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ABSTRACT 

This work is concerned with the characterization 

of slowly moving fluids and was carried out on the flow 

of water through a narrow sedimentation tank. Disper­

sion in the type of flow structure involved is caused 

mainly by the presence of large eddies and, due to the 

fact that shear stresses are samll, these eddies persist 

f01:" a considerable period of time. 

Two flow models are presented? 

The first model assumes the x- Y- velocity 

component pair to form a discrete state Markov process in 

time and dispersion equations for the mean concentration 

at a pOint, the variance as well as concentration cross­

correlations are generated. 

In the second model the velocity fluctuation 

components are assumed to be independent, time-statio­

nary Markov processes with normal probability density 

functions. The stochastic differential equation descri ... 

bing dispersion of tracer is formulated with and without 

the effect of molecular diffusion and solutions to both 

cases are presented. 

Comparison of the model with experimental data 

obtained from tracer and anemometer measurements show 

that the model is capable of describing mean dispersion 

in a relatively small region of the tank and that the 

tracer experiments were insensitive to molecular diffusion. 
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CHAPTER I 

INTRODUCTION 

Our interest lies in the flow structure developed 

when large masses of fluids move comparatively slowly. 

To illustrate the type of dispersion obtained in such a 

flow structure one may observe the smoke from the tip of 

a stationary cigarette in a well ventilated room. The 

character of the dispersion action may be roughly split 

into two parts: 

Firstly, a randomly varying velocity responsible 

for large scale dispersion and secondly the effect of a 

diffusion type mechanism. Under these circumstances the 

shear ~tresses within the ~lU1d are low giving rise to 

large scale turbulence of low intensity. 

Tracer experiments were carried out on the flow of 

water through a narrow sedimentation tank. The photo-

gra~hs on page 2 show the path taken by a dye solution 

injected continuously at a point in the tank. They were 

taken at intervals of about thirty seconds and show clear-

ly that. the general direction of flow varies substantially, 

even though the flows into and out of the tank had been 

constant for a considerable period of time. Furthermore, 

~he jagged paths indicate that the general direction of 

flow is the same throughout the region shown ~nd changes 

fairly slowly with time. (See photograph on page 3). 

Under these conditions the velocity history of a fluid 

particle is identical to that recorded by a stationary ob­

server noting the fluid velocity at a point. The ar~nll~' 
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widening of the dye path indicates the presence of a 

small scale, diffusion-type dispersion mechanism. The 

flow situation is therefore interesting from a theoretical 

point of view, because, to a close approximation, the 

Eulerian and Lagrangian statistics are identical. 

The stochastic nature of the flow was further 

illustrated by the widely differing paths taken by pulses 

of tracer material injected intermittently at a point 

in the tank. qlearly the above flow structure cannot be 

r ealistically described by the well-used Eddy Diffusion model 

applicable to dispersion in highly turbulent fluids. 

The latter is associated with large shear stresses and small, 

high frequency eddies superimposed on a constant mean 

velocity. The inadequacy of this model for the flow 

structure considered here is shown in more detail below . 

The dispersion of tracer material may be described by 

the following stochastic partial differential equation: 

ae 
at 

where, 

= ae 
Ux(x,y,t)ax 

· ae u (x,y,t)r;- +q(t)8(x)8(y) y oy 1.1 

C = tracer concentration at the point x,y and time t. 

q(t) = t racer flow rate injected at the origin. 

u (x,y, t) x = X-component of velocity. 

Uy(x,y,t) = Y-component of velocity. 

Both Ux(x,y,t) and Uy(x,y,t) are stochastic processes. 

The solution to the above equation is unknown at present, 

because the stochastic processes Ux(x,y,t) and Uy~,y,t) 

are functions of both position and time; (1) i. e. the 

equation is "an Eulerian description of dispersion. If, 

however, the velocities are interpreted in .::I T . ~,.,.,...:>",,...4~-
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sense, they become effectively functions of time only 

and equation 1 . 1 may be written: 

ae 
at = u (t) ae 

x ax uy (t)~~ + ,q (t) <5 (x) <5 (y) 1.2 

Hence, Lagrangian statistics of the velocity pro­

cesses must be used to obtain statistical properties of 

the solution functions e(x,y,t). This method of inter-

preting and solving equation 1.2 yields results identical 

to i..he solution of the familiar Lagrangian equations 

dX 
dt = u (t) 

x 
, dY 
dt = u (t) y 1.3 

first i nve stigated by Taylor (2) as a model for turbulent 

flow. This correspondence might appear surprising at 

first s i ght and is developed in detail below. 

In order to solve equation 1.2 we assume the velo-

cities Ux and Uy to be Markov proc~sses; in addition, 

the solution e(x,y,t) together with U and U form a compo- , x y 

site, Markov process and hence the associated Kolmogorov 

equation must exist : (3) 

= -

where, 1.4 
TI (ux ,Uy,cit/Uxo, UYO,coito) = transition probe density. 

= 1 . 5 

vx,vy,Xx,Xy = drift and variance parameters respectively for 

the velocity processes. 

This equation, however, cannot be used to generate a closed 

system of moment equations due to the non-linear coupling 
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between the velocities and concentrations in ac c We 

therefore investigated two possible assumptions to over-

come this difficultyc 

In the first case, the- velocity can only assume a 

finite number of fixed values; i . e. U (t) has discrete x,y 

st.atespace. This model was inspired by the work of -

Krambeck, Shinnar and Katz (4) p These workers modelled 

a flow reactor by a network of perfectly stirred tanks. 

The volumes of the tanks remain constant, whilst the in-

terstage flow rates between them are allowed to switch 

randomly in time between discrete levels according to a 

stationary Markov process. ClearlYI the physical signi-

ficance of this model is limited · and cannot be applied 

directly to the present problem. . Their treatment is 

adapted by assuming the X-and-Y-velocity component pair 

to be a discrete state, time-stationary Markov processc 

Equations describing the development of a number of con-

centration moments are derived from a considerati.on of 

the appropriate Kolmogorov equations. The major draw-

back of this model, however, lies in the difficulty of 

obtaining solutions to these equations as well as in its 

large number of parameters. Consequently, no attempt 

was made to compare the predictions of this model with 

experimental data. The ·model is presented in Chapter 

II and the reader may omit this chapter on first reading 

without loss of continuity. 

In the second case we make an a priori assumption 

regarding the probability· density furtction for the velo-

city process. Ux,y(t) has continuous state space and 

thus provides a more realisti·c description of the flow 
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structure under consideration. The above Kolmogorov 

equation (Equation 1.4) was not used in the solution, as 

a direct method of solution was available, and is pre-

sented in Chapter III. 

To illustrate the correspondence- of the results 

developed in Chapter III with those obtained by Taylor 

(5), Doob (6), a.o. we may examine the expression for the 

mean concentration (see Equation 3.25) 

= 
f

OOo'q(T) 1 ~exp 
{2ncr i(t,T)} 2cri(t,T) 

1.6 

If tracer enters the system as an instantaneous point 

source then: q(T)=O(T) and the resultant response for the 

mean concentration is seen to be Gaussian. Furthermore, 
• 

development of the model results in the' following expres-

sions for the mean and variance of this distribution: 

= 

= 

1.7 

~ {exp(-Bt) - 1 + at} 1.8 

(compare Equations 3.15, 
3.17) 

Taylor (2) developed the following expression for the 

variance of particle .P9sition in a turbulent velocity field. : 

. ' t T 

2a~ fo fO~(T) dT dTl = 1.9 

where, ' 

= Normalised Lagrangian autocorrelation of 
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0 2 = Variance of velocity fluctuations. 
o 

Substitution of the assumed fo~m of R(T} (see Equation 

3.3) in Equation 1.9 and integrat~ng yields a result 

identical to Equation 1.8. Clearly, when the flow field 

$uffers a mean displacement velocity ux ' then X1t} relates 

to the variance about the point uxt. 

In order to show the correspondence in more detail 

we require the form o~ the probability density function 

for X(t). Doob (6) a.o. make use of the following two 

equations to obtain this function: 

where, 

Ndt} 

~~(t) + aU(t} N (t) 
a 

1.10 

= 

= 

u (t) = 
dX (t) 
a:r-

damping parameter~ 

1.11 

random impact force with White Noise pro-

perties and Gaussian distribution density. 

These workers showed that both the probability density for 

position p(x,t) and velocity p(u,t) have a Gaussian form. 

Hence, .the results derived by Taylor, Doob a. o. 

for tne motion of a single particle are similar to those 

dev~loped in Chapter ~II and the equivalence is complete if 

the probability density for the position of a single 

particle is interpreted as the concentration resulting 

from the release of a large number of tracer particle at 

the origin. The correspondence between the mean concen-

tra~ion ~(x,t) and the probability density p(x,t) is, of 

course, easy to justify for fully developed turbulence, 
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ta;nly not be true due to the slow variation of the ins­

tantaneous velocity. 

The use of a pseudo Eulerian formulation of Equation 

1. 2 may be justified for three reasons : 

Firstly, it allows one to work directly with tracer 

concehtration. 

Secondly, molecular diffusion terms may be written in 

directly 

ac 
at = 

1.12 

+ q(t)o(x)o(y) 

D = molecular ~iffusion coefficient. 

Thirdly,the model is not restricted to periOds of dis­

. persion which are considerably longer than the lag at 

whiCh the Lagrangian autocorrelation of velocity has 

reached zero. This restriction does apply to the Eddy 

Diffusion model 

= 1.13 

where, 

Ux = constant mean velocity 

E = Eddy Diffusion Coeficient 

Taylor (7) has shown that E may be expressed as 

00 

1.14 

The above 
following 

E = %a~ Jo~(~) d~ 
expression for E, however, . is 
approximation: 

based on the 

00 

where, A = L~(~) d~ 1.14 i 1.15 

· tf R (T) reaches zero at l~a T = ~- ~-~ ~ , ~ 
, ,.. 
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becomes : 

= 1.17 

It can be shown that for the tracer experiments carried 

out in this work errors of the qrder of thirty per qent 

result when the second term is neglected. (Appendix I) 

Equations 1.2 and 1.12 are solved by assuming the 

velocity components to be ~ndependent, time stationary 

Markov processes with Gauss~an probability density func-

tions. solutions for both the mean concentration at a 

point as well as the concentration cross correlation bet­

ween two pOints are ob~ained in terms of model parameters 

and t;racer input f\l1'lction. The validity of th~s model was 

tested experimentally in two ways : 

Firstly, tracer ~xperiments were carried out to 

obtain experimental estimates of concentration moments 

for a number of positions. Comparisons with model pre-

dictions provided a means for evaluation of the parameters 

as w~ll as a measure fo; the ability of the model to des-

cribe dispersion. 

Secondly, the fluid velocity at a point was measured 

directly with the aid of a Hot Film Anemometer. This ex-

periment provided a test of the physical significance of 

the model parameters together with an independentesti~ate 

of their values. 
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CHAPTER II 

DISCRETE STA~E SPACE FLOW MODEL 

2.1. INTRODUCTION ' 

The model is based on the assumption that the 

velocity of the fluid may be represented by a stationary, 

discrete state Markov process. The instantaneous velo-

city components in the X-and-Y coordinate directions Ux(t) , 

U (t) can therefore assume any of a finite numbe~ of pair y 

values (u ., uyl; 
X] .J 

the flow process is said to be in flow 

state j. The randomness of the model is introduced by 

allowing instantaneous switching to occur from one flow 

state to another as a random funotion of time. Further-

more, it is assumed that the statistical properties of the 

tlow process do not vary with time. This assumption will 

hold when the process has been in progress long enough, so 

that start-up conditions have no influence on the state of 

the system. The flow process is assumed to be Markov 

and therefore may be described by a matrix of transition 

probability densities: 

Iln(jli:T)11 

where n (j Ii: T) represents the probability of the flow 

process switching from state i to state j in a time inter-

val t • 

2.2 FLOW STATE EQUATIONS 

The following properties of such a Markov process 

are known and will be used below: 

In(ilj:t) = 1 
j 

n(ilj:t) = 0ij + AijT + OCT) 

2.1 

2.2 
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where, 

o .. = 0 i t- j 
~J 

= 1 i = j 

A.. = constant and may be interpreted as a measure 
l.J 

of the mean switching rate from state i to state - j. 

lim O(T) = 0 
T+O T 

From Equations 2.1 and 2.2 it follows that 

~ A.. = 0 
J l.J 

If p(i~t) represents the probability that the flow pro-

cess i~ in state i at a time t, then 

p(jjt+i) = L p(i~t) TT (j li:T) 
i 

From Equations 2.2 and 2.4 it follows that 

dp(jjt) = L A .. p(i~t) 
dt i l.J 

When the process has become stationary Equation 2.5 

becomes : 
L A •. p(i) = 0 
i ~J 

Equat~on 2.6 together with 

L p(i) = 1 
i 

~ay be solved uniquely for the stationary flow state 

2.4 

2.5 

2.6 

2.7 

probabi~ities p(i), provided zero is a single (i.e. not 

multiple) Eigen - value of the matrix I IA .. I I. 
~J 

2.2.1 

AUTOCORRELATION OF VELOCITY PROCESS 

If p(ijt,jjt+T ) is defined as the joint probability 

that the--X-eomponent -of velocity (U ) has- the- value u . - x x~ 

at time t and u . at time t+T, then the autocorrelation 
XJ 
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may be written as : 

R (T) = foo Ioo 
u .u .p(i;t,j;t+T) du . du . 

ox -00 -00 X1 XJ X1 XJ 

For a time stationary, discrete process this may be· sim-

plified as follows: 

R (T) = ~ L u .u .p(i,j:T) 
ox 

J i X1 xJ 

= L L u .u .p(i) n{jli:T) 
j i X1 xJ 

2.S 

It can be shown (S) that ~he trapsition probability 

density matrix as a function of time may be written as 

I In (j Ii: T) I I = I XR I di ag I I exp (r 1 T) , •• exp (r n T) III Y L I 
2.9 

where IxRI and IYDI are the Righthand and Lefthand Eigen-

vectors of the matrix A;i.j and rl.. n the Eigen-values. 

diagj I exp (r 1 T ), ••• exp {b T )11 is a square matrix with 

elements exp (r 1 T ), .•• exp (r L ) on the diagonal and all 
n 

other elements equal to zero. 

Hence, from a knowledge of the switching rate matrix 

A .. and the allowabl~ values of Ux and Uy both the sta-
1J 

tionary flow state probabilities p(i) and the compo-

nent autocorrelations Rox ( L ) I Roy ( L ) may be calculated. 

Figure 1.1 . shows a typical autocorrelation R (L) as a ox 

function of L for a three-state flow structure. The au-

tocorrela tion fuunction has an exponential type decay 

typical of Markov processes. This model could only be 

expected to be useful for modelling flow systems having 

such a velocity autocorrelation. 
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2.3 MIXING EQUA~IONS 
\ 

In order to describe the dispersion of tracer mate-

rial in the above flow process we now introuuce a composite 

Markov process, whose state comprises the discrete flow 

states p(i) and the continuous states of tracer concen-

tration c and spatial coordinates x,y. Hence p(j,c:t) 

dc represents the joint probability of the flow being in 

state j and of the concentration at the point x,y having 

a value between c and c+dc at a time t. The forward 

Kolmogorov equation associated with p(j,cit) may be show 

to have the following form: (Appendix 2) 

~(j,c;t)= \ ( ) a { ( } at I AijP i,Cit - ac ac j,c;t)p(j,c;t) 2.10 

where, 

o.c(j,c;t) = ~~:o ~tE{C(t+~t)-C(t) IC(t)=c,flow state=j} 

2.11 

If the system is excited by means of a point source of 

tracer then the dispersive action of the flow process 

is described by the following stochastic partial diffe-

rential equation : 

aC(t) 
at 

where, 

= - U aC(t)_ u aC(t) + q(t)6(x)6(y) 
x ax yay 

q(t) = tracer flow rate. 

Hence from Equation 2.11 

o.c(j,c;t) = dC de 
- UXjdX - Uyjdy + q(t)6(x)6(y) 

2.12 

2.13 
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~.3.1 MOMENTS EQUATIONS 

The most convenient way· of testing prediction 

pf the model and of estimating the model parameters is 

to compare the moments of the distribution of concentra-

tion with those measured experimentally. We define the 

Partial Mean Concentration at the point (x,y) as : 

~(j,x,y,t) = J~c p(j,c;t} dc 
o 

and the Partial Mean Square Concentration as 

s(j,x,y,t} = J~C2 p(j,c;t} 
o 

2.15 

The development . of these moments in time is obtained 

by differentiation: 

h (j ,x,y ,t) 
at = lE.(j,Cit} dc 

at 

as(j,x,y,t.} = l~c2 lE.(j,c;t} dc 
at at 

S~8tituting Equations. 2,10 and 2.13 and integrating 

~y parts yields : 

a ~ (j,x,y,t} 
at = ))i'~ (i,x,y,t) 

i J 
u h(j,x,y,t) 
xjax 

2.14 

2.16 

2.17 

- Uyj~~(j'X,y,t) + q(t}p(j}o(x)o(y) 

!! (j ,x,y It) \' 
at = LAijS(i,x,y,t) 

i 

u ~(j,x,y,t) 
xjax 

2.18 

- Uyj~;(j,x,y,t) + 2q(t)p(j}~(j,x,y,t}o(x)o(y) 2.19 
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Crosscorrelation between the source strength Q(t) 

and tracer concentration C(t) at point (x,y). 

Tracer material is injected at the origin at a 

rate OCt). If OCt) is a time-stationary, random function 

then OCt), C(t) and flow state form a composite Markov 

process. Hence we may define a probability density 

function p(j,q,c;t), such that p(j,q,c;t) dq dc repre­

sents the joint probability of the system being in flow 

state j, the tracer flow rate having a value between q 

and q t dq and the tracer concentration at the point 

(x,y) having a value between c and c + QC at time t. 

The associated Kolmogorov equation has the following 

form : (Appendix 2) 

~t(j,q,c;t) = k"kJ,P(k,q,c,.t) d { ( ' t) (. t)} It LA - dq aq J,q,c; p J,q,Ci 

- ~c{ac(j,q,c;t)p(j,q,c;t)} 2.20 

where, 
lim 1 I Qq(j,q,c;t) = ~t+o~t E{O(t+~t)-Q(t) O(t)=q, 

2.21 
C(t)=c,flow state=j} 

Qc (j ,q,c;t) lim 1 
= ~t+o ~t E{C(t+~t)-C(t) IQ(t)=q, 

2.22 
C(t)=c,flow state=j} 

Similarly, a transitional probability density function 

n(j,ql,c;t+Tli,q;t) may be defined such that 

n(j,ql,c;t+T/i,q;t) dql dc represents the jOint probability 

ot the syste~ being in flow state j and the concentration 

at the point (x,y) having a value between c and c + dc 

and the source strength between ql and ql + dql at t+ T, 

knowtna t-hl'l+- :>+- .... ~ ..... .... .L. .L.'- ___ __ .L - .--
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the source strength had a value q. If the process is time­

stati.onary this function will be independent of t and the 

aJ?propriate Kolmogorov equation becomes : (Appendix 2) 

2.23 

where, 
a~j,qlc) = !~:o !t E{Q(t+~t) - Q{t) \Q{t)=ql' 

C(t)=c,flow state=j} 
2.24 

Q(t)=ql,flow state=j} 

The Crosscorrelation between the source strength Q·(t) 

and tracer concentration at the point (x,y) is defined as 

~qC{t'T) = ~? JooJOOqc p(i,q;t,j,c;t+T) dq dc 
J~ 0 0 . ' 

2.25 

If the system is time-stationary we define a Partial 

Crosscorrelation as 

~ . C(T) = ? JooJoofoo qc p(i,q) TI{j,ql,c\i,q:T) dq dc dql 
Jq ~ 0 0 0 

2.26 

Differentiating Equation 2.26, substituting from 

Equations 2.23 and 2.13 and integrating by parts yields 

= 

2.27 



where, 
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R. (T) = Partial Autocorrelation of Q(t) 
Jqq 

= 

In order to solve Equation 2.27 we require initial 

conditions <P. (0): Jqc 

<P • (0) 
Jqc 

Differentiating Equation 2.29 with respect to t and 

2.28 

2.29 

substitut ing from Equation 2.20, assuming the process to 

be time-stationary yields: (Appendix 3) 

1 d<P. (0) d<P. (0) 
LA . <Pk (0) - -T <P. (0) - u .-Jqc - u .~Jqc o = 

where, 

k J qc c Jqc XJdX YJoy 

+ l 
T c 

E { N ( t) I Q (t) =q} II (j , x , Y ) + R (0) p (j ) 0 (x) 0 (Y) w qq 

R (T) = Autocorrelation of Q(t). 
qq 

The source strength Q(t) is the output of a first order 

~ilter (time constant T ) with input N (t) . c w 

Hence the solution of Equations 2.30 serves as initial 

2.30 

conditions for Equations 2.27. A similar set of equations 

may be developed for concentration autocorrelations and 

cross correlations between two points (xl,Yl ) and (X2 ,Y2). 

In order to solve the non-time-stationary 

forms of Equations 2 . 18 and 2.19 in an infinite plane 

a numerical approach must be adopted. It will be realised 

that each case involves the simultaneous solution of a 

number of partial differential equations equal to the 

number of allowable flow states. Hence the time consuming 

effort and hiqh cost of r.{"\mrl11 ... :: ...... ~ """ -~- . ... ~ ...... - ... ,,... -
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complete solution of the above equations for a 

realistic number of flow states are not considered 

warranted. 



21. 

CHAPTER III 

CONTINUOUS STATE SPACE "FLOW MODEL. 

3.1 VELOCITY PROCESS. 

The model is based on the following assumptions: 

Firstly,the instantaneous fluid velocity U{t) 

is regarded to consist of a mean component u and a 

fluct~ating component U I (t). Hence 

U (t) = u + U I (t) 
x x x 

U (t) 
y 

= 

Secondly, the stochastic processes U~{t) 

and UI (t) are time-stationary and have continuous state 
y 

Markov properties as well as Gaussian probability 

density functions. (Ornstein~Uehlenbeck processes) 

Thirdly, it is assumed that the random 

motion is isotropic as far as rotations about the 

X~axis are concerned; the X- and Y-motions may then 

be shown to be uncorrelated. (9) Since their distribu-

tions are ·Gaussian they are also independent. (10) 

Mean of UI (t) : 

E{U'{t)} = E{U'{t)} = 0 
x y 

Autocorrelation ofU ' (t) : 

E{U'(t)U'(t+T)} = x x 0" 2 exp (-SiT I ) ox x 

R ( T) = E { U I (t) U I (t + T)} = 0" 2 exp ( - S iT I ) oy y y oy y 

Crosscorrelation between UI (t) and UI(t) 
x y 

E{U I (t) U' (t+T) } = 0 x y 
for all T. 

3.1 

3.2 

3.3 

3.4 
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3.2 MIXING EQUATIONS. , 

Neglecting the effect of molecular diffusion dis-

persion of tracer material originating from a point source 

at a rate q(t} is descri bed ' by the following partial 

stochastic differential equation : 

3.5 

\'Je define a two-sided Laplace ' Transform by 

L{C(x,y , t)} = 1:f~C(x,y,t)exp(-sx)exp(-py) dx dy 3.6 

=1I dC ax exp (-sx)exp (-py) dx dy 

Integrating by parts and noting that C (x,y ,to) = 0 @ 

x,¥ = -00, we obtain : 

L{ dC} C( ) dX = s s,p,t 

Taking t~e Laplace Transform of Equation 3 . 5 we obtain 

de 
dt = - U (t}Cs - U (t)Cp + q(t) x y 

Using t he initial condition 

c(x , y,o) = 0 . , c(s,p,o) = 0 

this ordinary stochastic differential equation may be 

solved to give : 

3.7 

3.8 

3.9 

C(s,p,t) = f:q(T) exp-{sWx(t, T) + .PWy(t, T)} dT 3.10 

where, 

ft w (t,T) = U (e') de' x x T 

r
t 3.11 

WV(t,T} = U .. (e ' ) de' 
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Inverting t~e transform of Equation 3.10 gives 

The corresponding solution for a time-statio~ary, 
~andom source is : 

C(x,y,t) = J
t 

OCT) 6{W (t,T)-x}6{W (t,T)-Y} dy x y 

3.3 W(t,T) - PROCESS 

In order to obtain expressions for the 

moments of C(~,y,t) and compare these with values 

determined experimentally we must first derive cor-

responding expressions for the random processes 

Wx(t,t) ~d Wy(t,T). (subscripts x,y are omitted 

where not explicitly required.) 

Usin~ Equations 3.1 an~ 3.11 we may write 

J
t = Jt W(t,T)::; T u(e') de' T U' (e') de' + U(t-T) 

M~an ml(t,T) 

ml(t,y) = E{f
t 

u ' (e') de'} + U(t-T) 
T 

= JtE{U' (e')} de' + U(t-T) 
T 

Hence from Equation 3.2 it follows that 

Variance ai(t,T) : 

Using Equations 3.14 and 3.15 we may write 

a 1 (t, T ) = E { f W ( t , T ) -m, (t, T) 1 ~} = E { r r t u' (e '\ rI A ' 1 2 1 

3.13 

3,15 
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Substituting Equation 3.3 and integrating yields , . 

a~(t'l) = 2a~ (exP{-B(t-T)} + ,B(t-l) - 1) 
S2 

Autocorrelation P(t'llt~2) 

Similarl¥, substituting Equation 3.3 and integra-

ting we obtain 

3.l7 · 

p (t,llit,l2) = E{ [W(t,ll)-ml (t'll») [W(t,l2)-.ml (t,l2»)} 

3.18 

It can be shown that if U(t) has a Gaussian 

distribution densit y f unction, W(t,l) will likewise 

have one. This relationship does not hold generally 

for 'distributions other than Gaussian (12) and the 

analysis relies heavily on the choice of this distri­

bution. Furthermore, since U (t) and U (t) are in depend-x y 

ent the same will be true for ' W (til) and W (t,l). x y 

3.4 MOMENTS EQUATIONS 

3.4.1 MEAN CONCENTRATION ll(x,y" t) 

ll(X,y ,t) = E{ C(x, y ,t)} 3.19 

Substituting from Equation 3.12 yields 

3.20 
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where, 
few ,w ,t,T) = x y 

Joint-· probabi-li ty density of Wx (t, T) 
and W ( t , T) • y 

Noting that 
few ,w ,t,T) = f "(w ,tjT) few ,t,T) 

x y x y 

and integrating Equation 3.20 yields 

~ (x,y ,t) = J: q (1) f (X,t,l) f (y ,t,l) dl 

where, 

f(x,t,T) 

f(y,t,T) 

If it is assumed that 

a = a = a x y i 

R (T) = R (T) = R CL) 
ox oy 0 

Equation 3.22. becomes 

l.I(x,y,t ) 

3.4.2 

and hence 

3.21 

3.22 

3.23 

3.24 

3.25 

The concentration cross correlation between two 

3.26 
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If_ ·-the-tracer source function Q (t) is ti:IDe-:stati:ona;ry ­

- we' may substitute Equation 3~ ~3 : 

0lWy<tl't1>-Yl) O(Wy<t+'t1't2>-Y2} dLl dL 2} 

3.27 

The above equation makes use of the fact that the source 

and the flow process are independent. 

Taking the Expected Values yields : 

3.28 

f~f~O{Wx(tl't1)-X1} o{wx (t+'t 1't 2)-x2} f(wx1,wx2) dWxl dWx2 
-oo-AXI 

J~f~O{Wy(tl't1)-Y1} o{Wy (t+'t 1't 2)-Y2} f(wY.l,wY2>dWy1dwY2d'tid't~ 
-00-00 

where, 

R(I't 2-'t 1 1) = Autocorrelation of tracer source Q(t). 

f(wx1 'wx2 ) = Joint p~obability density function f9r the 

f(Wy1 'Wy2 ) = Joint probability density function for the 

pair of Normal random variables Wy (t,'t1 ) and Wy (t+'t,T 2). 

The above density functions are Normal themselves. (13) 

Writing 

m1 1 = m1x (t , T1 ) x, 
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= p(t,T l ;t+T,T 2 ) 

o °0 Ix,l Ix,2 

i 0ly,1 = aly(t~TI) 

0ly,2 = °ly(t+T,T 2 ) 

3.29 

r
y

(t,T
l

;t+T,T2 ) = 
P(t,T

l i t+T,T 2 ) 

o 0 ly,l ly,2 

and carrying out the integrations with respect to wxl ' 

wx2 ' wyl ' and wy2 we obtain: 

exp{-

exp{-

= 

1 

1 -

1 [(Xl - mlx ,1)2 

r~(t,Tlit+T,T2) oix,l 

2rx (t,T l i t+T,T 2 ) (xl-mlX,I) (x2-mIx ,2) + (x2 

°lx,l °lx,2 

I -

I [(Yl - mly ,1)2 

r~(t'Tl;t+T'T2 ) O~y,1 

- m ) 2] 
2 IX,2 } 

°lx,2 

2r (t,Tl;t+T ,T2 ) (Yl-ml 1) (Y2-ml 2) (Y2 - ml 2) 2] 
Y Y , Y , + -.;;....----"' .... y ..... '- } d T d T 

o 0 1 2 ~2 1 2 ly,l y, vl 2 y, 

3.30 

If both the tracer source function O(t) and the velocity 

process are time-stationary the concentration 
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crosscorrelation must likewise '- be time""'stationary. lin 

order to eliminate t from the - above expression we 

make the following transformation of variables 

t - 'Il = 'I - 81 

t + 'I 'I 2 = 'I - 82 

3.31 

It is interesting to note that the mean and variance 

of the random processes W(t,'I l ) and W(t+ 'I ,l2) depend 

on l y on the size of the time interval on which they 

a r e defined. Hence we may write : 

mlx ('I,8 2 ) = mlx (t+'I,'I 2 ) 

aix('I,8 l ) = aix(t,'I l ) 

aix ('I ,8 2 ) = aix (t+'I ,'I 2 ) 

mly ('I,8 l ) = mly(t,'I l ) 

mly ('I,8 2 ) = mly (t+'I,'I 2 ) 

aiy ('I,8 l ) = aiy(t,'I l ) 

aiy ('I,8 2 ) = aiy (t+'I,'I 2 ) 

The covariance r(t,'Ilit+'I,'I2) however, depends 

not only on the size of the time intervals (t-'I l ) 

and (t+'I-'I 2), but more importantly on the amount 

of overlap of these intervals. Hence, since the 

amount of overlap is not preserved by the transfor­

mation of variables (Equation 3 . 31), 

3.32 

This may best be illustrated by considering the case 

when 81 = 82 , The time intervals for W('I,8 l ) and W('I,8
2

) 

are then identical resulting in a covariance of one. 

This situation is clearly impossible for W(t,T
l

) 

and W(t+'I,'I 2 ) for any positive value of 'I . Expressions 

for the covariance between W(t,T l ) and W(t+'I,T
2

) 

must therefore be derived before the new variables 

8,,8 ... , may be subs t. irllr",n 
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Noting that at all times 

= E{ W(t,T l )W(t+T,T 2 )} -

ml (t,Tl)ml (t+T,T 2 ) 

T > 0 

we distinguish three cases 

case A t + T >t > ~2 ~ Tl 

case B t + T >t > Tl ~ T2 

case C t + T >T2~ t > Tl 

From Equations 3.11 and 3.3 it follows that: 

p(t,T
l

;t+T,T 2) 

I
t+TI t 

= o~ exp{-s(le'-e" I) de' de" 
T2 Tl 

P~rforming the integration for each case separately 

(Appendix 4) yields 

case A 

case B 

case C 

O~(-exp{-ST}+ exp{-S(t+T-Tl )} + 2S(t-T 2) 
/3 2 

0

2 

[ /3~ -exp{-ST} + exp{-S(t+T-T l )} + 2S(t-T
l

) 

+ exp{-/3(t-T 2 )} - eXP{-S(T
1

-T
2

)}) 

02[ 
~ -exp{-S T} + exp{-S(t+T-T1 )} + exp{-S(T

2
-t)} 

3.33 

- eXP{-/3(T 2-T l )}) 
3.34 

substituting the new variables (Equations 3 . 31) in 

the above expressions yields : 
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case A 0 > 8 2 
~ 8

1 
- L 

(12 

f( -exp{ -~'rl + exp{-~(2L-81)} - 2~82 

- exp{-~(L-81+82} + exp{~82}) 

case B 

(12 ( 
B~ -exp{-~L} + exp{-~(2L-81}}- 2~(L-81} 

- exp{-~(81-82-L}}+ eXp{~82}) 

case C 

(12 

~~(-exp{-~L} + exp{-~(2L-81)} - exp{-~(L-81+82}} 

+ eXp{-~82}}) 3.35 

Transforming the limits of integration we note that 

when Tl = _00 8
1 = _00 

T2 = -00 , 8 2 = -00 

3.36 
Ll = t , 8

1 = L 

"( 2 = t+L, 8 2 = T 

and Equation 3.30 becomes 

~(xl'Yl,x2'Y2:L) = fLIT RQ(IL-8 1+8
2 1) 

--00-.00 

where, 

f{~l,x2'L,81;L,82) f(Yl'Y2,T,8 1 ;L,8 2 ) d8 1 d8 2 

3.37 

f(x l ,x2 ,T,8 l ;L,8 2 ) and f(Y
l

,Y
2

,L,8
1

;L,8
2

) are 

jOint Normal density functions of {W (L,8
1

),W (L,8 )} x x 2 

and{Wy(L,81),Wy(L,82)}respectively,with 

Wx (T,8 1 ) = xl' wx (L,8 2 ) = x 2 ' Wy (L,8 1 ) = Yl and 

Wy (L,8 2 ) = Y2· The appropriate correlation coefficients 
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Thus the transformation (Equations 3 . 31) has elimi-

nated the time,t, from the expression for the cross-

correlation function. 

3.5 THE EFFECT OF MOLECULAR- DIFFUSION 

When the effect ~ of " "molecular diffusion is 

included the following stochastic partial differential 

equation describes the dispersion of tracer material : 

ac at= 

where, 
D = Coefficient of Molecular Diffusion. 

The method of obtaining expressions for the mean 

c9ncentration and cross correlation is exactly analo­

gous to that used for the continuous model without 

mQlecula r diffusion; the details have been incluQed 

in Appendix 5. The main results are : 

Concentration at the point (x,y) and time t 

C(x,y,t) = q(T) 
f

t 

41TD{t-T) 
o 

exp x Y T 
[
-{X-W (t,T) }2 - {y-W (t,T)}2]d 

4D(t-T) 

Mean concentration at the point (x,y) and time t 

3.38 

3.39 
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exp [-1 [ 
2D (t-T) O~x . 

If it is assumed that 

ex = ey = e 0 2 = 0 2 = 0
2 

OX oy 0 
and hence 

0 2 = 0 2 = 0 2 
1x 1y 1 

the above equation reduces to 

ll(x,y,t) 

( {olx + D(t-T)2m1x}2 + {oiy + D(t-T)2m1y}2 ] 

+ ,oi (x' + y ' ) +. D (t-T) (mix + miy) lJ dT 

Crosscorre1ation : 

Malting the same assumptions as in Equation 3.41 and 

wri-ting : 
0 2 

1x,1 

and 

= 0
2 = 0

2 
1y,1 1,1 

r = 
P(T, 8

1 i T,8
2

) 

= 0
2 
1y,2 = 0~,2 

(see Equations 3.29,3.32) 

the expression for the crosscorre1ation may be 

shown to have the followi ng form : 

3.40 

3.41 

3.42 

3.43 



[Yi Y~ m2 
lYL1 exp- - + - + 81 ell el 2 

( Yl 
m 

{-.-.. + 1YL1}2 + 
ell 81 

where, 

ell = 4D (1"-8
1

) 

81 = (1-r2)o2 
1,1 

Y = 0 1 ,1 0 1 ,2 

2 
ml~~::r 2 

82 

r 2m2 
lYL2 

(1-r 2)\2 

el 2 

; 82 

2rm x m J] _ l~, 2 f.-4 lx, I} 

(l-r )y ell 8 1 

rmlx,l 

(1-r2) y 

m 
+ 1x,2 

82 

2rm m 
. ly,l 1y,2 _{.L+~}-1 

(Xl 81 (1-r 2)y 

2rm1 . 2 Y1 m~~,l}l ] YL {_ + 
(1-r 2)y ell 

= 4D(1"-8
2

) 

= (1-r2)o2 
1,2 

3.44 

3.45 



CHAPTER IV 

EXPERIMENTAL 

· 4~1 GENERAL 

The experiments were · carried out in a narrow·, Perspek ., 

tan~,six inches wide · ·and four feet long ·, which was provided 

with an inlet duct (4 inches x 6 inches) at one · end. A 

double· weir arrangement at the other end permitted conti- · 

nuous withdrawal from the surface and bottom of the tank. 

(see photograph on page 34 ) 

A constant~head tank ensured a steady inlet flow· 

rate which was measured with a rotameter and controlled 
, 

with a one - inch· globe valve. T~e water level· in the 
'" 

tank and the outlet flows · were controlled by the heights of 

the two weirs. 

4.2- TRACER .INJECTION 

Tracer material cons:isting of a water soluble dye 

solution was· injected at · a point through a \-inch· diame-

ter copper tube· and its concentration at two points fur-

ther downstream was· continuously monitored. In order to 

ensure isokinetic injection, the tracer flow rate was 

measured and the pressure drop across the injection line 

was kept co~stant by meap~ of . a small constant head tank '· 

with overflow circulation. (See Figure 4 . 1 on page 36 ). 

The on-off · type· of the tracer f ·low w~s controlled by means 

of a shift register circuit (photograph on page 63 ) ope:­

rating an 80V DC solenoid · valve in the injection line • . 

This circuit was· capaple of generating precisely and automa­

:ically the required pattern of tracer injection . 

• 3 TRACER DETECTION AND RECORDING 

0.2% solut~on: of awatersoluble, green . dye was used as 

7acer material; it was an iron complex of I-notroso-2-
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naphthol-6-sodium-sulphonate-- and -strongly absorbed light 

emi tted from an -in.candescent globe ; _. By means of a 

system of lenses and attenuators a narrow beam (~ inch) of 

parallel light was focussed across the width of the tank. 

On the opposite side a photoele.ctric cell mounted at the 

far end of a tube, was positioned such that only the light 

of tpe parallel beam reached its photosensitive surface . 

Two probes were constructed in this way; probe and light 

source supports were constructed in such a way that the 

concentration at any point in the tank could be monitored. 

The photograph on page 38 shows the two probes mounted in 

position. The output of the photo~cells was suitably off-

set, amplified, and frequency modulated before being recor-

ded on magnetic tape. (See Figure 4.2 on page 40) The 

taperecorders were capable of operating at four different 

tape speeds and of recording two signals simultaneously. 

Speed variations of the tape recorders during re­

cording and playback would destroy the required synchro­

nism as well as the accuracy of the time base of the two 

signaL~" For this r ason a special timing pulse genera-

tor was used to record markers on the second track of 

each tape for the duration of. the run. Each marker con­

sisted of a short burst of a 10 Kc/second signal and for 

all runs a frequency of 5 markers per second was used. 

In this way the frequency modulated concentration signal at 

each moni toring station was recorded and simultaneou~ly sub­

divided into 0.2 second intervals. Thus, even tpough 

speed variations between the two tape recorders may occur, 
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tim~ during the run . Hence the t ot al s i gnal count between 

e.g. the 50th and 51st marker for each t ape is a measure 

of the average concentration 'which occur ed a t the corres­

ponding monitoring station in the interval between 9.8 

seconds and 10 eO seconds measured from the start of the run . 

On playback both the time marker track and signal 

track were monitored. The counting equipment consisted 

of two scalers and an output controller . (See Figure 

4 . 2 on page 40 ). The arrival of the first timing marker 

causes scaler 1 to start counting the s i gnal track. With 

the arr ival of the second timing marker the input to 

scaler 1 is blocked and scaler 2, previously re-set to 

ze~o, takes over the counting of the signa l track . Du-

r+ng this second interval the count of scaler 1 is read 

by the pr inter controller,which in turn feeds it to an 

l.B.M. punching machine; scaler 1 is then re-set to 

zero. During the next time interval t he roles of the 

two scalers are reversed and the count of scaler 2 is read, 

punched and re-set to zero, whilst scal er 1 is cotnting 

tne signal track. In this way it was possible to obtain 

an accurate, digitalised concentration versus time record, 

punched on computer cards. Details of the equipment used 

for both recording and playback are given in Appendix 8. 

The operation of the counting equipment was slow 

and in order to obtain maximum time reso l ut i on, the si-

gnals wer~ recorded at the fastest tape speed ( 8~ inches 

pe~ second) an~ played back at the ' slowest speed (15 
16 

inches per second). 
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4 .. 4 CALIBRATION OF TRACER DETECI.t'ORS 

From BEER - LAMBERTS law of 1~9ht absorption it 

follows that the output signal due to the presence of , 

tracer depends only on the total amount of tracer in 

the light beam and not on the tracer concentration profile 

along the beam. Probes could, therefore, be calibrated 

in situ by adding known amounts of concentrated tracer to 

a f~xed volume of water and making sure that the tracer 

WAS- evenly distributed before recording the probe outputs~ 
, 

By isolating the system from the fresh water supply and' 

recirculating through a mixing vessel and pump the tracer 

was quickly and effectively dispersed ~ (See Figure 4.1 

on page 36 ) 0 Figure 4.3 shows a calibration curve 

obtained in this way . 

4.5 HOT ' FILM ANEMOMETER 

In order to obtain an independent estimate of tne 

model parameters derived from tracer experiments, the 

water velocity at a point was measured directly with aHot-Film 

probe. ' It was a standard cylindrical film anemometer 

probe (Flow Corporation type B-l~) and consisted of a 

small Pyrex glass rod coated with a thin strip of , plati­

num making electrical contact with needle-supports at each 

end of the rod. The photograph on page 42 shows details 

of the sensor together with a millimetre scale. It " Was 

operated in the Constant Temperature Mode so that the 

output was a measure of the current required to keep the 

resistance and hence the temperature of the probe cons~ 

tant. The essential features of the circuit are shown 

~n Figure Aol in Appendix 8e 
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4.5.1 RECORDING AND PLAYBACK 

The output from the hot film probe circuit was 

suitably offset, amplified and frequency modulated before 

being recorded on a magnetic drum . 

The recording drum was 10 inches long and had a 

diameter of 7 inches. It was coated with magnetic 

oxide and hence its surface was capable of storing di­

gitalised information. Recording heads similar to those 

used in conventional magnetic tape recorders were arranged 

in groups of eight around the drum with a very small clea-

ranee from its surface. Each group of recording heads 

was capable of recording and reading from its associated 

track an eight binary-number. This corresponded to a 

resolution of 1 in 256. Each track could accommodate 

1024 numbers (bits) and a total of 32 tracks were avail­

able. 

The input signal is digitalised by means of a 

9.5 MHz crystal clock signal to be counted for a period 

proportional to the incoming voltage . Thus the maximum 

~llowable input voltage (3 volts) corresponded to a count 

of 256 0 The ,state o f t he binary counters is then written 

onto the drum by the appropriate group of recording heads 

in the correct position of the track . The binaries 

are reset before the cycle is repeated. The minimum 

cycle time was lOO~ seconds. A "bit select" feature 

allowed one to pinpoint a particular bit on the drum. 

On playback the number in the appropriate bit is read and 

transferred to an output register from which it is fed 

to an I.B.M~ punch machine . 
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4.5.2 CALIBRATION 

The conventional way of calibrating Anemometer 

probes is ~o experimentally obtain the Anemometer output 

for one known velocity and use -- these- values to evaluate 

C
A 

in the equation : 

c~ = [~; - 1]' 
where: CA - constant 

~ - Anemometer qutput at zero fluid velocity 

I - Anemomet er Output 

This method was- however found to be wholly inaccurate for 

the velocity range of interest and the probe was calibra-

ted directly- from 0 to 0.3 feet - per second . For this 

purpose a trolley running along two parallel rails above 

a long and narrow- calibration tank was constructed . The 

tank was filled with water and the probe stem was attached 

to the trolley such that the probe itself was about six 

inches below the surface. The- trolley, f i tted with 

roller bearing -wheels, was then pulled along the rails 

with a piece -of string at a constant speed and the time 

ta~en for the probe to travel 17 inches through -the wa-

ter was measured with a stopwatch whilst the probe out-

put was recorded. The speed was var i ed by attaching 

the string to take-up pulleys of various sizes; these 

pulleys were fixed on a shaft which was driven by an 

electric motor through a wormgear and sprockets and chain 

type reduction. A photograph of thi s calibrati on equip-

ment is shown on page 46 , whilst the cal i bration curve is 

found on page 47 . 
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The anemometer output at zero fluid velocity 

was checked before and after the 'run and the equipment was 

calibrated immediately afterwards , in order to reduce the 

chance of instrument drift. 
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CHAPTER V 

TESTING OF CONTINUOUS STATE SPACE FLOW MODEL 

5~1 GENERAL 

The usual procedune adopted when testing a theo­

retical model of a physical phenomenon is to obtain 

experimental data of the phenomenon itself or of one 

closely related to it in order to: 

Firstly, assess the extent to which the model is 

capable of describing the data and 

Second ly, interpret the physical significance, if any, 

of the model parameters. 

If the phenomenon has a random character, the 

model parameters describing it must of necessity be sta­

tistical in nature. Hence the experimental procedure 

must be such that adequate estimates of statistical 

quantities are obtained. Such exper i ments are usually 

not only time-consuming but also costly, as automatic 

recording and data processing equipment is essential. 

In order to limit the experimental effort of this 

investigation" it was decided to explore only a small 

region of the tank with a fixed point of tracer injection 

and constant water flow rate . 

5.1.1 POSITION OF PROBES 

From the basic assumptionsof the flow model it is 

clear that the model cannot hold near the free surface or 

in the region of the weirs at the far end of the tank. 

Consequently probe positions were chosen such that these 

regions, as well as stagnant pockets, were avoided. It 
. ..... ~ •• \... _ __ .L. _ ~ .! 
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necessarily as severe in other ·physical situations where 

the flow model may be applied (for example: dispersion 

in the atmosphere.) 

5.1.2 : ' THROUGHPUT AND WITHDRAWAL FLOW RATES 

In order to minimise the number of stagnant regions 

the two outlet weirs were adjusted so that the amounts 

withdrawn from the surface and bottom of the tank were 

equal. It was anticipated that the flow model would 

lend itself to an extension whereby a particle sedimen­

tation process is superimposed on the flow pattern and for 

this reason a suitable throughput of fifty litres per 

minute was used. 

5.2 

5~2~1 

EXPERIMENTAL ' DESIGN CONSIDERATIONS 

, INTRODUCTION 

Two statistical quantities were estimated expe­

rimental ly 

Firstly, the mean response to a rectangular input 

pulse of known width at pairs of points, situated down­

stream from the point of injection; this time-dependent 

response could be compared directly with predictions of 

the con i nuous state model (Chapter III) through equations 

3.25 and 3.41. 

Secondly, the concentration crosscorrelation between 

pairs of points for a time stationary tracer source func. 

tion Q(t); the corresponding model predictions are given 

by Equations 3.37 and 3.44. 
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5.2.2. THE MEAN RESPONSE EXPERIMENT 

A number of parameters controlling this experiment 

must be chosen such that adequate estimates of the mean 

response curves may be made . They are pulse width, pulse 

frequency, run length and sampling interval. 

5.2.2.1 WIDTH OF INPUT PULSE 

The importance of tailoring the exciting tracer 

Signal in flow characterisation work has been realised for 

a considerable time (14, 15). The essential feature of 

this concept is that the frequency content of the signal 

exciting the system should adequately span the frequency 

response curve of the system itself . Figure 5 . 1 (page 51 ) 

illustrates how bandwidth and power of the rectangUlar 

pulse vary as a function of pulse width . It is interesting 

to note that for a given pulse amplitude the bandwidth can 

only be extended at the expense of power . The pulse width is 

chosen" such that the Power Spectral Density is concentra-

ted over the frequency range of interest . 

In t he present i nvestigation the system is sto­

chastic in nature and its filtering action will vary ran-

domly. A useful measur e of the average filtering action-

may be obtained by computing a Bode plot from the Mean 

Response curves. (16) 

where, 

H (w) = G (w ) 
o 

G , (w ) 
1. 

H(w) - Bode plot amplitude 

G, (w) - Frequency Content of normalised first 
1. pulse 
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Frequency Content of nor malised second 
pulse 

G'w) and G (w) were calculated using t h e trapezoidal rule 
J: 0 

of numerical integration on the Fourier Transform of the 

Mean Response curves. (16) 

From the Bode plot (Figure 5 . 2) it can be seen that 

frequencies higher than about 1.5 radians per second are 

completely filtered out by the system and that the fre­

quency range of interest lies between 0.2 and 1.5 radlans 

per s econd. 

A second method of obtaining a suitable input pulse 

width is to examine the Power Spectral Density of the 

veloqity f~uctuations them$elves. This function may be 

cal~ulated from the following e~pression : (17) 

20 2 8 PSD
U

' (w) = __ 0 __ 

where, 

82 + w2 

0
2 

- variance of velocity fluctuations. 
° 

8 - flow model parameter 

w - frequency in radians ' per second 

Figure 5.3 shows the ' normalised Power Spectral 

Density p l otted versus frequency; the value for 8 was 

5.1 

obtained f r om the Hot Film measurements (See Chapter VI). 

It can be seen that the frequency at which the normalised 

PSD has dropped to a value of 0.6 is about 0.4 radians per 

second. 

It is interesting to note the effect . of frequen-

cy of velocity fluctuations at constant 0 2 on the dispersive 

° power of the system. If we focus our attention on a 

particular fluid particle and note its velocity at two 

instants of time separated by an interval T , the 
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correlation between the two values of velocity, when 

averaged over a large nwnber of fluid particles, R ( T ) , 

will -be higher when the particle's velocity changes slowly 

than when it undergoes fast fluctuations in velocity. 

The influence of this effect on dispersion may best be 

illustrated by considering the case of fully developed 

turbulerit flow. The dispersive power of the system 

may then be characterised by an Eddy Diffusion Coeffi-

cient E: (7) 

E = ~~~ Joo~( T ) dT . 

° 
5.2 

and the response to a Dirac becomes 

5.3 

From the above it may be seen that if fluid part1- . 

cles undergo slow changes in velocity - i.e. the pre-

sence of eddies which persist for a considerable period 

of time - the ~ ( T) versus curve will drop off less 

sharply and hence the value of E and X2 will increase . 

In the present model a low- value for parameter S 

gives rise to a slow decay of the R( T) versus T curve. 

(See Equations 3.3). 

The variance of the response to a Dirac in this case 

is given by : 

ai (t) 

(See Equation 3.17) 

2a 2 

= _0 {exp (-St) - 1 + St} 
S2 

5.4 

An examination of Equation 5.4 shows that the value 

of this variance· (at) increases with a decrease in S .. 

In· general, the presence of eddies which persist 

for a considerable period of time have a dominant effect 

on the dispersive power of the system. This must be 

borne in mind, when deciding on a suitable input signal 
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on the basis of a power spec'truro-- of 'velocity fl.uc­

tuations . 

A pulse width of 1.6 seconds was used through-

out. 

5.2.2.2 PULSE FREQUENCY 

It is well known that- the estimate of a statis­

tical quantity of a stochastic process is improved when 

the number of realisations is increased. A high pulse 

frequency is therefore desirable. On the other hand 

in order to compute a mean pulse from such an ensemble 

it is important that each realisation can be uniquely 

identi . . ed. Hence the pulse frequency must be low 

enough to prevent merging of individual pulses as they 

travel through the system. 

Intervals of 9.6, 12 . 8 and 14.4 seconds between 

successive input pulses were used. A typical set of 

successive realisations is shown ' in Figures 5 . 4. 

5.2.2.3 RUN LENGTH 

In order to obtain an accurate estimate of the 

Mean Response curve, the duration of the run must be 

long enough to ' incorporate the effect of all possible 

realisations of the underlying velocity process. 

A practical way of ensuring that even the least 

frequen t realisations have been adequately included 

is to compute the mean response for a number of run 

lengths and ' to note the ti~e at which the shape of the 

curve no longer changes significantly . Mean respons~ 

curves were computed for a n umber of run lengths and are 

plotted in Figure 5 . 5 . It can be seen th~t the shqrtest 

allowable run length is about twenty minutes. 
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MEAN RESPONSE CURVES 
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5.2.2 . 4 S}\MPLING INTE'RVAL 

A sampling interval of 0 : 2 seconds was, used 

throl,lghout; from the Bod~ pl.6t - -(Figure 5.2) it can be 

seen to -be sufficiently sm'all f0r the fre-quency range 

of ~nterest. Experimentally it was the smallest inter-

val available and was chosen' in order to obtain maximum 

resolution of the experimenta1 curves. 

5.2.2 .5 COMPUTAT~DN - OF MEAN RESPONSE CURVE 

The ~ean Response Curve at each monitoring station 

wa s calculated by averaging over the ensemble of rea-

lisations. 

Mean concentration values ~ex(T) were , computed for 

values of T ranging from zero to P at 0 . 2 seconds inter-

valse 

P = period of input pulse train. 

N = total nUmber of pulses. 

THE CROSSCORRELATIO&, EXPERlMENT 

In order to obtain experimental estimates of the 

crosscor r elation between ' the tr-acer concentration at 

t~o points in a time-stationary concentration space a 

suitabl e tracer source function OCt) must be used. 

The following requirements must be satisfied: 

Fi rstly, it must be a time-stationary function 

and hence have a constant mean and mean square. 

Secondly, its power spectral density must be 

suitably tailored to the frequency response of the' 

system. 

Thirdly, it must have a known autocorrelation, 
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so that the theore tical expression for t he CXQ"sscorrela-

tion may be computed and compared with experimental 

estimates. 

Fourthly, the function must be conveniently 

realisable experimentally. 

A Pseudo-Random Binary Test Signal was used for 

Q(t), as it admirably conformed to the above requirement s. 

5.2.3.1 PSEUDO-RANDOM BINARY TEST SIGNAL (18) 

It is a two-valued periodic function having ins-

tantaneous amplitude changes only at discrete instants 

of time separated by a constant interval, the switching 

time d. A switch ne~d not necessarily take place at 

every allowable instant and the switching times are gene-

rated in such a way as to give the signal several useful 

properties. If the two allowable amplitudes are zero and 

q, the mean and mean square taken over any integral nwuber 

of per l.' ods will be '2q and ~q2 t' 1 d . d ~ ~ respec 1ve y an are 1n e-

pendent of the choice of the first interval. Furthermore, 

the autocorrelation function RQ ( T) has the same period 

T and is p defined as follows: 

N +ll.!.l 
RQ(T) = lq2{1 - --E-. T } -d , T , d N d 

P 5.6 

2 
RQ(T) = -.!g d < ITI< (N -1) d N p P 

where, 
T 

= ....E. = 
d Number of intervals in P.R . B. S. 
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Th~ Power ~pectral DenSity 'fuilct'ion of a time­

$tationary', . random signal -may -be obtained from its 

autocorrelation as follows (15) 

PSDa (Wi) 

where, 

= 

= 2 J
oo

Ra(1) COS (wi 1) d1 
o 

21T i 
N d 

P 

(N + 1) 
p 

N 
P 

i = 1,2,3, •••• 

as N t ends to infinity, 

Figure 5.6 shows a nUmber of Power Spectral 

Density functions for various values of d. The simi-

larity between this plot and that of Figure5.l is ob-

vious and a decision time' of 1.6 ' seconds was usec;i for 

reasons discussed in section 5.2.1.1 

5.2.3.2 GENERATION OF PSEUDO-RANDOM BINARY SIGNALS 

The generation of P.R.B. signals based on the 

properties of digital filters, is discussed by Briggs 

et al. (18). A bit shift register circuit is ideally 

5.7 

suited to accurately and automatically operate a solenoid 

valve in the tracer injection line according to a P.R.B. 

pattern . A photograph of the P.R.B. generator is shown 

on page 63. Figure 5 . 7 shows the relevant logic circuit . 

Each register of the circuit may be thought of 

to contain either 1 or O. They are connected in series 
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and during a shift bf the circUIt the 'Contents of each 

register is passed onto ' the next one. Furthermore, 

Modulo-2 addition between registe'Xs is performed by 

adding circuits, connected ' 1~ such a way 'that the desired 

P.R.B. signal is generated. Shlfting occurs instanta-

neously and d is controlled-by ' the period of an externally 

~pplied shift pulse. The sequence is started by ehsu-

ring that all registers contain 1 and that a 0 is inser-

ted into the first register with the first shift pulse. 

The choice of a particular P.R.B.S. was not impor~ 

tant and the same sequence was used for al~ runs. It 

had a ' period of 63 d seconds and was generated by the 

circuit shown on page 64 • 

S .,2 .. 3 • '3 ' NUMBER~ OF PERIODS AND SAMPLING .INTERVAL 

The run length and hence the number qf periods 

used in the crosscorrelation experiment was made as long 

as was experimentally feasible. Similarly the shortest 

available' sampling interval (0.2 seoond) was used. 

Experimental details for all runs are tabulated on 

page 6a. 
5.2.3.4 COMPUTATION OF EXPERIMENTAL CROSSCORRE~TIONS 

A typical concentration versus time curve togethe~ 

with the P.R.B.S. is shown on page 66 • 

Experimental cross correlations were calculated 

according to: 

n 
~ ( -r) = ~ Cl (ti

)C
2 

(ti+T ) - c c 5.9 
ex i=l ex,l ex,2 
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where, 

n 

c ex,l 

c ex,2 

t.t 
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= tracer concentration at point 

and time t = it.t. 

= tracer concentration at point 

x2 'Y2 

and time t = it.t 

= number of readings , correlated. 

= mean tracer concentration at 

point x1'Yl 

over time interva~ from 

t = 0 to t = nt.t 

= mean tracer concentration at 

point x2 'Y2 
over time interval from 

t = T to t = nt.t + T 

sampling interval 

Experimental crosscorrelations were computed for 

two ranges of the lag T, since the model predicted a 

distinct difference for the two cases. The first ra:pge 

extended from T = 0 to T = 20 secondsi ' the second 

range extended from T ~ Tp to T= Tp + 20.secs. 



Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

MEAN RESPONSE 

No. of observations 8169 9759 9655 7971 £590 7692 10059 7926 10099 10484 

No. of pulses 170 203 150 124 134 106 139 123 157 163 
Duration of run 
minutes: seconds 27: 10 32~28.8 32:00 24:47.2 28:35.2 25 : 26.4 33:11.6 26:14 . 4 33:29 . 6 34:46 . 4 

CROSSCORRELATION 

No . of observations 9820 9852 10332 8145 8108 
P.R.B. Signal 
No . of decisions 63 63 63 63 63 0'1 
Dec. interval (sec) 1.6 1.6 1.6 1.6 1.6 ex> 

No. of Periods 
correlated 18 17 19 14 15;14 

Duration of run 
minutes: seconds 32: 44.4 32:50.4 34:26 . 4 27 ~ 9 . 0 2 7~ 1 . 6 

COORDINATES {FT) 
1st/upper station 

Xl O.'S 0.6667 0.6667 0.8333 0.25 0.25 0.25 0.25 0.25 0.25 

Y1 0.1667 0.1667 0.1667 0.1667 0.0 0.0 0.0 0.0442 ... 0.0442 0 . 0917 

2nd/lower station 
x 2 0.5 0.6667 0.6667 0.8333 0.6667 0.9.167 1.25 0.6667 0.6667 0.6667 

Y2 -0.1667 -0.1667 -0.1667 -0.1667 0.0 0.0 0.0 0.1175 -0.1175 0.24 17 
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5.2.3.5 EVALUATION OF THEORE'l"'ICAL CROS'SCORRELATION 

In order to allo\¥' for" resist~nce and capacitance 

effects in the tracer injection line the square pulses 

of the Pseudo Random Binary -ipput signal are assumed to 

hav~ passed through a first order filter with time 

cqnstant Tc before entering the tank. The Autocorre-

lation of the tracer input function may then be shown 

to have the following form: (19) 

N +1 T cosh{d/Tc -I} 
RQf( t) = ~ ~ N' d/T exp{-T/Tc}-

p l-exp{- p c} 
1 
N - J 

J? 

where 
d 

N 
P 

T 
c 

= 

= 

= 

decision time for P.R.B.S. 

number of decisions in P.R.B.S. 

time constant of first order filter 

J = 0, ITI > d 
N +1 

J = ~ si~,~d-T/Tc} - (l-T/d) , ITI< d 
p c 

5.~o 

The model predictions of the cross correlation were 

obtained by performing the double integ~ation of Equation 

3.44 numerically. The region of integration extending 

from minus infin~ty to T for both variables of integration 

81 and 82 was divided up into a matrix of equal rectangl~Sr 

The contribution of each rectangle was evaluated using 

Simpson's Rule. This proce~ure was carried out column 

by column, starting with the rectangle containing the 

upper limits T,T. Integration in the vertical direction 

was stopped when the contribution of a rectangle was less 

than one per cent of the total of its column computed so fa r. 

(Fig 5.9) Similarly, the contributiop of the last col~ was 

less than one per cent of the total integral. The size 

of the rectangle was chosen such that the value of the 
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integral did not change significantly when a smaller 

rectangle was used. 

The computation was carried out on an I.B.M. 

1130 machine and proved to be very time consuming. 

The model predicts a considerable diff~rence 

in amplitude for the two ranges o! the lag (See Section 

5.2.3.4 and Figure 6.12). This is due to the fact 

that for small lags the covariance between W(t,t l ) 

(Equation 3.35) is large in the 

same region of the 91-,9 2 

probability mass is found. 

plane, where most of the 

This is shown in Figure 

5. 9 for lag t = 4.0 seconds. 

Figure 5.10 illustrates that for large lags 

t = T + 4 seconds) the crosscorrelation region in the 
p 

9
1
-, 9

2 
- plane containing most of the probability 

m~ss maintains the same position relative to the pOint 

(t ,t) as in Figure 5.9. The covariance r (t ,9 l i t ,9 2 ) 

however, is very small in this region giving rise to 

weaker crosscorrelations. 

5.3 

5.3.1 

HOT FILM ANEMO~TER MEASUREMENTS 

GENERAL 

I n order to establish a physical significance 

for the flow model parameters and at the same time 

obtain an independent estimate of their values, the 

water ve l ocity was measured directly by means of a 

Hot Film Anemometer. 

From preliminary calibration experiments (See 

Section 4.5.2) it was fqund that throughout the velo­

city range of interest the Hot Film Anemometer had no 
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directional sensitivity for the two directions at right 

angles to the axis of the probe. Furthermore by rota-

ting the probe from a position at right angles to the 

direct~on of flow to a position where the axis of the 

probe was parallel to the directipn of flow the res p 

ponse varied by only 20% . It was therefore decided 

to place the probe such that its axis was at right 

angle s to both the X-and-Y directions. Its response 

was then interpreted as the vector sum of the instanta­

neous velocity components U (t) and U (t) x y 

v (t) = {U 2 (t) + U 2 (t) } ~ x y 5.11 

The probe was situated at the same depth as the 

tip of the tracer injection line and 5 inches further 

downstream at the centre of the tank. (Figure 6 .l) • 

~he Anemometer signal was sampled every 0.167 seconds for 

~ total period of some 55 minutes. 

namely 

Two statistical quantities of V(t) were computed, 

f(v) = distribution density function of V(t) 

R 2 (T) 
V 

= autocorrelation of V2 (t) 

It is clearly impossible to obtain estimates for 

the flow parameters of the individual components from 

a knowledge of the statistics of V(t). 

Making the assumptions 

0
2 = 0 2 = 0 2 

; S = S = S ; R = R = R (T) ox oyo x y ox oy 0 

the -two parameters 0
2 and S may be determined as 
o 

shown in t~e following two sections. 
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5.3.2 DISTRIBUTION DENSITY FU~:T ION 

It can be shown (20) that, if U (t ) and U (t) x y 

are independent and normal, then V(t) will have a 

Rayleigh distribution density function of the following 

form : 

f(v ) = 

whe re , 

I (z) = Modified Bessel Function of zero order o 

00 

= L z2i 
i=o 22i(i!)2 

5.3.3 AUTOCORRELATION OF V2 (t) 

The autocorrelation is defined as 

Substituting Equations 5. 11 and 3.1 in Equation 5.13 

yields : 

R 2 (T) = v 
E{ [h(t)+ux]' + [u~(t)+uil 

[ [u~ (t+T) +ux]' + [u~(t+T)+uil } 

Remembering that U' (t) and U' (t) are assumed to be x y 

independent Equation 5 . 14 may be written as : 

_2 2 

+ 4u E{U' (t)U' (t+T) }+4u E{U' (t)U' (t+T)} x x x y y 

2 2 '+ '+ 
+ 2u E{U· 2 (t)} + 2u E{U· 2 (t}} +u + u x x y y x y 

5.12 

5.13 

5.14 
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Since U' (t) is a time-stationary random process with 
x 

zero mean and Normal probability density function we 

may write 

E{U,2 (t)U' 2 (t+T)} 
x x = IT 

-00 

u~lu~2f{uxlux2' (T,cr~,e)}duxldux2 

5.16 

whe·re, 
f{uxl,ux2,(T,cr~,e)} = joint Normal distribution 

density function for U~(t) and U~(t+T). 

The integrated result of Equation 5.16 may be conve­

niently obtained by making use of a property of the 

characteristic function K(;1';2,T) : (21) 

K(t l ';2,T) = f~f~f{UX1'UX2/(T,cr~,8)} exp(i;luxl ) 
--<X>--a) 

Expressions for the moments are obtained by differen­

tiating the Characteristic Function an appropriate 

number of times and then equating ;1 and ;2 to zero. 

Hence : 

E{U~2(t)U~2(t+T)} = :~2 (:;2{K(~1'~2'T)}) 
2 1 

Carrying out the differentiation in Equation 5.18 

and equating ~l and ~2 to zero yields : 

Similarly, 

5.17 

5.18 

5 . 19 
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5.19 

Substituting Equations 3.3, 5.19 in Equation 5.15 

and combining terms not containing T yields 

2 2 
= 4R2 (T) + 4R (T) (ll + u ) 

o 9 x Y 

+ (E{U~(t)} + E{U~(t)}J 
2 

2 2 
= 4R 2 (T) + 4R (T) (ll + U ) 

o 0 x y 

5.20 
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COMPUTATION OF EXPERIMENTAL DISTRIBUTION 

DENSITY f(v) AND" AUTOCORRELATION RV2(1") 

CURVES. 

E~perimental readings from the recording drum 

were converted to velocities using the calibration curve 

shown in Figure 4.4. Thus a .digitalised record (interval 

6t) of vet) was obtained. 

A frequency histogram of velocities was then 

constructed and the distribution density of Vet) was 

cal culated from the following equation 

vi+V'+l f{ ~} = 
2 

F i + F i+l 

(See Figure 6.22) 

Where, 

= Frequency of oecurrence of Velocity vi 

= Total number of velocity readings. 

The autocorrelation of V2 (t) was computed as follows: 

1 Rv 2 (1") =-N 
C 

for values of 1" 

where, 

= 

= 

N c 
l v 2 (t. )V 2 (t.+1") 
i=l 1 1 

_ (v2 ) 2 

from 0 to 1006t at intervals of 

6t = 0.167 sees. 

(See Figure 6.23) 

Number of readings correlated. 

1 
N c 

N c 
l 
1=1 

V2 (t . ) 
1 

5.21 

5.22 
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5.4 ESTIMATION: OF PARAMETERS 

5.4.1 INTRODUCTION 

In order to estimate parameters from the available 

~xperimental data it was found necessary to assume that : 

= = 

0
2 = 0

2 = 0
2 

ox oy 0 

and hence 5.21 

R (T) = R (T) = R (T) ox oy 0 

From tracer experiments two statistical quantities 

were estimated, namely : 

The Mean Response at pairs of pOints to a rectangu-

lar input pulse. One set of runs involved probe positions 

vertically one above the other., whilst in a second set of 

runsthe two probes were placed such that they were in a 

straight line with the point of injection. Model predic-

tions of Mean Response curves have the following form : 

Without molecular diffusion 

J
tq ( ) [(X - ml ) 2 + (y - mly ) 2) dT 

~ (x,y,t) = . T exp- ______ ~x~ ________ ~_ 
2~02 20 2 

o 1 1 

With molecular diffusion 

~(x,y,t) = q(T) exp -1 -\ 
Jt [ 
o 4~{~cri + D(t-T») 2D(t-T) cri [~cri + D(t-~) 

({oix + D(t-T)2mlx}2 + {oiy + D(t-T)2m
ly

}2] 

+ ~cri (x' + y') + D (t-T) (rn1x + rniy ) 11 dT 

The second statistical quantity estimated from 

tracer experiments was the concentration crosscorrela-

5.22 

5 . 23 
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t10n between two points . The tracer input function was 

a Pseudo-Random Binary Sequence, which i s tirne-sta~ionary 

and pe;riod,ic. The aequence is assumed to nave passed 

througq a first order filter before entering the t~nk. 

(Equation 5.;1.0). The model prediction of the cross-

correlation for the case involving molecular diffusion 

was used to estim~te parameters. (Equation 3.44). 

Hot Film Anemometer data yielded estim~tes of 

t "lif' s t atistiqal quanti ties 

Firstly, the Probability Distribution Density 

for V (t;) : f (v) 

where, 

f( v ) = 

where, 

v exp ( ... 
0 2 

o 

I (z) = o 

Vet) = {u 2 (t) + u2 (t)}~ 
x Y 

2 2 2 2 ~ 
(v 2 + U + u») v(u + U ) ___ x __ y I { x y } 

20 2 0 0 2 
o 0 

Secondly, the autoco;rrelation of V2 (t); this 

quantit~ was compared with the following expression: 

2 2 
R 2 (T) = 4R 2 (T) + 4R (T) (U + U ) 

v 0 0 x y 

_2 2 
+{200

2 + U + U }2 
X Y 

The following parameters were estimated 

u = X-component of the mean velocity x 

u = Y-component of the mean velocity y 

0 2 
0 

= Variance of ve~ocity fluctuation~ 

B = Fl~wscale parameter 

q = Tracer source streqgth. 

5.25 

5.26 

5.27 
I 
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5.4.2 PARAMETERS FROM TRACER EXPERIMENTS 

Parameters were estimated from Mean Response curves 

using a non-linear regression technique based on a least 

squares criterion. (22) The' application of this technique 

requires that the shape of the function should be sensitive 

to small changes in the values of the parameters and that 

the parameters are not correlated among themselves. It 

was found however, that both model predictions (Equations 

3.2 5 and 3.40) were insensitive to 8 and this parameter 

CQuld therefore not be estimated from the Mean Response 

Experiment. 

In order to facilitate the estimation of the four 

remaining parameters a new parameter a was introduced. 

This parameter arises when the equation underlying the 

random process of velocity fluctuations is assumed to 

have the following form: (Ornstein-Uehlenbeck process, 

23) 

dU' (t) + 8U' (t) = 8N (t) 
dt a 

where, 

Na (t) = random process with White Noise properties, 

whose Power Spectral Density equals a. 

5.28 

It can be shown (Appendix 6) that this equation satisfies 

the pl;'operties assumed for U' (t) and that : 

(See Section 3.1) 
a = 

5,29 

Keeping the value of 8 fixed it was then possible to esti­

mate pal;'ameters u , U , a and q by regression for particu~ x y 

lar probe positions . ,The effect of probe positions and 

the numerical results of the parameters are discussed in 
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Chapter VI . 

It was found that the strength of t he theoretical 

crosscorre~ation was sensitive to the value of B • 

However, due to the complexity of this expression and limi-

ted computer f acilities no' attempt a t regressing cross-

correlation data was made . Instead , a value of B was 

estimated by matching peak heig'hts of experimental and 

theoretical crosscorrelations , using an iterative proce-

dure,. A value of B was assumed and the remaining para-

m0terS were obtained by regressing on a number of Mean 

Response curves (see table - on page 68 ). A new 

value o f B was then obtained from crosscorrelat~ons by 

matching peak heights, using average values for the para-

meters obtained by regression. Mean Response regressions 

were then repeated. 

This p~ocedure yielded a val ue of B = 0.3; 

this value together with a set" of average values for the 

remaining four parameters gave reasonable correspondence 

between theoretical and experimental crosscorrelations 

(Figures 6 . 12, 6 . 15 and 6 . 18). 

If 

].lex(ti )= experimental mean concentration, 

and the first and last value of the Mean Response curve 

occur at times t and t "respectively, then the non-o n 

linear regression technique seeks to minimise the following 

function : 

t.rt 
1. n 

SOS = \ {ll (t.) ll( t )}2 L.. I"' - I"' x,y, . 
t.=t ex 1. 1. 

1. 0 

5.30 
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where, ~(x,y,t) is given by Equations 5022 and 5.23. 

The method involves evaluations of ~ ( x ,y,t) as well as 

its derivatives with respect to the parameters for values 

of ti from t to t • o n 
Simpson's rule of numerical inte-

gration was used . 

It was found necessary t,o slightly modify this 

technique when applied to both Mean Response curves simul-

taneously. In this case two pulses contribute to the sum 

of s quared errors : 

SOS = SOS . (1st pulse) + SOS (2nd pulse) 

~n order to prevent a bias towards the pulse with larger 

amplitudes i.e. the pulse measured closer to the point 

of injection, the contribution of the smaller pulse was 

increased with a correction factor . Smooth curves (24) 

through the experimental points were computed with the 

aid of a digital filter and the ratio of the variance 

5.31 

of the larger pulse to that of the smaller pulse was 

considered to be a suitable correction factor. (Page 88). 

The rectangular input pulse (amplitude q ) was 

assumed to have passed through a first order filter with a 

time constant of 0.01 seconds before entering the tank 

(see Section 5.2.3.5). 

Hence : 

q(t} = q(l - exp(-lOOt} J 0 < t ~ 1.6 

q(t} = q(exP{-lOO(t-l.6}}- eXP{-lOOt}]i t > 1.6 

5.23 
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PAJUU~ETERS - FROM THE HOT FILM EXPERIMENT 

The statistical quantitien calculated from 'a direct -

measurement of the instantaneous velocity ' at a point 

provided an independent measurement of the following para-

meters : 

o~ = variance of velocity -fluctuations 

B = flow scale parameter 
2 _2 

U
x 

+ u
y 

= sum of squares of mean velocity components. 

Best fit values of parameters 
2 2 

0 2 and {u + U } 
o x y 

were obtained by regressing the experimental distribution 

density function of V(t) using Equation 5 . 26. 

. 2 
The Autocorrelat~on of Vet) may be conveniently 

split into two parts; firstly, 

A transient part, where its value is strongly 

dependent on the lag T, secondly, 

for large values of T • From Equation 

5.27 it may be seen that this value tends to 
2 2 

{20 2 + U + U }2 
o X y 

Parameters 0
2 

o and B were estimated from the transient 

part of the experimental Rv 2 (T) curve by regression using 

T- dependent terms of Equation 5.27. 



84. 

CHAPTER VI 

' RESULTS AND DISCUSSION 

6,1 TRACER EXPERIMENTS 

The tracer experiments may be conveniently divided 

into three groups ' according to the' positions ot the moni­

toring stations rela~ive to the point of injection. 

Fis~re 6.1 shows' the positions of the two probes for each 

run. I t wiil be note~ that ' the pOint of injection was 

fair l y closely situated to the inlet duct and was kept in 

t .he sarne position for ' all runs. Furthermore, it can be 

seen that the region of the tank explored was relatively 

small. (See Figure 4.1) 

In each case the ' results ' are Qompared with the 

continuous state ' flow' ,model including the effect of 

molecular diffusion~ ,A value of 0.1 x 10-7 ft~ 

per second was used for the molecular diffusion coeffi- . 

ciellt. 

6.1.1. GROUP 1. 

In the first group the probe positions are verti­

cally above one another and equidistant from the point of 

injection (Figure 6.l)~ For each of the first three 

runs parameters u , u , a and q were evaluated by regre8~ x y -

sing on both Mean Response curves simultaneously using 

Equation 5.23. Figures 6.2, 6.3 and. 6.4 show that the 

model can adequately describe Mean Response curves for 

these positions. The flow parameters ux ' u
y

, and a 

remain reasonably ' constant, whilst the agreement between 

the measured source strength and the value for q obtained 

by regression is fair ~ (See table - on Page 88 ). 
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FigQre 6.5 shows the Mean Response curves for Run 4 

~Cgeth~~ with their model predictions . The prediction for 

the lowe; st;ation is clearly ipadequate'; this may be 

attributed to the fact that its position lies in a regiop 

with ' d+ffe~ent flow char~cteristics. This is confirme4 by 

a cQmp~risQn of the parameter values obtained from r~9res­

sions qn each Me~n Response ' curve individually. (Figures 
I 

~.6 and 6.7). 

The model predicts zero crosscorrelations and this 

fact was confirmed experimentally. 

GROUP 2. 

The second group of ' tracer ' experiments was carried 

9~t with ' the probe positions ' along the X-axi~. The first 

probe was kept at · a distance ,of ' three inches from the point 

ot injection', whilst the $econd probe was placed at a 
\ ' 

nqmber of positions ' further downstream (Figure· 6.1). 

the Mean Response ' curves ' for these positions conta1n 

v,~ l~ttle information ' concerning uy ' the Y-component 

of t~e ~ean velocity ', since both probes have the same Y-

coordinate. Parameters \lx' a and ' q were again evaluated 

by re9ressing on both Mean Response ' curves simultaneQ~~ly. 

~n av~rage value of' Uy obtained from the first group of 

traqe; experiments was ' used in ' these regressions. 

From figures 6.8 and 6.9 it cap be seen that th~ 

mod~l is ~apable of ' describing ' the ' experimental Mean 

R~spons~ curves and that ' the values of the flow parameters 

~re ~~ ' good agreement with each other and with those of 

9l;'OUP' I~ ' There is ', however ', a considerable difference 
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in amplitude between the theoretical and experimental 

curves for the secandstation ' of Run 6 . An examination 

of the parameters obtained' from an i ndividual regression 

of this ' puise' (Figure- 6'.10) shows an excessively high 

sourqe strengtn q and good agreement for the flow para­

meters~ . Hence, even though the ' fit is eKcellent, little 

reliance can be ' placed on the ' estimation of the source 

strength from a ' singie' pulse - regression ", Figure 6.11 

shows ' a ' comparison of ' the experimental Mean Response curveEi 

for Run 7 with ' those predicted·.by · the model, using average 

parameter ' values obtained ' from -previ ous regressions", . ',-

Noting - the ' large difference ' in amplitude and spread between 

the · two ' pulses the ' model ' prediction i s considered to be 

very good. 

Figures 6 ~ l2 and ' 6 ~ 13 show ' comparisons of predicted 

and ' experimental · concentration· crosscorreilations. The 

values of the ' parameters '. are the ' same as those. used to pre-

dict Mean Response curves ~ The - effect of correlation 

between W(t,T.l ) is clearly illus-

trated by the higher - amplitudes obtained for small values 

of the lag T. (see Section 5 .2.3e 5) 

6 . L 3. GROUP 3 . 

The third group of runs was ' carried out with the 

probes ' positioned such that they were on straight lines 

radiating from the ' point · of injection at angles of 100 , 

o . 0 
20- , and - 10 with ' the X-axi s. 

Parameters obtained ' from ' a ' regression on both Mean 

Response curves of ' Run 8 ' are ' i n good agreement with those 

of groups ' 2 and 3 (Figure ' 6 ~ 14)~ - whilst Figure 6.15 shows 



Parameter values 

PARAMETER VALUES OBTAINED FROM TWO-PULSE REGRESSIONS. used in 

MODEL PREDICTIONS. 
RUN 1 RUN 2 RUN 3 RUN 5 RUN 6 RUN 8 

u x 0.093 0.097 0.0973 0.092 0.090 0.094 0.096 ft./sec. 

* u y 0.0113 0 . 0117 0.0091 (0.011) (0.011) (0.011) 0.011 ft . /sec . 

a 0 . 00557 0.0048 0.0073 0 . 00545 0.00597 0 . 006 7 0.006 ft2. /sec . 

0 2 0 . 000836 
0 

0.00072 0 . 0011 0 . 000818 0 . 000896 0 . 00102 0 . 0009 ft2. /se ~. 

-1 co 
B (0.3 ) (0 . 3 ) (0.3) (0.3) (0 . 3) (0 . 3) 0 . 3 sec co . 

** q 0 . 182 0 . 197 0.314 0 . 24 0 . 303 0.295 0 . 3 

'Imeasd. 0 . 24 7 0.247 0 . 3 0 . 3 0.3 0 . 3 

correction 7 . 0 2.5 1.7 20.0 5.0 14.0 

factor 

* ( ) value kept constant in 

regression for remaining parameters. 

** see Appendix 7. 
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satisfacto~ model predictions -.for the - concentration 

crosscorrelations. Runs 9 and 10, however, show some 

d~screpancy between- the predicted -and experimental 

curves. (Figures - 6.16, 6.17, 6.18 and 6.19); it may 

be attributed to the - fact ' that- probes were situated at 

pOints with ' different- flow· characteristics. This is 

especially true for the ' second probe position of Run 10 

wh1. ch was observed to experience occasional intervals 

of near stagnancy. (Figure 6.1). All predicted curves 

are based on the same set of parameters. 

6.1. 4 EFFECT OF MOLECULAR DIFFUSION 

In order to investigate the effect of molecular 

diffusion parameter values obtained from regressions on 

Mean Response curves using Equation 5.23 (with molecular 

diffusion) may be compared with those using Equation 

5.22 (no molecular diffusion). From Figures 6.20 and 

6.21 it can be seen that the simpler model without mole­

cular diffusion is equal~y capable of describing Mean 

Response curves. Furthermore an examination of the table 

below shows that the values of the parameters obtained by 

regression are practically identical for the two cases. 

W~T~ MOL. DIFFUSION NO MOL. DIFFUSION 

Run 1 Run 2 Run 8 Run 1 Run 2 Run 8 

0.093 0.097 0.094 0.093 0.097 0.094 ft/sec 
0.0113 0.0117 (0.011) 0.0113 0.0116 (0.01l)ft/sec 
0.00557 0.0048 0.00677 0.00556 0.0048 0.00676 ft2/sec 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 

_1 
sec 

0.182 0.197 0.295 0.182 0.197 0.295 * 

(*see Appendix 7) 
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The molecular diffusivity is a measure of the power 

,associated with molecular vibrations and its value (0.1 x 

10-7ft2/smay be compared directly with the power of the velo­

city fluctuations given by Equation 5.1. The values differ 

by a factor of the order of 106 and it is therefore not sur­

prising that molecular diffusion has a negligible effect on 

dispersion. This is likely to be true for all liquid flow 

systc~s with a similar flow structure, since molecular dif-

fus ivities do not vary a great deal from liquid to liquid. 

In gas flow systems, however, molecular diffusion will play 

a more important role, as diffusivity values are of the order 

of 105 times greater. 

The following table shows parameter values obtained 

by regression on a single Mean Response curve (Run 4, second 

station) for a number of values of molecular diffusivity. 

Mol.Oif. u u S q SOS x Y 

0.1 x 10-7 0.106 0.011 0.00766 0.3 0.329 0.689 

0.1 x 10-4 
0.106 0.011 0.00763 0.3 0.329 0.693 

0.1 x 10-2 0.106 0.011 0.00432 0.3 0.326 0.77'8 

It can be seen that the value of ex decreases as 0 

increases in order to accommodate the same amount of spread. 

6.2. HOT FILM ANEMOMETER RESULTS 

Figures 6.22 and 6.23 show the results obtained from 

the Hot Film Anemometer experiment . The value of 
2 2 ~ 

' (li + u } 
x y from a regression of the distribution 

density function of V,(t) was used in the estimation of 

from the Autocorrelation of V2 (t). (Figure 6.23). 
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The table below shows a comparison of parameters 

2 2 ~ 2 
{u + U } , a ,a and ~ x y 0 

for the various methods of parameter estimation. 

2 
+ U2}~ a a 2 ~ {u y 0 x 

tracer experiments 0.006 0.0009 0 . 3 0.0961 

distribution density f(v) 0.00314 0.115 

0.0196 0.00532 0.544 0.115 

0.0251 0.00633 0.505 0.0961 

It can be seen that., whereas there is reasonable 

-2 -2 ~ agreement for the values of (ux + uy ) and ~ obtained 

from tracer experiments and Hot Film Anemometer data, 

parameter estimations of a (and hence a 2 ) for the two 
o 

methods differ widely. A number of reasons may be 

suggested : 

The model only accounts for velocity fluctuations 

in the X-and Y- directions, whereas the Hot Film probe 

is affected by all three velocity components. 

As mentioned earlier (Section 5.2.2.1) ' low fre-

quency velocity fluctuations have a dominant effect on 
,. 

dispersion. It was shown that dispersion is related to 

the area under the R (T) versus T curve rather than to 
o 

the variance of the velocity fluctuations. This may be 

further demonstrated by a consideration of the case where 

the velocity fluctuations {U' (t)} 

properties (Wiener process , 25 ). 

position X 2(t) is then given, by: 

have White ~.ise 

The variance of 
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aw = Power Spectral Density of U' (t ) 

whereas f the . variance of the velocity fluctuations them-

selv~s is infinite . 

In order to show that. the addition of a low power, 

high frequency Ornstein-Uehlenbeck velocity process has a 

negligible effect on dispersion, but makes a . noticeable 

difference to the variance of the velocity fluctuations, 

we assume : 

U' (t) = Ui (t) + Ui (t) 

and 

where, 

dU' (t ) 
1 .. 

dt 

dU i (t ) 
dt 

8 I > 13 I 
2 1 

+ 

+ 

l3'U' (t) = 
1 1 

l3'U ' (t )= 
2 2 13 'N 

2 a" '2 

and a I < a I 

2 1 

(see Appendix 6) 

6. 1 

6.2 

6.3 

If we further assume U' l (t ) and U'2(t) to be uncorrelated , . 

the autocorrelati on of U I(t) becomes 
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a'S' a'S' 
R (1:) 1 1 exp(-Si l 1: l) + 2 2 exp (-S2 !1:!) = -2- -2-

0 

6 . 4 

a'S' a'S' 
0 2 1 1 + 2l. = -2-

0 2 
6 . 5 

(see Equations 3.3, 5.29) 

Similarly, the variance of the mean response to a Dirac 

input is : 

oi (t) 

6.6 

The contribution from the velocity Ui to the total 

variance measured with high frequency response A~emometer 

equipment is dominated by the product a2Si as can be 

seen from Equation 6.4; however its contribution to , 
a2 

tracer dispersion is dominated by the ratio S2 

Bearing in mind the inequalities 6. 3 it can be 

if a' a' 
a'S' ;".aiSi 

then 2 « 1 
B' B' 2 2 2 1 

seen 

Thus the low-power high-frequency process u; has no 

effect on the measured dispersion but a large effect 

that 

on the measured variance of the total velocity process. 

If it is assumed that parameters obtaiped from 

tracer experiments are estimates of ai, Si i.e. 

parameters of the velocity process which has a dominant 

effect on dispersion, we may write 

Variance of U2(t) = (Hot Film Anemometer) 

- 0 2 (tracer expts .) 
o 
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The lack of fit of the distribution density 

function f(v) (Figure 6.22) indicates a weakness in the 

assumptions that velocity fluctuation components are 

normally distributed and that their statistical para-

meters and 6 are equal. 

In conclusion the results show that : 

Firstly, the cont i nuous state flow model is capable 

of describing dispersion in a relatively small region of 

the tank. 

Secondly, the tracer experiments were insensitive 

to molecular diffusion and high frequency velocity fluc-

tuations. 

Thirdly, the various methods of parameter estima-

tion yielded reasonably consistent results. 
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APPENDIX 1 

EDDY DIFFUSION MODEL ** ERROR ESTIMATION 

The error incurred by the application of 

the Eddy Diffusion model to tracer experiments carried 

out in this work may be estimated as follows : 

From Ta:( lor (2): 

X2 (t) = 2a~ ftf~lRN(~) d~ d~l 
o 0 

If ~ (T) . re.aches zero at ~ = tl and t > t l , we may 

write : 

where, 

The last term of Equation 1.B may be split up as 

follows: 

dTd~1 = 

Since the value of ~l ranges from tl to t and t>t
l

, 

the last term of Equation I.e equals zero. From 

Equations 3.3 it follows that 

Substitution of Equation 1.0 in Equation 1 . B fol­

lowed by ~ntegration yields : 

LA 

loB 

1.C 

1.0 
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Since the Eddy Diffusion .. model implies (7) 

the percentage error becomes 

Substitution of the following values in the above 

~xpression gives a percentage error of 30%. 

a = 0.3 tl = 8 sees. (see Figure 6.23) ; t = 10 sees. 
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APPENDIX 2 

DERIVATION OF KOLMOGOROV EQUATIONS FOR 

DISCRETE SPACE MODEL 

The transition probability density function 

TI(j,c2;to+T\i~cl;to) is defined such that 

TI(j,c2;to+T\i,cl;to)dc2 represents the probability that 

at time to+T the flow is in state j and the concentration at 

x2 'Y2 has a value between c 2 and c 2+dc2 knowing that at 

time to the flow was in state i and the concentration at the 

point xl'Y1 had a value c l . 

If the source strength q(t) is known flow state' 

and concentration form a composite Markov Process and 

hence we may write the Chapman-kolmogorov equation : 

Assuming first and second order derivatives to exist the 

integrand of $quation 2.A may be expanded in a closed 

Taylor series about c2 : 

where, 

2.A 
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o , elk' e 2k ' 1 

Integrating the first term of Equation 2.B and rearranging 

the second and third terms yields 

tn(j ; tO+l+ATlk,c2itO+T) TI(k,c2itO+Tli,clito) -

L _d--{TI
2

(O) JooACTI1(j,C2+ACito+T+ATlk'C2ito+T) dAc} -
k 3c2 --co 

\ ~{Joo Ac
2 

( ) ( ) d A } L ---2 TIl elk TI2 e 2k uC 
k 3cZ 0 

2 

2.C 

Since the probability of a change in flow state is independent 

of concentration and assumed to be time-stationary we may 

write : 

wh,ere, 

Furthermore, since the concentration at the point x2 'Y2 

and time to+T has the value c 2 and the flow is in state 

k, the second term of the RHS of Equation 2.C may be 

written as: (integral part only) 

provided AT is small. 

aC
2 ar- is evaluated at time to+T and flow state k; hence 

2.0 

2.E 

2.F 
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Similarly, the third term of the RHS of Equation 2.C 

may be wri t ten as (integral part only) 

and 2.F becomes 

Substituting Equations 2 . 0, 2 . E, 2.F and 2 . G in 

Equation 2.C , dividing by 6T and letting 6T~O , 

yields the following Kolmogorov equation : 

LAk ' rr (k,c2;t +T li,cl;t ) 
k J 0 0 

The Kolmogorov equati on associated with p(j,c;t) is 

obtained by multiplying each term of Equation 2.H by 

p(i,cyt), integrating over all values of c l and summing 

over all possible flow states i . 

Wr;lting 

we obtai.n 

t = T + t 
o 

~(j,c;t) __ " (k ) a { ( } at ~AkjP ,c;t - ac a j,c)p(j,c;t) 

2 . G 

2.H 

2.I 
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Similarly, a Kolmogorov equation associated with p(j,q,c;t) 

may be derived; it has the following form : 

it(j,q,c;t) ~ r Akjp(k,q,c;t) - ~q{~q(j,q)p(j,q,c;t)} 
k 

- ~c{~c(j,c)p(j,q,c;t)} 

where, 

Uq(j,q) = E{~~(t) IQ(t)=q, flow state = j} 

For the ~ase of a time-stationary random source function 

ott) the following Kolmogorov equation will hold: 

ff(j,ql,c1i,q:t) = k AkjTI(k,ql,cli,q:t) 

- ~ql{~ql (j,ql'c) TI(j,ql,cli,q:t)} 

2.J 



125. 

APPENDIX 3 

DERIVATION OF EQUATION 2'.30 

The partial cross correlation is defined as : 

~. (0) = f~J~ qc p(j,q,c;t) dq dc 
Jqc 0 0 

Differentiating Equation 2.A with respect to t and 

substituting Equa~ion 2.20 yields 

J ~fOO qc a {a (j,q,c;t)p{j,q,c;t)} dq dc -
o 0 aq q 

JOOJOO qc fc{ac{j,q,c;t)p{j,q,c;t)} dq dc 
o 0 

Substituting Equation 2.A and integrating by parts : 

a~ (0) 
--jqc = IAk'~k (O)-
~ k J qc 

~ q=~ , 

f 0 c I qaq (jJ:}c;t) p (j ,q,c;t) I dc 
q=O 

2.A 

2.B 

+ J:J:caq(j,Q'Clt)P(j,q'Clt)dqdC -J
OO

qjcac (j,q'Cl t )P(j,q'Cltl
C
-:q 

o lc~ 

where, 

2.C 

aq{j,q,c;t) and ac{j,q,c;t) are defined by Equations 

2.21 and 2.22. 

If Q(t) is obtained from the output of a first order 

filter (time constant , Tc ) with input Nw{t), we can write: 
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T dQ(,t) + ott) = N (t) 
c dt w 

Since the value of the source strength, at time t does not 

depend on the conc~ntration at point (x,y) at time t, 

Equation 2.21 becomes : 

C£q(j,q,c;t) = E{dQ (t) I Q (t) = q, flow state = j} 
dt 

From Equation 2.D it follows that : 

C£q(j,q,CJt) = ¥- E{Nw(t} IQ(t} = q} _ s..... 
c Tc 

From Equation 2.22 it follows that 

(j t) ac u. ac + q(t)o(x)o(y) C£c ,q,cI • - uxj ax - YJ ay 

Since p(j,~,c;t) = p(j,q,~;t) = 0, the second and 
fQurth terms of the RHS of Equation 2.C equal zero. 

2.D 

2.E 

Subat1tut1ng ~quations 2.E and 2.F in Equation 2~C y1elQs : 

1 J~J~ IAkjtkqc(O) ,+ ~ c E{N (t) IO(t)=q}p(j,q,c;t)dqdc 
k coo w 

1 J~l~ , f~f~ 3c - T cqp (j , q , c; t) dq dc - uXj ' q a x p (j , q , c ; t) dq dc 
coo 0 0 

- "yjJ:r:q* p(j,q,clt)dq dc + ((q2d(X)d(Y) p(j,q,clt)dq dc 

2.G 

Conaider the last term of Equation 2.G; integrating with 

respect to c and noting that p(j,q;t} = p(j;t)p(q;t), it 

may be written as : Rqq(O, t) P (j ; t) 0 (x) 0 (y) where, 

~q(t/t) = Autocorrelation of ott) 

Integrating the second term of ,the RHS of Equation 2.G 

with respect to q and sub~tituting Equations 2.14 and 2.A 

in Equation 2~G for a time-stationary process finally yields 
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APPENDIX 4 

EVALUATION OF COVARIANCE -p (t, T 1 i t+T , T 2) 

p(t,t it+t,t2) =- ft+Tf!2eXP{-t3(le'-e"I)}de' de" 
1 T TO 

2 1 

case A 
i 

The r egion of integration is subdivided and - the integral 

of 8ach part is evaluated separately 

J
t.+tft 

exp{-B(a"-a')}de' de" = 
t 1'1 

J
t Je~ 1 [ exp{-B(a"-e')}de' de" = - -; 
T2 T 1 B 

- (exp{-t3(t-T 1 )} - exp{-t3(t 2-t l )}) ] 

Jt Jt exp{-B(a',..a")}de' de" = 
'[ a" 

2 

-t3(t-T ) 
2 

Adding the three contributions yields : 

(+'( exp{-B(le'-e"I)}de' de" =.!,- [- exp(-S,) + 
T2 Tl t3 

exp{-t3(t+T-t1 )} + 2t3(t-t 2) - exp{-t3(t 2- T
l

)} + exp{-t3(t-t
2

)}) 

case B 

The region of integration is subdivided into two parts : 
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t : t+t 
f J, exp{-S (e"-e I) }de" de I = 
t1 e I · . 

_ ~. (~xp (-e~) -

S2 

exp{-S(t+'t-'t 1)} 

It Jet 
t1 t2 

ex~{-S(e'-e")}de" del = 

- S(t-T l ») 

~2 [~ B(t-~l) - exp{-B(t-t 2» 

- eX~{-S .(Ti-T2)}} 
Add1ng the two contributions yields : 

J
t+'r It. ( exp{~s(lel ... e"l) de' de" =.J:. - exp(-S't) +. 2S(t-t1) · + 

02 t2 T~ ~ 

CAse C 

J
t+tlt [ ,xp{-S (I e"-9 I I) Ide I de" =...l - exp (-6't) + 
t2 t1 S2 

exp{-S(1;.+t-t1)} +exp{-S('t 2-t)} - eX~{-S('t2~T1)}) 
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APPENDIX S 

MIXING EQUATIONS FOR CONTINUOUS STA,TE'FLOW- MODEL 
; , a. 

WITH MOLECULAR DIFFUSION 0 

Dispersion is described by the following stochastic partial 

differ~nt~al equat~on : 

ac = _ u (t)ac + D a
2

c - u (t)~C + D
a 2c + q(t)c(x}o(y) S.A 

at x ax ax2 y t ay2 

Defining a two-sided Laplace Transform by 

L{C(x,y,t)}= C(s,p,t) = JooI
oo 

C(x,y,t) exp(-sx)exp(-py)dx dy 

we obtain expressions for L{ac } and L{a
2
c} as follows 

ax ax 2 

L{~~} = fOOflO ~~ exp(-sx) exp(-py ) dx dy 
-.cD _00 

Integrating Equation S. B by parts and noting that 

C(x,y,t) = 0 , whenx,y = -00 , yields: 

L{ ac} = SC-(s t) ax ,p, L{~~ } = pC (s,p,t) 

= ~ exp(-sx ) exp (-py ) dx dy J
oofOO 2 

_00 ~ ax 2 

= J: I~; exp (-sx) I:ooexp (-py ) dy -

I
ooIoo_oo (-s) ac ( ) ( ) ax exp -sx exp -py dx dy 

_00 

Assuming that ~; converges sufficiently strongly as 

x + _00, the first term equals zero o Substitution of 

Equation s . c yields 

2 -s C (s,p,t) 2 -p C (s, p,t) 

S.B 

s.c 

5.0 
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Taking the Laplace Transform .of Equation S.A 

de. -u (t)8C + Di C - Uy(t)pC +D~ C +q(t) at x 

and solvin9 Equation S.E with initial condition 

C(x,y,O) = ° . , C(s,p,O) = 0 , yiel~s 

~here Wx(t,t) . ~d Wy(t,t) are defined by Equations 3.11. 

Noting that 

1: 'XP{~(iD~tl'}exp(-sx) dx = 2(nOt)~ exp(s'Ot-sut) 

Equation s.r may be inverted as follows : 

S.E 

S.F 

J
t g~t) (- {x-Wx (t,t)}2 - {Y"Wy (t,t)}2) 

C(x,y,t) = o~WD t-t) exp 4D(t-t) dt 

S.G 

Mean concentration ~(x,y,t) 

The mean concentration is defined as : 

~(x,y,t) - J~ J~ c(x,y,t) f(wx,t,t) f(wy,t,t) dwx dwy S.H 
....,go -~ 

where, 
f(wx,t,t) and f(wy,t,t) are Normal probability 

density functions for the Random Processes W (t,t) and x 

Wy(t,t). 

Substituting in Equati0n S.H and integrating with respe~t 

to wxand Wy by the method of completing the square finally 

yields Equation 3.40. 
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When the tracer source is ' a" time-stationary 

function Q(t) the concentration at a point (x,y) is 

given by : 
_ It O( T) [-{x-WX:<t,T)}2 - {y-Wy (t, T)}2) dT 5.I 

C(x,y,t ) - 4rrD.(t-T)exp 4D (t-T) 
_00 

." 

The concentration crosscorr~~ation bet ween points 

(X1'Yl) and (x2 'Y2) is defined as : 

~(xl'Yl,X2'Y2: T) ~ E{C(xl'Yl,t)C(x2 ' Y2,t+~ )} 
• .tI 

Substituting Equation Sol and rearrangi ng exponential 

t erms yields 

Since t he tracer source function Q(t) and the Random 

Processes W (t,T), w (t,T) are mutually independent · x y 

Equation 5.K may be written as 

where , 

5,J 

5.K 

5.L 

'r 
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f(Wxl,wxi) = joint -Normal probability density function 

for Wxl and Wx2 . 

f(w l'w 2) = joint .Normal probability density function 
y :1 

for Wyl qnd Wy2 • 

The above density functions have - the following form (s·ee 

Equations 3.29) 

f (w l'w 2) x x 

(w -m ) 2 

[ 
-1 { xl lx,l exp -

(1-r2) 0 2 

~r(wxl-mlx,l) (wx2-mlx ,2) 

; . °l,i 0 1,2 

2r(w I-mIl) (w 2-ml 2) y y, y y, 

1,1 

(w 2-ml 2) 2 ) _ x x, } 
2 

0 1 ,2 

(W 2-m12)2) 
- Y Y, } 

2 
0 1 ,2 

substituting Equations 5.M in Equation S. L and carrying 

out the integrat~ons with respect to wxl,Wx2,Wyl and 

Wy2 by the method of completing the square yields 

2rml Iml 2 X, X, 

(l-r2) y 

S.M 
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1 2 Iv 1 ly,2 _ . ly,l ly,2 _ i_I +_1}-1 [y2 y2 rn2 rn2 2rm rn 
exp- - + -r-- + Q.' + -- -- -- l 

a 1 a 2 PI 62 (1-r 2 )y a 1 61 

where, 
a

1 
= 4D(t-T

1
) 

6
1 

:;:: (1-r 2)0'2 
1,1 

y = 0'1,10'1,2 

2rrnl 2 y, 

rn 
+ ly,2 + 

62 

ly,2 ) r 2rn 2] 

(l-r') 'y' 1 

a 2 = 4D(t+T - T
2

) 

6
2 

= (1-r 2) 0'2 
1,2 

A transformation of variables according to Equations 3.31 

finally yields Equation 3044. 
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APPENDIX 6 

INTRODUCTION OF FLOW PARAMETER a 

It is assumed that the random process of velocity 

fluctuations is described by the following stochastic 

differential equation : 

dU'(t) + SU'(t) = aN (t) 
dt a 

' where, 

N (~) has the following White Noise properties : a 

R_ (T) = E{N (t)N (t+T)} = aO(T) 
-"N

a 
a a 

~quation 6.A may be integrated as follows 

U' (t) = f t S N ( T ) e xp { - a (t - T )} d T 
o a 

The autoc9rrelation of U' (t) is defined by 

S~8tituting Eq~ation 60C and taking the E~pected 

Value operation inside the integral yields : 

From Equation$ 60B and 60D it follows that 

6.A 

60B 

6.C 

600 
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Integra~ing ~quation 6.E with respect to Tl and T2 

for tl > t2 yields : 

Ro (t l ,t2) = ~e (exp{-S(tl -t2)} - exp{-S(tl +t2)}) 

For l arge values of t l ,t2 the second exponential 

term of Equation 6.P is small and may be neglected. 

Hence 

From Equations 6.G, 3.3, 5 . 21 it follows that 

= 

6.E 

6.P 

G.G 
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APPENDIX' 7 

NOTE ON UNITS OF q(t) and C(t) 

From equation 1 . 1 it follows that the units of 

q(t)· o(x)· o(y) are concentration. 

time 
Since . CQncent~~~~on 

readings are integrated across the width of the tank (d), 

the units of concentration are mass and the units of 
I 

q(t) become mass. 
time 

area 

(see section 4.4) 

The values of concentration actually used are in 

terms of mls. of concentrated tracer solution per V 
c 

cu. ft. of water, where V = volume of water used in c 

calibration of probes. 

The values of q(t) actually measured are in terms 

of mls. of diluted (1:10 ) tracer solution per minute. 

Hence in order to compare the values of q obtained from 

regressions with q'measured 

factor must be used : 

V 

the following conversion 

q measured = 
10 x 60 x d 

q'riteasured 

V /d c 9 'measured qmeasured 

~uns 1, 2 11. 84 12 . 5 0.247 

Runs 3, 4, 5, 11. 94 15 0.3 
6~ 7, 8, 9. 

The tracer flow rate was measured by noting the ~teady 

rotameter reading with t he solenoi d val ve fully opened. 

(see Ftgure 4.1) 
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APPENDIX 8 

DETAILS OF EQUIPMENT 

(i) Photocells 

Lange Gmbh. Ber l in i Type Si - 14. 

(ii) Amplifiers 

Beckman Data Amp . 

Power Supply 

Input Coupler 

(iii) Frequency Modulators . 

Type 491. 

Type 392. 

Type 9801. 

Wavetek Voltage Controlled Generator Model Ill. 

(iv) Taperecorders 

Philips International i Type EL 3549 A / 00. 

(v) Data processing Unit (see photograph on page 

Philips EL 3549 A/OO Taperecorder 

Philips PW 4230 Scalers 

Philips PW 4260 Timer 

Philips PW 4201 Controller 

Philips PW 4210 Power Supply 

Philips PW 4211 Power Supply 

Ph;i,lips PW 4209 Printer Control 

Addo-X Model 13-0341 - Printer 

I.B.M. Card Punching machine 

(vi) P.R.B.S. Signal Generator 

Control Logic, S.A . 

Type 024. 

(vii) Hot Film Anemometer 

Flow Corporation U. S . A. 

Constant Temp. Anemometer Series 900 - 1 

139) 
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Velocity and Temp. Monitor Series 900-2 

(see Figure 8.A) 

Sensor Type B-l-N 

********************* 
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