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Abstract
In this dissertation we study spherically symmetric shear-free spacetimes. In par-

ticular we analyse the integrability of and find exact solutions to the Emden-

Fowler equation yxx = f(x)y2, which is the master equation governing the be-

haviour of shear-free neutral perfect fluid distributions. We first review the study

of Maharaj et al (1996) by finding a first integral to this master equation. This first

integral is subject to the integrability condition which we use to find restrictions

on the function f(x). We show that this first integral is a generalisation of partic-

ular solutions obtained by Stephani (1983) and Srivastava (1987). Furthermore,

we use a similar method to obtain a new first integral of the master equation. This

is achieved by multiplying the Emden-Fowler equation by an integrating factor.

We then study the integrability condition, which is an integral equation, related to

the new first integral. We find that the integrability condition can be written as a

third order differential equation whose solution can be expressed in terms of ele-

mentary functions and elliptic integrals. In general the solution of the integrability

condition is given parametrically. We believe that this is a new result. A particular

form of f(x) is identified which corresponds to repeated roots of a cubic equation

giving an explicit solution.
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Chapter 1

Introduction

Before Einstein’s theory of general relativity, which was proposed in 1916, New-

tonian theory had been mostly used as the tool to describe the gravitational inter-

actions between bodies. In Newtonian theory, the mass density is the source of

the gravitational field. In the theory of general relativity the gravitational field of a

body can be described by the curvature of spacetime. The curvature of spacetime

is described by the Riemann tensor. Spacetime is taken to be a four-dimensional

differentiable manifold endowed with a symmetric, non-degenerate metric tensor

field. The geometry of spacetime is described using the Einstein tensor. The Ein-

stein tensor is defined in terms of the metric tensor, the Ricci tensor as well as the

Ricci scalar. The Einstein tensor is used to generate the nonlinear Einstein field

equations, which are used to relate the matter content to the curvature of space-

time. The matter content is expressed in terms of the energy momentum tensor,

which is a tensorial quantity, that is used to describe the density, flux of energy as

well as momentum in spacetime. The Einstein field equations can be extended to

the Einstein-Maxwell equations in the presence of the electromagnetic field.

Seeking exact solutions to the Einstein field equations has been the subject of

study in many astrophysical and cosmological models. Exact solutions to the field

equations have been used to investigate physical properties of observable phenom-

ena such as relativistic stars as pointed out by Shapiro and Teukolsky (1983). In

stellar models it is important to include effects due to heat flux, shear viscosity,

bulk viscosity, the electromagnetic field and a superposition of different types of

relativistic fluids. However, a number of exact solutions that are known have little
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physical importance. It is therefore important to find new exact solutions with de-

sirable physical features. Delgaty and Lake (1998) provide the criteria for a class

of exact solutions to have physical importance. Only a few models are known

which satisfy all criteria for physical acceptability.

Exact solutions to the field equations for spherically symmetric spacetimes have

been used to model many physical applications in astrophysics and cosmology.

Some of the well known spherically symmetric solutions to the Einstein field

equations are the Schwarzschild exterior solution (Schwarzschild 1916a), the

Schwarzschild interior solution (Schwarzschild 1916b), the Reissner-Nordström

solution (Nordström 1918), the Vaidya solution (Vaidya 1951) as well as the Kerr

solution (Kerr, 1963). The Schwarzschild exterior solution describes the gravi-

tational field outside the spherical body assuming that the electric charge of the

body, the angular momentum as well as the cosmological constant are all equal

to zero. This solution is often used to describe astronomical objects such as stars

and the motion of planets. The Schwarzschild interior solution on the other hand

describes the gravitational field in the interior of a spherical body which is non-

rotating, has constant density and zero pressure at the surface. This solution can

be used to model relativistic stars which have small fluctuations in energy. The

Reissner-Nordström solution is used to describe the spacetime geometry of a non-

rotating charged spherical body. The Reissner-Nordström solution is not very

relevant in physical situations in cosmology since the universe at large scales ap-

pears to be neutral. It is sometimes used in modelling localised matter distribu-

tions. Some of the relatively recent exact solutions to the Einstein-Maxwell field

equations for charged models were obtained by Komathiraj and Maharaj (2007a),

Hansraj and Maharaj (2006) and Thirukkanesh and Maharaj (2006, 2009). The

Vaidya solution is used to describe a nonempty external spacetime of a spheri-
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cally symmetric, non-rotating body. The Vaidya solution presumes that the body

either emits or absorbs null dust. This solution can be used to model the behaviour

of non-adiabatic gravitational collapse for massive stars. The Kerr solution gives

a description of the geometry of the empty spacetime of a rotating body. This

solution is a generalisation of the Schwarzschild exterior solution. The Kerr so-

lution arises from nonlinear differential equations for which exact solutions are

not easy to find. Stephani (2004) and others have pointed out that an interior so-

lution that matches to the Kerr line element is yet to be found. In cosmology,

Krasinski (1997) used spherically symmetric spacetimes to model the gravita-

tional behaviour and evolution of the early universe. Spherically symmetric mod-

els are used to generalise cosmological models which are both homogeneous and

isotropic.

The general spherically symmetric spacetimes are expanding, accelerating and

shearing. The absence of shear in spherically symmetric spacetimes simplifies the

field equations. Shear-free solutions are given in isotropic and comoving coordi-

nates. Most of the known exact solutions to the Einstein field equations are not

shearing, as pointed out by Stephani et al (2009) who provide a list and categories

for a number of shear-free spherically symmetric solutions. Some of the classes of

shear-free solutions include those obtained by Stephani (1983), Srivastava (1987),

Sussman (1988a, 1988b) and Maharaj et al (1996). Shear-free solutions have

been used to model many physical applications in astrophysics and cosmology.

In a recent treatment Brassel et al (2015) found gravitational potentials for shear-

free heat conducting fluids in terms of elementary functions.

Most of the solutions to the field equations are not shearing. However solutions

with shear are difficult to find because of the nonlinearity of the field equations.
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There exist some examples of spherically symmetric solutions which are shear-

ing. These examples include solutions obtained by Vaidya (1953), Wesson (1978)

and McVittie and Wiltshire (1977). Other solutions were found by Maharaj et al

(1993) and Naidu et al (2006) in terms of potentials. Wiltshire (2006) derived ex-

act solutions to the Einstein equations with shear in a comprehensive treatment

using the Lie method of infinitesimal point symmetries. Exact solutions with

shearing spacetimes may be applied in cosmological applications with no heat

flux. Exact solutions with heat flux may be used to model radiating spheres in

general relativity.

In this study, we seek exact solutions for spherically symmetric shear-free neutral

perfect fluid distributions. An extensive review of known solutions is given by

Stephani et al (2009). There have also been substantial studies where the elec-

tromagnetic field is incorporated, in which case the Einstein field equations are

supplemented by Maxwell’s equations, and the solutions to the resulting Einstein-

Maxwell equations need to be solved. Studies of charged shear-free fluids include

solutions found by Ivanov (2002), Sharma et al (2001) and Kweyama et al (2012).

For spherically symmetric shear-free spacetimes with neutral matter, the Einstein

field equations reduce to a system of nonlinear partial differential equations, which

can be further reduced to a single Emden-Fowler equation yxx = f(x)y2 under a

specific transformation. This equation was first introduced by Emden (1907) and

was further studied by Fowler (1914). The Emden-Fowler equation is useful in

finding solutions to the field equations with spherically symmetric shear-free mat-

ter. It also governs the behaviour of other physical systems as shown in Leach

and Maharaj (1992). Various methods have been used to solve this equation. The

more general approach is to apply the group theoretic technique of Sophus Lie.
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This is a systematic geometric approach which uses the symmetries of a differen-

tial equation to reduce the order of the differential equation. This method was first

introduced by Lie (1891) and has been widely applied. The first general solution

to the Emden-Fowler equation in general relativity was found by Kustaanheimo

and Qvist (1948). Other solutions were later found by Stephani (1983) and Sri-

vastava (1987). Sussman (1987), Maartens and Maharaj (1990) and Maharaj et

al (1991) also found classes of solutions to the Emden-Fowler equation under the

assumption that the spacetime is invariant under a conformal Killing vector. A re-

cent treatment of this problem is given by Maharaj et al (1996). In our study, we

adopt an approach that is similar to the approach used by Maharaj et al (1996).

We need to find exact solutions to the Emden-Fowler equation without specify-

ing the function f(x). We show that it is possible to obtain a new first integral to

yxx = f(x)y2.

This dissertation is organised as follows:

Chapter 1 is this general introduction where we provide a background in general

relativity, and the Einstein field equations. In particular we consider shearing and

shear-free spherically symmetric solutions and their applications. We also refer to

the literature where spherically symmetric models are studied.

In Chapter 2 we provide the basic theory in the spacetime geometry that is re-

quired for this dissertation. We discuss concepts such as manifolds, the metric

tensor field, the Ricci tensor, the Einstein tensor and the energy momentum ten-

sor. We use these concepts to generate the Einstein field equations for spacetimes

which are static, shear-free and shearing.
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In Chapter 3 we provide a review of the results of Maharaj et al (1996). We gen-

erate a first integral for perfect fluid distributions which was obtained by Maharaj

et al (1996). We provide the first integral for the master equation yxx = f(x)y2

and study its integrability conditions. From the integrability conditions, we find

restrictions for the function f(x).

In Chapter 4 we follow the approach of Chapter 3 to obtain a new first integral for

the equation yxx = f(x)y2. We also study the integrability condition for our new

first integral and show that it can be solved. We use the integrability condition

to find restrictions on the form of the function f(x). An explicit form for f(x) is

obtained in a special case.

Chapter 5 is the conclusion of the dissertation. Here we summarize the main

results obtained in our study.
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Chapter 2

Spherically symmetric spacetimes

2.1 Introduction

Einstein’s theory of general relativity is often used to describe gravitating distri-

butions of matter with a specified spacetime geometry. Applications in relativistic

astrophysics and cosmology often require a model with spherically symmetric ge-

ometry. Hence in this chapter we provide the basic theory of differential geome-

try, and give the Einstein field equations for spherically symmetric spacetimes.

We provide only those details required for this dissertation. For more details

on the spacetime geometry and the formulation of the Einstein field equations,

the reader may consult Bishop and Goldberg (1968), Stephani (2004) and Wald

(1984), amongst others. In section 2.2 we define and discuss the concepts of the

metric tensor field, Christoffel symbols, Ricci and Einstein tensors, and the en-

ergy momentum tensor. This leads to the Einstein field equations on a manifold

in section 2.3. In section 2.4 we consider spacetimes which are static. Nonstatic

shear-free spacetimes are discussed in section 2.5. Nonstatic shearing spacetimes

are discussed in section 2.6. In all three cases we generate the Ricci and Einstein

tensors; the field equations are given explicitly.

2.2 Spacetime geometry

A differential manifold, one of the most fundamental structures in mathemat-

ics, is used in many physical applications, as pointed out by Carroll (1997). An
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n−dimensional manifold is essentially a topological space which is locally simi-

lar to Euclidean space Rn. Globally the manifold is different from Rn in general.

The difference arises because of the appearance of spacetime curvature. In gen-

eral relativity, we assume that the spacetime M is a four-dimensional, pseudo-

Riemannian manifold endowed with a metric tensor field g. The metric tensor

field g is a non-degenerate and symmetric type (0, 2) tensor field. It has signature

(−+ ++) and represents gravitational potentials in general relativity. We use real

coordinates (xa) = (x0, x1, x2, x3) to uniquely label the points in a manifold. The

coordinate x0 is timelike and x1, x2, x3 are spacelike. Note that x0 = ct (c is the

speed of light in vacuum). In this dissertation we use units where c is unity.

In the manifold M , the line element which measures the invariant distance be-

tween any two neighbouring points is given in terms of the metric tensor field g

defined by

ds2 = gabdx
adxb, (2.2.1)

where gab is a function of the coordinates (xa). This generalises the line element

in the Cartesian plane which is given by

ds2 = dx2 + dy2 + dz2.

The metric tensor field components and its derivatives generate the connection

coefficients, which are given by

Γabc =
1

2
gad(gcd,b + gdb,c − gbc,d). (2.2.2)

The connection coefficients Γabc are also referred to as the Christoffel symbols of

the second kind. The commas in the Christoffel symbols represent partial deriva-

tives. The connection coefficients do not transform tensorially. However, they are
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very useful in the construction of the type (1, 3) Riemann (curvature) tensor R.

The curvature tensor R is very important in describing the geometry of spacetime,

and is given by

Rd
abc = Γdac,b − Γdab,c + ΓeacΓ

d
eb − ΓeabΓ

d
ec. (2.2.3)

The curvature tensor satisfies the following symmetries

Rabcd = −Rbacd, (2.2.4a)

Rabcd = −Rabdc, (2.2.4b)

Rabcd = Rcdab, (2.2.4c)

Rabcd +Radbc +Racdb = 0. (2.2.4d)

The Riemann tensor also satisfies the property

Ra
abcd = 0. (2.2.5)

In a four-dimensional manifold, the Riemann tensor R has a total of 20 indepen-

dent components. Furthermore, the Riemann tensor satisfies the Bianchi identity

given by

Ra
bcd;e +Ra

bec;d +Ra
bde;c = 0. (2.2.6)

The semi-colons in (2.2.6) represent covariant derivatives. By contraction on
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(2.2.3) we obtain the Ricci tensor given by

Rab = Rc
acb (2.2.7)

= Γcab,c − Γcac,b + ΓcdcΓ
d
ab − ΓcdbΓ

d
ac.

The Ricci tensor is symmetric. By contraction on (2.2.7), we obtain the Ricci

(curvature) scalar

R = gabRab

= Ra
a.

The Ricci tensor and the Ricci scalar generate the Einstein tensor G. This tensor

is given by

Gab = Rab −
1

2
Rgab. (2.2.8)

The Einstein tensor is also symmetric and it can be shown that it has zero diver-

gence, that is

Gab
;b = 0. (2.2.9)

The Riemann tensor is useful for describing the curvature of a pseudo-Riemannian

manifold. In general relativity, the Einstein tensor G is used to derive the Einstein

field equations for gravitation.

2.3 Field equations

The Einstein field equations are used to relate the curvature of spacetime to the

matter content represented by the energy and momentum. The Einstein field equa-
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tions are given by

Gab = kTab, (2.3.1)

where G is the Einstein tensor and T is the energy momentum tensor. The pa-

rameter k = 8πG
c4

is the coupling constant. We will take k to be unity in this

dissertation so that the Einstein field equations become

Gab = Tab. (2.3.2)

Using (2.3.2) and (2.2.9), we obtain

T ab;b = 0. (2.3.3)

Equation (2.3.3) is the law of conservation of matter.

The energy momentum tensor is given by

Tab = (µ+ p)uaub + pgab + qaub + qbua + πab, (2.3.4)

where µ is the energy density, p is the kinetic pressure, qa is the heat flux vector

(qau
a = 0) and πab is the anisotropic pressure (stress) tensor (πabu

a = 0 =

πaa). These quantities are measured relative to the comoving fluid four-velocity u

which is unit and timelike so that

uaua = −1.

For isotropic heat conducting fluids, the energy momentum tensor (2.3.4) becomes

Tab = (µ+ p)uaub + pgab + qaub + qbua. (2.3.5)

Perfect fluids have the property that πab = qa = 0, so that (2.3.4) reduces to

Tab = (µ+ p)uaub + pgab. (2.3.6)
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In many applications in cosmology and relativistic astrophysics we assume that

p = p(µ),

which is a barotropic equation of state.

In this dissertation, we study the behaviour of the gravitational field in spherically

symmetric spacetimes. The physically relevant spherically symmetric spacetimes

are static, shear-free or shearing. These spacetimes have been used to model ap-

plications in stellar structures, radiating stars and gravitational collapse. Highly

compact static stars have been studied by Mafa Takisa et al (2017), Ngubelanga

et al (2015) and Sunzu et al (2014). Radiating stars with outgoing heat flow

across the boundary of the star have been investigated by Govender et al (2010),

Naidu et al (2006) and Reddy et al (2015). Gravitational collapse of spherically

symmetric spacetimes have received attention in the recent works of Brassel et al

(2017), Kumar and Srivastava (2018) and Sharma et al (2015). We therefore focus

our attention on spherically symmetric spacetimes and generate the corresponding

field equations.

2.4 Static spacetimes

If the spacetime is static and spherically symmetric then the metric can be written

in terms of the comoving coordinates (xa) = (t, r, θ, φ). The line element is of the

form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (2.4.1)

where the arbitrary functions ν(r) and λ(r) relate to the gravitational potentials.

The line element (2.4.1), which may be matched to the exterior Schwarzschild
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metric, is often used to model the behaviour of relativistic compact objects such as

neutron stars. Some examples are discussed by Komathiraj and Maharaj (2007b)

and Thirukkanesh and Maharaj (2008).

The nonzero connection coefficients, for the line element (2.4.1), are

Γ0
01 = ν ′ Γ1

00 = ν ′e2(ν−λ)

Γ1
11 = λ′ Γ1

22 = −re−2λ

Γ1
33 = −re−2λ sin2 θ Γ2

12 =
1

r

Γ2
33 = − sin θ cos θ Γ3

13 =
1

r

Γ3
23 = cot θ,

where the primes represent partial differentiation with respect to r. The nonvan-
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ishing Ricci tensor components (2.2.7) become

R00 = e2(ν−λ)
(
ν ′′ + ν ′

2 − ν ′λ′ + 2ν ′

r

)
, (2.4.2a)

R11 = −
(
ν ′′ + ν ′

2 − ν ′λ′ − 2λ

r

)
, (2.4.2b)

R22 = 1− 1

e2λ
[1 + r(ν ′ − λ′)] , (2.4.2c)

R33 = sin2 θR22. (2.4.2d)

The Ricci (curvature) scalar (2.2.8) is then given by

R = 2

[
1

r2
−
(
ν ′′ + ν ′

2 − ν ′λ′ + 2ν ′

r
− 2λ′

r
+

1

r2

)
1

e2λ

]
. (2.4.3)
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The nonzero Einstein tensor components have the form

G00 =
e2ν

r2

[
r

(
1− 1

e2λ

)]′
, (2.4.4a)

G11 = − 1

r2
(
e2λ − 1

)
+

2ν ′

r
, (2.4.4b)

G22 =
r2

e2λ

(
ν ′′ + ν ′

2
+
v′

r
− v′λ′ − λ′

r

)
, (2.4.4c)

G33 = sin2 θG22. (2.4.4d)

for the spacetime metric (2.4.1).

The fluid-four velocity u can be written in the form

ua = (e−ν , 0, 0, 0). (2.4.5)

For this four-velocity the nonvanishing components of the energy momentum ten-
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sor T in (2.3.6) are given by

T00 = µe2ν , (2.4.6a)

T11 = pe2λ, (2.4.6b)

T22 = pr2, (2.4.6c)

T33 = sin2 θT22. (2.4.6d)

Then the Einstein field equations for static spherically symmetric spacetimes can

be generated from (2.4.4) and (2.4.6). They are of the form

µ =
1

r2

[
r

(
1− 1

e2λ

)]′
, (2.4.7a)

p =
2v′

re2λ
− 1

r2

(
1− 1

e2λ

)
, (2.4.7b)

p =
1

e2λ

(
ν ′′ + ν ′

2
+
ν ′

r
− ν ′λ′ − λ′

r

)
. (2.4.7c)

Using the law of conservation of matter (2.3.3), we obtain

dp

dr
= −(µ+ p)

dν

dr
, (2.4.8)

which is also implied by the system of equations (2.4.7).
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Equating (2.4.7b) and (2.4.7c) we obtain

ν ′′ + ν ′
2 − ν ′λ′ − (ν ′ + λ′)

r
+

(e2λ − 1)

r2
= 0, (2.4.9)

which is called the condition of pressure isotropy. This condition can also be

written in the form

d

dr

(
e−2λ − 1

r2

)
+

d

dr

(
e−2λ

r

)
+ e−2ν−2λ

d

dr

(
e2νν ′

r

)
= 0. (2.4.10)

Equation (2.4.10) is very useful in studying the behaviour of static stellar models.

The first solutions to (2.4.10) were presented by Tolman (1939).

Several other classes of exact solutions to both (2.4.9) and (2.4.10) are contained

in the review of Delgaty and Lake (1998). Researchers transform (2.4.10) to

equivalent forms, using a change of coordinates, which may lead to a new ex-

act solution.

2.5 Shear-free spacetimes

If the spacetime is nonstatic and shear-free then the metric can be written in terms

of coordinates which are both comoving and isotropic. In the coordinate system

(xa) = (t, r, θ, φ), the line element takes the form

ds2 = −A2dt2 +B2[dr2 + r2(dθ2 + sin2 θdφ2)]. (2.5.1)

where A = A(t, r) and B = B(t, r) are metric functions. The shear-free line

element is used to model radiating stars in general relativity. Some models that

have been studied include Tewari and Charan (2015) and Das et al (2016). For

a recent treatment of the conformal symmetries of the spacetime (2.5.1) see the
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results of Moopanar and Maharaj (2013).

The nonvanishing connection coefficients (2.2.2), for the line element (2.5.1), are

of the form

Γ0
00 =

Ȧ

A
Γ0

01 =
A′

A

Γ0
11 =

BḂ

A2
Γ0

22 = r2
BḂ

A2

Γ0
33 = r2 sin2 θ

BḂ

A2
Γ1

00 =
AA′

B2

Γ1
11 =

B′

B
Γ1

22 = −r2
(
B′

B
+

1

r

)

Γ1
33 = −r2 sin2 θ

(
B′

B
+

1

r

)
Γ1

01 =
Ḃ

B

Γ2
02 =

Ḃ

B
Γ3

03 =
Ḃ

B

Γ2
12 =

B′

B
+

1

r
Γ3

13 =
B′

B
+

1

r

Γ2
33 = − sin θ cos θ Γ3

23 = cot θ,
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where dots and primes denote partial differentiation with respect to t and r, re-

spectively. The nonvanishing components of the Ricci tensor (2.2.7) are given by

R00 =
AA′′

B2
+ AA′

B′

B3
− 3

B̈

B
+ 3

Ȧ

A

Ḃ

B
+

2

r

AA′

B2
, (2.5.2a)

R01 = 2
B′Ḃ

B2
− 2

Ḃ′

B
+
A′Ȧ

A2
+ 3

A′

A

Ḃ

B
− 1

A2

(
Ȧ2 + A′

2
)
, (2.5.2b)

R11 = 2
Ḃ2

A2
+
A′

A

B′

B
− 2B′

rB
− Ȧ

A3
BḂ − A′′

A
+
BB̈

A2

+2
B′2

B2
− 2

B′′

B
, (2.5.2c)

R22 = r2
BB̈

A2
− r2 ȦḂB

A3
+ 2r2

Ḃ2

A2
− r2A

′

A

B′

B
− rA

′

A

−3r
B′

B
− r2B

′′

B
, (2.5.2d)

R33 = sin2 θR22. (2.5.2e)

Using the above components, we obtain the Ricci scalar

R = −2
A′′

A

1

B2
− 4

r

A′

A

1

B2
+

6

A2

Ḃ2

B2
− 8B′

rB2
+ 2

B′2

B4
− 2

A′

A

B′

B3

−4
B′′

B3
− 6

Ȧ

A3

Ḃ

B
+ 6

B̈

B
(2.5.3)

for the line element (2.5.1). Substituting (2.5.2) and (2.5.3) in (2.2.8), we obtain
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the nonvanishing Einstein tensor components in the form

G00 = 3
Ḃ2

B2
− A2

B2

(
2
B′′

B
− B′2

B2
+

4

r

B′

B

)
, (2.5.4a)

G01 = − 2

B2

(
BḂ′ −B′Ḃ − A′

A
BḂ

)
, (2.5.4b)

G11 =
1

A

(
−2BB̈ − Ḃ2 + 2

Ȧ

A
BḂ

)

+
1

B2

(
B′

2
+ 2

A′

A
BB′ +

2

r

A′

A
B2 +

2

r
BB′

)
, (2.5.4c)

G22 = −2r2
BB̈

A2
+ 2r2

Ȧ

A3
BḂ − r2 Ḃ

2

A2
+ r

A′

A

+r
B′

B
+ r2

A′′

A
− r2B

′2

B2
+ r2

B′′

B
, (2.5.4d)

G33 = sin2 θG22, (2.5.4e)

for the metric (2.5.1).

The fluid four-velocity u is given by

ua =

(
1

A
, 0, 0, 0

)
,

for shear-free spacetimes. Then the nonvanishing components of (2.3.5) are given
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by

T00 = µA2, (2.5.5a)

T01 = −qAB2, (2.5.5b)

T11 = pB2, (2.5.5c)

T22 = pB2r2, (2.5.5d)

T33 = sin2 θT22. (2.5.5e)

If we substitute (2.5.5) and (2.5.4) in (2.3.2), then we obtain the field equations

µ =
3

A2

Ḃ2

B2
− 1

B2

(
2
B′′

B
− B′2

B2
+

4

r

B′

B

)
, (2.5.6a)

p =
1

A2

(
−2B̈

B
− Ḃ2

B2
+ 2

Ȧ

A

Ḃ

B

)

+
1

B2

(
B′2

B2
+ 2

A′

A

B′

B
+

2

r

A′

A
+

2

r

B′

B

)
, (2.5.6b)

p = −2
1

A2

B̈

B
+ 2

Ȧ

A3

Ḃ

B
− 1

A2

Ḃ2

B2
+

1

r

A′

A

1

B2

+
1

r

B′

B3
+
A′′

A

1

B2
− B′2

B4
+
B′′

B3
, (2.5.6c)

q = − 2

AB2

(
B′Ḃ

B2
+
A′

A

Ḃ

B
− Ḃ′

B

)
. (2.5.6d)
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The nonlinear system of partial differential equations (2.5.6) gives the matter vari-

ables µ, p and q in terms of A and B. This system is used to describe the interior

of the shear-free spherically symmetric radiating star.

Eliminating p in (2.5.6b) and (2.5.6c) gives the following partial differential equa-

tion

A′′

A

1

B2
+
B′′

B3
− 2

B′

B3

(
A′

A
+
B′

B

)
− 1

rB2

(
A′

A
+
B′

B

)
= 0. (2.5.7)

This is the condition of pressure isotropy for shear-free fluids. Equation (2.5.7)

can be equivalently written as

A′′

A
+
B′′

B
=

(
2
B′

B
+

1

r

)(
A′

A
+
B′

B

)
. (2.5.8)

If we define

x = r2,

then (2.5.8) becomes the following differential equation(
A

B

)
xx

= 2A

(
1

B

)
xx

, (2.5.9)

where the subscript represents partial differentiation with respect to x.

2.6 Shearing spacetimes

If the spacetime is nonstatic and shearing then the line element can be written in

terms of coordinates which are comoving. With coordinates (xa) = (t, r, θ, φ) ,

the metric becomes

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 + Y 2(t, r)[dθ2 + sin2 θdφ2], (2.6.1)
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where ν, λ and Y are functions of the spacelike and timelike coordinates r and

t, respectively. The shearing line element is utilized to model cosmological and

astrophysical systems in general relativity. Some examples are given in the treat-

ments of Kitamura (1994) and Ivanov (2016). For a recent investigation of the

conformal geometry of the spacetime (2.6.1) see the results of Moopanar and Ma-

haraj (2010).

The nonvanishing connection (2.2.2) coefficients for the line element (2.6.1) take

the form

Γ0
00 = ν̇ Γ0

01 = ν ′

Γ0
11 = e2(λ−ν)λ̇ Γ0

22 = e−2νY Ẏ

Γ0
33 = e−2νY Ẏ sin2 θ Γ1

00 = e2(ν−λ)v′

Γ1
01 = λ̇ Γ1

11 = λ′

Γ1
22 = −e2νY Ẏ Γ1

33 = −e−2λY Y ′ sin2 θ

Γ2
02 =

Ẏ

Y
Γ2

12 =
Y ′

Y

Γ2
33 = − sin θ cos θ Γ3

03 =
Ẏ

Y

Γ3
13 =

Y ′

Y
Γ3

23 = cot θ.
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The nonvanishing Ricci tensor components for the line element (2.6.1) are then

given by

R00 = −λ̈− λ̇2 + λ̇ν̇ + 2ν̇
Ÿ

Y

+e2(ν−λ)
(
ν ′′ + ν ′

2 − ν ′λ′ + 2ν ′
Y ′

Y

)
, (2.6.2a)

R01 = 2

(
λ̇
Y ′

Y
+ ν ′

Ẏ

Y
− Ẏ ′

Y

)
, (2.6.2b)

R11 = −ν ′′ − ν ′2 + λ′ν ′ + 2λ′
Y ′

Y
− 2

Y ′′

Y

+e2(λ−ν)

(
λ̈+ λ̇2 − λ̇ν̇ + 2λ̇

Ẏ

Y

)
, (2.6.2c)

R22 =
1

e2ν
Y Ẏ

(
λ̇− ν̇ +

Ẏ

Y
+
Ÿ

Ẏ

)
+ 1

+
1

e2λ
Y Y ′

(
λ′ − ν ′ − Y ′

Y
− Y ′′

Y ′

)
, (2.6.2d)

R33 = sin2 θR22. (2.6.2e)

The Ricci scalar (2.2.8) then becomes

R =
2

e2ν

(
λ̈+ λ̇2 − λ̇ν̇ + 2λ̇

Ẏ

Y
− 2ν̇

Ẏ

Y
+
Ẏ 2

Y 2
+
Ÿ

Y

)
+

2

Y 2

− 2

e2λ

(
ν ′′ + ν ′

2 − ν ′λ′ − 2λ′
Y ′

Y
+ 2ν ′

Y ′

Y

+
Y ′2

Y 2
+ 2

Y ′′

Y

)
. (2.6.3)
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The nonzero components of the Einstein tensor for the line element (2.6.1) take

the form

G00 =
e2ν

Y 2
+
Ẏ 2

Y 2
+ 2λ̇

Ẏ

Y
− e2(ν−λ)

(
2
Y ′′

Y
+
Y ′2

Y 2
− 2λ

Y ′

Y

)
, (2.6.4a)

G01 = 2λ̇
Y ′

Y
+ 2ν ′

Ẏ

Y
− 2

Ẏ ′

Y
, (2.6.4b)

G11 = 2ν ′
Y ′

Y
+
Y ′2

Y 2
− e2λ

Y 2
+ e2(λ−ν)

(
2v̇
Ẏ

Y
− Ẏ 2

Y
− 2

Ÿ

Y

)
, (2.6.4c)

G22 =
1

e2λ

[(
ν ′′ + ν ′

2 − ν ′λ′
)
Y 2 + (ν ′Y ′ − λ′Y ′ + Y ′′)Y

]
− 1

e2ν

[(
λ̈+ λ̇2 − λ̇ν̇

)
Y 2 +

(
λ̇Ẏ − ν̇Ẏ + Ÿ

)
Y
]
, (2.6.4d)

G33 = sin2 θG22, (2.6.4e)

for the metric (2.6.1).

For shearing spacetimes the fluid-four velocity u is comoving so that

ua =
(
e−ν , 0, 0, 0

)
. (2.6.5)

Then the nonzero components of the energy momentum tensor T in (2.3.6) are
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T00 = µe2ν , (2.6.6a)

T11 = pe2λ, (2.6.6b)

T22 = pY 2, (2.6.6c)

T33 = sin2 θT22. (2.6.6d)

The Einstein field equations for shearing spacetimes with line element (2.6.1) are

obtained by using (2.6.6) and (2.6.4). We get the field equations

µ =
1

Y 2
− 2

Y

1

e2λ

(
Y ′′ − λ′Y ′ + Y ′2

2Y

)
+

2

Y

1

e2ν

(
λ̇Ẏ +

Ẏ 2

2Y

)
, (2.6.7a)

p = − 1

Y 2
+

1

Y

1

e2λ

(
ν ′Y ′ +

Y ′2

2Y

)
− 2

Y

1

e2ν

(
Ÿ − ν̇Ẏ +

Ẏ 2

2Y

)
, (2.6.7b)

p =
1

e2λ

[(
ν ′′ + ν ′

2 − ν ′λ′
)

+
1

Y
(ν ′Y ′ − λ′Y ′ + Y ′′)

]
− 1

e2ν

[(
λ̈+ λ̇2 − λ̇ν̇

)
+

1

Y

(
λ̇Ẏ − ν̇Ẏ + Ÿ

)]
, (2.6.7c)

0 = Ÿ ′ − Ẏ ν ′ − Y ′λ̇, (2.6.7d)

which is a nonlinear system.
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From (2.6.7b) and (2.6.7c) we obtain

1

e2ν

[(
λ̈+ λ̇2 − λ̇ν̇

)
+

1

Y

(
λ̇Ẏ − ν̇Ẏ + Ÿ

)
− 2

Y

(
Ÿ − ν̇Ẏ +

Ẏ 2

2Y

)]
− 1

e2λ

[(
ν ′′ + ν ′

2 − ν ′λ′
)

+
1

Y
(ν ′Y ′ − λ′Y ′ + Y ′′) +

2

Y

(
ν ′Y ′ +

Y ′2

2Y

)]
− 1

Y 2
= 0, (2.6.8)

which is the condition of pressure isotropy. We observe that this condition is

more difficult to solve than the corresponding equations for static and shear-free

spacetimes.
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Chapter 3

A first integral for perfect fluid dis-

tributions

3.1 Introduction

When seeking exact solutions to the Einstein field equations for neutral and shear-

free matter, spherical symmetry is usually assumed. This assumption leads to

the nonlinear partial differential equation yxx = f(x)y2. This equation is of

Emden-Fowler form and arises in many other physical applications. For a geo-

metric analysis of a generalized Emden-Fowler equation see the analysis of Leach

and Maharaj (1992). We will show in this chapter that its integrability is related

to a third order ordinary differential equation. An unusual approach to solving

yxx = f(x)y2 was followed by Maharaj et al (1996). We review this approach and

show that the first integral obtained is subject to an integral equation. In Section

3.2 we show how the Einstein field equations for the nonstatic shear-free metric

reduce to yxx = f(x)y2. In Section 3.3 we review a first integral of yxx = f(x)y2

obtained by Maharaj et al (1996) and study its integrability conditions. We con-

clude this chapter with Section 3.4 where we compare the first integral discussed

in 3.3 to the first integrals obtained by Stephani (1983) and Srivastava (1987).
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3.2 Field equations

We consider the shear-free spacetime (2.5.1). We let A = eν and B = eλ. Then

the metric becomes

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)
[
dr2 + r2(dθ2 + sin2 θφ2)

]
, (3.2.1)

for a shear-free, perfect fluid in the comoving and isotropic coordinate system

(xa) = (t, r, θ, φ). For our application we set q = 0 in (2.5.6) so that the fluid is

not heat conducting. Then the Einstein field equations for the line element (3.2.1)

take the form

µ = 3
λt

2

e2ν
− 1

e2λ

(
2λrr + λ2r +

4λr
r

)
, (3.2.2a)

p =
1

e2ν
(
−2λtt − 3λ2t + 2νtλt

)
+

1

e2λ

(
λ2r + 2νrλr +

2νr
r

+
2λr
r

)
, (3.2.2b)

p =
1

e2ν
(
−2λtt − 3λ2t + 2νtλt

)
+

1

e2λ

(
νrr + ν2r +

νr
r

+
λrr
r

+ λrr

)
, (3.2.2c)

0 = νrλt − λtr. (3.2.2d)

The subscripts r and t in equations (3.2.2) above represent partial derivatives with

respect to r and t, respectively.
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Equation (3.2.2d) can also be written as

νr = (lnλt)r . (3.2.3)

Then from (3.2.2b) and (3.2.2c) we obtain the equation[
eλ
(
λrr − λ2r −

λr
r

)]
t

= 0,

where the variable ν has been eliminated.

The system of equations (3.2.2) can then be written in the form

µ = 3e2h − e−2λ
(

2λrr + λ2r +
4λr
r

)
, (3.2.4a)

p =
1

λte3λ

[
eλ
(
λ2r +

2λr
r

)
− e3λ+2h

]
t

, (3.2.4b)

eν = λte
−h, (3.2.4c)

eλ
(
λrr − λ2r −

λr
r

)
= −g(r), (3.2.4d)

where h = h(t) and g = g(r) are arbitrary functions of integration. The functions

h and g need to be specified in order to find exact solutions for the field equations.

The metric function λ is obtained from the condition of pressure isotropy (3.2.4d).

The remaining metric function ν then follows from (3.2.3) or (3.2.4c). The energy

density µ and the isotropic pressure p can be calculated using equations (3.2.4a)
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and (3.2.4b). Using the transformation

x = r2,

y(x, t) = e−λ,

f(x) =
g

4r2
,

(3.2.4d) reduces to

yxx = f(x)y2, (3.2.5)

as first shown by Kustaanheimo and Qvist (1948). Equation (3.2.5) is the master

equation governing the gravitational dynamics of a shear-free fluid in general rel-

ativity.

There have been a number of studies seeking solutions of the field equation (3.2.5).

However, the solution is known for only a few forms of f(x). The solution with

f(x) =
(
a+ bx+ cx2

)−5/2
,

was given by Kustaanheimo and Qvist (1948). Solutions with

f(x) = x−20/7, x−15/7, ex,

were found by Stephani (1983). General analyses of the equation (3.2.5) were

completed by Wafo Soh and Mahomed (1999), Maharaj et al (1996) and Stephani

et al (2009). A charged generalization was studied by Kweyama et al (2012).
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3.3 A known first integral

It is desirable to find a general class of solutions to (3.2.5) by restricting the func-

tional form of f(x). An unusual approach was followed by Maharaj et al (1996)

which leads to a first integral. We review their result, and extend their approach

in the next chapter.

Integrating (3.2.5), we obtain

yx =

∫
f(x)y2dx− φ0(t), (3.3.1)

where φ0(t) is a function of integration. The integral on the right hand side of

(3.3.1) can be written as∫
f(x)y2dx = fIy

2 − 2

∫
fIyyxdx. (3.3.2)

For convenience, in (3.3.2) we have used the notation∫
f(x)dx = fI .

Using integration by parts, the integral of fIyyx is given by∫
fIyyxdx = fIIyyx −

∫
fIIy

2
xdx−

∫
fIIyyxxdx. (3.3.3)

Then using (3.2.5), we can write (3.3.3) as∫
fIyyxdx = fIIyyx −

∫
fIIy

2
xdx−

∫
ffIIy

3dx. (3.3.4)

Similarly, we can evaluate the integrals on the right hand side of (3.3.4), and

substituting in (3.3.2) gives∫
f(x)y2dx = fIy

2 − 2fIIyyx + 2fIIIy
2
x + 2(ffII)Iy

3

−2

[∫
[2ffIII + 3(ffII)I ]y

2yxdx

]
. (3.3.5)
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The integral on the right hand side of (3.3.5) can be evaluated if

2ffIII + 3(ffII)I = K0, (3.3.6)

where K0 is an arbitrary constant. Note that the condition (3.3.6) is an integral

equation in f(x).

Substituting (3.3.5) in (3.3.1), we obtain the result

φ0(t) = −yx + fIy
2 − 2fIIyyx + 2fIIIy

2
x + 2

[
(ffII)I −

1

3
K0

]
y3. (3.3.7)

We then observe that (3.3.7) is the first integral of (3.2.5) provided that condition

(3.3.6) is satisfied. To complete the analysis we need to indicate the form of

the function f(x). In an attempt to find the form of the function f, the integral

equation (3.3.6) can be transformed into an ordinary differential equation which

is easy to solve. Differentiating (3.3.6) gives

2fxfIII + 3ffII = 0. (3.3.8)

Using the transformation

L ≡ fIII , (3.3.9)

equation (3.3.8) becomes a fourth order ordinary differential equation which is

given by

2LLxxxx + 5LxLxxx = 0. (3.3.10)

We can integrate (3.3.10) to obtain a third order differential equation. We obtain

Lxxx = K1L
−5/2, (3.3.11)

whereK1 is a constant of integration. We observe that the third order ordinary dif-

ferential equation (3.3.10), together with the transformation (3.3.9), is equivalent
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to the integrability condition (3.3.6). A solution of (3.3.11) gives L and then f(x)

can be found using (3.3.9). Below we indicate how (3.3.11) can be integrated,

giving L.

The nonlinear differential equation (3.3.11) may be written as

LLxxx = K1L
−3/2,

(LLxx)− LxLxx = K1L
−3/2,

(LLxx)x −
1

2
(L2

x)x = K1L
−3/2.

Integration gives

LLxx −
1

2
L2
x = −2K2 +K1

(∫
L−3/2dx

)
,

where −2K2 is a constant. The second order equation above may be written as

2(L1/2)xx = −2K2L
−3/2 +K1L

−3/2
(∫

L−3/2dx

)
,

whose integration yields

2(L1/2)x = −K3 − 2K2

(∫
L−3/2dx

)
+

1

2
K1

(∫
L−3/2dx

)2

,

where −K3 is a constant. For convenience, we write the first order differential

equation above in the form

−L−2Lx = K3L
−3/2 + 2K2L

−3/2
(∫

L−3/2dx

)
− 1

2
K1L

−3/2
(∫

L−3/2dx

)2

,
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whose integration yields the result

L−1 = K4 +K3

(∫
L−3/2dx

)
+K2

(∫
L−3/2dx

)2

−1

6
K1

(∫
L−3/2dx

)3

, (3.3.12)

where K4 is a constant. Therefore the third order equation (3.3.11) has been fully

integrated. We can write the solution parametrically.

For convenience, we let

u =

∫
L−3/2dx

so that

ux = (L−1)3/2. (3.3.13)

By substituting (3.3.13) in (3.3.12), we obtain the following result

x− x0 =

∫
du

(K4 +K3u+K2u2 − (1/6)K1u3)
3/2
, (3.3.14)

where x0 is constant. We observe that the differential equation (3.3.10) can be

reduced to the quadrature (3.3.14) and this can generally be evaluated in terms of

elliptic integrals. Once the integral in (3.3.14) is evaluated, (3.3.13) can be used

to find L = u
−(2/3)
x ; the function f(x) can then be found using (3.3.9). In order to

find f(x) satisfying the integrability condition (3.3.6), it is convenient to express

the solution to (3.3.6) in the parametric form

f(x) = Lxxx,

ux = L−3/2 = [g′(u)]
−1
,

x− x0 = g(u).
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In the above we have defined

g(u) =

∫
du

(K4 +K3u+K2u2 − (1/6)K1u3)
3/2
. (3.3.15)

The evaluation of the integral depends on the values of the constants K1, K2, K3

and K4.

The above solution has five cases depending on the nature of the factors of the

polynomial K4 +K3u+K2u
2 − 1

6
K1u

3. The five cases are:

Case I: One order-three factor

Case II: One order-one factor and one order-two factor

Case III: Three order-one (non-repeated) factors

Case IV: One linear factor and one quadratic factor

Case V: No factors

Maharaj et al (1996) studied only the first three cases. For the new first integral

in the next chapter, we will also consider the last two cases: Case IV and Case V.

Case I: One order-three factor

If K4 + K3u + K2u
2 − 1

6
K1u

3 has one factor repeated three times then we can

write

K4 +K3u+K2u
2 − 1

6
K1u

3 = (a+ bu)3,

with b 6= 0. In this case, the integral in (3.3.14) can be evaluated to obtain

g(u) = − 2

7b
(a+ bu)−7/2.
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In this case it is possible to take this form of g(u) and (3.3.14) to find u(x), which

can then be used to obtain

f(x) =
48

343

(
−7b

2

)6/7

(x− x0)−15/7.

After reparametrisation, f(x) can be written as

f(x) = x−15/7, (3.3.16)

which is the same as the solution of Stephani (1983).

Case II: One order-one factor and one order-two factor

IfK4 +K3u+K2u
2− 1

6
K1u

3 has one factor repeated two times then we can write

K4 +K3u+K2u
2 − 1

6
K1u

3 = (a+ bu)(u+ c)2,

with b 6= 0. In this case, the integral in (3.3.14) can be evaluated to give

g(u) =

(
15b2

4(a− bc)3
+

5b

4u(a− bc)2
− 1

2u2(a− bc)

)
1√

a+ bu− bc

+
15b2

8(a− bc)3

∫
du

u
√
a+ bu− bc

,

where the integral on the right can be expressed in terms of elementary functions

depending on the sign of a − bc. In this case it is not possible to obtain u(x)

explicitly. Hence the solution can only be expressed parametrically.

Case III: Three order-one (non-repeated) factors

If K4 +K3u+K2u
2 − 1

6
K1u

3 has three non-repeated factors then we can write

K4 +K3u+K2u
2 − 1

6
K1u

3 = d(a− u)(b− u)(c− u),
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with d 6= 0. In this case, the integral in (3.3.14) can be evaluated in terms of

elliptic integrals to give

g(u) =
2[c(a− c) + b(a− b)− u(2a− c− b)]

d3/2(a− b)(a− c)(b− c)2
√

(a− u)(b− u)(c− u)

+
2(b− c)(a+ b− 2c)F (α, β)

d3/2(a− b)2(b− c)2
√

(a− c)3

−2(a2 + b2 + c2 − ab− ac− bc)E(α, β)

d3/2(a− b)2(b− c)2
√

(a− c)3
,

where we have set

α = arcsin

√
a− c
a− u

and

β =

√
a− b
a− c

.

In the solution above, F (α, β) andE(α, β) are the elliptic integrals of the first and

second kind, respectively. In this case, we also cannot obtain u(x) explicitly, and

hence the solution can only be expressed in parametric form.

In Case IV and Case V, the integral (3.3.14) can only be expressed using elliptic

integrals. These cases were not considered by Maharaj et al (1996). In these two

cases, we also cannot obtain u(x) explicitly. Therefore we can only express u(x),

and hence f(x), explicitly only in the case where the polynomial K4 + K3u +

K2u
2 − 1

6
K1u

3 has one order-three factor.

3.4 The Stephani and Srivastava solutions

Earlier results and particular first integrals are contained in the results of this sec-

tion. As much as the first integral (3.3.7) of the equation (3.2.5) was obtained
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without a choice of a specific function f(x), any choice for the function f(x) that

satisfies (3.3.6) will yield a first integral of the form (3.3.7). With the choice

f(x) = (ax+ b)n ,

equation (3.3.7) becomes

ψ0(t) =
1

6
φ0(t)

= −6yx −
21

4a
(ax+ b)−8/7 y2 − 3

2

(
7

a

)2

(ax+ b)−1/7 yyx

+
1

4

(
7

a

)3

(ax+ b)6/7 y2x −
1

6

(
7

a

)3

(ax+ b)−9/7 y3, (3.4.1)

where n = −15
7
. If a = 1 and b = 0 then equation (3.4.1) gives

χ0(t) =
1

6
φ0(t)

= −6yx −
21

4
x−8/7y2 − 3

2
72x−1/7yyx

+
1

4
73x6/7y2x −

1

6
73x−9/7y3. (3.4.2)

The first integral (3.4.1) was obtained by Srivastava (1987). This solution is a spe-

cial case of (3.3.7) and it satisfies (3.3.6) with K0 = 0. The first integral (3.4.2)

was found by Stephani (1983). We have shown that the first integrals (3.4.1) and

(3.4.2) can be regained as special cases of (3.3.7).
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Note that there exist solutions which do not satisfy (3.3.6). For example the choice

f(x) = ex reported in Stephani (1983) does not satisfy the integrability condition

(3.3.6). Also the Kustaanheimo and Qvist (1948) solution

f(x) = (a+ bx+ cx2)−5/2 does not satisfy (3.3.6).
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Chapter 4

A new first integral for perfect fluid

distributions

4.1 Introduction

In Chapter 3 we discussed the Emden-Fowler equation. As it is an important

equation in mathematical physics, and represents spherically symmetric fields in

general relativity, it is desirable to find new exact solutions. Therefore in this

chapter we find a new class of solutions to the field equation yxx = f(x)y2 using

an approach that is similar but different from the approach used in Chapter 3.

In Section 4.2 we use the technique of integration by parts to obtain a new first

integral of yxx = f(x)y2. This involves multiplying the master field equation

by an integrating factor. The structure of the equation is changed but it remains

integrable. This first integral is subject to an integral equation. In Section 4.3 we

use this integrability condition to find the functional form of f(x), adopting an

approach that is similar to that used in Chapter 3.

4.2 A first integral

Another general class of solutions to (3.2.5) can be found with a different restric-

tion on a functional form of f(x), when compared to Chapter 3. The procedure

is similar to that of Maharaj et al (1996) but the differential equation is different.

This unusual approach in integrating a differential equation leads to a new first
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integral. We believe that this result has not been obtained previously.

When (3.2.5) is multiplied by x, it becomes

xyxx = xf(x)y2. (4.2.1)

The left hand side of equation (4.2.1) can be written as a total derivative as follows

(xyx − y)x = xf(x)y2.

Integrating (4.2.1) gives

xyx − y =

∫
xfy2dx− φ1(t), (4.2.2)

where φ1(t) is a function of integration. The integral on the right hand side of this

equation may be evaluated by parts to give

xyx − y = f̄Iy
2 − 2

∫
f̄Iyyxdx− φ1(t), (4.2.3)

where for convenience, we have used xf(x) = f̄ and
∫
f̄dx = f̄I .

Integrating f̄Iyyx by parts we obtain∫
f̄Iyyxdx = f̄IIyyx −

∫
f̄IIy

2
xdx−

∫
f̄IIyyxxdx. (4.2.4)

Using (3.2.5), (4.2.4) may be written as∫
f̄Iyyxdx = f̄IIyyx −

∫
f̄IIy

2
xdx−

∫
ff̄IIy

3dx. (4.2.5)

Substitution of (4.2.5) in (4.2.3) yields

xyx − y = f̄Iy
2 − 2f̄IIyyx + 2

∫
f̄IIy

2
xdx+ 2

∫
ff̄IIy

3dx− φ1(t). (4.2.6)
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Integrating ff̄IIy3 and f̄IIy2x, by parts again, we obtain∫
ff̄IIy

3dx = (ff̄II)Iy
3 − 3

∫
(ff̄II)Iy

2yxdx, (4.2.7)

and ∫
f̄IIy

2
xdx = f̄IIIy

2
x − 2

∫
f̄IIIyxyxxdx

= f̄IIIy
2
x − 2

∫
ff̄IIIy

2yxdx. (4.2.8)

Substituting (4.2.7) and (4.2.8) in (4.2.6) gives

xyx − y = f̄Iy
2 − 2f̄IIyyx + 2f̄IIIy

2
x + 2(ff̄II)Iy

3

−2

∫
2ff̄IIIy

2yxdx− 2

∫
3(ff̄II)Iy

2yxdx− φ1(t),

which can be written in the form

xyx − y = f̄Iy
2 − 2f̄IIyyx + 2f̄IIIy

2
x + 2(ff̄II)Iy

3

−2

[∫
[2ff̄III + 3(ff̄II)I ]y

2yxdx

]
− φ1(t). (4.2.9)

The integral on the right hand side of (4.2.9) can be evaluated if

2ff̄III + 3(ff̄II)I = K5, (4.2.10)

where K5 is a constant such that

∫
[2ff̄III + 3(ff̄II)I ]y

2yxdx =

∫
K5y

2yxdx

=
K5

3
y3.
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This yields the result

φ1(t) = y − xyx + f̄Iy
2 − 2f̄IIyyx + 2f̄IIIy

2
x

+2

[
(ff̄II)I −

1

3
K5

]
y3, (4.2.11)

where φ1(t) is an arbitrary function of integration. We then observe that (4.2.11)

is another first integral of (3.2.5) provided that condition (4.2.10) is satisfied. It

is important to note that the first integral φ1(t) is linearly independent of the first

integral φ0(t) in (3.3.7). Hence (4.2.11) is a new result and f(x) is constrained by

the condition (4.2.10) which is an integral equation.

4.3 Integrability conditions

To complete the analysis we need to determine the form of the function f(x) (or

f̄(x)). In an attempt to seek the form of the function f, the integral equation

(4.2.10) can be transformed into an ordinary differential equation. It is easier to

solve the differential equation rather than the integral equation. Differentiating

(4.2.10), we obtain

2fxf̄III + 5ff̄II = 0. (4.3.1)

Multiplying (4.3.1) by x and using (xf)x = f + xfx, we have

2xfxf̄III + 5xff̄II = 0

2 [(xf)x − f ] f̄III + 5f̄ f̄II = 0

2

[
f̄x −

1

x
f̄

]
f̄III + 5f̄ f̄II = 0, (4.3.2)
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which contains f̄ only. Note the following transformations

L̄ ≡ f̄III

L̄x ≡ f̄II

L̄xx ≡ f̄I

L̄xxx ≡ f̄

L̄xxxx ≡ f̄x. (4.3.3)

This enables us to eliminate f̄ in (4.3.2) which then becomes

2

[
L̄xxxx −

1

x
L̄xxx

]
L̄+ 5L̄xL̄xxx = 0. (4.3.4)

This is a nonlinear equation and more complicated than its counterpart (3.3.10).

However it is still possible to solve it. We can write (4.3.4) in the form

2

[
L̄xxxx
L̄xxx

− 1

x

]
+ 5

L̄x
L̄

= 0, (4.3.5)

which is separable. Integrating (4.3.5) leads to the integral given by

2 ln

(
L̄xxx
x

)
+ 5 ln L̄ = constant

L̄xxx = C0xL̄
−5/2, (4.3.6)

where C0 is a constant of integration. Note (4.3.6) is similar to (3.3.11) in Chapter

3; however it is a different differential equation with a new solution.
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We observe that the third order ordinary differential equation (4.3.6) together with

the transformations (4.3.3), is equivalent to the integrability condition (4.2.10). In-

tegrating (4.3.6) repeatedly we find L̄, and then f̄(x) can be found using (4.3.3).

Below we outline how (4.3.6) can be integrated giving L̄.

The nonlinear differential equation (4.3.6) may be written as

L̄L̄xxx = C0xL̄
−3/2,

(L̄L̄xx)x − L̄xL̄xx = C0xL̄
−3/2,

which can also be written as

(L̄L̄xx)x −
1

2
(L̄2

x)x = C0xL̄
−3/2.

Integrating the equation above, we get

L̄L̄xx −
1

2
L̄2
x = C1 + C0

∫
xL̄−3/2dx,

where C1 is constant. This second order equation can be written in the form

xL̄−3/2
(
L̄L̄xx −

1

2
L̄2
x

)
= C1xL̄

−3/2 + C0xL̄
−3/2

∫
xL̄−3/2dx.

The equation above can also be written in the form

x(L̄1/2)xx = C1xL̄
−3/2 + C0xL̄

−3/2
∫
xL̄−3/2dx, (4.3.7)

where we have absorbed the factor of 1
2

in C0 and C1. Observe that (4.3.7) is

difficult to solve. However, note that we can write the left hand side as

x(L̄1/2)xx =
[
x(L̄1/2)x

]
x
− (L̄1/2)x,
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so that (4.3.7) can then be written in the form

[
x(L̄1/2)x

]
x
− (L̄1/2)x = C1xL̄

−3/2 + C0xL̄
−3/2

∫
xL̄−3/2dx,

whose integral is given by

x(L̄1/2)x − L̄1/2 = C2 + C1

∫
xL̄−3/2dx+

1

2
C0

(∫
xL̄−3/2dx

)2

, (4.3.8)

where C2 is a new constant. The equation above is not in standard form. However,

it is still possible to make progress. When multiplied by a factor xL̄−3/2, equation

(4.3.8) above can be written as

1

2
x2L̄−2L̄x − xL̄−1 = C2xL̄

−3/2 + C1xL̄
−3/2

∫
xL̄−3/2dx

+
1

2
C0xL̄

−3/2
(∫

xL̄−3/2dx

)2

.

The left hand side can be written as a total derivative, and we have

(
−1

2
x2L̄−1

)
x

= C2xL̄
−3/2 + C1xL̄

−3/2
∫
xL̄−3/2dx

+
1

2
C0xL̄

−3/2
(∫

xL̄−3/2dx

)2

.

The integral of the equation above is given by

−1

2
x2L̄−1 = C3 + C2

(∫
xL̄−3/2dx

)
+

1

2
C1

(∫
xL̄−3/2dx

)2

+
1

6
C0

(∫
xL̄−3/2dx

)3

,
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where C3 is constant. This can be simplified to

x2L̄−1 = −2C3 − 2C2

(∫
xL̄−3/2dx

)
− C1

(∫
xL̄−3/2dx

)2

−1

3
C0

(∫
xL̄−3/2dx

)3

.

Redefining the constants in the above equation, we can write it as

x2L̄−1 = C̄3 + C̄2

(∫
xL̄−3/2dx

)
+ C̄1

(∫
xL̄−3/2dx

)2

+C̄0

(∫
xL̄−3/2dx

)3

, (4.3.9)

where C̄3 = −2C3, C̄2 = −2C2, C̄1 = −C1 and C̄0 = −C0

3
. Therefore the third

order equation (4.3.6) has been integrated. In general we can write the solution

parametrically.

For convenience, we let

u =

∫
xL̄−3/2dx,

so that
ux
x

=
(
L̄−1

)3/2
, (4.3.10)

or equivalently

L̄−1 =
u
2/3
x

x2/3
. (4.3.11)

Substituting (4.3.11) in (4.3.9), we obtain

x2ux =
(
C̄3 + C̄2u+ C̄1u

2 + C̄0u
3
)3/2

.
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In the above equation the variables separate, and we can write

x0 −
1

x
=

∫
du(

C̄3 + C̄2u+ C̄1u2 + C̄0u3
)3/2 , (4.3.12)

where x0 is constant. Now the function f̄(x) must be found satisfying the in-

tegrability condition (4.2.10). In order to find f̄(x) satisfying this integrability

condition, it is convenient to express the solution in the parametric form

f̄(x) = L̄xxx,

ux = xL̄−3/2,

x0 −
1

x
= g(u).

In the above we have defined

g(u) =

∫
du(

C̄3 + C̄2u+ C̄1u2 + C̄0u3
)3/2 .

The evaluation of the integral is determined by the values of the constants C̄0, C̄1, C̄2

and C̄3. The above solution has five cases depending on the nature of the factors of

the polynomial C̄3 + C̄2u+ C̄1u
2 + C̄0u

3. This is similar to the solution discussed

in Chapter 3. The five cases are

Case I: One order-three factor

Case II: One order-one factor and one order-two factor

Case III: Three order-one (non-repeated) factors

Case IV: One linear factor and one quadratic factor

Case V: No factors
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Note that the resulting solutions will be different as the third order equation (4.3.6)

is not the same as the corresponding equation (3.3.11) of Chapter 3.

Case I: One order-three factor

This is the simplest case as the factors are repeated. If C̄3 + C̄2u + C̄1u
2 + C̄0u

3

has one factor repeated three times then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = (A+Bu)3,

with B 6= 0. In this case, the integral in (4.3.12) can be evaluated to give

x0 −
1

x
= − 2

7B
(A+Bu)−7/2,

so that

u = −A
B

+
1

B

(
− 2

7B

)2/7(
x0 −

1

x

)−2/7
.

Now we use (4.3.11) to find L̄ from u(x), and hence we find f̄(x). We find that

ux =
1

x2

(
− 2

7B

)9/7(
x0 −

1

x

)−9/7
,

and

L̄ = x2/3ux
−2/3 = x2

(
− 2

7B

)−6/7(
x0 −

1

x

)6/7

.
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Differentiating L̄ three times we obtain

L̄xxx =
12

7x2

(
− 2

7B

)−6/7(
x0 −

1

x

)−1/7
− 12

7x2

(
− 2

7B

)−6/7(
x0 −

1

x

)−1/7

− 12

49x3

(
− 2

7B

)−6/7(
x0 −

1

x

)−8/7
+

12

49x3

(
− 2

7B

)−6/7(
x0 −

1

x

)−8/7

+
48

343x4

(
− 2

7B

)−6/7(
x0 −

1

x

)−15/7
,

=
48

343x4

(
− 2

7B

)−6/7(
x0 −

1

x

)−15/7
.

Now using the relation L̄xxx = f̄(x) we have

f̄(x) =
48

343x4

(
− 2

7B

)−6/7(
x0 −

1

x

)−15/7
, (4.3.13)

and eliminating the bar gives

f(x) =
48

343x5

(
− 2

7B

)−6/7(
x0 −

1

x

)−15/7
. (4.3.14)

After reparametrisation, f(x) can be written as

f(x) =
1

x5

(
1− 1

x

)−15/7
. (4.3.15)

This gives a new solution to the master equation (3.2.5) for a shear-free fluid

which is different to the solution (3.3.16) found by Stephani (1983). Now using

the relations (4.3.3) we can write the first integral (4.2.11) in terms of x.We obtain
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the result

φ1(t) = y − xyx + 2

(
− 2

7B

)−6/7(
x0 −

1

x

)6/7

y2

+
12

7x

(
− 2

7B

)−6/7(
x0 −

1

x

)−1/7
y2

− 6

49x2

(
− 2

7B

)−6/7(
x0 −

1

x

)−8/7
y2

−4x

(
− 2

7B

)−6/7(
x0 −

1

x

)6/7

yyx

−12

7

(
− 2

7B

)−6/7(
x0 −

1

x

)−1/7
yyx

+2x2
(
− 2

7B

)−6/7(
x0 −

1

x

)6/7

y2x

+

[
192

343x4

(
− 2

7B

)−12/7(
x0 −

1

x

)−9/7]
I

y3

+

[
576

2401

(
− 2

7B

)−12/7(
x0 −

1

x

)−16/7]
I

y3

−2

3
K5y

3. (4.3.16)

The subscripts I in the equation (4.3.16) denote a remaining integration. It can be

observed that this first integral is different from the first integral (3.4.2).

Case II: One order-one factor and one order-two factor

If C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 has one factor repeated three times then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = (A+Bu)(u+ C)2,
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with B 6= 0. In this case, the integral in (4.3.12) can be evaluated to obtain

g(u) =(
15B2

4(A−BC)3
+

5B

4u(A−BC)2
− 1

2u2(A−BC)

)
1√

A+Bu−BC

+
15B2

8(A−BC)3

∫
du

u
√
A+Bu−BC

,

where the integral can be expressed in terms of elementary functions depending

on the sign of A−BC. For this case it is not possible to obtain the function u(x)

explicitly. Therefore the solution can only be given parametrically.

Case III: Three order-one (non-repeated) factors

If C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 has three non-repeated factors, then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = D(A− u)(B − u)(C − u),

with D 6= 0. In this case, the integral in (4.3.12) can be written in terms of elliptic

integrals to obtain

g(u) =
2[C(A− C) +B(A−B)− u(2A− C −B)]

D3/2(A−B)(A− C)(B − C)2
√

(A− u)(B − u)(C − u)

+
2[(B − C)(A+B − 2C)F (α, β)]

D3/2(A−B)2(B − C)2
√

(A− C)3

−2[(A2 +B2 + C2 − AB − AB −BC)E(α, β)]

D3/2(A−B)2(B − C)2
√

(A− C)3
,

where we have set

α = arcsin

√
A− C
A− u

and

β =

√
A−B
A− C

.

In this form of the solution, the quantities F (α, β) and E(α, β) are elliptic inte-

grals of the first and second kind, respectively. In this case of non-repeated factors,
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we also cannot obtain u(x) explicitly and hence the solution can only be given in

parametric form.

Case IV: One linear factor and one quadratic factor

If C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 has one linear and one quadratic (irreducible) factor,

then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = (a+ u)(cu2 + du+ e),

where cu2 + du+ e has no real roots. Therefore we can write

g(u) =

∫ [
1

(a+ u)(cu2 + du+ e)

]3/2
du.

Using partial fractions it is possible to show that

1

(a+ u)(cu2 + du+ e)

=
1

(a+ u)(ca2 − ad+ e)
− cu+ d− ac

(cu2 + du+ e)(ca2 − ad+ e)
,

so that

g(u) =∫ [
1

(a+ u)(ca2 − ad+ e)
− cu+ d− ac

(cu2 + du+ e)(ca2 − ad+ e)

]3/2
du.

Further simplification of this integrand is not possible to express the integral above

in terms of elementary functions. The solution can only be written in parametric

form.

In Case V, the integral (4.3.12) can only be expressed using elliptic integrals. For

this case, we also cannot obtain u(x) explicitly. Therefore we can only express
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u(x), and hence f̄(x) explicitly only in the case where the polynomial C̄3+C̄2u+

C̄1u
2 + C̄0u

3 has one order-three factor. For this case the function f(x) has the

explicit form given in equation (4.3.15).
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Chapter 5

Conclusion

The aim of this dissertation was to investigate the integrability of and find a new

class of exact solutions to the Emden-Fowler equation

yxx = f(x)y2,

which governs the behaviour of spherically symmetric shear-free uncharged flu-

ids. This Emden-Fowler equation has several applications in general relativity and

other areas of mathematical physics.

We now outline the contents of this dissertation and highlight the results obtained.

In Chapter 1 we provided a general background on the history of Einstein’s theory

of general relativity as well as the field equations. We discussed some examples of

known solutions to the field equations focusing on spherically symmetric space-

times. In particular we were concerned with both shear-free and shearing space-

times. We gave a brief history of the Emden-Fowler equation and the subsequent

research in general relativity that has been done to obtain its solutions.

In Chapter 2 we discussed fundamental concepts of spacetime geometry. We be-

gan by discussing the concepts of differential manifolds as well as the metric

tensor field and its line element. We introduced the concepts of connection coef-

ficients, the Riemann tensor, the Ricci and Einstein tensors as well as the Ricci

scalar. This led to the formulation of the Einstein field equations. We then stud-

ied these quantities for line elements of static and nonstatic spherically symmet-

ric spacetimes. We considered both the shear-free and shearing spacetimes. For
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each metric, we gave the system of field equations and the condition of pressure

isotropy.

In Chapter 3 we studied the integrability of

yxx = f(x)y2.

This chapter included a review of the research by Maharaj et al (1996). We began

this chapter by showing how the field equations for the shear-free nonstatic line

element reduce to the Emden-Fowler equation. We then used integration by parts

to obtain a first integral of yxx = f(x)y2, which is given by

φ0(t) = −yx + fIy
2 − 2fIIyyx + 2fIIIy

2
x + 2

[
(ffII)I −

1

3
K0

]
y3,

subject to the integrability condition

2ffIII + 3(ffII)I = K0.

This is an integral equation. It is interesting to observe that the integral equation

may be transformed to the third order differential equation

Lxxx = K1L
−5/2,

where L ≡ fIII . We solved this third order equation and expressed its solution in

parametric form. A particular solution has the functional form

f(x) = x−15/7,

after reparametrisation. The first integrals of Stephani (1983) and Srivastava

(1987) were regained from the first integral.

In Chapter 4 we first multiplied the Emden-Fowler equation by x to give

xyxx = xf(x)y2,
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and investigated its integrability. This enabled us to find a new first integral. We

used integration by parts to obtain the first integral given by

φ1(t) = y − xyx + f̄Iy
2 − 2f̄IIyyx + 2f̄IIIy

2
x

+2

[
(ff̄II)I −

1

3
K5

]
y3,

where f̄(x) = xf(x). This first integral is subject to the condition

2ff̄III + 3(ff̄II)I = K5.

This is an integral equation which is different from the corresponding condition

in Chapter 3. This integral equation can be transformed to the third order ordinary

differential equation

L̄xxx = C0xL̄
−5/2,

where L̄xxx = f̄ . Remarkably the third order equation can be integrated to give

x2L̄−1 = C̄3 + C̄2

(∫
xL̄−3/2dx

)
+ C̄1

(∫
xL̄−3/2dx

)2

+C̄0

(∫
xL̄−3/2dx

)3

.

Then the new solution can be written parametrically in the form

f̄(x) = L̄xxx,

ux = xL̄−3/2,

x0 −
1

x
=

∫
du(

C̄3 + C̄2u+ C̄1u2 + C̄0u3
)3/2 .
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It is important to note that a particular solution has the functional form

f(x) =
1

x5

(
1− 1

x

)−15/7
.

This form is different to any of the solutions found previously. Note that the so-

lutions of Stephani (1983), Srivastava (1987) and Maharaj et al (1996) are not re-

gained. Therefore our new first integral has different properties to the first integral

of Chapter 3. It is possible that the new first integral is related to the geometrical

structure of the Emden-Fowler equation. This will be the basis for future research.
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