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Abstract

Brazil, Russia, India, China and South Africa (BRICS) are regarded as the five major

emerging economies where all members are a part of a select group of developing industriali-

zed countries. In the financial industry, various models are used for the description and

analysis of financial trends. One of these models is the family of stable distributions which

takes into account the skewness and heavy tails that are frequent in financial data. The

main objective of this study is to investigate the fit of stable distributions for exchange

rates of each of the BRICS countries against the U.S. Dollar in both the univariate and

multivariate cases. The data set consists of exchange rate data from the period January

2011 to January 2016.

Nolan’s S0 -parameterization stable distribution was fitted using the maximum likelihood

method in the univariate case and in a fitted stable model where a GARCH (1,1) filter

was applied to the returns (Stable-GARCH(1,1)). The Kolmogorov-Smirnov test and the

Anderson-Darling test show that stable distributions adequately fit the returns of BRICS

financial data. Value-at-Risk (VaR) calculations and VaR in-sample backtesting using the

Kupiec likelihood ratio test and the Christoffersen’s conditional coverage test were applied

as per the International Basel Regulatory where the robustness of each model describing

the financial data was evaluated. Thereafter, we proceeded to fit bivariate elliptical stable

models using the Rachev-Xin-Cheng method after visualizing the scatterplot matrix of

BRICS countries. This study validates the usefulness of stable distributions for modelling

BRICS financial data.

‘

iii



Keywords

BRICS, stable distributions, skewness, exchange rates, Nolan’s S0-parameterization, stable-GARCH(1,1),

Kolmogorov-Smirnov test, Anderson-Darling test, VaR, Kupiec likelihood ratio test, Christoffersen’s

conditional coverage test, bivariate elliptical stable model.

iv



Dedication

This dissertation is dedicated in the loving memory of my late grandparents, Mr. Dhewlal

Naradh Rughunandhan as well as Mr. Eserpersad Ramdhani and Mrs. Leela Ramdhani.

v



Acknowledgements

I am grateful to God for the good health and well-being necessary to complete this study.

I would like to express my sincere gratitude to my supervisors Mr. K. Chinhamu as

well as Mr. M.J. Hammujuddy and Mr. R. Chifurira who have been of great assistance

throughout this research project with immense dedication. I am extremely thankful and

indebted to them for sharing their expertise and valuable guidance to me. They have

played an important role in my progress as a Master’s student and have provided me

with the necessary skills and knowledge needed to embark upon this research. I take this

opportunity to express gratitude to Prof. John Nolan for his help and support with the

STABLE package in R. I am also grateful to my parents, Mr. and Mrs. Naradh, my

sister Yoshka for the unceasing love, encouragement and support. Last but not least, I

gratefully acknowledge the funding received towards this Master’s dissertation from the

National Research Foundation (NRF). I also place on record, my sense of gratitude to one

and all, who directly or indirectly, have lent their hand in this venture.

vi



Contents

Acknowledgments vi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Empirical properties of financial data . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Stylized facts of financial returns . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Stylized multivariate facts . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Research layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature review 7

3 Univariate stable distributions 12

3.1 Introduction to Stable distributions . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Definition of stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Alternative definitions of stability . . . . . . . . . . . . . . . . . . . 15

3.2 Characterization and parameterization of Stable distributions . . . . . . . 17

3.3 Distribution and density functions . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Properties of stable laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Sum of stable random variables . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Stable parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Univariate estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . 33

vii



4 Multivariate stable distributions 34

4.1 Multivariate stable distributions . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Multivariate stable laws . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Discrete spectral measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Multivariate stable parameter estimation . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Estimating spectral measures . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Multivariate stable densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Elliptically contoured stable distributions . . . . . . . . . . . . . . . . . . . 46

4.5.1 Elliptically contoured stable laws . . . . . . . . . . . . . . . . . . . . 46

4.5.2 Densities of elliptically contoured stable laws . . . . . . . . . . . . . 47

4.5.3 Statistical analysis as elliptical stable . . . . . . . . . . . . . . . . . 47

5 Volatility model: GARCH(1,1) 49

5.1 The ARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 The GARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Methodology 55

6.1 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.2 Autocorrelation function (ACF) . . . . . . . . . . . . . . . . . . . . 55

6.1.3 Partial autocorrelation function (PACF) . . . . . . . . . . . . . . . . 56

6.1.4 Ljung-Box test for autocorrelation . . . . . . . . . . . . . . . . . . . 56

6.2 Periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Testing for hidden periodicity . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Tests for stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.1 The unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.2 Augmentmented Dickey-Fuller test . . . . . . . . . . . . . . . . . . . 62

6.3.3 Phillips-Perron test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.4 Kwiatkowski-Phillips-Schmidt-Shin test . . . . . . . . . . . . . . . . 65

6.4 Measures of dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.1 Scatter plot matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.2 Covariance and correlation matrices . . . . . . . . . . . . . . . . . . 69

viii



6.5 Goodness-of-fit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5.1 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5.2 Anderson-Darling test . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Risk measures and backtesting 74

7.1 Current regulatory framework . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1.1 South African implementation of Basel III Accord . . . . . . . . . . 75

7.2 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.1 Steps in VaR calculations . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.2 Analyzing and interpreting VaR . . . . . . . . . . . . . . . . . . . . 78

7.3 VaR in-sample backtesting procedures . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Violation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.2 Kupiec likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.3 Christoffersen conditional coverage test . . . . . . . . . . . . . . . . 80

7.3.4 VaR duration test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Analysis of BRICS financial data 85

8.1 Exchange rate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2.1 Time series plots of daily exchange rates . . . . . . . . . . . . . . . . 86

8.3 Calculating log-returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.4 Tests for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.4.1 Ljung-Box test for autocorrelation . . . . . . . . . . . . . . . . . . . 91

8.5 Tests for stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.5.1 Checking for hidden periodicity . . . . . . . . . . . . . . . . . . . . . 93

8.6 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.7 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.8 Stable parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.9 Goodness of fit tests and diagnostics . . . . . . . . . . . . . . . . . . . . . . 96

8.9.1 Q-Q plots of BRICS exchange rate returns . . . . . . . . . . . . . . 96

8.9.2 Variance stabilized P-P plots of BRICS exchange rate returns . . . . 97

8.9.3 Univariate stable density plots . . . . . . . . . . . . . . . . . . . . . 99

8.10 VaR estimates and backtesting . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



8.11 Multivariate stable data analysis . . . . . . . . . . . . . . . . . . . . . . . . 102

8.11.1 Multivariate stable parameter estimation . . . . . . . . . . . . . . . 102

9 Stable-GARCH(1,1) model 105

9.1 Stable-GARCH(1,1) model . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.1.1 Fitting a univariate GARCH(1,1) model to returns . . . . . . . . . 106

9.1.2 Tests for autocorrelation on univariate GARCH(1,1)residuals) . . . . 110

9.2 Tests for stationarity univariate on GARCH(1,1) residuals . . . . . . . . . . 111

9.3 Stable parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.4 Goodness-of-fit and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.4.1 Q-Q plots for stable-GARCH(1,1) residuals . . . . . . . . . . . . . . 113

9.4.2 Variance stabilized P-P plots for fitted univariate stable-GARCH(1,1)

residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.4.3 stable-GARCH(1,1) density plots . . . . . . . . . . . . . . . . . . . . 116

9.5 VaR estimates and backtesting . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.6 Multivariate stable data analysis . . . . . . . . . . . . . . . . . . . . . . . . 119

10 Conclusion and recommendations 122

Appendix 132

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

x



List of Figures

8.1 Time series plots of BRICS to USD daily exchange rates . . . . . . . . . . . 86

8.2 Time series plots of BRICS to USD exchange rate returns . . . . . . . . . . 87

8.3 ACF and PACF plots of daily BRICS to USD exchange rate returns . . . . 90

8.4 Q-Q plots of BRICS to USD exchange rate returns . . . . . . . . . . . . . . 96

8.5 [Variance stabilized P-P plots of BRICS to USD exchange rate returns . . . 97

8.6 Stable density plots of BRICS to USD daily exchange rates . . . . . . . . . 99

8.7 Pairwise scatterplots of BRICS countries to USD exchange rate . . . . . . . 102

8.8 Estimated density surface and countour plot for a bivariate elliptical stable

fit of Brazillian Real and South African Rand exchange rates. . . . . . . . . 104

9.1 ACF and PACF plots of residuals for fitted univariate GARCH(1,1) model. 110

9.2 Q-Q plots for fitted univariate stable-GARCH(1,1) residuals . . . . . . . . . 113

9.3 Variance stabilized P-P plots for fitted univariate stable-GARCH(1,1)

residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.4 Stable density plot of stable-GARCH(1,1) model . . . . . . . . . . . . . . . 116

9.5 Pairwise scatterplots of univariate GARCH(1,1) residuals for BRICS

countries to USD exchange rates . . . . . . . . . . . . . . . . . . . . . . . . 119

9.6 Estimated density surface and countour plot for a bivariate elliptical

stable fit of Brazillian Real and South African Rand exchange rates of

GARCH(1,1) residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.1 Estimated density surfaces and contour plots for a bivariate elliptical stable

fit of BRICS countries exchange rates. . . . . . . . . . . . . . . . . . . . . . 140

10.2 Bivariate elliptical stable density plots of GARCH(1,1) residuals for BRICS

countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xi



List of Tables

7.1 Deviation Indicator outcomes (Christoffersen, 1998) . . . . . . . . . . . . . 81

8.1 Descriptive summary statistics of daily return of BRICS to USD exchange

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 Ljung-Box test of daily returns for BRICS to USD exchange rates . . . . . 91

8.3 Results for ADF, PP and KPSS unit root tests for BRICS/USD Ecchange

rate returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Fisher’s Kappa test for detecting hidden periodicity in exchange rates. . . . 93

8.5 Stable parameter estimates for daily returns under Nolan’s S0-parameterization. 95

8.6 Goodness-of-fit tests of daily returns . . . . . . . . . . . . . . . . . . . . . . 98

8.7 VaR duration test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.8 Bivariate elliptical stable parameter estimation for daily returns . . . . . . . 103

9.1 ARCH LM test for heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . 105

9.2 GARCH(1,1) parameter estimation for daily returns . . . . . . . . . . . . . 106

9.3 Ljung-Box test for daily returns of the fitted GARCH(1,1) model . . . . . 107

9.4 ARCH LM test for heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . 108

9.5 Descriptive statistics of residuals to the fitted GARCH(1,1) model for daily

log returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.6 Ljung-Box test for autocorrelation for univariate GARCH(1,1) residuals . . 111

9.7 Stationarity tests for residuals for the fitted uniariate GARCH(1,1) model . 111

9.8 Stable-GARCH(1,1) parameter estimates for residuals . . . . . . . . . . . . 112

9.9 Goodness-of-fit tests of Stable-GARCH(1,1) residuals . . . . . . . . . . . . . 115

9.10 VaR estimates of the univariate stable-GARCH(1,1) model . . . . . . . . . 117

9.11 Var backtesting for univariate stable-GARCH(1,1) model . . . . . . . . . . 117

9.12 VaR duration test for fitted stable-GARCH(1,1) model . . . . . . . . . . . . 118

xii



9.13 Bivariate elliptical stable parameter estimation for GARCH(1,1) residuals . 120

xiii



Abbreviations

ACF Autocorrelation Function

A-D Anderson-Darling

ADF Augmented Dickey-Fuller

ARCH Autoregresive Conditional Heteroscedadticity

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

BRIC Brazil, Russia, India, China

BRICS Brazil, Russia, India, China and South Africa

GARCH Generalized Autoregressive Conditional Heteroscedaticity

KPSS Kwiatkowski Phillips Schmidt Shin

K-S Kolmogorov-Smirnov

MLE Maximum Likelihood Estimation

PACF Partial Autocorelation Function

PP Phillips Perron

Q-Q Quantile to Quantile

VaR Value-at-Risk

xiv



List of Special Symbols

α index of stability

β skewness parameter

δ location parameter

d
= equality in distribution

εt white noise process

γ scale parameter

π(θ) prior distribution

π(x|θ) likelihood distribution

π(θ|x) posterior distribution

log natural logarithm

xv



Chapter 1

Introduction

This chapter introduces the background, statement of the research problem, objectives of

the study, empirical properties of financial data and the research layout.

1.1 Background

The international competitive position of a country is considered key with regards to

evaluating the success of authorities in their aim of achieving major macroeconomic goals.

Global competitiveness is observed as a multidimensional phenomenon that is complex to

understand using a single indicator (de Jager, 2012). Nevertheless, according to Walters &

De Beer (1999), a country’s real exchange rate is used to indicate the relative competitive

position in international trade. Exchange rates are very important as there is an effect on

a country’s international relations. More specifically, imports, exports as well as foreign

investment are affected by exchange rate fluctuations (Nelson, 2013). Arezki et al. (2012)

indicate that increased volatility in exchange rates puts the economy in an unfavorable

position through its adverse conditions on private agents consumption and investment

decisions as well as commodity exporting countries experience large trade fluctuations.

The formal definition of “exchange rate” is given as the price of one currency in terms

of another currency. Exchange rates are either fixed or floating. The central bank of a

country decides on the fixed exchange rate whereas the floating exchange rate is decided

by the market demand and supply (Picardo, 2014). Exchange rates are affected greatly

1



by macroeconomic triggers and are indicative of a country’s financial stability. Hence, the

need for reliable models that monitor the evolution of volatile exchange rates and provide

necessary remedies that are useful especially in times of financial stress as the future is

uncertain.

Countries in BRICS (Brazil, Russia, India, China and South Africa) are of great interest to

financial analysts globally as these countries have gained prominence in the global economy

given the noticeable rapid growth rate in international trading. In 2011, the Chinese city

of Sanya featured South Africa for the first time in the third BRIC summit. Hence,

the acronym BRICS was formed ever since. The International Monetary Fund (IMF)

indicated that intra-BRICS trade is valued at billions of U.S. Dollars. Intra-BRICS trade

consists of Brazil, Russia and South Africa providing the much needed natural resources

for the mass industrialized needs of the Asian giants: India and China (Sule, 2011). Both

BRICS and exchange rates are highly publicized news in the press and directly impact

foreign investments more specifically investor psychology and confidence. In this regard,

modeling BRICS exchange rates is an interesting topic of research.

Vast literature has been dedicated to modeling and evaluating changes in exchange rates

and a wide variety of econometric models have been suggested by researchers. A recent

study done by Caporale et al. (2016) examined the effect of macro-news on major currencies

vis-à-vis the U.S. Dollar and Euro against currencies of BRICS group of countries using

daily data. The estimated VAR-GARCH(1,1) model allowed for both mean and volatility

spillovers as well as accounted for the impact of the global financial crisis of 2008.

Ma et al. (2013) modeled the characteristics of volatility for the exchange rate of the

Chinese Yuan against the U.S. Dollar. Both the symmetric and asymmetric models of the

generalized autoregressive conditional heteroscedasticity (GARCH) family were used to

model the daily data. The author concluded that both models capture the characteristics

of volatility in exchange rates.

In South Africa, exchange rates have been of great concern, especially in 2016, since the

country’s performance against major currencies (Dollar, Euro and Pound Sterling) have

2



weakened significantly. The Rand reached an all time low at 17.99 against the U.S. Dollar.

This prompted the South African government to reshuffle cabinet ministers and reappoint

a new minister of Finance (eNCA, 2016). Kemda et al. (2015) state that exchange rates,

like any other financial time series, are leptokurtic and contradict the classical Gaussian

assumption. Subclasses of the generalized hyperbolic distributions were compared to the

Normal distribution. These authors concluded that the variance-gamma model is the most

robust model for describing the South African Rand against the U.S. Dollar exchange rate

at their associated VaR estimates.

The common assumption of normality for financial data tends to underestimate the

probability of extreme returns, i.e. fat tails and skewness. Therefore, we can fit a stable

model that takes fat tails and skewness into consideration. Stable distributions are a rich

and effective class of probability laws that gives a parsimonious fit to the suggested model.

This study aims to investigate the fit of the stable distribution for the exchange rates of

each of the countries in BRICS using both a univariate and a multivariate time series

analysis approach. The Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit

tests validate the adequacy of the fitted stable models. Comprehensive VaR calculations

and backtesting procedures were carried out to evaluate the robustness of each model.

We are not aware of any risk management literature relating to the application of stable,

stable-GARCH(1,1) and bivariate elliptical stable case to BRICS exchange rates. Therefore,

the main contribution of this study is to highlight the usefulness of stable distributions

for large sets of financial data that exhibit heavy tails and skewness.

1.2 Statement of the problem

The estimation of Value-at-Risk (VaR) depends on the properties of the fitted distribution.

There is a need to determine whether a distribution can adequately be used to estimate

VaR of exchange rates. To fulfill this purpose, we conduct a quantitative research study in

both the univariate and multivariate cases. Stable distributions, more specifically, Nolan’s

S0-parameterization combined with the GARCH(1,1) model adequately estimate VaR for

BRICS exchange rate data between the time period of 2011 to 2016.
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1.3 Objectives of the study

The main objective of this study is to evaluate the fit of stable distributions to the returns

of BRICS financial data using both univariate and multivariate stable models.

This is achieved through:

• Time series analysis of the returns.

• Univariate stable parameter estimation using the maximum likelihood (ML) method.

• Univariate stable diagnostics: goodness-of-fit tests, such as the Kolmogorov-Smirnov

test and the Anderson-Darling test.

• VaR calculations and VaR in-sample backtesting procedures using violation ratios,

the Kupiec test, Christoffersen test and the Value-at-risk duration test.

• Visualizing scattterplot matrix of BRICS countries.

• Fitting appropriate multivariate stable models.

• Computing multivariate stable density plots.

• Combining stable distribution and GARCH(1,1) model. The volatility is modeled

by the GARCH(1,1) process with the innovations following a stable distribution.

1.4 Empirical properties of financial data

1.4.1 Stylized facts of financial returns

The collection of observations of empirical observations and the conclusions from these

observations are referred to as the stylized facts of financial returns. These apply to most

daily series of risk factor changes, for example, log-returns on equities, exchange rates and

commodity prices. These observations are deeply associated with econometrics that they

are now considered facts in their own rights. We list a detailed version of the stylized facts

below:

(i) Returns are not independent and identically distributed but they exhibit serial

correlation.
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(ii) Squared returns series show profound serial correlation.

(iii) Conditional expected returns are close to zero.

(iv) Time-varying volatility.

(v) Returns are leptokurtic or heavy-tailed.

(vi) Extreme returns are clustered.

In this study, we focus mainly on the properties of volatility clustering, non-Normality,

heavy tails and longer interval return series.

Volatility clustering

Volatility clustering is the tendency for extreme returns to be followed by other extreme

returns. Volatility is modelled as conditional standard deviation of financial returns and,

even though conditional expected returns are close to zero, the presence of volatility

clustering shows that conditional standard deviations are changing in a predictable way.

Non-Normality and heavy tails

The Normal distribution is a poor model for daily returns and the Jarque-Bera test (based

on empirical skewness and kurtosis) may, in some cases, reject the assumption of Normality.

Daily financial returns have a higher kurtosis and are said to be leptokurtic. That is, there

is a narrow center with longer heavier tails than the Normal distribution

Longer interval return series

As the interval of the returns is increased from daily to weekly, monthly, quarterly and

yearly data, volatility clustering becomes less pronounced and returns are less heavy-tailed

and i.i.d. If we have a sample with n returns measured over some time interval, for example

daily or weekly, and if we aggregate these to form longer-interval logarithmic returns then

the k period log-return at time t is given by:

Y k
t = ln

(
St
St−k

)
= ln

(
St
St−1

· · · St−k+1

St−k

)
=

k−1∑
j=0

Yt−j (1.1)
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We can form a sample of non-overlapping k period returns
{
Y k
t : t = k, 2k, . . . , [nkk]

}
.

A central limit effect occurs due to the sum structure of the k-period returns. The

distribution becomes less leptokurtic and more Normal as k increases. The central limit

theorem applies to many stationary time series processes, including GARCH models.

1.4.2 Stylized multivariate facts

Financial risk managers are seldom interested in one time series but rather a multiple

series of financial risk factors. Consider the multivariate return data Y1, . . . ,Yn. Each

component series Y1,j , . . . , Yn,j for j = 1, . . . , d is a series formed by log-differencing daily

commodity prices or exchange rates. Consider the following stylized facts:

(i) There is little evidence of cross-correlation for multivariate returns with an exception

for contemporaneous returns.

(ii) There is, however, profound evidence of cross-correlation for a multivariate series of

absolute returns.

(iii) Contemporaneous returns (correlations) between series vary over time.

(iv) Extreme returns in one series coincide with extreme returns in other series (McNeil

et al., 2005).

1.5 Research layout

This dissertation consists of ten chapters. Subsequent to this introductory chapter, the

second chapter provides a literature review. Chapter 3 introduces univariate stable distributions

with several definitions and various properties. In Chapter 4, we discuss the theory

of multivariate stable distributions. Chapter 5 describes the GARCH(1,1) model and

Chapter 6 provides research methodology. Chapter 7 discusses risk measures and backtesting

procedures, thereafter, Chapter 8 presents the data analysis of BRICS exchange rate

returns. Chapter 9 combines the stable and GARCH(1,1) model. Finally, Chapter 10

summarizes the findings and concludes this study.
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Chapter 2

Literature review

In this section, we overview research done on similar topics.

Nolan (2003) investigated the use of stable distributions with financial data based on

the British Pound versus the German Mark exchange rate. The data consisted of daily

exchange rate for the period 2 January 1990 to 21 May 1996. The returns for the data set

were computed and parameter estimation was carried out using the maximum likelihood

(ML) method. The data were analyzed by the fitted stable model and the suggested

Normal fitted model. Nolan (2003) also studied the monthly exchange rates between the

U.S. Dollar and the Tanzanian Shilling. The data ranged from January 1975 to September

1997. The returns of the data were computed and the parameter estimates were found

using the ML method. The study found that the Tanzanian Shilling exchange rate was

subject to more extreme fluctuations.

McCulloch (1997) investigated the suitability of stable distributions using data from

the stock market namely the stock price data known as the Centre for Research in

Security Prices (CRSP). This data set was analyzed over forty years from January 1953

to December 1992. The ML estimates were calculated as well as the quantile estimates.

The goodness-of-fit was studied using graphical methods by observing the P-P plot and

the stable density plot. Diagnostics showed a close fit.
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Nolan (2003) investigated the joint distribution between the German Mark and the Japanese

Yen. The main interest in both currencies is to see if the joint distribution is bivariate

stable and in estimating the fit. A sequence of smoothed Q-Q plots and variance-stabilized

P-P plots were projected in 8 different directions (a restriction is placed on the right

half-plane as the left half-plane is merely a reflection of the right half-plane). This

multivariate study was adequate in describing the data except on the extreme tails.

Projection functions α(t), β(t), γ(t) and δ(t) based on stable distributions were estimated

and were also used to formulate an estimate of the spectral measure using the projection

method. Four plots of each of the parameter estimates were analyzed. The plots for

the skewness β(t) and the scale function γ(t) are computed from the estimated spectral

measure. The curves are identical to the direct, separate estimates of the directional

parameters. The fitted spectral measure was used to plot the bivariate density.

Press (1972) studied an application on portfolio analysis. The returns of the price per

unit asset were described. In the application, the returns followed a univariate symmetric

stable distribution. Portfolio management firms would most likely be interested in the

joint return behavior of many such portfolios. It was found that the vector of portfolio

returns will have jointly stable components.

Chinhamu et al. (2015) investigated the best generalized hyperbolic distribution to fit gold

price returns where comparisons to fitted stable distributions were made. The adequacy

of the distributions were assessed by the Anderson-Darling test, Bayesian information

criterion, Akaike information criterion and backtesting of VaR estimates. It was found

that the best model for gold returns differ at different VaR levels and that the stable

distribution along with the generalized hyperbolic distribution favorably describe extreme

risk in gold returns.

Mandalos (2014) investigated the relationship between the South African Rand and the

U.S. Dollar exchange rate including the macroeconomic changes between the two countries

for further interpretation and prediction of the exchange rate in the future. The study

aimed to find the determinants of the nominal exchange rates over the period after South

Africa’s financial liberalization starting in 2002. A time series analysis was carried out
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using an empirical model linked to theoretical determinants to exchange rate and was used

to provide long-run and short-run effects on exchange rates. Mandalos (2014) also noted

that there is an absence of studies in exchange rate movements in developing countries

such as South Africa.

Campa et al. (2002) used currency data from the BMF, the Commodities and Futures

exchange in Sao Paulo, Brazil, to investigate the market expectations of the Brazilian Real

to the U.S. Dollar exchange rate over the period from 1994 to 1997. Probability density

functions were derived to analyze the expected future exchange rates and investigate the

credibility governing regimes on the exchange rate, namely the “crawling peg” and target

zone (“Maxiband”) regime. The analysis is based on the risk-neutral probability density

function. The study concluded that the credibility of the target zone was poor prior to

February 1996 and improved thereafter.

Ločmelis et al. (2015) analyzed the impact on the changes in dynamic linkages between the

Russian, U.S. and EU stock markets amidst Russia’s financial crisis that started in 2014.

A structural break analysis was performed to identify a possible period of tranquility

in the Russian stock market and a date at which the financial crisis period started.

Thereafter, cointegration, Granger-causality, impulse response, variance decomposition

and GARCH-BEKK tests were conducted to draw comparisons between the long-run

and short-run volatility, and shock spillover linkages during the financial crisis and stable

periods.

Murari & Sharma (2013) investigated the dynamics of the Indian Rupee fluctuations

against the U.S. Dollar using observations from 2001 to 2013. Ordinary least squares (OLS)

modeling was carried out on the log-computed variables to investigate the determinants

of the Rupee fluctuations against the U.S. Dollar. Six factors were found to be behind

the fluctuation and were modeled by multivariate regression analysis. Modeling exchange

rates through various econometric techniques based on currency rates remain an area for

further research.

Dasgupta (2014) studied the interrelationships, interdependence, integration and dynamic
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linkages between the “BRIC” countries with reference to India. Data from the daily closing

values of the BRIC indices were used. Tests such as the Jarque-Bera test, the Augmented

Dickey-Fuller and Phillips-Perron tests for identifying Normality and stationarity were

carried out. The study also used the Johansen-Juselius and the Engle-Granger cointergration

tests as well as the Granger causality tests to investigate the short-run and long-run

integration, and interrelationships of the BRIC stock market. The study was made more

reliable by the use of vector autoregression and variance decomposition analysis. It was

found that the Indian stock market had a strong impact on the Brazilian and Russian

stock markets and, in general, the study also found that the BRIC stock markets were

attractive to global investors and emphasized the dominance of the Indian stock market

among the “BRIC” countries.

Ijumba (2013) investigated levels of independence and dynamic linkages among the BRICS

countries using vector autoregressive, univariate GARCH(1,1) and multivariate GARCH(1,1).

The data consisted of the weeekly returns from January 2000 to December 2012. Results

from the VAR model showed unidirectional linear dependencies of the Chinese and Indian

markets on the Brazilian stock market. The univariate GARCH model implied that

the stock returns of China seemed to be most volatile followed by Russia whereas the

South African stock market was found to be the least volatile. Results obtained from

the multivariate GARCH model yield similar conclusions. This study illustrated that

interdependence amongst BRICS countries cannot be rejected and multiple factors, besides

internal markets, may affect correlation and volatility among BRICS countries.

Pradhan et al. (2013) examined economic growth and financial development using panel

data vector autoregression. The study found bidirectional causality between economic

growth and financial development, and highlighted the importance of economic policies to

acknowledge financial growth in emerging BRICS economies.

Nolan (2014) examined a small portfolio example with three assets, namely: Ford, IBM,

Proctor and Gamble. The closing prices were obtained for ten years. In the univariate

example, changing volatility was evident mostly in 2008. A GARCH(1,1) filter was applied

to the data. The pairwise scatterplots of the residuals displayed a roughly elliptical pattern
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and this implied the estimation of a jointly stable three-dimensional elliptical model for

the data.

To the best of our knowledge, there are limited studies on using stable distributions to fit

BRICS financial data, more specifically exchange rates. Therefore, this is the only study

that acknowledges modeling exchange rates among BRICS countries using univariate and

multivariate stable analyses.
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Chapter 3

Univariate stable distributions

This chapter provides an introduction to univariate stable distributions with several definitions,

theorems and properties.

3.1 Introduction to Stable distributions

Stable distributions are a four-parameter family of models that generalize the normal

model. Models that are based on stable laws and properties ideally describes real data

well over its range, provides robust models for compounding returns as well as account

for heavy tails and skewness. With the progression of statistical software, the practical

use of stable distributions is advocated in finance. While there are many other classes of

models that may provide a good fit for financial data sets, however, they lack the favorable

features mentioned earlier (Nolan, 2014).

The theory of stable distributions stems from the pioneering work of Paul Lévy in the

1930s.

3.1.1 Definition of stable

Definition 3.1.1 (Nolan, 2003)

(i) The sum of two Normally distributed random variables yields a Normal random

variable. If Y is Normal, then Y1 and Y2 are independent and identical to Y with
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any positive constants a and b.

aY1 + bY2
d
= cY + d (3.1)

for c ≥ 0 and d ∈ R where
d
= denotes equality in distribution.

(ii) Any random variable is symmetrically stable if it is stable and symmetrically distributed

around 0, that is, Y
d
= −Y.

(iii) A random variable is strictly stable if d = 0.

The addition rule for independent Normally distributed random variables states that the

mean of the sum is the sum of the means and the variance is the sum of the variances.

Suppose Y ∼ N(µ, σ2), terms on the left-hand-side of equation (3.1) are N(aµ,(aσ2)) and

N(bµ, (bσ2)). On the right-hand-side, we have N(cµ+ d, (cσ2). From the addition rule, we

have: c2 = a2 + b2 and d = (a+ b− c)µ. The use of the word stable is justified because the

shape does not change under addition as indicated by equation (3.1). In the literature,

many authors coin the phrase sum stable to further emphasize the fact that equation

(3.1) deals with addition. The term stable should also be distinguished between these

distributions described by max-stable, min-stable, multiplication stable and geometric

stable distributions. Different terms were used in older literature. Stable was referred to

as what is now strictly stable, the term quasi-stable was used to as what we now refer to

as stable. Two random variables Y and Z are said to be of a similar type if there exists

constants A > 0 and B ∈ R such that Y
d
= AZ +B. Then, the definition of stable can be

restated as aY1 + bY2 and of similar type as Y.

Stable distributions are attractive in theory but they are difficult to implement. There

exist three special cases which can be expressed in closed-form densities. It can be verified

that they are stable in nature. The family of alpha-stable distributions is a rich class and

includes the Normal, Cauchy and Lévy distributions as subclasses, which are described

below by their density functions. The stable parameters α, β, γ and δ are defined in more

detail in Section 3.2.
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(i) Normal/Gaussian distribution Y ∼ N(µ, σ2)

f(y) =
1√
2πσ

exp

[
− 1

2σ2
(y − µ)2

]
, −∞ < y <∞ (3.2)

The Normal distribution is stable with α = 2 and skewness paβ = 0.

(ii) Cauchy distribution Y ∼ Cauchy(γ, δ)

f(y) =
1

π

γ

γ2 + (y − δ)2
, −∞ < y <∞ (3.3)

The Cauchy laws are stable with α = 1 and β = 0.

(iii) Lévy distribution Y ∼ Lévy(γ, δ)

f(y) =

√
γ

2π

1

(y − δ)3/2
exp−

[
γ

2(y − δ)

]
, δ < y <∞ (3.4)

The Lévy distributions are stable with α = 1
2 and and β = 1.

The Normal and Cauchy distributions are both symmetric and bell-shaped curves. The

main difference between the two is that the Cauchy distribution has heavier tails. However,

the Levy distribution is skewed and has heavier tails than the Cauchy distribution (Nolan,

2015).

The Normal distribution is widely used in financial modeling partly because of its favorable

analytical properties, which are also shared by other members of the stable distribution

family (Yang, 2012a).

The reasons why the Normal distribution is popular in financial modeling are:

• It is a relatively straightforward and practical distribution where numerical methods

can be implemented.

• The Central Limit Theorem and the Law of Large Numbers are properties that

simplify problems in Statistics by working with distributions that are approximately

Normal.

• Normally distributed random variables assume values around the central mean

where the odds of deviation from the mean exponentially decrease as one moves
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away from it.

Well-known financial frameworks based on the Normal distribution are (Stoyanov et al.,

2011):

(a) Black-Scholes option pricing model.

(b) Capital asset pricing model.

(c) Markowitz’s modern portfolio theory.

3.1.2 Alternative definitions of stability

Definition 3.1.2 (Nolan, 2003)

Non-degenerate Y is stable if and only if ∀n > 1, ∃ constants cn > 0 and dn ∈ R such that

Y1 + ...+ Yn
d
= cnY + dn (3.5)

where Y1, . . . , Yn are independent and identical copies of Y and are strictly stable if dn = 0

∀n. The constant cn must be of the form cn = n1/α for some α ∈ (0, 2]. Distributional

properties of Y are used in both definitions above. Another distributional characterization

is given by the Generalized Central Limit Theorem. (See Appendix A). The most accurate

way to describe stable distributions is by a characteristic function or Fourier transform.

For a random variable Y with distribution function F (y), the characteristic function is

defined as

φ(t) = E
(
eitY

)
=

∞∫
−∞

eitY dF (y) (3.6)

where φ(t) determines the distribution of Y and the sign function is defined as:

sign y =


−1, y < 0;

0, y = 0;

1, y > 0.

Definition 3.1.3 (Nguyen & Sampson, 1991)

A distribution function F (y) is said to be univariate stable if for every b1 > 0, b2 > 0, real

c1, c2, there is a corresponding positive number b and a real number c such that for every
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scalar y, where −∞ < y <∞,

F

(
y − c1
b1

)
∗ F

(
y − c2
b2

)
= F

(
y − c
b

)
(3.7)

where ∗ denotes the convolution operator.

A univariate stable distribution has a characteristic function φ given by

φ (t) = iut− γ |t|α
[

1 + iβ
t

|t|
ω (t, α)

]
(3.8)

where −∞ < t < ∞, with given −∞ < µ < ∞, −1 ≤ β ≤ 1, 0 < α < 2,
t

|t|
at t = 0 and

for all t :

ω(t, α) =

 tanπα2 , α 6= 1;

2
π ln(|t|), α = 1.

A random variable with a stable distribution can be characterized by the identical distribution

to that of a random variable and a linear combination of n independant copies of that

random variable. It also depends on the interrelationships of the coefficients of the linear

form.

Definition 3.1.4 (Nolan, 2015)

A random variable Y is stable if and only if Y
d
= aZ + b, where 0 < α ≤ 2,−1 ≤ β ≤

1, a 6= 0, b ∈ R and Z is a random variable with characteristic function

E
(
eitZ

)
=

 exp(− |t|α [1− iβtanπα2 (sign(t))]), α 6= 1;

exp(− |t| [1 + iβ 2
π (sign(t))log |t|]), α = 1.

(3.9)

The distributions are symmetric when β = 0 and b = 0. Then, the characteristic function

of aZ has the form φ(t) = e−a
α|t|α .
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3.2 Characterization and parameterization of Stable

distributions

Stable distributions are described by four parameters, namely α, β, γ, and δ. The index of

stability/index of law/characteristic of exponent is explained by the parameter α where

0 < α < 2. Skewness is denoted by the parameter β where −1 < β < 1. The distribution

is symmetric if β = 0. If β > 0, the distribution is skewed to the right and if β < 0, then

the distribution is skewed to the left. The shape of the distribution is determined by α

and β. The scale parameter is denoted by γ > 0. The parameter δ denotes the rightward

or leftward shift of the distribution. It is called the location parameter. The distribution

has a leftward shift if δ < 0. Conversely, the distribution has a rightward shift if δ > 0.

Multiple parameterizations are used to describe stable laws. This is due to a historical

evolution and the many problems that have been observed when analyzing stable distributions.

If one works with fitting data, or numerical work, then the first parameterization is

preferred. Yet, if there is a desire to work with simple algebraic structures, then another

parameterization is advised, and if one studies the analytical properties of strictly stable

laws, then another parameterization would be useful. The notation S (α, β, γ, δ k) is used

to describe the class of stable laws. The four parameters α, β, γ and δ are unknown and

need to be estimated. The integer k distinguishes between the different parameterizations

(Nolan, 2015).
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Definition 3.2.1 (Nolan, 2015)

Nolan’s S0-parametrization A random variable Y is S (α, β, γ, δ; 0) if

Y
d
=

 γ
(
Z − βtanπα2

)
+ δ, α 6= 1;

γZ + δ, α = 1.
(3.10)

where Z ≡ Z(α, β) has characteristic function (3.9). In this case Y has characteristic

function:

E
(
eitY

)
=

 exp(−γα |t|α [1 + iβ
(
tanπα2

)
(sign(t))× (|γt|1−α − 1)] + iδt), α 6= 1;

exp(−γ |t| [1 + iβ 2
π (sign(t))× log(γ |t|)] + iδt), α = 1.

(3.11)

Nolan (2014) recommends using the S0-parameterization for statistical inferences, and

numerical purposes, as it has the simplest form for the characteristic function that is

continuous in all four parameters. The S0-parameterization acknowledges a location-scale

family. If Z ∼ S(α, β, γ, δ; 0), then for α 6= 0, b ∈ R, aZ+b ∼ S(α, sign(α)β, |a| γ, aδ+b; 0).

Definition 3.2.2 Nolan’s S1-parametrization (Nolan, 2015)

A random variable Y is S (α, β, γ, δ; 1) if

Y
d
=

 γZ + δ α 6= 1;

γZ +
(
δ + β 2

πγlogγ α = 1,
(3.12)

where Z ≡ Z(α, β) has characteristic function (3.9). In this case, Y has characteristic

function:

E
(
eitY

)
=

 exp(−γα |t|α [1− iβ(tanπα2 )(sign(t))] + iδt) α 6= 1;

exp(−γ |t| [1 + iβ 2
π (sign(t))log(γ |t|)] + iδt), α = 1.

(3.13)
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Yang (2012a) describes the following Zolotrev’s parameterizations.

Definition 3.2.3 Zolotrev A-parameterization

A random variable Y is S (α, β, γ, δ;A) if the characteristic function can be described as

follows:

E
(
eitY

)
=

 exp(γ[itδ − |t|α + it |t|α−1 βtanπα2 ]) α 6= 1;

exp(γ[itδ − |t|α − iβ 2
π tlog |t|), α = 1.

(3.14)

The characteristic functions in (3.14) are discontinuous in the parameters determining

them. Discontinuities exist at all points of the form α = 1 and β 6= 0. If we take the

limits α? → 1 (α? 6= 1), β? → β 6= 0, γ? → γ and δ? → δ it does not yield a stable law

with parameters α = 1, β, γ and δ but more especially it does not yield an appropriate

distribution in the limit. The entire measure tends to infinity. By adding a shift to the

location parameter, −βtanπα2 , the discontinuity is removed.

Definition 3.2.4 Zolotrev M-parameterization

A random variable Y is S (α, β, γ, δ;M) if the characteristic function can be described as

follows:

E
(
eitY

)
=

 exp(γ[itδ − |t|α + it(|t|α−1 − 1)βtanπα2 ]) α 6= 1;

exp(γ[itδ − |t|α − iβ 2
π tlog |t|), α = 1.

(3.15)

One should note the similarities between Nolan’s S0-parameterization and Zolotrev

M-parameterization where changes only in γ and δ are made so that they are more

accommodating to the classical sense of the scale and location parameters. Likewise, the

same relationship applies to Nolan S1-parameterization and Zolotrev A-parameterization.

The cumulative distribution function satisfies F (y; γ) = F (y/γ; 1), where γ is the scale

parameter in the classical definition, for some distributions. Nolan’s S0-parameterization,

S1-parameterization and the scale parameter γ belongs to this category. Some parameteriz-

ations mimic the scale parameter, that is, we observe a combination of scale parameters

and some other parameters such as Zolotrev A-parameterization.
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Definition 3.2.5 Zolotrev B-parameterization

A random variable Y is S (α, β, γ, δ;B) if the characteristic function can be described as

follows:

E
(
eitY

)
=

 exp(γ[itδ − |t|α exp(−iπ2βK(α)sign(t))]) α 6= 1;

exp(γ[itδ − |t|α (π2 + iβlog |t|sign(t))]), α = 1,
(3.16)

where K = α−1+sign(1−α), the parameters have the same domain of variation as in the

A-parameterization.The B-parameterization as in the A-parametrization show that stable

law are discontinuous at points of the form α = 1. Nevertheless, the B-parameterization

has a limit distribution that exists and is stable in its distribution as α? → 1+, β
? →

β, γ? → γ and δ? → δ. → 1+” denotes the convergence to 1 from above.

Zolotarev (1986) describes the following parameterizations:

Definition 3.2.6 Zolotrev C-parameterization

A random variable Y is S (α, β, γ, δ;C) if the characteristic function can be described as

follows:

E
(
eitY

)
= −δ|t|α exp

(
− i
(
π

2

)
θαsign t

)
(3.17)

where the parameters vary within their limits: 0 < α ≤ 2, δ > 0, |θ| ≤ θα = min(1, 2/α−

1).

Definition 3.2.7 Zolotrev E-parameterization

A random variable Y is S (α, β, γ, δ;E) if the characteristic function can be described as

follows:

E
(
eitY

)
= −ν

1
2

(
log|t|+ τ − i

(
π

2

)
θsign t

)
+ C(ν−

1
2 − 1) (3.18)

where C ≈ 0.577 (Euler constant) and the parameters vary within their limits: ν ≥ 1
4 , |θ| ≤

(1, 2
√
ν − 1), |τ | <∞.
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For stable distributions, it is vital to determine the parameterization before random

variable generation, hypothesis testing and parameter estimation. Some conversions between

the parameterizations are listed below.

S0 → S1

β1 = β0, γ1 = γ0, δ1 =

 δ0 − βγtanπα2 α = 1,

δ0 − β 2
πγlnγ α 6= 1.

(M)→ (A)

βA = βM , δA = δM − βM tanπα2 , γA = γM if α 6= 1;

βA = βM , δA = δM , γA = γM if α = 1.

Further conversions are described in Appendix A.
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3.3 Distribution and density functions

Yang (2012a) suggests that stable distributions do not have explicit closed-form cumulative

distribution functions or probabilty density functions. Nolan, 2001 explores a numerical

method for computing densities and Zolotarev (1986) shows in detail the integral form of

density functions for stable distributions.

Zolotarev (1986) states the integral formula in the M-parameterization, defined by

ζ = ζ(α, β) =

 −βtanπα2 α 6= 1;

0 α = 1.
(3.19)

θ0 = θ0(α, β) =

 − 1
αarctan(βtanπα2 ) α 6= 1;

π
2 α = 1.

(3.20)

c1(α, β) =


1

π

(π
2
− θ0

)
α < 1;

0 α = 1;

1 α > 1.

(3.21)

V (θ;α, β) =

 (cosαθ0)
1/α−1

(
cosθ

sinα(θ0+θ)

)α/α−1
cos(αθ0+(α−1)θ)

cosθ α 6= 1;

2
π

(
π/2+βθ
cosθ

)
exp

(
1
β (π2 + βθ)tanθ

)
α = 1, β 6= 0.

(3.22)

The integral formula is very complex and is the reason as to why there exists various

setbacks for the applications of stable distributions.

Theorem 3.3.1 (Nolan, 2015)

All non-degenerate stable distributions are continuous distributions with an infinitely

differentiable density where f(x|α, β, γ, δ; k) denotes the density function and F (x |α, β, γ, δ; k)

denotes the distribution function of an S(α, β, γ, δ; k) distribution. When the scale parameter

γ = 1 and the location parameter δ = 0, the distribution is standardized. The density

function and distribution function of the standardized distribution are denoted by f(x |α, β; k)

and F (x |α, β; k) , respectively. Stable densities are supported by the entire real line or

half a line. The half-line situation occurs when α < 1 and β = −1 or β = 1. More detailed

limits are given by Lemma 3.3.1.
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Lemma 3.3.1 (Nolan, 2015)

supportf(y|α, β, γ, δ; 0) =


[δ − γtanπα2 ,∞) α < 1 and β = 1(
−∞, δ + γtanπα2 ] α < 1 and β = 1

(−∞,+∞) otherwise.

(3.23)

supportf(y|α, β, γ, δ; 1) =


[δ,∞) α < 1 and β = 1

(−∞, δ] α < 1 and β = 1

(−∞,+∞) otherwise.

(3.24)

The term tanπα2 is a constant as is seen often when working with stable distributions. We

observe as α ↑ 1, then tanπα2 ↓ −∞. There is a discontinuity at α = 1. This is troublesome

when working with stable distributions. It is also possible that if |β| = 1, then as α ↑ 1,

the support in Lemma 3.3.1 tends to R naturally.

The reflection property is a basic fact of stable distributions.

Property 3.3.1 Reflection Property (Nolan, 2015)

For any α and β, P ∼ S(α, β; k) where k = 0, 1, 2

P (α,−β)
d
= −P (α, β) (3.25)

The random variable P (α, β) have density and distribution functions that satisfies: f(y|α, β; k) =

f(−y|α,−β; k) and F (y|α, β; k) = 1 − F (−y|α,−β; k). If Y ∼ S(α, β, γ, δ; k) then −Y ∼

S(α,−β, γ,−δ; k). Therefore, f(y|α, β, γ, δ; k) = f(−y|α,−β, γ,−δ; k) and F (y|α, β, γ, δ; k) =

1− F (−y|α,−β, γ,−δ; k).
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When β = 0, the reflection property suggests f(y|α, 0; k) = f(−y|α, 0; k). This implies that

the density and distribution functions are symmetric around 0. We may graphically assess

and observe that as α decreases the peaks of bell-shaped symmetric stable distributions

get higher and the region closest to the peak gets lower and the tails get heavier. The

distribution is skewed with the right tail heavier than the left tail P (Y > y) > P (Y < −y)

for large y > 0 when β > 0. A stable distribution is considered totally skewed to the right

when β = 1. β < 0 is a reflection of β > 0 by the reflection property. Here, the left tail

is heavier than the right tail. A stable distribution is considered to be totally skewed to

the left when β = 1. We have a non-standardized Normal distribution when α = 2. In this

case, tanπα2 in equation (3.9). The distribution is always symmetric and the characteristic

function is always real regardless of the value of β. Symbolically, it can be represented

as P (2,−β)
d
= −P (2, β). Generally, all stable distributions get closer to being symmetric

as α = 2 and β is difficult to estimate precisely which makes it insignificant in applications.

Stable distributions do not have a known formula for the location of the mode. All stable

distributions can be described as unimodal. m(α, β) denotes the mode of Z ∼ S(α, β; 0)

distribution. m(α,−β) = −m(α, β), by the reflection property. It can also be numerically

observed that P (Z > m(α, β)) > P (Z < m(α, β)) when β > 0 (more mass to the right

of the mode). By the reflection property, when β < 0, then P (Z > m(α, β)) < P (Z <

m(α, β)) and there is more mass to left of the mode. If β = 0, then P (Z > m(α, β)) =

P (Z < m(α, β)) = 1/2 (Nolan, 2015).

[Note: The above statements are all in the Nolan’s S0-parameterization only]
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Property 3.3.2 (Yang, 2012a)

Let Y ∼ S(α, β, γ, δ) and f(y) and F (y), be its density and distribution function, respectively.

When α = 2, the Normal distribution has asymptotic tail properties and when α < 1,

stable distributions have one tail when α < 1 and β = ±1, and both tails otherwise, where

there are cases that are asymptotic power laws with heavy tails.

(i) Paretian tail density

Both tail densities and probabilities of non-Normal stable distributions are asymptotically

power laws. If 0 < α < 2 and −1 < β ≤ 1, then as x→∞,

1− F (y)

γαcα(1 + β)x−α
→ 1,

f(y)

αγαcα(1 + β)x−(α+1)
→ 1 (3.26)

where cα =
sin(πα2 )Γ(α)

π
The lower tail properties are similar for −1 ≤ β < 1 as x→∞ :

F (−y)

γαcα(1− β)x−α
→ 1,

f(−y)

αγαcα(1− β)x−(α+1)
→ 1 (3.27)

(ii) Stable distributions are unimodal as described previously.

(iii) Laws of stability have densities with uniformly bounded derivatives of every order.

Property 3.3.3 (Yang, 2012a)

Any admissible parameter quadruples (α, βk, γk, δk) and every real numbers h and ck, k =

1, . . . , n, uniquely determine a parameter quadruple (α, β, γ, δ) such that

S(α, β, γ, δ)
d
=
∑
k

ckS(α, βk, γk, δk) + h

With parameterization form A, the dependence of the quadruple (α, β, γ, δ) on the chosen

parameters and numbers is:

δ =
∑
k

δk |ck|α

δβ =
∑
k

δkβk |ck|α sign(ck)

δγ =
∑
k

δkγkck + h0
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where h0 = h if α 6= 1 and h0 = h− 2
π

∑
k δkβkcklog |ck| if α = 1.

Property 3.3.4 (Yang, 2012a)

Any two admissible parameter quadruples (α, β, γ, δ) and (α, β, γ
′
, δ
′
) uniquely determine

real numbers a > 0 and b such that

S(α, β, γ, δ)
d
= aS(α, β, γ

′
, δ
′
) + λb,

With the parameterization in the A form, the dependence of a and b on the parameters is

expressed as follows:

a = (γ/γ′)1/α (3.28)

b =

 δ − δ′(γ/γ′)
1
α−1; α 6= 1,

δ − δ′ + 2
πβlog(γ/γ′) α = 1.

(3.29)

This property is used to standardize any stable distribution by letting δ = 0 and γ = 1.
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3.4 Properties of stable laws

We summarize some basic properties of Nolan’s S1−parameterization; that is Y ∼ S(α, β, γ, δ; 1)

without proof.

• If β = 0, then it is implied that the stable distribution is symmetric.

• Reflection property is such that: −Y ∼ S(α,−β, γ,−δ; 1).

• All stable laws have densities f(y) that are smooth and unimodal.

• The support of Y is the whole real line and exceptions exist when α < 1 and β = 1,

where the support is [δ,+∞) or when α < 1 and β = −1. In this case, the support

is (−∞, δ].

• Tail behavior: If α < 2 and −1 < β ≤ 1, then the density and distribution functions

have an asymptotic power law. As y →∞,

1− F (x) = P (X > x) ∼ γαcα(1 + β)x−α (3.30)

f(x|α, β, γ, δ; 0) ∼ αγα(1 + β)x−(α+1) (3.31)

where cα =
sin(πα2 )Γ(α)

π
. Stable Paretian distribution is used in the non-Gaussian

case owing to the similarity of tail behavior with the Pareto distribution ∀α < 2 and

−1 < β < 1, both tail probabilities and densities are asymptotically power laws. In

the case when β = −1, the right tail of the distribution is not asymptotically power

law. In the same way, when β = 1 the left tail is not asymptotically power law.

• The Generalized Central Limit Theorem is also a basic property of stable laws and

is discussed in detail in Appendix A.

• Fractional moments: When α < 2, E|X|p is finite for 0 < p < α, but infinite for

p ≥ α. For α < 2, the population variance is infinite and for α ≤ 1, the population

mean is undefined. This is a consequence of the power law tail behavior (Nolan,

2014).
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3.5 Sum of stable random variables

The basic property of stable laws is that sums of α−stable random variables are α−stable.

However, results depend on the parameterization used.

Property 3.5.1 (Nolan, 2015)

The S(α, β, γ, δ; 0) have the following properties:

(a) If Y ∼ S(α, β, γ, δ; 0), then for any a 6= 0 and b ∈ R,

aY + b ∼ S(α, (sign a)β, |a| γ, aδ + b; 0)

(b) The characteristic density, distribution and characteristic functions are jointly continuous

in all four parameters (α, β, γ, δ).

(c) If Y1 ∼ S(α, β1, γ1, δ1; 0) and Y2 ∼ S(α, β2, γ2, δ2; 0) are independent, then Y1+Y2 ∼

S(α, β, γ, δ; 0) where

β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, γα = γα1 + γα2

δ =

 δ1 + δ2 + tanπα2 [βγ − β1γ1 − β2γ2]; α 6= 1,

δ1 + δ2 + 2
π [βγlogγ − β1γ1logγ1 − β2γ2logγ2] α = 1.

γα = γα1 +γα2 is the general rule for addition of variances of independent random variables

and holds for both parameterizations.

Property 3.5.2 (Nolan, 2015)

The S(α, β, γ, δ; 1) have the following properties:

(a) If Y ∼ S(α, β, γ, δ; 1) then for any a 6= 0 and b ∈ R,

aY + b ∼

 S(α, (sign a)β, |a| γ, aδ + b; 1) α 6= 1,

S(1, (sign a))β, |a| γ, aδ + b− 2
πβγalog(|a| ; 1) α = 1.

(b) The characteristic density, distribution and characteristic functions are continuous

away from α = 1 and discontinuous in any neighborhood of α = 1.

28



(c) If Y1 ∼ S(α, β1, γ1, δ1; 1) and Y2 ∼ S(α, β2, γ2, δ2; 1) are independent, then Y1+Y2 ∼

S(α, β, γ, δ; 1) where

β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, γα = γα1 + γα2 , δ = δ1 + δ2

(Nolan, 2015).

Property 3.5.1 shows that γ and δ are the standard scale and location parameters in the

Nolan’s S0-parameterization but not in the Nolan’s S1-parameterization in the case when

α = 1. Part (c) in the first parameterization shows that δ (the location parameter) is the

sum δ1 + δ2.

By induction, we may generate formulas for the sum of n stable random variables.

For Yj ∼ S(α, βj , γj , δj ; k), j = 1, 2, . . . n, and independent and arbitrary w1, ..., wn, the

sum

w1Y1 + w2Y2 + ...+ wnYn ∼ S(α, β, γ, δ; k) (3.32)

where

γα =
n∑
j=1

|wjγj |α

β =

∑2
j=1 βj(sign(wj)) |wjγj |α

γα

δ =



∑
j wjδj + tan πα

2 (βγ −
∑

j βjwjγj) k = 0, α 6= 1,∑
j wjδj + 2

π (βγlogγ −
∑

j βjwjγj log |wjγj|) k = 0, α = 1,∑
j wjδj k = 1, α 6= 1,∑

j wjδj −
2
π

∑
j βjwjγj log |wj| k = 1, α = 1.

If βj = 0 ∀j, then β = 0 and δ =
∑

j wjδj . We further note an important property called

the scaling property for random variables.

29



When terms are independent and identically distributed,

Yj ∼ S(α, β, γ, δ; k),

then,

Y1 + ...+ Yn ∼ S(α, β, n1/αγ, δn; k) (3.33)

where

δn =


nδ + γβtanπα2 (n1/α − n) k = 0, α 6= 1,

nδ + γβ πα2 nlogn k = 0, α = 1,

nδ k = 1.

The shape of the sum of n terms remains the same as the original shape. It is to be

pointed out that no other distribution has this property of stable distributions (Nolan,

2015).
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3.6 Stable parameter estimation

3.6.1 Univariate estimation

Nolan (2015) states that many standard parameter estimation procedures fail to work for

stable data since there is a lack of closed-form densities for stable distributions as discussed

earlier. The very common method of moments where one is first required to compute

E[X], E[X2], E[X3] and E[X4] to estimate the four stable parameters, that is solve for

α, β, γ and δ is not applicable as all of these moments do not exist. However, sample

moments do exist but their behavior is erratic. The likelihood function cannot be expressed

explicitly by the argument of the lack of closed analytic form stable densities. This causes

difficulties in solving for maximum likelihood estimators. There are, however, many

non-standard procedures for estimating stable parameters. We describe these methods

below:

• Fama & Roll (1968) proposed the oldest method of estimating stable parameters

known as Quantile Matching. They noticed certain patterns in quantiles xp (p-th

quantile of a distribution) of a symmetrically stable distribution (β = 0) which could

be used to estimate α and the γ. These ideas were further developed by McCulloch

(1986) for the general asymmetric case where bias is removed and consistent estimates

for all four parameters are obtained. This method uses five sample quantiles,

the 5th, 25th, 50th, 75th and 95th quantiles. These values are matched to a stable

distribution with the closest spread pattern. Reliable estimates may be obtained by

this method if the sample set is large and the data set stable.

• Koutrouvelis (1980) used the empirical characteristic function method, where there is

an explicit formula, equation (3.13) for the characteristic function φ(t). The sample

or empirical characteristic function φ̂(ui) can be computed on a grid of ui values for

a given data set and then uses regression analysis to estimate the parameters. A

simplified method was identified by Kogon & Williams (1998). This method used

the continuous parameterization, equation (3.11) and then centering and scaling the

data to avoid possible numerical difficulties.

• Buckle (1995) proposed a Bayesian inference method for estimation by using MCMC

method with the Gibbs sampler. The posterior density in Bayesian inference can be
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found from:

π(θ|y) ∝ f(y|θ)π(θ).

That is, posterior ∝ likelihood × prior. In the case where the probability density

function of y is unobtainable in closed-form whereas the joint pdf of y and z exist,

then the posterior density is found by using the integration,

π(θ|y) ∝
∫
f(y, z|θ)π(θ)dz

(Oral et al., 2012).

• Nikias & Shao (1995) used a method of estimation known as the fractional and

negative method of moments. This method is used for symmetric stable distributions

where β = 0 and δ = 0. When Y is strictly stable, there exists expressions for

fractional moments E |Y |p , for −1 < p < α. One can use the above expression for a

generalized method of moments, where one is required to compute sample fractional

moments, set them equal to the expressions in terms of the parameters and solve

for each of the parameters.

• Tail estimation is a method that uses the tail behavior

1− F (x) = P (X > x) ∼ γαcα(1 + β)x−α (3.34)

f(x|α, β, γ, δ; 0) ∼ αγα(1 + β)x−(α+1) (3.35)

where cα =
sin(πα2 )Γ(α)

π
to estimate α. Different methods have been suggested. The

Hill estimator and generalizations to plotting extremes on a log-log scale followed

by estimating the slope. Albeit, these do not work well with stable laws as when

the power law occurs, it is a complicated function of the parameters. Unless one

has a fairly large data set, it is highly unlikely that the tail will be exactly a power

law (Nolan, 2015).

• The maximum likelihood (ML) estimation method is the most commonly used method

in stable parameter estimation. This method is discussed in more detail in the next

section.

A simulation study by Ojeda (2001) found that the ML method yields the most accurate
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results followed by the empirical characteristic function method, thereafter by the quantile

method, and lastly, the fractional moment method (Nolan, 2003).

3.6.2 Maximum likelihood estimation

The parameter vector is denoted by ~θ = (α, β, γ, δ0) and the density function is denoted

by f(x|~θ). Θ = (0, 2] × [−1, 1] × (0,∞) × (−∞,∞) denotes the parameter space. The

log-likelihood function for an independent and identically distributed stable sample Y1, . . . , Yn

is given by

L(~θ) =
n∑
i=1

log f(Yi|~θ)

Since there are no closed formulas for general stable densities, there are some difficulties

trying to compute the likelihood function. The program STABLE computes stable densities

that are reliable for α > 0.1 and any β, γ and δ0. The McCulloch (1986) quantile method

is used initially to approximate the parameters and the parameter space can constrain a

method to maximize called the quasi-Newton method. DuMouchel (1971, 1973) indicated

that if ~θ0 lies in the interior of the parameter space Θ, the maximum likelihood estimator

is consistent and asymptotically Normal with mean ~θ0 and covariance matrix given by

n−1B where B = (bij) is the inverse of the 4× 4 Fisher information matrix I. Entries in I

are given by

Iij =

∫ ∞
−∞

∂f

∂θi

∂f

∂θj
dy

The behavior of the estimators is unknown when ~θ is near the boundary of the parameter

space. The distribution of the estimator gets skewed away from the boundary. When

α = 2 or β = ±1, ~θ is on the boundary of the parameter space. The Normal distribution

for the estimators tends to a degenerate distribution at the boundary point. Away from

the boundary, large sample confidence intervals for each of the parameters are given by

θ̂i ± Zα
2

σθ̂i√
n

Where σθ̂1 · · · σθ̂n are the diagonal entries of B (Nolan, 2001).
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Chapter 4

Multivariate stable distributions

In this chapter, we explore multivariate stable laws with specific interest in elliptically

contoured stable distributions.

4.1 Multivariate stable distributions

Stable laws can be extended to multidimensional cases. In this section, we consider a

sequence of independent and identically distributed random variables Y1, Y2, Y3, . . . in the

n-dimensional Euclidean space Rn and form the sequence of sums

Zn =
(Y1 + · · ·+ Yn − an)

bn
, n = 1, 2, . . .

normalized by some sequences of positive numbers bn and non-random elements an ∈ Rn.

Alternatively, if the sums Y1+Y2+· · ·+Yn are normalized by non-singular matrices Σn and

not by positive numbers
1

bn
, then concepts of stable distributions become more versatile.

At present, there is limited knowledge about the analytical properties of multivariate

stable laws which contrasts greatly from the vast amount of facts known from univariate

stable distributions. We look at the canonical representation of the characteristic function

tN (k), k ∈ Rn, of finite dimensional Lévy-Feldheim laws.

The characteristic functions are of the form

tN = ei(k,a)−ψα(k), 0 < α ≤ 2 (4.1)
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where a ∈ Rn and the functions ψα(k) which are determined by the parameter α and by

the finite measure M(du) on the sphere S = {u : |u| = 1} . If α = 2, then ψα(k) = (Σk, k)

where Σ is the so-called covariance matrix.

If 0 < α < 2, then

ψα(k) =

∫
S

|(k, u)|α ωα(k, u)M(du), (4.2)

where

ωα(k, u) =

 1− itanπα2 sign(k, u); α 6= 1,

1 + i
(
2
π

)
ln |(k, u)| sign(k, u) α = 1.

(4.3)

ln tN (k) =

 λ
[
i |k| γ − |k|α

(
1− iβtan(πα2 )

]
; α 6= 1,

λ
[
i |k| γ − |k|

(
1− i 2πβln |k|

)]
α = 1.

(4.4)

where 0 < α ≤ 2 and β, γ and λ are real-valued functions defined on the unit sphere S

determined by:

λ = λ(u) =

∫
S

∣∣(u, u′)∣∣αM(du′), u ∈ S

λβ = λβ(u) =

∫
S

∣∣(u, u′)∣∣α sign(u, u′)M(du′),

λγ = λγ(u) =


(u, a), α 6= 1,

(u, a)− ( 2
π )
∫
S
(u, u′)ln |(u, u′)|M(du′) α = 1,

We give some properties of the functions β, γ and λ.

(a) β, γ and λ are continuous on S and for a given α, they determine a unique shift in

a and the measure M(du) in equations (4.1) and (4.2). When α 6= 1, the functions

β and λ determine the measure M .

(b) The domain is given by the function γ, that is, the entire real axis.

(c) The following holds for any u ∈ S:

β(−µ) = −β(u), λ(−u) = λ(u),

|β(u)| ≤ 1, 0 ≤ λ(u) ≤M0,
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where M0 is the value of the complete measure M on S.

All inequalities are strict unless M(du) is concentrated entirely on some subspace of Rn.

Then,

λ0 = inf λ(u) : u ∈ S > 0, |tN (k)| ≤ e(λ0|k|
α)

Hence, the corresponding stable distribution denoted by (Uchaikin & Zolotarev, 1999) has

density qN (y;α, a,M) bounded by

Γ(1 + N
α )

Γ(1 + N
2 )

(2
√
πλ

1
α )−n

4.1.1 Multivariate stable laws

Feldheim (1937) showed that every multivariate stable vector has a characteristic function:

φ(u) = E[eiu·Y ] = exp

∫
S

ωα(u · s)Λ(ds) + iu · δ


where Λ is a finite measure on a unit sphere S = {|y| = 1}, δ is a shift vector in Rd and

ωα(t) = −logE[e(itZ )] =

 |t|α [1− tanπα2 (sign)(t); α 6= 1,

|t| [1 + i 2π (sign(t))) log |t| α = 1.

ωα(t) is a subtraction of the exponent of the characteristic function of a univariate Z ∼

S(α, β = 1, γ = 1, δ = 0; 1). Every multivariate stable law is characterized by α and a

spectral measure Λ on the sphere and a shift vector δ (Nolan, 2014).
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A d -dimensional α-stable random vector is determined by a spectral measure Γ- a finite

Borel measure on Sd = {s : ||s|| = 1} is the unit sphere in Rd. The notation Y ∼

Sα,d (Γ, µ0) is used to denote a stable random vector in this case.

The characteristic function of Y ∼ Sα,d (Γ, µ0) is described by:

φY(t) = E[e(i〈Y,t〉)] = e(−IY(t)+i〈µ0,t〉) (4.5)

where the function IY(t) in the exponent is

IY(t) =

∫
Sd
ψα(〈t, s〉)Γ(ds). (4.6)

Here 〈t, s〉 = t1s1 + · · ·+ tdsd is the inner product and

ψα(u) =

 |u|α(1− itanπα2 sign(u); α 6= 1,

|u|(1 + i
(
2
π

)
ln |u| sign(u) α = 1.

The characteristic function is determined by IY(t), t ∈ Rd and the complex valued function

IY(t) determines the distribution of Y. Below, we use this concept to estimate Γ from

the data.

For any t ∈ Rd, the projection of the random vector 〈t,X〉 is a one-dimensional random

variable with a characteristic function given by: E[e(iu〈t,Y〉)] = e−IY(ut). Therefore, the

scale, skewness and shift functions are given by Zolotarev (1986) :

σα(t) = <IX(t) =

∫
Sd
|〈t, s〉|α Γ(ds) (4.7)

β(t) = σ−α(t)

∫
Sd

sign |〈t, s〉|αΓ(ds) =


= IY(t)

σα(t)tanπα2
α 6= 1,

=

[
IY(2t)− 2IY(t)

4σ(t)ln 2
π

]
α = 1

µ(t) =

 〈t, µ0〉 α 6= 1,

〈t, µ0〉 − 2

π

∫
〈t, s〉ln|〈t, s〉|Γ(ds) = = IY(t)

σ(t) α = 1.

37



We take µ0 = 0 by replacing Y with Y−µ0. The functions σ(t), β(t) and µ(t) determine

the distribution. A relatively easy way to see this is to determine IY(·) :

IY =

 σα(t)(1− iβ(t)tan πα
2 ) α 6= 1,

σ(t)(1− iµ(t)) α = 1.

Another way of describing a stable random vector is in terms of projections. For any

vector u, the projection 〈u,Y〉 is univariate α−stable with skewness β(u), scale γ(u) and

shift δ(u). We write Y ∼ S(α, β(·), γ(·), δ(·)) if Y is stable with

〈u,Y〉 ∼ S(α, β(u), γ(u), δ(u))

for every u ∈ Rd. This is known as the projection parameterization.

The spectral measure determines projection parameter functions described below by:

γ(u) =

(∫
S
|〈u, s〉|αΛ(ds)

)1/α

β((u))

∫
S |〈u, s〉|

αsign(〈u, s〉)Λ(ds)

γ(u)

α

δ(u) =

 〈u, δ〉 α 6= 1

〈u, δ〉 − 2
π

∫
S〈u, s〉ln |〈u, s〉|Λ(ds) α = 1.
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4.2 Discrete spectral measures

This section discusses the case when Γ is a discrete spectral measure described by a finite

number of point masses:

Γ(·) =
n∑
j=1

γjδsj (·) (4.8)

where γ′js are the weights and δ′sjs are point masses at the points sj ∈ Sd, j = 1, . . . , n.

When the components Y are independent or when Y arises from the finite dimensional

distributions of a stable Ornstein-Uhlenbeck process and when one estimates Γ from the

data, then such spectral measures arise naturally in these several cases. Discrete spectral

measures are a simple class to study. We explain what is meant by “dense” spectral

measures.

For a discrete spectral measure given by equation (4.8), the characteristic equation (4.5)

becomes

φ∗(t) = exp

− n∑
j=1

ψα(< t, sj >)γj

 . (4.9)

The above expression is numerically simple to compute whereas φ(t) is more difficult to

compute. Let p be the density function corresponding to equation (4.5) and let p∗ be the

density with characteristic function of equation (4.8).

Theorem 4.2.1 (Byczkowski et al., 1993)

Let Y be a truly d -dimensional α−stable random vector (d ≥ 2, 0 < α < 2) with zero

shift, spectral measure σ and density p(y). Let ε > 0, then

(i) There exists a discrete measure σ∗ with corresponding stable density p∗(y) satisfying

sup
Y∈Rd

|p(y)− p∗(y)| ≤ ε.

(ii) There is a discrete measure σ
′

with corresponding stable random vector Y
′

which

satisfies

sup
A∈Borel(Rd)

|P (Y ∈ A)− P (Y
′ ∈ A)| ≤ ε
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Remark. (Byczkowski et al., 1993)

We define the discrete measure by considering:

A finite partitionA1, . . . , An of Sd−1, points s1, ..., sn ∈ Sd−1 and σ∗ is defined by concentrating

mass σ(Aj) at sj . that is,

σ∗(·) =
n∑
j=1

σ(Aj)δSj(·)

Lemma 4.2.1 (Byczkowski et al., 1993)

Using notation from Theorem 4.2.1, for any R > 0, ε > 0, there is a discrete measure σ∗ on

Sd−1 with at most 2
[
π
√
d− 1/2δ(ε/||σ|| : α,R)

]d−1
atoms which satisfies σ∗∗(Sd−1) = ||σ||

and

sup
|t|≤R

|I(t)− I∗(t)| ≤ ε, (4.10)

where

δ(ε;α,R) =


(
1 + 2

∣∣tan πα
2

∣∣)−1/α ε1/α 0 < α ≤ 1,

min(eα−1, ε/2(1 + ln+R), πε/16ln+(1ε ) α = 1,

α−1R1−α (1 +
∣∣tan πα

2

∣∣)−1 ε 1 < α < 2.

Lemma[4.2.2] (Byczkowski et al., 1993)

Let Y = (Y1, ..., Yd) be a d-dimensional α−stable random vector with spectral measure σ

and zero shift parameter. For ε > 0, P (|Y| > R ≤ ε) whenever R satisfies

Rα/2 ≥

 c
(
α
2 , α, 1

)
d||σ||1/α/ε 0 < α 6= 1 or (α = 1 and σ symmetric)(

1
2 , α, 1

)
d(2 + ||σ||+

√
2||σ||/πe)/ε α = 1 and σ nonsymmeteric

(4.11)

where for any 0 < p < α and skewness parameter β

c(p, α, β) =



(
2p−1Γ(1− ( pα))(1 + β2tan2(πα2 ))p/2α × cos((πα)arctan(βtan(πα2 ))

)
p
∫∞
0 up−1sin2 udu

α 6= 1

or (α = 1, β = 0)

2Γ(p)
sin(πα2 )

π(1− p)
α = 1

and β 6= 0
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4.3 Multivariate stable parameter estimation

4.3.1 Estimating discrete spectral measures

In stochastic modeling of financial portfolios, the need for an estimator of a multivariate

α−stable spectral measure arises. The spectral measure carries essential information about

the vector. There are three solutions to the estimation problem namely the Rachev-Xin-Cheng

based on Theorem 4.2.1, the empirical characteristic function (ECF) method and the

method devised by McCulloch (1994) called the projection method.

Rachev-Xin-Cheng method Rachev & Xin (1993) and Cheng & Rachev (1995):

An ad hoc is chosen for r which is used to estimate the measure of set A ⊂ Sd by:

Γ̂(A) = const.
#{Yi : |Yi| > r,Yi ∈ Cone(A)}

#{Yi : |Yi| > r

The next two estimators are based on using a sample to estimate the characteristic function

on some grid. In particular, we estimate the exponent of the characteristic function IY(·)

on a grid t1, . . . , tn ∈ Sd.

Empirical characteristic function method (ECF)

This method is fairly straightforward. Consider an i.i.d. sample Y1, . . . ,Yk of α−stable

random vectors with the spectral measure Γ. Let φ̂k(t) and Îk be the empirical counterparts

of φ and I; that is φ̂k(t) = ( 1k )
∑k

i=1 e
i〈t,Yi〉 is the sample characteristic function and

Îk(t) = −lnφ̂k(t). Given a grid t1, . . . , tn ∈ Sd, then ~IECF,k =
[
Îk(t1), ..., Îk(tn)

]′
is the

ECF estimate of Iy(·). The average coordinate of α’s, αECF = ᾱ, where ᾱ =
(
∑d

j=1 α̂j)

d
is defined as the estimate of the joint index of stability α.

Projection method

This method is based on one-dimensional projections of the data set. Consider a projection

of the random vector Y for any t ∈ Sd, 〈t.Y〉 is a one-dimensional random variable with

the characteristic function:

E[e(iu〈t,Y〉)] = e−IY(ut).
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Zolotarev (1986) and Samoradnitsky & Taqqu (1994) describe its scale, skewness and shift

by

σα(t) = <Iy(t) =

∫
Sd
|〈t, s〉|αΓ(ds)

β(t) = σ−α(t)

∫
Sd

sign 〈t, s〉|〈t, s〉αΓ(ds)

=



−=Iy(t)

σα(t)tan(πα2 )
α 6= 1,

=[Iy(2t)− 2Iy(t)]

4σ(t)ln( 2
π )

α = 1.

µ(t) =


0 α 6= 1,

− 2
π

∫
〈t, s〉ln|〈t, s〉|Γ(ds) =

−=Iy
σ(t)

α = 1.

Consider the sample Y1, ...,Yk. Now fix a grid t1, ..., tn on Sd, and for each tj define the

one-dimensional data set 〈tj ,Y1〉, ..., 〈tj ,Yk〉. Use this method to estimate the scale σ̂(tj)

and skewness β̂(tj) as well as the shift µ̂(tj) when α = 1 of this one-dimensional data. We

define

Îk(tj) =

 σα(tj)1− iβ̂(tj)tan(πα2 ) α 6= 1,

σ̂(tj)(1− iµ̂(tj)) α = 1.

The vector, ~IPROJ,k =
[
Îk(t1), ..., Îk(tn)

]′
is the projection estimator of IX(·). In view of

the fact that we estimated the parameters of each projection, we get an estimate α̂(tj)

for each direction. Also, for this method the average αPROJ = 1
n

∑
α̂(tj) as a pooled

estimate of α (Nolan et al., 2001).

In order to obtain the estimate of the spectral measure Γ̂, there is a need to invert the

discrete approximations to the characteristic function obtained by the ECF and PROJ

method. Starting with the case when Γ is a discrete spectral measure of the form in

equation (4.8). We let IX(t) =
∑n

j=1 ψα(〈t, sj〉)γj . Furthermore, let t1, ..., tn ∈ Rd. Define

the n× n matrix

Ψ = Ψ(t1, ..., tn; s1, ..., sn) =


ψα(〈t1, s1〉) , . . . , ψα(〈t1, sn〉)

... , · · · ,
...

ψα(〈tn, s1〉) , . . . , ψα(〈tn, sn〉)
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If ~γ = [γ1, ..., γn]
′

and ~I = [IX(t1), ..., IX(tn)]
′
, then

~I = ~Ψ~γ.

If t1, ..., tn ∈ Rd are chosen so that Ψ−1 exists, then ~γ = Ψ−1~I is the exact solution to ~I

above.

For, Γ , the general spectral measure (which is not discrete and the location of the point

masses are not known), we consider a discrete approximation Γ∗ =
∑n

j=1 γjδsj , where γj =

Γ(Aj), i = 1, . . . , n are the weights and δsj ’s are the point masses. When d = 2, take sj =(
cos

(
2π(j − 1)

n

)
, sin

(
2π(j − 1)

n

))
∈ Sd, and arcs Aj =

(
2π(j − (32))

n
,
2π(j − (12))

n

]
,

j = 1, . . . , n. In higher dimensions, the Aj ’s are patches that partition the sphere Sd with

some center sj . Each of the coordinates of the ~γ = [γ1, . . . , γn]
′

is an approximation to the

mass of the patch containing sj , j = 1, . . . , n, in this case. The main principle behind the

estimation of Γ is very simplistic: Given some grid tj = sj, j = 1, . . . , n and either estimate

(~IECF or ~IPROJ) of ~I, invert the equation of ~I above to get ~γ. Using these weights and

the grid s1, . . . , sn, Γ̂ is defined by equation (4.8). The above method is formally correct.

However, there are several numerical problems (Nolan, 2008).
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4.4 Multivariate stable densities

The following theorem on the tails of the distribution of Y due to Araujo & Giné (1980),

provides an important result in understanding the relation between the spectral measure

Γ and the distribution of Y.

Theorem 4.5.1 (Nolan, 2014)

For a set A ∈ Sd, we define a cone generated by A to be a Cone(A) = {y ∈ Rd : |y| >

0, y
|y| ∈ A} = {ra : r > 0,a ∈ A}.

lim
r→∞

P (Y ∈ Cone(A), |Y| > r)

P (|Y > r)
=

Γ(A)

Γ(Sd)

The mass that the spectral measure Γ assigns to A determines the tail behavior of Y in

the direction of A. In contrast, the local behavior is different from the directional tail

behavior described in the theorem above (Abdul-Hamid, 1996).

Numerical methods are used to understand multivariate stable densities.

The inversion formula for the characteristic functions show that:

p(y) = (2π)−d
∫
Rd
e−t〈y,t〉eIY(t)dt = (2π)−d

∫
Rd
e−t|〈y,t〉+=Iy(t)|−<IY(t)dt

=

∫
Rd

cos[|〈y, t〉|+ =Iy(t)]e<Iy(t)dt

Multivariate distributions are a very large class of distributions and cannot be parameterized

by finite parameters. The use of multivariate stable laws in applications requires one to

restrict the type of spectral measure. We describe some accessible classes:

(1.) Independent components: The spectral measure is concentrated on the points where

the coordinate axes intersect the sphere. Independence of the components makes

it relatively easy to simulate densities and distribution functions in the univariate

case.

(2.) Discrete spectral measures: Λ, the spectral measure is discrete with point mass λj

at locations sj . Byczkowski et al. (1993) showed that this is a dense class such

that for any spectral measure λ1, there exists a discrete measure Λ2 with a finite

number of point masses where |f1(y)− f2(y)|; the difference in the density functions
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is uniformly small for all y.

(3.) Elliptical contours: Here the joint characteristic function is of the form

φ(u) = exp
(

(uTQu)
α
2 + iu · δ

)
where Q is a d× d positve definite shape matrix and δ is the shift vector. This class

has an advantage in that it is computationally accessible and joint dependence is

characterized by the set of pairwise parameters where d(d−1)
2 values are needed as

in the Gaussian case.

Some basic properties of multivariate stable laws:

• Sums of independent stable random vectors are stable; the univariate projections

u · Y =
∑

k ukYk are univariate stable laws.

• The support of stable laws are generally the entire space, however, in the one-dimensional

case there are exceptions when α < 1 and the spectral measure is one-sided.

• To be jointly stable, there has to be an α for which every component is univariate

α−stable. Joint distributions can be constructed using copulas and vines. If multiple

components have a similar index of stability(α), then it is logical to use a jointly

stable model for those components and thereafter construct higher dimensional

distributions. Unfortunately, full distributions are generally not jointly stable (Nolan,

2014).
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4.5 Elliptically contoured stable distributions

4.5.1 Elliptically contoured stable laws

It can be shown that one can compute densities, make approximations on cumulative

probabilities and fit elliptical stable distributions in dimensions d ≤ 40.

If Y is α−stable and elliptically contoured, then the joint characteristic function can be

described as

E
[
e(iu

TY)
]

= exp
(
−(uTΣu)

α
2 + iuT δ

)
(4.12)

where the projection parameter functions are

γ(u) = (uTΣu)
1
2 , β(u) = 0, δ(u) = 〈u, δ〉

for some positive definite matrix Σ and shift vector δ ∈ Rd. We note that yT z =
∑d

k=1 yizi

is the inner product in Rd. The spectral measure is complicated. However, it is a known

measure. The matrix Σ is referred to as the shape matrix of the elliptical distribution.

Throughout this section, it is assumed that Y is non-singular, which is equivalent to

Σ being positive definite, that is, u 6= 0,uTΣu > 0. All elliptically contoured stable

distributions are scale mixtures of multivariate Normal distributions. Let G ∼ N(0,Σ)

be a d -dimensional multivariate Normal random vector and A ∼ S(α2 , 1, γ, 0) be an

independent univariate positive (α/2)−stable random variable with 0 < α < 2. Then

Y = A1/2G is an α−stable elliptically contoured distribution with joint characteristic

function

exp
(
− (

γ

2
)α/2

(
sec
(πα

4

))
(uTΣu)α/2

)
Elliptically contoured stable distributions are described as sub-Gaussian stable. Below,

we describe a formula for simulating elliptical stable distributions when 0 < α < 2, A ∼

S(α2 , 1, 2γ
2
0(cos(πα4 )2/α), 0) where G ∼ N(0,Σ). Then,

Y = A1/2G + δ

has a characteristic function as in equation (4.18).
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4.5.2 Densities of elliptically contoured stable laws

Let Y be a d -dimensional α−stable elliptically contoured random vector with Σ (shape

matrix) and δ (shift vector). Then Y
d
= A1/2G + δ, where A ∼ S(α2 , 1, 2γ

2
0(cos(πα4 )2/α), 0)

and G ∼ N(0,Σ). Here, it is known that G
d
= Σ

1
2 G1, where Σ1/2 is derived from the

Cholesky decomposition of Σ and G1 ∼ N(0, I), G1 has independent standard Normal

components. Therefore G1
d
= A1/2Σ1/2G1 + δ = Σ1/2A1/2G1 + δ = Σ1/2Y + δ, where Y is

radially symmetric α−stable. So X is an affine transformation of Y and equation (4.17)

shows that

fX(x) = |det Σ|−1/2 fY(Σ−1/2x) = |det Σ|−1/2 h
(
Σ−1/2|x− δ| |α, d) (4.13)

(Nolan, 2006).

4.5.3 Statistical analysis as elliptical stable

Firstly, ways of assessing d−dimensional data set is described to see if it is approximately

sub-Gaussian and then the parameters of a sub-Gaussian vector will be estimated.

A one-dimensional stable fit is carried out to each coordinate of the data using one of

the univariate methods to obtain the estimates θ̂i = (α̂i, β̂i, γ̂i, δ̂i). If there are significant

differences in the αi’s, then the data cannot be described as jointly α−stable. Hence it is

also not sub-Gaussian. Similarly, if the βi’s are not all close to 0, then the distribution

is asymmetric and cannot be sub-Gaussian. If all the αi’s are close, they form a pooled

estimate of α =
(
∑d

i=1 αi)

d
(the average of the indices of each component). Then, the data

should be shifted by δ̂ = (δ̂1, δ̂2, . . . , δ̂d). So, the distribution is centered at the origin.

The following step requires a test for sub-Gaussian behavior. We can approach this by

analyzing two dimensional projections due to the following result:

If Y is a d−dimensional sub-Gaussian α−stable random vector, then every two dimensional

projection

Y = (Y1, Y2) = (a1 · Z,a2 · Z) (4.14)

where (a1,a2 ∈ Rd) is a two dimensional sub-Gaussian α−stable random vector. On

the other hand, suppose Y is a d−dimensional α−stable random vector with the property
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that every two-dimensional projection of the form (4.34) is non-singular sub-Gaussian then

d−dimensional Z is non-singular sub-Gaussian α−stable. This leads to the assessment of

multivariate data by looking at two dimensional distributions. This cannot be done for

all projections. However, one can check pairs visually by glancing at scatterplots or by

plotting the bivariate estimated directional scale function of the projected data and make

comparisons to the scale function of the estimated elliptical fit.

There are two ways to estimate the
d(d+ 1)

2
parameters. The upper triangular part

of R. In the first method, we set ru = γ2i , that is, the square of the scale parameter

in the i-th coordinate. Then, estimate rij by analyzing the pair (Xi, Xj) and take

rij =
(γ2(1, 1)− rii − rjj)

2
where γ(1, 1) is the scale parameter of 〈(1, 1), (Yi, Yj)〉 = Yi+Yj .

This includes estimating
d+ d(d− 1)

2
=
d(d+ 1)

2
one-dimensional scale parameters.

In the second method, note that E[ei〈u,Y〉] = e−((uRuT )
α
2 ) so

[
lnE[ei〈u,Y〉]

] 2
α = uRuT =

∑
i u

2
i rii + 2

∑
i<j uiujrij .The above equation is a linear

function of the r′ijs and, therefore, can be estimated by regression. This method is more

accurate as it uses multiple directions whereas the first method uses only three directions:

(1,0), (0,1) and (1,1). Notice that uRuT = γ2(u) is the square of the scale parameter in

the direction u. For γ2(u), sample estimates on a grid of u points can be used for the

middle term in the equation above. One should make sure that for both methods, the

resulting matrix R should be positive definite (Nolan, 2005).
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Chapter 5

Volatility model: GARCH(1,1)

The volatility clustering phenomenon is evident in this study where extreme returns

cluster. We specify the conditional variance (volatility) by the GARCH(1,1) model. This

is because the GARCH(1,1) model is considered to be a parsimonious model of conditional

variance that fits many economic time series (Embrechts et al., 1999).

5.1 The ARCH model

The Autoregressive Conditional Heteroskedasticity (ARCH) model introduced by Engle

(1982) has been extensively investigated by many researchers. Consider a log-return series

wt as

wt = µt + at

at =
√
σtεt

(5.1)

where εt is a white noise, εt ∼ N(0, 1). The ARCH(m) process proposed by Engle (1982),

σ2t = α0 +

m∑
i=1

αia
2
t−i (5.2)

where α0 > 0, βj ≥ 0 are considered to ensure strictly positive variance. Generally, q is of

high order because of the prominent volatility clustering phenomenon in financial markets.

The unconditional variance is given by,

E[a2t ] =
α0

1−
∑max(m,s)

i=1 αi
(5.3)
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The process is covariance stationary if and only if the sum of the autoregressive parameters,∑m
i=1 αi < 1 (Poon, 2008).

5.2 The GARCH model

An extension of the ARCH model is the generalized ARCH (referred to as GARCH)

model. For a high order ARCH(m) process, it is more parsimonious to model volatility as

a GARCH(m, s) due to Bollerslev (1986). For a log-return series wt, we let at = wt − µt

be the innovation at time t. Hence, at follows a GARCH(m, s) model if

at = σtεt

σ2t = α0 +
m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j

(5.4)

where εt is a sequence of i.i.d. random variables with mean 0 and variance 1. We note that

α0 > 0, αi ≥ 0, βj ≥ 0 and
∑max(m,s)

i=1 (αi +βj) < 1. Here, it is also understood that αi = 0

for i > m and βj = 0 for j > s. The constraint αi + βi implies that the unconditional

variance of at is finite whereas the conditional variance σ2t evolves over time. Equation

(5.1) above reduces to an ARCH(m) model if s = 0. The αi and βj are referred to as

ARCH and GARCH parameters, respectively. For the properties of the GARCH model,

the following representation is used. Let ηt = a2t − σ2t so σ2t = at − ηt. By substituting

σ2t−i = a2t−i − ηt−i (i = 0, . . . , s) into equation (5.1), we now write the GARCH model as

a2t = α0 +

max(m,s)∑
i=1

(αi + βi)a
2
t−i + ηt −

s∑
j=1

βjηt−j (5.5)

where E (ηt) = 0 and Cov(ηt, ηt−j) = 0 for j ≥ 1. Equation (5.2) is an ARMA form for

the squared series a2t . Therefore, the GARCH model resembles an ARMA model but with

squared series a2t . By using the unconditional mean of the ARMA model, we have

E[a2t ] =
α0

1−
∑max(m,s)

i=1 (αi + βi)
(5.6)
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where the denominator is positive.

We now look at the simplest form of GARCH models, the GARCH(1,1) model:

σ2t = α0 + α1a
2
t−1 + β1σ

2
t−1 0 ≤ α1, β1 ≤ 1 (α1 + β1) < 1. (5.7)

A large a2t−1 or σ2t−1 give rise to a large σ2t . This means that a large a2t−1 tends to be

followed by another large a2t generating volatility clustering. It can be shown that if

1− 2α2
1 − (α1 + β1)

2 > 0, then

E(a4t )[
E(a2t )

]2 =
3
[
1− (α1 + β1)

2
]

1− (α1 + β1)2 − 2α2
1

> 3 (5.8)

Similar to ARCH models, the tail distribution of the GARCH(1,1) model is heavier than

the Normal distribution. For the GARCH(1,1) model, we assume that the forecast origin

is h. The one-step ahead forecast is

σ2h+1 = α0 + α1a
2
h + β1σ

2
h

where ah and σ2h are known at time index h. The one-step ahead forecast is:

σ2h(1) = α0 + α1a
2
h + β1σ

2
h

a2t = σ2t ε
2
t is used for multi-step forecasts. Thus, the volatility equation is rewritten as

σ2t+1 = α0 + (α1 + β1)σ
2
t + α1σ

2
t (ε

2
t − 1)

When t = h+ 1, we have

σ2h+1 = α0 + (α1 + β1)σ
2
h+1 + α1σ

2
h+1(ε

2
h+1 − 1)

Since E
(
ε2h+1 − 1|Fh

)
= 0, the two-step ahead volatility forecast at the origin satisfies the

equation

σ2h(2) = α0 + (α1 + β1)σ
2
h(1)
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In general, we have

σ2h(`) = α0 + (α1 + β1)σ
2
h(`− 1), ` > 1 (5.9)

From equation (5.6), repeated substitutions show that the `-step ahead forecast is:

σ2h(`) =
α0

[
1− (α1 + β1)

2
]

1− α1 − β1
+ (α1 + β1)

`−1σ2h(1),

Hence,

σ2h(`)→ α0

1− α1 − β1
, `→∞

only if α1 +β1 < 1. With the GARCH(1,1) model, the multistep ahead volatility forecasts

converge to the unconditional variance of at as the forecast horizon tends to infinity if

Var(at) exists (Tsay, 2005).

5.3 Parameter estimation

Yang (2012b) defines the GARCH(m, s) as

σt = α0 +

m∑
i=1

αiε
2
t−i +

s∑
i=1

βiσt−i

εt = vt
√
σt

where σt defines the conditional variance and vt is the white noise term

To estimate parameters of GARCH models with given k,m and s, we have

yt = C +

k∑
i=1

aiyt−i + εt (5.10)

εt = vt
√
σt (5.11)

σt = α0 +
m∑
i=1

αiε
2
t−i +

s∑
i=1

βiσt−i (5.12)
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where vt is the white noise term. εt follows a Normal distribution with mean zero and

conditional variance σt, i.e.

p(εt|εt−1, . . . , ε0) =
1√

2πσt
exp

(
−ε2t
2σt

)
(5.13)

The log-likelihood function of the parameter vector θ = (α0, α1, · · · , αs, β1, · · · , βm)T is

L(θ) =
n∑

t=s+1

lt(θ) =
n∑

t=s+1

(
− 1

2
ln2π − 1

2
lnσt −

ε2t
2σt

)
(5.14)

We, therefore, have

∂lt(θ)

∂θ
=

(
ε2t

2σ2t
− 1

2σt

)
∂σt
∂θ

(5.15)

∂2lt(θ)

∂θ∂θT
=

(
ε2t

2σ2t
− 1

2σt

)
∂2σt
∂θ∂θT

+

(
1

2σ2t
− ε2t
σ2t

)
∂σt
∂θ

∂σt
∂θT

(5.16)

where
∂σt
∂θ

=
(
1, ε2t−1, · · · , ε2t−s, σt−1, · · · , σt−m

)T
+

m∑
i=1

βi
∂σt−i
∂θ

(5.17)

The gradient is

∇L(θ) =
1

2

n∑
t=s+1

(
ε2t
σ2
− 1

σt

)
∂σt
∂θ

(5.18)

and the Fisher information matrix is given by

J =

n∑
t=s+1

E

[(
ε2t

2σ2t
− 1

2σt

)
∂2σt
∂θ∂θT

+

(
1

2σ2t
− ε2t
σ3t

)
∂σt
∂θ

∂σt
∂θT

]

= −1

2

n∑
t=s+1

E

(
1

h2t

∂ht
∂θ

∂ht
∂θT

) (5.19)

We now consider the GARCH(1,1) model

εt = vt
√
σt (5.20)

σt = α0 + α1ε
2
t−1 + β1ht−1 (5.21)
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to estimate the coefficients θ = (α0, α1, β1)
T , where

∇L(θ) =
1

2

n∑
t=2

(
ε2t
σ2t
− 1

σt

)
∂σt
∂θ

(5.22)

and

J = −1

2

n∑
t=2

E

(
1

σ2
∂σt
∂θ

∂σt
∂θT

)
(5.23)

with
∂σt
∂θ

=
(
1, ε2t−1, σt−1

)T
+ β1

∂σt−1
∂θ

(5.24)

This chapter explored the properties and parameter estimation of GARCH models. GARCH

models are popular in the financial industry due to the properties of capturing most

of the stylized facts of financial data. In this research we investigate a case of the

hybird, stable-GARCH(1,1) model to see the effect of a GARCH filter on modeling BRICS

exchange rates. The next chapter discusses the research methodology thereafter we look

at the empirical results.
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Chapter 6

Methodology

This chapter discusses the relevant research methodology.

6.1 Autocorrelation

6.1.1 Autocorrelation

Autocorrelation is the term used to define the correlation between the members of a series

of observations ordered in time. In the classical linear regression model, it is assumed that

the autocorrelation does not exist in the disturbances ui. That is,

E(uiuj) = 0, i 6= j (6.1)

6.1.2 Autocorrelation function

For a stationary process Yt with mean E(Yt) = µ and variance Var(Yt) = E(Yt − µ)2 = σ

which is constant. The covariance between Yt and Yt+k is defined as:

γk = Cov(Yt, Yt+k) = E(Yt − µ)(Yt+k − µ) (6.2)

and the autocorrelation function (ACF) is defined as:

ρk =
Cov(Yt, Yt+k)√

Var(Yt)
√

Var(Yt+k)
=
γk
γ0

(6.3)
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where k denotes a separation by k lags (Wei, 2006).

6.1.3 Partial autocorrelation function

One may want to investigate the correlation between Yt and Yt+k after the mutual dependence

of the intervening variables Yt+1, Yt+2, . . . , Yt+k−1 have been removed. The conditional

correlation

Corr(Yt, Yt+k|Yt+1, . . . , Yt+k−1) (6.4)

is referred to as partial correlation which for convenience is denoted by φkk. Consider a

regression model which is regressed on k lagged variables, that is

Yt+k = φk1Yt+k−1 + φk2Yt+k−2 + . . . φkkYt + et+k

where φki denotes the ith regression parameter and et+k is the error term. It can be

shown, by using Cramer’s rule, that the PACF, as denoted by Wei (2006):

φkk =

∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 · · · ρk−2 ρ1

ρ1 1 ρ1 · · · ρk−3 ρ2
...

...
...

...
...

ρk−1 ρk−2 ρk−3 · · · ρ1 ρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 · · · ρk−2 ρk−1

ρ1 1 ρ1 · · · ρk−3 ρk−2
...

...
...

...
...

ρk−1 ρk−2 ρk−3 · · · ρ1 1

∣∣∣∣∣∣∣∣∣∣∣∣

(6.5)

6.1.4 Ljung-Box test for autocorrelation

Formally, the Ljung-Box test defines serial correlation in the alternative hypothesis where

the test statistic is given by

Q = n(n+ 2)

h∑
k=1

ρ̂2k
n− k

where n is the sample size, the sample autocorrelation at lag k is ρ̂k. Under H0, the

test statistic, Q follows a chi-squared distribution with h degrees of freedom. Thus, we

reject H0 at α level of significance if the value of Q exceeds the (1 − α) - quantile of the
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chi-squared distribution with h degrees of freedom (Shumway & Stoffer, 2010).

6.2 Periodogram

Wei (2006) describes the periodogram as follows:

Given a time series of n observations, we can represent these n observations in the following

Fourier representation:

Yt =

n
2∑

k=0

(akcos ωkt+ bksin ωkt) (6.6)

where ωk = 2πk
n , k = 0, 1, . . . , n2 are Fourier frequencies. Also,

ak =

 1
n

∑n
t=1 Ytcosωkt; k = 0 and k = n

2 if n is even

2
n

∑n
t=1 Ytcosωkt, k = 1, 2, . . . , n−12

(6.7)

and

bk =
2

n
sinωkt, k = 1, 2, . . . ,

n− 1

2
(6.8)

are Fourier coefficients. These coefficients are the least squares estimates of the coefficients

in fitting the regression model below:

Yt =

n
2∑

k=0

(akcosωkt+ bksinωkt) + εt (6.9)

The quantity I(ωk) is defined as:

I(ωk) =


na20, k=0

n
2 (a2k + b2k), k = 1, 2, . . . , n−12

na2n
2
, k = n

2 when n is even

(6.10)

I(ωk) is called the periodogram which was introduced by Schuster (1898) to search for

periodic components in a series.
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6.2.1 Testing for hidden periodicity

If it is believed that a time series contains a periodic component, the underlying frequency

is most likely to be unknown. For the model

Yt = µ+ αcosωt+ βsinωt+ et

we test the hypotheses

H0 : α = β = 0 versusH1 : α 6= 0 or β 6= 0

where εt is a Gaussian white noise series with i.i.d N(0, σ2) and frequency ω is not known.

If the time series contains a periodic component at frequency ω, then we assume that

the periodogram I(ωk) at a Fourier frequency ωk closest to ω will be the maximum. We

can identify the maximum periodogram ordinate and, thereafter, test if this ordinate is

considered to be maximum in a random sample of n2 i.i.d. random variables. Each random

variable is a multiple of a chi-squared distribution with two degrees of freedom. Here, the

test statistic is

I(1)(ω(1)) = max{I(ωk)} (6.11)

where ω(1) indicates the Fourier frequency with the maximum periodogram ordinate. The

null hypothesis H0 is that the series ,Yt is a Gaussian white noise N(0, σ2). Therefore,

the periodogram ordinates I(ωk)
σ2 , k = 1, 2, . . . , n2 are i.i.d chi-squared distributed random

variables with two degrees of freedom and have density

p(x) =
1

2
exp

(
−x

2

)
, 0 ≤ x ≤ ∞. (6.12)

Then, for any g ≥ 0, we have

P

[
I(1)(ω(1))

σ2
> g

]
= 1− P

[
I(1)(ω(1))

σ2
≤ g

]

= 1− P

{
I(1)(ω(1))

σ2
≤ g, k = 1, 2, . . .

n

2

}

= 1−
{∫ g

0
e−

x
2 dx

}n
2
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= 1− (1− e−
g
2 )

n
2

If σ2 were known then the above equation would have been used to derive an exact test

for the maximum ordinate. However, in practice σ2 is unknown and is required to be

estimated. In order to derive an unbiased estimator, we should take note that under H0,

E

 n
2∑

k=1

I(ωk)

 =
[n

2

]
2σ2

Hence,

σ̂2 =
1

2n2

n
2∑

k=1

I(ωk) (6.13)

is an unbiased estimator of σ2. This leads to the test statistic

V =
I(1)(ω(1))

2n2

n
2∑

k=1

I(ωk). (6.14)

Using the fact that I(ωk), k = 1, 2, . . . , n2 are independent, we have

Var(σ2)→ 0 as n→∞.

It also follows that σ̂2 is a consistent estimator of σ2. So for large samples, the distribution

of V can be approximated by the same distribution as I
(1)(ω(1))

σ2 for any g ≥ 0,

P (V > g) ' 1− (1− e
g
2 )

n
2 . (6.15)

The exact test for max{I(ωk)} was derived by Fisher (1929) based on the statistic

T =
I(1)(ω(1))∑n

2
k=1 I(ωk)

(6.16)

The null hypothesis H0 which states that the series Yt is a Gaussian white noise process.

Fisher (1929) also showed that

P (T > g) =
m∑
j=1

(−1)(j−1)

 N

j

 (1− jg)N−1 (6.17)
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where N = n
2 , g > 0 and m is the largest integer less than 1

g . For any given significance

level α, equation (5.18) can be used to find critical value gα such that,

P (T > gα) = α

We reject the null hypothesis if the T value calculated from the series is larger than gα and

conclude that the series Yt contains a periodic component. This test procedure is known

as Fisher’s test, also known as Fisher’s Kappa (Wei, 2006).
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6.3 Tests for stationarity

6.3.1 The unit root test

We start with the unit root stochastic process:

Yt = ρYt−1 + ut, −1 ≤ ρ ≤ 1 (6.18)

where ut is a white noise error term. If ρ = 1, in the case of the unit root, the equation

above becomes a random walk model without drift which is known to be a non-stationary

stochastic process. We regress Yt on its lagged value Yt−1 to determine if the estimated

ρ is statistically equal to 1. If so, then Yt is considered to be non-stationary. This is the

general idea behind unit root tests for stationarity. The equation above is manipulated

by subtracting Yt−1 from both sides to obtain

Yt − Yt−1 = ρYt−1 − Yt−1 + ut

= (ρ− 1)Yt−1 + ut

This can be alternatively written as

4Yt = δYt−1 + ut (6.19)

where δ = (ρ− 1) and 4 is the first difference operator. We estimate equation (6.19) and

test the null hypothesis

H0 : δ = 0

If δ = 0, then ρ = 1. This implies a unit root which, in turn, means the time series under

consideration is non-stationary. Note that if δ = 0, then equation (6.19) becomes

4Yt = (Yt − Yt−1) = ut (6.20)

where ut is the white noise error term and is stationary, which means that the first

differences of a random walk time series are stationary. To estimate equation (6.20),

we take the first differences of Yt and regress them on Yt−1 and evaluate the estimated

slope coefficient in this regression (= δ̂) is equal to zero or otherwise. If it is zero, we
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conclude that Yt is non-stationary. Hovwever, if it is negative, we may conclude that Yt

to be stationary.

There are several decisions to be considered in the implementation of the DF test procedure.

Note that a random walk process may have no drift, it may have drift or there may be

both deterministic and stochastic trends.

The DF test is estimated under three different null hypotheses:

1. Yt is a random walk: 4Yt = δYt−1 + ut

2. Yt is a random walk with drift: 4Yt = β1 + δYt−1 + ut

3. Yt is a random walk with drift

around a stochastic trend: 4Yt = β1 + β2tδYt−1 + ut,

where t is the time or trend variable. In each of the above cases, we have H0 : δ = 0,

that is, there exists a unit root and the time series is non-stationary. The alternative

hypothesis states that: H1 : δ < 0 which implies the time series is stationary. If

H0 is rejected, then Yt is a stationary time series with zero mean in the first case.

In the second case, it is implied that Yt is stationary with non-zero mean

(
β1

(1−ρ)

)
and lastly, Yt is stationary around a deterministic trend. The actual estimation is

done by an ordinary least squares method where we divide the estimated coefficient

of Yt in each case by its standard error to compute the τ statistic. With reference

to the DF tables or any other statistical package, if the computed absolute value of

the τ statistic exceeds the DF critical τ values, we fail to reject the null hypothesis,

in which case the time series is non-stationary (Gujarati, 2004).

6.3.2 Augmentmented Dickey-Fuller test

In the DF test described in the previous section, it was assumed that the error term

ut is uncorrelated. Conversely, in the case where the error terms are correlated,

Dickey and Fuller devised another test known as the Augmented Dicky-Fuller (ADF)

62



test. The ADF test is conducted by augmenting the equations above by adding the

lagged values of the dependent variable 4Yt. We are concerned in estimating the

following regression equation

4Yt = β1 + β2t+ δYt−1 +

m∑
i=1

αi4Yt−i + εt (6.21)

where εt is a pure white noise error term and where 4Yt−1 = (Yt−1−Yt−2),4Yt−2 =

(Yt−2 − Yt−3) and so forth. The number of lagged differences to be added is

determined empirically where the main idea is to include enough terms so that

the error term is serially uncorrelated. In the ADF test, we test δ = 0. The same

critical values are used since the ADF test follows the same asymptotic distribution

as the DF statistic (Gujarati, 2004).

6.3.3 Philips-Perron test

The Phillips-Perron (P-P) test a more comprehensive method to test unit root

non-stationarity. This test is similar to the ADF test, but includes an automatic

correction to the DF test to allow for autocorrelated residuals.

The Phillips-Perron test fits the following regression

Yt = α+ ρYt−1 + εt (6.22)

where a constant term may be excluded or a trend term may be included. Zρ and

Zτ are two statistics that are calculated as follows:

Zρ = n(ρ̂n − 1)− 1

2

n2σ̂2

s2n

(
λ̂2n − γ̂0.n

)
(6.23)

Zτ =

√
γ̂0,n

λ̂2n

ρ̂n − 1

σ̂
− 1

2

(
λ̂2n − γ̂0.n

) 1

λ̂n

nσ̂

sn
(6.24)

γ̂j,n =
1

n

n∑
t=j+1

ûiût−j

λ̂2n = λ̂0,n + 2

q∑
j=1

(
1− j

q + 1

)
λ̂j,n
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s2n =
1

n− k

m∑
t=1

û2i

where ut is the OLS residual, k is the number of covariates in the regression model,

q is the number of lags to use in calculating λ̂2n and σ̂ is the OLS standard error of

ρ̂.

The regression is Y on lagged Y and not the differenced Y on lagged Y . Zτ is the

adjusted t-statistic as in the DF test:

ρ̂n − 1

σ̂
(6.25)

s2n is an unbiased OLS estimator of the variance of the error terms.

γ̂j,n =
1

n

n∑
t=j+1

ûtût−j

When j = 0, this is a maximum likelihood estimate of the variance of the error

terms when the estimator of the covariance between two error terms is j periods

apart.

λ̂2n = γ̂0,n + 2

q∑
j=1

(
1− j

q + 1

)
γ̂j,n

where q is the number of lagged covariances. When the covariances are zero; that

is, when the autocorrelation between error terms γ̂j,n is zero for j > 0. Thus, the

second term in the equation is eliminated and λ̂2n = γ̂0,n. We can make a replacement

for Zτ which becomes

Zτ =

√
γ̂0,n

λ̂2n

ρ̂n − 1

σ̂
− 1

2

(
λ̂2n − γ̂0,n

) 1

λ̂n

nσ̂

sn
(6.26)

In this case λ̂2n − γ̂0,n = 0, and the second term vanishes.
γ̂0,n

λ̂2n
= 1 hence the term√

γ̂0,n

λ̂2n

ρ̂n−1
σ̂ reduces to ρ̂n−1

σ̂ and therefore Zτ = ρ̂n−1
σ̂ . We notice the similarity

as in the standard DF test. When there is no autocorrelation between the error

terms, this term of the P-P test is equal to the DF test. The P-P test corrects the

DF test for autocorrelation amongst error terms outside of a regression framework

(non-parametrically). The critical values have the same distribution as the DF

statistic.
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If there is no autocorrelation between error terms, then the covariances are equal

and the second term in the other P-P statistic becomes zero as λ̂2n = γ̂0,n

Zρ = n(ρ̂n − 1)− 1

2

n2σ̂2

s2n

(
λ̂2n − γ̂0,n

)
(6.27)

In the above case Zρ = n(ρ̂n−1) which again is the same as the DF test (StataCorp,

2015).

6.3.4 Kwiatkowski-Phillips-Schmidt-Shin test

The Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) has a null hypothesis of stationarity

in a time series around a mean or a linear trend versus the alternative hypothesis

which states that the time series is non-stationary due to the presence of a unit root.

The KPSS model is made up by a series of observations represented as a sum of

three components, namely: a deterministic trend, a random walk and a stationary

error term. The model is as follows:

Yt = ξt+ rt + εt (6.28)

rt = rt−1 + ut (6.29)

where Yt, t = 1, 2, . . . , T denotes series of observations of the variable of interest, t is

the deterministic trend, rt is a random walk process and εt is the error term, which

by assumption is stationary. ut is the error term in the second equation above and

is a series of i.i.d. with mean 0 and variance σ̂2u The null hypothesis of stationarity is

equivalent to the assumption that σ̂2u of the random walk process rt equals to zero.

When ξ = 0, the null hypothesis implies Yt is stationary around r0. Conversely, if

ξ 6= 0, then this suggests Yt is stationary around a linear trend. If σ̂2u > 0, then Yt

is non-stationary due to the presence of a unit root.

By subtracting Yt from both sides of the first equation above, we have

4Yt = ξ + ut +4εt = ξ + wt (6.30)
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where wt by the assumption that the error terms (εt and ut) are i.i.d. is generated

by an AR(1) process where: wt = vt + θvt−1. The KPSS model may be described

as:

Yt = ξ + βYt−1 + wt (6.31)

wt = vt + θvt−1, β = 1 (6.32)

The above equations show an interesting relationship between the KPSS and the

DF test. In the DF test, β = 1 on the assumption that θ = 0 where θ is the

nuisance parameter. Kwiatkowski et al. (1992) made an assumption that β is the

the nuisance parameter and, hence, tests if θ = −1. Assuming β = 0, a one-side

Lagrange Multiplier (LM) test with H0 : vσ2u = 0 where ut is Normally distributed

and εt are i.i.d.. random variables with a zero mean and constant variance σ2ε

The KPSS test statistics is as follows:

(a) Testing a null hypothesis of stationarity around a linear trend versus the

alternative hypothesis of the presence of a unit root

Let et, t = 1, 2, 3, . . . , T denote the estimated errors from a regression on Yt and

σ̂2t denotes the estimated variance which is equal to the sum of error squares

divided by the number of observations T . Partial sums of errors are computed

from:

St =

t∑
t=1

et for t = 1, 2, . . . , T

The LM test statistic is then defined as

LM =

T∑
t=1

S2
t

σ2ε
(6.33)

(b) Testing the null hypothesis of stationarity around the mean versus an alternative

hypothesis of the presence of a unit root

et, the estimated errors are computed as residuals of regression on Yt;, that is

et = Yt − Ȳ and the remaining definitions are left unchanged. The long-run

variance is:

σ2 = limT−1E
[
S2
T

]
(6.34)
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the long-run variance appears when we define an asymptotic distribution of a

test statistic. Kwiatkowski et al. (1992) provide a consistent estimate of the

long-run variance which is given by

s2(k) = T−1
T∑
t=1

e2t + 2T−1
k∑
j=1

w(j, k)
T∑

t=s+1

etet−1 (6.35)

where w(j, k) denote weights depending on the choice of a spectral window.

The Bartlett window is used by Kwiatkowski et al. (1992) where the weights

w(j, k) = 1− j
k+1 . This makes certain that s2(k) is non-negative. It is argued

that for quarterly data, lag k = 8 is the ideal choice as if k < 8, then the

size of test is distorted and if k > 8 the power decreases. Here, the KPSS

test statistic is computed as a ratio of sum of squared partial sums and the

estimated long-run variance

η̂ = T−2
∑
S2
t

s2(k)
(6.36)

The symbols η̂µ and η̂t denotes the KPSS test statistic for testing stationarity

around a mean and around a trend, respectively. The asymptotic distribution

of the KPSS test statistic is non-standard and converges to a Brownian bridge

of higher order.

The η̂µ statistic for testing stationarity around mean converges to

η̂µ →
∫ 1

0
V (r)2dr

In the above equation, the standard Brownian bridge is denoted by: V (r) =

W (r)− rW (1) which is defined for a standard Wiener process W (r).

The KPSS test statistic for η̂t is testing for stationarity around a trend, when

ξ 6= 0, weakly converges to a second order Brownian bridge, V2(r), which is

defined as :

V2(r)2 = W (r) + (2r − 3r2)W (1) + (−6r + 6r2)

∫ 1

0
W (s)ds
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The test statistic above converges weakly to the limit

η̂t →
∫ 1

0
V2(r)

2dr

In summary, the KPSS test is performed as follows:

(i) We test the hypotheses H0 : stationarity around a mean or around a

trend versus the alternative H1 : non-stationarity of a time series due the

presence of a unit root.

(ii) Compute the value of the test statistic

(iii) If the computed value is greater than the critical value at a given level

of significance, the null hypothesis of stationarity is rejected (Syczewska

et al., 2010).
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6.4 Measures of dependency

6.4.1 Scatterplot matrices

If we have a set of variables Y1, Y2, . . . , Yk, then the scatter plot matrix contains all

the pairwise scatterplots of the variables in a matrix format. That is, if the are k

variables, then the scatterplot matrix has k rows and k columns. The ith row and

jth column of the matrix is the plot of Yi versus Yj (NIST/SEMATECH, 2013).

6.4.2 Covariance and correlation matrices

In order to measure the linear dynamic dependence of a stationary time series yt,

we define its lag k cross-covariance matrix as

Γk = Cov(yt,yt−k)

= E[(yt − µ)(yt−k − µ)
′
]

=


E(ỹ1tỹ1,t−k) E(ỹ1tỹ2,t−k) · · · E(ỹ1tỹn,t−k)

...
... · · ·

...

E(ỹntỹ1,t−k) E(ỹntỹ1,t−k) · · · E(ỹntỹn,t−k)


(6.37)

where µ = E(yt) is the mean vector of yt and ỹt = (ỹ1t, . . . , ỹnt)
′ ≡ yt − µ is the

mean-adjusted time series. The above cross-covariance matrix is a function of k and

not the time index t, since yt is stationary. If k = 0, we have the covariance matrix

Γ0 of yt. The (i, j)th element of Γk is denoted as γk,ij . From the matrix above, we

see that γk,ij is the covariance between yi,t and yj,t−k. Therefore, for the positive

lag k, γk,ij can be regarded as a measure of linear dependence of the ith component

yit on the kth lagged value of the component yjt.
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From the definition of covariance depicted by the matrix above, for a negative lag

k:

Γk = E
[
(yt − µ)(yt−k − µ)

′
]

= E
[
(yt+k − µ)(yt − µ)

′
]

(because of stationarity)

=

{
E
[
(yt − µ)(yt+k − µ

′
)
]}′

since A = (A
′
)
′

=

{
E
[
(yt − µ)(yt−(−k) − µ

′
)
]}′

=

{
Γ−k

}′
(by definition)

= Γ
′
−k

Unlike the case of the univariate stationary time series, where the autocovariances

of lag k and lag −k are identical, one needs to take the transpose of a positive lag

cross-covariance matrix to obtain the negative lag cross-covariance matrix.

For a stationary multivariate linear time series yt , we have (for k ≥ 0),

Γk = E
[
(yt − µ)(yt−k − µ)

′
]

= E
[
(at + ψ1at−1 + · · · )(at−k + ψ1at−k−1 + · · · )′

]
= E

[
(at + ψ1at−1 + · · · )(a′t−k + ψ

′
1a
′
t−k−1 + · · · )

]
=
∞∑
i=k

ψiΣaψ
′
i−k

where the last inequality holds as at has no serial correlations and ψ0 = Ik.
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For a stationary series yt, the lag k cross-correlation matrix ρk is defined as

ρk = D−1ΓkD
−1 = [ρk,ij ] (6.38)

where D = diag{σ1, . . . , σk} is the diagonal matrix of standard deviations of the

components of yt. More specifically, σ2i = Var(yit) = γ0,ii, i.e the (i, i)th element

of Γ0. ρ0 is symmetric with diagonal elements being 1. Off-diagonal elements of ρ0

are correlations between components in yt. For k > 0, ρk is not symmetric since ρij

is the correlation coefficient between yit and yj,t−k whereas ρk,ji is the correlation

coefficient between yjt and yi,t−k. Using the properties of Γk, we have, ρk = ρ
′
−k

(Tsay, 2013).
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6.5 Goodness-of-fit tests

There has been a long standing debate on whether it is required to fit stable

distributions, especially when analyzing returns on financial data. The Normality

assumption is the core of modern portfolio theory. This assumption cannot justify

the characteristics of heavy-tails and skewness. Stable distributions are proposed

as a better model for financial asset returns. The Kolmogorov-Smirnov (K-S) test

and the Anderson-Darling (A-D) test are some of the goodness-of-fit tests used in

diagnostics for stability. There are no closed-form densities for stable distributions,

except for special cases such as the Normal, Cauchy and Lévy distributions.

6.5.1 Kolmogorov-Smirnov test

The K-S goodness-of-fit test makes a comparison between a fitted cdf F̂ (x) with

an empirical cdf Fn(x) in order to assess the suitability of the fit. The empirical

cdf Fn(x) is the proportion of the observations X1, X2, . . . , Xn that are less than or

equal to x. Fn(x) is defined as

Fn(x) =
I(x)

n

where n is the sample size and I(x) is the number of Xi’s ≤ x (Evans et al., 2008).

The K-S statistic Dn is the largest vertical distance between F̂ (x) and Fn(x) for all

values of x

Dn = sup
x
|Fn(x)− F̂ (x)|. (6.39)

The Dn statistic can be computed from

D+
n = max

i=1,2,...,n
{ i
n
− F̂ (X(i))}, D−n = max

i=1,2,...,n
{F̂ (X(i))−

i− 1

n
} (6.40)

where X(i) is the ith order statistic and letting

Dn = max{D+
n , D

−
n } (6.41)

72



6.5.2 Anderson-Darling test

The Anderson-Darling (A-D) test is a tail-weighted statistic where more weight is

attributed to the tails and less weight in the center of the distribution. The A-D

test statistic is distribution-free and is defined as

A2
n = n

∫ ∞
−∞

(
Fn − F̂ (x)

)2
F̂ (x)

[
1− F̂ (x)

]dF̂ (x) (6.42)

where n is the sample size.

The computational formula for the A-D statistic is

A2
n = −

n∑
i=1

2i− 1

n

(
ln(F̂ (x(i))) + ln(1− F̂ (x(n+1−i)))

)
− n (6.43)

(Evans et al., 2008).
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Chapter 7

Risk measures and backtesting

“Disclosure of quantitative measures of market risk, such as VaR, is enlightening

only when accompanied by a thorough discussion of how the risk measures were

calculated and how they related to actual performance.” Greenspan (1996)

Financial institutions set aside an amount of risk capital as per the Basel Accord

and there is a direct link to the level of portfolio risk. VaR is a benchmark measure

for assessing such risk. VaR aims to evaluate the maximum possible loss for a

portfolio over a specified time period and its VaR calculations focus on the tails of a

distribution. This provides procedures for testing the robustness of a model. Three

important components in VaR are confidence level, period and loss of potential value

(Christoffersen, 1998).

7.1 Current regulatory framework

The Third Basel Accord (Basel III Accord) is a regulatory framework which consists

of a comprehensive set of reform measures developed for banking supervision by

the Basel Committee to reinforce regulation, supervision and risk in the banking

industry.

The Basel Committee is a global standard-setter for the prudential regulation of

banks wherein a forum for cooperation on banking supervisory matters is provided.
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It is imperative to support the regulation, practices and supervision of banks worldwide

in order to enhance financial stability.

Basel III aims to:

(i) Improve the banking sector’s ability to absorb shocks arising from financial or

economic stress.

(ii) Improves risk management and governance.

(iii) Toughen transparency and disclosures in banks.

The reform targets:

1. Bank level (micro-prudential) - Helps raise the resilience of financial institutions

during periods of stress.

2. Macro-prudential: Risks that are built up across the banking sector as well as

the procyclical amplification of these risks over time (BiiiCPA, 2016).

7.1.1 South African implementation of Basel III Accord

In January 2013, South Africa implemented regulations that fall in line with the

Basel III framework. This aims to essentially address both bank-specific and broader

systemic risks by:

– Increasing the quality of capital, with focus on common equity and the quantity

of capital to ensure banks are able to efficiently absorb losses.

– Enhancing the risk coverage of the regulatory framework which includes exposures

related to credit risk.

– The introduction of capital buffers which ideally should be built up in flourishing

times so that in periods of stress they can be withdrawn.

– A leverage ratio should be introduced to serve as a backstop to risk-based

capital requirement and this should be used to prevent the build-up of excessive

leverage in the financial system.

– Raising the standards for supervision, risk management and public disclosures.
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– Introducing the monitoring of proposed minimum liquidity standards to improve

banks’ resilience to short-term stress and improve longer term funding.

– The introduction of additional capital buffers should be introduced for most

institutions to address the issue of “too big to fail”.

The implementation period for most of the Basel III requirements were included into

regulations and commenced in January 2013 and involves transitional arrangements

which will be phased until 1 January 2019. Transitional arrangements are available

to give banks time to meet the higher standards while still supporting lending to

the economy (SARB, 2015).

7.2 Value-at-Risk

In the financial industry, the measurement of the risk of portfolio financial assets and

securities are highly important. Over the years, trading practices have grown vastly

with many evident situations of financial market instability leading to compromising

and disastrous financial credibility. This has alarmed market participants in using

reliable risk measurement techniques. One such measurement technique used is

Value-at-Risk (VaR). The VaR measure is the risk measure of choice in the financial

industry albeit many known imperfections. The reasoning for this choice becomes

clear as one considers the associated theoretical facts and the implementation of

backtesting.

Definition 7.2.1. (Value-at-Risk) (Dańıelsson, 2011)

The loss on a trading portfolio such that there is a probability p of losses equaling or

exceeding VaR in a given trading period and a 1−p probability of losses being lower

than the VaR (Dańıelsson, 2011). VaR is the quantile distribution between profit

and loss. The random variable Q indicates the profit and loss on an investment

portfolio and a particular realization is described by q. For one unit of asset, the

profit and loss is indicated by

Q = Pt − Pt−1 (7.1)
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Generally, if the portfolio value is V, then

Q = VY, (7.2)

where the profit/loss is the portfolio value multiplied by the returns. The density

of profit/loss is denoted by fQ(·). Therefore, VaR is given by

Pr [Q ≤ −VaR(p)] = p (7.3)

or

p =

∫ −V aR(p)

−∞
fQ(x)dx. (7.4)

A minus sign is used in VaR as we deal with losses.

7.2.1 Steps in VaR calculations

There are three steps in VaR calculations:

Step 1 The probability of losses exceeding VaR, p, needs to be specified. The most

common probability level is 1%. In theory, there is little guidance with regard

to the choice of p but it largely depends on how the user of the risk management

system prefers to interpret the VaR number.

Step 2 This step involves the holding period. The holding period is defined as the

time period in which losses may occur. Depending on certain circumstances

this most likely occurs on Day 1. A one-day holding period is used by those

who actively trade. However, longer holding period are more realistic for

non-financial organizations and institutional investors. We note that the longer

the holding period, the greater the value of VaR.

Step 3 The final step is to identify the probability distribution of the profit and

loss of the portfolio. This is the most complex, yet crucial facet of financial

risk modeling. It is standard practice to estimate the distribution using past

observations and a suitable statistical model (Dańıelsson, 2011).
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7.2.2 Analyzing and interpreting VaR

When interpreting VaR, it is important for one to keep in mind the probability and

holding period as without these, VaR is meaningless. An identical data set may

produce two different VaR estimates if different levels of VaR and holding periods

are chosen. A loss suffered with probability of 1% exceeds the loss suffered by a

5% probability. VaR of a firm’s portfolio is a relevant measure of risk of financial

distress over a period related to the portfolio positions liquidity and the risk of

extreme cash outflows. High transaction costs are caused by adverse conditions in

liquidity (Dańıelsson, 2011).

Definition 7.2.2. (VaR violation) (Dańıelsson, 2011)

The VaR violation is an event such that:

ηt =

 1 if yt ≤ −VaRt

0 if yt > −VaRt

(7.5)

v1 is the count of ηt = 1 and v0 is the count of ηt = 0, which is obtained by:

v1 =
∑

ηt

v0 = WT − v1

where WT (the testing window) is the data sample over which risk is forecast; that

is, the days where a VaR forecast is made.

7.3 VaR in-sample backtesting procedures

There are many shortcomings with standard VaR models such as the variance-covariance,

the historical simulation and the Monte Carlo simulation. These standard VaR

models are based on many assumptions. The accuracy of VaR decreases with the

number of assumptions (Blanco & Oks, 2004). Hence, backtesting is a method

used to address the concern of accuracy in VaR. Two methods of backtesting exist:

conditional and unconditional. Conditional methods test to see if the violations are

independent of each other, and conversely, unconditional methods count the number
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of violations and compare them with the confidence level. A precise VaR model

should satisfy the unconditional coverage and independence properties (Christoffersen,

1998). This study implements the violation ratio, Kupiec likelihood ratio test,

Christoffersen conditional coverage test and the VaR duration test.

7.3.1 Violation ratio

Definition 7.3.1. (Violation Ratio) (Dańıelsson, 2011)

The violation ratio is defined as:

V R =
Observed number of violations

Expected number of violations
=

v1
p×WT

(7.6)

Violation ratios are a quick and easy tool for checking model adequacy. If the

violation ratio is greater than 1, then the VaR model underforecasts risk and if

it is smaller than 1, the model overforecasts risk. The rule of thumb is that if

V R ∈ [0.8, 1.2] , it is a good forecast and in the case where V R < 0.5 or V R > 1.5,

the model is imprecise. This method is a relatively easy backtesting procedure to

implement. However, there are some disadvantages: One which is that it cannot

show the underlying causes of model failure. Therefore, we cannot solely rely on

violation ratios as a mathematically justified method in determining the suitability

of a model. One should use more powerful tests in checking forecast accuracy

to attain formal conclusions on model adequacy, the Kupiec likelihood ratio test,

Christoffersen conditional coverage test and the VaR duration test allow for formal

inferences of robustness.

7.3.2 Kupiec likelihood ratio test

The Kupiec test, or otherwise referred to as the proportion of failure (POF) test,

proposed by Kupiec (1995) is one of the most popular tests. The Kupiec approach

tests the unconditional coverage (UC) property. We validate the accuracy of VaR

model by taking note of the failure rate, that is, the proportion of times VaR is

exceeded in a given sample. Denote the number of exceptions by (x) and the total

number of observations by N , then the rate of failure is defined as x
N . If we suppose a
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VaR number is reported at the confidence interval c, then an exception occurs if the

realized loss exceeds the VaR number. Hence, the expected number of exceptions x

in a total of N observations is (1−c)N (Katsenga, 2013). Undoubtedly, the number

of exceptions will not always be precisely (1−c)N and it varies within an acceptable

range. The range of x can be calculated in the backtesting method. Therefore, the

VaR model may be accepted or rejected (Campbell, 2006).

The parameters required for VaR model backtesting using the Kupiec test is number

of exceptions, x, total number of observations (N) and the confidence level (c). We

define the null hypothesis H0 as

H0 :
x

N
=
x∗

N

where x
N is the expected failure rate at a given confidence level and x∗

N is the observed

failure rate. The Kupiec test is conducted just as a likelihood ratio (LR) test which

is given by

LUC = −2ln
[
(1− p)(N−x) px

]
+ 2ln

[(
1− x

N

)N−x ( x
N

)x]

where p = (1− c). Under H0, the test statistic is given by the above equation and

follows a chi-squared distribution with 1 degree of freedom, (χ2(1). If the value of

LUC statistic falls below the critical value of (χ2(1), then the model is adequate.

Higher values above the critical region indicate a model containing inaccuracies and

should, therefore, be rejected (Katsenga, 2013).

7.3.3 Christoffersen conditional coverage test

There is a major short-coming of the unconditional coverage of the Kupiec test to

detect clustering of exceptions. Many tests have been suggested which examine the

independence property of VaR violations in great detail.

Christoffersen (1998) suggests a conditional coverage test that examines the independence

property, or exception clustering, and is also referred to as the independence test
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or Markov test. Christoffersen (1998) checks if the probability of the VaR violation

on any given day depends on the outcome of the previous day. Hypothetically,

if the likelihood of the VaR exception increased on a preceding day, a previous

VaR exception, then this indicates a need to raise the VaR level estimates since

subsequent losses would imply higher risk exposure. A similar likelihood ratio

statistical testing framework is applicable just as in Kupiec test for the independence

of exceptions.

The test procedure is as follows:

(i) Suppose we have data of a portfolio for N days.

(ii) For each day, introduce a deviation indicator as below:

Indicator (It) =

 0 if VaR is not breached;

1 otherwise.

Therfore, we have a sequence It of 0’s and 1’s. That is, for any two consecutive

days, there are four possible outcomes {(0, 0), (0, 1), (1, 0), (1, 1).}

(iii) Define Ni,j(i = 0, 1; j = 0, 1) as the number of days in which state j occured in

one day while it was in state i the previous day. N0,0 indicates the number of

days that the previous day’s indicator is 0 and the subsequent day’s indicator

is 0. A similar description may be used for the other possible outcomes (Jorion,

2007).

We proceed with the test by constructing a 2×2 contingency table with all possible

outcomes of the deviation indicator.

It−1 = 0 It−1 = 1
It = 0 N00 N10 N00 +N10

It = 1 N01 N11 N01 +N11

N00 +N01 N10 +N11 N

Table 7.1: Deviation Indicator outcomes (Christoffersen, 1998)
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Also, define πi as the probability of having an exception conditional on state i on the

previous day. Let π0 be the conditional probability of (0, 1) occurring if the previous

day is 0 and π1 be the conditional probability of (1, 1) occurring if the previous day

is 1. It follows that

π0 =
N01

N00 +N01
, π1 =

N11

N10 +N11
, π =

N01 +N11

N00 +N01 +N10 +N11

where the sum of π0 and π1 is π. We test H0 : Exceptions are independent across all

days (π = π0 = π1); that is, the probability of an exception occuring after a day of

no exception is the same as occurring after a day of an exception (Campbell, 2006).

If we notice that the proportions differ from each other, then this prompts one to

consider the validity of the VaR measure into consideration.

If the model is accurate, then a VaR violation today should not be dependent on

whether or not a violation occurred on the previous day (Jorion, 2007). The test

statistic for the independence of exceptions is given as a likelihood ratio:

LRInd = −2ln
[
(1− π)(N00+N10)π(N01+N11)

]
+ 2ln

[
(1− π0)N00πN01

0 (1− π1)N10πN11
1

]
(7.7)

Just as in the Kupiec test, the LRInd-statistic follows a chi-square distribution with

1 degree of freedom
(
χ2(1). In the same way, if the value of the LRInd-statistic falls

below the critical value of the chi-sqaured distribution with 1 degree of freedom,

then the specified model is correct and therefore accepted, or is otherwise rejected

(Katsenga, 2013).

7.3.4 VaR duration test

The reasoning behind the duration-based tests implies that clustering of violations

will result in an excessive number of relatively short and relatively long no-hit

durations corresponding to market turbulence and calm periods in the market,

respectively.

We define the duration of time (in days) between two VaR violations, that is, the
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no-hit duration as

Di = ti − ti−1 (7.8)

where ti denotes the day of violation number i.

The duration of time between VaR violations (no-hits) should ideally be independent

and not cluster. Christoffersen & Pelletier (2004) explains that under the null

hypothesis that the risk model is correctly specified , the no-hit duration should

have no memory and a mean duration of 1/p days. The no-memory property in the

null hypothesis is verified by the following discrete probability distribution :

Pr(D = 1) = p

Pr(D = 2) = (1− p)p

Pr(D = 3) = (1− p)2p
...

Pr(D = d) = (1− p)d−1p

A duration distribution is understood by its hazard function, which has the definition

of the probability of getting a violation on dayD afterD−1 days have passed without

a violation. The probability distribution shows a flat discrete hazard function as

follows:

λ(d) =
Pr(D = d)

1−
∑

j<d Pr(D = j)

=
(1− p)d−1p

1−
∑d−2

j=0(1− p)jp

= p

The memory-free continuous random distribution is shown as the exponential, that

is, under the null hypothesis, the no-hit durations should be represented as

fexp(D; p) = pe−pD (7.9)

Consider the Weibull distribution where

fW (D; a, b) = abbDb−1exp
(
− (aD)b

)
(7.10)
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The advantage of the Weibull distribution is that the hazard function is in closed-form

λW (D) =
fw(D)

1− FW (D)
= abbDb−1 (7.11)

where the exponential distribution occurs as a special case with a flat hazard, when

b = 1. When b < 1, the Weibull has a decreasing hazard function. This corresponds

to a large number of very short durations which implies very volatile periods as well

as a large number of long durations (periods of tranquility). There may be evidence

of misspecified volatility dynamics in the model.

VaR violation clustering in the null hypothesis is of great interest. Therefore, we

explicitly test the null hypothesis

H0,ind : b = 1 (7.12)

The Gamma distribution can be used under the alternative hypothesis. The density

is given by

fr(D; a, b) =
abDb−1exp−aD

Γ(b)
(7.13)

which nests the exponential when b = 1. In this case, we have the independence

test in the null hypothesis as

H0,ind : b = 1 (7.14)

The Gamma distribution does not have a closed-form solution for the hazard function,

but the first and second moments are b
a and b

a2
, respectively. Excess dispersion which

is defined as the variance over the squared expected value is 1
b in the case of the

Gamma distribution. The average duration in the exponential distribution is 1
p and

the variance is 1
p2

. Thus, excess dispersion is 1 in the exponential case (Christoffersen

& Pelletier, 2004).
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Chapter 8

Analysis of BRICS financial

data

This chapter explores an empirical analysis of the returns of BRICS countries to

U.S. Dollar exchange rates. R is the statistical software that was used with the

following packages: fbasics, TSA, Stats, time series, ADGofTest, rugarch, VarES,

QRM and STABLE. The STABLE package was made available from Prof. John

Nolan’s website: www.RobustAnalysis.com.

8.1 Exchange rate data

The exchange rate data for each of the BRICS countries were obtained from the

Board of Governors of the Federal Reserve System (Central Bank of the United

States) and the Bank of Russia. This study covers the time period of January 2011

to January 2016 and the currency of each country is the Brazilian Real (BRL),

Russian Ruble (RUB), Indian Rupee (INR), Chinese Yuan Renminbi

(CHY) and South African Rand (ZAR) will be compared against the U.S. Dollar.
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8.2 Descriptive Statistics

8.2.1 Time series plots of daily exchange rates

(a) BRL/USD (b) RUB/USD

(c) INR/USD (d) CHY/USD

(e) ZAR/USD

Figure 8.1: Time series plots of BRICS to USD daily exchange rates

The time series plots in Figure 8.1 indicate non-stationarity and a general upward

trend in the returns of exchange rates except for the CHY/USD where a downward

trend is visible followed by an upward trend starting in the latter part of 2014.

Heteroscedasticity is also visible.
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8.3 Calculating log-returns

To obtain the exchange rate returns, the natural logarithm of exchange rates are

differenced, i.e

Yt = log (Pt)− log (Pt−1)

where Yt is the log-return on day t, log (Pt) is the natural logarithm of the present

day exchange rate and log (Pt−1) is the natural logarithm of exchange rates on the

previous day.

(a) BRL/USD returns (b) RUB/USD returns

(c) INR/USD returns (d) CHY/USD returns

(e) ZAR/USD returns

Figure 8.2: Time series plots of BRICS to USD exchange rate returns
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Figure 8.2 shows the time series plots of the log-returns. From Figure 8.2, we see

that the plots now indicate that all the returns are stationary and it seems volatility

clustering is visible. However, we notice a unique case in the CHY where the presence

of outliers is also visible.

Table 8.1: Descriptive summary statistics of daily return of BRICS to USD
exchange rates.

Brazil Russia India China South Africa

No. of obs. 1324 1324 1324 1324 1324

Minimum -0.069580 -0.128638 -0.037560 -0.029921 -0.039134

Maximum 0.053943 0.102993 0.037919 0.028648 0.051464

1-Quartile -0.004055 -0.004105 -0.002345 -0.000538 -0.005011

3-Quartile 0.005683 0.004887 0.003029 0.000444 0.005752

Mean 0.000678 0.000702 0.000317 -0.000002 0.000665

Median 0.000432 0.000292 0.000152 0 0.000146

Sum 0.897491 0.929731 0.420084 -0.002172 0.880943

SE Mean 0.000254 0.000348 0.000154 0.000048 0.000252

LCL Mean 0.000180 0.000019 0.000015 -0.000096 0.000171

UCL Mean 0.001176 0.001385 0.000620 0.000093 0.001160

Variance 0.000085 0.000161 0.000031 0.000003 0.000084

Stdev 0.009238 0.012673 0.005611 0.001752 0.009174

Skewness -0.220277 0.060056 0.016852 0.779042 0.236834

Excess Kurtosis 5.533864 20.088195 6.591997 127.498816 2.217928

Jarque-Bera statitic 1708.03 22339.96 2407.86 899699.1 285.72

(p-value) < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

Table 8.1 summarizes the descriptive statistics of the daily returns of BRICS to USD

exchange rates. We notice positive mean values for Brazil, Russia, India and South

Africa, which implies exchange rates were increasing very slightly over the time
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period of 2011-2016. Conversely, the negative mean for China’s currency implies that

the exchange rates exhibits a slight decreasing trend. Excess kurtosis is evident for

all countries which suggests a leptokurtic distribution which is sharper with values

concentrated around the mean with longer, thicker tails. The Jarque-Bera test

rejects the hypothesis of Normality at all levels of significance.
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8.4 Tests for autocorrelation

(a) ACF: BRL/USD

returns

(b) PACF: BRL/USD

returns

(c) ACF: RUB/USD

returns

(d) PACF: RUB/USD

returns

(e) ACF: INR/USD

returns

(f) PACF: INR/USD

returns

(g) ACF:CHY/USD

returns

(h) PACF: CHY/USD

returns

(i) ACF: ZAR/USD

returns

(j) PACF: ZAR/USD

returns

Figure 8.3: ACF and PACF plots of daily BRICS to USD exchange rate returns
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The ACF and PACF plots in Figure 8.3 show that the daily returns exhibit significant

serial correlation for all the BRICS countries. For Brazil, Russia, India, China and

South Africa: the ACF plots have significant serial correlation at lags 5, 1, 2, 1

respectively. Likewise, the PACF plots have significant serial correlation at lags 5,

1, 2, 1 and 16.

8.4.1 Ljung-Box test for autocorrelation

We formally test for the presence of serial correlation in the returns. Table 8.2 shows

the results of the Ljung-Box test at lag 10.

Table 8.2: Ljung-Box test of daily returns for BRICS to USD exchange rates

Brazil Russia India China South Africa

Test Statistic 13.466 49.8014 25.9912 55.5038 8.6774

p-value 0.1988 2.903e−07 0.003752 2.542e−08 0.563

In Table 8.2 we notice at 5% level of significance we favor the null hypothesis for

Brazil and South Africa implying that the returns for the Real and Rand to the

USD exchange rate are independent. Conversely, we reject the null hypothesis for

Russia, India and China implying that the Ruble, Rupee and Yuan Reminbi to

USD exchange rate exhibit serial correlation. This test provides mixed results on

the hypothesis of independence in the foreign exchange rate market. The fitting of

a statistical distribution usually assumes that the returns are i.i.d, that is, there is

no serial correlation and no heteroskedasticity. However, the empirical properties

of financial returns as noted by McNeil et al. (2005) describes that some returns in

financial data show serial correlation.
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8.5 Tests for stationarity

In order to fit GARCH models, the returns of the exchange rates need to be

stationary. We test for stationarity using the ADF, P-P and KPSS tests. Table

8.3 shows the results for testing stationarity.

Table 8.3: Results for ADF, PP and KPSS unit root tests for BRICS/USD
Ecchange rate returns

Brazil Russia India China South Africa

ADF Test Statistic -10.7538 -10.7919 -9.9134 -10.6831 -11.9453

p-value 0.01 0.01 0.01 < 0.01 < 0.01

PP Test Statistic -1364.944 -1494.782 -1304.498 -1536.263 -1246.158

p-value 0.01 0.01 0.01 < 0.01 < 0.01

KPSS Test Statistic 0.2543 0.5316 0.069 0.9898 0.08

p-value 0.1 0.03454 0.1 < 0.01 0.1

Table 8.3 shows the test statistics and corresponding p-values for the ADF, PP

and KPSS stationary tests. For the ADF and PP tests, stationarity is defined in

the alternative hypothesis. We reject the null hypothesis in favor of the alternative

hypothesis since the p-values are less than 0.05 and conclude that the returns of

daily exchange rates exhibit stationarity. For the KPSS test, stationarity is defined

in the null hypothesis. We notice that the exchange rates for Brazil, India and South

Africa exhibit stationarity as the observed p-values = 0.1 are greater than 0.05, and

is indicative of favoring the null hypothesis.
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8.5.1 Checking for hidden periodicity

In economic time series data, we may frequently assume that data contains cyclical

phenomena. Therefore, in this section, the SAS procedure PROC SPECTRA is used

to check for hidden periodicities in exchange rate data. The Fisher’s Kappa test

checks for the presence of a periodic component. The null hypothesis suggests that

the series is a white noise and the alternative hypothesis suggests that the series

contains a periodic component at the largest periodogram ordinate.

Table 8.4: Fisher’s Kappa test for detecting hidden periodicity in exchange rates.

Brazil Russia India China South Africa

m 662 662 662 662 662

Fisher’s Kappa 260.2005 247.9837 353.8839 504.1051 323.3499

test statistic

Critical value: 9.313 8.889 9.313 9.313 9.313

Cm(0.05)

Decision Contains a Contains a Contains a Contains a Contains a

periodic periodic periodic periodic periodic

component component component component component

Table 8.4 shows that the Fisher’s Kappa test statistic > Cm(0.05) for all BRICS

countries. We reject the null hypothesis and conclude that the series contains

a periodic component at the largest periodogram ordinate. The period for each

country was found to be 1325 which equals the number of observations. It is

recommended that the results require further in-depth analysis (which will not be

carried out in this study) as this phenomenon is yet to have an explanation.
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8.6 Covariance matrix

Γk =



8.53e−05 −1.34e−06 1.38e−05 9.32e−07 4.23e−05

−1.34e−06 0.0002 −1.63e−06 −1.32e−07 3.37e08

1.38e−05 −1.63e−06 3.15e−05 1.03e−06 2.04e−05

9.32e−06 −1.32e−07 1.03e−06 0.0006 1.28e−06

4.23e−05 3.37e08 2.04e−05 1.28e−06 8.42e−05


A positive covariance indicates that both variables either increase or decrease together

and a negative covariance implies that if one increases, the other decreases (or

vice-versa) with regard to the rate of exchange.

8.7 Correlation matrix

ρk =



1 −0.012 0.266 0.06 0.499

−0.012 1 −0.023 0.01 0.0002

0.266 −0.023 1 0.1 0.397

0.06 0.01 0.1 1 0.08

0.499 0.0002 0.397 0.08 1


The cross-correlation matrix shown above generally indicates a slight positive correlation

amongst the BRICS countries exchange rates.
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8.8 Stable parameter estimation

In this study, stable parameters are estimated under Nolan’s S0-parameterization

using the maximum likelihood estimation method. Table 8.5 summarizes the values

estimated for each stable parameter for countries in BRICS.

We proceed to fit Nolan’s S0(α, β, γ, δ) univariate stable distributions to the daily

returns of each countries exchange rates to the USD using the parameter estimates.

Table 8.5: Stable parameter estimates for daily returns under Nolan’s
S0-parameterization.

Brazil Russia India China South Africa

α 1.736639e+00 1.3829602460 1.6396894583 1.386544e+00 1.7997024653

β −2.102931e−08 0.0970088632 0.1387799128 1.752244e−09 0.3483880044

γ 5.323732e−03 0.0046774792 0.0029549139 5.161903e−04 0.0057011342

δ 6.868068e−04 0.0002193559 0.0001643851 −4.192556e−05 0.0002034499
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8.9 Goodness of fit tests and diagnostics

8.9.1 Q-Q plots of BRICS exchange rate returns

(a) BRL/USD returns (b) RUB/USD returns (c) INR/USD returns

(d) CHY/USD returns (e) ZAR/USD returns

Figure 8.4: Q-Q plots of BRICS to USD returns

Figure 8.4 shows the Q-Q plot and variance stabilized plots of BRICS to USD

exchange rates. The Q-Q plots in the figure appear to be visually compressed

with extreme values dominating the plot. The heavy tails, evident in these Q-Q

plots, indicate that the extreme order statistics have a lot of variability. Therefore,

deviations from the ideally straight line Q-Q plot are difficult to assess. This also

shows that extreme tails from the data set are lighter than the stable model (Nolan,

2005). We notice that the Q-Q plots imply the inadequacy of the stable model at

extreme values. Therefore, the problems mentioned about the Q-Q plots lead us to

focus on the variance stabilized P-P plots.
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8.9.2 Variance stabilized P-P plots of BRICS exchange

rate returns

(a) BRL/USD returns (b) RUB/USD returns

(c) INR/USD returns (d) CHY/USD returns

(e) ZAR/USD returns

Figure 8.5: Q-Q plots of BRICS to USD returns

The variance stabilized P-P plots allow for comparisons over the entire range of the

data. One may notice a horizontal line segment in the P-P plot of sub-figure (d)

in Figure 8.5, this results from days where the exchange rate remained unchanged

on successive days. The figures show the adequacy of the fitted univariate models

for all BRICS countries excluding China where slight deviations evident in the plots

suggest that the fitted univariate stable model may be adequate for modeling the
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returns of the Chinese Yuan Renminbi, however a possible alternative heavy tailed

model may be more robust for modelling the Chinese exchange rates.

We use the K-S and A-D tests to check for model adequacy.

Table 8.6: Goodness-of-fit tests of daily returns

Brazil Russia India China South Africa

K-S Test Statistic 0.02640462 0.03058174 0.02716278 0.04397026 0.01893238

p-value 0.3105694 0.1651808 0.2789941 0.01154931 0.7258011

A-D Test Statistic 1.0244 0.3168 1.0234 2.0882 0.4064

p-value 0.3447 0.925 0.3452 0.08219 0.8423

We define the null hypothesis to be:

Daily returns of BRICS to USD exchange rates follow a univariate S0(α, β, γ, δ)

model

Table 8.6 indicates that at a 5% level of significance, the p-values for the Kolmogorov-Smirnov

test indicate that we favor the null hypothesis for all countries in BRICS except

for China where the p-value = 0.01154931 < 0.05. However, at a 10 % level of

significance, for China, where the p-value = 0.08219 favors the null hypothesis. We

notice from the Anderson-Darling test that all fitted stable models are significant.

From Table 8.6, we conclude that the fitted univariate S0(α, β, γ, δ) model for each

country is adequate in describing the daily exchange rate returns for each country.
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8.9.3 Univariate stable density plots

Empirically, we compare the densities of BRICS exchange rate returns to univariate

S0 stable distribution. Figure 8.6 shows graphically a close fit of the estimated

univariate S0 model to the daily returns of BRICS exchange rates as the fitted

stable model does not deviate much from the returns of the exchange rates. A

better fit for the data is provided over most of the range with extreme tails being

overestimated.

(a) BRL/USD (b) RUB/USD

(c) INR/USD (d) CHY/USD

(e) ZAR/USD

Figure 8.6: Stable density plots of BRICS to USD
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8.10 VaR estimates and backtesting

We estimate VaR at 1%, 5%, 95% and 99% levels.

VaR Estimates

1% 5% 95% 99%

Brazil -0.02487615 -0.01307162 0.01444523 0.02624979

Russia -0.04346203 -0.01496782 0.01716632 0.05048657

India -0.01556429 -0.007493927 0.008698845 0.01868417

China -0.005188648 -0.001807187 0.001724221 0.005105673

South Africa -0.02103707 -0.01309692 0.01552886 0.02783011

Table 8.7 presents VaR estimates for each BRICS country using a fitted stable

model.

Violation Ratio p-value of Kupiec Test p-value of Christoffersen’s Test

1% 5% 95% 99% 1% 5% 95% 99% 1% 5% 95% 99%

Brazil 0.76 1.04 0.1 1.06 0.35 0.73 0.55 0.21 0.34 0.09 0.45 0.21

Russia 0.23 1.07 0.1 1.01 0.001 0.55 0.63 0.01 0.001 0.001 0.03 0.008

India 0.98 1.21 0.1 1.00 0.95 0.09 0.47 0.06 0.48 0.02 0.12 0.01

China 0.03 0.92 0.99 1.00 0.003 0.51 0.28 0.35 0.05 0.01 0.05 0.004

South Africa 1.36 0.94 0.99 1.01 0.21 0.59 0.28 0.06 0.24 0.74 0.52 0.014

The interpretation of violation ratios implies that it is a good forecast and

the stable model is a good fit. We observe at a 5% level of significance, the

Kupiec test indicates that the fitted univariate stable model is a good fit at

higher VaR levels for all the mentioned BRICS countries. Also, we notice high

p-values on all VaR levels for the Kupiec test for the Brazilian Real and the

South African Rand daily returns. This indicates the suitability of the stable

model for these exchange rate data sets. The fitted stable models for Russia,

India and China may also be considered as fairly good. The Christoffersen

test shows high p-values at 5% and 95% for Brazil and South Africa. For

Christoffersen test, at almost all VaR levels for Russia, India and China ,the

clustering of VaR violations occur as indicated by the observed lower p-values.

This is caused by the number of observations that exceed VaR estimates.
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Table 8.7: VaR duration test

VaR Duration Test

1% 5%

Test Statistic Decision Test Statistic Decision

Brazil 0.13 Fail to Reject H0 0.001 Reject H0

Russia 0.01 Reject H0 2.81e−0.8 Reject H0

India 0.004 Reject H0 0.02 Reject H0

China 0.47 Fail to Reject H0 0.12 Fail to Reject H0

South Africa 0.05 Fail to Reject H0 0.05 Fail to Reject H0

For China and South Africa, the null hypothesis of a correctly specified model

is favored. Further analysis is required in this regard since the table shows

mixed results.
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8.11 Multivariate stable data analysis

We explore the possibility of fitting a multivariate stable model for BRICS to

USD exchange rates.

Figure 8.7: Pairwise scatterplots of BRICS countries to USD exchange rate

The pairwise scatterplots in Figure 8.7 show an elliptical pattern and in some

cases, the estimated index of stability (α) is similar (From Table 8.5: Brazil

and South Africa are similar as well as Russia and China) This may suggest

the estimation of a jointly stable bivariate elliptical model.

8.11.1 Multivariate stable parameter estimation

We proceed by fitting bivariate elliptical stable distributions using the Rachec-Xin-Cheng

method. Estimates for α, δ andR are given in Table 8.8.
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α δ R

Brazil - Russia

1.523953 (0.0002700612 0.0005117953)

2.422102e−05 2.301749e−06

2.301749e−06 2.482960e−05


Brazil - India

1.578767 (0.0002363954 0.0003955759)

 1.487349e−05 1.487349e−05

−5.713798e−07 1.568826e−05


Brazil - China

0.8267018
(
−2.761757e−05 − 1.840455e−05

)  1.443059e−06 −6.675295e−08

−6.675295e−08 1.546700e−06


Brazil - South Africa

1.777212 (0.0002797684 0.0005635676)

3.136096e−05 3.366216e−06

3.366216e−06 2.999531e−05


Russia - India

1.423015 (0.0001622021 0.0001696470)

1.302361e−05 9.005531e−07

9.005531e−07 1.318703e−05


Russia - China

0.7975918
(
1.289010e−05 − 3.398058e−05

) 1.368924e−06 5.427067e−08

5.427067e−08 1.375297e−06


Russia - South Africa

0.8010986
(
−4.172985e−06 − 1.675845e−05

) 1.362003e−06 4.625333e−08

4.625333e−08 1.376149e−06


India - China

1.037113
(
−1.857093ee−05 − 7.387177ee−05

)  1.191080e−06 −7.300018e−08

−7.300018e−08 1.157222e−06


India - South Africa

1.650807
(
1.056904e−05 1.794698e−04

) 1.780588e−05 1.934288e−06

1.934288e−06 1.745208e−05


China - South Africa

0.8094735
(
−4.124276e−05 − 2.924229e−05

) 1.620507e−06 2.634408e−08

2.634408e−08 1.752355e−06


Table 8.8: Bivariate elliptical stable parameter estimation for daily returns

The returns of each BRICS country were fitted with an elliptical stable model

with index of stability α, shift matrix δ and shape matrix R. An elliptical

multivariate stable model allows for capturing heavy tails and dependence.

Elliptical stable models also allowed accumulated returns to have the same

distribution as daily returns since the cumulative sum of stable terms are

always stable. The added advantage of the bivariate stable model is that

linear combinations are naturally univariate stable. When R is a multiple of
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the identity matrix, then the isotropic or radially symmetric case arises. From

Table 8.8 there is strong empirical evidence for the isotropic heavy tailed stable

model for the Brazil-South Africa model and the Russia-China model.

Figure 8.8: Estimated density surface and countour plot for a bivariate elliptical
stable fit of Brazillian Real and South African Rand exchange rates.

Figure 8.8 shows the bivariate elliptical stable density plot of BRL-ZAR/USD

exchange rate returns, the other bivariate plots for intra-BRICS countries

combination are found in Appendix B. The fitted spectral measure was used

to plot the fitted bivariate density shown in Figure 8.7. The spread of the

spectral measure is spiky and masks a pattern that is more evident in the

density surface. These are approximately the elliptical countours of the fitted

density.
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Chapter 9

Stable-GARCH(1,1) model

In this chapter, we investigate the modeling of BRICS exchange rate returns

with stable distributions together with a GARCH(1,1) filter.

ARCH LM test for heteroscedasticity

Table 9.1: ARCH LM test for heteroscedasticity

Brazil Russia India China South Africa

χ2 Test Statistic 100.7833 357.9457 203.7792 435.9872 106.4271

p-value 4.441e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16

The ARCH LM test was used to test for heteroscedasticity on the returns of

the exchange rates. Table 9.1 shows the p-values based on the ARCH LM test

where we see that the test confirms a strong ARCH effect in the daily BRICS

exchange rate returns.

We fit a GARCH(1,1) model to capture the time-varying volatility in the

exchange rate returns.
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The following steps are used for calculating VaR and backtesting for the

stable-GARCH(1,1) model:

Step 1. A GARCH(1,1) model is fitted to the returns using pseudo ML procedure

based on Normal assumptions.

Step 2. Standardized residuals are extracted from the GARCH(1,1) model.

Step 3. Univariate stable distribution is fitted to the standardized residuals using

ML estimation.

Step 4. VaR estimates are calculated and then we apply the Kupiec and Christoffersen

backtesting procedures.

9.1 Stable-GARCH(1,1) model

9.1.1 Fitting a univariate GARCH(1,1) model to returns

Now, we apply a GARCH filter to the daily returns of BRICS/USD exchange

rates. Table 9.2 presents the parameter estimates for the GARCH(1,1) model.

Table 9.2: GARCH(1,1) parameter estimation for daily returns

Returns

Brazil Russia India China South Africa

Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value

α0 6.286e−07 0.00938 3.500e−06 9.30e−05 3.806e−07 0.0163 6.447e−07 < 2e− 16 6.817e−07 0.0734

α1 7.453e−02 1.62e−10 1.977e−01 1.91e−08 5.072e−02 6.76e−08 3.388e−01 2.39e-09 4.637e−02 3.82e−07

β1 9.244e−01 < 2e− 16 8.010e−01 < 2e− 16 9.370e−01 < 2e− 16 5.474e−01 < 2e−16 9.469e−01 < 2e−16

Table 9.2 records the MLE parameter estimates for the GARCH(1,1) model

with Gaussian innovations. All parameters are statistically significant.

The volatility equation can be written as:

Brazil: σ2
t = 6.286e−07 + 7.453e−02 a2t−1 + 9.244e−01σ2

t−1

Russia: σ2
t = 3.500e−06 + 1.977e−01 a2t−1 + 8.010e−01σ2

t−1

India: σ2
t = 3.806e−07 + 5.072e−02 a2t−1 + 9.370e−01σ2

t−1
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China: σ2
t = 6.447e−07 + 3.388e−01 a2t−1 + 5.474e−01σ2

t−1

South Africa: σ2
t = 6.817e−07 + 4.637e−02 a2t−1 + 9.469e−01σ2

t−1

We assess the model adequacy for the fitted GARCH(1,1) model.

Table 9.3: Ljung-Box test for daily returns of the fitted GARCH(1,1) model

Exchange rate returns

Brazil Russia India China South Africa

Test Statistics

Q(10) 4.47726 9.011007 7.24296 8.263875 7.805792

Q(15) 5.419485 21.31796 8.865122 10.01173 15.74428

Q(20) 10.40516 25.47511 11.01203 17.83088 21.49418

Q2(10) 3.979737 1.357615 4.577694 0.1271452 15.04757

Q2(15) 4.635103 2.295096 6.399088 0.1860767 22.36748

Q2(20) 6.479483 2.572245 9.301564 0.2119258 23.19972

p-values

Q(10) 0.92326 0.5310593 0.7023262 0.6030792 0.6478003

Q(15) 0.9879394 0.1269741 0.8844635 0.8190012 0.3992475

Q(20) 0.9602165 0.1838551 0.9459101 0.5985479 0.3685761

Q2(10) 0.9482565 0.9993146 0.9175477 1 0.130337

Q2(15) 0.994791 0.9999268 0.9722365 1 0.09852404

Q2(20) 0.9980753 0.9999989 0.9791439 1 0.2790947

The Ljung-Box test statistics of the standardized residuals for Q(10), Q(15),

Q(20) are given in Table 9.3. The corresponding p-values are all greater than

0.05. In addition, the Ljung-Box test statistics of the squared residuals also

have p-values greater than 0.05. We conclude that the GARCH(1,1) model is

adequate in describing the exchange rate returns.
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The ARCH LM test was used to check for ARCH effects in the standardized

residuals of the GARCH(1,1) model. Table 8.4 below provides the test statistics

and p-values.

Brazil Russia India China South Africa

χ2 Test Statistic 4.489646 1.377172 5.021196 0.1767796 16.89186

p-value 0.972896 0.9999176 0.9572673 1 0.1537105

Table 9.4: ARCH LM test for heteroscedasticity

The ARCH LM test results indicated in the above table suggest that there

are no ARCH effects in the standardized residuals.
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We extract the standardized residuals from the GARCH(1,1) model to conduct

the analysis that follows.

Table 9.5: Descriptive statistics of residuals to the fitted GARCH(1,1) model for
daily log returns

Brazil Russia India China South Africa

No. of obs. 1324 1324 1324 1324 1324

Minimum -7.684248 -5.362317 -8.512789 -19.273947 -3.474804

Maximum 7.049548 13.121522 5.506422 15.161924 5.211944

1-Quartile -0.479421 -0.496931 -0.472824 -0.374174 -0.567512

3-Quartile 0.655071 0.587386 0.606421 0.293920 0.677844

Mean 0.079771 0.078142 0.069901 -0.030126 0.083222

Median 0.059205 0.034792 0.017351 0 0.017955

Sum 105.617374 103.460437 92.549547 -39.886652 110.186574

SE Mean 0.027315 0.027359 0.027397 0.027491 0.027385

LCL Mean 0.026185 0.024471 0.016155 -0.084057 0.029500

UCL Mean 0.133357 0.131814 0.123648 0.023805 0.136945

Variance 0.987871 0.991014 0.993804 1.000631 0.992911

Stdev 0.993917 0.995497 0.996897 1.000315 0.996449

Skewness -0.130328 1.888258 -0.156092 -2.677782 0.325238

Excess Kurtosis 5.823385 23.422832 5.651886 143.330987 0.916388

Jarque-Bera statitic 1883.141 31157.97 1775.791 1138420 70.3228

(p-value) < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 5.551e−16

Table 9.5 summarizes the descriptive statistics of the residuals to the fitted

GARCH(1,1) model. We notice a negative mean value which implies that

the residuals of the GARCH(1,1) model were decreasing very slightly. Excess

kurtosis is evident which suggests a leptokurtic (heavy tailed) distribution

which is sharper with values concentrated around the mean with longer, thicker

tails. Negative skewness is visible since skewness = -0.345787. The Jarque-Bera

test rejects the hypothesis of Normality at all levels of significance.
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9.1.2 Tests for autocorrelation on univariate GARCH(1,1)

residuals

After extracting the residuals from the fitted GARCH(1,1) models, we analyze

graphically if there exists serial correlation.

(a) ACF: BRL/USD (b) PACF: BRL/USD (c) ACF: RUB/USD

(d) PACF: RUB/USD (e) ACF:INR/USD (f) PACF: INR/USD

(g) ACF: CHY/USD (h) PACF: CHY/USD (i) ACF: ZAR/USD

(j) PACF: ZAR/USD

Figure 9.1: ACF and PACF plots of residuals for fitted univariate GARCH(1,1)
model.

The ACF and PACF plots in Figure 9.1 show significant lags for the Russian
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Ruble, Indian Rupee and South African Rand indicating that the GARCH(1,1)

residuals exhibit serial correlation. However, the residuals are independent for

the Brazillian Real and Chinese Yuan Renminbi.

Ljung-Box test for autocorrelation:

Table 9.6: Ljung-Box test for autocorrelation for univariate GARCH(1,1) residuals

Brazil Russia India China South Africa

Test Statistic 4.4773 9.011 7.243 8.2639 7.8058

p-value 0.9233 0.5311 0.7023 0.6031 0.6478

Table 9.6 shows that at 5% level of significance, we accept the null hypothesis

since all p-values are greater than 0.05 and conclude that the stable-GARCH(1,1)

model for all BRICS countries exchange rates are not serially correlated. The

residuals are independent as once the ARCH effects are accounted for, there

is evidence to reject the hypothesis of serial correlation.

9.2 Tests for stationarity on univariate GARCH(1,1)

residuals

Table 9.7: Stationarity tests for residuals for the fitted uniariate GARCH(1,1)
model

Brazil Russia India China South Africa

ADF Test Statistic -10.3584 -9.7371 -10.009 -10.0825 -11.9781

p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

PP Test Statistic -1347.08 -1364.054 -1381.667 -1366.924 -1312.903

p-value < 0.01 0.01 < 0.01 < 0.01 < 0.01

KPSS Test Statistic 0.1517 0.7737 0.0498 0.5857 0.082

p-value > 0.01 < 0.01 > 0.01 0.02394 > 0.01
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We observe for the ADF and P-P tests at 5% and 10% level of significance as

previously done, we reject the null hypothesis and conclude that the residuals

of GARCH(1,1) model for BRICS to USD exchange rates exhibit stationarity.

For the KPSS test, it can be seen that at 5% level of significance, we fail

to reject the null hypothesis and conclude that the residuals of GARCH(1,1)

model BRICS to USD exchange rates exhibit stationarity.

Subsequently, we fit Nolan’s S0(α, β, γ, δ) univariate stable distribution to the

residuals.

9.3 Stable parameter estimation

Table 9.8: Stable-GARCH(1,1) parameter estimates for residuals

Brazil Russia India China South Africa

α 1.84220452 1.82018772 1.77916146 1.490059e+00 1.91177778

β 0.16923594 0.37632959 0.27373087 1.489665e−09 0.74065982

γ 0.60891213 0.58295217 0.60095882 3.569493e−01 0.67000513

δ 0.06434036 0.01567701 0.02838531 −2.914503e−02 0.02663784

Making a comparison to Table 8.5, we note that the parameters have improved

significantly. The index of stability (α) has increased for each country. However,

the skewness parameter β still remains relatively close to 0. We also observe a

noticeable difference in the scale (γ) and location (δ) parameters. The reason

for this difference is that the GARCH filter changes the scale.
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9.4 Goodness-of-fit and diagnostics

9.4.1 Q-Q plots for stable-GARCH(1,1) residuals

(a) BRL/USD (b) RUB/USD

(c) INR/USD (d) CHY/USD

(e) ZAR/USD

Figure 9.2: Q-Q plots for fitted univariate stable-GARCH(1,1) residuals
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9.4.2 Variance stabilized P-P plots for fitted univariate

stable-GARCH(1,1) residuals

(a) P-P plot of BRL/USD

stable-GARCH(1,1) residuals.

(b) P-P plot of RUB/USD

stable-GARCH(1,1) residuals.

(c) P-P plot of INR/USD

stable-GARCH(1,1) residuals.

(d) P-P plot of CHY/USD

stable-GARCH(1,1) residuals.

(e) P-P plot of ZAR/USD

stable-GARCH(1,1) residuals.

Figure 9.3: Variance stabilized P-P plots for fitted univariate stable-GARCH(1,1)
residuals

In Figure 9.2, heavy tails are evident in the Q-Q plots and the variance

stabilized P-P plots allow for comparisons over the entire range of the residuals.
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Although the Q-Q plots imply a poor fit, we focus mainly on the variance

stabilized P-P plots for each country in BRICS where a good fit of the residuals

to a stable model is evident. The horizontal line segment in subfigure (d) of

Figure 9.3 results from the days where the exchange rates remained unchanged

on successive days. Overall, the figures graphically show the adequacy of the

fitted univariate stable-GARCH(1,1) model for all BRICS countries.

Brazil Russia India China South Africa

K-S Test Statistic 0.01923162 0.02398369 0.02531871 0.04385489 0.01912402

p-value 0.7076644 0.4272273 0.3599577 0.01186553 0.7142049

A-D Test Statistic 0.3272 0.5493 0.8808 2.1902 0.4432

p-value 0.9164 0.6972 0.4262 0.07238 0.805

Table 9.9: Goodness-of-fit tests of Stable-GARCH(1,1) residuals

At a 5% level of significance both the K-S and A-D tests indicate that the fitted

stable model is adequate in describing the residuals of the stable-GARCH(1,1)

model for all countries except China where the K-S test indicates the inadequacy

of the stable model at 5% level of significance. At 1% level of significance, the

fitted stable model for China is adequate.
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9.4.3 stable-GARCH(1,1) density plots

(a) BRL/USD. (b) RUB/USD.

(c) INR/USD. (d) CHY/USD.

(e) ZAR/USD.

Figure 9.4: Stable density plot of stable-GARCH(1,1) model

The stable density plots indicates that the estimated univariate S0(α, β, γ, δ)

model is adequate in describing the residuals extracted through the GARCH(1,1)

filter as the residuals slightly deviate from the estimated stable fitted model.

As mentioned before, the stable model provides a better fit for the residuals

over the entire range where extreme tails are overestimated.
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9.5 VaR estimates and backtesting

Table 9.10: VaR estimates of the univariate stable-GARCH(1,1) model

VaR Estimates

1% 5% 95% 99%

Brazil -2.243313 -1.39344 1.602342 2.615574

Russia -2.094227 -1.335592 1.564488 2.736582

India -2.337402 -1.399967 1.645003 2.997698

China -2.850211 -1.128403 1.070113 2.791921

South Africa -2.133123 -1.477767 1.736747 2.740876

In comparison to the VaR estimates in Table 8.7, we notice that the VaR

estimates have improved as shown in Table 9.10 when a GARCH filter is

added to the returns.

Table 9.11: Var backtesting for univariate stable-GARCH(1,1) model

Violation Ratio p-value of Kupiec Test p-value of Christoffersen’s Test

1% 5% 95% 99% 1% 5% 95% 99% 1% 5% 95% 99%

Brazil 0.97 1.04 1.002 1.002 0.73 0.73 0.68 0.52 0.33 0.24 0.35 0.045

Russia 1.2 1.06 0.996 1.001 0.46 0.63 0.55 0.95 0.17 0.71 0.69 0.09

India 1.13 0.89 0.995 1.003 0.63 0.36 0.47 0.12 0.33 0.32 0.05 0.03

China 0.6 1.03 0.994 1.006 0.12 0.82 0.33 0.03 0.12 0.42 0.53 0.01

South Africa 1.06 0.94 0.99 1.002 0.84 0.59 0.28 0.52 0.36 0.48 0.52 0.05

The violation ratios show that the model is a good fit at most VaR levels

since most of the ratios comply with the rule of thumb for a precise model:

V R ∈ [0.8, 1.2]. Table 9.11 shows that at 1% level of significance, the Kupiec

test indicates that the stable model is a good fit for all countries at all VaR

levels since all p-values are greater than 0.01. The Christoffersen test shows

that the fitted stable model is adequate for all countries only at the 5% and

95% VaR levels since the p-values are greater than 0.05 at these VaR levels.
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Table 9.12: VaR duration test for fitted stable-GARCH(1,1) model

VaR Duration Test

1% 5%

Test Statistic Decision Test Statistic Decision

Brazil 0.12 Fail to Reject H0 0.03 Reject H0

Russia 0.06 Fail to Reject H0 0.40 Fail to Reject H0

India 0.13 Fail to Reject H0 0.10 Fail to Reject H0

China 0.74 Fail to Reject H0 0.43 Fail to Reject H0

South Africa 0.18 Fail to Reject H0 0.16 Fail to Reject H0

The no-hit duration has no-memory hypothesis is accepted. Therefore, we can

conclude that the model is correctly specified. We noticed improved results

in the stable-GARCH(1,1) case as the GARCH(1,1) filter aids in capturing

extreme fluctuations.
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9.6 Multivariate stable data analysis

Figure 9.5: Pairwise scatterplots of univariate GARCH(1,1) residuals for BRICS
countries to USD exchange rates

The scatterplot matrix shows an approximate elliptical pattern. We proceed

to determine the parameters of the stable bivariate elliptical model using the

Rachec-Xin-Cheng method of estimation.
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Table 9.13: Bivariate elliptical stable parameter estimation for GARCH(1,1)
residuals

α δ R

Brazil - Russia

1.827536 (0.01955281 0.05641651)

0.34606336 0.06409438

0.06409438 0.36200815


Brazil - India

1.813726 (0.02920644 0.06401262)

0.37082679 0.03083649

0.03083649 0.36405909


Brazil - China

1.690391 (−0.01244109 0.01448774)

0.23451581 0.02963903

0.02963903 0.24925545


Brazil - South Africa

1.871113 (0.01444671 0.07260969)

0.4168822 0.0539122

0.0539122 0.3965146


Russia - India

1.797345 (0.01547843 0.02846838)

0.33899252 0.03585458

0.03585458 0.36093038


Russia - China

1.668664 (−0.01873535 − 0.00938018)

0.21686163 0.03454451

0.03454451 0.23337358


Russia - South Africa

1.86538 (−0.001456525 0.028679237)

0.38500077 0.04791891

0.04791891 0.39980024


India - China

1.617437 (−0.02259332 − 0.02080865)

 2.219397e−01 −4.202606e−05

−4.202606e−05 2.287876e−01


India - South Africa

1.85174 (0.01062708 0.04191066)

0.41486610 0.02759884

0.02759884 0.39894464


China - South Africa

1.70457 (−0.04080048 − 0.01410422)

0.2627587 0.0410898

0.0410898 0.2712789
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The residuals of the fitted univariate GARCH(1,1) model were fitted with an

elliptical stable model with index α, shift δ and shape matrix R. When Q

is a multiple of the identity matrix, then the isotropic or radially symmetric

case arises. From Table 9.13, there is no substantial empirical evidence for the

isotropic heavy tailed stable model for modeling any of the joint pairs of the

BRICS countries.

Figure 9.6: Estimated density surface and countour plot for a bivariate
elliptical stable fit of Brazillian Real and South African Rand exchange rates of
GARCH(1,1) residuals.

The remaining bivariate stable density plots of GARCH(1,1) residuals for

BRICS countries may be found in Appendix B.

The fitted spectral measure was used to plot the fitted bivariate density shown

in the above figure. The spread of the spectral measure is spiky and masks a

pattern that is more evident in the density surface. These are approximately

the elliptical countours of the fitted density.
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Chapter 10

Conclusion and

recommendations

The purpose of this study was to evaluate the fit of stable distributions for

BRICS exchange rates. The exchange rate data set spans from the period of

January 2011 (when South Africa became a member to the previously known

BRIC group) to January 2016. There has been a longstanding debate of

whether exchange rate movements should be analyzed in order to comment on

a country’s financial stability.

This study confirms the results of Nolan (2014) that stable distributions are a

flexible class of probability laws that can adequately capture the characteristics

of financial data. We have shown that the estimation of stable parameters are

feasible and diagnostics prove that large sets of financial data with heavy

tails and skewness are well described by stable models as confirmed by the

Kolmogorov-Smirnov and Anderson-Darling tests.

VaR estimates and VaR in-sample backtesting using violation ratios, the Kupiec

likelihood ratio test, Christoffersen conditional coverage test and the VaR

duration test emphasize the robustness of the fitted stable models. The use
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of stable distributions for data in finance is largely justified in this study by

capturing large fluctuations which is frequently seen in the financial industry

where the need for better models is imperative for acknowledging the many

empirical properties of financial data. Policy makers, regulators, risk adverse

investors and insurers could leverage the most by using stable distributions as

they are parties that remain largely concerned about extreme losses.

This research recommends further study in:

– The use of Value-at-Risk (VaR) estimates and backtesting to evaluate

the performance in the multivariate stable case.

– Comparisons to other distributions such as the generalized hyperbolic

distribution or generalized lambda distribution.

– Possible alternative criterions for evaluation and model selection based

on the tails of the data.
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Appendix

Appendix A

A.1. Generalized Central limit theorem

The Central limit Theorem (CLT) states that the sum of independent and

identically distributed random variables converges to a normal distribution

when the sum is centered and scaled appropriately and the number of terms

within the summation tend to go to infinity. The Generalized Central limit

theorem assumes that random variables with infinite variance also converge,

but to a stable distribution not necessarily a normal distribution

Generalized Central Limit Theorem

A non-degenerate random variable Y is α − stable for some 0 < α ≤ 2 if and

only if there is an independent and identically distributed sequence of random

variables X1, X2, X3, .. and constants an > 0, bn ∈ R with

an(X1 + ...+Xn)− bn
d→ Y.

A.2. Conversions Between parameterizations

S1 → S0

β0 = β1, γ0 = γ1, δ0 =

 δ1 + βγtanπα
2

; α 6= 1,

δ1 − β 2
π
γlnγ α = 1.
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(B)→ (A)

βA = βB, δA = 2
π
δB, γA = π

2
γB if α = 1;

βA = cotπ
2
αtan(π

2
βBK(α)),

δA =
δB

cos(π
2
βBK(α))

), if α 6= 1,

γA = γBcos(π
2
βBK(α))

(A)→ (B)

βB = βA, δB = 2
π
δA, γB = π

2
γA if α = 1;



βB = 2
πK(α)

(
arctan βA

cosπ
2
α

)
,

δB = δA

(
cos2(π

2
α)

β2
A + cos2 π

2
α

) 1
2

, if α 6= 1

γB = γA

(
cos2(π

2
α)

β2
A + cos2 π

2
α

)− 1
2

.

(A)→ (M)

βM = βA, δM = δA, γM = γA if α = 1;

βM = βA, δM = δA + βAtanπα
2
, γM = γA if α 6= 1,

(A)→ S1

β1 = βA, δ1 = γAδA, γ
α
1 = γA

S1 → (A)
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βA = βA, γA = γα1 , δA =
δ1
γα1

(Yang, 2012a)

(B)→ (C)

θ = 2
π
arctan(2γB

π
), δC = δB(π

2

4
+ γ2B)1/2 if α = 1;

θ = βBK(α)/α, δC = δB if α 6= 1.

(C)→ (E)

ν = α2, θE = θC , τ =
1

α
logδC + C

(
1

α− 1

)
(Zolotarev, 1986).
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A.3. Isotrophic stable distributions The isotropic or radially symmetric case

arises when Σ (some positive definite matrix) is a multiple of the identity matrix

leading to the simplification of the following characteristic equation as:

E
[
eiu

TY
]

= e−γ
α
0 |u|

α+iuT δ (10.1)

and projection parameter functions;

γ(u) = γ0|u|, β(u) = 0, δ(u) = 〈u, δ〉

where γ0 is a scale parameter and δ ∈ Rd is a location parameter. The spectral

measure in this case is a uniform distributon on a unit sphere S = {yTy = 1} ⊂ Rd,

where A ∼ S(α
2
, 1, 2γ20(cos(πα

4
)

2
α ), 0) and G ∼ N(0, I), then Y = A

1
2 G + δ.
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Appendix B

Estimated density surface and countour plots for a bivariate

elliptical stable fit of pairwise BRICS/USD countries

(a) BRL-RUB/USD

(b) BRL-INR/USD
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(c) BRL-CHY/USD

(d) RUB-INR/USD
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(e) RUB-INR/USD

(f) RUB-ZAR/USD
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(g) INR-CHY/USD

(h) INR-ZAR/USD
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(i) CHY-ZAR/USD

Figure 10.1: Estimated density surfaces and contour plots for a bivariate elliptical
stable fit of BRICS countries exchange rates.
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Combining stable and GARCH(1,1) model: Estimated density

surface and countour plots

(a) BRL-RUB/USD

(b) BRL-INR/USD
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(c) BRL-CHY/USD

(d) RUB-INR/USD
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(e) RUB-CHY/USD

(f) RUB-ZAR/USD
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(g) INR-CHY/USD

(h) INR-ZAR/USD
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(i) CHY-ZAR/USD

Figure 10.2: Bivariate elliptical stable density plots of GARCH(1,1) residuals for
BRICS countries
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R code

> View(BRICS.USD)

> BRL<-(BRICS.USD)[,c(”V2”)]

> BRL1= diff(log(BRL))

> RUB<-(BRICS.USD)[,c(”V2”)]

> RUB1=diff(log(RUB))

> INR<-(BRICS.USD)[,c(”V2”)]

> INR1=diff(log(INR))

> CHY<-(BRICS.USD)[,c(”V2”)]

> CHY1=diff(log(CHY))

> ZAR<-(BRICS.USD)[,c(”V2”)]

> ZAR1=diff(log(ZAR))

The R code provided below yields empirical results for Brazil, unless where labelled/defined

otherwise. Similar codes are used for the remaining BRICS countries with their

respective parameter estimates by adjusting the R code accordingly.

Time series plots

> code=ts(BRL,frequency=260,start=c(2011,140))

> plot(code,xlab=’Year’,ylab=’Real/USD’,main=’Time series plot of Real/USD’)

> code=ts(BRL1,frequency=260,start=c(2011,140))

> plot(code,xlab=’Year’,ylab=’Real/USD returns’,main=’Time series plot of Real/USD

returns’)

Descriptive statistics

> basicStats(BRL1)

> jarqueberaTest(BRL1)

ACF and PACF plots

> acf(BRL1)

> pacf(BRL1)
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Ljung-Box test for autocorelation

> Box.test(BRL1, lag = 10, type = c(”Ljung-Box”))

Tests for stationarity

ADF test

> adf.test(BRL1)

P-P test

> pp.test(BRL1)

KPSS test

> kpss.test(BRL1)

Fitted stable distribution

> stable.fit(BRL1, method = 1, param = 0)

Goodness of fit tests and diagnostics

> theta=c(1.736639e+00,-2.102931e-08,5.323732e-03,6.868068e-04)

> stable.ks.gof(BRL1,theta,method=0,param=0)

> ad.test(BRL1,pstable,alpha= 1.736639e+00,beta= -2.102931e-08,gamma= 5.323732e-03,delta=

6.868068e-04)

> qqstable(BRL1, theta, param = 0, ptwise.ci = FALSE)

> ppstable(BRL1, theta, var.stabilized = FALSE, param = 0)

> stable.density.plot(BRL1, theta, param=0, xrange = range(BRL1))

VaR and in-sample backtesting

> qstable(0.01, 1.736639e+00, -2.102931e-08 ,5.323732e-03 ,6.868068e-04 ,0)

> qstable(0.05, 1.736639e+00, -2.102931e-08 ,5.323732e-03 ,6.868068e-04 ,0)

> qstable(0.95, 1.736639e+00, -2.102931e-08 ,5.323732e-03 ,6.868068e-04 ,0)

> qstable(0.99, 1.736639e+00, -2.102931e-08 ,5.323732e-03 ,6.868068e-04 ,0)

> VaRTest(0.01,BRL1,rep(-0.02487615,1324))

VaRTest(0.05,BRL1,rep(-0.01307162,1324))

> VaRTest(0.95,BRL1,rep(0.01444523,1324))

> VaRTest(0.99,BRL1,rep(0.02624979,1324))

> VaRDurTest(0.01,BRL1,rep(-0.02487615,1324),conf.level = 0.95)

> VaRDurTest(0.05,BRL1,rep(-0.01307162,1324),conf.level = 0.95)
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> VaRDurTest(0.95,BRL1,rep(0.01444523,1324),conf.level = 0.95)

> VaRDurTest(0.99,BRL1,rep(0.02624979,1324),conf.level = 0.95)

Scatterplot matrix

> View(BRICS.USD)

> B<-(BRICS.USD)[,c(”V2”)]

> R<-(BRICS.USD)[,c(”V3”)]

> I<-(BRICS.USD)[,c(”V4”)]

> C<-(BRICS.USD)[,c(”V5”)]

> S<-(BRICS.USD)[,c(”V6”)]

> Brazil=diff(log(B))

> Russia=diff(log(R))

> India=diff(log(I))

> China=diff(log(C))

> SouthAfrica=diff(log(S))

> pairs( Brazil+Russia+India+China+SouthAfrica)
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Multivariate elliptical stable parameter estimation

R code for 10 pairwise combinations of BRICS countries:

> BR<-matrix(c(BRL1,RUB1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(BR, method1d=1)

> BI<-matrix(c(BRL1,INR1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(BI, method1d=1)

> BC<-matrix(c(BRL1,CHY1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(BC, method1d=1)

> BZ<-matrix(c(BRL1,ZAR1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(BZ, method1d=1)

> RI<-matrix(c(RUB1,INR1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(RI, method1d=1)

> RC<-matrix(c(RUB1,CHY1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(RC, method1d=1)

> RZ<-matrix(c(RUB1,ZAR1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(RZ, method1d=1)

> IC<-matrix(c(INR1,CHY1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(IC, method1d=1)

> IZ<-matrix(c(INR1,ZAR1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(IZ, method1d=1)

> CZ<-matrix(c(CHY1,ZAR1),nrow = 2,ncol = 1324)

> mvstable.fit.elliptical(CZ, method1d=1)
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Estimated denisty and contour plots

> stable.test ( xx <- seq(-0.04, 0.04, 0.002)

d.ell<- mvstable.elliptical(alpha = 1.523953, R = matrix(c(2.422102e-05, 2.301749e-06,

2.301749e-06, 2.482960e-05 ), 2, 2), delta = c(0.0002700612,0.0005117953))

pdf.surface.plots(d.ell, xx, ”elliptical”))
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Combining stable and GARCH(1,1) model

> BRL<-(BRICS.USD)[,c(”V2”)]

> BRL1=diff(log(BRL))

ARCH LM test

> ArchTest(BRL1,lag=12,demean = FALSE)

Fitting GARCH(1,1) model

> m1=garchFit(formula= garch(1,1),data=BRL1,trace=F)

> summary(m1)

> m2=garchFit(formula= garch(1,1),data=BRL1,include.mean=FALSE,trace=F)

> summary(m2)

> res=residuals(m2,standardize=TRUE)

Descriptive statistics

> basicStats(res)

ACF and PACF plots

> acf(res)

> pacf(res)

Ljung-Box test for autocorrelation

> Box.test(res, lag = 10, type = c(”Ljung-Box”))

Tests for stationarity

> adf.test(res)

> pp.test(res)

> kpss.test(res)

Stable parameter estimation

> stable.fit(res,method = 1,param = 0)

> theta=c(1.84220452,0.16923594,0.60891213,0.06434036)

Goodness-of-fit tests and diagnostics

> stable.ks.gof(res, theta, method=1, param=0)

> ad.test(res,pstable,alpha=1.84220452,beta=0.16923594,gamma=0.60891213,delta=0.064340)

> stable.density.plot(res, theta, param=0, xrange = range(res))

> qqstable(res, theta, param = 0, ptwise.ci = FALSE)
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> ppstable(res, theta, var.stabilized = FALSE, param = 0)

VaR and backtesting

> qstable(0.01,1.84220452,0.16923594,0.60891213,0.06434036)

> qstable(0.05,1.84220452,0.16923594,0.60891213,0.06434036)

> qstable(0.95,1.84220452,0.16923594,0.60891213,0.06434036)

> qstable(0.99,1.84220452,0.16923594,0.60891213,0.06434036)

> VaRTest(0.01,res,rep(-2.243313,1324))

> VaRTest(0.05,res,rep(-1.39344,1324))

> VaRTest(0.95,res,rep(1.602342,1324))

> VaRTest(0.99,res,rep(2.615574,1324))

> VaRDurTest(0.01,res,rep(-2.243313,1324),conf.level = 0.95)

> VaRDurTest(0.05,res,rep(-1.39344,1324),conf.level = 0.95)

> VaRDurTest(0.95,res,rep(1.602342,1324),conf.level = 0.95)

> VaRDurTest(0.99,res,rep(2.615574,1324),conf.level = 0.95)

Scatterplot matrix

> BRL<-(BRICS.USD)[,c(”V2”)]

> BRL1=diff(log(BRL))

> m2=garchFit(formula= garch(1,1),data=BRL1,include.mean=FALSE,trace=F)

> summary(m2)

> m2=garchFit(formula= garch(1,1),data=BRL1,include.mean=FALSE,trace=F)

> res=residuals(m2,standardize=TRUE)

> RUB<-(BRICS.USD)[,c(”V3”)]

> RUB1=diff(log(RUB))

> m4=garchFit(formula= garch(1,1),data=RUB1,include.mean=FALSE,trace=F)

> res1=residuals(m4,standardize=TRUE)

> INR<-(BRICS.USD)[,c(”V4”)]

> INR1=diff(log(INR))

> m6=garchFit(formula= garch(1,1),data=INR1,include.mean=FALSE,trace=F)

> res2=residuals(m6,standardize=TRUE)

> CHY<-(BRICS.USD)[,c(”V5”)]
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> CHY1=diff(log(CHY))

> m8=garchFit(formula= garch(1,1),data=CHY1,include.mean=FALSE,trace=F)

> res3=residuals(m8,standardize=TRUE)

> ZAR<-(BRICS.USD)[,c(”V6”)]

> ZAR1=diff(log(ZAR))

> m10=garchFit(formula= garch(1,1),data=ZAR1,include.mean=FALSE,trace=F)

>res4=residuals(m10,standardize=TRUE)

>pairs( res+res1+res2+res3+res4)

Multivariate elliptical stable parameter estimation

> br<-matrix(c(res,res1),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(br, method1d=1)

> bi<-matrix(c(res,res2),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(bi, method1d=1)

> bc<-matrix(c(res,res3),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(bc, method1d=1)

> bz<-matrix(c(res,res4),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(bz, method1d=1)

> ri<-matrix(c(res1,res2),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(ri, method1d=1)

> rc<-matrix(c(res1,res3),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(rc, method1d=1)

> rz<-matrix(c(res1,res4),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(rz, method1d=1)

> ic<-matrix(c(res2,res3),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(ic, method1d=1)

> iz<-matrix(c(res2,res4),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(iz, method1d=1)

> cz<-matrix(c(res3,res4),nrow=2,ncol = 1324)

> mvstable.fit.elliptical(cz, method1d=1)
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Estimated density and contour plots

>stable.test(xx <- seq(-0.04, 0.04, 0.002)

d.ell<- mvstable.elliptical(alpha =1.871113, R = matrix(c(0.4168822 ,0.0539122,0.0539122,

0.3965146), 2, 2), delta = c( 0.01444671,0.07260969))

pdf.surface.plots(d.ell, xx, ”elliptical”))
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