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Abstract

In this dissertation, we provide theoretical and numerical analyses of the Klein-Gordon

equation (KGE) posed in the real line. In the first part of the work, using the weak

compactness techniques, we show that the KGE equation is globally well-posed on the real

line, moreover we show that the solutions are classical and compactly supported, provided

the initial data is smooth and compactly supported. These properties form the theoretical

foundation for the numerical analysis.

For numerical treatment, we use a Fourier-type pseudo-spectral scheme. In the second

part of the dissertation, we provide its comprehensive stability and convergence analyses.

Furthermore, we discuss technical issues connected with its efficient practical implementa-

tion, in particular, design of an appropriate time-stepping scheme that is able to preserve

qualitative features of both the continuous and the space semi-discrete KGE models. The

thesis is concluded with several computational examples.

v



Contents

1 Introduction 1

1.1 The Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contemporary studies on well-posedness for the nonlinear KGE . . . . . . 3

1.3 Contemporary studies of numerics for the nonlinear KGE . . . . . . . . . . 4

2 Preliminaries 6

2.1 Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Strong and weak convergence . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Fourier-type spectral methods 15

3.1 The continuous Fourier expansion . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Trigonometric approximation of regular functions . . . . . . . . . . . . . . 18

3.3 The discrete Fourier expansion . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Trigonometric interpolation of regular functions . . . . . . . . . . . . . . . 22

4 The Klein-Gordon equation in the real line 24

4.1 The periodic Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . 24

4.2 Well-posedness in the periodic settings . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Global well-posedness of the Galerkin solutions . . . . . . . . . . . 26

4.2.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . 31

vi



4.2.3 Propagation of the initial data . . . . . . . . . . . . . . . . . . . . . 34

4.3 Well-posedness in the real line . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 The Fourier-type pseudo-spectral scheme for the nonlinear KGE 38

5.1 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Consistency and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Implementation and simulations 45

6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Efficient evaluation of the semi-discrete vector field . . . . . . . . . 45

6.1.2 Time-stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 A single breather . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.2 Two breathers interaction (A) . . . . . . . . . . . . . . . . . . . . . 49

6.2.3 Two breathers interaction (B) . . . . . . . . . . . . . . . . . . . . . 49

6.2.4 Three breathers interaction . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion 55

vii



Chapter 1

Introduction

In the field of numerical analysis, solutions of some evolution equations are difficult to

obtain analytically and so we have to use a numerical approach. There are many types of

numerical methods suitable for different problems, but when we refer to those set in regular

domains, spectral methods are considered to be the most accurate and computationally

efficient [Boy00, CQHZ06, HGG07, Kop09, STW11]. Spectral methods are collection of

techniques that represent the solution of a differential equation as a finite linear combi-

nation of globally defined basis functions, where the coefficients in the sum are chosen

to ensure the differential equation and perhaps some boundary conditions are satisfied as

closely as possible [Boy00, CQHZ06, HGG07, Kop09, STW11].

In this dissertation, we provide theoretical and numerical analyses of a Fourier-type

pseudo-spectral method in context of the nonlinear Klein-Gordon equation (KGE) posed

on the real line. KGE has attracted significant attention in the area of applied sciences

and engineering because of its important role in a wide variety of application [DEGM82].

Since it is one of the nonlinear partial differential equations (PDEs) examples, the exact

solutions are not easy to compute and therefore, we resort to finding them numerically.

The outline of this thesis is as follows. Chapter 1 reviews some existing results from

the literature. In Chapter 2, we present as preliminaries, some results from functional

analysis. We provide a detailed account on the Fourier-type approximations in Chapter 3.
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In Chapter 4, we demonstrate the well-posedness of the nonlinear KGE model in periodic

settings and then extend the analysis to the real line. Account on a Fourier-type pseudo-

spectral scheme for the nonlinear KGE equation with emphasis on its stability, consistency

and convergence is presented in Chapter 5. In Chapter 6, we report the efficiency of our

scheme by applying it to a special case of KGE known as Sine-Gordon equation (SGE).

Finally, some conclusions, contributions to knowledge and possible future research based

on our findings and numerical results are drawn in Chapter 7.

1.1 The Klein-Gordon equation

KGE, also known as Klein-Fock-Gordon equation or Klein-Gordon-Fock equation is a rel-

ativistic form of Schröndinger equation which define scalar spinless particle. It has root

coming from the study of theoretical physics with importance in quantum mechanics,

nonlinear optics, solid state physics, applied sciences and engineering [DEGM82]. The

nonlinear KGE has the general form:

utt = a2∆u− V ′(u), x ∈ Ω, t > 0, (1.1.1a)

u(x, 0) = u0, ut(x, 0) = v0, (1.1.1b)

where the nonlinearity V(u) represents the potential energy of the system modeled by

(1.1.1). The concrete choice of the potential V(u) depends on the physical phenomenon

under consideration. For example SGE, obtained when V(u) = 1 − cos(u) is widely used

in the modeling of shallow waves. A complete account on the various KGE forms can be

found in [GI92].

Many authors have worked on KGE, including both its numerical and analytical aspect.

We shall present a review of these in the coming sections.
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1.2 Contemporary studies on well-posedness for the

nonlinear KGE

For a given evolution system like KGE to be well-posed, one must ensure that solutions

exist, are uniquely determined by input data (that normally involves a number of initial

and boundary conditions) and depend on the data continuously. Mathematical studies

that are pertinent to well-posedness of the nonlinear KGE have attracted a substantial

number of authors [BW81, GV85, FT78, HW87, IMM06, KWY18, LYA+18, Ma17, NO01,

NMPZ84, Wed78, XD13, XZ13].

The concrete details depend strongly on the type of the nonlinearity V(u), the dimen-

sionality of the spatial domain and the input data. E.g., in the Sobolev space, Hs(Rn) with

s ≥ n
2
, the well-posedness of the pure Cauchy problem for nonlinear KGE is established

in [NO01]. Study of the global well-posedness and scattering for a nonlinear KGE system

in one dimensional domains is done by [XZ13]. The local and global existence results and

finite blow-up time solutions of KGE, equipped with general power-type nonlinearities, is

carried out in [GV85, LYA+18]. The existence and uniqueness of global solutions for a

Cauchy problem associated to a semilinear KGE, with exponential potentials, is proven

by [IMM06] in two-dimensions. The well-posedness of the nonlinear KGE, with high en-

ergy initial data is investigated using the potential well method by [PT14]. Recent paper

[Ma17] deals with global solution of quasi-linear wave Klein-Gordon system in two dimen-

sional space. He is able to prove global existence of small regular solutions for a class of

hyperbolic systems containing a wave equation and a KGE model with null couplings.

More details about the analysis of the Cauchy problem and global classical solution to

KGE can be found in [BW81, FT78, KWY18, NMPZ84, HW87, Wed78, XD13, XZ13].
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1.3 Contemporary studies of numerics for the nonlin-

ear KGE

In numerical analysis realm, a number of semi- and fully- discrete schemes were proposed in

the literature. In particular, study of three finite-difference approximations of the nonlinear

KGE that respect the symplectic structure of the equation is done in [Dun97]. M. Dehghan

and A. Shokri in [DS09] employ radial basis functions. Their scheme appears to be very

similar to a finite-difference method and was successfully applied to solve one-dimensional

nonlinear KGE with quadratic and cubic nonlinearities. The numerical techniques for

the solution of nonlinear KGE based on the finite-difference and collocation methods are

presented by [LD10]. The validity of these techniques is demonstrated with examples.

Further details on classical finite-difference methods for solving nonlinear KGE can be

found in [BOJM10, EMVQDGM15, HZ09].

A fully discrete approach, based on finite elements for the damped nonlinear KGE in

one-dimension is implemented in [WC05]. The numerical schemes that are pertinent to

Chebyshev-type wavelet spectral methods for the approximate solutions of KGE and SGE

are presented in [IA16]. On the other hand, development of schemes that are associated

with Legendre-type wavelets is done in [YTSZ15]. Fast and accurate fourth-order time-

stepping schemes coupled with the discrete Fourier transform are proposed in [MAS11].

A Legendre-type pseudo-spectral scheme for solving initial-boundary value problems of

nonlinear KGE is developed in [LGV96]. The authors investigate the stability and conver-

gence of numerical solutions. Their numerical method exhibits high accuracy and extends

to multi-dimensional settings. A variant of pseudo-spectral method for the solution of

nonlinear KGE is proposed in [GW14]. A pseudo-spectral Fourier-type method for finding

localized spherical soliton solutions of (3+1)−dimension KGE is presented in [ES16], where

the classical fourth-order Runge-Kutta method is employed to perform time integration.

The continuous flow generated by KGE is symplectic, hence design of suitable high

order time-stepping (marching) schemes preserving this structure is an important issue.
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In this direction, in [LIW18], a class of symmetric and arbitrary high-order marching

schemes suitable for time integration of KGE is proposed. The construction makes use of

the two-point Hermite interpolation polynomial, which is applied directly to the operator-

variation-of-constants formula. The high accuracy of the resulting scheme is demonstrated

in a number of practical simulations. The numerical comparison of implicit and exponential

time-differencing methods in context of φ4 KGE is performed in [EMM13], where it was

established that the former techniques are more accurate than the latter. Similarly, B.

Weizhu and D. Xuanchun in [WX12], compared finite-difference and Fourier-type pseudo-

spectral schemes combined with a Gaustschi-type exponential integrators for solving KGE

in the non-relativistic limit region.

Further discussion of spectral and finite-element methods in context of KGE can be

found in [CLC17, DT12, DXZ14, BZ15, ABI+15].

To conclude, we note that developing appropriate numerics for KGE is an important

area of modern research. However, despite a large number of various numerical techniques

proposed in the literature, their rigorous analysis is far from being complete. There are

very few works containing exhaustive stability/convergence analyses, in particular, in the

realm of spectral methods. One of the main aims of the present dissertation is to fill in this

gap for the class of Fourier-type pseudo-spectral schemes, applied to KGE with smooth

potentials.
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Chapter 2

Preliminaries

This Chapter is introductory. Here, we list some basic results in functional analysis that

are used throughout our work.

2.1 Banach spaces

The results quoted below are standard and can be found in particular in [Bre11, Erw78,

Lax02, RF10].

Definition 2.1.1. Let X be a vector space over R. A function ‖ · ‖ satisfying:

(i) ‖u‖ ≥ 0 (non-negativity),

(ii) ‖u‖ = 0 if and only if u = 0,

(iii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (the triangle inequality),

(iv) ‖αu‖ = |α|‖u‖ (absolute homogeneity);

for any u, v ∈ X and α ∈ R, is called a norm in X. A vector space X equipped with a

norm ‖ · ‖ is called a normed vector space.

A norm defines topology in X, in particular we have:
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Definition 2.1.2. A sequence, {un|n = 0, 1, 2, · · · } of X is said to converge to an element

u ∈ X, if the distance ‖un − u‖ tends to 0 as n increases.

In a usual way, the Cauchy sequences are defined.

Definition 2.1.3. A sequence, {un|n = 0, 1, 2, · · · } of X is said to be a Cauchy in X if

given ε > 0, there exist N = N(ε) > 0 such that ‖un − um‖ < ε, whenever n,m > N(ε).

A complete normed vector space (i.e. the space where all Cauchy sequence converge in

the topology induced by the norm) is called a Banach space. We give two examples below:

(i) Let 1 ≤ p ≤ ∞. The finite-dimensional vector space Rn, equipped with the norm

‖u‖p =
( n∑
k=1

|uk|p
)1/p

,

is a Banach space.

(ii) Suppose Ω is an open measurable subset of Rn and 1 ≤ p ≤ ∞. We say that two

measurable functions u, v : Ω → R are equal almost everywhere (u = v a.e.), if

the measure of the set {x ∈ Ω|u(x) 6= v(x)} is zero. The equality understood in

the almost everywhere sense is an equivalence relation. The collection (denoted by

Lp(Ω)) of all equivalence classes of measurable functions for which

‖u‖p =
(∫

Ω

|u|pdx
)1/p

<∞

is a Banach space. The quantity ‖ · ‖p : Lp(Ω)→ R, defined above, is its norm.

Definition 2.1.4. Let X and Y be Banach spaces. A linear map F : X → Y 1 is said to

be bounded if there exists a constant C > 0 such that, for all u ∈ X, ‖Fu‖Y ≤ C‖u‖X .

Note that every bounded linear map acting between two Banach spaces is continuous.

The collection of all bounded maps from X to Y is usually denoted by L(X, Y ). L(X, Y )

is again a Banach space with the induced norm defined by

‖F‖X→Y = sup
‖u‖X=1

‖Fu‖Y .
1In the special case when Y = R, F is called a linear functional.

7



Definition 2.1.5. A linear continuous map F : X → Y is said to be compact if for each

bounded sequence {un ∈ X|n = 0, 1, · · · }, one can find a subsequence {unk|k = 0, 1, · · · }
and an element u ∈ X such that {Funk|k = 0, 1, · · · } ⊂ Y converges to Fu in Y.

Definition 2.1.6. Let X and Y be two Banach spaces. A bounded injective linear map

J : X → Y is called an embedding of X into Y . We say that embedding J is compact if J

is a compact map.

The fact that X is embedded in Y is often expressed as X ↪→ Y . When X is a subspace

of Y and J acts as an identity on the elements of X, we speak about canonical embeddings.

2.2 Strong and weak convergence

Apart from the strong topology, induced by a norm, one may define other forms of conver-

gence. To begin, we give the following

Definition 2.2.1. Let X be a Banach space. The space of all bounded linear functionals

on X is denoted by X ′ and is called the topological dual of X.

By the remark above, X ′ is a Banach space under the norm

‖f‖X′ = sup
‖u‖X=1

|fu|.

Since X ′ is a Banach space, one can define the second dual X ′′ of X. Then any u ∈ X can

be identified with a linear functional u′ in X ′′ acting on the elements f ∈ X ′ according to

the formula

u′(f) = f(u).

The construction above defines a natural embedding J from X to X ′′. In general, the map

J is injective but not surjective, i.e. X ′′ is in some sense larger than X. In the case when

J is surjective, we say that the space X is reflexive. The connection between u′ ∈ X ′′,

u ∈ X and f ∈ X ′ is often written in the form

u′(f) = 〈u, f〉,

8



the bilinear form 〈·, ·〉 is known as the duality paring.

Using the notion of dual spaces, we have

Definition 2.2.2. We say that a sequence {un ∈ X|n = 0, 1, · · · } converges weakly to

u ∈ X, if for every f ∈ X ′

lim
n→∞
〈f, un〉 = 〈f, u〉.

Definition 2.2.3. We say that a sequence {fn ∈ X ′|n = 0, 1, · · · } converges weakly star

to f ∈ X ′, if for every u ∈ X
lim
n→∞
〈fn, u〉 = 〈f, u〉.

It is easy to verify that strong convergence implies weak convergence while weak con-

vergence implies weakly star convergence. When X is a reflexive Banach space, weak and

weak star convergences are equivalent. Below, we list several standard results that are used

in our analysis. In our presentation, we follow [Bre11, Erw78, Eva90, Lax02, RF10, Son04].

Lemma 2.2.1. Any bounded set in a reflexive Banach space is weakly compact, i.e. any

bounded sequence has a weakly converging subsequence.

Lemma 2.2.2. Let X ′ be a dual of a Banach space X. Then any bounded set in X ′

is weakly star compact, i.e. any bounded sequence in X ′ has a weakly star converging

subsequence.

In what follows, we make use of one more notion of convergence.

Definition 2.2.4. Let Ω be a measurable open subset of Rn and {un}n≥0 be a sequence of

measurable functions defined on Ω. We say that the sequence {un}n≥0 converges almost

everywhere in Ω to a measurable function u, provided that

lim
n→∞

sup
ε>0

λ({x ∈ Ω||un(x)− u(x)| > ε}) = 0,

where λ denotes the standard Lebesgue measure in Rn.

The connections between different types of convergences are listed below, see [Eva90,

Son04].
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Lemma 2.2.3. Let Ω be a measurable open subset of Rn and {un}n≥0 be a sequence that

converges strongly to u ∈ Lp(Ω), 1 ≤ p < ∞. Then there exists a subsequence that

converges a.e. to u in Ω. When p =∞ then the sequence itself converges almost everywhere

to u in Ω.

Lemma 2.2.4. Let Ω be a measurable open subset of Rn and {un}n≥0 be a bounded sequence

in Lp(Ω), 1 ≤ p < ∞, that converges a.e. to u in Ω. Then u ∈ Lp(Ω) and un converges

weakly to u in Lp(Ω).

Later on, we deal with initial value problems, whose solutions u(t) are elements of

Bochner-type spaces Lp([0, T ], X ′), 1 ≤ p ≤ ∞. The following result allows one to study

values of such solutions at the boundary t = 0.

Lemma 2.2.5. Let X be a Banach space. Assume that 1 ≤ p <∞ and

un → u weakly star in Lp([0, T ], X ′),

∂tun → ∂tu weakly star in Lp([0, T ], X ′).

Then,

un(0)→ u(0) weakly star in X ′.

2.3 Hilbert spaces

Both theoretical and numerical analyses of KGE model make use of the notion of Hilbert

spaces. Below, we summarize several fundamental results that are used in the dissertation.

Our exposition follows closely [Ber61, Bre11, Erw78, Lax02, RF10].

Definition 2.3.1. A vector space H over R, equipped with a symmetric, bilinear positive

definite map 〈·, ·〉 : H ×H → R, is called an inner product or Euclidean space.

In an inner product space H, we let

‖u‖ =
√
〈u, u〉.

10



Function ‖ · ‖ induced by the inner product satisfies all axioms of the norm. Hence, any

Euclidean space H is normed. If in addition H is complete with respect to ‖ · ‖, we say

that H is a Hilbert space. For example, Rn and L2(Ω), equipped with

〈u, v〉 =
n∑
k=1

ukvk and 〈u, v〉 =

∫
Ω

uvdx,

respectively, are Hilbert spaces.

According to the Riesz representation theorem, any bounded linear functional f : H →
R in a Hilbert space H can be realized as f = 〈f ′, ·〉, for some f ′ ∈ H. Hence, the dual

space H ′ can be naturally identified with H itself, i.e. any Hilbert space is reflexive. The

above identification has many important consequences. In particular, we have [Son04]

Lemma 2.3.1. Assume {un}n≥0 ⊂ H converges weakly to u ∈ H and, in addition,

limn→∞ ‖un‖ = ‖u‖. Then the convergence is strong, i.e. limn→∞ ‖un − u‖ = 0.

The inner product induces usual Euclidean structure in H.

Definition 2.3.2. Two elements u, v ∈ H are said to be orthogonal if 〈u, v〉 = 0 and

orthonormal if 〈u, u〉 = 〈v, v〉 = 1. An element u is said to be orthogonal to a subset Y of

H, if it is orthogonal to each element of Y .

A subset Y of a Hilbert space H is called everywhere dense in H if its closure is the

whole of H. A Hilbert space that contains a countable everywhere dense subset is called

separable.

Definition 2.3.3. Let {uα}α∈A ⊂ H be a collection of mutually orthogonal vectors in

H. We say that the collection {uα}α∈A is a basis of H if the linear span of {uα}α∈A is

everywhere dense in H.

Theorem 2.3.2. Any separable Hilbert space H has a countable orthonormal basis.

Theorem 2.3.2 has fundamental consequences. It follows that any separable Hilbert

space H contains a discrete set {un}n≥0 ⊂ H of mutually orthonormal vectors that span

11



the whole of H. Hence, any u ∈ H is represented by its Fourier series

u =
∑
n≥0

ûnun, ûn = 〈un, u〉, n ≥ 0,

where convergence is strongly in H. For any u, v ∈ H, we have the Parseval identities

〈u, v〉 =
∑
n≥0

ûnv̂n,

‖u‖2 =
∑
n≥0

|ûn|2.

Further, if Hk = span{un}kn=0 and

Sk(u) =
k∑

n=0

ûnun, k ≥ 0,

then for any u ∈ H,

inf
v∈Hk
‖u− v‖ = ‖u− Sk(u)‖.

In plain words, the partial Fourier sum Sk(u) delivers the best approximation of u in the

finite dimensional space Hk, k ≥ 0. The extremal property lays the foundation for the

large class of practical computational algorithms known as spectral methods.

2.4 Sobolev spaces

Let Ω be an open measurable subset of Rm. Let 1 ≤ p ≤ ∞ and n ≥ N. Sobolev space

W n,p(Ω) of order n is defined to be the linear subspace of functions (equivalence classes of

functions) from Lp(Ω) whose distributional derivatives up to order n are also in Lp(Ω), see

[AF03, Son04] and references therein. W n,p(Ω), equipped with the norm

‖u‖Wn,p(Ω) =
∑
|α|≤n

‖Dαu‖pLp(Ω),

where α ∈ Nm is the multi-index, |α| = ∑m
i=1 αi and Dαu = ∂|α|

∂x
α1
1 ···∂x

αm
n

, is a Banach space.

When p = 2, W n,2(Ω) is commonly denoted by Hn(Ω). The latter is a Hilbert space,

12



endowed with inner product

〈u, v〉n = 〈u, v〉+
∑
|α|=n

〈Dαu,Dαv〉.

In the literature, the definition of W n,p(Ω) can be extended to any real n ≥ 0, using

the theory of interpolation [AF03]. Further, the negative order Sobolev spaces are defined

via duality as W−n,p(Ω) = (W n,p′(Ω))′, where p′ = p
p−1

is the exponent conjugate with

1 ≤ p ≤ ∞.

Below, we make use of the following fundamental result, known as the Sobolev embed-

ding theorem, see [Son04].

Theorem 2.4.1. Let Ω be an open measurable subset of Rm.

(i) If np < m and q∗ = mp
m−np , then

W n,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ q∗. (2.4.1a)

(ii) If np = m, then

W n,p(Ω) ↪→ Lq(Ω), p ≤ q <∞. (2.4.1b)

(iii) If np > m > (n− 1)p, then

W n,p(Ω) ↪→ C0,α(Ω), 0 < α ≤ n− m
p
, (2.4.1c)

while if m = (n− 1)p, (2.4.1c) holds for all 0 < α < 1. In formula (2.4.1c),

C0,α(Ω) =
{
f ∈ C(Ω)

∣∣∣ sup
x 6=y∈Ω

|f(x)−f(y)|
|x−y|α <∞

}
denotes the space of Hölder continuous functions.

In the special case, when Ω ⊂ R is bounded and has the cone property (which holds auto-

matically for smooth domains, see [AF03]) all the embeddings (2.4.1) are compact.

In the dissertation, we deal with Banach spaces of vector valued functions. The follow-

ing result, combined with the Sobolev embedding theorem, is essential.
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Theorem 2.4.2 (see [Son04]). Let X0, X and X1 be three Banach spaces and X0, X1 be

reflexive. Assume that X0 ↪→ X ↪→ X1 and the embedding X0 ↪→ X is compact. For any

1 < p, q <∞, let

W = {u|u ∈ Lp([0, T ], X0), ut ∈ Lq((0, T ), X1)}.

Then the embedding W ↪→ Lp([0, T ], X) is compact.
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Chapter 3

Fourier-type spectral methods

Spectral methods were endowed with first mathematical foundations in [GO77]. The gen-

eral idea of the technique consists in expressing solutions of differential equations as a finite

linear combination of specific globally defined smooth ”orthogonal basis functions”, where

the coefficients in the sum are chosen so that the differential equation is satisfied as close

as possible. Many important partial differential equations (PDEs), ordinary differential

equations (ODEs) and eigenvalue problems are successfully solved using spectral methods.

There are three general ways spectral schemes are implemented, namely Galerkin, Tau

and collocation methods [Boy00, CQHZ06, HGG07, Kop09, STW11]. All three techniques

yield extremely accurate and efficient computational algorithms when applied to smooth

problems posed on regular domains. However, they become less effective and accurate if

complex geometries and/or discontinuous coefficients are involved.

To implement the Galerkin method, trial function and a weak formulation of a dif-

ferential equation under consideration is required. The unknown coefficients are chosen

so that the defect vanish on the subspace of trial functions [Boy00, CQHZ06, HGG07,

Kop09, STW11]. Collocation schemes, also known as pseudo-spectral methods, make use

of the strong formulation of a problem. The unknown coefficients, representing the nu-

merical solution are chosen so that the problem is satisfied exactly at a given finite set of

points known as collocation points. The Tau methods are used for problems with com-
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plicated boundary conditions, where the collocation techniques are extremely tedious and

the Galerkin approach is not possible.

The computational properties of any spectral scheme depends on the properties of the

orthogonal basis chosen to approximate solutions. In the case of compact regular domains,

the common approach is to use trigonometric functions, Jacobi polynomials (in particular,

Chebyshev and Legendre polynomials), tensor-product bases made up of these functions,

spherical harmonics, e.t.c. The choice becomes less obvious when the spatial domain is

unbounded. Here, several scenarios are possible: one can map the unbounded domain into

a compact one and employ one of the bases listed above; depending on the geometry of the

domain and the properties of solutions, one may use the Hermite or the Laguerre functions

or specially designed rational bases; finally, when the asymptotic nature of solutions is

known, one can artificially truncate the spatial domain. See [Boy00, CQHZ06, HGG07,

Kop09, STW11] for general discussion.

In this dissertation, we deal with KGE equation that describes propagation of nonlinear

waves. In the next Chapter, we show that the nonlinear flow, associated with KGE, maps

compactly supported initial data back into compactly supported data. As a consequence,

for compactly supported initial data, the dynamics of the model is completely confined

to compact subdomains of R2. In view of this, we loose no information when restricting

the spatial domain of the model to compact subintervals of R. Doing so, we are forced to

add some artificial boundary conditions. There are several options here, one can use e.g.

homogeneous Dirichlet/Neumann or periodic boundary conditions. Either case imposes

some restrictions on the choice of a computational basis. For example, in context of

Dirichlet/Neumann boundary conditions, one can employ either Chebyshev or Legendre

basis.

In the dissertation, we make use of the periodic boundary conditions and the classical

trigonometric Fourier basis. With this approach, all differential operators are diagonal in

the Fourier space and, as a result, associated spectral schemes allow very efficient practical

implementation. In the sequel of this Chapter, we provide a detailed discussion of key

properties of classical trigonometric Fourier basis.
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3.1 The continuous Fourier expansion

Let L2
p(−`, `) := L2(−`, `)1 be the space of square integrable 2`-periodic functions. For

u(x) ∈ L2
p(−`, `), we denote the trigonometric Fourier series of u by

F [u] = â0 +
∞∑
n=1

ân cos(nπx
`

) +
∞∑
n=1

b̂n sin(nπx
`

). (3.1.1)

The Fourier coefficients ân and b̂n are given respectively by

ân = 1
cn`

∫ `

−`
u(x) cos(πnx

`
)dx, (3.1.2a)

b̂n = 1
`

∫ `

−`
u(x) sin(πnx

`
)dx, n > 0, (3.1.2b)

where

cn =

2, n = 0;

1, n > 1.

Alternatively, (3.1.1) can be rewritten in the complex form as

F [u] = 1
2`

∑
|n|≤∞

ûne
iπnx
` , (3.1.3)

with the coefficients,

ûn =
〈
u, ei

πnx
`

〉
L2
p

=

∫ `

−`
u(x)e−i

πnx
` dx = `

2


2â0, n = 0;

ân − ib̂n, n > 0;

â−n + ib̂−n, n < 0.

(3.1.4)

It is shown in classical texts on Fourier analysis (for example, see [Gra14, SS03, SW71])

that the collection of exponents
{
e−i

πn
`
x, n ∈ Z

}
, provides a complete orthogonal basis in

L2
p(−`, `). It follows from the standard theory of Hilbert space (see Section 2.3), that any

function u ∈ L2
p(−`, `) can be represented by its Fourier series.

1Everywhere below, we add the subscript p to emphasize that we deal with spaces of periodic functions.
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3.2 Trigonometric approximation of regular functions

Let PN : L2
p(−`, `) → P̄N be the orthogonal projector from L2

p(−`, `) onto P̄N , where

P̄N = span{eiπnx` }N−1
n=−N . We know from Section 2.3 that

PN [u](x) = 1
2`

∑
|n|≤N

ûei
πn
`
x =

∫ `

−`
u(x− t)sin

(π(2N+1)t
2`

)
sin
(
πt
2`

) dt

delivers the best approximation of u in P̄N and, according to Theorem 2.3.2, limN→∞ ‖(I−
PN)[u]‖L2

p
= 0. Hence, it is natural to approximate elements of L2

p(−`, `) by their truncated

Fourier expansions. There is however a practical difficulty. For certain functions u ∈
L2
p(−`, `), the convergence speed of the spectral Fourier projections PN [u] is extremely slow.

Classical analysis, reproduced below (see [Boy00, CQHZ06, HGG07, Kop09, STW11]),

indicates that we can control the convergence rate, provided functions are regular.

Theorem 3.2.1. Assume 0 ≤ α < β, then

‖(I − PN)[u]‖Hα
p
≤ c
(

`
πN

)β−α‖u‖Hβ
p
, (3.2.1)

where c > 0 is an absolute constant.

Proof. The proof is standard (see [HGG07]). We note that in terms of Fourier coefficients

the Sobolev norm in Hα
p (−`, `) := Hα(−`, `) can be written as

‖u‖2
Hα
p

= 1
2`

∑
n∈Z

(
1 +

∣∣πn
`

∣∣2α)|ûn|2.
Since the differentiation and projection commute, we have

‖(I − PN)[u]‖2
Hα
p

= 1
2`

∑
n>|N |

(
1 +

∣∣πn
`

∣∣2α)|ûn|2
= 1

2`

∑
n>|N |

(
1 +

∣∣πn
`

∣∣2β)(1 +
∣∣πn
`

∣∣2α)(
1 +

∣∣πn
`

∣∣2β) |ûn|2
≤ c2

(
`
πN

)2(β−α) 1
2`

∑
n>|N |

(
1 +

∣∣πn
`

∣∣2β)|ûn|2,
and the claim is settled.

18



The error bound (3.2.1) indicates that for functions of finite regularity (parameter β

in Theorem 3.2.1), the convergence rate is at most algebraic in N . In the Sobolev scale

Hβ
p (−`, `), the result is optimal [CQHZ06, HGG07, Kop09]. Faster convergence rates are

obtained for analytic functions. The following result is classical, see [Boy00, CQHZ06,

HGG07, Kop09, STW11] and reference therein.

Theorem 3.2.2. Assume u is analytic in a bounded open region D with a rectifiable bound-

ary ∂D, containing interval [−`, `] in its interior. Then

‖(I − PN)[u]‖Hα
p
≤ cγ

√
2`

2π

(
πN
`

)α+1
e−

πδ
`
N max
z∈∂D

|u(z)|, (3.2.2)

where c > 0 is an absolute constant, δ = infz∈∂D,x∈[−`,`] |z − x| > 0 is the distance from the

interval [−`, `] to the boundary ∂D and γ is the length of the boundary ∂D.

Proof. Under assumption of the Theorem, we have the following Cauchy estimate

|u(m)(x)| ≤ m!
2π

∮
∂D

|u(z)|
|z − x|m+1

d|z| ≤ γ
2π

m!
δm+1 max

z∈∂D
|u(z)|,

which implies, in particular,

‖u‖Hm
p
≤ cγ

√
2`

2π
m!
δm+1 max

z∈∂D
|u(z)|,

with an absolute constant c > 0. In view of (3.2.1), we have

‖(I − PN)[u]‖Hα
p
≤ cγ

√
2`

2π

(
`
πN

)m−α m!
δm+1 max

z∈∂D
|u(z)|,

for all m ≥ α. We have from Stirling’s formula that m! ≤ e1−mmm+1, consequently, letting

m =
π(N + 1)δ

`
in the inequality above, we obtain (3.2.2).

Theorem 3.2.2 indicates that for analytic functions, the approximation error decreases

exponentially fast as the parameter N increases. In the texts on Numerical Analysis,

the phenomenon is referred to as spectral convergence [Boy00, CQHZ06, HGG07, Kop09,

STW11].
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3.3 The discrete Fourier expansion

Unfortunately, the continuous Fourier approximation PN [u] requires evaluation of (3.1.4).

The integral that appears in the right-hand side of the equation may be impossible to

compute analytically and, hence, one is forced to consider approximations by quadratures

[Boy00, HGG07]. In the context of trigonometric Fourier expansions, it is a custom to use

either the composite trapezoidal rule or the implicit mid-point with the nodes uniformly

distributed in [−`, `], [Boy00, HGG07]. The quadratures are given by the expressions∫ `

−`
f(x)dx ≈ I1

2N+1[f ] := `
N

2N−1∑
j=0

f(xj), xj =
`(j −N)

N
, 0 ≤ j ≤ 2N, (3.3.1a)

∫ `

−`
f(x)dx ≈ I2

2N+1[f ] := 2`
2N+1

2N∑
j=0

f(xj), xj =
2`(j −N)

2N + 1
, 0 ≤ j ≤ 2N, (3.3.1b)

respectively. The key property of (3.3.1) is stated below, see [HGG07].

Lemma 3.3.1. The quadrature formulas (3.3.1a) and (3.3.1b) are exact in P̄N−1 and P̄N
respectively, i.e.

Ik2N+1[u] =

∫ `

−`
u(x)dx, k = 1, 2,

provided k = 1 and u ∈ P̄N−1 or k = 2 and u ∈ P̄N .

Proof. It is sufficient to verify the statement for the functions φn(x) = ei
πn
`
x, with |n| ≤ 2N .

Substituting φn into (3.3.1) and taking into account definition of the quadratures nodes,

we infer

I1
2N+1[φn] = `

N

∑
|n|<2N

sin(πn)

sin
(
πn
2N

)e−i πn2N ,

I2
2N+1[φn] = 2`

2N+1

∑
|n|≤2N

sin(πn)

sin
(

πn
2N+1

)e−i πn2N ,

where the last formulas are understood as limits when n = 0. Straightforward summation

gives, ∫ `

−`
φn(x)dx = I1

2N+1[φn] = δn,02`, |n| < 2N,∫ `

−`
φn(x)dx = I2

2N+1[φn] = δn,02`, |n| ≤ 2N,
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and the claim is settled.

Using either of the quadratures, defined above, in practice one approximates the con-

tinuous Fourier coefficients by their discrete counterparts

ŭ1,n = I1
2N+1[uφn] =: 〈u, φn〉1,2N+1, |n| ≤ N, (3.3.2a)

ŭ2,n = I2
2N+1[uφn] =: 〈u, φn〉2,2N+1, |n| ≤ N. (3.3.2b)

The discrete Fourier coefficients give rise to the discrete expansions

I1
2N+1[u](x) = 1

2`

∑
|n|≤N

cnŭ1,ne
iπn
`
x, c−N = cN = 1

2
, cn = 1, |n| ≤ N − 1, (3.3.3a)

I2
2N+1[u](x) = 1

2`

∑
|n|≤N

ŭ2,ne
iπn
`
x, (3.3.3b)

where the coefficients cn in (3.3.3a) compensate inexactness of the composite trapezoidal

rule for trigonometric polynomials of degree 2N .

We observe that the discrete Fourier expansions Ik2N+1[u](x), k = 1, 2, are closely con-

nected with the trigonometric interpolation [Boy00, HGG07]. Direct calculations show

that

I1
2N+1[u](x) =

2N−1∑
j=0

u(xj)

[
cos
(
π
2`

(x−xj)
)

2N

sin
(
πN
`

(x−xj)
)

sin
(
π
2`

(x−xj)
) ] =

2N−1∑
j=0

u(xj)t
1
2N+1,j(x),

I2
2N+1[u](x) =

2N∑
j=0

u(xj)

[
1

2N+1

sin
(
π(2N+1)

2`
(x−xj)

)
sin
(
π
2`

(x−xj)
) ]

=
2N∑
j=0

u(xj)t
2
2N+1,j(x).

Since tk2N,j(xm) = δj,m, it follows that both discrete operators Ik2N+1[u](x), k = 1, 2, interpo-

late u(x) at the quadrature nodes. Note that by Lemma 3.3.1, the interpolation operators

I1
2N+1[·] and I2

2N+1[·] act as the identities in the respective finite dimensional spaces P̄N−1

and P̄N .

Formulas (3.3.2a), (3.3.3a), (3.3.2b) and (3.3.3b) provide a one-to-one linear corre-

spondence between values of function u at the quadrature nodes and its discrete Fourier

coefficients. For both quadrature formulas, the transformation matrix is Fourier [Boy00,

CQHZ06, HGG07, Kop09, STW11], as a consequence, either of the four formulas can be
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computed at the cost of O(N log2N) floating point operations using the classical divide-

and-conquer strategy [Boy00, CQHZ06, HGG07, Kop09, STW11].

3.4 Trigonometric interpolation of regular functions

Unlike the projection operator PN [·] which is bounded as a map from L2
p(−`, `) to P̄N ,

none of the interpolation operators of Section 3.3, is well defined on elements of L2
p(−`, `).

The following result provides a partial substitute.

Lemma 3.4.1. For any α > 1
2
, the operators Ik2N+1 : Hα

p (−`, `) → L2
p(−`, `), k = 1, 2,

satisfy

‖Ik2N+1‖Hα
p→L2

p
≤ cα
√

2N, k = 1, 2, (3.4.1)

where cα > 0 depends on the Sobolev embedding constant from Hα
p (−`, `) to L2

p(−`, `) only.

Proof. In view of (3.3.3a), the L2
p(−`, `) norm of I1

2N+1[u] is given by ‖I1
2N+1[u]‖2 =

1
2`

∑
|n|≤N c

2
n|ŭ1,n|2. On the other hand, by virtue of (3.3.2a), we have

|ŭ1,n| = `
N

2N−1∑
j=0

|u(xj)| ≤ 2`‖u‖L∞ .

Combining the last two formulas together and taking into account that ‖u‖L∞ ≤ cα‖u‖Hα
p
.

By the standard Sobolev embedding (see, (2.4.1)), we conclude that operator I1
2N+1 satisfies

(3.4.1). The proof for I2
2N+1 is identical and omitted.

To proceed further, we observe that for u ∈ P̄N , directly from the definition of Hα
p (−`, `)

norm, we have

‖u‖Hα
p
≤
(
πN
`

)max{0,α−β}‖u‖Hβ
p
, (3.4.2)

for any α, β ≥ 0. Using this fact, properties of the interpolation operators Ik2N+1 and

Lemma 3.4.1, for functions of finite regularity, we obtain

Theorem 3.4.2. Assume γ > 1
2

and β > α+ γ + 1
2
. Then the interpolation error satisfies

‖(I − Ik2N+1)[u]‖Hα
p
≤ c
(

`
πN

)β−α−γ− 1
2‖u‖Hβ

p
, k = 1, 2, (3.4.3)

where c > 0 does not depend on N and/or u.
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Proof. We write

(I − Ik2N+1)[u] = (I − PN−1)[u]− Ik2N+1(I − PN−1)[u].

The first term in the right-hand side of the last identity is bounded by Theorem 3.2.1, i.e.

‖(I − PN−1)[u]‖Hα
p
≤ c
(

`
πN

)β−α‖u‖Hβ
p
.

Let γ > 1
2
, in view of (3.4.1) and (3.4.2), for the second term we obtain

‖Ik2N+1(I − PN−1)[u]‖Hα
p
≤
(

`
πN

)−α‖Ik2N+1(I − PN−1)[u]‖L2
p

≤ cγ
(

`
πN

)−α− 1
2‖(I − PN−1)[u]‖Hγ

p

≤ c
(

`
πN

)β−α−γ− 1
2‖u‖Hβ

p
.

Now the assertion follows directly from the last two estimates.

Comparing Theorems 3.2.1 and 3.4.2, we see that accuracy of the discrete Fourier ex-

pansion drops by the factor O(Nγ+ 1
2 ), as compared to the exact truncated Fourier series.

This is the price we pay by replacing exact Fourier coefficients with their discrete counter-

parts.

For analytic functions, the interpolation error decays geometrically.

Theorem 3.4.3. Assume u is analytic in a bounded open region D with a rectifiable bound-

ary ∂D, containing the interval [−`, `] in its interior. Then

‖(I − Ik2N+1)[u]‖Hα
p
≤ cγ

√
2`

2π

(
πN
`

)α+1
e−

πδ
`
N max
z∈∂D

|u(z)|, k = 1, 2, (3.4.4)

where c > 0 is an absolute constant, δ = infz∈∂D,x∈[−`,`] |z − x| > 0 is the distance from the

interval [−`, `] to the boundary ∂D and γ is the length of the boundary ∂D.

Proof. Following similar steps as in Theorem 3.4.2 and using Theorem 3.2.2, we arrive at

(3.4.4).
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Chapter 4

The Klein-Gordon equation in the

real line

In this Chapter, we discuss the well-posedness of the KGE model posed in the real line.

We start by checking the well-posedness in periodic settings. The result is then extended

to the whole of real line.

4.1 The periodic Klein-Gordon equation

Let Ω = (−`, `), for some ` > 0. We study the following equation

utt = a2∆u− V ′(u), x ∈ Ω, t > 0, (4.1.1a)

u(x, 0) = u0, ut(x, 0) = v0, (4.1.1b)

where V ∈ C2(R), V ≥ 0 in Ω and V(0) = 0 and u is 2`-periodic. The problem is

Hamiltonian, i.e. introducing

U =

 u

v

 =

 u

ut

 , J =

 0 1

−1 0


and

H(U) =
1

2

∫
Ω

(v2 + a2|∇u|2 + 2V(u))dx,
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it is easy to verify that (4.1.1) is equivalent to

Ut = J∇H(U) x ∈ Ω, t > 0, (4.1.2a)

U0 = (u0, v0)T . (4.1.2b)

Also,
d

dt
H(u, v) =

1

2

∫
Ω

(2vvt + 2a2uxtux + 2utV ′(u))dx.

Using equation (4.1.1), integrating by parts and taking into account that v is 2`-periodic,

we infer that

d

dt
H(u, v) =

∫
Ω

(v[a2uxx − V ′(u)] + a2vxux + vV ′(u))dx

= a2

∫
Ω

(−vxux + vxux)dx+ (vux)|∂Ω = 0.

From the above, we conclude that the quantity H(U) is conserved along classical solutions

of (4.1.1).

4.2 Well-posedness in the periodic settings

In what follows, we are interested in showing that (4.1.2) is well-posed in the Hilbert

scale of spaces Hs
p of 2`-periodic functions. For this, we replace equation (4.1.1) with

its weak form. That is instead of (4.1.1), we consider the problem of finding (u, v) ∈
C([0, T ], H1

p )× C([0, T ], L2
p), with (ut, vt) ∈ C([0, T ], L2

p)× C([0, T ], H−1
p ), so that

〈(u, v)t, (φ1, φ2)〉 = 〈v, φ1〉 − a2〈∇u,∇φ2〉 − 〈V ′(u), φ2〉, (4.2.1a)

(u, v)0 = (u0, v0), (4.2.1b)

is satisfied for all (φ1, φ2) ∈ L2
p ×H1

p .

We employ the Galerkin method. In the space of square integrable periodic func-

tions L2
p, we fix the standard orthonormal basis {φn := 1√

2`
e−i

π
`
nx}n∈Z and denote PN =

span{φn}Nn=−N . With the orthonormal basis and the truncation index N , we associate the
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orthogonal projector PN : L2
p → PN . We note that the projection operator PN commutes

with the differentiation.

We approximate (u, v) by (û, v̂) ∈ P2
N , that satisfies

〈(û, v̂)t, (φ1, φ2)〉 = 〈v̂, φ1〉 − a2〈∇û,∇φ2〉 − 〈V ′(û), φ2〉, (4.2.2a)

〈(u0, v0)− (û0, v̂0), (φ1, φ2)〉 = 0, (4.2.2b)

for all (φ1, φ2) ∈ P2
N .

The semi-discrete problem (4.2.2) is again Hamiltonian. Recalling that ût = v̂ and

replacing (φ̂1, φ̂2) with (û, v̂), we infer that

d

dt

(
‖û‖2

L2
p

+ ‖v̂‖2
L2
p

)
=

d

dt

(
‖û‖2

L2
p
− a2‖∇û‖2

L2
p
− 2

∫
Ω

V(û)dx
)
,

which after rearranging of terms yields

2
d

dt
H(û, v̂) =

d

dt

(
‖v̂‖2

L2
p

+ a2‖∇û‖2
L2
p

+ 2

∫
Ω

V(û)dx
)

= 0.

This shows that H(Û) is conserved along Galerkin trajectories and the approximation

satisfies

Ût = JPN
[
∇H(Û)

]
, x ∈ Ω, t > 0, (4.2.3a)

Û0 = (PN [u0],PN [v0])T . (4.2.3b)

4.2.1 Global well-posedness of the Galerkin solutions

In this section, we study in detail the Galerkin solution, generated by (4.2.3). We begin

with the following a priori estimates:

Lemma 4.2.1. Assume (u0, v0) ∈ H1
p × L2

p. Then a Galerkin solution (û, v̂) of (4.2.3)

satisfies

(û, v̂) ∈ C([0, T ], H1
p × L2

p),

(ût, v̂t) ∈ C((0, T ), L2
p ×H−1

p ).

The respective norms are uniformly bounded in N and `.
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Proof. (a) Equations (4.2.3) define a system of ordinary differential equation. If V(u) ∈
C2(R), then the vector field of the system is one-time continuously differentiable, hence the

standard theory of ODE’s (see [AA14, MM07, Tes12]) implies existence of a local solution

(û, v̂) ∈ C(1)((0, T ),PN × PN) ∩ C([0, T ],PN × PN),

for some T > 0. Along the Galerkin trajectories (û, v̂), the Hamiltonian is preserved

2H(û, v̂) = ‖v̂‖2
L2
p

+ a2‖∇û‖2
L2
p

+ 2

∫
Ω

V(û)dx

= ‖v̂0‖2
L2
p

+ a2‖∇û0‖2
L2
p

+ 2

∫
Ω

V(û0)dx = 2H(û0, v̂0).

It follows that ‖v̂‖2
L2
p

, ‖∇û‖2
L2
p

and
∫

Ω
V(û)dx are uniformly bounded for any t > 0. In

particular, for any t > 0

‖v̂‖C([0,t],L2
p) ≤ H(û0, v̂0). (4.2.4)

Furthermore, for any b 6= 0, b ∈ R, we have

û(x− bt, t) = û0(x) +

∫ t

0

(
ût(x− bτ, τ)− b∇û(x− bτ, τ)

)
dτ.

Hence, if t > 0

‖û‖L2
p
≤ ‖û0‖L2

p
+ t(1 + |b|)H(û0, v̂0).

The calculations show that

‖û‖C([0,t],H1
p) ≤ ‖û0‖L2

p
+
[

1
a2

+ (1 + |b|)t
]
H(û0, v̂0). (4.2.5)

Estimates (4.2.4) and (4.2.5) indicate that the solution (û, v̂) does not blow up in a finite

time and hence is well defined in any finite time interval [0, T ].

(b) Directly from the equation, we have ût = v̂, consequently

‖ût‖C((0,T ),L2
p) ≤ H(û0, v̂0). (4.2.6)

It remains to show that the quantity ‖v̂t‖C((0,T ),H−1
p ) is bounded. In view of Theorem 2.4.1,

C([0, T ], H1
p ) ↪→ C([0, T ], L∞), moreover,

‖û‖C([0,T ],L∞) ≤ c`‖û‖
1
2

C([0,T ],L2
p) · ‖û‖

1
2

C([0,T ],H1
p)

≤ c`

[
‖û0‖+

[
1
a2

+ (1 + |b|)T
]
H(û0, v̂0)

]
, (4.2.7)
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where the positive constant c` is uniformly bounded when ` →∞. Further,

|V ′(û)| ≤
∫ |û|

0

|V ′′(s)|ds ≤ max{|V ′′(s)| | , s ∈ [0, ‖û‖C([0,T ],L∞)]} · |û|

≤ C(û0, v̂0, T )|û|, (4.2.8)

where in view of (4.2.7), the positive constant C(û0, v̂0, T ) depends on the initial data

(û0, v̂0), terminal time T and the non-linearity V(u) only. Using (4.2.8), we infer that

‖v̂t‖H−1
p
≤ a2‖∇û‖L2

p
+ sup{|〈V ′(û), φ〉| | ‖φ‖H1

p
= 1}

≤ H(û0, v̂0) + max{|V ′′(s)| | , s ∈ [0, ‖û‖C([0,T ],L∞)]} · ‖û‖C([0,T ],L2
p)

≤
[
1 + C(û0, v̂0, T )T (1 + |b|)

]
H(û0, v̂0) + C(û0, v̂0, T )‖û0‖L2

p
.

The last inequality shows that

‖vt‖C((0,T ),H−1
p ) ≤M(û0, v̂0, T ), (4.2.9)

where the constant M(û0, v̂0, T ) depends on the initial data (û0, v̂0), terminal time T and

the non-linearity V(u) only.

(c) To conclude the proof, we note that the estimates (4.2.4), (4.2.5), (4.2.6) and (4.2.9)

are uniform in N , provided the quantities H(û0, v̂0) and ‖û0‖L2
p

are bounded independently

of N . Since the projector PN and differentiation commute, we have

‖û0‖H1
p

= ‖PNu0‖H1
p
≤ ‖u0‖H1

p
, ‖v̂0‖L2

p
= ‖PNv0‖L2

p
≤ ‖v0‖L2

p

and then

‖û0‖L∞p ≤ c`‖û0‖
1
2

L2
p
· ‖û0‖

1
2

H1
p
≤ c`‖û0‖H1

p
≤ c`‖u0‖H1

p
.

Using the last three inequalities, we infer as in (4.2.8)

‖V(û0)‖L1
p

=

∫
Ω

|V(û0)|dx ≤
∫

Ω

∫ |û0|
0

∫ s

0

|V ′′(τ)|dτdsdx

≤
∫

Ω

∫ |û0|
0

|V ′′(τ)| ·
∣∣|û0| − τ

∣∣dτdx
≤ max{|V ′′(τ)| | τ ∈ [0, ‖û0‖L∞ ]} · ‖û0‖2

L2
p

= B(‖u0‖H1
p
) · ‖u0‖2

L2
p
,
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where B(‖u0‖H1
p
) depends on the initial data u0 and the nonlinearity V(u) only. The

calculations above show that

H(û0, v̂0) ≤ 1

2

[
‖v0‖L2

p
+ a2‖u0‖2

H1
p

+ 2B(‖u0‖H1
p
).‖u0‖2

L2
p

]
, (4.2.10)

uniformly in N . The assertion of the Lemma follows directly from (4.2.4), (4.2.5), (4.2.6),

(4.2.9) and (4.2.10).

In the case of regular initial data, we have the following extension of Lemma 4.2.1.

Lemma 4.2.2. If (u0, v0) ∈ Hs+1
p ×Hs

p and V ∈ Cs+2(R), with s ≥ 0, then

(û, v̂) ∈ C([0, T ], Hs+1
p ×Hs

p),

(ût, v̂t) ∈ C((0, T ), Hs
p ×Hs−1

p ),

uniformly in N and `.

Proof. (a) Since (û, v̂) ∈ P2
N , it follows that:

(û, v̂) ∈ C([0, T ], Hs+1
p ×Hs

p), (4.2.11a)

(ût, v̂t) ∈ C((0, T ), Hs
p ×Hs−1

p ), (4.2.11b)

for all s > 0 as in the finite dimensional space P2
N , all norms are equivalent. We have to

show that the respective norms are uniformly bounded in N and `.

(b) In equation (4.2.2a), we let φ1 = ∂
2(s+1)
x û and φ2 = ∂2s

x v̂, where s ≥ 0 is an integer.

Integrating by parts and using the periodicity of φ1, φ2, û, v̂ we infer that

(−1)1+s d

dt

[
‖∂1+s

x û‖2
L2
p

+ ‖∂sxv̂‖2
L2
p

]
= (−1)s+1(1 + a2)

d

dt
‖∂1+s

x û‖2
L2
p
− 2〈V ′(û), ∂2s

x v̂〉,

which, after simplification, gives

d

dt

[
a2‖∂1+s

x û‖2
L2
p

+ ‖∂sxv̂‖2
L2
p

]
= 2〈∂sxV ′(û), ∂sxv̂〉. (4.2.12)

We estimate the inner product on the right-hand side of the last equation using the Faa di

Bruno formula [Rom80]

∂sxV ′(û) =
s∑

k=1

V(k+1)(û)
∑
|π|=k

∏
πi∈π

∂|πi|x û,
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where the second sum runs over all partitions π = {π1, . . . , πk} of the set {1, . . . , s} that

contain exactly k nonempty and disjoint subsets πi ⊂ {1, . . . , s}.
To begin, we observe that the same arguments as in Lemma 4.2.1, yield the bound

|V(1+k)(û)| ≤ |V(1+k)(0)|+
∫ |û|

0

|V(2+k)(s)|ds

≤ |V(1+k)(0)|+ max{|V(2+k)(s)| | , s ∈ [0, ‖û‖L∞p ]} · ‖û‖L∞p
≤ Ck(u0, v0, T ), k = 1, . . . , s, (4.2.13)

where each quantity Ck(u0, v0, T ) is controlled by the regularity of V(·), the terminal time

T and the initial data (u0, v0) only. Hence, using the Faa di Bruno formula [Rom80],

the Cauchy-Schwartz and Young’s inequalities and the fact that Hs
p are Banach algebras

[AF03], when s > 1
2
, we infer that

2
∣∣〈V ′(û), ∂2s

x v̂〉
∣∣ ≤ C1(u0, v0, T )

[
‖∂sxû‖2

L2
p

+ ‖∂sxv̂‖2
L2
p

]
+

s∑
k=2

Ck(u0, v0, T )
∑
|π|=k

[∏
πi∈π

‖û‖2

H
1+|πi|
p

+ ‖∂sxv̂‖2
L2
p

]
≤Ms(u0, v0, T )‖∂sxv̂‖2

L2
p

+ Fs(‖û‖Hs
p
), (4.2.14)

where Ms(u0, v0, T ) depends on the index s, the terminal time T and ‖u0‖H1
p

and ‖v0‖L2
p
,

while Fs(·) is a polynomial of degree 2s, whose coefficients are controlled by the regularity

of V , the terminal time T and the initial data (u0, v0) only.

(c) Combining (4.2.12) and (4.2.14), we infer that

d

dt

[
a2‖∂1+s

x û‖2
L2
p

+ ‖∂sxv̂‖2
L2
p

]
≤Ms(u0, v0, T )‖∂sxv̂‖2

L2
p

+ Fs(‖û‖Hs
p
), (4.2.15)

for any integer s ≥ 0. The case s = 0 is established in Lemma 4.2.1. Assume s = 1, in view

of Lemma 4.2.1, the quantity F1(‖û‖C([0,T ],H1
p)) is uniformly bounded in N and `. Hence

we can apply Gronwall’s inequality to obtain

a2‖∂2
xû‖2

L2
p

+ ‖∂xv̂‖2
L2
p

≤ exp{TM1(u0, v0, T )}
[
a2‖∂2

xû0‖2
L2
p

+ ‖∂xv̂0‖2
L2
p

+ TF1(‖û‖C([0,T ],H1
p))
]
.
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Since the projection PN and differentiation commute, we have

a2‖∂2
xû0‖2

L2
p

+ ‖∂xv̂0‖2
L2
p
≤ a2‖∂2

xu0‖2
L2
p

+ ‖∂xv0‖2
L2
p
.

Consequently,

(û, v̂) ∈ C([0, T ], H2
p ×H1

p ),

with the respective norms bounded independently of N and/or `.

The uniform bound on ‖v̂t‖C([0,T ],L2
p), follows directly from equation (4.2.2). If we let

φ1 = 0 and φ2 = v̂t and use the already proven fact that the norm ‖û‖C([0,T ],H2
p) is uniformly

bounded in terms of N and `, this settles our claim for s = 1.

(d) With the aid of (4.2.15), the process described in part (c) of the proof, can be

continued inductively for s = 2, 3, . . .. We conclude that Lemma 4.2.2 holds for any s ≥ 0,

provided (u0, v0) ∈ Hs+1
p ×Hs

p and V ∈ Cs+2(R).

4.2.2 Existence and uniqueness

Since the Galerkin solutions are globally defined and satisfy a priori estimates of Lem-

mas 4.2.1 and 4.2.2, we employ the weak compactness argument based on the results,

presented in Section 2.2, to show that a solution to the periodic initial value problem

(4.1.1) does exist and is unique.

Theorem 4.2.3. Suppose that (u0, v0) ∈ H1
p × L2

p. Then problem (4.1.1) admits a weak

solution

(u, v) ∈ L∞([0, T ], H1
p × L2

p),

(ut, vt) ∈ L∞([0, T ], L2
p ×H−1

p ).

Proof. (a) In view of Lemma 4.2.1, the sequences (û, v̂) and (ût, v̂t) are uniformly bounded

in C([0, T ], H1
p×L2

p) and C([0, T ], L2
p×H−1

p ), respectively. Then, according to Lemma 2.2.2,
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there exists a subsequence (û, v̂), such that

û→ u weakly star in L∞([0, T ], H1
p ), (4.2.16a)

v̂ → v weakly star in L∞([0, T ], L2
p), (4.2.16b)

v̂t → vt weakly star in L∞([0, T ], H−1
p ). (4.2.16c)

By Theorem 2.4.1, the embeddings H1
p ↪→ L2

p ↪→ H−1
p are compact, it follows from (4.2.16)

and Theorem 2.4.2 that

û→ u strongly in L2([0, T ], L2
p), (4.2.17a)

v̂ → v strongly in L2([0, T ], H−1
p ). (4.2.17b)

In view of (4.2.17) and Lemma 2.2.3, û converges to u almost everywhere in [0, T ] × Ω,

consequently, V ′(û) converges a.e. to V ′(u) in [0, T ] × Ω. By virtue of (4.2.8), V ′(û) is

uniformly bounded in L∞([0, T ], L2
p). With the aid of Lemma 2.2.4, we conclude that the

quantities V ′(û) converge weakly star to V ′(u) in L∞([0, T ], L2
p).

(b) Using (4.2.16a), (4.2.16b) and Lemma 2.2.5, we see that (û(0), v̂(0)) converges

weakly to (u(0), v(0)) in H1
p × L2

p. On the other hand, by construction (see (4.2.2b)),

(û(0), v̂(0)) converge strongly to (u0, v0) in H1
p × L2

p, hence (u(0), v(0)) = (u0, v0).

(c) In view of parts (a) and (b) of the proof, we fix N0 > 0, (φ1, φ2) ∈ P2
N0

and pass to

the limit in (4.2.2a), to obtain

〈(u, v)t, (φ1, φ2)〉 = 〈v, φ1〉 − a2〈∇u,∇φ2〉 − 〈V ′(u), φ2〉, (4.2.18a)

(u(0), v(0)) = (u0, v0), (4.2.18b)

a.e. in [0, T ]. Note that identity (4.2.18a) holds for any fixed (φ1, φ2) ∈ P2
N0

and any fixed

N0 > 0. Since ∪N>1P2
N is everywhere dense in L2

p × H1
p , we conclude that (4.2.18) holds

a.e. in [0, T ] for all (φ1, φ2) ∈ L2
p ×H1

p , i.e (u, v) satisfies (4.1.1) in the weak sense.

Remark 4.2.1. With an extra effort one can show that convergence of the subsequence

(û, v̂), constructed in Theorem 4.2.3 is strong in L2([0, T ], H1
p × L2

p).
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Proof. By the choice of the subsequence, we have

lim
n→∞

H(û, û) = lim
n→∞

H(û0, û0) = H(u0, v0). (4.2.19)

Directly, from (4.2.18a), it follows that

〈(vt, a2∇u), (φ,∇φ)〉 = −〈V ′(u), φ〉,

for all φ ∈ H1
p and a.e. in [0, T ]. In the last formula, we let φ = PNv and integrate

over interval [0, t], to obtain initially H(PNu,PNv) = H(PNu0,PNv0), and then H(u, v) =

H(u0, v0). Further, for almost all t ∈ [0, T ], we have∣∣∣∣∫
Ω

[V(û)− V(u)]dx

∣∣∣∣ ≤M

∫
Ω

|û− u|dx ≤M |Ω| 12‖û− u‖L2
p

and (4.2.17) implies that
∫

Ω
V(û)dx converges to

∫
Ω
V(u)dx a.e. in [0, T ]. It follows that

a.e. in [0, T ] the following holds

lim
n→∞

[
‖v̂‖2

L2
p

+ a2‖∇û‖2
L2
p

]
= ‖v‖2

L2
p

+ a2‖∇u‖2
L2
p
.

We conclude that

lim
n→∞

‖v̂‖2
L2
p

= ‖v‖L2
p
, lim

n→∞
‖∇û‖2

L2
p

= ‖∇u‖L2
p

and hence, by Lemma 2.3.1, (û, v̂) converges strongly to (u, v) in H1
p × L2

p for almost all

t ∈ [0, T ] and in L2([0, T ], H1
p × L2

p).

Remark 4.2.2. Assuming, as in Lemma 4.2.2 that (u0, v0) ∈ Hs+1×Hs
p and V ∈ Cs+2(R),

with s ≥ 0, and repeating the proof of Theorem 4.2.3, one can show that the weak solutions

satisfy

(u, v) ∈ L∞([0, T ], Hs+1
p ×Hs

p),

(ut, vt) ∈ L∞((0, T ), Hs
p ×Hs−1

p ).

In particular, if s ≥ 1, the solutions are classical.

Theorem 4.2.4. The weak solution (u, v) ∈ L∞([0, T ], H1
p×L2

p) obtained in Theorem 4.2.3

is unique.
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Proof. Assume there exists another solution (u, v) ∈ L∞([0, T ], H1
p × L2

p) that satisfies

(4.2.18). We let (e1, e2) = (u− u, v − v) ∈ H1
p (Ω× L2

p). Then the error satisfies

〈(e1, e2)t, (φ1, φ2)〉 = 〈e2, φ1〉 − a2〈∇e1,∇φ2〉 − 〈V ′(u)− V ′(u), φ2〉, (4.2.20a)

(e1, e2) = 0, (4.2.20b)

for all (φ1, φ2) ∈ L2
p ×H1

p . As in Remark 4.2.1, we infer that

‖e1‖2
L2
p
≤
∫ t

0

(
‖e1‖2

L2
p

+ ‖e2‖2
L2
p

)
dτ,

‖e2‖2
L2
p

+ a2‖∇e1‖2
L2
p
≤ 2

∫ t

0

|〈V ′(u)− V ′(u), e2〉|dτ

≤ 2M

∫ t

0

〈|e1|, |e2|〉dτ ≤M

∫ t

0

(
‖e1‖2

L2
p

+ ‖e2‖2
L2
p

)
dτ.

Adding the inequalities together, we have

‖e1‖2
L2
p

+ a2‖∇e1‖2
L2
p

+ ‖e2‖2
L2
p
≤ (1 +M)

∫ t

0

(
‖e1‖2

L2
p

+ a2‖∇e1‖2
L2
p

+ ‖e2‖2
L2
p

)
dτ.

Gronwall’s inequality indicates that ‖e1‖H1
p

= ‖e2‖L2
p

= 0 for all t ∈ [0, T ] and we conclude

that (u, v) = (u, v) in L∞([0, T ], H1
p × L2

p).

4.2.3 Propagation of the initial data

The formulation (4.1.2) can be written in the form of the semilinear abstract Cauchy

problem

Ut = AU + F(U), U(0) = U0, (4.2.21)

where A = diag{1,−a2∆}J generates a strongly continuous group {eAt}t∈R of unitary

operators in each of the spaces Hs
p .

Applying the variation of constants formula to (4.2.21), for classical solutions we have

U(t) = eAtU0 +

∫ t

0

eA(t−τ)F(U(τ))dτ, t ∈ R. (4.2.22)

Assume now the initial data U0 is supported compactly in the interior of Ω, i.e.

suppU0 ⊂ (x0 − ε, x0 + ε) ( Ω, x0 ∈ Ω, ε > 0 and t is small. By virtue of D’Alembert
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formula, we have

eAtU0 = 1
2

 u0(x+ at) + u0(x− at) + 1
a

∫ x+at

x−at v0(s)ds

(1 + a)v0(x+ at) + (1− a)v0(x− at)

 , x ∈ Ω.

The identity above indicates that the initial data propagates with finite speed a and

supp eAtU0 ⊂ [x0 − ε − at, x0 + ε + at] ( Ω, provided t < 1
a

min{` − x0 − ε, ` + x0 − ε}.
Let χx0,T,ε be the characteristic function of the set Ω \ [x0 − ε − aT, x0 + ε + aT ], with

T < 1
a

min{` − x0 − ε, ` + x0 − ε}. Then for t ∈ [0, T ], the solution U(t) emanating from

the initial data suppU0 ∈ [x0 − ε, x0 + ε] satisfies

‖χx0,T,εU(t)‖L2
p

=
∥∥∥∫ t

0

χx0,T,εe
A(t−τ)

[
χx0,τ,εF(U(τ)) + (1− χx0,τ,ε)F(U(τ))

]
dτ
∥∥∥
L2
p

≤
∫ t

0

‖χx0,τ,εF(U(τ))‖L2
p
dτ,

where we employed the identities ‖eAt‖L2
p

= 1 and χx0,T,εe
A(t−τ)(1 − χx0,τ,ε)F(U(τ)) = 0,

τ ∈ [0, t], that follow directly from the unitarity of the group {eAt}t∈R and the D’Alembert

formula.

By definition of the map F(·), we have F(0) = 0, furthermore, the nonlinearity is

locally Lipschitz continuous (i.e. ‖F(U)−F(V )‖L2
p
≤ L(U, V )‖U − V ‖L2

p
). Hence,

‖χx0,T,εU(t)‖L2
p
≤
∫ t

0

L(U(τ), 0)‖χx0,T,εU(τ)‖L2
p
dτ.

Applying the Gronwall lemma to the last inequality, we conclude that for small values of

T , ‖χx0,T,εU(t)‖L2
p

= 0, t ∈ [0, T ].

In calculations above, the size of T > 0 is controlled by the support of the initial data

and by the Lipschitz constant L = supt∈[0,T ] L(U(τ), 0). Using the standard continuation

technique, it is not difficult to verify that for globally defined classical solutions, the latter

restriction can be suppressed. Hence, we conclude that classical solutions of nonlinear

problem (4.1.1) propagate with finite speed a. That is, if suppU0 ⊂ [x0 − ε, x0 + ε] then

suppU(t) ⊂ [x0 − ε− at, x0 + ε+ at] ( Ω, provided t < 1
a

min{`− x0 − ε, `+ x0 − ε}.
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4.3 Well-posedness in the real line

The discussion presented in Subsection 4.2.3 allow us to extend the well-posedness analysis

from the periodic settings to the whole of real line.

Theorem 4.3.1. Suppose (u0, v0) ∈ Hs+1(R) × Hs(R), s ≥ 0, then the Klein-Gordon

equation

utt = a2∆u− V ′(u), x ∈ R, t > 0, (4.3.1a)

u(x, 0) = u0, ut(x, 0) = v0, (4.3.1b)

admits a unique global weak solution in the real line R. The solution is classical when

s ≥ 1.

Proof. (a) From the analysis presented in Section 4.2 it follows that for any compactly

supported initial data (u0, v0) ∈ Hs+1(R) × Hs(R), s ≥ 0, and any finite time-interval

[0, T ], there exist a unique weak solution:

(u, v) ∈ L∞([0, T ], Hs+1
p (R)×Hs

p(R)),

(ut, vt) ∈ L∞([0, T ], Hs
p(R)×Hs−1

p (R)).

Indeed, such initial data can be fitted into a very large finite interval Ω = (−`, `) so

that solution to the periodic problem with the data supp(u0, v0) ⊂ (−`, `) is compactly

supported in [−`, `]× [0, T ]. Therefore, the solution of the periodic problem, extended by

zero in (R \ [−`, `])× [0, T ], solves the Klein Gordon equation in the real line R.

(b) The Schwartz class D(R) of C∞(R) and compactly supported functions is dense

in each of the spaces Hs(R), s ≥ 0 (see e.g. [AF03]). Hence, any initial data (u0, v0) ∈
Hs+1(R) × Hs(R), s ≥ 0 can be approximated by a sequence (u0n, v0n)n≥0 of compactly

supported and smooth functions. Each tuple (u0n, v0n)n≥0 gives rise to a weak solution

(un(t), vn(t)) of the Klein-Gordon equation in the real line.

Using the same approach as in Theorem 4.2.4, it is not difficult to verify that the
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sequence {(un(t), vn(t))}n≥0 converges strongly to a weak solution

(u, v) ∈ L∞([0, T ], Hs+1
p (R)×Hs

p(R)),

(ut, vt) ∈ L∞([0, T ], Hs
p(R)×Hs−1

p (R)),

of (4.3.1). Finally, uniqueness of weak solutions in context of the real line follows as in the

proof of Theorem 4.2.4.
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Chapter 5

The Fourier-type pseudo-spectral

scheme for the nonlinear KGE

In this Chapter, we present a Fourier-type pseudo-spectral scheme for solving nonlinear

KGE models with smooth nonlinearities. As it follows from the title of the Chapter, we

approximate the exact solutions by the means of formula

(u, v) = 1
2`

∑
|n|≤N

(u, v)(t)φn(x),

where the unknown discrete Fourier coefficients are chosen so that

〈(u, v)t, (φ1, φ2)〉 = 〈v, φ1〉 − a2〈∇u,∇φ2〉 − 〈I2
2N+1[V ′(u)], φ2〉, (5.0.1a)

〈(u0, v0)(xj) = (u0, v0)(xj)〉, j = 0, 1, . . . , 2N, (5.0.1b)

for all (φ1, φ2) ∈ P̄N . As in Section 4.2, we observe that the finite dimensional ODE (5.0.1)

is Hamiltonian, i.e. (5.0.1) is equivalent to

U t = J∇H(U), t > 0, (5.0.2a)

U0 = (I2
2N+1[u0], I2

2N+1[v0])T = (ū0, v̄0)T , (5.0.2b)

where Ū = (ū, v̄)T ∈ P̄2
N and the discrete Hamiltonian is given by

H(u, v) =
1

2

∫
Ω

(v2 + a2|∇u|2 + 2I2
2N+1[V(u)])dx. (5.0.2c)
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5.1 Stability analysis

As in Lemma 4.2.1, the hamiltonicity of the pseudo-spectral semi-discretization (5.0.1)

guarantees the numerical solutions remain uniformly bounded.

Lemma 5.1.1. For any t > 0, the numerical solution (ū, v̄) of (5.0.1) satisfies

‖∇ū‖(C[0,T ],L2
p) ≤ H̄(ū0, v̄0), (5.1.1a)

‖v̄‖(C[0,T ],L2
p) ≤ H̄(ū0, v̄0), (5.1.1b)

‖ū‖(C[0,T ],L2
p) ≤ ‖ū0‖L2

p
+ ctH̄(ū0, v̄0), (5.1.1c)

‖ū‖(C[0,T ],L∞) ≤ ‖ū0‖L2
p

+ ct
1
2 H̄(ū0, v̄0), (5.1.1d)

where the generic constant c > 0 is independent on (ū, v̄) and/or N > 0. In addition, if

u0 ∈ Hα
p (−`, `) and v0 ∈ Hβ

p (−`, `), with α > 2 and β > 1, then

H̄(ū0, v̄0) ≤ C(‖u0‖Hα
p
, ‖v0‖Hβ

p
), (5.1.2a)

‖ū0‖L2
p
≤ ‖u0‖Hα

p
+ c‖u0‖Hα

p
, (5.1.2b)

where function C(·, ·) > 0 and generic constant c > 0 are independent on the initial data

(u0, v0) and/or N > 0.

Proof. (a) The proof of (5.1.1) is identical to the proof of part (a) in Lemma 4.2.1 and is

omitted.

(b) To show that (5.1.2) holds, we employ Theorem 3.4.2. For some γ > 1
2

this gives the

bound

‖ū0‖L2
p
≤ ‖u0‖L2

p
+ ‖(I − I2

2N+1)[u0]‖L2
p

≤ ‖u0‖L2
p

+ c
(

`
πN

)α−γ− 1
2‖u0‖Hα

p
≤ ‖u0‖L2

p
+ c‖u0‖Hα

p
,

which holds uniformly for all N > 0, provided α > 1. When α > 2 and β > 1, the same

procedure yields also

‖v̄0‖L2
p
≤ ‖v0‖L2

p
+ c‖v0‖Hβ

p
,

‖∇ū0‖L2
p
≤ ‖ū0‖H1

p
≤ ‖u0‖H1

p
+ c‖u0‖Hα

p
.
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Finally, taking into account accuracy of the discrete quadrature (see Lemma 3.3.1) and the

Sobolev Embedding Theorem 2.4.1, for smooth potentials V(u) we have∫
Ω

I2
2N+1[V(ū0)]dx = 2`

2N+1

2N∑
j=0

∣∣∣∣∣
∫ u0(xj)

0

V ′(s)ds
∣∣∣∣∣

≤ 2` sup{|V ′(s)| | 0 ≤ s ≤ ‖u0‖L∞}‖u0‖L∞ ≤ c‖u0‖H1
p
.

Combining our estimates and the definition of H̄(ū, v̄) (see formula (5.0.2c)), we arrive at

(5.1.2).

Next, we show that our numerical scheme (5.0.1) depends continuously on the input

data, i.e. it is stable.

Lemma 5.1.2. Let (ūi, v̄i), i = 1, 2 be two solutions of the following perturbed problems: 〈(ūi, v̄i)t, (φ1, φ2)〉 = 〈v̄i, φ1〉 − a2〈∇ūi,∇φ2〉 − 〈I2
2N+1[V(ūi)], φ2〉+ 〈f i, φ2〉,

(ûi(0), v̂i(0)) = (ûi0, v̂
i
0), for all (φ1, φ2) ∈ P̄N ,

(5.1.3)

that satisfy the estimates (5.1.1) and (5.1.2) of Lemma 5.1.1. If (e1, e2) = (ū2, v̄2)−(ū1, v̄1),

then in any finite time interval [0, T ], the following is true:

‖e1‖(C([0,T ]),H1
p) + ‖e2‖(C([0,T ]),L2

p) ≤ c
[
‖e10‖H1

p
+ ‖e20‖L2

p
+ ‖f 1 − f 2‖L2([0,T ]×(−`,`))

]
, (5.1.4)

where the constant c > 0 does not depend on N > 0.

Proof. Subtracting equations with i = 1 and i = 2 from each other, we obtain
〈(e1, e2)t, (φ1, φ2)〉 = 〈e2, φ1〉 − a2〈∇e1,∇φ2〉

−〈I2
2N+1[V(ū1)− V(ū2)], φ2〉+ 〈(f 2 − f 1), φ2〉,

(e1(0), e2(0)) = (e10, e20), for all (φ1, φ2) ∈ P̄N .

(5.1.5)

Letting (φ1, φ2) = (e1, e2) and taking into account that e1t = e2, we have

1

2

d

dt

[
‖e2‖2

L2
p

+ a2‖∇e1‖2
L2
p

]
= 〈(f 2 − f 1), e2〉 − 〈I2

2N+1[V(ū1)− V(ū2)], e2〉. (5.1.6)
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By Lemma 3.3.1 the quadrature is exact in P̄N . Therefore, with the aid of the Cauchy-

Schwartz and Young’s inequalities, we infer∣∣〈Ik2N+1[V(ū1)− V(ū2)], e2〉
∣∣ ≤ 2`

2N + 1

2N∑
j=0

|e2(xj)|
∣∣∣∣∣
∫ ū2(xj)

ū1(xj)

V ′′(s)ds
∣∣∣∣∣

≤ c
2`

2N + 1

2N∑
j=0

|e2(xj)||e1(xj)|

≤ c‖e1‖L2
p
‖e2‖L2

p
≤ c

2

[
‖e1‖2

L2
p

+ ‖e2‖2
L2
p

]
,

where

c = max
{
V ′′(s)

∣∣∣ |s| ≤ max{‖ū1‖C([0,T ],L∞), ‖ū2‖C([0,T ],L∞)}
}

≤ max
{
V ′′(s)

∣∣∣ |s| ≤ ‖u0‖H1
p

+ c‖u0‖Hα
p

}
is independent of N > 0, by virtue of (5.1.2b).

The last estimate, combined with (5.1.6), yields the bound

d

dt

[
‖e2‖2

L2
p

+ a2‖∇e1‖2
L2
p

]
≤ c
[
‖e1‖2

L2
p

+ ‖e2‖2
L2
p

]
+ ‖f 1 − f 2‖2

L2
p
, (5.1.7)

where as before the generic constant c > 0 is independent of N > 0. Similarly, letting

(φ1, φ2) = (e1, 0) in (5.1.5) and using Young’s inequality, we have:

d
dt
‖e1‖2

L2
p
≤ ‖e1‖2

L2
p

+ ‖e2‖2
L2
p

(5.1.8)

To end the proof, we add (5.1.7) and (5.1.8) together and apply Gronwall’s inequality to

obtain (5.1.4) and the claim is settled.

5.2 Consistency and convergence

Let u be the exact weak solution of (4.1.1). ForN > 0, and we denote (û, v̂) = (PN [u],PN [v])

and (û(0), v̂(0)) = (PN [u]0,PN [v]0). It is not difficult to show that the spectral projection

(û, v̂) satisfies: 〈(û, v̂)t, (φ1, φ2)〉 = 〈v̂, φ1〉 − a2〈∇û,∇φ2〉 − 〈I2
2N+1[V ′(û)], φ2〉+ 〈DN(u), φ2〉,

(û(0), v̂(0)) = (PN [u0],PN [v0]), for all (φ1, φ2) ∈ P̄2
N ,

(5.2.1)

41



where the quantity DN(u) = I2
2N+1[V ′(û)] − PN [V ′(u)] is known as the defect. In what

follows, we show that defect DN(u) is small, provided the exact solution is sufficiently

regular.

Lemma 5.2.1. Let s > 3
2
, then

‖DN(u)‖L2
p
≤ c
(

`
πN

)s−3
2

(
‖u‖Hs

p
+ Fs(‖u‖Hs

p
)
)
, (5.2.2)

where c > 0 does not depend on N > 0.

Proof. We recall that I2
2N+1 is identity in P̄N , therefore

‖DN(u)‖L2
p

= ‖I2
2N+1[V ′(û)]− PN [V ′(u)]‖L2

p

= ‖I2
2N+1

[
V ′(û)− PN [V ′(u)]

]
‖L2

p
.

We infer from Lemma 3.4.1

‖DN(u)‖L2
p
≤ cα
√

2N‖[V ′(û)]− PN [V ′(u)]‖Hα
p

≤ cα
√

2N
[
‖V ′(û)− V ′(u)‖Hα

p
+ ‖(I − PN)[V ′(u)]‖Hα

p

]
=: cα

√
2N
[
‖E1‖Hα

p
+ ‖E2‖Hα

p

]
,

with some 1
2
< α ≤ 1. To bound ‖E1‖Hα

p
, we proceed as in the estimate (4.2.8) to obtain

initially

‖E1‖L2
p
≤ c0‖(I − PN)[u]‖L2

p
, (5.2.3)

where c0 = max{|V ′′(s)|||s| ≤ ‖u‖L∞([0,T ]×(−`,`))}. We also note that

‖∇E1‖2
L2
p
≤
∫

Ω

|V ′′(û)∇û− V ′′(u)∇u|2dx.

Taking into account the regularity of V(·) and in the same way as in (4.2.8), we have

‖∇E1‖L2
p
≤ ‖V ′′(û)∇(I − PN)[u]‖L2

p
+ ‖[V ′′(û)− V ′′(u)]∇u‖L2

p

≤
(
c0 + c1‖∇u‖L∞p

)
‖(I − PN)[u]‖H1

p
,

where c1 = max{|V ′′′(s)|||s| ≤ ‖u‖L∞([0,T ]×(−`,`))}. With the aid of Theorem 3.2.1, we have

that

‖E1‖H1
p
≤
(
2c0 + c1‖∇u‖L∞p

)(
`
πN

)s−1‖u‖Hs
p
. (5.2.4)
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Next, we bound ‖E2‖Hα
p
, again by Theorem 3.2.1, we have

‖E2‖Hα
p
≤ c2

(
`
πN

)s−α‖V ′(u)‖Hs
p
.

Also, if V ∈ Cs+2, then the Faa di Bruno formula and the fact that Hs
p is a Banach algebra

yields as in (4.2.14) that

‖E2‖Hα
p
≤ c2

(
`
πN

)s−α
Fs(‖u‖Hs

p
)
1
2 . (5.2.5)

Where Fs(·) is a polynomial of degree 2s, whose coefficients are controlled by the regularity

of V . Formulas (5.2.4) and (5.2.5), combined together, imply (5.2.2).

Remark 5.2.1. In fact, results of Chapter 3 imply that the defect DN(u) is exponentially

small provided u and V are analytic. Indeed, when u and V(u) are analytic in the strip

Sδ = {|Im z| < δ} ⊂ C and continuous on its boundary ∂Sδ, from Theorem 3.4.3 we infer

‖D(u)‖L2
p
≤ c

(
πN
`

) 5
2 e−

πδ
`
N
[
‖u‖L∞(∂Sδ) + ‖V ′(u)‖L∞(∂Sδ)

]
, (5.2.6)

where the generic constant c > 0 does not depend on u, V ′(u) and N > 0.

With the aid of Lemma 5.1.2 and 5.2.1, we obtain the main result of this section.

Theorem 5.2.2. Assume γ > 1
2

and s > 3
2

+ γ. Then

‖ū− u‖C([0,T ],H1
p) + ‖v̄ − v‖C([0,T ],L2

p)

≤ c
(

`
πN

)s− 3
2
−γ
[
‖u0‖Hs

p
+ ‖v0‖Hs−1

p
+Gs(‖u‖C([0,T ],Hs

p))
]
,

(5.2.7)

where Gs(·) = ·+Fs(·), function Fs(·) is defined in Lemma 5.2.1 and the generic constant

c > 0 does not depend on u and N > 0 but depends on T > 0.

Proof. We apply stability Lemma 5.1.2 to the couple of problems (5.0.1) and (5.2.1). In

view of Lemma 5.2.1 and Theorem 3.4.2, this gives

‖ū− û‖H1
p

+ ‖v̄ − v̂‖L2
p
≤ c
[
‖(Ik2N+1 − PN)[u0]‖H1

p
+ ‖(Ik2N+1 − PN)[v0]‖L2

p

+ ‖DN(u)‖L2([0,T ])×(−`,`)

]
≤ c
(

`
πN

)s− 3
2
−γ
[
‖u0‖Hs

p
+ ‖v0‖Hs−1

p
+Gs(‖u‖C([0,T ],Hs

p))
]
,
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where c > 0 does not depend on u and N > 0 but depends on T > 0. Since ‖(ū, v̄) −
(u, v)‖L2

p
≤ ‖(ū, v̄)− (û, v̂)‖L2

p
+ ‖(I −PN)[(u, v)]‖L2

p
, straightforward application of Theo-

rem 3.2.1 completes the proof.

Theorem 5.2.2 shows that the numerical scheme (5.0.1) converges algebraically, pro-

vided that the exact solution is sufficiently smooth.

Remark 5.2.2. In view of Theorems 3.2.2, 3.4.2 and Remark 5.2.1, the discretization

error decays geometrically if the exact solution (u, v) and potential V are analytic in the

strip Sδ. In this case, we have

‖ū− u‖C([0,T ],H1
p) + ‖v̄ − v‖C([0,T ],L2

p)

≤ c
(
πN
`

) 5
2 e−

πδ
`
N
[
‖v0‖L∞(Sδ) + ‖u‖C([0,T ],L∞(Sδ)) + ‖V ′(u)‖C([0,T ],L∞(Sδ))

]
,

(5.2.8)

where the generic constant c > 0 does not depend on (u, v), V ′(u) and N > 0 but depends

on T > 0.

The results of Subsection 4.2.3 imply, that in finite time intervals, the numerical scheme

(5.0.1) is applicable to KGE models on the real line, provided the initial data is compactly

supported. Since any (square integrable on R) initial data can be approximated with arbi-

trary accuracy by compactly supported functions, we conclude that (5.0.1) yields spectrally

accurate numerical solutions in R, provided the truncation parameter ` > 0 is sufficiently

large.
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Chapter 6

Implementation and simulations

In this Chapter, we present a brief discussion of several practical issues arising in connection

with our scheme (5.0.1) and demonstrate its numerical accuracy and performance in a series

of practical simulations.

6.1 Implementation

The numerical scheme (5.0.1) can be written in the form of the semi-linear Cauchy problem

Ut = AU + F(U), U(0) = U0. (6.1.1)

Since exact solutions to the ODE (6.1.1) are not known, we shall integrate the system of

ODE using an appropriate time-stepping algorithm. Two practical issues in connection

with the time-stepping are discussed below.

6.1.1 Efficient evaluation of the semi-discrete vector field

Any time-stepping algorithm evaluates the right-hand side of (6.1.1) several times per time

integration step. Hence, minimizing the computational cost of this procedure is critical for

the overall efficiency of the numerical code. In context of (5.0.1), the computational cost is

minimized when the linear part AU is evaluated in Fourier space1, while the nonlinearity

1Note that in this case AU reduces to the matrix vector multiplication with a diagonal matrix.
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F(U) is best computed directly in the physical space. Implemented this way, both opera-

tions require O(N) floating point operations. It follows from the above that irrespective of

the concrete choice of the computational space (Fourier or physical), the procedure involves

use of direct and inverse discrete Fourier transforms (3.3.2) and (3.3.3). As noted in Sec-

tion 3.3, both operations can be accomplished in O(N log2N) flops. Hence, the minimal

computational cost of evaluating the semi-discrete KGE vector field is O(N log2N).

6.1.2 Time-stepping

For large values of N , ODE (6.1.1) is stiff and integrating using standard Runge-Kutta

explicit ODE solvers will be difficult. Also, the problem is Hamiltonian with symplectic

flow. In order to handle the stiffness and preserve the flow associated with the symplectic

structure of (6.1.1), we resort to a Strang-type symmetric splitting technique (see [HLW06]

and references therein). That is, we rewrite the numerical Hamiltonian as

H(ū, v̄) = 1
2

(
〈v̄, v̄〉+ a2〈∇ū,∇ū〉

)
+

∫
Ω

I2
2N+1[V(ū)] =: H1(ū, v̄) +H2(ū) (6.1.2a)

and consider couple of problems

(ū, v̄)t = J∇H1(ū, v̄), (6.1.2b)

(ū, v̄)t = J∇H2(ū), (6.1.2c)

whose exact flows are given by Ψ1
t and Ψ2

t , respectively. With this notation, a one step of

length τ of our Strang-type time-stepping splitting scheme can be written as

(ū, v̄)(t+ τ) =
[
Ψ1
τ/2 ◦Ψ2

τ ◦Ψ1
τ/2

]
(ū, v̄)(t) =: Φτ (ū, v̄)(t). (6.1.3)

Since each of the flows Ψ1
t and Ψ2

t is symmetric, symplectic and can be computed exactly,

(6.1.3) gives an A-stable, explicit, symmetric and symplectic Strang-type numerical scheme

of classical order p = 2. In order to increase the convergence rate, we employ the symmetric

composition approach described in [HLW06], i.e. instead of Φτ , we use

Φs
τ = Φγ1τ ◦ · · · ◦ Φγsτ , (6.1.4)
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with s = 17 and

γ1 =γ17 = 0.13020248308889008087881763,

γ2 =γ16 = 0.56116298177510838456196441,

γ3 =γ15 = −0.38947496264484728640807860,

γ4 =γ14 = 0.15884190655515560089621075,

γ5 =γ13 = −0.39590389413323757733623154,

γ6 =γ12 = 0.18453964097831570709183254,

γ7 =γ11 = 0.25837438768632204729397911,

γ8 =γ10 = 0.29501172360931029887096624,

γ9 = −0.60550853383003451169892108.

The procedure described above yields A-stable, explicit, symplectic and symmetric time-

stepping scheme of classical order p = 8. In view of Subsection 6.1.1, the overall computa-

tional complexity of one time-integration step described above is O(N log2N).

6.2 Numerical simulations

In this section, we present several numerical simulations demonstrating the numerical per-

formance of our scheme. As a reference problem, we take the Sine-Gordon equation (SGE),

utt = ∆u− sin(u), x ∈ R, t > 0, (6.2.1a)

u(0) = u0, ut(0) = v0, (6.2.1b)

which is a particular type of KGE, with V(u) = 1 − cosu. Problem (6.2.1) is known

to be completely integrable via inverse scattering method (see [NMPZ84] and references

therein). In our simulations, we make use of a subclass of exact solutions that describe

propagation of n nonlinear traveling waves, known as n-solitons. These are given explicitly
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by the formulas [NMPZ84]

V = (vkj)
n
k,j=1, vkj =

cj
λk+λj

exp
(
2iλjx− it

2λj

)
, (6.2.2a)

u = −4 arg det(I + V ), (6.2.2b)

where parameters cj and λj control the phase shift and the velocity of the associated

traveling wave, respectively.

Using (6.2.2) one can verify that n-soliton solutions are analytic in a strip containing the

real axis and are square integrable there, whenever n is even, λ2i−1 = −λ2i and parameters

c2i−1 = c2i are real. Hence, in this settings, the convergence theory developed in Chapter 5

applies.

6.2.1 A single breather

In our first example, we simulate the dynamics of a coupled pair of a soliton and an

anti-soliton (known as a breather). We let n = 2,

λ1 = 2+2i√
8
, λ2 = −2+2i√

8

and ci = 1, i = 1, 2. With this settings, the breather components travel with the same

constant speed of v = 4|λi|2−1
4|λi|2+1

= 3
5

in the positive direction of x-axis. The results of

simulations in time interval [0, 10] are shown in Fig. 6.1.

The numerical solution, the pointwise and L2-errors are plotted in the left- and the

right-top diagrams and in the left-middle diagram of Fig. 6.1, respectively. The figures

indicate that reasonable choice of the truncation parameter ` yields very accurate numerical

results already for moderate values of N (N = 26 and ` = 5 log2N in our simulation). In

fact, the exact solution is analytic in a strip containing the real axis and decays to zero

exponentially at ±∞. The situation is ideal and, in view of Remark 5.2.2, we expect

geometric convergence. As illustrated by the left-bottom diagram of Fig. 6.1, this is indeed

the case. Both L2(R) and L∞(R) errors (blue and teal lines, respectively), obtained with

23 ≤ N ≤ 28 and ` = 5 log2N , decrease geometrically as N increases.
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The middle-right diagram (N = 26) and the red line in the bottom-left diagram il-

lustrate the conservation properties of the semi-discretization (5.0.1), coupled with the

composite time-stepping scheme (6.1.4). Since the space discretization preserves the hamil-

tonicity of the continuous model and the time discretization preserves symplecticity of the

flow, the deviation in the semi-discrete Hamiltonian H̄(ū, v̄) remains small (near 10−14) in-

dependently of N . Finally, the work-precision diagram (the bottom-right panel of Fig. 6.1)

demonstrates the overall efficiency of our scheme.

6.2.2 Two breathers interaction (A)

In our second example, we simulate an interaction of a stationary and a moving breather.

To construct the exact solution, we employ (6.2.2) with n = 4,

λ1 = 1+i√
8
, λ2 = −1+i√

8
, λ3 = 2+2i√

8
, λ4 = −2+2i√

8

and ci = 1, i = 1, . . . , 4. We take the same values for parameters ` and N as in Exam-

ple 6.2.1 and integrate the initial value problem (6.2.1) in the time interval [0, 10]. The

results of numerical simulations, plotted in Fig. 6.2, demonstrate the same qualitative fea-

tures as in Example 6.2.1. Again due to the analyticity of the exact solution, the L2- and

L∞-errors (blue and teal lines in the left-bottom diagram, respectively) decrease geometri-

cally as N increases and the scheme preserves the semi-discrete first integral H̄(ū, v̄) almost

exactly.

6.2.3 Two breathers interaction (B)

To provide further illustration, we slightly modify the settings of Example 6.2.2, i.e. we let

λ3 = 3+2i√
8
, λ4 = −3+2i√

8
,

leave the remaining parameters unchanged and repeat the calculations of Example 6.2.2.

As shown in Fig. 6.3, the results of simulations are almost identical to those obtained in

Example 6.2.2.
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6.2.4 Three breathers interaction

In our last example, we take n = 6,

λ1 = 1+i√
8
, λ2 = −1+i√

8
, λ3 = 2+2i√

8
, λ4 = −2+2i√

8
, λ5 = 3+3i√

8
, λ6 = −3+3i√

8
,

ci = 1, i = 1, . . . , 6. This yields a three moving soliton/anti-soliton pairs. The simulations,

with 23 ≤ N ≤ 28 and ` = 5 log2N are displayed in Fig. 6.4. We see that the qualitative

behavior of both L2(R) and L∞(R) errors (blue and teal lines, respectively) is the same as

those observed in all our previous simulations. The errors decay geometrically as predicted

by Theorem 5.2.2 and the time-stepping scheme preserves the semi-discrete first integral

almost exactly.
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Figure 6.1: The numerical solution of (6.2.1) (left to right and top to bottom): ū, |u− ū|,
‖u− ū‖L2 , |H(ū, v̄)−H(ū0, v̄0)|, with N = 26; ‖u− ū‖L2(R) (blue), ‖u− ū‖L∞(R) (teal), and

|H(ū, v̄)−H(ū0, v̄0)| (red), work-precision diagram.
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ū
‖ L

2

0 2 4 6 8 10

0

2

4

6

8

·10−14

N

|H̄
(ū
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Figure 6.2: The numerical solution of (6.2.1) (left to right and top to bottom): ū, |u− ū|,
‖u− ū‖L2 , |H(ū, v̄)−H(ū0, v̄0)|, with N = 26; ‖u− ū‖L2(R) (blue), ‖u− ū‖L∞(R) (teal), and

|H(ū, v̄)−H(ū0, v̄0)| (red), work-precision diagram.
52



−10
0

10

0

5

−4

−2

0

2

4

x

t

ū
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Figure 6.3: The numerical solution of (6.2.1) (left to right and top to bottom): ū, |u− ū|,
‖u− ū‖L2 , |H(ū, v̄)−H(ū0, v̄0)|, with N = 26; ‖u− ū‖L2(R) (blue), ‖u− ū‖L∞(R) (teal), and

|H(ū, v̄)−H(ū0, v̄0)| (red), work-precision diagram.
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Figure 6.4: The numerical solution of (6.2.1) (left to right and top to bottom): ū, |u− ū|,
‖u− ū‖L2 , |H(ū, v̄)−H(ū0, v̄0)|, with N = 26; ‖u− ū‖L2(R) (blue), ‖u− ū‖L∞(R) (teal), and

|H(ū, v̄)−H(ū0, v̄0)| (red), work-precision diagram.
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Chapter 7

Conclusion

In this dissertation, we provided theoretical and numerical analysis of the KGE model with

smooth potentials V(u) in the periodic settings and in the real line. In Chapter 4, we did

demonstrate that in the presence of smooth potentials the KGE model is globally well-posed

in the periodic settings. In particular, we did show that the regularity of weak solutions

is completely controlled by the input data and, hence, the solutions are classical, provided

the initial data is sufficiently regular. Furthermore, using the propagation properties of the

nonlinear KGE group, we managed to extend the well-posedness result from the periodic

settings to the whole of real line.

In Chapter 5, we proposed a Fourier-type pseudo-spectral spatial semi-discrete scheme

and provided its comprehensive stability and convergence analyses. The concrete imple-

mentation details are discussed in Chapter 6. In particular, we described an efficient way

for computing the semi-discrete vector field and proposed an efficient, explicit, symmet-

ric and symplectic high order time-stepping scheme. We concluded our work by running

several concrete simulations. Numerical results, presented in Section 6.2 completely con-

firm theoretical investigations of Chapters 4 and 5 and demonstrate excellent accuracy and

computational efficiency of our scheme.

Contribution to knowledge. Numerical solution of differential equations posed in un-

bounded domains is an important topic of modern research. Two approaches are commonly
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used, the first one treats the problem under consideration directly in the whole spatial do-

main, the second is based on the domain-truncation coupled with use of artificial boundary

conditions. In the project, we did demonstrate that in context of KGE-type models (i.e.

models whose flow groups preserve compactness of initial data) the second approach is

nearly optimal. Part of the results obtained in this work shall be submitted for possible

publication in a reputable journal.

Future research. Theoretical results and method used in this work can be extended to

a range of nonlinear wave equation. Also, our scheme can be extended to problems posed

in Rn.
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