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ABSTRACT

The use of computers for digital image recognition has become quite widespread.

Applications include face recognition, handwriting interpretation and fmgerprint analysis.

A feature vector whose dimension is much lower than the original image data is used to

represent the image. This removes redundancy from the data and drastically cuts the

computational cost of the classification stage. The most important criterion for the

extracted features is that they must retain as much of the discriminatory information

present in the original data. Feature extraction methods which have been used with neural

networks are moment invariants, Zernike moments, Fourier descriptors, Gabor filters and

wavelets. These together with the Neocognitron which incorporates feature extraction

within a neural network architecture are described and two methods, Zernike moments and

the Neocognitron are chosen to illustrate the role of feature extraction in image recognition.
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1. INTRODUCTION

Vision is the process whereby energy from the three-dimensional world is converted to

two-dimensional entities called images. These images are then processed to either form

some conclusions or to invoke some actions. For a long time visual scenes could only be

captured through photography. However recent technological advances allow visual

scenes to be captured, manipulated and evaluated electronically with computers and this

has resulted in the development of the area of computer vision. Computer vision has in

turn led to the automation of a variety of tasks which include industrial inspection, analysis

of aerial maps, vehicle guidance, image compression, which allows for the transmission of

high resolution television pictures, and image enhancement, which can be used for the

enhancement of X-rays or photographs. One important application in computer vision is

digital image recognition. A digital image is a two dimensional entity which is acquired by

the use of a television camera or digital scanner. The use of computers for digital image

recognition has become quite widespread. Applications include human face recognition

(Bouattour et al. 1992) , handwritten character recognition (Khotanzad & Lu , 1991) and

meteor trail classification (Fraser et al. , 1992), amongst others.

1.1 DIGITAL IMAGE RECOGNITION

A digital image is a two-dimensional computer representation of a visual scene. The

digital image consists of a two dimensional array of numbers with the rows and columns of

the array corresponding to the vertical and horizontal co-ordinates of the image. To

produce a digital representation of a black and white photograph, samples of brightness are

taken at regular intervals from the photograph with the size of the intervals depending on

the size of the array. These brightness values will range from 0 to 255 with 0 representing

white, 255 representing black and the integer values in between representing different

shades of grey. For example the value 20 will represent a lighter shade of grey than 130.

This system is known as the grey scale system. Other systems incorporate colour

information as well as brightness information.
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As an example, suppose that a 10 x 10 array was used to represent the 10 cm x 10 cm

black and white photograph depicting an eagle shown in the top row of figure 1.1.1. Then

each element in the array will represent the average brightness of a 1 cm by 1 cm block in

the corresponding position on the photograph. This implies that the element in row 1 and

column 1 of the array will be the average brightness of a 1cm by 1cm block on the top left

hand corner of the photograph. The 10 x 10 array will then form a digital representation of

the photograph as shown in the bottom row of figure 1.1.1. Each element in the array

represents a picture element, normally abbreviated to "pixel", in the digital image. Since

the pixels can only take on different shades of grey, the digital image is known as a grey

scale digital image.

Figure 1.1.1 - Producing a digital image (bottom row) from a photograph (top row - left).

Digital image recognition involves the mapping of digital images onto specific predefined

classes. If these digital images depict birds, then the output classes could be 'eagle',

'swallow' and 'falcon'. Digital image recognition falls within the general area of pattern

recognition which involves the mapping of a feature space to output classes. For digital

image recognition, the feature space zmxn consists of the brightness values of an mxn two

dimensional array representing a grey scale digital image. The output space ZS represents
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the s unique output classes for the feature vector, zmxn, and comprises vectors of the form

(c)' c2 , •• ,cs ) with Cj taking on values of 0 or 1. In particular only one element in such a

vector takes on the value 1 with the remaining elements being 0, that is, if the feature

vector is classified into class c j , then only Cj = 1 and the others will be o.

1.2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks and more specifically the multilayered perceptron (MLP) have

been used extensively for image recognition applications. These include human face

recognition (Bouattour et al. 1992) , human face segmentation (Viennet & Soulie, 1992),

radar data classification (Pemot & Vallet, 1991), handwritten character recognition

(Khotanzad and Lu , 1991) and meteor trail classification (Fraser et aI., 1992). In these

applications artificial neural networks have been shown to be superior, in terms of accuracy

and sensitivity to noise, to the traditional classifiers such as nearest neighbour (NN) and

minimum mean distance (MMD) for image recognition tasks.

The multilayered perceptron consists of three layers, the input layer, the hidden layer and

the output layer with each layer containing processing elements, called neurons, which are

connected to the neurons in the previous layer. The classification process involves the

presentation of a feature vector to the input layer and the producing of a response from a

specific neuron in the output layer, corresponding to an output class. If the feature vector

consists of a digital image, then each neuron in the input layer will receive input from a

single pixel in the digital image. In this instance, the number of neurons in the input layer

will equal the number of pixels in the digital image and the number of neurons in the

output layer will correspond to the number of output classes.

The use of the multilayered perceptron in digital image recognition has the following

limitations:

• Unnecessary processing of redundant information. The inputs to the multilayered

perceptron are the pixel values of the digital images which may contain information

which is not needed for discrimination between output classes. For example, if the task

was to classify fruit into apples, oranges and bananas the information about the size,
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position or how the fruit is rotated in the image is of no significance and is thus

redundant in this application.

• For digital images a large number of neurons are needed in the input layer. However

large networks are computationally infeasible, as the time needed for training is related

to the size of the network.

1.3 THE FEATURE EXTRACTION STAGE

The above limitations of artificial neural networks can be overcome by the introduction of

a feature extraction stage in which the digital image is processed so that only relevant

features needed for discrimination between the output classes are extracted. This new

feature set will then form the input to the neural network. In this way redundant

information will be removed and the size of the feature set reduced. A number of feature

extraction methods such as moment invariants (lain, 1989), Zernike moments (Khotanzad

and Hong, 1990), Fourier descriptors (Kulkarni, 1994), Gabor filters (Daugman, 1988) and

wavelets (Mallat, 1989) are available in image recognition. Another interesting model, the

Neocognitron (Fukushima et aI., 1983), combines the two areas of features extraction and

neural networks.

Generally feature extraction methods must have the following properties:

• Extracted features must retain much of the discriminant information present in the

original data.

• Features should have small intra-class variance, that is, slightly different shapes with

similar general characteristics should have similar numerical values.

• Features must also have large inter-class differences, that is, features from different

classes should be quite different numerically.

An additional stage, called the pre-processing stage, in which the raw data is manipulated

before feature extraction, may also be introduced. This stage is dependent on the nature of

the images to be classified. Typical pre-processing techniques include noise removal and

contrast enhancement (Schalkoff, 1989). For example, if the system can only accept 19 x

19 pixel images and the digital images used for classification are not of this size then the

images are scaled to a 19 x 19 pixel image in the pre-processing stage.
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Figure 1.3.1 shows the broad structure of the image recognition system described above.

Feature
I 1-. ~ Classification

\
Pre-processing

extraction

(

~
I'EAGLE' 1

output

digitized class

image

Figure 1.3.1 - Broad structure ofan image recognition system.

1.4 THE RESEARCH PROBLEM AND OBJECTIVES:

The broad aim of the research is to investigate the role of feature extraction in a neural

network approach to image recognition.

The objectives ofthe research are:

1. To investigate existing feature extraction methods, namely, moment invariants,

Zemike moments, Fourier descriptors, Gabor filters, wavelets and the

Neocognitron for image recognition.

2. To identify suitable feature extraction methods from those in (1) for two

dimensional shape recognition applications.

3. To implement experimentally the two most suitable methods identified in (2)

and to evaluate their relative effectiveness on handwritten digit recognition.
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1.5 SCOPE OF THE RESEARCH AND DELIMITATIONS

The main focus of the research is on feature extraction methods which have been used

together with neural networks for applications in digital image recognition. The discussion

on neural networks is confined mostly to the multilayered perceptron and its application to

digital image recognition, more specifically the recognition of two dimensional grey scale

and binary (black and white) images.

1.6 IMPORTANCE OF THE RESEARCH

Feature extraction, used appropriately, can improve the overall efficiency of a digital image

recognition system. However, the choice of feature extraction method to use is difficult and

depends usually on the nature of the application. The intention of the research is to simplify

this decision.

1.7 RESEARCH METHODOLOGY

The area of feed forward neural networks with application to image recognition will be

described. Thereafter various feature extraction methods which have been used together

with feedforward networks will be discussed and evaluated.

A practical digital image recognition application will be chosen to illustrate the role of

feature extraction in digital image recognition. Appropriate feature extraction methods will

be identified and implemented experimentally for the application. A data set will be

constructed and used to test the experimental implementations. These results will be

discussed and used to evaluate the feature extraction methods.

This chapter has provided an overview of the content of the thesis. In chapter two an

overview of neural networks and their application to digital image recognition is given. In

chapter three various feature extraction methods are described and evaluated. In chapter

four, three experimental implementations for handwritten character recognition are

described and tested. Chapter five contains the conclusions of the research.
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2. ARTIFICIAL NEURAL NETWORKS FOR IMAGE

RECOGNITION

Artificial neural networks have been used extensively for digital image recognition

applications. These include handwritten character recognition (Rajavelu et aI., 1989,

Hinton et aI., 1992, English et aI., 1993, Hussain & Kabuka, 1994) and face recognition

(Wurtz, 1994). In this chapter, artificial neural networks are traced back to their origins

and a widely used network, the multilayered perceptron (MLP), is described.

2.1 ORIGIN

Biological systems, such as the mammalian brain, are able to executep!!£~~L!a§1s:§

~!.. ~~~t~cJ~xelYJasg~w[1:v2.~E,2);Y~xM.9.~!l!l2.!,lters. These tasks include object

recognition, room navigation, re~ng, hearing and walking. The human nervous system
J El .ict~ ~.~Ul__ _ ,.i!QS%I)ji:, _.lA" ,."., p ~. ~~.."v

consists of hundreds of billions of interconnected cells called neurons. Each neuron is able

to r~pm~tr.aJlSll1..iU~1~~~nal~11m!!gll,llJ~~!!~~~I,~,.}n the

brain. Tl1tt. 11E.Wn (t1.gu!e..l.J.JJ....£~~~ll>~~J~~~~~ites

~.~~,~J,211J The dendrites receiv.esigl),,!ls from gthq .neurons at.2onnecti?E.jJ2~

called synaQs~s. Tl~e synaps~s ~a£h":Uhts" to incoming si nals cau~~~ them, ~o. have

':20sitive or exci,1£1:9~.§£t, or a_y.s!@li¥f",.Qt.~20.: ••~ff~£t2l}tla.~~n. Tlle cell

bpdy sums the sig!.1als provided by t~e, dendr.ite~ a1]-d if this_~~ceeds.3;. specified

thresholdyall.le. the cell fi~es,.seH.d~pil!.Q9~~~~~. T~is si~~!­

r~res~nts t?~ out£~~ pl~. A ~hly.~~~~e~neu!,~n. ~~l;l~~, ~9,~~!1d.,olJt !1.,s~~g~~and

an inhibited one does not.
~R~~~~~i$i

The l~~~~~~~n"~~U-JMlq"",tbG,,.llf!tt~~m,,~of its

in~~~l!,gll~b~lowed. res~archers to abstract the main characteristics of biological
- ~~'"W~;"I~~~~~~'~~~~"~~il~{~,~~~'!o'J:it'

l}SHral. Q~~rk~.J2. qe,"y'~!op.....a;t!ficial neural networks which simulate their biological
- rei- J q;jJ4Jll'It:¥\i$l!§jlg;;;;;;;4=gt\AAM\l!'i"!J~:,...\kta!ffl.j'@.~~~~~ji~~~z".'F.i!:i~if(~g,!f,i\!fj:;*M~C::\~~"I';L'"

counternart~.",,""'!' .
~~Xl'jJ!S.'"J.~~~
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dendrites

-.
electrical
spike

Figure 2.1.1 A biological neuron.

2.2 EARLY MODELS

Most modem models of the neuron are based on the early models of McCulloch and Pitts

(1943), Donald Hebb (1949) and Rosenblatt (1958).

2.2.1 The McCulloch and Pitts model

The results of McCulloch and Pitts (1943) formed the foundation for research into artificial

neural networks. They ~Q~",111~lU.~l~;£,~~!~moo§.~<l.gt~~m'_Y~~~'y!9JJ~'EJhatis,

n$JJ~.,»d1b.J~t'lJ~~""~~W~~4Jw~g..~!1J~~\~ca,p~~",,QjL~rf,.Qr!.m.ug"Wbitrary
IQglc~ 0l1~r~!i.~s. The n~~y,~~~iPJUlJ§~r,Qmfr.~x~itatQ;1i¥'kan~inh,ihj,tGH;¥s.y.nallses. The

ex~itat()t;YHs_na s~s have. ~§~m~n.\V~ig~, while the inhibitory synapses have an

ove~~i:~..a..~li<><1b.~.sensethat the.n~Uf0Jl,..G.,.annHot l1~e iftll.e inhib' Jl~.Qn..i&ra£.tiMe.

The operation is as follows: if J}J1-inhibitp neuron is active then t 'H ' R~UL.Q.lkS11ms.,.,j,ts

ex~tQJY..-S.y,:cllil~s.~dj£J.his..£~~&t @ exc~..&d~e hr.~shoJd_\!:a .:..~..n.~~...neJ,)r,ii)n

fue.s~...
~~~

The inclusive OR operation is an example of a logical operation that can be performed by

the 'McCulloch-Pitts' neuron and figure 2.2.1 shows such a neuron.
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Threshold
1

Figure 2.2.1 - Inclusive OR operation performed by a 'McCulloch-Pitts J neuron.

The neuron in figure 2.2.1 has two..£~im19~_ i uts _~ _~mc! ~ ap.4 a t ~A1lQld.,xWJ!~LL~

If any of !~~...~Q'J :~PjJtSgi§J~Jh~!1x ._: ,~ ~1~.~p~~~fM!~~l!Slarly the

AND oper'ltion cap be performed i(fue ~uron i\l.ii&...2..:6....~.f.tw,p.

2.2.2 The perceptron

The perceptron (Rosenblatt, 1958) is shown alongside a biological neuron in figure 2.2.2.

Some similarities between the perceptron and biological neurons are illustrated in Table

2.1.

Figure 2.2.2 - A human neuron and a perceptron.
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Table 2.1 - Similarities between the perceptron and the biological neuron.

Characteristic Perceptron Biological neuron

Input connections inputs labelled Xi dendrites

Processing unit weighted sum process cell body

Output connection has output connection axon

Variable connections variable weights of input signal varied at synapses

connections

Th~J~~.~~~nc~J2t Q(a t "~Jw1gm~!!,I,Q!k At=2!~~~~22~~

taking a weighte.d m".. =its.. · ~~€li~~ (i), lR,ut..QLl if the sum is greater than

spme aqj~tablet~~s~ol<!.yal\!e ~d.Q, ptherwis~.

The inputs~J9_~~!~~~;?=~e~~=~=~~~~,,~~~~~~~~~~L~e
usually negative. and Qositive real values and form the weighted sum L" wX., If

.l$~:.c";O'.,~.:.....:--, :..'~";;~~;'f0~'f~~1)~!;~~~:~~~~.;;!fl.!S'ii'~' ~~~~s;;g,~~~~".~~ _·.;~-"\~ic~~.~~;:g~;d;Z~~::"~-:-:.Ef~~~~.;,,\....,.~r~.:~!$!!.~t ...L~':,,~1il'

L"- W;X; > T, where T is the thre~old value, then the neuron fires and if L ;.1 W;X
i
~ T

·~~~:~~-:;...::eth'M;;:S;;;~_-,---0=~"",Z;;-!I~Ul;tlie;:...~~ _ ,. -.- ... ;-' ".•_~

theq th~_neur9Jl gQ~~JJ.QtiiJ_e. If an in .ut~· causes the perceptron to fire then the weight W j•. ~_w~ .- ~'c'-:~ .. - : _ . " ., .'~~_"-~~-""""'"

W!~IJ~,~12Q)!tiye aaSUUhp ~ut",,~j9lll~its th~ perceptron then its corresponding wei~ht~vi
n.1i-~;J£~~~ ...~~. ~- ~~..,.~~~-r,~~~~_~_:.:~~~. ;#..t.~~:~'~\J,~~~f::::-:·'_~~;~.:f-M-=~~~~\~""""-'"

UW...i¥e. Each!1~ur~tl~¥.a~~ct~on~ m~~~._. o~ai~.?fthe

~~!~rEW~ T4,e ac!u~\Jllii..Imi~~.mi~ _n the values of the w~~s

~(;)14

Learning

~~~~~~~~?lves m~d~,,~~~~, .qf.Jll~'1~g~!1l~~;~~g~~~~~~I~~~~~2~;~!

4mzqt.';.!~ .Artificial neural networks...E~lOdify .the,ir .behay.i.Qm..lu...J:e..s.p,~Q_their.

...ePW,l-FQ,tlmeut. Shown ~f...i.D.I1Y1§, and i~~c..~~e.t..Q.ut~~th€~~ ..n~0~s

~lLadjMs..U9-"",, rodQce ,consistent res, ,£~sjwiJ~n J!ts. Tl;)is pmpe1i¥,...is.Jcno;wQ,~

Je...amWg. Donald Hebb (1949) was the fIrst to propose a mechanism by which learning

could occur. Hebb's rule states that wh?n?Yfif hA;P>!t~~t1iFc e~i!fe-ci~lJjfNitth~fflrmCmttmer-
,.....

li:'..Gir-p.- i§t- _1 ijL . ":4¥'i' SMf- er!L-...

tbe cpY,lnef:{iqn"",Q., tJ1le.,e,n. .e1V"'~fJ)J;.Jj;ilJiA~. Th~S;L9.Q1.tr9 us.,e_~, ,:e;;\(ati!.l~~",Q!~

H~blD.®&cl:J1le. fo, ~1~cy£~g,1~la€i1'F.l€1ii,\Mt\1l;~J)£,&ill~~iJ1~t~~JI1~~ig!~~~~~~if~;~i:~~~

~&.;a d,finds a solut~:~,~h~t}~.t ~~e~i:~~~l?~~~~,=~~j1MJitmLt§.
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The search sQace is all the assignmenttQf real values to the weights of the perceptron. An
. .M" ". AL,,.. cm _# ~ - - ,"''"l!li -Jt&~ tltiJ._£

iterative search method is often used. This method is based on the following rule:

If the neuron fires when it should not fire, make each Wi of the input connections

smaller by an amount proportional to Xi. If the perceptron fails to fire when it

shouldfire, make each Wi larger by a similar amount.

An in-depth study of the Perceptron was carried out b¥ Minsky & Paopert (1969) w,b.o,

showed that a large class of problems, those that are no . .~ .. a,,~9l>~~~1.be
~ ,

solv~d !?x th~.p,et~e,J1tmn. A simple example of a probleIl,l,th..2:!j~~2Uw.~Ml~ _~. rab~

t.h!.;~l~iY~~ function shown in figure 2.2.3. ~o li£learJunc,tiQQ""oLth~~~rix,I~

W 2X2 exists...which can s~e the black anq~jtk""P.Qj.tl~ ~d"tbjs. pr.oblem._e.atlDot

solved b the perce,Qtron. The linear seperability problem was eventually

overcome by the introduction of a hidden layer into the perceptron and this led to the

development of the multilayered perceptron.

Xl x2 Desired output

Xl XORX2

0 0 0

0 1 1

1 0 1

1 1 0

o

'.

o

function
W 1X1 + W 2X2

1

Figure 2.2.3 - The XORproblem.
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2.3 THE MULTILAYERED PERCEPTRON

The multilayered perceptron (MLP), illustrated in figure 2.3.1, sonsi~s..)?i ~_aTI:!§....~f

artificial neurons or processing el,em~m~, These neurQns,have_several inputs which are
~~~"""fo·M'''''''W-''$"·iW'''''j'_$Fi''i9-L~~.1:.,:.(~:.eE=~;!.n;. ...:.;.l.~$ ~ilI"'''''''''''''4<'Il..'>.;;~l1:''~~~~_''lai.~

processed to -'produce the out uts and neurons workin together fo a_ayer. The network
•. ,r·'·m....,;/"·! ,..-....., ..,.,-.;,. ~ ._.~~~~....'\~~~~ - '.~~

normally consists of thre.»JW,i..~s...the..inP.m layer, the hjdden l~yer d the ou1ut,l~~-1fa!lGl=.1
~ -~ _ IJ: • ~ __

~ it can be shown that the i ~ 9-tl~i@~,_ th~IY~~p.J~xetis _. anI res on_sible for the

ill¥~~.e i the / tationalfg~~L9~~....n~~ork. Hanson ~~,.~1991). Th~r~n~ ':)
J#,,"""l (""

conme'C'tions witliin lay~r~, and outFnils froW'",el1"ch lay".~]f""ean only form inputs to the next (:r,

layer. Thus the network is termed as a feed forward network.

2.3.1 The processing element

The processing element is depicted in figure 2.3.1. Let x = (Xl' X2 , ... , ~ ) represent the

inputs applied to the neuron and W = (wl , w2 , .. , wn) the corresponding weights. Then

the net input, which is the weighted sum of the neuron, at a particular time t is defined as :

net(t) = wT x + B,

where B is a bias term that is introduced so that the neuron can still fire even if all its inputs

are zero. The net input is then processed by an activation function to produce the neuron's

output signal O(t). The preferred function is the sigmoid function shown in figure 2.3.2

and defined as

j(z) = 1 / (1 + e-Z),

where Z is the net input net(t).
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X1 W" 0~ ------.

--c ~X2 0--
WOn

Xn '---0
INPUT OUTPUT

Figure 2.3.1 - The multilayeredperceptron and a processing element.
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642-4 -2 0
Input

Figure 2.3.2 - The sigmoidfunction.

Output

Learning in the MLP, which is also known as training, is performed by an algorithm

known as the backpropagation algorithm.

2.3.2 Learning by backpropagation

The backpropagation algorithm is used to train the multilayered perceptron (Rumelhart et

al. ,1986). The algorithm requires a teacher to supply training data, which consists of

input and output patterns.

The weights in the network are initialised to some random values. Input and desired

output vectors are then presented to the network. An error E is calculated indicating the

difference between the network output and the desired output. This error is propagated

back through the network and the weights in each layer are modified so that the error is

decreased during the next iteration. This process is repeated until the error E is small

enough. The generalised delta rule (Rumelhart et al. 1986), which is based on gradient

descent, is used to decrease the error during each iteration. The mathematics of the

generalised delta rule are described below.

The generalised delta rule

The application of the generalised delta rule involves two phases. During the first phase the

input is presented and propagated through the network to compute the output value for

each output neuron. This output is then compared to the target outputs resulting in an error

signal for each output neuron. The second phase involves a backward pass through the

network, during which the error is propagated back through each neuron in the network and .

the weights are adjusted accordingly.
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The global error E is defined as the squared difference between the output vector and the

desired or target output vector and is given by

(2.1)

where tk is the target output of the kth neuron in the output layer and Ok is the actual

output of the kth neuron in the output layer. The output ok is given by

h

I' ("" (HO) (H) )
Ok = j k L..J Wjk OJ ,

j=1

(2.2)

where wjk is the weight of the connection from neuronj in the hidden layer to neuron kin

the output layer, fk is the activation function of neuron k in the output layer and ot) is the

output of the jth neuron in the hidden layer given by

P

O~H) =f j (L WbIH
) Xi)'

i=1

(2.3)

where wij is the weight of the connection from neuron i in the input layer to neuron j in the

hidden layer, ~ is the activation function of neuronj in the hidden layer and Xi is the input

of neuron i in the input layer. Alternatively equations (2.2) and (2.3) can be written as

(2.4)

where 17iO) is the net input to neuron k in the output layer and

(2.5)

where 17t) is the net input to neuronj in the hidden layer.
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The amount by which the weights of each neuron has to be adjusted is

(2.6)

with Wmn being the weight of the connection from neuron m to neuron n. If neuron n is in

the output layer, then using the chain rule

OE OE rok IJr]k
~ ..(HO) = ro .~ .&(HO)
uwjk k V'lk jk

(2.7)

otherwise, if neuron n is in the hidden layer then using the chain rule

s
,,( ) J: '( (0») (HO) f '( (H))

=L.-fk-Ok·k 17k 'Wjk ' j 17j 'X i
k=!

s

=LeiHO).wj:).fj '(17jH»).Xi •

k=]

(2.8)

Equations (2.1), (2.7) and (2.8) illustrate the generalised delta rule. The network learns by

making corrections to the weights, based on the error of the output from equation (2.1).

which is propagated back through the network during training. As training progresses the

global error in (2.1) is minimised by changing the weights of each neuron using equation

2.6. To adjust the weights of neurons in the output layer equation (2.7) is used while

equation (2.8) is used to adjust the weights of the neurons in the hidden layer. Thus, the

generalised delta rule provides a mathematical explanation for the dynamics of learning

and is consistent and reliable in application.
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2.3.3 Improvements

Rumelhart et al. (1986), Pao (1989) and Kung et al. (1991) showed that there were

improvements that could be made to the backpropagation algorithm. These are discussed

briefly here.

Direction of updating weights

The standard approach, captured in equation (2.6), updates the weights in the opposite

gradient of the error function. A more sophisticated approach is to add a momentum term

which is dependant on the previous change in the weights and to rewrite equation (2.6) as:

tJE
t1 wij(n) = l_coeff· tW.. + at1 wij(n-l),

IJ

(2.9)

where a is the momentum constant, t1 wij(n-l) represents the change in the weight in the

previous iteration and t1 wij(n) is the change in the weight for the current iteration.

A variation on the gradient descent approach is the conjugate gradient approach (Hertz,

1991, Kung et al. 1991) where the updating vector is defined by a combination of the

gradient and the previous updating vector:

where den) is defmed recursively as

BE
d(n) = - tW /3. d(n-l)

IJ

(2.10)

(2.11)

and /3 is chosen so that the new search direction is a compromise between the gradient

descent and the previous search direction.
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Learning Rate

One of the problems in implementing the backpropagation algorithm is choosing the value

of Ccoeff. A large learning rate results in faster learning but might also result in

oscillations in the global error during learning, while a very small learning rate will result

in slow learning. One solution is to start with a large Ccoeff and decrease it gradually so

that the initial convergence is rough but fast and gradually the convergence becomes

slower but finer. An alternative is to adjust the size of Ccoeff to best fit each pair of input­

output training patterns (Kung et al. , 1991).

Data Presentation

The presentation of data affects the manner in which the weights are updated during

training. The entire data set could be presented to the network and a cumulative average

error calculated. The weights are then adjusted at the end of this presentation according to

this error. This method, known as cumulative backpropagation, minimises the overall or

global error function and not each component error function which might increase other

component error functions. If the number of elements in the data set, that is, the number of

input/output pairs presented during the accumulation, is not too large then the network will

conve~ge faster. However it is possible that two errors may cancel each other and cause the

network to be stuck in a local minimum (Hertz, 1991). One solution to this problem is to

update the weights after each pattern is presented to the network. For this method data

elements are presented randomly one at a time from the data set and the weights updated

after each presentation. A compromise between the two methods is to present the data in

groups which are subsets of the original data set and to update the weights after each group

is presented to the network.

Initial weights

If the set of initial weights for the network are chosen to be identical, then all error signals

propagated back through the hidden neurons will be identical as they are proportional to

the weights. Since the weight changes are dependant on these error signals, the weight

updates will also be identical. Thus during each iteration of the learning cycle the weights

will be identical and the network may not converge to an optimal solution. This problem is
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avoided by choosing the initial set of weights to be small random numbers (Rumelhart et

al. , 1986).

2.3.4 Classification of the MLP

The multilayered perceptron is classified as a feedforward, supervised, non linear network.

Feedforward describes the conduction of signals and the interconnections between neurons,

in that the output from each neuron can only form the input to a neuron in the next layer.

The network needs a teacher supplying desired output patterns for each input pattern during

training and hence supervision is needed during training. Non-linear describes the transfer

function that is used, in this case the sigmoid function which is nonlinear. Other neural

network architectures incorporate feedback, require no supervision and use nonlinear

transfer functions.

2.4 ALTERNATIVE NEURAL NETWORK MODELS

There are currently many different network architectures. A selected few that have been

used for image recognition are discussed in this section.

2.4.1 The Neocognitron

The Neocognitron is a three dimensional multilayered feed forward network that simulates

the way visual information feeds forward in the cortex of the human brain (Fukushima,

1988). Furthermore the Neocognitron performs feature extraction in the sense that features

are extracted at each layer of the network, with simple local features being extracted in the

initial layers and complex global features being formed in layers close to the output layer.

The Neocognitron is particularly suitable for handwritten character recognition

(Fukushima, 1988).

2.4.2 Hopfield networks and ~ssociative memory

Recurrent networks have feedback from the outputs of the network to their inputs and are

capable of forming associative memories, i.e. only a portion of the pattern is supplied as

input and the correct pattern is returned as output. Hopfield showed that such neural

networks are capable of exhibiting interesting behaviour such as pattern recall, despite

incomplete or garbled input (Hopfield, 1982). Hopfield nets are recurrent, associative
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memory architectures and are capable of reconstructing images from noisy or blurred data

(Hertz et al. 1991). Other associative memory models include the Bi-directional

Associative Memory (BAM) networks (Wasserman, 1989).

2.4.3 Adaptive resonance theory (ART)

ARTMAP by Carpenter, Grossberg & Reynolds (1991) consists of two adaptive resonance

theory modules, ARTa and ARTb , that are capable of self-organising stable recognition

categories in response to input patterns. During training ARTa is presented with a stream

of input patterns and ARTb is given the correct prediction. Testing involves presenting the

remaining input patterns to ARTa and comparing the predictions from ARTb to the correct

predictions. ART and ARTMAP has been used for character recognition (Dimitriadis et

aI., 1993, Hung & Lin, 1993).

2.5 SUMMARY

In this chapter we have examined a simplified model of biological neural networks, the

multilayered perceptron, for image recognition. It is clear that research in artificial neural

networks focuses on two areas, the modelling of neural networks in order to get a better

understanding of the mammalian nervous system and practical applications such as speech

recognition, computer vision and other classification tasks. Some researchers are of the

opinion that one approach complements the other. The research in this thesis will

concentrate on applying neural networks to image recognition but hopefully will also give

the reader some insight into biological visual systems.

Even though the MLP has been used extensively for image recognition applications, it still

has some serious limitations. These limitations can be overcome by the introduction of a

feature extraction stage and this is described in the next chapter.
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3. FEATURE EXTRACTION

3.1 INTRODUCTION

Artificial neural networks have been used widely for digital image recognition (Bouattour

et al. 1992, Viennet & Soulie, 1992, Waite, 1992, Khotanzad & Lu, 1991, Gouin &

Scofield, 1993, Fraser, et aI., 1992). The usual approach involves presenting the network

with a digital image and producing an output label for the image. For example, if the

system is classifying 11 x 11 binary images, the input vector will have 121 elements,

having the value 0 or 1, corresponding to the 121 pixels in the image. If the images are

handwritten digits for example, then the output layer will contain ten neurons,

corresponding to the ten different outputs ('0', 'I', '2', .. ,'9'). When an image is presented

to the network only one of the output neurons will be activated, thus classifying the image.

Another approach is to extract only relevant information from the pixel representation and

to use this information as the input to the neural network. This process is known as feature

extraction. The actual information extracted from the pixel representation is termed the

feature vector.

3.1.1 Need for feature extraction:

Number ofneurons in the input layer

Since the :fu.ature vector provides input to the network, the number of neurons in the input

layer of the network will be determined by the number of features in the feature vector and

not by the size of the digital image. For example using the pixel representation a 64 x 64

digital image will require 4 096 input neurons, but using a feature extraction method such

as Zemike moments (Khotonzad and Hong, 1990), 47 features will be extracted from the

image and only 47 neurons will be needed in the input layer of the network. It is important

to note that larger networks generally require more computing resources and take a longer

time to train.

Irrelevant information

Suppose the images to be classified are geometric shapes. Then certain information about

the shape such as position and size is not required, but using the pixel representation, two
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images of the same shape but of different sizes will produce different input vectors to the

network and this may well complicate the classification task. It is thus desirable to make

the network invariant to these properties. Invariancy in image recognition can be

incorporated in three different ways:

1. During training:

The network is trained on all instances of an object i.e. all translations

(positions), rotations and dilations (sizes) of the object. As a result the

network learns to classify the image even if the object is rotated, scaled or at

different positions in the image. This drastically increases the size of the

training data set, resulting in an increase in the training time and the size of

the network. The number of input neurons corresponds to the number of

pixels in the image and additional hidden neurons are needed for the extra

training data. This method is not practically feasible.

2. Feature extraction:

This is the classical feature extraction approach in which invariant features

are extracted from the data. The number of input neurons corresponds to

the dimension of the feature vector. This approach seems to be the most

popular, as the feature extraction methods that are used are existing methods

which have been used previously with traditional classifiers in image

recognition. Examples of such methods include moment invariants (lain,

1989), Zemike moments (Khotanzad and Hong, 1990), Fourier descriptors

(Kulkami, 1994), Gabor filters (Daugman, 1988) and wavelet transforms

(Mallat, 1989).

3. Within the network:

It is possible to incorporate invariancy within the network itself. Current

models such as the Neocognitron (Fukushima et aI., 1983), which is

invariant to location, size and distortions of the image, are based on the

early vision feedforward pathways in the human brain The network can be

considered as performing feature extraction, but not in the usual sense as

described in (2) above. In this instance the pixel representation is used as

the input to the network and thus the problem with the size of the network

for large images remains.



23

Feature extraction, as discussed in (2) and (3) above, extracts only relevant information

from the image and thus simplifies the classification task.

3.1.2 Properties of feature extraction methods:

Ideally the feature extraction stage of image recognition should process an input image so

that irrelevant information such as size and location is removed and the dimension of the

input vector, which normally consists of the pixel values of the image, is reduced. The.
resultant feature vector then forms the input to the network. The size of the network is

reduced, the complexity introduced in order to respond to shape, scale and position is

removed and the network is dedicated to differentiating between the different output

classes. This is known as invariant image recognition. The properties to which the system

is invariant are determined by the nature of the application.

The most important criterion for the extracted features is that they must retain much of the

discriminatory information present in the original data. A good set of features can be used

to reconstruct the original image. If the reconstructed image is close enough to the original

image, then the feature vector provides a good representation. However, in practice some

feature extraction methods produce features which cannot be used to reconstruct the

original image e.g. invariant moments (Teh & Chin 1988). For these methods, if the

features of similar images yield numerically close values and features of different images

yield numerically different values then the features are acceptable.

Another important characteristic of feature sets is the handling of redundancy of

information. This occurs when more than one element in the feature vector encodes the

same characteristic of the image and results in the elements not being independent of each

other. This creates difficulties when trying to reconstruct the image from its features as

each element does not make a unique contribution to the original image. However,

redundancy increases robustness of the representation in the sense that if an element is

corrupted then the characteristics encoded by that element may still be available from

another element. Orthogonal feature extraction methods produce features whose elements

are totally independent of each other and thus exhibit no redundancy. These methods
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therefore result in easier reconstruction of the image as each element in the feature vector

makes a unique contribution to the image.

Feature extraction methods can be classified by the origin of the method, and in particular

whether the method was inspired by the visual structures in the brain or whether it has

origins in signal processing. Methods such as Gabor filters (Daugman, 1988) and the

Neocognitron (Fukushima et aI., 1983) have been inspired by the neural structures in early

mammalian vision. Others such as Zemike moments (Khotanzad and Hong, 1990), Fourier

descriptors (Kulkarni, 1994) and wavelet transforms (Mallat, 1989) have their origins in

signal processing.

An overview of feature extraction methods has been given. Specific feature extraction

methods such as moment invariants (lain, 1989), Zemike moments (Khotanzad and Hong,

1990), Fourier descriptors (Kulkarni, 1994), Gabor filters (Daugman, 1988), wavelet

transforms (Mallet, 1989) and the Neocognitron (Fukushima et aI., 1983) have been

identified, and these will now be described separately below.

3.2 Moment invariants

Let f(x, y) denote the brightness of a pixel at position (x, y) with x denoting the column

and y the row of the pixel in a digital image. Then the moments of a digital image f(x, y)

are given by:

mpq = LLxPyq!(x,y)
x y

(3.2.1)

where p and q refer to the order of the moments. If f(x, y) represents a binary image, i.e.

only take on values of 0 or 1, then moo will represent the total number of pixels that

contribute to the shape of the object. To make the object translation (position) invariant,

the origin is moved to the centroid of the object which is determined by m
lO

and mOl and

the moments
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m~q = LL(x - x)P(y - y)q f(x,y)
x y

where

- ~o d - 11101x=-an y=-.
moo moo

(3.2.2)

are introduced. Scale invariance can be obtained by standardizing the moments of equation

3.2.2 to give the central moments:

(3.2.3)

where y = (p+q)/2 + 1, which are invariant to both scale and translation. To achieve a

better understanding of central moments an analogy to the moments for rigid bodies is

illustrated in table 3.1 (Schalkoff, 1989).

Table 3.1 - Analogy ofmoments with rigid bodies (adaptedfrom Schalkoff, 1989).
Central Interpretation
moment

1120 horizontal variance about the centroid of the body

1102 vertical variance about the centroid of the body

Illl "diagonality"; indication of which quadrant, with respect to the
centroid, has the most "mass".

1112 "horizontal divergence"; compares the extent of the mass on the left
to extent of the mass on the right of the centroid

1l2l "vertical divergence" ;compares the extent of the mass at the bottom
to the mass at the top of the centroid.

The central moments (3.2.3) can be used to derive the seven moment invariants shown in

table 3.2. Moment invariants are used to extract rotational, scale and translation invariant

features from a digital image (Jain, 1989; Schalkoff, 1989). This method is used as an

intermediate feature extraction stage between the pixel representation and the neural

network in that the pixel representation f(x, y) is processed as described in equations 3.2.2

and 3.2.3 to give the seven moment invariants (~l" ~7)' shown in table 3.2, which are then

used as input to the neural network.
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Table 3.2. - Seven moment invariants derivedfrom central moments (Jain, 1989; Schalkoff,
1989).

4>1 = (1l2o + 1l02)

4>2 = (Ilzo - 1l0Z)2 + 411112

4>3 = (1l30 - 31l12)2 + (31l21 - 1l03)2

4>4 = (1l30 + 1l12)2 + (1l21 + 1l03)2

4>5 = (1l30 - 31l12) (1l30 + 1l12)' [(1l30 + 1l12)2 - 3 (1l21 + 1l03)2] +

(31l21 - 1l03) (1l21 + 1l03)' [3 (1l30 + Ild
2

- (1l21 + 1l03)2]

4>6 = (1l20 - 1l02)[ (1l30+ 1l12)2 - (1l21 + 1l03)2] + 41l11(1l30 + 1l12) (1l21 + 1l03)

4>7 = (31l21 - 1l03) (1l30+ 1l12)' [(1l30+ Ild
2

- 3(1l21 + 1l03)2]-

(1l30 - 31l12) (1l21 + 1l03)' [(31l30 + 1l12)2 - (1l21 + 1l03)2]

The advantage of using these moments for feature extraction is that their calculation is

straightforward in practice and that they are invariant under rotation, scale and translation.

Further the dimension of the input data is significantly reduced as only the seven features

in table 3.2 are used to represent the image. However there are some disadvantages to

using this method. Firstly, the moments are not strictly invariant as they fluctuate slightly

with variations in position, size and orientation of an image. A possible explanation for

this is round-off errors introduced during computation. Secondly, the seventh moment

undergoes a sign change when the image is reflected. A third problem is that the

transformation is not 1:1 in that is does not provide a representation from which the

original image can be reconstructed.

These moments have been used with a back propagation network for aircraft recognition

(Kulkarni 1994). The moments were shown to be invariant to rotational and translational

variations but did not respond well to scale changes. Reiss (1991) showed formally that in

fact these moments are invariant to scale and rotation but not to translational variations and

presented a set of moments that were invariant to scale, rotation and translation as well as

to changes in contrast or illumination.
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3.3 Zernike moments

In 1990, Khotanzad & Hong used a set of complex moments of an image as feature

extractors for invariant handwritten character recognition. The features are invariant to

scale, rotation and translation and are termed 'Zernike Moments'.

Zemike moments are based on an orthogonal set of complex polynomials defined over the

interior of the unit circle, x2 + y2 =1, and were introduced by Zemike in 1934. Let the set

of these polynomials be denoted by { Vnm(x,y)}. Then the form of these polynomials is:

Vnm(x,y) = Vnm(P, B)= Rnm(p)exp(imB),

where

n : positive integer or zero

m: positive and negative integers subject to constraints n-I m 1 even, 1 m 1 ~ n

p: length ofvector from origin to (x, y) pixel given by (x2+ y2) y,.

(e.g. a pixel centred at (0.5, 0.5) has p = (0.5 + 0.5yl2 = 0.707).

8: angle between vector and x axis given by 8 = tan'] (y/x).

i:H

~(p): radial polynomial defined as

n-m s n-2s

Rnm(p) = f (-1) [(n-s)!]p

s = 0 s!(n+1ml _ s)!(n-1ml _ s)!
2 2

Figure 3.3.1 shows p and 8 for a pixel at location (x, y).

The complex conjugate of Vnm(p' B) is defined as:

Vnm(P, B) *= Rnm(p)exp(i(-mB))

where * denotes the complex conjugate and ~"m(P) = ~(p).

(3.3.1)

(3.3.2)
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Figure 3.3.1 - e and p for a pixel (x, y).

These polynomials are orthogonal since they satisfy

* n
If [Vnm(x,y)]Vpq(x,y)dxdy =~1OnpOmq

x2+y2~1 n

with

Dab = 1 if a=b and Dab = 0 otherwise.

(3.3.3)

In words, this expression is 0 for all polynomials Vnm and Vpq except when n=p and m=q,

that is when Vnm and Vpq are the same polynomial, in which case it is n/(n+l). Elements

in orthogonal sets are independent of each other, i.e. a change in one element does not

necessarily result in a change in another element.

The complex Zernike moments, Anm, for a digital image f(x,y) are calculated as:



29

n+1" "Anm =-~ ~f(x,y)v"m *(p,B)
1r x y

(3.3.4)

where

n +1" " * ~ 2 2 -I Y=-~ ~f(x,y)v"m ( X +Y ,tan ),
1r x y X

n: denotes the order and is a positive integer or zero and is normally:::; 12.

m: denotes the repetition and takes values of positive and negative integers subject

to constraints n-I m Ieven, Im I:::; n

To compute the Zernike moments of an image, the centre of the image is taken as the

origin and pixel coordinates are mapped to the range of the unit circle x2+ y2 :::; 1. Suppose

the digital image is a 5 x 5 binary image. The image can be represented in the form of a

matrix indicating active pixels with a 1 and inactive pixels with 0 as illustrated in figure

3.3.2. The image is then mapped onto the unit circle as shown in figure 3.3.3. Only points

that are within the unit circle x2+ l :::; 1 are included, while points outside the unit circle,

denoted by * in figure 3.3.3, are not included in the calculation.

The magnitude of these complex moments I~ Ican be taken as rotation invariant features

of an image, but not as scale and translation invariant features. To achieve translation

invariancy, the image is moved to its centroid (x,y) , which is calculated as

_ mlO _ mal
x=-andy=-,

moo moo

where ~q is a regular moment as defined earlier in (3.2.1), to gIve a new Image
- -

f (x + x,Y + y) which is standardized with respect to translation.
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o 1 2 3 4

I

o

1

2

3

4

0 0 0 0 0

0 1 0 1 0

0 0 1 0 0

0 1 0 1 0

0 0 0 0 0

Figure 3.3.2 - Binary image represented as a matrix.

y

1
-1 -.5 0 .5 -1

1 * ,,*' 0 .* *
"

/
.5 :* 1 0 1 *

?1 1 I 0 0 0 1 0 0: :X

-.5 * 1 0 1 *
..

./

-1 *'. * 0 * /*
"

Figure 3.3.3 - Binary image mapped to the unit circle.
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Scale invariancy is achieved by setting the first moment l11oo, which is actually the number

of black pixels in the digital image, to a predetermined value Pby defining a factor

The image f (x ,Y) which is standardized with respect to scale can then be generated.
a a

Combining the above transformations, the image

g(x,y)= f(x+ x ,y+Y)
a a

can be defined which is standardized with respect to both scale and translation.

(3.3.5)

The Zernike moments defined in equation (3.3.4) are calculated for the standardized

images obtained from (3.3.5), and their magnitudes, denoted as I~ I can be used as

rotational invariant features of the image. The scale and translation standardization process

affects two of the Zernike features, IAoo I and IAll I which remain constant for any

standardized images at pin and 0 respectively. Therefore these moments are not utilized in

the classification task and only those of second order or higher, i.e. n~2, are used. Since the

Zernike moments are calculated for the standardized image, the magnitudes of the Zemike

moments are scale, translational, as well as rotational invariant features of the original

digital image f(x, y).

Example 1

To illustrate the use of Zernike moments as an invariant feature extraction method, five 64

x 64 binary images of the character "b" were standardized with respect to scale and

position with p set to 500. These characters are shown before and after standardization in

figure 3.3.4. The images were then rotated by 90°, 180° and 270° as shown in figure 3.3.5.

The magnitudes of 4 Zemike moments for the standardized images were calculated and are

shown in Table 3.3. They were found to be equal.
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(a)

1111111111
(b)

Figure 3.3.4 -Five instances ofthe character b (a) before and (b) after standardization.

11111111
(a)

DIIBD
(b)

Figure 3.3.5 - The letter b rotated through angles of900 , 1800 ,2700 .

Table 3.3. - The magnitudes of 4 Zernike moments for the rotated images in figure 3.3.5.

900 1800 2700 00

IA[2,0]1 207.935751 207.935751 207.935751 207.935751

IA[2,2]1 3.246915 3.246915 3.246915 3.246915

IA[3,1]1 52.198420 52.198420 52.198419 52.198419

IA[3,3]1 2.201566 2.201566 2.201566 2.201566
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Zemike moments have been used in conjunction with the multilayered perceptron for

handwritten character recognition (Khotanzad & Lu , 1991; Perantois , 1992). Khotanzad

& Lu used 32 x 24 binary images of handwritten numerals and a training set of 13 250

images were generated by selecting 1 325 characters of each numeral at random from a

database of 86 000 images. A test set of 3 300 characters was created by randomly

selecting 330 characters of each numeral from the remaining characters in the data base.

The input to the MLP was 47 Zemike features of order 2 to 12. The accuracy rate obtained

with ,8=150 and using 50 hidden nodes was 83.8%. This was compared to the accuracy

rates of conventional classification methods of 83.45% for nearest-neighbour and 58.31 %.

for minimum-mean-distance. Considering the large amount of variation and distortion the

results obtained are very good.

3.4 FOURIER DESCRIPTORS

Image processing methods that involve the direct manipulation of the pixel values from a

digital image are known as spatial domain methods. Another important domain in image

processing is the frequency domain in which the Fourier transform of an image is used to

represent it (Schalkoff, 1989; Lewis, 1990, Jahne, 1993).

3.4.1 The Fourier transform

Instead of storing brightness values at each position (x,y), the Fourier transform stores the

amplitudes of spatial frequencies. Spatial frequency is a measure of the brightness

variations in an image. Areas of an image that contain fine detail or texture exhibit high

spatial frequencies. An area which consists of smoothly changing brightness has little high

frequency component. Increasing the low frequency component of an image is equivalent

to blurring it and increasing the high frequency component of an image makes the image

appear sharper (Lewis, 1990).

The two dimensional discrete Fourier transform ofan mxn digital image f(x, y) is given by :
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m-I n-1
F(u,v) = _1 " L!(x,y)exp[-2m(ux + vy)]

mn LJ m n
x=o '

y=o

for u = 0,1,2, ... , m -1 and v = 0,1,2, ... , n - 1

(3.4.1)

u, v: spatial frequency variables in the frequency domain with u being the spatial

frequency component along the x axis, and v being the spatial component

along the y axis in the spatial domain.

x, y position variables in the spatial domain.

The Fourier representation of an image may be transformed back to a spatial representation

using the inverse discrete Fourier transform.·

m-1n-1
" " .ux vy!(x,y)= LJ LJ F(u,v)exp[2m(m+--,:z)]

u=o
v=o

!orx= 0,1,2, ... , m-1 andy= 0,1,2, ... , n-1

(3.4.2)

3.4.2 Invariant feature extraction

The Fourier representation has the following interesting characteristics:

1. The magnitude of the Fourier transform, IF(u, v) I, is not affected by translation or shift in

origin ofu and v and is known as the Fourier spectrum.

2. The Fourier distribution is symmetric in the (u, v) plane.

3. The Fourier distribution rotates with rotations of the input image.

4. Points closer to the origin represent lower spatial frequencies and points further away from

the origin represent higher spatial frequencies.

These characteristics can be used for invariant feature extraction (Kulkarni, 1994). Since the

distribution is symmetrical, only half of the (u, v) plane is needed to capture all the

information of the Fourier representation. Thus the (u, v) plane is split into angular and radial

bins as shown in figure 3.4.1.
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v

radial
bins

u

angular
bins

Figure 3.4.1 - Radial and angular bins in the frequency domain (Kulkarni, 1994).

The distance from the origin to a point in the frequency domain determines into which radial

or ringed shaped bin the point falls, and since this is a measure of spatial frequency or

coarseness of the image, the radial bins capture the coarseness or scale of the image.

However radial bins are insensitive to rotation of the input image as the Fourier

representation undergoes the same rotation. Suppose the Fourier transform of a digital

image produced the response (a) and (b) in the frequency domam indicated by the grey

areas in figure 3.4.1. Since the Fourier descriptor rotates with rotations in the input image,

the Fourier transform of the image rotated 45° in a counter-clockwise direction would then

produce the responses (c) and (d) shown as black areas in figure 3.4.1. Notice that the area

(c) falls within the same radial bin as (a) but the area (d) falls in a different angular bin

from (b). This illustrates how radial bins are insensitive to rotational changes.

On the other hand, wedge shaped angular bins capture orientation information about the

image as the angular bin in which a point falls will be determined by the orientation of the

image. Rotation of the image will cause the point to fall into a different angular bin.

However angular bins are insensitive to scale or coarseness of the image. If the coarseness of
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the image is increased uniformly, then the grey areas, (a) and (b), will move closer to the

origin, thus falling in the same angular bin but a different radial bin.

Radial and angular bins can be combined to extract rotational and scale invariant features

from an image, which together with the magnitude of the Fourier transform can be made to

be translational invariant.

3.5 GABOR FILTERS

Different patterns in images can be distinguished by their preferred direction or orientation in

the image or by their spatial frequencyl, that is, how fine (more detail) or how coarse (less

detail) the pattern is. The role which orientation and spatial frequency play in distinguishing

amongst these patterns, more commonly known as textures, is described below.

3.5.1 Orientation and spatial frequency of texture

Local orientation plays an important role in an image. This is illustrated in figure 3.5.1. The

number 4, is of the same colour as the background, has the same spatial frequency as the

background but is in a different orientation, which allows us to identify it from the

background. "Local" indicates a specific area in the image, in this example the area of the

'4', and not the whole image.

Figure 3.5.1 - Image illustrating importance oflocal orientation in images.

1 In a binary image (2 colours, black and white) the spatial frequency of a small area can be
thought of as how fast the pixels change from black to white in that area. Thus areas with
fine detail will have high spatial frequencies
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A texture can be characterised by its preferred direction (orientation) or spatial frequencies

(coarseness). The two textures in figure 3.5.1 have the same spatial frequency but different

orientations while the two textures in figure 3.5.2 have different spatial frequencies, but the

same orientation.

Texture can be used in the analysis of images in several ways, for example in the

segmentation of objects in images e.g. in figure 3.5.1 the '4', an object, can be separated or

segmented from the background, another object, using their textural differences, in the

classification of surface materials and in the computation of shape (Ghosh & Bovik, 1991).

111111

Figure 3.5.2 - Two textures with the same orientation, but differentfrequencies.

Currently there is no formal definition of texture, but intuitively texture descriptors provide

measures ofproperties such as coarseness, smoothness and regularity (Kulkarni, 1994; Ghosh

& Bovik, 1991). Different objects in an image generally differ in texture. If we are able to

distinguish between areas of uniform textures in an image it will be easier to identify objects

in an image. The process of identifying regions of uniform or consistent textures in an image

is known as texture segmentation.. Transitions in texture can either be sudden or gradual.

Sudden texture transitions, which usually occur because of orientation changes between

texture types as shown in figure 3.5.1, can be identified more easily in the spatial domain (the

common two dimensional pixel array representation) while gradual variations in texture,

which are normally caused by variations in spatial frequency, are more difficult to detect

spatially and are more suited to the spatial frequency domain. This is illustrated in figure
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3.5.3 which depicts two textures, with the central texture created by a sudden change in

spatial frequency. Notice how difficult it is to distinguish spatially between the two textures.

However there are instances where textures with different spatial frequency are detected

easily in the spatial domain e.g. figure 3.5.2, but generally, detection of variations in spatial

frequency are more suited to the frequency domain.

Figure 3.5.3 - Two textures with the same orientation but different frequencies, which can not

be distinguished easily in the spatial domain..

Since both the spatial and frequency domains offer advantages in texture segmentation, the

problem as to whether to represent the image in the spatial or spatial frequency domain arises.

The solution is to use a representation that incorporates both the spatial and spatial frequency

attributes of an image. Daugman showed that two dimensional Gabor filters provide a

conjoint representation of a two dimensional image in both the spatial and spatial frequency

domain (Daugman & Kammen, 1987), that is, each filter responds to a specific range of

orientations and frequencies2
• Gabor filters have been used extensively for texture

segmentation (Dunn et al. , 1994; Bovik et aI, 1990; Lisboa, 1992, ; Lu et al. , 1991;

Greenspan et al. 1991; Bisio et al, 1993; Ghosal & Mehrotra, 1993; Kulkarni, 1994; Ghosh

& Bovik, 1991).

2 frequency refers to spatial frequency .
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3.5.2 Biological motivation

The use of Gabor filters for two dimensional image representation was inspired by the way

images are represented in the mammalian primary visual cortex. Since both Gabor filters and

neural networks are biologically inspired, a combination of them would seem to be plausible.

Gabor filters have been shown to resemble receptive fields of simple cells in the mammalian

primary visual cortex (Daugman & Kammen, 1987). This is illustrated in figure 3.5.4 where

the receptive field profiles of simple cells in the visual cortex of a cat are compared with the

best fitting two dimensional Gabor filter. The top row of figure 3.5.4. shows the inhibitory

and excitatory effects that small spots of light on a 16x16 grid have on a simple cell. A high

peak signifies a high excitatory effect, while a low peak signifies a high inhibitory effect.

The Gabor filters shown in the middle row were obtained using equation 3.5.1 on page 40.

Simple cells are stimulated by a specific orientation of an edge or blob of light in their

receptive fields. The localised orientation selectivity and spatial frequency selectivity of

these cells can be simulated by a two dimensional Gabor function as illustrated in figure

3.5.5.

The Gabor function is localised3 in both the spatial domain (orientation) and the frequency

domain (frequency selectivity). In other words a Gabor filter responds to a limited range of

orientations in the spatial domain and a limited range of frequencies in the frequency domain,

as shown in figure 3.5.5, and thus constitutes a two dimensional bandpass filter (Daugman &

Kammen, 1987). Two dimensional bandpass filters can be used to decompose an image into

sub-images, each containing different ranges of orientations and frequencies, as accomplished

by the simple cells in the mammalian visual cortex.

3.5.3 Definition

Gabor functions consist of sinusoids with quadratic envelopes, parameterized by two

constants a and 13 together with expansion centers (xo,Yo) in space and (Uo,vo) in the

frequency domain.

3 A function is local if most of its area is concentrated in a compact region. An example of
a local function is the normal distribution.
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2D Receptive Field

~ . -' ~'" /' J , " •

2D Gabor Function . .~.. .

1If''1./ ':\ .~
--~..... -' :: .......' - .. :..':" -'

,

Difference
~.'l~"~f IV/iJ%i;.fr'"$4w;!
tl#f.~ ~m~

J.~'.t (IrFfJif:fJfY
$JJI~.K

Figure 3.5.4 - Comparison ofthe receptive field profile ofsimple cells in the cat visual

cortex to bestfitting two dimensional Gabor functions. The bottom row shows the residual

errors which are considered to be random (from Daugman & Kammen, 1987).

Figure 3.5.5 - An example ofa two dimensional Gabor function showing orientation

selectivity in the spatial domain (left) andfrequency selectivity in the frequency domain ,the

Fourier transform (right) from Daugman & Kammen, 1987.
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In the spatial domain the Gabor function is defined as:

G(x,y) = exp { -;r [(x-xO)2. a2 + (y-YO)2.p2 ) - 2m[uo. (x-xO)+vO· (Y-YO)) )

and in the frequency domain as :

F(u, v) = exp { -;r [(u -uo)2 / a2 + (v-vO)2 / p2) -2m[xo. (u-uO)+YO.(v-vO)) }.

(3.5.1)

(3.5.2)

It can be shown through the uncertainty principle (Daugman, 1988) that there is an inverse

relationship between the orientation ranges and frequency ranges to which each Gabor filter

responds. A Gabor filter that responds to a small orientation range (orientation bandwidth)

will respond to a large frequency range (frequency bandwidth). This means that the filter is

more sensitive to orientation than frequency. In other words it responds to a large range of

frequencies and cannot distinguish small changes in frequency but responds to a small range

of orientations and can thus distinguish small changes in orientation. Further discussion on

the uncertainty principle may be found in Wi1son & Granland (1984), and its applicability to

the two dimensional Gabor filters may be found in Maclennan (1991) and Navarro et al.

(1995).

Families of Gabor filters

A family of Gabor filters can be generated using the elementary Gabor function G(x,y) in

equation 3.5.1 as

Gpqmo(x,y) =T m.G(x' ,y')

where

where

x' = Tm.((x- p)cosB+(y-q)sinB)

y' = T m
.( -(x- p)sinB+(y-q)cosB),

(3.5.3)

p, q : the (x ,y) coordinates of a spatial expansion center.

m : integer 1abeling the tiers, in figure 3.5.5, radially starting with m= 0 at the
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outer ring of ellipses.

8 : orientation of the filter, angle ofthe line joining the origin and the center

of the ellipse in figure 3.5.6.

v.... ..'

........ ::::.....

....
..... :-

-' .

.. :

.......

Figure 3.5.6 - Log polar distribution of two dimensional Gabor filters (adaptedfrom

Lisboa 1992).

Figure 3.5.6 depicts the log polar distribution of these Gabor filters in the frequency domain.

The frequency distribution is symmetric about the origin and thus a single Gabor filter is

depicted by a pair of symmetric ellipses. For example, consider an ellipse in tier m=O. Then

the ellipse directly opposite it in the same tier (m=O) is its symmetric counterpart. These two

ellipses constitute a Gabor filter. Each pair of ellipses is centred at a specific distance from

the origin. This distance is the central frequency, Fa, of the Gabor filter, where Fa = (Uo +

vor1/2. The angle of the line joining the origin and the centre of an ellipse to the u-axis is the

orientation, 8, of the filter, where 8 = tan-le Vo /Uo). Each ellipse spans an angle, il8, which is

the orientation bandwidth of the filters while the length of the ellipse is the frequency

bandwidth, ilw, of the filter.

In figure 3.5.6, the shape of the ellipses are determined by the aspect ratio ar == a / {J, where

a and {J are the constants which appear in equation 3.5.1. The trade-off between the

orientation half bandwidth, .181/2, which is half the orientation bandwidth, il8, shown in
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figure 3.5.6, and the frequency bandwidth, L1w, is determined by the aspect ratio, ar, of the

filter and is defined as:

(l-L1w) 1 (1+L1w) = (ar. tan 8112J 1 ( 1+ ar2. tan2 81/2)112. (3.5.4)

3.5.4 Implementation of Gabor filters

A digital image f(x,y) can be approximated by h(x,y) which is a linear combination of Gabor

elementary functions, that is, a digital image can be split up into sub images, where each sub­

image contains a range oforientations and frequencies as determined by its Gabor filter. Thus

where

11

h(x,y) ="La;.G;CX,y) ,
;=1

h(x,y) : approximation for the digital image f(x,y)

Gi : the family ofn Gabor filters, GpqmB generated from (3.5.3)

ai : weightings of Gabor filters Gi .

(3.5.5)

The n elementary Gabor functions in (3.5.5) are said to form a basis for h and the coefficients

{ai} can be thought of as the weight of the orientations and frequencies of the ith Gabor filter

in the input image.

Since these Gabor elementary functions do not form an orthogonal set, the calculation of the

coefficients is difficult. Lisboa (1992) proposed an iterative method using least squares to

represent a digital image with a combination of elementary Gabor functions. If the original

image !(x,y) is not exactly recovered in the expansion (3.5.5) then an error can be defmed

between the original image f(x,y) and the calculated image h(x,y) as

1 2
2(!(X'y) - h(x,Y)) .

Defining the projection

(3.5.6)
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< !IGpqme >= LI(x,y)Gpqme(x,y) ,
x,y

(3.5.7)

then the algorithm for updating the expansion coefficients may be written in the form

l1a; =< (I - h)IG; >

=L(!(x,y) - h(x,y)).Gpqme(x,y)
xy

(3.5.8)

A similar approach was presented by Daugman (1990) and later modified by Ghosh and

Bovik (1991) for a three layered neural network which is used to obtain the expansion

coefficients, {~} in equation 3.5.5, for a two dimensional Gabor transform.

3.5.5 Examples

The following figures adapted from Bovik et al. (1990) illustrate the operation of Gabor

filters. Figure 3.5.7(a) shows an image of two different textures, of the same frequency but

different orientations. The responses of Gabor filters tuned to orientations of 42° and _43°

are shown in (c) and (d) respectively. The dark areas indicate a response while the light areas

indicate no response. However local orientation is not restricted to continuous lines. Figure

3.5.8(a) shows another image of two textures of the same frequency but different orientations.

The response of a Gabor filter tuned to an orientation of 45° is shown in (b) and (c) is the

result of segmentation using post-filtering (Bovik et al. 1990). The above two examples

illustrate the orientation selectivity ofthe Gabor filters. Figure 3.5.9(a) shows an image with

two different textures, of the same orientations but now with different frequencies. The

response of a Gabor filter tuned to a frequency of 80 and a bandwidth of 0.7 is shown in (b)

while (c) shows the response of a Gabor filter with a lower frequency, 40, but a larger

bandwidth ,1.3. It can be seen that the areas of different frequencies cannot be clearly

identified as a result of this larger bandwidth, that is, the filter is less sensitive to changes in

frequency. This illustrates the frequency selectivity of Gabor filters. The above examples

clearly show how Gabor filters can be used to segment textures according to their different

orientations and frequencies.
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(a)

(b (c)

Figure 3.5.7 - Segmentation ofdifferent orientations using two Gabor filter, (a) original

image; (b) amplitude ofGaborfilter (F, B, B) =(50, 0.7, 420); (c) amplitude ofGaborfilter

(F, B, B) =(50, 0.7, -430) adaptedfrom Bovik et al. (1990).

(a) (b)

(c)

Figure 3.5.8 - (a) original image; (b) amplitude ofGaborfilter (F, B, B) =(40,1, 450); (c)

postfiltered image (adaptedfrom Bovik et al. 1990).



(a)

(c)
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(b)

(d)

Figure 3.5.9. - (a) original image; (b) amplitude ofGabor filter (F, B,B) =(40,1, 890 ); (e)

amplitude ofGabor filter (F, B, B) =(40,1.3, 890); (d) segmentation (adaptedfrom Bovik et

al. 1990).

3.5.6 Characteristics

The Gabor filter family provides the optimum trade-off between resolution for orientation

and resolution for spatial frequency which is determined by the aspect ratio of the filter.

Biological neurons tend to favour orientation over spatial frequency by a factor of two.

Consequently the aspect ratio is usually set to 2: 1.

The problem of whether to characterize images by spatial templates or frequency

signatures is resolved as Gabor functions (3.5.1) allow intermediate representations, ranging

from pure pixel representations (spatial templates) at the one extreme when the constant ~~

00 in (3.5.1), to Fourier transformations (frequency signatures) when a ~ 0, on the other.

Furthermore the optimum representation in both the spatial and frequency domains is

achieved. The family of two dimensional Gabor filters have similar forms in the spatial
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(3.5.1) and the frequency (3.5.2) domains which allow simple transformations between

domains. A problem with Gabor filters is, that they are not orthogonal. This complicates

their computation and may result in redundancy of information in the representation.

However, this redundancy increases the robustness of the representation.

The above characteristics of Gabor filters are ideal for texture classification. The

simultaneous localisation in both domains is important, since it facilitates identification of

sudden spatial transitions between texture types in the spatial domain, which is important for

segmenting images based on texture and detection of gradual variations within a textured

region in the frequency domain, which is important for computing deformations arising from

surface defects. Furthermore the Gabor representation results in the reduction in the size of

the pixel representation of a digital image as, the coefficients of the Gabor filters ({aJ in

(3.5.5) ) can be used to represent the image.

Thus the method of Gabor filters can be used as a feature extraction method, which takes in

the pixel. representation of an image and produces a feature vector which can than be

processed by a neural network.

3.6 THE MULTIRESOLUTION WAVELET REPRESENTATION

Mallat (1989) introduced the idea of using wavelets for a multiresolution representation of

a digital image. This involves the extracting of the difference in information of an image at

different resolutions. The description given here is brief and intended to convey just the

concept behind the method. For further information see Mallat (1989) and Navarro et al.

(1995).

Wavelets like Gabor functions are responsive to both orientation and spatial frequency.

Wavelets are a family of functions that take the form:

rla,b) (x) = I a 1-112 '1/( (x-b) la ), (3.6.1)
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where

a: the dilation factor on the original function or mother wavelet 'V(x),

b : translation factor on the original function.

By varying the parameters a and b, the scale (frequency) and position (space) content of

the wavelet function respectively can be controlled.

The multiresolution approach

If a digital image consists of a 20 x 20 array of pixels, then the resolution of the image can

be reduced by one quarter by representing the image with a 10 x 10 array of pixels. By

reducing the number of pixels that represent an image, the resolution of the image and the

detail in the image is decreased. Mallat's (1989) multiresolution approach to image

representation involves the extraction of the difference in information from an image at

multiple resolutions. The image is first divided into large neighbourhoods (coarse or low

resolution) where global attributes are extracted. The resolution is then increased by a

power of 2 at each iteration to give fine resolution and regional attributes are extracted.

This is illustrated in figure 3.6.1 which shows an image (a) and its multiresolution

decomposition (b).

(a) (b)

Figure 3.6.1 - An image (a) and its multiresolution representation (b) (adaptedfrom

Mallat, 1989).

To represent a digital image f(x, y) at a particular resolution 2j as shown in figure 3.6.1b,

four terms, calculated using the wavelets defined in (3.6.1), are required:
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1. A:j!(x,y)

2. D~j!(x,y)

3. D~j!(x,y)

4. D~j!(x,y)

The letter j indicates the level of resolution e.g. resolutions of 1, ~ and Y4. correspond to

j=O, -1, -2 respectively. The first term (1) is the best approximation of the original image

f(x, y) at the resolution 2j
. Terms (2), (3) and (4) denote the differences between the image

at the previous resolution, 2j
+

1
, and the current resolution 2j where (2), (3) and (4)

correspond to different frequencies and orientation, that is, (2) responds to vertical edges,

(3) to horizontal edges and (4) to both vertical and horizontal edges. The absolute values of

the wavelet coefficients (2), (3) and (4) are shown in (b) at the top right, bottom left and

bottom right respectively. Note that the dark areas indicate a response and the lighter areas

no response. The top left of figure 3.6.lb shows (1) further decomposed at the next

resolution. Note the vertical edges, horizontal edges and both horizontal and vertical edges

detected in the top right the, bottom left and the bottom right of figure 3.6.1b respectively.

The log polar Gabor representation in section 3.5 have been referred to as Gabor-wavelets

(Daugman, 1988) because the equation used to generate them, equation (3.5.5), bears a

resemblance to the generation ofwavelets shown in equation (3.6.1).

It has also been suggested that wavelets resemble elements in biological visual systems

(Boubez, 1993). The building blocks at the lower levels of the visual system are the

receptor neurons, which react to stimuli within a relatively small neighbourhood of their

input space, called their receptive field. In many systems these receptors are connected in a

hierarchical structure to form increasingly complex receptive fields. Wavelets are a family

of functions which exhibit similar properties of local support and hierarchical structure.

Laine & Fan (1993) discussed wavelet representations, based on Mallat's (1989)

multiresolution approach, as feature extractors for texture classification. Feature sets

ranging from 17 (standard wavelets) to 341 (complete wavelet scheme) were used for the

representation of 128 x 128 digital images. Close to 100% accuracy was achieved using a

backpropagation network, thus justifying the use ofwavelets for texture segmentation.
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3.7 THE NEOCOGNITRON

The image recognition models that have been reviewed so far consist of two distinct stages,

the feature extraction stage e.g. Zemike moments, and the classification stage in which the

multilayered perceptron is used. The Neocognitron (Fukushima et al. 1983, Fukushima

1988) is a multilayered network, based on the biological visual system, that incorporates

the feature extraction process within the network

3.7.1 Structure

The Neocognitron is a three dimensional network containing a series of two dimensional

layers as illustrated in figure 3.7.1.

input layer (U~ layer 1 (Ut) output layer (Un)

... --....

Figure 3.7.1 - Three dimensional structure ofthe Neocognitron.

A two dimensional digital image forms the input layer and provides inputs to the next

layer, layer 1 which in turn provides inputs to layer 2 and so on until the output layer is

reached.

Layers are denoted by the letter D with an index denoting the position of the layer. Thus Do

is the input layer, D I denotes layer 1 and so on. Figure 3.7.2. depicts a single layer in the

Neocognitron. Each layer consists of two sub layers, each containing two dimensional

arrays of cells called planes, the first containing simple cell planes which consist of simple

cells and the second, complex cell planes consisting of complex cells. The cells are termed

simple and complex after the simple and complex cells in biological vision and have two

states, active and inactive. For the sake of simplicity the letters Sand C are used to denote
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simple cells and complex cells respectively and thus Usl and Ucl will refer to the simple and

complex cell planes of layer 1 respectively.

complex cells of
previous layer -.

simple cell planes (Us)

.---------

o
o

complex cell planes (Uc>

,---------

o
o simple cells 0

next layer

••
•

o
••
•

o~ , cell plane

Figure 3.7.2 - A layer in the Neocognitron containing sub layers of simple cell planes and

complex cell planes.

3.7.2 Operation

Figure 3.7.3 shows the structure of a Neocognitron which is used for the classification of

19x19 images of handwritten characters and which is used here to~iscuss the operation of

the Neocognitron.

Input (UJ to simple plane (Usl}

Uo is a 19 x 19 digital image which forms the input to Us\' Us\ consists of 12 planes, where

each plane is a 19x19 array of simple cells. The cells in each plane receive inputs from a

3x3 neighbourhood of pixels in Uo' The position of this neighbourhood, called the

receptive field of the cell, is determined by the position of the cell in its plane, in that the

coordinates of the cell in the plane are used as the centre of its 3x3 input neighbourhood.

These 19x19 neighbourhoods actually cover a 21x2l region. However since Uo is only a

19x19 array of cells, the neighbourhoods at the edges ofUo cover an extra imaginary layer

of cells.
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191.19

19x19x12

7x7x22

\11.111.38

\1.10
7..71.30 31.31.16

7x7x32

Figure 3. 7.3. - Structure ofa Neocognitron for classification ofhandwritten numerals

(Fukushima et al., 1983).

This means that adjacent cells in a plane receive inputs from neighbourhoods in Uo that are

centered one pixel apart. Simple cells at the same coordinates but in different planes,

receive inputs from the same neighbourhood of cells in UO•

The simple cells in Us] are responsive to specific features in the input image determined by

the plane to which they belong. These feature take the form of 3x3 masks. Suppose that

the cells in the first plane in Usl respond to the horizontal edge shown in figure 3.7.4.

Then a cell in this plane fues only if this pattern occurs in its corresponding 3 x 3

neighbourhood in Uo.

Figure 3. 7.4 - Example ofa 3x3 feature or mask to which cells in a simple plane respond.
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Connections converging to simple cells are modifiable and are strengthened during

learning. Each plane of simple cells responds to a particular feature which is determined

during learning. In other words the simple cells in the same plane respond to the same

feature but at slightly different positions.

p
plane

llxll
complex

plane

-.Ji
~- ~-

19x19
sim le

Figure 3.7.5 - Input neighbourhoods ofcomplex cells.

Simple plane (Us)) to complex plane (Uc))

Simple and complex planes occur in pairs i.e. each complex plane has a corresponding

simple plane with the cells in a complex plane only receiving inputs from the cells that

plane. A 5x5 neighbourhood of simple cells in the corresponding plane in Us) forms the

input for each complex cell in Ue)' These input neighbourhoods in US) are shown in figure

3.7.5. A complex cell fires if any of the cells in its input neighbourhood are active. Thus if

simple cell S in Usl ' which provides input to complex cell C in Uel , responds to a specific

feature e.g. the edge in figure 3.7.4, and fires, then complex cell will also fire. If this edge

is shifted a little in position in Uo, then another simple cell R in the same plane in Us) and

near S will fire. If S falls within the input neighbourhood of C, then C will fire. In this way

complex cells respond to the same features as its simple cells in the corresponding plane,

but are over a wider area in the input image, Uo.
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Complex (Del) to simple (Ds2)

As shown in figure 3.7.3 cells in Del form the input to cells in Ds2 ' The determining of the

input neighbourhoods is exactly as described above for the simple cells in DsI ' the only

difference being that cells in Ds2 received inputs from all 12 planes in Del. For example, a

cell at position (i, j) in the first plane in Ds2 will receive inputs from twelve 3x3

neighbourhoods of complex cells centered at (i, j) in each of the 12 planes in Del. As

previously, each plane of simple cells in Ds2 detect the same feature, at slightly different

positions in the complex planes of Del. Furthermore, since the cells in Ds2 receive inputs

from all the planes in the Del' they are have the ability to detect combinations of the

features which are detected in Del over a larger area in DO.

This trend continues through the network with cells in higher layers responding to more

complex features over larger neighbourhoods in DO. At the output layer, De4 in figure 3.7.3

each plane consists of a single cell which responds to the entire input image, that is, the

eventual neighbourhood in the input image to which the cell responds, is the entire image.

Figure 3.7.6 depicts a simple network which captures the basic operation of the

Neocognitron. The network consists of the input layer and layer 1 through to layer n, the

output layer. For the sake of simplicity the layers are not divided into complex and simple

sub layers. Each cell in layer 1 corresponds to a 3 x 3 neighbourhood in the input image

centered at the same coordinates. If the pattern shown on the left of layer 1 is detected in

this neighbourhood then the cell fires, i.e. has a value of 1 (grey); otherwise it is 0 (white).

Cell a in the top plane of layer 1 in figure 3.7.3 is activated because a horizontal edge,

denoted by pI, was detected in its corresponding neighbourhood, denoted by nI, in the

input image.

The cells in the middle plane respond to a corner pattern. Thus the corner pattern of the

seven in the input image causes the cell b at the corresponding position in the middle plane

to respond. Similarly the diagonal edge patterns in the input image cause the

corresponding cells c and d in the third plane to respond. Thus active cells in layer 1

indicate the presence of a specific feature at the corresponding position in the input image.

The input to cells in layer 2 are neighbourhoods of cells in the first layer. However the
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cells in layer 2 receive inputs from all the planes in the fIrst layer. Thus a cell in layer 2

will receive inputs from three 3 x 3 neighbourhood from 3 planes in layer 1. Thus the

planes in layer 2 can respond to more complex features, which are a combination of the

features found in the layer 1, e.g. a combination of an horizontal edge and a corner.

L ~

features

input image layer I layer 2 layern

Figure 3.7. 6. - Illustration ofthe operation ofthe Neocognitron.

Each cell in layer 2 receives input from a 3 x 3 neighbourhood of cells in layer 1 which in

turn received input from a 3 x 3 neighbourhood in the input image. Since 3 horizontally

adjacent 3x3 neighbourhoods cover a 3x6 area in the input image, then 3x3, 3x3

neighbourhoods, will cover a 6x6 area in the input image. Thus cells in layer 2 are actually

responsive to an area twice the area of the receptive fIeld for layerl.

The features detected in layer 2 may be a long horizontal edge pattern, represented by two

active cells next to each other in layer 1, e.g. cell a and the cell on the right of it, a corner

pattern which is a single active cell, shown by cell b in the middle plane of layer 1 and a

longer diagonal edge pattern e.g. cell c and the cell diagonal to it in the bottom plane of

layer 1. The output layer can combine the long horizontal edge pattern, the corner pattern

and the extended diagonal pattern detected in previous layers to detect a "7" .
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3.7.3 Implementation

The implementation of a simple cell will now be discussed. A simple cell receives two

inputs, an excitatory input, E, which is the weighted sum of the outputs of the

corresponding complex cells from the previous layer, and a further inhibitory input, I, from

an inhibitory cell which receives input from the same complex cells in the previous layer as

shown in figure 3.7.7.

complex
cell i

Layer 1-1

g.bi

. "". ""'. ", .

Layer 1

simple
cell

Figure 3. 7. 7 - The inhibitory and excitatory inputs ofa simple cell.

The excitatory input is defined as:

(3.7.1 )

where ai is the weight of the input connection to the ith complex cell and Uj is the output

of the complex cell. The inhibitory input is defined as:

1= bv, (3.7.2)

where b is the weight of the connection from the inhibitory cell and v is the output of the

inhibitory cell defined as:
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with bi being the weight of the connection between the ith complex cell and the inhibitory

cell. The weights bi are fixed so that they are strongest at the center of the connection

region and decrease outwards. Also the sum ofthese weights must be one, that is, I bi=1.

The overall input, net, to the cell is given by:

1+E
net =---1

1+1

A threshold linear function is then applied to this input to provide the output ofthe cell:

outs = { net

o

net >0

net~ 0

The complex cell fires if at least one cell in its input neighbourhood is active.

3.7.4 Training

The features detected by simple cells in each level are determined during training. The

simple cells have variable input connections which are reinforced during training according

to the feature that they are required to detect. Learning can be performed either with a

teacher, that is supervised learning (Fukushima, 1988) where the features to be detected are

provided by the teacher during training, or without a teacher, that is unsupervised learning

(Wasserman, 1989) where the network self organizes to repetitions of a specific pattern

and features are determined automatically by the network during training.

Training involves the changing of the excitatory weights ai and the inhibitory weight b for

each simple cell. The weights, bi , of the input connections to the inhibitory cell, which

are shown by the broken lines in figure 3.7.7, remain fixed.
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Unsupervised training

Unsupervised training involves presenting an input pattern to the network and adjusting the

weights of the inputs to the simple cells layer by layer, starting with those in Usl ' where the

weights of the input connections from cells in Uo are adjusted. The weight of the

connection between a simple cell S and a complex cell C from the previous layer, is

increased when C is responding, and S is responding more strongly than its immediate

neighbours. S then serves as a representative for the other cells in its plane and their

weights are adjusted in a similar way, thus ensuring that all cell in that plane detect the

same feature but at different positions. Initially simple cells near each other might have

similar outputs, but slight variations will cause one cell to fire more strongly than the

others. The excitatory weights of that cell are strengthened while the inhibitory weights of

the other cells are increased. In this way the weights of the inputs to simple cells are

adjusted so that the cells respond only to patterns which are experienced frequently during

training. Thus familiar patterns produce large outputs, while unfamiliar patterns result in

smaller outputs.

Supervised training

Supervised learning is tedious in that it requires the teacher to supply the features for the

simple planes in each layer of the network. The weights of the inputs to the simple cells are

modified layer by layer starting with layer 1 through to the output layer. The simple planes

in each layer are trained one at a time and the next layer is only trained if the previous layer

is responding correctly. A representative cell, known as the seed cell, is chosen from the

first plane in layer 1. The input pattern is then presented to the input image. The weights

of the seed cell are modified repeatedly until it responds to the feature corresponding to the

first plane. Since the other cells in the plane must respond to the same feature but at

different positions, the weights of the inputs to the seed cell are used to determine the

weights of their inputs. The second plane is trained similarly for a different feature. Once

all the planes in the first layer are responding correctly to their corresponding features, the

planes in the second layer are trained. This procedure is followed for each layer through to

the output layer.
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Unsupervised learning involves self organizing of the network and bears resemblance to

biological visual systems as it does not require a teacher for learning. The main advantage

of this method is that the decision of which features are to be detected by the simple planes,

in each layer, is avoided. Supervised learning can be viewed more from a pattern

recognition perspective, with the network trained for a specific application e.g. handwritten

character recognition. Since the features, e.g. edges in layer 1, are supplied by the teacher,

the network can be made more tolerant to distortions in the input pattern (Fukushima et aI.,

1983, Fukushima, 1988). However this can be tedious and time consuming. Fukushima &

Wake (1992) have suggested an improved learning algorithm for the Neocognitron which

combines both supervised and unsupervised learning. In this method the network

automatically determines the features for each simple plane as carried out in unsupervised

learning, but providing the target outputs for each training pattern as carried out in

supervised learning. This method avoids the time consumingprocess of providing features

for each plane, while still increases the network's tolerance to distortions of the input

patterns.

3.7.5 Biological motivation

Each layer in the Neocognitron contains simple cells and complex cells which correspond

to simple or lower-order hypercomplex cells, and complex or higher order hypercomplex

cells in the biological visual system respectively. In the visual cortex of the brain, neurons

respond selectively to local features of a visual pattern, such as lines and edges in a

particular orientation. In the area higher than the cortex, cells exist that respond selectively

to certain figures like circles, triangles, squares, or even human faces (Fukushima, 1988).

The Neocognitron also has hierarchical structure as in biological visual systems since cells

in higher stages are responsive to more complicated features, have a larger receptive field

and are insensitive to shifts in position of the input patterns while cells in the lower stages

are responsive to simple features and have smaller receptive fields.
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3.8 SUMMARY

Seven feature extraction methods, VIZ. moment invariants, Zemike moments, Fourier

descriptors, Gabor filters, wavelets and the Neocognitron have been described and table 3.4

summarizes the properties of these methods.

Moment invariants, Zemike moments Fourier descriptors and the Neocognitron are

suitable for two dimensional shape recognition. The method of moment invariants is easier

to implement than Fourier descriptors and Zemike moments as the former involves the

calculation of the Fourier transform while the latter requires calculations using complex

polynomials. The Neocognitron requires the largest amount of computations.

Gabor filters and wavelets are suitable for texture classification. However the computation

of the Gabor filters of an image is difficult compared to wavelets which can be calculated

using the multiresolution approach.

In the next chapter an image recognition application, that of handwritten character

recognition, is used to illustrate the practical role of feature extraction.



Table 3.4 - Summary offeature extraction methods.

Methods Origin/ Calculation Applications Objectives of features Dimension of
Implementation feature set

Moment => image processing simple to calculate 2-D shape invariant to: seven moments
invariants => separate stage recognition => scale

=> orientation
=> position

Zernike => image processing calculations involve 2-D shape invariant to: coefficients of Zenike
moments => separate stage complex numbers recognition => scale moments

=> orientation usually 40 or 47
=>position

Fourier => image processing Fourier transform is 2-D shape invariant to: radial and rotational bins
descriptors => separate stage needed, complex recognition => scale in Fourier distribution

numbers involved => orientation
=>position

Gabor filters => biologically => very complicated texture decomposes textured areas in coefficients of Gabor
inspired => difficult to classification image, simultaneously into filters

=> separate stage calculate different frequency and 72 for ~8=30° and
orientation ranges frequency bandwidth

increasing at 1.5 octaves
Wavelets => origins in => easier to calculate texture decomposes textured areas in four values at each

biological vision as than Gabor filters classification image, simultaneously into resolution
well as in image different frequency and
processmg orientation ranges, but not as

=> separate stage efficiently as Gabor filters

Neocognitron => biologically => complicated 2-D shape invariant to: number of features
inspired structure recognition => scale correspond to the number

=> within the network =>massive => position of simple planes in each
computations => distortions layer

0\-
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4. IMPLEMENTATION

In the prevIOUS chapter, different feature extraction methods were described. These

methods can be categorized according to the applications in image processing for which

they are suited, namely, shape recognition and texture recognition. The application

considered in this thesis is handwritten character recognition, which falls under the area of

two dimensional shape recognition. The feature extraction methods in table 3.4 which are

suitable for two dimensional shape recognition are Moment invariants, Zemike moments,

Fourier descriptors and the Neocognitron. Zemike moments have been used for

handwritten character recognition (Khotanzad and Lu, 1991; Perantois , 1992) and are less

sensitive to noise than moment invariants (Teh & Chin 1988, Khotanzad and Hong 1990).

The Neocognitron was originally designed to handle the distortions and variations in size

and positions ofhandwritten characters (Fukushima et aI., 1983).

Zemike moments and the Neocognitron were implemented in an handwritten character

recognition system and compared to a handwritten character recognition system without

any feature extraction. Zemike moments form the basis for a feature extraction method

implemented as a separate stage in the system while the Neocognitron combines the feature

extraction stage with a neural network classifier.

Figure 4.1. shows the overall structure of an handwritten character recognition system.

digitized
form

segmentation
sub system isolated

character

8
normalized

image

isolated character
recognition sub­

system

ASCII
text

figure 4.1. - The components ofa handwriting recognition system
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The input to the system is a form. A form can be considered as a page with marked areas

within which a person is allowed to write some text. A simple example is an A4 page with

a centered rectangle within which the text can be written. A digitized form is the computer

version of the form which can be stored electronically by the system. The physical form is

usually fed into a device known as a digital scanner, which then produces the electronic

equivalent, that is, a digitized form. The latter form is fed into the segmentation sub­

system which analyzes the writing and splits up words into images of isolated characters to

form the input to the isolated character recognition sub system. This system processes

these images, decides which character is depicted in each image, and generates the

appropriate ASCII characters as the system output. The recognition sub-system can be

broken down further into three components, Cl) a preprocessing stage in which the image is

normalized with respect to size e.g. 32 x 32 pixel images are scaled down to 19 x 19 pixels,

(2) the feature extraction stage in which important attributes or features are extracted from

the image and (3) the classification stage in which the feature vector is used to categorize

the image into one of the output classes, '0',' 1', '2', ..., '9'. The overall output of the

system is a file containing ASCII text of the handwriting appearing on the original form.

Feature extraction serves two purposes, that of reducing the size of the input vector and

that of making the system invariant to certain properties which are specific to each

application.

Three factors can cause variations in handwritten characters. These are:

1. The size of the writing.

2. The position of the character in the image. It is highly improbable that all characters

have been started at exactly the same position in the specified area on the form. The

scanning and segmentation process may also result in variations in the position of the

characters in the image.

3. The orientation of the characters. Variations occur in the orientation of the characters

written by different writers, e.g. one writer may write with a slant to the right and

another to the left. Furthermore the characters are acquired using a digital scanner so

that when the scanning process is carried out the pages will not be at exactly the same
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position on the scanner each time and a slight slant of the page affects the orientation of

the characters .

For example the digit '7' must still be classified as a seven even if:

• the '7' covers the whole image or only a small portion of the image,

• the '7' occurs at the top of the image or at the bottom,

• the '7' is slanted either to the right or to the left.

Invariancy in the system can be accomplished in three ways. The first involves the data

which is presented to tp.e network. In particular all instances, involving orientation, size

and translation, of a handwritten character can be used to train the network, thus allowing

the network to be invariant to these properties. This method is not practically feasible as

the training set can become extremely large. The second way involves using a feature

extraction method to extract important features from the data, which means that the data

will undergo some processing before reaching the network. This processing strips the data

of parameters such as size, scale and orientation before it reaches the network. The third

way to incorporate invariancy within the system is to incorporate it within the network

architecture, that is to allow the network to extract appropriate features from the data.

Two methods of implementing invariancy are illustrated in this thesis, and these are

compared to a system without invariancy in the following experimental applications:

Experiment I: system with no invariancy

The pixel values of digital images of handwritten digits are used to train and test a

multilayered perceptron. This experiment illustrates image recognition without any

distinct feature extraction stage.

Experiment II: separate feature extraction stage

The Zernike moments of the digital images are calculated and used to train and test

a multilayered perceptron. This experiment illustrates the use of a distinct feature

extraction stage.
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Experiment Ill: invariancy within network architecture

The pixel values of the digital images are used to test and train the Neocognitron.

This experiment illustrates the incorporation of the feature extraction process within

the network architecture.

These applications are described in detail below. However it will be useful to first

examine the general software engineering requirements of each of the applications to be

developed (Sommerville, 1989).

4.1 GENERAL REQUIREMENTS DEFINITION

CHARACTER RECOGNITION SYSTEM

FOR A

4.1.1 Functional requirements

The system is required to perform the functions of the isolated character recognition

subsystem depicted in figure 4.1. The input to the system is a digitized image of an isolated

numeric handwritten character, that is ['0', .. , '9']. The image must be a binary image, that

is the image must only contain two colours, black and white. The output of the system

must be the corresponding ASCII representation of the character. A further requirement is

to be able to evaluate the efficiency of the system.

4.1.2 Database requirements

A training set of data is required to train the system. This must consist of a database of

handwritten digits from different writers. A test set is also required to evaluate the

performance of the system. The test set must consist mainly of characters from writers

who have not contributed to the training set.

4.1.3 Non-functional requirements

The non-functional requirement is generally the set of constraints imposed on a proposed

system (Sommerville, 1989). In the present case the system is intended for research

purposes and not for continuous use. As a result no constraints are placed on the speed,

efficiency and effectiveness of the software. Since the emphasis of the research is on
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feature extraction rather than neural networks existing neural network software is used. In

this respect software for the multilayered perceptron and the Neocognitron need to be

evaluated.

4.2 DATABASE

A sample database, the jl3 database, was obtained from the National Institute of

Technology and Standards (NIST) in the United States of America. This database was

used for the training and testing of the systems.

The jl3 database consists of 3,471 isolated handwritten digits from 49 different writers.

The images of the characters have been spatially normalized to be 32 X 32 pixels and are

arranged according to the 49 different writers. The files are in the form of IHEAD raster

images and C source code was included with the database to manipulate these images.

Further code was written in c++ to convert these images into text format. Figure 4.2.1

shows an example of an image in text format with the characters ,*, and'.' signifying

active and inactive pixels respectively.
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.................. xxx .

................ .xxxx .

............... .xxxx .

........ xxxxxxxx .

............ .xxxxxxxxxxx .

............ .xxxxxxxxxxxx .
· xxxxxxxxxxxxxx .
.......... .xxxxx .. xxxxxxxxx .
........ .xxxxxx xxxxxxxxxx .
........ .xxxxx xxxxxxxxxx .
.. .xxxx xxxxxxx .
...... .. xxxxx xxxxx ..
· xxxxx xxxx ..
...... .xxxxx xxxx ..
..... .xxxxx xxxx ..
· xxxxxx xxxx ..
· xxxxxx xxxx ..
.... xxxxx xxxxx ..
... xxxxx xxxxx ..
.. .xxxxx xxxxx .
.. xxxxxx xxxxx .
.. xxxxx xxxxx .
· .xxxxx xxxx .
· .xxxxx xxxxx .
· .xxxxx xxxxxxx .
· .xxxxx xxxxxxx .
.. xxxxxx xxxxxxxx .
... xxxxxx xxxxxxxxxxx .
.. , .xxxxxxxxxxxxxxxxx .
.... .xxxxxxxxxxxxx .
· xxxxxxxxxx .
............ . x .

Figure 4.2.1 - An example ofan handwritten digit from the fl3 database in 32 x 32 text

format.

4.3 EXPERIMENT 1: THE MULTILAYERED PERCEPTRON

The multilayered perceptron (MLP) is a three layered neural network architecture which

can be trained using the backpropagation algorithm. In this experiment the MLP was

implemented to recognize handwritten digits and the overall structure of the system is

shown in figure 4.3.1.
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.11--__C_la_S_S_ifi_lc_a_t_io_n__~

ASCII
character

Figure 4.3.1 - Experiment 1 - handwritten digit recognition with no feature extraction.

Several software packages were evaluated to implement the MLP and a selection of these

are described in the next section.

4.3.1 Software

Selection

Two commercially available packages, BrainMaker 2.5 and NeuralWorks Explorer, and

several public domain packages were evaluated. The software package BrainMaker 2.5

was selected for implementing the multilayered perceptron in this experiment.

BrainMaker was chosen over the other packages because:

1. BrainMaker is a commercial package and thus enjoys the usual advantages over

public domain packages in that it has extensive but simple documentation in the

form of manuals, it is less prone to crashes and to bugs, and it has been

extensively tested.

2. BrainMaker was found to be easier to learn and use then the other commercial

package examined, NeuralWorks Explorer. The latter in fact caters for other

network architectures besides the multilayered perceptron.

3. NeuralWorks Explorer has a limit of 150 on the number of neurons in the

network while BrainMaker can accommodate networks of more than 1500

neurons.
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BrainMaker 2.5 - The multilayered perceptron

BrainMaker 2.5 is a commercially available software package developed by California

Scientific Software in 1992 and can be used for designing, building, training, testing and

running neural networks. The network structure used by BrainMaker 2.5 is exclusively

that of the multilayered perceptron network architecture described in Chapter 2.

BrainMaker has the following limitations on the size of the network:

1. The maximum number ofneurons in any layer is 512

2. The maximum number of layers allowed in the network is 8.

The limitation on the number of layers has no effect on the experiments as the multilayered

perceptron comprising of only three layers, the input layer, the hidden layer and the output

layer is used here. However the limitation on the number of neurons in a layer does pose

some problems. In particular, the number of neurons in the input layer is limited to 512. If

the pixel values of digital images are used as input to the network then the largest image

that can be handled by BrainMaker is a 22 x 22 pixel image, resulting in an input vector of

size 484 which falls below the 512 limit. As a result the 32x32 images in thefl3 database

were normalized to 19x19 pixels. The choice of normalizing to 19x19 pixels resulted also

from the need for consistency in the three experiments especially experiment Ill, the

neocognitron, where 19x19 images are normally used.

4.3.2 Normalization

A program was written in C++ (appendix I) to normalize the 32x32 images in the fl3

database to 19x19 pixels. Firstly the image was normalized to 16 x 16 pixels using the

simple averaging technique summarized in equation 4.1 (Schalkoff, 1989).

i,j = 0,1,2, .. ,18. (4.1)

In particular, the image was divided into 2 x 2 windows to give 16 x 16 windows which

completely cover the image. Each pixel in the new image corresponded to a 2 x 2 window
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in the original image with brightness the average of the brightness of the 4 pixels in its

corresponding 2 x 2 window.

To convert the image from 16 x 16 pixels to 19 x 19 pixels, 3 rows and 3 columns of

inactive pixels were added to the image as follows: 1 row at the top, 2 rows at the bottom,

1 column at the left and 2 columns at the right. Figure 4.3.2 depicts the image shown in

figure 4.2.1 normalized to 19 x 19 pixels.

.......... .xx .

........ .xxxx .

....... .xxxxxx .

....... .xxxxxxx .
· ..... xxx .. xxxxx .
.. . .. .xxx xxxx ..
..... .xx xx ..
· xxx xx ..
... .xxx xx ..
· .. xxx xxx ..
· .. xxx xxx ..
.. .xxx xxx .
.. .xxx xxxx .
· .. xxx .. xxxxxx .
... .xxxxxxxx .
.... .xxxxx .

Figure 4.3.2 - 19 x 19 normalized image of the digit '0' in figure 4.2.1.

The overall structure of the normalization process is summarized in figure 4.3.3.

Figure 4.3.3 - The normalization process used to scale down the 32x32 pixel images from

the jl3 database to 19x19 pixels.
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The isolated characters provided in the fl3 database were obtained by segmenting them

from words and in some cases the segmentation was not completely successful. As a result

parts of other characters occur in certain of the images. This is illustrated in figure 4.3.4

which shows a small selection of images from the fl3 database. Notice also the extent of

the distortions of some of the characters.

4.3.3 Partitioning of the database

Data is required for both the training and testing of neural network architectures, and thus

the data must be partitioned into a training set and a test set. There are three ways in which

this can be done:

1. Split the data so that for each character in the test set, there exists characters in the

training set from the same writer. Thus at least one set of characters from all 49 writers

are in the training set. In this case, the classification performed would be writer

dependent, as the test set will contain writing styles on which the network has been

previously trained. The accuracy of recognition would be expected to be high.

2. Split the data according to the writers, e.g. the characters from 40 writers in the training

set and the characters from the remaining 9 writers in the test set. The classification

performed here would be writer independent, that is, the writing styles on which the

network is being tested have not been processed by the network. This would require the

network to be less sensitive to slight distortions and slight variations in the orientation

of the characters.

3. Split the data so that the test set contains characters from both writers who have

contributed to the training set, as well as characters from writers who have not

contributed to the training set, e.g. 41 writers used for the training set, 7 writers used for

the test set and the last writer will contribute to both the sets.

In this study method 3 was selected.
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Figure 4.3.4 - 8 normalized 19 x 19 imagesfrom thejl3 database. Notice the

segmentation error in the first image and the high degree ofdistortion evident in the other

images.
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4.3.4 Training and testing the MLP

The pixel values of the digital image formed the input to the network. Thus the input layer

contained 361 neurons corresponding to the 19 x 19 pixels in the digital image. Since the

images are binary images, that is, the pixels were either ,*, (active) or '.' (inactive), each

neuron in the input layer received either 0 ('.') or 1 ('*') from their corresponding pixel in

the input image. The output layer contained 10 neurons corresponding to the digits '0' .. '9'.

On presentation of an input image, a single neuron in the output layer is required to output

a ai, indicating the digit which is depicted in the input image. However in practice the

output neurons do not output either a 0 or a 1. Usually all the neurons have values above 0

and below 1 and the neuron with the highest value indicates the output class.

Data set I

Using method 3 from section 4.3.3, the characters of the 49 writers in the jl3 database

were allocated to a training and a test set as follows:

• 41 writers contributed characters to the training set,

• 7 writers contributed characters to the test set,

• 1 writer one contributed characters to both the training and the test sets.

The above training and test set was labeled as data set I.

The size of the MLP used for data set I was :

• 361 neurons in the input layer corresponding to the 361 pixels.

• 80 neurons in the hidden layer.

• 10 neurons in the output layer corresponding to the 10 output classes '0' .. '9'.

The training set consisted of 2445 images of handwritten characters. The training tolerance

was set to 0.1. This means that if the correct neuron outputs a value of more than 0.9 then

the image is considered to be classified correctly. The training rate or learning coefficient,

l_coeff, was set to 1. The network required 33 iterations to learn these images. The number

of images that were correctly and incorrectly classified for each iteration is shown in table

4.1 and were used to plot the training curve of the network which is shown in figure 4.3.5.

Notice the initial steepness of the learning curve which flattens out after the 10th run. In

fact almost 90% of the images were learnt by the 10th run and only 300 images were learnt
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over the last 20 runs. These were probably images that were inconsistent as a result of

distortions or noise and were therefore difficult to learn. For this experiment training ended

when all the images in the training set were classified correctly.

Table 4.1 - Number offacts learnt at each iteration during training ofthe MLP on the fl3

data set.

Run TotFacts Good Bad % good Tolerance hh:mm:ss

1 2445 703 1742 28.75% 0.1 00:01 :52

2 2445 1462 983 59.80% 0.1 00:03:04

3 2445 1692 753 69.20% 0.1 00:04:07

4 2445 1817 628 74.31% 0.1 00:05:06

5 2445 1897 548 77.59% 0.1 00:06:02

6 2445 1967 478 80.45% 0.1 00:06:55

7 2445 2067 378 84.54% 0.1 00:07:45

8 2445 2133 312 87.24% 0.1 00:08:33

9 2445 2135 310 87.32% 0.1 00:09:20
10 2445 2195 250 89.78% 0.1 00:10:05
11 2445 2243 202 91.74% 0.1 00:10:50
12 2445 2251 194 92.07% 0.1 00:11:33
13 2445 2291 154 93.70% 0.1 00:12:15
14 2445 2295 150 93.87% 0.1 00:12:57
15 2445 2328 117 95.21% 0.1 00:13:38
16 2445 2325 120 95.09% 0.1 00:14:19
17 2445 2321 124 94.93% 0.1 00:15:00
18 2445 2357 88 96.40% 0.1 00:15:39
19 2445 2378 67 97.26% 0.1 00:16:18
20 2445 2361 84 96.56% 0.1 00:16:58
21 2445 2401 44 98.20% 0.1 00:17:36
22 2445 2398 47 98.08% 0.1 00:18:14
23 2445 2412 33 98.65% 0.1 00:18:53
24 2445 2419 26 98.94% 0.1 00:19:30
25 2445 2431 14 99.43% 0.1 00:20:07
26 2445 2435 10 99.59% 0.1 00:20:44
27 2445 2439 6 99.75% 0.1 00:21 :21
28 2445 2441 4 99.84% 0.1 00:21:58
29 2445 2442 3 99.88% 0.1 00:22:34
30 2445 2440 5 99.80% 0.1 00:23:11
31 2445 2443 2 99.92% 0.1 00:23:48
32 2445 2443 2 99.92% 0.1 00:24:24
33 2445 2445 0 100.00% 0.1 00:25:01
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Figure 4.3.5 - Learning curve for the MLP on fl3 data set: number ofcorrectly learnt facts

(J; axis) versus number ofruns (x axis) from table 4.1.

The performance of the network was evaluated by presenting a test set to the network. The

test tolerance was set to 0.4. This means that an image is deemed to be correctly classified

when the correct neuron in the output layer, produced an output of at least 0.6. The testing

set consisted of 872 images. These characters were from both writers who had contributed

to the training set and from writers who had not contributed to the training set. Of these,

731 were correctly classified and 141 were not correctly classified. This gives an accuracy

rate of 83.8%.

The multilayered perceptron thus performed extremely well with the characters from the

fl3 database. However it was noticed that these characters, a sample of which is shown in

figure 4.3.6, vary very little in size, location and orientation.

Data set II

A second data set, data set II, was constructed. One hundred images, from two different

writers, were taken from the fl3 database. A further 20 characters from 2 other writers

consisting of the digits '0' .. '9' , which are shown in Figure 4.3.7, were also taken.
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Figure 4.3.6 - Characters from thefl3 database which vary very little in size, shape and

orientation.

writer 1

OIJ.3Lj5&789

writer 2

Figure 4.3. 7 - Handwritten digits from two different writers.

These characters (figure 4.3.7) were rotated through angles of90, 180 and 270 degrees and

these rotated images were than combined with the other 100 images. The digit nine was

excluded from the data set as it resembles a six on rotation through 180 degrees.

The resultant data set, data set II consisting of 169 images, is shown in random order in

figure 4.3.8.
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Figure 4.3.8 - Data set 11 containing normal as well as rotated digits.

This data set was divided into a training and test set. The first 139 images in figure 4.3.8

formed the training set and the remaining 30 were used as the test set. The network took

15 iterations to completely learn the training set at a training tolerance of 0.1. Table 4.2

shows the number of images learnt at each iteration and figure 4.3.9 shows the learning

curve of the network.

Table 4.2 - Number o/images learnt at each iteration during training o/the MLP on data

set containing rotated digits.

Run Total Good Bad % good Learn Tolerance hh:mm:ss
1 139 1 138 0.7% 1 0.1 0:00:09
2 139 7 132 5.0% 1 0.1 0:00:14
3 139 22 117 15.8% 1 0.1 0:00:18
4 139 43 96 30.9% 1 0.1 0:00:22
5 139 62 77 44.6% 1 0.1 0:00:26
6 139 68 71 48.9% 1 0.1 0:00:29
7 139 96 43 69.1% 1 0.1 0:00:32
8 139 128 11 92.1% 1 0.1 0:00:34
9 139 130 9 93.5% 1 0.1 0:00:36

10 139 128 11 92.1% 1 0.1 . 0:00:38
11 139 135 4 97.1% 1 0.1 0:00:40
12 139 137 2 98.6% 1 0.1 0:00:42
13 139 138 1 99.3% 1 0.1 0:00:44
14 139 138 1 99.3% 1 0.1 0:00:46
15 139 139 0 100.0% 1 0.1 0:00:47
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Figure 4.3.9 - Learning curve for the MLP on data set IL which contains the rotated

digits: number ofcorrectly learnt facts (y axis) versus number ofruns (x axis) from table

4.2.

The testing tolerance was set at 0.4. Fourteen of the 30 images in the test set were

classified correctly and 16 images were not classified correctly, resulting in an accuracy

rate of 46.67%.

4.4 EXPERIMENT 11: ZERNlKE MOMENTS

Figure 4.4.1 shows an image recognition system which includes a feature extraction stage.

For the recognition ofhandwritten digits the method ofZemike moments is used.

Figure 4.4.1 - Structure ofan image recognition system that contains a feature extraction

stage.
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Zernike moments are used to remove rotational, scale and translational invariant features

from digital images. Moreover Zernike moments reduce the size of the input vector to the

network. For example, a 19 x 19 digital images which produces 361 input elements, the

361 pixels, can now be represented using the magnitudes of 47 Zernike moments.

Furthermore these 47 values will remain constant even if the object, depicted in the image,

is rotated, scaled or moved to a different position.

4.4.1 System design and implementation

Figure 4.4.2 depicts the steps involved to produce an invariant representation of a digital

image. The image is first standardized with respect to scale and position, using equation

(3.3.5) on page 30. The Zernike moments of the standardized image are then calculated.

Since Zernike moments are invariant to rotational changes and calculated on the

normalized image, the resultant representation is invariant to rotation as well as to scale

and to position.

r----------~~~~--.., rotational, scale and
translational

invariant features

Feature extraction

digitized
Image

ASCII
character

Figure 4.4.2 - General breakdown offeature extraction method ofZernike moments.

A program was written in Borland C++ (appendix II) to calculate the Zemike moments of a

digital image. The input to the program, the digital image, was used to calculate the

magnitudes of the 47 Zemike moments (lA om I ) of order ranging from 2 to 12, which
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formed the output of the program. The 47 Zemike moments are depicted in Table 4.3 and

the structure of the program used for their calculation is shown in figute 4.4.3.

Table 4.3 - The 47 Zernike moments, Anm used to represent an image.,

Order Moments
2 A20 ,A22

3 A31 A33

4 A40 ,A42, A44

5 A51 A53 A55

6 A60 ,A62 A64 ,A66

7 An ,A73 A75, An
8 A80 A82 A84 A86 A88

9 A9) ,A93 A95 ,A97 ,A99

10 AIO 0 ,AIO 2 ,AIO 4 ,AIO 6 ,AIO 8 A IO 10, ,

11 AII,I ,All 3 ,All 5 ,All 7 ,AII ,9 ,All,ll
12 Al2 0 ,Al2 2, Al2 4 ,Al2 6 ,Al2 8 ,AI2,10 AI2,l2

f(x,y)

~

map coordinates
of image

to unit circle

f(x,y) , moo, mOl'
X2+y2<= 1 mw
~ mpq=22/lf(x,y) ~

x y

n-m

x= mlO and y= mOl
moo moo

a= CL
Vm~

standardized image

g(x,y) = f(x+!.- Y- +,r)
a' a

~ (-l)s[(n _ s) !)pn - 2s
R (p) = £...

nm n+lml n-Iml
s = 0 s!(-2-- s)!(-2-- s)!

l~m(P,B)' = R"m(p)exp(i(-mB) I

n+l LL . ~
A,~ = -- g(x, y) v"m (p, ()

1f x y

Zemke coefficients

IAnml

Figure 4. 4. 3. - Structure ofprogram used to calculate the magnitude ofthe Zernike

moments, IAnml.
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4.4.2 Training and testing

The magnitudes of the Zernike moments were calculated for each of the 19 x 19 images

used in experiment I. In this experiment these magnitudes were used as the input to the

multilayered perceptron.

Data set I

Theft3 data set was split, as in the first experiment using, method 3 in section 4.2.3, into a

training set consisting of the magnitudes of the Zernike moments for 2 608 images and a

test set consisting of the magnitudes of the Zernike moments for 739 images. The learning

coefficient and the training tolerance were set at 1 and 0.1 respectively and the test

tolerance was set at 0.4.

The size of the MLP was:

• 47 neurons in the input layer corresponding to the magnitudes of the 47 Zernike

moments used to represent the image.

• 512 neurons in the hidden layer

• 10 neurons in the output layer corresponding to the 10 output classes '0' .. '9'.

Despite the additional hidden neurons, the network was not able to completely learn the

magnitudes of the Zernike moments of the training set. The network was trained several

times. The number of images learnt during training varied from 65% to 75% while the

performance of the network on the test set varied from 45% to 55%. The number of

iterations required during training ranged from 800 to over 2000. A possible explanation

was that the network was having difficulty learning images depicting the digits '6'and '9'

as they are similar at rotations through 180 degrees. All instances of the digit '9' were then

removed from both the test and training sets and the number of neurons in the output layer

was reduced to 9. However the performance ofthe network did not improve.
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Data set 11

The network faired better on the magnitudes of the Zernike moments of the data set

containing the rotated images. The magnitudes of the Zernike moments for each digit '0' ..

'9' from the two writers, as shown in figure 4.3.7 on page 75, are depicted in figure 4.4.3.

Each graph in figure 4.4.4 shows two instances of a digit, one by writer 1 and the other by

writer 2.

To be consistent with the previous experiment, all instances of the digit '9' were removed

from the data set, and the learning coefficient was set to 1, the training tolerance was set to

0.1 respectively and the test tolerance was set to 0.4.

The size of the MLP was:

• 47 neurons in the input layer corresponding to the magnitudes of the 47 Zernike

moments used to represent the image.

• 40 neurons in the hidden layer

• 9 neurons in the output layer corresponding to the 9 output classes '0' .. '8'

After 60 iterations the network had learnt all the images in the training set. The number of

images learnt at each iteration is shown in Table 4.4 and plotted as the learning curve of the

network in figure 4.4.5. The network performed well on the test set and classified 66.67%

of the images correctly.
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Figure 4.4.4 - coefficients of47 Zernike moments ofdigits '0' - '9'from figure 4.3. 7 on

page 75.
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Table 4.4 - Number ofimages learnt at each iteration using the Zernike moments ofdata

set If, which contained the rotated digits.

Run TotFacts Good Bad Learn Tolerance hh:mm:ss

1 139 0 139 1 0.1 0:00:01

2 139 0 139 1 0.1 0:00:02

3 139 0 139 1 0.1 0:00:02

4 139 0 139 1 0.1 0:00:03

5 139 0 139 1 0.1 0:00:04

6 139 5 134 1 0.1 0:00:07

7 139 11 128 1 0.1 0:00:08

8 139 16 123 1 0.1 0:00:09

9 139 16 123 1 0.1 0:00:09

10 139 16 123 1 0.1 0:00:10

11 139 20 119 1 0.1 0:00:13

12 139 22 117 1 0.1 0:00:13
13 139 24 115 1 0.1 0:00:14
14 139 30 109 1 0.1 0:00:15
15 139 31 108 1 0.1 0:00:15
16 139 32 107 1 0.1 0:00:18
17 139 36 103 1 0.1 0:00:19
18 139 45 94 1 0.1 0:00:19
19 139 44 95 1 0.1 0:00:20
20 139 39 100 1 0.1 0:00:20
21 139 45 94 1 0.1 0:00:23
22 139 47 92 1 0.1 0:00:24
23 139 58 81 1 0.1 0:00:24
24 139 58 81 1 0.1 0:00:25
25 139 60 79 1 0.1 0:00:25
26 139 59 80 1 0.1 0:00:28
27 139 61 78 1 0.1 0:00:28
28 139 67 72 1 0.1 0:00:29
29 139 68 71 1 0.1 0:00:29
30 139 71 68 1 0.1 0:00:30
31 139 73 66 1 0.1 0:00:32
32 139 72 67 1 0.1 0:00:33
33 139 72 67 1 0.1 0:00:33
34 139 75 64 1 0.1 0:00:34
35 139 79 60 1 0.1 0:00:34
36 139 85 54 1 0.1 0:00:37
37 139 89 50 1 0.1 0:00:37
38 139 90 49 1 0.1 0:00:38
39 139 109 30 1 0.1 0:00:38
40 139 108 31 1 0.1 0:00:38
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Run TotFacts Good Bad Learn Tolerance hh:mm:ss
41 139 107 32 1 0.1 0:00:41

42 139 121 18 1 0.1 0:00:41

43 139 128 11 1 0.1 0:00:41

44 139 125 14 1 0.1 0:00:42
45 139 131 8 1 0.1 0:00:42
46 139 136 3 1 0.1 0:00:44
47 139 134 5 1 0.1 0:00:44
48 139 134 5 1 0.1 0:00:45
49 139 138 1 1 0.1 0:00:45
50 139 138 1 1 0.1 0:00:45
51 139 134 5 1 0.1 0:00:47
52 139 138 1 1 0.1 0:00:47
53 139 138 1 1 0.1 0:00:48
54 139 138 1 1 0.1 0:00:48
55 139 134 5 1 0.1 0:00:48
56 139 137 2 1 0.1 0:00:50
57 139 138 1 1 0.1 0:00:51
58 139 136 3 1 0.1 0:00:51
59 139 137 2 1 0.1 0:00:51
60 139 139 0 1 0.1 0:00:52
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Figure 4.4.5 - Learning curve for the MLP on the Zernike moments ofdata set II which

contained the rotated digits: number ofcorrectly learnt facts ()J axis) versus number of

runs (x axis) from table 4.4.
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4.5 EXPERIMENT Ill: THE NEOCOGNITRON

Figure 4.5.1 shows an image recognition system which incorporates the feature extraction

process within the network.

I
Feature extraction

~
Normalization ..

+ Classification
19 x 19

Neocognitron
digitized image

ASCII
32 x 32

character
digitized

image

Figure 4.5.1 - Structure ofan image recognition system which uses the Neocognitron.

The Neocognitron was implemented to illustrate the incorporation of the feature extraction

process within the network architecture. The Neocognitron is a multilayered neural

network architecture which is invariant to changes in scale, position and distortions in the

input patterns.

4.5.1 Design and implementation

Two freeware software packages were evaluated for implementing the Neocognitron.

These were:

• NeoC Explorer Version 1.0 by Szabolcs Szakacsits (Szakacsits, 1994).

• Fukushima's Neocognitron by Frank Schorrenberg (Schorrenberg, 1992).

NeoC Explorer has a simple but friendly graphical user interface designed solely for testing

and analysis. However no modifications of the program can be made as the source code

was not available. For Fukushima's Neocognitron, the C source code is supplied with the

software and the program can be modified, but the program has no user interface and all

instructions are supplied on the command line. Furthermore the software does not

incorporate inhibitory cells in the network. NeoC Explorer was chosen over Fukushima's

Neocognitron for implementing the Neocognitron.
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The network used in this experiment consisted of 5 layers, the input layer Vo, VI' V 2, V 3

and the output layer V 4• The number of planes in each sub layer, the number of cells in

each of these planes and the receptive field of the cells in each layer are shown in Table

4.5. It must be noted that the structure of the Neocognitron is determined by the nature of

application and the size of the input images. The structure used here is based on that of

Fukushima (Fukushima et aI., 1983).

Table 4.5. - Structure ofthe Neocognitron used in the experiment.

layer sub layer no. of no. of cells receptive

planes in plane field

input - Vo Co 1 19x19 -

VI SI 20 19x19 5x5

Cl 20 15x15 5x5

V 2 S2 20 13x13 5x5

C2 20 llxll 5x5

V 3 S3 20 9x9 5x5

C3 20 7x7 5x5

output - V 4 S4 10 3x3 3x3

C4 10 lxl 3x3

The pixel values of the 19x19 digital images are used as the input layer Vo. The output

layer consists of 10 planes with each plane containing a single cell. These 10 cells

represent the output classes '0.. '9' and usually take on values between 0 and 1, with

values close to 1 indicating an active cell and in this way the output class of the image.

The training set consists of representatives of each of the 10 output classes, that is, 10

images depicting the digits '0' .. '9'. Training consisted of repeatedly presenting each

digit to the network until the network was responsive to that digit. For example, suppose

the digit '0' was presented to the network, then '0' will be presented repeatedly to the

network until it causes the cell in the first plane in the output layer to respond. Training is

completed when all 10 digits invoke responses from their corresponding cells in the output
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plane, U
C4

• Testing involved the presentation of images to the input layer Uo and

monitoring the corresponding response from the cells in UC4 ' If the correct cell responded

then, the character had been recognized correctly.

4.5.2 Training and testing

Data set I

As the Neocognitron requires only 10 images in the training set, the training set used for

data set I in experiments 1 and 2 was not used for training. The 10 images shown in figure

4.5.2 were used to train the Neocognitron.

D/J.3~.s&789

Figure 4.5.2 -10 images used to train the Neocognitronfor data set I

The test set consisted of 100 of the 739 images used in the test set in experiments I and II

and contained 10 images of each digit. The Neocognitron trained network classified 40%

of the images in the test set correctly, 52% were classified incorrectly and the network was

undecided for the remaining 8%, that is more than one output cell was active.

Data set II

For data set II the digit '9' was omitted from the training set which is shown in figure

4.5.3. The structure of the network was not changed, but Uc4 in the output layer consisted

of only 9 cells, corresponding to the digits '0' .. '8'.

O/J.3~.s&78

Figure 4.5.3 - 9 images used to train the Neocognitronfor data set II

The test set consisted of 36 images, 4 images of each digit, of which 25 were taken from

the test set used in experiments I and n for data set n. The trained Neocognitron network

classified 28% of the images in the test set correctly, 57% were classified incorrectly and

the network was undecided for the remaining 15%.
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4.6 SUMMARY OF RESULTS

Table 4.6 and table 4.7 summarize the performance of the three experiments on data set I,

and data set H respectively. The accuracy rate for the Neocognitron on the training set is

not relevant as the network only requires a single representative of each digit in the training

set, in data set I the digits '0 .. '9' and data set H the digits '0' .. '8'.

Table 4.6 - Performance o/the three experiments on data set I

Experimental Accuracy rate Accuracy rate

application on training set on test set

1. MLP 100% 83.8%

H. Zemike moments 55-65% 50 - 60%

Ill. Neocognitron - 41%

Table 4.7 - Performance ofthe three experiments on data set II

Experimental Accuracy rate Accuracy rate

application on training set on test set

LMLP 100% 47%

H. Zemike moments 100% 67%

IH. Neocognitron - 28%

The MLP was the easiest to implement. Even though this implementation was used to

illustrate a system without any feature extraction, a normalization procedure (Schalkoff,

1989) had to be used to scale down the images for use with BrainMaker. This may be

considered to some extent to be a form of feature extraction. The MLP performed

surprisingly well on data set I, but not as well on data set H which contained the rotated

1ll1ages.

Zernike moments required some effort to calculate. However variations in scale, position

and orientation were eliminated and the dimension of the input data reduced, thus reducing

the number of neurons in the input layer from 361 to 47. Although the maximum number

of hidden neurons, i.e 512, was used for data set I, the network was not able properly learn

the training set and did not fair as well as the MLP on the test set. This can be attributed to



90

the loss of discriminatory information resulting from the reduction of the input data from

361 elements to just 47 elements. However Zemike moments are especially useful when

the input images are really large, e.g. 32 x 32 pixels. In this instance BrainMaker was not

able to handle the images because of the 512 neuron limit on the input layer, but the

Zernike moments of the image could be calculated and used to represent the images.

Zemike moments performed better than the MLP on data set 11, which illustrates the

inability of the MLP to be cope with certain irrelevant properties of the input data.

The Neocognitron produced disappointing results on both data sets I and 11. However, It

was noticed that the network was undecided for a larger proportion, 15%, of data set 11 than

the 8% of data set I. The network is not invariant to rotation and thus it was expected that

the network would be confused with the rotated images in data set 11. Overall, the

Neocognitron can be considered as a highly complex research model which needs to be

further investigated in order to produce better results~.
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5. EVALUATION AND CONCLUSION

This thesis has investigated the area of digital image recognition. A typical image

recognition system involves three stages:

1. the pre-processing stage

2. the feature extraction stage

3. the classification stage.

Image recognition tasks are performed naturally by biological systems and the architecture

of these systems have been emulated by artificial neural networks. It is therefore

appropriate to use an artificial neural network, more specifically the multilayered

perceptron, for the classification stage.

The artificial neural network which was discussed in chapter 2 performs well under noise

and distortions of the image, but is sensitive to other parameters e.g. size, position and

orientation of the image. These parameters are often redundant and provide no

discriminatory information to the classifier. Furthermore, variations in these parameters

may cause confusion in the classification stage. The feature extraction stage removes these

parameters from the image and only 'extracts' important features from the image.

A selection of feature extraction methods were reviewed in chapter 3:

Moments invariants

Moment invariants provide a positional, size and orientation invariant representation of an

Image. They have been used successfully for shape recognition and provide a

representation consisting of seven features which are calculated from the geometric

moments of an image. A significant disadvantage is that there is no measure of how good

a representation of the original image these moments provide.

Zernike moments

Zernike moments have been used previously for shape recogmhon tasks. The

representation consists of 47 positional, size and orientation invariant features which are
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the magnitudes of the complex valued Zernike moments of a digital image. The original

image can be reconstructed from these moments, thus giving an indication of the quality of

the representation.

Fourier descriptors

Fourier descriptors provide a positional, size and orientation invariant representation of a

digital image. This method has been investigated for 2-D aircraft recognition (Kulkarni,

1994). New ways in which to use Fourier descriptors for image representation are

currently being investigated (Kauppinen & Seppanen,1995).

Gabor filters

Gabor filters operate similarly to structures in biological systems, that is, they categorise

areas of an image into different ranges of orientations and spatial frequencies. It is one of

the few representations that can simultaneously distinguish between orientations and

spatial frequencies which is important for texture classification. However the calculation of

the Gabor filters for a digital image is difficult.

Wavelets

The wavelet representation uses the differences between images at different resolutions to

represent a digital image. This representation also, but to a lesser extent, is able to

simultaneously distinguish areas of the image according to different orientations and

spatial frequencies. Calculation of this representation is less difficult than for Gabor filters.

The Neocognitron

The Neocognitron is a multilayered neural network architecture, based on the feed forward

architectures in biological systems, which combines the feature extraction and

classification stage. The Neocognitron is insensitive to variations in position and

distortions in the input image. This architecture has been used predominantly for shape

recognition tasks.

It is sometimes necessary to introduce a pre-processing stage. The nature of the pre­

processing is dependant on the type of images to be classified and addresses the practical
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limitations of the feature extraction and classification stages. An example of such a

limitation is the dimension of the images to be classified. If the feature extraction or the

classification stage can only accept images of a certain size, then the pre-processing stage

will scale all images entering the system to this size.

To illustrate the practical significance of feature extraction, an application for handwritten

digit recognition was implemented. Since handwritten characters can be distinguished by

differences in their shapes, the feature extraction methods that are applicable, from table

3.4 on page 60, are moment invariants, Zernike moments, Fourier descriptors and the

Neocognitron. Three experimental applications were developed to illustrate the role of

feature extraction in handwritten digit recognition. The results of these experiments are

discussed below.

5.1 THE MULTILAYERED PERCEPTRON

The multilayered perceptron was implemented in experiment I and represented a system

with no feature extraction.

5.1.1 Strengths

The MLP is easy to implement. The pixel values of the digital images are used as input to

the network. As a result no modification of the image occurs. Thus the best representation

of the image, the image itself, is used as the feature vector. Since no processing is carried

out on the image the chances of introducing noise or corrupting the image are reduced. The

MLP performed very well on the data set I, which contained images which varied little in

orientation, position and size of the characters. The MLP required 33 runs to completely

learn the training set. Considering that the network had to learn 2445 images from

different writers the MLP did well to learn the entire training set in only 33 runs.

Moreover, the accuracy rate of 83.8% on the test set was good, despite the fact that this set

consisted mostly of characters from different writers.
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5.1.2 Weaknesses and limitations

A significant limitation of the MLP is the limitation on the number of neurons in the input

layer. This may be overcome by scaling down the image as was done in experiment I.

Since the original images were 32x32 pixel images, the image was scaled down by a factor

of 2. Scaling down of images causes loss of information in the image. In experiment I this

was not serious since the image was only scaled down by a factor of 2. However if the

original image had comprised of 400x400 pixels, the scaling process would have resulted

in a significant loss of information which may have been needed during classification to

discriminate between patterns.

The MLP performed poorly for data set II which contained the rotated digits. The different

orientations of the digits confused the network and illustrated the inability of the MLP to

be invariant to certain irrelevant properties of the input data, in particular the orientation of

the digits in data set II.

5.2 ZERNIKE MOMENTS

The feature extraction method of Zernike moments was implemented in experiment II and

represented a system with a separate feature extraction stage.

5.2.1 Strengths

Zernike moments form an orthogonal set over the unit circle and therefore there is no

information redundancy in the representation which makes it possible to reconstruct the

original image from the representation. The reconstructed image can then be compared to

the original image and the quality of the representation can be appraised. During

reconstruction it is possible to identify the contribution of each Zernike moment to the

image. This is important in deciding how many moments to use to represent the image,

that is, if the reconstructed image is close enough to the original then the number of

moments used is sufficient to represent the image. Zernike moments have been shown to

perform better than moment invariants in the presence of noise (Teh & Chin 1988,

Khotanzad and Hong 1990).
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This method performed better on data set II than the MLP in experiment I and confirms its

ability to extract rotational invariant features from the images. Zernike moments not only

produce an invariant representation of an image which simplifies the classification task, but

also significantly reduces the size of the feature vector. Thus the additional pre-processing

stage used in the experiments to normalise the images to 19x19 pixels is not necessary.

5.2.2 Weaknesses

The reduction in the size of the input images results in the loss of information which may

have been important during classification. This was apparent for data set I, where the MLP

performed better than Zernike moments.

The calculation of the Zernike moments for an image requires a large number of complex

operations. As a consequence, unless the code is optimised and implemented on a fast

machine, this method is not suitable for practical use. The method is also application

dependant and not suitable for shape recognition tasks where size, position or orientation of

the shape provides discriminatory information.

5.3 THE NEOCOGNITRON

The Neocognitron was implemented and tested in experiment Ill. However the

architecture was deemed to be too complicated for practical use. The reasons for this are

discussed below.

5.3.1 Strengths

The Neocognitron incorporates the feature extraction stage within the network and this in

itself is both convenient and important. The introduction of a separate feature extraction

stage in experiment II results in uncertainty about the actual amount of processing carried

out by the neural network as the feature extraction stage may have oversimplified the

classification process. This may undermine the classification capabilities of the neural

network in the system. The Neocognitron is insensitive to scale, changes in position and

even distortions of objects in the input pattern.
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The unsupervised training used for the Neocognitron resembles closely the processes in

biological visual systems. Even though this training method does not produce good results

in practice, it does give insight into the operation of biological visual systems. To produce

better results, but moving away slightly from the biological paradigm, supervised training

methods have been developed. These are more suited to pattern recognition and allow the

teacher to control which features are to be detected by the simple planes.

5.3.2 Weaknesses

The training set consists of a single representative from each output class. It is very

difficult to find the ideal representative for each output class especially when there are

many variations in each class. In particular for data set Il it was difficult to chose a single

instance of a digit which represented all rotations of the digit.

The training process is not straightforward. In supervised training the teacher has to supply

the features which each simple plane must detect. A network has on average about 50

simple planes. To determine appropriate features for each of these involves careful

analysis of the data. This process is tedious and time consuming.

The structure and operation of the Neocognitron involves a large number of computations.

For the network implemented in experiment Ill, 1520 cells were used, which is quite large.

Unsupervised training is based on biological visual systems and is not intended specifically

for pattern recognition while supervised training is designed specifically for pattern

recognition as the features that are detected are determined by the teacher. A compromise

between these two paradigms is to allow the network to determine the features to be

detected by the simple cells during training but to supply the expected output for each input

pattern during training. This training method removes the tedious task of determining the

features to be detected by each simple plane, but since the network is provided with the

target output during training, the system performs better for pattern recognition

applications (Fukushima, 1992).
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Even though the Neocognitron has been shown in some instances to perform well for

handwritten character recognition, it is still a research model and is not as yet efficient for

practical use.

5.4 FUTURE RESEARCH

A few areas have been identified for further development or extension.

• The experimental applications could be optimised and extended into a handwritten

character recognition system, which is suitable for practical use. This would involve

introducing a segmentation stage which would acquire images using a digital scanner.

Areas where there is writing would be identified, parsed and the sentences broken down

into words, which would be further broken down into isolated characters. The

segmentation process is quite important in that if it is carried out optimally, perfect

segmentation of characters would be obtained. This would significantly reduce the

complexity of the recognition task. If the segmentation process is not carried out

optimally then factors such as noise, distortions of the characters and variations in the

size and position of the character would be introduced. These factors would increase the

complexity of the recognition task.

• Data set 11 consisted of digits which varied in orientation but varied little in size and

position. The results obtained in experiments 11 and III will therefore not reflect the full

capabilities of the Neocognitron. This method needs to be tested on data with more

variability in size and position which usually arise from incorrect segmentation.

• The structure of the Neocognitron needs to be investigated further. This may result in

the development of simpler training and implementation methods and will

simultaneously provide more information about biological visual system which is still

the optimal image recognition system.

• Improved feature extraction methods, e.g. Fourier descriptors (Kauppinen et aI., 1995),

have been developed and tested with conventional classifiers. Since artificial neural
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networks are superior, in some instances, to conventional classifiers, the feasibility of

combining these methods with artificial neural networks should be investigated.

• The properties of Gabor filters have been shown to be ideally suited for texture

classification. However the computation of the Gabor representation for a digital image

is difficult. New methods need to be developed to overcome this problem.

• This study has analysed the effectiveness of feature extraction methods for two

dimensional shape recognition of binary images. The effectiveness of feature extraction

methods on more complex image recognition tasks, using three dimensional images and

colour information, needs to be analysed.

5.5 CONCLUSION

An artificial neural network, the multilayered perceptron, has been investigated for digital

image recognition applications. The limitations of the multilayered perceptron, namely,

unnecessary processing of redundant information and the large number of neurons needed

in the input layer for large digital images have been addressed by the introduction of a

feature extraction stage. Existing feature extraction methods which have been used

previously with the multilayered perceptron, namely, Zernike moments, Fourier

descriptors, Gabor filters, wavelets and the Neocognitron have been described and

evaluated.

The application of handwritten digit recognition was chosen to practically illustrate the role

of feature extraction in image recognition. Two feature extraction models, Zernike

moments and the Neocognitron, were chosen as suitable for two dimensional shape

recognition. Three experimental applications were designed and implemented to

demonstrate the significance of introducing a feature extraction stage into the handwritten

digit recognition system:

• Experiment I consisted of a system with no feature extraction.

• Experiment 11 consisted of a system with a feature extraction separate feature extraction

stage using Zemike moments.
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• Experiment III consisted of a system which combined the feature extraction and the

classification stages in the form of the Neocognitron.

These experiments were tested on data obtained from the National Institute of Standards

and Technology (NIST) in the United States of America. The data consisted of isolated

handwritten digits. Even though in some instances the characters were cut off or parts of

two characters were found in some images (segmentation error), the segmentation process

used to produce the isolated characters was considered overall to be quite good since:

• the characters had minimal variations in size.

• the characters had little or no variations in position as all the characters filled the entire

image.

A selection of these characters were rotated and a new data set, data set Il, was constructed

which contained a combination of the rotated and the normal characters. The experiments

were also tested on data set 11.

The results of these experiments can be summarised as follows:

• The introduction of a feature extraction method in the image recognition system,

developed in experiment 11, reduces the size of the feature vector and thus the amount

of resources needed for implementing, training and testing of the artificial neural

network. This is especially noticeable in the number of neurons needed for the input

layer.

• The feature extraction process allows the system to be invariant to certain irrelevant

properties of the input data.

• The disadvantages of introducing a feature extraction. stage into the system, is the

additional processing that is required and the loss of information that occurs when

reducing the input data. This must be weighed against the advantages of invariancy

and reduction in size of the feature vector which feature extraction provides. It can thus

be concluded that if there are negligible variances in parameters such as size and

position, then the only advantage of the feature extraction stage is reduction in size of

the feature vector.
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There are many applications where feature extraction can certainly play a major role in

contributing to the effectiveness of the overall recognition system, and it is hoped that this

research has provided enough insight in order to make better decisions regarding their

design and development.
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APPENDIX I

/* C++ code to convert the 32x32 text images in thejl3 database to 19x19 images */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <dir.h>

/* in the input file active pixels are represented by ,*, while active pixels in the output
image are indicated by 'X'

*/

char ON='X',OFF='.', BL='*';

int main (int argc, char *argv[ ])
{
typedef unsigned short image[32][32];
typedef long double matrix[12][12];

image old,scaled;
float rows,col, M[4][4];
FILE *inp,*out;
unsigned int n,m,count,x,y,s,i,j ,k;
int p,q,total;
char line[200],outn[30],dis[4],direc[1 0],curdir[30];
matrix R;
float xl,yl,x_,y_,radius,a,pl,

num,denom,0 ,argum;;
char *result,*tmp,digit;

struct ffblk ffblk;
int done;

out = fopen(argv[1], "w");

for(k=1;k<50;k++)
{
itoa(k,dis,10);
strcpy(direc," .\\If);
strcat(direc,dis); /* recurse through 49 directories for 49 writers ( 1.. 49) */
chdir(direc);
getcurdir(0,curdir);
printf("working in %s\n",curdir);
done = findfirst("* .txt",&ffblk,O);

while (!done)



/* read first redundant line in image */

108 .

{

inp = fopen(ftblk.fCname, "r"); _
digit = ftblk.fCname[l];

fgets(line,200,inp);

/* read in image into array pict */

result = fgets(line,200,inp);
count = 0;
for(y=O;y<32;y++)

{
for(x=0;x<32;x++)

{
if (line[count] = HL)

old[x][y] = I;
else

old[x][y] = 0;
count++;
};

result = fgets(line,200,inp);
count= 0;

};
fclose(inp);

/* end of reading in image */

/* x - is the normal x axis
y - is the normal vertical y axis */

forG=1;j<=2;j++)
{
for(i=1;i<=19;i++) /* prints two extra lines at top */

fprintf(out,"%c",OFF);
fprintf(out,"\n");

}

for(y=0;y<16;y++) /* generates coordinates for 16x16 scaled down image */
{

fprintf(out,"%c%c",OFF,OFF); /* two extra pixels on left */
for(x=0;x<16;x++)

{
total =0;
for(p=-2;p<0;p++) /* calculate average of2x2 neighbourhood */

foreq=-2;q<0;q++)
total = total + old[2*(x+1)+p][2*(y+l)+q];



scaled[x][y] = int(total /2);
if (scaled[x][y])

fprintf(out,"%c" ,ON);
else

fprintf(out,"%c",OFF);

}

fprintf(out,"%c",OFF);
fprintf(out,"\n");

}

for(i=1;i<=19;i++)
fprintf(out,"%c",OFF);

fprintf(out,"\n%c\n",digit);

done = fmdnext(&ftblk);
}
chdir(" ..\\");
}
fclose(out);
return 0;

}

109

/* 1 extra for right */

/* print extra line at bottom */

/* end of while */

/* end for */
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APPENDIX 11

/*
c++ program to calculate the Zernike moments of a 19 x19 image.

• INPUT: text file name on command line containing image or images.

• OUTPUT: magnitudes of 47 Zemike moments.

*/

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <complex.h>
#include <dir.h>

/*
this line is to change the character that represents active and inactive pixels

*/

char ON='X',OFF='.';

int B=35;

double Fact( int I)
{

int K;
double F;

if (I = 0)
F = 1;

else
{

/* set the scaling factor beta */

/* procedure to calculate the factorial of a number */

if( (I > 0) && (I <= 500))
{

F = 1;
for(K=l;K<=I;K++)

F = F * K;
}

else
F =0;

};
return(F);

};
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int main (int argc, char *argv[])
{
typedef unsigned short image[65][65];
typedef long double matrix[12][12];

image pict,n--pict;
float rows,col, M[4][4];
FILE *inp,*out,*outl;
unsigned int p,q,n,m,count,x,y,s;
char line[200],outn[30],ex[5];
matrix R;
float xl,yl,x_,y_,radius,a,pl,

num,denom,O,argum;
char *result,*tmp,digit;
complex A;
complex i = sqrt(complex(-l));

struct ffblk ffblk;
int done;

if (argc < 2)
{

. printf ("usage: test <in:file> \n");
return 1;
}

done = findfirst(argv[I],&ffblk,O);

while (!done)

/*
recurses through directory if command line contains wildcards

*/

{
inp = fopen(ffblk.ff_name, "r");
if (inp == NULL)

{
perror ("Error opening source file");
return 2;

}

strcpy(outn,ffblk.ff_name);
tmp = strchr(outn,'.');
ex[O] = 'Z';
ex[l] = tmp[2];
ex[2] = tmp[3];
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ex[3] = '\0';
strcpy(tmp+1,ex);
out = fopen(outn, "w");

rows=col=19;
result = fgets(line,200,inp);
result = fgets(line,200,inp);

while(!(feof(inp)))
{

count = 0;
for(y=O;y<rows;y++)

{

1* set image size *1

1* read in image into array pict *1

for(x=O;x<col;x++)
{
if (line[count] = ON)

pict[x][y] = 1;
else

pict[x][y] = 0;
count++;
};

result = fgets(line,200,inp);
count= 0;

};
1* end of reading in image *1

if (rows> col)
radius = (col-I) 12;

else
radius = (rows-1)/2;

1* NOTE

x - is the normal x axis
y - is the normal vertical y axis *1

1* moments (p,q) = (0,0) (0,1) (1,0) (1,1) *1

for(p=O;p<=1;p++)
foreq=O;q<=1;q++)
{

M[P][q] = 0;
for(x=O;x<col;x++)
for (y=O;y<rows;y++)
{

xl = (x - radius) Iradius;
y 1 = -(y - radius) Iradius;
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if( ((xl * xl)+(yl * yl)<=l) && (xl *yl!=O))
M[p][q] = M[P][q] + (pow(xl,p) * pow(yl,q)) * pict[x][y];

};
};

/* standardize image */

x_ = M[l ][0] / M[O][O]; .
y_ = M[O][1] /M[O][O];

a = pow( (B/M[O][O]), .5);

printf("\nWorking .... ");

for(y=O;y<rows;y++)
{

for(x=O;x<col;x++)
{

/* translation */

/* scale */

xl = (x - radius) /radius ;
yl = -(y - radius) /radius;
xl = xl/a + x_;
yl = yl/a + y_; /* map image to unit circle */
xl = xl *radius + radius;
yl = radius - (yl *radius) ;
if(

( (int(xl) >= col-O.4) 11 (int(xl) < 0.3) )
11 ((int(yl) >= rows-O.4) 11 (int(yl) < 0.3) )

)
n~ict[x][y]=O;

else
n~ict[x][y] = pict[int(xl)][int(yl)];

/* if(n~ict[x][y]==l)

fprintf(out!, 11 *");
else

fprintf(out!,". ");*/
};

};

printf("\n%c11,digit);
for(n=2;n<=12;n++)
for(m=O;m<=n;m++)

if( (n-m) % 2 = 0 )
{
A=O;

/* calculate Zemike moments */

/* check if M is correct */
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for(y=O;y<col;y++)
for (x=O;x<rows;x++)

{
xl = (x - radius) Iradius;
yl = -(y - radius) Iradius;
if«xl * xl) + (yl * yl) <= 1)

{
pI = sqrt( (xl *xl) + (yl *yl»;

0= acos(xl/pl);

if (yl <=0) 0 = 2.*M_PI -0;

R[n][m] = 0;
for(s=O;s<= «n-m) 12);s++)

{

1* calculate Theta *1

if (pI !=O)
num = (pow(-l,s) * Fact(n-s) ) * pow(pl,n-(2*s»;

else
num=O;

denom = (Fact(s) * Fact( «n+abs(m»1 2) -s»
* Fact( ((n-abs(m» 12) -s);

R[n][m] = R[n][m] + (num 1denom);
};

1* complex calculation *1
if (pict[y] [x] != 0)

A = A + (nyict[x][y] * conj( R[n][m] * exp(i*(m*O»» ;
};

};
A = «n+1)*A) 1M_PI;

1* print out magnitudes of Zernike moments *1

fprintf(out,"%-lOAf' ,abs(A»;

} 1* end ofm & n loop *1

fprintf(out,"\n%s", line);
digit=line[O];

result = fgets(line,200,inp);
if (!((line[O]=ON) 11 (line[O]==OFF») 1* check for more than one image in file *1

break;
} 1* end of while for same file *1

fclose(out);
fclose(out!);
done = fmdnext(&ffblk);



}

}

fclose(inp);
return 0;
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/* end of loop to fmd all files that match 1st argument */
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