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ABSTRACT 

The post-apartheid period focuses much attention on education. One of the ma3or 

concerns is that of the poor Grade 12 examination results, especially in Physical Science 

and Mathematics. There is reason to believe that traditional methods for teaching 

Physical Science at schools are inefficient and that substantial improvement in instruction 

methods can be achieved by a vigorous program of pedagogical research and 

development. 

The intention of this research was to gather and document qualitative data regarding 

problem-solving strategies used by Secondary School Physical Science learners when 

solving real-life problems. Specifically the purpose was to investigate whether it was 

possible for learners to model and formulate a particular kinematic equation on their own, 

without receiving any prior formal instruction in kinematics. Seco,1clh .he purpose was 

to investigate the intuitive mathematical strategies that they used. 

Seven Physical Science learners from Grade 11 participated in this study. Their problem­

solving behaviour was documented using think-aloud sessions, paper-and-pen solutions 

of problems and interviews. The learners individually solved two problems in kinematics 

dealing with speed, time and acceleration. The problems were presented in verbal form 

together with an incomplete table and they were required, in stages, to eventually develop 

a symbolic equation. 

The representation of the problem-solving process in terms of intuitive modelling 

strategies provided insight into what conceptual and intuitive knowledge learners bring to 

bear in a problem situation. The insight obtained on the fundamental aspects of problem 

solving in terms of appropriate strategy use, inappropriate strategy use and 

misconceptions could help infonn the structuring, representation, and access of 

knowledge. 

Evidence obtained from this research shows that five out of thirteen (40%) correct 

responses were obtained without prior instruction nor any form of guidance. This shows 

Xl 



that learners have the potential to model strategies of real-life problem situations, 

formulate verbal relationships and translate these into symbolic form. Thus this study 

indicates that if learners are provided with appropriate guidance from educators, they 

might not only be able to formulate the equations on their own, but they might also be 

able to recall the equations with ease and apply them correctly in novel situations. 

However, this is a matter of further research not covered in this study. 

Since no other research has addressed problem-solving strategies in Physical Science as it 

has in this study, it is hoped that the findings of this study would contribute substantially 

to the teaching of kinematics at Secondary School level. 
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CHAPTER ONE 

INTRODUCTION 

One of the aims of education, according to Ernest ( 1991: 199), is the empowerment of 

an individual through education, providing "tools for thought" enabling that person to 

take control of his/her life, and to participate fully and critically in a democratic 

society. Learning is an individual and a life-long process requiring the capacity to 

judge when understanding has been achieved and to draw conclusions and make 

inferences from acquired knowledge (Arons 1997:364). 

A number of philosophers have identified problems and problem solving as lying at 

the heart of the educational enterprise (Ernest 1991 :281 ). Problem solving motivates, 

stimulates interest and creativity and provides enjoyment. It puts decision-making 

into the hands of the problem solver and this moves him/her towards increased self­

confidence and personal satisfaction. It thus improves the quality of life not only for 

the individual but society as a whole. (Ernest 1991; Wheatley 1995; Watts 1994). 

This study focuses on problem solving and considers the solving of problems as 

central to the teaching and learning of physical science in the secondary school 

classroom. However, it is not possible to divide mathematics and science into 

separate categories as according to Fremont (undated: 173), mathematics is an abstract 

system of ideas which provides the scientist with a powerful tool for the study of the 

real world. 

Students who enter higher levels of education particularly science and mathematics 

courses, do so with abilities and strategies that handicap them in achieving success. 

(McKeachie 1988:5). Novak & Gowin (1984), McDermott (1991), Clement (1980) 

and Arons (1997) have shown that while learners performed well on familiar 

problems, attempts to solve novel problems showed that serious conceptual 

misunderstandings exist. Thus such research amongst others shows that the 

traditional approach to teaching problem-solving has not enjoyed much success. 



The learner memorizes an algorithm for getting the "right answer," but lacks an 

understanding of the concepts and propositions of physics that explain the 

phenomenon. According to Arons (1997:363), learners are being crushed into the 

"flatness of equation-grinding automatons and forcing them into blind memorization 

of problem-solving procedures. We do not even give them a chance to begin to 

understand what 'understanding' really means." 

Thus there exists a large gap between the "protoconcepts" with which most learners 

come to the study of kinematics and their grasp of the physical constructs in the face 

of conventional instruction (Arons 1997:45). In many cases one of the problems is 

that neither home background nor present day education has made learners aware of 

the alternative ways of approaching the problem-solving situation. In general these 

are teacher-directed and the learner learns to conform to the teacher's directions 

without any conscious thought about why the teacher directs them to carry out certain 

activities. (McKeachie 1988:4). In addition learners are not aware when they do not 

fully comprehend the meaning of words and phrases in the context in which they 

occur and this underlies substantial portions of "illiteracy" that we find currently 

deplored in many disciplines and not science alone (Arons 1997: 19). 

To develop genuine understanding of concepts and theory that underlies operational 

knowledge, learners must engage in deductive and inductive mental activity coupled 

with interpretation of personal observation and experience. This can be nurtured, 

developed and enhanced in the majority of learners provided it is experientially rooted 

and not too rapidly paced and providing the mind of the learner is actively engaged. 

(Arons 1997:347.) 

This study employs a constructivist approach, of which the basic premise is that 

knowledge is constructed as a result of cognitive processes within the human mind 

and that the learner is an active participant in the construction of his/her knowledge. 

The learners come to science lessons already holding ideas about natural phenomena 

which they use to make sense of of everyday experiences. (Driver & Oldham 1986; 

Leonard [undated]; McDem1ott 1991; Haeney 1988 and Scott 1987.) 
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Meaningful learning, which implies the ability to interpret and use knowledge in 

situations not identical to those in which it was acquired, requires deep mental 

engagement by the learner. The learner's mind is not a blank slate on which new 

information can be written without regard to what is already there. If the educator 

does not make a conscious effort to guide the learner into making the modifications 

needed to incorporate new information correctly, the learner may do the rearranging. 

In that case, the message inscribed on the slate may not be the one the educator 

intended to deliver. (McDermott 1991 :305.) 

The intention of this research is to gather and document qualitative data regarding 

problem-solving strategies used by grade 11 learners when solving real-life problems 

they have not seen before. Specifically, the purpose was to investigate whether it is 

possible for learners to formulate some relationships/equations in kinematics on their 

own without prior instruction. This would be made available to the classroom 

educator, subject advisors of Physical Science, curriculum planners, pre-service and 

in-service education and training colleges. 

The implementation of this transformed form of educating/learning cannot, at a 

stroke, solve the educator's (and learner's) problems, but may foster a more acute 

awareness for both the educator and learner of the nature of involvement in the 

teaching and learning process and it is hoped that, by degrees, it may prove to be 

successful. 

Learners from a secondary school in Durban participated in this study in 1999. The 

problem-centred approach adopted aimed to build on learner's informal knowledge 

and facilitate the development of their conceptual and procedural knowledge through 

the solution of real life and other problems. The learners involved in this study were 

representative of those in a "normal" class. 

RESEARCH QUESTIONS 

Four main research questions will be addressed in this study: 

1. What strategies do learners use to complete a table of a real-life problem

situation involving speed and time ?
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2. What are the strategies used by the learners in recognizing and formulating

a functional relationship between the variables speed and time of a real life

problem situation?

3. Are the learners able to translate the functional relationship into

symbolic form ( e.g. mathematical formula) ?

4. What is the feasibility of using modelling as a teaching approach for

teaching speed and time relationships ?

OVERVIEW 

This thesis is organized into five chapters. The first two chapters describe the 

research focus, theoretical framework and related research. Chapter Three deals with 

the research methodology employed in this study. The findings are discussed in 

Chapter Four under the headings: interpretation of terminology; results and strategies 

used in question one; results and strategies used in question two; and analysis and 

discussion of common strategies used in question one and two. Chapter Five 

summarizes the conclusion of the study; its strengths and limitations; the implications 

of the findings; and suggestions for further research. 

RATIONALE 

In this study, the learner was required to construct explicitly a meaning for a 

functional relationship derived from a real life problem, thus allowing him/her to 

grasp the concept intuitively before it became formalized symbolically. The 

underlying assumption is that such a construction would anchor the concept of 

functional relationships and give meaning to a real life problem. The basic approach 

is from a mathematical and scientific standpoint and relies on the research in both 

these areas. 

Mathematics with its abstract system of ideas provides science with a powerful tool 

for the study of real life. "Algebra is the language of the scientist" because it adds to 

our ability to understand and describe relationships between objects in the physical 

world as well as between the algebraic symbols themselves. (Fremont undated: 172.) 
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A scientific law, says Hestenes (1987:442), is a relation among descriptive variables 

which is presumed to represent a relationship among properties of real objects, 

because it has been validated in some empirical domain by the testing of models. 

Most of the laws of physics are expressed as mathematical equations. 

While the evidence for the value of problem solving is strong, too little is known 

about how one becomes an effective problem-solver and what types of experiences 

will provide the potential opportunities for the learner to develop ways of coping with 

novelty. In particular we do not know much about problem-solving in practice. 

(Wheatley 1995 :90.) It is hoped that evidence from this study would be useful to 

learners, educators, science and mathematics superintendents, curriculum planners, 

policy makers, in-service training and pre-service training colleges and the 

educational community in developing effective problem-solving skills in learners. 

Educators often have this to say about their learners: "I taught them how to solve this 

just the other day and to-day, it is as if they have never seen it before". Generally 

educators unwittingly are quick to blame learners for their poor perfom1ance saying 

that they are either lazy or not scientifically inclined. However, in my experience as a 

physical science educator, I have found that learners struggle with problems in 

science and mathematics, in particular context-rich, real-life problems. When learners 

are asked about their poor performance in tests and examinations, the response that I 

usually get is: "I don't know? I studied really hard." Parents also are very concerned 

and reiterate what their children have to say. According to Heller et al (1992:627), this 

problem is peculiar not only to secondary school science but extends to college 

students as well who experience the following difficulties: "I can follow the examples 

in the textbook, but your test problems are too different" or "I understand the material, 

but I just can't solve the problems." 

Reflection on the teaching of any subject, theme or unit should never become static, 

but should be continuously rethought in the light of new insights with regard to 

learners and the subject: 
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PLAN TEACH 

EVALUATE 

Figure I. 1 

Not only the performance of learners should be evaluated, but also and especially the 

desired aims and objectives as well as the effectivity of the teaching methods that are 

employed. (De Villiers 1985:2, Schwebel & Ralph 1974:xi). 

It appears that schooling is too often an assault on learner's ego because the rote, 

arbitrary, verbatim instruction so common in classrooms has few intrinsic rewards. 

Learners who do see meaning in such instruction often fail. For them school is at best 

frustrating and at worst an ordeal in which they must suffer the ridicule of the 

educator, classmates and sometimes parents. The cost of these factors, both to the 

individual and to society is enormous. (Novak & Gowin 1984:xi.) 

The study of problem-solving strategies involves an attempt to understand how to 

help learners improve their ability in problem-solving, ability to remember and to 

think. This is based on an emerging cognitive theory of human learning and memory. 

One of the reasons for research in problem-solving been undertaken is because of the 

large numbers of learners who have demonstrated severe deficiencies in their 

knowledge of these processes and how to use what they know to their advantage. 

Studies discussed by McKeachie have shown that improvement in achievement 

occurs when learners are taught to use more effective problem-solving and studying 

strategies. (McKeachie 1988:328.) 

The following paragraphs outline the need for educators to be aware of problem­

solving strategies and the advantages of the modelling approach as opposed to the 

traditional approach of selecting appropriate formulae to solve problems; the need for 

learners and the educational community being aware of problem-solving strategies. 

Kamii (1974:224) explains the poor performance as follows: when educators explain 

to a learner, demonstrate to him/her, or program according to their adult 

6 



commonsense, what they think they are teaching and what the learner actually learns 

may tum out to be different things. This is because what we teach is received by the 

learner not directly but always through his/her cognitive structure. Therefore the 

accent should be on what and how the learner learns rather than on what we think we 

are teaching. Children are not miniature adults. Learners come to class with their 

own problem-solving strategies and what the educator does is to impose his/her 

methods onto the learner. We want learners to move on eventually to new and more 

powerful strategies, but, if these are forced upon learners regardless of their methods, 

they feel ashamed and defensive about their own. (Hughes 1986: 177.) 

According to Greer (1967:60), learner's informal solution methods should be 

respected and the introduction of formal methods (the ultimate need for which is not 

disputed) should be carried out much more gradually and sensitively. 

Educators and researchers struggle for greater understanding of how learners learn 

and of what the educator ought to do to facilitate these processes (Schwebel & Raph 

1974:xi). Their concern is the developing of knowledge, not skills or information. It 

is easy to look up a fact in a book, it is even fairly easy to memorize it, but to teach 

the underlying framework that alone would give meaning to the information is a total 

different matter. (Sinclair 1974:41.) 

An educator who knows how learners think and the strategies used when solving 

problems will modify his/her perception and understanding of what is taking place in 

his/her classroom, and consequently, the quality and goals of his/her interventions (De 

Meuron 1974:232; Marshall 1994:23). 

According to Arons (1997:384), a small portion (less than one third) of learners is 

ready for critical reasoning. The rest, lacking the steady, supportive help and explicit 

exercises required, resort in desperation, to memorization of end results and 

procedures. Failing to develop the processes underlying critical thinking, they fail to 

have experience of genuine understanding and come to believe that knowledge is 

inculcated by educators. Rief (1986:51) describes these conventional teaching 

practices in Physical Science as being "deleterious" because of excessive emphasis on 
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mathematical symbolism and quantitative problem formulation. Skinner (1974: 126) 

similarly regards rule-following as the "veneer" of civilization. 

For physical science educators the most obvious implications of this research is that 

our traditional view about teaching is inaccurate, where learners lack deep processing 

that is, they do not understand the meaning of what they are learning. The learner is 

not an empty vessel in which the educator pours knowledge of physics equations, and 

functional relationships and problem-solving strategies. (Fuller 1982:44.) 

Learners acquire knowledge best through recreating the process for themselves 

(Modell 1985 :20). In the traditional approach to problem solving learners come to see 

the selection of correct formulae as the key to problem solving. Thus they tend to 

develop a problem statement for a list of formula-centered problem solving strategy as 

follows: select a problem statement for a list of given and unknown variables; search a 

list of formulae for an equation which involoves those variables alone; solve the 

equation for the unknown. This strategy is especially effective for homework 

problems where the necessary formulae can be found in the chapter from which the 

problems were assigned. Dedicated learners learn this strategy well by working a 

number of assigned problems for they know that "practice makes perfect." Indeed 

they may become quite adept at formula hunting. However, the formula-centered 

approach fails when learners are faced with problems requiring a deeper conceptual 

understanding. 

Problem-centered learning, which leads to developing rules has often been found to 

facilitate transfer and problem-solving skills when compared with expository learning. 

According to Andre (l 986: 194), the problem-centered method forces learners to 

search for generality, expository methods may or may not require the learner to 

possess the generality. There is an important difference between being told what a 

definition or formula is and deriving one's own. The former requires only 

memorization and the latter emphasizes thinking. 

To Polya (1945:16), the advantage of learners deriving formulae on their own from 

"experimental evidence" is that it acquires new significance and has a better chance of 

being remembered and appropriately used. It has been noted by a number of 
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educators that when the lessons are "process" orientated i.e. focussing on the learners' 

thinking process rather than "answer" orientated i.e. focussing on performing skills 

and getting the right answer, learners' performance improves substantially. (James 

1992: 157.) 

It is to be expected that an improvement in learner's problem solving performance 

would come by a deeper understanding of the nature of this process. We need to 

study what learners' natural approaches to problems are and what the actual obstacles 

to success are. It seems clear that teaching general heuristics in the context of a 

suitable collection of problems improves performance and leads to some 

consciousness of the strategies. (Bell 1979:363.) 

In addition, educators need to know about strategies that learners apply when solving 

problems so that they can assist learners in developing these strategies. By virtue of 

our cognitive capacities, humans have discovered logic and have learned how to use it 

in drawing valid inferences from premises and data. It is seldom the case that an 

individual approaches a problem with no general hypothesis whatsoever to direct the 

interpretation of data. (Ausubel et al 1978:570.) Learners choose strategies that make 

sense in their scheme of things (Biggs 1984: 130). 

Reflecting on and finding out how one learns and thinks makes the process concerned 

more accessible and usable. As learners begin to understand how they can learn for 

meaning, it gives them confidence to try when they previously would not. As 

confidence develops through greater awareness of how learning occurs, the process of 

conceptual learning and thinking grows, so that there is a constantly changing and 

developing body of meaning. Metacognition helps a learner to become autonomous, 

but not isolated. The learners take charge of their own learning, because they know 

what is happening and can manage the process. Concepts and principles are learned, 

have meaning and are usable, and are not simply memorized as a set of words. (Biggs 

1984:241; Duell 1986:237.) 

If these strategies are based on lack of understanding, it is the role of the educator 

who is knowledgeable of the strategies, to develop these effective strategies in the 

learner rather than simply impose correct strategies. The more educators know about 
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learners' individual conceptual frameworks, the better educators can design 

situations/learning experiences for the learners and the more likely learners will be 

able to rethink their conceptual schemas of their world-views. 

Van Heuvelen (1991 :893) has quoted many studies on problem-solving which 

indicate that learners do not understand the meaning of basic quantities. When given 

a problem, learners identify some structural feature described in the problem. They 

search randomly for and inappropriately use an equation they associate with that 

feature. Understanding must come before learners start using mathematics in 

problem-solving, otherwise equations become crutches that short-circuit attempts at 

understanding. 

The reason for learners lack of understanding is that they find it difficult to directly 

relate their science and mathematics knowledge to the real world. The root of the 

problem is that science and mathematics is mostly taught in a decontextualized 

fashion, completely devoid of any relationship to the real world (De Villiers 1983; 

McDermott 1991; Kowleswar 1992; Brookes 1994). A possible reason could be that 

physical science and mathematics has developed in the mind of the educator as pure 

theoretical separate discipline. Mathematics and science is not viewed as a 

quantitative language which plays a role across many disciplines and within many 

real-life situations. Once mathematics and science skills and content have been taught 

completely divorced from any real world interpretation and meanings, attempts to do 

so at a later stage, are mostly futile. (De Villiers 1983; Kowlesar 1992.) According 

to Blignaut, Ladewig & Oberholzer (1985), the modelling approach is not being 

consciously dealt with in mathematics and science teaching. 

Learners' own theories of learning and problem-solving often involve the notion that 

failure to succeed academically is a result of low innate ability, they attribute their 

failures to stable, unchangeable factors which they can do nothing about. Their 

motivation is low because they feel that it is useless to try changing attributions and 

self-concepts to include the idea that needed skills can be developed and may have a 

significant effect upon motivation. (McKeachie 1988:5.) Learners are often not aware 

of their lack of understanding or misunderstanding of concepts. They are often 

willing to accept wildly erroneous answers without questioning why or how such 



claims could be valid. They seldom test their claims against those that relevant 

concepts or principles would suggest or even against common sense. (Novak & 

Gowin 1984:74.) 

Performance will be enhanced and with minimum anxiety by knowledge of one's 

memory processes, capacity limitations and repertoire of strategy skills, monitoring 

and evaluation of strategy effectiveness, organization of activities to changing task 

demands. Reflection on and knowing how one solves problems makes the process 

concerned more accessible and useable, it helps learners become autonomous, they 

take charge of their own learning because they know what is happening and can 

manage the process. (Biggs 1984; Andre 1986; Novak & Gowin 1984; Phyle & Andre 

1986; Duell 1986.) Schoenfeld (1985:207), has shown that the conscious application 

of problem-solving strategies does indeed have a positive impact on learners problem­

solving performance. 

Superintendents in education are concerned about the poor results especially in 

science and mathematics but they have not been able to ascertain the cause of this. 

Articles on these topics are very rarely published and if they are, they are very general 

in content and lack much insight into research. (McKeachie 1988:327.) 

Parents and School Governing Body members in most cases are not familiar with 

problem-solving and learning strategies. Parents may verbalize that their child does 

not know how to study, resulting in poor mathematics and science test and 

examination results but they do not understand why. Much research is not readily 

available to those outside the field. It is important to find a way to help educate these 

individuals about learning skills and strategies and why they are important. Good 

theories are needed which if implemented well will help to make a difference to 

results obtained by many learners. (McKeachie 1988:328.) Further, as we continue 

to increase the awareness of the educational community there is an increased 

probability that we can establish the conditions under which study and problem­

solving strategies can be effective, identify the variables that influence the 

effectiveness of particular strategies and assess the kinds of changes in cognitive 

processing that results from learners' application of study habits. The results from 
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this research will be translated into a language, format and programme that can be 

usable by schools. 

The purpose of this research is to yield some insights into thinking processes of 

learners when solving problems. Furthermore it offers the prospect that these insights 

can be used to teach the learner such skills. 

Once knowledge of the intuitive strategies used by learners together with the specific 

conceptual stumbling blocks is identified, it can be made available to stakeholders 

involved in education, and hence more appropriate educational strategies can be 

designed for teaching and learning in science and mathematics. 
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CHAPTER TWO 

REVIEW OF LITERATURE 

INTRODUCTION 

The review of literature will be dealt with under the following headings: 

THEORIES OF LEARNING RELATED TO SCIENCE AND MATHEMATICS 

The respective rationale underlying two major learning theories that had a major 

impact on the learning and teaching of science will be discussed in some detail. They 

are the traditional approach whose underlying theory is Behaviourism and the 

alternative approach whose learning theory is Constructivism. 

PROBLEM-SOLVING 

An effective way of learning is by solving problems. It challenges the curiosity of the 

learner and stimulates him/her to develop new knowledge and concepts. Problem­

solving dates back to the beginning of mankind forming, an integral part of a person's 

everyday life. However, it is only recently that educational researchers have focussed 

on strategies used by learners when solving problems in mathematics and science. 

This discussion includes a brief historical development of problem-solving strategies 

and also outlines learner's personal attributes that contribute to problem-solving. 

PROBLEM-CENTERED APPROACH 

This approach to teaching commences with a problem, query or puzzle that a learner 

has to solve. In this way learners are motivated to get actively involved in the 

learning process. The discussion that follows advocates the problem-centered 

approach and outlines some difficulties affecting its manipulation. 

ALGEBRAIC FUNCTIONS AND SYMBOLS 

Mathematics is mankind's greatest intellectual achievement. Although it may have 

changed in some ways since its origin, the basic concepts or ideas remain the same. 

The origin of mathematics, the nature of functions and the interpretation of symbols 

will be discussed. 
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MODELLING 

Educators and researchers have found that the traditional way of "getting knowledge 

into the heads of students" is not very successful. Most cognitive mathematicians and 

scientists now believe in a constructivist model of knowledge, and they are now 

considering modelling, which is based on a constructivist view of teaching and 

learning, as a more successful method of teaching. The steps involved in the 

modelling process and the main categories of modelling will be discussed in some 

detail. 

THEORIES OF LEARNING RELATED TO SCIENCE AND MATHEMATICS 

Over the past decades the views of and approaches to how learners understand and 

learn mathematics and science have varied. Various research perspectives on the 

learning and teaching of mathematics and science have been adopted. Learning 

theories such as Behaviourism, Piagetian theories, Cognitive Psychology and 

Constructivism have been dominant influences in education. Two of these theoretical 

approaches, which have differing principles and approaches will be discussed. They 

are Behaviourism and Constructivism and they seem to have had the greatest impact 

on the teaching and learning of Mathematics and Science. 

The Behaviourist Theory 

Behaviourism is a philosophy of the science of human behaviour. This theory, which 

is also referred to as the traditional approach or connectionist theory, relates to the 

empiricist philosophy of science that all knowledge originates in experience. The 

traditional empiricist motto is "there is nothing in the mind that was not first in the 

senses." Hence a person can obtain knowledge of any reality, because the senses, the 

image of that realitY, corresponds exactly to the reality (a replica or photocopy). 

(Olivier 1992: 194). 

A child develops "mental" traits from the environment (Watson 1925:75). In 

mentalistic formulations the physical environment is moved into the mind and 

becomes experience. Behaviour is moved into the mind as purpose, intention, ideas 

and acts of will. Perceiving the world and profiting from experience becomes 

"general-purpose cognitive activities." (Skinner 1974: 102.) 
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Behaviourists assume that learners learn what they are taught, therefore it is assumed 

that knowledge can be transferred intact from one person to another. The leaner is 

viewed as a passive recipient of knowledge, an "empty vessel" to be filled. 

Behaviourists believe that knowledge is taken directly from experience and that a 

learner's current knowledge is unnecessary to learning. (Olivier 1992: 195.) 

Behaviourists claim that there is a response to every effective stimulus and that the 

response is immediate. By effective stimulus, is meant that the stimulus must be 

strong enough to overcome the normal resistance of the passage of the sensory 

impulse from sense organs to muscles. Habit-forming has to come in before certain 

stimuli can be effective. It starts in all probability in embryonic life and even the 

human young environment shapes behaviour so quickly that all of the older ideas 

about what types of behaviour are inherited and what are learnt, breaks down. 

(Watson 1925:79). The more times a stimulus-induced response is elicited, the longer 

the learning will be retained. Positive reinforcement by way of success and reward 

strengthens any behaviour and negative reinforcement results from failure. 

(Mackenzie 1977; Olivier 1992; Skinner 1974; Watson 1925.) 

The educator is "to cultivate the mind as a farmer cultivates his field, and the intellect 

is to be trained as a vine is trained in a vineyard." In the absence of any adequate 

account of the development or growth of a person's exposure to an environment, the 

almost inevitable result is that important aspects of thinking are assigned to genetic 

endowment. (Skinner 1974: 115.) Consequently learning must proceed from the 

simple to the complex, short sequences of small items of knowledge and exercise of 

these in tum through drill and practice (Olivier 1992: 195). According to Bouvier 

(1987, cited in Olivier 1992: 195), learners learn by stockpiling, by accumulation of 

ideas. 

From a behaviourist perspective, errors and misconceptions are not important because 

it does not consider learners' current concepts as relevant to learning. This 

perspective is succinctly put by Gagne (1983): "The effects of incorrect rules of 

computation, as exhibited in faulty performance, can most readily be overcome by 

deliberate teaching of correct rules ... This means that teachers would best ignore the 
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incorrect performance and set about as directly as possible teaching the rules for 

correctness." (cited in Olivier 1992:195.) 

Critique 

Although the view has been powerful and influential it does have significant short­

comings. Behaviourism was based largely on an empiricist approach. It never 

managed to produce a significant body of lasting scientific knowledge comparable to 

what can be found in many other less endowed sciences. Partly as a result of this 

lack, behaviourism's grand theories have almost all been abandoned. (Mackenzie 

1977: 1.) Educators adopting the behaviourist method of teaching, have at some time 

or other expressed their concern that concepts taught are never remembered even over 

a short period of time (Wilkerson & Hundert 1991: 161 ). It has long been known by 

researchers and educators, that learners forget concepts and make mistakes in 

computations, despite these very careful teaching methods. Sinclair (1974:41) 

contends that it is easy to look a fact up in a book, it is even fairly easy to memorize 

it, but to teach the underlying framework that alone will give meaning to the 

information is a totally different matter. 

Children do not think like adults and their fundamental knowledge is differently 

structured. (Sinclair 1974:41 ). Piaget's theory presents knowledge, not as something 

imposed on humans by hereditary or the environment, but as freely created from 

within (Furth 1980:8). Scott (1987:3), like many other researchers who oppose the 

traditional view, strongly believe that in the long run this direct teaching has drastic 

negative effects on children's ability to learn mathematics and science. The 

rationale/explanation offered is that if the educator shows the learner how to solve a 

problem, this knowledge is not properly constructed from within. Instead the learner 

memorizes bits and pieces, which s/he frequently assembles and applies in the wrong 

order for an unsuitable situation. (Murray 1992: 11.) 

According to the behaviourist approach it is necessary to first present/teach the theory 

and then involve the learners in practical problems. In other words, learners are first 

taught the rules (skills) which they are expected to apply to solve problems. From this 

perspective, doing mathematics and science involves calculating answers and 

mastering the procedures and rules to do so. Thus learning mathematics and science 
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is thought to consist of absorbing pieces of knowledge with an emphasis on acquiring 

skills rather than on conceptual understanding and operations. This form of practice 

acts to perpetuate the educators' and learners' beliefs that school mathematics and 

science is about finding ways for calculating correct answers rather than for 

developing numerical or functional relationships through their own reasoning. 

Learners do well on straightforward calculations, but experience difficulties when the 

problem becomes complex. 

As the educator is seen as the dispenser of knowledge, the learners are considered to 

be passive receivers/learners. The responsibility of learning according to this 

approach lies with the educator and not the learner. The learners are therefore 

dependent on the educator. 

A theory that seems to be a powerful source for an alternative to direct instruction is 

that of constructivism. These theorists believe that the behaviourist theory has missed 

the richness of human behaviour. Constructivists believe that one has to examine the 

problem-solving ability of learners, that is, the higher mental processes that they use 

to deal with problems. They speculate on what people are thinking, on what strategies 

they are using and that these processes are not observable. Educators cannot simply 

transmit information to their learners and assume that it will be learned. For learners 

to understand new information, they must be given the opportunity to engage in the 

process of coming to know, through problem-solving, exploration, observation and 

practice, with direction and assistance from the educator. (Weade 1994:87.) This is in 

direct contrast with the behavioural learning theory. 

In support of the constructivist view, Wood, Cobb & Yackel (1994: 178), consider 

mathematics as a "science of pattern and order" that relies on logic rather than on 

observation as its standard truth. It does however incorporate a scientific approach in 

learning the truth by means of observation, stimulation, and experimentation. 

Mathematics and science then, becomes a human activity in which individual 

meaning is constructed through sensorimotor and conceptual activity. 

This approach will be discussed in more detail. 
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The Constructivist Theory 

A constructivist theory of learning guides the theoretical orientation of this research, 

which aims to understand the learning process from a cognitive point of view. In the 

past few decades, particularly in the 1970's, constructivism rapidly gained 

recognition. Constructivism is a theory of knowledge with roots in philosophy, 

psychology and cybernetics (Ernest 1991 :70). 

The development of knowledge is a process different from physiological maturation, 

different also from mere accumulation of new knowledge content, which can be 

called learning from outside (related to accommodation). Rather, development is a 

construction on the part of the child, i.e., from within. It is a progressive restructuring 

and results in the child's acquisition of new knowledge capacities. (Furth 1980:3). 

For Piaget, says Furth (1980:8), development is intrinsic to knowledge. Piaget's 

theory presents knowledge not as something imposed on humans by heredity or 

environment, but as freely created from within. The first principle drawn from 

Piaget's theory (Kamii 1974: 199) is the view that learning has to be an active process, 

because knowledge is constructed from within. Physical knowledge can be built by 

discovery, but logico-mathematical knowledge cannot. It can be built only by the 

child's own invention. All logico-mathematical structures have to be invented, or 

created by a child's own cognitive activity. In the logico-mathematical realm, the role 

of the educator is not to impose and to reinforce the "correct" answers but to 

strengthen the learner's own process of reasoning. 

Piaget was the first constructivist in the sense that his view that knowledge was 

constructed in the mind of the learner was based on research on how children acquire 

knowledge. Piaget believed that knowledge is acquired as the result of a lifelong 

constructive process in which we try to organize, structure, and restructure our 

experiences in light of existing schemes of thought and thereby gradually modify and 

expand these schemes. Indeed, his definition of knowledge "invariance under 

transformation" has no meaning outside of the constructivist perspective. Piaget 

argues that objects appear ''permanent" or "invariant" as the result of the individual's 

coordination or experiential data and the subsequent projection of thes� co-ordinations 

into the world that lies beyond our senses. (Bodner 1986:874.) 
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According to constructivists (Ernest 1991; Olivier 1992; Heaney & Watts 1988 and 

others), knowledge is made by us and our way of experiencing, rather than given by 

an independently existing objective world. This knowledge arises from the 

interaction between experience and our current knowledge structures and does not 

simply arise from experience. This view accounts for the development of subjective 

knowledge of the external world. It explains how an individual constructs subjective 

knowledge, notably a theoretical model of a portion and how this knowledge or model 

develops (Ernest 1991 :71 ). 

The individual from the moment of birth, receives sense impressions from, and 

interacts with the external and social worlds. They also formulate subjective theories 

to account for, and hence guide, their interactions with these realms. These theories 

are continually tested through interaction with the environment, animate and 

inanimate and they survive in a pragmatic and instrumental sense only as long as they 

are useful. (Ernest 1991:71; Bodner 1986:875.) 

From a constructivist perspective knowledge is not passively received by the learner 

but actively built by the cognising subject from within. Each of us builds our own 

view of reality by trying to find order in the chaos of signals that impinge on our 

senses. The only thing that matters is that whether the knowledge we construct from 

the information functions satisfactorily in the context in which it arises. (Bodner 

1986:874.) 

It is not possible that knowledge can be transferred ready-made and intact from one 

person to another (Olivier 1992: 196). Children construct personal models to explain 

their experiences and their environment. They are the architects of their knowledge, 

rather than simply passive recipients of second-hand knowledge from their educators. 

Personal constructs are tentative models of the environment. These models are there 

to predict and control events and are continually being evaluated against personal 

criteria. A construct will only be abandoned or modified if it no longer seems to be 

useful if it no longer successfully predicts and controls events. Thus, such personal 

constructs are the basic intellectual tools brought to bear in problem-solving. 

Problem-solving is a way of challenging these personal constructs (Heaney & Watts 

1988:9). 
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Human (1999:2) regards the constructing of knowledge as a synonym for learning 

thereby defining learning as the (personal) construction of (personal) knowledge 

without disclaiming that other people may have a profound influence on the 

knowledge a learner constructs as a result of interpreting a given representation. 

To help the learner assimilate abstract concepts, it is essential to engage the learner's 

mind in active use of concepts in concrete situations. The concepts must be explicitly 

connected with immediate, visible, or kinaesthetic experience. Furthermore, the 

learner should be led to confront and resolve the contradictions that result from 

his/her own misconceptions. 

The function of cognition is adaptive and serves the organization of the experiential 

world, not the discovery of ontological reality. Thus reality is personal not absolute 

(Ernest 1984; Haeney & Watts 1988; Kamii 1974; Wood, Cobb & Yackel 1994; 

Bodner 1986). 

Learners not only interpret knowledge, but they organise and structure this knowledge 

into large units of interrelated concepts, which Skemp (1971:59) called 'schema.' A 

schema is a conceptual structure stored in memory. For a given input, different 

schemas may be activated for different people. Even for the same person and the 

same input, at different times, different schemas may be activated. 

Leaming basically involves the interaction between a learner's schemas and new 

ideas. This interaction involves two interrelated processes, assimilation and 

accommodation. Assimilation occurs when a new recognisably familiar idea is 

encountered. This new idea is incorporated directly into an existing schema, thus 

expanding existing concepts. When this does not work, when our experiences do not 

fit our ideas, equilibration can occur by adjusting our schema to fit the sensory data 

we perceive and this process is called accommodation (Bodner 1986:875). 

Accommodation involves the restructuring and extension of current knowledge 

(Olivier 1992; Human 1996). While assimilation and accommodation are twin 

processes of knowing, they are obligatory occasions for further development insofar 

as present activity feeds back into the child's structure (Furth 1980:8). Piaget believes 

that a child is more likely to accommodate his behaviour to solve a problem when the 
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new behaviour that is required differs only slightly from those already m his 

repertoire (Birns & Golden 1974: 128). 

The way in which a learner embeds specific information (that is assigns meanings, 

seeks and senses purposes and justifications, experiences epistemological nature and 

relates information to possessed knowledge) depends on a variety of factors other than 

the nature of the explicit representations of syntactic information that may be 

available to him/her. These factors include the knowledge already possessed by the 

person, the messages conveyed by the context in which the information is 

encountered, the demands ( obligations) experienced by learners, the social 

relationships impacting on learning, other information that is simultaneously 

available, in short the social and cognitive contexts in which information is 

encountered. Hence different learners in different situations (or even in the same 

situation) may construct quite different imbedments for the same piece of syntactic 

information, they may come to know the same thing in substantially different ways 

(Human 1999:3). Emphasis is therefore placed on the learner's own thinking and 

judgement and a constructivist environment provides opportunities for the learner to 

construct his/her own knowledge and moral standards through his/her own reasoning 

(Kamii 1974:213). 

The constructivist model assumes that there is a purpose to learning and that learners 

do perceive the purpose and actively engage in constructing the meaning to be gained 

by bringing their ideas to that experience (Evertson & Murphy 1994:300). The 

implications of the constructivist model for education require a subtle shift in 

perspective for the educator. A shift from someone who "teaches" to someone who 

tries to facilitate learning, and a shift from teaching from imposition to teaching by 

negotiation. (Bodner 1986:876.) 

Learning science and mathematics according to Scott (1987 :7), involves learners not 

only in adopting new ideas, but also in modifying or abandoning their pre-existing 

ones. The following are a few key points in this view that need mentioning: 

• What is already in the learner's mind matters.

• Individuals construct their own meaning.
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• The construction of meaning is a continuous and active process.

• Learning may involve conceptual change.

• The construction of meaning does not always lead to belief.

• Learners have the final responsibility for their learning.

• Some constructed meanings are shared.

The adoption of a constructivist view of learning necessarily has fundamental 

implications for classroom activity. Some of these are: teaching commences with 

orientation, elicitation of ideas, restructuring of ideas, application of ideas and 

· reviewing change in ideas. (Scott 1987: 10.)

Thus the research approach adopted by constructivist researchers and educators is 

quasi-ethnographic, which means that it includes clinical and task-based interviews, 

participant observation and descriptive case studies. Researchers need to look beyond 

what learners say, i.e. explicitly for knowledge that is implicit in what they do. In 

current research on children's understanding of mathematics and science, researchers 

look at the invented procedures children develop, as one kind of evidence of their 

implicit knowledge. A similar stance has been adopted in this study. Research 

evidence indicates that prescriptive teaching methods of computation and problem­

solving (based on Behaviourism) necessarily induce in a learner a receptive, passive, 

dependent attitude towards learning, whereas a constructivist approach induces an 

active, self-reliant, creative reflective, attitude towards learning. (Penchaliah 

1997:9.) 

PROBLEM SOL YING 

Problem solving is an integral part of life, an everyday activity, a process in which 

everybody engages at varying degrees of sophistication every time they carry out a 

task or make a decision. The aim of a progressive educator is to contribute to the 

overall development of the growing human being, to develop the learners' creativity 

and self-realization through experience of learning mathematics and science. This 

involves the learners' active response to the environment, autonomous inquiry by the 

learner, seeking out relationships and creating artefacts and knowledge. (Ernest 

1991: 192.) Problem solving is a very sophisticated cognitive skill, hence 
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understanding and teaching scientific problem-solving is both practically important 

and intellectually challenging. 

Leser (1980) defines a problem as, "a situation in which an individual or a group is 

called upon to perform a task for which there is no readily accessible algorithm which 

determines completely the method of solution" (cited in Ernest 1991 :287). There are 

four components to problems: the goal(s), the givens, the obstacles and methods. 

Problem-solving consists of the mental and behavioural activities that are involved in 

dealing with problems. It may involve cognitive, emotional and/or motivational 

components. (Andre 1986: 170.) 

While science and mathematics educators and researchers acknowledge the 

importance of problems in scientific progress, many (for example Skinner, 1974: 111; 

Munson, 1988: 12) are of the view that problems should focus on the justification of 

theory or understanding rules by exposure to natural contingencies. However, to me, 

learners from solving real life problems, acquire and develop concepts and processes 

by creating scientific theories and by applying these theories to appropriate problems. 

Nott (1988:45), called problem-solving in such context creative problem solving. 

According to Schroender & Leser (1989:31) the theme of school mathematics and 

science has shifted from "back to basics" to "problem solving." A large number of 

problem-solving resources have been developed for classroom use in the form of 

collections of problems, lists of strategies to be taught, suggestions for activities, and 

guidelines for evaluating problem-solving performance. Much of this material has 

helped educators in making problem-solving a focus of their instruction. However, it 

has not provided the sort of coherence and clear direction that is needed, primarily 

because to date little agreement has been reached on how this goal can be achieved. 

There are vast differences among educators of what it means to make problem solving 

the focus of school science and mathematics. One of the ways of coming to grips 

with these differences is to distinguish among three approaches to problem-solving 

instruction: 

• Teaching about problem solving: An educator who teaches about problem

solving highlights Polya's (1945) model of problem solving ( or some minor

variation of it). Learners are explicitly taught the phases in problem solving.
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Teaching about problem solving also includes experiences with actually 

solving problems, but it always involves a great deal of explicit discussions of, 

and teaching about, how problems are solved. 

• Teaching for problem solving: The educator concentrates on ways in which

science and mathematics being taught can be applied in the solution of both

routine and non-routine problems. A strong adherent to this might argue that

the sole reason for learning science and mathematics is to be able to use this

knowledge gained to solve problems.

• Teaching via problem solving: The learning of science and mathematics in this

way can be viewed as a movement from the concrete (a real-world problem

that serves as an instance of the mathematical concept or technique) to the

abstract (a symbolic representation of a class of problems and techniques for

operating with these symbols).

This research advocates teaching via problem solving. 

It is Schroender & Leser's (1989:39) belief that mathematics instruction should focus 

on the understanding as their goal. By doing so they will shift from the narrow view 

that mathematics is simply a tool for solving problems to the broader conception that 

mathematics is a way of thinking about and organizing one's experiences. Thus the 

role of problem solving will change from being an activity that learners engage in 

after they have acquired certain concepts and skills to being both a means of acquiring 

new knowledge and a process for applying what has been learned previously. 

The primary advantage of self-generated knowledge is that it is tied to what the 

learner already knows. Furthermore, when learners construct new knowledge for 

themselves, they learn not only concepts, facts, skills, etc., but also how to manage 

and regulate the application of this new knowledge. That is, they are in charge of this 

knowledge (and of their learning in general), thereby making it more useful to them in 

solving problems and in learning new concepts and skills. (Schroender & Leser 

1989:39.) 

Nott (1988:44) advocates problem solving because it is a more effective method of 

learning. He believes that when sol�ipg�oblems, learners will be active (learning is 
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better through doing), they will be able to participate m choosing/selecting/ 

formulating problems and by encountering problems learners can be challenged to 

find things out, learn skills or processes or question their own beliefs about the world 

(strong motivation promotes better learning). However the problems should be 

relevant in that they must relate to the learner's knowledge and experiences (learning 

should start with the familiar before it moves to the unfamiliar). Hobden ( 1998:227) 

adds that learners should be encouraged to bring their contexts to the classroom. 

Then, collaboratively with the educator, they can construct problems that "touch their

lives." Learning in science will than involve the reconstruction of personal 

experiences. 

According to Nott (1988:44) and Heaney (1988:9), if learners are actively involved in 

solving relevant problems that they have participated in formulating, they will be 

highly motivated, they will enjoy the experience and so they will learn whatever it is 

we want them to learn better than by learning with other teaching methods. Polya's 

( 1945: 16) contention is that when the learner develops a formula s/he is convinced 

that it is correct because s/he derived it carefully himself/herself from 'experimental 

evidence.' The details of the formula acquire new significance and are linked up with 

various facts. The formula has therefore a better chance of being remembered and the 

knowledge of the learner is consolidated. Finally, these questions can be easily 

transferred to similar problems. After some experience with similar problems, a 

learner may perceive the underlying general idea that makes use of relevant data, 

variation of data, symmetry and analogy. If s/he gets onto the habit of directing 

his/her attention to such points, his/her ability to solve problems may definitely profit. 

Polya's (1945:v) view is that when learners are given a problem proportionate to their 

knowledge, it challenges their curiosity and may give them a taste for, and some 

means of independent cognitive strategies of their own. 

Using problem solving to acquire and develop concepts and processes by creating 

scientific and mathematical theories and by applying these theories to appropriate 

problems, learners acquire a mathematical and scientific education. Vocational 

arguments also advocate problem-solving because it is a process that people will need 

at work. It prepares them to be creative and innovative, to be able to work with others 

and to appreciate technological and economic relevance. (Nott 1988:45). 
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Success in problem-solving enhances self-confidence and disposition to improve, 

whereas a mild degree of failure may prove salutary by increasing drive, attentiveness 

and willingness to consider other alternatives (Ausubel et al 1978:581 ). 

The possession of a sound cognitive structure, particularly if clear, stable, and 

discriminable, facilitates problem solving. Without such knowledge, no problem­

solving is possible irrespective of the learner's degree of skill in discovery learning; 

without it the learner could not even begin to understand the nature of the problem 

confronted. (Ausubel et al 1978:571.) Personal heuristics are constructed by the 

individual as they reflect on their experiences, not as a result of direct instruction and 

practice (Wheatley 1995 :2). Creativity is the highest degree of problem-solving 

involving novel or original transformatioP of ideas and the generation of new 

integrative and explanatory principles (Ausubel et al 1978:566). 

According to Phy le & Andre ( 1986: 144), problem-solving consists of a set of highly 

practiced sequences (schema, frame, plans, etc.) that provides the basis for an 

integration of processing components. So what is implied is a highly specific mode of 

information processing that requires little or no conscious monitoring. These highly 

developed schema, rules, procedures, plans, etc. involve sequences of processing 

stored in long-term memory storage that, along with controlled processing in short­

term working memory, provides that basis for skilled performance. This view is 

supported by Scheider & Shiffrin (1977). 

Problem-Solving Strategies 

Looking at problem-solving strategies historically, it started with the Behavioural 

approach which was based on "trial-and error" learning. Such learning occurs when a 

stimulus situation demands a response, but the correct response is not dominant in 

response hierarchy for that situation. The learner tries out responses in their order of 

dominance. Incorrect responses are extinguished, and the correct response reinforced 

until it becomes dominant in that situation. This view leaves little room for thought 

and planning in problem-solving. (Andre 1986: 172) 

Next followed the Gestalt approach involving thinking about a situation and 

rearranging the mental elements into a structure that provides a solution to the 
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problem. Wallis in 1926, described the stages of problem-solving as a preparation 

stage entailing an analysis of the problem, followed by an incubation stage involving 

subconscious consideration of the problem while the problem-solver is relaxing or 

considering something else, next is the inspiration stage where the solution comes to 

the learner unexpectedly, and finally the verification stage which involves checking 

the solution and working out the details. (Andre 1986: 172.) 

This was followed by the Piagian approach which focussed on mental logic. 

Since the early l 960's, the dominant position in American psychology had moved 

from a behavioural position to a cognitive information-processing position. Problem­

solving was viewed as the processing of information by an information processing 

system (the brain) such that information in the initial state is transformed into the 

information of the desired end state. (Andre 1986: 175) 

Although Dewey outlined his problem-solving strategies in 1910, it has not been 

appreciably improved upon by recent researchers. Polya (1945), Rief et al (1976), 

Schoenfeld (1985), Andre (1986), Haeney (1988), Mestre (1991 ), Van Heuvelen 

(1991 ), Heller et al (1992), Watts (1994), Dhillon (1998), Ausubel et al (1978) and 

Snowman (1986) have analysed problem-solving strategies and their views can be 

basically categorized as following: 

• Identify, understand and translate the problem:

This step involves describing the problem, exploring it verbally and

pictorially, and considering the given conditions, assumptions, goals and

obstacles. At this stage, according to Mestre (1991 :58), the problem-solvers

must use their knowledge to analyse the problem qualitatively before resorting

to mathematical manipulations. While van Heuvelen (1991 :891) agrees with

the qualitative analysis of a problem, he places emphasis on the problem being

seen as describing a physical process.

• Plan a solution:

This stage of building a model is a creative, brainstorming stage. It draws on

existing knowledge and experience. The existing cognitive structure plays a

key role in problem-solving as is evident from the fact that the solution of any
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given problem involves a reorganization of the residue of past experiences so 

as to fit the particular requirements of the current problem situation. Since 

ideas in cognitive structure constitute the raw materials of problem solving, 

whatever transfer occurs, positive or negative, obviously reflects the nature 

and influence of cognitive structure variables. (Ausubel 1978:571). 

Frequently this step may call forth some algebraic relationship and equation 

that gives relationships among the various quantities in the problem. 

• Implementation strategy:

The problem is analysed by using ones ability to do science and mathematics,

i.e. substituting numerical values into algebraic equations and scientific

formulae and computing numerical results. 

• Interpretation of the results:

The solution is translated back into the language of practice to decide whether

it is plausible.

The above four steps were also considered by Blignaut et al (1992:1) and de Villiers 

(1994:34) in the "modelling" approach which involves starting any problem at the 

natural origin, the real-life situation. 

Many textbooks present learners with what the authors think are sensible, systematic 

schemes for approaching the solutions. The first step is to draw a diagram of the 

physical situation, set up the position line, translate from the verbal statement to 

symbolic so as to firstly tabulate the known quantities together with the symbols and 

secondly to list the symbols of the unknown quantity, select the equation that gives 

the most efficient solution, make the necessary calculations and finally interpret the 

results. If the textbook does not provide this systematic approach then the educator 

does. (Arons 1997:38). 

The central difficulty of problem-solving is the need to make judicious decisions to 

find among the many reasoning paths that lead nowhere, one that leads to the desired 

goal. Although there are no prescriptions guaranteeing good decisions, there are 

systematic methods that can make the search for a solution much easier. (Reif 

1986:51.) Research evidence according to Schoenfeld (1982:31 ), strongly concurs the 
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correlation between the use of heuristics and competent problem-solving performance 

thus suggesting that problem instruction via heuristics will enhance learner's problem­

solving performance. 

According to Ausubel et al (1978:566), problem-solving refers to any activity in 

which both the cognitive representation of prior experience and the components of a 

current problem situation are reorganized in order to achieve a designated objective. 

Such activity may consist of more or less trial-and-error variation of variable 

alternatives or of a deliberate attempt to formulate a principle or discover a system of 

relations underlying the solution of a problem (insight). The trial-and-error approach 

consists of random or systematic, approximation and correction of responses until a 

variant emerges. 

The insightful approach, implies a "set" that is orientated towards discovery of a 

meaningful means-end relationship underlying the solution of a problem. It may 

involve either simple transposition of a previous learned principle to an analogous 

new situation 0l""mere fundamental cognitive restructuring and integration of prior and 

current experience to fit the demands of a designated goal. (Ausubel et al 1978:567.) 

Interpersonal factors influence problem-solving strategies. Intelligence is one of the 

most important determinants of problem-solving ability. Reasoning power, 

comprehension, memory, information processing and the ability to analyse also affect 

problem-solving. Other cognitive traits such as open-mindedness, flexibility, capacity 

for generating multiple and novel hypotheses, attentiveness, problem sensitivity, 

intellectual curiosity and the ability to integrate ideas influence problem-solving in 

rather self-evident ways. Cognitive style is obviously a relevant factor, particularly 

with respect to general strategies of problem-solving. Many temperamental and 

personality traits such as high kinetic level, decisiveness, self confidence and self­

critical ability facilitate problem-solving when present in a moderate to high level. 

(Ausubel et al 1978:579.) 

In conclusion, if problem solving is to become the focus of the curriculum, then it 

must be central to the way educators teach. Learners cannot be expected to solve 

problems unless they are helped to build their mathematics and science knowledge 
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from problems rather than taught procedures that later will be applied to problems. 

(Schroender & Leser 1998:8.) The educational community needs to be aware of the 

changing view of science and mathematics and the implications for schooling 

(Lindquist 1998: 12). 

THE PROBLEM-CENTERED APPROACH 

The problem-centred approach is a learning strategy based on constructivism, the 

basic premise of which is that learners actively build up their knowledge based on 

their own experience. Problem-based learning is the most significant innovation in 

education (Boud & Feletti 1991: 13). 

The principal idea behind problem-based learning is that the starting point for learning 

is not an exposition of disciplinary knowledge, but a problem, a query, or a puzzle 

that the learner wishes to solve. It is a way of constructing and teaching courses using 

problems as the stimulus and focus for learner activity. Learners are moved towards 

the acquisition of knowledge and skills through a staged sequence of problems 

presented in context, together with associated learning material and support from 

educators. (Coles 1991:301; Boud &Feletti 1991:13.) 

The problem-centred approach uses stimulus material to engage learners in 

considering a problem, which as far as possible, is presented in the same context, as 

they would find it in "real-life," this often means that it crosses traditional disciplinary 

boundaries. Information in how to tackle the problem is not given, although resources 

are available to assist learners to clarify what the problem consists of and how they 

may deal with it. Learning that has occurred from this process is summarized and 

integrated into the learners' existing knowledge and skills. 

Traditional teachings have been criticized for their lack of attention to issues such as 

the relevance of subjects, for placing poor attempts at developing skills of inquiry in 

learning, emphasizing on memorization and for inadequate portrayal of context of 

major issues and problems. Problem-based learning addresses these criticisms head­

on and uses such deficiencies as the foundation of its approach. (Boud & Feletti 

1991: 15). The important components of a problem-based curriculum are cumulative, 

integrated and progressive learning and consistency in learning (Engel 1991 :29). 
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According to Margetson (1991), Ernest (1991), Boud & Feletti (1991) problem-based 

learning: 

• Takes into consideration how learners learn. It is becoming increasingly

apparent that learning takes place most effectively when learners are actively

involved in learning in the context in which knowledge is used.

• Encourages open-mindedness, reflective, critical and active learning.

• Is morally defensive in that it pays due respect to both learner and educator as

persons with knowledge, understanding, feelings and interests who come

together in a shared educational process.

• Reflects the nature of knowledge, i.e., knowledge is complex and changes as a

result of responses by communities of persons to problems they perceive in

their worlds.

• Prepares learners to be able to learn quickly, efficiently and independently

when particular knowledge base or information is required rather than to have

assimilated all information which their educator believes is desirable i.e. as

Engel (1991 :21) suggests, developing learners for capacity rather than learning

for the sake of acquiring knowledge.

This approach to learning raises the question of discovery and/or invention, for the 

learner appears to have to discover knowledge or invent knowledge that is new to the 

him/her, even though it is well known to experts (Margetson 1991:46). Thus a 

problem-centred pedagogy represents a powerful emancipatory teaching approach, 

and when successfully implemented, empowers learners epistemologically. That is, it 

encourages active knowing and the creation of knowledge by learners and it 

legitimates knowledge as mathematical and scientific, at least in the school context. 

Coles (1991 :297), from his studies on "deep processing," a process which occurs 

when learners understand the meaning of what they were learning, provided evidence 

that deep processing learners who elaborate their knowledge, i.e. who see the 

interconnections and links between different knowledge areas not only gain the 

highest scores in examinations which test their knowledge but, are better able to 

retrieve and use in some novel situation the information they have learnt. 

The major difficulties affecting the implementation of problem-based learning are: 
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• The role change of the learner changes to active participant, constructing,

interpreting, making and exploring meaning and taking responsibility for their

own learning. Their habits and expectations of learning are in conflict with

traditional methods although they do see the relevance and benefits of

problem-based learning.

• The role change of the educator. Since the role of the learner changes, the

educator's role changes accordingly. The problem-based educator is

responsible for designing appropriate activities, observing learners at work and

guiding their progress through questioning and feedback. To be successful the

educator must trust the learners to do the work of learning. Given the range of

topics that any one case can stimulate, educators cannot be the authority on

every topic under discussion. In addition, the educator needs to possess a

broad set of specific teaching skills to use in responding to learners' needs.

• The negative reaction of colleagues. The teaching of process skills is difficult

for many teachers who may not have developed these skills fully themselves.

If they feel inadequate they may not put enough on the learners developing

and practising these important processes. Without the direction, support and

confidence which problem-solving strategies and process skills give the

learners, they can often flounder.

Successful implementation of problem-based learning does not come easily. All the 

strengths and skills of educators are required. Their behaviour and beliefs are 

challenged. Complex difficulties may arise, and educators will have to possess the 

ability to explore options and generate creative solutions in co-operative contexts. 

Commitment, determination and teamwork are essential, and above all self­

knowledge and considerable understanding of the learning process. (Todd 1991: 135.) 

Despite the challenges facing the problem-centred approach, many educators are 

attempting this approach in the hope of creating active, interdependent and 

independent learners; holistic, divergent and creative thinkers; and people who can 

solve problems or improve situations (Drinan 1991:315). 
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ALGEBRAIC FUNCTIONS, EQUATIONS AND SYMBOLS 

Mathematics is the language of the scientist. It not only aids in the understanding of our 

environment, but also provides the language with which scientists communicate. Algebra 

adds to our ability to understand and describe relationships between objects in the 

physical world, as well as between the algebraic symbols themselves. Thus, if there is a 

single theme that runs through all of algebra, it is the mathematical notion of function. 

(Fremont undated: 172.) 

The Origin of Mathematical Knowledge 

The oldest written records of mankind's mathematical knowledge was found in and 

around Egypt and dates back to some 4 000 years before the birth of Christ. These 

documents showed mankind with so comparatively advanced a mathematical system, that 

it is clear that a great break-through had taken place much earlier, which dates back to as 

far as I 00 000 years before Christ. The documents represented one of the huge 

achievements of the human mind and held an important clue to the nature of numbers. It 

also illustrated the interplay between practical needs and deep ideas that are characteristic 

of the history of mathematics. (Morgan 1972: 11.) 

The investigation of motion and mechanics, which was regarded as intermediate between 

mathematics and physics, was first investigated by a Greek philosopher-mathematician, 

Archytas in the year 400 AD. He is regarded as the founder of "mechanics." The 

Babylonian's exploration with numbers took them towards the discovery of relations that 

held true whatever the numbers used. 

It was only much later, at the beginning of the seventeenth century that scientists like 

Descartes took up the challenge of translating data involving motion and mechanics into 

formulae and laws. Descartes, a French mathematician and scientist who was born in 

1596 and died in 1650, was the first philosopher to describe the physical universe in 

terms of matter and motion. He was a pioneer in the attempt to formulate simple, 

universal laws of motion that govern physical changes. He was also the first to use the 

algebraic language of functions virtually identical to the modem use, as well as the 
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concept of a function which has been called the most important idea in all mathematics. 

Thus the concept of a function evolved from the application of mathematics to the study 

of the physical universe. Many functions occur throughout the sciences. (Morgan 1972; 

World Book Encyclopedia 1994.) 

In 1637 Descartes published his discovery of analytical geometry, known as 

"Cartesianism," proposing mathematics as the perfect model for reasoning. Scientists 

like Galileo and Copernicus investigated motion, but it was only as the seventeenth 

century opened did they start thinking to translate such data into formulae and laws. 

(Morgan 1972:90.) 

The problem of notation was not fully solved until nearly 1000 AD. In 1500, Europeans 

were still setting out their arguments, largely in words. Later in 1600 a group of 

pioneers, such as Steven, expressed their ideas in algebraic form using symbols. In their 

attempt to solve various types of equations, the later mathematicians acquired 

considerable skill in handling symbols and, perhaps began not to worry too much about 

what these symbols stood for. The "=" sign was introduced in 1557 by an English 

mathematician. (Morgan 1972: 83.) 

Mathematics is one of mankind's greatest intellectual achievements. Numerical 

knowledge is present from a very early point in ontogeny. Knowledge entailed by 

numerosity perception and correspondence construction is present during infancy. 

Counting and rudimentary arithmetical algorithms emerge during the transitional period 

between infancy and early childhood, and arithmetical knowledge develops during early 

childhood. (Klein & Starkey 1987: 13.) 

Algebraic Functions and Equations 

Knowledge about the nature of a function and interpretation of symbols is essential for 

the construction of algebraic expressions during the modelling of practical situations (De 

Villiers 1985:3). 
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The mathematical term, function, is a special kind of relation between sets of elements 

that are usually, although not always, numbers. A function/, is defined as a "a set of 

ordered pairs (x,y) where x is an element of set X; y is an element of set Y and no two 

pairs in f have the same first elements. A function indicates the relation between the 

dependent and the independent variable(s) as expressed in the form of an algebraic 

formula. The set of values belonging to the argument is the domain of the function, and 

the set of values belonging to the function value is the range of the function. 

Learners can first be introduced informally to the concept of functions by means of 

incomplete flow diagrams, which they are required to complete. There are three types of 

flow diagram exercises, one where the input numbers and rule are given and the learner 

has to produce the output number; the other type is where the rule and output numbers are 

given and the learner has to produce the input numbers, and the third type is where the 

input numbers and output numbers are given and the learner has to identify the rule. The 

same three exercise types may be presented in the form of tables, using algebraic 

expressions to describe the rules, or using a real life statement to describe the rule and use 

of a table to formulate an equation. Exercises like these show the relationship between 

variables and specifically of the dependence of one variable (the output set) on another 

(the input set). Most of high school algebra is a study of such relationships (functions). 

(Human et al 1989:25.) 

There are three principle ways of expressing a function: namely by using a table, a graph, 

or an equation. The most common means of expressing a function is a formula that gives 

the function values by a rule embodied in an equation. A general definition of an 

equation, according to Herscovics & Kieran (1980:577), is "any algebraic expression of 

equality containing a letter or letters." The concept of equation can reach a good number 

of learners by it being introduced through problem-solving. 

In this study, learners were required to construct an equation based on arithmetic 

identities (from a table). According to Herscovics and Kieran (1980:576), it seems to 

make good pedagogical and psychological sense to introduce initially mathematical 
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forms that can be anchored in some specific content. However, the use of arithmetic 

identities can be used as an intermediary step in the acquisition of the concept of 

equations and it can be abandoned once the learner has constructed meaning for the 

purpose involved. 

An integral part of a variable is its domain, that is, the set of values that can be assigned 

to it. The nature of the domain is influenced by the situation. The situation suggests the 

units and the form of the variable. Context is another characteristic of a variable that is 

interconnected to the domain. A variable similar to a situation can either be abstract or 

contextualized. Abstract variables are usually discrete ( e.g. natural numbers). 

Contextualized variables are most often continuous. Of the continuous variables, the 

following are used most frequently in graphing and functions: time, length, speed, 

temperature, weight and age. (Kowlesar 1992: 10.) 

Rooy (1988:36) noted that an extremely important strand in elementary algebra is the 

construction of formulae and equations as mathematical models of real situations, and 

specifically of construction of formulae fitting given sets of data representing the 

relationship between two variables. 

The Use of Symbols 

A symbol system is a set of symbols corresponding to a set of concepts, together with 

relationships between the symbols, corresponding to relationships between the concepts, 

thus symbolic understanding is a mutual assimilation between a symbol system and an 

appropriate conceptual structure. (Skemp 1971:60.) 

We use written symbols to aid our memory, both short and long-term. Symbols make our 

schema and concepts more available to our consciousness and that of others, which can 

be done only by the further use of symbols. (Skemp 1972:203.) Letters in equations may 

stand for a label referring to a concrete entity or, as variables standing abstractly for a 

number of things (Rosnick 1981 :418). Letter symbols in mathematics and science are 
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used to represent numbers although it is often used inappropriately as a shorthand for 

objects. 

Letter symbols are used with several different meanings by the adult mathematician in 

algebra, including: 

• Letter symbols as place holders for specific unknown numbers in equations

• As representative of many values and as holders for arbitrary numbers from a

certain set to describe the general properties of these numbers

• As place holders for numerical variables in algebraic expressions or formulae. (De

Villiers 1985.)

• Letter as object can be used to cope successfully with items like 'simplify

2a+ 5b+a.' Here no content is given, but learners can solve the item by inventing

one. (Kuchemann 1982:48.)

Hart ( 1981 : 104 ), from her research, categorized learners' interpretations of the letters as 

follows: 

• Letter evaluated. The letter is assigned a numerical value from the outset.

• Letter not used. The letter is ignored or, at best it is acknowledged but without

meaning.

• Letter used as an object. The letter is regarded as shorthand for an object or as an

object in its own right.

• Letter used as specific unknown. The letter is regarded as a specific but unknown

number and can operate upon it directly.

• Letter used as a generalized number. The letter is seen as representing, or at least

as being able to take, several values rather than just one.

• Letter used as a variable. The letter is seen as representing a range of unspecified

values, and a systematic relationship is seen to exist between two such sets of

values.

Several researchers e.g. Rosnick (1981 ), Nickerson (1985), Kuchemann (1982), etc., 

besides making reference to their own similar research, have also made reference to 
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Clement's (1980) study focussing on students' ability to translate English sentences into 

algebraic expressions. The results showed that students find these translations difficult. 

The difficulties that learners have in understanding mathematical symbolism cannot be 

overlooked, says Skemp (1971 :59). 

A common problem encountered was that of 'reversed equation,' which occurred when 

letters were used as a shorthand for an object, rather than as a number. Reversed 

equations, claims Clement (1980), reflect misconceptions about the meaning about 

variables and equations. The two sources of the reversed equation error are "word-order 

matching," which involves a direct mapping of two words into the symbols of an 

equation. The second source of error is the application of what is called "static 

comparison." In this case, the learner appears to understand what the sentence implies. 

However, s/he believes that the correct way to express the relationship is to take the 

larger number with the symbol representing the larger group. 

Learners, being influenced by textbooks and classroom instruction, interpret letters in 

several ways. Commonly the letter as an object is intended only as an analogy. Learners 

not only use letters as objects, but objects ( or pictures of objects) seem to be used as 

numbers. (Kuchemann 1982:49.) Herscovics & Kieran (1980:578) have confirmed from 

their studies that learners have a problem in performing arithmetic operations on 

algebraic expressions, which they say is partly due to the difficulties the learners have in 

thinking of the letter as representing a number. Textbooks have displayed an uneasy 

mixture of the letter as objects and the letter as numbers. In addition, some have shifted 

from the letter as object to using the same letters to describe a numerical property or 

quantity of object in the same problem. This leads to confusion in the mind of the learner 

and the formulation of vague of expressions. 

Throughout mathematics, the terms and expressions in the formal notation have both 

referential and formal functions. As referential symbols they refer to objects or cognitive 

entities external to the formalism. As formal symbols they are elements in a system that 

obeys rules of its own, and they can function without continuous reference to the 
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mathematical objects they name. As referential functions, algebraic expressions and 

equations can be used to represent the relationships that hold in situations. If one 

understands the referential linkage between situations and algebraic formalism, one is in 

a position to construct the equations that correctly 'mathematize' a situation and thus use 

formal algebra to reach particular problem solutions. (Resnick et. al. 1987:200.) 

In order to understand and meaningfully manipulate the function concept, it is necessary 

to view letter symbols as variables. Besides letter symbols assuming several values, they 

also describe the behaviour of functional relationships. There is some sort of relationship 

between the letters, and the functional values change in a systematic way, i.e. the one is 

dependent on the other and further more, how the values of one are dependent on the 

other. (De Villiers 1985:3.) 

One great power of algebra is that it allows extensive manipulation of relationships 

among variables within a completely reliable system that does not require continuous 

attention to the referential meaning to the intermediate expressions that are generated. 

Potentially unbearable demands on processing capacity would be placed on individuals 

who tried to reason through some of the complex problems for which algebra is used if, 

at each step, they were considering physical, situational, or specific quantitative referents 

for the transformations they produced. Algebra is not only a device for reducing capacity 

demands, its very abstraction away from the situations, quantities, and relationships that 

are its referential meaning is part of what permits certain mathematical deductions to be 

made. 

Learners will engage in the necessary mental construction with whatever knowledge they 

have that they construe as relevant. This means that learners' representations of the 

learning problem, along with the specific knowledge they have, will control the kinds of 

constructions they make. (Resnick et al. 1987:201.) 

According to Booth (1989:58), a major part of learners' difficulty in algebra stems 

precisely from their lack of understanding arithmetical relations. The ability to work 
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meaningfully in algebra, and thereby handle the notational conventions with ease, 

requires that learners first develop a semantic understanding of arithmetic. Research 

done by Liebenberg et al ( 1999: 173 ), suggests that learners are not aware of the 

underlying strategies of arithmetic operations and their properties and that this situation is 

most likely due to a predominately computational focus in the early grades. 

The distinction between content ( concepts, rules, relationships) and mathematical form 

(the notation and symbolism used to express the content) is reflected in this study. 

Learners can use these equations to construct meaning for the concept of nontrivial 

equation. In participating in the construction of equations, learners acquire a level of 

formal understanding of the topic. (Herscovics 1980:579.) 

MODELLING 

Modelling is firstly a mathematical and scientific method/process/skill which entails the 

construction of a mathematical model describing, representing or idealizing a certain 

practical situation. The model may be in the form of number sets, geometric figures, 

equations, tables, graphs, formulae, etc., to describe the property or properties of the real 

object or phenomenon under study (Sadovskii & Sadovskii 1993:8). 

The mathematical world is a world of abstract ideas, whereas the physical world is a 

three-dimensional reality. Mathematical answers to real-life problems do not always fit 

the physical situation. Thus, we begin to intuitively develop the idea that mathematics is 

a "model," which matches reality remarkably well. As such, mathematics provides much 

information, but results have to be checked in the physical situation to be sure that they 

"work." (Fremont undated: 18 8.) 

Arithmetic story problem solutions depend upon constructing mental models of the 

situation that constrain the relations among the given and unknown numbers. These 

models rather than the particular words of the story are used to infer the arithmetic 

operations that are required. 
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Hestenes (1987:441) describes a model as "a surrogate object, a conceptual 

representation of a real thing which behaves in accordance with physical laws." 

Oberholzer (1992:144) says that modelling could also be viewed as a teaching style and 

can be thought of as mathematics used "in context of everyday life." 

There is nothing new, nor unusual about modelling. In fact, it is obvious to scientists, 

since they have learned to follow it automatically in the analysis of physical situations 

and problems (Hestenes 1987:444). Using the means and the language of mathematics in 

industrial, economic, or any other design, is in effect, mathematical modelling (Sadovskii 

& Sadovskii 1993:8). 

Modelling as a teaching approach begins with a real-life problem, because the laws of 

nature are built at the interface between our sensory experiences of the external world and 

our reasoning about these experiences. Piaget suggested the interaction model of 

assimilation-accommodation-equilibration as the way knowledge and problem-solving 

strategies are constructed. In this model of the dynamic interaction between the minds of 

the learners and the internal experiences, the time when they are most likely to develop 

new understandings and new strategies is when their present experiences do not fit their 

mental preconceptions. This period of disequilibration, of being slightly confused, is the 

time when they are most likely to make intellectual growth. (Fuller 1982:47.) 

In traditional teaching practices, theory comes before practice but with the modelling 

approach, theory is developed after solving practical problems. Modelling is the process 

of taking any problem which, at the time of doing it, does not have a clear-cut algorithm 

or any other standard way that can or may be used, to obtain an answer. Thus instead of 

thinking of the problem as an effort to determine some unknown quantity, Van Heuvelen 

(1991 : 898), adopted the modelling approach by encouraging his students to think of the 

problem statement as describing a physical process, the objective of which is to represent 

that process or event in ways that lead to qualitative and quantitative understanding. 
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Learners create their own computational algorithm. Solving the problem is mainly the 

responsibility of the learner and the educator's role is merely to help and not to provide a 

cut-and-dried method of solution, since this would not enhance learners' conceptual 

understanding of science and mathematics (Madel! 1985:22). 

The modelling approach is based on the Constructivist view of teaching and learning, it 

acknowledges that learners interpret instructional situations in profoundly different ways 

(De Villiers 1992:2). When a learner perceives an idea, s/he considers ways in which 

sense can be made of it by asking questions that are intellectually appealing and induce 

the learner to seek answers and to reflect, for example, on its usefulness, interest or 

significance. Thus the content and nature of knowledge is constructed. (Human 1999:4.) 

The Process of Modelling 

Four distinct steps can be isolated in the modelling process: 

• Know your problem and understand it. This includes amongst others, 

determining the important characteristics, deciding on data to use and ignore, and 

assumptions to be made. 

• Build your model. This is a creative process requiring the development of

mathematical relationships. When you build a model, you move away from the

real world. The model must be adequate to the real object under study, i.e., it

must correctly describe the object based on certain characteristics. This is a

matter of primary importance. Hestenes ( 1987:446) advocates the slogan "The

model is the message."

• Solve your model, which requires application of mathematical techniques. With

the advent of technology, appropriate software can assist in solving the model,

however, human ingenuity and understanding is absolutely essential for the other

three processes. New computer software can greatly assist with routine

manipulation involved in this step. Human ingenuity and understanding is

absolutely essential. ff a model is inappropriate the computer may produce an

answer which is senseless. (De Villiers 1994:34.) Modem developments in

mathematics and in computer studies have made available new analytical models,
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which have resulted in a revolution of modelling as part of a scientific method 

(Ost 1987:363). 

• Interpret your results. Check if it is realistic by critically comparing it with a real­

life situation.

The modelling process together with some of the different mathematical processes at 

various stages has been represented by de Villiers (1989:25) as follows:-

- further experimentation
- building phsical models
- compare with reality

INTERPRETATION 

- testing of theoretical
solutions

- reinterpretation of symbols
- predicting

PRACTICAL 

PROBLEM 

11 "' 
(Repetif on of cy le, if necessary) 

SOLUTION 

Figure 2.1 

- abstraction
- symbolization
- data collection
- hypothesizing

- formulation and
defining

analysis/synthesis 

MATHEMATICAL 

MODEL 

application of mathe­

matical techniques: 
- proving
- analysis/synthesis

- constructing algorithms
- simplifying
- logical deduction

Since a model is in a sense, simpler than the object itself, it does not usually stimulate all 

the features of the object, but only those of most importance to the investigation, so that it 

can be studied more conveniently. It all depends on the object (phenomenon, situation) 

under study and on the characteristics the model takes into account. (Sadovskii & 
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UNFAMILIAR DEVELOPMENT ANALOGICAL EXISTING 
PRACTICAL � 1 

RECOGNITION
� ANALAGOUS 

APPROACH �I MODEL
I

-

MODEL 

T APPLICATION I 

Figure 2.3 

Creative Application 

The creation of a previously unknown model consisting of totally new concepts and 

techniques, to represent an unfamiliar situation. This is one of the many ways in which 

theory in mathematics and physics is created. 

DEVELOPMENT 
UNFAMILIAR ... NEW 
PRACTICAL MODEL - MATHEMATICS 
SITUATION 

APPLICATION 

Figure 2.4 

These three categories roughly increase in level of difficulty from category 1 to category 

3. Category 3 suggests a powerful teaching strategy, which is especially important if

science is at all to be represented to learners as a useful tool by which humans strive to 

understand the world. 

This study adopts category 3 as a teaching strategy whereby functional relationships are 

derived directly from practical situations. When concepts, formulae, equations, etc., are 

directly abstracted from practical situations and problems, it is likely that the links 

between such content and the real world is stronger than when it is attempted to create 

such links only after the content has been presented in a vacuum. (De Villiers 1993 :2; 

Kowlesar 1992:16.) 

Modelling can be used to develop skills of explanation, interpretation, predictions and 

analysis. Theoretical models and modelling are inexpensive to use in the classroom or 
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laboratory. Perhaps one of the greatest values of the computer is its availability as a 

sophisticated tool to work with data and to develop important skills of modern scientific 

enquiry. The relationships among variables can be readily observed. Modelling is an 

effective method to provide learners with experiences in hypothesis formulation. (Ost 

1987:367.) 

Although the modelling approach is a time consuming teaching method, the long-term 

benefits could be manifold. The learner could develop a thorough grasp of the subject 

matter which has a better chance of being remembered and it is more accessible and 

usable, even in novel situations; rapid progress is made and there is no need for endless 

repetition before mastery of subject matter is gained; it taps on the learners' natural 

creativity and ability to solve problems rather than the learner becoming preoccupied 

with trying to comply to the rules of the educator that they lose sight of the actual 

problem; it instils in the learner a positive attitude towards solving problems knowing 

that they can and should solve computational problems relying on their own intellectual 

thinking ability. 

Modelling theory tells us that a situation in the real world is accounted for "physically" 

by constructing a mathematical model to represent it. In Hestenes' (1987:50) view there 

are two kinds of representations for the model: an external (objective) representations in 

terms of mathematical symbols, maps, diagrams, etc. and an internal (subjective or 

mental) representation in the brain of someone who understands it, i.e. to understand a 

mathematical model one needs a corresponding mental model. Evidently to construct 

such mental models is what physicists mean by " physical intervention." Cognitive 

development could best be described as development of mental modelling skills. 

Modelling is an ideal way to introduce decision-making as it is used in science, 

mathematics, technology and society. In addition to developing important skills for use 

in science and mathematics, the learner trained in modelling, will have gained an 

important general education. (Ost 1987:368.) 
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The hurdle that the educator has to overcome in adopting the modelling approach is 

"weaning" the learners from a formula-centered problem solving strategy that proves to 

be successful in dealing with examples from the textbooks. They need to be confronted 

with situations where the formula-centered strategy clearly fails, and recognize that a 

better strategy is available. To facilitate the transition to a powerful model-centered 

strategy, the educator needs a clear understanding of the modelling theory and a 

systematic method for teaching it. (Hestenes 1987:449.) 

Mathematical modelling of the physical world should be the central theme of physics and 

mathematics instruction, it calls for severe reorganization of priorities in physics and 

mathematics teaching, which can be justified on strong epistemological and 

psychological grounds (Hestenes 1987:453). After all, says van Heuvelen (1991 :898), a 

physicist depends on qualitative analysis and representations to understand and help 

construct a mathematical representation of a physical process. 

Understanding models, knowing how to model, and recognizing the use of modelling is 

certainly part of "technological literacy." In Hestenes' (1987:446) view, a problem 

cannot be fully understood until a model has been constructed. Models and modelling 

can be effective and efficient ways to relate science, mathematics and technology to 

society (Ost 1987 :368). 

OTHER STUDIES ON MATHEMATICAL MODELLING AND PROBLEM­

SOLVING STRATEGIES 

While a considerable number of studies have been carried out on problem-solving 

strategies, very few have addressed the issue of learners' intuitive modelling strategies 

used to solve real life problems in kinematics prior to formal instruction. 

According to researchers, some of whom are Dhillon (1998), Mestre (1991), McDermott 

(1984), Larkin & Reif (1979) and Heller et al (1992), research on problem solving, based 

on real life problems has focused on "what mathematics could be extracted" from the 

problem (Salzano 1983:7). When learners solve real-life problems in kinematics, they 
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are expected to select and apply appropriate equations. However, in this study of real-life 

problems, the learners were provided with the relevant variables i.e. speed and time, and 

they were required to derive and formulate their own equation. They did not have access 

to any equations since the study was conducted prior to any formal instruction in 

kinematics. 

Salzano's Study on the Teaching of Skills in Mathematical Modelling 

The study by Salzano (1983) focussed on the extent to which the teaching strategies 

developed on the modelling process were effective in helping learners develop their 

modelling ability. By analysing learners' intuitive modelling strategies and their 

misconceptions, Salzano was able to devise a successful teaching program. Similarly it is 

hoped that from the analysis of this present study of learners' intuitive modelling 

strategies in solving problems, educators and curriculum planners can implement a 

'problem-solving' teaching program based on the modelling approach. 

Salzano conducted her study with average and below average, fifteen year old learners 

from "Design and Technology" classes and "Physics" classes. 

In order to develop a teaching strategy for the modelling process, Salzano first conducted 

a study with forty Design and Technology learners. She presented them with open 

problems with which they were familiar. They were required to write down their analysis 

of these problems and this was followed by individual interviews. This was done to 

elucidate both how they were able to articulate their thoughts and what steps they had 

taken in the resolution of the problem. 

A detailed analysis of the scripts showed the following problem areas: the learners had a 

tendency to effect analysis without following an effective plan; their solutions seemed to 

be derived more from a 'guess' rather than from a reasoned argument; they tended to be 

'impulsive' rather than 'reflective'; they were reluctant to make assumptions or to 

express personal judgements; they did not appear to have difficulty in generating 

variables but rather in distinguishing the most important ones and creating relationships 

between them. 
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From the analysis, Salzano developed her teaching strategies which aimed at taking into 

account the needs of the learners; to be used for the solution of open problems; and to 

help learners overcome the difficulties which they encounter in the modelling process. 

The strategy developed included activities which tended to make learners' thoughts 

explicit and to organize them in a way such that the correct problem to be solved could 

emerge from the initial open one. The lessons were conducted for three terms with 40 

learners from the Design and Technology course. In these lessons learners were 

encouraged to make use of open diagrams as an aid to analysing the problem and to 

recognize the key areas of it. This was followed by class discussions facilitated by the 

educator and these discussions were helpful in generating new approaches to the problem 

and developing detailed sub-problem charts. 

The second phase of the research aimed to investigate to what extent the teaching strategy 

developed was valid. To this end a comparison was effected between the two groups: 

one group of forty learners who had experience in the resolution of open problems which 

the strategy and materials developed and another group of forty learners from the Physics 

course who had not. The comparison was done by using the results of three tests given at 

an interval of three months. The learners were required to work individually and write 

between two to five pages about each problem, to present structured arguments rather 

than subjective opinion and to recognize the problem as being open-ended. They were 

told that it was the quality of the argument used rather than the specific content of the 

answers which was being marked. 

There were no substantial differences on the mean scores obtained on the tests, however, 

analysis of the scripts and interviews revealed significant differences between the two 

groups. 

Analysis of the question: "Terry is soon to go to secondary school. The bus trip to school 

costs 25p and Terry's parents are considering the alternative of buying a bicycle. Help 
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Terry's parents decide what to do by carefully working out the relative merits of the two 

alternatives," revealed the following: both groups tended to qualify the variables by 

assumption and rarely by reasoned calculation; few of the Technology group considered 

an economic model to be a sufficient answer even if they seemed equally concerned with 

some of the non-economic factors; and the Physics group appeared to have more 

difficulty in relating the variables to each other and hence the solution phase was rarely 

reached. Most of the scripts of the Physics group appeared to be little more than a list of 

unquantifiable facts such as convenience, safety, social facts etc. 

Another problem used was: "A school wishes to purchase notebooks for the pupils to use 

for recording and correcting their spelling errors. One of the three notebooks supplied 

can be chosen. Which is the best buy? Write a short report (1 to 2 pages) which explains 

which notebook should be bought and how you have come to your descision." 

The analysis of the Technology group on this problem showed that their work was 

systematic and linear as compared with the Physics group, whose work for the most part, 

was large and dispensed. The Technology group tried to qualify the variables 

mathematically and their decisions seemed to be based on reasoned calculations and 

assumptions. The Physics group on the other hand tended to get lost in amplified 

analysis without managing to reach the essence of the problem and since the variables 

were rarely related to one another, their decisions often appeared to be a flat guess. 

The third problem was: "Planning a car park: Merchant Ltd. Are planning to construct a 

consumer car park on the vacant land next to their supermarket. If the land measures 

54.2m by 158.9m, design the best layout for the car park." 

A study of the scripts to problem three revealed more pronounced differences in the 

techniques used to arrive at a solution to the problem. Whereas the scripts of the Physics 

group examined the different possibilities for eventual layouts, those of the Technology 

group consisted of a written analysis of the problem itself and the design of the best 

layout followed as a conclusion to the analysis. Most of the Technology group learners 

started their analysis by "asking questions," something that was emphasized during the 
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lessons. This account to Salzano was a success bearing in mind the general ability level 

of this group and the difficulty which the resolution of open problems provided to them. 

The overall analysis of the work of the Technology group showed the application of the 

techniques used in class for the resolution of open problems. They did however, appear 

to have difficulty in generating relationships between variables. These learners enjoyed 

working with "real" problems more that the Physics group. 

The fact that the mean scores of the Physics groups were slightly higher than that of the 

Technology group was attributed to physics being a problem solving subject. Physics is 

taught with large numbers of problem elements, so problem solving elements are 

developed through physics courses, and the real problem solving elements in Technology 

instruction often is new to the learners. 

Salzano's study has shown that besides learner's performance in problem solving 

improving after receiving instruction in mathematical modelling, learners also enjoy 

working with real-life problems. 

Dhillon's Study of Individual Differences Within Problem-Solving Strategies Used 

in Physics 

Dhillon (1998) carried out a comparative study of the problem-solving strategies used by 

experts and novices in solving problems on rotational dynamics, focussing specifically on 

the activities within the strategy with a view to influencing the representation of 

knowledge for a problem-solving program in rotational dynamics. Evidence of the 

strategies and activities discussed by Dhillon are present in the learners' performance in 

the present study. In addition both these studies are based on a constructivist perspective 

on learning. 

Within the process of problem-solving Dhillon identified six commonly used strategies 

which are reported in literature and five general strategies or methods. Within each of 

these he identified and described fourteen activities, constituting physical and cognitive 
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because they were either lecturing or tutoring the subject. Six of the novices 

referred to the examples in the text. 

• Declaring quantities (DecQuant): This activity involved mentioning a principle or

quantity, an equation, an expression using one or more quantities, or merely

stating a value for a quantity.

• Pictorial representation (PictRep): The diagrams drawn by the experts contained

precise information. The novices had incomplete information of quantities

involved. Novices failed to successfully perform the problem solution because

they had incorrect or incomplete representations of the information pertaining to

problem solution.

• Resolving difficulties (ResDiff): This activity often occurred when participants

reached an expression or answer that did not make sense or which they had

difficulty in attempting to simplify. Resolving difficulties was performed by all

the participants.

• Qualitative analysis (QualAnal): Novices used surface features whereas experts

used physical entities to categorize physics problems.

• Qualifying (Qualify): This activity involved using content knowledge and

principles to make deductions and to provide supportive information to connect

the solution steps. All the participants performed this to some extent.

• Quantitative representations (QuantRep): This activity involved using numbers or

algebraic symbols to represent quantities. This was an activity that all

participants performed to a large extent.

• Question reading (Read): Generally the novices read the question verbatim

before beginning the next problem-solving step. Two experts processed the

information provided as they read the question.

• Recapitulating (Recap): The experts recapitulated when relating solution steps

and when considering the plausibility of the answer. The novices recapitulated

mainly when they found an error in their calculations or logic or, primarily, when

they were at a loss in knowing how to proceed.

• Reference (Ref): All the novices except one, made reference to the text.
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• Relating quantities (RelQuant): This activity involved using previous experience

and knowledge to recall information needed to proceed in the solution of the

problem. The knowledge recalled was usually in the form of equations and

algebraic relations. All the participants performed this activity.

• Symbol usage (Symbol): Symbols were used to algebraically describe physical

quantities used in the problem solution. All the participants performed this

activity.

On the average, the total number of activities used to solve the problem was much less 

for the experts than the novices. The experts with the largest frequency of activities of 

100 took a couple of wrong paths before obtaining a solution. The only successful novice 

had a frequency of 130. 

When problem solving, the participants used a variety of general methods and common 

strategies as outlined in literature, performing all or some of the fourteen activities in 

each of the strategies. An example of the activities performed by a novice, within the 

'generate-and-test' strategy is given by the following excerpt in table 2.1. 

Table 2.1: Generate-and-Test Strategy 

Activities Excerpt Comments 

DecQuant At point A I can write down that the, I will have lost all my (Writes an expression 

Qualify potential energy assuming that it is zero at that point so that I for the total energy at 

QuantRep can write that the kinetic energy at that point is going to be the bottom of the loop.) 

half m v squared plus its kinetic angular part which is going to E = ½mv2 + ½ lw2 

be a half omega squared . 

. . . which is seven tenths m v squared ... 

These finding by Dhillon suggested that the understanding of problem solving, in terms 

of activities in relation to strategies, provides insight into knowledge structuring and 

representation. A programme has been successfully developed from the findings of his 

study. It is currently being expanded to include more problems. Many of the activities 
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outlined by Dhillon were carried out by the learners in the present study, often identifying 

with those activities carried out by the novices. 

Clement's Study of Algebra Word Problem Solutions 

In mathematics and science, one way of presenting data of a real-life problem situation is 

in the form of word problems, tables or graphs and learners are required to translate this 

to formulae. Formal algebra is difficult for learners, even more so if they have not 

worked with numerical values. 

Clement's (1980) research focussed on translation of word problems to formulae, and an 

investigation into the cognitive processes leading to correct answers or misconceptions. 

His intention was to make it easier to design more effective strategies for teaching 

algebraic skills. 

Clement presented 150 freshman engineering students with four word problems, two of 

these involved numerical values and the other two involved symbols. Each of the 

numerical problems was similar to a word problem involving symbols. He found that the 

contrast between the numbers of students who correctly solved the numerical versus the 

algebraic problem indicates that students have specific difficulties in translating from 

words to algebraic equations. 

One of the algebraic problems was: "Write an equation using the variables S and P to 

represent the following statement: 'There are six times as many students as professors at 

this university.' Use S for the number of students and P for the number of professors." 

63% of the students responded correctly. The results revealed that 68% of the errors 

were reversal errors, "6S = P." It was most unlikely that these errors were due to 

carelessness, since the students were warned to "be careful." 
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From clinical interviews and think-aloud sessions while students worked through the 

problems, Clement was able to identify two conceptual sources of reversal errors, a 

syntactic, "word order matching" strategy, and a semantic, "static comparison" strategy. 

In the syntactic type, the student simply assumes that the order of key words in the 

problem statement will map directly into the order of symbols appearing in the equation. 

This is a syntactic strategy in the sense that it is based on rules for rearranging symbols in 

an expression which does not depend on the meaning of the expression. An example of 

this incorrect strategy is evident in one student's response to the Student and Professor 

problem. He immediately wrote "6S = P," and said "Well, the problem states it right off: 

'6 times students. ' So it will be 6 times S is equal to professors. " Here there is no 

evidence for any more complicated strategy than that of mechanically matching the order 

of symbols in the equation to the order of words in the problem statement. 

An example of the second incorrect strategy, the "static comparison" strategy, was 

provided by a student solving the England problem: "Write an algebraic equation for the 

statement: 'There are 8 times as many people in China as there are in England."' 

A typical incorrect response was "8C = IE." The explanation given by a student was 

"There is a larger number of Chinese than there are Englishman; therefore the number of 

Chinese to Englishman should be larger ... BC = 1 E." Here he clearly indicated that he 

had comprehended the relative sizes of the two groups in the problem that there are more 

people in China. This indicated that he had gone beyond a syntactic approach that is 

independent of the meaning of the problem. But his intuitions about how to symbolize 

the relationship were to place the multiplier (eight) next to the letter associated with the 

larger group (China). He apparently did this to indicate that that group is larger. There is 

some semblance of reason in this approach as an intuitive attempt at symbolization, but 

the approach is an extremely literal attempt to compare the relative sizes of the two 

groups m a static manner. Thus Clement labelled this as the "static comparison" 

approach. This is a semantic strategy in the sense that is a "meaning based" strategy 

which takes into account the meaning of the expression produced. The student has an 
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accurate picture of the relative sizes of groups in the practical situation, but still fails to 

translate his understanding correctly to an equation. Such students appear to have had a 

misconception concerning the actual meaning of the equations they are generating, rather 

than a misconception of the practical situation described by the problem. 

A response from a successful student on the Student and Professor problem was, "S

equals the number of students and P equals the number of professors." He correctly 

considered S and P to be numbers and he verified his answers by substituting numbers for 

S and P. 

Analysis of protocols from successful students indicates that the key to understanding 

correct translations lies in the ability to conceive a mental action that produces an 

equivalence, and to realise that it is precisely this action that is symbolized in, for 

example, the equation, "6S = P." Clement called this the "operative approach" to signify 

the fact that it involves viewing the equation as an active operation on a variable quantity, 

not just a static comparison of the two groups. 

Some students obtained incorrect answers by simply making a direct syntactic translation 

via word order matching from an English statement to the written equation, for example, 

the response from one student was: "Six times as many students as professors ... So let's 

use S for students and P for professors ... 6S equals P." This type of translation might be 

likened to the simple act of paraphrasing a long sentence in short hand form by copying 

the main elements, in the order in which they appear, and dropping out the inessential 

words. Such a translation might be performed with little or no understanding of the 

meaning of the sentence. The student simply assumes that the order or contiguity of key 

words will map directly into the order of symbols appearing in the equation. 

Many students were found to move back and forth between the approaches. Clement 

calls this "shifting between approaches" and hypothesizes that it refects an unobservable 

internal process of shifting between cognitive schemes used to deal with the problem. 

This provides one more piece of evidence for the notion that human cognition is not 
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always based on consistent processes, schemes which lead to contradictory results can 

apparently exist fairly autonomously an independently in the same individual. One 

scheme may become active and dominate for a time, only to be superceded by the other. 

Evidence from Clement's work has shown that learners experience difficulties in 

translating word problems involving symbols, to formulae, however they perform better 

on word problems with numerical values. A large proportion of the students were unable 

to solve a simple algebraic word problem. Writing equations with more than one variable 

exposes a number of common misconceptions that were previously invisible. The error 

appears in writing equations where a multiplying factor is placed on the wrong side of the 

equation. 
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CHAPTER THREE 

METHODOLOGY 

INTRODUCTION 

This research is essentially a descriptive/interpretative study of grade 11 learners' 

ability to use intuitive modelling strategies in answering questions in kinematics. The 

methodology involved was think-aloud, pen-and-paper and clinical interview. These 

sessions were audiotaped. 

This research design was considered appropriate for this study because it enabled the 

researcher to directly examine the intuitive modelling strategies learners use in 

solving problems involving real-life situations with no formal instruction in these 

standard algorithms. Although it is acknowledged that these problems are not 'real­

life' problems in the concrete sense and in that it is already an abstraction, it is a 

situation that learners are familiar with. 

Specifically, the following critical questions were addressed: 

1. What strategies do learners use to complete a table of a real-life problem

involving speed and time ?

2. What are the strategies used by the learners in recognizing and formulating

a functional relationship between the variables speed and time of a real life

problem?

3. Are the learners able to translate the functional relationship into symbolic

form (e.g. mathematical formula)?

4. What is the feasibility of using modelling as a teaching approach for

teaching speed and time relationships ?

Details of the procedure and type of instruction, selection of problem types, selection 

of learners, collection of data and analysis of data are discussed in this chapter. Also 
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included in this chapter 1s a theoretical discussion of clinical interviews and 

qualitative analysis. 

PROCEDUREffYPE OF INSTRUCTION 

The following methods were used to ensure reliability, validity and richness of data 

collected. 

• Think-aloud sessions as a means of recording the problem-solving behaviour of

learner. Problem-solving tasks which require a learner to assess and

manipulate his/her mathematical and physics knowledge in the solution of a

problem are particularly useful if the learner is encouraged to "think aloud" as

s/he solves the problem. The transcripts have been used to capture the train of

thought of the solver, and the problem-solving knowledge and style used.

According to Piaget (1929) ( cited in Posner & Gertzog 1982: 195), when the

learner is allowed to talk about what s/he is thinking and doing, it gives the

researcher an opportunity to notice how the thoughts unfold themselves. The

novelty lies not only in being content simply with the written answers given by

the learner, but in letting him/her talk about what s/he is doing. One benefit of

these think-aloud protocols, according to Clement (1980:3), is that a researcher

can learn whether errors are simply due to carelessness or to deeper conceptual

problems.

• Pen-and-paper sessions to explore the information assessed and used to solve a

problem, and to supplement the think aloud-data collected.

• Clinical interview. This is a tool often used by mathematics and science

education researchers to investigate learners' thinking processes. Clinical

interviews were first used in educational research to study children's language

and logic. Piaget modelled his interviews on the methods used by psychiatrists

in the beginning of the twentieth century. (Posner & Gertzog 1982:196.) This

kind of interview is a face-to-face meeting between two people, but it is not an

ordinary interview (Bingham et al 1959:3). This method allows the researcher

to document the multiple ways by which learners understand mathematics and

science (Zietmann undated).
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A brief discussion of clinical interviews follows: 

The written solution of a problem may reveal little about the underlying thought 

processes that generated it. Although a solution shows a particular reasoning pattern 

that leads to a desired goal, it does not indicate how this particular path was found, 

how it was chosen over alternative paths, or how impasses were avoided. (Reif 

I 986:50.) The researcher in a clinical interview is trying to look at the learners' 

cognitive structure and ascertain not only what concepts and propositions are there, 

but also how these concepts are structured and how they can be evoked for problem­

solving. The concern is with the learners' individual framework of knowledge and 

reasoning strategies. (Novak & Gowin 1984:121.) 

When a learner is allowed to talk about what s/he is thinking and doing, it gives a 

researcher an opportunity to notice how the thoughts unfold themselves. A researcher 

can find out about a learner's knowledge about a certain subject matter by letting 

him/her talk, by analysing the way the child's thought unfold and by not sticking with 

the immediate answers, but probing and clarifying the interviewee's ideas and written 

material carefully (Zietmann undated). 

A skilful researcher is able to probe the areas of the knowledge domain of particular 

interest and let the child speak freely, while constantly checking his or her 

spontaneous remarks for those that will prove genuinely revealing. The clinical 

interviewer has to be continually alert, ready for the unexpected and able to respond 

to it, for it is that very response which may lead to something unique and essential in 

the thought of the subject. (Posner & Gertzog 1982: 198.) 

The clinical interview method of eliciting verbal explanations was felt to be a more 

valid and "revealing" indicator of a learner's cognitive structure than selection- or 

production-type written assessment instruments (Posner & Gertzog 1982: 199). 

It is Posner & Gertzog' s ( 1982: 194) contention that clinical interviewing is directed 

toward the information-gathering function. Its chief goal is to ascertain the nature and 

extent of the learner's knowledge about a particular domain by identifying the 

relevant conceptions s/he holds and the perceived relationships among these 
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conceptions. Another aspect that emerges from interviewing studies is the complexity 

of learner's thinking. 

Often students reach invalid conclusions from sound reasoning based on false 

premises or even valid conclusions from unsound reasoning based on false premises. 

In the clinical interview it is important to identify any mistake the learners are making 

regardless of the validity of their conceptions. (Posner & Gertzog 1982: 206.) 

CHOICE OF PROBLEMS 

Learners usually perform well in textbook type problems on kinematics dealing with 

equations of motion, but they flounder when problems require deeper conceptual 

understanding. Physical science questions in kinematics are generally presented in 

the form of verbal statements and learners are required to model mathematical 

strategies to find the solution. Most learners, according to Hestenes (1992:747), are 

blind to the structure of physics and its insights into the structure of the 'physical 

world. An alternate approach which attempts to address this problem is the "model· 

centered instruction." 

Various ways of introducing the concepts of the equation 'v = at' and 'v = u+at' 

confront the educator with the perennial question of choosing between a general or 

more specific presentation. General approaches tend to be more formal and as such 

reach fewer learners, whereas restricted approaches are relatively more concrete and 

thus accessible to more learners. Using the latter approach, it is felt that if the learners 

modelled these mathematical formulae on their own, it would be better understood 

and more appropriately applied. 

According to Greenrnan(l973), (cited in Salzano 1983:33), the problems to be 

modelled should be familiar to the learner, s/he should already have some intuition for 

that situation, the mathematics should be sufficiently simple and familiar so that the 

discussion is not dominated by mathematics, and the situation should be sufficiently 

open-ended so that there is a variety of ways of building the model. 

Two verbal problems involving real-life situations dealing with time, speed and 

acceleration were chosen since the learners could identify with them and these 
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problems could provide motivation for theoretical work. The learners were required 

to model strategies and eventually establish equations dealing with speed and time for 

the problems. 

Because, according to Herscovics & Kieran (1980:572), translating word problems 

into equations is tantamount to "translating it into a language unknown to them" the 

learners were given some guidance in the form of incomplete tables in order to 

facilitate formulating the equations. 

This research was conducted prior to any form of formal instruction in the section on 

kinematics. Although the problems were novel to the learners, they could identify 

with them. The problems presented to the learners were meaningful, but ones that 

they could not solve with ease using routine procedures or drilled responses. Learners 

were required to explain, discuss, critique and justify their interpretations and 

solutions. The two problems varied in their degree of complexity. 

My role as a researcher, the intention of the research and the instructions, were clearly 

stated to the learners before they commenced with solving of the problems. 

According to Rich (1971 :32), it is important in any research for a researcher to start 

out by informing the learners of his/her own obligations and intentions. 

The following statements were provided: 

I. The speed of an object with an initial speed of O mis increases at 5 mis every

second.

2. The speed of an object with an initial speed of IO mis increases at 2 mis every

second.

The learners were required to fill in the blanks in the tables from the information 

given in the statements. 

Table for statement 1: 

Time (s) 0 I 2 3 4 5 10 50 120 560 

Speed (mis) 700 1200 
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Table for statement 2: 

Time (s) 0 1 2 3 4 

Speed (mis) 

The questions asked were: 

I. What does 'initial' mean?

2. What does 'speed' mean?

5 6 10 50 80 

3. What do you understand by 'metres per second (mis)?'

410 1000 

4. What do you understand by '5 metres per second every second (5 mis)?' A

more appropriate question would have been: "What do you understand by an

increase in 5 metres per second every second?"

5. How is it possible for an object to undergo an increase in speed?

After answering the questions the learners were required to carry out the following 

tasks for each of the questions: 

• Fill in the given table.

• Establish a relationship between speed and time.

• Formulate this relationship between speed and time in their own

words.

• Write down the above formula or equation in symbolic form given that

'v' is the speed and 't' the time.

SELECTION OF LEARNERS 

The sample chosen for this research was seven grade 11 learners form Durban Girls' 

Secondary School. They were randomly chosen, and they varied in their intellectual 

abilities. 

Each learner was observed as she worked through the problems on paper and was 

encouraged to explain aloud what she was doing. The sessions were conducted 

individually and the subjects were not allowed to communicate with the other subjects 

before the session. There was no time limit to the problems. 
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I 

A pilot study was conducted on two learners prior to the actual research in order to 

ascertain the validity and suitability of the questions. 

COLLECTION OF DATA 

The data in this study was gathered by qualitative research methodologies, including 

observation and interaction with individuals in the form of interviews on a one-to-one 

basis. The core of data collection in qualitative design consists of results gathered 

from apparently simple behaviour - watching, listening, asking questions and 

collecting things. The principal instrument in qualitative research is the researcher 

working face-to-face with those studied. In contrast, the quantitative researcher is 

usually distanced from research participants, often by paper-and-pencil, administered 

by interchangeable research assistants. 

ANALYSIS OF DAT A 

Qualitative Analysis 

The results of this study were analysed qualitatively. According to Preissle-Goetz & 

Lecompte ( 1991 :61 ), qualitative researchers generally study fewer people, than do 

quantitative researchers, but they study those few more intensively. As a 

consequence, they are often able to pursue patterns in the behaviour, belief, and 

knowledge of individuals across settings, circumstances, time, and other variations. 

Investigators can substantiate hunches, collect multiple points of view and establish 

ranges for discerned patterns. 

Research methods can be broadly divided into quantitative methods taking a positivist 

approach and qualitative methods which are relativist in their perspective. Relativist 

researchers postulate that the world may look different to other people. Hitchock & 

Hughes (1995:296) regard such researchers as naturalistic, interpretive, and 

qualitative researchers. Their purpose is not to obtain a set of facts, but to gain insight 

into a perspective. (Johnson 1994: 182.) Naturalistic qualitative enquiry is concerned 

with the description and explanation of phenomena as they occur in routine, ordinary 

natural environments. It deals in words and meanings, seeking to maximize 

understanding of events and facilitating the interpretation of data. 
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Qualitative research is based on and grounded in descriptions of observations. Some 

methodologists object to the name "qualitative research." They believe it to be 

imprecise, misleading, and implying a lack of concern with quantity. Among the 

synonyms used are interpretative research, naturalistic research, phenomenological 

research and descriptive research. Because of its preoccupation with complete, 

detailed, and concrete depictions, some people call qualitative research descriptive 

research. (Preissle-Goetz & LeCompte 1991 :56.) 

Quantitative data can be integrated into qualitative studies. Two kinds of research 

designs often assumed by educational researchers to be quantitative are surveys and 

observational studies. This is usually a legitimate assumption, but there are 

exceptions. In many classroom observational studies, standardized protocols are 

used. Observational researchers may compile data-bases partially or entirely 

consisting of qualitative data. Likewise, most survey designs use pre-coded 

responses, but many surveys include open-ended questions and some are composed 

entirely of open-ended requests and tasks. Hence those survey and observational 

studies based on sensory data recorded in narrative form are qualitative. (Preissle­

Goetz & Lecompte 1991 � 5 ,.) 

Philosophical frameworks, one of which is constructivism, has an influence on 

qualitative work. The purpose of qualitative research with its rich descriptive and 

subjective/introspective character of data produced using qualitative techniques, 

together make qualitative data analysis a very different enterprise than statistical 

analysis (Hitchock & Hughes 1995:296). 

Sherman et al (1988:7) says that the aim of qualitative research is not verification of a 

predetermined idea, but discovery that leads to insights. Thus qualitative research 

focuses on natural settings, not abstract or theoretical settings. Qualitative researches 

employ an interpretive frame of reference in order to bring meaning to experience. In 

this sense, qualitative inquiry is not merely a search for knowledge for knowledge 

sake, but a search for significance of knowledge. 

The formal goals or purposes of research fall into three broad areas: descriptive, 

analytical, and theoretical. These in turn are linked to the kind of question addressed 
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in any given study. The purposes and kind of question affect the type of research 

design chosen. 

Researchers whose purpose is theoretical address the question, "How can it be 

explained and understood?" These researchers apply their findings to the generation, 

refinement, and verification of generalizations about some area of human experience. 

Qualitative investigations are usually more concerned with generating theory than 

with confirming already established explanations. As a result, qualitative research is 

more often inductive than is quantitative research. (Preissle-Goetz & LeCompte 

1991 :60.) 

Qualitative analysis is inductive and recursive, allowing investigators to trace through 

what actually does happen to something like a social studies innovation, rather than 

merely reporting the degree to which what was expected occurred or failed to occur. 

Qualitative research is a loosely refined category of research designs or models, all of 

which elicit verbal, visual, tactile, olfactory, and gustatory data. These data take the 

form of descriptive narratives like field notes, recordings, and other transcripts from 

audio- and videotapes, and other written records, as well as pictures or films. 

Qualitative researchers also may collect artefacts - products or things people use -

such as objects people make and records of what they do, say, produce, or write. 

Qualitative designs differ according to their own history and their links to human 

science and enquiry. The designs most frequently considered to be qualitative are 

ethnographies, field studies, community studies, case studies biographical or life 

history investigations, and document analysis. 

Qualitative paradigms are characterized by the assumptions that reality is ever 

changing and only incompletely knowable, that knowledge consists of tentatively held 

understandings, and that research designs and results are inevitably permeated by 

values - those of the researcher, the research participants, and the research audience. 

Among the strategies used to confirm patterns are cross-checking information and 

inferences with data from several individuals, looking at a given phenomenon with 
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data obtained in different ways, enlisting as a confederate another researcher or an 

informed participant, and soliciting from participants reactions and interpretations of 

patterns developed by the researcher. All of these are means of triangulation. Most 

qualitative investigators triangulate with data collection methods and sources, they 

use two or more different kinds of data or data sources to get differing perspectives on 

the same phenomena. (Preissle-Goetz & LeCompte 1991 :61.) 

Qualitative researchers record their observations manually and mechanically. Audio­

and videotape recorders, still and motion cameras, laptop computers, and wireless 

microphones are among the mechanical devices used. Nearly all qualitative 

researchers also produce field notes. These typically consist of records of 

observations and a commentary on what was observed, how it was observed and what 

it might mean. (Preissle-Goetz & LeCompte 1991 :60.) 

The more formal process of qualitative research will involve the researcher breaking 

down the data where a fairly inductive approach is taken - data being explored in 

terms of both the general and particular units of meaning displayed within them. The 

qualitative researcher is looking for patterns, themes, consistencies and exceptions to 

the rule. Codes and categories can therefore emerge from the data and become 

formally identified by the researcher. (Hitchock & Hughes 1995:296.) 

According to Guba & Lincoln (1994: 106), qualitative data can provide rich insight 

into human behaviour. In this study, there are two sets of records: the written 

transcript for each problem solved, and the audiotaped record of the learners talking 

and working through the problem incorporated with the interview. The audiotaped 

interviews were transformed into written transcripts. A collection of such data in 

Larkin & Reif s (1979: 192) view is quite detailed. 

A disadvantage of qualitative methods is that it is slow and may be anxiety creating 

to the learners because of the lack of structure. Moreover, since the research question 

is being developed and refined during, rather than prior to, the research, it is more 

difficult to plan the research programme as a whole. (Johnson 1994: 183.) 
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Although investigators have some analytical approaches in mind as they begin, each 

analysis is developed to fit its accumulating database. Consequently, qualitative 

approaches possess a flexible, evolving character that contrasts with fixed and linear 

approaches of much quantitative research. Rather than a one-shot process at the end 

of data collection, qualitative analysis is ongoing and recursive - the investigator 

reviews and reanalyses previous material as new material is developed. Analysis 

involves discovering and deriving patterns in the data, looking for general orientations 

in the data, and in short, trying to sort out what the data are about, why and what 

kinds of things might be said about them. 

Qualitative researchers build system and rigour into ways to observe classroom 

lessons, and educator-learner interactions - an invaluable tool for revealing what 

occurs there. A major emphasis is placed on the perspective of the participants 

involved: what are the learners making of this situation?; what is going on?; and how 

are their understanding affecting what they and others know and do in the social 

world. 

Qualitative researchers attempt to construct holistic views of events, permitting 

analysis of the complex relationships among such factors as learners, educators, 

classrooms, and curricula. This holism typically extends beyond the borders of the 

school itself, taking into account communities and their subgroups and the general 

socio-cultural context within which they are embedded. 

Qualitative data analysis involves making sense of the data. The task is initially one 

of sorting the data into manageable units. The researcher seeks to organize the data in 

such a way so as to facilitate understanding of their meaning and significance. This 

will involve breaking the data down into units of meanings, topics or categories which 

the researcher can then subsume under a general heading bringing together diverse 

activities. The researcher's task is to put some kind of order on to the data without 

distortion. The use of codes and categories helps to break the data down into 

manageable pieces, it allows for the identification of relationships between units of 

meaning and to begin initial analysis. Although qualitative research can make use of 

observer-generated codes and categories, these must at some point in the process, be 

related to the participant's codes and categories and more importantly their coding 
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and categorizing system. In this way the qualitative researcher ensures a movement 

from description to explanation. 

The complexity of the coding and the categories generated will depend upon the 

nature of the study. In this study, there was no need for a coding system since only 

seven learners participated in the study, and in addition, the number of strategies used 

was limited. 

Theoretical sensitivity is the ability to recognize what is important in data and to give 

it meaning. It helps to formulate theory that is faithful to the reality of the phenomena 

under study. Theoretical sensitivity has two sources. First, it comes from being well 

groomed in the technical literature as well as from professional and personal 

experience. This complex knowledge is brought into the research situation. 

However, theoretical sensitivity is also acquired during the research process through 

continual interactions with the data. (Hitchock & Hughes 1995:298.) 

The process of analysis will also need to consider the question of validity. In the 

analysis of the data, the researcher will be concerned to validate or verify the kinds of 

analysis made and explanations offered. This will mean constantly moving 

backwards and forwards between data and analysis, and between data and any 

theories and concepts developed, and between the data and other studies or literature. 

Once a series of relationships is observed, the researcher attempts to formulate a 

series of insights or hunches in the light of the relationships observed, into a theory 

which will cover and account for all the cases as far as possible. (Hitchock & Hughes 

1995:297.) 

The learners' solution strategies in this study is analysed according to a more specific 

scheme of mathematical strategies, namely horizontal additive, horizontal 

multiplicative, vertical multiplicative, counting on, ratio and proportion, a 

sophisticated form of skip counting, a functional rule, a proportionate functional rule, 

and backward strategy. A detailed analysis of these strategies is discussed in Chapter 

Four. The specific and general use of strategies for questions one and two will be 

discussed, and compared with findings in literature. 
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Educational researchers study socially constructed phenomena when they study 

classroom interaction, or school academic climate, or student test performance 

(Cherryholmes 1991 :42). Preissle-Goetz & LeCompte (1991:64) believe that 

qualitative research is an effective way of studying society and culture because they 

are charged with teaching the young about human world. Qualitative approaches can 

also increase the level of understanding of the inside world of learners, educators, 

administrators, parents, and others involved in education. 

Qualitative researchers are able to provide feedback in a way that participants find 

productive and encouraging. Its success depends on cooperation and commitment 

from participants, from whom researchers require much, and to whom little may be 

returned. Qualitative research cails into question the existence of correct, absolute 

solutions to human problems and treats knowledge in tentative, sceptical and relative 

ways. For educators whose lives and research have been devoted to improving the 

human condition, using qualitative approaches means settling for the possibility that 

there are no quick fixes. 
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CHAPTER FOUR 

RESULTS AND ANALYSIS 

What follows is firstly a summary of the learners' interpretation of the terms used in 

the problem. This is followed by an analysis of the strategies used by the learners in 

filling in the table, formulating an equation relating speed and time and writing down 

the equation in symbolic form. 

The learners were provided with novel problems involving real-life situations dealing 

with motion. They were required to complete the tables that were provided from the 

information given in the statements and hence formulate functional relationships 

between the variables speed and time on their own without receiving prior instruction. 

The end result expected of the learners was for them to develop a rule for calculating 

the speed when the time and acceleration were given. By supplying the learners with 

a table of time and speed for each problem, the ''problem was broken into a collection 

of smaller parts." By making use of the solutions of these smaller parts, the final rule 

or algorithm could be derived. Rolston (1988) ( cited in Dhillon 1988 :3 82) called this 

strategy ''problem decomposition." 

The learners who completed these tasks successfully would have developed their own 

algorithms and thus developed a better understanding of the concepts and propositions 

of the physics involved in kinematics. Salzano (1983:10) said that understanding and 

success depends on the knowledge of the problem situation rather than the use of 

mathematical knowledge. Completing the table required an interpretation and 

analysis of the given statement. It also required the development of a relationship 

between the variables speed and time. Thus it is virtually impossible to separate the 

mathematics from the physics in dealing with these problems at the initial stages. 

However, once the algorithm is developed by the leaner, it could be used with 

understanding and confidence in solving novel problems dealing with kinematics in 

physical science. 

When solving the problems, the learners used a variety of methods and strategies. 

The learners were not always aware of the strategies they were using, however these 
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were inferred by the researcher from the written data, think-aloud data and interviews 

which were conducted while the learners solved the problems. 

According to Dhillon (1998:385), a strategy is a plan of action. It is the 

representation of a block of knowledge, procedural or declarative, used to move from 

the initial stage to the goal stage. The intuitive modelling strategies used by the 

learners in this study were horizontal additive, horizontal multiplicative, vertical 

multiplicative, ratio and proportion, counting on, a sophisticated form of skip 

counting, proportionate functional rule, and backward strategy. 

This study was also influenced by the ten commonly used strategies reported in 

literature and that which was used by Dhillon (1998:381). They are analogy, 

brainstorming, envisioning, forward strategy, generate-and-test, heuristic search, 

means-ends analysis, problem abstraction, problem decomposition and working 

backwards. Each of these strategies according to Dhillon (1998:385) consists of a 

series of sequenced application of activities. Thus, activities may be considered as 

forming an internal structure of a strategy. Dhillon identified fourteen such activities. 

While evidence of these activities were present in the learners responses, details 

would not be specifically referred to as it goes beyond the scope of this dissertation. 

The following instructions were given to the learners: 

"I have a statement that relates to a real-life situation. I want you to read through it 

and then answer questions based to it. This exercise is to ascertain how you interpret 

the situation, what you are thinking, your plan of action, your reasoning, how you 

obtain relationships etc. Besides writing down anything you feel is necessary, you 

must verbalize what you are thinking and doing. This exercise is by no means a 

judgemental exercise, so you should see me as someone trying to understand what 

goes on in your mind when you interpret the statement and answer the questions." 

It is hoped that the results obtained from this research would contribute to improving 

not only my teaching but also those of other educators and hence impact positively on 

learners' performance. 
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The statements were: 

1. The speed of an object with an initial speed of 0 mis increases at 5 mis every

second.

2. The speed of an object with an initial speed of 10 mis increases at 2 mis every

second.

The learners were required to fill in the blanks in the tables from the information 

given in the statements. 

Table for statement 1: 

Time (s) 0 1 2 3 4 5 10 50 120 560 

Speed (mis) 700 1200 

Table for statement 2: 

Time (s) 0 1 2 3 4 5 6 10 50 80 

Speed (mis) 410 1000 

The learners were required to explain the terms in the statement before filling in the 

table. The reason for this was, since the intention of this research was to ascertain the 

learners' intuitive modelling strategies for solving the problems, the learners should 

not be disadvantaged due to incorrect interpretations of the terms used in the 

statement. After all says Pol ya (1945 :6), it is foolish to answer a question that you do 

not understand. First of all the verbal statement must be understood. According to 

Janvier ( 1978), it is highly informative to a learner to provide sub-questions i.e. 

simpler questions so as to minimize errors in the answers. Thus a reasonable 

understanding of the terminology was required. 

The questions asked were: 

1. What does 'initial' mean?

2. What does 'speed' mean?

3. What do you understand by 'metres per second (mis)'?

4. What do you understand by '5 metres per second every second (5 mis)'? A

more appropriate question would have been: "What do you understand by an

increase in 5 metres per second every second?"
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5. How is it possible for an object to undergo an increase in speed?

After answering the questions the learners were required to carry out the following 

tasks for each of the questions: 

• Fill in the given table. Establish a relationship between speed and

time.

• Formulate this relationship between speed and time m their own

words.

• Write down the above formula or equation in symbolic form given that

'v' is the speed and 't' the time.

Calculators were used, where necessary. 

The seven learners who were part of this research study were Shireen, Nancy, Wendy, 

Fatima, Irene, Dinesha and Erica. Their names have been changed for the purpose of 

confidentiality. 

Unfortunately the tape-recorded data of Fatima's interview for statement 1 could not 

be captured due to an electrical fault with the tape recorder. However, sufficient 

written data was collected so as to make reasonable conclusions to the strategies she 

used. 

The results and analysis will be discussed as follows: 

1. Interpretation of the terminology.

2. Results and analysis of statement 1 which will be subdivided:

2.1. Introduction. 

2.2. Speed at zero seconds. 

2.3. Filling in the table. 

2.3. Establishing the relationship between speed and time and hence formulation 

of an equation. 

2.4. Summary. 

3. Results and analysis of statement 2 which will be subdivided:

3 .1. Introduction. 

3.2. Filling in the table. 
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3.3. Establishing the relationship between speed and time and hence 

formulation of an equation. 

In the analysis of question one and question two each learner's response will be 

considered separately because, although there was a fair degree of overlap in the 

choice of their strategies, their idiosyncratic use of these strategies needed to be 

recognized and discussed separately. A general discussion of the strategies will 

follow at the end of this chapter. 

INTREPRETATION OF TERMINOLOGY 

Initial 

All the learners had a reasonable understanding of the term 'initial' and were able to 

apply it appropriately when filling in the table. Shireen, Wendy and Erica gave a 

general meaning while Nancy, Dinesha and Erica were more specific, relating it to the 

statement. 

Shireen, Wendy and Erica correctly understood 'initial' to mean "at the beginning" or 

"at first." Erica elaborated further by relating it to the statement and said that it 

started with a speed of zero metres per second. Nancy interpreted 'initial' as being 

the speed "right now" i.e. at that point in time, meaning at the start. Nancy's and 

Dinesha's views were similar to Erica's having taken the problem in context and 

stating that the initial speed was zero. They also considered initial to be the point 

when nothing happens, with some change taking place thereafter which in Dinesha's 

words were "at the beginning, before anything happens" and in Nancy's words were 

"the speed was going to increase every second thereafter." Irene, a second language 

learner, explained 'initial' as being the "permanent speed." Unfortunately what she 

meant by this was not followed up and so her interpretation could not be ascertained. 

However, while filling in the table it was apparent that 'initial' to her meant at the 

start because, she, correctly stated "the object has an initial speed of zero, so it starts 

with a speed of zero. " 

Speed 

All the learners associated speed with movement. With the exception of Nancy all the 

learners considered speed to be "how fast" the object was going. Nancy associated 
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speed with "very fast movement," thus likening 'speed' with 'speeding'. Dinesha's 

interpretation of speed was the "rate of travel," probably meaning the rate at which 

distance was covered per unit time. This point was not pursued because of time 

constraints and the fact that the focus of this study was the strategies used in solving 

the problem and from her understanding of speed she was able to arrive at appropriate 

answers. The idea of rate as the distance covered in a given time had not been 

explicitly stated by any of the learners. 

Metres per second (mis) 

All the learners interpreted it as being the physical quantity 'speed,' yet 'mis' featured 

nowhere in the discussion of speed above. With the exception of Erica, all the 

learners conveyed the idea of distance travelled in 1 second. Nancy gave the 

following examples: "I metre a second, 2 metres a second." 

Shireen assumed that the number preceding 'mis' was necessarily '1' as if it was an 

algebraic variable, for example, 'x' implies '1 x.' She elaborated further by saying 

that "If there was a 2 in front, it means that the object is travelling at 2 metres every 

second, if it had a 6, then it's travelling at 6 metres every second." 

Dinesha, Wendy and Irene felt that it was more appropriate to explain 'mis' in terms 

of 'metres' and 'seconds', considering 'm' and 's' to be the symbolic abbreviations 

for metres and seconds respectively. Dinesha and Wendy both described it as "how 

many metres it travels per seconcf' while Irene's explanation was "in I second it 

covers so many metres." 

Erica, on the other hand described it as the "distance travelled over a certain period of 

time." 

All the learners considered 'mis' to be the physical quantity speed. None of them 

recognized it as the unit in which the physical quantity speed is measured. This is a 

very common misconception where learners regard the physical quantity and the unit 

for the physical quantity as being synonymous with each other. This is probably due 

to the fact that when these concepts are first introduced to learners, a clear distinction 

is not adequately illustrated. The following comments made respectively by Erica 
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and Dinesha elsewhere in their discussions illustrates this point: " ... seconds is time" 

and "mis is the speed ... " 

Another commonly associated problem is that of assigning incorrect units to physical 

quantities, for example, Irene referred to speed as "5 metres." 

5 Metres per second every second (5 m/s) 

This question initially led to confusion because it should have been: "What do you 

understand by the phrase: increases at 5 mis every second?" The initial response 

received from all the learners except Irene was "5 metres for every second'. Erica 

and Wendy, having realized that this term pertained to the statement, read the 

question again and correctly responded as "for every second the speed increases by 5 

metres per second." Irene's immediate response was "every second its speed goes 

higher into 5 metres. " 

How is it possible for the speed to increase? 

All the responses were, by "accelerating". Erica elaborated furlher by relating this to 

the given statement by adding "so 5 metres per second every second is the 

acceleration." Shireen discussed acceleration by comparing the speed of a car on a 

freeway with the speed in a public area. She was given 'a car' only as an example, 

but she felt most comfortable discussing acceleration in terms of something she was 

familiar with. In this way of working from a familiar to an unfamiliar situation she 

was able to grasp a better understanding of acceleration. Thus supporting Karnii's 

(197 4: 199) view that knowledge is constructed from within and Heaney & Watts' 

views that knowledge is made by us and our of experience. 

The learners conveyed a reasonable understanding of the all the terminology, except 

for 'mis', used in the statement. Thus it would have appeared that completing the rest 

of the tasks would not have been hindered by the inadequate interpretation of the 

terminology. However, in the process of completing the table it became evident that 

the meanings of some of the terms e.g. 'initial' was disregarded or changed. In 

question two the learners considered initial speed to be zero metres per second 

although it was specified as 10 mis. Thus the meaning of 'initial' was disregarded. 

This was probably due to the influence of question one where the initial speed was 
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per second. This is in keeping with Davies' ( 1984) view that learners create separate, 

different 'frames'. It is possible that the frame developed earlier persists and is 

sometimes inappropriately retrieved. 

RES UL TS AND ANALYSIS OF QUESTION ONE 

Introduction 

The question was: "The speed of an object with an initial speed of O mis increases at 

5 mis every second." 

Most solvers used a combination of problem-solving strategies. The strategies 

depended on the amount of factual and procedural information available and the 

experience of the problem solver. Many solvers used strategies without realizing the 

style adopted. In general, search processes dominate much of the problem-solving 

behaviour of novices. (Chi, Feltovich & Glaser(l 981) cited in Dhillon 1998:383.) 

Problem abstraction, done by concentrating on the most important elements of the 

statement, was a strategy used by all the learners. 

When filling in the table, all the learners looked for a pattern, either with time only, or 

speed only, or between speed and time. All of them, at some stage of filling in the 

table, realized that a relationship between speed and time had to be developed. 

Determining the speed at zero seconds 

All the learners had obtained a speed of O mis at the time O seconds. 

While some learners were able to obtain a speed of zero metres per second 

immediately, others deliberated before obtaining the correct answer. 

Shireen's immediate response after reading the statement was to establish a pattern 

between the times. She engaged in a heuristic search, trying to develop a horizontal 

pattern between the times. The following excerpt illustrates this: 

"Looking at time 0, I, 2, 3, 4, 5, I 0, 50, 120. " Read statement again. "It's I 0, 50, 

120, it's I, 2, 3, 4, 700, 1200 umm ... 5 x2 is JO; IOx 5 is 50,· 50x 6 equals 120; 120x 

6 equals oh no! I was going along with time. You gave me zero, then I, 2, 3, 4, 5, JO 
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then 50, then 120. So looking at how time is going about and the seconds, time is I 

second, 2 seconds, 3 seconds etc. " 

Shireen's response was similar to Schoenfeld's (1985:73) findings that learners are 

generally inefficient in their strategy selection. They will often make their first 

attempt on a problem using a complicated and time-consuming strategy, without 

checking to see whether simpler and faster techniques might be appropriate. As a 

result they waste much time and effort. 

Shireen generated and tested a number of possibilities. Throughout her work she had 

shown good problem solving skills in that she persevered and she evaluated her work 

as she went along. Persistence, according to Wheatley (1992:532) is a necessary 

factor in problem solving. However, since she was spending too much time on trying 

to develop a horizontal pattern, she was asked to try and determine the speed, which 

she did after reading the question again. Dinesha too, initially thought of developing 

a horizontal pattern between the times but abandoned the idea immediately because 

she was not sure how to do it. Shireen and Dinesha made use of "an initial speed of 

zero metres per seconcf' from the statement to obtain a speed of O mis at a time of 

zero seconds. The latter was the immediate response of Wendy, Irene, Nancy and 

Fatima. Thus in determining the speed at zero seconds, all the learners except Erica 

concentrated on the most important elements of the problem, a strategy that Rolston 

(1988) ( cited in Dhillon 1998:382), called 'problem abstraction.' Erica did not start 

from zero seconds. She filled in the rest of the table and then came back to zero 

seconds, thus adopting a backward strategy. Details of this will be discussed under 

Erica's response to filling in the table. 

Filling in the table 

Introduction 

The initial problem description was used to generate solutions, for example all the 

learners started with the "speed increases at 5 mis every second' in order to obtain 

the speed at zero seconds. The values in the table were obtained by considering the 

previous calculations i.e. a forward strategy was used. To calculate the speed at the 

initial stages of the motion, Dinesha and Erica used a horizontal multiplicative 

strategy while the others used a horizontal additive strategy. 
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All the learners with the exception of Wendy, engaged in a process of brainstorming 

and generating-and-testing their solutions with a view to developing an algorithm 

which Newell & Simon (1972) ( cited in Dhillon 1998:382), called 'heuristic search'. 

A vertical functional rule was developed and the algorithm, 'speed = time x 5' was 

used by all the learners except Irene. Despite generating and testing possibilities, 

Irene was unable to develop a relationship. 

Since each learner displayed uniqueness in their initial selection and application of the 

strategies, the details of each learner's response including their completed table will 

be discussed separate I y. 

Shireen 

Time (s) 0 1 2 3 4 5 10 50 120 {40 140 560 

Speed (mis) 0 s te 15 60 aoe- 700 1200 2'lao 

IO I!:> .2 0 lS" 50 250"'1 6cc

Figure 4.1. 

Shireen initially used a horizontal additive strategy to determine the speed. However, 

her calculations were correct only up to 15 mis at time 3 seconds. A possible reason 

for her not obtaining correct answers thereafter is that she used a calculator to 'add 

on' so when determining the speed at 4 seconds, on the display of the calculator was 

the previous speed of '15' and since she was calculating the speed at 4 seconds, she 

simply entered 'x 4' although she verbalized "15 then another 5." This could 

possibility be due to the fact that she was intuitively thinking also about the functional 

rule 'v = St' or the vertical multiplicative strategy with time equal to 4, but realized 

that 15, being the previous speed had something to do with the answer. In effect what 

Shireen did was to combine both the rules, i.e. 'v = 5 x 4,' and 'v = 15 + 5,' and 

obtained '15 x 4.' An interesting point to note here is that what she did and what she 

verbalized was different which shows that the mind does not always 'verbalize' what 

it is thinking. Nancy in her discussion had displayed a similar behaviour. The 

researcher preferred not to probe at this point because she did not want to interfere 

with nor did she want to influence Shireen's thought processes. 
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In calculating the next value i.e. for 5 seconds, she similarly entered 'x 5', thus it was 

'60 x 5.' This '5' could have been the time 5 seconds or the increase in speed of 5 

mis every second. However, for the next calculation which was at 10 seconds, she 

had '300 x 5' and not '300 x 10' thus indicating that the '5' that she was considering 

was the acceleration. In the five calculations that Shireen had done thus far, she used 

three different strategies, namely, a horizontal additive strategy for 1 second to 3 

seconds then a multiplicative strategy multiplying time by the previous speed and 

finally a multiplicative strategy again but this time multiplying the previous speed by 

the acceleration. 

She realized her mistake only after obtaining an "unrealistic value" of 1 500 mis as 

the speed at 10 seconds. This is in keeping with Dhillon's (1998:387) findings that a 

novice generally performed checking when the expression obtained failed to make 

sense. Again she followed what she had done earlier but realized that a speed of 60 

mis after 15 mis at times 4 seconds and 3 seconds respectively, was too large. She 

noted that she had wrongly related the quantities and attempted to resolve her 

difficulties by considering "it travelled 5 metres in 1 second, in 4 seconds it's 5 x 4 

equals 20" thus she changed her strategy to a vertical multiplicative rule. Using this 

rule she correctly completed the speed in the rest of the table. 

In order to calculate the time when the speed was given she simply divided the speed 

by 5. Shireen displayed good problem-solving skills because she constantly evaluated 

her work and checked whether her answers were reasonable as she went along. 

Wendy 

Time(s) 
Speed (mis) 

0 

() 

l 2 3 

5 10 IS 

4 5 

'20 L'.S 

10 50 120 

� � s
,._

60 0 

so '25o 6oq

Figure 4.2. 

140 24-0 560 

700 1200 rt 2 

Wendy made use of the fact that ''every second it increased its speed by 5 metres per 

second" and went directly into the horizontal additive strategy. She carried on 

adding S's without realizing the gap in times after 5 seconds. Irene and Fatima had 
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also done the same. Wendy realized her mistake when she arrived at a speed of 35 

mis at 50 seconds, which was much smaller than the given speed of 700 mis. After 

ascertaining that 6 seconds was not given she intuitively switched to a vertical 

multiplicative strategy i.e. time x 5. The following is an excerpt of how she 

developed the rule and then proceeded to complete the rest of the table: 

"6 was not given. So then if at zero seconds the speed was zero then at IO seconds, the 

speed increases at 5 so it will be 50, am I right? So at 4 seconds it was 20, 5 will be 

25 so at IO seconds - every second it increases 5, that means it will be 50 metres per 

second and if it's 50 seconds and every second it increases 5, so it will 250 metres per 

second and then it's I 20 seconds it increases 5 so I 20 x 5 equals 600. So if 700, I 

want time now, and then every time . . .  I'll divide by 5 from the ratio and proportion of 

700 divided by 5 equals 240 and 560 divided by 5 equals I I 2." 

In the time that she paused before calculating the time, she was probably thinking 

about another strategy i.e. the relationship between speed and time in terms of a ratio. 

She subsequently made use of ratio and proportion to complete the rest of the table. It 

would have made no difference to the calculation in this particular example if she 

used either the vertical multiplicative rule or the proportional rule, since the initial 

speed was zero. 

Wendy seemed quite confident about the strategies that she used and the calculations 

that she had done so she did not check her work like the others had done, thus she 

displayed poor problem-solving skills. The only time that she did check her work was 

when she noticed a big discrepancy between the speeds 35 mis and 700 mis. She 

made a careless error, which went unnoticed, when calculating the speed at 560 

seconds. She simply followed the trend of dividing by 5 and because this was the last 

value to be calculated, there were no other values to compare her answer with. 

However, had she checked the answers she would have realized that the speed of 112 

mis was much smaller than the previous speed of 1200 mis because she was aware 

that the trend was for the speed to increase with time. 
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Fatima 

Time (s) 0 1 2 3 4 5 10 50 120 l'+O 1. 4-0 560 

Speed (mis) 0 5 10 15 ').Q '.25 �; 2> O GOO 
700 1200 '2.800 

Figure 4.3. 

Fatima started her work with a pictorial representation, which was inappropriate and 

served no purpose. Fatima's response to filling in the table was very similar to 

Wendy's except that she realized her mistake earlier i.e. at l O seconds. She realized 

her error because she was a careful worker and constantly checked her work. Fatima, 

like Wendy immediately switched to a vertical multiplicative strategy and completed 

the rest of the table correctly. Some of her calculations were done as follows: 

Nancy 

Time (s) 
S eed mis 

0 1 2 3 4 

Figure 4.4. 

.700 

Figure 4.5. 

560 I•� 
140 __.:-. 

¼o 560 

1200 � 

Nancy also started with a horizontal additive strategy and after the time of 4 seconds 

switched to the vertical multiplicative strategy. She worked with a 'ratio and 

proportion' strategy like Wendy did, although she did not explicitly state it as Wendy 

did. Her ratio and proportion computations were done as follows: 

I S 

1 '><' 0 .>c.. 
So >C 

X. �- 5

I 5 

110
'>< 

/,,oc, 

Figure 4.6. 
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She correctly calculated the speed using ratio and proportion, at 120 seconds as 

600 mis, using the argument "for 1 second its speed increases by 5 metres per second 

so for 120 seconds the speed will increase 5 times, 600 mis." On reflection she 

changed 5 to 2,4 while still using the strategy of ratio and proportion. Her argument 

now was "The speed didn't increase by 5 over here [ from 50 to 120 seconds] the 

speed increased by 2, 4 [i.e. 120/50] so it will be, for 1 second the increase is 2 ,  4 and 

then cross multiply to get 288." 

,2---0 

-
--

Figure 4.7. 

She incorrectly multiplied 120 seconds, rather than 250 mis, by 2,4. She was however 

aware of the proportionate functional rule as was evident in her following comment: 

"When the time increases by 2,4 times, speed increases by 2,4" which she mentioned 

and also made use of in a later discussion. In addition, when she checked her work 

she used the correct principle, dividing 288 by the previous speed, 250 i.e. she went 

back to the horizontal multiplicative rule. She temporarily abandoned this strategy 

after checking and seeing that it " didn't work." 

Nancy correctly calculated the times when the speeds were 700 mis and 1200mls. 

Thereafter she went into a lengthy verification process verifying the speed and then 

time by firstly multiplying by 5 and then working backwards by dividing by 5 in order 

to verify the time e.g. "5 times 10 equals 50 so 50 divided by 5 is 10." She was so 

intent on creating clarity and transparency in the calculations that what she was 

thinking and what she verbalized was different. She was very focussed on '5'. The 

following verbal transcript illustrates these points: 

" ... 50 dividedby5J'm getting5 [meaning 10] ,andiflsayl0 [meaning 25] 

divided by 5 I'm getting 5, then I say 5 [meaning 20] divided by 20 [meaning 4] then 

I should be getting 5, then I say 5 [ meaning 15] divided by 15 [ meaning 3] then I'll 

get 5, then I say 5 [ meaning 10] divided by 10 [ meaning 2] then I'll get 5 ... " 
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Schmalz (1988:36) described this phenomenon as the most fundamental discipline in 

developing the faculty of the intuition as sustained attention, where the learner 

focuses attention. 

She was asked to verify the calculation for 5 divided by 10 and her response was "5 

divided by 10 will give 2". It is not uncommon for errors like these to be made, 

especially when the mind is intently engaged in a particular thought process, that what 

one says is different from what one is thinking, although these may be very closely 

related. One is often not aware of this difference. 

Although she had calculated the times correctly for the given speeds of 700 mis and 

1200 mis, she was now not sure whether to divide the speed by 5 or by 2,4." After 

much debate, she finally convinced herself: "but we are not moving 5 anymore," so 

she divided the respective speeds by 2,4 in order to determine the times. 

When calculating the speed at 560 seconds, she worked out the increase in the time 

from 500 seconds to 560 seconds as 1,12 [560/500]. In keeping with the trend of 

dividing for the previous two calculations, she incorrectly divided by 1, 12 and got 

500. Wendy had adopted a similar strategy in simply following the trend for

calculating the speed at 560 seconds. Neither of them had realized that it was the 

speed that had to be calculated and not the time. Instead of dividing the time, Wendy 

should have multiplied the time by 5 and Nancy, according to her calculation, should 

have multiplied by 1, 12. 

Although Nancy was able to get only 7 of the 11 calculations correct, she showed 

very good problem-solving skills by constantly checking her work and ascertaining 

the validity of her strategy use and making changes accordingly. She used many 

different strategies. At times she doubted her ability to assess her own performance, 

by directing comments such as: "Is it right?" to me as the authority. Confrey 

(1985:478) who worked on problems learners experience in mathematics encountered 

similar problems with her learners. Nancy shifted between correct and incorrect 

answers e.g. the time when the speed was 7 mis and 1200 mis was correctly 

calculated as 140 seconds and 240 seconds respectively. After subsequent strategy 

changes, she abandoned the correct answers. According to Clement (1980: 18), 
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shifting between correct and incorrect strategies indicates that contradictory schemes 

may continue to exist independently in the same individual. 

Irene 

Time (s) 0 I 2 3 4 5 IO 50 120 500 560 

Speed (mis) 0 5 10 IS �o .26 c,O '35 L\0 
700 1200 

Figure 4.8. 

Irene had also used the horizontal additive strategy without noticing the 'gaps' in the 

time intervals. However, she, unlike the other learners did not recognize anything 

unusual in a speed of 40 mis being followed by a speed of 700 mis. In calculating the 

time when the speed was 700 mis, she assumed the speed to have been 45 mis i.e. 

following the additive rule. She calculated the time as: "700 - 45 = 655". This value 

of 655 seconds was according to Irene too large a jump from 120 seconds and so she 

discarded this strategy. Irene was able to recognize the big jump with the time but 

failed to recognize such a jump in the speed from 40 mis to 700mls. 

Irene tried establishing a pattern for the time increase by looking at the difference 

between 50 seconds and 10 seconds, 120 seconds and 50 seconds, which were 40 and 

70 seconds respectively. The problem with these differences, according to her, was 

that they were not equal. She then subtracted 120 seconds from 700 mis and obtained 

580 seconds, which to her was too large a value to follow a time of 120 seconds, so 

this too, was disregarded. Irene did not know that subtracting numerical values of two 

different physical quantities was not possible. She simply considered the values for 

the variables as ordinary numbers. Thus showing the need for possession of sound 

cognitive structure in order to facilitate problem solving ( Ausubel et al. (1978: 571 ). 

She then multiplied 40 by 5 and subtracted the answer from 700 mis and obtained a 

time of 500 seconds. She abandoned filling in the rest of the table because the large 

values that she obtained did not 'follow the trend." 
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While Irene may not have been able to fill in all the correct values nor complete the 

table, she did show some good problem solving skills in that she was able to 

recognize some answers as being "unrealistic." 

Dinesha and Erica 

Time (s) 0 1 2 3 4 5 10 50 120 140 1-40 560 

Speed (mis) 0 5 10 IS ..10 o.s 50 'Jg) c;oO 700 1200 �

Figure 4.9: Dinesha 

Time(s) 0 1 2 3 4 5 10 50 120 140 ?40 560 
Speed (mis) 0 5 10 \'o Zt) -is 50 250 Goe 700 1200 -i,gco 

Figure 4.10: Erica 

The strategy that Dinesha and Erica employed was different from that of the others. 

They said that since the time increase from l second to 2 seconds was by a factor of 2 

so too the speed must increase by a factor of 2, thus using a proportionate functional 

rule. Dinesha's argument was" At 1 second it should be 5 metres, and at 2 seconds it 

[previous speed] should be multiplied by 2 so speed is JO [2 x 5]. " Erica's argument 

whilst being similar to Dinesha's was somewhat clearer. She said: "It increases at 5 

metres per second every second so for every second there's 5 metres and here there's 

2 seconds so it will be 2 times the amount in 1 second which will give me 10. " 

They both used a proportionate functional rule, which they without being aware of it 

changed, Dinesha at 3 seconds and Erica at 4 seconds. Dinesha changed to a vertical 

multiplicative rule after considering "It's increasing at 5 metres per second every 

second so then at 3 it should be 15 - by multiples of 5. " Although Erica intended to 

" ... do the same with 4 and 5" as she had done with 2 and 3 seconds she, without 

being aware of it, switched strategies to a vertical multiplicative rule by "4 times 5 

would be 20 and 5 times 5 would be 25 ... ". Thus both of them changed from a 

proportionate functional rule to a vertical multiplicative strategy without any apparent 

reason being provided for doing so. Neither of them was aware of having changed 

her strategy. Unlike Shireen, Wendy, Nancy and Fatima who deliberately changed 

strategies due to problems that they experienced in filling in the table, Dinesha and 
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Erica had experienced no such problems. Using the vertical multiplicative strategy 

the table was correctly completed by Dinesha and all but the speed at zero seconds by 

Erica. 

Erica debated about what the speed at zero seconds was. Eventually, working with a 

backward strategy on the number line as shown in figure 4.4, she correctly determined 

the speed as O mis. The following excerpt shows the argument she used: 

"Researcher: Why haven't you filled in zero? 

Erica: Because at the time zero I don't know what the speed is because they 

say the speed increases at 5 mis every second. Now there's no time so I 

think that the speed is zero because there 's no time so ... As time 

increases by I second, speed increases by 5 metres per second so I can 

get speed at time equal to zero seconds. [Read question]. No I can't 

get speed at time equal to zero. 

Researcher: Why not? 

Erica: Speed at which it started before it started increasing . . . so at time 

equal to zero, speed will remain zero because if we work from the 

question, one can see the speed increases by 5 so that will follow the 

pattern so probably speed will be I because we can see 0, I, 2, 3, 4, 5 

- if we have all these on the number line we have to count from 5 - I,

2, 3, 4, 5 - we will have to start from zero in order to get 5 metres per 

second every second so I think this will be zero. 

Researcher: But you said that it was I earlier? 

Erica: Yes, but I had to draw the number line to see the pattern. "

Figure 4.11. 

The fact that the general rule, that she had formulated to fill in the rest of the table, 

could be applied to zero seconds as well, did not occur to Erica. 

THE RELATIONSHIP BETWEEN SPEED AND TIME AND FORMULATION 

OF AN EQUATION IN VERBAL AND SYMBOLIC FORM 

All the learners with the exception of Irene were able to develop the correct 

relationship between speed and time. Although they all used the relationship 'speed= 
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time x 5,' in filling in the table, their verbal and symbolic interpretations varied and 

were often inappropriate. While learners experience no problems when dealing with 

numerical relationships, they find it difficult moving from the numerical rule to the 

verbal rule to the symbolic rule. Herscovics & Kieran (1980:572) and Clement 

(1980) amongst others discussed the difficulties experienced by learners in translating 

from a verbal statement to an equation. The individual responses will be discussed 

separately. 

Wendy 

The relationship given by Wendy was stated explicitly as a ratio: "Time is to speed

equals 1 is to 5," thus displaying a clear understanding of the relationship. 

foY e� seco,,d the s f"(?�d 

i M f'\ 1�5 -t �4. {� ,--c:Jj 6 \ : S' 

;,., � 5 s e c:.., 
-:) t: \h'I(( : S�Q�

• ' 5 .

Figure 4.12. 

So ;{ 

Writing down a formula or an equation created no problem for Wendy and her 

immediate response was: "Speed equals time times 5 because it increases 5 metres

every second." She qualified the statement that she made thus showing that she had a 

clear verbal and symbolic perception of the situation. The verbal and symbolic forms 

of the equation given by Wendy were as follows: 

V St 

Figure 4.13. 

When Wendy was asked if '5' represented any physical quantity, her reply was "The

object travels 5 metres faster every second. 5 's add up. " Thus she showed an 

understanding of 5 metres per second every second as a rate or as the acceleration. 

Dinesha 

Dinesha had also considered the relationship in terms of a ratio. Her response was 

"at every second the speed increases by 5 metres per second so they are 
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proportional. " After some hesitation she came up with the following equation in 

words: 

6 reed "' t,rv'IC". MvlLpliecl tJ l ..-o-te 

;,..,crea<;e. of spc-ed. 

Figure 4.14. 

She too seemed to have some intuitive idea of the rate of change of speed as the 

acceleration. Denisha experienced difficulty translating the verbal rule into the 

formal, symbolic form. While she was able to translate speed and time into 'v' and 't' 

respectively, 'the rate of increase of speed' seemed to create a problem. She said that 

"metres per second is the speer!' thus considering the unit 'metres per second' to be 

the same as the physical quantity 'speed,' a common error referred to on page 78. 

The equations provided were: 

V - L y. s (V1 Is 

Figure 4.15. 

Because she considered 'mis' to be speed and 'v' as the speed as well, she was 

puzzled at having speed on both sides of the equation. She said "It does not make 

sense to me because you calculated speed and how can you already have speed?" 

Denisha could not make sense of it, what she did know though, was "This [5 mis] 

doesn't change but these [speeds in the table], do change" and that time was 

multiplied by this constant 5. This problem could have been obviated had she had a 

clear understanding of the physical quantities, their symbols and their respective units. 

The equation, 'v = t x mis' was incorrect because it violates the rules of mathematics 

and science in that it related physical quantities and units. It appears that the letter 

symbol "mis" is interpreted here as a variable representing speed. The equation 

'v = t x 5 mis' is also incorrect because an equation representing physical quantities 

has no units. It is clear that she has some difficulty understanding the precise 

meaning of algebraic symbols and equations as representing quantitative variables and 

relationships. 
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Dinesha was not too confident about the right hand side of the equation having time 

appearing twice. Her interpretation was that the speed was, "5 metres per second,"

and that incorporated in this was "per seconcf' which to her was the time. Hence her 

comment, that speed and time "intertwine" because "time is part of the speed. Like

you say metres per second." 

Fatima 

Fatima did what Dinesha had done in formulating the equation. She 'converted' the 

numbers into physical quantities as follows: 

io�r � �10
·csnc. \1 sf'f.-t D 

3'((D fl\/S 

Figure 4.16. 

Having obtained the equation, "time x speed mis = speed," Fatima was initially 

confused at having speed on both sides of the equation. Upon reflection she qualified 

that the speed (V) on the left hand side of the equation "T x V = V," was the constant 

and equal to 5 metres per second. She used the same symbol to represent different 

physical quantities, which to her mind, although different i.e. one being the constant 

speed and the other the changing speed, represented the same physical quantity speed. 

This confirms Herscovics & Kieran's (1980:573) view that symbolism and notation 

may not carry the same meaning for both learners and educators. The CSMS algebra 

test study shows that to learners different symbols cannot have the same value 

(Kucheman 1982:489). However, Fatima regarded the same symbol as having 

different values. 

A point worth noting is that Fatima included the unit for speed on the left hand side of 

the equation and not on the right hand side thus emphasising the fact that speed on the 

left hand side was the one from the given statement i.e. '5 mis.' Although both 

Fatima and Dinesha had identified '5 mis' as being the constant that time was 

multiplied by, their initial thoughts on it were different. Here too the units were not 

appropriately used. 
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Shireen 

Shireen experienced difficulty with formulating a verbal equation although she had 

established a correct numerical rule between speed and time in filling in the table. 

The following excerpt from her written work shows the use of the functional rule: 

1 10 1
50 

1
120 I��� I 1��; 1�

6

�0] 
50 2..S:, rv, G.oa 

Figure 4.17. 

She was able to work with the numbers but experienced difficulties with translating 

the numerical equation into a verbal equation. Fatima had experienced a similar 

problem. Shireen was 'assisted' by directed questions being asked e.g. 

"By looking at the table, can you see a relationship between speed and time?" 

"How did you get these [ speed] values in the table?" 

"How did you get the speed knowing the time?" 

The following is an excerpt of the interview that followed: 

Researcher: Write down a formula or equation relating speed and time. 

Shireen: speed = time x 5 

Researcher: Can you use this formula to get the speed at any time? 

Shireen: Yes, as long as I can get the constant, which in this case is 5. 

Researcher: If 'v' represents the speed and 't ' the time, write down a formula or 

equation relating speed and time in symbolic form. 

Shireen: 

[Figure 4.18.] 

V = t x constant, can I use any alphabet for the constant? 

Researcher: Whatever you want to. 

Shireen: V = t x a. 

Researcher: Why have you used 'a'? 

Shireen: I thought I had to give it an alphabet and acceleration is 5. 
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With guidance, she was able to establish the equation: "speed = time x 5" which 

written in general form was: "v = t x constant". She recognized this constant as the 

rate, which was the acceleration equal to 5. Her final equation in symbolic form was 

"V = t x a." It is obvious from Shireen's initial response that she experienced a 

problem translating from a numerical equation to a verbal equation. However, with 

guidance she was able to obtain the verbal equation. Clement's (1980) study clearly 

shows that students perform well in translating word problems involving numbers into 

equations but experience difficulties when the word problems involved symbolswhich 

in this case also involved the physical quantities speed and time. 

Nancy 

It was evident from Nancy's response to filling in the table that the speed "increases 

by 5 but not all the time." For her there were three rates of increase, namely, from 

zero seconds to 50 seconds, the increase was 5 then from 120 seconds to 700 seconds 

the increase was 2,4 and at 560 seconds it was 1, 12. She was asked to formulate a 

relationship for zero seconds to 50 seconds since this part formed the major part of the 

table with a common relationship. 

Nancy interpreted "5 metres every second" as "5 metres" being the distance and 

"every second'' as the time so "you move a distance of 5 metres for 1 second'' so 

speed according to her could be found by multiplying the distance by the time. To 

Nancy the distance was a constant 5 metres. This is not possible since the object was 

in motion and therefore the distance covered by it could not be constant. However, 

her misinterpretation arose because she considered the 'rate of change of speed' to be 

the distance. She did, however, have an idea of the 'distance' 5 metres, as she 

interpreted it, being the acceleration. This is evident in the following comment that 

she made: "I used 5 from the statement but this is not always the case, what if we 

move 10 metres per second or 20 metres a second? But it's just the distance that 

gives the speed, distance travelled times time will give speed. " Thus the formula: 

\/ T !> 

spe<td :: ll ni e. .,. b I� 

Figure 4. 19. 

which written in symbolic form was 
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Figure 4.20. 

This problem with 'rate' and 'amount' is peculiar not only to Nancy, but is evident 

with tertiary level students as well as is highlighted by Nickerson (1985:205). 

Nancy verified the correctness of this formula by substituting numerical values: 

0 � 0 X s 
5 s -

10 
-

;i 1>sy. 

Figure 4.21. 

She considered these three cases as being sufficient for her to make a generalization. 

Erica 

She attempted to proportionally formulate the relationship. Although she had carried 

out the proportional rule in filling in only two values in the table, and the vertical 

multiplicative rule for the rest of the table, the rule that she implied for the 

relationship was based on the proportionate functional rule. The relationship given by 

Erica was: 

f\'=> t, 1VV'-e, 1' P� 01 cex-t:::-01"'· {oct.c-r 
S' f' e.ed i' � S x i \Ao-1 C so IA-'Q, J I'oc.l:.cr

Figure 4.22. 

She did not realize that by including "5 times" into her statement it resulted in the rule 

being mathematically incorrect. A reason for her including '5 times' into the 

relationship could be that she had initially started with the horizontal multiplicative 

strategy so the speed at 3 seconds, which increased 3 times from 1 second to 3 

seconds, would also increase 3 times from 5 mis to 15 m/s, calculated as 5 x 3. At 

this stage she 'automatically' progressed into a vertical multiplicative functional rule, 

considering the '5' that she had considered in the above calculation to be the speed at 

1 second, to be the rate of increase in the speed. 

96 



The subsequent speeds were calculated using the rule: 'time x 5.' Erica 'merged' 

these two strategies i.e. she took the rule "as time increases by a certain factor, speed 

increases by the same factor" and merged it with, "as the time increases, the speed 

increases by a factor of 5." 

The formula that she presented was: "Speed = 5 x Time", thus she experienced no 

difficulty translating from numerical to verbal. Her problem was interpreting the 

verbal equation into symbolic form. She initially wrote it in terms of the units. While 

she had stated that mis was the unit for speed, she also likened mis to the speed, hence 

the formula: 

S�c..d c:: � X \\ fY\e,
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Figure 4.23. 

On reflection she changed the above formula to: "V = 5(T)". 

Irene 

Irene used the additive rule for correctly calculating the first five values in the table. 

The rule was inappropriately applied for the next two calculations thereafter she was 

confused. In order to complete the rest of the table, a rule had to be established 

between the two variables time and speed. Such a rule could not be established by 

Irene. 

SUMMARY OF RESPONSES TO QUESTION ONE 

The learners used different intuitive strategies in answering question one. The 

appropriate strategies used were: horizontal additive, ratios, vertical multiplicative, 

the functional rule and the proportionate rule. The latter three strategies were 

interchanged by some of the learners who used them. However, this did not affect the 

answers as in this particular case, the initial speed was zero. In problem two, where 

the initial speed was not zero, these rules could not be interchanged. 

All through the working the learners were mindful of the fact that the as the time 

increased the speed increased as well. 
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Five out of seven (72%) of the learners filled the table in correctly, one out of seven 

(14%) of the learners obtained correct answers for 67% of the table and the remaining 

learner (14%) obtained correct answers for 50% of the table. 

Six out of seven (86%) of the learners, when determining the verbal form of the 

relationship used the relationship of speed as being the product of time and 5 or the 

product of time and a physical quantity. Three of the seven learners (43%) gave the 

relationship as the product of time and 5, three (43%) gave the relationship as the 

product of time and a physical quantity. The physical quantity to Fatima was the 

"constant speed which is equal to 5 metres per second," to Dinesha was "the rate of 

increase of speed," and to Nancy was the "distance which equals to 5." 

Table 4.1: Strategies Used 

STRATEGY LEARNERS PERCENTAGE 

Horizontal Additive All except Erica & Dinesha 71% 

Vertical Multiplicative All except Irene 86% 

Ratio Nancy, Wendy 29% 

Horizontal Multiplicative Nancy 14% 

Proportionate Rule Erica, Dinesha 29% 

Backward Strategy Erica 14% 

Table 4.2: Responses to Filling in the Table 

CALCULATION OF THE: PERCENTAGE 

Speed up to 5 seconds 100% 

Speed at 10 seconds 86% 

Speed at 50 seconds and 120seconds 71% 

Speed at 560 seconds 57% 

Time 71% 

Table 4.3: Correct Responses to the Relationship Between Speed and Time 

RELA Tl ON SHIP PERCENT AGE CORRECT 

Formulation 86% 

Verbal Relationship 71% 

Symbolic Equation 43% 

98 



RESULTS AND ANALYSIS OF QUESTION TWO 

Introduction 

The learners were provided with the following statement: 

'The speed of an object with an initial speed of IO m/s increases at 2 mis every 

second.' 

The learners were required to fill m the blanks m the following table from the 

information given in the statement. 

Time (s) 0 I 2 3 4 5 6 10 50 80 

Speed (mis) 410 1000 

They were then required to formulate the relationship between speed and time and 

then translate it into symbolic form. 

The results were analysed in terms of the strategies used. The learners used a variety 

of strategies. The common and relevant strategies used were: horizontal additive, 

horizontal multiplicative, the functional rules: v Io + 2t and the functional 

proportionate rule, counting on, and skip counting. Since each learner adopted 

different overall approaches to this question, it is appropriate to discuss each learner's 

response individually. An overall summary of the responses and strategies is 

provided at the end of the discussion. 

Six learners attempted question two. Nancy was excluded from this exercise since 

she had spent sixty-five minutes on question one and the researcher felt that if she 

attempted this exercise, she would not have done justice to it. 

Each learner's response to filling in the table and formulating the relationship between 

speed and time will be discussed separately and each discussion will be preceded by 

the learner's completed table. This will be followed by a summary of the common 

and or relevant strategies used in question two. 
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Shireen 's response to filling in the table 

0 1 2 3 4 5 6 10 50 80 .10s 500 

•b :IQ 40 1:20 ¥/0 � 410 1000 

�� 14- 16 ,i ;).0 :>..1 24- :2.-6 2� 

�-3-b--� l, a -,;i.. I.J.0 bOCl 
1i. 

�� b '{ .l.O IOC 
I C.c., 

10 l.l 

Figure 4.24. 

Shireen's immediate response was to try and establish a relationship between speed 

and time from the given statement. Since she made very little progress, she was asked 

to fill in the table. 

Shireen assigned a speed of 0 mis for the time 0 seconds, although she, while 

analysing the statement had recognized the initial speed to be at the "beginning." The 

reason for this was that she compared this problem with problem one where the initial 

speed was 0 mis. However, when asked to justify the speed of 0 mis, she reread the 

question and changed the speed to 10 mis. 

In order to calculate the speed at 1 second, she adopted a horizontal multiplicative 

strategy, multiplying the previous speed by 2, since according to her "it increases at 2

metres per second." The speed was calculated as '10 x 2' and '20 x 2', At this point 

she subconsciously changed her strategy to 'previous speed x time' i.e. '40 x 3 = 120, 

120 x 4 = 480. The fact that she was not aware of having changed her strategy stems 

from her comment but "I was multiplying by 2." Having obtained a speed of 480 mis 

preceding 410 mis she realized that this strategy had to be reviewed. Her initial 

strategy i.e. 'previous speed x 2' did not take into consideration the time but did 

consider '2' because according to her reasoning '2' had to feature in the calculation. 

However, while calculating the speed at 3 seconds, she subconsciously realized that a 

functional relationship between the speed and time had to be considered hence the 

switch in the strategy to include time. 

With the aid of a pictorial representation, Shireen established that in 1 second "It's 

[the speed] 10 metres plus 2 metres per second." Bell (1979:417) provided evidence 

that diagrams are valuable in clarifying a problem. She then switched to the 

horizontal additive strategy, from 0 seconds to 80 seconds, adding 2 to the previous 
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speed. She did not consider the gap after 6 seconds and having obtained 28 mis 

preceding 410 mis her comment was: " ... but it doesn't follow there's no relationship 

between 28 and 410 because it is supposed to increase at the same speed at each 

time." 

Shireen changed her strategy for 2 seconds to 50 seconds to '12 x time' e.g. "12 x 2 = 

24, 12 x 3 = 36, etc." She realized that a functional relationship existed between the 

time, the initial speed and acceleration. She first added together the initial speed and 

the acceleration to get 12 so she worked with the functional rule 'v =(Io+ 2)t' instead 

of 'v = Io+ 2t'. Shireen was the only learner who used this strategy. 

To calculate the time, given the speed, she tried establishing a relationship between 

the speed 410 mis and 1000 mis. After comparing this problem with problem 1, she 

changed the above strategy to a functional rule that she had applied in the previous 

problem i.e. 'speed equals rate of increase of speed x time.' She obtained the 

following speed values 2, 4, 6 . . .  160 mis up to 80 seconds. Working with this 

strategy, she calculated the time when the speed was 410 mis and 1000 mis as an 

inverse relationship i.e. 'speed divided by 2' and thus obtained 205 seconds and 500 

seconds respectively. It was possible in the previous problem to have worked with 

the functional rule "speed equals rate of increase of speed x time.' However in this 

problem the above rule could not be applied because the initial speed was not zero. 

When asked to verify the speed of 2 mis at 1 second, she realized that it should have 

been 12 mis. She went back to the formula '(10 + 2)t' but only for 2 seconds and 3 

seconds after which she switched to 'previous speed x time' for 4 seconds and 5 

seconds. Having realized that obtaining a speed of 720 mis preceding 410 mis was 

not in keeping with the trend, Shireen abandoned this strategy. 

Shireen went back to the horizontal additive strategy that she used previously. Here 

too, she disregarded the jump after 6 seconds and obtained 28 mis as the speed at 80 

seconds as before. This time she abandoned this strategy because "80 divided by 28" 

i.e. 't divided by speed' yielded a "point value." Learners are often sceptical about

obtaining fractions as answers. This is probably due to the fact that when they were 

taught arithmetic at their early stages, fractions were not included thus conditioning 

them to obtain non-fractions as answers. In this respect Confrey (1985:477) outlined 

IOI 



one of the problems in mathematics education as learners' mathematics knowledge 

being limited and rigid. They focus on answers which they expect to be whole 

numbers. Confrey considers their powers of flexibility as being weak. Shireen 

applied a horizontal additive rule to obtain a speed of 28 mis for 80 seconds but she 

checked this answer by using the inverse of a vertical multiplicative rule, a rule that 

she had abandoned in her previous calculation. It is possible to apply one rule when 

filling in the table and another rule to verify the use of the strategy. Both the 

strategies that Shireen used were inappropriate. Shireen subsequently reviewed the 

situation and recognizing the jump after 6 seconds, she used a 'counting on' strategy 

and obtained 30 mis as the speed at 10 seconds. 

In calculating the speed at 50 seconds, she used the following argument: "If time 

increases by 10, speed increases by 10." Thus assuming that the speed increased at 1 

metre per second every second. Her calculation was as follows: 

10 
- 30

.20 
- 40

3.0 
.. 

5-- c, 

40 60

So 
-,o 

60 
go 

70 
qo 

'60 
ffO 

Figure 4.25. 

She verified the speed of 110 mis at 80 seconds by dividing the given speed, 410 mis

by the previous calculated speed, 110 mis i.e. she used the inverse of a horizontal 

multiplicative strategy. She had not used a horizontal multiplicative strategy initially 

to obtain the answer of 110 mis. While different strategies may be used to verify 

answers, in this case the use of the strategies were inappropriate. She disregarded this 

calculation because she obtained a decimal fraction as the answer, which to her was 

unacceptable. She accepted the previous calculation i.e. 'speed divided by 2' as the 

acceptable strategy for calculating the time. 

Shireen switched strategies a number of times because she realized that a trend had to 

be followed and that decimal fractions were unacceptable. At times she was 
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inconsistent in the use of the strategies in that she started with one and along the line 

changed it, often subconsciously. 

She displayed typical problem-solving habits where learners rally back and forth 

modelling, evaluating and discarding different strategies until eventually they obtain 

an acceptable answer or they give up. Clement (1980: 16) called this "shifting 

between approaches." Shireen also showed signs of not always actively taking 

advantage of what she knew. Rather, she seemed to run into things that might be 

useful and then followed them up in some way. Responses like these were also 

obtained by Schoenfeld (1985:212) in his work. 

Shireen, however, persevered until she had obtained, what to her mind, were 

reasonable answers. Eventually she settled for the following strategies: 'horizontal 

additive' up to 6 seconds, 'counting on' up to 10 seconds, 'skip counting' which was 

inappropriately used for 50 seconds and 80 seconds and an 'inverse vertical 

multiplicative' rule which was used to calculate the time. She realized that in order to 

complete the rest of the table, a relationship between speed and time had to be 

developed, hence the rule 'if time increases by 10 then speed increases by 10'. It was 

unfortunate that she had formulated the correct relationship 'speed is equal to time 

times 2 plus 1 0' only after she had completed filling in the table and did not use the 

formula to go back and verify all her calculations. 

Shireen 's response to determining the relationship between speed and time 

Shireen was confused about whether to write the relationship in terms of speed or 

time because she was asked to relate the speed to time. Since she had just calculated 

the time with the speed given, she settled for the relationship, 'time is equal to speed 

divided by 2' where 2 was 'a' which was identified as the acceleration. She was 

influenced by problem 1 in the choice of this strategy. The equation written in 

symbolic form was as follows: 

_v 
t -- �

Q., 

��

� 'a.OS 

Figure 4.26. 
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Considering her symbolic equation would mean that the denominator was 2 divided 

by 'a,' but what Shireen meant was that the denominator was 2, which in general form 

was represented by the letter 'a.' While the equation was mathematically incorrectly 

represented, Shireen was clear about its use as was evident in her numerical 

calculation. 

The use of this equation was verified by substituting 410 m/s for the speed and 

obtaining 205 seconds for the time. 

Her response to whether this formula could be used to calculate the speed when the 

time was given was, "Yes. Speed is equal to time times a. You have to remember that 

10 is in your mind so I'm just working with the 2 only." She verified this rule by 

substituting for 2 seconds as follows: "t is 2 seconds times 2 equals 4, right, plus the 

10 will give me 14." However, when writing down the equation in symbolic form she 

omitted '1 0' but included it when checking the validity of the formula as is evident in 

the following: 

V ,.::::: -lY..Q. 

�,''2.5 X 1 

� 4.1 +10 

� 14-

Figure 4.27. 

Thus showing that while Shireen may have had no problem in the numerical 

calculation and expressing it as a verbal statement, she experienced a problem 

expressing this in the form of a symbolic equation. 

It had not occurred to Shireen that when calculating the time she would have to use 

the inverse strategy that she had used in calculating the speed. The strategy that she 

had adopted in question 1 seemed to have had a greater influence here. According to 

Schoenfeld ( 1985: 140), this happens when a learner loses sight of the problem­

solving repertoire and becomes locked into one approach. 

It was quite clear from her discussions that the initial speed was important and 

therefore had to be included in calculating the speed. However, having not reflected 
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on this sufficiently, she did not see the need for its inclusion in calculating the time. 

Had she checked whether the time was correctly calculated by using the inverse of the 

'speed' formula, she would have realized that she had made a mistake. A point to 

note is that she had formulated the relationship 'v = Io+ 2 t' after the table was filled. 

Wendy's response to filling in the table 

Timf'(<;) 0 1 2 3 4 5 6 10 50 80 137 333 

Speed (mis) 10 12 \ 't I 6 18 20 22 30 ,50 2.4-o 410 1000 

Figure 4.28. 

Wendy debated about whether the speed at zero seconds should be 0 mis or 10 m/s. 

Her arguments were: "If the time was zero it wouldn't have been travelling at all, so 

the speed was zero" and "In the table if time equals zero seconds and the initial speed 

is 10 metres per second then it started at 1 O." After reading the statement a number 

of times she settled for the speed as 10 mis. 

Wendy started with a horizontal additive strategy to calculate the speed up to 6 

seconds. She noticed the jump after 6 seconds and like Shireen used the 'counting on' 

strategy to obtain a speed of 30 mis at 10 seconds. 

To calculate the remaining speed she felt it necessary to develop a proportional rule 

between speed and time. She chose not to work with zero seconds and 10 mis 

because "I can't find the ratio and proportion here because nothing works. " She 

considered other possibilities like "divided by 3, divided by 4 ... no." She finally 

settled for the following, "At JO seconds the speed was 30 so at time 50 seconds the 

speed would be ... let's cross multiply." In this way she obtained 150 mis as the 

speed at 50 seconds and using this proportional relationship calculated the speed at 80 

seconds to be 240 mis. 

When the time was required, she realized that she had to work the proportional 

relationship the "other way" around and obtained answers of 137 seconds and 333 

seconds when the speed was 410 mis and 1000 mis respectively. 
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Wendy used two different strategies. She used a horizontal additive strategy for zero 

seconds to 6 seconds and thereafter "For the last five it works out the ratio is 1 is to 

3." She used a proportional rule to calculate the time and checked it by dividing by 

3. Wendy checked her numerical calculation and not the validity of the strategy used.

Wendy's response to determining the relationship between speed and time 

Wendy's response to formulating a relationship was, "The ratio is 1 is to 3. Every 

second the object increases its speed by 2 metres. " She used two different strategies 

namely, the speed increases at 2 mis for every second for the first part of the table, 

and the ratio I is to 3 for the latter part of the table. Because of this she could not 

formulate a single relationship between the speed and time for the entire table. 

However for the latter part of the table she gave the equation "Time is equal to three 

speed. " She had developed the ratio 'time is to speed is equal to 1 is to 3' from which 

she concluded that time was equal to three speed i.e. 'T = 3V.' 

Wendy simply considered the letters as shorthands for the physical quantities time and 

speed and wrolt! the letters and the numbers in the order in which they appeared. 

Such an error has been described by Clement (1980: 12) as a 'reversed equation' error 

which to him has a deeper cognitive source. Had she taken the 'T' as 'the number of 

seconds' and 'V' as 'the number of metres per second' her error could have been 

detected. Davies (1984) (cited in Nickerson 1985:213) attributes the reversed 

equation phenomenon to faulty retrieval from memory when learners retrieve the 

incorrect frame from two acquired frames, i.e. 'verbal based frame,' and the 

'numerical variable frame.' Such errors are based on deeply seated misconceptions 

regarding the meaning of variables that are difficult to remediate by training. The 

best time to make this distinction clear presumably occur long before one encounters 

high school physics, and probably when one is first introduced to the concept of 

multiplication. (Nickerson 1985 :211.) 

When asked about the relationship for the first six values, her response was: "There's 

no common relationship here. Over here for zero it's 10 then it's 1 - 12, 2 - 14 ... 

nothing I can work with." 
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Salzano (1983: 12) explains a response like Wendy's as the learner realizing that there 

is a problem but not being able to recognize it and not having the "machinery" that 

would enable her to get started. She considers the building up of this "machinery" as 

a slow process with each child developing his/her own method of how to proceed. 

Wendy was focussed on obtaining a ratio and because she could not see a proportional 

relationship at the beginning of the table, she gave up. Wendy is the type of learner 

who gives up easily. She was often content with her work and showed little signs of 

perseverance. Wendy's determination wavered and she could not persevere. This 

happens, says Polya (1945:88), when we do not see any way out of a difficulty. We 

are depressed when the way we have followed is suddenly blocked. 

Dines ha 's response to filling in table 

Time (s) 0 1 2 3 4 5 6 10 50 80 )05 500 

Speed (mis) ro # -re te tB +e te 30 45'& � 410 1000 

Figure 4.29. 

Dinesha's initial assumption was that the initial speed was O m/s at zero seconds and 

that the speed was 10 mis right up to 6 seconds. After reading the question again she 

realized that these values were incorrect. She changed the initial speed to 10 m/s. To 

calculate the speed at 1 second, she simply divided the numbers that were given in the 

statement i.e. IO divided by 2. Her response was similar to that found by Schoenfeld 

(1985:370), where learners do not carefully analyse the problems they have to solve. 

One of the problems is that they try to use all the given numbers in the problem 

statement in their calculation without regard for the relationship of either the given 

numbers or the resulting numbers to the problem situation. 

Dinesha immediately realized that this was incorrect and switched to a horizontal 

additive strategy but only for 1 second and 2 seconds because she was not too 

confident about this strategy since dividing speed by time did not yield a constant, as 

was the case with problem 1. She needed to get a constant, 2, which she identified as 
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the acceleration. Like Shireen, Dinesha used the horizontal additive strategy to obtain 

the answers and inappropriately used the inverse of the vertical multiplicative rule to 

check her answers. After reading the question again she reverted to the horizontal 

additive strategy. She recognized the gap after 6 seconds and used the 'counting on' 

strategy in order to get 3 0 mis at time 10 seconds. 

In calculating the speed at 50 seconds and 80 seconds she did exactly what Wendy 

had done i.e. used ratios and obtained 150 mis and 240 mis. 

When calculating the time she developed the following strategy by referring to the 

table, when the time increases from zero seconds to 10 seconds then the speed 

increases from 10 mis to 30 mis which she explained as "If you take 10 units for your 

time you go 20 units for your speed." This rule was applied as follows: 

10 -=- 30 

?O -:: 50 

30 =- 70 

-40 = S>O

!'5<)-= ,10 

<:;;0 ;: 130 

70 -= ISO 

� 170 

Figure 4.30. 

Denisha used a more sophisticated 'counting on' strategy, counting in terms of 10' s 

and 20's. She subsequently corrected the speed for 50 seconds and 80 seconds to 110 

mis and 170 mis respectively. 

In order to calculate the time she debated once again about the way in which she 

could get a constant. She argued that in the previous problem she was able to get a 

constant by dividing the speed by time so this should also be the case in this problem. 

Since this was not the case here she contemplated reviewing the strategy that she had 

used in determining the speed. 

She changed to a vertical multiplicative rule i.e. time x 2 throughout the table because 

in this way dividing the speed by time would yield the constant 2. Thus to calculate 

the time she divided the speed by 2 and got the answers as 205 seconds and 500 
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seconds respectively. She did however have reservations about the speed being 2, 4, 

6 ... 160 mis for the times 1, 2, 3 ... 80 seconds respectively, which she expressed as 

"That would work, but then, it says an initial speed of 10 metres per second which 

puts everything off But if the speed at the beginning is 10 we would have to add this 

[i.e. 2, 4, 6 ... 160] to the 10. " According to the given statement Dinesha was 

convinced that the additive rule should apply but according to the rule developed in 

the previous problem the vertical multiplicative rule should apply. She realized that 

only one strategy would apply. She was confused because like Shireen she failed to 

consider this problem for what it was worth. They constantly compared it with the 

previous problem. Dhillon (1998:387) would consider learners like these as novices 

because in his studies he found that novices frequently compared questions. Denisha 

did not commit herself to one strategy at this point. 

Dinesha 's response to determining the relationship between speed and time 

Dinesha was focussed on getting a constant by dividing speed by time. She also 

changed her view in that the constant could have any value and that the constant could 

be different for different sets of values as long as it was a whole number. Therefore 

since 12 divided by 1 and 14 divided by 2 yielded the whole numbers 12 and 7 

respectively the rule was followed. However thereafter the rule failed because 16 

divided by 3 gave a fraction. She doubted yet again as to the correct strategy, trying 

to convince herself that "according to the statement it makes sense" for the speed to 

be 10, 12, 14, etc, but the fact that 'speed divided by time' does not yield a constant 

threw some doubt onto this strategy. Eventually she settled for the additive strategy 

for calculating the speed for 1 second to 10 seconds. However she was unable to 

develop a relationship because according to her only a vertical multiplicative rule 

would be acceptable, and this rule was not the only rule in filling in the table. Of the 

learners who used different strategies when filling in the table, Dinesha was the only 

one who realized that only one rule would apply to the table, although what she did do 

in her numerical calculation contradicted her view. The following excerpt shows the 

state of confusion that she was in and because of this she was unable to formulate a 

relationship. 

"Using the multiples of 2, 2 times 7 equals 14, 1 times 12 equals 12, 3 times what will 

give 16? Not possible, I know that 3 times 5 equals 15 not 16. I have no idea how to 
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do this. I can't see a relationship. There is a relationship but in this case I can't see 

it. ,,

In Dinesha's case there existed conflicting 'frames,' and according to Davies (1984), 

the frame that develops earlier normally persists and is sometimes retrieved 

inappropriately if at all. 

Irene's response to filling in the table 

Time(s) 0 

,o 

Speed (mis ,e--

I 2 3 4 5 6 10 50 80 

21 J.j 1)_ 4€, � q {, 

I 'J. 14· I G l'b ;;2 0 '2 ::2 ��- 2 'i 3 0 

:JG, C.,(;, 

Figure 4.31. 

-::;� " '6'4 

410 1000 

Although Irene recognized the starting speed as the initial speed, she filled in O mis as 

the speed at O seconds. After reading the question again she changed the speed to 

10 mis. She filled in a speed of 2 mis at time 1 second because the speed increases at 

2 mis every second. Irene did not consider the situation realistically because if she 

did she would have realized that if an object starts with a speed of 10 mis and its 

speed increases then it's speed after 1 second cannot be less than that which it started 

with. 

To calculate the speed up to 6 seconds, she used the functional rule 'previous speed 

times time.' She realized her mistake when she got a speed of 1440 mis for 6 seconds 

and this value was much larger than 410 m/s. Since a trend was being followed these 

values were unacceptable and the strategy was abandoned. 

Irene was asked to verify the speed of 2 mis at 1 second. She read the question again 

and having realized that she had made a mistake, she corrected it using the additive 

horizontal strategy. The gap after 6 seconds went unnoticed initially. Subsequently 

she noticed the jump from 6 seconds to IO seconds as 4 seconds so she reasoned that 

the speed would also change by 4 m/s from 22 m/s to 26 mis. Similarly she reasoned 

that the speed would increase by 40 mis and 30 m/s at 50 seconds and 80 seconds to 
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yield 66 mis and 96 mis respectively. She worked on the assumption that when the 

time increased by a certain value the speed increased by the same value. 

In keeping with this trend, she calculated the time by first considering the increase in 

speed from 96 mis to 410 mis. She then added this difference of 314 to 80 seconds. 

Similarly she calculated the increase in speed for the next value as 590 mis and added 

this difference to the previous time of 314 seconds. 

Irene used two different strategies to fill in the table. She started with a horizontal 

additive strategy when calculating the speed up to 6 seconds thereafter she switched 

to a basic counting on strategy counting in terms of I's and l's. 

Irene's response to determining the relationship between speed and time 

Irene said that the time and speed increased equally. She did not consider the strategy 

applied in the first part of the table thus showing that she reflected only on her most 

recently developed strategy. A phenomenon peculiar not only to Irene, but to Dinesha 

as well. 

The application of a horizontal additive rule does not lend itself to the formulation of 

a functional relationship between speed and time. Hence Irene was unable to develop 

a relationship. 

Irene's responses were similar to those found by Biggs (1984: 130) where low 

achieving learners make incongruent strategy choices and use these strategies in ways 

that would seem to be inappropriate. 

Fatima's response to filling in the table 

Time (s) 0 1 2 3 4

Speed (mis) �� .2-0,1 l 1.\- \l 1& 
5 6 
·2c 27. 

Figure 4.32. 

IO 50 80 1.00 1t9r j 
Jb \IC) I, t, 410 1000 I

Fatima's immediate response to determining the speed at zero seconds was O mis 

which she, on reflection, changed to IO mis. In order to get the speed at I second, she 
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intended applying the same strategy that she had used in the previous problem. 

Unfortunately she recalled it incorrectly as the 'previous speed multiplied by 5' 

instead of 'previous speed plus 5' and so she incorrectly multiplied the previous 

speed, 10 mis, by 2 to get 20 instead of' IO plus 2' as the speed at I second. On 

reflection she realized that this problem was different from the previous one. This 

was evident in the following comment: "In the other example I multiplied time by 5, 

but here I can't do that because the speed at the beginning is 10 not zero ... so I'm 

going to have to add it." This is in keeping with Cobb & Merkel's (1989:79) view 

that learners invent strategies that make sense to them. They develop increasingly 

powerful arithmetic concepts that they build on in subsequent learning. 

After reading the question again Fatima still maintained that the speed at I second 

was 20 m/s except that this time she calculated it as "10 times 2 times 1." She 

provided a reason for multiplying by 2 by saying that every second the speed 

"increases by 2" but she was not sure why she had multiplied by I. She intuitively 

recognized that time had to feature in the calculation. 

Having reread the question she changed to a horizontal additive strategy to calculate 

the speed but used this strategy to calculate the speed at I second only. Thereafter, 

starting with calculating the speed for 2 seconds she switched to the functional 

relationship 'v = Io + 2t.' She multiplied the time by 2 because "it says for every 

second it increases by 2" and then she added IO because the speed "is increasing from 

1 O." Although she had qualified the choice of this strategy she did not seem too 

confident after calculating the speed at 3 seconds because she reflected on the strategy 

used in problem I. When asked, "What makes you think it's wrong?" She replied, 

"/just feel so" but tried convincing herself by qualifying the choice of the strategy. 

Unlike Dinesha who had also reached a state of confusion after being influenced by 

problem one, Fatima qualified and convinced herself of this strategy. Once she was 

confident that this was the correct strategy, she carried out the following 

computations: 
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(( '(. 2.) + I O -.:: 1 '2. 

(2.'<l)+ IO :- 14 

(3Q,")+ 10 :: I� 

(4n) -t ro -: Ii 

(s '0.>·+ lo -::- 1.0 

(i;,-.: 2) + IQ = 1. ,._ 

( IOlq) + 1 O -= .3 (:) 

(So-y.2) + 10 :- 110 

l so�2) -t 10 ::: IT o

'llO-�tO"'Cj.00

Figure 4.33. 

When calculating the time she realized that the inverse operation had to be carried 

out. She did this by trial and error, first dividing the speed by 2 then subtracting 10 

and after working backwards to check, she abandoned this inverse strategy since it did 

not yield the given speed. She then tried subtracting 10 first then dividing by 2 and 

accepted this inverse strategy as being correct since by working backwards she was 

able to get the given speed. Fatima had displayed good problem solving skills 

because she qualified, evaluated and checked all her working. 

Fatima seemed to be assessing her own performance which was clear by the following 

comment that she made: "I know it's wrong" 

Fatima's response to determining the relationship between speed and time 

The verbal form of the relationship was formulated as, "speed = speed x time + initial 

speed of 10" which translated in symbolic form was "v = V x T + u. " The 'V' on the 

left hand side of the equation was the speed that was required and the 'V' on the right 

hand side was the speed that was given which she subsequently identified as the 

acceleration equal to 2. The fact that she had speed on both sides of the equation 

shows that she experienced a problem with the verbal form, although this was 

subsequently ratified. Her symbolic representation shows an inadequate 

understanding of the meaning of algebraic symbols by using the same symbol to 

represent two different variables. 
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Fatima was the only learner who, with the exception of the first calculation in the 

table, developed the correct functional relationship immediately and intuitively and 

used it appropriately in completing the rest of the table. 

Erica's response to filling in the table 

Time (s) 0 l 2 3 4 5 6 10 50 80 -ioo 4C\S

Speed (mis) 10 16 410 1000 
\ ?- I 'r I'=, \'-6 l.O 2L ·.=,O -=re ,.,u

1)0 

Figure 4.34. 

Erica's response after reading the statement was, "So from 10 metres it increases, add 

on 2 metres every second." Thus she immediately recognized the additive strategy. 

She assigned a value of 10 mis as the speed at zero seconds but after comparing it 

with problem 1 she changed it to O mis. Erica's view was that "speed at zero can be 

anything, there is no such thing as zero time it can be worked from anywhere." She 

was the only learner who considered time to be relative. In responding to the question 

"What does initial mean?" she changed the initial speed to 10 m/s "Because that's 

when we started timing it." 

When determining the speed at 1 second she immediately embarked on a horizontal 

additive strategy. She recognized the jump after 6 seconds and used the counting on 

strategy to determine the speed at 10 seconds as follows, " ... and at 10 it will be 

... I'll have to work this out ... 7, 8, 9- 24, 26, 28, 10 will be 30." 

To calculate the speed at 50 seconds she realized that the additive strategy would fall 

away and that a functional relationship between speed and time had to be formulated. 

She considered "If you look at zero to 10, for every 5 it [i.e. the speed] increased by 

10, therefore at zero it was 10 and then at 5 it was 20 and at 10 it was 30." She tried 

developing a pattern between the time and speed. Thus, a more sophisticated 'skip 

counting' strategy similar to Dinesha's was developed. The only difference between 

their strategies was that Dinesha skip counted in terms of 1 O's and 20's and Erica skip 

counted in terms of 5 's and 1 O's. Both the learners developed their respective 

relationships from the table although this could have been gleaned from the problem 
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statement, a thought that had not occurred to either of them. Emily inappropriately 

added on in terms of l0's and l0's but on reflection realized her mistake and changed 

it as follows: 

t= - -�� 
IS-4-e> 

-z.a- Sc. 

-Z..'5 -G= 
� - ,t) 
·ss-<;;;;-o 
40-=10
<::l-5- 1=, 
"SC. -\ lO 
ss-1'2° 
GO - \30
G.s - ,40 
70 - ISO 
75 - /GO 
<;so - , 70 

Figure 4.35. 

Erica had displayed good problem solving skills in that she corrected her work by 

reflecting on it. 

In order to determine the time Erica conceived that she would have to "Work out a 

shorter method," and to do this she needed to know "What's the relationship between 

speed and time?" She realized that it now had to be worked the other way around so 

she tried establishing the inverse rule stating that, "If the speed increases by IO then 

time will decrease by 5. " This was inappropriately stated because the speed of the 

object increased as the time increased. What she meant was that an inverse operation 

had to be carried out. She reasoned that replacing 'decrease' by 'increase' would 

justify the inverse operation. 

By dividing the speed by 5, Erica used an inappropriate strategy because she was 

working with a time increase of 5 seconds resulting in the speed increasing by 10 m/s. 

On reflection she realized that a time of 82 seconds was incorrect. She reasoned that 

at 80 seconds the speed was 170 mis so at 85 seconds the speed would be 180 mis so 

at 82 seconds the speed could not be 410 mis. This strategy was abandoned. 

In attempting to establish a relationship, Erica went back to 2 seconds and tried to 

figure out how the speed of 14 mis could be obtained by application of a functional 

relationship. This was a strategy used only by Erica. In doing this she showed that 

although 14 mis was obtained by the application of an additive strategy, the 
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application of a functional rule would also be applicable. This was a good way of 

establishing the relationship because if the rule was incorrectly formulated it could be 

verified using an alternative strategy. No other learner appropriately used two 

different strategies to verify the correctness of the strategy used. 

Without much deliberation Erica reasoned that, "For 2 seconds the speed is equal to 

10 plus 4, then the speed is equal to 10 plus 6. It goes in multiples of 2 so speed 

equals 10 plus time times 2. So we have for example, time equal to 6 then the speed 

will equal to 10 plus 6 times 2 equals 10 plus 12 equals 22. It works well!" 

After she developed the rule using two sets of values she verified the application of 

the rule by calculating the speed at 6 seconds, thus showing good problem solving 

skills. An excerpt of her reasoning is as follows: 

,s p=:-ec\ ::, \ 0 + 
speed " 10 +-'.1 I) 

. 4l ;("-z_ -sr�eci "· 10 -+ ... 'J 
S'(-'t:.1::-d =- ,o + c;v '\ 
s('ee.>- � ,a -t l-tv'\A,Q.,)C..-Z,/ 
s-pc2ed � 10 -l- G x--z. 

-= \O +- n .. 
= ·"2--Z.. 
<:::--;J 

Figure 4.36. 

Erica switched strategies to: "Speed equals 10 plus time times 2" to develop the 

inverse rule and this time it was correctly applied. She reasoned that "If we multiply 

time by 2 and add it to 10 to get the speed then our speed minus 10 divided by 2 ... " 

will give the time. Before applying the functional rule to get the required time she 

verified its application by using the following example in which the speed had already 

been calculated using the additive rule: 

C:"'2) · -t\V\A..e.. ::.. "20 - \0 -: -Z.. 
- lo .:._"'2
--::..'=2) 

Figure 4.37. 

Erica was not too particular about the use of brackets because she knew that she 

would have subtracted before dividing. According to Herscovics & Kieran 

(1980:574), learners would write down their operations, one by one, as they were 

thinking of them. To then be asked to evaluate them according to the conventions 
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conflicted with the more natural tendency of evaluating them in the order in which
they were written, which was the order in which they had been conceived. To others
the operations would have been carried out in the reverse order according to the rule
that division precedes subtraction. However, Erica was aware of the significance of
the brackets as is evident in the following figure:

'S� � 1 0 t- Ct IY"Y'e,C2,)
Figure 4.38.

Although here, using the mathematical rule for the order of operations, multiplication
would precede addition.

Erica's response to determining the relationship between speed and time 

Erica formulated the relationship "Speed equals 10 plus time times 2" which in the
form of a verbal equation was given as "speed= JO+ (time x 2)." Symbolically she
represented it as "v = u + (T x 2)."

Three different strategies were used by Erica to fill in the table. She started with a
horizontal strategy followed by a counting on strategy and to determine the time she
used a functional relationship.

Erica showed good problem solving skills because she constantly evaluated and
qualified her work. She was the only learner who displayed confidence in her work.

SUMMARY OF RESPONSES TO QUESTION TWO 

Filling in the table 

It was evident that all the learners used a trial and error method. All of them tried
different strategies, tested them and persevered until what to them seemed reasonable
answers were obtained.

In determining the speed at zero seconds all the learners eventually obtained 10 mis.
Some of them obtained the correct speed only after reading the question again while
the others needed some guidance. Four of the learners compared this question with
question 1 and considered the speed to be zero metres per second.
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After obtaining a speed of 10 m/s, all the learners embarked on a horizontal additive 

strategy. With the exception of Fatima all of them used this strategy to correctly 

calculate the speed up to 6 seconds. Fatima used this strategy for only the first 

calculation thereafter she switched to the functional rule '(v = IO + 2t)' to correctly fill 

in the rest of the table. 

All the learners with the exception Irene (83%) obtained the correct speed at 10 

seconds. Fatima used the functional rule, 'v = IO+ 2t' to do this. The remaining four 

learners recognized the jump after 6 seconds and they used the counting on strategy to 

determine the speed at 10 seconds. Irene counted on '1' to the speed instead of '2' as 

the others had correctly done. 

Only Fatima, Erica and Denisha (50%) responded correctly to the speed at 50 seconds 

and 80 seconds. While Fatima (17%) used the functional rule to do this, Shireen, 

Erica and Direshni (50%) used a sophisticated counting on strategy. Erica and 

Denisha counted on correctly in terms of 5 's and 1 O's, and 1 O's and 20's respectively 

while Shireen counted on in terms of 10' s and 10' s which was incorrect. Wendy 

(17%) used a proportionate rule. Irene (17%) used a basic counting on rule counting 

in terms of l's. 

Erica and Fatima (33%) were the only learners who obtained the correct values for the 

time. They both (33%) used the functional rule, 'v = IO+ 2t.' Shireen (17%) who had 

also formulated this relationship did not make use of it because she had unfortunately 

developed this rule only after her calculations were completed and it did not occur to 

her to go back and use it to verify her calculations. Shireen and Denisha (33%) who 

compared this problem with problem 1 used the rule 'time equals speed divided by 2' 

Shireen, Denisha, Fatima and Erica were all influenced to some extent or the other by 

problem 1. Erica and Fatima realized that this problem was different and so 

abandoned the idea of comparing them. Denisha • ended up confused due to the 

influence of question one, hence she was unable to complete the table correctly nor 

was she able to formulate a relationship. 
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Relationship between speed and time 

Erica, Fatima and Shireen (50%) formulated the functional rule, 'v = IO + 2t'. While 

Fatima and Erica expressed this relationship explicitly and made use of it in their 

calculations, Shireen formulated it only after the calculations and unfortunately she 

did not make use of it in the calculations neither did it occur to her to verify her 

calculations using this formula. Wendy, Denisha and Irene could not establish a 

relationship. 

Since only Shireen, Fatima and Erica were able to formulate a verbal relationship only 

they were asked to represent this in symbolic form. Fatima initially experienced some 

problems translating from numerical to verbal but this was immediately ratified. 

Shireen's problem was translating from verbal to symbolic and she provided an 

incomplete symbolic equation. This exemplifies problems experienced by learners in 

translating relationships from one form to another e.g. numerical to verbal, verbal to 

an equation and expressing this as a symbolic equation. Erica had experienced no 

problems with the translations. 

All the learners had at some point in their calculation used different strategies to fill in 

the table. While Fatima and Erica used the different strategies appropriately, the rest 

of the learners did not always make appropriate use of them because they ignored the 

underlying concepts given in the statement. 

Table 4.4: Strategies Used 

STRATEGY LEARNERS PERCENTAGE 

Horizontal Additive All 100% 

Functional Rule Erica, Fatima, Shireen 50% 

Proportionate Rule Shireen, Wendy 33% 

Counting on Shireen, Fatima, Erica, Dinesha 67% 

Skip Counting Erica, Shireen, Dinesha 50% 
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Table 4.5: Responses to Filling in the Table 

CALCULATION OF THE: PERCENTAGE 

Speed up to 6 seconds 100% 

Speed at IO seconds 83% 

Speed at 50 seconds and 80seconds 50% 

Time 33% 

Table 4.6: Correct Responses to the Relationship Between Speed and Time 

RELATIONSHIP PERCENT AGE CORRECT 

Formulation 50% 

Verbal Relationship 50% 

Symbolic Equation 33% 

ANALYSIS AND DISCUSSION OF COMMON STRATEGIES USED IN 

QUESTION ONE AND QUESTION TWO 

In the process of completing the table, the learners considered pure mathematics in 

search of an applicable model. There are various techniques, says Human (1983: 8), 

for finding functional rules, their relative suitability depending on the nature of the 

given data about the function. The technique used in completing the task in this 

study, was initially by inspection, which eventually led to the formulation of an 

equation. It was clear from the results obtained that the learners' understanding 

varied in degrees or completeness, and that their understanding depended on the 

amount of knowledge they possessed in the concepts involved. For example, 

learners' poor understanding of 'rate' resulted in the inability or incorrect formulation 

of symbolic equations. This is in keeping with the view of Nickerson (1985 :217). 

Some learners rushed into calculations without any plan or general idea. Their 

heuristic reasoning was usually a provisional guess as was the case with Dinesha, who 

in question two, assigned a value of zero mis for the initial speed and IO mis as the 

speed up to 6 seconds, but on reflection realized that these were incorrect. 
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What Polya (1945:5) had to say about problem-solving was quite evident in the way 

the learners tackled the problems. In trying to solve the problem, they repeatedly, 

some more than others, changed their points of view. Their positions were shifted 

again and again. This was especially evident in Shireen's response to question two 

and Nancy's response to question one. 

This use of different strategies, and movmg back and forth between strategies, 

Clement (1980: 16) called "shifting between approaches." While this phenomenon 

may be observable, it reflects an unobservable internal process of shifting between 

cognitive schemes used to deal with the problem. This provides one more piece of 

evidence for the notion that human cognition is not always based on consistent 

processes; schemes which lead to contradictory results apparently exist fairly 

autonomously and independently in the same individual. One scheme may become 

active and dominate for a time, only to be superceded by the other. This was quite 

clearly the case with Wendy, in question two, where she could not establish a 

relationship for the first six values. She had worked with one rule in determining the 

numerical values, but had subsequently changed her rule for the rest of the table. The 

shift between correct and incorrect strategies further indicates that contradictory 

schemes may continue to exist independently in the same individual. Dinesha, in 

question two, displayed similar behaviour. This according to Clement (1980: 17) 

implies that teaching a learner a standard method is no guarantee that another intuitive 

method will not "take over" in a later problem-solving situation. On the other hand, 

Fatima in answering question two initially regarded the initial speed of 10 mis as 

being problematic. However, she had the ability to adapt the technique used in 

question one to question two and thus generated a plausible approach (Schoenfeld 

1982:43). 

From a learner's point of view, it was often convenient to switch from one 

interpretation to another in the course of solving a problem, which may make it 

difficult for the individual herself to disentangle the real meaning being used, as was 

the case with Wendy in question two, where she used two different strategies and 

could not develop a relationship; Shireen in question two, by moving back and forth 

between strategies; and Erica in question one, where she did not realise that the rule 

that she had developed could be applied at zero seconds as well. 
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It was also clear that some learners, like Nancy in question one, Irene in question one 

and two and Shireen in question two were not always aware of the inconsistencies 

between the processes they were using. 

At certain points in their working, the learners engaged in a trial and error strategy, 

which according to Ausubel et al (1978:567), is inevitable in problems where no 

meaningful pattern or relationship exists or is discernable by the learner. When the 

learners tried out a new strategy, they tested and checked their answers. Learners 

checked the validity of their numerical calculations and the validity of the strategies 

used. This emergence of hypothesis in the learner's repertoire is a fundamental 

conceptual issue. 

Strategies were reviewed when learners ended up with answers that did not ''follow a 

trend," for example, they realised that in the tables the speed was increasing with 

time, so when a speed was greater than the preceding one, they reviewed the strategy. 

However, in some cases the inappropriate choice of strategies was not recognized. 

From a constructivist perspective, misconceptions are crucially important to teaching 

and learning, because misconceptions form part of a learner's conceptual structure 

that will interact with new concepts, and influence new learning, mostly in a negative 

way, thus misconceptions generate errors. (Olivier 1992: 196.) 

From the different strategies and approaches that were employed by the learners, it is 

apparent that understanding can vary in degrees or completeness. Understanding in 

every day life, according to Nickerson (1985:229), is enhanced by the ability to build 

bridges from one conceptual domain to another and that a major aspect of this ability 

is a sensitivity to similar relationships in different contexts. According to Birns & 

Golden (197 4: 128) this view is supported by Piaget who believes that a learner is 

more likely to accommodate his/her behaviour to solve a problem when the new 

behaviour that is required differs only slightly from those already in his/her repertoire. 

In their choice of the strategies for question two, five of the learners were influenced 

by question one. Some of them, like Fatima, recognized question two as being 

different, however. Dinesha and Shireen who also tried different strategies, found it 

difficult to view question two in any other way, but to liken it to question one. This 
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view expressed by Schoenfeld (1985: 140) that a failure while executing a procedure 

forces a departure from the simple execution of algorithms into a more strategic 

mode; a learner is forced to decide what other goal to resume or pursue. When a local 

failure is wrongly assessed as a global failure, like the failure of a particular procedure 

to produce a desired result, some learners quit instead of looking for another 

approach. Similarly, when perspectives are at too low a level, learners can lose sight 

of the problem-solving repertoire, locking themselves into one approach. 

Generally, the learners started with a horizontal additive strategy for both questions. 

They realized that a functional rule had to be developed when faced with a gap after 5 

seconds, in question one. Six of the seven learners were able to correctly adopt either 

a vertical functional strategy, or a proportionate functional rule to complete part of the 

table. Problem two seemed to be initially problematic, because of the initial speed 

being 10 mis. This was evident in Fatima's comment, "This 10 is confusing me." 

The next stumbling block for them was the gap after 6 seconds and the learners used a 

counting on strategy. For the next part of the table, they realized that a functional rule 

had to be adopted. While three of the six learners used a sophisticated counting on 

strategy, one of them switched to a proportionate rule. 

While different strategies could be used to obtain correct answers for the different 

parts of the table, only one rule or formula was correct for each problem. Learners 

inappropriately used different strategies in the same table. In question one, Dinesha 

used a proportionate functional rule, a horizontal multiplicative rule, and a vertical 

multiplicative rule. In question two she used an additive rule and being influenced by 

the vertical multiplicative strategy used in question one, she thought it necessary to 

formulate the relationship in terms of this rule. Problems of this nature may arise due 

to learners not having a sound understanding of functions. Vinner (1983 :302) 

explained this as, if the correspondence between the numbers looks arbitrary to a 

learner s/he might speak of infinitely many functions as if each number has its own 

rule of correspondence. 

The key to understanding correct translating, according to Clement (1980:6), lies in 

the ability to conceive a mental action that produces an equivalence. He called this 
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the "operative approach" to signify the fact that it involves viewing the equations as 

an active operation on a variable quantity, not just as a static comparison of two group 

of variables. The concept of a variable clearly implies some kind of understanding of 

an unknown as its value changes, and if this is to go beyond the ideas already present 

in seeing a letter as a specific unknown and generalized number, it would seem 

reasonable to argue that the concept implies, in particular, some understanding of how 

the values of an unknown changes. One reason why the concept is so elusive is 

because many items that might be thought to involve variables can nonetheless be 

solved at a lower level of interpretation. (Hart 1981: 110.) 

In question one the number of learners who were able to formulate the symbolic 

equation from the verbal relationship was halved, thus exemplifying problems 

learners experience with translating from verbal to symbolic form. While it may be 

true that learners experience difficulty in thinking of a letter as a number, the reverse 

is also true where the learners were able to do numerical manipulations, but 

experience difficulties representing these numerical manipulations by means of 

general equations. According to Clement (I 980:2), asking learners to write equations 

in more than one variable, exposes a number of misconceptions that were previously 

invisible. The contrast between the number of students who correctly solve the 

numerical versus algebraic problem, indicate that the learners have a specific 

difficulty in translating from words to algebraic equations. 

Learners were confused with the concepts speed, distance and acceleration. This kind 

of confusion with 'rate' and 'amount' was highlighted by Nickerson (1985:205) who 

found very high error rates among college-level, science-orientated students, in 

dealing with 'acceleration,' In question one, Nancy identified distance as equal to 

"rate of change of speed." The suggestion offered by Lochhead ( 1980) ( cited in 

Nickerson 1985:205), who found error rates of 80%-90% in similar questions, was for 

greater facilitation in teaching of rate concepts. This may be obtained by using 

computer graphics to illustrate dynamically various ways in which functionally 

related variables may change altogether. However, this facility may not be easily 

accessible to all schools. 
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changed to speed. Problems like these are common to many learners as can be 

vouched by science educators. These problems need to be addressed at the initial 

stages of introduction to these concepts. Nickerson ( 1985 :235) has provided evidence 

that learners often get through many years of formal education without acquiring a 

sufficiently deep understanding of some of the fundamental concepts that they have 

studied and they are not able to apply these concepts effectively in new contexts. 

Learners displayed all the stages that are present in the constructive process, which 

Herscovics & Bergeron (1984: 192) called "Model of Understanding." The learners 

displayed intuitive understanding e.g. Fatima's immediate response to question 2, 

using the calculation "(l x 2)+ 10 = 12," etc.; procedural understanding e.g. counting 

on strategy; mathematical abstraction e.g. calculating the time as a reverse operation 

of the rule that was applied earlier; and formulation e.g. relating speed and time in the 

form of an equation. 

Nickerson (1985 :211) has found that word problems that involve a narrative 

description of quantitative relationships among variables seem to give learners the 

greatest difficulty. However, this study has shown that with relevant guidance given 

to learners, numerical, verbal, and symbolic relationships can be developed and 

ultimately the equations 'v = St' and 'v = 10+2t' can be developed. 
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CHAPTER FIVE 

CONCLUSIONS 

INTRODUCTION 

The main research problem investigated in this study was Secondary School learners' 

intuitive strategies and the intuitive models that they use to solve real-life problems in 

kinematics. The investigation involved physical science, grade 11 learners of varying 

ability levels. This chapter summarizes the main findings, strengths and limitations of 

the study implication of these findings and suggestions for future research. 

SUMMARY OF MAIN FINDINGS 

This summary will be discussed with reference to the research questions described in 

Chapter One and the analysis of results discussed in Chapter Four. 

Learners were provided with a verbal problem of a real-life problem situation together 

with an incomplete table and they were required lo model appropriate mathematical 

strategies, formulate a verbal relationship and finally formulate a symbolic equation. 

Many of the learners embarked on a 'trial-and-error' strategy. Hence they tended to 

move back and forth between strategies, some more than others. The correct 

strategies used were, horizontal additive, functional rule, proportionate functional 

rule, counting on, and skip counting. Most of learners displayed good problem­

solving skills because they constantly checked the validity of their strategies and 

answers and they changed their strategies when the need arose. 

In question one, five out of seven (71 %) learners filled in the table correctly while in 

question two, two out of six (33%) learners filled in the table correctly.· In question 

one six out of seven (86%) of the learners had some idea of the relationship between 

speed and time, as 'speed is the product of 5 and time,' however only three out of 

seven (43%) stated this explicitly. In question two, five out of six (83%) of the 

learners correctly calculated values in the table using numbers alone i.e. up to l 0 

seconds. However, all except two out of six (33%), experienced difficulties when a 
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relationship was needed to be formulated to complete the rest of the table. An overall 

result of five out of thirteen ( 40%) total correct responses was obtained for questions 

one and two. 

Evidence from this study has shown that while the majority of the learners 

experienced no problem working with numerical relationships, they experienced 

difficulties translating these into verbal relationships and symbolic equations. For 

example only two out of six (33%) of the learners in question one and three out of 

seven (43%) of the learners in question two, obtained correct symbolic equations. 

This provides enough evidence that learners can model real-life problem situations 

using intuition, and that it is possible for learners to formulate specific equations 

'v = St' and 'v = IO + 2t.' It is conceivable that with more examples of a similar type 

that they could eventually formulate the general formula 'v = u + at.' Thus it would 

appear that with the educator taking on the role of a facilitator and providing 

appropriate guidance to the learners, they could not only be led to formulate the 

equations on their own but they could also be able to recall it with ease and apply it 

correctly and with ease in novel situations. However this is a matter of further 

research not covered in this study. 

By considering the intuitive mathematical modelling strategies used by learners and 

also addressing the misconceptions and specific problem areas that have emerged 

from this study, it is hoped that this study together with similar studies could 

contribute towards reviewing the traditional approach to teaching of physical science 

at schools and produce results that are rewarding to the educator and more 

importantly to the learner and society at large. 

STRENGTHS AND LIMITATIONS 

This investigation confirmed that a modelling approach can be successfully 

implemented and specifically, relationships between speed and time can be derived 

from real-life problem situations by learners themselves. 

There were five main limitations in this study: 

1. Learners were only observed individually, and there was no opportunity to

investigate any interaction between learners.
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2. The learners were not observed in their natural environment, i.e. their own

classrooms.

3. This study was restricted to one school with female learners. It was

convenient for me, being an educator at the school and in addition the learners

were comfortable with me. According to Rich (1971 :25), fear, suspicion, or

hostility will stop learners from being motivated to communicate and the need

to solve the problem will be of secondary importance. In addition, I knew the

learners to be cooperative and committed, qualities outlined by Preissle-Goetz

& LeCompte (1991 :63) as contributing to the success of a research of this

nature in which a researcher requires much more than is returned to the

learner.

4. The two problems only provided opportunity for modelling specific numerical

formulae 'v = st' and 'v = IO + 2t' suitable for these particular contexts. It

should be noted, however that in a teaching situation learners would have to be

given many different problems not only two, from which to model the general

formulae, 'v = at' and 'v = u + at.' This is in keeping with James' (1992:157)

view that a number of specific examples have to considered before a general

rule is established.

5. This study did not look at the graphical representation of functional

relationships in kinematics, and learners' ability to translate between tables,

graphs and formulae adequately.

IMPLICATIONS OF FINDINGS 

The evidence from this research clearly indicates that learners are able to intuitively 

model different mathematical strategies that can be used to successfully complete a 

table of speed and time of a real-life problem situation. Hence they are able to 

formulate a verbal relationship between the variables, time and speed, which can then 

be written as a functional relationship in symbolic form. However, since not all 

learners were able to complete the whole task successfully, directed guidance from an 

educator could prove to be successful. 

SUGGESTIONS FOR FUTURE RESEARCH 

1. Although this research analysed learner's individual modelling strategies, it

did not address strategies developed from collaborative discussions in small
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groups. Social interaction is viewed as an alternative way of facilitating 

conceptual development (Olivier 1990:7). Heller et al (1991:627) have found 

that better problem solutions emerged through collaboration than when 

achieved by individuals working on their own. They found that in a well­

functioning group, learners share their conceptual and procedural knowledge 

as they solve problems together. Future research could address the impact that 

social interaction has on the problem-solving strategies of learners in a 

similar context as this study. Clinical interviews could be conducted with 

small groups of a class and whole classes. 

2. This study was restricted to only two problems, future research could involve

giving learners many different problems (e.g. different starting values, positive

and negative acceleration) in order to investigate whether they could model

the general formula 'v = u +at.'

3. Longitudinal studies on learners' understanding of these formulae, that they

have formulated themselves, in kinematics, and their ability to apply them to

novel real-life problems.

4. Studies of learners' ability to model:

• From genuine real-life situations, for example actual experimental work

like Newton's Law - experiments carried out in the laboratory on falling

bodies, balls rolling down a ramp, etc.

• Other formulae in kinematics. For example 'v2 u2 + 2as' and

's = ut + 1/2 at2 
, etc.

• Situations from Physics and Chemistry. For example Boyle's Law, Ohm's

Law, reaction rates, etc.

5. A similar study could be carried out with male learners to establish whether

male learners display the same or different intuitive modelling strategies as

female learners do, and compare the level of competency.

6. A study could be conducted on learners' understanding of physical concepts,

quantities and their respective units, and the use of symbols in this respect.
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The speed of an object with an initial speed of O mis increases at 
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The speed of an object with an imt1al speed of O mis increases at 
5 mis every second. 
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5 mis every second. 
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The speed of an object with an initial speed of O mis increases at 
5 mis every second. 
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The speed of an object with an initial speed of O mis increases at 
5 m/s every second. 
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Emily 

The speed of an object with an initial speed of O m/s increases at 
5 mis every second. 
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TRANSCRIPTIONS OF INTERVIEWS: QUESTION ONE 

After reading the statement, the learner's responses to the questions asked were as 
follows: 

LEARNER : SHIREEN (S) 

R: What does initial mean? 

S: At first, at the beginning. 

R: What does speed mean? 

S: How fast or how slow something is. 

R: Is there any other way that you could describe speed? 

S: Not really. I don't know. The movement of something. At what pace it goes, 

whether it's going at 60 km/h or 25 km/h. 

R: What does mis mean? 

S: Metres per second. For one second it passes 1 metre. This stands for 1 metre 

per second. If there was a 2 in front it means that the body is travelling at 2 

metres every second, if it had a 6 then it's travelling at 6 metres every second. 

R: What does "5 mis every second" mean? 

S: 5 metres per second, 5 metres per second ....... Every second right it's going 

at 5 metres per second. I would say that every second .... every single second 

not one missing like every alternate second means that every single second it 

travels 5 metres in every second. 

R: Where does 5 m come from? 

S: There's it here [i.e. 5 mis in the statement] 

R: How is it possible for an object e.g. a car to undergo a change in speed? 

S: Like driving on a highway one won't be travelling at about 60 km/h, you'd be 

travelling at 100 km/h to 120 km/h. and so you use your accelerator to speed 

up or slow down your speed because if you were travelling in a public area 

you will have to go at slow paces. 

R: So how can the speed be changed? 

S: By accelerating. Acceleration is to speed up something. If we are talking about 

a car, how fast or how slow it is moving , to make it go even faster than what 

it's going at. 

R: Fill in the blanks in this table that was drawn up from the above statement. 
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S: Read question. Looking at time 0, 1, 2, 3, 4, 5, 10, 50, 120. Reread the 

question. It's 10, 50, 120, it's 1, 2, 3, 4, 700, 1200 amm... 5 x 2 is 10; 10 x 5 

is 50; 50 x 6 equals 120; 120 x 6 equals oh no! 

R: Is something wrong? 

S: I was going along with time. You gave me zero, then 1, 2, 3, 4, 5, 10 then 50, 

then 20. So looking at how time is going about and the seconds, time is 1 

second, 2 seconds, 3 seconds etc. 

Too much time was spent on figuring out how the time changes. 

R: Can you fill in any of the speeds? 

S: To find the speed ... Read question. Speed at the beginning is zero metres. 

R: The speed then is zero metres? 

S: Yes, zero metres. 

R: What does this fpointing to O mis] mean? 

S: Metres per second. At first the speed of the object was zero metres per second. 

It increases at 5 metres per second. So at one second it moves it should have 

increased at 5. The second second should be another 5 so 10. Then 15 then 

another 5 will be 60 [ 15 x 4 seconds] and another 5 will be 300 [ 60 x 5 

seconds] then 30 x 5 will be 1500, oh boy! 

R: What's the problem? 

S: I made a mistake. Unrealistic value. For every second that it took I added 5, I 

added 5 every 5 m that it moved. It increases at 5 m every time it moves so 5 

m per second every second for 1 second it moves 5 metres, so this is 1 second 

the speed would be 5 metres no ... 1 second - 5 then 1 second is moved at 5, 

second second it should have moved twice that, 10 metres, that's the way I 

was working it out. Then 3 will be 15, 4 will be [J 5 x 4] 60 but then it's not 

following - I'm getting more. See it travelled 5 metres in 1 second, in 4 

seconds it's 5 x 4 equals 20. Another 5 will be 25. Then 10 seconds will be 50. 

R: How did you get 50? 

S: You gave me 10 seconds and 5 metres in every second. So in 10 seconds ... in 

1 second the object travelled 5 metres then in 10 seconds it will be 50 metres, 

50 will be 50 x 5 equals 250, 120 will be 120 x 5 equals 600. Then 700 

seconds divide by 5 is 140 and then 1200 divide by 5 is equal to 140. Then 

560 x 5 equals 2 800. 

R: What is the relationship between speed and time? 
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S: As time increases, speed increases according to time. For every second it will 

increase at so much say at 5 seconds it will increase so much. At 1 second it 

moves 5 metres so as time increases the speed increases. The faster you go the 

quicker you will get somewhere. 

R: Write down a formula or an equation relating speed to time. 

Pause. 

R: Is speed related to time? 

S: Yes, the faster you go, the quicker you get there. As time increases, speed 

increases. 

R: How does the speed increase? 

S: By accelerating. By moving at a faster rate. 

R: Is there any particular value(s) you could get from the statement? 

S: Eh .... Not really. 

R: By looking at the table can you see any relationship between speed and time? 

S: Yes. I proved it. To get speed you need to work with time. The faster you ... 

The more you increase time , the more you increase speed. 

R: How did you get these values in the table? 

S: When the object was travelling for 1 second the question said it moved at 5 

mis every second. When it travelled for 1 second it covered 5 metres. When it 

travelled for 2 seconds then it moved twice that, then at 3 seconds it will be 

thrice that, at 4 seconds 5, 5, 5, 5 that's 20. Another 5 seconds 5 x 5 equals 25, 

then another 10, it will move at another 5 metres then 50. 

R: How did you get 50? 

S: In 1 second, it moved 1 metre so for every 1 second move 5 metres now you 

are moving for 10 seconds so it will be 5 x 10 which will be 50. 

R: How did you get 250? 

S: 50 x 5. Then 120, its 600. 

R: How did you get the speed knowing the time? 

S: The increase in speed is constant, if the increase remains constant then the 

speed will increase with a certain pattern, like this. 

R: If you know the time, can you get the speed? 

S: You will divide by the constant. For example the speed is 700, you would 

divide by 5 to get 140. 

R: What did you get in this way? 
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S: The time. 

R: But if you wanted the speed, how would you get it? 

S: Then time is multiplied by the constant ... will give you the constant. 

R: What is the constant? 

S: 5. 

R: Write down a formula or equation relating speed and time. 

S: speed= time x 5. 

R: Can use this formula to get the speed at any time? 

S: Yes, as long as I can get the constant, which in this case is 5. 

R: If "v" represents the speed and "t" the time, write down a formula or equation 

relating speed and time in symbolic form. 

S: V = t x constant, can use any alphabet for the constant? 

R: Whatever you want to. 

S: V = t x a. 

R: Why have you used "a"? 

S: I thought I had to give it an alphabet and acceleration is 5. 

LEARNER : NANCY (N) 

R: What does initial mean? 

N: Initial means the speed at which it is right now and it's going to increase every 

second. 

R: What do you understand by speed? 

N: Speed is movement and speed can also be very fast movement. Because you 

can say a car is moving and you can also say a car is speeding, so speed to me 

means movement. 

R: What does mis mean? 

N: Movement per second ... metres per second. How many metres it moves in a 

second, like 1 metre a second, 2 metres a second. 

R: What does 5 mis every second mean? 

N: 5 metres per second every second so it moved 5 metres every second. 

R: How is it possible for the speed of an object e.g. a car to increase? 

N: More power, the acceleration changes. 

R: Fill in the table. 

150 



N: They tell us the time 0, 1, 2, 3, 4 and so on and the ... so if it increased 5 

metres for 1 second so zero seconds the speed will increase mmm .. .I don't 

know because our time is zero that's like no ... and they want to know what 

our speed is going to be and in our statement they say the initial speed was 

zero metres per second and then it increased at 5 metres per second every 

second. So our speed here should also be zero because for each time there's a 

speed and here also zero. 

Our speed hasn't increased yet only when our time increases then our speed 

will increase and ... this is 1 second it will move 5 metres and for 2 seconds it 

will move 10 metres per second because for 1 second it moved 5 then over 

another 5 it will be 10 ... and then 15 and then 20 ... 25 wait a minute that's 

50 ... I'm checking with the ... you gave us the two speeds taken so what I 

would try and do is multiply 120 x 5 equals 600. 

By how many are we increasing the time by 1, by 1, by 1, by 1 and then by 5 

then by another 5 ... 50, 60, 70, 80, 90, 100, 110, 120 okay ... 5 x 50 equals 

250 so now how did it go from 50 to 120? 120 divided by 5 [meaning 50] 

equals 24 so the speed from 50 to 120 increased not 5 times but 24 times 

because 50 x 24 equals 1 200 no, no, no! 

For 10 seconds the speed increases by, ... okay for 1 second the speed 

increases by 5 so for 10 seconds the speed will increase 5 times 10 is 50, x 

times so that will give me x, and x equals 50. So we worked out that the speed 

increased for 2,4 seconds because we took 120 and divided it by 50. I said that 

from 10 to 50 it increases 5 times because 50 divided by 10 equals 5 so from 

50 to 120 I took 120 and divided by 50 to see what time and it increased by 

2,4 seconds. 

So for 1 second its speed increases by 5 metres per second so for 120 the 

speed will increase by 5 times 600 yes metres per second. I cross multiply and 

over here we don't have ... The speed didn't increase by 5 over here, the 

speed increased by 2,4 so it will be, for 1 second it increases by 2,4 and then 

cross multiply to get 288, check 288 divided by 250 equals 1,152 and not 2,4 

... no that didn't work checking answer by dividing here we jump every 5 

metres per second so I was trying to work out if my answer is right. 

R: Is it right? 
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N: I don't think so because over here it was 700 divided by 5 gives 140. First we 

going every 1 then we go every 5 now we going every 2, 2 seconds - see 1 to 

2 is 1, 4 to 5 that's 1, 10 to 50 that's 5 then from 50 to 120 that's 2,4 so I said 

700 divided by 5 because that's what we were working with only when we 

came here [i.e. time 50 to 120] it's slightly different so I said 700 divided by 5 

gives me 140 now we are jumping every 2 so here we should get 

R: How did you get 2? 

N: I said 700 divided by 5 because that was our speed at which we were going 

and then to work out this [time for speed 1 200] I'll say 1 200 divided by 5 

equals 240 here I'm supposed to be getting 240 and not 160 so it means that 

this answer [i. e.160] is not correct, rises as time increases as well so for every 

1 second it increases by 5 and for every 2 seconds byl 0 ifl multiply by 5. 

R: What did you multiply by 5? 

N: 4 by 5; 5 by 5; 10 by 5; 50 by 5 but when I came here [i.e.120] I said that this 

didn't move 5 because if I say 50 divided by 5 [meaning 10] I'm getting 5 and 

if I say 10 [meaning 25] divided by 5 I'm getting 5 then I say 5 [meaning 20] 

divided by 20 [meaning 4] then I should be getting 5, then I say 5 [meaning 

15] divided by 15 [meaning 3] then I'll get 5 then I say 5 [meaning 10] divided

by 10 [meaning 2] then I'll get 5 then I'll say 5 divided by 5 then I'll get 1. 

R: What is the answer for 5 divided by 1 0? 

N: Oh no! 5 [meaning 10] divided by 10 [meaning 5] will give 2; 5 divided 

[meaning multiplied] by 3 equals 15. I'm using my 5 from the top where they 

told us ... See, 5 divided ... we getting our time to check if our speed is right, 

so if you moved every 5, so 5 times 10 equals 50 that's what we said. So 50 

divided by 5 is 10, then 5 times 5 equals 25, and 25 divided by 5 equals 5, then 

5 times 4 equals 20 so 20 divided by 5 equals 4 then 5 times 3 equals 15, and 

15 divided by 5 equals 3, then 5 times 2 equals 10 and 10 divided by 5 equals 

2, then 5 times 1 equals 5 and 5 divided by 5 equals 1, that's what I was 

trying to do here. 5 times 50 equals 250 then 250 divided by 5 equals 50 then 

when I came here I said 120 divided by 5 will give me ... 

R: Why are you dividing, is this what you've done before? 

N: No I just divided by 5. 50 times 5 equals 250 to check that 250 equals 50. I'm 

checking my speed as well as my time. I said 250 divided by 5 equals 50, 120 

times 5 equals 600 then 600 divided by 5 equals 120. 
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R: How did you get 288 for the time 120 seconds? 

N: For every second, I moved 5 metres so from 120 divided by 50 is 2,4 because 

50 divided by 5 equals 10 and 10 divided by 5 equals 5 [meaning 2], that's just 

the relationship here. When you start counting in S's because we didn't move 

1 any more we moved up 5. All over here we moved 1, 1, 1, 1, when we came 

here (5 to JO] we moved up 5 so I said for 1 second we moved 5 times for this 

one. So every time I divided this to check my answer to see how many times 

we moved, it was 5 times each time so when I came to 120 then I said 50 

[meaning 120] divided by 120 [meaning 50] which gives 2,4 that's how much 

we move, we didn't move 5 only 2,4, so I said in 1 second we moved 2,4 

metres then in 120 seconds we moved 288 metres, so then I'll take 120 then 

I'll say 700 because I divided this by that then I'll say ... 

Pause 

R: Is there a pattern between speed and time? 

N: They will move in S's until 50 no until 10, well they are all multiples of 5. 

R: Is the speed related to time? Can you get the speed by looking at the time? 

N: Yes because we are moving 5 ... no we are moving 1, if we look at our speed 

we can get our time. 

R: If you have the time can you get the speed by looking at the table? 

N: For 1 second we move 5 metres, at 2 moved another 5 which will give 10. 

R: Could you have got the speed from the time i.e. not looking at the previous 

speed? 

N: Yes we could have said 2 times 5? 

R: Why? 

N: Because we move 5 metres every second. 

R: Could you get the speed knowing the time? 

N: That will be times 5 that is 15. 

R: How did you get 15? 

N: I said 10 plus 5; 20 - 15 + 5 then 25 equals 20 + 5; 25 to 50? That's when 

there's a change jumping in S's and not in 1 's. First we were moving in l's 

now its 5 seconds, got 50. I said 25 times 5 [meaning 2] because we weren't 

moving 1 anymore we were moving 5. I didn't say plus 5 same thing for 120. 

[Time/or speed 700] here we don't move 5 anymore we don't know our time 

so we have to work with our speed so we have 700 and we know that ... so we 
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have to work opposite to this so we say that ... we want to know our time 

there is a difference in time so I don't know whether to take it as 5 or we jump 

more than 5 or 2,4 so I'll try to see if there's a relationship between speed 

divided opposite way, speed for last one taken divided by time so 288 divided 

by 700 to see what I got or 700 divided by 288 i.e. 2,4 so jumped 2,4 again I 

took 288 and 700 divided by 288 to see how many times we jumped because 

we don't have any speed so I'm going to try and do the same thing for the one 

before that 288 divided by 250 equals 1,15 that's not right so I can't do it this 

way. 

R: What way? 

N: To use 2,4. 

R: Is there any other way? Is there any pattern you see between time and speed? 

N: 1-5; 3 -15; 4-20; 5-25; 10-50;50- 25; 120 times 2,4

R: Is there a pattern between the two columns? 

N: Yes I multiplied by 5 so 2 -10 (x5); 3-15 (x5); 4-20 (x5); 5-25 (x5); 10 -50 

(x5); 50 - 250 (x5) then 120 x 5 I'll get 600 but we are not moving 5 anymore. 

R: Where did these S's come from? 

N: The question says when time increases then speed increases by 5. 

R: Can you see any pattern between the speed and time? 

N: For every 1 second, I moved 5 here [speed for 0 second to 5 seconds] but 

when time increases by 2,4, speed increases by 2,4. This 600 [speed for 120 

seconds], is not right its 120 x 2,4 equals 288. 

R: Can you complete the rest of the table? 

N: [Working for the time when the speed is 700]. Now moving once every 2,4 

seconds that 700 divided by 2,4 because 288 divided by 2,4 equals 120 and 

that's what was given. So I want 700 divided by 2,4 equals 291,66, take it as 

291,7. Same thing for the next one. I'll say 1 200 divided by 2,4 equals 500. 

The time increases from 500 to 560 i.e. 560 divided by 500 which equals 1, 12 

times so to get the speed for time 560 seconds it's 560 divided by 1, 12 which 

equals 500. 

R: Write down a formula or an equation relating speed and time, 

N: Every time the time increases by 1, the speed increases by 5, every time the 

time increases by 5, the speed increases by 5, but when it's less than 5, ... 
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mm .. okay ... read question again ... oh okay! so this is 5 seconds. When time 

increases, speed increases as well. 

R: Does it increase in any particular way? 

N: Yes it increases by 5 but not all the time. There were 3 different rates of 

increase, from zero seconds to 50 seconds the increase was by 50, for 120 

seconds, 700 mis and 1200 mis the increase was 2,4 and at 560 seconds, the 

increase was 1,12. 

R: Consider the time zero seconds to 50 seconds, write down a formula relating 

speed to time. 

N: We can say that time is equal to speed times ... they don't give us the 

distance, they only tell us 5 metres every second. Oh yes, every second that's 

your time and speed increases 5 metres so you move a distance of 5 metres for 

that 1 second so you to find out the speed it's equal to time times distance. 

Let's try it out. If t =0 then Ox 5 =0; next 1 x 5 = 5; 2 x 5 = 10. 

I used 5 from the statement but this in not always the case, what if we move 10 

metres per second or 20 metres a second? But it's just the distance that gives 

the speed - distance travelled times time will give speed, say if I walked from 

here to the desk, the distance at which I travel times time gives me my speed. 

R: You have written the formula in words, now write the formula in symbolic 

form using "v" to represent the speed and "t" to represent the time. 

N: V=T xD. 

R: What does D represent? 

N: The distance travelled i.e. 5. 

LEARNER: WENDY (W) 

R: What does initial mean? 

W: Initial, at first. 

R: What does speed mean? 

W: Speed, how fast it's going. 

R: What does mis mean? 

W: How many metres it travels per second. 

R: What do you understand by 5 mis every second? 
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W: Every second the object travels 5metres ... [read question] per second. Every 

second the object increases its speed by 5 metres per second. 

R: How is it possible for an object, e.g. a car to increase its speed? 

W: By accelerating. 

R: Fill in the following table. 

W: So initial at the beginning speed was zero, ... and every second, it increased its 

speed by 5 metres per second, so every second it increases by 5 so at 1 second 

it will be 5 metres per second, at 2 it will be 10 and then it will carry 3 seconds 

will be 15, 4 will be 20, 5 will be 25, and 6 will be 30 then 35 oh no! ... 

R: Is there a problem? 

W: 6 was not given. So then if at zero seconds the speed was zero then at l 0 

seconds, the speed increases at 5 so it will be 50, am I right? So at 4 seconds it 

was 20, 5 will be 25 so at 10 seconds - every second it increases, 5 that means 

it will be 50 metres per second and if its 50 seconds and every second it 

increases 5, so it will be 250 metres per second and then if it's 120 seconds it 

increases 5 so 120 x 5 = 600 so if 700, I want time now and then every time ... 

I'll divide by 5 from the ratio and proportion 700 divided by 5 equals 240 and 

560 divided by 5 equals 112. 

R: Why did you use 5? 

W: It follows the pattern of 5. 

R: What is the relationship between speed and time? 

W: It's ratio and proportion, 1 is to 5. For every second the speed increases 5 

seconds so it implies that the ratio l is to 5, time is to speed equals 1 is to 5. 

R: Write down a formula or an equation relating speed and time. 

W: Time, let's say speed equals time times 5 because it increases 5 metres every 

second. 

R: If "v" represents the speed and "t" represents the time, write down a formula 

or an equation relating speed and time in symbolic form. 

W: V = 5 t. 

R: Does 5 represent any physical quantity to you? 

W: Yes, the object travels 5 metres faster every second. S's add up. 

156 



LEARNER: FATIMA (F) 

It was not possible to capture the data due to an electrical fault with the tape recorder. 

However, sufficient written data was collected so as to make reasonable conclusions 

regarding the strategies she used. 

LEARNER: IRENE (I) 

R: What does initial mean? 

I: It's there it's already there it's the permanent speed. 

R: What does speed mean? 

I: Speed is the fastness in which the object moves. 

R: What does mis mean? 

I: In 1 second it covers so many metres. 

R: What does 5 mis every second mean? 

I: Every second its speed goes higher into 5 metres. 

R: How is this possible in a real-life situation e.g. car? 

I: If you press the accelerator, the car moves faster. 

R: Fill in the table. 

I: We said that the object has an initial of speed of zero so it starts with a speed 

of zero. Then in 1 second it moves 5 metres and then as it moves into 2 

seconds it will increase to 10 and then it moves into 15 and 20, 25 30, 35 and 

then 40. Now ... [ working out the time when the speed is 700] I can take 700 

and subtract 45. I'm taking 700 minus 45. 

R: Why did you subtract 45? 

I: Because I would assume that as it moves 5 seconds all the time I will add 5 

seconds to the speed of 40. Now I've got 655 which is too much, it does not 

coincide with the time. Now the time moves in terms of 5, 10, 50 - the 

difference of 40, then 120 .... 560. I'm looking at the difference in the time so 

150 minus 120. 

R: Where did you get 150 from? 

I: Sorry I took the wrong figure, it is supposed to be 50. So it's 120 minus 50 

equals 70. So the difference here is 70 and the difference there [50 - JO] was 

40 ... The speed now is at 700 ... I've taken the time and I've tried to find the 

difference in time I found that it's not equal so it won't give you the same 
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because the time difference is not the same and then 700 minus 120 ... if I 

take my speed and minus 120 from your time I would assume that I'll get my 

time 580 seconds, it's too large. 

R: Why do you say that it's too large? 

I: It's because it' going from smallest to largest so it would be very unnatural for 

the time to jump higher than 560. 

700 to 1 200 moves higher, time also moves higher so it will be obvious for 

me to get a time which is increasing. The question says increase at 5 metres 

per second. I'm trying to see if I had to multiply 40 times 5. 

R: Is there any relationship that exists between speed and time? 

I: So far the only relationship that I can see is that they increase simultaneously. 

Speed is in metres. How did I get my speed, since the object has an initial 

speed of 5 metres per second, as the object moves in 1 second the object will 

move at a speed of 5 as it moves for 2 seconds it moves at 10 for 120 it has 

been moving for 40, ... 50 then 120 seconds. I'm trying to estimate how fast 

time is moving. 

R: Is there a pattern with the time change? 

I: No, not that I can see. 

R: Is there a pattern with the speed change? 

I: Yes, it moves 5, 5, 5 ... 

R: Is there a relationship between the speed and time? 

I: [Working the time when the speed is 700] I'm taking 40 times 5 equals 200, 

which means the time here had changed that means I'll take this 200 here ... 

I'm taking this 40 times 5 seconds because the speed is 5 metres per that much 

minutes 40 times 5 gives 200 then to get my time I will take 700 and subtract 

200 because I assume that since it's moving at 5, I take the 5 and multiply it 

by 40 because the speed is moving at 5. Now I get 200 I'm trying to get a 

difference from the speed so it will give me that [700] so I'm going to be 

assuming that it's going to be 500, again we have 700 [previous speed] there 

700 times 5 gives 3 500. Take 3 500 minus 700 equals 2 800 then it becomes 

unnatural because it doesn't follow the trend. 

R: What trend? 

I: Time increases from smallest to biggest. 
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R: Looking at the values that you were able to get, is there a relationship between 

speed and time? 

I: The object will move 5 metres in 1 second. The object will move 5 seconds 

faster so in every 5 seconds the object will move 5 faster than before. 

R: Write down a formula or equation relating speed and time. 

I: As the time increases, the speed increases. 

R: If "v" represents the speed and "t" represents the time, write down a formula 

or an equation in symbolic form relating speed and time. 

I: It's not possible. 

LEARNER: DJNESHA (D) 

R: What does initial mean? 

D: At the beginning, before anything happens. 

R: What does speed mean? 

D: Rate at which something takes on speed. The rate at which something travels, 

how fast it goes. 

R: What do you understand by mis?

D: The measure of speed. It just says how many metres something travels per 

second. 

R: What does 5 m/s every second mean? 

D: It travels 5 metres for every second. 

R: How is it possible for an object, e.g. a car to increase its speed? 

D: By accelerating. 

R: Fill in the table. 

D: Time - 1, 2, 3, 4, 5, 10. I'm not sure how this increases but then I can work it 

out. At zero the speed should be zero, because the question says initial speed 

is zero. 5 metres per second - so at one second it should be 5 metres, and at 2 

it [i.e. the previous speed] should be multiplied by 2 so speed is 10 (2 x 5). 

It's increasing at 5 metres per second every second so then at 3 it should be 

15 - by multiples of 5. 20, 5 - 25, IO - 50, at 50 (50 x 5) yes 250, at 120 

(120 x 5) gives 600. To work speed to time, divide by 5. Divide 600 by 5 to 

get 120 basic multiplication and division. Divide 700 by 5 equals 140 and 1 

200 divided by 5 gives you 240, 560 times 5 gives 2 800. 
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R: What is the relationship between speed and time? 

D: At every second the speed increases by 5 metres per second so they are 

proportional. 

R: Write down a formula or equation relating speed and time. 

D: Speed is equal to time multiplied by ... I don't know how to put this? equals 

time multiplied by the rate of ... I don't know this word - when something 

gathers forces ... increase of speed. 

R: If "v" representatives the speed and "t" the time, write down a formula or an 

equation relating to speed and time in symbolic form. 

D: V= t x so many mis i.e. speed though I'm not so sure how to word this 

because it's kind of difficult because both intertwine so much. 

R: What intertwines? 

D: Time and speed because time is part of the speed. Like you say metres per 

second. 

R: Looking at the table can you say what the speed is equal to? 

D: Time multiplied by metres per second which is speed. 

R: What value(s) will you give for this speed? 

D: This li.e. 5 mis] doesn't change but these [ pointing to speed in the table] do 

change. 

R: From the table can you write down a relationship between the speed and time? 

D: Time multiplied by 5 because it increases with time, every 1 second it 

increases by 5 metres per second. 

R: If "v" represents the speed and "t" the time, write down a formula or an 

equation relating speed and time in symbolic form. 

D: Then it will be V = t x mis.

R: What is m/s? 

D: mis is the speed but it doesn't make any sense to me because you calculated 

speed and how can you already have speed? 

R: If you know the time how can you get the speed? 

D: Speed increases 5 metres every second, just multiply the number that is time 

by 5 metres per second. 

R: You've written here 'rate of change of speed', what does it mean? 

D: The speed increases every second and 5 metres per second is its value. 

R: Write down the equation in symbolic form. 
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D: V=tx5 m/s. 

LEARNER: ERICA (E) 

R: What does initial mean? 

E: I think it means previously like the speed firstly. The speed of the object was 

zero metres per second and that is the speed we start off with. 

R: What does speed mean? 

E: Fast, how fast object is travelling. 

R: What does mis mean? 

E: What distance it's travelling over a period of time over seconds how many 

metres. 

R: What do you understand by 5 mis every second? 

E: It means that the object is travelling 5 metres for every second. Measure of 

the distance that it moves every second. 5 metres per second then they repeat 

and say every second so 5 metres per second is speed. Read the question - so 

for every second the speed increases at 5 metres per second. 

R: How is it possible for an object e.g. a car to increase its speed? 

E: By going faster. By pressing on the accelerator object goes faster so 5 metres 

per second every second is the acceleration. 

R: Fill in the following table. 

E: For every second means I second so second is time so if there's no time there's 

no speed. I'll look for a pattern it says 5 metres every second your speed will 

increase. Do I have to start with zero? 

R: Not necessarily. 

E: I'll start at 1. It increases 5 metres per second every second so at 1 second I 

think that it's 5 metres per second and at 2 I think it's 2 times 5 which is 10 

and then it's 3 times 5, then it's multiples of 5. 

R: What makes you say that it's multiples of 5? 

E: Because it says that it increases at 5 metres per second every second so for 

every second there's 5 metres and here there's 2 seconds so it will be 2 times 

the amount in 1 second which will give me 10 - a speed of 10 metres per 

second and I would do the same throughout so 3 seconds - 3 times 5 which is 

15 the same with 4 and 5 - 4 times 5 would be 20, and 5 times 5 would be 25 
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and now it's 10 times 5 equals 50 and 5 times 50 is 250 and then 5 times 120 

is 600, and then at 700 divided by 5 because since I was saying the time times 

5 will give speed now we've got the speed I'd say 700 divided by 5 gives 140 

and the same with 1 200 divided by 5 which gives 240 and then we've got 

time again, times 5 - 560 times 5 gives 2 800. 

R: Why haven't you filled in zero? 

E: Because at the time of zero I don't know what the speed is because they say 

the speed increases 5 metres per second every second. Now there's no time so 

I think that the speed is zero because there's no time so ... As time increases 

by 1 second, speed increases by 5 metres per second so I can get speed at time 

equal to zero seconds. Read question - no I can't get speed at time equal to 

zero. 

R: Why not? 

E: Speed at which it started before it started increasing - so at time equal to zero, 

speed will remain zero because if we work from the question one can see the 

speed increases by 5 so that will follow the pattern so probably speed will be 1 

because we can see 0, 1, 2, 3, 4, 5 - if we have all these on the number line we 

are jumping 5 spaces all the time. 

For every second we jump 5 spaces so if we have to count from 5 - 1, 2, 3, 4,5 

- we will have to start from zero in order to get 5 metres per second for every

second so I think this will be zero. 

R: But you said it was 1 earlier? 

E: Yes, but I had to draw the number line to see the pattern. 

R: What is the relationship between speed and time? 

E: There is a relationship because in the given statement if we didn't have time 

we wouldn't be able to work out speed because they said for every second and 

second is time so if we don't know that it increases at 5 metres per second for 

every second then we wouldn't be able to work out the speed because we 

wouldn't know where to start from. 

R: What is the relationship between speed and time? 

E: .... x's and y's? 

R: In words. 

E: As time increases by a certain factor, speed increases 5 times that same factor. 

R: Write down a formula or an equation relating speed and time. 
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E: Speed equals 5 multiplied by time. 

R: If "v" represents the speed and "t" represents the time, write down a formula 

or an equation relating speed and time in symbolic form. 

E: mis because speed is measured in m/s and time is in seconds so mis equals 5 

times seconds and V = 5 (T). 
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LEARNERS' WRITTEN RESPONSE QUESTION TWO 
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The speed of an object with an initial speed of IO mis increases at 
2 m/s every second. 

Time(s) 

Speed (mis: 

IO fl'\ 

1..S l2 C.

0 

,o 
z 

1 2 3 

;p 1/ 1). 

4 

4S 

165 

5 6 10 50 80 

140 qG 

;;10 2:2 .J-'t2'l .-,o 

. 

::x; 66

4 

394 

-=1� 

410 

q �4 

1000 



Fatima 
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Wendy 

The speed of an object with an initial speed of IO mis increases at 
2 mis every second. 
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Dinesha 

The speed of an object with an imt1al speed of l O mis increases at 
2 mis every second. 
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Erica 

;he speed of an object with an initial s 
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TRANSCRIPTIONS OF INTERVIEWS: QUESTION TWO 

After reading the statement, the learner's responses to the questions were as follows: 

LEARNER: SHIREEN (S) 

R: Read the statement and then fill in the table. 

S: Initial speed i.e. at the beginning is 10 metres per second and it increases at 2 

metres per second, so every 10 metres it travels it increases by 2 metres for 

every second, mmm .... So that's 10 metres per second and it increases at 2 

metres per second for every second. So every second it travels 10 metres .. no .. 

[ Read question ] every 10 metres per second that it travels, it increases at 2 

metres for that 1 second. Okay, let me try this out, time is zero, l O metres 

that's the time ... 1 second travels at ... relationship between the time and the 

speed using the statement ... 

R: Fill in the table. 

S: When the time is zero, the speed will be zero because every second that it 

travels, it will increase at 2 metres. 

R: Do you agree with the speed at time zero seconds? 

S: [Read question] No, speed at the beginning is 10 metres per second. Every 

second it increases at 2 metres per second for every second so at l second, 2 

metres will be 20, at 2 seconds it will increase at 2 metres then it will be at 40 

[ 20 x 2 i.e. previous speed x time for which the speed was being calculated], 

at 3 seconds it will increase and be 120, for 4 seconds it will be 480 oh no! ... 

I was multiplying by 2 [however the operation she carried out was different]. 

Can I draw a diagram? 

R: Yes. 

S: This is my car and it is travelling at 10 metres per second, in 1 second it's 

going at 10 metres, now at every second its going at 2 metres, it's gone 10 

metres plus 2 metres per second ... no ... this doesn't make sense. 

R: Why not? 

S: I don't know? 10 metres and it increases at 2 metres in 1 second. 

R: Why did you add 2 metres? 
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S: Just to make my diagram easy, because it's 10 metres in 1 second and it's 

moving and it's increasing at 2 metres. So I'm trying to work with something 

.... It starts with 10 metres and then it increases at ... for every second that it 

moves it increases at 2, 2, 2, 2 and so on. If I had to move at 10 metres per 

second, at 2 then it will move at 10 plus that 2 so it will be at 12, so that 

another 1 second it will move, if it is at 12 then it will increases at another 2 

seconds it will be 14 metres, and so on. It increases at 3 - 16, 4 - 18, 20, 22, 

24, 26, 28 amm .. . doesn't work out. 

R: What doesn't work out? 

S: I was adding 2 metres every time that it increased at but it doesn't follow 

because there's no relationship between 28 and 410 because it supposed to 

increase at the same speed at each time. 

[ Read question] So every second that it goes it goes at 10 metres and 

increases at 2. It had a speed of 10 metres when it started and then it travelled 

at 10 metres and increased at 2 so that the speed [for I second] will be 12, 

12 X 2 = 24, 12 X 3 = 36, 12 X 4 = 48, 12 X 5 = 60, 12 X 6 = 72, 12 X 10 = 120 

and 12 x 50 = 600. 

R: Why are you multiplying by 12? 

S: Because if it increases at 2 metres it still had to have the initial speed of 1 O but 

it looks like this doesn't work. I need to find a relationship between these two 

i.e. 410 and 1000. Can I have a look at the previous sheet. 1000 + 410 = 

but this doesn't work. 

R: Is there any way that the time and speed are related? 

S: This is tricky for me. 2 metres per second every second is not for every metre, 

2 seconds its 2 metres for every second and then the 10 metres as well. It 

starts at 10 and increases at 2. If it increases at 2, 4, 6, 8, 10, 12 ... 

R: How did you get these values? 

S: I'm trying to see whether it increases at 2 at every second. So it's 20, 100, 

160,410 + 2 = 205 and then 1000 +2 = 500 

R: Is the speed after one second, 2 metres per second? 

S: [ Read question]. It should be 12 because at 1 second it increases at 2 and it 

started off with 10 metres per second. That IO added on to 2 will be 12. So in 
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l second it's travelling at 12 metres and in another second it will be travelling

at 24. 

R: How did you get 24? 

S: 12 x 2 because in 1 second it's 12, in 2 seconds 24. Then 12 x 3 = 36; ... No it 

doesn't work ... I tried this at the beginning so 12 x 3= 36, 36 x 4 =144, 144 x 

5 =720. No ... that's too much because we can't have 720 before 410. 

[Read question]. Starts at 10 metres increases by 2 every second. So it's12, 

14, 16, 18, 20, 22, 24, 26, 28 [back to strategy 2]. But 28 won't be right? 

R: Why? 

S: If I had to divide it by 80, 80 + 28 gives me a point value. I went back to what 

I had where I said it increases by 2 metres for every second. I got 12, 14, 16, 

18, 22 but when I came up to l O seconds ... it's 24. 

R: How did you get 24? 

S: Because I was following this pattern. Because ... at 7 seconds it will move at 

24 at 8 seconds it will move at 26, 9 seconds it will move at 28 and 10 seconds 

it will be 30 and then now at 50 seconds ... would, be I'll have to work this 

whole thing out. 

R: How did you get this values? 

S: I just increased the speed by IO because of the 2 metres that it moves every 

second, so if time increases by 10, speed increases by 10. So 10 will be 30, 20 

- 40, 30 - 50, 40 - 60, 50 - 70, 60 will be 80, 70 - 90, 80 -110.

[Calculated time when speed equals 410]. 410 + 110 = 3,72, still doesn't 

work, 410 +2 =205 and 1000 + 2 = 500. I did do this at the beginning. 

R: Is there any relationship between speed and time? 

S: Yes, because it's increasing at 2 metres per second every second. So it started 

off with 10 initially and you have to carry on with the 10 throughout. So you 

keep in mind l 0, at every second it's moving at 2, 2, 2 so you add on that 10 to 

that 2 but you carrying on adding 2 not 12. 2, 2, 2 and then that's how you get 

your speed. If you had to take away that, you can get your time by saying that 

divided by the 2 that it increased by and you get your time. 

R: Write down a formula relating speed and time. 

S: Speed [meaning time] is equal to time [meaning speed] divided by 2 which is 

'a'. 
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R: If 'u' represents the initial speed, 'v' the final speed and 't' the time, write 

down a formula or an equation relating 'u', 'v' and 't'. 

S: v is equal to v divided by 2/a where a is equal to 2. No, it's ... To get the time 

you say speed divided by 2, that's how I got 205, so t = v+2/a where 2 equals 

a, so it's 410 divided by 2 equals 205. 

R: Will this formula work when the time is given and the speed has to be 

determined? 

S: Yes. Speed is equal to time times a. You have to remember that 10 is in your 

mind so I'm just working with the 2 only. t times what is t? ... t is seconds 2 

seconds times 2 equals 4, right plus the IO will give me 14. 

LEARNER : IRENE (I) 

R: Read the statement and then fill in the table. 

I: You gave us the initial speed as 10 metres then the object will move at 2 

seconds. So the initial speed is zero. [read question] 

R: What is the initial speed? 

I: Initial is the speed that has been put into the object, that starts the speed and 

the time we start at is zero, so the speed is 10 and it increases 2 metres per 

second every second so here it will be 2 seconds. [speed at time 1 second]. 

R: What does this 2 seconds represent? 

I: The time. 

R: Which row are you filling? 

I: The time. 

R: So is 2 seconds correct? 

I: Yes, because they say it increases at 2 metres at every second so ... [read 

question]. The speed starts at 10 so in 1 second it will be 2 metres more then 

I'll take this 2 [speed at 1 second] and multiply it by that 2 [time equal to 2 

seconds] to get the speed, reason being . . . Can I work on a trial and error 

basis? 

R: Yes. 

I: 4 times 3 equals 12 and then 12 times 4 equals 48, 48 times 5 equals 240. For 

every 6 seconds it will move by the previous speed multiplied by the time, 240 

times 6 equals 1 440 ... No ... It supposed to moving in a trend. The time is 
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increasing so the speed has to increase all the time but then I find that the 

speed for 6 seconds is much higher than the speed of 410. [read statement] 

They say that the object has a starting speed of 10 metres per second and this 

speed increases at 2 minutes in every second, so they are saying in every 2 

seconds per minute. 

R: What does this mean? [ 2m/s] 

I: In 2 metres it will move 1 second. 

R: Do you think the speed at one second is equal to 2 metres per second is 

correct? 

I: [ Read question] No, it has to be 10 and then 12 and then 14, 16, 18, 20, 22, 24, 

28. 

R: How did you get the speed? 

I: I increased speed by 2 all the time. 

R: Why? 

I: Because it increases at 2 in one second. 

R: How does the time change? 

I: From zero to 6 the time increases by 1 second and from 6 to 10 it's 4, next it 

increased by 40 and then by 30. 

R: Why is this 2? [speed at a time of I second] 

I: Because at 1 second the object will move 2 metres higher. 

R: What about from 6 seconds to 10 seconds? 

I: The object moved in a time of 6 to 10 seconds it had a difference of 4 seconds 

so because they increase as they go, I increased the speed by 4 also. 

R: Is this 24 correct? 

I: No, it's a mistake it's 22 to 26, and then from 10 to 50, a difference of 40 so 

my speed will increase by 40 so it's 26 plus 40 equals 66 and then from 50 to 

80 there's a difference of 30 so it's 30 plus 66 equals 96. Now I'll try to find 

the difference ... See ... I've been working on a trend because as the time 

increases the speed has to increase. 

Now I'm trying to find the time, I would also use the same principle of time 

moving along with the speed. I'll find the difference between 410 and 96 and 

that difference which is 506 [she actually added] ... it's 410 minus 96 equals 

314. This is the difference in which the time has moved. To 80 seconds I will

add 314 because that's how the speed changed so it's 314 plus 80 equals 394 
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and then I'll do the same thing, I'll take 1 000 minus 410 equals 590. My time 

will increase with 590 seconds so I add 394 to 590 and I'll get 984. So what 

I've deduced from that is that when the speed increases ... Okay ... they gave 

me 2 seconds for the speed so I realised that in 1 minute it only moves 2 

seconds. Then I found the point where it doesn't increase by 2 so I realised I 

had to find the difference in which they moved at that point in order to make 

the time increase with that speed at that time. 

R: Is there a relationship between speed and time? 

I: They increase equally i.e. if they gave me initial speed of 50 and they told me 

this speed increases by 4 per second every second, at this speed I must 

increase 4 because it increases by 4 and now if they gave me a speed of 280 I 

must add the same 4 because time increased by 4. So it makes sense to say 

that time increases with speed. 

LEARNER : FATIMA (F) 

R: Read the statement and then fill in the table. 

F: At time zero the speed will be zero. The speed increases by 2 metres per 

second. So for 1 second it will be ... [read question] No, initial speed is 10 

metres per second according to the statement so at times zero second the speed 

will be 10. For every 1 second it will be 2, 10 times 2 equals 20. [Compared 

with previous statement] In the other example I multiplied speed [meaning 

time] by 5, but here I can't do that because the speed at the beginning is IO not 

zero. When it increases .. . 10 metres per second ... [read question]. Oh! for 

every second it increases by 2 ... [read question] IO times 2 times 1. 

R: Why did you do this? 

F: Because it increases by 2 for every second. I'm not sure why I multiplied by 

1. Let me do this ... For every second it's 10, ya, it's 20 [read question] For

every second that it takes it's increasing by 2. Oh! it's increasing by 2 so it's 

IO plus 2. For 2 seconds it will increase. I multiplied by 2 because it says for 

every second it increases by 2 and I added I 0. 

R: Why did you add 1 0? 
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F: It's increasing from 10 so for I second it will be 12, for 2 seconds it will be 

14, for the other example it was zero and for this one it is 10 so I'm going to 

have to add it. In the other one I did not add it but ... I don't know ... For 3 

seconds it will be 3 times 2 plus 10 equals 16. I know it's wrong but .. . 

R: What makes you think it's wrong? 

F: I just feel so but I multiplied by 2 because it increases by 2 and then I added 

10. 4 times 2 plus 10 equals 18, 5 times 2 plus l O equals 20, 6 times 10 plus

l O gives 22, l O times 2 plus 10 equals 30, 50 times 2 plus l O equals 110, 80

times 2 plus 10 equals 170. Err ... now the other way around. Okay, I'll have 

to divide 410 divided by 2 equals 205, then 205 minus 10 equals 195. 

Working backwards to see if I get 410, 195 times 2 plus 10 equals 400 so 

that's not right. Check by calculation it's the same thing. So I have to work 

backwards again. This l O is confusing me because for the previous one I 

multiplied by 2, if I divided by 2 it doesn't work out, unless I subtract 10 first, 

I'm just trying. I' 11 work backwards 410 minus 10 equals 400 divided by 2 

equals 200. Let's check 200 times 2 minus 10 equals 410, yes. For 1 000 it's 

1 000 minus 10 divided by 2 equals 495 and ifl work backwards I'll get 

l 000.

R: What is the relationship between speed and time? 

F: Speed equals speed times time. We have 10 so speed equals speed times time 

plus initial speed of 10. 

LEARNER : WENDY {W) 

R: Read the statement and then fill in the table. 

W: At the first second the object is going at 10 metres per second then it 

accelerates at 2 metres per second every second. In the table if time equals 

zero and the initial speed is 10 metres per second so it started at 10. If the 

time was zero. [Read question] So if the time was zero, at zero the object 

would have been travelling what? ... At first it was l O then ... and if the time 

was zero it wouldn't have been travelling at all, so the speed was zero. Let's 

start at 1 ... [read question] ... Till 10 metres per second ... all right! So it's 
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10 because it started at 10. When time was zero, speed was 10 metres per 

second. 

If every second it increases to metres that means when the seconds was 1 then 

the speed will increase 2 so it will be 12 and then a second after that it will 

increase another 2 so it will be 14 and one second after that it will increase 

another 2 so it will be 16 and a second after that another 2 that's 18 and it will 

carry on and then it will be 20, 22. 

The seconds was 10 then the speed will be ... [read question]. So we saw that 

it started at 10 then every second we added 2, then when it's 10 we'll be 

adding ... by 7 it will be, doing it the long way, if time was 7 speed will be 24 

and if the time was 8, 9, then the speed would have been 26, 28. At time I 0 

speed will be 30. 

If time was 50 speed would have been ... Let's work out a ratio and 

proportion here ... [pointing to 10] I won't be able to do that ... I can't find the 

ratio and proportion here because nothing works ... I can't have I is to 12 ... 

No ... Divided by 3, divided by 4 ... no. Started at IO by the time it went to 

10 seconds the speed was 30 so at time 50 seconds the speed would be, we are 

adding 2 to every 1 second so ... I can't find another way ... No I'll do it like 

this but it'll take long. If the time is 10 and it's speed is 30, if the time is 50, 

the speed would be what? That's a good way of doing it so let's cross 

multiply, we get 1 Ox equals 1 500, x equals 1 500 over 10 which equals 150 

and so the speed at 80 seconds will be worked out the same way. The time 

here is 80 and then the speed ... If the time was 50 then the speed was 150 

and if the time is 50 then the speed will be 50x equals 150 times 80 equals 1 

200 then x equals to 40, so if the time is 80 then the speed would be 240. 

[Calculating the time when the speed equals 410mls] Work this out the other 

way if the time was 80 and the speed was 240, and then now we have the 

speed is 410 and we want the time, then we'll say ... Okay ... time was 50, 

speed 150, we'll work with this. What is the time if the speed is 410. I'll 

multiply 410 by 50 equals 2 500 so l 50x equals 20 500 divided by 150 

equals 13 7, ya ... I think it makes sense. So if the speed is I 000 what is the 

time. The speed was 1 000 and the time was x so if the speed was 150 and 

the time 50 then 150 x equals l 000 times 50 which is 50 000 and then x 

equals divided by 150 is 333. For the last 5 it works out the ratio is I is to 3. 
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Let's check 410 divided by 3 equals 137, ya, the ratio is 1 is to 3 for time is to 

speed. 

R: What is the relationship between speed and time? 

W: The ratio is 1 is to 3. Every second, the object increases it's speed by 2 

metres. 

R: Write down a formula or an equation relating speed and time. 

W: Time is equal to 3 speed but that's only for the last 5. It doesn't work like that 

for all, how come? [ Read question] So we said the initial speed was 10 and 

every second we will add 2. I can't get a relationship or formula because 1 is 

to 3 doesn't work for all only for the last few. 

R: What about a relationship for the first 6? 

W: There's no common relationship there. Over here for zero it's 10 then it's I -

12, 2 -14 ... nothing I can work with. 

LEARNER : DINESHA (D) 

R: Read the statement and fill in the table. 

D: Speed is zero for time zero and for one second right up to 6 seconds it's all 10 

metres per second . . . oh no . . . it increases at IO metres per second, no, 2 

metres per second every second ... mmm ... initial speed of 10 

R: Why did you change this speed? [i.e. speed at time equal to zero seconds]. 

D: Because it says so, the speed of an object with an initial speed of 10 metres per 

seconds. 

R: Why did you have zero at first? 

D: Because I just assumed that at zero seconds there won't be any speed, 

acceleration what so ever. Then I thought about it again, which is what I do 

most of the time. I just assumed that there was no acceleration. 

R: Fill in the rest of the table. 

D: At 1 second it's 10 over 2 which equals 5, which is not really right. 

R: Why is it incorrect? 

D: Because in order to get ... okay ... wait, I have to think about this ... [read 

question] ... No, it increases at 2 metres per second and if it increases at 2 

metres per second, at 1 second it would be 12, wouldn't it? And at 2 seconds, 
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2 metres per second, 2 seconds it would be 14, but then it doesn't really work 

out. 

R: What makes you say so? 

D: Because if you had to work out ... if you want to get a constant they all divide 

and give you the same thing which doesn't really happen. 

R: What constant do you want to get? 

D: I'm trying to get the acceleration right. 

R: What value are you looking for? 

D: Mmm ... I still have to determine the value . ... Mmm ... I don't like this one. 

. . . 10 metres per second ... 2 metres every second which would be ... I have 

to get a constant but I'm not sure how to. 

R: What constant do you have to get? 

D: The acceleration which increases at 2 metres per second every second. I'm 

highly confused. Because it has an initial speed of 10 metres per second and it 

increase at 2 metres per second every second but if you add it using my other 

equation acceleration equals speed divided by time ... [read question] ... How 

do I get the constant which is 2 metres per second which is the acceleration? 

Speed divided by time will have to give me that. If it increases at 2 metres per 

second every second then it will be adding on 2 metres every second. So for 2 

seconds it will be 14 metres per second and at 3 it will be 16, 4 - 18, 5 - 20, 6 

- 22, 7 - 24, 8- 26, 9 - 28, 10 is 30 ... and it's kind of difficult to calculate 50

because you can't go at that pace all the time ... If 10 is 30 using my times 

tables 30 divided by 10 is 3 so it will be 50 times 3 which equals 150 and 80 

times 3 equals 240. 

Now to calculate time. 10 is 30 and using the 2 times table 20 would be 50, 30 

would be 70. 

R: Why are you using the 2 times table and how are you making use of it? 

D: Because 2 times 5 equals 10, and 10 times 2 equals 20 just add 20 and then 30 

equals 70, 40 equals 90, 50 equals 110. 

R: Explain how you got these values? 

D: Speed at zero is 10. If speed was 1 it would help a whole lot, but anyway, if 

we calculate speed and you count from 30 upwards you would get those 

values. 

R: How did you count from 30 upwards? 
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D: Using the 2 times table 32 is 11, 34 is 12, 36 is 13, 38 is 14 and so on. If you 

take 10 units for your time you go 20 units for your speed. This value [speed 

equal to 150 at time equal to 50 seconds] changes it's 110, 60 it would be 130, 

70 would be 150 and 90, no, 80 would be 170. To calculate the time 410 is 

divided by ... how do I calculate time? ... I have no idea, 30 divided by 10 is 

3 but that's not right. ... mmm ... [read question] ... that's all right, but I don't 

know how to calculate time. I can't see a relationship between speed and 

time. I feel stupid because there should be a relationship between speed and 

time. 

R: What makes you say that there should be a relationship between speed and 

time? 

D: Because the rate at which it increases and the time should be corresponding. 

Speed is the measure of the rate of increase. If I divided speed by time it 

should give a constant but in this case I'm not getting a constant ... Maybe 

something's wrong with my speed? 

R: Why do you have to get a constant? 

D: Because for any speed time relationship there is a constant e.g. in the other 

example there was an acceleration and that acceleration was constant. In this 

example there is an acceleration which is 2 metres per second every second 

and if 2 is a constant then 1 should be 2 and 2 should be 4 for time ... and in 

this way I' 11 get a constant. 2, 4, 6, 8, 10, 12, 10 times 2 is 20, 50 times 2 is a 

100, 80 times 2 is 160 so if I divide 410 by 2 it's 205 and 1000 equals 500. 

That would work, but then, it says an initial speed of 10 metres per second 

which puts everything off. But if the speed at the beginning is 10 we would 

have to add this [ 2, 4, 6 ... ] to the 10. 

R: What is the relationship between speed and time? 

D: The formula acceleration equals speed over time does work but then here it 

goes off, 16 divided by 3 gives you a weird number. 

R: What is the number and makes you say it's weird? 

D: Because it's 5,33. 

R: Why can't this be the speed? 

D: Because it's weird, it doesn't correspond with the table because you're 

supposed to get a constant not 5,33, 18 divided equals 4,5, it doesn't 
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correspond at all. One is 5,33 and the other is 4,5 but the acceleration is 

supposed to be a constant. 

R: Which are the correct speed values? 

D: I'm not too sure whether it's the top or bottom answers. 

R: Can you see the relationship between speed and time? 

D: With this I do, [2, 4, 6, 8, ... ] but with those [JO, 12, 14, ... ] I don't. If the 

initial speed was zero I can get a relationship, but now the initial speed is 10, I 

can't. 

R: Could these values 2, 4, 6, etc. be used for this given statement? 

D: No, these values [JO, 12, 14, etc] are what I'll use but I'm not sure if they are 

correct because when I divide them I don't get a constant. But according to 

the statement it makes sense. 

R: What makes you think it is incorrect? 

D: My reasoning abilities. 

R: What is the relationship between speed and time? 

D: Using the multiples of 2, 2 times 7 equals 14, 1 times 12 equals 12, 3 times 

what will give 16? Not possible, I know 3 times 5 equals 15 not 16. I have no 

idea how to do this. I can't see a relationship. There is a relationship but in 

this case I can't see it. 

LEARNER : ERICA (E) 

R: Read the statement and then fill in the table. 

E: [Read the question again]. So from 10 metres, it increases, add on 2 metres 

every second. At 1 second it will be 10 because they say it increases by 2 for 

every second but the initial speed that it started with was 10 metres per second 

and then it increases. 

R: What is the speed at the time zero second? 

E: Like with the previous example, I think it would be ... If I had to work with 

this table it would follow a certain pattern and I have to start at zero. The 

speed at zero can be anything there is no such thing as zero time, it can be 

worked from anywhere .... 

R: What does initial mean? 
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E: Initial to me means the speed of the object before you started timing, it was I 0 

metres per second, but when you stared timing it you concluded that the speed 

increased every second so I'll have IO here [at time equal to zero seconds] 

because that's when we started timing it. 

For every second it increases at 2 metres per second so 10 plus 2 equals 12, 

and then 2 seconds it will increase by another 2 which is 14 and for 3 seconds 

it will increases by another 2 which will be 16 and then at 4 seconds it will be 

18 and at 5 seconds it will increase to 20, at 6 to 22, and at 10 it will be ... I' II 

have to work this out . . . 7, 8, 9 - 24, 26, 28, IO would be 30 and then 

you work out if IO was 30 then if you look at zero to I 0, for every 5 it 

increased by I 0, because at zero it was 10 and then at 5 it was 20 and at IO it 

was 30. So at 20 it will be 40 and at 30 it will be 50, at 40 it will be 60, 50 -

70, at 60 ... no we must increase in fives. 

10 was 30 ... so we'll have 15, 20 ,25, 30, 35, 40, 45, 50, we started of with 10 

being 30 so that will be 40, 50, 60, 70, 80, 90, 100, 110. So ... as it increases 

by 5, 55, 60, 65, 70, 75, 80, ... 120, 130, 140, 150, 160, 170. 

[Working the time when speed was 410 mis]. What I'm saying for every 5 it 

increases by l 0. So I was adding ... for every increase of 10 in speed time will 

decrease by 5. I'm trying to work out a shorter method - what's the 

relationship between speed and time? 

R: Do you see any relationship between the speed and time? 

E: As the time increases by 5, the speed increases by l 0. But now I'm trying to 

find it the other way around, speed to time. If time increases by 5 and speed 

increases by I O then, for every 5 then, if the speed decreases by 1 0 then time 

will decrease by 5. Let's see 410 divided by 5 equals 82, it's not right. 

R: Why is it not right? 

E: Because for every 5 it increases, the speed increases by IO so if at 80 the speed 

is 170, then at 82 the speed can't be 410. You see a pattern is followed 

because at 85 it will be 180 so for 410 it can't be 82 that's why it didn't work 

out. I'm trying to figure out how to get from speed to time but I know how to 

work from time to speed. 

Speed equals to time times what? ... I'm trying to figure out how I got 14 at 

time equal to 2 seconds. I added it to I 0. If I had to say speed is equal to 10, 
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that's the initial speed we started of at, 10 plus your time ... no ... speed is 

equal to ... 10 ... I don't know how to write this. Speed is equal to 10 plus 2 

for every second. Speed is equal to 10, initial speed plus 2 metres per second. 

For 2 seconds the speed is equal to 10 plus 4, then, speed is equal to 10 plus 6. 

So it increases in multiples of 2, but this doesn't happen with the whole table, 

only for time equal to 1 second to time equal to 6 seconds and from 6 seconds 

to time equal to 10 seconds. We also see that for every 5 it increases by IO ... 

I'm trying to see if I subtract the speed from the time if I'll get a certain 

number. I'm trying to calculate time. As the time increases by 1, the speed 

increases by IO plus 2 ... It all goes in multiples of 2 so speed equals to I 0 

plus time times 2, so we have for example, time equal to 6 then the speed will 

equal to 10 plus 6 times 2 equals IO plus 12 equals 22, it works out! 

Speed equals 10, because it is the initial speed times 2 because it increases by 

multiples of 2 so I took an example, as time equals to 6 seconds and I got 22. 

The final equation is speed equals 10 plus time times 2, because I'm working 

in multiples of 2 because it increases by 2 all the time. 

R: Complete the rest of the table. 

E: To work out time, time equals speed divided by 2 because if we multiply time 

by 2, and add it to 10 to get speed then our speed minus 10 divided by 2 for 

example, to see if my calculation us correct, take the speed of 20, 20 minus 10 

divided by 2 equals 10 divided by 2 equals 5 and it works out that way. If I 

take 410 minus 10 divided by 2, I'll get 200. Check: 200 times 2 plus 10, it 

works out! Similarly with 1 000, take 1 000 minus 10 divided by 2, is equal to 

495. Check: 495 times 2 plus 10 is 1 000.

R: What is the relationship between speed and time? 

E: Speed is equal to 10 plus time times 2. 

R: Write down the formula or an equation relating speed and time. 

E: Speed is equal to 10 plus brackets time times 2. 
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