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Thesis Abstract 

The development of new high yielding varieties may not generate considerable impact unless 

the selection takes into account end-user qualities. Whereas consumer choices of rice 

varieties are largely based on grain cooking and eating qualities, improving grain quality and 

yield are important considerations but present a major challenge for most rice breeding 

programmes in sub-Saharan Africa. Therefore, understanding the factors that contribute to 

enhanced yield and grain quality as a basis for breeding and selection strategies in rice is 

important. Thus, the objectives of this study were: 1) to investigate farmers’ perceived rice 

production and productivity constraints and choice of rice ideotypes across rainfed and 

irrigated rice agro-ecologies in South Sudan, to guide breeding and policy interventions; 2) to 

perform genetic and comparative analysis of agro-morphological and grain quality traits of elite 

upland rice genotypes; 3) to investigate genetic diversity and perform genome-wide 

association studies of grain quality traits in a panel of 59 upland and lowland rice; 4) to 

determine genetic variability and to identify QTLs for yield-related and grain quality traits in 

three rice F2 populations. These studies were conducted at various sites in South Sudan, 

Uganda and Kenya. 

The first study investigated farmers’ perceived rice production and productivity constraints and 

choice of rice ideotypes across rainfed and irrigated rice agro-ecologies in South Sudan. Data 

were gathered through participatory rural approaches and a formal structured survey involving 

136 rice farmers from major rice growing areas of South Sudan. Farmers predominantly 

cultivated old rice varieties with low yields varying from 0.4 to 1.6 t ha-1. Yield, early maturity, 

cooking and eating quality, nutritional importance and drought tolerance were the most 

desirable traits of rice ideotypes. Further, imported rice varieties were best ranked for their 

sweet and appealing taste, rich aroma, grain shape and size, swelling capacity and non-

stickiness during cooking. Major perceived constraints to rice production were unreliable 

rainfall, poor access to credit facilities, poor soil and water management practices, poor rice 

storage facilities, inadequate and poor processing machines as well as limited technical skills 

in rice production.  

The second study assessed the genetic diversity and relationship present among 36 elite 

upland rice genotypes using Diversity Arrays Technology Sequencing (DArTseq) markers and 

agro-morphological and grain quality traits. Genetic diversity estimates amongst test 

genotypes revealed only two distinct clusters suggesting genetic relatedness. This was 

associated with a low mean fixation index (Fst) of 0.188. Analysis of variance based on agro-

morphological and grain quality traits indicated highly significant differences (P<0.001) among 

the tested genotypes. Principal component and cluster analyses indicated that major 
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contributors to grain yield per plant were, number of productive tillers per plant, number of 

panicles per plant, grain width, number of grains per panicle, panicle length, grain length to 

width ratio, percent spikelet fertility and weight of 1000 grains. Grain yield had significant 

positive correlation with number of panicles per plant, percent spikelet fertility and number of 

grains per panicle. Path coefficient analysis showed that direct selection for number of grains 

per panicle can be effective in enhancing grain yield. Grain length expressed the greatest 

maximum direct positive effect on amylose content, while grain width revealed the largest 

negative effect on this trait. Number of grains per panicle, number of panicles per plant, weight 

of 1000 grains, percent spikelet fertility and grain length can be considered as important 

selection criteria for genetic improvement of grain yield and cooking quality in rice.  

The third study performed genetic diversity and genome-wide association studies of grain 

quality traits in a collection of 59 upland and lowland rice using DArTseq markers. Population 

structure analysis revealed only two distinct genetic clusters which grouped genotypes based 

on environmental adaptation and pedigree information. Analysis of molecular variance 

indicated a low degree of differentiation among populations suggesting the need for 

broadening the genetic base of the current germplasm collection. GWAS revealed 22 

significant associations between DArTseq-derived SNP markers and rice grain quality traits in 

the test genotypes, two of which were in chromosomal regions where the QTLs associated 

with the given traits had previously been reported, while the other 20 were indicative of novel 

alleles for rice grain quality traits. DArTseq-derived SNP markers that included 

SNP12_100006178, SNP13_3052560 and SNP14_3057360 individually co-localised with two 

functional gene groups that were associated with QTLs for grain width and grain length to 

width ratio on chromosome 3, indicating trait dependency or pleiotropic-effect loci.  

The fourth study determined genetic variability and identified QTLs for yield-related and grain 

quality traits in three rice F2 populations developed from a cross between O.sativa L. rice 

variety (improved grain quality traits but low yield) and an interspecific hybrid [(O. sativa L. x 

O. glaberrima Steud), improved yield but poor grain quality traits] using DArTseq-derived SNP 

markers. From a high-density genetic linkage map constructed, a total of 23 main-effect 

quantitative trait loci (M-QTLs) were detected for grain length, grain width, amylose content 

and alkali spreading value. High levels of transgressive segregation for yield-related and grain 

quality traits observed indicated the potential for improvement of these economically important 

traits. Moreover, the detection of novel M-QTLs that enhanced grain quality underscores the 

potential value of the germplasm used in the present study as a useful source for grain yield 

and quality improvement. M-QTLs that mapped to regions consistent with map locations in 

other studies can be useful in marker-assisted selection experiments.  



iv 
 

The results showed a need for integration of farmers’ and stakeholders’ preferences in variety 

development process and the desirability of releasing site-specific rice cultivars across major 

rice growing areas of South Sudan. Overall, using DArTseq-derived SNP markers and agro-

morphological and grain quality traits resulted in selection of the following genetically diverse 

upland rice genotypes: ‘P5H6’, ‘NAMCHE 6’ and ‘ART3-7L9P8-3-5-B-B-2’ for direct production 

or breeding.  Upland and lowland rice genotypes including; ‘K5’, ‘ART2-4L3P1-2-1’, ‘BG400-

1’, ‘JARIBU’, ‘SUPA TZ’, ‘BR4’ and ‘ART3-8L6P3-2-2-B’, were identified as potential sources 

of major effect QTLs for grain quality traits that can be exploited for rice crop improvement. 

Populations ‘Supa 1052 x NERICA 4’ and ‘Komboka x NERICA 4’ recorded the highest mean 

grain yield and intermediate AC and ASV. The aforementioned crosses also recorded the 

highest number (22) of main-effect QTLs (M-QTLs) detected among their F2 mapping 

populations out of a total of 23 M-QTLs that were uncovered for grain length, grain width, 

amylose content and alkali spreading value. These crosses can be useful for selection of 

desirable segregates at the F2 and BC1F2 generations. M-QTLs that mapped to regions 

consistent with other studies may be useful in marker-assisted selection experiments. Novel 

M-QTLs detected in this study for yield-related and grain quality traits could serve as 

candidates for future fine-mapping and positional cloning projects. 
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Introduction to Thesis 

1 Background 

Rice (Oryza sativa L.) is the second most important and widely grown cereal crop after wheat, 

providing over 21% of the calorific needs of the world’s population (Lu et al., 2013). It occupies 11% 

of the world’s total arable land (Tehrim et al., 2012) and its increased production in the past four 

decades has been attributed to the adoption of the Green Revolution technologies for rice 

intensification (Mba et al., 2012). Furthermore, with the current growth in population, increased 

urbanization and consumer preferences, particularly in Africa and Latin America; there has been a 

growing global demand for high quality rice (Balasubramanian et al., 2007). This demand offers a 

better opportunity for rice growing countries to reduce rice imports and generate higher export 

revenues. In addition, increased urbanization and changes in consumer preferences also explains 

the gradual shift in rice consumption patterns from traditional coarse grains like maize, millet and 

sorghum, to non-traditional grains like wheat and rice (Demont, 2013). Rutsaert et al. (2011) indicated 

that the demand for rice in Africa has increased significantly at an average annual rate of 4.4%, to 

attain a total consumption level of 20 million tonnes in 2009. However, Africa’s rice sector has not 

been able to match the increased growth in demand for high quality rice and as a result it has become 

increasingly dependent on rice imports (Seck et al., 2010; Demont, 2013). 

In sub-Saharan Africa (SSA), close to 40% of the rice consumed is imported (Seck et al., 2010) and 

the trend has been growing at a much faster rate than production (Figure 1.1). In 2007, the total 

quantity of milled rice consumed in Africa was estimated at 25 million tonnes with an average per 

capita consumption of 24 kg per year. In the same year, paddy rice production in Africa was 23.4 

million tonnes and 9.7 million tonnes were imported (Seck et al., 2010). Given the foregoing, an 

increased dependence on rice imports exposes countries in SSA to international market shocks and 

uncertainties. Hence, this may have a direct impact on food security and political stability (Becker, 

2009; Moseley et al., 2010; Seck et al., 2010; Dupraz and Postolle, 2013).  
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Figure 1.1: Rice imports (million tonnes) in sub-Saharan Africa from 1961–2011 (FAO, 2014). 

2 Importance of rice in South Sudan and farmer preferences 

Rice in South Sudan is ranked among the first four dominant staple cereals after sorghum, maize, 

and millet in terms of consumption. Results from the 2009 National Baseline Household Survey (NBS, 

2012) suggested that more than 75% of rural households consume cereals. Furthermore, in the last 

two decades, South Sudan (formerly Sudan), was a net exporter of agricultural produce to regional 

markets and the potential of agriculture in stimulating economic growth was emphasized. However, 

due to civil war-related destruction, poor infrastructure and lack of investment in the agriculture sector, 

South Sudan is now a net importer of food. It currently imports as much as 50% of its food needs, 

including 40% of its cereals from neighbouring countries, particularly Uganda and Kenya. Total food 

imports are estimated to be in the range of US$ 200-300 million a year (AfDB, 2013).  

It is also estimated that South Sudan receives all its rice imports through Uganda (Nzomoi and 

Anderson, 2013), which acts as an important transit corridor for rice shipment of both locally produced 

and imported rice. Despite the importance of rice in South Sudan, production is low, while introduced 

varieties do not meet the standards of imported rice in physical, cooking and eating qualities. 

Therefore, these varieties do not offer competitive prices in the market. A major challenge in the rice 

sector in South Sudan is, therefore, how to produce sufficient and affordable high quality rice that not 

only meets the preferences of its fast-growing and increasingly urbanized population, but also 

competes favourably with imported rice.  
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In addition, consumer preferences may be variable and depend partly on historical and socio-cultural 

factors, such that quality rice in one region may be considered low-quality in another. A study by 

Nzomoi and Anderson (2013) on rice markets in East Africa suggested that released rice varieties are 

not widely adopted because, in most cases, farmers and consumers may not prefer the taste or aroma 

of the introduced variety. For example in Uganda, consumers prefer aromatic to non-aromatic rice, 

sticky to non-sticky rice, unbroken to broken, bulging after cooking to rice that does not bulge, and 

white milled rice to brown (MAAIF, 2012). Additionally, during a pre-survey study on rice in South 

Sudan (MAFCRD, 2013), farmers identified high yielding, improved grain quality and early maturity 

as critical factors in selection of new rice varieties. Grain quality traits are, therefore, important 

considerations for all individuals involved in production, processing and consumption of rice, and 

hence dictate the nutritional and commercial value of rice grain (Koutroubas et al., 2004; Fitzgerald 

et al., 2009).  

Grain quality is usually based on certain objective or subjective criteria that are of relative importance 

to the end-user. In general, the most important grain quality traits that are common to all end-users 

include appearance, milling quality, cooking, processing quality and nutritional quality (Lou et al., 

2009). In light of this, knowledge on end-user tastes and preferences for rice grain quality traits is 

important for enhancing rice breeding strategies. This will ensure competitiveness of locally produced 

rice and thus serve as a mechanism to return more of the benefits associated with improved quality 

rice to the farmer.  

3 Rice breeding in sub-Saharan Africa 

For most African countries, the focus in rice breeding programmes has been on increasing yield and 

enhancing stress tolerance with little emphasis on grain eating and cooking qualities (Manful, 2010). 

High yielding varieties are often released after field-testing without taking into account their quality 

attributes such as milling potential, amylose content, gelatinization temperature, gel consistency, 

chalkiness, pasting characteristics, cooked rice texture and aroma. Furthermore, consumer tastes 

and preferences are rarely incorporated in the selection of new rice varieties. These varieties may 

satisfy the farmers’ preferences but not the end-user qualities, thus the locally produced rice is unable 

to compete with imported rice that has improved cooking and eating qualities. Therefore, there is an 

increasing importance for enhanced yield and end-user quality in the local rice varieties. In addition, 

it is essential to broaden the genetic base of rice genotypes by introducing genes from distant or wild 

relatives with potential for delivering novel genes or quantitative trait loci (QTLs) for important 

agronomic traits. The magnitude of genetic variability and the extent to which the desirable characters 

are heritable largely determines the success of any plant breeding programme (Vanaja and Luckins, 

2006).  
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However, breeding for improved cooking and eating quality traits in rice has several challenges such 

as polygenic inheritance and genotype-by-environment interactions (Lapitan et al., 2007; Ordonez et 

al., 2010). In addition, the complexity in accurate evaluation of cooking and eating quality at early 

breeding generations has constrained the development of rice varieties with enhanced cooking and 

eating qualities (Lestari et al., 2009). Furthermore, yield and nutritional quality are said to be negatively 

correlated (Hussain et al., 2010). However, previous reports (Swamy and Sarla, 2008; Swamy and 

Sarla, 2011; Swamy et al., 2012) indicated several eating and cooking quality quantitative trait loci 

(QTLs) that were associated with major QTLs for yield-related traits in rice. They suggested that the 

major effective yield-enhancing QTLs from O. nivara (a wild progenitor of Asian cultivated rice O. 

sativa) could possibly be introgressed individually or pooled selectively without compromising grain 

quality in Swarna (a rainfed lowland rice cultivar) (Swamy et al., 2012).  

More recently with the advances in next generation sequencing (NGS) technologies, genotyping by 

sequencing (GBS) has emerged as a promising genomic approach for simultaneous exploration of 

plant genetic diversity and molecular marker discovery (Poland and Rife, 2012; He et al., 2014). Thus, 

GBS has effectively been used for single-nucleotide polymorphisms (SNP) marker discovery and QTL 

identification of tightly linked marker-trait associations (Tang et al., 2016) and in the application of 

genomic selection of complex traits for crop improvement (Jarquín et al., 2014). The GBS approach 

is, therefore, considered an important cost-effective tool for population genetics, QTL discovery, high-

resolution mapping and for genomic selection in plant breeding programmes (Furuta et al., 2017). 

Thus, given these developments, several markers and QTLs affecting rice grain yield and quality have 

been identified and mapped in various mapping populations (McCouch et al., 2002; Xing and Zhang, 

2010), in order to apply marker-assisted selection for enhancing breeding efficiency. However, the 

identified QTLs may not be sufficient to elucidate the genetic basis of grain yield and quality. Also, the 

varied nature of grain yield and quality traits (Liu et al., 2010) underscore the need for identifying novel 

QTLs in order to design a breeding strategy for their improvement. Consequently, with the 

accumulated information on QTLs for grain yield and quality traits and their closely linked markers 

(Sattari et al., 2015), QTL pyramiding can be applied as a direct approach for improving the target 

traits.    

Accordingly, other successful studies in breeding for enhanced yield and grain quality have been 

reported, most notably for maize (Zea mays L.) in developing ‘’Quality Protein Maize’’ (QPM) which 

is opaque-2 maize that has been selected for enhanced grain characteristics and enhanced yield 

using marker assisted breeding (MAB) (Vasal, 2002). Marker-assisted selection (MAS) has also been 

used to enhance grain quality traits of a male sterile line and maintainer line widely used in hybrid rice 

breeding in China (Zhou et al., 2003; Jin et al., 2010) and to improve cooking quality traits in Myanmar 

rice cultivar Manawthukha (Yi et al., 2009). Thus, with the use of DNA-based molecular markers such 
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as Single-nucleotide Polymorphisms (SNPs) in MAS, it is possible to overcome the challenges of 

dealing with complex quantitative traits and concomitant introgression of more than one targeted QTL 

into an elite crop variety (Collard and Mackill, 2008; Mir and Varshney, 2012; Gupta et al., 2013; Tyagi 

et al., 2014). Therefore, a better understanding of the factors that contribute to improved grain yield 

and quality of rice will lay the foundation for developing new breeding and selection strategies for 

generating rice cultivars that combine yield and end-user qualities. Also, MAS can significantly 

improve the efficiency and effectiveness of conventional breeding (Gupta et al., 2010). This is 

necessary for South Sudan to meet the growing domestic demand for high quality rice while offering 

the country with additional opportunities for generating higher export revenues. 

4 Justification of the current study 

South Sudan has a great potential for agriculture with more than 50% of its arable land mass as prime 

agricultural land and yet less than 5% is currently utilised (AfDB, 2013). Two out of the six agro-

ecological zones (the Flood plains and Greenbelt agro-ecological zones) of South Sudan are most 

suitable for rice cultivation and constitute 70% of the arable land. Rice is cultivated under two 

production systems that include the rainfed upland (in the Greenbelt agro-ecological zone mainly in 

Yambio, Yei and Morobo districts/counties) and irrigated lowland (in the flood plains agro-ecological 

zone mainly in Aweil North county/Aweil rice scheme). The latter provides the greatest potential (80%) 

for lowland rice cultivation. Despite the huge potential for rice expansion and the constant rise in 

demand, less than 5000 hectares of land is utilized for rice cultivation, which is by far insufficient to 

meet the local demand, thus encouraging increased rice imports. Additionally, the long period of civil 

war in South Sudan derailed the establishment of rice research, while efforts by non-governmental 

organizations (NGOs) were largely centred on introductions of improved varieties for use by farmers. 

Unfortunately, these varieties do not go through testing for quality, adaptation and other agronomic 

traits. Thus, farmers take risk in planting varieties of unknown performance that are largely low yielding 

and susceptible to diseases and other biotic/abiotic stresses. Furthermore, these varieties may not 

meet farmers’ or end-user qualities and preferences, and therefore cannot compete favourably with 

imported rice. For example, farmers may prefer high yielding and disease resistant varieties, while 

consumers may select varieties with improved cooking and eating qualities. A combination of both 

farmer and end-user qualities in one genetic background is desirable but remains a major challenge 

in a rice breeding programme. Therefore, breeding for enhanced yield and end-user quality would be 

an important key strategy for South Sudan’s rice breeding programme to further accelerate rice growth 

and development in the country. Consequently, increased rice production and market competiveness 

of locally produced rice would contribute to food, income and nutrition security for South Sudan. Thus, 

the overall objective of the study is to provide an understanding of the factors that contribute to 
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enhanced yield and grain quality traits as a basis for breeding and selection strategies in rice 

germplasm for South Sudan.  

5 Research objectives 

The specific objectives of the study were; 

i. To investigate farmers’ perceived rice production and productivity constraints and choice of 

rice ideotypes across rainfed and irrigated rice agro-ecologies in South Sudan to guide 

breeding and policy interventions 

ii. To perform genetic and comparative analysis of agro-morphological and grain quality traits 

of elite upland rice genotypes.  

iii. To investigate genetic diversity and perform genome-wide association studies of grain 

quality traits in a panel of 59 upland and lowland rice collections. 

iv. To determine genetic variability and to identify QTLs for yield-related and grain quality traits 

in three rice F2 populations involving crosses of O. sativa L. and interspecific (O. sativa L. x 

O. glaberrima, Steud) hybrid. 

6 Research hypotheses 

The following hypotheses were tested; 

i. Farmers and stakeholders are aware of major rice production constraints and their needs 

and preferences in a rice variety in South Sudan. 

ii. There exists wide variability in agro-morphological and grain quality traits among upland rice 

germplasm collection in South Sudan with potential use for production and crop 

improvement. 

iii. Rice populations in South Sudan are diverse and ideal for identifying significant marker-trait 

associations between grain quality traits and DArTseq-derived SNP markers. 

iv. Adequate genetic variability exists within mapping populations involving O.sativa and 

interspecific hybrid (O.sativa L. x O.glaberrima, Steud), while their hybridization can be 

successfully exploited to improve grain yield and quality in rice. 

7 Outline of the thesis 

This thesis is made up of five individual chapters that reflect the set objectives for this research study. 

Chapter 1 is written as a separate review paper, while chapters 2 to 5 are written as discrete research 

papers, each following the format of a stand-alone research paper in accordance with the standard 

thesis format adopted by the University of KwaZulu-Natal. Thus, there is some unavoidable repetition 

of references and introductory remarks between chapters. Chapter 6 gives a general overview and 
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implications of findings from the study. The Crop Science referencing system was used in all chapters 

of this thesis. Therefore, the thesis comprised the following chapters:  

1. Thesis Introduction  

2. Chapter 1: Literature review 

3. Chapter 2: Appraisal of major determinants of rice production and productivity and farmers’ 

choice of ideotypes in South Sudan: implications for breeding and policy interventions 

4. Chapter 3: Genetic analysis of elite upland rice genotypes using DArTseq markers and 

comparative analysis of agro-morphological and grain quality traits  

5. Chapter 4: Diversity analysis and genome-wide association studies of grain quality traits in 

rice (Oryza sativa L.) using DArTseq markers  

6. Chapter 5: Genetic variability and quantitative trait loci analysis for yield-related and grain 

quality traits in three rice F2 populations 

7. Chapter 6: General overview and implications of the study 
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1. Literature review 

Abstract 

The development of new high yielding varieties may not generate considerable impact unless the 

selection takes into account end-user qualities. Although yield relates to the most important trait of 

farmer-preferred cultivar, this does not always translate into increased revenue since consumers’ 

taste and preferences and market-demand are often considered a major driver of widespread uptake 

of a new variety. Given that consumers’ choice of rice varieties are largely based on grain cooking 

and eating qualities, improving grain quality and yield are important considerations but present a major 

challenge for most rice breeding programmes in sub-Saharan Africa. This review examines the 

current challenges and prospects in rice breeding for improved grain yield and quality. Furthermore, 

it provides a critical analysis of significant developments in genetic and molecular understanding of 

grain yield and quality in rice while highlighting on the potential research gaps and way forward. 

Keywords: Rice, Grain yield and quality, Farmer and consumer preferences, Conventional breeding 

approaches, Marker-assisted selection, Genomics-assisted breeding,   

 

 

 

 

 

 

 

 

 

 

  



12 
 

1.1 Introduction 

Rice is the second most widely grown cereal crop and a primary staple food for more than half of the 

world’s population (Siddiq et al., 2012). With the current growth in population particularly in Africa and 

Latin America, increased urbanization and changes in consumer preferences, there has been a 

growing demand for high quality rice (Balasubramanian et al., 2007). According to Rutsaert et al. 

(2011), the demand for rice in Africa has increased significantly at an average annual rate of 4.4% to 

attain a total consumption level of 20 million tons in 2009. Furthermore, in sub-Saharan Africa (SSA), 

close to 40% of the rice consumed is imported (Seck et al., 2010) and the trend has been growing at 

a much faster rate than production (Manful, 2010). Increased demand for high quality rice provides a 

better opportunity for rice growing countries to reduce rice imports and generate higher export 

revenues (Balasubramanian et al., 2007).  

However, despite efforts to encourage local rice production by the rice sector in SSA, production is 

still low and unable to meet the growing demand for high quality rice. Thus, SSA has become 

increasingly dependent on rice imports (Seck et al., 2010; Demont, 2013). In addition, locally 

cultivated rice cultivars do not match imported rice in end-user qualities and hence there is a high 

preference for imported rice which often attracts higher premium prices in the market (Yi et al., 2009). 

Whereas the focus for most rice breeding programmes in SSA has been on increasing yield and 

enhancing stress tolerance (Manful, 2010), consumer preferences that are directly associated with 

grain cooking and eating quality traits (Oko et al., 2012) and considered a major driver of widespread 

variety uptake (Calingacion et al., 2015) are rarely incorporated during cultivar development.  

Rice grain quality traits are important to all stakeholders in the rice value-chain including producers, 

millers and consumers (Koutroubas et al., 2004; Fitzgerald et al., 2009) and often depicts the 

nutritional and market value of rice. Furthermore, the choice of grain quality may be objective or 

subjective to the end-user but often the most important grain quality attributes common to all end-

users include grain appearance, milling quality, cooking and eating quality (taste, tenderness), 

aroma/fragrance and nutritional quality (Lou et al., 2009). Among the aforementioned, grain cooking 

and eating quality together with aroma are most crucial grain quality traits that determine the premium 

price of rice (Wang et al., 2007; Sakthivel et al., 2009; Asghar et al., 2012; Demont, 2013). Among 

the key physicochemical properties affecting eating and cooking quality, amylose content (AC) is the 

most important (Muhammad, 2009; Yi et al., 2009).  

Several methods have been established for determining AC including iodine binding (Juliano, 1971), 

near infrared spectroscopy (Wesley et al., 2003), size-exclusion chromatography (Ward et al., 2006) 

and asymmetric field-flow fractionation (Chiaramonte et al., 2012).  Nonetheless, most of these 

methods require the use of expensive equipment such as spectrophotometer, auto-analyser, 
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amylogram, near infrared instrument, and thermocycler that are not readily available in developing 

countries, because their acquirement and maintenance costs are often very expensive (Avaro et al., 

2009; Caffagni et al., 2013). Avaro et al. (2009) developed a simple and low-cost method of classifying 

AC that uses a colour chart instead of a spectrophotometer, while Duldulao et al. (2012) suggested a 

modified rapid AC test.  

The use of genetic markers in marker-assisted selection and genomic selection has provided further 

options for improving selection strategies (Akhtar et al., 2010) for complex traits which could 

complement conventional breeding methods (Biselli et al., 2014). In this regard, advances in genetic 

studies have developed molecular techniques that facilitate marker-assisted breeding (MAB) for 

improved cooking and eating qualities in rice (Phing et al., 2016). However, given that rice cooking 

and eating qualities are quantitative traits and thus subject to the control of several chromosomes and 

environmental effects (Zheng et al., 2008), improving the precision of quantitative trait loci (QTL) 

identification, mapping and association studies for these traits (Phing et al., 2016) will be critical in 

order to realize the full potential of MAB. 

1.2 Taxonomy and origin of rice 

Rice belongs to the genus, Oryza, which is one of the 12 genera within the tribe Oryzeae of the 

Poaceae family distributed in the tropical and temperate regions of the world (Vaughan et al., 2004). 

Two cultivated species of rice; the Asian rice (Oryza sativa L.) and African rice (O. glaberrima Steud) 

belong to genomic group AA (2n=24) of the genus Oryza, family Poacae and tribe Oryzeae. The 

genus Oryza has 22 wild species (either 2n=24 or 2n=48) that represent 10 genomic types (Vaughan 

et al., 2004). Within O. sativa there are three subspecies; indica Kato, japonica Kato and javanica 

(Roschevicz, 1931). The subspecies japonica has two strains, namely tropical and temperate. Oryza 

sativa is grown worldwide and O. glaberrima is grown mainly in West Africa (Jones et al., 1997). 

Furthermore, the rice cultivars can be grouped into three ecological varieties: Indica which are of 

tropical and sub-tropical distribution, Javanica which grow in Indonesia and Japonica of temperate 

distribution (Vaughan et al., 2004). The Indica varieties are long-grained rice, Javanica are broad-

grained and Japonica is short-grained (Vaughan et al., 2004). The rice cultivars can be distinguished 

based on several agronomic and morphological traits such as; adaptation to different water regimes, 

growth habit and height, shapes, size and colour of the culm, leaf blade, panicle, hull and grain, and 

degree of pubescence. Additionally, rice cultivars can be categorized according to their 

physicochemical and grain quality properties that determine the nutritional and commercial value of 

the grains. 
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1.3 Rice grain quality  

Grain quality is a complex character composed of many components such as nutrition quality, grain 

appearance and cooking and eating quality among others. Thus, preferences for quality may vary 

from one region to another (Nzomoi and Anderson, 2013). Very often, although the quality 

characteristics desired by the farmer, miller and consumer may be the same, each may place different 

emphasis on various quality characteristics (Khush, 2000). For example, the miller may be interested 

on total grain recovery and the proportion of head and broken rice on milling, whereas the farmer may 

emphasize on high yields and early maturing varieties, whilst the consumers may be more concerned 

with grain appearance, grain size and shape, cooking behaviour, taste, tenderness and aroma of 

cooked rice. In general, cooking and eating quality traits together with aroma or fragrance are most 

crucial grain quality traits that determine the premium price of rice (Wang et al., 2007; Sakthivel et al., 

2009; Asghar et al., 2012; Demont, 2013). Furthermore, according to Muhammad (2009), high quality 

rice is often characterised by intermediate amylose content, intermediate gelatinisation temperature, 

soft gel consistency, strong aroma and a high degree of grain elongation. 

1.3.1 Eating and cooking quality of rice 

A major challenge in rice production is grain quality which stems from poor cooking and eating quality 

for most widely grown varieties (Oko et al., 2012). The eating and cooking qualities of rice are 

important in determining its commercial value and consumer acceptance (Phing et al., 2016). Rice 

contains a large amount of starch which digests more quickly than any other high starch food, making 

it highly distinctive among other cereal crops (Asghar et al., 2012). Grain appearance, processing, 

and cooking and taste qualities are directly related to three chemical properties of rice grain starch, 

namely; the amylose content (AC) (Juliano, 1971), gel consistency (GC) (Cagampang et al., 1973) 

and gelatinisation temperature (GT) (Little et al., 1958; Muhammad, 2009; Yi et al., 2009).  

1.3.1.1  Amylose content  

Amylose content (AC) of rice is considered to be one of the most important indirect indices of rice 

cooking and processing quality (Ni et al., 2011; Asghar et al., 2012) since it determines the hardness 

of cooked rice, gloss of the final product and rice-water ratio. Waxy or glutinous rice with highly 

reduced levels of amylose, does not expand in volume, is sticky and remains firm when cooked 

(Asghar et al., 2012). In contrast, the non-waxy or non-glutinous rice characterised by intermediate 

amylose, cooks moist and tender and does not become hard upon cooking, and hence more preferred 

(Muhammad, 2009). These differences clearly indicate the importance of amylose content as a 

selection criterion in rice (Juliano, 1971; Khush, 2000).  
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Amylose is synthesized by the granule-bound starch synthase (GBSSI) also known as waxy protein 

(Smith et al., 1997). GBSSI is encoded by the Waxy (Wx) locus (Umemoto et al., 2002) and the level 

of grain amylose is directly associated to the amount of GBSSI in the endosperm (Wang et al., 1995). 

Bao et al. (2008) also confirmed the close association of the Wx locus with amylose content. The 

Waxy gene is located on chromosome 6 and consists of 13 exons and 12 introns (Biselli et al., 2014). 

Two wild type alleles, Wxa, primarily found in indica subspecies, and Wxb, mainly found in japonica 

subspecies, have been found to predominate at the waxy locus for high and low AC respectively 

(Dobo et al., 2010). The difference between the two alleles is related to the presence in Wxb of a G to 

T Single Nucleotide Polymorphism (SNP) at the 5′ splice site of the first 1,124 bp long intron (Biselli 

et al., 2014). Most of the waxy and low AC rice cultivars tend to express this polymorphism which 

results in the reduction of pre-mRNA splicing efficiency and promotion of alternative splicing at cryptic 

sites in exon 1 (Wang et al., 1995). This further contributes to a decrease in the production of 

functional enzymes, thereby causing glutinous and low amylose phenotypes (Ayres et al., 1997). 

Other reports suggest that AC is under the control of other loci in addition to the waxy locus though 

majority of these loci have largely remained unidentified (He et al., 1999; Aluko et al., 2004; Wambugu 

et al., 2017). Thus, the identification of additional potential candidate genes remains an important 

area of research focus with new targets for AC modification. 

1.3.1.2  Gel consistency  

Gel consistency (GC) is a good index of cooked rice texture. It measures the tendency of the cooked 

rice to harden after cooling (Muhammad, 2009).  Different rice varieties may have similar amylose 

contents and physical dimensions such as grain shape, size and appearance, making it difficult to 

distinguish them accurately (Perez and Juliano, 1979). Thus, gel consistency would be most 

appropriate in discriminating such rice varieties (Muhammad, 2009).  

Gel consistency may be defined as a measure of the flow characteristics of milled rice gel (100 mg) 

in 2 ml of 0.2 N KOH and is indexed by the length of the horizontal gel in mm in a 13 x 100 ml test 

tube (Muhammad, 2009). This test separates rice into hard (length 36 mm or less), intermediate 

(length 36-50 mm) and soft (length over 50 mm) gel consistency. Methods described by Little et al. 

(1958) can be used for determining gel consistency. Generally, intermediate amylose rice varieties 

have softer gel consistency and are more preferred for their tenderness (Muhammad, 2009; Phing et 

al., 2016). Hence, breeders tend to select for soft GC to improve the eating and cooking qualities in 

rice.  

GC is reportedly controlled by the Waxy (Wx) gene that encodes granule-bound starch synthase 

(GBSS) on chromosome 6 (Fan et al., 2005; Li et al., 2007; Wang et al., 2007; Zhang et al., 2012). 

Lanceras et al. (2000) and Li et al. (2007) suggested that a tight linkage or pleiotropy between AC 
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and GC is caused by the close proximity of their QTL positions. However, He et al. (1999) found two 

QTLs on chromosomes 2 and 7 for GC instead of on the Wx locus in doubled-haploid (DH) populations 

consisting of 132 pure lines. Minor QTLs for GC were also discovered by Lanceras et al. (2000) on 

chromosomes 6 and 7. Tian et al. (2005) also reported another minor QTL on chromosomes 1 and 2 

in the DH population from their study. Gao et al. (2011) showed that the alkali degeneration locus 

(alk) acts as a modifier gene that controls GC in a negative fashion, supporting results by Wang et al. 

(2007) in which the alk locus has a minor effect on the GC. Su et al. (2011) conducted map-based 

cloning for a major QTL, namely, qGC-6. Their result further supported the idea that the Wx gene 

controls not only AC but also GC, and therefore it has an important role in improving both traits (Phing 

et al., 2016). Furthermore, Lanceras et al. (2000) concluded that GC was under the control of a single 

gene of major effect along with several modifier genes. 

1.3.1.3  Gelatinization temperature 

Generally, rice takes 14-21 minutes for cooking in already vigorously boiling water, while the time 

required for cooking has a positive correlation with gelatinization temperature (GT) (Khush, 2000). 

The GT is a physical property of starch and may be defined as the temperature range at which the 

starch granules swell irreversibly in hot water and starch crystalline structures begin to melt (Fitzgerald 

et al., 2009). Overall, GT ranges between 55oC and 79oC. This factor also classifies rice varieties as 

low (55oC-69oC), intermediate (70oC-74oC) and high (74.5oC-79oC) GT (Khush, 2000). Rice grains 

with intermediate GT are generally most preferred (Muhammad, 2009) and can be indirectly estimated 

by the degree of alkaline dispersion using the alkali spreading value (ASV) technique developed by 

Little et al. (1958).  

 

The genetic basis of GT has been widely studied with reports showing that GT is controlled by the 

Waxy (Wx) gene that encodes granule-bound starch synthase (GBSS) on chromosome 6 (Tan et al., 

1999; Li et al., 2007). Zhang et al. (2012) also showed that the Wx gene has a minor effect on the 

expression of GT. Contrary results for the gene that controls GT have also been found. Tian et al. 

(2005) showed that GT is independent of the Wx gene; they reported a major QTL corresponding to 

the alkali degeneration locus (alk) on chromosome 6. Also, according to He et al. (1999) and Fan et 

al. (2005), the alk locus has a major effect on the GT. In addition, Umemoto et al. (2002) showed that 

the starch synthase IIa (SSIIa) gene that encodes starch synthase IIa (SSIIa) is located on the alk 

locus of chromosome 6. Umemoto et al. (2004) further indicated that SSIIa is the enzyme that 

contributes to natural variation in GT. Also, association mapping studies by Xu et al. (2013) showed 

that the starch properties of waxy rice were primarily controlled by SSIIa and SSI. However, Shu et 

al. (2006) reported that another gene contributes to the GT variation in terms of ASV, namely, the 

alk2(t) gene. Shu et al. (2006) also suggested that the alk2(t) gene, which is 3.93 cm away from the 
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Wx gene, has two alleles responsible for low and high GT. To date, several functional SNPs have 

been reported to be associated with rice GT (Umemoto et al., 2002, 2004; Waters et al., 2006), with  

a view of identifying closely linked markers for improving the target trait. 

1.3.1.4 Aroma in rice 

Very often, aromatic or fragrant rice commands a higher price in the rice market than the non-aromatic 

rice varieties (Khush, 2000) because of their pleasant aroma, flavour and texture. Aromatic cultivars 

commonly sold in world trade include the Basmati rice of India and Pakistan and the Jasmine rice of 

Thailand. Aromatic rice is highly valued throughout Asia with wider acceptance in Europe, Australia, 

USA and the Middle East (Suwannaporn and Linnemann, 2008; Sakthivel et al., 2009). The chemistry 

of flavour in rice grain reveals the existence of numerous volatiles in fragrant rice although the 

relationships among them are not well established except for a major aromatic compound, 2-acetyl 

1-pyrroline (2AP) (Jewel et al., 2011). Several studies have suggested 2AP as a principal aroma 

compound and badh2 as the candidate gene for fragrance (Kibria et al., 2008; Sakthivel et al., 2009). 

Weber et al. (2000), further suggests that over 300 aromatic rice varieties have been identified despite 

the low utilisation and production of these varieties. Given the economic and cultural importance of 

aromatic varieties, there is a need to further enhance their productivity whilst enhancing other 

important grain quality attributes. 

1.3.2 Rice grain quality evaluation procedures 

The genetic complexity of grain quality traits such as eating and cooking quality and the difficulty in 

accurate evaluation of these traits in early breeding generations, has constrained the development of 

rice varieties with superior eating and cooking qualities (Lestari et al., 2009). Some key 

physicochemical properties affecting the eating and cooking quality are amylose content (AC), pasting 

properties (PP), gel consistency (GC), gelatinization temperature (GT), and protein content (PC). 

Among the aforementioned, AC is the major determinant of rice processing and cooking and eating 

qualities (Muhammad, 2009; Yi et al., 2009). Methods have been established for determining the 

amylose content (Juliano, 1971), gel consistency (Cagampang et al., 1973) and gelatinisation 

temperature (Little et al., 1958). A simple and low-cost method for classifying AC in rice based on 

Juliano’s method (1971), with the use of a low-cost colour chart instead of a spectrophotometer has 

also been developed (Avaro et al., 2009).  

However, the need for highly accurate results has led to the use of most recent technologies for 

determining AC in rice. Subsequently, most of the AC quantification methods require the use of 

expensive equipment that are often not available in developing countries (Avaro et al., 2009). Thus, 

the use of marker-assisted selection (MAS) could overcome the inadequacies of AC measurements, 

given its low-cost and high throughput (Biselli et al., 2014). Furthermore, MAS can be applied as a 
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selection tool in the early phases of a breeding programme (Borba et al., 2010), whereas AC direct 

analysis would require seed setting at harvest. In addition, DNA markers for AC are able to distinguish 

between homozygous and heterozygous parents and further provide a more absolute way of 

classifying Granule-Bound Starch Synthase (GBSS) alleles compared to AC assays since it avoids 

the impediments of modifier genes, cytoplasmic factors, and environmental effects (Biselli et al., 

2014).  

1.3.3 Genetic and molecular basis of eating and cooking quality in rice  

The genetics of cooking and eating quality in rice has been widely reported (He et al., 1999; Li et al., 

2003; Zhou et al., 2003). Amylose content has been found to be the major determinant of rice cooking 

and eating quality (Dobo et al., 2010; Biselli et al., 2014) and the Waxy (Wx) gene that encodes 

granule-bound starch synthase (GBSS) on chromosome 6 is critical for amylose synthesis (Biselli et 

al., 2014). Additionally, quantitative trait locus (QTL) analysis has shown that the Wx gene region 

controls the three major eating and cooking quality traits (AC, GC and GT) in rice (Tan et al., 1999; 

Lanceras et al., 2000; Li et al., 2003; Tian et al., 2005). The inheritance of rice cooking quality has 

also been widely studied (Pooni et al., 1992; Xu et al., 1995; Shi et al., 1997; Lin et al., 2005). Pooni 

et al. (1992) suggested that amylose was related to the effects of the maternal plant or cytoplasm, 

whereas Xu et al. (1995) reported that rice amylose content was mainly controlled by the triploid 

endosperm genotype without any cytoplasmic effect. Shi et al. (1997) indicated that direct seed 

effects, maternal effects and cytoplasmic effects were the main factors controlling amylose content, 

alkali spreading score and gel consistency respectively. Lin et al. (2005) reported that the AC of 

japonica rice was not only influenced by the genetic main effects from endosperm, cytoplasm and 

maternal plant genes but was also affected by genotype x environment (GE) interaction effects.  

Furthermore, it has also been shown that other factors other than AC may be involved in regulating 

rice cooking and eating quality, since rice varieties with similar ACs have been observed to have 

different eating and cooking qualities (Liu et al., 2010). Liu et al. (2010) suggested the existence of 

other gene(s) that are non-allelic to the Wx gene that were mapped on chromosome 8 QTL cluster 

between flanking markers RM4955–RM8264 and G1149–R727. Other studies have confirmed marker 

associations with the QTLs for AC (Swamy et al., 2012; Tabkhkar et al., 2012), while Pandey et al. 

(2012) further suggested that the identified molecular markers could only differentiate between low 

AC varieties and high or intermediate AC varieties but not between varieties with intermediate and 

high AC. In another study, Yacouba et al. (2013) indicated that both AC and GC were not influenced 

by the Wx gene region. Furthermore, two QTLs were identified for AC; one QTL was detected at the 

interval of RM402-RM5963 on chromosome 6 corresponding to the Alk locus, and another QTL was 

detected on chromosome 8. These QTLs accounted for 8.6% and 5.7% of the total phenotypic 

variation respectively (Yacouba et al., 2013). Kottearachchi et al. (2014), used SSR markers RM 190 
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and RM 314, previously linked to AC and GT (Fan et al., 2005; Tabkhkar et al., 2012) for PCR 

amplification and identified SSR marker RM 190 as a potential marker in differentiating between low 

AC rice varieties over the intermediate and high AC. In another study to investigate the relationship 

between GBSS and AC in the US and European rice germplasm, Dobo et al. (2010) identified three 

single-nucleotide polymorphisms (SNP) in exons 1, 6 and 10, that differentiated between low (15-

20%), intermediate (21-24%) and high AC (>25%).  

Additionally, to provide a better discrimination between cultivars with AC greater than 25% from those 

with lower levels, Biselli et al. (2014) identified new SNPs by re-sequencing of the Waxy gene and 

1kbp of the upstream region. Thus, given these developments, several markers and QTLs affecting 

rice quality traits have been identified and mapped in various mapping populations (Xing and Zhang, 

2010), in order to apply marker-assisted selection for enhancing breeding efficiency. However, the 

identified QTLs may not be sufficient to elucidate the genetic basis of rice cooking and eating quality 

traits. Also, the varied nature of rice cooking and eating quality traits (Liu et al., 2010) underscores 

the need for identifying novel QTLs in order to design a breeding strategy for their improvement. In 

addition, Wang et al. (2010) suggested that knowledge of AC and its associated traits represents a 

major criterion in developing rice cultivars with desirable cooking and eating quality. Consequently, 

with the accumulated information on QTLs for cooking and eating quality traits and their closely linked 

markers (Sattari et al., 2015), QTL pyramiding can be applied as a direct approach for improving the 

target traits.    

1.3.4 Genetic and molecular basis of grain yield in rice  

Grain yield is a complex trait and is determined mainly by three component traits in rice, namely; 

number of panicles per plant, number of grains per panicle, and grain weight (Xing and Zhang, 2010). 

The number of panicles depends on the ability of the plant to produce primary, secondary, and tertiary 

tillers, while the number of grains per panicle largely depends on the number of spikelets and seed 

setting rate of the spikelets (Tripathi et al., 2012). In addition, grain weight is largely determined by 

grain size and the degree of filling (Xing and Zhang, 2010). A great difference in the levels of grain 

yield is found among different rice genotypes, with immense variability in the combinations of 

component traits (Tripathi et al., 2012). In addition, yield levels of rice varieties can also be greatly 

influenced by the prevailing environmental conditions and field management practices (Xing and 

Zhang, 2010).  

Rice yield is considered a quantitative trait and is controlled by multiple genes, each contributing a 

small but significant effect (Tripathi et al., 2012). The trait is also influenced by the environment, which 

makes it more difficult to investigate (Xing and Zhang, 2010). Nevertheless, with the development of 

molecular markers, genome mapping, and QTL analysis technologies, the genetic basis of 
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quantitative traits has been widely studied leading to the identification of several QTLs for yield-related 

traits (McCouch et al., 1988; Kurata et al., 1994; McCouch et al., 2002). Thus, the development of 

techniques for QTL validation and analysis has further contributed in deciphering the genetic basis of 

yield-related traits (Tripathi et al., 2012). Furthermore, efforts in rice functional genomics have led to 

the identification of several genes linked to yield-related QTLs (Miura et al., 2011). Given this 

background knowledge, the molecular basis of grain yield in rice can be exploited in yield improvement 

programmes through gene pyramiding. However, given the complex nature of grain yield, not a large 

number of genes can be simultaneously engineered. Hence, it is essential to select a few genes which 

can function synergistically in order to get the desired outcome (Tripathi et al., 2012). Thus, to achieve 

this objective, there is a need to extensively assess the expression patterns of the genes regulating 

yield-related traits in rice.  

1.4 Breeding for improved yield and grain quality in rice 

1.4.1 Role of farmer preferences and end-user grain qualities in rice  

For most rice breeding programmes in Africa, the focus has been on increasing yield and enhancing 

stress tolerance much to the disadvantage of grain eating and cooking qualities (Manful, 2010). A 

great number of the varieties developed are often released after field testing without taking account 

of their grain quality attributes. Such varieties may satisfy the farmers’ preferences but not the end-

user qualities, thus the locally produced rice is unable to compete favourably with imported rice that 

has superior cooking and eating qualities. Rice grain quality is important to those involved in rice 

production, processing and consumption and affects the nutritional and commercial value of the 

grains. Thus, rice grain quality attributes may include; processing quality, appearance, nutrition, and 

cooking and taste qualities. Among these, consumers’ choices of rice varieties are largely based on 

grain cooking and eating qualities (Oko et al., 2012).  

Although preferences may vary from one group of consumers to another, rice grains with a pleasant 

fragrance and a soft texture usually achieve higher prices in national and international markets (Yi et 

al., 2009). For example, in Uganda, consumers prefer aromatic to non-aromatic rice, unbroken to 

broken, bulging after cooking to rice that does not bulge and white milled rice to brown rice (MAAIF, 

2012). In addition, a study by Lamo (2010) in Uganda reported that overall, high yield potential, high 

market value and aroma were the most important choice of preferences in a rice variety by farmers. 

Further, in another study by Mzengeza (2010) in Malawi, farmers identified large grain size, aroma 

and rice grain that tends to remain separate after cooking as most preferred traits in a rice variety. In 

Tanzania, a study by Kashenge (2010) reported that yield potential, aroma and early maturity were 

the most preferred traits in a rice variety. Furthermore, Tanzania, the second largest producer of rice 
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in East Africa, has not only sustained its domestic market for rice but also exports substantial 

quantities of high-quality fragrant rice to its neighbouring countries at a considerable premium over 

imported rice (Demont, 2013). Therefore, for effective breeding, farmer and end-user variety 

preferences have become critical for most crop improvement programmes, while the integration of 

participatory plant breeding (PPB) approaches has been useful in eliciting farmers’ preferred varieties 

and encouraging wider uptake of new varieties (Ceccarelli, 2012; Ceccarelli et al., 2012).  

1.4.2 Genetic diversity for yield-related and grain quality traits 

The study of genetic diversity in rice is a critical component of plant genetics, breeding, conservation 

and in tracing the evolution history and pedigree of a rice variety (Tang et al., 2016). Breeding for 

improved grain yield and quality requires the selection of parents with a wider genetic diversity to 

ensure genetic gains (Lapitan et al., 2007). Thus, sufficient knowledge about genetic diversity in the 

genepool is a prerequisite to adopt an efficient and valuable breeding approach (Lapitan et al., 2007). 

In addition, characterization of rice germplasm is essential to provide information on different agro-

morphologically important traits carried by each genotype to ensure maximum utilization of the 

germplasm collection by the end-users (Ayres et al., 1997).  

Several strategies have been adopted for characterization of yield and grain quality traits in rice 

including, morphological (Devi et al., 2016) and molecular markers (Lapitan et al., 2007). The use of 

molecular markers for assessing the genetic variability and relatedness among crop germplasm is a 

valid improved approach (Vithyashini and Wickramasinghe, 2016) compared to the use of 

morphological markers. Morphological markers are limited in number and are often influenced by the 

environment and hence unreliable (Oloka et al., 2015). Microsatellite loci, also known as simple 

sequence repeats (SSRs) are among the most commonly used molecular markers since they are 

abundant, codominant and interspersed throughout the genome (Lapitan et al., 2007). However, the 

high demand for low cost sequence data has driven the development of high-throughput sequencing 

platforms or next-generation sequencing (NGS) technologies which has facilitated the large-scale 

discovery of single nucleotide polymorphisms (SNPs) in various plant species (Tang et al., 2016). 

Consequently, SNPs are rapidly replacing SSR markers because they are more abundant, stable, 

amenable to automation, efficient, and increasingly cost-effective (McCouch et al., 2010). 

Furthermore, the effectiveness of genotyping-by-sequencing (GBS), an NGS based method that takes 

advantage of reduced representation to enable high-throughput genotyping of a large number of SNP 

markers (Tang et al., 2016), has not been well exploited in rice. Thus GBS forms an important 

research focus for SNP genotyping in rice to further guide breeding efforts for rice grain quality and 

yield improvement. 
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1.4.3 Selection for grain yield and quality based on their attributing factors 

The agronomic value of rice is depicted by increased grain yield and its attributing factors such as 

number of panicles per plant, number of grains per panicle and weight of 1000 grains (Saha et al., 

2016). A common weakness among most cultivars with superior grain quality is low yield and 

consequently rice breeders are focussing on improving agronomic traits to gain better grain yield. 

Given that grain yield is controlled by a combined effect of various traits, selection of parents on the 

basis of yield alone can be misleading (Rashid et al., 2014). In addition, the success of a breeding 

programme depends on the amount of genetic variability present in the population and the extent to 

which the desirable traits are heritable (Devi et al., 2016). Thus, an efficient selection strategy requires 

knowledge about relationship between yield and its contributing characters.  

Furthermore, the study of relationships among quantitative traits is important for assessing the 

feasibility of joint selection for two or more traits where correlation analysis of characters can be used 

as a tool for indirect selection (Saha et al., 2016). However, correlation analysis between grain yield 

and its attributing characters may be misrepresentative due to an over estimation or underestimation 

of its association with other characters. Therefore, splitting of total correlation into direct and indirect 

effects further provides a more meaningful interpretation of plausible associations, where path 

coefficient is useful in specifying the cause and effect relationship and assessing the relative 

importance of each variable (Rai et al., 2015). A study by Zahid et al. (2006) in Basmati rice indicated 

that number of grains per panicle had the highest positive correlation with grain yield and further 

suggested that this character had a positive direct effect on grain yield. In another study, Premkumar 

et al. (2016) proposed that genetic improvement of grain quality and yield can be achieved by 

selecting for grain quality characters having high positive correlation and positive direct effect on grain 

yield. Thus, the use of correlation in combination with path coefficient analysis can be an important 

tool for identifying associations between characters and in quantifying the relative importance of each 

character.  

In addition, principal component and factor analysis may be used in modelling complex traits such as 

yield and grain quality in rice. The principal component analysis (PCA) is a multivariate statistical 

method for exploring and simplifying complex data sets, where, each principal component is a linear 

combination of the original variables, and therefore it is often possible to ascribe the meaning to what 

the components represent (Lewis and Lisle, 1998). The PCA generates the total variance of variables, 

it describes the maximum variance within a data set and is a function of primary traits (Mohsen et al., 

2014), which makes this approach more effective in deciding which agronomic traits contribute most 

to yield or grain quality. 
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1.4.4 Combining ability analysis for yield and grain quality traits 

The success of any plant breeding programme relies on the choice of appropriate genotypes as 

parents in a hybridization programme such that combining ability studies of the parents will provide 

guidance in the selection of better parents for effective breeding. In addition, combining ability analysis 

provides information on additive and dominance variance and that is important in choosing parents, 

crosses and appropriate breeding procedure to be followed in selecting for desirable segregants 

(Thakare et al., 2010). Consequently, breeding strategies based on hybrid production depends on a 

high degree of heterosis as well as the specific combining ability (SCA) of crosses.  

Furthermore, diallel analysis is one of the most important tools for estimating the general combining 

ability (GCA) of parents and selection of desirable parents and crosses with high SCA for exploiting 

heterosis (Rahimi et al., 2010). Srivastava (2000) suggested that heterosis breeding can effectively 

contribute to yield enhancement by 30% to 400% as well as successfully be used in the improvement 

of other desirable quantitative and qualitative traits in crops. Combining ability studies for yield and 

grain quality traits in rice have been described (Saleem et al., 2010; Thakare et al., 2010; Roy et al., 

2012) with the view of identifying good combiners useful for developing populations with favourable 

genes for yield and quality traits in rice. 

1.4.5 Genotype-by-environment interaction effects for rice grain yield and quality 

Multi-environment trials (MET) have been useful in evaluating yield stability performance of genetic 

materials under variable environmental conditions (Farshadfar et al., 2012), such that a genotype 

grown in different environments will often show substantial fluctuations in yield performance. Such 

changes can be influenced by variable environmental conditions referred to as genotype-by-

environment (GE) interaction (Sharifi et al., 2009; Sharifi et al., 2010). However, GE interaction 

lessens genetic progress in breeding programmes by decreasing the association between phenotypic 

and genotypic values (Mohamed, 2013). Therefore, GE interaction can either be exploited by 

selecting superior genotypes for each specific target environment or avoided by selecting widely 

adapted and stable genotypes across wide range of environments (Ceccarelli, 1989).  

Rice eating qualities are affected by environmental conditions such as weather, soil texture, biotic and 

abiotic stresses and cultural management (Sharifi et al., 2010). The existence of GE interaction for 

cooking quality traits of rice has been reported (Gravois and Webb, 1997; Shi et al., 1997; Chen and 

Zhu, 1999; Chen and Zhu, 2002; Lin et al., 2005). Shi et al. (1997) suggested that AC and GT were 

mainly controlled by genetic effects with the presence of GE interaction effects. Gravois and Webb 

(1997) showed that general combining ability (GCA) x year was significant for all of the amylograph 

viscosity characteristics, while Chen and Zhu (2002) revealed that GE interactions were expressed 

mainly as dominance x environment and cytoplasm x environment interaction for AC, GC and GT. 
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Furthermore, in a study by Jin et al. (2005) on the effects of temperature on grain-filling revealed that 

high temperature at the grain-filling stage decreased AC of rice. Therefore, understanding gene 

expression in different environments is necessary for improving rice eating and cooking quality traits 

(Sharifi et al., 2010).  

1.4.6 Conventional breeding for eating and cooking quality in rice 

There has been considerable success in improving rice for eating and cooking quality through several 

conventional rice breeding approaches such as backcrossing and pedigree breeding. However, users 

of conventional breeding techniques have encountered several challenges in improving cooking and 

eating quality traits in rice (Phing et al., 2016). Jennings et al. (1979) reported that conventional 

backcrossing is most appropriate for selecting traits that are controlled by a single gene. Nevertheless, 

given the quantitative nature of grain quality traits (Yano and Sasaki, 1997) coupled with the triploid 

endospermic nature of the genotypes and interactions between genotypes and the environment, 

improving eating and cooking quality through conventional backcrossing is complex. Furthermore, the 

use of pedigree breeding method for improving rice eating and cooking qualities is time-consuming 

(Jennings et al., 1979) and requires seed setting at harvest for laboratory evaluation. Given the 

foregoing, conventional rice breeding approaches have been less efficient in selection of high-quality 

rice. The use of molecular marker technology provides a more reliable option for selection of complex 

traits and thus more useful in complementing conventional breeding efforts.  

1.4.7 Marker-assisted breeding for improving eating and cooking qualities 

Improving rice grain yield and quality are important considerations (Borba et al., 2010), but remain an 

unprecedented challenge for most rice breeding programmes (Wang et al., 2012). Knowledge of the 

nature and magnitude of the genetic variation governing the inheritance of grain quality and yield-

related traits is essential for effective genetic improvement (Dhanwani et al., 2013). Conventional 

breeding methods have resulted in limited success in the development of high quality new cultivars 

due to the quantitative nature of grain quality traits and environmental variations (Yi et al., 2009; Wang 

et al., 2012). Molecular marker technology provides options for improving selection strategies (Akhtar 

et al., 2010), and facilitates the selection of complex traits during the breeding process because they 

are reliable and unaffected by environmental conditions (Yi et al., 2009). Marker assisted selection 

(MAS) has also been useful for genotyping of accessions at an early stage for traits that are normally 

evaluated after harvesting (Borba et al., 2010). A number of quantitative trait loci (QTLs) affecting rice 

yield and quality traits have been identified and mapped for different populations (Xing and Zhang, 

2010). However, the presence of epistasis and QTL x environment interaction makes it difficult to 

apply MAS for genetic improvement of complex traits (Xu and Crouch, 2008).  
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Additionally, the formation of QTL clusters due to a single gene with pleiotropic effects on multiple 

traits or due to the ‘‘linkage drag’’ of multiple linked genes, each affecting a different trait limits 

breeding efforts (Yamamoto et al., 2009). Nevertheless, efforts in QTL mapping and validation has 

not only improved the use of MAS for transfer of desirable QTL clusters and unlocking of undesirable 

linkage, but also provided insight into the genetic mechanisms regulating related traits (Wang et al., 

2012). Yi et al. (2009), successfully improved fragrance and intermediate AC in a Myanmar rice 

cultivar (Manawthukha) by marker-assisted backcrossing (MABC). Other achievements in improving 

complex traits by MAS using advanced backcross populations, chromosomal segment substitution 

lines, near-isogenic lines (NIL), and heterogeneous inbred families (HIF) with uniform genetic 

background have been reported (Xie et al., 2008; Maas et al., 2010; Tyagi et al., 2014). Thus, the use 

of DNA marker technology such as MABC can reliably be used for introgression of desirable rice grain 

quality traits in the background of high yielding rice cultivars.  

1.4.8 Prospects of genomics-assisted breeding 

Rice genome sequence data has simplified the identification and cloning of genes and QTLs for yield 

and grain quality traits and thus provided an important resource for detecting allelic variation and for 

genome assisted breeding programmes (Khush, 2013). Hence, desirable genes can be pyramided in 

elite rice cultivars to enhance their yield potential and grain quality through MAS. Furthermore, 

development, identification and validation of functional SNP markers for target genes has enhanced 

gene pyramiding into elite germplasm through MAS (Xing and Zhang, 2010). Map-based cloning has 

resulted in isolation of several genes for resistance to biotic and abiotic stresses as well as yield 

related traits, which has further improved the possibility of applying MAS for yield enhancement 

(Khush, 2013). The high demand for low cost sequence data has driven the development of high-

throughput next-generation sequencing (NGS) technologies that can generate millions of sequences 

simultaneously (He et al., 2014), while advances in genotyping-by-sequencing (GBS) offer a greatly 

simplified library production procedure more amenable to use on large numbers of individuals (Elshire 

et al., 2011). GBS is thus increasingly becoming an important cost-effective and unique tool for 

genomics-assisted breeding in a range of plant species (He et al., 2014) and hence undoubtedly an 

ultimate MAS tool to accelerate plant breeding and crop improvement.  

In addition, with the advance in microarray-based marker technology, Diversity Arrays Technology 

(DArT) markers have become the genetic markers of choice for construction of high-density maps, 

QTL mapping and genetic diversity analysis based on their efficiency and low cost (Gupta et al., 

2008). Additionally, by combining the complexity reduction of the DArT method with high-throughput 

NGS technologies, the DArT sequencing (DArTseq) platform was developed signifying a new 

implementation of sequencing of complexity reduced representations (Sánchez-Sevilla et al., 2015). 

Consequently, DArTseq markers based on GBS technology have been successfully applied for 
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linkage mapping, QTL identification in bi-parental mapping populations, genome wide association 

studies (GWAS), genetic diversity, as well as in marker-assisted and genomic selection (Sánchez-

Sevilla et al., 2015). Hence, DArTseq has been widely applied (Kilian et al., 2012; Courtois et al., 

2013; Von Mark et al., 2013) and is rapidly gaining popularity as a preferred method of genotyping by 

sequencing (Sánchez-Sevilla et al., 2015). With these developments in genetic marker technologies, 

breeding efforts for complex traits has been made more efficient and cost-effective thus improving the 

use of MAS and genomic selection for enhancement of yield and grain quality traits in rice.  

1.5 Conclusion and future outlook 

Improving grain yield and quality are important considerations in a rice breeding programme not only 

for the widespread uptake of a new variety but also in enhancing the nutritional and commercial value 

of the rice grain. However, the complex nature of these traits makes improvement through breeding 

difficult especially for rice breeding programmes in SSA. Consequently, conventional breeding 

methods have had limited success in improving eating and cooking quality in rice, while accurate 

evaluation of these traits during the early phases of a breeding programme is a major challenge. 

Given the need for highly accurate results during quantification of eating and cooking quality traits, 

there has been an increased introduction of high-throughput technologies. Furthermore, the high 

demand for low cost sequence data has driven the development of high-throughput sequencing 

platforms or next-generation sequencing (NGS) technologies. Advances made in microarray-based 

marker technology have encouraged the use of Diversity Arrays Technology (DArT) markers for 

construction of high-density maps, QTL mapping and genetic diversity analysis based on their 

efficiency and low cost. In addition, by combining the complexity reduction of the DArT method with 

high-throughput NGS technologies, the DArTseq platform was developed to reduce on sequence 

redundancy. Furthermore, efforts in QTL mapping and validation have improved the use of MAS and 

genomic selection for genetic improvement of complex traits. More recently, rice genome sequence 

data has simplified the identification and cloning of genes and QTL for yield and grain quality traits, 

thus providing an important cost-effective and unique tool for genomics-assisted breeding and a 

critical MAS tool for accelerating plant breeding and crop improvement for grain yield and quality in 

rice. 
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2. Appraisal of major determinants of rice production and 

productivity and farmers’ choice of ideotypes in South Sudan: 

implications for breeding and policy interventions 

Abstract 

Rice (Oryza sativa L.) is an important staple crop in South Sudan. Current rice consumption in the 

country is approximately 23,000 tonnes/year of which more than 75% is imported. The study 

investigated farmers’ perceived rice production and productivity constraints and choice of rice 

ideotypes across rainfed and irrigated rice agro-ecologies in South Sudan to guide breeding and 

policy interventions. Data were gathered through participatory rural approaches and a formal 

structured survey involving 136 rice farmers from major rice growing areas of South Sudan. Farmers 

generally cultivated old rice varieties with low yields varying from 0.4 to 1.6 t ha-1. Pair-wise ranking 

based on respondents score indicated that yield, early maturity, cooking and eating quality, nutritional 

importance and drought tolerance as the most desirable traits of rice ideotypes. Further, imported rice 

varieties were best ranked for their sweet and appealing taste, rich aroma, grain shape and size, 

swelling capacity and non-stickiness during cooking. Major perceived constraints to rice production 

were unreliable rainfall, poor access to credit facilities, poor soil and water management practices, 

poor rice storage facilities, inadequate and poor processing machines as well as limited technical 

skills in rice production. The results show a need for integration of farmers’ and stakeholders’ 

preferences in variety development process and the desirability of releasing site-specific rice cultivars 

given the differences in bio-physical, socio-cultural and farmers’ preferences across major rice 

growing areas of South Sudan.  

Keywords: Oryza sativa L., Participatory approaches, Farmer perceptions, Agro-morphological traits, 

Cooking and eating quality traits. 
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2.1 Introduction 

Rice (Oryza sativa L.) is the staple food for over half of the world’s population and is ranked as the 

world’s number one human food crop (Anuonye et al., 2016). In South Sudan, rice is considered 

among the first four dominant staple cereals after sorghum, maize, and millet in terms of consumption. 

Results from the 2009 National Baseline Household Survey (NBS) suggested that more than 75% of 

rural households consume cereals. Furthermore, in the last two decades, South Sudan (formerly 

Sudan), was a net exporter of agricultural produce to regional markets and the potential of agriculture 

in stimulating economic growth was emphasized. However, due to civil war-related destruction, poor 

infrastructure and lack of investment in the agriculture sector, South Sudan is now a net importer of 

food. It currently imports as much as 50% of its food needs, including 40% of its cereals from 

neighbouring countries, particularly Uganda and Kenya. Total food imports are estimated to be in the 

range of US$ 200-300 million a year (AfDB, 2013). The national consumption of rice in South Sudan 

is approximated at 23,000 tonnes/year and the average per capita consumption is projected as 3 

kg/year (AfDB, 2013). 

It is also reported that South Sudan receives all its rice imports through Uganda (Nzomoi and 

Anderson, 2013), which acts as an important transit corridor for rice shipment of both locally produced 

and imported rice. Despite the importance of rice in South Sudan, local production is low. Further, 

introduced varieties do not meet the standards of imported rice in physical, cooking and eating 

qualities and therefore do not offer competitive prices in the market. A major challenge of the rice 

sector in the country is therefore how to produce sufficient and affordable high quality rice that not 

only meets the preferences of its fast-growing and increasingly urbanized population, but also 

competes favourably with imported rice. In addition, consumer preferences may be variable and 

closely associated with the historical and socio-cultural factors of a given region (Son et al., 2014), 

such that quality rice in one region may be considered to be of poor quality in yet another region. A 

study by Nzomoi and Anderson (2013) on rice markets in East Africa suggested that released rice 

varieties are not widely adopted because, in most cases, farmers and consumers may not prefer the 

taste or aroma of the introduced variety. For example in Uganda, consumers prefer aromatic to non-

aromatic rice, sticky to non-sticky rice, unbroken to broken, bulging after cooking to rice that does not 

bulge, and white milled rice to brown. Thus, grain quality may be based on certain objective or 

subjective criteria that are of relative importance to the end-user. In general, the most important grain 

quality traits that are common to all end-users include appearance, milling quality, cooking, processing 

quality and nutritional quality (Lou et al., 2009). In light of this, knowledge on end-user tastes and 

preferences and identifying traits that farmers value in the selection of rice cultivars are important 

considerations for goal setting in a plant breeding programme (Virk et al., 2003).  
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Furthermore, the development of new high yielding varieties cannot have an appreciable impact 

unless the selection takes into account end-user qualities. Thus, researchers have become 

increasingly aware that incorporating end-user preferred qualities in technology development may 

substantially enhance chances of adoption of the technology (Joshi et al., 2002; Sié et al., 2012). 

Given this strategy, participatory plant breeding (PPB) approaches have been widely embraced in 

plant breeding programmes to engage farmers in variety selection process and have proven to be 

successful in eliciting farmers’ preferred varieties and encouraging farmer variety uptake (Witcombe 

et al., 1996; Joshi et al., 2002; Asante et al., 2013). In addition, participatory rural appraisal (PRA) has 

been useful in identifying farmers’ crop production constraints and variety preferences during the early 

phases of a crop improvement programme (Lamo, 2010; Mzengeza, 2010; Sibiya, 2010). This 

ensures development of rice cultivars tailored for specific adaptation (Joshi et al., 2002) which 

encourages competitiveness of locally produced rice and thus provides a mechanism to return more 

of the benefits associated with improved quality rice to the farmer. Thus the aim of this study was to 

investigate farmers’ perceived rice production and productivity constraints and choice of rice 

ideotypes across rainfed and irrigated ecologies in South Sudan to guide breeding and policy 

interventions.  

2.2 Research methodology 

2.2.1 Study area 

In South Sudan, rice is cultivated under two production systems, namely; rainfed upland (in the 

Greenbelt agro-ecological zone) and irrigated lowland (in the western flood plains Agro-ecological 

zone), where the latter provides the greatest potential for rice cultivation. This study was conducted 

in five payams (which are administrative units comparable to townships) of South Sudan that cut 

across the two common rice ecologies. Under irrigated lowland rice ecology, Aweil Rice Scheme 

being the most predominant was selected, while in the rainfed upland rice ecology, Yambio County, 

comprising of Yambio center, Bangasu, Gangura and Lirangu payams were identified. The selected 

sites are representative of major rice growing areas of South Sudan.  

The Aweil Rice Scheme in Aweil North County of Northern Bahr el Ghazal State is naturally covered 

with shrub and sparse trees with open deciduous woodland in the south, and receives a unimodal 

rainfall pattern with 800 to 1000 mm rainfall annually. The rice scheme lies within the flood plains 

agro-ecological zone and provides the greatest potential for lowland rice cultivation in South Sudan. 

It is located at 08046’48’N latitude and 27024’00 E longitude at an elevation of 425 m above sea level 

(asl) with an extensive irrigated lowland rice area of about 5,000 hectares. The soil is characteristic 

of black cotton soil, while the average monthly maximum temperatures vary slightly from 33.8ºC in 

March to 36.0ºC in September, and an average monthly minimum from 17.6ºC in September to 10.5ºC 
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in December. The land along the river floods annually, though the floods are of variable volume and 

duration.  

Yambio County is located along the tropical rain-forest belt within the Greenbelt agro-ecological zone 

of South Sudan at 04033’54’ N latitude and 28022’30’ E longitude with altitude of 650 m asl. The area 

receives a bimodal rainfall pattern with annual mean total rainfall of about 1443 mm and the soils are 

characteristic of ferrous soils with heavy deposits of fertile clay soils (Hoffmann et al., 2012).  

2.2.2 Sampling procedure and participants 

A simple random sampling technique was used to select rice farmers with at least 5 years of rice 

farming experience. Farmers were selected from across two common rice agro-ecologies of South 

Sudan, namely; the irrigated lowland rice cultivation in Aweil rice scheme and the rainfed rice 

production in Yambio County. Four payams were selected in Yambio County, namely; Gangura, 

Yambi center, Lirangu and Bangasu. The sample size comprised of 136 individual rice farmers (123 

male and 13 female) selected from the two common rice growing sites (Table 2.1). Further, to provide 

a forum for joint identification of challenges and opportunities in the rice sector, focus group 

discussions (FGDs) were conducted (one at each payam) and brought together key stakeholders that 

included farmers, County Agriculture Commissioners, extension officers, traders and millers. The total 

number of participants in the group discussions was 60 (45 male and 15 female). In general, there 

were more male respondents than females in both the structured survey and group discussions (Table 

2.1). The research team comprised of two scientists and ten extension officers (2 extension officers 

per site). The enumerators and facilitators were mainly local extension officers working in the study 

areas and were selected based on their familiarity with the local language, culture and farming 

activities at the respective sites.  
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Table 2.1: Total number of participants interviewed disaggregated by gender for structured survey 

and focus group discussions in selected rice growing areas 

Payam Male Female Total 

Formal survey    

Aweil rice scheme 20 3 23 

Gangura 28 4 32 

Yambio center 21 3 24 

Lirangu 39 1 40 

Bangasu 15 2 17 

Total 123 (90.4%) 13 (9.6%) 136 

Focus group discussions    

Aweil rice scheme 7 2 9 

Gangura 8 4 12 

Yambio center 10 2 12 

Lirangu 13 4 17 

Bangasu 7 3 10 

Total 45 (75%) 15 (25%) 60 

2.2.3 Data collection  

Primary data for the set objectives were collected through structured and pre-tested questionnaires 

(Appendix 5) and participatory learning approaches. Participatory rural appraisal tools were used in 

characterizing the bio-physical and socio-economic status of the rice farming households, including 

key informant interviews, focus group discussions and transect walks during farmer field observations 

to further validate data generated from individual interviews. Additional qualitative and quantitative 

data were gathered for preferred rice characteristics and cooking and eating qualities required by rice 

farmers and other stakeholders. Furthermore, data were collected on a number of variables, including 

demographic information and socio-economic indicators. Enumerators were guided through the 

questionnaires and focus group discussions points by the principal investigator to ensure clarity and 

to establish a common understanding of the exercise. The questionnaire was pre-tested on a small 

group of farmers and adjustments were made where necessary.  

Group discussions allowed for joint identification and prioritization of challenges and opportunities 

aimed at enhancing local rice production. In addition, the discussions also focussed on outstanding 

issues emanating from individual farmer interviews. In one of the group discussions in Gangura 

payam, a rice cooking and eating quality exercise was conducted with a panel of 12 participants (8 

male and 4 female) to capture stakeholders’ general views on rice cooking and taste qualities and to 

provide for greater in depth discussion on the same. In this exercise, test materials included imported 

rice varieties (‘Basmati’, ‘Pakistan’, and ‘China’) and locally cultivated rice cultivars (‘NERICA 4’ and 
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‘NERICA 1’) which were considered as controls. The materials were acquired from the local market 

where imported rice was observed to be slightly more expensive than the locally produced rice. 

The test materials were treated equally during the cooking process and were branded with letters to 

avoid any bias. Thereafter, stakeholders were able to score the cultivars following a linear scale of 1 

(most preferred) to 5 (least preferred) for cooking and eating quality giving reasons for like or dislike. 

Furthermore, a participatory approach was used as a means to identify farmers’ needs in a cultivar 

and to expose stakeholders to new upland and lowland rice cultivars. The most important agro-

morphological attributes were revealed and explained to the participants. From the traits chosen, 

participants gave weighting of the importance of each trait giving reasons for like or dislike. To assess 

how participants select traits that they consider in the selection of rice varieties to plant, score cards 

were used to distribute to each trait according to its importance following a linear scale of 1 (most 

preferred) to 5 (least preferred).    

2.2.4 Data analysis 

Descriptive statistics using frequency, means and percentages were calculated for different variables 

to explore relationships. Statistical analyses of both quantitative and qualitative data were performed 

in IBM SPSS Statistics version 21.0 (SPSS, 2012) computer package. Chi-square test for association 

was used to test for independence between rice growing sites and different variables. Data generated 

from focus group discussions was tallied, ranked and compared using matrix and pair-wise ranking 

procedures. Spearman’s rank correlation was used to test for consistency of ranks across sites. 

2.3 Results 

2.3.1 Demographics and socio-economic aspects 

Significant differences (P<0.001) were observed for household relationship and number of individuals 

per household across the rice growing sites with implications on availability of farm labour, where 

most of the respondents (52%) were within the age range of 21-40 years (Table 2.2). In addition, the 

bulk of the respondents had attained primary education (58%) with a few others who had only 

achieved Ordinary School Certificate (15%) as the highest level of training (Table 2.2). Significant 

differences were also observed for land size allocated for rice production (P<0.01) and category of 

popular rice grown (P<0.001) across sites where a great number of rice farmers interviewed cultivated 

local landraces both in Aweil rice scheme (48%) and Yambio County (81%). Common rice varieties 

cultivated in Aweil rice scheme were ‘BG400-1’ and ‘BR4’, while in Yambio County, popular rice 

landraces were ‘Ruanya’ and ‘Zamburu’. The yields of the landraces were observed to range between 

0.4-1.6 t ha-1 for both upland and lowland cultivars (Table 2.2).  
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Table 2.2:  Farmer and household information for Aweil rice scheme and Yambio County in South 
Sudan  

                  Payams in Yambio County       

Variable    Class 

Aweil 
rice 
scheme  Gangura 

Yambio 
Center Lirangu Bangasu 

Total 
counts 

DF Chi-
square 
value P-Value 

Age (years)  <20 0 0 0 4 1 5 12 16.007 0.191  
21-40 17 15 13 17 18 70  
41-60 6 14 11 16 7 54  
61-80 0 3 0 3 1 7 

Household 
relationship 

Head 11 31 24 40 14 120 12 53.988 <0.001 
Spouse 6 1 0 0 3 10   

 

Child 3 0 0 0 0 3   
 

Relative 3 0 0 0 0 3   
 

Household 
size (number 
of individuals) 

<5 8 2 12 12 4 38 12 50.699 <0.001 
:6-10 15 18 6 16 2 57    
:11-15 0 11 2 6 3 22   

 

>15 0 1 4 6 8 19   
 

Level of 
education 

None 9 9 5 5 6 34 12 16.048 0.189 
Primary (Grade 
1-7) 

9 19 16 28 7 79    

Ordinary  school 
certificate  
(Form 1-4) 

3 4 3 6 4 20   
 

Certificate 
(Agricultural 
training) 

2 0 0 1 0 3   
 

Total farm 
size 
(hectares) 

<1 12 17 14 20 11 74  8 9.183 0.327 
1.1-2.5 11 13 7 13 3 47   

 

>2.5 0 2 3 7 3 15   
 

           
Land size 
allocated for 
rice 
(hectares) 

0.01-0.1 0 2 0 0 3 5 12 29.786 <0.01 
0.1-1.0 15 29 23 34 16 112   

 

1.0-2.0 8 3 0 5 1 17   
 

 >2.0 0 0 1 1 0 2    
Variety 
cultivated 

Local landraces 11 25 21 32 14 103  8 39.254 <0.001 
Improved 
varieties 

0 5 1 7 1 14   
 

Local & 
improved 

12 2 2 1 2 19   
 

Estimated 
yield 
(tonnes/ha) 
  

0.4-1.0 9 10 10 14 4 47 12 15.842 0.199 
1.0-1.6 11 15 5 17 5 53    
1.6-2.2 1 3 0 2 2 8   

 

2.2-2.8 2 4 9 7 6 28   
 

2.3.2 Farmer staple crops and cropping systems 

Results of chi-square test for independence revealed that crops grown by farmers did not differ 

significantly across the rice growing sites (Table 2.3). Within the lowland rice ecology, rice was grown 

entirely as a sole crop and was considered an important food and cash crop. Second to rice, sorghum 

was most preferred as a food crop followed by groundnut, maize and sesame (Table 2.3). Commonly 

cultivated rice and sorghum varieties were late maturing (>6 months). Sorghum was commonly 

intercropped with sesame, while maize was mainly cultivated in limited areas close to the homesteads 

and often consumed green. Groundnut which makes an important contribution to the household diet 

and also an important cash crop was mostly cultivated in sandy soils.  
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Upland rice in Yambio County (comprising Gangura, Yambio center, Lirangu and Bangasu payams) 

was widely grown as an intercrop with maize or cassava. Rice was generally considered an essential 

food crop and an important socio-cultural crop. Other important crops cultivated in Yambio County 

were groundnuts, maize, cassava and sorghum (Table 2.3). Similar to Aweil rice scheme, late 

maturing (<6 months) rice and sorghum varieties were predominant in Yambio County. 

Table 2.3: Farmers’ preferences (%) for staple crops across lowland and upland rice ecologies in 
South Sudan   

Ɨ Overall rank based on percent mean values across sites. Ɨ 'Overall rank 1 = best, to overall rank 8 
= worst'. ns=Non-significant (P>0.05) 

2.3.3 Farmers’ desired rice variety attributes and their level of importance 

At the lowland rice production site in Aweil rice scheme, farmers identified the four most important 

desirable variety characteristics as early maturity, phenotypic acceptability, yield and nutritional 

importance (Table 2.4). Whereas, in the upland rice growing sites within Yambio County, farmers in 

Gangura payam suggested yield, nutritional importance, pest resistance and early maturity as the 

most desirable cultivar traits. In Yambio centre payam, farmers opted for yield, cooking and eating 

quality, nutritional importance and drought tolerance as the most important traits of a variety. 

Conversely, in Lirangu payam, farmers advocated for yield, early maturity, cooking and eating quality 

and drought tolerance. Furthermore, in Bangasu payam, farmers identified improved cooking and 

eating quality, yield, early maturity and drought tolerance as the most preferred traits of a rice variety 

(Table 2.4). Ranking of mean scores across sites in order of importance revealed that yield, early 

maturity, cooking and eating quality, nutritional importance and drought tolerance were most desirable 

cultivar traits preferred by respondents (Table 2.5). Furthermore, spearman’s rank correlation 

coefficient (r) suggested significant negative correlation (r=-0.64; P<0.01) in the consistency of 

ranking order of most desirable variety traits preferred by respondents across sites (Table 2.5). 

 
 
Crop 

Sites Mean 
across 

sites 

Overall 
Rank Ɨ Aweil rice 

scheme 
Gangura Yambio 

center 
Rirangu Bangasu 

Sorghum 65.2 15.6 16.7 12.5 11.8 24.4 4 
Cassava 0.0 37.5 45.8 15.0 11.8 22.0 5 
Maize 17.4 53.1 79.2 55.0 17.6 44.5 3 
Groundnut 39.1 46.9 83.3 47.5 23.5 48.1 2 
Beans 0.0 6.3 12.5 7.5 0.0 5.3 8 
Sesame 8.7 9.4 8.3 7.5 5.9 8.0 7 
Millet 0.0 12.5 33.3 10.0 11.8 13.5 6 
Rice 100.0 96.9 75.0 87.5 88.2 89.5 1 

Overall mean 
     

 31.9 
DF 

     
 28.0 

Chi-square 
     

 56.0 
P-value 

     
 0.229ns 
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Table 2.4: Pair-wise ranking of most desirable variety traits by respondents in lowland and upland rice 

ecologies in South Sudan 

 Trait A B C D E F G H Score ǂ Rank 

i) Aweil rice scheme           
A Nutritional importance - B A A A F A H 4 4 
B Early maturity  - B B B B B B 7 1 
C Drought tolerance   - C C F C H 3 5 
D Pest/insect resistant    - D F D H 2 6 
E Disease resistant     - F G H 0 8 
F Yield      - F H 5 3 
G Cooking and eating quality       - H 1 7 
H Phenotypic acceptability        - 6 2 

ii) Gangura           

A Nutritional importance - A A A A F A A 6 2 
B Early maturity  - B D B F B B 4 4 
C Drought tolerance   - D E F G C 1 6 
D Pest/insect resistant    - D F D D 5 3 
E Disease resistant     - F G H 1 6 
F Yield      - F F 7 1 
G Cooking and eating quality       - G 3 5 
H Phenotypic acceptability        - 1 6 

iii) Yambio center           

A Nutritional importance - A A A A F G A 5 3 
B Early maturity  - C D E F G B 1 7 
C Drought tolerance   - C C F G C 4 4 
D Pest/insect resistant    - D F G D 3 5 
E Disease resistant     - F G E 2 6 
F Yield      - F F 7 1 
G Cooking and eating quality       - G 6 2 
H Phenotypic acceptability        - 0 8 

iv) Lirangu           

A Nutritional importance - B C D E F G H 0 8 
B Early maturity  - B B B F B B 6 2 
C Drought tolerance   - C C F G C 4 4 
D Pest/insect resistant    - D F G H 2 6 
E Disease resistant     - F G H 1 7 
F Yield      - F F 7 1 
G Cooking and eating quality       - G 5 3 
H Phenotypic acceptability        - 3 5 

v) Bangasu           

A Nutritional importance - B C D E F G A 1 7 
B Early maturity  - B B B F G B 5 3 
C Drought tolerance   - C C F G C 4 4 
D Pest/insect resistant    - D F G D 3 5 
E Disease resistant     - F G E 2 6 
F Yield      - G F 6 2 
G Cooking and eating quality       - G 7 1 
H Phenotypic acceptability        - 0 8 

Ɨ Letters correspond to traits listed along the column. ǂ The score is given by the frequency of the letter 

representing the trait. 'Rank 1 = most desirable, to rank 8 = least desirable' 
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Table 2.5: Pair-wise ranking of most desirable traits of varieties by respondents across lowland and 

upland rice ecologies in South Sudan 

Trait 

Score Ɨ  Overall mean 

Aweil 

rice 

scheme 

Gangura 
Yambio 

center 
Lirangu Bangasu Score 

Rank 

ǂ 

Yield 5 7 7 7 6 6.4 1 

Early maturity 7 4 1 6 5 4.6 2 

Cooking and eating 

quality 
1 3 6 5 7 4.4 3 

Nutritional importance 4 6 5 0 1 3.2 4 

Drought tolerance 3 1 4 4 4 3.2 4 

Pest and insect resistant 2 5 3 2 3 3.0 5 

Phenotypic acceptability 6 1 0 3 0 2.0 6 

Disease resistance 0 1 2 1 2 1.2 7 

 Overall mean score        3.50  

 DF      28.00  

 Spearman’s rank correlation coefficient (r)   -0.64**  

Ɨ Scores are generated from S2 Table. ǂ 'Rank 1 = most desirable, to rank 7 = least desirable'. 

**Correlation is significant at the 0.01 level (2-tailed). 

2.3.4 Stakeholder preferred rice cooking and eating quality traits  

To understand stakeholder perceptions for cooking and eating quality traits, both imported and locally 

cultivated rice cultivars were subjected to cooking and eating quality tests. The best ranked rice 

varieties were imported varieties, namely; ‘Pakistan’, ‘Basmati’ and ‘China’ rice (Table 2.6). ‘Pakistan’ 

rice variety was preferred for its “sweet” taste, swelling capacity, aroma, grain shape and size and 

non-stickiness. On the other hand, ‘Basmati’ rice variety was desired for its grain shape and size, 

appealing sweet taste, non-stickiness and aroma, while ‘China’ rice variety was selected for its 

appealing golden colour, aroma, sweet taste, non-stickiness and swelling capacity. Among the two 

lowly ranked locally cultivated rice cultivars, ‘NERICA 1’ was preferred to ‘NERICA 4’ for its aroma, 

grain colour and less water use during cooking (Table 2.6).  It was also noted that the price of imported 

rice in the market was slightly higher than the price of locally produced rice. 
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Table 2.6: Matrix ranking of stakeholder variety preferences for cooking and eating quality attributes 
during a focus group discussion 

  
Variety 

Individual rank Rank 
index 

Overall 
rank Ɨ 

Preference 

1 2 3 4 5 Like Dislike 

A (Pakistan) 4 1 1 3 1 26 1 Sweet taste, swelling 
capacity, grain shape 
and size,  aroma and 
non-sticky 

None 

B (Basmati) 1 5 0 1 3 30 2 Grain shape and size, 
sweet taste, 
appealing, non-sticky 
and aroma 

None 

C (China) 3 2 1 0 4 30 2 Aroma, taste, non-
sticky, grain colour, 
swelling capacity, 

Grain shape and 
size, require more 
water to cook 

D (NERICA 1) 1 0 4 4 1 34 3 Grain colour, aroma, 
sweet taste, swelling 
capacity,  and require 
less water to cook 

Sticky, Grain shape 
and size 

E (NERICA 4) 1 2 4 2 1 30 2 Sticky, swelling 
capacity, sweet taste  

Non-aromatic, 
Sticky, require more 
water to cook, Grain 
shape and size 

Ɨ 'Overall rank 1 = best, to overall rank 3 = worst'. In parenthesis are the cultivar common names. 

2.3.5 Desirable rice agro-morphological traits  

Results of matrix ranking of agro-morphological traits among ten lowland and ten upland cultivars is 

presented in Tables 2.7 and 2.8. The best two selected lowland cultivars were ‘NERICA-L-6’ and ‘K-

85’. ‘NERICA-L-6’ was most preferred for early maturity, large panicles and enhanced tillering 

capacity. The least preferred lowland rice cultivar was ‘1189’ because it had small panicles and was 

late maturing (Table 2.7). 

The best ranked upland rice cultivars were ‘NERICA 1’ and ‘ART3-8L6P3-2-3-B’, which were selected 

for early maturity and enhanced tillering capacity. The least preferred upland rice cultivar (‘ART3-

7L9P8-3-5-B-B-2’) was disliked for having small panicles and few productive tillers (Table 2.8). 

The most desirable agro-morphological attributes in both lowland and upland rice cultivars were early 

maturity, large panicles and enhanced tillering capacity. Overall, most locally grown rice cultivars 

across all rice growing sites were characterised as late maturing (>6 months) with low yields (0.4-1.6 

tonnes/hectare) and less potential for providing surplus produce for the market. Rice is an important 

food and cash crop in South Sudan. However, rice production is unable to meet the growing local 

demand yet the locally produced rice faces stiff competition from imported rice.  
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Table 2.7: Matrix ranking of stakeholder preferences for agro-morphological traits in lowland rice 
cultivars during a focus group discussion 

  Individual 
rank 

Rank 
index 

Overall 
rank Ɨ 

Preferences 

Variety 1 2 3 Like Dislike 

A (326104) 0 4 0 8 5 Early maturity,  Short, small 
panicles 

B (NERICA-L-19) 0 1 1 5 3 Large panicles and early 
maturity 

Tall, Few tillers  

C (Supa 1052) 0 1 1 5 3 Large grains, strong stem, 
large panicle   

Tall, late maturing 

D (K-85)  0 1 0 2 2 Grain shape, grain size, 
early maturity 

Small panicles, 

E (1189) 4 2 2 14 7 Grain shape Small panicle, late 
maturing, less tillers 

F (Kumboka) 2 0 1 5 3 Early maturity and large 
panicles, aromatic 

Less tillers 

G (Supa-TZ) 0 0 2 6 4 Late maturity, aromatic, 
large panicles 

Tall, few tillers 

H (NERICA-L-6) 1 0 0 1 1 Early maturity, large 
panicles, tillering capacity 

Grain shape, grain 
size 

I (TXD-306) 2 0 1 5 3 Early maturity, aromatic Tall, Weak stems 
J (Wita 9) 1 1 2 9 6 Short, grain shape, grain 

size 
Late maturing, 
susceptible to blast, 
few tillers 

Ɨ 'Overall rank 1 = best, to overall rank 7 = worst'. In parenthesis are the cultivar lineages or 

common names. 
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Table 2.8: Matrix ranking of stakeholder preferences for agro-morphological traits in upland rice 

cultivars during a focus group discussion 

  
Variety 

Individual 
rank 

Rank 
index 

Overall 
rank Ɨ 

Preference 

1 2 3 Like Dislike 

A (P5 H6) 0 4 0 8 4 Grain colour,            Few tillers 
B (ART2-4L3P1-2-1) 0 1 1 5 2 Early maturity, 

large panicles  
Weak stems, few 
tillers, 

C (ART3 -8L6P3-2-3-B) 0 1 0 2 1 Tillering capacity, 
early maturity, 

Grain shape, grain 
size 

D (NERICA 1) 0 1 0 2 1 Early maturity, 
aromatic, tillering 
capacity 

Grain shape, grain 
size 

E (ART3-7L9P8-3-5-B-B-2) 4 2 2 14 6 Early maturity Small panicle size, 
few tillers,  

F (ART3 -7L3P3-B-B-2) 2 0 1 5 2 Tillering capacity, 
large grain size 

Grain shape 

G (SCRIDO 06-2-4-3-4-5) 0 0 2 6 3 Tillering capacity, 
large panicles  

Late maturing 

H (ART25-3-29-2-B) 1 0 1 5 2 Large grains, 
medium height 

Grain shape, grain 
size, non-aromatic 

I (NERICA 4) 2 0 1 5 2 Early maturity, 
tillering capacity,  
large panicles  

Grain shape, grain 
size, non-aromatic 

J (ART12-L2P2-20-3-1-1) 1 1 2 9 5 Grain shape, grain 
size 

Few tillers, late 
maturing, small 
panicles 

Ɨ 'Overall rank 1 = best, to overall rank 6 = worst'. In parenthesis are the cultivar lineages or 

common names. 

2.3.6 Farmers’ perceived constraints to rice production across lowland and upland 

rice ecologies  

Significant differences (P<0.001) were observed in the consistency of ranking order of major rice 

production constraints across lowland and upland rice growing sites (Table 2.9). The  most important 

constraints across lowland and upland rice ecologies were; unreliable rainfall, poor access to credit 

facilities, poor soil and water management practices, poor rice storage facilities, inadequate and poor 

processing machines as well as limited technical skills in rice production (Table 2.9). Poor soil and 

water management practices was identified as a major constraint to lowland rice production, while 

unreliable rainfall was mentioned as a critical factor affecting upland rice production (Table 2.9). 
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Table 2.9: Ranking of major rice production constraints across lowland and upland rice production 

sites in South Sudan 

Constraint 

                   Ɨ Mean scores  

Aweil Gangura 
Yambio 
center Rirangu Bangasu 

Overall 
Mean  

ǂ 
Rank 

Unreliable rainfall 1.96 1.91 1.96 1.98 1.94   1.95 1 
Poor access to credit 
facilities 

1.87 1.88 1.88 1.90 1.88   1.88 2 

Poor soil and water 
management practices 

1.96 1.88 1.83 1.85 1.82   1.87 3 

Birds damage 1.91 1.81 1.75 1.90 1.94   1.86 4 
Inadequate technical 
skills 

1.78 1.75 1.88 1.93 1.88   1.84 5 

Inadequate and poor 
processing machines 

1.87 1.78 1.88 1.83 1.76   1.82 6 

Poor storage facilities 1.87 1.78 1.71 1.75 1.88   1.80 7 
Pests and disease 
infestation 

1.74 1.78 1.75 1.65 1.65   1.71 8 

High costs of production 1.70 1.63 1.75 1.65 1.65   1.68 9 
Low yielding varieties 1.96 1.47 1.38 1.73 1.71   1.65 10 
Poor roads and transport 
facilities 

1.74 1.47 1.58 1.73 1.65   1.63 11 

Lack of lucrative markets 1.87 1.34 1.38 1.30 1.53   1.48 12 
Limited access to farm 
inputs 

1.39 1.31 1.33 1.55 1.47   1.41 13 

Overall mean         1.32  
DF      48.00  
Spearman’s rank correlation coefficient (r)   -0.83**  

 ǂ Rank based on overall mean scores across sites. 'Rank 1 = most important, to rank 13 = least 
important'.   **Correlation is significant at the 0.01 level (2-tailed). 

2.4 Discussion 

Women play a prominent role in farming in South Sudan, providing close to 80% of farm labour (AfDB, 

2013). However, in this study more males participated than females. This is strongly attributed to the 

traditional set-up and cultures where men often as house-hold heads take lead in farm planning and 

decision making and are custodians of common household wealth as observed in this study. 

Significant differences were observed for number of individuals per household. The majority of 

sampled farmers consisted of a youthful age group with the potential for increased agricultural 

production and productivity. Although some respondents indicated having attended short courses in 

agricultural training commonly offered by agricultural extension officers and non-governmental 

organizations, specialized formal training in rice production and management was inadequate. 

Farming was based on small, hand cultivated units of less than one hectare per household. Despite 

the huge potential for rice cultivation in South Sudan, farmers use traditional and unimproved farming 

practices and unimproved seeds limiting potential production and productivity of the crop. In both rice 

ecologies, majority of the rice farmers cultivate using obsolete rice varieties or landraces which have 



50 
 

been recycled over the years. Although landraces are an important element of plant genetic resources 

(Gyawali et al., 2010), they are generally characterized by low yields. In spite of efforts to introduce 

new varieties by development partners and NGOs, most of the introduced varieties did not go through 

testing for adaptability. Also, these varieties were not evaluated for their agronomic performance and 

attributes and hence are rarely adopted by rice farmers. Therefore, this study suggests options for 

enhancing improved rice variety uptake by incorporating farmer and consumer desirable traits in the 

desired cultivar through participatory breeding approaches.  

Next to rice, sorghum and groundnut were the most preferred crops at the lowland rice growing site, 

while maize and groundnut were desirable at the upland rice growing sites. The differences may be 

explained by the suitability of the soils for production of the desired crop and the economic and socio-

cultural importance of the crop. Furthermore, rice was also mainly cultivated as a sole crop in the 

lowland rice ecology and as an intercrop in the upland rice ecology, where in the former; rice was 

considered an important food and cash crop, whereas in the latter, rice was valued as an essential 

food and socio-cultural crop.  Across all sites, farmers mainly cultivated local landraces or old crop 

varieties probably due to inadequate exposure to new and modern cultivars or the absence of 

acceptable alternatives to their landraces (Witcombe et al., 1996). Although, there have been efforts 

to introduce improved rice varieties mainly by non-governmental organizations, the failure to produce 

varieties adapted to varied production conditions or with traits valued by farmers and consumers may 

explain the limited variety adoption (Dalton and Timothy, 2004; Witcombe et al., 2004). In both rice 

growing systems, farmers commonly used their own seed saved from the previous harvest and rarely 

used fertilizers, pesticides or herbicides. 

Variability in farmer variety preferences across sites may be influenced by historical and socio-cultural 

factors (Son et al., 2014) as depicted in the present study. Consequently, this may provide important 

breeding considerations in generating site-specific rice cultivars in South Sudan. Yield and early 

maturity which were selected as the most desirable attributes across the rice growing sites relate to 

preferable farmer cultivar traits that offer a clear yield advantage with potential for double cropping. 

However, this does not always translate into increased revenue, thus consumer preference is often 

considered a major driver of widespread uptake of a new variety (Calingacion et al., 2015) and is 

directly associated with grain quality traits such as cooking and eating quality in rice (Oko and 

Dambaba, 2012). Hence, it is important to note that rice producers’ and consumers’ alike are important 

drivers of rice production and choice of variety. Consequently, variety attributes are important 

considerations in designing breeding strategies for developing rice varieties that incorporate both 

farmers’ and consumers’ preferences for enhanced variety uptake. 

Overall, imported rice were highly preferred mainly for the “sweet” and appealing taste, grain shape 

and size, aroma, swelling capacity and non-stickiness during cooking, while the locally produced rice 
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cultivars  were less preferred based on their non-appealing grain shape and size, taste and stickiness 

during cooking. Similar results were reported by Asante et al. (2013) in West Africa and Kikuchi et al. 

(2016) in East Africa. Gender differences were also observed where different rice varieties appealed 

differently to either men or women. The men generally preferred varieties that are long and slender 

because it is preferred in the market while the women selected for varieties that are aromatic and 

swell when cooked.  

In this study, the local cultivars which are recently introduced, farmer preferred and adapted to the 

upland rice ecology of South Sudan do not match the imported rice in end-user qualities. Furthermore, 

imported rice was generally observed to be slightly more expensive than the locally produced rice. 

Locally produced rice does not offer competitive prices in the market being inferior in processing, 

cooking and eating qualities. A study by Demont and Ndour (2015) on upgrading of rice value chains 

as evidenced from 11 African markets concluded that generally urban rice consumers were willing to 

pay more for rice with superior intrinsic and extrinsic quality attributes. Furthermore, Demont (2013) 

suggests that in order to make domestic rice competitive to imported rice, African governments will 

need to invest more resources in rice value-addition. Consequently, this provides a great opportunity 

for varietal quality improvement by African rice producing countries to reduce rice imports and 

generate higher export revenues. Additionally, consumers’ choice of rice varieties is largely 

determined by the grain cooking and eating qualities (Oko and Dambaba, 2012). Although 

preferences may vary from one group of consumers to another, rice grains with a pleasant fragrance 

and a soft texture often attracts higher market prices (Yi et al., 2009). 

Rainfall is erratic across rice growing areas in South Sudan. Aweil rice scheme which lies within the 

flood plain agro-ecological zone of South Sudan frequently experiences torrential rains that results in 

flooding for most part of the rice growing season. Erratic and torrential rains are a major cause of crop 

failure and therefore viewed as a major challenge in rice production across all rice ecologies in the 

country. Further, absence or inadequate access to credit facilities was suggested as an important 

constraint in rice production. Agriculture is generally viewed as a risky business by most financing 

institutions in South Sudan, while there are very few of these institutions in the country that support 

agricultural investment, most are located in major towns that are not easily accessible by rice growers. 

Furthermore, poor soil and water management practices were identified as major constraints to rice 

production. As noted in this study, farmers rarely used fertilizers although most of the soils are 

depleted in nutrients, contributing to the observed low rice yields. Additionally, at the irrigated lowland 

site at Aweil rice scheme, irrigation and water management practices were unsatisfactory hence a 

major limiting factor in rice production. Another major setback mentioned by rice growers was grain 

damage by birds in both lowland and upland rice growing areas. Birds’ damage was more pronounced 

in rice fields that were sown late, predisposing the crop to damage by migrating birds. Also, the lack 

of capacity building in various aspects of rice cultivation was identified as a major constraint to rice 
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production in South Sudan. Farmers generally lacked basic skills in improved rice production and 

management practices and commonly followed traditional methods of rice production such as 

broadcasting as opposed to improved planting methods, for example, dibbling and line planting 

methods that can offer improved yields. 

2.5 Conclusion 

The present study revealed important considerations for the rice breeding programme in South Sudan 

and provided options for policy interventions essential for boosting the rice industry in the country. 

Majority of the rice farmers were relatively young, within the economically active age group but were 

less exposed to specialised formal training in rice production and management. The study also 

highlighted the fact that rice farming was largely dominated by traditional rice farming methods 

including broadcasting and use of farmer saved seed or recycling of old rice varieties despite efforts 

to introduce new rice varieties. The low uptake of new rice varieties largely emanates from lack of 

incorporating farmer and consumer preferences in these varieties, hence farmers are rarely exposed 

to rice varieties that provide acceptable alternatives to their landraces. The criteria for selecting rice 

varieties were influenced by locations and gender differences. For example, the men preferred rice 

varieties that are long and slender and fetch high market prices, while the women selected for varieties 

that are aromatic and swell when cooked. The study suggests improved farmers’ and stakeholders’ 

participation in the variety development process, incorporating their desired grain quality traits and 

preferences in the variety of choice. African governments are encouraged to invest more resources 

in rice value-addition in order to make domestic rice competitive to imported rice and enable African 

rice farmers to access urban markets. Furthermore, policy options that encourage increased access 

to farm inputs through agro-dealer networks and judicious use of fertilizers will help to enhance rice 

production per unit hectare. The study also suggests generating site-specific rice cultivars for South 

Sudan given the differences in bio-physical, socio-cultural and farmer preferred traits across rice 

production sites. The study further recognizes the important role of research in generating appropriate 

rice technologies while advocating for policy measures that encourage quality rice seed production 

and distribution in the country.  
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3. Genetic analysis of elite upland rice genotypes using DArTseq 

markers and comparative analysis of agro-morphological and 

grain quality traits  

Abstract 

A study was conducted to assess the genetic diversity and relationship present among 36 elite upland 

rice genotypes using Diversity Arrays Technology Sequencing (DArTseq) markers and agro-

morphological and grain quality traits. Genetic diversity estimates amongst test genotypes based on 

DArTseq-derived SNP markers revealed only two distinct clusters suggesting genetic relatedness. 

This was associated with a low mean fixation index (Fst) of 0.188. Analysis of variance based on agro-

morphological and grain quality traits indicated highly significant differences (P< 0.001) among the 

tested genotypes. Principal component and cluster analyses using the two trait groupings indicated 

that major contributors to grain yield per plant were the number of productive tillers per plant, number 

of panicles per plant, grain width, number of grains per panicle, panicle length, grain length to width 

ratio, percent spikelet fertility and weight of 1000 grains. Grain yield had significant positive correlation 

with number of panicles per plant, percent spikelet fertility and number of grains per panicle. Path 

coefficient analysis showed that direct selection for number of grains per panicle can be effective in 

enhancing grain yield. Grain length expressed the greatest maximum direct positive effect on amylose 

content, while grain width revealed the largest negative effect on this trait. Number of grains per 

panicle, number of panicles per plant, weight of 1000 grains, percent spikelet fertility and grain length 

can be considered as important selection criteria for genetic improvement of grain yield and cooking 

quality in rice. Overall, using DArTseq-derived SNP markers and agro-morphological and grain quality 

traits the following genetically diverse rice genotypes: ‘P5H6’, ‘NAMCHE 6’ and ‘ART3-7L9P8-3-5-B-

B-2’ were selected for direct production or use in breeding.   

Keywords: Upland rice, DArTseq markers, Grain quality, Genetic diversity, Path coefficient analysis. 
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    3.1 Introduction 

Rice (Oryza sativa L.) is the staple food for over half of the world’s population (Anuonye et al., 2016) 

and the fourth most important and widely cultivated cereal crop in sub-Saharan Africa (SSA) (Masette 

et al., 2015). In South Sudan, rice is the most consumed staple crop after sorghum and maize. Despite 

the importance of rice in South Sudan, local production is low. Grain quality of introduced varieties 

does not meet the standards of imported rice in physical, cooking and eating qualities and therefore 

the varieties do not offer competitive prices in the market. According to African Development Bank 

(AfDB (2013), South Sudan imports some 50% of its food needs including 40% of its cereals from 

neighbouring countries including Kenya and Uganda. Furthermore, the country receives all its rice 

imports through Uganda which provides an important passage for shipment of both Ugandan locally 

produced and imported rice (Nzomoi and Anderson, 2013). A major challenge in the rice sector in 

South Sudan is how to produce sufficient and affordable high quality rice that not only meets the 

preferences of its fast-growing and increasingly urbanized population, but also that competes 

favourably with imported rice.  

Increased rice production, productivity and ultimate market demand largely depends on producers’ 

and consumers’ tastes and preferences in a rice cultivar (Hossain et al., 2015). Grain quality traits 

common to all users include grain appearance, milling quality, cooking and processing quality, and 

nutritional quality. Cooking and eating qualities are most critical in the market for consumer 

acceptance. The two most important quality indicators for these traits are amylose content (AC) and 

gelatinization temperature (GT), measured indirectly as alkali spreading value (ASV) (Roy et al., 

2012).  

There is a growing demand for better quality rice with improved eating and cooking qualities important 

in determining its economic value in the market (Phing et al., 2016). Consequently, Concepcion et al. 

(2015) suggests that farmer adoption and consumer acceptance of a released variety is largely 

controlled by grain quality, while Premkumar et al. (2016) underscore the importance of not only yield 

but grain quality as a major determinant for the success of a rice variety. Traditional rice varieties with 

good grain quality but low yield potential are still widely grown in many rice producing countries despite 

the availability of improved varieties with relatively high yield potential but lower grain quality 

(Fitzgerald et al., 2009). Hence, potential new varieties must meet or exceed standards of locally 

preferred cultivars in both yield and quality traits before being considered for release (Concepcion et 

al., 2015). Improving grain yield and quality are important considerations in a rice breeding 

programme (Borba et al., 2010). However this presents a major challenge given the quantitative 

nature of these traits and the influence of genotype-by-environment interactions (Yi et al., 2009; Wang 

et al., 2012).  



57 
 

Molecular marker technology provides options for improving selection strategies (Akhtar et al., 2010), 

and facilitates the selection of traits during the breeding process because they are reliable and 

unaffected by environmental conditions (Yi et al., 2009). Also, for a successful marker-assisted 

breeding programme, a detailed phenotypic and genotypic understanding of parental genotypes is 

necessary (Balakrishnan et al., 2016). Recent advancements in next generation sequencing (NGS) 

technologies has enabled the use of genotyping-by-sequencing (GBS) as a promising genomic 

approach for simultaneous exploration of plant genetic diversity and molecular marker discovery 

(Elshire et al., 2011; Poland and Rife, 2012; He et al., 2014). Furthermore, microarray-based markers 

such as Diversity Arrays Technology (DArT) markers are preferred for construction of high-density 

maps, quantitative trait loci (QTL) mapping and genetic diversity analysis because of their efficiency 

and low cost (Gupta et al., 2008). To further enhance options for sequencing of complex genes, the 

DArTseq marker platform was developed by combining the complexity reduction of the DArT marker 

technology with high-throughput NGS technologies (Sánchez-Sevilla et al., 2015).  

The magnitude of genetic variability present and the extent to which the desirable characters are 

heritable largely determines the success of any plant breeding programme (Vanaja and Luckins, 

2006). To initiate a marker-assisted rice breeding programme, selection of genetically divergent 

parents and a clear understanding of the genetics of yield and grain quality related factors are critical 

in making the best use of the relationships in selection. Additionally, correlation studies is considered 

a useful tool for direct or indirect selection of interrelated characters (Abdala et al., 2016; Dhurai et 

al., 2016; Premkumar et al., 2016) in a breeding programme. Data generated from correlation analysis 

can be augmented by path analysis, which further splits the genotypic correlation coefficient into the 

measure of direct and indirect effects (Premkumar et al., 2016). This is particularly important in the 

early phases of a breeding programme in screening of new introductions to identify superior lines for 

further improvement (Saha et al., 2016). Hence, knowledge on the associations between yield and 

grain quality attributing factors is critical to breeders for enhancing selection and tailoring rice 

hybridization programmes. Therefore, the present study was undertaken to assess the genetic 

diversity and relationship present among 36 elite upland rice genotypes using DArTseq markers and 

to perform a comparative analysis for agro-morphological and grain quality traits.  

3.2 Materials and methods 

3.2.1 Plant materials  

The study used a total of 36 elite upland rice lines (Table 3.1). Genotypes were acquired from 

AfricaRice (ARC), National Crops Resources Research Institute (NaCRRI-Uganda) and Institut 

d'Economie Rurale (IER-Mali).  A popular landrace variety (‘Mbume’) and four recently introduced 

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
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farmer preferred upland rice cultivars (‘NERICA 1’, ‘NERICA 4’, ‘NERICA 10’ and ‘DKAP27’) widely 

grown in South Sudan were included as comparative controls.  

Table 3.1: Upland rice lines used in the study 

Entry 
No. 

Name/pedigree 
Origin and 
abbreviation 

Entry 
No. 

Name/pedigree 
Origin and 
abbreviation 

1 SCRIDO 37-4-2-2-5 
Madagascar  
(MDG) 

19 ART3 -7L3P3-B-B-2 ARC 

2 NAMCHE 2 NaCRRI (UG) 20 P23 H1 NaCRRI (UG) 

3 P24 H10 NaCRRI (UG) 21 NAMCHE 4 NaCRRI (UG)  

4 
CT11891-3-3-3-M-1-2-
2-M 

CIAT 22 DKAP27 IER-Mali 

5 P5 H6 NaCRRI (UG) 23 Mbume Landrace (LDR) 

6 NAMCHE 6 NaCRRI (UG) 24 NAMCHE 3 NaCRRI (UG) 

7 ART10-1L15P1-4-3-1 ARC 25 ART25-3-29-2-B ARC 

8 ART2-4L3P1-2-1 ARC 26 WAC116xNERICA 4 IER-Mali 

9 ART3-8L6P3-2-3-B ARC 27 NAMCHE 1 NaCRRI (UG) 

10 SCRIDO 06-2-4-3-4-5 
Madagascar 
(MDG) 

28 P29 H1 NaCRRI (UG) 

11 ART3-8L6P3-2-2-B NaCRRI (UG) 29 NAMCHE 5 NaCRRI (UG) 

12 P27 H4 NaCRRI (UG) 30 ART12 -L4P7-21-4-B-3 ARC 

13 P26 H1 NaCRRI (UG) 31 ART12-L2P2-20-3-1-1 ARC 

14 NERICA 1 ARC 32 P24 H1 ARC 

15 
ART3-7L9P8-3-5-B-B-
2 

ARC 33 P62 H17 NaCRRI (UG) 

16 P5 H14 NaCRRI (UG) 34 ART16-4-11-13-4 NaCRRI (UG)  

17 P27 H3 NaCRRI (UG) 35 
PCT-4\0\0\0˃19-M-1-1-5-
1-M 

ARC 

18 NERICA 10 ARC 36 NERICA 4 ARC 

Ɨ ARC, AfricaRice; CIAT, International Centre for Tropical Agriculture; NaCRRI, National Crops 

Resources Research Institute-Uganda; IER, Institut d'Economie Rurale-Mali. 

3.2.2 Description of study site 

An experiment was established at Yei Agricultural Research Station (YARS) which is located within 

the Greenbelt agro-ecological zone at 40 05″N latitude and 30041″E longitude at an altitude of 856 m. 

Annual mean total rainfall is about 1362 mm and a ferrous soil type is predominant.  

3.2.3 Experimental design  

The 36 elite upland rice lines were evaluated using a randomized complete block design (RCBD) with 

3 replications. The experiments were conducted during the second rainy season (July-August, 2015). 

Planting was by direct-seeding with 3-5 seeds per hill, and later thinned to one seedling per hill 14-20 

days after emergence (DAE). Each line was established in 3-row plots with 12 plants per row in a plot 

size of 1 m x 3 m and planting density of 20 cm between plants and 20 cm between rows. Standard 

cultural management practices including hand planting and hand weeding were uniformly applied 

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
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throughout the crop growth period. The crops were fertilized with 25 kg N ha-1 at 20-25 DAE and the 

same rate at 40-45 DAE to enhance plant vigour. 

3.2.4 Data collection 

3.2.4.1 Quality traits 

Genotypes were assessed for determinants of kernel quality including kernel size-shape, amylose 

content, alkali spreading value and other important agronomic characters on yield performance. 

Kernel quality was determined using dehusked grains. Kernels were classified on the basis of length 

(L) and width (W) for L/W ratio (shape) in three replicates using a vernier calliper following 

classification described by (Cruz and Khush, 2000). Amylose and amylopectin content of the starch 

was determined by the method of Gibson et al. (1997). Gelatinization temperature (GT) was assessed 

indirectly as the alkali spreading value of hulled kernels as per modified procedure of Little et al. 

(1958).  

3.2.4.2 Agro-morphological traits 

Agronomic traits measured included days to heading (DH), plant height (PH), number of productive 

tillers per plant (NETP), number of grains per panicle (NGP), panicle length (PL), percent spikelet 

fertility (PSF), weight of 1000 grains (TGW) and grain yield (GY). Days to heading were recorded 

when 50% of the plants in each plot had flowered, while PH, NETP and NGP were measured at 

maturity and based on ten individual plants randomly selected in each plot. PH was measured from 

the soil surface to the tip of the panicle, while PL was measured from the node of the panicle to the 

tip of the panicle. Phenotypic acceptability and proneness to lodging was recorded visually according 

to the rice Standard Evaluation System (SES) described by IRRI (2002). Only the inner row was 

considered for measurement of GY in each plot, whilst the grain moisture content was adjusted to 

14% and the GY per plot extrapolated to tonnes per hectare. 

3.2.4.3 Quantification of amylose and amylopectin  

Amylose and amylopectin content of the starch was determined by the method of Gibson et al. (1997) 

using a Megazyme amylose/amylopectin assay kit (K-AMYL 04/06, Megazyme International Ireland 

Ltd., Co. Wicklow, Ireland), which is a modification of a Con A method developed by Yun and 

Matheson (1990). The method is also modified from Morrison and Laignelet (1983) and uses an 

ethanol pre-treatment step to remove lipids prior to analysis. Initially, rice samples were dehusked 

and polished prior to milling. Twenty whole-milled rice kernels from each of the 36 rice genotypes 

were ground separately and accurately weighed (20-25 mg to the nearest 0.1 mg) into a 10 ml screw 

capped Kimax sample tube. One millilitre of dimethyl sulfoxide (DMSO) was added while gently stirring 

at low speed on a vortex mixer. Samples were heated in a boiling water bath for 15 minutes with 
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intermittent high-speed stirring on a vortex mixer and allowed to cool for 5 minutes at room 

temperature. Two millilitres of 95% ethanol were added with continuous stirring on a vortex mixer. A 

further 4 millilitres of ethanol were added and allowed to mix and kept overnight or allowed to stand 

for 15 minutes. After precipitate formation, the tubes were centrifuged for 5 minutes at 2000 

revolutions per minute (rpm), and supernatant discarded. Two millilitres DMSO was then added to the 

pellet with vortexing and heating in boiling water bath for another 15 minutes. Four millilitres of Con A 

solvent was immediately added and solution adjusted to 25 ml in volumetric flask by repeated washing 

with Con A solvent (this was labelled solution A). One millilitre of solution A was then pipetted into a 

2 ml eppendorf microfuge tube with the addition of 0.5 ml Con A solution and allowed to stand at room 

temperature for one hour. The eppendorf tubes were then centrifuged for 10 minutes at 14000 rpm at 

room temperature. One millilitre of supernatant was transferred to a 15 ml centrifuge tube and 3 ml of 

sodium acetate buffer of pH 4.5 added. The tubes were heated in a boiling water bath for 5 minutes 

and allowed to equilibrate in a 40°C water bath for 5 minutes. About 0.1 ml of amyloglucosidase/α-

amylase enzyme mixture was added and incubated at 40°C for 30 minutes. The tubes were then 

centrifuged at 2000 rpm for 5 minutes. To 1.0 ml aliquots of the supernatant, 4 ml of GOPOD reagent 

was added and incubated at 40⁰C for 20 minutes. The absorbance of each sample and the D-glucose 

controls were read at 510 nm against the reagent blank. Total starch absorbance was determined by 

mixing 0.5 ml aliquots of solution A with 4 ml of sodium acetate buffer. A 0.1 ml of amyloglucosidase/ 

α -amylose solution was added and incubated for 10 minutes at 40⁰C. One millilitre aliquots of this 

solution was transferred to glass test tubes, to which 4 ml GOPOD reagent was added and incubated 

for 20 minutes at 40⁰C. The incubation was performed concurrently with the samples and standards. 

Absorbance of samples was then read at 510 nm. Amylose content was then determined as follows; 

Amylose, % (w/w)  

=
Absorbance (Con A Supernatant)𝑥 6.15 𝑥 100

Absorbance (Total Starch Aliquot)9.2 x 1
 

          

=
Absorbance (Con A Supernatant)𝑥 66.8

Absorbance (Total Starch Aliquot)
 

Where, 6.15 and 9.2 are dilution factors for the Con A and Total Starch extracts, respectively. The 

samples were then classified following standard procedures by Juliano (1971) with slight 

modifications, where; 3-9% amylose content indicates waxy to very low AC, 10-19% amylose content 

indicates low AC; 20-25% amylose content indicates intermediate AC, 26-30% amylose content  

indicates high-AC, while >31% amylose content  indicates very high-AC. 
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3.2.4.4 Gelatinization temperature  

Gelatinization temperature (GT) was assessed indirectly as the alkali spreading value of hulled 

kernels as per modified procedure of Little et al. (1958). Twelve whole grains, were immersed in petri-

plates containing 1.7% KOH in such a way that no two grains were in contact with each other. The 

plates were then incubated for 24 h at room temperature. The ASV were determined by visual scoring 

of the appearance of the grains and disintegration on a 1–7 linear scale as described by Govindaraj 

et al. (2009), where; 1 = grains not affected, 2 = grains swollen, 3 = grains swollen, collar incomplete 

and narrow, 4 = grain swollen, collar complete and wide, 5 = grains split or segmented, collar complete 

and wide, 6 = grain dispersed, merging with collar and 7 = grain completely dispersed and 

intermingled. Grains swollen to the extent of a cottony centre and a cloudy collar were given an ASV 

score 4 and used as a check for scoring the rest of the samples. Since ASV is inversely related to GT 

the higher value of ASV was taken for low GT and vice versa. A rating of 1.00–2.99 was taken as high 

GT (>74°C), 3.00–4.99 as intermediate (69–74°C) and 5.00–7.00 as low GT (55–68°C) as referred in 

Govindaraj et al. (2009).  

3.2.4.5 DNA isolation and genotyping 

Total genomic DNA was isolated from three-week old leaves using the ZYMO research Quick-DNA™ 

Plant/Seed 96 Kit, where a single individual plant was considered for each accession. Subsequently, 

40 μl of a 50 ng/μl DNA of each sample was sent to Diversity Arrays Technology (DArT) Pty Ltd, 

Australia ('http://www.diversityarrays.com/dart-map-sequences') for whole genome scan using 

DArTseq markers. Whole-genome genotyping was carried out using GBS technology as described 

by Elshire et al. (2011). A total of 18,927 DArTseq-derived SNP markers were used to genotype the 

36 rice lines. The markers were integrated into a linkage map by inferring marker order and position 

from the consensus DArTseq map.  

3.2.4.6 Data filtering and SNP calling 

DArTseq-derived SNP markers were filtered to remove bad SNPs and genotypes using PLINK 1.9 

software in MS window and R statistical software, where genotypes with > 30% missing data, SNP 

loci with >20% missing data (Figure 3.1) and rare SNPs with <5% minor allele frequencies (MAF) 

were pruned. Only 453 SNPs and 34 genotypes were considered after filtering and data quality control 

process.   

 

 

 

 

http://www.diversityarrays.com/dart-map-sequences
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Figure 3.1: Frequency of SNPs (loci) with missing data (left) and frequency of genotypes with missing 
data (right) 

3.2.5 Data analysis 

3.2.5.1 Agronomic traits 

Data analyses were performed using GenStat 14th Edition software (VSN, 2011) using the analysis of 

variance (ANOVA) procedure followed by mean comparisons for agronomic characters and grain 

quality traits. The linear model used was as follows; 

Yij =  + Ti + j + ij 

Where Yij is any observation for which i is the treatment factor and j is the blocking factor,  is the 

mean, Ti is the effect of treatment i, j represents the effect of Block j, ij are the residuals. Mean 

separation was conducted using the least significance difference (LSD) at 5% probability. Ward’s 

hierarchical clustering was used to assess the phenotypic diversity in rice lines based on their agro-

morphological and grain quality attributes. Cluster analysis was performed using SPSS statistical 

software (IBM, 2012). The Z values were calculated from mean values and used for cluster analysis. 

Principal component analysis was used to further complement cluster analysis results. Pearson’s 

correlation coefficients (r) among agro-morphological and grain quality traits were calculated using 

SPSS software following the method described by (Singh and Chaudhary, 1977). Data generated 

from correlation coefficient was augmented by path analysis to further split the genotypic correlation 

coefficient into direct and indirect effects as described by (Dewey and Lu, 1959). Information gathered 

was used to investigate relationships between grain yield and other important agro-morphological and 

grain quality traits. 

3.2.5.2 Genetic analysis   

The genetic structure and relationship among upland rice genotypes was investigated using 453 

DArTseq-derived SNP markers distributed across the rice genome as described by Pritchard et al. 
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(2000). Bayesian clustering method was applied to identify clusters of genetically similar individuals 

using the software STRUCTURE version 2.3 (Pritchard et al., 2003) and further visualized with 

Structure Plot V2.0 (Ramasamy et al., 2014). The cluster values (K) were chosen ranging from 1 to 

10 and ten independent runs for each value in order to obtain consistent results. The best K-value for 

estimating a suitable population size for the dataset was determined as K=2 based on the Evanno et 

al. (2005) method from STRUCTURE run. In addition, population differentiation due to genetic 

structure was assessed using a neighbour-joining (NJ) tree method (Saitou and Nei, 1987) generated 

by R statistical software. Analysis of molecular variance (AMOVA) was performed using GenAlEx 

V6.5 software (Peakall and Smouse, 2006). SNP data were numerically coded as follows: A= 1, C= 

2, T= 3, G= 4 and missing data was coded as 0 as suggested in GenAlEx V6.5 user manual. 

3.3 Results  

3.3.1 Performance of tested rice genotypes  

Significant differences were observed among the tested rice genotypes (P<0.05) for all agro-

morphological traits except for number of panicles per plant (Table 3.2 and 3.3). Days to heading 

varied from 82 days (‘NERICA 10’) to 94 days (‘P62 H17’) (Table 3.3). Grain yield was highest in 

‘ART10-1L15P1-4-3-1’ (5.1 t ha-1) and lowest in ‘WAC x NERICA 4’ (1.6 t ha-1).The mean  number of 

panicles per plant ranged from 4.49 (‘WAC x NERICA 4’) to 9.99 (‘NAMCHE 6’), plant height ranged 

from 63.14 cm (‘ART3-8L6P3-2-3-B’) to 101.33 cm (‘CT11891-3-3-3-M-1-2-2-M’), number of effective 

tillers per plant from 6 (‘NAMCHE 6’) to 26 (‘NAMCHE 1’), panicle length from 16.34 cm (‘ART3-

8L6P3-2-2-B’) to 22.0 cm (‘NERICA 10’), percent spikelet fertility from 0.75 (‘SCRIDO 06-2-4-3-4-5’) 

to 0.91 (‘P29 H1’), number of grains per panicle from 65.8 (‘ART12-L2P2-20-3-1-1’) to 132.4 (‘P27 

H4’) and weight of 1000 grains from 23.77g (‘ART3-8L6P3-2-3-B’) to 34.25g (‘NERICA 10’) (Table 

3.3). 

Highly significant differences (P<0.001) were recorded for all grain quality traits of rice genotypes 

tested in the present study (Table 3.2 and 3.4). Grain width ranged from 1.05 mm (‘PCT-4\0\0\0˃19-

M-1-1-5-1-M’) to 1.91 mm (‘NAMCHE 6’), while grain length varied from 5.15 mm (‘ART3-8L6P3-2-3-

B’) to 7.7 mm (‘ART2-4L3P1-2-1’) and grain length to width ratio from 2.89 (‘ART3-8L6P3-2-3-B’) to 

6.16 (‘ART16-4-11-13-4’). Alkali spreading value (ASV) which is inversely related to gelatinization 

temperature (GT) ranged from 1.67 (‘P23 H1’) to 5.0 (‘SCRIDO 37-4-2-2-5’), which gives a GT range 

from high to low, respectively. Amylose content (AC) was highest in ‘ART12-L2P2-20-3-1-1’ (39.73%) 

and lowest in ‘P23 H1’ (15.8%), ranging from very high to low AC, respectively (Table 3.4). 
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Table 3.2: Mean squares and significant tests from analysis of variance of agro-

morphological and grain quality traits among 36 rice genotypes 

    Agro-morphological traits 

Source of variation df DH PPP PH NETP PL PSF NGP TGW GY 

Genotype 35 49.4*** 14.1ns 603.0*** 204.5** 17.4*** 0.01* 2925.6*** 53.9* 6.5*** 

Replication 2 17.5 5.2 1246.6 4536.0 8.6 0.01 508.2 70.1 0.8 

Error  11.8 10.9 270.0 108.6 8.2 0.01 966.3 34.6 2.7 

   Grain quality traits     

Source of variation df AC% GL GW L/W ASV     

Genotype 35 105.4*** 1.11*** 0.2*** 2.2*** 1.9***     

Replication 2 25.7 0.06 0.0 0.02 6.3     

Error  13.9 0.00 0.0 0.01 0.2     

ƗDH, days to heading; PPP, panicles per plant; PH, plant height; NETP, number of effective tillers per plant; 
PL, panicle length; PSF, percent spikelet fertility; NGP, number of grains per panicle; TGW, weight of 1000 
grains (g); GY, grain yield (t ha-1); AC; amylose content; GL, grain length; GW, grain width; L/W, grain 
length to width ratio; ASV, alkali spreading value ; *,**,***,ns, significant at P<0.05, P<0.01, P<0.001 and 
non-significant at P>0.05, respectively. 
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          Table 3.3: Mean values for agro-morphological traits of 36 upland rice genotypes  

                                       ƗDH, days to heading; PPP, panicles plant; PH, plant height; NETP, number of effective tillers per plant; PL, panicle length; 
PSF, percent spikelet fertility; NGP, number of grains/panicle; TGW, weight of 1000 grains (g); GY, grain yield (t ha-1);  *,***,ns, 
denote significant differences at P<0.05, P<0.001 and non-significant, respectively. 

 

Entry 

No. 
Name/pedigree DH PPP PH NETP PL PSF NGP TGW GY 

1 SCRIDO 37-4-2-2-5 91.89 5.40 99.76 7.67 16.57 0.84 78.30 33.71 1.97 

2 NAMCHE 2 90.33 5.65 78.96 14.33 17.41 0.81 74.80 26.24 1.67 

3 P24 H10 90.33 6.98 86.42 15.89 19.56 0.83 109.40 29.71 3.79 

4 CT11891-3-3-3-M-1-2-2-M 90.00 7.94 101.33 13.78 19.93 0.85 80.40 32.07 2.82 

5 P5 H6 91.44 8.66 78.03 15.56 18.67 0.85 99.20 32.72 4.19 

6 NAMCHE 6 88.67 9.99 82.18 6.00 19.11 0.90 86.20 31.04 4.32 

7 ART10-1L15P1-4-3-1 92.33 9.08 72.22 16.11 20.22 0.86 129.80 27.24 5.10 

8 ART2-4L3P1-2-1 93.22 5.92 86.62 10.56 19.92 0.82 85.90 29.89 2.27 

9 ART3-8L6P3-2-3-B 92.33 9.71 63.14 17.00 19.27 0.85 93.70 23.77 2.90 

10 SCRIDO 06-2-4-3-4-5 90.11 7.28 80.81 15.67 18.94 0.75 79.80 25.52 2.06 

11 ART3-8L6P3-2-2-B 91.11 6.09 77.37 7.44 16.34 0.86 71.70 30.66 1.90 

12 P27 H4 91.44 7.52 90.21 20.44 21.96 0.82 132.40 26.65 4.01 

13 P26 H1 91.22 7.44 89.26 12.56 18.89 0.88 112.00 29.97 3.92 

14 NERICA 1 90.78 8.06 84.13 13.67 20.28 0.78 89.20 30.62 2.73 

15 ART3-7L9P8-3-5-B-B-2 91.67 7.52 87.53 22.00 18.67 0.90 130.70 30.88 5.05 

16 P5 H14 86.78 9.02 94.66 20.56 19.70 0.84 97.30 25.54 2.90 

17 P27 H3 91.44 6.83 84.48 16.89 19.53 0.85 106.80 27.32 3.07 

18 NERICA 10 82.78 7.22 91.18 9.33 22.00 0.79 91.20 34.25 3.25 

19 ART3 -7L3P3-B-B-2 90.44 6.27 87.22 14.67 19.36 0.81 93.90 28.38 2.17 

20 P23 H1 92.22 7.56 90.69 13.11 17.21 0.87 80.30 31.06 2.70 

21 NAMCHE 4 90.00 4.86 93.11 16.56 19.21 0.84 127.70 27.72 2.39 

22 DKAP27 90.22 8.31 84.91 14.11 16.72 0.87 72.90 31.22 2.77 

23 Mbume 90.00 7.11 88.40 24.56 18.39 0.89 85.30 27.07 2.68 

24 NAMCHE 3 91.00 5.93 95.44 14.11 19.39 0.81 118.90 30.98 2.95 

25 ART25-3-29-2-B 91.89 7.78 95.61 18.11 20.56 0.86 90.20 31.15 3.15 

26 WACxNERICA 4 93.33 4.49 84.61 12.22 17.44 0.84 91.80 27.34 1.60 

27 NAMCHE 1 93.67 7.82 93.00 26.00 17.33 0.87 74.20 32.35 2.89 

28 P29 H1 84.22 7.75 92.56 24.56 19.48 0.91 86.60 28.63 3.11 

29 NAMCHE 5 89.00 6.08 99.40 16.56 19.59 0.87 114.40 26.07 2.64 

30 ART12 -L4P7-21-4-B-3 89.67 8.14 90.07 14.44 17.22 0.88 88.00 30.48 3.27 

31 ART12-L2P2-20-3-1-1 93.33 7.14 95.84 11.89 16.82 0.85 65.80 28.88 1.97 

32 P24 H1 87.89 6.40 96.54 18.44 17.84 0.89 89.40 30.04 2.74 

33 P62 H17 93.89 6.48 84.24 9.89 18.62 0.91 89.20 29.75 2.67 

34 ART16-4-11-13-4 89.56 6.62 76.62 16.33 19.53 0.87 116.40 30.21 3.62 

35 PCT-4\0\0\0˃19-M-1-1-5-1-M 90.33 6.74 79.32 20.67 17.58 0.91 97.90 30.22 3.53 

36 NERICA 4 91.11 7.28 89.40 19.67 19.07 0.86 108.20 27.53 3.15 
 Mean 90.55 7.20 87.37 15.59 18.84 0.85 95.60 29.36 3.00 
 CV% 3.80 46.00 18.80 66.80 15.20 10.40 32.50 20.00 54.90 
 S.e.d 1.62 1.56 7.75 4.91 1.35 0.04 14.65 2.78 0.78 
 LSD (5%) 3.19 3.07 15.25 9.67 2.65 0.08 28.84 5.46 1.53 
 F-value 4.18*** 1.28ns 2.23*** 1.88** 2.13*** 1.58* 3.03*** 1.55* 2.41*** 
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Table 3.4: Mean values for grain quality traits of 36 upland rice genotypes 

Ɨ AC; amylose content; GL, grain  length; GW, grain width; L/W, grain length to width ratio; 
ASV, alkali   spreading value ; ***, significant at P<0.001. 

Entry No. Name/Pedigree AC% GL(mm) GW(mm) L/W ratio ASV 

1 SCRIDO 37-4-2-2-5 24.34 5.70 1.15 4.97 5.00 

2 NAMCHE 2 22.28 6.55 1.79 3.66 4.67 

3 P24 H10 27.86 6.45 1.15 5.61 4.67 

4 CT11891-3-3-3-M-1-2-2-M 30.90 7.65 1.50 5.10 4.00 

5 P5 H6 22.71 5.75 1.41 4.08 3.67 

6 NAMCHE 6 20.18 6.50 1.91 3.41 3.67 

7 ART10-1L15P1-4-3-1 17.40 7.30 1.90 3.84 3.67 

8 ART2-4L3P1-2-1 20.34 7.70 1.41 5.48 4.67 

9 ART3-8L6P3-2-3-B 21.45 5.15 1.79 2.89 3.33 

10 SCRIDO 06-2-4-3-4-5 16.77 6.20 1.79 3.46 3.33 

11 ART3-8L6P3-2-2-B 25.68 6.60 1.15 5.75 3.67 

12 P27 H4 37.67 6.40 1.58 4.06 2.67 

13 P26 H1 24.55 6.85 1.89 3.63 4.33 

14 NERICA 1 17.43 5.80 1.79 3.24 4.33 

15 ART3-7L9P8-3-5-B-B-2 23.56 6.75 1.89 3.57 3.67 

16 P5 H14 26.37 6.05 1.41 4.31 3.33 

17 P27 H3 17.08 6.75 1.49 4.53 3.67 

18 NERICA 10 26.91 6.95 1.22 5.70 2.67 

19 ART3 -7L3P3-B-B-2 16.39 6.75 1.69 4.01 4.33 

20 P23 H1 15.80 6.80 1.79 3.81 1.67 

21 NAMCHE 4 18.46 6.75 1.41 4.79 3.67 

22 DKAP27 24.35 5.65 1.78 3.17 3.33 

23 Mbume 33.83 6.75 1.81 3.73 2.33 

24 NAMCHE 3 20.92 5.95 1.55 3.84 4.33 

25 ART25-3-29-2-B 28.95 6.40 1.81 3.55 3.67 

26 WACxNERICA 4 27.83 6.65 1.41 4.72 2.33 

27 NAMCHE 1 24.37 5.65 1.79 3.16 3.33 

28 P29 H1 19.32 7.30 1.79 4.09 4.00 

29 NAMCHE 5 26.76 5.75 1.49 3.86 4.00 

30 ART12 -L4P7-21-4-B-3 17.02 6.50 1.79 3.63 3.33 

31 ART12-L2P2-20-3-1-1 39.73 7.10 1.81 3.93 3.33 

32 P24 H1 23.68 6.35 1.51 4.21 4.33 

33 P62 H17 16.10 5.85 1.79 3.28 4.67 

34 ART16-4-11-13-4 25.39 6.78 1.10 6.16 2.67 

35 
PCT-4\0\0\0˃19-M-1-1-5-
1-M 

17.26 5.58 1.05 5.32 4.33 

36 NERICA 4 26.91 5.85 1.59 3.69 2.33 

 Mean 23.52 6.43 1.59 4.17 3.64 

 CV% 15.90 0.80 1.40 2.40 10.80 

 S.e.d 3.05 0.04 0.02 0.08 0.32 

 LSD (0.05%) 6.08 0.08 0.04 0.16 0.64 

 F-value 7.56*** 476.43*** 423.59*** 223.80*** 12.11*** 
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3.3.2 Relationships of upland rice genotypes as revealed by quantitative agro-

morphological and grain quality traits  

Principal components analysis bi-plots for PC1 versus PC2 accounted for 60.5% of the variation 

among the rice genotypes (Figure 3.2). Furthermore, principal component analysis yielded seven 

principal components that accounted for 83.6% of total variation among the test materials (Table 3.5). 

Furthermore, a breakdown of the cumulative variance value revealed contributions of 20.5%, 16.7%, 

11.2%, 11.0%, 9.1%, 7.8% and 7.3% for PCA1, PCA2, PCA3, PCA4, PCA5, PCA6 and PCA7, 

respectively. The first, second, fourth and fifth PCA were correlated with grain yield and  its 

contributing traits such as number of effective tillers per plant, number of panicles per plant, grain 

width, number of grains per panicle, panicle length, grain length to width ratio, percent spikelet fertility 

and weight of 1000 grains. The third and sixth PCA were correlated with AC and ASV, respectively, 

and plant height as their contributing trait. The seventh PCA was correlated with grain length and 

number of days to heading as its contributing trait.  

Results obtained from PCA were further corroborated by cluster analysis using Unweighted Paired 

Group Method using Centroids (UPGMC) (Figure 3.3). Genotypes were grouped into seven distinct 

clusters that were well resolved in terms of agro-morphological characters and grain quality traits. 

Cluster 1 (3 genotypes) indicated above average weight of 1000 grains and intermediate to high AC 

and ASV values. Cluster 2 (11 genotypes) generally grouped together high yielding genotypes. 

Cluster 3 (seven genotypes) mainly consisted of tall and high tillering genotypes. Cluster 4 (12 

genotypes) was dominated by below average yielding genotypes. Clusters 5, 6 and 7 emerged as the 

most distinct clusters, where Cluster 5 genotypes had the highest plant height (101.33 cm), Cluster 6 

genotype recorded below average scores for days to heading, number of panicles per plant, number 

of effective tillers per plant, percent spikelet fertility, number of grains per panicle, weight of 1000 

grains, grain yield, amylose content and grain length to width ratio, while Cluster 7 genotype had the 

lowest average yield (1.6 t ha-1). 
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Figure 3.2 Principal components analysis bi-plot showing PC1 and PC2 accounting for 60.5% of the 
variation 

Table 3.5: Loadings of PCA for grain yield and its components, and grain quality traits 

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 

AC -0.130 0.231 0.695 -0.172 0.113 -0.165 0.111 

GL -0.222 0.401 0.226 0.060 -0.348 -0.051 0.630 

GW 0.701 -0.407 0.215 -0.020 -0.384 0.199 0.278 

L/W -0.729 0.546 -0.125 0.086 0.190 -0.264 0.043 

ASV -0.258 -0.122 -0.467 0.242 -0.086 0.634 -0.031 

DH 0.072 -0.508 -0.149 -0.125 0.345 0.033 0.594 

PPP 0.740 0.039 0.015 0.300 -0.325 -0.317 -0.181 

PH -0.340 0.141 0.642 0.143 -0.122 0.559 -0.072 

NETP 0.500 0.213 0.367 -0.198 0.413 0.223 -0.266 

PL 0.251 0.756 -0.131 -0.251 -0.369 0.137 -0.017 

PSF 0.292 -0.076 0.244 0.616 0.505 0.011 0.097 

NGP 0.344 0.671 -0.280 -0.160 0.343 0.269 0.200 

TGW -0.356 0.053 0.053 0.783 -0.150 -0.003 -0.017 

GY 0.633 0.538 -0.174 0.444 0.103 -0.035 0.130 

Eigenvalues 2.868 2.335 1.571 1.542 1.276 1.097 1.019 

Variance (%)  20.488 16.681 11.221 11.016 9.112 7.835 7.275 
Cumulative 
variance (%) 20.488 37.169 48.389 59.406 68.517 76.352 83.627 

ƗAC; amylose content; GL, grain length; GW, grain width; L/W, grain length to width ratio; ASV, alkali 
spreading value DH, days to heading; PPP, panicles per plant; PH, plant height; NETP, number of effective 
tillers per plant; PL, panicle length; PSF, percent spikelet fertility; NGP, number of grains per panicle; TGW, 
weight of 1000 grains; GY, grain yield. 
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Figure 3.3: Unweighted Paired Group Method using Centroids (UPGMC) dendrogram showing the 

relationships of upland rice genotypes revealed by quantitative agro-morphological characters and 

grain quality traits 
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3.3.3 Correlations between grain yield with yield components and grain quality traits 

Pearson’s correlation coefficients were calculated among nine agro-morphological characters and five 

grain quality traits (Table 3.6). Grain yield had significant positive correlation with number of panicles 

per plant, percent spikelet fertility and number of grains per panicle. Amylose content recorded 

significant positive correlation with plant height, while percent spikelet fertility had significant negative 

correlation with panicle length. Grain length to width ratio showed significant positive correlation with 

grain length and significant negative correlation with grain width and number of panicles per plant.   

Path coefficient analysis using grain yield and amylose content as response variables and other agro-

morphological and grain quality traits as causal variables is illustrated in Table 3.7 and 3.8.  

Number of grains per panicle expressed the greatest maximum direct positive effect (0.715) on grain 

yield followed by number of panicles per plant (0.547), weight of 1000 grains (0.391), percent spikelet 

fertility (0.135) and number of effective tillers per plant (0.066). Plant height (-0.146) exhibited the 

largest negative direct effect on grain yield followed by panicle length (-0.068) and number of days to 

heading (-0.021). Number of panicles per plant indicated a positive indirect effect on grain yield 

through panicle length (0.102) and percent spikelet fertility (0.101), and a negative indirect effect 

through plant height (-0.159). Plant height recorded a positive indirect effect on grain yield through 

weight of 1000 grains (0.125) and a negative indirect effect through number of panicles per plant (-

0.159). Number of effective tillers per plant expressed a positive indirect effect on grain yield through 

number of grains per panicle (0.206) and a negative indirect effect through weight of 1000 grains (-

0.129). Panicle length indicated a positive indirect effect on grain yield through number of panicles 

per plant (0.102) and number of grains per panicle (0.103). Percent spikelet fertility had a positive 

indirect effect on grain yield through number of panicles per plant (0.101). Number of grains per 

panicle indicated a negative indirect effect on grain yield through weight of 1000 grains (-0.170) and 

a positive indirect effect through number of effective tillers per plant (0.206) and panicle length (0.103). 

Weight of 1000 grains exhibited a positive indirect effect on grain yield through plant height (0.125) 

and a negative indirect effect through number of grains per panicle (-0.170) and number of effective 

tillers per plant (-0.129). 

Grain length exhibited the greatest maximum direct positive effect on amylose content (0.471), while 

grain width revealed the largest negative effect on amylose content (-0.862) followed by grain length 

to width ratio (-0.773) and alkali spreading value (-0.306). Grain length had a negative indirect effect 

on amylose content through grain length to width ratio (-0.307). Grain width indicated a positive 

indirect effect on amylose content through grain length to width ratio (0.760). Grain length to width 

ratio expressed a positive indirect effect on amylose content through grain width (0.760) and a 

negative indirect effect through grain length (-0.307). 
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Table 3.6: Pearson’s correlation coefficients among agro-morphological characters and grain quality 
traits 

  Traits 

 GL GW L/W ASV DH PPP PH NETP PL PSF NGP TGW GY 

AC 0.131 -0.120  0.156 -0.293  0.013 -0.033 0.351*  0.133 -0.122 -0.008 -0.037 -0.020 -0.048 

GL   0.062  0.398* -0.068 -0.158 -0.140  0.184 -0.129 -0.074 -0.013  0.037  0.072  0.053 

GW   -0.881** -0.108  0.203  0.458** -0.051  0.171  0.110  0.136 -0.103 -0.228  0.159 

L/W     0.063 -0.254 -0.449**  0.062 -0.238 -0.127 -0.108  0.090  0.271 -0.092 

ASV      0.054 -0.199  0.083 -0.228  0.118 -0.036 -0.034  0.157 -0.064 

DH      -0.146 -0.213 -0.110 -0.109  0.034 -0.013 -0.072 -0.102 

PPP       -0.292  0.164  0.187  0.186 -0.035 -0.007  0.588** 

PH         0.086 -0.048  0.032 -0.074  0.319 -0.215 

NET
P 

        -0.009  0.247  0.288 -0.329  0.257 

PL          -0.412*  0.144  0.027  0.101 

PSF            0.039  0.139  0.358* 

NGP            -0.238  0.629** 

TG
W 

             0.168 

Ɨ AC; amylose content; GL, grain length; GW, grain width; L/W, grain length to width ratio; ASV, alkali spreading value; DH, days to 
heading; PPP, panicles per plant; PH, plant height; NETP, number of effective tillers per plant; PL, panicle length; PSF, percent spikelet 
fertility; NGP, number of grains per panicle; TGW, weight of 1000 grains; GY, grain yield; *,**, significant at P<0.05, P<0.01 respectively. 

Table 3.7: Path coefficient analysis for grain yield with other important agro-morphological characters 

 DH PPP PH NETP PL PSF NGP TGW 

DH -0.021 -0.080 0.031 -0.007 0.007 0.005 -0.009 -0.028 

PPP 0.003 0.547 0.042 0.011 -0.013 0.025 -0.025 -0.003 

PH 0.004 -0.159 -0.146 0.006 0.003 0.004 -0.053 0.125 

NETP 0.002 0.090 -0.013 0.066 0.001 0.033 0.206 -0.129 

PL 0.002 0.102 0.007 -0.001 -0.068 -0.056 0.103 0.010 

PSF -0.001 0.101 -0.005 0.016 0.028 0.135 0.028 0.054 

NGP 0.000 -0.019 0.011 0.019 -0.010 0.005 0.715 -0.093 

TGW 0.001 -0.004 -0.046 -0.022 -0.002 0.019 -0.170 0.391 

ƗDH, days to heading; PPP, panicles per plant; PH, plant height; NETP, number of effective tillers per plant; 
PL, panicle length; PSF, percent spikelet fertility; NGP, number of grains per panicle; TGW, weight of 1000 
grains; Diagonal (bold)=direct path coefficients; Off-diagonal=indirect path values; 
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Table 3.8: Path coefficient analysis for amylose content with other important grain quality traits 

 GL GW L/W ASV 

GL 0.471 -0.054 -0.307 0.021 

GW 0.029 -0.862 0.681 0.033 

L/W 0.187 0.760 -0.773 -0.019 

ASV -0.032 0.093 -0.048 -0.306 

ƗL/W, grain length to width ratio; GL, grain length; GW, grain width; AC; amylose content; ASV, alkali 
spreading value; Diagonal (bold)=direct path coefficients; Off-diagonal=indirect path values; 

3.3.4 Population structure  

Results of population structure analysis of all upland rice genotypes for K ranging from 1 to 10 are 

shown in Figure 3.3, 3.4 and 3.5. The most significant peak of ΔK based on the Evanno et al. (2005) 

method from STRUCTURE run was observed when K=2 (Figure 3.3), which means that the entire 

panel could be grouped into two major populations based on environmental adaptations and breeding 

history. Structure analysis further revealed two major clusters as depicted by colour codes (Figure 

3.4) indicating genetic relatedness, where genotypes with score >0.80 were considered as pure and 

<0.80 as admixture. Genotypes obtained from National Crops Resources Research Institute-Uganda 

(UG) had considerable degree of admixtures. Genotypes from Institut d'Economie Rurale-Mali (IER) 

and AfricaRice (ARC) represented one cluster, while genotypes from International Centre for Tropical 

Agriculture (CIAT), Madagascar (MDG) and landraces from South Sudan (LDR) denoted the second 

gene pool. Using neighbour-joining (NJ) tree method and based on a mean fixation index (Fst) 

estimate value of 0.188, genotypes were grouped into two major clusters (Figure 3.5). Cluster 1 

assembled genotypes from ARC, UG and IER, while cluster 2 grouped together genotypes from CIAT, 

MDG and LDR. 

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
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Figure 3.4: Optimum K value of 2 groups established for a panel of 34 elite upland rice genotypes 

 

 

Figure 3.5: Distribution pattern of 34 elite upland rice genotypes based on Bayesian clustering method 
of DArTseq markers 

  



74 
 

 

 

 

 

 

 

 

 

Figure 3.6: Dendrogram of a neighbour-joining (NJ) tree of rice populations constructed for 34 elite 
upland rice genotypes using DArTseq markers based on a mean fixation index (Fst) estimate value 
of 0.188 

3.3.5 Molecular diversity   

Analysis of molecular variance (AMOVA) among 34 rice genotypes (genotypes selected after data 

filtering process) indicated that 6.7% of the variance was due to genetic differentiation among the 

populations, 50% of the variance was accounted by genetic differentiation among individuals within 

populations, while the remaining 43.3% of the variance was due to the differences within individuals 

(Table 3.9).  

 

Table 3.9: Analysis of molecular variation of a panel of 34 upland rice genotypes 

Source of variation  d.f 
Sum of 
squares 

Variance 
components 

Percentage 
variation 

Among populations 5 1160.52 7.76 6.71 

Among individuals 
within populations 28 4639.16 57.80 49.98 

Within individuals 34 1703.00 50.09 43.31 

Total 67 7502.68 115.64   
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3.4 Discussion 

Genetic variability has been a major driving force in selecting for superior genotypes in crop 

improvement programmes (Roy et al., 2012), while knowledge on variability and association between 

yield attributing factors and other important agro-morphological and grain quality traits is critical in 

tailoring hybridization programmes. Consequently, the efficiency and selection for yield mainly 

depends on the magnitude and direction of association between yield and other desirable traits such 

as grain cooking and eating quality traits in rice. In the present study, significant differences were 

observed for agro-morphological characters, yield components and grain quality traits among 36 

upland rice genotypes, indicating the presence of considerable genetic variation among the 

experimental materials. 

Both principal component and cluster analyses suggested substantial variation in the 36 rice 

genotypes which could be exploited in the breeding programme for enhanced yield and cooking 

quality. The first and second principal components which cumulatively accounted for 37.2% of 

variation among the test materials revealed that major contributors to grain yield per plant were 

number of effective tillers per plant, number of panicles per plant, grain width, number of grains per 

panicle, panicle length, grain length to width ratio, percent spikelet fertility and weight of 1000 grains. 

Genotypes in Cluster 2 including; ‘P5H6’, ‘NAMCHE 6’ and ‘ART3-7L9P8-3-5-B-B-2’ had considerable 

high yields and intermediate values for AC and ASV (which relates to intermediate GT) and could be 

considered potential candidates for breeding or direct production in South Sudan. According to Akram 

(2009), high quality rice is strikingly characterized by intermediate AC, intermediate GT, soft gel 

consistency (GC), strong aroma and a high degree of grain elongation. Additionally, AC is considered 

to be one of the most important indirect indices of rice cooking, eating and processing quality (Ni et 

al., 2011; Asghar et al., 2012), since it determines the hardness of cooked rice, gloss of the final 

product and rice-water ratio. 

Correlation coefficients analysis revealed that grain yield had significant positive correlation with 

number of panicles per plant, percent spikelet fertility and number of grains per panicle. This suggests 

the importance of these characters for yield improvement. Similar results were observed by other 

workers (Akhtar et al., 2011; Xu et al., 2015) for number of grains per panicle and by Shinde et al. 

(2015), Abdala et al. (2016) and Ratna et al. (2015) for number of panicles per plant and percent 

spikelet fertility. Yield being a complex trait influenced by various yield contributing factors and the 

environment (Ratna et al., 2015), selection based on yield alone can be misleading (Shinde et al., 

2015), thus an effective selection strategy should incorporate the association between yield and its 

attributing factors. 

Path coefficient analysis provides a better understanding of yield contributing characters by 

partitioning the correlation co-efficient into components of direct and indirect effects (Ratna et al., 
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2015). In the present study, number of grains per panicle exerted the highest direct positive effect on 

grain yield per plant and also indicated a significant positive genotypic correlation with the same. This 

implies that direct selection for this trait would be much more effective for enhancing grain yield in 

upland rice. Several other workers reported similar findings (Zahid et al., 2006; Khan et al., 2009; 

Rashid et al., 2013; Pham et al., 2016). 

Other agro-morphological traits such as number of panicles per plant, weight of 1000 grains and 

percent spikelet fertility also exhibited positive direct effect on grain yield per plant, hence direct 

selection of these traits will accordingly contribute to enhanced upland rice grain yield. Seyoum et al. 

(2012) and (Rai et al., 2015) showed that number of panicles per plant exerted positive direct effect 

on grain yield per plant. Chaudhary et al. (2016) and Singh et al. (2016) found positive direct effect of 

weight of 1000 grains on grain yield per plant. Furthermore, Naseer et al. (2015) also reported positive 

direct effect of percent spikelet fertility on grain yield per plant. In addition, plant height exhibited the 

largest negative direct effect on grain yield. Thus selecting for this trait will be undesirable. Rai et al. 

(2015) and Hairmansis et al. (2013) also reported similar findings. 

Grain length exhibited the greatest maximum direct positive effect on amylose content, while grain 

width revealed the largest negative effect on the same. Furthermore, AC was positively correlated 

with grain length and grain length to width ratio but negatively correlated with grain width and alkali 

spreading value. In another study, Ge et al. (2008) indicated that AC of rice was positively correlated 

with grain length and width but negatively correlated with grain length to width ratio. Roy et al. (2012) 

suggested that selection for long grain with slender shape will simultaneously increase AC and GT. 

These relationships suggest that selection for longer and slender grains could result in some 

concurrent increase in AC. 

Success of any crop improvement programme depends on the amount of genetic diversity and the 

extent to which the desirable characters are heritable (Ravi et al., 2003). Furthermore, genetic 

characterization of rice germplasm encourages utilization by rice breeding programmes for rice 

improvement. Diversity Arrays Technology (DArT) markers have been used in the construction of 

high-density maps, quantitative trait loci (QTL) mapping and genetic diversity analysis because of 

their efficiency and low cost (Gupta et al., 2008).  In the current study, using DArTseq-derived SNP 

markers for structure analysis, 34 upland rice genotypes were separated into 2 major populations 

representing two major gene pools. Admixtures were also revealed in genotypes of UG origin 

suggesting considerable level of interbreeding between populations due to the local breeding 

activities. The level of admixtures may also suggest the origin of those individuals with unknown 

population characteristics. In addition, a low mean fixation index (Fst) estimate value of 0.188 indicated 

a considerable low degree of differentiation among the populations. This was further revealed by 

analysis of molecular variance (AMOVA) which indicated that 6.7% of the variance was due to genetic 
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differentiation among the populations. In addition, the neighbour-joining tree method grouped 

populations that show close genetic similarities into two major clusters based on environmental 

adaptations and breeding history. Populations in Cluster 1 (ARC, UG and IER) are closely related 

possibly due to rice germplasm exchange given the similarities in environmental adaptation and 

pedigree information. Similarly, Cluster 2 populations (CIAT, LDR and MDG) suggested genetic 

similarities probably due to movement of rice materials and comparable agro-ecological environments 

for rice genotypes cultivated within CIAT and MDG populations. Genotypes within the LDR population 

suggested admixtures which may have been generated from interbreeding activities aimed at 

introgressing favourable alleles from the MDG population. 

3.5 Conclusion 

In the present study, considerable variations were observed for agro-morphological and grain quality 

traits among the tested rice genotypes. Furthermore, molecular characterization of test materials 

revealed 2 distinct clusters suggesting genetic relatedness. However a relatively low mean fixation 

index (Fst) estimate value with increased frequency of admixtures as a consequence of local breeding 

activities was suggestive of low degree of differentiation among populations. Thus, it will be important 

to broaden the genetic base of the current rice genotype collection by introducing distant or wild 

relatives with potential for novel genes or quantitative trait loci for important agro-morphological and 

grain quality traits. Plausible associations identified for yield and grain quality attributing factors could 

be considered important selection criteria for enhancing yield and grain quality in rice. In addition, 

selection of high yielding upland rice varieties with intermediate AC and GT values are potential 

candidate varieties for introduction in South Sudan. The study further suggests the use of number of 

grains per panicle, number of panicles per plant, weight of 1000 grains, percent spikelet fertility and 

grain length as essential selection indices for genetic improvement of yield and cooking quality trait in 

rice. Overall, using DArTseq markers and agro-morphological and grain quality traits the following 

genetically diverse rice genotypes: ‘P5H6’, ‘NAMCHE 6’ and ‘ART3-7L9P8-3-5-B-B-2’ were selected 

for direct production or use in breeding.   
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4. Diversity analysis and genome-wide association studies of grain 

quality traits in rice (Oryza sativa L.) using DArT markers 

Abstract 

Microarray-based markers such as Diversity Arrays Technology (DArT) have become the genetic 

markers of choice for construction of high-density maps, quantitative trait loci (QTL) mapping and 

genetic diversity analysis based on their efficiency and low cost. More recently, the DArT technology 

was further developed in combination with high-throughput next-generation sequencing (NGS) 

technologies to generate the DArTseq platform representing a new sequencing tool of complexity-

reduced representations. In this study, DArTseq markers were used to determine genetic diversity 

and genome-wide association studies (GWAS) of grain quality traits in rice (Oryza sativa L.). The 

study was performed using 59 rice genotypes with 525 SNPs derived from DArTseq platform. 

Population structure analysis revealed only two distinct genetic clusters where genotypes were 

grouped based on environmental adaptation and pedigree information. Analysis of molecular variance 

indicated a low degree of differentiation among populations suggesting the need for broadening the 

genetic base of the current germplasm collection. GWAS revealed 22 significant associations 

between DArTseq-derived SNP markers and rice grain quality traits in the test genotypes. Two of the 

22 associations were in chromosomal regions where the QTLs associated with the given traits had 

previously been identified, while the remaining 20 significant SNP marker loci were indicative of the 

likelihood discovery of novel alleles associated with rice grain quality traits. DArTseq-derived SNP 

markers that include SNP12_100006178, SNP13_3052560 and SNP14_3057360 individually co-

localised with two functional gene groups that were associated with QTLs for grain width and grain 

length to width ratio on chromosome 3, indicating trait dependency or pleiotropic-effect loci. This study 

demonstrated that DArTseq markers were useful genomic resources for genome-wide association 

studies of rice grain quality traits to accelerate varietal development and release.  

Keywords: Diversity Arrays Technology, Genome-wide association studies, Genotyping by 

sequencing, Grain quality, Oryza sativa L. 
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    4.1 Introduction 

Rice (Oryza sativa L.) is increasingly becoming a major food crop in sub-Saharan Africa (SSA). 

Globally, rice is one of the most widely cultivated cereal crops distributed across diverse geographical, 

ecological and climatic conditions (Traoré et al., 2015; Malathi et al., 2016). Given the varied 

adaptations of rice genotypes, several accessions are available with wide phenotypic and genotypic 

diversity (Das et al., 2013). A great number of these rice accessions, belonging to different sub-

species including indica, japonica and javanica, have been conserved in global gene banks (Garris et 

al., 2005). This is important as a potential source of reservoir genes that could be exploited in crop 

improvement programmes (Brar and Khush, 1997; Koutroubas et al., 2004). However, only a slight 

amount of the available rice genetic resources have been utilized in most rice breeding programmes 

(Malathi et al., 2016), hence a great genetic similarity exists in most commercial rice cultivars given 

the narrow genetic base (Das et al., 2013).  

Most rice breeding programmes in SSA face the challenge of improving not only the yield potential 

but also other important grain quality traits such as cooking and processing qualities (Asghar et al., 

2012; Demont, 2013; Malathi et al., 2016). Furthermore, grain quality and in particular cooking and 

eating quality always represents a major criterion in evaluating rice grain quality (Wang et al., 2010). 

Rice cooking and eating quality is strongly determined by the level of amylose content (AC) (Dobo et 

al., 2010; Biselli et al., 2014), where high AC in the endosperm is usually associated with dry, fluffy, 

and separated cooked rice grains, and represents the key determinant of poor cooking and eating 

quality (Juliano, 1985). In addition, rice grain shape is an important character which subsequently 

affects cooking quality (Li et al., 2004a; Qiu et al., 2012). Rice grain shape is determined by its three 

dimensions including, grain length (GL), grain width (GW) and grain length to width ratio (L/W).  

The genetic basis of rice grain shape has been well studied (Xiao et al., 1998; Jiang et al., 2005) and 

several quantitative trait loci (QTLs) underlying grain shape have been detected and fine mapped (Bai 

et al., 2010; Zhang et al., 2012). However, the identified QTLs may not be sufficient to elucidate the 

genetic basis of rice grain shape. Furthermore, the varied nature of rice grain shape underscores the 

need for identifying novel QTLs in order to design a breeding strategy for grain shape improvement. 

Thus, knowledge of AC and its associated traits represents a major criterion in developing rice 

cultivars with desirable cooking and eating quality (Wang et al., 2010).  

In addition, it is essential to broaden the genetic base of rice genotypes by introducing genes from 

distant or wild relatives with potential for delivering novel genes or quantitative trait loci (QTLs) for 

important agronomic traits. The magnitude of genetic variability and the extent to which the desirable 

characters are heritable largely determines the success of any plant breeding programme (Vanaja 

and Luckins, 2006). Consequently, association mapping (AM) based on phenotypic and genotypic 
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data has been critical in identifying molecular markers or QTLs linked to traits of interest and with 

potential for use in marker-assisted selection (MAS). This has allowed the use of diverse set of 

germplasm that provides a broader allelic coverage without necessarily developing bi-parental 

mapping populations (Tadesse et al., 2015).  

More recently with the advances in next generation sequencing (NGS) technologies, genotyping-by-

sequencing (GBS) has emerged as a promising genomic approach for simultaneous exploration of 

plant genetic diversity and molecular marker discovery (Elshire et al., 2011; Poland and Rife, 2012; 

He et al., 2014). Thus, GBS has effectively been used for single-nucleotide polymorphisms (SNP) 

marker discovery and QTL identification of tightly linked marker-trait associations (Boutet et al., 2016; 

Tang et al., 2016) and in the application of genomic selection of complex traits for crop improvement 

(Jarquín et al., 2014; Furuta et al., 2017). The GBS approach is therefore considered an important 

cost-effective tool for population genetics, QTL discovery, high-resolution mapping and for genomic 

selection in plant breeding programmes (He et al., 2014; Furuta et al., 2017).  

With advances in microarray-based marker technology, Diversity Arrays Technology (DArT) markers 

have become the genetic markers of choice for construction of high-density maps, mapping 

quantitative trait loci (QTL) and genetic diversity analysis based on their efficiency and low cost (Gupta 

et al., 2008). Additionally, by combining the complexity reduction of the DArT method with high-

throughput next-generation sequencing (NGS) technologies, the DArTseq platform was developed 

signifying a new implementation of sequencing of complexity reduced representations (Sánchez-

Sevilla et al., 2015). Consequently, DArTseq markers based on GBS technology have been 

successfully applied for linkage mapping, QTL identification in bi-parental mapping population, 

genome wide association studies (GWAS), genetic diversity, as well as in marker-assisted and 

genomic selection (Sánchez-Sevilla et al., 2015). Hence, DArTseq marker platform has been widely 

applied (Kilian et al., 2012; Courtois et al., 2013; Von Mark et al., 2013) and is rapidly gaining 

popularity as a preferred method of genotyping-by-sequencing (Sánchez-Sevilla et al., 2015). The 

objective of this study was to determine genetic diversity and genome-wide association studies 

(GWAS) of grain quality traits in a diverse collection of 59 upland and lowland rice (Oryza sativa L.) 

genotypes. 

4.2 Materials and methods 

4.2.1 Germplasm and phenotyping 

The present study used a collection of 59 rice genotypes, which included 3 popular landraces, 36 

upland and 22 lowland rice collections (Table 4.1). The sampled collections were introductions from 

the International Rice Research Institute (IRRI), AfricaRice (ARC), National Crops Resources 
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Research Institute (NaCRRI-Uganda), International Centre for Tropical Agriculture (CIAT), 

Madagascar (MDG), Tanzania (TZ) and Institut d'Economie Rurale (IER-Mali), while the landraces 

(LDR) were collections from South Sudan. The study was conducted at the Biosciences East and 

Central Africa (BeCA-ILRI), Nairobi, Kenya. Test materials were assessed for determinants of grain 

quality (grain shape, amylose content, and alkali spreading value) using dehusked grains. Grain 

shape was classified on the basis of grain length (GL), grain width (GW) and length to width ratio 

(L/W), where measurements were read using a vernier calliper as described by Cruz and Khush 

(2000).  

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjupIfP5NnWAhUDlxoKHcXBDXYQFggzMAI&url=http%3A%2F%2Fwww.cgiar.org%2Fabout-us%2Fresearch-centers%2Finternational-center-for-tropical-agriculture-ciat%2F&usg=AOvVaw0iNibUgrzylTY2j-DcR6GH
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
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Table 4.1: List of rice genotypes used in the study 

Ɨ PID=Population Identity; IRRI, International Rice Research Institute; ARC, AfricaRice; UG, National Crops Resources Research Institute(NaCRRI)-Uganda; IER, Institut 

d'Economie Rurale – Mali, CIAT, International Centre for Tropical Agriculture ; MDG, Madagascar ;TZ, Tanzania ;LDR, Landrace-South Sudan;  

Entry 
No. 

Name/pedigree Ecology  Origin PID Ɨ  
Entry 
No. 

Name/pedigree Ecology  Origin PID Ɨ  

1 GSR-I-0057 Lowland  ARC ARC 31 P5 H12 Upland NaCRRI UG 

2 K 5 Lowland NaCRRI UG 32 P24 H10 Upland NaCRRI  UG 

3 WAC116X NERICA 4 Lowland Mali IER 33 CT11891-3-3-3-M-1-2-2-M Upland CIAT CIAT 

4 NERICA L 19 Lowland ARC ARC 34 P5 H6 Upland NaCRRI  UG 

5 K-85 Lowland NaCRRI UG 35 ART12-L4P7-21-4-B-3 Upland ARC ARC 

6 JARIBU  Lowland Tanzania TZ 36 ART10-1L15P1-4-3-1 Upland ARC ARC 

7 TAI Lowland IRRI IRRI 37 ART2-4L3P1-2-1 Upland ARC ARC 

8 K85-10 Lowland NaCRRI UG 38 SCRIDO 06-2-4-3-4-5 Upland Madagascar MDG 

9 KOMBOKA Lowland IRRI ARC 39 ART3 -8L6P3-2-3-B Upland ARC ARC 

10 1052 SUPA LINE Lowland IRRI IRRI 40 P27 H4 Upland NaCRRI  UG 

11 K 38 Lowland NaCRRI UG 41 P26 H1 Upland NaCRRI  UG 

12 TXD 306 Lowland ARC ARC 42 ART3-7L9P8-3-5-B-B-2 Upland ARC ARC 

13 WITA  9 Lowland ARC ARC 43 P5 H14 Upland NaCRRI  UG 

14 NERICA 6 Lowland ARC ARC 44 P27 H3 Upland NaCRRI UG 

15 1189 LINE Lowland ARC ARC 45 ART3 -7L3P3-B-B-2 Upland ARC ARC 

16 1191 LINE Lowland ARC ARC 46 P23 H1 Upland NaCRRI  UG 

17 326104  LINE Lowland ARC KR 47 ART3-8L6P3-2-3-B Upland ARC ARC 

18 Supa TZ Lowland Tanzania TZ 48 Mbume Upland Landrace LDR 

19 Basmati 370 Lowland IRRI IRRI 49 ART25-3-29-2-B Upland ARC ARC 

20 SK-95-4 Lowland Mali IER 50 ART3-8L6P3-2-2-B Upland NaCRRI  UG 

21 SK-7-8 Lowland Mali IER 51 ART12-L2P2-20-3-1-1 Upland ARC ARC 

22 BR4 Lowland Landrace LDR 52 P24 H1 Upland ARC ARC 

23 BG 400-1 Lowland Landrace LDR 53 P62 H17 Upland NaCRRI  UG 

24 NAMCHE 6 Upland NaCRRI UG 54 ART16-4-11-13-4 Upland NaCRRI  UG 

25 NAMCHE 1 Upland  NaCRRI UG 55 PCT-4\0\0\0˃19-M-1-1-5-1-M Upland ARC ARC 

26 NAMCHE 3 Upland  NaCRRI UG 56 NERICA 4 Upland ARC ARC 

27 NAMCHE 2 Upland  NaCRRI UG 57 DKAP-27 Upland Mali IER 

28 Namche 4 Upland  NaCRRI  UG 58 NERICA 1 Upland ARC ARC 

29 Namche 5 Upland  NaCRRI  UG 59 NERICA 10 Upland ARC ARC 

30 SCRIDO 37-4-2-2-5 Upland  Madagascar MDG      

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjupIfP5NnWAhUDlxoKHcXBDXYQFggzMAI&url=http%3A%2F%2Fwww.cgiar.org%2Fabout-us%2Fresearch-centers%2Finternational-center-for-tropical-agriculture-ciat%2F&usg=AOvVaw0iNibUgrzylTY2j-DcR6GH
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4.2.2 Quantification of amylose and amylopectin  

Amylose and amylopectin content of the starch were determined by the method of Gibson et 

al. (1997) as described in chapter 3, section 3.3.3. 

4.2.3 Measurement of gelatinization temperature  

Gelatinization temperature (GT) was assessed indirectly as the alkali spreading value of 

hulled kernels as per modified procedure of Little et al. (1958) as referred in chapter 3, section 

3.3.4.  

4.2.4 DNA isolation and genotyping 

Total genomic DNA was isolated from leaves of three-week old plants using the ZYMO 

research Quick-DNA™ Plant/Seed 96 Kit, where a single individual plant was considered for 

each genotype. Subsequently, 40 μl of a 50 ng/μl DNA of each sample were sent to Diversity 

Arrays Technology (DArT) Pty Ltd, Australia ('http://www.diversityarrays.com/dart-map-

sequences') for whole genome scan using Diversity Arrays Technology (DArT) markers. 

Whole-genome genotyping for the 59 rice genotypes was carried out using Genotyping-By-

Sequencing (GBS) technology as described by Elshire et al. (2011) using 18,927 DArT 

markers. The markers were integrated into a linkage map by inferring marker order and 

position from the consensus DArT map. 

4.2.5 Data filtering process and DArTseq SNP calling 

DArTseq-derived SNP markers were filtered to remove bad SNPs and genotypes using PLINK 

1.9 software in MS window and R statistical software, where genotypes with > 30% missing 

data, SNP loci with >20% missing data (Figure 4.1) and rare SNPs with <5% minor allele 

frequencies (MAF) were pruned. Only 525 DArTseq informative SNPs and 59 genotypes were 

considered after filtering and data quality control process.   

  

http://www.diversityarrays.com/dart-map-sequences
http://www.diversityarrays.com/dart-map-sequences
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Figure 4.1: Frequency of genotypes with missing data (left); frequency of SNPs (loci) with 
missing data (right) 

4.2.6 Data analysis 

4.2.6.1 Population structure analysis 

The genetic structure and relationship among 59 rice genotypes was investigated using 525 

DArTseq-derived SNP markers distributed across the rice genome as described by Pritchard 

et al. (2000). Bayesian clustering method was applied to identify clusters of genetically similar 

individuals using the software STRUCTURE version 2.3 (Pritchard et al., 2003). Cluster values 

(K) ranging from 1 to 10, and ten independent runs were used for each value in order to obtain 

consistent results. The best K-value for estimating a suitable population size for the dataset 

was determined as K=2 based on the Evanno et al. (2005) method from STRUCTURE run. In 

addition, population differentiation due to genetic structure was assessed using a neighbour-

joining (NJ) tree method (Saitou and Nei, 1987) and Principal Component Analysis (PCA) 

generated by R statistical software. Analysis of molecular variance (AMOVA) and genetic 

diversity was performed using GenAlEx V6.5 software (Peakall and Smouse, 2006). DArTseq-

derived SNP data were numerically coded as follows: A= 1, C= 2, T= 3, G= 4 and missing 

data was coded as 0 as suggested in GenAlEx V6.5 user manual.  

4.2.6.2 Linkage disequilibrium  

Linkage disequilibrium analysis was performed using TASSEL V5.3.1 software (Bradbury et 

al., 2007) with selected 525 DArTseq-derived SNP markers of known position (Huang et al., 

2012) out of the complete set of 18,927 polymorphic markers. Linkage disequilibrium was 

estimated as squared allele frequency correlations (R2), and only P-values ≤0.01 for each pair 

of loci were considered significant. 
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4.2.6.3 Association mapping 

Determinants of grain quality including grain length (GL), grain width (GW), grain length/width 

ratio (L/W), amylose content (AC) and gelatinization temperature (GT) were considered for 

association mapping. Association mapping analysis was performed with TASSEL V5.3.1 

software (Bradbury et al., 2007) using both the General Linear Model (GLM) and Mixed Linear 

Model (MLM) methods. Two different methods were considered for both GLM and MLM; 

where, for GLM, the model with no control for population structure and relatedness (naive 

model), and the model with population structure (the Q model) were performed, whereas for 

MLM; the model that considers the familial relatedness between accessions (the K model), 

and the model that takes into account both the population structure and the familial 

relatedness were used, that is, Q + K model as described by Yu et al. (2006). Where, the 

general equations for GLM and MLM are: y = Xa + e; and y = Xa+ Qb+ Zu + e, respectively; 

where, y is vector for phenotypes, a is the vector of marker fixed effects, b is a vector of fixed 

effects, u is the vector of random effects, and e is the vector of residuals. X denotes the 

genotypes at the marker; Q is the Q-matrix obtained from the STRUCTURE software and Z is 

an identity matrix. Both models were applied with and without considering the fixed effect of 

the population structure. Marker alleles with P-values ≤0.001 in both MLM and MLM-Q models 

were declared significantly associated with grain quality parameters. 

4.3 Results 

4.3.1 Genetic diversity  

The number of accessions, number of alleles, genetic diversity, heterozygosity, polymorphism 

information content (PIC) and major allele frequency of the eight populations is shown in Table 

4.2. The mean PIC values for each SNP locus in rice collections from ARC, CIAT, IER, IRRI, 

LDR, MDG, TZ and UG were 0.34, 0.02, 0.27, 0.29, 0.23, 0.10, 0.06 and 0.34, respectively. 

The mean number of alleles for each population was 2.0, 1.05, 1.94, 1.90, 1.77, 1.28, 1.19 

and 2.0 respectively. The magnitudes of PIC and mean number of alleles were in the order 

ARC=UG > IRRI > IER > LDR > MDG > TZ > CIAT. Rice population from ARC had the highest 

level of PIC, gene diversity and mean number of allele, but lowest level of major allele 

frequency (0.64). Rice population from CIAT had the lowest level of PIC, gene diversity and 

mean number of allele, but the highest level of major allele frequency (0.98). 
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Table 4.2: Estimation of gene diversity, heterozygosity, PIC and major allele frequency in 59 
rice accessions 

Group No. of 
accessions 

Allele.No Gene 
Diversity 

Heterozygosity Ɨ 
PIC 

Major Allele 
Frequency 

ARC 22.00 2.00 0.45 0.09 0.34 0.64 

CIAT 1.00 1.05 0.02 0.05 0.02 0.98 

IER 4.00 1.94 0.34 0.08 0.27 0.76 

IRRI 4.00 1.90 0.37 0.07 0.29 0.71 

LDR 3.00 1.77 0.29 0.20 0.23 0.78 

MDG 2.00 1.28 0.14 0.06 0.10 0.87 

TZ 2.00 1.19 0.08 0.09 0.06 0.94 

UG 21.00 2.00 0.44 0.14 0.34 0.66 

ARC, AfricaRice; CIAT, International Centre for Tropical Agriculture; IER, Institut d'Economie Rurale– 

Mali; IRRI, International Rice Research Institute; LDR, Landrace-South Sudan; MDG, Madagascar; 

TZ, Tanzania; UG, National Crops Resources Research Institute-Uganda (NaCRRI); Ɨ Polymorphism 

information content 

4.3.2 Population structure and genetic relationships 

Results of population structure analysis of 59 rice genotypes using a model-based 

programme, STRUCTURE, for K ranging from 1 to 10, and by inferring on Delta K of Evanno 

et al. (2005) identified the most suitable K value for determining the genetic cluster as K=2 

(Figure 4.2). The number of populations were visualized using Structure Plot V2.0 (Ramasamy 

et al., 2014), where genotypes that scored >0.80 were considered as pure and <0.80 as 

admixture (Figure 4.3). Only genotypes with origin from the National Crops Resources 

Research Institute-Uganda (UG) suggested considerable degree of admixtures (<80%). Two 

major clusters were formed where genotypes from UG, AfricaRice (ARC), Madagascar (MDG) 

and International Centre for Tropical Agriculture (CIAT) formed the first cluster, while 

genotypes from International Rice Research Institute (IRRI), Tanzania (TZ), Institut 

d'Economie Rurale-Mali (IER) and landraces from South Sudan (LDR) comprised the second 

cluster. Similarly, using Neighbour Joining (NJ) method and based on a mean fixation index 

(Fst) estimate value of 0.134 generated by PLINK 1.9 software, genotypes were grouped into 

two major clusters (Figure 4.4), confirming the results of population structure analysis. Cluster 

1 assembled genotypes from UG, ARC, MDG and CIAT, while cluster 2 grouped together 

genotypes from IRRI, TZ, IER and LDR.  

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjupIfP5NnWAhUDlxoKHcXBDXYQFggzMAI&url=http%3A%2F%2Fwww.cgiar.org%2Fabout-us%2Fresearch-centers%2Finternational-center-for-tropical-agriculture-ciat%2F&usg=AOvVaw0iNibUgrzylTY2j-DcR6GH
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
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Figure 4.2: Magnitude of Δ K as a function of Delta K for 59 rice genotypes based on 525 
polymorphic DArTseq-derived SNP markers 

 

Figure 4.3: Distribution pattern of 59 rice genotypes based on Bayesian clustering method of 
DArTseq-derived SNP markers 
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Figure 4.4: Dendrogram of a neighbour-joining (NJ) tree of rice populations constructed for 59 rice 
genotypes using DArTseq markers based on a mean fixation index (Fst) estimate value of 0.134 

4.3.3 Principal Component analysis results 

Using a 3D scatter plot of principal component analysis (PCA) and based on 525 DArTseq-

derived SNPs, two major clusters were clearly distinguished among all rice populations (Figure 

4.5) consistent with results from population structure analysis. Rice genotypes from cluster 1 

were depicted by red colour, while cluster 2 genotypes were represented by black colour.  

Principal component analysis yielded three principal components accounting for 70.7% of total 

variance observed. Breakdown of this cumulative variance value revealed contributions of 

49.5%, 15.8% and 5.4% for PCA1, PCA2 and PCA3, respectively. PCA1 was more 

discriminating and produced two distinct clusters. 

 

Figure 4.5: 3D scatter plot of principal component analysis for 59 rice genotypes based on 
DArTseq-derived SNP markers. 
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4.3.4 Genetic distance among populations 

The genetic distance among the different populations was estimated with 525 DArTseq-

derived SNP markers (Table 4.3). The greatest genetic distance was observed between 

genotypes from TZ and CIAT populations (0.865) and between genotypes from TZ and MDG 

populations (0.808). In addition, the least genetic distance was observed between genotypes 

from LDR and IER populations (0.004) and between genotypes from LDR and IRRI 

populations (0.017). 

Table 4.3: Genetic distances between different populations 

Populations  ARC CIAT IER  IRRI  LDR  MDG TZ 

CIAT 0.067 0 - - - - - 

IER 0.213 0.481 0 - - - - 

IRRI 0.157 0.370 0.028 0 - - - 

LDR 0.237 0.526 0.004 0.017 0 - - 

MDG 0.157 0.686 0.494 0.463 0.582 0 - 

TZ 0.377 0.865 0.082 0.112 0.049 0.808 0 

UG 0.023 0.228 0.218 0.194 0.267 0.069 0.399 

ARC, AfricaRice; CIAT, International Centre for Tropical Agriculture; IER, Institut d'Economie 

Rurale – Mali; IRRI, International Rice Research Institute; LDR, Landrace-South Sudan; 

MDG, Madagascar; TZ, Tanzania; UG, National Crops Resources Research Institute-

Uganda (NaCRRI);   

4.3.5 Genetic differentiation  

Analysis of molecular variance (AMOVA) among the 59 rice genotypes indicated that 11.24% 

of the variance was due to genetic differentiation among the populations, 67.30% of the 

variance was accounted by genetic differentiation among individuals within populations, while 

the remaining 21.46% of the variance was due to the differences within individuals (Table 4.4).  

Table 4.4: AMOVA of a panel of 59 rice genotypes 

Source of variation  d.f 
Sum of 
squares 

Variance 
components 

Percentage 
variation 

Among populations 7   2690.60 14.80 11.24 

Among individuals 
within populations 

51 10485.42 88.66 67.30 

Within individuals 59   1668.00 28.27 21.46 

Total 117 14844.02     131.74 
 

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjupIfP5NnWAhUDlxoKHcXBDXYQFggzMAI&url=http%3A%2F%2Fwww.cgiar.org%2Fabout-us%2Fresearch-centers%2Finternational-center-for-tropical-agriculture-ciat%2F&usg=AOvVaw0iNibUgrzylTY2j-DcR6GH
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms
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4.3.6 Phenotypic distribution of grain quality traits 

Grain shape (measured as the grain length-to-width ratio) and starch related qualities such as  

amylose content and gelatinization temperature (measured indirectly as alkali spreading value 

(ASV)), are the main properties considered for selecting breeding lines with improved quality 

(Anacleto et al., 2015). In this study phenotypic distribution for the aforementioned grain quality 

traits were determined among 59 rice genotypes. Analysis of the frequency distributions of the 

phenotypic classes suggested that all grain quality traits were quantitative and continuous 

(Figure 4.6). The analysed phenotypic traits displayed an overall broad variability, which is 

ideal to be efficiently exploited in GWAS studies. All phenotypic traits were approximately 

normally distributed (Figure 4.6); a few distributions, though, were found to be slightly skewed 

(amylose content, grain width and length to width ratio), but none showed a clear separation 

in two or more classes. Grain length varied from 5.0-7.95 mm, where most of the genotypes 

were characterized as long grains. Grain shape ranged from 2.0-7.0 and majority of the 

genotypes were categorized as slender grains. The ASV varied from 1.0-6.99 which relates to 

high-low gelatinization temperature (GT) and most of the genotypes were grouped as 

intermediate GT. Percent AC ranged from 15 to 40% where majority of the genotypes were 

classified as intermediate AC. 

 

 

 

 

 

 

 

 

 

Figure 4.6: Phenotypic distribution of GWAS results for grain quality traits (AC, amylose 
content; ASV, alkali spreading value; GW, grain width; L/W, Grain length to width ratio); Grain 
shape (length/width ratio): slender≥3.0; Medium=2.1-3.0; Bold=1.1-2.0; Round<1.1; Grain 
length: Extra-long(≥7.5 mm); Long (6.6-7.5 mm); Medium (5.51-6.6 mm); Short (<5.51mm) 
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4.3.7 Genome-wide association scans for grain quality traits 

Determinants of grain quality including grain length (GL), grain width (GW), grain length/width 

ratio (L/W), amylose content (AC) and gelatinization temperature (GT) were considered for 

genome-wide association studies (GWAS) using 525 DArTseq-derived SNP markers. 

Association mapping analysis was performed with TASSEL V5.3.1 software (Bradbury et al., 

2007) using both the General Linear Model (GLM) and Mixed Linear Model (MLM) methods. 

Both known associations (for GW, L/W, AC and ASV) as well as candidate loci were identified, 

where P-values were used to determine the association of QTLs with markers while percent 

variance explained (PVE) predicted the magnitude of QTL effects. Manhattan plots for grain 

quality traits were generated in GWAS indicating the most significant associations (−log (p-

value)>3) (Figure 4.7). A quantile-quantile (Q-Q) plot confirmed a normal distribution of 

phenotypic traits while the pattern of linkage disequilibrium (LD) blocks suggested the extent 

of association mapping, where the red sites represented SNPs that are in high linkage 

disequilibrium with each other and thus inherited together (Figure 4.8). A total of 22 significant 

(P < 0.001) association signals were detected for grain quality traits (Table 4.5). For AC, one 

QTL was identified on chromosome 2 that explained 48% of phenotypic variation. Ten QTLs 

were identified for ASV on chromosomes 1, 3, 4, 6, 7, 8, 9 and 10, contributing 19-31% of 

phenotypic variance. Six QTLs were also detected for GW on chromosomes 3, 5 and 12, 

which individually explained 23-43% of phenotypic variance. Furthermore, five QTLs were 

identified for L/W on chromosomes 3, 7 and 11 contributing 20-35% of phenotypic variance. 

SNP12_100006178, SNP13_3052560 and SNP14_3057360 (highlighted in bold) individually 

co-localised with two functional gene groups that are associated with QTLs for GW and L/W 

on chromosome 3 (Table 4.5). The AC allele (C/T) was traced back to parent K5; ASV alleles 

(G/A, A/G) were located in parents ART2-4L3P1-2-1, BG400-1, JARIBU and SUPA TZ; while 

the co-localised QTLs for GW and L/W came from JARIBU, BR4 and ART3-8L6P3-2-2-B. In 

general, two of the 22 associations identified were in regions where the QTL associated with 

the given traits had been reported in previous studies (http://www.gramene.org/ (Table 4.6)), 

while the remaining 20 significant SNP loci are potential novel QTLs.  

  

http://www.gramene.org/
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Figure 4.7: Manhattan plots of GWAS results for grain quality traits (AC, amylose 
content; ASV, alkali spreading value; GW, grain width; L_W, grain length to width 
ratio); Threshold=−log10(p−value) > 3 

  

Figure 4.8: Q-Q plot (left) and patterns of LD blocks (right) of GWAS results indicating the 
position of candidate genes and/or QTL regions associated with grain quality traits 
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Table 4.5: Genome wide significant associations (R2) of single nucleotide polymorphisms 
(SNPs) with amylose content (AC), alkali spreading value (ASV), grain width (GW) and grain 
length to width ratio (L/W) 

S/No. Grain quality trait Marker Chromosome Position (cM) Ɨ Allele p-value PVE 

1 AC SNP1_3444982 2 16.10 C/T 4.68E-04 0.48 

2 ASV SNP2_5143094 1 144.73 G/A 9.77E-05 0.27 

3 ASV SNP3_3438578 3 163.67 A/G 6.45E-04 0.24 

4 ASV SNP4_5142766 3 106.19 G/A 8.34E-04 0.31 

5 ASV SNP5_3453263 3 106.29 A/G 9.77E-04 0.26 

6 ASV SNP6_3053581 4 45.43 A/G 4.37E-04 0.27 

7 ASV SNP7_3755646 6 55.72 C/T 8.81E-04 0.19 

8 ASV SNP8_9752845 7 80.62 G/A 1.03E-04 0.27 

9 ASV SNP9_3049990 8 34.13 G/A 7.19E-04 0.21 

10 ASV SNP10_13890040 9 25.24 C/G 6.93E-04 0.25 

11 ASV SNP11_3053914 10 49.59 G/A 7.33E-04 0.24 

12 GW SNP12_100006178 3 179.45 C/T 7.93E-05 0.32 

13 GW SNP13_3052560 3 184.08 A/C 1.67E-04 0.28 

14 GW SNP14_3057360 3 55.35 C/T 2.90E-04 0.23 

15 GW SNP15_3049175 5 52.50 T/A 9.82E-04 0.24 

16 GW SNP16_100003971 12 64.57 C/T 1.33E-04 0.43 

17 GW SNP17_3448915 12 63.67 A/C 8.55E-04 0.37 

18 L/W SNP13_3052560 3 184.08 A/C 1.17E-05 0.32 

19 L/W SNP12_100006178 3 179.45 C/T 1.99E-05 0.35 

20 L/W SNP14_3057360 3 55.35 C/T 3.33E-04 0.20 

21 L/W SNP18_100004705 7 9.27 C/T 1.60E-04 0.23 

22 L/W SNP19_9755868 11 80.06 C/A 4.67E-04 0.20 

Ɨ Allele corresponding to grain quality trait based on 59 rice genotypes ; PVE, percent variance explained 

Table 4.6: Two of the 22 associations previously identified for grain quality traits 

S/N0. species 
Trait 
name 

Trait 
synonyms 

Linkage 
group 

Trait 
symbol 

Published 
symbol 

Qtl 
accession 

id 

Start 
position 

(cM) 

Stop 
position 

(cM) 

Reference 

1 
Oryza 

sativa L. 
grain 
width 

KW, kernel 
width, width 
of cooked 

rice, width of 
milled rice 

5 GRWD 
- 
 

CQAL27 30.2 66 
Tan et al. 
(2000) 

2 
Oryza 

sativa L. 

length 
to 

width 
ratio 

LWR, grain 
shape, 

length:width 
ratio of the 
rice grain 

3 
GRLGW

DRO 
lwr3.1 AQFA014 31.2 76.9 

Li et al. 
(2004b) 

Source: http://www.gramene.org/ 

4.4 Discussion 

Genome level profiling of rice germplasm collections is a critical initial step in identification of 

divergent parents for effective utilization in rice breeding programmes. The present study is 

http://www.gramene.org/
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the first major effort to perform genetic diversity studies and population structure analysis on 

a panel of 59 rice germplasm collections in South Sudan for effective breeding.  

The study revealed the potential of highly informative and selective DArTseq-derived SNP 

markers for genetic diversity analysis and genome wide association studies in rice. Results of 

the diversity analysis based on geographical origin indicated that rice collections of ARC 

population had the highest polymorphic information content and number of alleles similar to 

UG population. The values were intermediate for IRRI, IER, LDR, MDG and low for TZ and 

CIAT populations. These results suggest that most of the rice genotypes in South Sudan are 

largely adopted from West Africa where the AfricaRice (ARC) gene bank is entrusted with 

collection, conservation and utilization of most African rice genetic resources (Sanni et al., 

2013). Hence, a large number of the rice germplasm from ARC has spread to other countries 

within Africa such as Uganda (UG), Mali (IER), Madagascar and South Sudan. A few of the 

rice genotypes including accessions from IRRI and CIAT originated mainly from Asia and Latin 

America respectively as depicted by their geographical location. 

Results of population structure analysis revealed only two major clusters and indicated a clear 

genetic divergence based on origin and breeding history of the rice genotypes, confirming 

results from principal component analysis. Genotypes were grouped into two distinct clusters 

based on environmental adaptation, pedigree information and genetic distances. A low mean 

fixation index (Fst) estimate value of 0.134 and a small percentage variation (11.2%) among 

populations as revealed by analysis of molecular variance suggested a low degree of 

differentiation among populations and increased levels of admixtures. Low Fst estimate values 

ranging between 0.047-0.192 were reported by Oloka et al. (2015) for rice populations 

sampled from IRRI, AfricaRice and NaCRRI-Uganda, and by Ogunbayo et al. (2005) for 

genotypes originating from AfricaRice. Semon et al. (2005) and Wang et al. (2014) suggested 

that the domestication of African rice may have been influenced by the introduction of Asian 

rice into West Africa and subsequent intercrossing. In particular, the rice population from 

Uganda indicated a high level of admixtures due to the on-going breeding activities. Oloka et 

al. (2015) reported similar findings on rice diversity studies in Uganda. Thus, based on the 

genetic distances between different populations, genotypes were clustered according to 

genetic relatedness where one cluster comprised accessions from CIAT, ARC, MDG and UG, 

while the other consisted of genotypes from IRRI, IER, LDR and TZ.  

Analysis of frequency distributions of phenotypic classes indicated that all the grain quality 

traits in this study were quantitative and continuous which is in agreement with other previous 

studies (Lang and Buu, 2004; Lu et al., 2013; Dai et al., 2016). In addition, most of the 

genotypes were categorized as long and slender grains, with intermediate gelatinization 
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temperature and amylose content. Consequently, based on the desirable characteristics of 

the aforementioned genotypes, they may be considered potential high market value rice grains 

with improved eating and cooking properties (Muhammad, 2009).  

The present study also identified twenty-two significant associations with PVE of between 19-

48% for rice grain quality traits in the entire set of genotypes, including 1 association with AC, 

10 associations with ASV, 6 associations with GW and 5 associations with L/W. Several of the 

significant SNP loci were located on chromosome 3, which had previously been identified as 

a rice grain shape QTL hotspot region (Hu et al., 2013). Two of the 22 significant associations 

were in chromosomal regions in which rice grain shape QTLs had previously been located 

(http://www. gramene.org/). The other 20 significant SNP loci suggest the likelihood discovery 

of novel alleles associated with rice grain quality traits. Furthermore, SNP12_100006178, 

SNP13_3052560 and SNP14_3057360 individually co-localised with two functional gene 

groups that are associated with QTLs for grain width and grain length to width ratio on 

chromosome 3, indicating trait dependency or pleiotropic-effect loci.  Hu et al. (2013) identified 

six chromosomal regions on chromosomes 1, 2, 3, 5 and 6 that had pleiotropic effects on two 

or more determinants of rice grain shape. Biscarini et al. (2016) also identified several 

significant associations that co-localised with QTLs and candidate genes controlling the 

phenotypic variation of single or multiple rice grain quality traits. These findings pave the way 

to successfully exploit genetic hot-spot regions overlapping for multiple traits to enhance 

predictability of superior lines in a rice breeding population. Furthermore, these results might 

increase the descriptive power of QTLs associated with grain quality traits in rice and thus 

provide useful information for further fine mapping and cloning. 

4.5 Conclusion 

The present study demonstrated the potential of highly informative and selective DArTseq-

derived SNP markers for genetic diversity analysis and genome wide association studies in 

the tested rice genotypes. The study also provided a direction for breeding efforts in the 

selection of parents from the current collection with potential for novel genes or QTLs for 

important agronomic traits. A low degree of differentiation among sampled populations 

suggested the need for widening of the genetic base through the introduction of distant or wild 

relatives. Despite this, the study indicated that wide variability exists in the current rice 

germplasm collections for grain quality traits probably due to intercrossing between 

populations. Genome-wide association studies successfully identified and tagged 22 

DArTseq-derived SNP loci significantly associated with rice grain quality traits. Among these, 

two SNP loci were found in regions where the QTL associated with the given traits had been 

identified in previous studies, while the remaining 20 significant associations were indicative 
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of the likelihood discovery of novel alleles associated with rice grain quality traits. Significant 

QTL associations for AC allele (C/T) was traced back to parent ‘K5’; ASV alleles (G/A, A/G) 

were located in parents ‘ART2-4L3P1-2-1’, ‘BG400-1’, ‘JARIBU’ and ‘SUPA TZ’; while the co-

localised QTLs for GW and L/W came from ‘JARIBU’, ‘BR4’ and ‘ART3-8L6P3-2-2-B’. These 

parents are potential sources of major effect QTLs for grain quality that can be exploited for 

rice crop improvement. In addition the results of this study suggest that genetic progress can 

be attained by intercrossing genotypes from TZ with MDG and CIAT which appear to be 

distantly related. Furthermore, the study identified useful targets for QTL validation; fine 

mapping and cloning that will help rice breeders in contributing to enhancement of rice grain 

quality traits through marker-assisted breeding.  
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5. Genetic variability and quantitative trait loci analysis for 

yield-related and grain quality traits in three rice F2 

populations 

Abstract 

Grain yield and quality improvement are amongst the most important goals in any rice 

breeding program. However, the complex nature of these traits and their interaction with the 

environment lessens breeding progress. The main objective of this study was to perform 

quantitative trait loci (QTL) mapping for yield-related and grain quality traits of rice using three 

independent F2 populations. In this respect, Oryza sativa L. rice genotypes (‘Basmati 370’, 

‘Komboka’ and ‘Supa 1052’) with improved grain quality but low yield were crossed to an 

interspecific hybrid (O. sativa L. x O. glaberrima Steud) ‘NERICA 4’ with improved yield but 

poor grain quality. A high-density genetic linkage map was constructed via genotyping F2 

mapping populations by DArTseq-derived SNP markers. Estimates of genotypic and 

environmental variances, heritability and genetic advance as a percentage of mean for grain 

yield and quality traits among parents, F2 plants and BC1F2 individuals were derived. Relatively 

low differences (<10.0) between the phenotypic and genotypic coefficient of variation were 

observed for grain length, grain width and alkali spreading value among parents and progenies 

of segregating populations. Moderate to high heritability values coupled with high genetic 

advance were observed for alkali spreading value and grain yield. A total of 23 main-effect 

QTLs were uncovered for grain length, grain width, amylose content and alkali spreading 

value. Each QTL individually explained between 0.6% and 54.8% of the total phenotypic 

variance. Both novel and previously reported main-effect QTLs were identified. Novel main-

effect QTLs for low AC (qAC-8-1 and qAC-8-5) were detected on chromosome 8 and 

accounted for 2.7% and 10.3% of the phenotypic variance, respectively. Further, a major QTL 

(qGL-12-5) for grain length with a positive additive effect, explaining 30.3% of phenotypic 

variance on chromosome 12 was identified as a potential novel QTL. The results suggest that 

hybridization with O. sativa and interspecific hybrids can be successfully exploited to improve 

grain yield and quality in rice. Other main-effect QTLs for yield-related and grain quality traits 

such as; qAC-6-4, qGL-4-2, qGW-5-3 and qASV-3-5 that individually explained between 14%-

45.8% of the total phenotypic variance, were consistent with observations from other studies. 

Novel QTLs detected in this study for yield-related and grain quality traits could be considered 

as potential candidates for future fine-mapping and positional cloning projects. 

Keywords: Rice, Grain yield and quality, Quantitative trait loci, DArTseq-derived SNP 

markers, Heritability, Genetic advance 
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5.1 Introduction 

Rice (Oryza sativa L.) forms an essential component of the human diet in many regions of the 

world and provides an important source of calories for at least 50% of the world’s population 

(Asante, 2017). There is a growing global demand for rice breeding programs to focus on 

enhancing rice yield coupled with superior grain quality (Sreenivasulu et al., 2015; Zhao et al., 

2015) in order to ensure food security. This challenge is even more critical in sub-Saharan 

Africa (SSA) where the current growth in population, increased urbanization and changes in 

consumer preferences has caused a rise in the demand for high quality rice (Balasubramanian 

et al., 2007). However, local rice production is low and does not match imported rice in end-

user qualities (Yi et al., 2009; Demont, 2013). Furthermore, given the high preference for 

imported rice, close to 40% of the rice consumed in SSA is imported (Seck et al., 2010). 

Therefore, improving rice yield potential and grain quality is important but poses a great 

challenge to rice breeders because of the complex nature of these traits and their interaction 

with the environment (Wang et al., 2012a; Yacouba et al., 2013). According to Swamy et al. 

(2012), consumer preference for rice is largely determined by appearance and cooking and 

eating qualities. In addition, grain size and shape are important components of grain yield and 

quality (Wang et al., 2012b) and relate to grain appearance. Grain appearance is specified by 

grain length (GL), width (GW), length–width ratio (L/W), colour, and translucency of polished 

grains. Furthermore, cooking and eating qualities are largely governed by amylose content 

(AC), gel consistency (GC), gelatinization temperature (GT) or alkali spreading value (ASV), 

and pasting properties of starch. 

Yield and grain quality traits are complex and follow quantitative inheritance with considerable 

influence of genotype, environment, and their interactions (Wang et al., 2007; Amarawathi et 

al., 2008), thus, breeding for their right combinations using phenotype-based classical 

breeding is difficult and inefficient (Swamy et al., 2012). However, molecular marker 

technology provides options for improving selection strategies (Akhtar et al., 2010), and 

facilitates the selection of complex traits during the breeding process because they are reliable 

and unaffected by environmental conditions (Yi et al., 2009). Further, with the current 

advancements made in DNA marker technology and the development of linkage maps for rice, 

it is possible for complex polygenic traits to be dissected into single Mendelian quantitative 

trait loci (QTL) (Lou et al., 2009). Thus, several QTLs for traits of agronomic importance have 

been identified and used in rice improvement by marker-assisted selection (MAS) (Liu et al., 

2013; Lu et al., 2013). Furthermore, mapping of QTLs for yield-related and grain quality traits 

in rice is an important genetic approach to dissect and integrate the traits in marker-assisted 

breeding and for gene discovery. In rice, several of these QTLs have been mapped and tagged 

in different genetic backgrounds using molecular markers (Tan et al., 1999; Moncada et al., 
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2001; Aluko et al., 2004; Wang et al., 2007; Wan et al., 2008; Zhou et al., 2009; Jing et al., 

2010). Previous QTL mapping studies involving different mapping populations have revealed 

the complex nature of both yield-related and grain quality traits and suggested that several 

chromosomal regions are associated with the expression of a given phenotype. Aluko et al. 

(2004) mapped a QTL for grain length on chromosome 3, explaining 12.5% of the phenotypic 

variation (PV). Amarawathi et al. (2008) identified three significant QTLs for grain length, one 

on chromosome 1 and two on chromosome 7 accounting for 10% and 7% of PV. Lou et al. 

(2009) detected 3 QTLs for amylose content on chromosome 2 which collectively explained 

2.55% of the PV.  Yacouba et al. (2013) identified two QTLs for AC on chromosome 6 in 2009 

and another QTL on chromosome 8 in 2010 that individually accounted for 8.6% and 5.7% of 

the total phenotypic variation respectively. 

In addition, the presence of epistasis and QTL x environment interaction makes it difficult to 

apply MAS for genetic improvement of complex traits (Xu and Crouch, 2008). Furthermore, 

the formation of QTL clusters due to a single gene with pleiotropic effects or due to the ‘‘linkage 

drag’’ of multiple linked genes, each affecting a different trait, limits breeding efforts 

(Yamamoto et al., 2009). Nevertheless, efforts in QTL mapping and validation has not only 

improved the use of MAS for transfer of desirable QTL clusters and unlocking of undesirable 

linkage, but also provided insight into the genetic mechanisms regulating related traits (Wang 

et al., 2012a). Yi et al. (2009), successfully improved fragrance and intermediate AC in a 

Myanmar rice cultivar (Manawthukha) by marker-assisted backrossing (MABC). Other 

achievements in improving complex traits by marker-assisted selection (MAS) using advanced 

backcross populations, chromosomal segment substitution lines, near-isogenic lines (NIL), 

and heterogeneous inbred families (HIF) with uniform genetic background have been reported 

(Xie et al., 2008; Maas et al., 2010; Tyagi et al., 2014).  

Grain yield and quality are key traits when defining the desirability of rice (Lu et al., 2013). 

Thus, a comprehensive understanding of the genetic basis for those traits is particularly helpful 

in making improvements to both grain yield and marketing quality. The main objective of the 

investigation reported here was to map QTLs for yield-related and grain quality attributes of 

rice using three F2 populations derived from the cross between an O. sativa rice cultivar and 

interspecific O. sativa L. x O. glaberrima, Steud, hybrid. The identified QTLs will facilitate the 

development of strategies for improving yield-related and grain quality traits of farmer 

preferred cultivars by identifying new genetic resources with enhanced grain quality attributes. 

The study will also improve our understanding of the genes, pathways and molecular 

mechanisms determining yield-related and grain quality traits in rice. 
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5.2 Materials and methods 

5.2.1 Plant material and mapping population 

In the present study 3 mapping populations were derived from a cross between ‘NERICA 4’ 

(male parent) and ‘Basmati 370’, ‘Komboka’ and ‘Supa 1052’ (female parents). The male 

parent is an interspecific hybrid of a cross between O. glaberrima Steud and O. sativa L. It is 

a popular, high-yielding upland rice variety released in South Sudan in 2015 but is less 

preferred to imported rice such as ‘Basmati 370’, ‘Komboka’ and ‘Supa 1052’ in grain quality 

attributes. The female parents are O. sativa cultivars that have desirable superior grain quality 

traits but are low yielding and less adapted to the rice ecology in the country. Twenty F1 seeds 

generated for each of the 3 crosses were pre-germinated in petri-dishes. At least 120 

individuals of F2 plants and 50 backcross inbred plants (BC1F2) were generated for each 

population.  

5.2.2 Experimental setup  

Field evaluations were conducted at the National Crops Resources Research Institute, 

(NaCRRI) in Uganda. NaCRRI experiences a bimodal rainfall pattern and receives an average 

annual rainfall of 1200 mm.  It is located at 000 32″ N and 320 37″ E of the Equator at 

approximately 27 km north of Kampala at an elevation of 1150 metres above sea level (m asl). 

It has a tropical wet and mild dry climate with slightly humid conditions (average 65%). The 

soil type at the experimental site was clay vertisol. The evaluations were done during the 

2016/2017 second growing season (April-September) under irrigated conditions. F2 

populations, backcross inbred lines (BILs) and their parents were grown in 3 replications in a 

split-split-plot design arranged in RCBD. Seasons were considered as whole plots, 

generations as sub-plots and populations as sub-sub plots. Thus populations were nested 

within generations and generations within seasons.  Each generation of F2 plants, backcross 

inbred plants and parents consisted of 30 plants planted in 3 rows of 10 plants each adopting 

a uniform spacing of 25 cm between rows and 15 cm between plants. Standard cultural 

management practices including fertilisation and weeding were uniformly applied throughout 

the crop growth period. The crops were fertilized with 25 kg N ha-1 at 20-25 DAE and the same 

rate at 40-45 DAE to enhance plant vigour. 
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5.2.3 Data collection 

5.2.3.1 Grain quality traits 

Individual plants were assessed for determinants of kernel quality including kernel size-shape, 

amylose content, alkali spreading value and other important agronomic characters on yield 

performance. Kernel quality was determined using dehusked grains. Kernels were classified 

on the basis of length (L) and width (W) in three replicates using a vernier calliper following 

classification described by Cruz and Khush (2000). Amylose and amylopectin content of the 

starch was determined by the method of Gibson et al. (1997) using a Megazyme 

amylose/amylopectin assay kit (K-AMYL 04/06, Megazyme International Ireland Ltd., Co. 

Wicklow, Ireland), as described in the previous chapter (see chapter 3, section 3.3.3). 

Gelatinization temperature (GT) was assessed indirectly as the alkali spreading value of hulled 

kernels as per modified procedure of Little et al. (1958) as illustrated in chapter 3, section 

3.3.4.  

5.2.3.2 Agro-morphological traits 

Agronomic traits measured included days to heading (DH), plant height (PH), number of 

productive tillers per plant (NETP), number of grains per panicle (NGP), panicle length (PL), 

percent spikelet fertility (PSF), weight of 1000 grains (TGW) and grain yield (GY). Days to 

heading were recorded when 50% of the plants in each plot had flowered, while PH, NETP 

and NGP were measured at maturity and based on ten individual plants randomly selected in 

each plot. PH was measured from the soil surface to the tip of the panicle, while PL was 

measured from the node of the panicle to the tip of the panicle. Phenotypic acceptability and 

proneness to lodging was recorded visually according to the rice Standard Evaluation System 

(SES) described by IRRI (2002). Only the inner row was considered for measurement of GY 

in each plot, whilst the grain moisture content was adjusted to 14% and the GY per plot 

extrapolated to tonnes per hectare. 

5.2.3.3 DNA extraction and genotyping 

Total genomic DNA was isolated from three-week old leaves of individual plants using the 

ZYMO research Quick-DNA™ Plant/Seed 96 Kit. For each of the three F2 mapping 

populations, 94 individual plants were selected giving a total of 282 individual plants. Isolated 

DNA were checked for purity and concentration using the Thermo Scientific™ NanoDrop 2000 

spectrophotometer as described in the user’s manual, while the DNA quality was verified by 

running aliquots of DNA samples on a 1% agarose gel that contained 0.5 μg/mL GelRed. 

Consequently, 40 μl of a 50 ng/μl DNA of each sample was sent to Diversity Arrays 
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Technology (DArT) Pty Ltd, Australia ('http://www.diversityarrays.com/dart-map-sequences') 

for whole genome scan using DArTseq-derived SNP markers. Whole-genome genotyping was 

carried out using GBS technology as described by Elshire et al. (2011). A total of 15,726 

candidate DArTseq-derived SNP markers were discovered. DArTseq-derived SNP markers 

were filtered to remove bad SNPs and genotypes using PLINK 1.9 software in MS window 

and R statistical software, where genotypes with > 20% missing data, SNP loci with >20% 

missing data and rare SNPs with <5% minor allele frequencies (MAF) were pruned. This 

reduced the number of quality SNPs to 9452 (Figure 5.1) which were used to genotype 282 

individual F2 plants.  

 

Figure 5.1: Summary of the number of SNPs used for QTL mapping for each mapping 
population and combined across all populations 

5.2.4 Data analysis 

5.2.4.1 Agronomic and grain quality traits 

Data analyses were performed using GenStat 14th Edition software (VSN, 2011) using the 

analysis of variance (ANOVA) procedure followed by mean comparisons for agronomic 

characters and grain quality traits. A split-split-plot analysis with main plots arranged in RCBD 

was used where seasons (S) were considered as whole plots, generations (G) as sub-plots 

and populations (P) as sub-sub plots.  The linear model for split-split-plot analysis was as 

follows;  
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Yijkl = ijk + Si + R(S)ij + PK + SPik + PR(S)ijk + Gl + GSil + GPkl + GPSikl + Eijkl 

Where, ijk denotes the mean for level i of seasons (S), level j of populations (P) and level k of 

generations (G).   

Mean separation was conducted using the least significance difference (LSD) at 5% 

probability. Frequency distributions of grain quality trait means for the 3 mapping populations 

were generated by Excel 2010.  

5.2.4.2 Mean performance and heritability estimates for grain yield and quality traits 

Genotypic and environmental variances were estimated for parents, F2 populations and BC1F2 

individuals using the formulae for expected variances in the model, while phenotypic variance 

was estimated as the sum of genotypic and environmental variances. The genotypic 

coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were calculated 

following the formulae by Burton (1952). Broad sense heritability [H2] was estimated as 

described by Lush (1949) and Johnson et al. (1955) according to the following equations; 

Phenotypic coefficient of variation = 
√𝜎2𝑝

x̅ 
 x100 

Genotypic coefficient of variation = 
√𝜎2𝑔

x̅ 
 x100 

Broad sense heritability [H2] = 
𝜎2𝑔

𝜎2𝑝
x100 

Where; 

x̅ = Mean of the characteristic 

 𝜎2𝑔 = Genotypic variance 

𝜎2𝑝 = Phenotypic variance 

Genetic advance (GA) as a percent of the mean was estimated by the formula suggested by 

Johnson et al. (1955) as follows; 

Genetic advance (% of mean) = 
𝐾𝜎𝑝ℎ2

x̅ 
 𝑥 100 

where, 

𝜎𝑝         =   Phenotypic standard deviation 

K           = Selection differential [2.06 at 5 % selection intensity (Allard, 1960)].  

H2            = Broad sense heritability 

x̅           = Mean of characteristic 
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Broad sense heritability estimates were classified as low (< 30 %), medium (30 – 60 %) and 

high (> 60 %), while genetic advance was categorised as low (< 10 %), moderate (10 – 20 %) 

and high (> 20 %) as described by Johnson et al. (1955).  

5.2.4.3 Linkage map construction and QTL analysis 

A linkage map was constructed from the mapping population genotyping data using the 

integrated breeding platform (IBP) and breeding management system (BMS) software tool 

(IBP, 2015). For map distance calculations, recombination frequencies were converted to 

centiMorgans (cM) using Kosambi’s method (Kosambi, 1944). DArTseq-derived SNP markers 

were integrated into a linkage map by inferring marker order and position from the consensus 

DArT map. QTLs were estimated by inclusive composite interval mapping (ICIM) using the 

integrated breeding platform (IBP) and breeding management system (BMS) software tool 

(IBP, 2015). The relative contribution of a genetic component was calculated as the proportion 

of the additive effect and phenotypic variance explained by that component. Logarithm of odds 

(LOD) thresholds for QTL significance were determined by a permutation test (1000 

replications) with a genome-wide significance level P=0.01 to judge whether there exist QTLs. 

Interval mapping at 1-cM intervals along the chromosomes was then used to scan for QTLs. 

Markers closely linked to positions with the highest LOD score were taken as cofactors for 

ICIM analysis. To select significant markers during the first step of ICIM stepwise 

regression, P-values for entering and removing variables were set at 0.001 and 0.002 

respectively; in the second step, a minimum LOD threshold of 3.0 was used to declare a QTL 

significant. QTL nomenclature followed the protocol of Mccouch et al. (1997). For instance, 

“qAC-8-1” denotes the first QTL associated with AC expression and is detected and located 

on the eighth linkage group. 

5.3 Results 

5.3.1 Phenotypic variance for grain quality traits in F2 mapping populations 

The three F2 mapping populations showed a continuous and normal distribution for grain 

quality traits (GL, GW, AC and ASV) and also indicated transgressive segregations (Figure 

5.2). Notable differences were observed between the measured traits from respective parents 

involved in crosses and among the F2 mapping populations (Figure 5.2). Trait differences 

between parents involved in crosses and F2 mapping populations provided a rich source of 

trait variation for population development and QTL mapping.  

 



114 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Frequency distributions of grain length, grain width, amylose content 
and alkali spreading value in 3 F2 mapping populations showing a good fit to the 
normal distribution; Pop 1, ‘Basmati 370 x NERICA 4’; Pop 2, ‘Komboka x NERICA 
4’; Pop 3, ‘Supa 1052 x ‘NERICA 4’; Parent A, ‘Basmati 370’; Parent B, ‘Komboka’; 
Parent C, ‘Supa 1052’; Parent D, ‘NERICA 4’. 

5.3.2 Significant tests and heritability estimates for grain yield and quality 

trait  

Summary results on tests for significance, phenotypic and genotypic variation and heritability 

estimates for grain yield and quality traits among 3 independent populations is as follows;   

‘Basmati 370 x NERICA 4’ populations 

Analyses of variance for generations of parents, F2 plants and BC1F2 individuals consistently 

demonstrated highly significant differences (p<0.01 and p<0.001) for grain yield and quality 

traits (Table 5.1). Significant differences (p<0.05) were also observed for the interaction 

between seasons and generations (Table 5.1). Phenotypic coefficient of variation (PCV) was 

higher than genotypic coefficient of variation (GCV) for all the traits investigated in this study, 

where the highest PCV and GCV values were recorded for GY and ASV, while the lowest 

values were recorded for AC, GW and GL (Table 5.2). The difference between genotypic and 
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phenotypic coefficient of variation was small (<10.0) for all characters studied except for GY 

and AC (Table 5.2). Broad sense heritability estimates (H2) for grain yield and quality traits 

ranged from low to intermediate and high, but varied considerably from trait to trait (Table 5.2). 

The highest heritability was recorded for ASV, while AC indicated the lowest heritability 

estimate (Table 5.2). Genetic advance as a percent of mean was highest for ASV followed by 

GY, while the lowest was recorded for AC (Table 5.2). 

‘Komboka x NERICA 4’ populations 

Generations of parents, F2 plants and BC1F2 individuals consistently recorded highly 

significant differences (p<0.001) for grain yield and quality traits (Table 5.1). Significant 

differences (p<0.05) were also noted for the interaction between seasons and generations 

(Table 5.2). Phenotypic coefficient of variation (PCV) was higher than genotypic coefficient of 

variation (GCV) for all the traits investigated, where the highest PCV and GCV values were 

recorded for GY and ASV, while the lowest values were recorded for AC, GW and GL (Table 

5.2). The difference between genotypic and phenotypic coefficient of variation was small 

(<10.0) for all characters studied except for GY (Table 5.2). Broad sense heritability estimates 

(H2) for grain yield and quality traits ranged from intermediate to high, and were variable from 

trait to trait (Table 5.2). The highest heritability was recorded for ASV, while GL indicated the 

lowest heritability estimate (Table 5.2). Genetic advance as a percent of mean was highest for 

GY followed by ASV, while the lowest was recorded for GL (Table 5.2). 

‘Supa 1052 x NERICA 4’ populations 

Highly significant differences (p<0.001) were recorded for grain yield and quality traits among 

generations of parents, F2 plants and BC1F2 individuals (Table 5.1). Significant differences 

(p<0.01) were also noted for the interaction between seasons and generations (Table 5.1). 

Phenotypic coefficient of variation (PCV) was higher than genotypic coefficient of variation 

(GCV) for all the traits investigated, where the highest PCV and GCV values were recorded 

for ASV and GY, while the lowest values were recorded for AC, GL and GW (Table 5.2). The 

difference between genotypic and phenotypic coefficient of variation was small (<10.0) for all 

characters studied except for GY (Table 5.2). Broad sense heritability estimates (H2) for grain 

yield and quality traits ranged from intermediate to high, varying from trait to trait (Table 5.2). 

The highest heritability was recorded for ASV, while GW indicated the lowest heritability 

estimate (Table 5.2). Genetic advance as a percent of mean was highest for GY followed by 

ASV, while the lowest was recorded for GW (Table 5.2). 

Overall, the highest mean grain yield was recorded for ‘Supa 1052 x NERICA 4’ populations, 

followed by ‘Komboka x NERICA 4’ and ‘Basmati 1052 x NERICA 4’ populations (Table 5.2). 

Mean grain length was larger in ‘Basmati 1052 x NERICA 4’ populations, followed by 
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‘Komboka x NERICA 4’ and ‘Supa 1052 x NERICA 4’ populations (Table 5.2). Mean grain 

width was larger in ‘Basmati 1052 x NERICA 4’ populations, followed by ‘Supa 1052 x NERICA 

4’ and ‘Komboka x NERICA 4’ populations (Table 5.2). Mean AC among the populations 

ranged from intermediate to high. Highest mean AC was recorded for ‘Basmati 1052 x 

NERICA 4’ populations and lowest for ‘Komboka x NERICA 4’ populations (Table 5.2). Mean 

ASV among the 3 populations were observed to be intermediate (Table 5.2). 

Table 5.1: Mean squares and significant tests from analysis of variance of grain yield and 
quality traits among generations of parents, F2 plants and BC1F2 individuals 

 
 

Cross Source of variation d.f GY  GL GW   AC ASV 

‘Basmati 
370  
x  
NERICA 4’ 

Replication 2 1.296 0.276 0.090 41.420 0.219 
Seasons (S) 1 0.616 0.849 0.004 0.120 0.281 
Error a  2 0.542 0.051 0.027 65.000 0.219 
Populations (P)  2 1.933 0.117 0.032 9.050 0.281 
P x S 2 0.550 0.672 0.012 27.230 0.281 
Error b 8 0.882 0.308 0.020 33.730 0.422 
Generation (G) 3 5.860** 1.810*** 0.277*** 93.880** 9.013*** 
G x S 3 0.265 0.266 0.010 76.920* 0.615 
G x P  6 1.319 0.070 0.028 26.220 0.221 
G x P x S 6 1.258 0.195 0.009 22.560 1.129 
Error c 36 1.164 0.236 0.030 21.000 0.558 

‘Komboka 
x   
NERICA 4’ 

Replication 2 2.619 0.323 0.022 33.290 0.316 
Seasons (S) 1 2.262 0.156 0.008 2.780 0.587 
Error a 2 0.860 0.037 0.009 18.770 0.379 
Populations (P) 2 2.131 0.153 0.016 1.880 0.129 
P x S 2 0.152 0.116 0.002 29.080 0.045 
Error b 8 0.626 0.252 0.009 17.190 0.451 
Generation (G) 3 8.536*** 1.160*** 0.406*** 262.650*** 10.661*** 
G x S 3 0.494 0.018 0.064 37.230* 0.291 
G x P 6 0.712 0.209 0.026 25.330 0.216 
G x P x S 6 1.180 0.336 0.027 24.980 0.568 
Error c 36 0.838 0.141 0.027 12.150 0.389 

‘Supa 1052       
 x   
NERICA 4’ 

Replication 2 1.339 0.134 0.011 24.030 0.504 
Seasons (S) 1 0.259 0.000 0.004 3.990 0.517 
Error a 2 1.460 0.010 0.057 49.130 0.247 
Populations (P) 2 1.014 0.011 0.005 18.920 0.512 
P x S 2 0.173 0.121 0.049 43.640 0.109 
Error b 8 0.945 0.169 0.010 23.100 0.342 
Generation (G) 3 8.802*** 3.141*** 0.257*** 204.010*** 13.121*** 
G x S 3 1.614 0.370 0.073 53.550** 0.243 
G x P 6 1.584 0.232 0.051 23.500 0.754 
G x P x S 6 0.517 0.083 0.025 22.190 0.418 
Error c 36 0.780 0.348 0.029 10.390 0.359 

GY, grain yield (ton/ha); GL, grain  length; GW, grain width; AC; amylose content; ASV, alkali spreading value ; *, 
**, ***, significant at P<0.05, P<0.01, P<0.001 respectively. S, seasons; P, populations; G, generations; 
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Table 5.2: Estimates of means, variability, heritability and genetic advance as percentage of 
mean for grain yield and quality traits among parents, F2 plants and BC1F2 individuals 

Cross Character 
Grand 
mean PCV % GCV% 

 
D’ 

Heritability 
(H2) (%)  

Genetic advance 
(GA) as percent of 

mean 

‘Basmati 370  
x  
NERICA 4’ 

GY (t ha-1) 3.01 47.99 31.90 16.09 44.20 32.64 
GL (mm) 6.34 11.31 8.32 2.99 54.11 8.54 
GW (mm) 2.33 11.52 8.75 2.77 57.65 8.90 
AC % 26.72 18.03 5.57 12.46 9.55 3.37 
ASV 3.31 43.85 37.60 6.25 73.54 34.17 

‘Komboka 
x  
NERICA 4’ 

GY (t ha-1) 3.01 49.91 39.57 10.34 62.86 39.41 
GL (mm) 5.78 10.28 7.96 2.32 59.94 8.03 
GW (mm) 2.27 12.75 10.53 2.22 68.23 10.10 
AC 25.68 27.44 23.85 3.59 75.53 21.12 
ASV 3.13 47.10 42.68 4.42 82.13 33.69 

‘Supa 1052 
 x  
NERICA 4’ 

GY (t ha-1) 3.06 43.84 33.01 10.83 56.68 33.70 
GL (mm) 5.66 15.66 11.68 3.98 55.65 11.95 
GW (mm) 2.30 10.19 7.06 3.13 48.01 7.27 
AC 26.02 22.82 19.16 3.66 70.52 17.99 
ASV 3.47 45.09 41.65 3.44 85.33 30.36 

GY, grain yield in tonnes per hectare; GL, grain  length; GW, grain width; AC; amylose content; ASV, alkali 
spreading value ;PCV, phenotypic coefficient of variation; GCV, genotypic coefficient of variation; D’, difference 
between phenotypic and genotypic coefficients of variation; H2, broad sense heritability; 

5.3.3 Main-effect QTLs for yield-related and grain quality traits in F2 

populations 

A total of 23 main-effect QTLs (M-QTLs) which individually explained between 0.6% and 

54.8% of the total phenotypic variance (PV), were associated with yield-related and grain 

quality traits in 3 mapping F2 populations (Table 5.3). Among these M-QTLs, thirteen were 

major QTLs (% PVE≥10) and ten were minor QTLs (% PVE<10). Population 1 (‘Basmati 370 

x NERICA 4’) contributed 1 M-QTL while populations 2 (‘Komboka x NERICA 4’) and 3 (‘Supa 

1052 x NERICA 4’) each had 11 M-QTLs. In addition, thirteen of the total number of M-QTLs 

identified had a negative additive effect, while the remaining 10 M-QTLs showed a positive 

additive effect. A summary of the M-QTLs detected for the traits investigated in this study is 

as follows; 

Amylose content: Six M-QTLs for AC were identified on chromosomes 4,5,6,8 and 10 in F2 

mapping populations. One M-QTL was located in ‘Basmati 370 x NERICA 4’ F2 population, 

two M-QTLs in ‘Komboka x NERICA 4’ F2 population and three M-QTLs in ‘Supa 1052 x 

NERICA 4’ F2 population. The M-QTL located in the ‘Supa 1052 x NERICA 4’ F2 population 

within the marker interval SNP1872- SNP2172 on chromosome 10 had the greatest effect on 

AC with a PVE of 25.8% (Table 5.3 and Appendix 1).  

Grain length: Five M-QTLs for GL were mapped on chromosomes 2,4,8,9 and 12. The M-QTL 

on chromosome 12 showed the largest effect, explaining 30.3% of the phenotypic variance in 

the ‘Komboka x NERICA 4’ F2 population (Table 5.3 and Appendix 2).  
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Grain width: Seven M-QTLs for GW were identified on chromosomes 2, 3, 5, 7 and 8. Two M-

QTLs on chromosomes 5 and 8 had the greatest effect on GW, explaining 45.8% and 54.8% 

of the phenotypic variance in the ‘Komboka x NERICA 4’ and ‘Supa 1052 x NERICA 4’ F2 

populations, respectively (Table 5.3 and Appendix 3).  

Alkali spreading value: Four M-QTLs for ASV were located on chromosomes 1, 3, 5 and 12 in 

the ‘Supa 1052 x NERICA 4’ F2 population. None of the identified ASV M-QTLs had marked 

effects on phenotypic variance, with PVE values of only 0.6–18.6 % (Table 5.3 and Appendix 

4). 

Table 5.3: Summary of main-effect QTLs detected by inclusive composite interval mapping 
(ICIM) for AC, GL, GW and ASV in 3 F2 mapping populations 

S/No Population QTL Trait 
Chr 

Ɨ 
Position 

Left  

Marker 

Right 

 Marker 

Minlog10(P) 

Ɨǂ 

% 

PVE  

ƗƗ 

Additive 

effect 

1. Basmati 370xNerica 4 qAC-8-1 AC 8 80.08 SNP13497 SNP13493 3.94 2.68 -1.50 

2. KombokaxNerica4 qAC-4-2 AC 4 50.35 SNP9066 SNP8771 1.87 1.91 -1.21 

3. KombokaxNerica4 qAC-5-3 AC 5 107.09 SNP10243 SNP10180 2.58 15.70 -3.47 

4. KombokaxNerica4 qGL-2-1 GL 2 142.44 SNP6083 SNP5718 1.78 1.17 -0.09 

5. KombokaxNerica4 qGL-4-2 GL 4 16.49 SNP9001 SNP8446 2.53 20.53 0.37 

6. KombokaxNerica4 qGL-8-3 GL 8 109.06 SNP13718 SNP13648 4.50 13.80 -0.30 

7. KombokaxNerica4 qGL-9-4 GL 9 9.59 SNP14993 SNP14813 1.98 5.22 -0.19 

8. KombokaxNerica4 qGL-12-5 GL 12 80.92 SNP4720 SNP4538 7.82 30.28 0.45 

9. KombokaxNerica4 qGW-3-1 GW 3 159.59 SNP7270 SNP7872 2.78 2.35 -0.04 

10. KombokaxNerica4 qGW-5-2 GW 5 81.66 SNP10248 SNP10095 3.06 1.38 0.03 

11. KombokaxNerica4 qGW-5-3 GW 5 40.16 SNP9942 SNP9944 6.55 45.76 0.16 

12. KombokaxNerica4 qGW-7-4 GW 7 121.04 SNP12543 SNP12618 5.43 16.97 0.10 

13. Supa1052xNerica4 qAC-6-4 AC 6 130.78 SNP11121 SNP11086 2.83 14.54 -3.12 

14. Supa1052xNerica4 qAC-8-5 AC 8 70.18 SNP13749 SNP13502 1.78 10.33 -2.63 

15. Supa1052xNerica4 qAC-10-6 AC 10 47.48 SNP1872 SNP2172 3.63 25.79 4.15 

16. Supa1052xNerica4 qASV-1-1 ASV 1 132.09 SNP374 SNP170 3.98 18.62 0.90 

17. Supa1052xNerica4 qASV-5-2 ASV 5 149.59 SNP7478 SNP7575 2.23 1.89 -0.29 

18. Supa1052xNerica4 qASV-12-3 ASV 12 20.97 SNP9995 SNP9948 2.62 8.67 0.61 

19. Supa1052xNerica4 qASV-12-4 ASV 12 85.6 SNP10068 SNP10288 2.33 0.56 -0.16 

20. Supa1052xNerica4 qASV-3-5 ASV 3 8.13 SNP4541 SNP4666 1.64 13.95 0.78 

21. Supa1052xNerica4 qGW-2-5 GW 2 81.92 SNP5943 SNP5818 2.35 4.31 -0.07 

22. Supa1052xNerica4 qGW-5-6 GW 5 2.62 SNP10045 SNP10147 3.39 25.76 0.17 

23. Supa1052xNerica4 qGW-8-7 GW 8 55.24 SNP13689 SNP13561 3.02 54.80 -0.25 

Ɨ Chr, Chromosome; ƗƗ %PVE, Percent phenotypic variation explained by a QTL; Ɨǂ Minlog10 (P), P-value 
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5.4 Discussion 

Phenotypic variance was assessed for grain yield and quality traits for 3 different generations 

each consisting of two distinct parents, their F2 population and BC1F2 individuals. Continuous 

phenotypic distributions and transgressive segregations in the variations for grain quality traits 

among the F2 mapping populations indicated quantitative inheritance of grain length, grain 

width, amylose content and alkali spreading value in rice. Similar findings have been reported 

in other related studies (Lang and Buu, 2004; Lu et al., 2013; Dai et al., 2016). Highly 

significant differences (p<0.01 and p<0.001) for mean sums of squares among parents, F2 

plants, BC1F2 individuals for grain yield and quality traits  suggested that sufficient amount of 

variability exists among the generations for the traits studied. Subsequently, this also revealed 

that selection will be effective when developing rice varieties with the desired qualities. 

Significant differences (p<0.05 and p<0.01) for the interaction between seasons and 

generations on amylose content indicated the influence of environment on the expression of 

this character. These results are in support of other previous studies by Fan et al. (2005) who 

detected environmental interactions for three main-effect QTLs for AC and Li et al. (2017) who 

concluded that genotype-by-environment interaction plays a significant role in determining 

starch traits such as AC. 

PCV and GCV for all the studied characteristics revealed that there is great potential for 

selection of desirable traits from the developed populations for rice improvement. Selection 

within the characters with high PCV and GCV will be more effective than within those with low 

PCV and GCV. Grain yield and alkali spreading value indicated extremely high PCV and GCV 

values showing ample scope to select lines with improved grain yield and alkali spreading 

value. However, selection within the rest of the characters, particularly for grain appearance 

characteristics (grain length and width) and amylose content may not be effective as they 

recorded low PCV and GCV values. Low PCV and GCV values were also reported by Perera 

et al. (2014) for rice grain length and width. Accordingly, Perera et al. (2014) also noted that 

the extent of the environmental influence on any characteristic is specified by the magnitude 

of the difference between the PCV and GCV. In the present study difference between PCV 

and GCV was high for grain yield and amylose content (for progenies of the cross involving 

Basmati 370 x NERICA 4) indicating a marked influence of the environment on this character. 

Furthermore, small differences (<10.0) between the PCV and GCV for grain length, grain width 

and alkali spreading value among the parents and progenies of the 3 populations suggested 

presence of high genetic variability with less influence of the environment on these traits. 

Therefore, selection on the basis of phenotype alone can be effective for improvement of the 

aforementioned characters. Populations ‘Supa 1052 x NERICA 4’ and ‘Komboka x NERICA 
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4’ recorded highest mean grain yield and intermediate AC and ASV. These crosses can be 

useful for selection of desirable segregates at the F2 and BC1F2 generations.  

Broad sense heritability estimates may not necessarily provide any indication of the degree of 

genetic progress that would result from selecting the best individuals since it includes both 

additive and non-additive effects (Perera et al., 2014). However, the use of broad sense 

heritability estimates accompanied with genetic advance provides a more reliable gauge of 

genetic progress (Ramanujam and Thirumalachar, 1967). Panse and Sukhatme (1967) 

indicated that traits that show high heritability with high genetic advance are controlled by 

additive gene action and therefore such characters can be improved through simple progeny 

selection methods (Babu et al., 2011). Thus, selection for characters that combine high 

heritability with high genetic advance is expected to accumulate more additive genes leading 

to further genetic improvement. Moderate to very high heritability values coupled with very 

high genetic advance as a percent of mean observed for alkali spreading value and grain yield 

suggested the preponderance of additive gene action in the expression of these traits. High 

heritability and genetic advance was reported by Sarawgi et al. (2000) for rice grain weight 

and by Vange (2009) for rice seed yield. Amylose content exhibited high heritability (for 

‘Komboka x NERICA 4’ and ‘Supa 1052 x NERICA 4’ populations) coupled with moderate 

genetic advance, suggestive of predominance of non-additive gene action in the inheritance 

of this character with potential for improvement through selection. In a related study on the 

variability of AC in winter rice, Pathak et al. (2016) reported similar findings. 

Quantitative trait loci analysis results demonstrated that some main-effects QTLs were 

consistently inherited based on their detection in different populations. The present study 

identified a total of 23 main-effect QTLs associated with yield-related and grain quality traits 

in 3 mapping F2 populations. Complementary action of positive and negative effect of additive 

M-QTLs could well explain the genetic basis underlying transgressive segregation (Hu et al., 

2013), where it is expected that favourable alleles for yield-related and grain quality traits are 

sparsely distributed within the two parents involved in the cross. Transgressive segregants 

have also been reported previously for yield-related and grain quality traits in rice (Septiningsih 

et al., 2003; Aluko et al., 2004; Yuan et al., 2010). Main- effects QTLs for AC were identified 

on chromosome 6, 8 and 10. Two main-effect QTLs for AC (qAC-8-1 and qAC-8-5) identified 

on chromosome 8 came from the female parents (Basmati 370 and Supa 1052) and 

contributed to a negative additive effect and hence a decrease in AC. The position and nature 

of additive effect of the AC M-QTL differed from previous identified QTLs for amylose increase 

on the short and long arm of chromosome 8 that were reported by Takemoto-Kuno et al. 

(2015) and Li et al. (2011), respectively. Yacouba et al. (2013) also identified a QTL for AC 

with a positive additive effect on chromosome 8 in 2010 that accounted for 5.7% of the total 
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phenotypic variation. This suggests that M-QTLs (qAC-8-1 and qAC-8-5) detected in the 

present study are novel for low AC. Major QTLs with positive additive effect for grain length 

were identified on chromosomes 4 and 12 explaining 20.5% and 30.3% of phenotypic 

variance, respectively. Kato et al. (2011) also reported a major effect QTL with positive additive 

effect for grain length on chromosome 4 explaining 10.9% of phenotypic variance. However, 

the major QTL for grain length on chromosome 12 with positive additive effect has not been 

reported and is a potential novel QTL. A major QTL hotspot region with positive additive effect 

for grain width was identified consistently within the two mapping populations (Komboka x 

NERICA 4 and Supa 1052 x NERICA 4) on chromosome 5 explaining between 25.8% and 

45.8% of phenotypic variance. The major QTL hotspot region for grain width has previously 

been mapped on chromosome 5 (Wan et al., 2008; Weng et al., 2008). Major effect QTLs for 

alkali spreading value detected on chromosomes 1 and 3 were previously reported by Kim 

and Kim (2016).  

5.5 Conclusion 

The present study highlighted that adequate genetic variability exists within the 3 mapping 

populations considered as revealed by significant variations for grain yield and quality traits. 

Hence single seed descent, pure line or pedigree selection methods can be effective to 

develop rice varieties with the desired qualities. However, the presence of genotype-by-

environment interaction effects on grain yield and quality traits detected in this study is likely 

to substantially retard the breeding progress. The study suggests that traits which indicate 

smaller differences between the phenotypic coefficient of variation (PCV) and genotypic 

coefficient of variation (GCV) coupled with high heritability and genetic advance should be 

considered for direct selection. Thus, this would imply high genetic variability with less 

influence of the environment on the traits and therefore selection on the basis of phenotype 

alone can be effective. Also, relatively low differences (<10.0) between PCV and GCV were 

observed for grain length, grain width and alkali spreading value among parents and progenies 

of segregating populations. Moderate to high heritability values coupled with high genetic 

advance as a percent of mean were observed for alkali spreading value and grain yield. 

Consequently, the study recommends direct selection for grain length, grain width and alkali 

spreading value using single seed descent method in advanced F2 and BC1F2 populations. 

Populations ‘Supa 1052 x NERICA 4’ and ‘Komboka x NERICA 4’ recorded the highest mean 

grain yield and intermediate AC and ASV. The aforementioned crosses also recorded the 

highest number (22) of main-effect QTLs (M-QTLs) detected among their F2 mapping 

populations out of a total of 23 M-QTLs that were uncovered for grain length, grain width, 

amylose content and alkali spreading value. These crosses can be useful for selection of 
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desirable segregates at the F2 and BC1F2 generations. Each identified M-QTL individually 

explained between 0.6% and 54.8% of the total phenotypic variance. Both novel and 

previously reported main-effect QTLs were detected. Novel main-effect QTLs for low AC (qAC-

8-1 and qAC-8-5) were detected on chromosome 8 and accounted for 2.7% and 10.3% of the 

phenotypic variance, respectively. Further, a major QTL (qGL-12-5) for grain length with a 

positive additive effect, explaining 30.3% of phenotypic variance on chromosome 12 was 

identified as a potential novel QTL. The results of this study suggest that hybridization with O. 

sativa L. and interspecific hybrids can be successfully exploited to improve grain yield and 

quality in rice. Other main-effect QTLs for yield-related and grain quality traits such as; qAC-

6-4, qGL-4-2, qGW-5-3 and qASV-3-5 that individually explained between 14% and 45.8% of 

the total phenotypic variance, were mapped to regions consistent with map locations in other 

studies and may be useful in marker-assisted selection experiments. Novel QTLs detected in 

this study for yield-related and grain quality traits could be considered as potential candidates 

for future fine-mapping and positional cloning projects.  
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6. General overview and implications of the study 

6.1 Introduction and objectives of the study 

Rice (Oryza sativa L.) is the staple food for over half of the world’s population and the fourth most 

important and widely cultivated cereal crop in sub-Sahara Africa (SSA). Despite sustained initiatives 

to encourage local rice production by the rice sector in SSA and particularly in South Sudan, 

production is still low and unable to meet the growing demand for high quality rice. Improving grain 

yield and quality are important considerations but present a major challenge for most rice breeding 

programs in sub-Saharan Africa. In this regard, the research focus was to generate a comprehensive 

understanding of the genetic basis of yield-related and grain quality traits in rice as an important step 

towards formulating effective breeding strategies. Consequently, this research focus was used to 

formulate the objectives of the present study and the hypotheses that were to be tested. This chapter 

gives an overview of the whole study by reiterating on the major findings, their implications and the 

way forward for future research. The objectives of this study were: 

v. To investigate farmers’ perceived rice production and productivity constraints and choice of 

rice ideotypes across rainfed and irrigated rice agro-ecologies in South Sudan, to guide 

breeding and policy interventions. 

vi. To perform genetic and comparative analysis of agro-morphological and grain quality traits 

of elite upland rice genotypes.  

vii. To investigate genetic diversity and perform genome-wide association studies of grain 

quality traits in a panel of 59 upland and lowland rice collections. 

viii. To determine genetic variability and identify QTLs for yield-related and grain quality traits in 

three rice F2 populations involving crosses of O.sativa L. and an interspecific hybrid (O. 

sativa L. x O. glaberrima, Steud). 

6.2 Summary of the major findings 

Appraisal of major determinants of rice production and productivity, and farmers’ choice of 

rice ideotypes in South Sudan: implications for breeding and policy interventions 

A survey study was conducted targeting five payams (administrative units) including Aweil Rice 

Scheme, Yambio centre, Bangasu, Gangura and Lirangu payams that reflect major rice growing areas 

under rainfed and irrigated cultivation in South Sudan. The main findings were; 

 Common rice landraces were ‘BG400-1’ and ‘BR4’ for lowland rice ecology and ‘Ruanya’ 

and ‘Zamburu’ under upland rice ecologies. Estimate yields of the landraces ranged between 

0.4 t ha-1 and 1.6 t ha-1. 

 Farmers mainly cultivated local rice landraces due to inadequate exposure to new and 

modern cultivars or the absence of acceptable alternatives to their landraces. 
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 Imported rice varieties were highly preferred mainly for the “sweet” and appealing taste, 

grain shape and size, aroma, swelling capacity and non-stickiness during cooking, while the 

locally produced rice cultivars were less preferred due to their non-appealing grain shape 

and size, taste and stickiness during cooking. 

 The best ranked upland rice cultivars were ‘NERICA 1’ and ‘ART3-8L6P3-2-3-B’, which were 

selected for early maturity and enhanced tillering capacity. 

 The best two selected lowland cultivars were ‘NERICA-L-6’ and ‘K-8’. They were most 

preferred for early maturity, large panicles and enhanced tillering capacity. 

 Significant differences (P<0.001) were observed in the consistency of ranking order of major 

rice production constraints across lowland and upland rice growing sites. 

 Poor soil and water management practices was identified as a major constraint to lowland 

rice production, while unreliable rainfall was mentioned as a critical factor affecting upland 

rice production. 

Genetic analysis of elite upland rice genotypes using DArTseq markers and comparative 

analysis of agro-morphological and grain quality traits  

The study was undertaken to assess the genetic diversity and relationship present among 36 elite 

upland rice genotypes using DArTseq-derived SNP markers and agro-morphological and grain quality 

traits. The main outcomes were; 

 Grain yield (GY) was highest in genotype ‘ART10-1L15P1-4-3-1’ (5.1 t ha-1) and lowest in 

‘WAC x NERICA 4’ (1.6 t ha-1). 

 Number of grains per panicle expressed the greatest maximum direct positive effect (0.715) 

on grain yield. 

 Plant height exhibited the largest negative direct (-0.146) effect on grain yield.  

 Grain length (GL) exhibited the greatest maximum direct positive effect on amylose content 

(AC) (0.471), while grain width (GW) revealed the largest negative effect on AC (-0.862).  

 Upland rice genotypes that include; P5H6, NAMCHE 6 and ART3-7L9P8-3-5-B-B-2, had 

considerable high yields and intermediate values for AC and alkaline spreading value (ASV). 

 The most significant peak of ΔK from STRUCTURE run was observed when K=2, thus, the 

entire set of upland genotypes were grouped into two major populations based on 

environmental adaptations and breeding history. 

Diversity analysis and genome-wide association studies of grain quality traits in rice (Oryza 

sativa L.) using DArTseq markers  

The present study performed genetic diversity and genome-wide association studies (GWAS) of grain 

quality traits in a diverse collection of 59 upland and lowland rice (Oryza sativa L.) genotypes. 

Genotypes were acquired from AfricaRice (ARC), National Crops Resources Research Institute, 

Uganda (UG), Institut d'Economie Rurale, Mali (IER), International Rice Research Institute (IRRI), 

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.ier.gouv.ml%2F&ei=yDNMU_mdLKqg7AaewYH4Dg&usg=AFQjCNER6oYYzYHWdxLY2vOl7BDypetNow&bvm=bv.64542518,d.Yms


129 
 

South Sudan landraces (LDR), Madagascar (MDG), Tanzania (TZ) and International Centre for 

Tropical Agriculture (CIAT).  The major findings were; 

 The tendencies of polymorphism information content (PIC) and mean number of alleles were 

in the order ARC=UG > IRRI > IER > LDR > MDG > TZ > CIAT. 

 The most significant peak of ΔK from STRUCTURE run was observed when K=2, hence, the 

entire set of upland and lowland rice genotypes were grouped into two major populations 

based on environmental adaptations and breeding history. 

 Only genotypes with origin from UG suggested considerable degree of admixtures (<80%). 

 The greatest genetic distance was observed between genotypes from TZ and CIAT 

populations (0.865) and between genotypes from TZ and MDG populations (0.808). 

 Analysis of the frequency distributions of phenotypic classes of grain quality traits among 

test genotypes suggested that all traits were quantitative and continuous. 

 A total of 22 significant (P < 0.001) association signals were detected for grain quality traits, 

among which 20 significant SNP loci represented potential novel QTLs.  

 SNP12_100006178, SNP13_3052560 and SNP14_3057360 individually co-localised with 

two functional gene groups that were associated with QTLs for grain width (GW) and grain 

length to width ratio (L/W) on chromosome 3, indicating trait dependency or pleiotropic-effect 

loci. 

 Significant associations for AC allele (C/T) was traced back to parent K5; ASV alleles (G/A, 

A/G) were located in parents ‘ART2-4L3P1-2-1’, ‘BG400-1’, ‘JARIBU’ and ‘SUPA TZ’; while 

the co-localised QTLs for GW and L/W came from ‘JARIBU’, ‘BR4’ and ‘ART3-8L6P3-2-2-B’. 

Genetic variability and quantitative trait loci (QTL) analysis for yield-related and grain quality 

traits in three rice F2 populations 

The main objective of this study was to map QTLs for yield-related and grain quality traits of rice using 

three F2 populations derived from the cross between O. sativa L. and an interspecific hybrid rice 

cultivar (O. sativa L. x O. glaberrima, Steud). The key findings were; 

 Mapping populations showed a continuous and normal distribution for grain quality traits with 

transgressive segregations in variations. 

 Analyses of variance among generations involving parents, F2 populations and BC1F2 

individuals consistently demonstrated highly significant differences (p<0.01 and p<0.001) for 

grain yield (GY) and quality traits. 

 Significant differences (p<0.05 and p<0.01) were observed for the interaction between 

seasons and generations. 

 Highest phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) 

values were recorded for GY and ASV, while the lowest values were recorded for AC, GL 



130 
 

and GW. The difference between PCV and GCV was small (<10.0) for all characters studied 

except for GY.  

 Broad sense heritability estimates (H2) for grain yield and quality traits ranged from low to 

intermediate and high, but varied considerably from trait to trait with the highest recorded for 

ASV and lowest for AC and GL.  

 Genetic advance was highest for GY followed by ASV. Amylose content recorded the lowest 

genetic advance. 

 A total of 23 main-effect QTLs (M-QTLs) associated with yield-related and grain quality traits 

were identified for AC on chromosome 6, 8 and 10, with those on chromosome 8 (qAC-8-1 

and qAC-8-5) differing from previously identified QTLs suggesting that the QTLs are novel 

for low AC.  

 Major QTLs with positive additive effect for grain length were identified on chromosomes 4 

and 12 explaining 20.5% and 30.3% of phenotypic variance (PV), respectively. The major 

QTL for GL on chromosome 12 with positive additive effect has not been reported and is a 

potential novel QTL. 

  A major QTL hotspot region with positive additive effect for GW was identified on 

chromosome 5 explaining between 25.8% and 45.8% of PV consistent with previous studies. 

Major effect QTLs for ASV detected on chromosomes 1 and 3 had previously been reported 

in related studies. 

 Populations ‘Supa 1052 x NERICA 4’ and ‘Komboka x NERICA 4’ recorded the highest 

mean grain yield and intermediate AC and ASV, as well as the highest number (22) of 

detected main-effect QTLs (M-QTLs) in their F2 populations. 

6.3 Implications of the study and way forward 

Participatory plant breeding approaches including participatory rural appraisals (PRA) have been 

widely embraced in plant breeding programs to engage farmers in variety selection process and have 

proven to be successful in eliciting farmers’ preferred varieties and encouraging farmer variety 

adoption. In addition, participatory rural appraisal has been useful in identifying farmers’ crop 

production constraints and traits that farmers value in the selection of rice cultivars to provide 

important considerations for goal setting in a plant breeding program. The results of this study show 

a need for integration of farmers’ and other important stakeholders’ preferences in variety 

development process and the desirability of releasing site-specific rice cultivars given the differences 

in bio-physical, socio-cultural and farmers’ preferences across major rice growing areas of South 

Sudan. The study further recognizes the important role of research in generating appropriate rice 

technologies while advocating for policy measures that encourage quality rice seed production and 

distribution in the country. 
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Genetic variability has been a major driving force in selecting for superior genotypes in crop 

improvement programs, while knowledge on variability and association between yield attributing 

factors and other important agro-morphological and grain quality traits is critical in tailoring 

hybridization programs. Further, the magnitude of genetic variability and the extent to which the 

desirable characters are heritable largely determines the success of any plant breeding program. 

Additionally, association mapping based on phenotypic and genotypic data has been critical in 

identifying molecular markers or QTLs linked to traits of interest and with potential for use in marker-

assisted breeding (MAS). Furthermore, mapping of QTLs for yield-related and grain quality traits in 

rice is an important genetic approach to dissect and integrate them in MAS and for gene discovery.  

The present study observed considerable genetic variations for agro-morphological characters and 

grain quality traits among 36 upland rice genotypes. The study further revealed that wide variability 

for grain quality traits exists within the current lowland and upland rice germplasm collection which 

can be exploited for production and rice improvement for grain yield and quality. A low degree of 

differentiation among sampled populations suggested the need for widening the genetic base through 

the introduction of distant or wild relatives. 

Plausible associations identified for yield and grain quality attributing factors are important selection 

criteria for enhancing yield and grain quality in rice. The DArTseq-derived SNP markers and agro-

morphological and grain quality traits managed to identify upland rice genotypes: ‘P5H6’, ‘NAMCHE 

6’ and ‘ART3-7L9P8-3-5-B-B-2’ that can be used for direct production or breeding.   

GWAS indicated presence of novel alleles associated with rice grain quality traits and significant QTL 

associations for AC allele (C/T) that can be traced back to parent K5; ASV alleles (G/A, A/G) were 

located in parents ‘ART2-4L3P1-2-1’, ‘BG400-1’, ‘JARIBU’ and ‘SUPA TZ’; while the co-localised 

QTLs for GW and L/W came from ‘JARIBU’, ‘BR4’ and ‘ART3-8L6P3-2-2-B’. These parents are 

potential sources of major effect QTLs for grain quality and hence can be exploited for rice 

improvement. The study revealed the potential of highly informative and selective DArTseq-derived 

SNP markers for genetic diversity analysis and GWAS in rice. 

The study further highlighted adequate genetic variability within the 3 mapping populations for grain 

yield and quality traits indicating that single seed descent, pure line or pedigree selection methods 

can be effective to develop rice varieties with the desired qualities. However, the presence of 

genotype-by-environment interaction effects on grain yield and quality traits detected in the study is 

likely to substantially retard the breeding progress. The study suggests that traits which indicate 

smaller differences between the phenotypic coefficient of variation and genotypic coefficient of 

variation coupled with high heritability and genetic advance should be considered for direct selection. 

Thus, this would imply high genetic variability with less influence of the environment on the traits and 

therefore selection on the basis of phenotype alone can be effective. Consequently, the study 
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recommends direct selection for grain length, grain width and alkali spreading value using single seed 

descent method in advanced F2 and BC1F2 populations. Populations ‘Supa 1052 x NERICA 4’ and 

‘Komboka x NERICA 4’ which recorded the highest mean grain yield and intermediate AC and ASV, 

can be useful for selection of desirable segregates at the F2 and BC1F2 generations. 

Detection of novel QTLs that enhanced grain quality underscores the potential value of the germplasm 

used in the present study as a useful source for grain yield and quality improvement. Main-effect QTLs 

that mapped to regions consistent with map locations in other studies may be useful in MAS 

experiments. Novel QTLs identified in this study for yield-related and grain quality traits could serve 

as potential candidates for future fine-mapping and positional cloning projects. 
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Appendices: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Appendix 1: Position of DArTseq-derived SNP markers and amylose content (AC) QTLs in linkage map of 3 mapping populations. 
QTLs positions are shown by red colour on identified linkage groups, while map distances are indicated on the left side of the linkage 
groups. 

 

 

Population 1: ‘Basmati 370 x NERICA 4’    Population 2: ‘Komboka x NERICA 4’          Population 3: ‘Supa1052 x NERICA 4’ 
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Appendix 2: Position of DArTseq-derived SNP markers and grain length (GL) QTLs in linkage map of population 2 (‘Komboka x NERICA 4’). 

QTLs positions are shown by red colour on identified linkage groups, while map distances are indicated on the left side of the linkage groups. 
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Appendix 3: Position of DArTseq-derived SNP markers and Grain width (GW) QTLs in linkage map of populations 2 and 3. QTLs positions for 

GL are shown by red colour on identified linkage groups, while map distances are indicated on the left side of the linkage groups. 

         Population2: Komboka x NERICA 4                                                       Population3:Supa1052 x NERICA 4 
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Appendix 4: Position of DArTseq-derived SNP markers and alkali spreading value (ASV) QTLs in linkage map of population 3 (‘Supa1052 x 

NERICA 4’). QTLs positions are shown by red colour on identified linkage groups, while Map distances are indicated on the left side of the 

linkage groups 
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Appendix 5: Rice baseline survey data collection protocols 
 
 

Individual farmer’s questionnaire 

 
Section A: General information 
Name of enumerator ………………………….. Date of interview ………………. 
Country …………………………State …………………….County ……….………………… 
Payam …………............Boma   …………………………………………………..Village 
……………….………………………………………..…………………… 
Name of farmer …….……………………………………………………………………………… 
Relationship to household head ……………. (1=Head, 2=Spouse, 3=Child, 4=Relative) 

 
Section B: Household and socio-economic characteristics 
1. Age of farmer in 
years……………………………………………………………………………………………………
………………. 
2. Gender of farmer (1=male, 2=female) 
…................................................................................................ 
3. Highest formal education (circle the right codes) 
1=None; 2=primary; 3=Ordinary secondary; 4=Advanced secondary; 5=Certificate graduate; 
6=Diploma graduate; 7=Degree graduate; 8=other (specify) 
……………………………………………………. 

4. Household size 
……………………………………………………………………………………………………………
………………… 
5. Total land/farm size (acres/ feddans) 
………………………………….…………………………………………………………. 
6. Land under rice (acres/ feddans) 
……………………………………………………………………….....….…………………… 
7. State the income generating activities that you are involved in (circle the right codes) 
Crop farming=1; livestock production=2; trade=3; handicraft=4; labourer=5; formal 
employment=6; other 

(specify)………………………………………………………………………………………………..
…………………………………… 
 
Section C: Rice Production 
1. How long have you been involved in rice production (years)? 
………………….…………………………………… 
2. Please state the varieties of rice you grow and area under each (use table below)? (Incase 

farmer did not grow rice in 2011 but did so this year, take note of data for this year as a foot note below 
the page)  

Rice variety* Ecology** Seed source*** Area under the variety 
(acres/feddans) 

1st season 2014 2nd season 2014 

     

     

     

     

     
*Variety codes:1=Supa; 2=Kaiso; 3=Superica 1; 4=Nerica 4/Naric 3/Superica 2; 5=Nerica 1; 6=Nerica 10; 7=Nerica 
lowland; 8=Naric 1 ; 9=Naric 2 ; 10=Sindano; 11=IRAT, 12=TOX 5, 13=other traditional varieties (specify, e.g. Pakistani); 
14=other (specify); 99=don’t know variety 
** Ecology codes : 1=upland ; 2=lowland ; 3=irrigated 
***Seed source codes : 1=own seed ; 2=fellow farmer ; 3=local market ; 4=NGOs ; other (specify) 

 
3. Which variety is most preferred by the farmer? And why? 
…………………………………..………………………… 
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……………………………………………………….…………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………..………… 
4. Which variety is most preferred in the market? And Why? 
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………… 
5. Which variety is least preferred by the farmer? And why? 
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
…………………………………………………………………………………………….. 
6. Which variety is least preferred in the market? And why? 
……………………………………….…………………….. 
……………………………………………………………………………………………………………
………………………………….………………………………………………………………………
………………………………………………………………………………………………… 
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7.  Please state rice production inputs, their sources and costs, and constraints associated with these inputs   

Type of 
input 

Input name Input 
source*  

Quantity 
used 

Unit 
(1=kg,  
2=litres) 

Land size 
and unit 
(1=acre; 
2=task)** 

Cost 
per unit 

Input acquisition Problems  

Fertilizer        

        

        

        

        

Insecticide        

        

        

Fungicide        

        

        

Credit        

        

        

        

Seed (by 
variety) 

       

        

        

        
Hired labour        

        

        
* Input source codes: 1=own saved; 2=fellow farmer; 3=local market; 4=stockist; 5=input dealer; 6=NGO; 7=other (specify) 
**Incase of task; define the task in form of (size i.e. width -----------by length---------------) and the measurement unit of the task stick e.g 5m 
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8.  Who offers you technical skills and information in rice production? Codes: 1=own experience; 

2=fellow farmer;  3=extension ; 4=NARS; 5=NGOs ; 6=farmer organization ,7=other (specify)….  
……………………………………………………………………………….…………………………
………………………………………………..  
 
9.  Please state any other support and its source that you obtained in line with rice 
production 

Type of Support*  Source of support Quantity 

   

   

   

   

   
* Type of support can be in terms of seeds, fertilizer, credit, chemicals, etc. 

 
10. Please state any arrangements (informal, partnerships, contracts) that you are a part of; 
for rice production  

Name of the 
arrangement 

Activities under 
arrangement 

Benefits you receive 
from the 
arrangement 

Challenges 

  
 

  

  
 

  

  
 

  

  
 

  

  
 

  

  
 

  

 
11. Specify rice production and sales in 2014 

Season 
1 

Area 

(acres/ 

feddans) 

Production (kgs) Quantity sold (kgs) Selling price/kg 

Variety* Grain Seed Paddy Milled** Seed Paddy Milled Seed 

          

          

          

Season 
2 

         

          

          

          
*Variety codes:1=Supa; 2=Kaiso; 3=Superica 1; 4=Nerica 4/Naric 3/Superica 2; 5=Nerica 1; 6=Nerica 10; 7=Nerica 
lowland; 8=Naric 1 ; 9=Naric 2 ; 10=Sindano; 11=IRAT, 12=TOX 5, 13=other traditional varieties (specify, e.g. Pakistani); 
14=other (specify); 99=don’t know variety 

**Define milling recovery (for every 1kg of paddy milled, what is the quantity of milled rice resulting from 
it) 
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12. State any constraints associated with rice production that you faced 

Constraints (5 
main ones) 

Rank Coping mechanism Source of 
coping 
mechanism 
information* 

Suggested solution** 

    
 

 

    
 

 

    
 

 

    
 

 

   
 

  

*Coping mechanism refers to the way the farmer is dealing with the problem in question 
**Suggested solution refers to ways that the farmer thinks the problem in question could be dealt with 
but he/she is not using it. 
Codes for source of coping mechanism: 1=own experience; 2=fellow farmer; 3=extension; 4=NGOs; 
5=NARS; 6=farmer organization; 7=other (specify) 
 

13. List farmer’s preferred rice variety traits and their level of acceptance 
 

Trait 
Score Ɨ  Overall mean 

     Score Rank ǂ 

Yield        
Early maturity        
Cooking and eating quality        
Nutritional importance        
Drought tolerance        
Pest and insect resistant        
Phenotypic acceptability        
Disease resistance        

Codes: 1=Nutritional importance; 2= Early maturity; 3= Drought tolerance; 4= Pest/insect resistant; 5= Disease 
resistant; 6= Yield; 7= Cooking and eating quality; 8= Phenotypic acceptability 

 
14.  List farmer’s preferences for staple crops in order of importance 
 

Crop 
Score Ɨ  Overall mean 

     Score Rank ǂ 

Sorghum        
Cassava        
Maize        
Groundnut        
Beans        
Sesame        
Millet        
Rice        

 

Codes: 1=Sorghum; 2= Cassava; 3= Maize; 4= Groundnut; 5= Beans; 6= Sesame; 7= Millet; 8= Rice 
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Section D: Harvesting and Post Harvest Handling  
1. List the various rice post harvest handling processes that you undertake 

Post harvest handling 
stage 

Problems faced Coping 
mechanism 

Source of coping 
mechanism* 

Harvesting 
 

   

Threshing 
 

   

Drying 
 

   

Milling 
 

   

* Codes for source of coping mechanism: 1=own experience; 2=fellow farmer; 3=extension; 4=NGOs; 

5=NARS; 6=farmer organization; 7=other (specify) 

 
2. Please indicate how you store your rice, problems associate with storage and how you 
cope with the problems.  

Storage method* Problems faced Coping mechanism 

   

   

   

   

*Storage method codes: 1=packed in sacs placed in the house; 2=granary; 3=silos; 4=spread on the floor 

in the house; 5=spread on tauplin in the house; 6=other, (specify) 
 
 
 

Section E: Rice Marketing 
1. To whom do you sell your rice? Wholesalers=1, Retailers=2, Consumers=3, others (specify)=4  
……………………………………………………………………………………………………………
………………….. 
2. How far is the nearest rice market (selling point) in km? 
………………………………………………………… 
3. How do you measure the amount of rice you sell? 
……………………..…………………………………………… 
    1=cup, 2=kilogram, 3=tin, 4=bag 
4. What is the average price per kg of rice that you sell?  
i) Paddy ……………………………………..……………… ii) Milled rice 
…………………………………………………………….. 
5. How do you transport your rice to the market?  1=foot, 2=bicycle, 3=motorcycle, 4=car, 5=other 

(specify) 
  
……………………………………………………………………………………………………………
…………………………………………… 
6. How much does it cost to transport rice to the market? (This should be by transport type)  

Transport type Transport cost  

  

  

  

 
7. List the attributes that are considered in defining/determining the price of rice and how 
they influence price 

Price defining attributes How the influence price 
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8. What do you think about the rice price?  
……………………………………………………………………………… 
9. Which factors hinder farmer involvement in the marketing of rice? 
………………………………………. 
……………………………………………………………………………………………………………
………………………………….………… 
10. Which are the farmer organizations that are involved in the marketing of rice? 

Organization Marketing role of organization Benefits to you/community 

   

   

   

   

   

11. What is your role in the marketing of rice? 
…………………………………………………………………………….. 
 
12. State any constraints that you face in rice marketing  

Constraints Rank Coping 
mechanism* 

Source of 
coping 
mechanism 
information** 

Suggested solution*** 

     

     

     

     

     
*Coping mechanism refers to the way the farmer is dealing with the problem in question 
**Source of coping mechanism codes: 1=own experience; 2=fellow farmer; 3=extension; 4=NGOs; 
5=NARS; 6=farmer organization; 7=other (specify) 
**Suggested solution refers to ways that the farmer thinks the problem in question could be dealt with 
but he/she is not using it. 
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Key informant questionnaire 

 
(Key informants include Extension agents, County Agriculture Commissioners, 
traders, millers, NGOs) 
 
Section A: General information 
 
Name of key informant 
…………………….……………………………………………….……………………………… 
Name of organization represented 
…………………………………………………………………………………………………… 
Jurisdiction of the organization 
………………………………………………………………………………………………………….. 
Position in the organization 
………………………………………………………………….………………………………………
Gender………………………………………………………………………………………………… 
Formal education…………………………………………………………………………………….. 
 
Section B: Rice production  
 
1. Please indicate type of your involvement in rice 

sector…………………………………………………….………. 
2. Provide list of the major rice producing sub counties in the County (with 

evidence/documentation) 
…………………………………………………………….………………………………………… 

3. List the categories of all producers of rice in the County 
………….…………………………………………………… 
…………………………………………………………………………………………………………… 
4.  Specify the number of households involved in rice production in the County/payam 
……………………………………………………………………………………….…………………
……………………………………………….. 
5. State the total area (acres) under rice in the County/payam 
…………………………………………………… 
 
6. State inputs used in rice production in the County/payam and their level of usage 

Inputs Input source 
(s) 

Level of usage Problems 
associated with 
access by farmer 

Suggested 
solutions 

     

     

     

     

 
7.  Which rice varieties are produced in the County/payam and which ones are available in 
the market?  
 

Rice varieties produced* Rice varieties available in 
the market* 

Comments 

   

   

   

   
*Variety codes:1=Supa; 2=Kaiso; 3=Superica 1; 4=Nerica 4/Naric 3/Superica 2; 5=Nerica 1; 6=Nerica 10; 7=Nerica 
lowland; 8=Naric 1 ; 9=Naric 2 ; 10=Sindano; 11=IRAT, 12=TOX 5, 13=other traditional varieties (specify, e.g. Pakistani); 
14=other (specify); 99=don’t know variety 
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8. Where do farmers get financial support for rice production and marketing? 
……………………………………………………………………………………………………………
……………………….……………………………………………………………………………… 
 
9. When did rice farming start in this County/payam?   
 i) Upland …………………..……………………………. 
ii) Lowland ………………………………………..……………   
  iii) Irrigated ……………………………………………………………. 
 
10.  Rice acreage and production in the years 2010-2014 
 

Year 

Ecology 
Area under 
rice (acres/ 
feddans) 

Production (kg) 
Selling price per unit 

(specify) 

 Grain (kg) Seeds (kg) Grain Seed 

2014       

2013       

2012       

2011       

2010       

Note: 1 feddan =60mx70m 
 
11. Where do the rice growers obtain technical skills and information from? 
………………………………. 
 
12. What are the methods/ technologies of rice production?  

Rice production Method/technology Remark/comment 

Planting   

Weeding   

Harvesting   

Threshing   

Drying   

 
 
13. State the most important problems faced in rice production  

Problem Coping 
mechanism 

Suggested solution Remarks 

    

    

    

    

    

 
 
Section C: Rice post harvest handling 
1. What problems are faced in rice processing?  

Post harvest 
process 

Problems Coping 
mechanism 

Suggested 
solution 

Remark 

Threshing     

Drying     

Storage     

Milling     

Transportation     
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2. State any standards that exist with respect to quality, packaging, storage, transportation 
and post harvest handling 
……………………………………………………………………………………………………………
………….. 
 
Section D: Rice marketing   
1. List the key players in rice marketing within the County/payam and their location 

Key player Role in rice 
marketing 

Location Remark 

    

    

    

 
2. How do participants in rice marketing obtain information 
……………………………………………………….. 
3. What is your rating of access to market information by farmers/key players in rice 
marketing in the district/payam? 
………………………………………………………………..…………………………………………
………… 
4. Suggest methods for improving access to market information 
……………………………………………………… 
5. How does rice get to the market place? 
……………………………………………………………………………………….. 
6. How do you rate the costs of transporting rice to the market? 
………………………………….…………………... 
7. How can the costs of transporting rice to the market be reduced? 
………………………………………………… 
8. Which methods are used for promoting rice marketing? 
………………………….……………………………………. 
9. How is the quality of rice maintained? 
…………………….……………………………………………………………………… 
10. Problems and opportunities associated with rice marketing 

Problems Coping 
mechanism 

Suggested 
solution 

Opportunities Remarks 

     

     

     

 
Section E: Research on Rice – Rice scientists 
General expert opinion will be sought on all aspects of rice research 
 
Indicate research undertaken on 
rice…………………………………………………………………………………………… 
Who are involved in rice research 
………………………………………………………………………………………………… 
Problems in rice research 
…………………………………………………………………………………………………………… 
Suggested solutions to the stated problems 
…………………………………………………………………………………….. 
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Section F: Overall assessment of the rice value chain 
 
1. Indicate the key actors in the rice value chain 
……………………………………………………………………………… 
2. Indicate how these existing actors are interlinked and describe problems associated with 
each of the links. 
……………………………………………………………………………………………………………
……………………………………………… 
……………………………………………………………………………………………………………
……………………………………………… 
……………………………………………………………………………………………………………
……………………………………………… 
3. Use the table below to indicate your assessment of t he rice value chain 
 

Chain 
actor 

Strengths Weaknesses   
and gaps 

Opportunities / 
potential 

Threats 
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Focus group discussion checklist 

 
Section A: Inputs supply 
1. List the inputs used in rice production in order of importance  
2. Sources of inputs used in rice production  
3. Who offers you technical advice and information on inputs?  
4. Where do you get financial support from? 
5. Problems of input supply/ acquisition  
6. How they are coping with the problems listed 
7. Are there any ways they think the problems can be handled but are not being utilized by the 
community? 
8. Why are you not using these solutions? 
 
Section B: Rice production 
1. List the categories of all producers of rice seed and grain (small, medium and large scale but 
must be defined by the farmers) 
2. State the varieties of rice grown and when it was first grown in the area 
3. Which variety is most preferred?  
5. State why the variety named above is preferred 
6. Which variety is least preferred? 
7. State why the variety named above is least preferred? 
8. What are the methods used in each stage of rice production? 

Production Method used 

 Method 1 Method 2 Method 3 

First ploughing    

Second 
ploughing 

   

Harrowing    

Planting    

Weeding    

Harvesting    

 
9. State any arrangements (informal, partnerships, contracts) that exist for rice production 

Arrangements Criteria for 
qualifying as 
member 

Activities under the 
arrangements 

Benefits from the 
arrangements 

    

    

    

    

    

 
10. Who offers rice growers technical skills and information in rice production? 
……………………………………………………………………………………………………………………
………………………………….. 
11. State the problems in rice production  

Problems Coping mechanism Suggested solutions 
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Section C: Post harvest handling and processing   
 Please indicate how rice is handled after harvesting  

Post 
harvest 
handling 

Method 
used 

Why that 
method 

Problems 
encountered 
in using the 
method 

Coping 
mechanism 

Suggested 
solution 

Threshing      

Drying      

Packaging      

Storage      

Milling      

 
Section D: Rice marketing by growers 
1. Do you sell rice as seed, grain or both? 
2. As seed, how do you package? And where do you sell? 
3. How far is the nearest rice seed market (selling point)? 
4. As grain, how do you package? And where do you sell?  
5. How far is the nearest rice grain market (selling point)?  
6. How do you measure the amount of fresh rice you sell? (Seed and grain) 
7. How do you transport rice to the market?  

Transport mode Transport cost 

  

8. Besides transport, State the types of costs incurred in rice marketing 
9. How do you store rice during marketing?  
10 How is the price of rice determined?  
11. Which factors hinder farmer involvement in the marketing of rice?  
12. Which are the farmer organizations that are involved in the marketing of rice?  

Organization Activities of 
organization 

Membership 
requirement 

Payment 
arrangement 

Remark 

     

13. What attributes are looked at as quality assurance and how are they handled to address quality?  

Quality attributes (e.g. colour, aroma, 
impurities, etc.) 

How attributes are addressed to maintain 
quality 

  

 
14. What are the sources of market information for the growers?  

Source Cost 
associated with 
access 

Payment 
arrangement 

Problems 
associated with 
access 

Coping 
mechanism 

Suggested 
solution 

      

15. What is the mode of payment (payment arrangement) for the rice grain? 
…………………………………… 
……………………………………………………………………………………………………………………
……………………………………….  
17. State any problems that you face in rice marketing  

Problems Coping mechanism Suggested solution 
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Section E: Marketing of rice by traders  
1. How many rice traders are here (by category i.e. retailers, wholesalers, brokers etc) 

Trader category Number  

Retailers  

Wholesalers  

Brokers  

 
2. Who offers you business skills and market information?  
3. What is the source of funds for purchasing the rice? 

Initial source Subsequent 
source 

Problems faced Coping 
mechanism 

Suggested 
solution 

     

 
4. Explain the cause of rice shortage 

Time of the year shortage 
experienced (month of the 
year) 

Cause of shortage Coping mechanism 

   

 
5. State any trade associations that exist in you area of operation  

Association Activities of 
association 

Membership 
requirement 

Benefits from 
association 

Remark 

     

 

6. Indicate the rice variety sold, source, mode of transportation to the market 
 
8. What problems are associated with marketing of rice? 

Problem Coping mechanism Suggested solution 

   

   

   

 
 
 
 
 
 
 
 
 
 
 
 
 

Rice variety sold Source of 
the variety 

Mode of transport 
to market place 

Preferred 
variety in the 
market 

Reasons for the 
preferred variety 
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Evaluating the cooking and eating quality and preferred rice agro-morphological traits for 
upland and lowland rice cultivars 

 

A rice cooking and eating quality exercise was conducted to capture stakeholders’ general views on 

rice cooking and taste qualities. In this exercise, test materials included imported rice varieties 

(Basmati, Pakistan, and China) and locally cultivated rice cultivars (NERICA 4 and NERICA 1) which 

were used as controls. The materials were acquired from the local market where imported rice was 

observed to be slightly more expensive than the locally produced rice. 

The test materials were treated equally during the cooking process and were branded with letters to 

avoid any bias. Thereafter, stakeholders were able to score the cultivars on a scale of 1 (most 

preferred) to 5 (least preferred) for cooking and eating quality giving reasons for like or dislike. 

Furthermore, a participatory variety selection (PVS) was conducted for upland and lowland cultivars 

as a means to identify farmers’ needs in a cultivar and to expose stakeholders to new rice cultivars. 

Test materials considered included both landraces and new introductions in the rice breeding 

programme in South Sudan. Stakeholders were able to score the cultivars based on desirable agro-

morphological attributes following a scale of 1 (most preferred) to 5 (least preferred). The scores were 

then tallied, followed by matrix ranking of the most preferred stakeholders’ agro-morphological and 

cooking quality traits in a rice cultivar. 

Table i: Matrix ranking of stakeholder variety preferences for cooking and eating quality attributes 

during a focus group discussion 

  
Variety 

Individual rank Rank 
index 

Overall 
rank 

               Preference 

1 2 3 4 5 Like Dislike 

A (Pakistan)          
B (Basmati)          
C (China)          
D (NERICA 1)          
E (NERICA 4)          

 

Table ii: Matrix ranking of stakeholder preferences for agro-morphological traits in lowland rice 

cultivars during a focus group discussion 

  Individual rank Rank 
index 

Overall 
rank 

                 Preferences 

Variety 1 2 3 Like Dislike 

A (326104)        
B (NERICA-L-19)        
C (Supa 1052)        
D (K-85)         
E (1189)        
F (Kumboka)        
G (Supa-TZ)        
H (NERICA-L-6)        
I (TXD-306)        
J (Wita 9)        
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Table iii: Matrix ranking of stakeholder preferences for agro-morphological traits in upland rice 

cultivars during a focus group discussion 

  
Variety 

Individual 
rank 

Rank 
index 

Overall 
rank 

               Preference 

1 2 3 Like Dislike 

A (P5 H6)        
B (ART2-4L3P1-2-1)        
C (ART3 -8L6P3-2-3-B)        
D (NERICA 1)        
E (ART3-7L9P8-3-5-B-B-2)        
F (ART3 -7L3P3-B-B-2)        
G (SCRIDO 06-2-4-3-4-5)        
H (ART25-3-29-2-B)        
I (NERICA 4)        
J (ART12-L2P2-20-3-1-1)        

 

 

 

 

 

 

 

 


