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ABSTRACT

This work is concerned with the characterization
of slowly moving fluids and was carried out an the flow
of water through a narrow sedimentation tank. Disper-
sion in the type of flow structure involved is caused
mainly by the presence of large eddies and, due to the
fact that shear stresses are samll, these eddies persist
for a considerable period of time.

Two flow models are presented :

The first model assumes the X- ¥=- velocity
component pair to form a discrete state Markov process in
time and dispersion equations for the mean concentration
at a point, the variance as well as concentration cross-
correlations are generated.

In the second model the velocity fluctuation
components are assumed to be independent, time-statio-
nary Markov processes with normal probability density
functions. The stochastic differential equation descri-
bing dispersion of tracer is formulated with and without
the effect of molecular diffusion and solutions to both
cases are presented.

Comparison of the model with experimental data
obtained from tracer and anemometer measurements show
that the model is capable of describing mean dispersion
in a relatively small region of the tank and that the

tracer experiments were insensitive to molecular diffusion.
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CHAPTER I

INTRODUCTION

our interest lies in the flow structure developed

when large masses of fluids move comparatively slowly.
To illustrate the type of dispersion obtained in such a
flow structure oﬂe may observe the smoke from the tip of
a stationary cigarette in a well ventilated room. The
character of the dispersion action may be roughly split
into twe parts:

Firstly, a randomly varying velocity responsible
for large scale dispersion and secondly the effect of a
diffusion type mechanism. Under these circumstances the
shear stresses within the fluid are low giving rise to
large scale turbulence of low intensity.

Tracer experiments were carried out on the flow of
water through a narrow sedimentation tank. The photo-
graphs on page 2 show the path taken by a dye solution
injected continuously at a point in the tank. They were
taken at intervals of about thirty seconds and show clear-
ly that the general direction of flow varies substantially,
even though the flows into and out of the tank had been
constant for a considerahle period of time. Furthermore,
the jagged paths indicate that the general direction of
flow is the same throughout the region shown and changes
fairly slowly with time. (See photograph on page 3).
Under these conditions the velocity history of a fluid
particle is identical to that recorded by a stationary ob-

server noting the fluid velocity at a point. The aradnal
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widening of the dye path indicates the presence of a
small scale, diffusion-type dispersion mechanism. The
flow situation is therefore interesting from a theoretical
point of view, because, to a close approximation, the
Eulerian and Lagrangian statistics are identical.

The stochastic nature of the flow was further
illustrated by the widely differing paths taken by pulses
of tracer material injected intermittently at a point
in the tank. Clearly the above flow structure cannot be
realistically described by the well-used Eddy Diffusion model
applicable to dispersion in highly turbulent fluids.
The latter is associated with large shear stfesses and small,
high frequency eddies superimposed on a constant mean
velocity. The inadequacy of this model for the flow
structure considered here is shown in more detail below.

The dispersion of tracer haterial may be described by

the following stochastic partial differential equation:

oC  _ oC . 9C | .

Fra UX(x,y,t)§§ - Uy(x,y,t)§§ + q(t) s (x) 8 (y) |
where,

C = tracer concentration at the point x,y and time t.

q(t) = tracer flow rate injected at the origin,

UX(x,y,t) = X-component of velocity.

Uy(x,y;t) = Y-component of velocity.

Both Ux(x,y,t) and Uy(x,y,t) are stochastic processes.
The solution to the above equation is unknown at present,
because the stochastic processes Ux(x,y,t) and Uy(x,y,t)
are functions of both position and time; (1) i.e. the

equation is’'an Eulerian description of dispersion. If,

however, the velocities are interpreted in A T.amvoned am
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sense, they become effectively functions of time only

and equation 1.1 may be written:

oc £ o il
T Ux(t)ax Uy(t)By +.q(t)6(x)6(y) 1.2

Hence, Lagrangian statistics of the velocity pro-
cesses must be used to obtain statistical properties of
the solution functions C(x,y,t). This method of inter-
preting and solving equation 1.2 yields results identical

to the solution of the familiar Lagrangian equations :

3t = Ux(t) ; it " Uy(t) 1.3

first investigated by Taylor (2) as a model for turbulent
flow. This correspondence might appear surprising at
first sight and is developed in detail below.

In order to solve equation 1.2 we assume the velo-
citiles Ux and Uy to be Markov processes; in addition,
the solution C(x,y,t) together with Ux and Uy form a compo-

site Markov process and hence the associated Kolmogorov

equation must exist : (3)
dm _ _ 3 9 3 32 52
t = - galogm g (V) ﬁ(\’y“) a2 (X, M)+ -ﬁz(xyﬂ)
X Y X Yy

where, 1.4

ﬂ(ux’uy’c7tquo’uyo’co;to) = transition prob. density.
= -y dc _ , 93¢

g uxBx uyBy 1.5

vx,vy,xx,xy = drift and variance parameters respectively for

the velocity processes.

This equation, however, cannot be used to generate a closed

‘'system of moment equations due to the non-linear coupling
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between the velocities and concentrations in 0o We
therefore investigated two possible assumptions to over-
come this difficulty.

In the first case, the velocity can only assume a

finite number of fixed values; 1i.e. UX y(t) has discrete.
'

state space. This model was inspired by the work of

Krambeck, Shinnar and Katz (4). These workers mcodelled

a flow reactor by a network of perfectly stirred tanks.
The volumes of the tanks remain constant; whilst the in-
terstage flow rates between them are alléwed to switch
randomly in time between discrete levels according to a
stationary Markov process. Clearly, the physical signi-
ficance of this model is limited and cannot be applied
directly to the present problem. Their treatment is
adapted by assuming the X-and-Y-velocity component pair
to be a discrete state, time-stationary Markov process.
Equations describing the development of a number of con-
centration moments are derived from a consideration of
the appropriate Kolmogorov equations. The major draw-
back of this model, however, lies in the difficulty of
obtaining solutions to these equations as well as in its
large number of parameters. Consequently, no attempt
was made to compare the predictions of this model with
experimental data. The model is presented in Chapter
IT and the reader may omit this chapter on first reading
without loss of continuity.

In the second case we make an a priori assumption
regarding the probability density function for the velo-
city process. UX y(t) has continuous state space and

4

thus provides a more realistic description of the flow
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structure under consideration. The above Kolmogorov
equation (Equation 1.4) was not used in the solution, as
a direct method of solution was available, and is pre-
sented in Chapter III.

To illustrate the correspondence of the results
developed in Chapter III with those obtained by Taylor
(5), Doob (6), a.o. we may examine the expression for the

mean concentration : (see Equation 3.25)

*© {X - m (tIT)}Z
q(1) 1 1x

ui(x,;t) drt

exp -
(2102 (£, 1) } 202 (£, 1)
1.6
If tracer enters the syétem as an instantaneous point
source then: g(t1)=§ (1) and the resultant response for the
mean concentration is seen to be Gaussian. Furthermore,
development of the model results in the following expres-

sions for the mean and variance of this distribution:

mlx = uxt 1.7

ol(t) = % {exp(-Bt) - 1 + Bt} 1.8

(compare Equations 3.15,
3.17)

Taylor (2) developed the following expression for the
variance of particle position in a turbulent velocity field :

. . )
- 1
x?(t) = 203 J J Ry (1) drt dt, 1.9
(o] (o]

where,

RN(T) = Normalised Lagrangian autocorrelation of
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oé = Variance of velocity fluctuations.

substitution of the assumed form of Rt ) (see Eguation
3.3) in Equation 1.9 and integrating yields a result
identical to Equation 1.8. Clearly, when the flow field
suffers a mean displacement velocity Gx’ then x1t) relates
to the variance about the point Ext.

In order to show the correspondence in more detail
we require the form of the probability density function

for X(t). Doob (6) a.o. make use of the following two

equations to obtain this function:

du (t) -
a BU(t) = Na(t) 110
- RLE)
U(t) - e A LL
where,
B = damping parameter.
Ny{t) = random impact force with White Noise pro-

perties and Gaussian distribution density.

These workers showed that both the probability density for
position p(x,t) and velocity p(u,t) have a Gaussian form.

Hence, the results derived by Taylor, Doob a.o.
for the motion of a single particle are similar to those
developed in Chapter III and the equivalence is complete if
the probability density for the position of a single
particle is interpreted as the concentration resulting
from the release of a large number of tracer particle at
the origin. The correspondence between the mean concen-
tration u(x,t) and the probability density p(x,t) is, of

course, easy to justify for fully developed turbulence,



tainly not be true due to the slow variation of the ins-
tantaneous velocity.
The use of a pseudo Eulerian formulation of Equation
1.2 may be justified for three reasons
Firstly, it allows one to work directly with tracer
concentration.

Secondly, molecular diffusion terms may be written in

directly :
¢ 3C 32C aC 32c
T = = Ux(t)ﬁ + D—xz Uy(t)a—y + D'Wz
1.12
+ q(t)d(x)8(y)
where,
D = molecular diffusion coefficient.

Thirdly,the model is not restricted to periods of dis-
-persion which are considerably longer than the lag at
which the Lagrangian autocorrelation of velocity has
reached zero. This restriction does apply to the Eddy

Diffusion model :

Jg _ _ =g 3%c
3t T T Uyax t ERxe L&
where,
Uy, = constant mean velocity
E = Eddy Diffusion Coeficient

Taylor (7) has shown that E may be expressed as

E = %o} ORN(T) dt 1.14
The above expression for E, however, is based on the
following approximation:

X2 (t) = ZO;At where, A = l RN(T) dt 1.14; 1.15
(0]

If R (TY reaches zere at+t 1acd + = + cwd ow o i “ A
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becomes :

t, rt
lJ lRN(T) at dr, 317
T

2 e 2 5 2
X2 () = 20%At - 207 J
g |

It can be shown that for the tracer experiments carried
out in this work errors of the order of thirty per cent
result when the second term is neglected. (Appendix I)

Equations 1.2 and 1.12 are solved by assuming the
velocity components to be independent, time stationary
Markov processes with Gaussian probability density func-
tions. Solutions for both the mean concentration at a
point as well as the concentration cross correlation bet-
ween two points are obtained in terms of model parameters
and tracer input function. The validity of this model was
tested experimentally in two ways :

Firstly, tracer experiments were carried out to
obtain experimental estimates of concentration moments
for a number of positions. Comparisons with model pre-
dictions provided a means for evaluation of the parameters
as well as a measure for the ability of the model to des-
cribe dispersion.

Secondly, the fluid velocity at a point was measured
directly with the aid of a Hot Film Anemometer. This ex-
periment provided a test of the physical significance of

the model parameters together with an independent estimate

of their values.
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CHAPTER II

DISCRETE STATE SPACE FLOW MODEL

2.1, INTRODUCTION

The model is based on the assumption that the
velocity of the fluid may be represented by a stationary,
discrete state Markov process. The instantaneous velo-
city components in the X-and-Y coordinate directions Ux(t),
Uv(t) can therefore assume any of a finite number of pair
values (uxj' uyﬁ; the flow process is said to be in flow
state j. The randomness of the model is introduced by
allowing instantaneous switching to occur from one flow
state to another as a random function of time. Further-
more, it is assumed that the statistical properties of the
flow process do not vary with time. This assumption will
hold when the process has been in progress long enough, so
that start-up conditions have no influence on the state of
the system. The flow process is assumed to be Markov
and therefore may be described by a matrix of transition
probability densities:

NESCAEREORN
where 7 (j |i: 1) represents the probability of the flow
process switching from state i to state j in a time inter-

val 1

2.2 FLOW STATE EQUATIONS

The following properties of such a Markov process
are known and will be used below:
] widser) = 1 2.1
J

m(ilj:t) = aij + xijr + 0(t) 2.2
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where,
Gij = 0 ; L =4
= 1 : i = j
A.,. = constant and may be interpreted as a measure
1]
of the mean switching rate from state i to state jJ.
Hwm o) _ o
>0 T

From Equations 2.1 and 2.2 it follows that
T Bl
J
If p(i;t) represents the probability that the flow pro-

cess iz in state i at a time t, then :

plisert) = ] pldst) w(jlizv) 2.4
1

From Equations 2.2 and 2.4 it follows that

dplizt) o i
= g xijp(l,t) 2.5
When the process has become stationary Equation 2.5
becomes :
Z xijp(l) = 2.6
i
Equation 2.6 together with
] p(i) = 1 2.7
i
may be solved uniquely for the stationary flow state
probabilities p(i), provided zero is a single (i.e. not
multiple) Eigen - value of the matrix ||A,.|]|.
1]
2.2+1

AUTOCORRELATION OF VELOCITY PROCESS

If p(i;t,jit+1 ) is defined as the joint probability

that the X—component of velocity (Ux) has the value U s

at time t and uxj at time t+1, then the autocorrelation
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may be written as :

= o I (0 du_, du_.
ROX(T) [ I_muxiuxjp(l,t,j,t+T) u_ s =

- 00

For a time stationary, discrete process this may be sim-

plified as follows:

Rox(T) o Z Z uxiuxjp(i'j:T)
3 4
i § E uxiuxjp(i) a3 izt) 2.8

It can be shown (8) that the transition probability

density matrix as a function of time may be written as :

[lmGist) || | x diag||exp(rlT),..exp(rnT)IHYL|

2.
where|XRJ and |YLI are the Righthand and Lefthand Eigen-

Rl

vectors of the matrixki- and [ the Eigen-values.

J

diag | exp(rlr Yoo bl ol exp(ﬁf )J]| is a square matrix with

.'n

elements exp(rlr Yy ses WP (E{[) on the diagonal and all
other elements equal to zero.

Hence, from a knowledge of the switching rate matrix

Aij and the allowable values of U, and Uy.both the sta-
tionary flow state probabilities p(i) and the compo-
nent autocorrelations Rox('r), Roy(r ) may be calculated.
Figure 1.1 shows a typical autocorrelation ROX(T ) as a
function of 1t for a three-state flow structure. The au-
tocorrelation fuunction has an exponential type decay
typical of Markov processes. This model could only be
expected to be useful for modelling flow systems having

such a velocity autocorrelation.
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2.3 MIXING EQUATIONS

In order to describe the dispersion of tracer mate-
rial in the above flow process we now introduce a composite
Markov process, whose state comprises the discrete flow
states p(i) and the continuous states of tracer concen-
tration ¢ and spatial coordinates x,y. Hence p(j,c;t)
dc represents the joint probability of the flow being in
state j and of the concentration at the point x,y having
a value between c and c+dc at a time t. The forward
Kolmogorov equation associated with p(j,c;t) may be show

to have the following form: (Appendix 2)

%%(J'c;t)= L Ajypldscie) - %g{ac(j,c;t)p(j,c;t)} 2.10
1

where,
o _£J.ept) = dm l--E{C(t+At)—C(t)|C(t)=c flow state=j}
- gl o At+o A% g J
ds L
If the system is excited by means of a point source of
tracer then the dispersive action of the flow process
is described by the following stochastic partial diffe-
rential equation :
BEiR) _  _ e 201E) 3C (t)
T = By = e + g (t)s(x)68(y) 2.32
where,
g(t) = tracer flow rate.

Hence from Equation 2.11 :

g ot - ac
ac(j,c,t) = - qu§§ - uyj§§ * gitleix)é(y) 4.13
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2.3.1 MOMENTS EQUATIONS

The most convenient way of testing prediction
of the model and of estimating the model parameters is
to compare the moments of the distribution of concentra-
tion with those measured experimentally. We define the

Partial Mean Concentration at the point (x,y) as
==}
p(i,x,y,t) = J g pli,cit) dac 2.14
o
and the Partial Mean Square Concentration as

s(j,x,y,t) = J c? p(j,c;t) 2.15
0

The development of these moments in time is obtained

by differentiation:

du(j,x,y,t ~ j1Ci

3%(J 'Yat) = J o %%(J'c t) dc 2.16
(o}

a l, m L -

353 xayat) l o2 %%(j,c,t) de 2.17

Substituting Equations 2,10 and 2.13 and integrating

by parts yields

su(j,x,y,t) _ - ou(j,x,y,t
Tt 5 d - Jz-xiju(llxIYIt) = quBX I Y )
A au(jIXIYIt) .
vidy + q(t)p(3)d(x)6(y)
2.18
_a_(jlxIYIt) . s (j,x t
t Dhags g ) - 280 %08

i

a (.' r It . ¥
u 52XV L e Iu .k y 6 (06 (y) 2.1
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Crosscorrelation between the source strength Q(t)

and tracer concentration C(t) at point (x,y).

Tracer material is injected at the origin at a
rate Q(t). If Q(t) is a time-stationary, random function
then Q(t), C(t) and flow state form a composite Markov
process. Hence we may define a probability density
function p(j,q,c;t), such that p(j,q,cit) dg dc repre-
sents the joint probability of the system being in flow
state j, the tracer flow rate having a value between g
and q + dq and the tracer concentration at the point
(x,y) having a value between c and ¢ + dc at time t.

The associated Kolmogorov equation has the following

form : {Appendix 2)

2.21

ap (3 c;t 3 . 2
3%(3"1’ ) = %kkjp(k.q,C;t) - ﬁ{aq(J.q.c;t)p(J,q.c;t)}
d . .
= E{ac(qupcit)p(:l ,q:C;t)} 2
where,
. . o i X .
ag3raseit) = il 7F Blo(t+at)-o(t) |Q(t)=q,
C(t)=c,flow state=j}
o (Grgecit) = 230 L proe =
cdearci iess TE +At)-C(t) [Q(t)=q,
2.

C(t)=c,flow state=j}

Similarly, a transitional probability density function
n(j,ql,c;t+rli,q;t) may be defined such that
n(j,ql,c;t+r|i,q;t) dq, dc represents the joint probability
of the system being in flow state j and the concentration
at the point (x,y) having a value between c and ¢ + dc

and the source strength between q and q4 + dqlat L O

b T e o, T e R e T A, 1 1 e 1) o L
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the source strength had a value g. If the process is time-
stationary this function will be independent of t and the

appropriate Kolmogorov equation becomes : (Appendix 2)

BTT(II lclilq:T) = : q s _
T J#dy = zx]jw(k,ql,cll,q,.r) {u (3., ql,C)ﬂ}
k
RS e 3 - 2.23
5 i o (J,ql c)m}
where,

; R - R - =
afdrdy8) = juy T BIGHEHAR) a(t) |a(t)=q,.,

C(t)=c,flow state=j}

. _ 1im 1 r
a {3ray.0) = i 7p BlC(E+at) - C(e)[Clt)=c,

Q(t)=ql,flow state=j}

The Crosscorrelation between the source strength Q(t)

and tracer concentration at the point (x,y) is defined as

(t T) = zz J J qgc pl{i,g;t,j,c;t+1) dgq dc 2.25
ji ‘o0 i

If the system is time-stationary we define a Partial

Crosscorrelation as :

ATy - ) f J J gc pli,q) W(j,ql,cli,q:T) dg dec dq,
1 *0%g¥0e
2.26

Differentiating Equation 2.26, substituting from

Equations 2.23 and 2.13 and integrating by parts yields :

9. ( ) z % (T)

"ot i 0d.
aTch = ) kj(bch(r) Uyi9% jagc

w2250 LR (s 8 (y)
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where,

R, (1)
Jjagq

Partial Autocorrelation of Q(t)

Z J j 94y p(i,q) ﬂ(j,ql|i,q:T) dg dql
i gy

2 - 28
d.t. S ®. (O) H
j .t C .

nifferentiating Equation 2.29 with respect to t and

substituting from Equation 2.20, assuming the process to

be time-stationary yields: (Appendix 3)
_ 1 90. (o) 28, o)
= Al - =&, = i = N u==]C
© % xJquc(o) Tc ]qC(O) uxgaquc yjayjq
2w B0
+ 1 BN (0)]Q(E)=q}u (G.x,y) + R__(0)p(3)8 (x)8(y)
Tc w aq
where,
qu(T) = Autocorrelation of Q(t).

The source strength Q(t) is the output of a first order
filter (time constant Tc) with input Nw(t)°
Hence the solution of Equations 2.30 serves as initial
conditions for Equations 2.27. A similar set of equations
may be developed for concentration autocorrelations and
crosscorrelations between two points (xl,yl) and (x2,y2).
In order to solve the non-time-stationary
forms of Equations 2.18 and 2.19 in an infinite plane
a numerical approach must be adopted. It will be realised
that each case involves the simultaneous solution of a
number of partial differential equations equal to the

number of allowable flow states. Hence the time consuming

affFArt+ anAd hi~h rAact AF AAaMNAIIFoads-d Arm e a2 m
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complete solution of the abowve equations for a
realistic number of flow states are not considered

warranted.
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CHAPTER ITII

CONTINUOUS STATE SPACE FLOW MODEL.

3.1 VELOCITY PROCESS.

The model is based on the following assumptions:
Firstly,the instantaneous fluid velocity U(t)
is regarded to consist of a mean component u and a
fluctuating component U' (t). Hence

Ux(t) - R + U;(t) o

Uy(t) u_ + U&(t)

y

Secondly, the stochastic processes Ué(t)
and U&(t) are time-stationary and have continuous state
Markov properties as well as Gaussian probability
density functions. (Ornstein-Uehlenbeck processes)
Thirdly, it is assumed that the random
motion 1is isotropic as far as rotations about the
X-axis are concerned; the X- and Y-motions may then
be shown to be uncorrelated. (9) Since their distribu-
tions are Gaussian they are also independent. (10)
Mean of U'(t) :

E{Ué(t)} = E{U§(t)} = 0 3.2

Autocorrelation of U' (t) :

Roy (T) = E{U (£)U) (t+1) } = oéxexP(-Bx|T|)
3.3
Roy(T) 4 E{Uy(t)U;(t+T)} = oéyexp(-8y|T|)
Crosscorrelation between U;(t) and U&(t) :
E{U;(t)U§(t+T)} = o0 3.4

for all T.



22.

3.2 MIXING EQUATIONS.

Neglecting the effect of molecular diffusion dis-
persion of tracer material originating from a point source
at a rate g(t) is described by the following partial

stochastic differential equation :

oC

- - ¢ _ i
36 = 7 U (5% - U (05 + a(t) 8 (x) 6 (y) 3.5

We define a two-sided Laplace Transform by :

L{c(x,y,t)} = INJ C(x,y,t)exp(-sx)exp (-py) dx dy 3.6

Hence
acy 0 po0
L{§§} = exp (-sx)exp (-py) dx dy

00

[ 3] Jo 3
%18

Integrating by parts and noting that C(x,y,t) = o @

X, Y = =%, we obtain
L{—} = sC (S,p t) 3.7
oX £ °

Taking the Laplace Transform of Equation 3.5 we obtain

ac _ = =
gt = = Ug(t)Cs = U (£)Tp + q(t) 3.8

Using the initial condition :

c(x,y,0) = o : c(s,p,0) = o 3.9

this ordinary stochastic differential equation may be

solved to give :

t
C(s,p,t) = f a(r) eXp-{sWX(t,T) + pWy(t,T)} dt 3.10
0

where, N

Wx(t,T) = JT UX(S') dg'

t
W (t,7) = [ U (8') ds!



a1
Inverting the transform of Equation 3.10 gives
t

C-(XIYIt) = J q(T) 5{Wx(tlT)—X}5{Wy(t,T)—Y} dt 3.12
(o}

The corresponding solution for a time-stationary,
random source is :

t
C(x,y,t) = J Q(t) G{Wx(t,T)-x}G{Wy(t,T)-y} dt 3.13
3.3 W(t,t) - PROCESS

In order to obtain expressions for the
moments of C(x,y,t) and compare these with values
determined experimentally we must first derive cor-
responding expressions for the random processes
Wx(t,r) and Wy(t,r). (subscripts x,y are omitted
where not explicitly required.)

Using Equations 3.1 and 3.1l we may write

t

t
W(t,1) = J u(e') de' = J U'(e') de' + u(t-t)
T

T
Mean ml(t,T)

t
ml(t,T) = E{J U'(e') de'} + ul(t-t)
T
t ——
= J E{u'(8')} d6' + u(t-t1)
T

Hence from Equation 3.2 it follows that

ml(t,T) = u(t-T1) 3,15
Variance o] (t,1)
Using Equations 3.14 and 3.15 we may write :

od(t,1) = E{[W(tﬂ)-m (1) |} = E{”t Ut (8 aarla
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Substituting Equation 3.3 and integrating yields :

2
ci(t,r) = iig exp{-B(t-1)} + B(t-1) - 1 3.17.

B
Autocorrelation p(t,rltgz)
Similarly, substituting Equation 3.3 and integra-

ting we obtain

plt,1qit,1,) = E{IW(t.Tl)—ml(t,Tl)][W(t.rz)-vml(t.rz) }

0'2

= g% [28(t'T2) + expl{-B(t-1,) }+ exp{-B (t-1,)}

- expl-B(1,-17)} - l] o> T

It can be shown that if U(t) has a Gaussian
distribution density function, W(t,1) will likewise
have one. This relationship does not hold generally
for ‘distributions other than Gaussian (12) and the
analysis relies heavily on the choice of this distri-
bution. Furthermore, since Ux(t) and U _(t) are independ-

ent the same will be true for WX(t,r) and Wy(t,r).

3.4 MOMENTS EQUATIONS

3.4.1 MEAN CONCENTRATION u(x,y,t)

uix,y,t) = E{C(x,y,t)} 3.19

Substituting from Equation 3.12 yields :

’

t
uix,y,t) = [ al(t) E{§

W (t,r)—x]G W (t,t)-y|} dt
JO nX ky y

3.20

t 0 p oo N N
= J q(T)J J G[Wx(t,T)-X 6[wy(t,r)—y'f(wx,wy,t,r)
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where,
f(wx,wy,t,T) = Joint probability density of Wx(t,T)
and Wy(t,T).

Noting that
f(Wx,Wy,t,T) = f(wx,t,T) f(Wy,t,T) 3.21

and integrating Equation 3.20 yields

t
ux,y,t) = J aglt) £(x,t,7) £(y,t,1) dr 3.22
(o]
where, )
(x-m, )
f(x,t,T) = 1 , exp[- 1x ]
(Zﬂoi ) Zoi
X X 3.23
(y-m,_ )?
(2wcly) chy

If it is assumed that

= = [ 2 = 2 = 2
Bx By B ; 9ox Ooy o and hence
3.24

= = . 2 = 2 - 2
Rox(T) Roy(T) RO(T) P, Oly o]
Equation»3.22. becomes :

t (x-m. )% + (y-m, )2

B(X,y,t) = J ) eXp[— 1x Yy | aq 3.25

2 2
0 2ncl 201

3.4.2  CROSSCORRELATION & (X, ,¥ysX.,¥a,t,T)

The concentration Crosscorrelation between two

points (xl,yl) and (x2,y2) is defined as

¢(X1:Y11X2:Y2,t,'f) = E{C(Xlryllt) C(X21Y2:t+T)} 3.26
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1f the tracer source function Q(t) is time-stationary

we may substitute Equation 3.13 :

t+r bt
st [otpay JURCEREN slwx(t+T,T2)—x2J

G[Wy(t'Tl)—yl] 6[Wy(t+T,T2)—y2] drlde}
Ly

t+1t
= J J E{Q(Tl)Q(TZ)} E{G[Wx(t'Tl)_xl] G[Wx(t+T,T )-Xz]
G[Wy(t,rl)-yl] G[Wy(t+r,12)—y2]} dTldT2

The above equation makes use of the fact that the source
and the flow process are independent.
Taking the Expected Values yields :

t+1 et
Q(xllyllxzryzltrl’) = J J RQ(|T2'T1.|)

3.28

J J G{WX(t,Tl)-xl} G{Wx(t+T,T2)‘X2} f(wxl,wxz) dwxl dwx2

=000

I J 6{wy(t,rl)-yl} 6{wy(t+r,12)—y2} f(w:l,wyz)dw

y yldwyzdtldT
PR e o BN o]
where,
R(|T2-T1|) = Autocorrelation of tracer source Q(t).
f(wxl,wxz) = Joint probability density function for the

pair of Normal random variables Wx(t,rl) and Wx(t+T,T2)

f(wyl'wyz) = Joint probability density function for the

pair of Normal random variables Wy(t,rl) and Wy(t+T,T2).
The above density functions are Normal themselves. (13)
Writing

Mix,1° mlx(t’Tl) 7 mly,l - mly(t'Tl)

2
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91x,1 = T1x €Ty P 1y, T Ty )
I1x,2 = O1x(EFTITR) P O1y,2 T Oy (BTTTy)
b+t )
r {t,T,it+7,1,) = plE,myit+T,Ty) 3.29
X 1 2 5 5
1x,1%1x,2
D(t,Tl;t+T,T2)
ry(t,Tl;t+T,T2)

91y,1%1y,2

and carrying out the integrations with respect to Wep”

W wyl, and wy2 we obtain :

¢(xl,y1,x2,y2:T) =

t+T (t RQ(|12-11|)

—

2
(2mM "014,1 %1x,2 %1y,1 %1y,2

1
t+T,T‘))% (1 - r;(t,r

(1 - r;(t,T t+'r,”f:,_))!5

17 1;

-m )2

1 1x,1

2
- T
1 rx(t'

exp{-

[(xl,
;t+T,T2)

2
1 91x,1

L i 2. oo [ 2
1x,2

o

- _ _ . 2
2rx(t,rl,t+r,12)(x m ) (x,-m ) (x2 mlx,Z) 3
91x,1

(y, - m )2
exp{ - 1 d ly,1

- r? . 2
1 ry(t,rl,t+T,T2)L Y11

. . - - - 2
2ry(t,rl,t+T,12)(y1 mly’l)(y2 mly,Z) " (y2 mly,Z)

o o 2
ly,1 "1ly,2 01y,2

3.30

If both the tracer source function Q(t) and the velocity

process are time-stationary the concentration



28.

crosscorrelation must likewise be time=stationary. In
order to eliminate t from the above expression we

make the following transformation of variables

t -1, =71 -6
1 1 3.31
t + 1T - T2 = T = 62
It is interesting to note that the mean and variance
of the random processes W(t,Tl) and W(t+T,T2) depend
only on the size of the time interval on which they
are defined. Hence we may write :
mlx(T,el) = mlx(t,Tl) ; mly(T,el) = mly(t,Tl)
mlx(r,ez) = mlx(t+T,T2) ; mly(T,e2) = mly(t+T,T2)
3.32
2 = ~2 . ~2 = 52
olx(Tlel) - GlX(tITl) ’ Gly(T,el) Oly(t,Tl)

2 .2 : 2 2
olx(T,ez) = le(t+T,T2) ; Oly(T,ez) Gly(t+T,T2)

The covariance r(t,Tl;t+T,T2) however, depends
not only on the size of the time intervals (t—rl)
and (t+T-T2), but more importantly on the amount
of overlap of these intervals. Hence, since the

amount of overlap is not preserved by the transfor-

mation of variables (Equation 3.31),
r(Trel;Trez) % r(trTlft+TIT2)

This may best be illustrated by considering the case
when el = 62. The time intervals for W(T,Sl) and W(T,ez)
are then identical resulting in a covariance of one.

This situation is clearly impossible for W(t,Tl)

and W(t+T,T2) for any positive value of T. Expressions
for the covariance between W(t,Tl) and W(t+T,T2)
must therefore be derived before the new Variables

A A . maxvw ha ci1ihed+d 114+
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Consider p(t,Tl;t+T,T2) = E{ W(t,Tl)W(t+T,T2)} -

+
Noting that at all times ml(t'Tl)ml(t T'Tz)

T>O ; tZTl H 2

we distinguish three cases :

case A t + 1 >t > T2 2 Tl

case B t + 1 >t > Tl 2 T2
> > >

case C t + T T2 t Tl

From Equations 3.11 and 3.3 it follows that

t+7T ¢t
p(t,Tl;t+T,T2) J J E{u@")u(e'')} de* de*"
T

T2
t+Trt

= j J o) exp{-g(|o'-6"'"[) de' de"" 3.33
T2 ' 0

Performing the integration for each case separately

(Appendix 4) yields

case A
_fg -exp{-BT}+ exp{-B(t+T—Tl)} + 2B (t-1,)
BZ
- exp{—B(Tz‘Tl)} + exp{—B(t-Tz)}]
case B
2
0

o
E—[—exp{-BT} + exp{-B(t+T—Tl)} + 2B(t—Tl)

+ eXp{-B(t‘Tz)} - eXP{‘B(Tl‘TZ)}]

case C
o]

52| -exp{=6T) + expl=g (t41-1))} + exp{-(r,-€)]

2
- eXP{'B(TZ-Tl)} 3.34

Substituting the new variables (Equations 3.31) in

the above expressions yields
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case A 0o > 62 2 61 -1

[—exp{—BT} + exp{—B(ZT—el)} - 286,

'(D,JQ
onN

- exp{-B(1-0,+6,) + exp{Bez}‘

case B O >6, -1 36

1 2
0.2
E% -exp{-Bt} + exp{—B(ZT—el)}— 2B(r—el)
- eXP{‘B(el-GZ'T)}+ eXP{Bez}
case C 62 2 0
0,2
Ol - - - - - -
g; exp{-Bt} + exp{-B(21 el)} exp{=-B (T el+92)}
+ exp{—Bez)} 3.35

Transforming the limits of integration we note that

when Tl = = 61 = =
T = - , 5] = =00
2 4 3.36
Tl - t 7 el = T
T, = t+71, 62 =T
and Equation 3.30 becomes
T/7T
¢(xl,yl,x2,y2:T) = J J RQ(|T—91+92|)
f(xllleTIel;TIez) f(yl'yZ'TIel;TIez) del dez
where, 3.37

f(xl,xz,T,el;T,ez) and f(yl,yz,r,el;T,ez) are
joint Normal density functions of {WX(T,el),Wx(T,GZ)}
and{wy(T,el),Wy(T,ez)}respectively,with
wx(T,el) = Xy WX(T,GZ) = X5 wy(r,el) = y; and

wy(T,ez) =Y, The appropriate correlation coefficients

-t om o d oo Yloce TYT o e Y
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Thus the transformation (Equations 3.31) has elimi-
nated the time,t, from the expression for the cross-

correlation function.

3.5 THE EFFECT OF MOLECULAR DIFFUSION

When the effect of molecular diffusion is
included the following stochastic partial differential

equation describes the dispersion of tracer material :

3C _ _ 1 oC 3%c _ ., aC 32C
% Uxax + Dm - Uyg; + Dayz + g(t)s(x)d8(y)
where,

D = Coefficient of Molecular Diffusion.
The method of obtaining expressions for the mean
concentration and crosscorrelation is exactly analo-
gous to that used for the continuous model without
molecular diffusion; the details have been included
in Appendix 5. The main results are
Concentration at the point (x,y) and time t

t

C(x,y,t) = J ZTTJB%)
o}

—{x—Wx(t,T)}2 - {y-Wy(t,T)}2 a1
4D (t-1)

exp[

Mean concentration at the point (x,y) and time t :

3.38

3.39
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-

\ qg(r)
u(X,¥y,t) =£ .
v i3 g8vD (t-1) O1x Oly
k02 + D(t-T) N (x02 + D(t-T) %
1x ] ly ]
=, 2 = 2
2D (t T)le 2D (t T)oly
~%{02 x + D(t-1)2m _}?
exp[ ! SN 1x = +h0] %%+ D(t=T)m],
2D (t-T)0 %oi + D(t-1) -
X
-%{02 y + D(t-1)2m,_1}2
-1 bt . 5 ly 2 g2 2 d
exp[T——_ 2 +x0 W% +D(t-1)m T
3.40
If it is assumed that
i = . TP T Pt
Bx = By B oox ooy Oo and hence
2 8 . R
O " %y T %1
the above equation reduces to :
t - =
p(x,y,t) = J qu) exp L 2[ %
5 4r{%¥o; + D(t-1)} 2D (t-1) o7 (%07 + D(t-T)
2 - 2 2 e 2
[ {o%x + D(t-v)2m  }* + {ojy + D(t T)Zmly} ]
L 2 2 2 s 2 z
+ _Gl(x + v} +DlE T)(m1X + mly)] dr 3.41
Crosscerralation :
Making the same assumptions as in Equation 3.41 and
writing :
2 o g - il . 2 P I
.1 T uya T " T Tie,2 f Yiy,2 T iz .82
p(Tle ;Tle )
and r = 3 L = . (see Equations 3.29,3.32) 3.43
1,1 Lp2

the expression for the crosscorrelation may be

shown to have the following form :



33.

RQ(IT—81+82|)

T T
O (Xq 1Y rX,y s Yq3T) = [ J
141772742 B e =
/ {(49D) ='(t 61)(T 62){2nol,lol,2

—00_..00

(1-xr?

) %y2

l _l
= 2
e il R e B ey
l l 2 2 l l (l_rZ)_YZ
2 2 2 2 _
Sy ey 8 . (1-r2)y
¥, r2m? 2rm X, m
{%_+§;}—1[{E;+ %x!l}z " 1x,2  _“T1x,2 (1, 1leq
Erk 1 - 1 (l-r?)vy? (1-r?)y oy Bl

=1
1 ol {l_+_;}—l 34 'fg _ rmlx,l r m1x,2
e L rpas a, B iy 1.9 [a % B
a2 i) © {(d~x") %y 2 (Lag*)y 2
2
r {;_+__§% £ i T g ]
OLl Bl (l_rZ),Y O"l Bl (l rZ)L,YZ J l
2 2 2 2
exp- 21 + g + T e ol Zrmly,lmly,Z P S, 0 T
o SRl P (1-r2)y ¢y By
Y m r’m? 2rm y m
[{,_l b bpilye TN 3 Ml ¥s o 1z,1}]
L (1-r2)%2 (1-r2)y %1 B
; i v y rm m
A PR (1~r?)2%y? L (1-r?)y P
? R W Y m r?m A
AT T (Gt ¢ Ay y,2 } a6, de
0 T I - o g (1-r%)2y2 1
where,
@, = 4D(T-Gl) ; a, = 4D(T—62)
By (1-r )Ul,l ; By (1-r )01,2

3.45



CHAPTER IV

EXPERIMENTAL

4.1 GENERAL

"The experiments were carried out in a narrow, Perspex
tank, six inches wide and four feet long, which was provided
wifh an inlet duct (4 inches x 6 inches) at one end. A
double weir arrangement at the other end permitted conti-
nuous withdrawal from the surface and bottom of the tank.
(see photograph on page 34 )

A constant-head tank ensured a steady inlet flow
rate which was measured with a rotameter and controlled
with a one -inch globe valve. Thg water level in the
tank ané-the outlet flows were controlled by the heights of

the two weirs.

4.2 TRACER INJECTION

Tracer material consisting of a water soluble dye
solution was injected at a point through a %¥-inch diame-
ter coppér tube and its concentration at two points fur-
ther downstream was continuously monitored. In order to
ensure isokinetic injection, the tracer flow rate was
measured and the pressure drop across the injection line
was kept constant by means of a small constant head tank
with overflow circulation. (See Figure 4.1 on page 36 ).
The on-off type of the tracer flow was controlled by means
of a shift register circuit (photograph on page 63 ) ope-
rating an 80V DC solenoid valve in the injection line. -
This circuit was capable of generating precisely and automa-
:ically the required pattern of tracer injection.

+3 TRACER DETECTION AND RECORDING

0.2% solution of a watersoluble, green dye was used as

‘acer material; it was an iron complex of l-notroso-2-
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naphthol-6-sodium-sulphonate .and strongly absorbed light
emitted from an incandescent globe. By means of a
system of lenses and attenuators a narrow beam (¥ inch) of
parallel light was focussed across the width of the tank.
On the opposite side a photoelectric cell mounted at the
far end of a tube, was positioned such that only the light
of the parallel beam reached its photosensitive surface.
Two probes were constructed in this way; probe and light
source supports were constructed in such a way that the
concentration at any point in the tank could be monitored.
The photograph on page 38 shows the two probes mounted in
position. The output of the photo*cells was suitably off-
set, amplified, and frequency modulated before being recor-
ded on magnetic tape. (See Figure 4.2 on page40 ) The
taperecorders were capable of operating at four different
tape speeds and of recording two signals simultaneously.
Speed variations of the tape recorders during re-
cording and playback would destroy the required synchro-
nism as well as the accuracy of the time base of the two
signal:. For this remason a special timing pulse genera-
tor was used to record markers on the second track of
each tape for the duration of the run. Each marker con-
sisted of a short burst of a 10 Kc/second signal and for
all runs a frequency of 5 markers per second was used.
In this way the frequency modulated concentration signal at
each monitoring station was recorded and simultaneougly sub-
divided into 0.2 second intervals. Thus, even though

speed variations between the two tape recorders may occur,
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time during the run. Hence the total signal count between

e.g. the 50th and 51lst marker for each tape is a measure

of the average concentration which occured at the corres-

ponding monitoring station in the interval between 9.8

seconds and 10.0 seconds measured from the start of the run.
On playback both the time marker track and signal

track were monifored. The counting equipment consisted

of two scalers and an output controller. (See Figure

4.2 on page 40 ). The arrival of the first timing marker

causes scaler 1 to start counting the signal track. With

the arrival of the second timing marker the input to

scaler 1 is blocked and scaler 2, previously re-set to

zero, takes over the counting of the signal track. Du-

ring this second interval the count of scaler 1 is read

by the printer controller ,which in turn feeds it to an

I.B.M. punching machine; scaler 1 is then re-set to

zZero. During the next time interval the roles of the

two scalers are reversed and the count of scaler 2 is read,

punched and re-set to zero, whilst scaler 1 is cowmting

the signal track. In this way it was possible to obtain

an accurate, digitalised concentration versus time record,

punched on computer cards. Details of the equipment used

for both recording and playback are given in Appendix 8.
The operation of the counting equipment was slow

and in order to obtain maximum time resolution, the si-

gnals were recorded at the fastest tape speed (8% inches

per second) and played back at the slowest speed (ié

16
inches per second).
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4.4 CALIBRATION OF TRACER DETECTORS

From BEER - LAMBERTS law of light absorption it
follows that the output signal due to the presence of
tracer depends only on the total amount of tracer in
the light beam and not on the tracer concentration profile
along the beam. Probes could, therefore, be calibrated
in situ by adding known amounts of concentrated tracer to
a fixed volume of water and making sure that the tracer
was evenly distributed before recording the probe outputs.
By isolating the system from the fresh water supply and
recirculating through a mixing vessel and pump the tracer
was quickly and effectively dispersed. (See Figure 4.1
on page 36 ). Figure 4.3 shows a calibration curve

obtained in this way.

4.5 HOT FILM ANEMOMETER

In order to obtain an independent estimate of the
model parameters derived from tracer experiments, the
water velocity at a point was measured directly with a Hot-Film
probe. It was a standard cylindrical film anemometer
probe (Flow Corporation type B-1¥) and consisted of a
small Pyrex glass rod coated with a thin strip of plati-
num making electrical contact with needle-supports at each
end of the rod. The photograph on page 42 shows details
of the sensor together with a millimetre scale. It was
operated in the Constant Temperature Mode so that the
output was a measure of the current required to keep the
resistance and hence the temperature of the probe cons-
tant. The essential features of the circuit are shown

in Figure A.]l in Appendix 8.
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4.5:1) RECORDING AND PLAYBACK

The output from the hot film probe circuit was
suitably offset, amplified and frequency modulated before
being recorded on a magnetic drum.

The recording drum was 10 inches long and had a
diameter of 7 inches. It was coated with magnetic
oxide and hence its surface was capable of storing di-
gitalised information. Recording heads similar to those
used in conventional magnetic tape recorders were arranged
in groups of eight around the drum with a very small clea-
rance from its surface. Each group of recording heads
was capable of recording and reading from its associated
track an eight binary-number. This corresponded to a
resolution of 1 in 256. Each track could accommodate
1024 numbers (bits) and a total of 32 tracks were avail-
able.

The input signal is digitalised by means of a
9.5 MHz crystal clock signal to be counted for a period
proportional to the incoming voltage. Thus the maximum
allowable input voltage (3 volts) corresponded to a count
of 256. The state of the binary counters is then written

onto the drum by the appropriate group of recording heads

in the correct position of the track. The binaries
are reset before the cycle is repeated. The minimum

cycle time was 100U seconds. A "bit select" feature
allowed one to pinpoint a particular bit on.the drum.

On playback the number in the appropriate bit is read and
transferred to an output register from which it is fed

to an I.B.M. punch machine.
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AsS. 2 CALIBRATION

The conventional way of calibrating Anemometer
probes is to experimentally obtain the Anemometer output
for one known velocity and use these values to evaluate

'C, in the equation

A
2 2
C—U—[I——l]
2
A Io
where : CA - constant
% - Anemometer Qutput at zero fluid velocity
I - Anemometer Output

This method was however found to be wholly inaccurate for
the velocity range of interest and the probe was calibra-
ted directly from O to 0.3 feet per second. For this
purpose a trolley running along two parallel rails above
a long and narrow calibration tank was constructed. The
tank was filled with water and the probe stem was attached
to the trolley such that the probe itself was about six
inches below the surface. The trolley, fitted with
roller bearing wheels, was then pulled along the rails
with a piece of string at a constant speed and the time
taken for the probe to travel 17 inches through the wa-
ter was measured with a stopwatch whilst the probe out-
put was recorded. The speed was varied by attaching

the string to take-up pulleys of various sizes; these
pulleys were fixed on a shaft which was driven by an
electric motor through a wormgear and sprockets and chain
type reduction. A photograph of this calibration equip-

ment is shown on page 46 , whilst the calibration curve is

found on vage 47
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The anemometer output at zero fluid velocity
was checked before and after the run and the equipment was
calibrated immediately afterwards in order to reduce the

chance of instrument drift.



46




v '9ld

'273S ¥3d 14

€0

2:0

Lo

HILIWOKWINY KHIId IOH

JANND NOILVYG1V)

B

0s

0SZ-

'S03S 7910 ¥3d LNNOD KHNHag



48.

CHAPTER V

TESTING OF CONTINUOUS STATE SPACE FLOW MODEL

5.1 GENERAL

The usual procedure adopted when testing a theo-
retical model of a physical phenomenon is to obtain
experimental data of the phenomenon itself or of one
closely related to it in order to:

Firstly, assess the extent to which the model is
capable of describing the data and

Secondly, interpret the physical significance, if any,
of the model parameters.

If the phenomenon has a random character, the
model parameters describing it must of necessity be sta-
tistical in nature. Hence the experimental procedure
must be such that adequate estimates of statistical
quantities are obtained. Such experiments are usually
not only time-consuming but also costly, as automatic
recording and data processing equipment is essential.

In order to limit the experimental effort of this
investigation it was decided to explore only a small
region of the tank with a fixed point of tracer injection
and constant water flow rate.

S.1:1 POSITION OF PROBES

From the basic assumptiongof the flow model it is
clear that the model cannot hold near the free surface or
in the region of the weirs at the far end of the tank.
Consequently probe positionswere chosen such that these

regions, as well as stagnant pockets, were avoided. It



49.

necessarily as severe in other physical situations where
the flow model may be applied (for example : dispersion
in the atmosphere.)

S.1.2 THROUGHPUT AND WITHDRAWAL FLOW RATES

In order to minimise the number of stagnant regions
the two outlet weirs were adjusted so that the amounts
withdrawn from the surface and bottom of the tank were
eqjual. It was anticipated that the flow model would
lend itself to an extension whereby a particle sedimen-
tation process is superimposed on the flow pattern and for
this reason a suitable throughput of fifty litres per
minute was used.

5.2 EXPERIMENTAL DESIGN CONSIDERATIONS

SVl INTRODUCT ION

\

Two statistical quantities were estimated expe-
rimentally

Firstly, the mean response to a rectangular input
pulse of known width at pairs of points, situated down-
stream from the point of injection; this time-dependent
response could be compared directly with predictions of
the continuous state model (Chapter III) through equations
3.25 and 3.41.

Secondly, the concentration crosscorrelation between
pairs of points for a time stationary tracer source func-
tion Q(t); the corresponding model predictions are given

by Equations 3.37 and 3.44.
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Skl THE MEAN RESPONSE EXPERIMENT

A number of parameters controlling this experiment
must be chosen such that adequate estimates of the mean
response curves may be made. They are pulse width, pulse
frequency, run length and sampling interval.

5.2.2.1 WIDTH OF INPUT PULSE

The importance of tailoring the exciting tracer
signal in flow characterisation work has been realised for
a considerable time (14, 15). The essential feature of
this concept is that the frequency content of the signal
exciting the system should adequately span the frequency
response curve of the system itself. Figure 5.1 (page 51}
illustrates how bandwidth and power of the rectangular
pulse vary as a function of pulse width. It is interesting
to note that for a given pulse amplitude the bandwidth can
only be extended at the expense of power. The pulse width is
chosen such that the Power Spectral Density is concentra-
ted over the frequency range of interest.

In the present investigation the system is sto-
chastic in nature and its filtering action will vary ran-
domly. & useful measure of the average filtering action

may be obtained by computing a Bode plot from the Mean

Response curves. (16)

H(w) = G, (w)
G, (w)
where,

H(w) - Bode plot amplitude

Gi(w) - Frequency Content of normalised first
pulse
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G _(w) - Frequency Content of normalised second
= pulse

G{w) and Go(w) were calculated using thetrapezoidal rule
of numerical integration on the Fourier Transform of the
Mean Response curves. (16)

From the Bode plot (Figure 5.2) it can be seen that
frequencies higher than about 1.5 radians per second are
completely filtered out by the system and that the fre-
quency range of interest lies between 0.2 and 1.5 radians
per second.

A second method of obtaining a suitable input pulse
width is to examine the Power Spectral Density of the
velocity fluctuations themselves. This function may be

calculated from the following expression : (17)

PSDy, (W) = 20 8 g 4
82 4 i
where,
oé - variance of velocity fluctuations.
B8 =~ flow model parameter
w - frequency in radians per second

Figure 5.3 shows the normalised Power Spectral
Density plotted versus frequency; the value for B was
obtained from the Hot Film measurements (See Chapter V1).

It can be seen that the frequency at which the normalised
PSD has dropped to a value of 0.6 is about 0.4 radians per
second.

It is interesting to note the effect of frequen-
cy of velocity fluctuations at constant 0; on the dispersive
power of the system. If we focus our attention on a
particular fluid particle and note its velocity at two

instants of time separated by an interval - , the
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correlation between the two values of velocity, when
averaged over a large number of fluid particles, R(T),
will " be higher when the particle's velocity changes slowly
than when it undergoes fast fluctuations in velocity.
The influence of this effect on dispersion may best be
illustrated by considering the case of fully developed
turbulent flow. The dispersive power of the system
may then be characterised by an Eddy Diffusion Coeffi-
cient E: (7) - . _
- 2 L
E = %oo IORN(T) dt _ 5.2
and the response to a Dirac becomes :
X? = 2Et 78

From the above it may be seen that if fluid parti-
cles undergo slow changes in velocity - i.e. the pre-
sence of eddies which persist for a considerable period
of time - the RN( T) versus curve will drop off less

sharply and hence the value of E and X? will increase.

In the present model a low value for parameter B
gives rise to a slow decay of the R(T) versus T curve.
(See Equations 3.3).

The variance of the response to a Dirac in this case
is given by : (See Equation 3.17)

o

oi(t) = {exp(-Bt) - 1 + Bt} 5.4
82

An examination of Equation 5.4 shows that the value
of this variance (Of). increases with a decrease in 8.

In general, the presence of eddies which persist
for a considerable period of time have a dominant effect
on the dispersive power of the system. This must be

borne in mind when deciding on a suitable input signal
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on the basis of a power spectrum of velocity £lne-
tuations.

A pulse width of 1.6 seconds was used through-
out.

SeZ 24 PULSE FREQUENCY

It is well known that the estimate of a statis-
tical quantity of a stochastic process is improved when
the number of realisations is increased. A high pulse
frequency is therefore desirable. On the other hand
in order to compute a mean pulse from such an ensemble
it is important that each realisation can be uniquely
identified. Hence the pulse frequency must be low
enough to prevent merging of individual pulses as they
travel through the system.

Intervals of 9.6, 12.8 and 14.4 seconds between
successive input pulses were used. A typical set of
successive realisations is shown in Figures 5.4.

5.2523 RUN LENGTH

In order to obtain an accurate estimate of the
Mean Response curve, the duration of the run must be
long encugh to incorporate the effect of all possible
realisations of the underlying velocity process.

A practical way of ensuring that even the least
frequent realisations have been adequately included
is to compute the mean response for a number of run
lengths and to note the time at which the shape of the
curve no longer changes significantly. Mean response
curves were computed for a number of run lengths and are
plotted in Figure 5.5. It can be seen that the shortest

allowable run length is about twenty minutes.
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B.2.2.4 SAMPLING INTERVAL

A sampling interval of 0.2 seconds was used
throughout; from the Bode plot (Figure 5.2) it can be
seen to be sufficiently small for the freguency range
of interest. Experimentally it was the smallest inter-
val available and was chosen in order to obtain maximum
resolution of the experimental curves.

B.2.2.3 COMPUTATION OF MEAN RESPONSE CURVE

The Mean Response Curve at each monitoring station

wzs calculated by averaging over the ensemble of rea-

lisations.
1 i=§—l
U _(t) = % C(iP+T) 5.5
ex N L&
Mean concentration values uex(T) were computed for

values of 1 ranging from zero to P at 0.2 seconds inter-
vals.

P = period of input pulse train.

N = total number of pulses.

5.2.3 THE CROSSCORRELATION EXPERIMENT

In order to obtain experimental estimates of the
crossccrrelation between the tracer concentration at
two points in a time-stationary concentration space a
suitable tracer source function Q(t) must be used.

The following requirements must be satisfied:

Firstly, it must be a time-stationary function
and hence have a constant mean and mean square.

Secondly, its power spectral density must be
suitably tailored to the frequency response of the-

system.

Thirdly, it must have a known autocorrelation,
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so that the theoretical expression for the arcsscorrela-
tion may be computed and compared with experimental
estimates.

Fourthly, the function must be conveniently
realisable experimentally.

A Pseudo-Random Binary Test Signal was used for

Q{t), as it admirably conformed to the abowe requirements.

S5e2.3.1 PSEUDO-RANDOM BINARY TEST SIGNAL (18)

It is a two-valued periodic function having ins-
tantaneous amplitude changes only at discrete instants
of time separated by a constant interval, the switching
time 4. A switch need not necessarily take place at
every allowable instant and the switching times are gene-
rated in such a way as to give the signal several useful
properties. If the two allowable amplitudes are zero and
g, the mean and mean square taken over any integral number
of periods will be %g and %qz respectively and are inde-
pendent of the choice of the first interval. Furthermore,
the autocorrelation function RQ( 7) has the same period

Tp and is defined as follows:

i o lal

RQ(T) = %g9<{1l - N d} ;] =g T & @
5.6
xd
a 4

Ryl1) = - g Ao e (Np-l)d

P

where,
T
Np = —g = Number of intervals in P.R.B.S.
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The Power Spectral Density function of a time-

stationary, random signal may be obtained from its

autocorrelation as follows : (15)

PSDQ(wi) = 2 IORQ(I) COS(WiT) dt
2

wid
(N + 1) lSin{—z—}]
} el i

= &q N w.d
P e
2
where,
— %L
wi‘di' ; TR 2R e e

as N tends to infinity,

- wd,y 2
: sin{ 5—}
PSDQ(W) = %q°d -—Egi_—_
2

Figure 5.6 shows a number of Power Spectral
Density functions for various values of 4.
larity between this plot and that of Figure5.l is ob-

vious and a decision time of 1.6 seconds was used for

reasons discussed in section 5.2.1.1

Dedudnd GENERATION OF PSEUDO-RANDOM BINARY SIGNALS

The simi-

The generation of P.R.B. signals based on the
properties of digital filters, is discussed by Briggs

et al. (18). A bit shift register circuit is ideally

%

suited to accurately and automatically operate a solenoid

valve in the tracer injection line according to a P.R.B.

pattern. A photograph of the P.R.B. generator is shown

on page 63 ., Figure 5.7 shows the relevant logic circuit.

Each register of the circuit may be thought of

to contain either 1 or O. They are connected in series
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and during a shift of €the circuit the contents of each
register is passed onto the next one. Furthermore,
Modulo-2 addition between registers is performed by
adding circuits, connected in such a way that the desired
P.R.B. signal is generated. Shifting occurs instanta-
neously and d is controlled by the period of an externally
applied shift pulse. The sequence is started by ehsu-
ring that all registers contain 1 and that a O is inser-
ted into the first register with the first shift pulse.
The choice of a particular P.R.B.S. was not impor-
tant and the same sequence was used for all runs. It
had a period of 63 d seconds and was generated by the
circuit shown on page 64 -

LB o NUMBER _OF PERIODS AND SAMPLING INTERVAL

The run length and hence the number of periods
used in the crosscorrelation experiment was made as long
as was experimentally feasible. Similarly the shortest
available sampling interval (0.2 second) was used.

Experimental details for all runs are tabulated on
page 68.

5.2.3.4 COMPUTATION OF EXPERIMENTAL CROSSCORRELATIONS

A typical concentration versus time curve together

with the P.R.B.S. is shown on page 66 .

Experimental crosscorrelations were calculated

according to:

- cex,lcex,z 343

Il P

¢ex(T) "

1 Cl(ti)Cz(ti+T)

5
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where,

tracer concentration at point
S Ly
i
Fyrdy

and time t = jAt.

Cz(ti) tracer concentration at point
ey
and time t = 1At
n = number of readings correlated.
ex,l = mean tracer concentration at
point x;/¥Y3
over time interval from
£ 5 0EN £ =08t
ki = mean tracer concentration at
point X, 1Y,
over time interval from
b= bo € S nAE T
At sampling interval
Experimental crosscorrelations were computed for
two ranges of the lag T, since the model predicted a
distinct difference for the two cases. The first range
extended from T = O to T = 20 seconds; the second

range extended from T = Tp to T= Tp + 20.secs.



Run 1

MEAN RESPONSE

No. of observations 8169
No. of pulses 170

Duration of run
minutes:seconds 27:10

CROSSCORRELATION

No. of observations =

P.R.B. Signal
No. of decisions =
Dec. interval (sec) =

No. of Periods
correlated =

Duration of run
minutes:seconds =

COORDINATES (F'T)
lst/upper station

xl 0.5

Yy 0.1667

2nd/lower station

X, 0.5

Run 2

9739
203

323229, 8

0.6667
0.1667

0.6667

Run 3

9655
150

32:00

0.6667
0.1667

0.6667

Run 4

7971
124

24:47.2

Q8333
0.1667

O, &334

4 ~0: 1667 =0.1667 ~0.LEGT7 -C.LBBY

2

Run 5

8590
134

Run 6

7692
106

28:35.2 25126.4

9820

63
L6

18

9852

63
1.6

17

32;:44.4 32:50.4

0.25
0.0

0.6667
8

0.25
0.0

0.9167
0.0

Run 7

10059
139

Run 8

7926
123

Run 9

10099
157

Run 10

10484
163

33:11.6 26:14.4 33:29.6 34:46.4

0.25
0.0

1.25
0.0

10332

63
1.6

19

34:26.4

0.25

0.0442

0.6667
. LLVS

8145

63
1.6

14

27:9.0

0.25

-0.0442

0.6667
~-0.1175

8108

63
1.6

15;14
2706
25
0.0917

0.6667
0.2417

(@)
(0]
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5.2.3.5 EVALUATION OF THEORETITAL CROSSCORRELATION

In order to allow for resistance and capacitance
effects in the tracer injection line the square pulses
of the Pseudo Random Binary input signal are assumed to
have passed through a first order filter with time
constant Tc before entering the tank. The Autocorre-

lation of the tracer input function may then be shown

to have the following form: (19)

N +1 T cosh{d/T_ -1}

c 1

R (1) = £— 25 exp{-1/T } - =~ -J 5.lo
where :

d = decision time for P.R.B.S.

Np = number of decisions in P.R.B.S.

Tc = time constant of first order filter

J o o, |T| > d

N +1
« P sinhid-t/T } -
J N 37T c (ivt/d) ., |2ie &

The model predictions of the crosscorrelation were
obtained by performing the double integration of Equation
3.44 numerically. The region of integration extending
from minus infinity to t for both variables of integration
el and 62 was divided up into a matrix of equal rectangles,

The contribution of each rectangle was evaluated using

Simpson's Rule. This procedure was carried out column

by column, starting with the rectangle containing the

upper limits Tt,t . Integration in the vertical direction

was stopped when the contribution of a rectangle was less

than one per cent of the total of its column computed so far,.
(Fig 5.9) Similarly, the contribution of the last column was

less than one per cent of the total integral. The size

of the rectangle was chosen such that the value of the



o

integral did not change significantly when a smaller
rectangle was used.

The computation was carried out on an I.B.M.
1130 machine and proved to be very time consuming.

The model predicts a considerable difference
in amplitude for the two ranges of the lag (See Section
5.2.3.4 and Figure 6.12). This is due to the fact

that for small lags the covariance between W(t,Tl)

and w(t+T,T2) (Equation 3.35) is large in the
same region of the el—,62 - plane, where most of the
probability mass is found. This is shown in Figure

5.9 forlag 71 = 4.0 seconds.
Figure 5.10 illustrates that for large lags
( t= Tp + 4 seconds) the crosscorrelation region in the
el—, 62 - plane containing most of the probability
mass maintains the same position relative to the point
(t +7) as in Figure 5.9. The covariance r(T,el;T,ez)
however, is very small in this region giving rise to

weaker crosscorrelations.

5.4 HOT FILM ANEMOMETER MEASUREMENTS

Seds L GENERAIL

In order to establish a physical significance
for the flow model parameters and at the same time
obtain an independent estimate of their values, the
water velocity was measured directly by means of a
Hot Film Anemometer.

From preliminary calibration expe riments (See
Section 4.5.2) it was found that throughout the velo-

city range of interest the Hot Film Anemometer had no
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directional sensitivity for the two directions at right
angles to the axis of the probe. Furthermore by rota-
ting the probe from a position at right angles to the
direction of flow to a position where the axis of the
probe was parallel to the direction of flow the res-
ponse varied by only 20%. It was therefore decided

to place the probe such that its axis was at right
angles to both the X=-and-Y directions. Its response
was then interpreted as the vector sum of the instanta-

neous velocity components U_(t) and Uy(t) :

he? 2 2 ]
V(t) = {Ux(t) + Uy(t)} 5.11

The probe was situated at the same depth as the
tip of the tracer injection line and 5 inches further
downstream at the centre of the tank. (Figure 6.1).

The Anemometer signal was sampled every 0.167 seconds for

a total period of some 55 minutes.

Two statistical quantities of V(t) were computed,

namely :

£ (v) distribution density function of V(t)

sz(T) = autocorrelation of V2(t)

It is clearly impossible to obtain estimates for
the flow parameters of the individual components from
a knowledge of the statistics of V(t).

Making the assumptions

g = = . = . = =
ox ooy % ! 8x By B i Rox Roy RO(T)

the two parameters o; and B may be determined as

shown in the following two sections.
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- DISTRIBUTION DENSITY FUIN _TION

It can be shown (20) that, if U (t) and Uy(t)
are independent and normal, then V(t) will have a

Rayleigh distribution density function of the following

form :
=8 = ] : L St ;5
(v2+ u + u ) v{uX+ u }
f(v) = = exp —[ ] T Y
gt 20?2 - - i
o} o} o}
where,
Io(z) = Modified Bessel Function of zero order
=7 gl
el e
5.9.5 AUTOCORRELATION OF V2 (t)

The autocorrelation is defined as :
Rz (1) = E{V? (£)V? (t+1) )}

Substituting Equations 5.11 and 3.1 in Equsation 5,13
yields :
( 2 2
R 1 o =
R s (1) E{ (Ux(t)+uxj + [U&(t)+uy} ]

S J
( 2

(U;(t+T)+GX

\2
+ [U&(t+r)+ﬁyj }

Remembering that U;(t) and U&(t) are assumed to be

independent Equation 5.14 may be written as
Boi(5) = E{Uéz(t)Uéz(t+T)} + E{U&z(t)U§2(t+T)}
o 2 9
+ 4uXE{UX(t)U;(t+T)}+4uyE{U'(t)U;(t+T)}

= 2 Y 4
¥ 20 BLU ¥ @)} + 29 L -
“ £ el ) uyE{Uy ()} +uX + u

5.14
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Since U;(t) is a time-stationary random process with
zero mean and Normal probability density function we

may write :

2 v 2 2 oy 2 2 2
I:.{Ux (t)Ué (t+1)} = fmf uxluxzf{uxluxz,(T,GO,B)}duxldux2

==co

5.16
where,

f{uxl,uxz,(T,cé,B)} = joint Normal distribution
density function for U;(t) and U;(t+T).
The integrated result of Equation 5.16 may be conve-
niently obtained by making use of a property of the

characteristic function K(gl,gz,T) r (21)

2 5
I J f{uxl,uxz,(T,co,B)} exp(lgluxl)

—C0—=00

K(Ellgz IT)

exp(i&zuxz) du_, dux2 5.17

g i 2
exp{ 50 (6] + &5 ¢ 2R0(T)€l€2)}

Expressions for the moments are obtained by differen-
tiating the Characteristic Function an appropriate
number of times and then equating El and £2 to zero.

Hence :

2 2
E{U!2 (1)UL (t+1) ) = 2= [E_(x(e.,E,, 1)) 5.18
X X agz 3&2 1 2
2 d
Carrying out the differentiation in Equation 5.18

and equating El and 52 to zero yields

[2Ré (1)

E{ng(t)ugz(t+T)} = e
(oo)

Zn 2
* l] (co)

Similarly,
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ZRé(T)

2\ %
(02)

+ 1

E{U'z(t)U§2(t+T)} =[

Y (a2)*

Substituting Equations 3.3, 5.19 in Equation 5.15

and combining terms not containing T yields

2 2
B Bl o
4RO(T) + 4RO(T)(ux + uy)

\2
+ [E{U;(t)} + E{U§(t)}J

E{Vv? (£)V? (t+1) }

2 2
4Ré(T) + 4RO(T)(G¥ + Gy)

_2 _2 5
+ |20% + U + 1
o X y

I

5.20
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5.3,4. COMPUTATION OF EXPERIMENTAL DISTRIBUTION

R gt
DENSITY f(v) AND AUTOCORRELATION ALY

CURVES.
Experimental readings from the recording drum
were converted to velocities using the calibration curve
shown in Figure 4.4. Thus a.digitalised record (interval
At) of V(t) was obtained.
A frequency histogram of velocities was then
constructed and the distribution density of V(t) was

calculated from the following equation :

H%—l} = Z§ JZVFi““l_ - 5.21
vl L
(See Figure 6.22)
Where,
Fi = Frequency of oecurrence of velocity )
N = Total number of velocity readings.

v

The autocorrelation of V2(t) was computed as follows:

N
. ¥ e 2 T
R,2 (1) = N §=1V (t)V (b +1) =(v?) 5.22

for values of v from O to 100 At at intervals of

At = 0.167 secs.
(See Figure 6.23)

where,
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5.4 ESTIMATION OF PARAMETERS

Se e d INTRODUCTION

In order to estimate parameters from the available

experimental data it was found necessary to assume that :

Bx = By = 5
, ST | Gk
Yox oy %

and hence 5.21

ROX(T) = Roy(T) = RO(T)

|
Q

Oix(t,T) (t,x) = °i‘t'T)

From tracer experiments two statistical quantities
were estimated, namely :

The Mean Response at pairs of points to a rectangu-
lar input pulse. One set of runs involved probe positions
vertically one above the other, whilst in a second set of
runsthe two probes were placed such that they were in a
straight line with the point of injection. Model predic-
tions of Mean Response curves have the following form :

Without molecular diffusion

' {g - m. ey - m )b
px,y,t) = Jj"—(z) exp_[ A 54 ] =

e - 522
oy &ty
With molecular diffusion

i
O J q:r) - -1 { -%

! = = 2 2

2 4w{%ol + Dit=v)} 2D (t T)Ol %ol + D(t=T1)

[{oix + D(t-T)2mlx}2 + {oiy + D(t—T)2mly}2]
- %oi(xz + y?) + D(t—r)(mix + miy)] dt 5. 33

The second statistical quantity estimated from

tracer experiments was the concentration crosscorrela-
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tion between two points. The tracer input function was
a Pseudo-Random Binary Sequence, which is time-stationary
and periodic. The sequence is aésumed to have passed
through a first order filter before entering the tank.
(Equation 5.10). The model prediction of the cross-
correlation for the case involving molecular diffusion
was used to estimate parameters. (Equation 3.44).

Hot Film Anemometer data yielded estimates of
two statistical quantities

Firstly, the Probability Distribution Density
for V(t) : £(v)

WS, vie) = {(Uk(t) + U;(t)}’i 5.25

(V24 U+ Gz) v(Gz+ Gz)!’
A X ¥

f(v) = = exp|- I 1 5.26
g* 202 . o?
) o o
where,
© zj_
o= ]
e 2% (i)t
Secondly, the autocorrelation of V2(t); this
quantity was compared with the following expression:
2 259 =
sz(T) = 4RO(T) + 4RO(T)(ux + uy)
5.27
{20% + -3 + Gz}z
i o Ux Y

The following parameters were estimated

1
]

" X-component of the mean velocity
Ey = Y-component of the mean velocity
oé = Variance of velocity fluctuations
B = Flowscale parameter

qQ = Tracer source strength.
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542 PARAMETERS FROM TRACER EXPERIMENTS

Parameters were estimated from Mean Response curves
using a non-linear regression technique based on a least
squares criterion. (22) The application of this technique
requires that the shape of the function should be sensitive
to small changes in the values of the parameters and that
the parameters are not correlated among themselves. £6
was fcund however, that both model predictions (Equations
3.25 and 3.40) were insensitive to B and this parameter
c¢ould therefore not be estimated from the Mean Response
Experiment.

In order to facilitate the estimation of the four
remaining parameters a new parameter o was introduced.

This parameter arises when the equation underlying the

random process of velocity fluctuations is assumed to

have the following form : (Ornstein-Uehlenbeck process,
23)
du’' (t) : A
T BU' (t) = BNa(t) 548
where,
Na(t) = random process with White Noise properties,

whose Power Spectral Density equals a.
It can be shown (Appendix 6) that this equation satisfies

the properties assumed for U'(t) and that :

203 (See Section 3.1)

B 5.29

Keeping the value of 8 fixed it was then possible to esti-
mate parameters Ex’ ﬁy, a and g by regression for particu-
lar probe positions. The effect of probe positions and

the numerical results of the parameters are discussed in
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Chapter VI,

It was found that the strength 2f the theoretical
crosscorrelation was sensitive to the value of B .
However, due to the complexity of this expression and limi-
ted computer facilities no attempt at regressing cross-
correlation data was made. Instead, a value of B was
estimated by matching peak heights of experimental and
theoretical crosscorrelations, using an iterative proce-
dure. A value of B was assumed and the remaining para-
mzters were obtained by regressing on a number of Mean
Response curves (see table - on page 68 ). A new
value of B was then obtained from crosscorrelations by
matching peak heights, using average values for the para-
meters obtained by regression. Mean Response regressions
were then repeated.

This procedure yielded a value of B = 0.3;
this value together with a set of average values for the
remaining four parameters gave reasonable correspondence
between theoretical and experimental crosscorrelations
(Figures 6.12, 6.15 and 6.18).

It

uex(ti)= experimental mean concentration,
and the first and last value of the Mean Response curve
occur at times to and tn respectively, then the non-

linear regression technique seeks to minimise the following

function :

s0s = ) tu, (£,) - wix,y,t;) )2 5.3
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where, u(x,y,t) is given by Equations 5.22 and 5.23.

The method involves evaluations of ypi{x,y,t) as well as
its derivatives with respect to the parameters for values
of ty from tO to tn. Simpson's rule of numerical inte-
gration was used.

It was found necessary to slightly modify this
technique when applied to both Mean Response curves simul-
taneously. In this case two pulses contribute to the sum
of squared errors :

S0s = SOS. + S80S 5.31

(1st pulse) (2nd pulse)

In order to prevent a bias towards the pulse with larger
amplitudes i.e. the pulse measured closer to the point
of injection, the contribution of the smaller pulse was
increased with a correction factor. Smooth curves (24)
through the experimental points were computed with the
aid of a digital filter and the ratio of the variance
of the larger pulse to that of the smaller pulse was
considered to be a suitable correction factor. (Page 88).
The rectangular input pulse (amplitude g ) was
assumed to have passed through a first order filter with a
time constant of 0.0l seconds before entering the tank
(see Section 5.2.3.5).

Hence :

gq(t) q[l - exp (-100t) ) @ S &8 LB

qg(t) q[exp{-lOO(t—l.G)}— axpl=100t}|; € » 1.6

5.23
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5.4.3. PARAMETERS FROM THE HOT FILM EXPERIMENT

The statistical quantities calculated from a direct
measurement of the instantanecus velocity at a point

provided an independent measurement of the following para-

meters :
oé = variance of velocity fluctuations
B = flow scale parameter
-2 o2 .
u_ + u_ = sum of squares of mean velocity components.
X Y

Best fit values of parameters

e _2
02 and {u_ + u}
0 X v

were obtained by regressing the experimental distribution
density function of V(t) using Equation 5.26.

The Autocorrelation of V%t) may be conveniently
split into two parts; firstly,

A transient part, where 1ts value is strongly

dependent on the lag T, secondly,

R 2(T)  for large values of T . From Equation

5.27 it may be seen that this value tends to
_2 _2
{202 + U+ u }?
o X Yy
Parameters 0; and B were estimated from the transient

part of the experimental sz(T) curve by regression using

T- dependent terms of Equation 5.27.
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CHAPTER VI

RESULTS AND DISCUSSION

6.1 TRACER EXPERIMENTS

The tracer experiments may be conveniently divided
into three groups according to the positions of the moni-
toring stations relative to the point of injection.
Figure 6.1 shows the positions of the two probes for each
run., it will be noted that the point of injection was
fairly closely situated to the inlet duct and was kept in
the same position for all runs. Furthermore, it can be
zeen that the region of the tank explored was relatively
small, ({(See Figure 4.1)

In each case the results are compared with the
continuous state flow model including the effect of
molecular diffusion. A value of 0.1 x 10~/ ft2
per second was used for the molecular diffusion coeffi-
cient.

§.1.1. GROUP 1.

In the first group the probe positions are verti-
cally above one another and equidistant from the point of
injection (Figure 6.1). For each of the first three
runs parameters ﬁx, Ey’ a and g were evaluated by regres-
sing on both Mean Response curves simultaneously using
Equation 5.23. Figures 6.2, 6.3 and 6.4 show that the
model can adequately describe Mean Response curves for
these positions. The flow parameters u, E&, and q
remain reasonably constant, whilst the agreement between
the measured source strength and the value for g obtained

by regression is fair. (See table - on Page 88 ).
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Figure 6.5 shows the Mean Response curves for Run 4
together with their model predictions. The prediction for
the lower station is clearly inadequate; this may be
attributed to the fact that its position lies in a region
with different flow characteristics. This is confirmed by
a comparisan of the parameter values obtained from regres-
sions on each Mean Response curve individually. (Figures
6,6 and 6.7).

The model predicts zero crosscorrelations and this
fact was confirmed experimentally.

6.1.2. GROUP 2.

The second group of tracer experiments was carried
out with the probe positions along the X-axis. The first
probe was kept at a distance of three inches from the point
of injection, whilst the second probe was placed at a .

number of positions further downstream (Figure 6.1).

The Mean Response curves for these positions contain
very little information concerning E&, the Y-component
of the mean velocity, since both probes have the same Y-
coordinate. Parameters Ex, o and g were again evaluated
by regressing on both Mean Response curves simultaneously.
An average value of'ﬁy obtained from the first group of
tracer experiments was used in these regressions.

From Figures 6.8 and 6.9 it can be seen that the
model is capable of describing the experimental Mean
Response curves and that the values of the flow parameters
are in good agreement with each other and with those of

group I. There is, however, a considerable difference
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in amplitude between the theoretical and experimental
curves for the second station of Run 6. An examination

of the parameters obtained from an individual regression

of this pulse (Figure 6.10) shows an excessively high
source strength g and good agreement for the flow para-
meters. Hence, even though the fit is excellent, little
reliance can be placed on the estimation of the source
strength from a single pulse regression. Figure 6.11
shows a comparison of the experimental Mean Response curves
for Run 7 with those predicted by the model, using average
parameter values obtained from previous regressions.

Noting the large difference in amplitude and spread between.
the two pulses the model prediction is considered to be
very good.

Figures 6.12 and 6.13 show comparisons of predicted
and'experimental concentration crosscorrelations. The
values of the parameters are the same as those used to pre-
dict Mean Response curves. The effect of correlation
between W(t,Tl) and W(t+1,12) is clearly illus-
trated by the higher amplitudes obtained for small values
of the lag T. (see Section 5¢2a3ab)
6.-1=3s GROUP 3.

The third group of runs was carried out with the
probes positioned such that they were on straight lines
radiating from the point of injection at angles of 100,
20°, and - 10° with the X-axis.

Parameters obtained from a regression on both Mean
Response curves of Run 8 are in good agreement with those

of groups 2 and 3 (Figure 6.14), whilst Figure 6.15 shows



PARAMETER VALUES OBTAINED FROM TWO-PULSE REGRESSIONS.

gq

qmeasd.

correction

factor

RUN 1

0.093

0.0113

0.00557

0.000836

{0 3)

0.182

0.247

7.0

RUN 2

0.097

0.0117

0.0048

0.00072

(0.3)

0.197

0.247

2.5

RUN 3

0.0973

0.0091

0.0073

0.0011

(0.3)

0.314

0.3

L. ¥

RUN 5

0.092

*
(0.011)

0.00545

0.000818

(0.3)

0.24

0.3

20.0

RUN 6

0.090

(0.011)

0.0058%7

0.000896

(0. 3)

0.303

0.3

5.0

*
( ) value kept

regression for

k%

RUN 8

0.094

(0.011)

0.0067

0.00102

(0.3)

0.295

0.3

14.0

see Appendix 7.

Parameter values

used in

MODEL PREDICTIONS.

0.096 ft./sec.
@.01L1 @ £t./s5ec.
0.006 ft% /sec.

0.0009 ft2 /sed.

constant in

remaining parameters.

‘88
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satisfactory model predictions for the concentration
crosscorrelations. Runs 9 and 10, however, show some
discrepancy between the predicted and experimental

curves. (Figures 6.16, 6.17, 6.18 and 6.19); it may

be attributed to the fact that probes were situated at
points with different flow characteristics. This is
especially true for the second probe position of Run 1O
which was observed to experience occasional intervals

of near stagnancy. (Figure 6.1). All predicted curves
are based on the same set of parameters.

6.1.4 EFFECT OF MOLECULAR DIFFUSION

In order to investigate the effect of molecular
diffusion parameter values obtained from regressions on
Mean Response curves using Equation 5.23 (with molecular
diffusion) may be compared with those using Equation
5.22 (no molecular diffusion). From Figures 6.20 and
6.21 it can be seen that the simpler model without mole-
cular diffusion is equally capable of describing Mean
Response curves. Furthermore an examination of the table
below shows that the values of the parameters obtained by

regression are practically identical for the two cases.

WITH MOL. DIFFUSION NO MOL. DIFFUSION
Run 1 Run 2 Run 8 Run 1 Run 2 Run 8
0.093 0.097 0.094 0.093 0.097 0.094 ft/sec

0.0113 0.0117 (0.011) 0.0113 0.0116 (0.011)ft/sec
0.00557 0.0048 0.00677 0.00556 0.0048 0.00676 ftz/sec
(0.3)  (0.3) (0.3 0.3 (0,30 ©.3 bee
0.182 0.197 0.295 0.182 0.197 0.295 *

(*see Appendix 7)
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The molecular diffusivity is a measure of the power
associated with molecular vibrations and its value (0.1 x
lo‘7ft2/smay be compared directly with the power of the velo-
city fluctuations given by Equation 5.1. The values differ
by a factor of the order of lO6 and it is therefore not sur-
prising that molecular diffusion has a negligible effect on
dispersion. This is likely to be true for all liquid flow
systcis with a similar flow structure, since molecular dif-
fusivities do not vary a great deal from liquid to liquid.

In gas flow systems, however, molecular diffusion will play
a more important role, as diffusivity values are of the order
of lO5 times greater.

The following table shows parameter values obtained
by regression on a single Mean Response curve (Run 4, second

station) for a number of values of molecular diffusivity.

Mol.Dif. u uy o B q s0s

0.1 x 10”7 0.106 0.011 0.00766 0.3 0.329 0.689
0.1 x 100% 0.106 0.011 0.00763 0.3 0.329 0.693

0.1l x lO—2 0. 106 a.0ll 6.00432 0.3 0.326 0.778

It can be seen that the value of % decreases as D
increases in order to accommodate the same amount of spread.

6.2. HOT FILM ANEMOMETER RESULTS

Figures 6.22 and 6.23 show the results obtained from

the Hot Film Anemometer experiment. The value of
1 A
{ux + uy}% from a regression of the distribution

density function of V(t) was used in the estimation of

from the Autocorrelation of V2(t). (Figure 6.23).
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The table below shows a comparison of parameters
P2 =2
{a, * uy}%, o oé and B

for the various methods of parameter estimation.

2 =2 =2k
a 9, B {uX + uy}
tracer experiments 0.006 0.0009 0.3 0.0961
distribution density £ (v) - 008314 - Q=115

0.0196 0.00532 0.544 0.115

autocorrelation R_, (1)
v 0.0251 0.00633 0.505 0.0961

It can be seen that, whereas there is reasonable
agreement for the values of (Ei + 532,);5 and g obtained
from tracer experiments and Hot Film Anemometer data,
parameter estimations of o« (and hence cg) for the two
methods differ widely. A number of reasons may be
suggested :

The model only accounts for velocity fluctuations
in the X-and Y- directions, whereas the Hot Film probe
is affected by all three velocity components.

As mentioned earlier (Section 5.2.2.1) low fre-
quency velocity fluctuations have a dominant effect on
dispersion. It was shown that dispersion is related to
the area under the RO(T) versus T curve rather than to
the variance of the velocity fluctuations. This may be
further demonstrated by a consideration of the case where
the velocity fluctuations {Uu' (t)} have White Noise
properties (Wiener process, 25 ). The variance of

position X 2(t) is then given by:
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where,

0, = Power Spectral Density of U' (t)
whereas. the variance of the velocity fluctuations them-
selv~s is infinite.
In order to show that the addition of a low power,
high frequency Ornstein-Uehlenbeck velocity process has a
negligible effect on dispersion, but makes a noticeable
difference to the variance of the velocity fluctuations,

we assume :

u'ie) = Ui(t) + Ué(t) 6.1
and
:ﬂ”i (t)
ket } ! Y = 1
at * BT e !
6.2
dﬂé(t)
S i L] 1 A L
dc + ByUy () BzNai
(see Appendix 6)
where,
Bé = B and aé < ai 6.3

If we further assume U'4(t) and UE(t) to be uncorrelated,

the autocorrelation of U '(t) becomes :



a]‘.B].. i aésé ( “rg e 8 8
B () = =5 exp(—BlITI) + 555 exp(-B|T])
1 1 1 ]
. %R " o Hit
¥a T T 7

(see Equations 3.3, 5.29)

Similarly, the variance of the mean response to a Dirac

input Is =

Q
-

oi(t) = EI {exp(—Bit) -1 + Bit} +
%)
E; {exp(-th) -1+ th}

The contribution from the velocity Ua to the total

6.

6.6

variance measured with high frequency response Apemometer

equipment is dominated by the product 0,8,

seen from Equation 6.4; however its contribut}on to

]
tracer dispersion is dominated by the ratio gT
2

Bearing in mind the inequalities 6.3 it can be seen that

3£

al o
. then 2 1
GlBl = aip? S
2 -2 A i | 82 Bl
Thus the low-power high-frequency process Ué has no

effect on the measured dispersion but a large effect
on the measured variance of the total velocity process.

If it is assumed that parameters obtained from
tracer experiments are estimates of di ' Bi i.e.
parameters of the velocity process which has a dominant
effect on dispersion, we may write :

Variance of Ué(t) = Oé (Hot Film Anemometer)

- oé (tracer expts.)

as can be
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The lack of fit of the distribution density
function f(v) (Figure 6.22) indicates a weakness in the
assumptions that velocity fluctuation components are
normally distributed and that their statistical para-
meters 0; and B are equal.

In conclusion the results show that

Firstly, the continuous state flow model is capable
of describing dispersion in a relatively small region of
the tank.

Secondly, the tracer experiments were insensitive
to molecular diffusion and high frequency velocity fluc-
tuations.

Thirdly, the various methods of parameter estima-

tion yielded reasonably consistent results.



MEAN CONC.

2
d,= 0.008238

SECS

U, = 0093

u, = 0.0113 = 03

o< = 0.00557 q= 0182 (measd. 0.247) —— MODEL(regressed)

RUN 1

- o

o o0 © 41

station Lower station
-1.6 1 04
08 1.0-2
| L CDQ@O——-
2 2 9 10
FIG 6-2 SECS



MEAN CONC.

L 2.0

L 0.4

Ux=ﬂ-09?
Uy= 0.0117
oc=0.0048

upper

2
T, = 0-0072

{3=0-3

qQ = 0197 (measd. 0.247)

station

+02

MODEL (regressed)
RUN 2

lower station

Secs.

Secs

n B



CONC.

MEAN

MODEL (regressed)

2
200973 g, = 0001
£l e RUN 3
=0.0073 Q = 0-3M4 (measd. 0-30)
[o]
o
[}
o]
upper stalion lower station
-3
L 2
[}
[o]
[o]
[e}=]
el o
(o]
[o]
[o]
°o°°°
o
o? °ooo°°
00 o
0000
1 12
HECS. F1G.6-4 SECS.




MEAN CONC.

-1-6

-0.8

a
U - 0.096 @, = 0.009
Uy= 0011 (3 =03
o= 0-006 q =03

upper station

MODEL(predicted)

RUN &

lower station

Qo0
%o
o
o
4]
o
e O
© o
o0
]
o
00
o
o0 Og
o
%o
. L 1 0%
10 14
SECS

F1G.6-5 SECS:

a



MEAN CONC.

N U, = 0.0855
Uy- 0.011
o.=s 0-00913

-0-8

-0-4

- 02

—— MODEL(regressed)

a
J, =0.00137 RUN ¢
B =03
q = 0272 Imeasd. 0.3)
tower station

10 12 14 1
SECS.

FIG.6:6




MEAN CONC .

. RUN &
Uy =0.106 0,=0.00115
UY = 0.011 =0.3
.= 0-00766 q =0.329 (measd. 0.3)
)

2.0

upper statjon

L0

SECS.

FIG.6-7

— MODEL(regressed)




MEAN CONC

U = 0.092
X
Uy = 0.011
1= o
oL = 0-00545
(o]

[ 5.0 first station

2
g,=0000818

[3:0,3

q =0-24 (measd 0:3)

L 2.0

——— MODEL (regressed)

RUN 5

second station




MEAN CpNC

=

]
U =oon 0,=0-000836

U, = 0.090 @=0
o( = 0-00537 q =0

first station

3
303 (measd 0-3)

————MODEL (regressed)

RUN 6

second

station

SECS.

SECS.




MEAN CoONC.

U =0.0056
x
UY‘ 0-oNn

o = 0-00674

2
d, =0-00101
{3 = 03
q =0.408

——MODEL(regressed)

RUN 6

sacond station




MEAN CONC.

b= nas -1_ .
Uy = 0038 oo =0:0000 — —MODEL (predicted)
\_ o JV=G-5'II1 '{J_) = 0:3
12-0 D00 = 03
P RUN 7
-8:0 4
1.5

first station second station

SECS,



(s323s) 2 be)

Zrro'gl4d

8

T T— H

*

O&“X xx On

L DL ..._.wqu |

: 0-81

g 091
.5} Sebey M TLdX3  xxxx
130N — — —

| ] SNOILYT34 ¥00SSO0N) ’
5 mmﬂ_ N 11dX3 o000

13A0N

(3 0%t ) ¢




106

p.+n__.”mmm;

] ”mmm_M

ELrgg9gl4d

" * o+ nmunmu.._.mm_
X % X oL B 9 W\\
a T 1 i I ]
1/
2 o
o O o
9 NN¥
a > £
Q L o .
"MLdXI xxxx .
THB0 0N~ — —
e 0°Zi
"11ldX3 o000 2
130 0K SNOILY 13¥¥025SS0MD

(3 9% %% sy q)



MEAN CONC

| 8.0

I T T T [ ¥

2
Uy=0-094 0,=0.00102
Uy=0.011 =03 —— MODEL(regres sed)

oL=0-00677 q = 0-295 (measd. 0-3)

9 RUN 8

+2-0

first station second station

E
SECS- FIG.6-14 SECS




T -

L 16.0

43(’(”;/'.5(2,;-’2; )

CROSSCORRELATIQONS

MO DEL
EXPTL.} e i
~—— MODEL } tagsiTt
xxxx EXPTL. 4

RUN 8

4

lag T (secs)
FI1G.6.15







'$23S

'S03S

uoljeys PpuoOdas

OL NN ¥

(paid21pasd)13A0OKW

] {K A

uotyeys 1sJiy

€-0
£-0
60000

b
9
0

0-8-

900'0 =0
Zo.a.»: i

96 0-0="n

0E-

ONDOJ NVINW



CROSSCORRELATIONS

——— MG aOEL

xa¥ EXPIL -

—— - MODEL
o-a b UENAIINL

RUN 9

llags:’f

} lags: Tp-r 1




(P(",,Y,,*.,Yl;t)

CROSSCORRELATIONS

—— MODEL
EXPTL.} lags: T

-— —-MODEL
} lags: T+

xxxx EXPTL.

RUN 10

o~

L

lag T (secs)

F1G. 6-19




MEAN CONC,

WITHOU T MOLECULAR DIFFUSION

Oo

1.6 station

+0-8 +0.2

0o

T t 1

—— MODEL (regressed)

RUN 2

lower station

F1G.6-20







T e T T == T

MODEL (regressed)

F1..PER. SEC.

FIG 622



$0.4

AUTOCORRELATION OF

| | | A

T I

MODEL(regressed)

2
Q, = 0.00532

@= 0.544

NC=14500

2
V(t)

4
lag N Lsecs)
FIG. 623




117.

BIBLIOGRAPHY

l. Lumley J.L. and Corrsin S. Advances in
Geophysics 1959 6 179. Edited by Frenkiel and
Sheppard. Acad. Press Inc. N.Y. 1959.

2. Taylor G.I. Proc. London Math. Soc. Ser. 2
1921 20 196.

. Bharucha-Reid A.T. Probabilistic Methods in
Applied Mathematics. Volume 1, P 94. Academic
Press 1968.

4. Krambeck F.J., Shinnar R., Katz S. I and EC
Fundamentals, 1967 6 276.

5. Taylor G.I. Proc. Roy. Soc. 1935 151 444.

6. Doob J.L. Selected Papers on Noise and Stochastic
Processes. Edited by Wax N P, 351.

3 Taylor G.I. Proc Roy. Soc. 1954 223.

8. Cox D.R. and Miller H.D. The Theory of
Stochastic Processes. P. 183 Methuen.

9. de Karman T. and Howarth L. Proc Roy. Soc.
1938 164 182,

10. Papoulis A. Probability, Random Variables and
Stochastic Processes. Chapter 8. P. 255.
McGraw-Hill 1965.

Ll King R.P. Chem. Eng. Sc. 1968 23 1035.

12. Doob J.L. Stochastic Processes. Chapters 2,
: Wiley New York 1953.

13. Doob J.L. J. Appl. Math. 1942 43 357.

14. Dreifke G.E. Sc.D. Thesis, Washington Universi-
ty, 196, P« 132,



36,

l6.

iZ.

19.

20.

& 48

23 -

235

24.
23

L 3145

BIBLIOGRAPHY (Continued)

Everson R.C. Ph.D. Thesis, University of Natal,
Bouth Africa; P« 50,

Clements W.C. Schnelle K¢B= I and E,C. Prot.
Des. and Development 1963 2 2 94.

Brown R.G. and Nilsson J.W. Introduction to
Linear Systems Analysis. Chapter 12 P. 329.
Briggs P., Hammond P. Hughes M. and Plumb G.
Proc. Inst. Me¢h. Eng. 1964 = 1965 79 Part 3H.
Roberts P.D. and Davis R.H. Proc. I.E.E., 1966
g F30.

Papoulis A. Probability, Random Variables and
Stochastic Processes. Chapter 7 P. 196. McGraw-
Hill 1965,

Middleton D. Statistical Communication Theory.
Chapter 7 P. 338.

Law V.J. and Bailey R.V. Chem. Eng. Sci. 1963,
A8, 189.

Ornstein L.S. and Uehlenbeck G.E. Selected
Papers on Noise and Stochastic Processes. P. 93.
Edited by N. Wax. Dover 1954.

Bellman, R. Quant. Appl. Maths. 1957 X4 353,
Papoulis A. Probability, Random Variables and
Stochastic Processes. Chapter 14 P. 502.

McGraw-Hill 1965.



119,

APPENDIX 1

EDDY DIFFUSION MODEL ** ERROR ESTIMATION

The error incurred by the application of
the Eddy Diffusion model to tracer experiments carried
out in this work may be estimated as follows :

From Taylor (2):

o 2 t L
k) = 200 RN(T) drt drl l.A
0’0

If RN(t).reaches zero at T = t; and t > t;, we may

write :

3 Tl £ tl Tl
[ Jo RN(T) deTl JO{JO RN(T) dr + Jt RN(T) dT}dTl

)

) : 1.B
= At - jOJT RN(T) dt dTl

where, t1 :

A= J RN(T) dt

0
The last term of Equation 1.B may be split up as
follows:
t t1 5 e
[OIT RN(T) deTl = Jo f RN(T)deTl + J f RN(T)deTl
1 o | W L
s Ll S
Since the value of T, ranges from tl to t and t>tl,
the last term of Equation 1.C equals zero. From
Equations 3.3 it follows that :
Ry (1) = exp{-B|t|} 1.D

Substitution of Equation 1.D in Equation 1.B fol-

lowed by integration yields

-, 2 oé 1 ‘
X H(t) = R i€ = _8 (1- expft,) + tlexp(-etl)}
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Since the Eddy Diffusion model implies : (7)

- 2
X2 (t) = 20At = du L

B

the percentage error becomes :

|- % {1r- exp(-Btl)}+ tlexp(-Btl)I

1 100

t - E{l - exp(-Btl)}+ tlexp(-Btl)
Substitution of the following values in the above
expression glves a percentage error of 30%.

B OX tl = 8 secs. (see Figure 6.23)

.
[

t = 10 secs.
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APPENDIX 2

DERIVATION OF KOLMOGOROV EQUATIONS FOR

DISCRETE SPACE MODEL

The transition probability density function

ﬂ(j,cz;to+r|i,c t ) is defined such that

ll
l;to)dc2 represents the probability that
at time to+T the flow is in state j and the concentration at

n(j,cz;to+r|i,c

Xy 1Yy has a value between c, and c2+dc2 knowing that at

time to the flow was in state i1 and the concentration at the

11Yq had a value -

If the source strength g(t) is known flow state

point x

and concentration form a composite Markov Process and

hence we may write the Chapman-kolmogorov eguation :

n(j,cz;to+T+AT|i,cl;to) =

_ 2.2
Eimﬂ(3’c2;to+T+AT'k’CZ_AC;to+T)ﬂ(k’cz—AC;to+T|i’cl;to) dAc

Assuming first and second order derivatives to exist the

integrand of Equation 2.A may be expanded in a closed

Taylor series about c,

ﬂ(j,cz;to+r+Ar|i,cl;to) =

o0

n(j,c2+Ac;tO+T+AT[k,cz;to+r)n(k,cz;to+r|i,cl;to) dAc -
ooa o0 2
Y| =1 (0)m, (0) }Ac dAc + ZJ {my ), (8 )} Ac
R "1 k! ac? L

where,
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— 2 i . . +
nl(elk) = ﬂl(],cz+elkAC,to+T+AT!k,Cz,to T)
ﬂ2(92k) = ﬂz(k,c2-62kAc;to+T|1,cl;to)
0O € elk, 02k &

Integrating the first term of Equation 2.B and rearranging

the second and third terms yields :

ﬁ(j,cz;to+T+AT|i,Cl;to) =

gﬂ(j§to+T+AT|k,Cz;to+T) ﬂ(k,cz;to+T|i,cl;to) -
a rm 5 - L) —
E ;:—{NZ(O)J ACﬂl(j,Cz+AC,tO+T+AT|k,C2,tO+T) dAc}
2 ~—co
a2 (% yat 258
E - Z{J 5— Ty (8,,) T,(8,,) dAc}
oC2 (0]

Since the probability of a change in flow state is independent
of concentration and assumed to be time-stationary we may

write :
ﬂ(j;to+T+AT|k,c2to+T) = m(j]| k:AT) 2.D

where,

T(j|k:At) = Sy ¥ AeyhT + O(8T) 2.E

Furthermore, since the concentration at the point x2,y2

and time tO+T has the value c., and the flow is in state

2
k, the second term of the RHS of Equation 2.C may be

written as : (integral part only)

“ 9C
2 :
J = AT ﬂl(j,02+AC;to+T+AT'k,Cz;to+T) dAc

[}

N
0|

provided At is small.

Qx

c
ra is evaluated at time tO+T and flow state k; hence

N

|

Q>
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3c2 acC 8c2 7

=T o = i 3 t) 8 i

5T Gy S by aes h gltiateraiy
= a(k,cz)

Similarly, the third term of the RHS of Equation a.C

may be written as : (integral part only)
T allkey)
J e Al AT ﬂl(alk) n2(62k) dAc

and 2.F becomes

a(k,cz) AT
Substituting Equations 2.D, 2.E, 2.F and 2.G in
Equation 2.C , dividing by At and letting A1>0 ,
yields the following Kolmogorov equation

8"(j,c2;to+1|i,cl;to)

i) P - ; o+ i .
= %Akj n(k,cz,to+1|1,cl,to)

- & {a(Gie)m (3,0 ittt c

s 3}
8c2 o)

1
The Kolmogorov equation associated with p(j,c;t) is
obtained by multiplying each term of Equation 2.H by

p(i,Cft), integrating over all values of ¢, and summing

1
over all possible flow states i.

Writing
we obtain

ap{j,c:t 9 i j
3% Jicit) _ %Akjp(k,c;t) - sxla G, e)p(i,cit)}

2-

@
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Similarly, a Kolmogorov equation associated with vilj.g.63%)

may be derived; it has the following form :

aE(jlqlc;t) = z
ot

: - P

2,Jd

=la_(3,0)p(§,a,cit)}

where,

aq(j,q) E{%%i5)|Q(t)=q, flow state = j}

For the case of a time-stationary random source function
Q(t) the following Kolmogorov equation will hold :
%%(J,ql,c|i,qzr) = Z Akjﬂ(k,ql,CIi,q:T)

k

] : ;
- 5al{aql(3.ql,C) m(3.,9y.c]i,q:1)}

3 . . .
- = {ac(J,ql.C) ﬂ(J.ql.C11.q:TH 2.K
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APPENDIX 3

DERIVATION OF EQUATION 2.30

The partial crosscorrelation is defined as :

(0) = J J ge plj.g,01t) dq dc 2.A
°

?,
jqe .

Differentiating Equation 2.A with respect to t and

substituting Equation 2.20 yields :

FEJSE—— = Jmfw gc 2 ijp(k,q,c;t) dg-de-—
(o}

J‘ _3__‘[01. (j,9,cit)pli,g,c; 3k)} dq do -
‘et o 9q

rm

o0
qc i—{a (3,.q.0:6)p(d,q.,65t)} dq de 2.B
Yt 9T —C

Substituting Equation 2.2 and integrating by parts :

LR ) q=
c q@q(jQC:t)p(j.q.c;t)‘

_EJL = N =
9 % k3¢ch(o) Jo
q=0

Q@ ™ L c=m
+ n : , o
JoJocaq(J'q'cft)P(J'q'C;t)dqdc -Joq ca (j.a,citlp(i,a.cit] dq

c=0

+ J J quc(j:q,cit)p(j,q,c;t) dqg dc 2.C
0’0
where,

aq(j,q,c;t) and ac(j,q,c;t) are defined by Equations
2.21 and 2.22,
If Q(t) is obtained from the output of a first order

filter (time constant Tc) with input Nw(t), we can write :
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do(t) = N (& 2.D
Tc at + Q(t) w( )
Since the value of the source strength at time t does not
depend on the concentration at point (x,y) at time t,

Equation 2.21 becomes :

aq(j.q,c;t) = E{%%LE)|Q(t) = q, flow state = j}

From Equation 2.D it follows that :

. _ 7 - i I
aq(J.q.c:t) = @; E{Nw(t)|Q(t) q} 2.E

From Equation 2.22 it follows that :

9 9cC
ac(ijvcit) = = u < -

bR — 2.F
i TF uyj 5y + q(t)6(x)s(y)

Since p(j,»,c;t) = p(j,q,~;t) = O, the second and
fourth terms of the RHS of Equation 2.C equal zero.

Substituting Equations 2.E and 2.F in Equation 2.C yields :

ad. c(0) L y .
EEJS" = Exkj¢ch(0) " T;JOJ c E{N_(t)[Q(t)=q}p(],q,cit)dqdc

= 2]

) %_.[ [ i Lk e “ij J 43S p(3,q,cit)dq de
c (s} o

o
(o}

o

"“'J
Yitale A

2.G
Consider the last term of Equation 2.G; integrating with
respect to ¢ and noting that p(j,qg:;t) = p(j;t)p(g:t), it

may be written as : %yéo,t)p(j;t)é(x)é(y) where,

gq(r,t) = Autocorrelation of Q(t)

Integrating the second term of the RHS of Equation 2.G
with respect to q and substituting Equations 2.14 and 2.A

in Egquation 2.G for a time-stationary process finally yields
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APPENDIX 4

EVALUATION OF COVARIANCE p(t, T it+7,T,)
t+71(t
p(t,Tl;t+T,Tz) = I fggexp{-ﬁ(le'—6“|)}de' ds"

LT |
case A

] > S
oy - 12 Tl

The r:gion of integration is subdivided and the integral

of cach part is evaluated separately :

t+T et 3
J J exp{-B(0"~0')1}de"' 46" = - —= [{exp(-BT) - 1}
t Y1y B2

- [exp{-B(t+T-Tl)} - EXP{‘B(t—Tl)}] ]

t (o" 1
exp{-B(6"-0')}d6' 46" = - =— [ -B(t-Tz)
1,71, g2

- [exp{-B(t-Tl)} = eXP{-B(Tz-Tl)}] ]

t ¢t
J J exp{-g(6'-6")}dae' de" =
T ell
2
2 1
- = [ - exp{-B(t—Tz)} - B(t—Tz)]
62
Adding the three contributions yields :

t+T ¢t 1

J J exp{-B(|6'-6"|)}de" do" = =— [- exp (-B1) +
Ty 't g2

exp{—B(t+T—Tl)} + 28(t-12) - exp{—B(rz-Tl)} + exp{—B(t-Tz)}]

case B

> > 5
t+T t Tl TZ

The region of integration is subdivided into two parts :
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t oot X ol
J I exp{~B(6"-6"')}de" 46' = - " [eXP( BT)
) gt 82

exp{-B(t+T—Tl)} o B(t-Tl)]

t 10"
I J exp{-B(6'-6")}do" dae' = - L [— B(t-1,) - exp{—e(t-rz)}
T,° 7y B?

- exp{—B(fl-fz)}]

Adding the two contributions yields :

t+1rL
J { exp{-g(|8'-8"|) de' de" = = [- exp(-BT) + 2B(t-1,) +
Ty ') R?

exp{~8(t+1-1,)} + exp{-8(t-1,)} - exp{-B(r;-1,)}

case C

t % 7 57 Sy w

2 1

t+1,t !
J J exp{~B(|6"-6"'|)}d8"' @8" = — |- exp(-BT) +
Ty 'Ty B2

exp{-B(t+T-Tl)} + exp{-B(Tz-t)} - exp{-B(Tzétl)}
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APPENDIX 5

MIXING EQUATIONS FOR CONTINUOUS'STATE'FLOW'MQDEL

WITH MOLECULAR DIFFUSION.

Dispersion is described by the fcllowing stochastic partial

differential equation :

2C g (1)2€ + p 2C 4 q)s )8 (y)
ax? Y " ay?

s _ ac
ap ~ - kg ¥ D

Defining a two-sided Laplace Transform by :

L{c(x,y,t)}= C(s,p,t) = | C(x,y,t) exp(-sx)exp(-py)dx dy

. 2
we obtain expressions for L{ig} and L{é—g} as follows :

3 3x 2

2 = [7 2€ aupi- z
L[ax J J 9% exp (-sxX) exp(-py) dx dy

Integrating Equation 5.B by parts and noting that

C(x,y,t) = 0 , when x,y = -» , yields
aC = aC = :
L{zZ} = sC(s,p,t) L{W} = pC(s,p,t)
e T 32 ‘
L=ty = J J exp (-sx) exp(-py) dx dy
ax? leod _ o 5x?
(* ]ac i
= Jm 5% exp (-sx) _mexp:—py) dy -
roo

l [ (-s) %% exp (-sx) exp(-py) dx dy

: aC .
Assuming that 3x converges sufficiently strongly as

x » ==, the first term equals zeroc. Substitution of

Equation 5.C yields :

2

QU

(@]

=} = s?C(s,p,t) ; LS} = p2T(s,p,t)
b’ 8y2

L{

Q
1
n

5.A
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Taking the Laplace Transform of Equation 5.4 ¢

& - - = & . F 2 =
T U, (t)sC + Dg C Uy(t)pC + Dp C + q(t)

and solving Equation 5.E with initial condition
C(x,y,0) =0 ; C(s,p,0) = 0 , ylelds :

t
C(s,p,t) = J q(t) exp{s®D(t-1) - swx(t,r) 5
0

p’D(t-T) - pWy(t,T)}dT
where Wx(t,r).and wy(t,r) are defined by Equations 3.1ll.

Noting that

I exp{'izggﬁlz}exp(-sx) dx = 2(nDt)? exp (s?Dt-sut)

L. ]

Equation 5.F may be inverted as follows :

t
Ci(x,y,t) = J z;%%%%?) exp
5"

4D (t=-T)

Mean concentration u(x,y,t)

The mean concentration is defined as :

Hi{xX,y.,t) = I J °°c(x,y.t) f(wx.t.T) f(wy,t,r) dwx dwy

—l0

where,
f(wx,t,r) and f(wy,t,r) are Normal probability

density functions for the Random Processes Wx(t,T) and

Wy(t,T).

- {x-W_(t,7)}?% = {y-Ww (t,7)}?
2 Y ) drt

5.E

5.F

5.G

Substituting in Equation 5.H and integrating with respect

to wand Wy by the method of completing the square finally
yields Equation 3.40.
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Crosscorrelation ¢{xl,yl,x2,y2:T)

When the tracer source is a time-stationary

function Q(t) the concentration at a point (x,y) is

given by : _
'—{X-W (t'T)}z - {Y_W (t'T)}Z
. Y ] dt

t
N (T)
C(x,y,t) = J_m@Tth—T)expl 4D {t-T)

The concentration crosscorrelation between points

(xl,yl) and (x,,y,) is defined as

2

@(xl;Ylfxzfyz:T) =hE{C(xl,yl,t)C(xz,yz,t+T)}

Substituting Equation 5.I and rearranging exponential

terms yields :

@(xl,yl,xz,yz:T) = E{

Lo

t+1l: Q(Tl)Q(Tz)
f4ﬁD)z(t—Tl)(t+T—T2)
e 2 _ ¥ 2

pen (xl wxl) (xz Wx2)
P 4D(t~rl) 4DTEFT-1,)

-y, =W 1)2 - Ayl )#

- 4 _____ZET
eKP[ 4D(t—TlJ 4D(t+7—12

Since the tracer source function Q(t) and the Random

]dTl de}

Processes Wx(t,r), Wy(t,r) are mutually independent

Equation 5.K may be written as :

E{Q(Tl)Q(TZ)}

t+T st
AKX, oYy #Xys¥riT) = J I
el il e Lo L. (41D) % (t=1,) (t41-T,)

i =gy W.ad? )R
1 “x1 - 2 x2
iwj_m exp[EETE:;IT ZBTE;;:?;)] f(wxl,wxz) dw_, dw_,

S e

where,

o0 p00 - (y -W ) 2 (y -W ) =
1 1 = 2 2
ex - ;
J J p[zBTE:?fT ZBTE:¥::;J]f(Wyl'wy2)dwyl dwy2 drl drz

5.1

E.K

5.L
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f(wxl,wxz) = joint Normal probability density function

for le and sz.

yl'wv2) = joint Normal probability density function

=

for wyland wy2'

The above density functions have the following form (see

f(w

Equations 3.29)

( (w_.-m )8
f(wxl’wx2) i . expl s faBd, bl
27 (1-r?) (1-x?) 012_ 1
!
- - - 2
2E (W Mg 1) Mo My o) Wy, o) )
[} o 2
1,1 " X2 01,2
5.M
P 67 A | jim =
yt ¥ 27 (1-r?) (1-r?) o2
1,1
= = 3 == y 2
2r(wy1 m1y,l)(wy2 mly,2) a (wy2 mly,2) }
o o .
L P °i,2
Substituting Equations 5.M in Equation 5.L and carrying
ut th t i
o} e integrations with respect to wxl,wxz,wyl and
wyz by the method of completing the square yields
t+T(t E{Q(Tl)Q(Tz)}
Joo 2 41D - t+17- -r? 2
(4mD Y (¢ Tl)(t T TZ){zﬂcl,lcl,Z(l r?)*}
- = = Z ==l
“z{i_+e—l l[l—+é_ {1_+B_1_}1 £t
i ] 2 p s (l-r2yy?
-l 43 . 2
exp_[_l_ P P T S M T I (L*1,-1
L e S T By (1-r2) + i LT




N - . m
J [1 fotie 1 & Yoagil ik iy M .2
e e e ' .
Pllog By "oy By (1-rnyzy2) W2 (1-r?)y 2
{l_*_l}'l[ r { 1 mlel} % mlx,2 ] ]
a; By (T tyy B Ny (1-r2)2y2
2 2 2
exp- = v 3 & Tly,1 b Ly,2 L R g ST (At 1y-1
ay Gy By By (1-r?)y 8y By
“ . 22 2 . &
P, B, Tl SR %2,1]}]
R B g .
oy - ey (1-r2fy?  @-r2)yy %2 1
. [;_+_1—{l_+_1}-1 & ]1[3’_2 e T R
2, By "0y By (1-r2)2y2) %2 (1-r?)y 2
m r‘m 2
¢S TL0 L {Zl + 2¥ely ___lsz__]] dr, dr,
9 & Tartyy 1 R (1-r?) 2y2
where,
dl = 4D (t-Tl) : 0L2 = 4D(t+T-T2)
= (l-r?)c? . o Tl R L8
B, = (1-r )Ol,l i B, {1~¢ )01,2

Y *93,1% .5
A transformation of variables according to Equations 3.31

finally yields Equation 3.44.
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APPENDIX 6

INTRODUCTION OF FLOW PARAMETER o

It is assumed that the random process of velocity
fluctuations is described by the following stochastic

differential equation :

du' (t)

Sumee & BU' (t) = BNa(t)

‘where,

Na(t) has the following White Noise properties :

RNa(T) = E{Na(t)Na(t+T)} = af (1)

PSD, (w) = a
N(!

Equation 6.A may be integrated as follows
t
U'(t) = J BNa(T) exp{-B(t~-1)} dr
o

The autocorrelation of U'(t) is defined by
=y 1 1
Ro(tl'tz) E{U (tl)U (tz)}
Substituting Equation 6.C and taking the Expected
Value operation inside the integral vyields

R )
= o Rk . e
Ro(tl’tz) B IO fo E{Na(Tl)Na(TZ)} exp{ B(tl+t2 1 12)}

dTl drz

From Equations 6.B and 6.D it follows that :
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t.rt
— 2 2 l \ T =T [ 4 = bl
Ro(tl'tZ) = B JO IO aé(xl .2) exp{-B (£t +t -7, ng}dTl dT2

6.E
Integrating Equation 6.E with respect to T and T,
for tl » t2 yields
0B [ ; )
Ry(t)sty) = 35 |exp{-B(t)=t))} - exp{-B(tl+t2)JJ 6.F
For large values of tl,t2 the second exponential
term of Equation 6.F is small and may be neglected.
Hence :
- =g..8. N - |
R (t,=t,) = 5= exp{-B(t;-t,)} 6.G

From Equations 6.G, 3.3, 5.21 it follows that
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APPENDIX' 7

NOTE ON UNITS OF g(t) and C(t)

From equation 1.l it follows that the units of

g(t)* &8(x)* §(y) are concentration. Since concentration

time
readings are integrated across the width of the tank (d),

the units of concentration are mass and the units of
area

g{t) become mass.

: (see section 4.4)
time

The values of concentration actually used are in
terms of mls. of concentrated tracer solution per Vc
cu. ft. of water, where = volume of water used in

calibration of probes.

The values of g(t) actually measured are in terms
of mls. of diluted (1:10) tracer solution per minute.

Hence in order to compare the values of g obtained from

regressions with q'measured the following conversion

factor must be used :

= 1
9 nmeasured T 6g == 9 measured
V ]
c/d d measured qmeasured
Runs 1, 2 11.84 12.5 0.247
Runs 3, 4, 5, 11.94 15 0.3

The tracer flow rate was measured by noting the steady

rotameter reading with the solenoid valve fully opened.

(see Figure 4.1)
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APPENDIX 8

DETAILS OF EQUIPMENT

(1) Photocells

Lange Gmbh. Berlin ; Type 6Si - l4.

(ii) Amplifiers

Beckman Data Amp. Type 491.
Power Supply Type 392.
Input Coupler Type 980l.

(iii) Frequency Modulators

Wavetek Voltage Controlled Generator ; Model 1ll.

(iv) Taperecorders

Philips International ; Type EL 3549 A / 0OO.

(v) Data processing Unit (see photograph on page 139)

Philips EL 3549 A/OO Taperecorder
Philips PW 4230 Scalers

Philips PW 4260 Timer

Philips PW 4201 Controller

Philips PW 4210 Power Supply

Philips PW 4211 Power Supply

Philips PW 4209 Printer Control

Addo-X Model 13-0341 - Printer

I.B.M. Card Punching machine ; Type 024.

(vi) P.R.B.S. Signal Generator

Control Logic, S.A.

(vii) Hot Film Anemometer

Flow Corporation U.S.A.

Constant Temp. Anemometer Series 900 -1
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Velocity and Temp. Monitor Series 900-2
(see Figure 8.A7)

Sensor Type B-1-N
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