.2.3.2. NDVI 

The MODIS NDVI data are provided every 16 days at 1 kilometer spatial resolution. The 

data are provided from February 24, 2000 to July 2011. The MODIS NDVI product is 

computed from atmospherically corrected bi-directional surface reflectance’s that have been 

masked for water, clouds, heavy aerosols, and cloud shadows. The NDVI was considered as 

proxy for vegetation and moisture.  

 

4.2.3.3. Land Cover Type 

The MODIS Land Cover Type product provides data characterizing five global land cover 

classification systems. It has an annual temporal resolution with a 500 metre spatial 

resolution. Since it is only available from the year 2001 until 2009 at the time it was 

downloaded, for the purposes of the study the same values of the year 2001 were used for the 

year 2000 and also the same values were used from the year 2009 were used for the year 

2010 and 2011 since it is a fair assumption that land cover types would not have changed 

drastically for that time period.  

 

This product includes a set of five layers in which land cover is mapped using different 

classification systems including the International Geosphere-Biosphere Programme 

classification, a 14-class system developed at the University of Maryland. 

 

The classes were then further grouped into a land cover classification scheme and 

differentiated according to the occurrence of the Anopheles mosquito (Lindblade et al., 1999) 

and human activity (Table 4.1).  
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Table 4.1: Land Cover Classification Scheme 

Main Class Sub-Class 

1. Dry Non-Forest Vegetation Bush-/Shrubland 

Grassland/Savanna 

2. Forest Forest/Woodland 

3. Wet Non-Forest Vegetation Wetland 

Large-scale Agriculture 

4. Non-Vegetation Bare Soil/Rock 

Building/Settlement/Infrastructure 

Roads/Tracks 

5. Water Standing open water 

Flowing open water 

 

4.2.3.4. Altitude 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) was used to determine the altitude in the study area. The 

ASTER GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 

tiles. The ASTER GDEM is distributed as a Geographic Tagged Image File Format 

(GeoTIFF) files with geographic coordinates (latitude, longitude). This was obtained from the 

USGS website www.usgs.gov . 

 

4.2.3.5. Rainfall 

The rainfall data was downloaded from the Africa Data Dissemination Service (ADDS) 

website http://earlywarning.usgs.gov/fews/africa/index.php that is implemented by NOAA’s 

Climate Prediction Center. The data are provided as decadal (10-day) Rainfall Estimates at an 

8 kilometer spatial resolution. The daily data are in geographic coordinates using the Albers 

Equal Area conical projection (Clarke 1866 spheroid). The daily totals are summed to 

produce the decadal totals and the decadal totals are then projected to the coordinate system.   

 

4.2.3.6. Water Bodies 

The data for the water bodies was obtained from the Environmental Science Research 

Institute (ESRI) website www.arcgis.com . Two datasets were provided separately and used 

http://www.usgs.gov/
http://earlywarning.usgs.gov/fews/africa/index.php
http://www.arcgis.com/
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in conjunction: the world linear water dataset and the world water bodies’ dataset. The World 

Linear Water dataset provides a base map layer for rivers and streams of the world, whilst the 

World Water Bodies dataset represents the open water rivers, lakes, seas, and oceans of the 

world. The water bodies’ data was used a proxy for the distance to water bodies. The shortest 

Euclidean distance between the centroid of each pixel and the closest water body was 

calculated in ArcGIS version 9.3 (ESRI; Redlands, CA, USA). 

  

4.3. Pre-processing 

The satellite imagery data was linked to the malaria case data so as to extract data in only the 

141 unique locations in the study area. To be able to process the data and extract the values at 

the desired locations with ArcGIS or any other program the files have to first be converted 

into geo-referenced tiff picture files. To achieve this, the MODIS Reprojection Tool offered 

under http://lpdaac.usgs.gov/landdaac/tools/modis/index.asp was used for this task. A MS-

DOS batch file was created to convert the files automatically instead of individually 

converting each file as there were many files to process. 

 

Values were extracted using ArcGIS 9.3 (ESRI; Redlands, CA, USA) from the geo-

referenced tiff files at each of the 141 observed unique locations using the WGS 1984 

projection. This was done for each of the environmental covariates: LST, NDVI, land cover 

type, altitude, and rainfall. The distance to water bodies from each observed location was also 

calculated in ArcGIS 9.3 (ESRI; Redlands, CA, USA). Since this study was conducted over a 

long time period and there were many files to process and extract values from, the command 

line window in ArcMap was used to create batch files to run the processing automatically for 

the extraction of values. 

 

4.3. Data Management 

All data management was efficiently conducted using a data analysis and statistical software 

called Stata MP Version 10.1 (Stata Corporation, College Station, TX, USA) which is a full 

featured programming language for Windows, Mac, UNIX and Linux. 

 

4.3.1. Conversion of Database Files 

Before the files produced in ArcGIS could be used in Stata they had to be converted first into 

ASCII files that Stata could read. The .dbf files from ArcGIS containing all the information 

http://lpdaac.usgs.gov/landdaac/tools/modis/index.asp
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regarding what value was extracted at each observed location were converted into .csv files 

using Microsoft Visual FoxPro version 9.0 (Microsoft Corporation, Albuquerque, NM, 

USA). Batch files were created to automatically convert the files in FoxPro as there were too 

many to manually convert. For other covariates that did not have many files needed for 

conversion, like land cover for example, Stat/Transfer version 7 (Circle Systems, Seattle, 

WM, USA) was used to convert the ArcGIS .dbf files into .dta Stata files. 

 

4.3.2. Data Management  

The first step was to clean the malaria cases data of any inconsistencies like missing values or 

incorrect spelling of names until a final set of cases was obtained that would be the working 

data. Although the malaria case data dated back to 1998, as a result of that MODIS satellite 

imagery for the environmental covariates was generally only available from February 2000; 

and some at an even later time than that, only the cases dating from May 2000 until July 2011 

were included in the analysis. 

 

The following step was to link the environmental variables to the cases.  The remote sensing 

proxies are averaged over different time periods (lag time) prior to the disease and are lined 

to the corresponding incidence data of that period. The following periods were considered (i) 

current month (aligned with the case); (ii) previous month; and (iii) two months before the 

case. 

 

The linking was performed for all the individual covariates and then a final master file 

including all the covariates and cases together was created. This was the master file that 

would be used in the analysis. 

 

4.4. Statistical Analysis 

4.4.1. Exploratory Analysis 

The incidence data were modelled via a Negative Binomial regression. Exploratory analysis 

was conducted in Stata 10.1 (Stata Corp., College Station, TX, USA) to assess the 

relationship between the monthly malaria transmission and the monthly values of each 

climatic variable. For categorical variables like land cover, new categories were created. 
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4.4.2. Bayesian Geostastical Methods 

Bayesian methods have been applied extensively in recent years for modelling both areal unit 

data and geostatistical data because they allow flexible modelling and inference and provide 

computational advantages via the implementation of Markov chain Monte Carlo (MCMC) 

methods (Wakefield et al., 2000). The realization that Markov chains could be used in a wide 

variety of simulations came on to mainstream statistics with Gelfand and Smith (1990). The 

rapid emergence of BUGS (Bayesian inference Using Gibbs Sampling) software provided 

another compelling argument to use MCMC algorithms at large (Lunn et al., 2009; Robert 

and Casella, 2011). MCMC simulation can be implemented in the WinBUGS statistical 

software which includes specific functions to fit conditional and joint models (Wakefield et 

al., 2000). WinBUGS/OpenBUGS is the current, windows-based, version of the BUGS 

software. The conceptual design of the software is based on constructing an internal 

representation of the probability model that is analogous to the way in which it may be 

visualized as a graphical model. Each quantity in the model is represented by a node and 

nodes are connected by lines or arrows to show direct dependence in graphical modelling. To 

clarify the qualitative nature of the model, details of the distributional assumptions and 

deterministic relationships are “hidden” (Lunn et al., 2000).  

 

If we have data y and unknown parameters θ, the Bayesian approach would be to treat all 

unknown quantities as random variables and assign a prior probability distribution to each. 

To obtain a full probability model for all observable and unobservable quantities, a joint 

probability distribution (i.e. likelihood) can be specified. In order to make inferences about θ 

we use Bayes’ theorem to construct the posterior distribution, i.e. the joint distribution of all 

model parameters conditional on the observed data: 

p(θ | y) α p(y | θ)p(θ), 

Where, throughout, (p.|.) and p (.) denote conditional and marginal probability distributions 

respectively. Thus, the posterior is proportional to the likelihood p(y | θ) multiplied by the 

prior p (θ) (Lunn et al., 2000).  

 

With regards to areal data, simultaneously autoregressive (SAR) models, conditional 

autoregressive (CAR) models and modifications have been suggested as prior specifications 

in the Bayesian approach . The autoregressive model of order one is one of the most 

commonly used in time series models (Hay and Pettitt, 2001). In geographical mapping of 

diseases and mortality rates specification in the Bayesian models are employed assuming 
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Poisson count data (Diggle et al., 2000). Kleinschmidt et al. (2001) have implemented CAR 

models for mapping incidence rates data. Gelfand and Vounatsou (2003) extended CAR 

model for mutinomial response data with application to geographical mapping of allele and 

haplotype frequencies.  

 

4.4.3. Bayesian Distributed Lag Model 

A Bayesian distributed lag model was used to identify the lag time which gives the best fit. A 

distributed lag model is a regression model that includes lagged exposure variables, or 

distributed lags as covariates. Its distributed lag function describes the relationship between 

the lag and the coefficient of the lagged exposure variable. The distributed lag model assesses 

how a covariate at time t, say Xt, causes an influence on the mean value of the response 

variable Yt. This method is a necessity when the dependent variable reacts to changes in one 

or more of the explanatory variables only after a lapse of time. This delayed reaction suggests 

the inclusion of lagged explanatory variables (distributing the effect of the explanatory 

variable over several periods) into the specification of the model. It is typically assumed that 

the coefficients of lagged variables are not all independent but functionally related (Ravines 

et al. 2006; Welty et al., 2008). The specification of a model is complete after specifying a 

prior distribution of all parameters of interest when using the Bayesian approach. Following 

Bayes’ theorem, the posterior distribution is proportional to the product of the prior by the 

likelihood (Ravines et al. 2006; Welty et al., 2008). 

 

4.4.2.1. Model Formulation 

The following equation was used to model the incidence data: 

Nit ~ NB (μit,r) 

log(μit) = log(Pit) + trend + seasonality + EO + spatial + temporal 

Where Nit                                                   : observed number of malaria cases at sub-place i and month t; 

           μit                                    : expected average number of cases 

          Pit                                                        : population count 

          r                                        : dispersion parameter 

(Trend)  f T (t)                             : A function of time, i.e. f T (t) = β * t 

(Seasonality) f S (t)                     : f S (t) = α1 * cos(2 π t / T) + α2 * sin(2 π t / T),t =1…12 

EO                                              : β1 * X1it + β2 + X2it…+ βk * Xkit 
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(Spatial) ϕ = (ϕ 1, ϕ 2… ϕ L)
T
       : ϕ arises from a spatial Gaussian process 

ϕ ~ N (0, Σ), Σij = σ2
ϕ 

 
exp (-ρdij ) : dij is the Euclidean distance between places i and j 

(Temporal) e = (e1, e2,…eT)
T
      : e arises from an autoregressive process 

et ~N(γet-1, σ
2
e) 

 Nit  arises from a Negative Binomial distribution. The relation between μit  and the vector of k 

associated predictors Xi = (Xi1, Xi2,.., Xik)
T 

observed at location Si  is modelled via the equation 

log(μit) = log (Ni) + X it
T 

 β + wi + et, where X it where β = (β1, β2,…, βk)
T
 is the regression 

co-efficient vector, and ωit and ϕit are location-dependent random effects (Giardina et al., 

2012; Karagiannis- Voules et al., 2013). Bayesian inferences consider model parameters to be 

random (Link and Barker, 2010). Therefore, for regression coefficients we often assume that:  

βk ~ N(0, σ2
k), σ

2
k is large (i.e. 1000) 

 

In order to introduce spatial dependence, the random effects ϕ = (ϕ1, ϕ2,…, ϕn)
T
 must be 

assumed to be distributed according to the Multivariate Normal (MVN) distribution with a 

mean of 0 and covariance matrix Σ. Therein each element σij  is defined by an exponential 

parametric function of the distance dij between locations si and sj , i.e. Σ = σ2
ϕ 

  
exp (-ρdij  ) 

(Giardina et al., 2012; Karagiannis- Voules et al., 2013). The spatial variation is represented 

by the parameter σ2
ϕ and the parameter controlling the rate of decay with increasing distance 

is ρ. Spatial correlation is introduced in parameters φ1, φ2… φL  seen as samples from a 

continuous spatial process: 

ϕ ~ MVN(0, Σ) = |Σ|
-½    

exp(-1 ϕ
T
 Σ

-1 ϕ) 

                                                                         (2 π) 
½    2 

 

 Σ is the spatial covariance matrix. Non-informative priors were assigned for the parameters, 

while multinomial priors were assigned for the covariates (Dellaportas et al., 2002; 

Ntzoufras, 2002; Link and Barker, 2010). 

 

4.4.2.2. Implementation in BUGS 

 

MCMC methods, like Gibbs Sampling, have been used extensively in Bayesian inference. 

The software BUGS (Bayesian Analysis using Gibbs Sampling) is a well-known tool for 

conducting this task. This package was developed by David Spiegelhalter and colleagues at 
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the MRC Biostatistics Unit in the United Kingdom and is available freely from 

http://www.openbugs.info/w/ .   

 

This model was implemented in OpenBUGS Version 3.2.1. 120 000 iterations of the MCMC 

were run with a burn-in phase of 5 000 iterations. Spatial random effects were used to take 

into account the spatial correlation present in the data at sub-place/community level. 

Temporal random effects were used at monthly intervals to account for temporal correlation. 

Spatial correlation was incorporated by assuming an autoregressive process in the random 

effects. The total number of covariates was 20 and the best set of covariates was indicated by 

the model with the highest posterior probability (Mabaso et al., 2006; Giardina et al., 2012; 

Karagiannis- Voules et al., 2013).  

 

There are two ways of modelling seasonality, one way is to create indicator variables and the 

other is by using harmonic terms. Both of these were used for this study. The models were 

fitted using the MCMC technique which is the most commonly used computational method 

for fitting Bayesian models (Link and Barker, 2010).  

 

Prior distributions were assigned to the parameters so as to complete model specification. For 

the variance an inverse-gamma prior was assumed and a gamma distribution for the spatial 

decay parameter ρ. Non-informative Gaussian distributions with a mean of zero and a 

variance of 100 were assigned for the priors of the regression coefficients. The covariates 

were standardized in order to avoid the effect of scale and reduce the computational time for 

the MCMC (Dellaportas et al., 2002; Link and Barker, 2010; Giardina et al., 2012). The 

related BUGS code can be found in the Appendix A. 

 

4.4.2.3. Prediction 

 

A grid of 1 km
2 

resolution covering the study area was created using ArcGIS 9.3 (ESRI; 

Redlands, CA, USA) resulting in approximately 75 000 pixels. Predictions were based on a 

geostatistical model using the posterior samples of the environmental variables that were 

selected by the spatio-temporal model to be significant contributors to malaria transmission in 

the area. The malaria incidence at each pixel level was estimated using R version 3.0.1 (R 

Development Core Team 2008; available at http://www.r-project.org/) (Giardina et al., 2012). 

Details on the related R-code are provided in Appendix B. 

  

http://www.openbugs.info/w/
http://www.r-project.org/
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Chapter Five: Results and Discussion 

5.1. Introduction 

This chapter presents the results and a detailed discussion of the aim and objectives of this 

study. A descriptive analyse of the data is presented followed by the results of the spatio-

temporal modelling of the incidence data. Subsequently, the results of the prediction are 

presented in the form of risk maps and they are discussed.  

5.2. Descriptive Analysis 

Table 5.1 shows the descriptive statistics of the data from the population, land cover type, 

rain levels, NDVI, day and night temperatures (LST), altitude and distance to water bodies 

for the duration of the study (May 2000- July 2011).   

 

Table 5.1: Descriptive Statistics 

 Mean Standard Deviation Minimum Maximum 

Population 3081 8940 21 84149 

Land Cover 2.35641 0.7011067 1 4 

Rain (mm) 21.71368 19.82373 0 140 

NDVI 0.6056713 0.127185 0.19775 0.90455 

LST Day (° C) 26.78731 4.26693 18.2 41.28667 

LST Night (° C) 16.83997 3.376079 7.64 29.19 

Altitude (m) 219.1538 2.189699 7 1349 

Distance to water 

bodies (m) 

5534.33 4536.44 45.32 22615.37 

 

 

Figure 5.1 illustrates the number of malaria cases per year from May 2000 to July 2011. 

During this period a total of 5,549 (mean 462; 95 % CI 3895 – 7203) confirmed malaria cases 

were notified in the study area. The number of cases per year ranged from 3193 in 2000 to 32 

in 2011. You can clearly see a steady decline in the number of cases from the high number in 

2000, when there was a malaria epidemic in South Africa following the change of insecticide 

used for indoor residual spraying from DDT to pyrethroids, to the numbers remaining 
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consistently low by the end of study period of July 2011. The average number of cases was 

highest between January and April and the lowest average number of cases was in December. 

 

Figure 5.1: The total number of cases per year in the KwaZulu-Natal province 

 

 
 

Figure 5.2: Monthly averages of cases and rainfall over 2001-2010 in KwaZulu-Natal 

 

In Figure 5.2 the monthly average number of cases is illustrated with the monthly rainfall 

values from January 2001 to June 2010 (the years 2000 and 2011 were excluded as some 
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months were missing). The rainfall values ranged from an average of 8mm in June to 39mm 

in November. Rainfall is lowest during the winter months and highest during the hot summer 

months. 

 

 

Figure 5.3: Monthly averages of cases and NDVI over 2001-2010 in KwaZulu-Natal 

 

The monthly average values of NDVI are illustrated in Figure 5.3 where it can be seen that 

they are decreasing from values of 0.56 between May and September and increasing again to 

0.62 from October. Since NDVI is used to monitor and measure plant growth and vegetation 

cover the highest NDVI values are consistent with the Summer/Spring season in South Africa 

when the amount of green vegetation is at its peak until April. The highest numbers of cases 

seem to be coinciding with the highest values of NDVI between January and April. The 

NDVI and rainfall values follow a similar pattern. 



55 

 

 

Figure 5.4: Monthly average cases and day temperature over 2001-2010 in KwaZulu-

Natal 

 

 

Figure 5.5: Monthly averages of cases and night temperature over 2001-2010 in 

KwaZulu-Natal 
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The range of day temperature values is demonstrated in Figure 5.4 where the average day 

temperature per month ranges from its lowest at 26 ° C in July to almost 29 ° C in February. 

In Figure 5.5 the night temperature range of values is shown and it fluctuates between a low 

of 16 ° C in September to almost 18 ° C from November to April. 

Although the malaria cases were prevalent throughout each year, transmission was distinctly 

seasonal increasing between September and April and decreasing from May to August. 

Distinct peaks are also apparent from January to April each year. 

5.3. Exploratory Analysis 

The results of the preliminary exploratory analysis conducted in Stata 10.1 (Stata Corp., 

College Station, TX, USA) are presented in Table 5.2. This was done to assess the bivariate 

association between explanatory variables and incidence. If a variable  was found to be not 

significant, it would not have been used in the subsequent analysis. 

 

Table 5.2: Results of Negative Binomial Bivariate Analysis  

Parameter IR IRlow IRhigh LRtest AIC 

Rain_0 0.996 0.988 1.003 71.274 4572.447 

Rain_lag1 1 0.993 1.007 69.787 4573.933 

Rain_lag2 1.004 0.998 1.009 71.591 4572.129 

NDVI_0 2.021 0.856 4.77 72.33 4571.39 

NDVI_lag1 1.13 0.468 2.727 69.861 4573.859 

NDVI_lag2 0.5 0.204 1.222 72.137 4571.583 

LST Day_0 1.055 1.025 1.086 83.374 4560.347 

LST Day_lag1 1.078 1.05 1.107 100.842 4542.878 

LST Day_lag2 1.054 1.027 1.083 85.125 4558.596 

LST Night_0 0.995 0.96 1.03 70.295 4557.696 

LST Night_lag1 1.036 1.004 1.068 74.926 4550.264 

LST Night_lag2 0.99 0.959 1.023 69.896 4569.771 

Land use 0.723 0.609 0.858 83.385 4560.335 

Altitude 0.998 0.998 0.999 97.916 4545.804 

Distance to water 

bodies 

0.925 0.90 0.95 73.693 4525.674 

Lag 1 is one month before the case and Lag 2 is 2 months before the case; IR: Incidence 

Rate; LR: Likelihood Ratio; AIC: Akaike Information Criterion 

 

The non-spatial model (Table 5.2) identified land use type and altitude as the main 

determinants that increased malaria incidence in KwaZulu-Natal.  
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5.4. Distributed Lag Model 

The estimated values of the parameters of βi are presented in Table 5.3. In Table 5.3 the only 

significant environmental/climatic variables are altitude, forest land cover type and the day 

temperature of the previous month, which all have negative means. Moreover, they all have a 

negative 95% Bayesian credible interval (BCI), which means that they all have a negative 

effect on malaria incidence. 

 

Table 5.3: Posterior Estimates of the Coefficients in the Distributed Lags Model 

Parameter Mean Std. 

Dev. 

Median 95% BCI Interval 

Constant -6.912 0.6907 -7.048 [-7.914, -4.948] 
Sine 0.2279 0.1237 0.2287 [-0.01643, 0.4716] 
Cosine -0.04982 0.1306 -0.0536 [-0.2971, 0.2155] 
Altitude -0.2414 0.1165 -0.244 [-0.4629, -0.002645] 
Distance to Water bodies 0.08673 0.1069 0.0866 [-0.1229, 0.2979] 
Land use:     
   Dry non-forest vegetation - - - - 

     Forest -0.4034 0.1893 -0.4034 [-0.7731, -0.03214] 
    Wet non-forest vegetation -0.1734 0.1942 -0.1739 [-0.5537, 0.205] 
    Non-vegetation 1.193 0.898 1.197 [-0.5734, 2.924] 
Rain_0 0.02742 0.05324 0.02789 [-0.07658, 0.1329] 
Rain_lag1 -0.02816 0.05295 -0.02824 [-0.1318, 0.07464] 
Rain_lag2 0.02013 0.05344 0.02007 [-0.084, 0.1257] 
NDVI_0 0.05537 0.07417 0.05548 [-0.08875, 0.2035] 
NDVI_lag1 -0.1638 0.08723 -0.1621 [-0.3391, 0.002887] 
NDVI_lag2 -0.04854 0.07994 -0.04845 [-0.2052, 0.1097] 
LST Day_0 -0.04411 0.09519 -0.04596 [-0.2265, 0.1463] 
LST Day_lag1 -0.3168 0.1084 -0.3177 [-0.5291, -0.1032] 
LST Day_lag2 0.1348 0.09209 0.1327 [-0.04061, 0.3175] 
LST Night_0 0.08287 0.06919 0.08223 [-0.05378, 0.2178] 
LST Night_lag1 0.08486 0.07127 0.08425 [-0.05514, 0.2259] 
LST Night_lag2 0.01967 0.06503 0.01935 [-0.1081, 0.1474] 

 

Both the bivariate and multivariate models selected altitude and land use type as being the 

most significant variables, however, the bivariate model did not select temperature as being  

one of the main determinants of malaria transmission in KwaZulu-Natal. The multivariate 

model was able to distinguish precisely which land use type was contributing the most to 

transmission in the study area. 
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5.4.1. Altitude 

Altitude influences the distribution and transmission of malaria indirectly through its effect 

on temperature and in the study area malaria incidence followed the pattern of altitude: the 

incidence rate decreasing with increasing altitude. As altitude increases, temperature 

decreases so the high altitude areas are colder and the low altitude areas are much warmer. 

The primary effect of increasing altitude is a reduction in vector abundance (Drakeley et al., 

2005). Kulkarni et al. (2006) stated that vector densities declined rapidly with increasing 

altitude in Tanzania as well as a 50% decrease in the annual human biting rate for every 86-

meter rise in altitude.  

 

According to the WHO (2012) the major eco-epidemiological stratum of malaria in Ethiopia 

is classified according to the altitude. The malaria free highland areas have altitudes above 

2500 meters, whereas the areas that are affected by frequent epidemics being the highland 

fringe areas with altitude levels between 1500- 2500 meters and the lowland areas below 

1500 meters characterized with a seasonal pattern of transmission (WHO, 2012). 

 

The diverse and complex topography of KwaZulu-Natal results in the considerable range in 

temperature as well, with the coastal areas being subtropical and the inland climate becoming 

progressively colder as you move inland. The elevation map (Figure 3.2) in Chapter 3 clearly 

illustrates how the altitude increases as you move from the coastal areas to the more inland 

areas. The Drakensberg mountains on the western side of the province have a moderate 

temperature all year round that is typically cold as they peak over 3000 meters. There have 

even been incidents of snow falling during the summer months. The warmer temperatures are 

experienced on the coast along the Indian Ocean. 

 

5.4.2. Temperature 

Transmission intensity changes with climate, in particular temperature, since it affects the 

development of the vector and of the parasite within the vector. The day temperature of the 

previous month also had a negative effect on incidence and a possible explanation for this 

was that at higher temperatures the mosquito’s development is interrupted. Temperature 

affects the life cycle of the malaria parasite and the time required for the parasite to complete 

its development in the gut of the mosquito is about 10 days but it can be shorter or longer 

dependent on the temperature. Between 21° C to 27° C the time needed for development 

decreases to less than 10 days. However below 18° C, the life cycle of P. falciparum is 
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limited. Therefore, if the day temperatures of the previous month were not conducive for the 

development of the vector or for transmission to occur, the incidence rates of the following 

month would subsequently decrease. 

 

Another possible explanation is that mosquito activity is generally higher at night where 

minimum temperatures prevail. During the day mosquitoes hide themselves in houses or 

vegetation. Also, when the night temperature is high in the summer months, people are less 

likely to protect themselves against being bitten and thus give mosquitoes an opportune 

moment to strike. The range of night temperatures in this study area range from 8° C to 30° C 

and the optimum temperature for the parasite to complete its development in 27° C which 

means they can operate indoors at night when they prefer and not necessarily transmit malaria 

during the day.  

 

5.4.3. Land Cover 

Forest land cover type had a negative effect on incidence according to the prediction model in 

KwaZulu-Natal. This is consistent with that mosquitoes generally prefer habitats that are 

exposed to direct sunlight as Minakawa (1999, 2000) found in Kenya, where the survival of 

Anopheles gambiae larvae was drastically reduced in forest habitats. This is also evident in 

other studies (Munga 2006, 2009 and Stefani et al. 2013) that have suggested that 

deforestation is associated with an increase in malaria risk. Krefis et al. (2011) also found that 

an increase of 10% in forested areas was associated with a 47% decrease of malaria incidence 

in Ghana. Adult vector abundance is positively associated with the availability of aquatic 

habitats that provide conditions that are ideal for the deposition of eggs. Areas with the 

highest malaria risk are typically found within just a few hundred meters of such larval 

habitats (Krefis et al., 2011).   

 

Land use changes such deforestation are able to modify the temperature and relative humidity 

patterns in the area. Afrane et al. (2006) conducted a study in western Kenya to assess the 

possible effect of deforestation on the microclimate. They found that deforestation increased 

the mean and maximum temperatures in the area and that mosquitoes in deforested areas laid 

more eggs and thus had better fecundity (the number of offspring a female mosquito can 

produce) than mosquitoes in forested areas. Generally, deforestation substantially facilitated 

malaria transmission due to an increase in vectorial capacity (Afrane et al., 2006).  
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Munga et al. (2007) investigated the effect land cover types have on mosquito productivity by 

creating semi-natural larval habitats within three land cover types (natural swamp, forest and 

farmland) and infesting them with Anopheles gambiae larvae. The pupation rate in forest and 

swamp habitats was significantly lower than in farmland habitats. Larval survivorship is 

affected by land cover changes as result of its influence on water temperature and nutrients in 

the aquatic habitats (Munga et al., 2007).  

5.5. Model-based Prediction Map 

The model-based prediction maps were produced for the year 2010 as this was the most 

recent full year for which there were malaria case data available. The predicted malaria 

incidence rates ranged from 0.2 to 5 cases per 1000 inhabitants (Figures 5.6- 5.11). The 

district with the highest predicted risk of malaria is the Umkhanyakude district, specifically 

the Umhlabuyalingana, Jozini and The Big 5 False Bay municipalities in north-eastern 

KwaZulu-Natal. The malaria risk maps (Figures 5.6- 5.11) showed the incidence rates to be 

highest from January to April and lower during the June to August months. 

 

What was unique about these prediction risk maps is that they were produced at the sub-place 

level at a 1 kilometer resolution. Incidence maps have previously been produced mainly at 

the district level or municipal level. Malaria transmission is a very dynamic process that can 

affect close neighbouring communities differently as a result of slight changes in either 

climate and environmental factors or maybe socio-economic status. It is thus important for 

surveillance to occur at the community level to avoid a blanket approach of one-strategy-fits-

all to the communities when their incidence levels are not necessarily the same. 

 

5.5.1. The Impact of Climatic Factors 

All the factors included in the prediction model were environmental/climatic and influence 

malaria transmission in diverse ways: either by affecting the host, the parasite or the vector. If 

incidence rates are high, exclusively as a result of weather, theoretically, this can occur for 

several reasons. A greater starting population can occur if there were unexpectedly warm and 

moist conditions. Those conditions would allow for the survival of mosquitos and breeding 

that would not typically occur. A greater number of breeding pools would also be made 

available if there was a lot of rain. Generally, if there are ideal climatic conditions for 

mosquitos to breed and survive and feed there will be a larger parasite and vector population. 
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The longer the favourable season persists, the greater the number of people that are infected 

at the beginning of the transmission season. The more weather conditions change to create 

favourable conditions, the more vector populations will grow and transmission increase at 

faster rates.  

 

However, in KwaZulu-Natal, it has been shown that the impact of climatic factors can be 

diminished with the application of residual insecticides. Although the areas that are most 

prone to malaria are providing favourable climatic conditions for malaria transmission to 

occur, the continued use of IRS, among other control initiatives, is proving to be decreasing 

the number of cases drastically. Essentially, the predicted risk maps illustrate incidence rates 

that would prevail in KwaZulu-Natal in 2010 if malaria control strategies or socio-economic 

status were not taken into account. Accurate information is crucial in understanding the 

distribution of malaria for planning tools and evaluating malaria control. By producing 

prediction maps it is also possible to understand distribution patterns and transmission 

intensity in places which it has not been measured. 

 

5.5.2. The Impact of Non-climatic Factors 

Although climatic/environmental factors are a major limiting attribute in the spatial and 

temporal distribution of malaria, non-climatic factors can change or outweigh the effect of 

climate (Craig et al., 2004). It has been suggested that malaria is a disease of poverty that is 

concentrated in the world’s poorest countries (Worrall et al., 2006). The Umkhanyakude 

district was identified as one of the two most deprived districts in South Africa according to 

District Health Barometer. The deprivation index is a measure of relative deprivation that 

takes into account a number of socio-economic factors such as access to piped water and 

electricity, low education levels and unemployment rates (Day et al., 2012). The 

Umkhanyakude district is also a very rural district and malaria is generally lower in urban 

areas than in rural areas. A few reasons for this could be that in rural villages there are plenty 

of opportunities for vector breeding as there is less space covered by houses compared to 

urban areas. People living in urban areas may also have better access to health care and 

malaria prevention strategies than people in rural villages.  

 

South Africa has greatly reduced its malaria burden over the past twelve years, with 

KwaZulu-Natal having the largest reduction in malaria cases compared to the other two 

endemic provinces. The general consensus among authors (DOH, 2010; Moonasar et al., 
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2012) is that this is mostly attributable to vector control strategies likes IRS where KwaZulu-

Natal has attained coverage of greater than 85%. Case management in this province has also 

been remarkable with approximately 100% diagnosis using RDT, microscopy and treatment 

of malaria cases. There has also been a strong active case detection program that worked by 

malaria surveillance agents tracking down each individual malaria case and subsequently 

surveying neighbouring households for parasites in those areas (Moonasar et al., 2012). The 

impact of non-climatic factors was most notably evident in the malaria epidemic of the 

1999/2000 malaria season following a change of insecticide from DDT to pyrethroids. This 

action resulted in drug resistance which skyrocketed malaria cases considerably. This proves 

that vector control is an important mitigating factor of malaria transmission in South Africa.  

 

It is also important to note that malaria in KwaZulu-Natal is primarily a border problem that 

is attributable to immigrating malaria carriers that cross between the South African and 

Mozambican borders daily for various reasons. Most of these immigrants are non-

symptomatic, they do not go to clinics and thus remain untreated for longer periods of time 

thereby consequently contributing significantly to local transmission (Sharp and Le Sueur, 

1996; Kleinschmidt and Sharp, 2001; Craig et al., 2004). This issue is more evident now in 

KwaZulu-Natal where malaria programme officials in the Jozini have admitted that they 

believe that the locals are malaria-free and the cases being reported at this stage are imported 

cases. Migrants can often bring the parasites back to malaria-free areas and local transmission 

can be readily established since many of these communities can support vector breeding. This 

is an issue as in malaria-free areas, the population is generally non-immune. 

 

Another non-climatic factor that cannot be ignored is the HIV/AIDS contribution to the effect 

it has on the human host to contract malaria. Whitworth et al. (2000) found that adults who 

were infected with HIV were also at a higher risk of clinical malaria as higher parasite 

densities were found in the HIV-positive adults. According to the Day et al. (2012) the 

leading cause of death in the Umkhanyakude district is HIV/AIDS, and there is an increase in 

the HIV viral load as a result of malaria infection (Craig et al., 2004).  
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Figure 5.6: Predicted malaria 

risk maps  

01/2010 – 02/2010 
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Figure 5.7: Predicted malaria 

risk maps  

03/2010 – 04/2010 
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Figure 5.8: Predicted malaria 

risk maps  

05/2010 – 06/2010 
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Figure 5.9: Predicted malaria 

risk maps  

07/2010 – 08/2010 
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Figure 5.10: Predicted malaria 

risk maps  

09/2010 – 10/2010 
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Figure 5.11: Predicted malaria 

risk maps  

11/2010 – 12/2010 
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5.6. Accuracy Assessment 

An accuracy assessment was conducted to assess the accuracy of the observed incidence rates 

and the predicted incidence rates produced using R. The accuracy assessment was conducted 

for the four months that coincide with the malaria season in South Africa: March, June, 

September and December, as a scatterplot as illustrated in Figure 5.12. Bearing in mind that 

the predicted risk maps were based on only environmental/climatic variables excluding any 

other interventions like IRS, it is relevant to therefore note that the observed incidence rates 

would not necessarily be the same as the predicted incidence rates as the cases had 

dramatically decreased by 2010.  

 

 

 

Figure 5.5: Scatterplot showing March and June Incidence Rates 

 

The R-squared value was the lowest for the June Incidence Rates (0.3688) and the highest 

was for the December Incidence Rates (0.8119) in Figure 5.12. These results illustrate that 

based on this accuracy assessment of the maps, the most accurate predicted incidence rates, if 

compared with the observed incidence rates, are for December.  
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5.7. Conclusion 

This chapter outlined the findings of this research and the results conformed to the 

expectations based on recent literature. It was evident that climate driven models can give 

malaria control programmes an opportunity to prepare in advance for epidemics as malaria 

transmission is largely limited by climate. Robust statistical models can be developed to serve 

as early warning systems provided that good malaria and climatic data are acquired. 

However, a stronger correlation between malaria variability and climate variability can be 

established if the affected areas have not been greatly altered by malaria control. Although 

the research found that some environmental/climatic variables contributed to malaria 

transmission, the current low number of cases in KwaZulu-Natal suggests that malaria 

control interventions have also contributed to the pattern of malaria incidence. This 

underlines the importance of long-term surveillance of climate and coverage and 

effectiveness of control interventions. The main ideas described in this chapter are explored 

in Chapter 6 and conclusions drawn from the research.  
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Chapter Six: Conclusions and Recommendations 

 

6.1. Introduction 

This study aimed to analyse the geographical distribution of malaria transmission in 

KwaZulu-Natal using Bayesian spatio-temporal modelling. To achieve this, the specific 

objectives were to: 

 Estimate and map malaria seasonality in KwaZulu-Natal based on environmental and 

clinical case data 

 Develop rigorous statistical models for identifying which climatic variables are 

associated with malaria transmission 

 Produce incidence maps based on the climatic variables significantly correlated with 

malaria transmission 

 Assess spatio-temporal patterns of malaria transmission in KwaZulu-Natal and 

produce transmission maps adjusted for seasonality and climate factors. 

The key findings are presented and discussed in the previous chapter (chapter five). In this 

chapter the conclusions and recommendations are drawn with regards to Bayesian spatio-

temporal modelling of malaria incidence focusing on primarily the study area in KwaZulu-

Natal. 

 

6.2. Summary of Key Findings 

There is a dynamic interaction between the disease agent of malaria (Plasmodium spp), its 

mosquito vector (Anopheles spp) and the human host. This interaction is affected by a range 

of genetic, behavioural, climatic and anthropogenic factors. The determinants of malaria 

transmission vary in time and space and with a different frequency and magnitude.  

 

Spatial epidemiology has paved a way for vector-borne disease mapping and forecasting. The 

availability of satellite imagery coupled with malaria case data and population data has 

created an opportunity for robust statistical models to investigate the spatio-temporal trends 

of malaria incidence. Furthermore, predictive risk modelling is a method that can be 

incorporated in surveillance systems to monitor the disease and also to allow malaria control 

programmes to allocate resources adequately to the areas of highest risk.  
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The distributed lag model revealed that altitude [95% BCI: -0.4629, -0.002645], forest land 

cover type [95% BCI: -0.7731, -0.03214] and the day temperature of the previous month 

[95% BCI: -0.5291, -0.1032] were significant indicators of malaria transmission in the study 

area. They all had a negative effect on incidence levels and the possible explanations of this 

are all linked to how temperature affects the behaviour and ecology of the vector and parasite 

and their interaction with the human host. A prediction model produced monthly maps of 

incidence rates for KwaZulu-Natal for the year 2010. According to the predicted risk maps 

incidence ranged from 0.2 to 5 per 1000 inhabitants. The predicted risk maps identified the 

Jozini, Umhlabuyalingana and The Big False Bay as the regions of highest risk. The climate 

of this region is highly favourable to vector and parasite development which provides ideal 

breeding for malaria transmission to be high. The effect of non-climatic factors was not 

included in the modelling, however, it was recognized that the inclusion of these factors 

could have provided a clearer picture of malaria risk in the study area.  

 

This study successfully illustrated how the Bayesian approach to disease modelling can be 

used in the development of early warning systems for malaria. More importantly, this kind of 

information would be valuable to malaria control programmes in their bid to reach zero 

incidence in South Africa by 2018. Furthermore, these systems would be able to detect which 

populations are at greatest risk so resources could reach them timeously before the 

transmission season begins. 

 

6.3. Limitations of this Study 

The main limitation of the research was that the modelling did not include data on non-

climatic factors, specifically the locations that have been sprayed with insecticides. IRS is a 

major driving force of malaria incidence in South Africa and including this information in the 

modelling of malaria transmission would have provided a more accurate geographic 

distribution of the current incidence rates in KwaZulu-Natal. In addition, running the 

prediction model in R was extremely time-consuming so access to statistical software like 

Fortran that are much quicker and computers that have a better capacity to handle 

computations of large sets of data would have been advantageous. Furthermore, each data 

source had some weakness, whether it be in terms of availability (accessibility and 

timeliness), temporal and spatial extent, completeness and accuracy. Lastly, interpolation of 

the climatic data would have been beneficial as the locations that had missing climatic data 
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were simply eliminated from the study and further decreasing the sample size of the study 

area. 

 

6.4. Recommendations for Future Studies 

This study has illustrated how Bayesian spatio-temporal modelling can be used to identify the 

drivers of malaria transmission at the community level using climatic/environmental data. 

However, the statistical model developed could also incorporate the effects of non-climatic 

variables to ensure the highest accuracy in predicting malaria incidence. Further studies could 

thus differentiate between local and imported cases and in the case of KwaZulu-Natal 

calculate the distance to the border Mozambique as a proxy for the effect of an area being 

situated in close proximity to another area where control strategies are not as strong. The data 

of the location of houses that have been sprayed with insecticides should also be obtained as 

this will be an important parameter to include in the modelling to determine the effectiveness 

of IRS on malaria transmission. The socio-economic status of the population at risk should 

also be taken into consideration as factors like dwelling structure, education levels, income 

levels and access to proper sanitation can affect the ease of transmission as malaria is 

considered to be concentrated in places of poverty on a global level. KwaZulu-Natal has the 

highest HIV prevalence in South Africa so the association between HIV can be explored in 

further studies.  

 

6.5. Conclusion 

The predicted malaria risk maps demonstrate how climatic/environmental factors can be 

utilised in disease forecasting of malaria. The prediction model was able to accurately locate 

the malaria hotspot in KwaZulu-Natal where incidence rates are highest in the province. It 

also illustrated the seasonal variation in transmission with the incidence rates being lower 

during the dry and cold winter months. This information would be crucial to malaria control 

programmes as they would know exactly where efforts should be targeted and with accurate 

surveillance epidemics could be prevented in future if the climatic/environmental data is 

readily available. In addition to monitoring environmental changes, it is important to monitor 

non-climatic factors in determining malaria transmission, especially in areas such as 

KwaZulu-Natal where the number of imported cases exceeds and contributes to transmission 

more than local cases.  
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The prediction model successfully demonstrated the value of developing robust statistical 

models that can predict future risk. This will ultimately be instrumental as South Africa 

moves towards reaching its 2018 goal of reducing malaria incidence to near zero. According 

to the WHO malaria elimination continuum South Africa is now in the pre-elimination phase 

category and surveillance systems will be important in ensuring that the current success 

against malaria is maintained and elevated to having a malaria-free status.  

 

Global climate change is also another important contemporary issue to consider where such 

climatic/environmental prediction models can be utilised to detect future spatio-temporal 

patterns of vector borne diseases to prevent epidemics. The Intergovernmental Panel on 

Climate Change stated that vector-borne diseases have been linked to climate change as 

warming of the climate is expected to increase latitudinal and altitudinal temperature (IPCC, 

2001). The spatial and temporal changes in rainfall, humidity and temperature that are 

expected to happen as a result of global warming will affect the biology and ecology of 

vectors differently and will consequently also alter the risk of the disease transmission. 

 

If the risk is identifiable in time, prevention is easier than trying to treat the impacts of the 

disease. The Bayesian analytical framework used in this research improved the ability to 

evaluate the relationship between malaria and climatic factors, and improved the 

identification of significant associations and covariates. The work presented showed the 

potential and strength of developing statistical models for predicting incidence. The incidence 

maps produced provide control programmes the geographical position for control efforts to 

be applied. There is still, nonetheless, opportunity for further refining of models as more 

relevant data become available. 

 



75 

 

References 

 

ABEKU TA, DE VLAS SJ, BORSBOOM G, TEKLEHAIMANOT A, KEBEDE A, OLANA 

D, VAN OORTMARSSEN GJ & HABBEMA DJ (2002) Forecasting malaria incidence from 

historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal 

adjustment method performs best. Tropical Medicine International Health 7, 851-857. 

 

ABEKU TA, DE VLAS SJ, BORSBOOM GJ, TADEGE A, GEBREYESUS Y, 

GEBREYOHANNES H, ALAMIREW D, SEIFU A, NAGELKERKE NJ & HABBEMA JD 

(2004) Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical 

modelling approach based on theoretical reasoning. Parasitology 128, 585-593. 

 

ABEKU TA (2006) Malaria Epidemics in Africa: Prediction, Detection and Response. PhD 

thesis, Erasmus University, Rotterdam. 

ABELLANA R, ASCASO C., APONTE J, SAUTE F, NHALUNGO D, NHACOLO A & 

ALONSO P (2008) Spatio-seasonal modeling of the incidence rate of malaria in 

Mozambique. Malaria Journal 7, 228. 

 

AFRANE YA, ZHOU G, LAWSON BW, GITHEKO AK, YAN G (2006) Effects of 

microclimatic changes caused by deforestation on the survivorship and reproductive fitness 

of Anopheles gambiae in western Kenya highlands. American Journal of Tropical Medical 

Hygiene, 74, 772-778 

 

AFRIPOP PROJECT: http://www.afripop.org  

ÁGUAS R, WHITE LJ, SNOW RW, GOMES MGM (2008) Prospects for Malaria 

Eradication  in Sub-Saharan Africa. PLOS ONE, 3. 

ALONSO PL, BROWN G, AREVALO-HERRERA M, BINKA F, CHITNIS C, COLLINS 

F, DOUMBO OK, GREENWOOD B, HALL BF, LEVINE MM, MENDIS K, NEWMAN R. 

D, PLOWE CV, RODRIGUEZ M.H, SINDEN R., SLUTSKER L & TANNER M. (2011) A 

research agenda to underpin malaria eradication. PLoS Medicine, 8, e1000406. 

http://www.afripop.org/


76 

 

ASIDI A, N'GUESSAN R, AKOGBETO M, CURTIS C & ROWLAND M (2012) Loss of 

household protection from use of insecticide-treated nets against pyrethroid-resistant 

mosquitoes, benin. Emerging Infectious Diseases, 18, 1101-6. 

BATEMAN C (2008) Malaria; now Mpumalanga and Limpopo suffer. 98. 

BHUNIA GS, KUMAR V, KUMAR AJ, DAS P, KESARI S (2010) The use of remote 

sensing in the identification of the eco-environmental factors associated with the risk of 

human visceral leishmaniasis (kala-azar) on the Gangetic plain, in north-eastern India. Ann 

Trop Med Parasitol 104: 35-53. 

BOUMA MJ & VAN DER KAAY HJ (1994) Epidemic malaria in India and the El Niño 

southern oscillation. Lancet 344, 1638-1639 

 

BOUMA MJ & VAN DER KAAY HJ (1996) The El Niño Southern Oscillation and the 

historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system 

for future epidemics? Tropical Medicine and International Health 1, 86-96. 

 

BOUMA MJ & DYE C (1997) Cycles of malaria associated with El Niño in Venezuela. The 

Journal of the American Medical Association 278, 1772-1774. 

 

BOUMA MJ, POVEDA G, ROJAS W, CHAVASSE D, QUIÑONES M, COX J & PATZ J 

(1997) Predicting high-risk years for malaria in Colombia using parameters of El Niño 

Southern Oscillation. Tropical Medicine and International  Health  2, 1122-1127. 

BOULOS  MNK, ROUDSARI AV ,CARSON ER (2001) Health geomatics: An enabling 

suite of technologies in health and healthcare. J Bio Informatics 2001; 34 : 195-219. 

BRAY RS, GARNHAM PCC (1982) Life cycle of primate malaria parasites. Br Med Bull 

38:117–122 

BRIGGS DJ (2000) Exposure assessment.  In: Spatial epidemiology: Methods and 

applications. Elliott P, Wakefield JC, Best NG, Briggs DJ (eds.) Oxford University Press, 

Oxford. 



77 

 

CAMARGO LM, DAL COLLETTO GM, FERREIRA MU, GURGEL SDE M, ESCOBAR 

AL, MARQUES A, KRIEGER H, CAMARGO EP & DA SILVA LH (1996) Hypoendemic 

malaria in Rondonia (Brazil, western Amazon  region): seasonal variation and risk groups in 

an urban locality. American Journal of Tropical Medicine and Hygiene, 55, 32-8. 

CAMP KGT (1999) The Bioresource Groups of KwaZulu-Natal. KwaZulu-Natal Veld, 4.1. 

CENTERS FOR DISEASE CONTROL & PREVENTION (2009) Anopheles Mosquitoes. 

http://www.cdc.gov/malaria/about/biology/mosquitoes/ accessed: February 2013. 

CEUSTERS W & SMITH B (2009) Malaria Diagnosis and the Plasmodium Life Cycle: the 

BFO Perspective. Nature Precedings. 

CHANDA E, HEMINGWAY J, KLEINSCHMIDT I, REHMAN AM, RAMDEEN V, PHIRI 

FN, COETZER S, MTHEMBU D, SHINONDO, CHIZEMA-KAWESHA, KAMULIWO M, 

MUKONKA V, BABOO KS, COLEMAN M (2011) Insecticide Resistance and the Future of 

Malaria Control in Zambia. PLOS ONE, 6. 

 

CHERNIN E (1983) Sir Patrick Manson's studies on the transmission and biology of 

filariasis. Reviews of Infectious Diseases, 5(1):148–166 

CLIMATE PREDICTION CENTRE (2012) El Nino- Southern Oscillation. 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml accessed: November 

2012. 

COHEN JM, DLAMINI S, NOVOTNY JM, KANDULA D, KUNENE S & TATEM AJ 

(2013) Rapid case-based mapping of seasonal malaria transmission risk for strategic 

elimination planning in Swaziland. Malaria Journal, 12, 61. 

COLEMAN M, COLEMAN M, MABUZA AM, KOK G, COETZEE M & DURRHEIM DN 

(2008) Evaluation of an operational malaria outbreak identification and response system in 

Mpumalanga Province, South Africa. Malaria Journal, 7, 69. 

COLEMAN M, COLEMAN M, MABUZA AM, KOK G, COETZEE M & DURRHEIM DN 

(2009) Using the SaTScan method to detect local malaria clusters for guiding malaria control 

programmes. Malaria Journal, 8, 68. 

http://www.cdc.gov/malaria/about/biology/mosquitoes/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml


78 

 

COLEMAN M, COLEMAN M, MABASO ML, MABUZA AM, KOK G, COETZEE M & 

DURRHEIM DN (2010) Household and microeconomic factors associated with malaria in 

Mpumalanga, South Africa. Transactions of the Royal Society of Tropical Medicine and 

Hygiene, 104, 1437. 

COX FE (2010) History of the discovery of the malaria parasites and their vectors. Parasites 

& Vectors, 3, 5. 

CRAIG HM, SNOW RW & LE SUEUR D (1999) A climate based distribution model of 

malaria transmission in sub-Saharan Africa. Parasitology Today 15, 105-111. 

CRAIG MH (2009) The temporal and spatial distribution of malaria in Africa, with emphasis 

on southern Africa. PhD thesis, University of Basel, Switzerland. 

CRAIG MH, KLEINSCHMIDT I, LE SUEUR D & SHARP BL (2004) Exploring 30 years 

of malaria case data in KwaZulu-Natal, South Africa: part I. The impact of climatic factors. 

Tropical Medicine and International Health 9, 1247-1257. 

CRAIG MH, KLEINSCHMIDT I, NAWN JB, LE SUEUR D & SHARP BL (2004) 

Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: part II. The impact 

of non- climatic factors. Tropical Medicine and International Health 9, 1258-1266. 

CRAIG MH, SHARP, BL, MABASO ML & KLEINSCHMIDT I (2007) Developing a 

spatial-statistical model and map of historical malaria prevalence in Botswana using a staged 

variable selection procedure. International Journal of Health Geographics, 6, 44. 

CRESSIE N (2000) Geostatistical methods for mapping.  In: Spatial epidemiology: Methods 

and applications. Elliott P, Wakefield JC, Best NG, Briggs DJ (eds.) Oxford University 

Press, Oxford. 

CURTIS CF, MNZAVA AEP (2000) Comparison of house spraying and insecticide-treated 

nets for malaria control. Bulletin of the World Health Organization, 78: 1389–1400. 

CURTIS CF, JANA-KARA B, MAXWELL CA (2003) Insecticide treated nets: impact on 

vector populations and relevance of initial intensity of transmission and pyrethroid resistance. 

Journal of Vector Borne Diseases 40 (1-2): 1-8. 



79 

 

DASILVA J, GARANGANGA B, TEVEREDZI V, MARX SM, MASON SJ & CONNOR 

SJ (2004) Improving epidemic malaria planning, preparedness and response in Southern 

Africa. Report on the 1st Southern African Regional Epidemic Outlook Forum, Harare, 

Zimbabwe, Malaria Journal, 3, 37. 

DAVIS B, LADNER J, SAMS K, TEKINTURHAN E, DE KORTE D, SABA J (2013) 

Artemisinin-based combination therapy availability and use in the private sector of five 

AMFm phase 1 countries. Malaria Journal, 12,  135. 

DAY C, BARRON P, MASSYN N, PADRATH A, ENGLISH R, editors (2012) District 

Health Barometer 2010/11. Durban: Health Systems Trust. 

DELGADO-PETROCELLI L, CORDOVA K, CAMARDIEL A, AGUILAR VH, 

HERNANDEZ D, RAMOS S (2012) Analysis of the El Nino/ La Nina-Southern Oscillation 

variability and malaria in the Estado Sucre, Venezuela. Geospatial Health 6 (3), 51-57. 

DELLAPORTAS P, FORSTER J, NTZOUFRAS I (2002) On Bayesian model and variable 

selection using MCMC. Stat Comput 12: 27–36. 

DELVES MJ, RUECKER A, STRASCHIL U, LELIEVRE J, MARQUES S, LOPEZ-

BARRAGAN MJ, HERREROS E & SINDEN RE (2013) Male and female P. falciparum 

mature gametocytes show different responses to antimalarial drugs. Antimicrobial Agents and 

Chemotherapy. 

DEPARTMENT OF HEALTH (2008) 2007 Annual Report: Prevalence and Distribution of 

Malaria in South Africa. Pretoria: National Department of Health. 

DEPARTMENT OF HEALTH (2010) 2009 Annual Report: Prevalence and Distribution of 

Malaria in South Africa. Pretoria: National Department of Health. 

DIGGLE PJ, TAWN JA & MOYEED R (1998) Model-based  geostatistics. Journal of the 

Royal Statistical Society C 47: 299-350. 

DIGGLE PJ (2000) Overview of statistical methods for disease mapping and  its relationship 

to cluster detection.  In: Spatial epidemiology: Methods and applications. Elliott P, 

Wakefield JC, Best NG, Briggs DJ (eds.) Oxford University Press, Oxford. 



80 

 

DIGGLE PJ, MOYEED RA, ROWLINSON B & THOMSON M (2002) Childhood malaria 

in the Gambia: A case-study in model-based geostatistics. Journal of the Royal Statistical 

Society 51, 493-506. 

 

DONGUS S, NYIKA D, KANNADY K, MTASIWA D, MSHINDA H, FILLINGER U, 

DRESCHER AW, TANNER M, CASTRO MC, KILLEEN GF: Participatory mapping of 

target areas to enable operational larval source management to suppress malaria vector 

mosquitoes in Dar es Salaam, Tanzania. International Journal of Health Geographics 2007, 

6:37 

DRAKELEY CJ, CARNEIRO I, REYBURN H, MALIMA R, LUSINGU JPA, COX J, 

THEANDER TG, NKYA WMMM, LEMNGE MM & RILEY EM (2005) Altitude-

Dependent and -Independent Variations in Plasmodium falciparum Prevalence in 

Northeastern Tanzania. Journal of Infectious Diseases, 191(10):1589-98 

EDI CVA, KOUDOU BG, JONES CM, WEETMAN D, RANSON H (2012) Multiple-

insecticide resistance in Anopheles gambiae mosquitoes, southern Côte d’Ivoire. Emerging 

Infectious Diseases. 18 (9) DOI: 10.3201/eid1809.120262  

ELLIOTT P, WAKEFIELD JC, BEST NG, & BRIGGS DJ (2000) Spatial epidemiology: 

methods and applications.  In: Spatial epidemiology: Methods and applications. Elliott P, 

Wakefield JC, Best NG, Briggs DJ (eds.) Oxford University Press, Oxford. 

ELLIOTT P AND WAKEFIELD JC (2000) Bias and confounding in spatial epidemiology.  

In: Spatial epidemiology: Methods and applications. Elliott P, Wakefield JC, Best NG, 

Briggs DJ (eds.) Oxford University Press, Oxford 

ELLIOTT P & WARTENBERG D (2004) Spatial Epidemiology: Current Approaches and 

Future Challenges. Environmental Health Perspectives, 112, 998-1006. 

ESPOSITO F & HABLUETZEL A (1997) The Anopheles Vector. In: The Handbook of 

Malaria Infection in the Tropics. AIFO, Italy. 

FLORENS L, WASHBURN MP, RAINE JD, ANTHONY RM, GRAINGER M, HAYNES J 

D, MOCH JK, MUSTER N, SACCI JB, TABB DL, WITNEY AA, WOLTERS D, WU Y, 



81 

 

GARDNER MJ, HOLDER AA, SINDEN RE, YATES JR & CARUCCI DJ (2002) A 

proteomic view of the Plasmodium falciparum  life cycle. Nature, 419, 520-6. 

FOSSOG TENE B, POUPARDIN R, COSTANTINI C, AWONO-AMBENE P, WONDJI 

CS, RANSON H & ANTONIO-NKONDJIO C (2013) Resistance to DDT in an Urban 

Setting: Common Mechanisms Implicated in Both M and S Forms of Anopheles gambiae in 

the City of Yaounde Cameroon. PLoS One, 8, e61408. 

FRERICHS R (2001) History, maps and the internet: UCLA’S John Snow site. SoC Bulletin, 

34 (2) 

FUJIOKA H, AIKAWA M (2002) Structure and life cycle. Chemical Immunology. Basel, 

Karger. Vol. 80, pp.1-26 

 

GELFAND AE & SMITH AMF (1990) Sampling-based approach to calculating marginal 

densities. Journal of America Statistical Association 85, 398-409 

GEISSBUHLER Y, KANNADY K, CHAKI PP, EMIDI B, GOVELLA N J, MAYAGAYA 

V, KIAMA M, MTASIWA D, MSHINDA H, LINDSAY SW, TANNER M, FILLINGER U, 

DE CASTRO MC & KILLEEN GF (2009) Microbial larvicide application by a large-scale, 

community-based program reduces malaria infection prevalence in urban Dar es Salaam, 

Tanzania. PLoS One, 4, e5107. 

GELFAND AE & VOUNATSOU P (2003) Proper multivariate conditional autoregressive 

models for spatial data analysis. Biostatistics 4, 11-25. 

 

GEMPERLI A (2003) Development of spatial methods for modeling point-referenced 

spatial data in malaria epidemiology. PhD thesis, University of Basel, Switzerland. 

GEMPERLI A, VOUNATSOU P, KLEINSCHMIDT I, BAGAYOKO M, LENGELER C & 

SMITH T (2004) Spatial Patterns of Infant Mortality in Mali: The Effect of Malaria 

Endemicity. American Journal of Epidemiology 159, 64-72. 

GERICKE A, GOVERE JM, DURRHEIM DN (2002) Insecticide Susceptibility in the South 

African Malaria Mosquito Anopheles arabiensis (Diptera: Culicidae) South African Journal 

of Science 98, 205-208 



82 

 

GERRITSEN AA, KRUGER P, VAN DER LOEFF MF & GROBUSCH MP (2008) Malaria 

incidence in Limpopo Province, South Africa, 1998-2007. Malaria Journal, 7, 162. 

GIARDINA F, GOSONIU L, KONATE L, PERRY R, GAYE O, VOUNATSOU P, (2012) 

Estimating the Burden of Malaria in Senegal: Bayesian Zero-Inflated Binomial Geostatistical 

Modeling of the MIS 2008 Data. PLOS ONE, 7. 

 

GOSONIU L (2008) Development of Bayesian geostatistical models with applications in 

malaria epidemiology. PhD thesis, University of Basel, Switzerland. 

GOSONIU L, VETA AM & VOUNATSOU P (2010) Bayesian  geostatistical modeling of 

Malaria Indicator Survey data in Angola. PLoS One, 5, e9322 

GOSONIU L, MSENGWA A, LENGELER C, VOUNATSOU P (2012) Spatially Explicit 

Burden Estimates of Malaria in Tanzania: Bayesian Geostatistical Modeling of the Malaria 

Indicator Survey Data. PLOS ONE, 7. 

GRIFFIN JT, HOLLINGSWORTH TD, OKELL LC, CHURCHER TS, WHITE M, ET AL. 

(2010) Reducing Plasmodium falciparum malaria transmission in Africa: a model-based 

evaluation of intervention strategies. PLoS Medicine 7 (8) e1000324 

doi:10.1371/journal.pmed.1000324. 

GRIFFITH KS, LEWIS LS, MALI S & PARISE ME (2007) Treatment of Malaria in the 

United States. A Systematic Review. JAMA, 297, 2264-2277. 

HAGAN P AND CHAUHAN V (1997) Ronald Ross and the Problem of Malaria. 

Parasitology Today, 13, 290-295. 

HALL BF & FAUCI AS (2009) Malaria control, elimination, and eradication: the role of the 

evolving biomedical research agenda. Journal of infectious Diseases, 200, 1639-43. 

HARGREAVES K, KOEKEMOER LL, BROOK BD, HUNT RH, MTHEMBU J & 

COETZEE M (2000)  Anopheles funestus resistance to pyrethroid insecticides in South 

Africa. Medical and Veterinary Entomology 14, 181-189 

 

http://dx.doi.org/10.1371/journal.pmed.1000324


83 

 

HAY JL & PETTITT AN (2001) Bayesian analysis of a time series of counts with covariates: 

an application to the control of an infectious disease. Biostatistics 2, 4, 433- 444. 

 

HAY SI,. ROGERS DJ, SHANKS GD, MYERS MF, & SNOW RW  (2000) Malaria early 

warning in Kenya. Trends in Parasitology,17, 95-99. 

HIJMANS RJ, CAMERON S,  DAVIS CA, PARRA JL, JONES PG, JARVIS A (2005) Very 

high resolution interpolated climate surfaces for global  land areas. International Journal of 

Climatology, 25, 1965-1978. 

HILL J, LINES J & ROWLAND M (2006) Insecticide-treated nets. Advances in 

Parasitology, 61, 77-128. 

ICHHPUJANI RL, BHATIA R (2002) Medical Parasitology. 3rd ed. India: Jaypee Brothers 

Medical Publishers. 

 

INSTITUTE ESRI (2011) ArcGIS desktop release 9.3. CA: Redlands 

 

IPCC (2001) Impacts, Adaptations and Vulnerability. Contribution of  Working Group 2 to 

the Third Assessment Report of the Intergovernmental Panel  on Climate Change;  

Cambridge University Press: Cambridge, UK and New York,  NY, USA, ;: 1-970. 

JONES AE, WORT UU, MORSE AP, HASTINGS IM & GAGNON AS (2007) Climate 

prediction of El Nino malaria epidemics  in north-west Tanzania. Malaria Journal, 6, 162. 

KARAGIANNIS-VOULES D-A, SCHOLTE RGC, GUIMARÃES LH, UTZINGER J, 

VOUNATSOU P (2013) Bayesian Geostatistical Modeling of Leishmaniasis Incidence in 

Brazil. PLoS Negl Trop Dis 7(5): e2213. doi:10.1371/journal.pntd.0002213 

KATZ RW (2002) Sir Gilbert Walker and a Connection between El Nino and Statistics. 

Statistical Science 17, 97- 112. 

KAZEMBE LN (2007) Spatial modelling and risk factors of malaria incidence in northern 

Malawi. Acta Tropica, 102, 126-37. 



84 

 

KAZEMBE LN, CHIRWA TF, SIMBEYE JS & NAMANGALE JJ (2008) Applications of 

Bayesian approach in modelling risk of malaria-related hospital mortality. BMC Medical 

Research Methodology, 8, 6. 

KIANG R, ADIMI F, SOIKA V, NIGRO J, SINGHASVANON P, SIRISHAISINTHOP J, 

LEEMINGSAWAT S, APIWATHNASORN C, LOOAREESUWAN S (2006) 

Meteorological, environmental remote sensing and neural network analysis of the 

epidemiology of malaria transmission in Thailand. Geospatial Health 1(1), 71- 84.  

KIGOZI R, BAXI SM, GASASIRA A, SSERWANGA A, KAKEETO S, NASR S, 

RUBAHIKA D, DISSANAYAKE G, KAMYA MR, FILLER S & DORSEY G (2012) 

Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity 

area of Uganda. PLoS One, 7, e42857. 

KLEINSCHMIDT I, BAGAYOKO M, CLARKE GPY, CRAIG M & LE SUEUR D (2000) 

A spatial statistical approach to malaria mapping. International Journal of Epidemiology 29, 

355- 361. 

 

KLEINSCHMIDT I, OMUMBO J, BRIET O, VAN DE GIESEN N, SOGOBA N, MENSAH 

NK, WINDMEIJER P, MOUSSA M & TEUSCHER T (2001) An empirical malaria 

distribution map for West Africa. Tropical Medicine and International Health 6, 779-786. 

 

KLEINSCHMIDT I, SHARP BL, CLARKE GPY, CURTIS B & FRASER C (2001) Use of 

generalized linear mixed models in the spatial analysis of small area malaria incidence rates 

in KwaZulu Natal, South Africa. American Journal of epidemiology 153, 1213-12121 

  

KLEINSCHMIDT I (2001) Spatial statistical analysis, modeling and mapping. PhD thesis, 

University of Basel, Switzerland. 

KLEINSCHMIDT I, SHARP B, MUELLER I & VOUNATSOU P (2002) Rise in Malaria 

Incidence Rates in South Africa: A Small-Area Spatial Analysis of Variation in Time Trends. 

American Journal of Epidemiology 155 (3), 257- 264. 



85 

 

KREFIS AC, SCHWARZ NG, NKRUMAH B, ACQUAH S, GHANA K, OLDELAND J, 

FLOTTBEK BK, SARPONG N, ADU-SARKODIE Y (2011) Spatial Analysis of Land 

Cover Determinants of Malaria Incidence in the Ashanti Region, Ghana. PLOS ONE, 6. 

KOVATS S (2000) El Nino and human health. Bulletin of the World Health Organization 78, 

1127-1135. 

KULKARNI MA, ROWLAND M, ALIFRANGIS M, MOSHA FW, MATOWO J, 

MALIMA R, PETER J, KWEKA E, LYIMO I, MAGESA S, SALANTI A, RAU ME & 

DRAKELEY CJ (2006) Occurrence of the leucine-to-phenylalanine knockdown resistance 

(kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified 

high-throughput SSOP-ELISA method. Malaria Journal, 5,56. 

LÉONG POCK TSY JM, DUCHEMIN JB, MARRAMA LP, RABARISON G, LE GOFF 

V& RAJAONARIVELO R (2003) Distribution of the species of the Anopheles 

gambiae complex and first evidence of Anopheles merus as a malaria vector in 

Madagascar. Malaria Journal 2:1–7. 

LEVINE RS, PETERSON AT & BENEDICT MQ (2004) Geographic and ecologic 

distributions of the Anopheles gambiae complex predicted using a genetic 

algorithm. American Journal of Tropical Medicine and Hygiene, 70, 105-9. 

LINARD C, GILBERT M AND TATEM AJ, (2010) Assessing the use of global land cover 

data for guiding large area population distribution modelling, Geojournal,  11:525–538. 

LINDBLADE KA, WALKER ED, ONAPA AW, KATUNGU J & WILSON ML (1999) 

Highland malaria in Uganda: Prospective analysis of an epidemic associated with El Niño. 

Transactions of the Royal Society of Tropical Medicine and Hygiene 93, 480-487. 

 

LINK, WA. AND RJ BARKER (2010) Bayesian Inference: with ecological applications. 

Elsevier/Academic , Boston, MA. 

LOWASSA A, MAZIGO HD, MAHANDE AM, MWANG’ONDE BJ, MSANGI S, 

MAHANDE MJ, KIMARO EE, ELISANTE E & KWEKA EJ (2012) Social economic 

factors and malaria transmission in Lower Moshi, Northern Tanzania. Parasites & 

Vectors, 5, 129. 



86 

 

LOW, A.B. & REBELO, A.G. (eds.) (1996) Vegetation of South Africa, Lesotho and 

Swaziland. Pretoria: DEAT. This publication is available online at 

http://www.ngo.grida.no/soesa/nsoer/Data/vegrsa/vegstart.htm  

LUNN D, SPIEGELHALTER D, THOMAS A & BEST N (2009) The BUGS project: 

Evolution, critique and future directions. Statistics in Medicine, 28, 3049-67. 

LYONS CL, COETZEE M, CHOWN SL (2013) Stable and fluctuating temperature effects 

on the development rate and survival of two malaria vectors, Anopheles arabiensis and 

Anopheles funestus. Parasites and Vectors, 6:104 

 

MABASO MLH, BRIAN S & CHRISTIAN L (2004) Historical review of malaria in 

southern Africa with emphasis on the use of indoor residual house spraying. Tropical 

Medicine and International Health 9, 846-856. 

MABASO MLH, VOUNATSOU P, MIDZI S, DA SILVA J & SMITH T (2006) Spatio-

temporal analysis of the role of climate in inter-annual variation of malaria incidence in 

Zimbabwe. International Journal of Health Geographics, 5, 20. 

MABASO MLH, CRAIG M, VOUNATSOU P & SMITH T (2006) Towards empirical 

description of malaria seasonality in southern Africa: the example of Zimbabwe. Tropical 

Medicine and International Health 10, 909-918. 

MABASO MLH, KLEINSCHMIDT I, SHARP B & SMITH T (2007) El Nino Southern 

Oscillation (ENSO) and annual malaria incidence in Southern Africa. Transactions of the 

Royal Society of Tropical Medicine and Hygiene, 101, 326-30. 

MABASO MLH, CRAIG C, ROSS A, SMITH T (2007) Environmental predictors of the 

seasonality of malaria transmission in Africa: the challenge. American Journal of 

Tropical Medicine and Hygiene 76, 33-38 

MABASO MLH & NDLOVU NC (2012) Critical review of research literature on climate-

driven malaria epidemics in sub-Saharan Africa. Public Health, 126, 909-19. 

MACDONALD G (1957) The epidemiology and control of malaria. Oxford University Press, 

U.K., London. 

http://www.ngo.grida.no/soesa/nsoer/Data/vegrsa/vegstart.htm


87 

 

MAGALHÃES RJS, LANGA A, SOUSA-FIGUEIREDO JC, CLEMENTS AC & NERY SV 

(2012) Finding malaria hot-spots in northern Angola: the role of individual, household and 

environmental factors within a meso-endemic area. Malaria Journal, 11, 385. 

MAHARAJ R, MTHEMBU DJ, SHARP BL (2005) Impact of DDT re-introduction on 

malaria transmission in KwaZulu-Natal. South African Medical Journal, 95:11.  

MAHARAJ R, MORRIS N, SEOCHARAN I, KRUGER P, MOONASAR D, MABUZA A, 

RASWISWI E, RAMAN J (2012) The feasibility of malaria elimination in South Africa. 

Malaria Journal, 11:423. 

MANDAL S, SARKAR RR & SINHA S (2011) Mathematical models of malaria--a 

review. Malaria Journal, 10, 202. 

MANTILLA G, OLIVEROS H & BARNSTON AG (2009) The role of ENSO in 

understanding changes in Colombia's annual malaria burden by region, 1960-2006. Malaria 

Journal, 8, 6. 

MATHEW JL (2008) Anti-Malarial Drugs for Prevention of Malaria. Indian Pediatrics, 45, 

681- 683. 

 

MATHERON G (1963) Principles of geostatistics. Economic Geology,53, 1246- 1266. 

 

MATTEELLI A & CASTELLI F  (1997) Life cycle of malaria parasites. In: The Handbook 

of Malaria Infection in the Tropics. AIFO, Italy. 

 

MATTHYS B, N'GORAN EK, KONÉ M, KOUDOU BG, VOUNATSOU P, CISSÉ G, 

TSCHANNEN AB, TANNER M, UTZINGER J (2006) Urban agricultural land use and 

characterization of mosquito larval habitats in a medium-sized town of Côte d'Ivoire. 

Journal of Vector Ecology 2006, 31:319-333 

MENDIS K, RIETVELD A, WARSAME M, BOSMAN A, GREENWOOD B & 

WERNSDORFER WH (2009) From malaria control to eradication: The WHO 

perspective. Tropical Medicine and International Health, 14, 802-9. 



88 

 

MILLER JM, KORENROMP EL, NAHLEN BL & STEKETEE RW (2007) Estimating the 

Number of Insecticide-Treated Nets Required by African Households to Reach Continent-

wide Malaria Coverage Targets. JAMA, 297, 2241-2250. 

MINAKAWA N, MUTERO CM, BEIER JC, GITHURE JI & YAN G (1999) Spatial 

distribution and habitat characterization of anopheline mosquito larvae in western Kenya. 

American Journal of Tropical Medicine and Hygiene. 61: 1010-1016. 

 

MINAKAWA N, GITHURE JI, BEIER JC, YAN GY (2001) Anopheline mosquito survival 

strategies during the dry period in western Kenya. Journal of Medical Entomology, 3, 388- 

392. 

MITAS L, MITASOVA H (1999) Spatial Interpolation. In: P.Longley, M.F. Goodchild, D.J. 

Maguire, D.W.Rhind (Eds.), Geographical Information Systems: Principles, Techniques, 

Management and Applications, GeoInformation International, Wiley, 481-492. 

MONTOSI E, MANZONI, PORPORATO A, MONTANARI (2012) An ecohydrological 

model of malaria outbreaks. Hydrology and Earth Systems Science, 16, 2759- 2769 

 

MOONASAR D, ASOMUGHA C, BAKER L, BLUMBERG L, BARNES K, MAHARAJ R, 

& BENSON F (2011) Preventing disease and saving lives: The malaria season is upon us. 

South African Medical Journal, 101(12), 865. doi:10.7196/samj.5345 

MOONASAR D, NUTHULAGANTI T, KRUGER PS, MABUZA A, RASISWI ES, 

BENSON FG & MAHARAJ R (2012) Malaria control in South Africa 2000-2010: beyond 

MDG6. Malaria Journal, 11, 294. 

MORROW R (2007) Epidemiology and Control of Malaria. Johns Hopkins, Bloomberg 

School of Public Health.  

MOSZYNSKI P (2012) Insecticide resistance threatens malaria control programmes, WHO 

says. BMJ. 344 :e3416. 

MUNGA S, MINAKAWA N, ZHOU G, MUSHINZIMANA E, BARRACK OO, GITHEKO 

AK & YAN G (2006) Association between land cover and habitat productivity of malaria 



89 

 

vectors in western Kenyan highlands. American Journal of Tropical Medicine and 

Hygiene, 74, 69-75. 

MUNGA S, MINAKAWA N, ZHOU G, GITHEKO AK & YAN G (2007) Survivorship of 

immature stages of Anopheles gambiae s.l. (Diptera: Culicidae) in natural habitats in western 

Kenya highlands. Journal of Medical Entomology, 44, 758-64. 

MUNGA S, YAKOB L, MUSHINZIMANA E, ZHOU G, OUNA T, MINAKAWA N, 

GITHEKO A & YAN G (2009) Land use and land cover changes and spatiotemporal 

dynamics of anopheline larval habitats during a four-year period in a highland community of 

Africa. American Journal of Tropical Medicine and Hygiene, 81, 1079-84. 

MUSA MI, SHOHAIMI S, HASHIM NR, KRISHNARAJAH I (2012) A climate based 

distribution  model of malaria transmission in Sudan. Geospatial Health 7(1), 27-36. 

N'GUESSAN R, CORBEL V, AKOGBETO M & ROWLAND M (2007) Reduced Efficacy 

of Insecticide-treated Nets and Indoor Residual Spraying for Malaria Control in Pyrethroid 

Resistance Area, Benin. Emerging Infectious Diseases, 13, 199-206. 

NKURUNZIZA H, GEBHARDT A & PILZ J (2010) Bayesian modelling of the effect of 

climate on malaria in Burundi. Malaria Journal, 9, 114. 

NTZOUFRAS I (2002) Gibbs Variable Selection Using BUGS. Journal of Statistical 

Software, 7 (7). 

NUCKOLS JR, WARD MH & JARUP L (2004) Using Geographic Information Systems for 

Exposure Assessment in Environmental Epidemiology Studies. Environmental Health 

Perspectives, 112, 1007-15. 

OESTERHOLT MJ, BOUSEMA JT, MWERINDE OK, HARRIS C, LUSHINO P, 

MASOKOTO A, MWERINDE H, MOSHA FW & DRAKELEY CJ (2006) Spatial and 

temporal variation in malaria transmission in a low endemicity area in northern 

Tanzania. Malaria Journal, 5, 98. 



90 

 

OMUKUNDA E, GITHEKO A, NDONG’A MF, MUSHINZIMANA E, ATIELI H, 

WAMAE P (2013) Malaria vector population dynamics in highland and lowland regions of 

western Kenya. Journal of Vector Borne Diseases, 50, 85- 92. 

 

PLUESS B, TANSER FC, LENGELER C, SHARP BL (2010) Indoor residual spraying for 

preventing malaria. Cochrane Database of Systematic Reviews. 14, 4  

POCK TSY JM.L, DUCHEMIN JB, MARRAMA L, RABARISON P, LE GOFF G, 

RAJAONARIVELO V & ROBERT V (2003) Distribution of the species of the Anopheles 

gambiae complex and first evidence of Anopheles merus as a malaria vector in 

Madagascar. Malaria Journal, 2, 33. 

PROTOPOPOFF N, MATOWO J, MALIMA R, KAVISHE R, KAAYA R, WRIGHT A, 

WEST PA, KLEINSCHMIDT I, KISINZA W, MOSHA FW & ROWLAND M (2013) High 

level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced 

susceptibility to bendiocarb in north-western Tanzania. Malaria Journal, 12, 149. 

PROTOPOPOFF N, VAN BORTEL W, SPEYBROECK N, VAN GEERTRUYDEN JP, 

BAZA D, D'ALESSANDRO U & COOSEMANS M (2009) Ranking malaria risk factors to 

guide malaria control efforts in African highlands. PLoS One, 4, e8022. 

R. CORE TEAM (2012) R Foundation for Statistical Computing, Vienna, 

Austria. http://www.r-project.org/ 

RAVINES RR,  MIGON HS, AND SCHMIDT AM (2006) An ancient sampling scheme for 

generalized dynamic models. Applied Stochastic Models in Business and Industry, 22, 193-

210. 

READ AF, LYNCH PA & THOMAS MB (2009) How to Make Evolution-Proof Insecticides 

for Malaria Control. PLOS Biology, 7. 

REID H, HAQUE U, CLEMENTS AC, TATEM AJ, VALLELY A, AHMED SM., ISLAM 

A & HAQUE R (2010) Mapping malaria risk in Bangladesh using Bayesian geostatistical 

models. American Journal of Tropical Medicine and Hygiene, 83, 861-7. 

http://www.r-project.org/


91 

 

REID HL, HAQUE U, ROY S, ISLAM N & CLEMENTS AC (2012) Characterizing the 

spatial and temporal variation of malaria incidence in Bangladesh, 2007. Malaria 

Journal, 11, 170. 

RIEDEL N, VOUNATSOU P, MILLER JM, GOSONIU L, CHIZEMA-KAWESHA E, 

MUKONKA V & STEKETEE RW (2010) Geographical patterns and predictors of malaria 

risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria 

indicator survey (ZMIS) Malaria Journal, 9, 37. 

ROBERT C & CASELLA G (2011) A Short History of Markov Chain Monte Carlo: 

Subjective Recollections from Incomplete Data. Statistical Science, 26, 102-115. 

RUBIO-PALIS, YASMIN, BEVILACQUA, MARIAPIA, MEDINA, DOMINGO 

ALBERTO, MORENO, JORGE ERNESTO, CÁRDENAS, LYA, SÁNCHEZ, VÍCTOR, 

ESTRADA, YARYS, ANAYA, WILLIAM, & MARTÍNEZ, ÁNGELA (2013) Malaria 

entomological risk factors in relation to land cover in the Lower Caura River Basin, 

Venezuela. Memórias do Instituto Oswaldo Cruz, 108(2), 220-228.  

SAINANI K (2010) The importance of accounting for correlated observations. American 

Journal of Physical Medicine and Rehabilitation, 2, 858-61. 

SAXENA R, NAGPAL BN, SRIVASTAVA A, GUPTA SK, DASH AP (2009) Application 

of spatial technology in malaria research and control: some new insights. Indian Journal of 

Medical Research, 130, 125- 132. 

SHAH M, KARIUKI S, VANDEN ENG J, BLACKSTOCK AJ, GARNER K, GATEI W, 

GIMNIG JE, LINDBLADE K, TERLOUW D, TER KUILE F, HAWLEY WA, PHILLIPS-

HOWARD P, NAHLEN B, WALKER E, HAMEL MJ, SLUTSKER L & SHI YP (2011) 

Effect of transmission reduction by insecticide-treated bednets (ITNs) on antimalarial drug 

resistance in western Kenya. PLoS One,6, e26746. 

SHARP BL & LE SUEUR D (1996) Malaria in South Africa-the past, the present and 

selected implications for the future. South African Medical Journal, 86, 83-89. 



92 

 

SILUE KD, RASO G, YAPI A, VOUNATSOU P, TANNER M, N'GORAN EK, & 

UTZINGER J (2008) Spatially-explicit risk profiling of Plasmodium falciparum infections at 

a small scale: a geostatistical modelling approach. Malaria Journal, 7, 111. 

SLUTSKER L & KACHUR SP (2013) It is time to rethink tactics in the fight against 

malaria. Malaria Journal, 12, 140. 

SNOW RW, CRAIG M, DEICHMANN & MARSH K (1999) Estimating mortality, 

morbidity and disability due to malaria among African non pregnant population. Bulletin of 

the World Health Organization 77, 624-640. 

 

SNOW RW, CRAIG MH, NEWTON CRJC & STEKETEE RW (2003) The public health 

burden of Plasmodium falciparum malaria in Africa: Deriving the numbers. (Report) Disease 

Control Priorities Project, Working Paper No. 11, Fogarty International Center, National 

Institutes of Health, Bethesda, Maryland (http://www.fic.nih.gov/dcpp) 

 

SNOW RW, GUERRA CA, ABDISALAN M, MYINT HY & HAY SI (2005) The global 

distribution of clinical episodes of Plasmodium falciparum malaria. Nature 343, 214-217. 

SNOW RW, GUERRA CA, MUTHEU JJ & HAY SI (2008) International funding for 

malaria control in relation to populations at risk of stable Plasmodium falciparum 

transmission. PLoS Medicine, 5, e142. 

SNOW RW, AMRATIA P, KABARIA CW, NOOR AM & MARSH K (2012) The changing 

limits and incidence of malaria in Africa: 1939-2009. Advances in Parasitology, 78, 169-262. 

SOUTH AFRICAN WEATHER SERVICE (2010) Recent Climate. 

http://www.weathersa.co.za/web/index.php/sclimate/recent-climate-information 

SPIEGELHALTER DJ, BEST NG, CARLIN BP & VAN DER LINDE A (2002) Bayesian 

measures of model complexity and fit (with discussion) Journal of the Royal Statistical 

Society Series B 64, 583-639. 

STATISTICS SOUTH AFRICA (2011) www.statssa.gov.za  

http://www.weathersa.co.za/web/index.php/sclimate/recent-climate-information
http://www.statssa.gov.za/


93 

 

STEFANI A, DUSFOUR I, CORRÊA APS, CRUZ MC, DESSAY N, GALARDO AK, 

GALARDO CD, GIROD R, GOMES MS, GURGEL H, LIMA ACF, MORENO ES, 

MUSSET L, NACHER M, SOARES AC, CARME B & ROUX E (2013) Land cover, land 

use and malaria in the Amazon: a systematic literature review of studies using remotely 

sensed data. Malaria Journal, 12, 192. 

STENSGAARD AS, VOUNATSOU P, ONAPA AW, SIMONSEN PE, PEDERSEN EM, 

RAHBEK C & KRISTENSEN TK (2011) Bayesian geostatistical modelling of malaria and 

lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-

endemicity. Malaria Journal, 10, 298. 

STRESMAN GH (2010) Beyond temperature and precipitation: ecological risk factors that 

modify malaria transmission. Acta Tropica, 116, 167-72. 

TAKKEN W (2002) Do insecticide-treated bednets have an effect on malaria 

vectors? Tropical Medicine and International Health, 7, 1022-30. 

TAKKEN W & LINDSAY SW (2003) Factors affecting the vectorial competence of 

Anopheles gambiae: a question of scale. Takken W, Scott TW, eds. Ecological Aspects for 

Application of Genetically Modified Mosquitoes. Dordrecht: Kluwer Academic Publishers, 

75–90. 

 

TANSER CF, BRIAN S & LE SUEUR D (2003) Potential effect of climate change on 

malaria transmission in Africa. Lancet 362, 1792-1798. 

 

TATEM AJ, NOOR AM, VON HAGEN C, DI GREGORIO A & HAY SI (2007) High 

resolution settlement and population maps for low income nations: combining land cover and 

national census in East Africa. PLoS One, 2: p. e1298. 

 

TATEM AJ, NOOR AM & HAY SI (2004) Defining approaches to settlement mapping for 

public health management in Kenya using medium spatial resolution satellite imagery. 

Remote Sensing of Environment, 93: p. 42-52. 

TATEM AJ, GETHING PW, SMITH DL & HAY SI (2013) Urbanization and the global 

malaria recession. Malaria Journal, 12, 133. 



94 

 

THIAM S, NDIAYE JL, DIALLO I, GATONGA P, FALL FB, DIALLO NE, FAYE B, 

DIOUF ML, NDIOP M, DIOUF MB, GAYE O & THIOR M (2013) Safety monitoring of 

artemisinin combination therapy through a national pharmacovigilance system in an endemic 

malaria setting. Malaria Journal, 12, 54. 

THOMSON MC, CONNOR SJ, MILLIGAN P & FLASSE SP (1997) Mapping Malaria risk 

in Africa: what can satellite data contribute. Parasitology Today 13, 313. 

 

THOMSON MC, CONNOR SJ, D’ALESSANDRO U, ROWLINGSON B, DIGGLE P, 

CRESSWELL M & GREENWOOD B (1999) Predicting malaria infection in Gambian 

children from satellite data and bed net use surveys: The importance of spatial correlation in 

the interpretation of results. American Journal of Tropical Medicine and Hygiene 6, 2-8. 

 

THOMSON MC & CONNOR SJ (2000) Environmental information systems for the control 

of arthropod vectors of disease. Medical and Veterinary Entomology 14, 227-244. 

 

THOMSON MC, CONNOR SJ (2001) The development of malaria early warning systems 

for Africa. Trends Parasitol 17: 438–445 

THOMSON MC, DOBLAS-REYES FJ, MASON SJ, HAGEDORN R, CONNOR SJ, 

PHINDELA T, MORSE AP & PALMER TN (2006) Malaria early warnings based on 

seasonal climate forecasts from multi-model ensembles. Nature, 439, 576-9. 

VINE MF, DEGNAN D & HANCHETTE C (1997) Geographic information systems: their 

use in environmental epidemiologic research. Environmental Health Perspectives, 105, 598-

605. 

WAKEFIELD JC, BEST NG & WALLER L (2000) Bayesian approaches to disease 

mapping. In: Spatial epidemiology: Methods and applications. Wakefield JC, Best NG, 

Briggs DJ (eds.) Oxford University Press, Oxford. 

WALKER K (2000) Cost-comparison of DDT and alternative insecticides for malaria 

control. Medical and Veterinary Entomology, 14, 345-354. 



95 

 

WELTY LJ, PENG RD, ZEGER SL, DOMINICI F (2008) Bayesian Distributed Lag Models: 

Estimating Effects of Particulate Matter Air Pollution on Daily Mortality. Biometrics 

WHITE NJ (2004) Antimalarial drug resistance. Journal of Clinical Investigation, 113, 1084-

92. 

WHITWORTH J, MORGAN D, QUIGLEY M, SMITH A, MAYANJA B, EOTU H, 

OMODING N, OKONGO M, MALAMBA S & OJWIYA A (2000) Effect of HIV-1 and 

increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in 

rural Uganda: a cohort study. Lancet, 356, 1051-6. 

WORLD HEALTH ORGANIZATION (2009) WHO Global Malaria Programme: World 

Malaria Report. Geneva: World Health Organization. 

 

WORLD HEALTH ORGANIZATION (2011) WHO Global Malaria Programme: World 

Malaria Report. Geneva: World Health Organization. 

 

WORLD HEALTH ORGANIZATION (2012) WHO Global Malaria Programme: World 

Malaria Report. Geneva: World Health Organization. 

 

WORRALL E, RIETVELD A & DELACOLLETTE C (2004) The burden of malaria 

epidemics and cost-effectiveness of interventions in epidemic situations in Africa. American 

Journal of Tropical Medicine Hygiene 71, 136-140. 

WORRALL E, BASU S & HANSON K (2005) Is malaria a disease of poverty? A review of 

the literature. Tropical Medicine and International Health, 10, 1047-59. 

VERHOEF H, WEST CE, NDETO P, BUREMA J, BEGUIN Y & KOK  FJ (2001) Serum 

transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with 

asymptomatic malaria. American Journal of Clinical Nutrition, 74, 767- 775. 

YANG GJ, GAO Q, ZHOU SS, MALONE JB, MCCARROLL JC, TANNER M, 

VOUNATSOU P, BERGQUIST NR, UTZINGER J, ZHOU XN (2010) Mapping and 

predicting malaria transmission in the People’s Republic of China, using integrated biology-

driven and statistical models. Geospatial Health 2010, 5:11–22 



96 

 

 

YESHIWONDIM A K, GOPAL S, HAILEMARIAM AT, DENGELA DO & PATEL HP 

(2009) Spatial analysis of malaria incidence at the village level in areas with unstable 

transmission in Ethiopia. International Journal of Health Geographics, 8, 5. 

ZACARIAS OP & ANDERSSON M (2010) Mapping malaria incidence distribution that 

accounts for environmental factors in Maputo Province--Mozambique. Malaria 

Journal, 9, 79. 

ZACARIAS OP & ANDERSSON M (2011) Spatial and temporal patterns of malaria 

incidence in Mozambique. Malaria Journal, 10, 189. 

 

 



97 

 

APPENDIX 

Appendix A: OpenBugs Code 

 

model{ 

for (i in 1:N){ 

         cases[i] ~ dnegbin(p[i],r) 

         p[i] <- r/(r+mu[i]) 

         log(mu[i]) <- log(population[i])+inprod(b[],X[i,])+e[idtime[i]]+w[idloc[i]] 

} 

 

r ~ dgamma(0.01,0.01) 

 

for (i in 1:3){                                              

   b[i]~ dnorm(0.0,0.01) 

} 

 

for (i in 1:2){                                              

    b[i+3]~ dnorm(0.0,0.01) 

} 

                                         

for(i in 1:3){ 

   b[i+5] ~ dnorm(0.0, 0.01) 

} 

                                            

for(j in 1:3) {           

   b[j+8]~dnorm(0,tau.rain) 

} 

 

for(j in 1:3) { 

   b[j+11]~dnorm(0,tau.ndvi) 

} 

 

for(j in 1:3) { 

   b[j+14]~dnorm(0,tau.tempd) 

} 

 

for(j in 1:3) { 

   b[j+17]~dnorm(0,tau.tempn) 

} 

 

tau.rain~dgamma(0.1,0.1) 

tau.ndvi~dgamma(0.1,0.1) 

tau.tempd~dgamma(0.1,0.1) 

tau.tempn~dgamma(0.1,0.1) 

 

  # AR(1) prior distribution for temporal random effects:   

   

    e[1] ~ dnorm(0.0, tau2) 
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 for (t in 2:T){  

   emean[t-1]<-rho*e[t-1]; 

           e[t] ~dnorm(emean[t-1], tau.e) 

     }    

 

   tau2<-(1-pow(rho,2))*tau.e  

     rho ~ dunif(0, 1)  

     tau.e  ~ dgamma(1,1 ) 

    sigma.e<- 1/sqrt(tau.e ) 

 

 

#  Gaussian process for spatial random effects:   

for (i in 1:Nloc) { 

mu1[i]<-0} 

 

w[1:Nloc]~spatial.exp(mu1[], longit[], lattit[], tau.sp, phi, 1) 

tau.sp~dgamma(1,1) 

sigma<-1/tau.sp 

phi~dunif(1.56,3256) 

rhoinv<-1/phi 

Range<-3/phi 

 

} 
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Appendix B 

R Code for Prediction 

 

setwd("c:/South_africa/nolu/prediction/Data/") 

library(foreign) 

 

# Read data 

################################ 

 

N=141   # Number of observed locations 

PS=1000  # Posterior sample size 

 

# Read coordinates of observed locations 

 

x=c(-29.54087,-29.51074,-29.44933,-29.44628,-29.37567,-29.33279,-29.15797,-29.10292,-

29.02784,-29.02697, 

-28.99275,-28.96737,-28.95808,-28.93933,-28.92401,-28.90307,-28.90093,-28.89245,-

28.88016,-28.87361, 

-28.82550,-28.82481,-28.79698,-28.79663,-28.79337,-28.79124,-28.78454,-28.77710,-

28.77546,-28.77231, 

-28.76061,-28.75965,-28.75882,-28.75190,-28.73527,-28.71436,-28.71230,-28.69923,-

28.69722,-28.66490, 

-28.64852,-28.52092,-28.50727,-28.49875,-28.48458,-28.48326,-28.44655,-28.41843,-

28.25934,-28.24459, 

-28.23047,-28.18550,-28.18312,-28.15810,-28.15073,-28.14547,-28.13451,-28.12000,-

28.08950,-28.06690, 

-28.05526,-28.03957,-28.00402,-28.00043,-27.99362,-27.99022,-27.97787,-27.97510,-

27.97417,-27.96945, 

-27.94683,-27.91755,-27.90520,-27.87557,-27.86123,-27.85578,-27.84757,-27.83903,-

27.83850,-27.83218, 

-27.82453,-27.82195,-27.80815,-27.80681,-27.77334,-27.77215,-27.76997,-27.75905,-

27.73680,-27.73318, 
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-27.72940,-27.66914,-27.65093,-27.64900,-27.63118,-27.55490,-27.54962,-27.52960,-

27.49479,-27.45173, 

-27.45160,-27.45051,-27.43522,-27.42700,-27.42388,-27.41700,-27.40218,-27.39150,-

27.37740,-27.37370, 

-27.37093,-27.35515,-27.35095,-27.34098,-27.33553,-27.33467,-27.33360,-27.33180,-

27.32904,-27.32480, 

-27.32463,-27.32460,-27.32367,-27.32307,-27.29366,-27.27500,-27.26683,-27.24450,-

27.23290,-27.21332, 

-27.20444,-27.15330,-27.14278,-27.09027,-27.06427,-27.06301,-27.05467,-26.98520,-

26.97723,-26.94150, 

-26.86512) 

 

y=c( 31.21190, 31.23137, 31.21837, 31.21041, 31.25617, 31.28516, 31.40205, 30.97906, 

31.58276, 31.58765, 

 31.37442, 31.48832, 31.75623, 31.53435, 31.57872, 31.47703, 31.72777, 31.47313, 

31.48367, 31.70795, 

 31.86415, 31.86475, 31.47702, 31.47658, 31.72927, 32.09938, 32.10253, 31.86614, 

31.86238, 31.68637, 

 31.65590, 31.72902, 32.06894, 31.81000, 31.70941, 32.03669, 32.03677, 32.17240, 

31.85472, 31.48457, 

 32.05009, 30.86842, 31.99791, 32.09750, 32.24236, 32.36600, 31.96193, 32.18790, 

32.12188, 32.03629, 

 32.21285, 31.86700, 31.72897, 32.24080, 31.85153, 31.73453, 31.93060, 31.95542, 

31.85467, 31.84109, 

 31.99360, 30.03623, 31.84516, 32.06055, 32.00170, 32.13080, 30.27503, 31.64230, 

31.50468, 32.05475, 

 32.00045, 31.78229, 31.99430, 31.59398, 31.62788, 31.82443, 31.91240, 31.86390, 

31.76300, 32.15254, 

 31.84121, 31.82278, 31.85333, 31.85375, 29.95175, 31.97084, 31.89935, 32.20326, 

31.74140, 31.86620, 

 29.96352, 31.72120, 31.74438, 31.94400, 32.10698, 32.04560, 32.07873, 31.83150, 

32.09711, 31.92263, 

 32.03000, 32.57916, 32.05655, 32.09184, 32.21486, 32.07640, 31.56685, 32.06350, 

31.19673, 31.99650, 
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 31.40536, 31.75565, 31.78398, 31.99138, 31.70032, 31.51538, 31.46383, 31.57910, 

31.40657, 31.89560, 

 32.06442, 32.06440, 31.56383, 32.02733, 31.30599, 31.98332, 32.06100, 32.13930, 

32.08200, 32.08243, 

 32.16770, 32.08522, 31.99052, 32.11882, 32.04317, 32.13672, 32.83050, 32.13297, 

32.01212, 32.33588, 

 32.26155) 

 

# Read predictors at observed locations to obtain the parameters (mean & sd) of 

standardization 

 

obs.pred=read.dta("../../junk/KwaZulu-Natal_FINAL.dta") 

 

rain_0=obs.pred[,13] 

rain_lag1=obs.pred[,14] 

rain_lag2=obs.pred[,15] 

 

ndvi_0=obs.pred[,18] 

ndvi_lag1=obs.pred[,19] 

ndvi_lag2=obs.pred[,20] 

 

lstd_0=obs.pred[,23] 

lstd_lag1=obs.pred[,24] 

lstd_lag2=obs.pred[,25] 

 

lstn_0=obs.pred[,28] 

lstn_lag1=obs.pred[,29] 

lstn_lag2=obs.pred[,30] 

 

altitude=obs.pred[,32] 

distance=obs.pred[,33] 

 

# Read coordinates and predictors at new locations (grid centroids) 

# Standardise the predictors  
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new=read.dta("stata/pred_feb10.dta") 

 

x_pred=new[,1] 

y_pred=new[,2] 

 

const=new[,3] 

sine=new[,4] 

cosine=new[,5] 

pr_altitude=(new[,6]-mean(altitude,na.rm=TRUE))/sd(altitude,na.rm=TRUE) 

pr_distance=(new[,7]-mean(distance,na.rm=TRUE))/sd(distance,na.rm=TRUE) 

landuse_2=new[,8] 

landuse_3=new[,9] 

landuse_4=new[,10] 

 

pr_rain_0=(new[,11]-mean(rain_0,na.rm=TRUE))/sd(rain_0,na.rm=TRUE) 

pr_rain_lag1=(new[,12]-mean(rain_lag1,na.rm=TRUE))/sd(rain_lag1,na.rm=TRUE) 

pr_rain_lag2=(new[,13]-mean(rain_lag2,na.rm=TRUE))/sd(rain_lag2,na.rm=TRUE) 

 

pr_ndvi_0=(new[,14]-mean(ndvi_0,na.rm=TRUE))/sd(ndvi_0,na.rm=TRUE) 

pr_ndvi_lag1=(new[,15]-mean(ndvi_lag1,na.rm=TRUE))/sd(ndvi_lag1,na.rm=TRUE) 

pr_ndvi_lag2=(new[,16]-mean(ndvi_lag2,na.rm=TRUE))/sd(ndvi_lag2,na.rm=TRUE) 

 

pr_lstd_0=(new[,17]-mean(lstd_0,na.rm=TRUE))/sd(lstd_0,na.rm=TRUE) 

pr_lstd_lag1=(new[,18]-mean(lstd_lag1,na.rm=TRUE))/sd(lstd_lag1,na.rm=TRUE) 

pr_lstd_lag2=(new[,19]-mean(lstd_lag2,na.rm=TRUE))/sd(lstd_lag2,na.rm=TRUE) 

 

pr_lstn_0=(new[,20]-mean(lstn_0,na.rm=TRUE))/sd(lstn_0,na.rm=TRUE) 

pr_lstn_lag1=(new[,21]-mean(lstn_lag1,na.rm=TRUE))/sd(lstn_lag1,na.rm=TRUE) 

pr_lstn_lag2=(new[,22]-mean(lstn_lag2,na.rm=TRUE))/sd(lstn_lag2,na.rm=TRUE) 

 

covar_pred=cbind(const, sine, cosine, pr_altitude, pr_distance, landuse_2, landuse_3, 

landuse_4, pr_rain_0, pr_rain_lag1, pr_rain_lag2, pr_ndvi_0, pr_ndvi_lag1, pr_ndvi_lag2, 

pr_lstd_0, pr_lstd_lag1, pr_lstd_lag2, pr_lstn_0,  pr_lstn_lag1, pr_lstn_lag2) 
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##################################### 

# Read posterior samples 

 

library(coda) 

a=read.coda("../../winbugs/dlag1.txt","../../winbugs/Indexdlag.txt") 

 

ncov=19+1          # no of covariates (betas) + the b1 

 

beta=a[,2:(1+ncov)] 

w=a[,(21+135+10+1):(21+135+10+141)]   #spatial random effect 

rho=3/a[,1]         

sigma=a[,21+135+1+1]   

 

e=a[,(21+1):(21+135)]   #temporal random effect 

 

 

#specify year and month to predict 

pr_month=2   

pr_year=2010 

idtime=(pr_month+(pr_year-2000)*12)-4 

 

        

# Calculate distance matrix among observed locations 

 

dist=matrix(NA,N,N) 

cov12=matrix(NA,N,1) 

for (i in 1:N){ 

   for (j in 1:N){ 

     dist[i,j]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])) 

} 

} 

 

# Predict at the M locations 
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M=length(x_pred)      # Number of predicted locations 

mu.new=matrix(NA,M,PS)                 

 

cov=matrix(NA, N, N) 

 

for(k in 1:M){ 

print(k) 

for (i in 1:PS){ 

 

    cov=sigma[i]*exp(-rho[i]*dist)        # covariance of random effects among observed 

location  

     for (j in 1:N){ 

         dist.new=sqrt((x[j]-x_pred[k])*(x[j]-x_pred[k])+(y[j]-y_pred[k])*(y[j]-y_pred[k])) 

         cov12[j,1]=sigma[i]*exp(-rho[i]*dist.new) 

    }      

     

    cov.inv=solve(Águas et al.)          # invert covariance matrix 

       

    mean.w.new=(t(cov12)%*%cov.inv)%*%w[i,] 

    var.w.new=sigma[i]-(t(cov12)%*%cov.inv)%*%cov12 

    w.new=rnorm(1,mean.w.new,sqrt(var.w.new))    

 

    log.mu.new=covar_pred[k,]%*%beta[i,]+w.new+e[idtime]     

    mu.new[k,i]=exp(log.mu.new) 

     

  }                      

}    

 

# Exporting results to excel for mapping 

sd.mu=rep(NA,M) 

med.mu=rep(NA,M) 

for (i in 1:M){ 

  med.mu[i]=median(mu.new[i,]) 
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  sd.mu[i]=sd(mu.new[i,]) 

} 

 

aa<-cbind(x.pred,y.pred,med.mu,sd.mu) 

write.table(aa,"kzn_map.txt",sep=",",row.names=TRUE,col.names=FALSE) 

 

 


