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Abstract 

 

This study presents the analyses of oil body components in microalgae which may be involved in 

oil droplet assembly including certain triacylglycerol precursors which can be processed to 

biodiesel, an alternative fuel source. Stress induction of microalgae, Chlorella vulgaris CCAP 

211/11B and Dunaliella primolecta CCAP 11/34 was achieved by exclusion of nitrates in growth 

media. Contrary to other forms of nitrogen depletion, this condition did not greatly enhance lipid 

biosynthesis in the microalgae. Confocal microscopy and fluorescent dyes nile red and bodipy were 

employed for the visualization of lipidic body components. The fluorescence hues emitted by 

neutral lipids and phospholipids were differentiated from those due to autofluorescence and 

chlorophyll using ZEN software to analyse images from a Zeiss LSM 710 confocal microscope. Oil 

from both algae, which were subjected to transesterification and gas chromatography, revealed a 

predominant fatty acid, namely palmitic acid (C16:0). D. primolecta produced linolelaidic acid 

(C18:2n6t) under growth conditions involving both nitrate supplementation and exclusion; whilst the 

longest fatty acid, docosanoic acid (C22:0 chain) was produced by the alga C. vulgaris only under 

conditions of nitrate supplementation. Nitrate limitation had minimal effect on the oil hydrocarbon 

yield which increased only 0.02% and 0.01% for C. vulgaris and D. primolecta, respectively. The 

highest biodiesel yield of 26.11 % was recorded from D. primolecta when grown under conditions of 

nitrate exclusion. The protein concentrations extracted from oil of the former alga ranged from 1.87 

- 1.95 µg/ml when grown under nitrate supplemented conditions and 1.74 - 1.90 µg/ml when nitrate 

was excluded from the media. The protein concentrations extracted from oil of D. primolecta ranged 

from 1.91 - 2.23 µg/ml and 1.88 - 1.98 µg/ml, respectively, when the algae were grown in the 

presence and exclusion of nitrates. In the adaptation of protocols for protein extraction from oil, 

sunflower and salmon oils were initially used. Sunflower oil extracts produced by 10% (w/v) SDS 

treatment, yielded protein bands of 198, 96, 70 and 58 KDa on 10% (w/v) polyacrylamide gels while 

6M urea treatment yielded a band of 200 KDa. Salmon oil treated with 10% (w/v) SDS and 6 M 

urea yielded bands of 195 and 27 KDa, and 198 KDa, respectively, as well as common bands of 68 

and 64 KDa. In comparison, the extraction of discrete proteins from algal oil proved to be difficult as 

the extractants SDS and urea could have denatured protein components into subunit structure. 
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INTRODUCTION 

 

Since the 1970s, microalgae have become the focus of intensive research due to their potential 

to serve as renewable resources for biodiesel (Chisti, 2007; Dermibas, 2008). In contrast to 

energy availability and safety from non - renewable resources, this alternative to fossil fuels is 

neither hindered by limitation, such as availability, nor does it impose as much of a threat to the 

environment. Approximately 98% of carbon emissions result from fossil fuel combustion; hence 

there is an increasing trend towards use of algae - based technologies for the reduction of 

greenhouse gas emissions as less harmful substances are released into the atmosphere. In 

addition, many algae act as a source of production of supplements and biomaterials in the 

pharmaceutical industry (Rubio - Rodrìguez et al., 2010; Singh and Gu, 2010). 

Much research has also been devoted to the study of lipid - associated protein complexes 

known as oleosins which are found in eubacteria, mammalian organisms and plants. This 

recently discovered assembly comprises structural proteins with no discernable enzymatic 

motifs. They are thought to be involved in the stabilization of the oil body and contain a 

characteristic “hair - pin” - like hydrophobic domain which is inserted randomly inside the 

triacylglyceride (TAG) component, whilst their hydrophilic regions are exposed outside the oil 

body (Hsieh and Huang, 2004). During recent years, several additional classes of lipid - 

associated proteins have been described including and plastid - lipid associated proteins 

(PLAPs) (Murphy, 2004) and caleosins, which are found in a wide range of plant grain such as 

maize, barley, rice, sesame seed and soya bean (Hsieh and Huang, 2004). Caleosins are 

thought to be involved in signalling, assembly and mobilization of oil bodies (OBs), as a result 

of their constituent calcium binding ability, protein kinase domains and their single membrane 

spanning region (Chapter 1; 1.4). Initially these proteins were suggested to be involved in 

abscisic acid (ABA) - mediated responses because rice caleosin (OsCLO), is induced by ABA 

(Frandsen et al., 2001) and both calcium and protein phosphorylation are involved in ABA 

signalling. Oleosin expression is also responsive to ABA, as are some enzymes involved in oil 

body formation. Caleosins are probably more directly involved in membrane and oil body 

fusion. The microsomal caleosins, found in young plant embryos and tissues such as roots and 

leaves, may possibly be involved in membrane - fission and/or fusion events which relate to 



 

trafficking between the endoplasmic reticulum (ER) and transport or storage vesicles. This is 

brought about as the caleosin co - localizes in an ER subdomain with a protein storage vacuole 

and/or autophagic vacuole marker, known as α - TIP. This subdomain may be associated with 

both oil body formation and vacuolar biogenesis. Newly synthesized oil bodies, with caleosin, 

are released as immature oil bodies into the cytosol where they may fuse under the influence of 

calcium to form mature oil bodies. In some cells, oil bodies are taken up by vacuoles with 

tonoplast α - TIP which forms by budding off or maturation of the ER subdomain containing 

caleosin (Frandsen et al., 2001). 

Unlike the aforementioned proteins, PLAPs are located exclusively in specialized plastids, 

known as chromoplasts which are present in non - green pigmented tissues like coloured flower 

petals or fruit. These proteins have various roles including storage and stabilisation of lipid - 

derived pigments in chromoplasts (Murphy, 2004). Exposure to high light intensities and nitrate 

deprivation induces β - carotene production in globules within the inter - thylakoid spaces of the 

halotolerant green alga, Dunaliella bardawil. Studies conducted by Ben - Amotz et al. (1989; 

1999) demonstrated that under these conditions, the β - carotene containing  globules from D. 

bardawil  were shown to consist predominantly of this pigment, neutral lipids and a minute 

quantity of protein known as carotene globule protein (Cpg). Although the function of these 

proteins is not yet known, their involvement in the structural stabilization of the β - carotene 

containing globules has been suggested (Katz et al., 1995). This is due to the peripheral 

localization and improved aggregation of the globules subsequent to cleavage by trypsin. This 

stability could possibly be brought about as a result of the hydrophilic layer which covers the 

hydrophobic pigment core in Cpg. A similar structure has been postulated to contribute to the 

stability of triacylglycerol - type oil bodies in seeds (Hsieh and Huang, 2004; 1.3.2) (2.4.1) 

although it has not yet been fully established if Cpg is structurally related to oleosins (Katz et 

al., 1995). 

Whether or not oleosins are present in algae is not known (Hsieh and Huang, 2004) as they are 

typically found in true plants (Murphy, 2004). However, a caleosin - like sequence has been 

identified in the genome of the single - celled alga, Auxenochlorella protothecoides, which 

suggests that caleosins are probably ubiquitous in plants but prevalent in some algae (Murphy, 

2004).The biochemical content of microalgae can be influenced by varying growth conditions 



 

and thus significantly promoting oil yields. Nitrogen starvation is known to bring about an 

increase in microalgal oil production (Lv et al., 2010).  

In spite of microalgae serving as efficient solar energy convertors (Singh and Gu, 2010) there 

still remain challenges towards the development of large scale biofuel plants. Prior to 

commencing with large scale cultivation, several factors require consideration such as 

economical supply and storage barriers (Chisti, 2007; 2008). A thorough understanding of the 

biology of the algal species proves to be essential and their ability to produce copious amounts 

of useful oil is vital. It is therefore imperative that the utilization of microalgae be further 

researched as the benefits far outweigh the disadvantages or impediments.  

In the current study, two conditions of algal growth are examined; namely, nutrient - rich growth 

in BG 11 medium (Appendix A) and restricted growth in BG 11 medium deficient in nitrates 

(Appendix A). The analyses of algal oil from the freshwater alga Chlorella vulgaris and marine 

alga Dunaliella primolecta were undertaken in an attempt to correlate oil yields and growth 

conditions. Constituent oil - associated components, typical of those found in oil body 

assemblies, were analyzed by confocal microscopy, thin layer chromatography, polyacrylamide 

gel electrophoresis and gas chromatography.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER ONE 

 

LITERATURE REVIEW AND AIM OF THIS STUDY 

 

1.1 Selection of algae in this study 

 

Microalgae can be divided into two categories which relate to lipid production and biomass 

generation, namely, (i) high lipid content but low cell growth and (ii) low lipid content but high 

cell growth (Lv et al., 2010). Chlorella vulgaris, a freshwater alga, has received attention as a 

promising candidate for commercial lipid production due to their ease of cultivation and rapid 

growth rates. Griffiths and Harrison (2009) reported C. vulgaris exhibited a relatively short 

doubling time of 19 hours whilst only increasing in lipid content to 20% thus, classifying this 

alga as one of low lipid content and high cell growth. Dunaliella primolecta Butcher (1959) is a 

marine Chlorophyceae that is tolerant of concentrations of ammonia, purines and nitrates within 

its medium (Uriarte et al., 1993). Little is known about the classification of D. primolecta with 

respect to cell growth and lipid content. Uriarte and co - workers (1993) reported findings 

confirming the potential for significant variability in composition of this marine microalga, both in 

its natural habitat and following experimental manipulation. Closely related to D. primolecta is 

Dunaliella salina, a halophilic microalga that was initially reported to produce lipids between 45 

- 55% of its total weight (Tornabene et al., 1980). Further research by Weldy and Huesemann 

(2007), showed D. salina to produce a relatively high lipid content ranging from 16 - 44% (wt) 

as a result of high biomass growth and thus classifying this alga as one of high cell growth and 

high lipid content, and thereby placing this alga in a third category. Green algae are amongst 

the most taxonomically diverse and plentiful of the Chloroccalean genera with almost 1200 

infraspecific taxa being identified (Kim et al., 2007). These “green algae“ contain chlorophyll, an 

essential component for photosynthesis which is responsible for capturing CO2 and solar 

energy to generate the metabolic flux for both cell growth and lipid accumulation. Lv et al. 

(2010) reported the high lipid content but low cell growth of the alga, Botryococcus braunii 



 

based on earlier studies conducted by Dayananda et al. (2007b) which revealed a lipid content 

of 50% and low biomass productivity of 28 mg/l/d.  

 

1.1.1 Chlorella spp. 

 

The name Chlorella given to the unicellular green algae, belonging to the phylum Chlorophyta, 

is appropriate, as the Greek word chloros meaning green and the Latin word ella meaning 

small,  correctly describes this genus. These algae are non - motile, ranging from 2 to 10 µm in 

diameter and they assume a spherical morphology (Figure 1.1). As they contain chlorophyll a 

and b in their chloroplasts, photosynthesis is the main process which promotes the proliferation 

of this organism, and requires essentially carbon dioxide, water, sunlight and a small amount of 

minerals.  

 

 

Figure 1.1.  Image showing spherical cell morphology of Chlorella spp.     
   (htpp://botany.natur.cuni.cz/algo/images/CAUP/H1998_1). 

 

Chlorella are of pharmaceutical importance and they produce carotenoids, namely, 

canthaxanthin and astaxanthin (Arad - Malis et al., 1993; Chinnasamy et al., 2009). Initially it 

was believed that algae were susceptible to high levels of carbon dioxide. Yet it has now been 

reported that some microalgae grow at rapid rates under very high levels of this trace gas, 
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Figure 1.2. The life cycle of Chlorella 
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Under certain growth conditions, Chlorella yields oils which are high in polyunsaturated fats. For 

example, Chlorella minutissima has yielded eicosapentaenoic acid (EPA) (20:5ω3) comprising 

39.9% of total lipids. It is for this reason that the growth conditions ought to be optimized for 

culturing of this alga in order to obtain high lipid or oil yields. Chlorella vulgaris has shown its 

growth to be optimal in BG 11 medium (Appendix A) in the temperature range of 30 - 39 °C and 

at a pH of 8 as reported by Ra (2010). 

 

1.1.2 Dunaliella spp.  

 

Belonging to the class of Chlorophyceae, Dunaliella spp. are eukaryotic, motile, unicellular, 

biflagellated (Figure 1.3) and show a haplodiplontic life cycle (Figure 1.4). Known to tolerate 

vast variations of in concentrations of ammonia, nitrates and purines within its environment 

(Uriarte et al., 1993), these algae generally encompass a high protein content of approximately 

35 - 48 w/w% (Gibbs and Duffus, 1976). This species does not contain a rigid cell wall but does 

possess a glycoprotein - cellulosic cell coat that is formed by 25 - 200 nm long fibrils. The 

halotolerant green alga Dunaliella bardawil accumulates massive amounts of β - carotene when 

exposed to high light intensities, nutrient deprivation and other stress conditions. It has been 

stated that cells with elevated levels of β - carotene globules are resistant to photodamage at 

very high light intensities, suggesting that β - carotene protects the cells from such damage 

(Katz et al., 1995). Hence, this type of algal species can be mass cultured in saline lagoons in 

order to stimulate the production of β - carotene for commercial purposes (Ben - Amotz, 1999; 

Garcia - Gonzalez et al., 2000). 

Recently, a new category of Dunaliella species was discovered in the Atacama Desert. It has 

been hypothesized that the algal species is maintained via the condensation of water vapour 

through hanging spider - webs (Azúa - Bustos et al., 2010). Literature published on this novel 

species is relatively limited.  

 



 

 

Figure 1.3.  Image showing Biflagellated cells of Dunaliella spp.      

   (http://www.dunaliella.org/dccbc/picturegallery.php). 

 

 

Figure 1.4. The life cycle of Dunaliella spp.  indicating (A) a diploid vegetative cell which forms (B)  
  zoospores through meiosis. The zoospores act as mating gametes (C) forming (D) a diploid 
  zygospore that germinates (E) into vegetative cells (A). (http://en.wikipedia.org/wiki/Dunaliella). 
 

 

1.2 Lipid metabolism 

 

1.2.1 Photosystems associated with lipid metabolism 

 

Algae contain complex regulatory and metabolic networks that alter the amount and type of 

photosynthetic proteins in response to changes in oxygen and sunlight (Johnson and Schmidt - 
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Figure 1.5. Diagram showing photosystems in algae
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the system for further ubiquinone reduction (Johnson and Schmidt - Dannert, 2008). The 

cytochrome complex is the intermediary electron transfer complex between PSI and PSII. In 

this complex, the electrons are transferred from ubiquinol to plastocyanin and thereby resulting 

in a reduction of plastocyanin and subsequent oxidation of ubiquinol. The reaction centre of PSI 

becomes excited and produces two reduced molecules of ferredoxin for every two oxidized 

molecules of plastocyanin. Excitation of PS1 drives the reduction of ferredoxin which then 

reduces NAD(P)+ to NAD(P)H for further use in the Calvin cycle (Johnson and Schmidt - 

Dannert, 2008). With the procession of photosynthesis, the release and absorption of protons 

(H+) from the stroma to the thylakoid increases which consequently results in a pH change of 7 

to 8 in the stroma. Along with the transmembrane transport of the protons, an accumulation of 

Mg2+ occurs in the stroma and upon the interaction between chlorophyll and light; electrons are 

transported through the electron transport chain and to thioredoxin and NADPH. It is therefore 

evident that the processes occurring in algae are highly complex and can be influenced by a 

variety of factors thereby affecting the ambient conditions of the stroma and the quantity of 

chlorophyll, consequently altering lipid metabolism (Lv et al., 2010). 

 

1.2.2 Biosynthesis of fatty acids and lipids 

 

Fatty acid biosynthesis occurs in the plastid and is mediated by the enzyme complex fatty acid 

synthase (FAS). A two step reaction involving acetyl - CoA carboxylase (ACC) generates the 

formation of the substrate malonyl - CoA. According to Lv et al. (2010), the quantity and activity 

of ACCase plays an important role in the synthesis of fatty acids. It was shown that lipid 

synthesis in Chlorella vulgaris was highly complex. The quantity of chlorophyll and the ambient 

conditions of the stroma were susceptible to influence by any factor, thus suggesting that the 

activity and quantity of ACCase might have an effect on lipid accumulation.  In green algae, two 

types of ACCase were identified, namely, a plastidial prokaryotic - type multisubunit enzyme 

and a multifunctional homomeric enzyme resident to the cytosol (Khozin - Goldberg and Cohen, 

2010).  



 

The malonyl - CoA substrate is transferred to an acyl carrier protein (ACP), this occurs prior to 

the decarboxylation of the malonyl moiety and condensation of C1 of an acetate and C2 of the 

malonyl group on ACP. A sequence reaction involving reduction and dehydration results in the 

formation of palmitic acid (16:0) and stearic acid (18:0) with the introduction of the first double 

bond into 16:0 - ACP and 18:0 - ACP, thus generating either 16:1 - ACP or 18:1 - ACP in a 

reaction catalyzed by stearoyl - ACP - desaturase. The aforementioned fatty acids are then 

used in either the synthesis of plastidial glycerolipids or released into the cytoplasm where they 

become activated to CoA esters for reactions such as elongation. Fatty acids, produced via the 

prokaryotic pathway, are transferred to the sn - 1 and sn - 2 position of glycerinaldehyde - 3 - 

phosphate (G3P) which is converted into phosphatidic acid (PA). A reaction involving acyl - 

ACP : glycerol - 3 - phosphate acyltransferase (GPAT) then leads to the formation of 

lysophosphatidic acid (LPA) which, when catalyzed by lysophosphatidic acid acyltransferase 

(LPAT), forms more PA. This PA can be further metabolized to the lipids responsible for 

glycolipid synthesis, namely, diacylglycerol (DAG) and phosphatidylglycerol (PG). Outside the 

plastid are acyl - CoA - esters which can be incorporated into lipids in reactions making up the 

eukaryotic biosynthetic pathway. PA and DAG syntheses occur in a similar manner to that of 

the prokaryotic pathway (within the plastid) but in contrast to acyl - ACPs, acyl - CoAs function 

as substrates for LPAT and GPAT. DAG is further converted into phospholipids 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The production of glycolipids 

involves the formation of PA in the plastids and at the endoplasmic reticula (ER). The 

distribution of FAs at the glycerol backbone is commonly associated with green microalgae. 

Lastly, the synthesis of TAG occurs at the ER membrane with the precursor DAG; to which a 

third acyl residue is bound at the sn - 3 position. This transfer reaction is either catalyzed by 

phospholipid diacylglycerol acyltransferase (PDAT) or by diacylglycerol acyltransferase 

(DGAT), depending on the substrate. Levels of DGAT may present a bottleneck with regard to 

TAG biosynthesis as the transferase shows the lowest activity amongst the enzymes of the 

Kennedy pathway (Khozin - Goldberg and Cohen, 2010). 

 

 

 



 

1.2.3  Biosynthesis of polyunsaturated fatty acids (PUFAs) 

 

The introduction of double bonds into the acyl chains is catalyzed by desaturases which 

demonstrate substrate specificity. The acyl - ACP - desaturase which is localized in the plastid 

acts on acyl chains bound to ACP. As mentioned above, the stearoyl - ACP ∆9 - desaturase 

introduces a double bond into stearic acid resulting in 18:1∆9 - ACP. With the exception of the 

soluble acyl - ACP desaturase family, all other desaturases are integral membrane proteins 

with either acyl - CoA or acyl - lipid substrates. The initial substrate in this pathway is oleic acid 

(18:19Z) subsequent to its incorporation into PC. A ∆12 - desaturase then introduces the second 

double bond forming linoleic acid (LA), which may be further desaturated by a ∆15 - desaturase 

to α -  linoleic acid (ALA) (Lang, 2007). These modified FAs are then exchanged by other 18:1 

acyl residues and can be released as acyl - CoA derivatives into the cytoplasm. With this 

release, they can be extended to longer acyl chains by specific membrane - bound elongase 

complexes (Lang, 2007). According to Khozin - Goldberg and Cohen (2010) microalgal PUFA 

elongases are similar in structure to the fatty acid elongase enzyme (ELO) family which are 

responsible for catalyzing the condensation step of fatty acid elongation in animals and fungi. 

These elongases differ from higher plant condensing enzymes which are responsible for 

microsomal elongation of monounsaturated and saturated fatty acids. With regard to substrate 

specificity, PUFA elongases were characterized from long - chain polyunsaturated fatty acid 

(LC - PUFA) producing microalgae. Amongst these are C18 ∆6 - PUFA - specific elongases, 

shown to participate in the elongation of C18 PUFA, α - linolenic acid (ALA, 18:3ω6), where ω6 

represents the fatty acid belonging to the omega - 6 family (Bigogno et al., 2002). These 

elongases are also involved in the production of arachidonic acid (ARA) and eicosapentaenoic 

acid (EPA) (Khozin - Goldberg and Cohen, 2010). C20 ∆5 - PUFA - specific elongases are 

involved in the elongation of EPA in the docosahexaenoic acid (DHA) biosynthesis pathway 

(Khozin - Goldberg and Cohen, 2010).  

 

 



 

1.2.3.1  Genes involved in biosynthesis of PUFAs 

 

According to studies conducted  by Guschina and Harwood (2006), it has been reported that 

two cDNA clones corresponding to ∆12 and ω-3 fatty acid desaturase (FAD) genes (designated 

as CvFad2 and CvFad3, respectively) have been isolated from Chlorella vulgaris C - 27. These 

clones were isolated based on sequence information from genes encoding for plant ∆12 and ω-

3 FADs which desaturate oleate to linoleate and linoleate to α - linolenate, respectively. The 

deduced amino acid sequence of Cvfad2 displayed approximately 66% similarity to those of 

higher plant microsomal ∆12 encoded FADs and approximately 35% similarity to plastidial ∆12 

FADs. When Cvfad2 was expressed in Saccharomyces cerevisiae, linoleic acid (C18:2) 

accumulated. The predicted protein of Cvfad3 showed approximately 60% similarity to the 

plastidial and microsomal ω-3 FADs and lower similarity to ∆12 FAD. Based on the features of 

the amino acid sequences of the C - and N - terminal regions, Cvfad3 seemed to encode a 

microsomal ω-3 FAD rather than a plastidial one; however based on results, the authors could 

not conclude the exact localization of the protein in C. vulgaris. In addition to this, these genes 

(for the ω-3 and ∆12 FADs) proved to be upregulated by low temperature. The level of the 

transcript of Cvfad2 increased gradually during exposure to low temperatures and, after 24 

hours had reached 3.2 times the initial level. In contrast the level of the transcript of Cvfad3, 

after only three hours of cold exposure, increased to 5.4 times the initial level but then 

decreased gradually. This suggests that the two desaturase genes may possibly be involved in 

the development of low temperature freezing tolerance in C. vulgaris (Guschina and Harwood, 

2006). Wang et al. (2009) reported the accumulation of abundant cytoplasmic lipid bodies (LBs) 

and starch in the alga, Chlamydomonas reinhardtii when exposed to nitrogen deficient 

conditions. When starch biosynthesis was blocked in the sta6 mutant, the LB content was 

shown to increase 30 - fold thus, demonstrating genetic manipulation as a tool for the 

enhancement of lipid production.  

 

 



 

1.2.4 Oxylipins 

 

Recently, the topic of oxylipins has received much attention in the field of lipid metabolism 

(Guschina and Harwood, 2006). Lipid peroxidation is a crucial process in the aforementioned 

process. Essentially lipid peroxides are collectively termed oxylipins and serve as precursors for 

the synthesis of signal molecules. This entails the role of hydroxyl fatty acids and oxygenated 

derivatives of fatty acids, known as oxylipins (Guschina and Harwood, 2006). Initially the term 

“oxylipin“ was proposed to encompass polyunsaturated fatty acid metabolites formed by 

reaction (s) involving one or more steps of mono - or di - oxygenase catalyzed oxygenation, 

thus including metabolites of different chain length and eicosanoids (Bernart et al., 1993). 

Generation of these oxylipins follow the major biosynthetic pathway known as the lipoxygenase 

pathway (LOX). Formation of a family of non - heme iron containing fatty acid dioxygenases 

which catalyze the regio - and stereospecific insertion of molecular oxygen into PUFA’s 

ultimately leads to the generation of fatty acid hydroperoxides (Blee´, 2002; Lang, 2007).  

Generally, green algae metabolize C18 acids at C - 9 and C - 13 positions, principally using 

lipoxygenases with an n - 6 specificity (Guschina and Harwood, 2006). The terrestrial 

acidophile, Dunaliella acidophila, was described to contain methyl (12R) - hydroxyl - (92, 13E, 

15Z) - octadecatrienoate, methyl (9S) - hydroxyl - (10E, 12Z, 15Z) - octadecatrienoate and 

methyl ricinoleate [methyl (12R) - hydroxyl - (9Z) - octadecenoate) subsequent to methylation of 

the acidic lipid mixture. Two LOX - derived hydroperoxides were detected from the chlorophyte 

Ulva conglobata (Lang, 2007), namely, (9R, 10E, 12Z) - 9 - hydroperoxy - 10,12 - 

octadecadienoic acid ((9R) - HPODE) and (9R, 10E, 12Z, 15Z) - 9 - hydroperoxy-10 ,12 ,15 - 

octadecadienoic acid ((9R) - HPOTE), as well as other compounds such as (8Z) - 8 - 

heptadecenal and (8Z, 11Z, 14Z) - 8, 11, 14 - heptadecatrienal.  As a result, these oxylipins 

lead to the hypothesis that PUFA’s such as α - linolenic acid (ALA) and linolenic acid (LA) were 

converted to 2 -, 9 - and 13 - hydroperoxides which were then subsequently converted into C - 

17, C - 9 and C - 6 aldehydes (Lang, 2007). Furthermore, the freshwater green alga Chlorella 

pyrenoidosa is known as a source of 9 - and 13 - HPODE isomers which are present in an 

equal ratio and hydroperoxide lyase activity (Lang, 2007). In spite of the growing interest in 

oxylipins, little is known about the role of oxylipin metabolism. However, an increase in 



 

sequence information from genome sequencing projects allow for the use of biochemical and 

molecular tools for the characterization of new LOX pathways and related enzymes. 

 

1.2.5  Factors affecting lipid production in algae 

 

1.2.5.1  Nitrogen metabolism 

 

Lipids have served as bioindicators of the physiological state and origin of organic material in a 

body of water. Total lipid content of Dunaliella viridis remains relatively unaffected when 

exposed to nitrogen deficiency, yet the lipid class composition of the micro - organism does 

change. This is, however, coupled to a specific level of carbon dioxide supply. It is observed 

that at a level of 1% CO2, rather than the conventional atmospheric level, the main lipid reserve, 

triacylglycerides, accumulated in high amounts. Studies by Gordillo et al., (1998) showed an 

increase from 1 to 22% of triacylglycerides when D. viridis was exposed to 1% CO2 under 

nitrogen deficiency. Atmospheric levels of CO2 slightly decreased the amount of total lipid 

content. These findings also state that lipid class composition may vary for cell cultures in 

exponential growth as opposed to those in the stationery phase. Nitrogen starvation caused the 

opposite result in the content of fatty acids. High levels of CO2 promoted an elevated amount of 

fatty acids to be produced and in contrast, atmospheric levels of CO2 decreased the production 

of fatty acids. Both of the aforementioned conditions promoted the syntheses of hydrocarbons, 

wax esters and sterols. Hydrocarbons are suggested to be end products of the fatty acid cycle 

metabolism and their presence reflect an extreme physiological case when they are not used 

as substrates to provide metabolic energy in the form of ATP. Under these CO2 conditions, a 

lipidic synthesis pathway would be taken as a carbon sink as carbon incorporation is forced and 

because of nitrogen deficiency, carbon skeletons are not incorporated into proteins to allow the 

cell to grow (Gordillo et al., 1998).  

 



 

1.2.5.2   Phosphate starvation  

 

Studies by Khozin - Goldberg and Cohen (2006) reveal that under phosphate deprivation, cells 

of the freshwater eustigmatophyte, Monodus subterraneus, increase in 

diacylglyceroltrimethylhomoserine (DGTS) and digalactosyldiacylglycerol (DGDG). Under 

phosphate limitation, cell division and chlorophyll synthesis were greatly retarded. However, 

when the micro - organism was grown in phosphate - free medium, the cell number doubled 

after 4 days of cultivation. This indicates that the intracellular phosphate was sufficient for at 

least one cell division. In the phosphate - deprived cells, the phospholipid content decreased 

drastically whilst the content of triacylglycerols increased. This phenomenon observed is similar 

to that induced by nitrogen starvation (Khozin - Goldberg and Cohen, 2006).  

 

1.2.5.3   Temperature, light intensity and salinity 

  

The effect of temperature on lipid metabolism by different algal species would differ. For 

Botyrococcus braunii, the optimal growth temperature is approximately 23°C and at 

temperature higher than optimal, lipid content decreases. Varying photoperiods have been 

reported to affect fatty acid production in marine microalgae. Vladislav and Jaromir (1994) 

reported that photoperiod could be one of the factors that trigger hydrocarbon production. 

Studies on photoperiod conducted by Qin (2005) have shown no significant difference in algal 

growth or lipid production. However, they did show that light intensity does affect the production 

of hydrocarbons. Chirac et al., (1985) reported that low illumination reduced hydrocarbon 

synthesis. B. braunii has a narrow range of light intensity for growth. At very low illumination (30 

W/m2), growth was inhibited and at light intensities above 100 W/m2, photoinhibition had also 

occurred thus, decreasing lipid content.  

B. braunii not only survives in freshwater environments, but also adapts to salinity variations. 

Qin (2005) showed that a moderate increase in salinity (< 0.25 M NaCl) influenced lipid content. 

Approximately 0.5 M NaCl inhibited algal growth, whereas high mortality occurred upon 



 

exposure to 0.7 M NaCl. A study by Va`zquez - Duhalt and Arredondo - Vega (1990) reported 

that the lipid composition could be altered by salinity. This provides a tool to influence algal 

biomass and lipid composition.  

 

1.3 Lipid - associated proteins 

 

1.3.1 Oleosins and caleosins 

 

Oleosins are alkaline proteins associated with the oil bodies which range from 15 to 30 kDa in 

size. Originally, oleosins were identified by immunocytochemistry and characterized in terms of 

size by subcellular fractionation (Frandsen et al., 2001). Studies have shown that approximately 

5% of the oleosin is associated with endoplasmic reticulum segments which lie in close 

proximity to the oil bodies (Frandsen et al., 2001). A novel feature of oleosins is the central 

hydrophobic stretch of 72 uninterrupted residues. This allows for the formation of a hairpin 

structure that penetrates the surface phospholipid monolayer of the oil body and into the matrix. 

Found amongst this stretch are three proline residues and one serine residue which form the 

exclusive feature known as the “pro knot“ (Hsieh and Huang, 2004; Murphy, 2004). Two 

oleosins isoforms, which are known to be immunologically distinct from each other, are found in 

diverse angiosperms whilst only one oleosin is found in gymnosperms (Frandsen et al., 2001). 

These proteins are suggested to be involved in the stability of the lipid body, in their metabolism 

and synthesis. They shield the phospholipids and in doing so thereby prevent contact between 

the phospholipid surfaces of adjacent oil bodies. Coalescence and aggregation of the oil bodies 

in the cytosol are alleviated due to their negatively charged surfaces which are influenced by 

the oleosin (Frandsen et al., 2001). Hence, oil body stability is thus due to steric hindrance and 

electrical repulsion. The complexity of the oil body coat is not fully understood as initially the 

oleosins were the only well - characterized proteins associated with the oil body. However, this 

was until the recent discovery, by immune - labelling, of three minor proteins in sesame seed oil 

bodies differentiated as Sop1, Sop2 and Sop3 (Frandsen et al., 2001). Sesame Sop1 was 
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Figure 1.6. Diagram of an oil body

  and 3: sesame seed oil minor proteins
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(Frandsen et al., 2001). Site - directed mutagenesis of three proline residues to leucine 

confirmed the paramount role of the “proline knot“ in accumulation of oil bodies. Originally 

believed to be involved in the insertion into the endoplasmic reticulum (ER), the central 

hydrophobic domain of the “pro knot“ is now known to serve as a targeting signal instead. 

 

1.3.2 Plastid lipid - associated proteins (PLAPs) 

 

Originally thought to be functional in the storage and stabilization of lipidic pigments in 

chromoplasts, these proteins which are exclusive habitants of plastids are now regarded as 

being far more useful. The alga, Dunaliella bardawil, was shown to contain similar lipid 

associated proteins in the triacylglycerol / carotenoid globules. As in the case with oleosins in 

seeds, trypsinized cleavage of the protein localised on the plastoglobuli led to the coalescence 

of the globules hence implicating PLAPs in the role of stabilization of plastid lipidic bodies 

(Murphy, 2004). Apart from being the predominant component in the triacylglycerol / carotenoid 

- rich fibrils and globules in chromoplasts, these minor proteins are also found in chloroplasts 

and elaioplasts (Murphy, 2004). Whilst there is no obvious homology between the conserved 

regions of PLAPs and other lipid - associated proteins, such as oleosins and caleosins, there 

are several interesting motifs that may be significant in their lipid - binding properties. For 

example, localised in the middle of the protein are two non - polar regions of 16 and 22 

residues, respectively, each of which is flanked by relatively polar regions. Structurally this 

reveals the potential to form integrating transbilayer or monolayer - associated domains. In 

consideration of their lower abundance, PLAPs are less likely to be involved in structural roles 

but rather in other aspects of lipid - body function or possibly in intra - plastidial lipid trafficking 

(Murphy, 2004). 

 

 

 



 

1.4 Endoplasmic reticulum (ER) and oil body synthesis 

 

Synthesis of oil bodies and their constituent phospholipids, triacylglycerides and oleosins 

occurs in the endoplasmic reticulum (ER). Continuous accumulation of TAG at a region of the 

ER allows for the budding of an oil body enclosed by a monolayer of phospholipid (Figure 1.7). 

This budded oil body is stabilized by the inclusion of oleosins onto its surface. Via the signal - 

recognition particle (SRP) pathway (Hsieh and Huang, 2004), the ribosome - mRNA with the 

nascent oleosin peptide is guided to the ER. Translation of this oleosin mRNA in an in vitro 

system is enhanced with the addition of microsomes, whilst inclusion of SRP consequently 

retards the aforementioned action (Hsieh and Huang, 2004). When transformed with an oleosin 

gene, Saccharomyces cerevisiae (yeast) synthesizes and targets the oleosin similar to yeast oil 

bodies (Hseih and Huang, 2004). When the transformed yeast strains are defective in SRP 

components, the oleosin is not targeted to the oil bodies and are subsequently proteolyzed. The 

nascent oleosin polypeptide synthesised or being synthesised assumes a topology on the basis 

of its hydrophobic or hydrophilic interaction with the phospholipid bilayer, whilst the central 

hydrophobic stretch buries itself in the hydrophobic acyl portion of the bilayer. Oleosins ought to 

be on the cytosolic side of the ER to be able to diffuse to the budding oil bodies. An N - terminal 

ER targeting peptide from a non - oleosin protein attached to the N - terminus of an oleosin, 

produced via gene cloning, can pull the N - terminal portion of the oleosin but not the 

hydrophobic stretch (with or without the C - terminal portion) into the ER lumen. This is probably 

due to the interaction between the hydrophobic stretch and the acyl moieties of the 

phospholipid bilayer which proves to be too strong to allow for the insertion of the oleosin into 

the lumen (Hsieh and Huang, 2004). This modified oleosin can be incorporated into the ER but 

will not be inserted into the oil bodies. As the newly synthesised oleosins and TAGs on the ER 

diffuse to and converge at the budding oil bodies, a gradient of enrichment of the 

aforementioned components exits. This concentration gradient exists from the point of 

synthesis to the budding oil body, and explains the immunocytochemical observation that more 

oleosins are present in the ER near the budding oil bodies (Hseih and Huang, 2004). 

 



Figure 1.7.  Diagram showing the biosynthesis of TAG. 
  (http://www.uky.edu/~dhild/biochem/20/fig10_20.png
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ii. Spectrophotometry of oil - associated pigment extracts, thin layer chromatography of 

hexane - oil extracts and profiling of fatty acid methyl esters using gas chromatography.  

iii. Polyacrylamide gel - electrophoresis and quantification of protein extracted from oil.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER TWO 

 

MATERIALS AND METHODS 

 

2.1 Experimental algae and culture media 

 

The green microalgae Chlorella vulgaris CCAP 211/11B and Dunaliella primolecta CCAP 11/34 

of the Culture Collection of Algae and Protozoa (UK), were provided by Professor Faizal Bux, 

Durban University of Technology, Durban, SA. C. vulgaris CCAP 211/11 B was isolated by 

Beijerink in 1890 from freshwater in Delft, Holland 

(http://www.ccap.ac.uk/strain_info.php?.Strain_No=211/11B). D. primolecta CCAP 11/34 is of 

marine origin, isolated by F. Gross in 1936 off the coast of Plymouth, Devon, UK 

(http://www.ccap.ac.uk/strain_info.php?Strain_No=11/34). The seed cultures were axenically 

cultivated (2.2) and maintained routinely in autotrophic BG11 medium (pH 7.1) or BG11 control 

medium excluding nitrates to bring about a culture growth impediment or induction of stress 

(Appendix A). BG 11 medium was devised from the American Type Culture Collection (ATCC) 

‘616 Medium’ (Chinnasamy et al., 2009) and is subsequently referred to as test medium while 

the variant lacking nitrates is referred to as control medium. All experiments conducted herein 

were done in triplicate.  Cultures that were harvested, and not used immediately, were freeze - 

dried and stored in a freezer at -20   ̊C.  

 

 

 

 

 



 

2.2 Axenic cultivation of C. vulgaris and D. primolecta 

 

2.2.1 Starter culture preparation and maintenance 

 

C. vulgaris and D. primolecta growth was activated by inoculating 50 ml batches of BG11 

medium and BG11 control medium excluding nitrates (2.1) in 250 ml Erlenmeyer flasks with 3 

ml of respective seed. The seed cultures were grown for 7 days at 28 °C in a temperature 

controlled laboratory. A 16 : 8 h dark - light photoperiod was considered to be the optimum light 

regime to sustain algal growth  

(http://www.marine.csiro.au/microalgae/methods/Light%20Physical%20Units.html).  

Triplicate seed cultures were prepared by inoculating 50 ml of BG11 and BG11 medium 

excluding nitrates with 5 ml of culture in 250 ml Erlenmeyer flasks. The light intensity of 5400 

lux was measured using a Major Tech light meter, Model MT 940, (Major Tech); this assisted in 

the correct positioning of the lights to ensure the specified intensity of approximately 86 µmol 

photons m-2 sec-1 was achieved. This was established with the use of two 18 watt Phillips cool 

white tubes and two Phillips Genie energy saver bulbs of 11 and 14 watts. In addition to the use 

of the electric lights, the culture samples received natural sunlight from a north facing window to 

aid their growth. illuminance conversion of “1 foot candle = 10.8 lux” and “1000 lux = 16 µmol 

photons m-2  sec-1” was taken from the website of the Australian National Algae Culture 

Collection - Methods 

(http://www.marine.csiro.au/microalgae/methods/Light%20Physical%20Units.html). 

 

2.2.2 Growth culture preparation and maintenance 

 

Approximately 3 to 5 ml of the 50 ml starter culture (2.2.1) was added to 300 ml water batches 

to achieve an inoculum size of 107 cells/ml, this was done by means of cell counting using a 

haemocytometer. Once the appropriate volume of the inocula were established, culture of the 



 

same volume was added to 300 ml of BG11 and BG11 control media in separate 500 ml 

Erlenmeyer flasks. At this time of inoculation (T0), and subsequently every 3 or 4 days, 4 ml 

medium of each flask was removed and analysed (2.3).  

 

2.3 Analyses of cultures 

 

From the growth culture media, 4 ml aliquots were removed at T0 (2.2.2) and every 3 or 4 days 

to routinely analyse the growth of C. vulgaris and D. primolecta in the stressed and unstressed 

media (Appendix A). This was done until the stationary period had been attained. Following the 

removal of the inocula, fresh medium of the same volume and type was used to replenish the 

withdrawn aliquot as to accommodate for the headspace created by removing the media. The 

addition of the fresh media was to accommodate for the headspace created by the withdrawal 

samples, thereby maintaining consistency in the air volume above the medium. This certainly 

resembles a fed batch system and was adopted in both test and control media devoid of 

nitrates. The maintenance of headspace is critical in standardizing CO2 and oxygen 

requirements in the light-dark growth cycle. Culture growth was analysed in terms of cell 

number, pH and OD680 nm measurements.  

 

2.3.1 Cell number determination  

 

In accordance with the technique established by Rao et al. (2007), cell counts per ml of sample 

were achieved using a haemacytometer (Neubauer Improved Bright Line, Superior) at 40X 

magnification. A dilution of 10-1 was employed in cases where high cell numbers made counting 

cumbersome. Microsoft Excel 2007 (Microsoft) was used to generate a plot of cell number/ml 

versus time using average data values. Further analyses were done by generating a plot 

showing the relationship between algal number and optical density (OD680nm). The % dead cells 

was estimated using 10 µl of sample plus 10 µl of 0.01 % w/v Loeffler’s methylene blue (Gurr, 



 

BDH Ltd., Poole, UK) stain. The mixture was left standing for 10 minutes and followed by an 

estimation of dead cells which had taken up the dye to stain blue.  

 

2.3.2 Optical density (OD) 

 

Algal growth was monitored , every 3 or 4 days, by optical density measurements at 680 nm 

(Lee et al., 1998). Uninoculated BG11 medium (pH 7.4) was used as a blank sample against 

the withdrawn aliquots. Optical density values versus time were plotted using Microsoft Excel 

2007 (Microsoft).  

 

2.3.3 pH 

 

Centrifugation at 10000 rpm ( Appendix B: G force) for 10 minutes in an Eppendorf centrifuge 

5424 (Eppendorf) yielded cell - free supernatants which were subjected to pH measurement 

using a Hanna pH meter (Hanna, USA), calibrated with standards of pH 4, 7 and 9 (Merck) at 

25 °C. This was routinely every 3 or 4 days until the stationary phase was attained.  

 

2.4 Harvesting of microalgae 

 

2.4.1 Centrifugation and freeze - drying  

 

At the onset of stationary phase, which was established by a decline in the cell count, algal 

samples (those used in the routine analyses) were harvested to prevent a further decline in cell 

numbers. Triplicate cultures were decanted into three separate sterile 500 ml centrifuge bottles 



 

and pelleted at 5000 rpm  (Appendix B: G force) for 15 minutes at 4 °C using a Beckman 

Coulter Avanti J-2 XPJ centrifuge (Beckman) fitted with a JA-10 rotor. Subsequently, the 

supernatants were discarded and the pellets were re - suspended in vials with 20 ml of distilled 

water with a further addition of 10 ml to transfer any residue. These vials were pre - weighed 

using a bench - top Pioneer Ohaus fine balance. They were then subjected to liquid nitrogen 

freezing for 5 minutes prior to being placed in a Virtis Benchtop K freeze - dryer which was 

operated for 48 hours at - 70 ºC to dry the cell pellet. Weights of the algal samples were 

determined gravimetrically.  

 

2.5 Disruption and extraction of cell lysates 

 

2.5.1 Hydrocarbon yield 

 

Extraction of the algal cells was achieved by disrupting the algal biomass with a mortar and 

pestle, using n - hexane (Merck) as an extraction solvent (Miao and Wu, 2006; Halim et al., 

2013).The extraction procedure was selected on the basis that it was applied successfully to a 

species of Chlorella. Cells (in pellet form) were ground to a paste at random intervals which 

required addition of 2 ml n - hexane before being transferred to a 2 ml Eppendorf tube and 

centrifuged at 5000 rpm (G force reference: Appendix B) for 5 minutes. Supernatants were 

transferred to glass test tubes, each fitted with a metal cap. The pellets were re - suspended in 

2 ml n - hexane using a Genie 2 vortex (Genie) prior to being ground further. This process was 

repeated several times until the residue converted from light green to grey and assumed a clay 

- like texture. The hexane - oil supernatants were then transferred to pre - weighed conical 

flasks and subjected to rotary evaporation using a Buchi rotary evaporator (Buchi). The mass 

was then determined gravimetrically. The determination of the % yield of algal oil - hydrocarbon 

mixture was as follows: 

 



 

% yield    =  oil - hydrocarbon mass / dry algal biomass x 100 

 

2.5.2 Chlorophyll fraction  

 

To approximately 1 ml of algal oil, 1.5 ml of 99.5 % (v/v) methanol (Merck) was added to re - 

suspended the hydrocarbons (Rao et al., 2007). This was centrifuged at 5000 rpm (G force: 

Appendix B) for 1 minute. The suspension was then analyzed by thin layer chromatography 

(2.6.1) and spectrophotometry (2.6.2). 

 

2.5.3 Carotenoid fraction 

 

Approximately 1.5 ml of acetone was added to 1 ml of algal oil to extract the carotenoids (Rao 

et al., 2007). This suspension was centrifuged at 5000 rpm (G force: Appendix B) for 1 minute 

prior to being analyzed by thin layer chromatography (2.6.1) and spectrophotometry (2.6.2). 

 

2.6 Analyses of organic extracts 

 

2.6.1 Thin layer chromatography (TLC) 

 

TLC experiments were performed on aluminium silica gel 60 plates (20 x 20 cm) (Merck) which 

were prepared by etching nine spots 4 cm from the bottom of the plate. Each sample lane was 

separated by a spacer approximately 1.5 cm wide to avoid samples mixing with each other in 

the event of expansion of the sample spot diameter during chromatography. The liquid samples 

that were applied to the individual lanes were:  



 

1. Sunflower oil (Flora, SA) [ 20 µl in 100 µl chloroform] 

2. Olive oil (Santagata, SA) [ 20 µl in 100 µl chloroform] 

3. Evening primrose oil (Vital capsule, Vital, SA) [ 20 µl in 100 µl chloroform] 

4. Norwegian salmon oil (Vital capsule, Vital, SA) [ 20 µl in 100 µl chloroform] 

5. L - α - dioleoylphosphatidylethanolamine (DOPE) (Sigma Chemicals Co.) [10 µg/µl] 

6. D.  primolecta algal oil  from culture of test medium [ approx. 5 µg in 300 µl chloroform] 

7. C.  vulgaris algal oil from culture of test medium [approx. 5 µg in 300 µl chloroform] 

8. D. primolecta algal oil from culture of control medium [approx. 5 µg in 300 µl 

chloroform] 

9. C.  vulgaris algal oil from culture of control medium [approx. 5 µg in 300 µl chloroform] 

 

Algal oil samples (6 - 9 above) were extracted using hexane (2.5.1), dried by rotary evaporation 

and taken up in 300 ml of chloroform. Similarly, carotenoid and chlorophyll fractions (2.5.2; 

2.5.3) were analyzed by applying the following liquid samples in individual lanes;  

 

1. D. primolecta algal oil (test medium) extracted in acetone 

2. D. primolecta algal oil (test medium) extracted in methanol  

3. C. vulgaris algal oil (test medium) extracted in acetone  

4. C. vulgaris algal oil (test medium) extracted in methanol 

5. D. primolecta algal oil (control medium) extracted in acetone 

6. D. primolecta algal oil (control medium) extracted in methanol 

7. C. vulgaris algal oil (control medium) extracted in acetone 

8. C. vulgaris algal oil (control medium) extracted in methanol 

 

Plates were air - dried and exposed to a running solvent containing 50.5 ml of hexane - diethyl 

ether - acetic acid (35:15:0.5 v/v/v) (Gurr and James, 1980). Plates were immediately placed 

into a pre - equilibrated elution tank and the solvent was allowed to travel within 4 cm from the 

top. Thereafter, the plates were air dried and exposed in an iodine chamber followed by 

spraying with 50 % (v/v) H2SO4 for visualization of the migrated components. The plates were 

developed by heating gently on a flat hotplate in a fume hood.  



 

2.6.2  Spectrophotometry 

 

2.6.2.1  Chlorophyll spectrum 

 

From the 99.5 % (v/v) methanol and oil supernatant mixture (2.5.2), 0.5 ml was removed and 

dissolved in twice its volume of 99.5 % methanol in one of a pair of matched glass 

microcuvettes (QS 1000). The absorbance spectrum of pooled extracts was measured between 

400 - 700 nm using a Shimadzu spectrophotometer Model UV - 160A (Shimadzu) using 1.5 ml 

99.5 % methanol as a blank.  

 

2.6.2.2  Carotenoid spectrum 

 

Approximately 0.5 ml of acetone was added to the oil supernatant and acetone mixture (2.5.3) 

and dissolved in twice its volume of acetone in one of two matched glass cuvettes (QS 1000). 

The absorbance spectrum of the pooled extracts was measured between 400 - 700 nm 

(2.6.2.1) using 1.5 ml of pure acetone to zero the spectrophotometer.  

 

 

 

 

 

 

 



 

2.7 Confocal microscopy of algal cells 

 

2.7.1 Nile red staining 

 

Stationary phase algal cells of both test and control media were stained with nile red (Sigma 

Chemicals Co.) at a final concentration of 1.6 mg/ml, from a stock of 4 mg/2.5 ml DMSO 

(Merck, FRG) (Chen et al., 2009). An aliquot of 7 µl was placed onto a clean glass slide, over 

which a coverslip was sealed in a central position with cosmetic nail varnish. Images were 

acquired using a Zeiss LSM 710 Axio observer Z1 microscope (Zeiss) and a 63X oil immersion 

lens objective with a numerical aperture setting of 1.4. Slides were viewed immediately to avoid 

fading of the dye from exposure to light. For neutral lipid - specific detection of nile red 

fluorescence, the 488 nm argon excitation laser was used in combination with a 516 to 547 nm 

band pass filter. The nile red signal for phospholipids was captured using a laser excitation 

wavelength of 514 nm and the emission was captured between 580 - 615 nm (Fowler and 

Greenspan, 1985). Chlorophyll fluorescence was captured using a helium - neon 633 nm laser 

excitation line and the emission was recorded between 639 - 721 nm. Micrographs were 

merged and individual fluorescent components pseudo - coloured using Zen 2008 software 

(Carl Zeiss). Individual wavelength scanning and the use of the lambda stack facility allowed for 

addition of individual fluorescent components in each frame. This data was correlated with 

fluorescent intensity and emission wavelength plots of the various stained components. 

 

2.7.2 Bodipy staining 

 

Stationary phase cells were prepared for viewing as described (2.7.1), stained with bodipy 

505/515 (Sigma Chemicals Co.) at final concentration of 1.24 mg/ml (from a stock of 6.2 

mg/5ml of DMSO) (Cooper et al., 2010). According to Cooper et al. (2010), the emission 

wavelengths of phospholipids are unknown. They reported the use of the 488 nm laser to excite 



 

the bodipy dye which exhibited moderate red autofluorescence from endogenous chlorophyll 

and carotenoid molecules. Chlorophyll fluorescence was detected using a 514 nm argon 

excitation laser and a 588 to 753 nm band pass filter. Similarly, bodipy signal for lipidic 

fluorescence was captured using a 488 argon nm excitation laser and the emission was 

captured between 500 to 580 nm. This allowed for the visualization of the spectrally distinct 

green fluorescence of lipidic bodies. Spatial overlap of the lipidic bodies and chloroplasts 

results in a yellow fluorescence as acquired in the merged micrographs using the Zen 2008 

software.  

 

2.8 Extraction and analyses of protein from microalgal oil 

 

2.8.1 Extraction of protein from oil 

 

Sunflower (Flora) and Norwegian salmon oil (Vital capsule) were included in the protein 

extraction procedure to compare protein associated with algal oil. Algal, salmon (Vital oil 

capsule) and sunflower (Flora) oils of 400 µl each were mixed with an equal volume of n - 

hexane. Two hundred microlitres of each oil - hexane mixture were subject to protein extraction 

separately (Wang et al., 2009), using an equal volume of the following extractants:  

 

i. 10 % w/v sodium dodecylsulphate (SDS) (Merck) 

ii. 6 M urea (Merck) 

iii. 10 % w/v SDS plus 6 M urea (Merck). 

 

The mixtures were contained in Eppendorf tubes and penetrated into a flat polystyrene 

platform. The platform was affixed onto the vibrating stub of a Genie vortex (Genie) and shaken 

at moderate speed for 72 hours at “room temperature”. The tubes were centrifuged for 5 

minutes at 5000 rpm (G force: Appendix B), followed by removal of the upper aqueous phase. 



 

2.8.2 Protein quantification  

 

Protein concentrations of the algal oil samples were approximated using the Bio - Rad RC - DC 

protein assay (Bio - Rad) and estimated using a linear regression fit to the BSA standard curve. 

A standard curve was generated using the microfuge tube assay protocol by preparing, in 

triplicate, six dilutions of a bovine serum albumin (BSA) standard of 1.4 mg/ml (Bio - Rad) 

ranging from 1 µg/ml to 10 µg/ml. Distilled water minus BSA was used as the control. The 

colorimetric assay entailed adding 125 µl RC reagent I to 25 µl of each standard into a clean, 

dry microfuge tube which was then vortexed and incubated at room temperature for 1 minute. 

Subsequently, 125 µl RC reagent II was added to the sample, vortexed and then microfuged at 

10000 rpm (G force: Appendix B) for 5 minutes. Inversion of the tube allowed for the 

supernatant being discarded and 127 µl reagent A´ was added to each tube. Tubes were then 

incubated for 5 minutes at room temperature and vortexed before proceeding with the addition 

of 1 ml of DC reagent. Samples were incubated for 15 minutes at room temperature, followed 

by mixing using a vortex and reading of the absorbance against the control at 750 nm.  

 

2.8.3 Protein profiling  

 

Aqueous aliquots of 5 µl from the extracted algal oil samples, including 7.5 µl of sunflower and 

salmon oil standards were separately solubilised in 1:1 volume sample buffer which constituted 

the following; 1.2 ml of 0.5 M Tris - HCl, pH 6.8; 1.0 ml glycerol; 2.0 ml of 10 % (w/v) SDS; 0.5 

ml of 0.1 % (w/v) bromophenol blue and 4.8 ml deionised water (Appendix A). Prior to use, 50 

µl β - mercaptoethanol was added to 950 µl of buffer in an Eppendorf tube which constituted 

the SDS reducing sample buffer. Broad range unstained SDS - PAGE standards (Bio - Rad) 

and samples were diluted 1:20 in the reducing buffer, which was then inserted into a flat 

polystyrene platform and immersed in a 95 °C water bath for 4 minutes. Samples were run on a 

mini - PROTEAN Tetra Cell SDS polyacrylamide gel electrophoresis system using mini - 

PROTEAN TGX 10 % w/v precast gels (Bio - Rad, USA) (Berkelman et al., 2009). The 10 X 



 

electrode (running) buffer, pH 8.3, (Appendix A) constituted 7.5 g Tris base; 36 g glycine, 2.5 g 

SDS which was added to 250 ml deionised water. For the electrophoresis run, 50 ml of the 10 X 

running buffer was diluted with 450 ml deionised water. On each gel, 10 µl of the samples were 

loaded per well and run at 80 V for 150 minutes or until the dye front reached near the bottom 

of the gel. Standards of equal volume to the samples were also run on each gel and 

polypeptides were visualized using coomassie blue R - 250 staining solution (0.1 w/v %) and 

silver staining (Appendix A). Standard curves were generated by plotting the logarithm of the 

molecular weight of each standard versus relative migration distance (UKZN Biochemistry, 

1992 undergraduate practical manual). The relative migration distance was determined as 

follows:  

 
Relative migration distance =  distance of protein migration (mm)  X  length of gel before staining (mm) 
    length of gel after destaining (mm)       distance of dye migration (mm)  

 

     
The molecular weight of the purified protein was estimated by extrapolation of a standard curve 

which presented a negative slope. Linear regression was used to adjust the curve and the 

antilog function revealed the molecular weight values. 

 

2.9 Derivatization and analyses of fatty acid methyl esters (FAMEs)  

 

2.9.1 Derivatization of FAMEs 

 

Fatty acid methyl esters were derived from the hexane extracted hydrocarbon oil fractions 

(2.5.1). Based on the separation of components by thin layer chromatography, it was presumed 

that the major source of fatty acids is the acylglycerol fraction. Based on an average theoretical 

molecular weight for fatty acid groups acylated to glycerol, namely 870 (Montes D’ Oca et al., 

2011), the derivatization reactions were set up as follows in terms of molar ratio; 30 : 1 : 0.2 



 

CH3OH - lipid - H2SO4, respectively. The mixture was treated at 60 °C for 4 hours in an orbital 

shaker - incubator (Polychem Supplies) set at 200 rpm. Following incubation, the reaction 

mixture was cooled in ice to enable quenching. The reaction mixtures were dried in an oven 

(Elektro Helios) and the residue weighed and diluted with 1 ml of hexane. The fatty acid methyl 

esters of C. vulgaris and D. primolecta were determined using gas chromatography (2.9.2). 

 

2.9.2 Analyses of fatty acid methyl esters (FAMEs) by gas chromatography  

 

The fatty acid profiles were determined using a Shimadzu GC - 2014 (Shimadzu) with 

autosampler AOC - 20s. Using the linear velocity mode and column SP 2380 - FAME (30 m 

length x 0.25 mm id. x 0.25 µm film thickness), the parameters were as follows: flow rate: 1.32 

ml/min., injector: SPL - 2014, 250 °C, split injection 1:100, injection volume: 1 µl, with a total 

analysis time of 25 minutes and detector temperature of 260 °C. The carrier gas used was 

nitrogen (N2) and an oven temperature programme of initial temperature of 60 °C was held for 2 

minutes, followed by a rate increase of 10 °C per minute to reach 160 °C and thereafter a rate 

increase of 7 °C per minute to reach 240 °C. The tentative identification of fatty acids was 

achieved using the retention times of standards listed by the NIST library and an internal 

standard, methylated heptadecanoic acid (C17:0) (10 mg/ml hexane) (Sigma Chemicals Co.).  

Approximately 1 µl of internal standard was mixed with the algal oil samples to achieve a total 

injection volume of 2 µl.  

 

 

 

 

 

 

 

 



 

CHAPTER THREE 

 

RESULTS AND DISCUSSION 

 

3.1 Growth dynamics of algal cultures 

 

3.1.1 Cell density  

 

Typically the axenic growth of algal cultures can be represented in five phases; the lag phase, 

exponential or logarithmic phase, growth decline phase, stationary phase and death phase. As 

shown by growth curve representations (Figures 3.1 and 3.2), from day 0 to 4, propagation 

began with relatively slow growth as seen by the smaller increments in cell number. Initially 

when introduced to an environment, algal cells display the growth phase known as the lag or 

induction phase which is associated with the physiological adaptation of the cells with regard to 

their metabolism. Within this adjustment period, enzymes and metabolites required for cell 

division increase, as is the case involving other cellular processes. The duration of this phase is 

dependent on several factors including inoculum size and time required for the synthesis of new 

enzymes essential to metabolize substrates present in the medium.  

The logarithmic phase of the cultures was characterized by an exponential increase in the 

number of cells per unit time. In this phase, cell density can be expressed as a function of time t 

in accordance with the logarithmic function 

(http://www.fao.org/docrep/003/w3732e/w3732e06.htm): 

 

 

 

 



 

Ct = C0 . emt 

 

Where, Ct and C0 express the cell concentrations at time t and 0, respectively and m expressing 

the growth rate which is primarily dependent on the species, temperature and light intensity. 

Without any hindrance, growth can occur at a constant doubling rate as to increase the cell 

number and population at each consecutive time period. The ecological adaptation of the test 

species can be best analyzed within this phase especially when in an experimental 

environment. Completion of the exponential growth phase (day 14) is brought about by the 

onset of nutrient depletion and consequent waste accruement.   

Within the period of 14 - 32 days and 14 - 28 days of growth for Chlorella vulgaris and 

Dunaliella primolecta, respectively, the inhibitory environment impedes a further elevation in cell 

number, resulting in a phase of decline, followed by a levelling out of the growth response 

curve. This relatively constant value is due to the increasing rate of algal growth which is 

counteracted by the mortality rate. During this period, the number of dead cells which had 

consequently taken up methylene blue greatly increased (Figures 3.1 and 3.2). In addition to 

nutrient depletion which leads to the stationery phase, the accumulation of toxic by - products 

may also impede active growth. Progression of the stationery phase results in the death phase 

in which the conditions become detrimental to the survival of cells. At the onset of the death 

phase, algal cells were immediately harvested (2.4) to alleviate further decline in the cell 

number. It is also known that the stored lipids are most abundant when in the advanced 

stationery phase (Lv et al., 2010). However, in the case of D. primolecta, clumping of cells 

occurred at approximately 28 days of growth in BG11 test media, hence all experimental 

procedures (2.3) were terminated as cell counting proved to be cumbersome and difficult to 

achieve reliable counts. In spite of this, the stationery phase was still assessed using optical 

density reading at 680 nm and sufficient oil was extracted from D. primolecta cells to enable 

further analyses. The precise causes of clumping in this flagellated microalga require further 

investigation. In yeast, similar clumping or “flocculation” may be influenced by cell outgrowths 

called fimbriae which provide functional groups implicated in Ca2+ - bridges between cell 

aggregates (pers.comm. Gupthar, A. S. 2012).  



 

No visible growth pattern was observed with the control algal cultures. The exclusion of nitrates 

from the media correlated with adverse growth involving both C. vulgaris and D. primolecta 

(Figures 3.1 and 3.2). As nitrogen is the primary source of the metabolic activities of the cell, it 

is therefore evident that algae are “stressed” when exposed to nitrogen - limiting conditions 

(Bigogno et al., 2002; Qin, 2005; Guschina and Harwood, 2006; Khozin - Goldberg and Cohen, 

2010; Lv et al., 2010). Dunaliella tertiolecta showed loss of cell protein and chlorophyll when 

grown in nitrogen - deficient conditions which subsequently affected both the photosynthetic 

rate and cell division (Geider et al., 1993). 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3.1. Cell density (cells/ml) of Chlorella vulgaris growth in BG11 test and BG11 nitrate 

deficient control media over time (days). 

 

 

 

 

Figure 3.2. Cell density (cells/ml) of Dunaliella primolecta growth in BG11 test and BG11 

nitrate deficient control media over time (days). 
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3.1.2 Optical density 

 

In keeping with the trend of the algal growth phases (3.1.1) the turbidity measured at OD680 nm 

was directly proportional to the cell number. Figures 3.3 and 3.6 reveal that the test cultures 

displayed the most turbidity during the logarithmic phase owing to the exponential growth of 

cells. On the basis of the data generated by the control cultures, no significant pattern of growth 

could be detected or linked to increases in turbidity. The deficiency of nitrates correlated with 

“stress” among algal cultures and inability to grow actively. Regression equations (R2) were 

established for plots OD680 nm versus cell density. Theoretically, the aforementioned equation is 

utilized in order to determine the relationship, if any, between the X and Y axes. A non - linear 

relationship is evident by a regression value closer to 0.0 and a horizontal best - fit line that 

passes through the mean of all the Y values. Conversely, a value closer to 1.0 and a best - fit 

line, which passes through all the points to form a straight line graph with no evidence of 

scatter, represents a directly proportional relationship between the X and Y axes. The 

regression values of the plots of OD680 nm versus cell density (Figures 3.4 - 3.8) were close to 

1.0 indicating a virtual proportional relationship.  

 

 

 

 



 

 

 

Figure 3.3. Optical density of Chlorella vulgaris growth in BG11 test and BG11 control 

media. 

 

 

 

 

Figure 3.4. Relationship between OD680nm and algal cell count (cells/ml) of Chlorella vulgaris 

grown in BG11 test medium. 
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Figure 3.5. Relationship between OD680nm and algal cell density (cells/ml) of Chlorella 

vulgaris grown in BG11 control medium. 

 

 

 

 

Figure 3.6. Optical denisty of Dunaliella primolecta grown in BG11 test and BG11 control 

media. 
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Figure 3.7. Relationship between OD680nm and algal cell count (cells/ml) of Dunaliella 

primolecta grown in BG11 test medium. 

 

 

 

 

Figure 3.8. Relationship between OD680nm and algal cell count (cells/ml) of Dunaliella 

primolecta grown in BG11 control medium. 

 

 

R² = 0.842

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

C
el

l n
u

m
b

er
 (

ce
lls

  x
 1

07
/ m

l)

OD680nm

R² = 0.929

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

C
el

l n
u

m
b

er
 (

ce
lls

 x
 1

07
/ m

l)

OD680nm



 

3.1.3 Biomass determination 

 

Biomass of C. vulgaris and D. primolecta freeze - dried cultures were determined in triplicate. 

Photoautotrophic propagation of the algae produced average biomass yields of 0.15 g and 0.18 

g for C. vulgaris and D. primolecta test cultures (Tables 3.1 and 3.2), respectively. Growth is 

dependent on the utilization of energy for the conversion of CO2 into biomass. In this instance 

natural sunlight served as the sole source of energy without added glucose to promote rapid 

growth. In addition, it is known that algae utilize approximately 10 % of sunlight (Golueke and 

Oswald, 1968). These yields were sufficiently high to enable oil extraction (2.8) from the algae, 

given that the laboratory conditions of growth were different from that of the natural habitat.  

A relatively high doubling time generally corresponds to a low specific growth rate. The average 

doubling time for green algae is 24 hours, corresponding to an average growth rate (µ) of 0.69 

day−1. For Cyanobacteria, the average doubling time is 17 hours and the corresponding 

average growth rate (µ) is 0.96 .day−1 and for other taxa approximately 18 hours and a 

corresponding growth rate of 0.92 .day−1. The average doubling time calculated for Chlorophyta 

and other taxa with regard to growth rate all lie in the range 7 to 8 hours (µ = 2.08 - 2.38 day−1). 

In the case of species being grouped according to culture environment rather than taxa, no 

dominant trend in growth rates or lipid contents is seen. The average doubling time for marine 

or saltwater species is 19 hours (µ = 0.88 day−1), whilst freshwater species is 20 hours (µ = 0.83 

day−1) (Griffiths and Harrison, 2009). In this study, growth rates were not followed as the 

emphasis was biomass collection in the stationary phase of growth. However, it was evident 

from cell counts that the stressed nitrate - limiting conditions did slow the rate of growth 

(Figures 3.5 and 3.6). However, there is no correlation that increased cell density of the cultures 

yields a higher biomass (Figures 3.1 and 3.2; Tables 3.1 and 3.2). The determination of cell 

density proved to be difficult as cell clumping was especially prevalent in D. primolecta cultures. 

In this study, the determination of “biomass” reveals the measure of the constant mass of 

freeze dried cells (2.4.1). The total mass of different metabolites produced in these cells by the 

algae, as a result of the different growth conditions, may account for the lack of correlation 

between increased “cell density” and “biomass yield”.  



 

 

According to Cheng and Ogden (2011), nitrogen - limiting conditions impose stimulation in the 

production of lipids. For green algae, nitrogen deprivation has been reported to increase lipid 

content, with the exception of Chlorella sorokiniana which show similar trends (Griffiths and 

Harrison, 2009). Dunaliella salina was shown to produce lipids reaching a maximum as high as 

450 mg lipid/litre culture, as a result of high biomass growth. This halophilic marine microalga 

shows great potential to provide large quantities of hydrocarbons which contribute to biodiesel 

production (Weldy and Huesemann, 2007). In this study, the yields obtained for the controls of 

C. vulgaris and D. primolecta cultures (Tables 3.1 and 3.2) indicate that a higher biomass 

generates a greater oil yield (Tables 3.3 and 3.4).  

 

Table 3.1. Biomass yield recorded from test and control cultures of C. vulgaris 

Sample number Test Control 

 Biomass (g) Biomass (g) 

1 0.12 0.18 

2 0.19 0.14 

3 0.15 0.19 

Average ± SD 0.15  ± 0.035  0.17 ±  0.027 

SD: standard deviation  

 

Table 3.2. Biomass yield recorded from test and control cultures of D. primolecta 

Sample number Test Control 

 Biomass (g) Biomass (g) 

1 0.16 0.26 

2 0.19 0.39 

3 0.18 0.43 

Average ± SD 0.18 ± 0.015 0.36 ± 0.089 

SD: standard deviation 

 

Although the oil yields of the control cultures were higher than that of the test cultures, this 

increment appeared more apparent with D. primolecta cultures than C. vulgaris (Tables 3.3 and 

3.4). This could probably suggest that the growth conditions, especially the salt composition of 

BG 11 media, were more conducive for the propagation of D. primolecta as it is a saltwater 



 

species, compared with the freshwater alga C. vulgaris. Complete characterization of the 

photosynthetic apparatus of Dunaliella tertiolecta, in response to nitrogen - deficient conditions, 

has been demonstrated by LaRoche et al. (1993). This limitation in the growth environment of 

the alga leads to alterations in its photosynthetic efficiency, which decreases as is shown by a 

lower biomass yield, and pigment composition. It has also been reported that cell size 

increases under nitrogen - depletion conditions (Rabbani et al., 1998).  

 

3.1.4 pH 

 

In the initial period (0 - 7 days) of the growth cycle when C. vulgaris and D. primolecta were first 

introduced to BG 11 test and BG 11 control media, the pH of the cultures remained unchanged 

at 7.4 (Figures 3.9 and 3.10). Thereafter an increment in the pH of the test algae was observed 

suggesting that the cultures produced waste products of an alkaline nature. The control cultures 

displayed a trend opposite to that of the test algae in that the pH decreased. Currently, there is 

no published literature to explain the decline in pH of the control cultures. However, it can be 

speculated that the nitrate deficiency prompted the accumulation of more acidic metabolites. 

The deficiency of nitrates in the control media imposed greater stringency for survival. Cell 

death appeared to be more prominent as a direct result of the depletion of available nitrogen 

resources (Figures 3.1 and 3.2). 

 

 



 

 

Figure 3.9. Changes in pH of Chlorella vulgaris cultivation in BG11 test and BG11 control 

media. 

 

 

 

 

Figure 3.10. Changes in pH of Dunaliella primolecta cultivation in BG11 test and BG11 

control media. 
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3.2 Analyses of the oil - hydrocarbon fraction 

  

3.2.1 Determination of oil - hydrocarbon mass 

  

Microalgal enzymes and pathways that trigger and control the accumulation of storage 

triacylglycerol (TAG) have not been well established at the molecular level. The first genetic 

engineering effort to manipulate algal lipid production was conducted in the diatom Cyclotella 

cryptica and this was accomplished by over - expressing the endogenous gene encoding acetyl 

- CoA carboxylase (ACCase) (Khozin - Goldberg and Cohen, 2010). Initially it was 

demonstrated that an increase in ACCase activity played an important role in the induction of 

TAG accumulation in cells of the aforementioned nutrient - deprived alga. However, an over - 

expression of ACCase did not have a significant effect on lipid synthesis in either C. cryptica or 

another diatom, Navicula saprophila. Nitrogen depletion induces ultra - structural changes in 

the cells of Chlamydomonas reinhardtii such as the reduction of stacked thylakoid membranes. 

This is accompanied by the accumulation of starch granules (Wang et al., 2009) and the 

appearance of lipid droplets or oil bodies in such cells (Khozin - Goldberg and Cohen, 2010).  

In cultures where nutrients are abundant, linolenic acid (C18:3) constitutes 33.2 % of the weight 

of the cells of C. vulgaris, whilst in nitrogen - starved cells it makes up 39.6 % (Chen et al., 

2010). In keeping with literature reports that nitrogen - deficient conditions promote an increase 

in oil production, the hydrocarbon - oil yields obtained from the control cultures were higher 

than that of the cultures grown in BG11 medium (Tables 3.3 and 3.4). C. vulgaris and D. 

primolecta control cultures yielded hydrocarbon - oil masses of 0.0040 g and 0.0051 g, 

respectively, with the latter alga producing double the amount of oil - hydrocarbon in a nitrate 

deficient environment rather than when grown in nitrate enriched BG 11 medium (Tables 3.3 

and 3.4). C. vulgaris, being a freshwater chlorophyte, displayed a lower biomass yield and 

hence, only a slight increment in the oil - hydrocarbon production when exposed to nitrogen - 

depleted conditions (3.1.3). The overall yields of both algae were relatively low; however, 

cultivation was conducted in a photoautotrophic environment without an added carbon source 

to enhance growth (3.1.3). Lv et al. (2010) reported that cells are known to adapt themselves at 



 

the time of inoculation to an unfamiliar environment and may not assimilate nutrients. This 

suppresses cell division but promotes lipid accumulation.  

 

3.2.2 Oil - hydrocarbon yield 

 

Don - Hee et al. (1998) reported that oil - hydrocarbon production in Dunaliella salina displays a 

close relation to the growth stages of cultivation. Crude oil - hydrocarbon levels remain constant 

irrespective of a decline in the cell density. When exposed to a 12:12 light/dark cycle, cell 

growth and oil - hydrocarbon production were shown to increase during the light phase, 

followed by a subsequent decrease in the dark period.  

In this study, the amount of oil - hydrocarbon extracted was greater under nitrogen - depleted 

BG 11 medium; as yields were 0.02 % and 0.01 % higher than that recorded from BG 11 

growth media for C. vulgaris and D. primolecta, respectively (Tables 3.3 and 3.4).  According to 

Volova et al. (2003), the greatest content of intracellular oil - hydrocarbons, making up 12 - 13 

% of cell weight, in a Botryococcus sp. corresponded to a physiologically active state of culture 

at the end of the exponential growth phase and the onset of the phase of decline.  

 

Table 3.3. Oil - hydrocarbon yield of C. vulgaris test and control cultures 

 Test culture Control culture 

Sample 
number 

Oil - 
hydrocarbon 
mass (g) 

Biomass 
(g) 

Oil - 
hydrocarbon 
(%) 

Oil - 
hydrocarbon 
mass (g) 

Biomass 
(g) 

Oil - 
hydrocarbon 
(%) 

1 0.0038 0.12 3.17 0.0028 0.18 1.55 

2 0.0055 0.19 2.895 0.0052 0.14 3.71 

3 0.0018 0.15 1.20 0.0039 0.19 2.05 

Average ± 
SD 

0.0037 ± 0.002  2.42 ± 1.067 0.0040 ± 
0.001 

 2.44 ± 1.131 

SD: standard deviation 

 

 



 

Table 3.4. Oil - hydrocarbon yield of D. primolecta test and control cultures 

 Test culture Control culture 

Sample 
number 

Oil - 
hydrocarbon 
mass (g) 

Biomass 
(g) 

Oil - 
hydrocarbon 
(%) 

Oil - 
hydrocarbon 
mass (g) 

Biomass 
(g) 

Oil - 
hydrocarbon 
(%) 

1 0.0014 0.16 0.875 0.0036 0.26 1.38 

2 0.0028 0.19 1.47 0.0035 0.39 0.90 

3 0.0033 0.18 1.83 0.0082 0.43 1.91 

Average ± 
SD 

0.0025 ± 0.001  1.40 ± 0.483 0.0051 ± 
0.003 

 1.41 ± 0.505 

SD: standard deviation 

 

3.3 Thin layer chromatography (TLC) and spectrophotometry 

 

Constituents of algal oil - hydrocarbon samples were separated by TLC, and identified 

tentatively using standards, where available, and a lipid manual (Gurr and James, 1980). The 

solvent n - hexane - diethyl ether - acetic acid (35:15:0.5 v/v/v) which is capable of resolving 

ordinary and α - hydroxyl fatty acids (Heftmann, 2004), was used successfully in this study to 

achieve separation of various oil components (Figure 3.11). For the visualization of the 

separated lipids, the use of iodine vapour and sulphuric acid, followed by charring (2.6.1) 

enabled detection of low quantities of various components. Iodine vapour is suggested to have 

a high affinity for unsaturated and aromatic compounds (Schneiter and Daum, 2006), including 

the large amounts of polyunsaturated fatty acids found in algal oils (Carvalho and Xavier 

Malcata, 2004). Positive standards for the microalgal carotenoid and chlorophyll species were 

not available to enable a comparison involving the cell extracts of both components. 

The lipid composition of algae is associated with both the structural integrity and physiological 

nature of the organism. This includes the functionality of the membrane - embedded assembly  

associated with the photosynthetic electron transport system in thylakoids or mitochondrial 

respiration. (Vieler et al., 2007). The dominant lipid class of diatoms under light limitation is 

known to be monogalactosyldiacylglycerol (MGDG), which is present excusively in chloroplasts, 

particularly in thylakoid membranes. Digalactosyldiacylglycerol (DGDG) and 

sulfoquinovosyldiacylglycerol (SQDG) are also restricted to chloroplasts, whereas 



 

phospholipids also occur in non - chloroplast membranes (Mock and Kroon, 2002). In the green 

alga, Chlamydomonas reinhardtii, the lipids phosphatidylcholine (PC) and phosphatidylserine 

(PS) are not present in their membranes.  The predominant membrane is a betaine lipid, 

diacylglyceryltrimethylhomoserine (DGTS). Guschina and Harwood (2006) reported a very high 

content of eicosapentaenoic acid (EPA) in the marine green alga, Chlorella minutissima. As a 

result of this high content, EPA is found at the sn - 1 and sn - 2 positions of DGTS, in contrast 

to the asymmetric distribution in other algae. In this chlorophyte, PC was the dominant 

phospholipid and the level of DGTS showed a marked rhythmic fluctuation with time which was 

inversely correlated with the level of MGDG, the other major lipid in this alga. Analysis of the 

thin layer chromatograms, in this study, showed different compounds and migration patterns 

between the test and control algal extracts. Some of these compounds could be identified 

tentatively using the standards listed, and guidelines presented by Gurr and James (1980) 

although published literature on oil - hydrocarbon extracts from microalgae grown in nitrate - 

deficient media is limited.  

The spectra presented (Figures 3.12 - 3.15) reveal λmax for chlorophyll fractions of both algae 

which were detected close to 665 nm. The intensity of the peak generated was not as elevated 

as expected, probably due to the content of the present chlorophyll and low concentration 

extracted. Chlorophyll content is adversely affected by depletion in nitrogen as the pigment is 

structurally arranged to contain four nitrogen atoms which becomes cumbersome for the cells 

to synthesize in the presence of low nitrogen concentrations (Pisal and Lele, 2005). However, 

the spectra generated for chlorophyll fractions of test media were similar for both algae (Figures 

3.12 and 3.13) and comparable with the spectra produced under stress conditions (Figures 

3.14 and 3.15). Likewise, the carotenoid spectra generated (Figures 3.12 - 3.15) reveal peaks 

close to 665 nm. However, as per literature the aforementioned peaks have been shown to 

occur at 663 nm (Garcia et al., 2007).  Under nitrogen deficient conditions, Dunaliella sp. 

cultures have shown to yield higher peaks as a result of the excessive formation of free radicals 

under stress (Ben - Amotz et al., 1989; Pisal and Lele, 2005). β - carotene contains antioxidant 

properties known to quench free radicals, restoring physiological balance. Additional β - 

carotene is synthesized for the protection of the cells and the continuation of cell growth. 

Hence, the concentration of the aforementioned pigment is markedly increased in the case of 

nitrogen deficiency (Pisal and Lele, 2005). This was not quantified in the current study. 



 

 

 

 

 

 

 

 

 

 

Figure 3.11. TLC image showing separation
evening primrose oil, salmon oil, DOPE [R 
hexane (test); C: Chlorella vulgaris 
algal oil in hexane (control
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TLC image showing separation of lipids. A: Standards 1 - 5 (sunflower oil, olive oil, 
oil, salmon oil, DOPE [R - L]); B:  Dunaliella primolecta
Chlorella vulgaris algal oil in hexane (test); D: Dunaliella primolecta

algal oil in hexane (control); E: Chlorella vulgaris algal oil in hexane (control).
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Figure 3.12. TLC image showing,

methanol (right) with corresponding spectra of carotenoid (A) and chlorophyll (B) 

fractions, respectively.
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TLC image showing, Dunaliella primolecta algal oil (test) extracted in acetone (left) and 

with corresponding spectra of carotenoid (A) and chlorophyll (B) 

fractions, respectively. 
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Figure 3.13. TLC image showing 

methanol (right) with corresponding spectra of carotenoid (A) and chlorophyll (B) 

fractions, respectively. 
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TLC image showing Chlorella vulgaris algal oil (test) extracted in acetone (left) and 

with corresponding spectra of carotenoid (A) and chlorophyll (B) 

fractions, respectively.  
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Figure 3.14. TLC image showing 

  methanol (right) with corresponding spectra of carotenoid (A) and chlorophyll (B) 

  fractions, respectively.
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Figure 3.15. TLC image showing Dunaliella primolecta 

methanol (right) with corres

respectively. 
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Dunaliella primolecta algal oil (control) extracted in acetone (left) and 

methanol (right) with corresponding spectra of carotenoid (A) and chlorophyll (B

Wavelength (nm) (λ) 

Wavelength (nm) (λ) 

ed in acetone (left) and 

ponding spectra of carotenoid (A) and chlorophyll (B) fractions, 



 

3.4 Protein profiling 

 

3.4.1 Protein quantification 

 

The approximate quantity of protein present in the algal oil - hydrocarbon extract was estimated 

using the Bio - Rad RC - DC kit and bovine serum albumin (BSA) to construct standard curves 

(Figures 3.16 - 3.19). Curves were also generated, accommodating SDS and/or urea as these 

substances could possibly act as interfering agents (2.8.1). As per the RC - DC protein kit, the 

protein concentrations (Tables 3.5 and 3.6) were as extrapolated from the respective standard 

curves (Figures 3.16 - 3.19) which showed differences due to supplements of either SDS or 

urea or both.  

 

Table 3.5. Protein concentration of extracted algal oil samples  

 Protein concentration (µg/µl) 

 BSA standard 
curve 

BSA, SDS 
standard curve 

BSA, Urea 
standard curve 

BSA, SDS, Urea 
standard curve 

C. vulgaris (test) 1.93 ± 0.101 1.95 ± 0.005 1.92 ± 0.008 1.87 ± 0.009 

C. vulgaris (control) 1.88 ± 0.112 1.85 ± 0.111 1.74 ± 0.012 1.90 ± 0.010 

D. primolecta (test) 1.96 ± 0.140 2.23 ± 0.007 1.91 ± 0.017 1.93 ± 0.151 

D. primolecta (control) 1.95 ± 0.009 1.88 ± 0.009 1.94 ± 0.007 1.98 ± 0.143 

     

SD: standard deviation 

Values above indicate mean and standard deviation involving triplicate samples 

 

Table 3.6. Protein concentration of extracted oil standards 

 Protein concentration (µg/µl) 

 BSA standard 
curve 

BSA, SDS 
standard curve 

BSA, Urea 
standard curve 

BSA, SDS, Urea 
standard curve 

Sunflower oil 3.65 ± 0.123 3.71 ± 0.111 3.91 ± 0.143 3.68 ± 0.135 

Salmon oil 3.70 ± 0.121 3.73 ± 0.009 3.72 ± 0.136 3.82 ± 0.121 

     

SD: standard deviation 

Values above indicate mean and standard deviation involving triplicate samples 



 

For the algal oils, 10 µl of various extracted samples (2.8.1) were loaded per gel in order to 

attain approximately 20 µg of protein for detection. Likewise, 5 µl of extracted sunflower and 

salmon oil (2.8.1) were utilized to achieve a similar outcome.  

Among microalgae generally, manipulations such as the influence of dissolved nitrogen on the 

proximate composition of Dunaliella primolecta cells can lead to protein content reaching 20 to 

50 % of total dry weight (Uriarte et al., 1993). It has been reported that under these conditions, 

the protein content of D. primolecta from outdoor cultures that had not been acclimated to their 

nutrient regimes decreased from 50 % to 12 %. Following acclimation for three weeks, the 

minimum content dropped to 8 % and only reached a maximum of 40 % (Uriarte et al., 1993).  

 

3.4.2 Protein composition of the lipidic body 

 

Typically Chlamydomonas reinhardtii has been used in several studies relating to the isolation 

of genes and the identification of proteins involved in the assembly of the lipidic body. Khozin - 

Goldberg and Cohen (2010) purified a lipid droplet - enriched fraction from the C. reinhardtii 

and identified 16 proteins involved in lipid biosynthesis using mass spectrometry. These 

included acyl - CoA synthetases and acyltransferases, which play a significant role in the 

production of lipids and the transfer of acyl groups between the rough endoplasmic reticulum 

membrane and neutral lipids. A major protein, designated major lipid droplet protein (MLDP) 

was also isolated and its mRNA abundance appeared to correlate with the accumulation of 

TAG during the time course of nitrogen deprivation. This hydrophobic protein was recorded as 

being specific to the green algal lineage of photosynthetic organisms and displayed no similarity 

to oleosins. The functional significance of MLDPs was further examined by RNAi silencing in 

which an expression cassette containing the nitrate reductase (NIT 1) promoter, inducible by 

nitrogen starvation, was used in order to drive the expression of an MLDP genomic sense 

cDNA antisense RNAi hairpin. An increment in the average lipid droplet size was observed in 

the MLDP - RNAi lines, but the levels of TAG or rate of TAG mobilization upon nitrogen 

replenishment rendered no further change; thus indicating a structural role for MLDP in oil - 

body formation (Khozin - Goldberg and Cohen, 2010). In similar studies conducted by 



 

Moellering and Benning (2010), in which the lipid droplet size was analysed by the RNA 

interference silencing of an MLDP in the model alga, C. reinhardtii; a 27 KDa MLDP was 

identified as being predominant as it was based on a 10 - fold overabundance of spectral 

counts for its peptides. The inactivation of MLDP resulted in an increase in lipid droplet size. 

Despite an extensive screening in transgenic lines, expression of the MLDP gene could be 

reduced by only approximately 60 % in the best RNAi lines leading to a moderate yet significant 

increment in the size of the oil droplet of these lines. Repression of MLDP gene expression 

using this approach led to the changes in lipid droplet size yet no change in TAG content or 

metabolism was observed.  

Prior to subjecting the algal oil samples to SDS - polyacrylamide gel electrophoresis PAGE) in 

this study, protein was extracted from sunflower and salmon oils which served as reference 

samples. The samples were suspended in 10 % SDS, 6 M urea and 10 % SDS - 6 M urea 

mixture (Wang et al., 2009). Of these, proteins were only detected in extracts treated separately 

using 10 % SDS and 6 M urea (Figure 3.16). Sunflower oil extracts derived from SDS extraction 

produced bands of 198, 96, 70 and 58 KDa while urea treatment yielded a band of 200 KDa 

(Figure 3.16 , lanes D and E). Salmon oil treated with SDS and urea yielded bands of 195, 27 

KDa, and 198 KDa respectively, as well as common bands of 68 and 64 KDa (Figure 3.16, 

lanes B and C). These proteins may be intact or might be a dissociation of subunit structure. 

However, the combination of extractants SDS and urea, could have possibly been too harsh 

and may have denatured any protein in the sample, hence accounting for a lack of visible 

banding patterns (data not shown). Moellering and Benning (2010) used mass spectrometry to 

identify 259 proteins associated with the lipid droplet of the green alga Chlamydomonas 

reinhardtii but reported on the enrichment of a 27 KDa MLDP which was detected using 

polyacrylamide gels. In an earlier study, Vechtel and co - workers (1992) isolated among other 

proteins, 4 discrete polypeptides of 28, 26, 25 and 23 KDa associated with the lipid droplet of 

Eremosphaera viridis which was grown under conditions of nitrogen deficiency. It is evident 

from the literature that lipid - associated protein varies in different algal oils and may be 

implicated in the assembly of lipidic bodies.  

According to Wang et al. (2009),when protein - extracted lipidic bodies of C. reinhardtii were run 

on SDS PAGE gels, two protein bands of 20 and 16 KDa were detected using coomassie blue 



 

staining. However, no discrete bands of C. vulgaris or D. primolecta were detectable with 

coomassie blue or silver staining. The electrophoresis conducted in the current study generated 

smears which suggest that the proteins found in the algal oils lie in the range of 98 - 200 KDa 

and 200 -  58 KDa for C. vulgaris  and D. primolecta test cultures, respectively (Figure 3.17). 

For the algae grown in nitrogen - restricted media, these ranges were shown to be 200 - 115 

KDa. for the algal oils extracted in SDS and 200 - 95 KDa for the algal oils extracted in urea 

(Figure 3.18). A possible explaination could be that the proteins were denatured as a result of 

the harsh treatment of the oils, hence resulting in a smeared banding pattern for the test culture 

extracts in urea and for the control culture extracts in SDS and urea; and thus the attempt in 

idenfying protein of discrete size present in the algal oils (Figures 3.17 and 3.18) proved 

difficult. The use of combination extractants SDS and urea gave no results (data not shown).  

 

 

 

 

 

 

 

 

   



 

 

 

Figure 3.16. SDS PAGE gel: A: Bio 

SDS (lane B); C: salmon oil extracted with urea (lane C); 

E: sunflower oil extracted with urea (lane E).
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Figure 3.17. SDS PAGE gel: A: Bio 

extracted with urea 
C). 

 

 

 

 

 

 

 

 

 

 

A 

-200 

-116.25 

-97.4  

-66.2 

-45 

-31 

-21.5 

-14.4 

-6.5 

 

: Bio - Rad protein standards (lane A); B: C. vulgaris algal oil (test) 
 (lane B); C: D. primolecta algal oil (test) extracted with urea

B C 

200 KDa 

116.25  

97.4   

66.2  

45  

31  

21.5  

14.4  

6.5  

- 200 KDa - 200 KDa 

-98  

-58 

algal oil (test) 
ted with urea (lane 



    

Figure 3.18.  SDS PAGE gel: A: Bio 
(control) extracted with
urea (lane C); D: C. vulgaris
vulgaris algal oil (control) extract
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3.5 Analyses of fatty acid methyl esters (FAMEs) using gas chromatography 

 (GC) 

 

The genus Chlorella includes several species that vary in the amount and type of cellular lipids 

produced. The lipid content in cells of Chlorella vulgaris, Chlorella ellipsoidea and Chlorella 

pyrenoidosa constitute 14 - 22 , 4.49 and 2 - 11.9 (w/w) %, respectively (Montes D’Oca et al., 

2011). Johnson and Wen (2009) reported the heterotrophic microalga, Schizochytrium 

limacinum is capable of producing high levels of biomass and total fatty acid and has the 

potential of producing the omega - 3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) 

(C22:6 n - 3). This alga presents a relatively simple fatty acid profile comprising of myristic acid 

(C14:0), palmitic acid (C16:0), docosapentaenoic acid (C22:5) and docosahexaenoic acid 

(C22:6) as the major fatty acids.  

Marine microalgae are the major producers of omega - 3 PUFAs (polyunsaturated fatty acids), 

namely EPA (eicosapentaenoic acid) and DHA. The freshwater microalgae predominantly 

produce saturated or monosaturated fatty acids (Patil et al., 2007), which is known to be the 

ideal precursor of biodiesel (Khozin - Goldberg and Cohen, 2010). Dunaliella spp. produce of 

27 - 29 % saturated fatty acids and 71 - 73 % unsaturated fatty acids under conditions of 

nitrogen deficiency, with linolenic acid being the predominant unsaturated fatty acid (C18:3) 

(Chen et al., 2010). Analysis of the FAMEs extracted from the algal oils (Table 3.9) in this study 

revealed that saturated fatty acids were present solely (Table 3.8) in the freshwater alga, C. 

vulgaris when grown in nitrate - deficient medium (Figure 3.20). For the same alga grown in 

conventional BG 11 medium, 12.5 % of the fatty acids extracted were unsaturated (Table 3.8; 

Figure 3.19) whilst approximately 87.5 % represented saturated methyl esters. However, the 

marine alga, D. primolecta, displayed unsaturated fatty acid methyl esters of approximately 

13.9 % and 7.5 % of those extracted when grown in the test and control media, respectively 

(Table 3.8). For all the algal cultures, except the D. primolecta control culture, the internal 

standard (C17:0) showed the greatest peak (Figure 3.22) and therefore presented as the 

predominant fatty acid methyl ester in the mixture of algal oil (Table 3.8). The FAMEs extracted 

from the algal cultures were shown relative to the internal standard as these were based on 



 

peak area integration. This was expected due to the minute volumes of oil extracted from the 

algae as a result of the low biomass yields obtained. Analysis of the fatty acid profiles reveal 

the predominant fatty acid to be palmitic acid (C16:0) (Figure 3.19 - 3.22) in all the algal oil 

samples subjected to GC analyses (Table 3.9). D. primolecta control culture yield 

approximately 26 % of biodiesel content in the processed oil, a relatively high percentage when 

compared with the other algal cultures; which exhibited < 7 % biodiesel content. However, 

these yields are low as Johnson and Wen (2009) reported FAME content as high as 66.37 

(m/m) % when producing biodiesel from the microalga Schizochytrium limacinum (Johnson and 

Wen, 2009). A reason for low yields in the production of FAMEs in this study correlates with the 

low algal oil harvests (3.2.2). Listed in Table 3.7 are the names of the FAMEs extracted, n 

represents the location of the first double bond from the methyl end of the fatty acid chain along 

with the carbon number following this notation. The symbols “c” and “t” denote “cis” and “trans”, 

respectively in unsaturated fatty acids. 

Arachidonic acid (AA, 20:4ω6) is almost excluded from the lipids of freshwater microalgal 

species and in most marine species, it does not account for more than a few percent of total 

fatty acids. The only alga known to produce AA in significant quantities is Porphyridium 

cruentum (Bigogno et al., 2002). Under logarithmic growth, the major PUFA of this alga is EPA, 

but when exposed to unfavourable conditions, AA accumulates and accounts for 40 % of the 

total fatty acids. When present, long chain - PUFAs are predominantly located in the polar 

membranal lipids, whereas TAG (triacylglycerol) generally contains very little PUFAs as side 

chains (Bigogno et al., 2002).  

Using the following equation (Shimadzu application book, volume 4), the fatty acid methyl ester 

content C in % (m/m) present in the oils can be calculated as follows:  

 

C = ( Σ A)-AISTD  x  CISTD x VISTD   x 100 %  

      AISTD                      m 

 

Where,  

ΣA total signal area of all methyl esters from C14:0 up to C24:1 (15734000 μV*s) 



 

AISTD signal area of the internal standard heptadecanoic acid methyl ester C17:0 (2644200 

μV*s) 

CISTD concentration of the heptadecanoic acid methyl ester in the internal standard solution 

used (10 mg/mL) 

VISTD volume of the internal standard solution added (5 mL) 

m mass of the weighed biodiesel sample (250 mg) 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.19. Gas chromatogram of FAMEs derived from oil of unstressed 

 

 

Figure 3.20. Gas chromatogram of FAMEs derived from oil stressed 

Gas chromatogram of FAMEs derived from oil of unstressed C. vulgaris 

Gas chromatogram of FAMEs derived from oil stressed C. vulgaris cultures. 
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Figure 3.21. Gas chromatogram of FAMEs derived from oil of unstressed 

 

 

Figure 3.22. Gas chromatogram of FAMEs derived from oil of stressed 

Gas chromatogram of FAMEs derived from oil of unstressed D. primolecta

Gas chromatogram of FAMEs derived from oil of stressed D. primolecta 
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Table 3.7. Nomenclature of FAMEs extracted from algal oils 

Shorthand notation of algal oil Names of FAMEs 

C16:0 Palmitic acid methyl ester 

C17:0 Heptadecaenoic acid methyl ester 

C18:0 Stearic acid methyl ester 

C18:1nt trans-9-elaidic methyl ester 

C18:1nc Methyl cis-9-oleic methyl ester 

C18:2n6t Linolelaidic acid methyl ester or trans, trans-
octadeca-9,12-dienoic acid methyl ester 

C22:0 Docosanoic acid methyl ester 

 

Table 3.8. Percentage composition of individual fatty acids relative to an internal standard  

Algal 
culture 

Internal 
standard 
mixed in a 

% FAMEs extracted 

 C17:0 C16:0 C18:0 C18:1n9t C18:1n9c C18:2n6t C22:0 

Chlorella 
vulgaris 

(test) 
61.260 13.227 - 6.722 5.775 - 13.016 

Chlorella 
vulgaris 
(control) 

78.256 11.845 9.899 - - - - 

Dunaliella 
primolecta 

(test) 
69.698 16.370 - 6.458 - 7.474 - 

Dunaliella 
primolecta 
(control) 

31.125 53.332 8.001 3.414 - 4.128 - 

 

a) Internal standard of C17:0 of 1 µl was mixed in a total injection volume of 2 µl. The algal oil extract was 1 µl.  

 

Table 3.9. FAME content in % of algal oil 

  

C. vulgaris (test) 6.57 

C. vulgaris (control) 2.42 

D. primolecta (test) 5.87 

D. primolecta (control) 26.11 

 



 

3.6 Detection of lipids and other fluorescent components using confocal 

 microscopy 

 

3.6.1 Nile red staining of microalgal cells 

 

Nile red, 9 - diethylamino - 5H - benzo [α] phenoxazine - 5 -  one, is a dye that fluoresces in 

organic solvents and hydrophobic lipids. It is known to be fully quenched in water and is 

therefore considered to act as a fluorescent hydrophobic probe. Nile red is an uncharged 

heterocyclic molecule (Figure 3.23), which accounts for its solubility in organic solvents such as 

dimethylsulphoxide (DMSO) and methanol. Traditional analysis of lipid content has been 

accomplished by gravimetric determination, solvent extraction and the use of GC or HPLC. 

Chen et al. (2009) discovered that high neutral lipid content was obtained from the 

aforementioned methods but was not detectable by nile red staining in vivo. It was then 

speculated that the reason for this was due to the composition and structure of the rigid cell wall 

found in the algae which prevented the penetration of the dye. This was overcome by pre - 

exposure of the cells to chemicals that affected the integrity of the cell wall thus facilitating the 

penetration of nile red. Chen et al.  (2011) also reported the use of microwave pretreatment of 

cells to enhance nile red penetration in green microalgae. Disadvantages of the conventional 

techniques are that the steps required to both extract and derivatize the fatty acids for GC 

analysis are numerous and time - consuming. Also, a substantial amount of biomass must be 

cultured for the extraction and derivatization. If the accurate measurement of lipid content of the 

microalgal cells was possible in situ, the preparation time and amount of sample required would 

be reduced. Quantitation of lipids using dye fluorescence is however complicated by 

autofluorescence in most algal cells (Brennan et al., 2012). The use of nile red as a lipid -

soluble dye exhibits several advantages; these include the photostability of the dye, intense 

fluorescence in various organic solvents and staining ability in hydrophobic environments. The 

fluorescence maxima of nile red varied depending on the relative hydrophobicity of the 

surrounding environment (Fowler and Greenspan, 1985).  This allows the differentiation 

between neutral and polar lipids using the appropriate choice of the excitation and emission 

wavelengths which differ for the different dye solvents (http://en.wikipedia.org/wiki/Nile_red). 



 

The excitation and emission wavelengths for fluorescence of cellular neutral lipids using nile red 

are 530 nm and 575 nm, respectively (Chen et al., 2009). These results were recorded using 

DMSO as the solvent to stain microalgal cells. 

Chen et al. (2009) also revealed that nile red fluorescence was strongly influenced by 

temperature and duration of staining with high temperatures or lengthy staining periods leading 

to the quenching of the fluorescence. Under the experimental conditions of Chen et al., algal 

cells stained with nile red at 40 °C for 10 min were found to yield optimal neutral lipid - derived 

fluorescence. In this study, nile red - stained microscope slides were freshly prepared and 

immediately viewed under the microscope to prevent subsequent fading of the dye.  

 

 

 

Figure 3.23. Chemical structure of nile red (www.wikipedia/nile_red). 

 

3.6.1 Bodipy 505/515 staining of microalgal cells 

 

Bodipy (4,4 - difluoro - 1,3,5,7 - tetramethyl - 4 - boro - 3a,4a - diaza - s - indacene) is a 

fluorescent  lipophilic dye which can be used to monitor oil storage within algal cells (Cooper et 

al., 2010; Govender et al., 2012). It is composed of dipyrromethene complexed with a 

disubstituted boron atom (Figure 3.24). These dyes are typically recognized for their small 

Stokes shift, high environmentally - independent fluorescence quantum yields which can reach 

100 % in water and sharp excitation and emission peaks that contribute to the overall 



brightness and resolution. These attributes enables bodipy to be an essential tool in several 

imaging applications. In solvents of different polarity, the position of the absorption and 

emission bands are unaltered as a result of

orthogonal to each other (http://en.wikipedia.org/wiki/BODIPY).  

Lack of photodamage to processed cells suggests that bodipy 505/515 might be used in 

conjunction with FACS (fluorescence 

new lineages of algal cells with high lipid content. FACS measurements could possibly also be 

made in bodipy 505/515 - labelled algal cultures as the algal cells store different lipids in 

response to changes in environmental conditi

regime (Khozin - Goldberg and Cohen, 2006; Weldy and Heusemann, 2007; Chisti, 2007; 2008; 

Lv et al., 2010). This type of information may be significant in optimizing oil harvests at 

commercial algal farms (Cooper et al

 

 

Figure 3.24. Chemical structure of bo

 

3.6.3 Use of DMSO as a dye solvent

 

Algal cells characteristically comprise thick cell walls which, as a consequence impede the 

penetration of dyes and hence renders the staining process cumbersome (Cooper 

Therefore, DMSO is used as a vehicle to enhance and accelerate the permeation of dyes into 
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new lineages of algal cells with high lipid content. FACS measurements could possibly also be 

labelled algal cultures as the algal cells store different lipids in 

response to changes in environmental conditions such as temperature, nutrient load and light 
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et al., 2010). 
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Algal cells characteristically comprise thick cell walls which, as a consequence impede the 

penetration of dyes and hence renders the staining process cumbersome (Cooper et al., 2010). 

Therefore, DMSO is used as a vehicle to enhance and accelerate the permeation of dyes into 



 

these relatively difficult target cells. In this study, 0.800 ml and 0.625 ml of DMSO was used in 

conjunction with bodipy and nile red, respectively (2.7.1; 2.7.2). In spite of the capability of 

bodipy to stain lipidic bodies of varied morphological or topological diversity, DMSO is used to 

promote dye permeation in algae with thick cell walls, especially those embellished with 

delicate scales or thecal plates, (Cooper et al., 2010). This solvent enables good quality 

imaging and lipid detection in Dunaliella primolecta and Chlorella vulgaris. The penetration of 

nile red differs amongst algal species (Wang et al., 2009). Cooper et al. (2010) reported that 

high levels of DMSO (20 - 30 % v/v) at elevated temperatures (40°C) were used to permeate 

the algal cells with nile red. However, whether or not, the algae were capable of surviving at 

these temperatures was not reported. In this study, considerably lower levels of DMSO were 

used at “room temperature” of approximately 25 °C.  

 

3.6.4   Autofluorescence 

 

Algae are capable of exuding natural fluorescence from endogenous carotenoid molecules and 

chlorophyll (Cooper et al., 2010). This autofluorescence constrains the differentiation between 

natural and lipidic - dye emissions of light. Hence, manipulation of the confocal microscope is 

required in order to visualize and distinguish between the different forms of fluorescence as 

shown in the current study.  

 

3.6.4.1   Autofluorescence detection in algal chloroplasts 

 

Natural fluorescence is seen as a red hue (Figures 3.25 and 3.26) emitted by the endogenous 

chloroplasts. As stated by Cooper et al. (2010), the algal chloroplast is detected as “red” 

pigmentation. This pigmentation is the fluorescence exuded by the alga when unaided by the 

use of a dye. The detection of lipidic bodies necessitates staining with a dye as these 

organelles do not exhibit autofluorescence. This allows for the visualisation of characteristic 



 

fluorescent emissions which differs in phospholipid and neutral lipid - dye complexes and 

hence, the extent of accumulation of such lipidic bodies can be assessed. However, the 

differentiation of the lipids in the study was resolved further using TLC and GC analyses (2.6.1; 

2.9).  

Autofluorescence was captured in both stressed and unstressed cells of C. vulgaris and D. 

primolecta, as the nitrogen - deficient growth condition promotes the accumulation of lipidic 

bodies (2.2) (Lv et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 



 
    
 

 

 

 

 
Figure 3.25. Confocal Micrographs showing (A) Autofluorescence of unstressed cells of C. vulgaris. 

                                (B) Autofluorescence of stressed cells of C. vulgaris. 
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Figure 3.26. Confocal micrographs showing (A) Autofluorescence of unstressed D. primolecta cells. 
               (B) Split image of autofluorescence of stressed  
    D.primolecta cells (top left and bottom left) and * DIC 
    image of the chlorophyll (top right).  

 

* DIC: differential interference contrast (imaging) 
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As previously mentioned, the stressing of the algae was induced in order to create an 

environment of nitrogen deprivation. Under this condition, the algae are known to incorporate 

much of their endogenous nitrogen into its pigments (Figueroa et al., 2010).  In a habitat of 

sufficient nitrogen and other nutrients, algae are known to increase their rate of production of 

light - harvesting complexes, phycobilisomes and associated pigments. Hence, an increase in 

photosynthetic capacity is brought about as a result of an increase in photosynthetic pigments. 

The converse is apparent in that nitrogen depletion correlates with decreases in the rates of 

photosynthesis (Pinchetti et al., 1998; Voronova et al., 2009). Lv et al. (2010) confirmed that 

lipids do in fact accumulate in algal cells when grown in N - limiting conditions rather than in N -

enriched media. They reported that the N - depletion condition imposed a reduction in the 

cellular abundance of ACCase with a concomitant loss of the activity of the enzyme. Cell 

division almost ceased as cells accumulated lipids. These studies conducted by Lv et al. 

continued to reveal that moderate CO2 levels (1.0 %) induced the production of Chl a and 

accordingly enhanced the activity of ACCase, therefore promoting lipid accumulation.  

 

If the stressed conditions lower the rate of production of the photosynthetic apparati; then it 

would be expected that the amount of chlorophyll decreases and consequently the 

fluorescence emitted will be less intense. This hypothesis is supported by the graphical 

representations generated in this study (Figures 3.27 - 3.30) in which the intensity of 

fluorescence is lower in the stressed cells of D. primolecta alga rather than the unstressed. A 

split image (Figure 3.26) was acquired in which 1 track and 2 channels were opened to allow 

for the identification of the chlorophyll (red) (channel 1) and the *DIC image to be visualised. 

The use of 1 track means that the settings of the microscope will remain the same when 

detecting fluorescence in 2 channels. For this detection, a 488 - excitation filter and 415 - 726 

nm band pass filter were used to capture the natural fluorescence exuded. Cognizance should 

be taken that the red and green peak emissions do not indicate the presence of 2 different algal 

body components but rather chlorophyll detection at different locations in the algal cell (Figure 

3.30). Analysis of the graphical plots of C. vulgaris cells from the stressed and unstressed 

media revealed a similar intensity of autofluorescence yet sharper peaks were obtained in the 

former (Figure 3.27 and 3.28). The Argon 488 nm - excitation laser was used for both D. 



 

primolecta and C. vulgaris cells and the emissions were captured in the same wavelength 

range (Figures 3.31 - 3.34).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 3.27. Graphical representation of the intensity of autofluorescence (red hue) emitted by 

unstressed C. vulgaris 

 

 

Figure 3.28. Graphical representation of the intensity of autofluorescence (red hue) emitted by stressed

C. vulgaris cells at a range of 420 

 

 

Graphical representation of the intensity of autofluorescence (red hue) emitted by 
C. vulgaris cells at a range of 420 - 722nm. 

 

Graphical representation of the intensity of autofluorescence (red hue) emitted by stressed

cells at a range of 420 - 722nm. 

Graphical representation of the intensity of autofluorescence (red hue) emitted by 

Graphical representation of the intensity of autofluorescence (red hue) emitted by stressed 



Figure 3.29. Graphical representation of the intensity of autofluorescence
unstressed D. primolecta 

 

 

 
 
Figure 3.30. Graphical representation of the intensity of autofluorescence

stressed D. primolecta 

 

 

 

Graphical representation of the intensity of autofluorescence (red hue) emitted by 
primolecta cells at a range of 420 - 722nm. 

 

Graphical representation of the intensity of autofluorescence (red hue) emitted by 
D. primolecta at a range of 420 - 722nm. 

emitted by 

emitted by 



 

It is known that the fluorophores found in the chloroplast of algae emit fluorescence in the 

wavelength range of 415 - 726 nm (Chen et al., 2009). More specifically, chl a and chl b emit 

fluorescence in the ranges 500 - 550 nm and 550 - 640 nm, respectively (Chen et al., 2009). In 

a recent study conducted by Wang et al. (2009) various fluorescent components of 

Chlamydomonas reinhardtii were reported to give fluorescence in similar wavelength ranges. 

Peaks at approximately 655 nm and 670 nm were detected in the acquisition of natural 

fluorescence for C. vulgaris test and control cultures, respectively (Figures 3.27 and 3.28). 

Literature has also stated that chlorophyll fluorescence has been detected at a wavelength 

range of 650 - 694 nm (Wang et al., 2009; Moellering and Benning, 2010). Cooper et al. (2010) 

confirmed this finding when they reported chlorophyll fluorescence captured at 694 nm. It is 

widely known that each algal cell differs from the next and hence, likewise the fluorescence 

patterns obtained. According to the plots obtained (Figures 3.27 and 3.30), autofluorescence 

was detected as peaks at approximately 663 - 673 nm and 702 - 712 nm for cells of the 

unstressed D. primolecta alga (Figure 3.29). Similarly, peaks for the stressed alga were 

obtained at approximately 683nm (green fluorescence emission), 663 nm - 673 nm (red 

fluorescence emission) and 702nm (red fluorescence emission), respectively. The green and 

red peak emissions do not indicate different components but rather different regions chosen in 

the algal cell. The Zeiss LSM 710 Axio observer Z1 microscope with “smart setup” programme, 

accommodated chlorophyll fluorescence standards which enabled a comparison of similar 

fluorescence obtained in this study.  

A useful feature found in CSLM is the acquisition of a composite image showing fluorescence 

over the desired wavelength range. Wavelength scanning or lambda stack is a three -

dimensional dataset which comprises a collection of images that uses the same specimen 

subject to scanning at different wavelength bands, each which spans a limited region of the 

emission spectra (www.microscopyu.com/tutorials/flash/spectralimaging.html). The lambda 

stacks for D. primolecta and C. vulgaris revealed patterns in which strong autofluorescence is 

emitted at wavelengths corresponding to the peaks obtained in the associate graphical plots 

(Figures 3.31 - 3.34).  

 

 



 
 
Figure 3.31. Wavelength scanning of the autofluorescence pattern observed in unstressed 

C. vulgaris. 
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Wavelength scanning of the autofluorescence pattern observed in unstressed cells of 



 
 
 
Figure 3.32. Wavelength scanning of the autoflu

vulgaris. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wavelength scanning of the autofluorescence pattern observed in stressed

 

stressed cells of C. 



 

Table 3.10. Confocal parameters used for autofluorescence detection in C. vulgaris 
 

Unstressed C. vulgaris 

Confocal microscope setting Digital parameters 

 Microscope image Lambda stack and 
graphical 
representation 

Master gain 550 900 

Digital gain 1 1 

Digital offset 0 1 

Bit depth 8 8 

Pinhole 170.2 (1 AU) airy unit 176.3 (1 AU) airy unit 

Average number 2 2 

Frame size 512 x 512  512 x 512  

 

Stressed C. vulgaris 

Confocal microscope setting Digital parameters 

 Confocal 
image 

*DIC Lambda stack 
and graphical 
representation 

Master gain 561 550 900 

Digital gain 1.2 1 1 

Digital offset 1 1 1 

Bit depth 8 8 8 

Pinhole 52.6 (1 AU) 67.2 (1 AU) 176.3 (1 AU) 

Average number 2 4 2 

Frame size 512 x 512  512 x 512  512 x 512  

 
 
* DIC: differential interference contrast (imaging) 
 
 
 

 
 
 



 

Figure 3.33. Wavelength scanning of the autofluorescence pattern observed in unstressed
D. primolecta. 
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Figure 3.34. Wavelength scanning of the autofluorescence pattern observed in stressed cells of D. 

primolecta. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 3.11. Confocal parameters used for autofluorescence detection in D. primolecta 
 

Unstressed D. primolecta 

Confocal microscope setting Digital parameters 

 Microscope image Lambda stack and 
graphical 
representation 

Master gain 947 910 

Digital gain 1 1 

Digital offset 1 1 

Bit depth 8 8 

Pinhole 178.4 (1 AU) airy unit 170.1 (1 AU) airy unit 

Average number 2 2 

Frame size 512 x 512  512 x 512  

 

Stressed D. primolecta 

Confocal microscope setting Digital parameters 

 Red channel *DIC Lambda stack 
and graphical 
representation 

Master gain 844 840 900 

Digital gain 1 1 1 

Digital offset 1 1 1 

Bit depth 8 8 8 

Pinhole 56.1 (1 AU) 60 (1 AU) 56.1 (1 AU) 

Average number 2 4 2 

Frame size 512 x 512  512 x 512  512 x 512  

 
 

* DIC: differential interference contrast (imaging) 
 
 
 
 
 

 
 

 

 

 



 

3.6.5  Lipidic fluorescence detection 

 

Neutral lipids and phospholipids, unlike chloroplasts, do not exude a natural fluorescence but 

rather require the aid of a dye stain. The fluorescence hue emitted by the oil bodies is 

dependent on the dye used and type of lipid making up the oil body structure. 

 

3.6.5.1   Fluorescence of algal lipidic bodies using nile red dye stain 

 

The maximum wavelength of emission with neutral lipids is shorter than that shown by polar 

lipids and the fluorescent intensity is also higher than the latter when complexed with nile red. 

The fluorescence intensity of lipids composed of unsaturated fatty acids is stronger than that 

composed of saturated fatty acids (Kimura et al., 2004). Nile red undergoes a solvatochromic 

shift in fluorescence, emitting a yellow fluorescence after entering algal lipid bodies and 

thereby, becoming solvated by the neutral lipids in these organelles (excitation 450 - 500 nm, 

emission > 528 nm). When the dye is dissolved in more polar solvents, red fluorescence by 

phospholipids is given off at approximately 590 nm, following excitation at 515 - 560 nm. 

Depending upon the hydrophobicity of the solvent, the excitation and emission maxima of nile 

red fluorescence can vary over a range of 60 nm (Greenspan et al., 1985).  

Greenspan et al. (1985) reported that the emission wavelengths for the detection of neutral 

lipids and phospholipids were > 528 nm and > 590 nm, respectively. For the visualization of the 

aforementioned biomolecules, several channels (Tables 3.12 and 3.13) were opened and 

assigned specific band - pass filters. This allowed for the acquisition of a split image which 

permits the visualization of each component independently for identification and analytical 

purposes, as well as a composite image which demonstrates the assorted fluorescent 

components which can be superimposed on each other. For the detection of neutral lipids, a 

516 - 547 nm band pass filter was employed with a 488 nm excitation filter, as the excitation 

wavelength for triacylglycerol - rich lipids is 450 - 500 nm. Similarly, a 528 - 615 nm band pass 

filter was applied for the capture of fluorescence emitted by phospholipids fluorophores after 



 

being excited by a 512 nm excitation filter. For the identification of chlorophyll fluorescence 

(green fluorescence), a 633 nm laser was utilized for the excitation of the fluorophores and 

emission was captured employing a 639 nm band pass filter. As previously mentioned, staining 

with nile red reveals a yellow fluorescence for neutral lipids and a red fluorescent hue for polar 

lipids. However, autofluorescence is detected in the range of 415 - 726 nm (3.6.4.1), hence 

fluorophores overlap when capturing fluorescence emitted by the biomolecules of interest and 

the chloroplasts. The linear unmixing feature of the ZEN software utilizes a mathematical 

process whereby the fluorescent light can be re - allocated back to the correct channel. This 

software also allows for the fluorescent colours to be altered for example, when fluorescence is 

being captured with the use of several dyes. Pseudo - colouring is seen in the micrographs 

obtained from the unstressed C. vulgaris alga whereby the chlorophyll and neutral lipids are 

indicated by blue and green fluorescence, respectively (Figure 3.35). Using the image analysis 

programme, images taken in separate channels can be merged and assigned a specific colour. 

Many microalgal cultures divert from the tendency to grow as discrete single cells in suspension 

to as a flocculated mass of cells (Held and Raymond, 2011). This is evident by the stressed D. 

primolecta micrograph as this microalgal species is known to form clumps in the latter phase of 

its growth cycle (3.1.1) (Figure 3.38). The typical structure of lipid droplets is conserved in 

different species with a globular neutral lipid core enclosed by a phospholipid monolayer 

(Moellering and Benning, 2010). In addition, specific proteins are randomly integrated with the 

lipidic bodies and play vital roles in the droplet assembly, structure and function (Davidi and 

Pick, 2012). However, little is currently known at the cellular and molecular levels with regard to 

the mechanism of oil accumulation and this structure has yet to be confirmed in all green 

microalgae.  

 



Figure 3.35. Split fluorescence image of un
visualizing the phospholipids (t
and a composite image of all the fluorescence patterns (bottom right).

 

Split fluorescence image of unstressed C. vulgaris cells using nile red dye stain 
visualizing the phospholipids (top left), chlorophyll (bottom left), neutral lip

image of all the fluorescence patterns (bottom right). 
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Figure 3.36. Split fluorescence image of 
visualizing the phospholipids (top left), chlorophyll (top right), neutral lip
and a composite image of all the fluorescence patterns (bottom right).

 

 

 

 

 

Split fluorescence image of stressed C. vulgaris cells using nile red dye stain 
visualizing the phospholipids (top left), chlorophyll (top right), neutral lipids (bottom left) 

image of all the fluorescence patterns (bottom right). 
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Figure 3.37. Split fluorescence image of unstressed 
visualizing the phospholipids (top left), chlorophyll (top right), neutral lip
and a composite image of all the fluorescence patterns (bottom right).

 

 

Split fluorescence image of unstressed D.primolecta cells using nile red dye stain 
visualizing the phospholipids (top left), chlorophyll (top right), neutral lipids (bottom left) 

image of all the fluorescence patterns (bottom right). 

 

using nile red dye stain 
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Figure 3.38. Split fluorescence image of stressed 
visualizing the phospholipids (extreme top left), chlorophyll (top centre), neutral lipids 
(extreme top left), DIC i
fluorescence patterns (centre right). 

 

*DIC: Differential interference image.

 

 

 

 

 

 

 

Split fluorescence image of stressed D.primolecta cells using nile red dye stain 
visualizing the phospholipids (extreme top left), chlorophyll (top centre), neutral lipids 
extreme top left), DIC image on bottom left and composite image of all the 
fluorescence patterns (centre right).  

DIC: Differential interference image. 
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using nile red dye stain 
visualizing the phospholipids (extreme top left), chlorophyll (top centre), neutral lipids 

image of all the 



 

An analysis of the graphical representations reveal the peaks at which fluorescence is 

optimized, which are in keeping with the respective wavelengths reported by Fowler et al. 

(1987) and is currently used for tentative component identification. The general trend from the 

aforementioned plots illustrates peaks > 520 nm for neutral lipids, > 560 nm for phospholipids 

and > 600 nm for chlorophyll. These peaks are evident in the respective lambda stacks (Figures 

3.43 - 3.56) which allow for the acquisition of component related fluorescence to be captured 

over the range of 420 - 722 nm. According to the lambda stack of the stressed C. vulgaris alga 

(Figure 3.44), neutral lipid and phospholipid fluorescence is not seen as the intensity of 

fluorescence was too low; this is evident by the peaks generated in the corresponding graphical 

representation (Figure 3.40). 

The red, blue and green coloured peak emissions on the graphical representations do not 

indicate the specific algal components but rather the fluorescence captured at different 

locations of the algal cells (Figures 3.39 - 3.42). A specific colour indicates a particular region 

selected on the corresponding micrograph.  

 

 

 

 

 

 

 

 



Figure 3.39. Graphical representation of the intensity of fluorescence emitted by unstressed 

vulgaris cells using nile red dye at a range of 420

phospholipids and chlorophyll. 
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Graphical representation of the intensity of fluorescence emitted by unstressed 

using nile red dye at a range of 420 - 722nm showing 

phospholipids and chlorophyll.   
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Graphical representation of the intensity of fluorescence emitted by unstressed C. 

showing neutral lipids, 



 

Figure 3.40. Graphical representation of the intensi

vulgaris cells using 

phospholipids and chlorophyll
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Graphical representation of the intensity of fluorescence emitted by 

using nile red dye at a range of 420 - 722nm showing
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Figure 3.41. Graphical representation of the intensity of fluorescence emitted by unstressed 

primolecta cells using nile red dye at a range of 420

phospholipids and chlorophyll. 
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Neutral lipids

Graphical representation of the intensity of fluorescence emitted by unstressed 

using nile red dye at a range of 420 - 722nm showing neutral lipids, 

phospholipids and chlorophyll.  
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Graphical representation of the intensity of fluorescence emitted by unstressed D. 

showing neutral lipids, 



 

Figure 3.42. Graphical representation of the intensi

primolecta cells using nile red dye at a range of 420

phospholipids and chlorophyll.

 

 

 

 

 

 

 

 

 

 

Graphical representation of the intensity of fluorescence emitted by 

using nile red dye at a range of 420 - 722nm showing neutral lipids, 

phospholipids and chlorophyll. 
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Figure 3.43. Wavelength scanning of fluorescence pattern observed in unstressed C. vulgaris cells 

subject to nile red staining indicating fluorescent components neutral lipids, 

phospholipids and chlorophyll at 546, 585 and 673 nm, respectively. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3.44. Wavelength scanning of fluorescence pattern observed in stressed C. vulgaris cells 

subject to nile red staining indicating fluorescent component chlorophyll at 683 nm.  

 

 

 

 

 

 

 

 

 

 



 

Table 3.12. Confocal parameters for lipid detection in nile red stained C. vulgaris cells 

Unstressed C. vulgaris 

Confocal microscope setting Digital parameters 

 Red 
channel 

Green 
channel 

Blue 
channel 

Lambda and 
graphical 
representation 

Master gain 623 447 910 900 

Digital gain 1 1 1 1 

Digital offset 0 1 1 1 

Bit depth 8 8 8 8 

Pinhole 56.3 (1 
AU) airy 
unit 

52.2 (1 
AU) airy 
unit 

55.3 (1 
AU) airy 
unit 

51.4 (1 AU) 

Average number 2 2 2 2 

Frame size 512 x 512  512 x 512 512 x 512  512 x 512 

 

Stressed C. vulgaris 

Confocal microscope setting Digital parameters 

 Red 
channel 

Yellow 
channel  

Green 
channel 

Lambda stack 
and graphical 
representation 

Master gain 540 582 590 900 

Digital gain 1.2 1 1 1 

Digital offset 1 1 1 1 

Bit depth 8 8 8 8 

Pinhole 51.1 (1 
AU) 

63.5(1 
AU) 

59.6 (1 
AU) 

178.4 (1 AU) 

Average number 2 4 2 2 

Frame size 512 x 512  512 x 512  512 x 512 512 x 512 

 

 

 

 

 



 

 

 

Figure 3.45. Wavelength scanning of fluorescence pattern observed in unstressed D. primolecta 

cells subject to nile red staining indicating fluorescent components neutral lipids, 

phospholipids and chlorophyll at 546, 595 and 663 nm, respectively. 

 

 

 

 

 

 

 



 

 

 

Figure 3.46. Wavelength scanning of fluorescence pattern observed in stressed D. primolecta cells 

subject to nile red staining indicating fluorescent components neutral lipids, 

phospholipids and chlorophyll at 527, 595 and 663 nm, respectively.  

 

 

 

 

 

 

 

 

 

 



 

Table 3.13. Confocal parameters of lipid detection in D. primolecta subject to nile red  

  staining 

Unstressed D. primolecta 

Confocal microscope setting Digital parameters 

 Red 
channel 

Green 
channel 

yellow 
channel 

Lambda and 
graphical 
representation 

Master gain 1030 1030 947 900 

Digital gain 1 1 1 1 

Digital offset 4 4 1 1 

Bit depth 8 8 8 8 

Pinhole 56.1 (1 
AU) airy 
unit 

56.1 (1 
AU) airy 
unit 

56.1 (1 
AU) airy 
unit 

178.4 (1 AU) 

Average number 2 2 2 2 

Frame size 512 x 512  512 x 512 512 x 512  512 x 512 

 

Stressed D. primolecta 

Confocal microscope setting Digital parameters 

 Red 
channel 

Yellow 
channel  

Green 
channel 

*DIC Lambda 
stack 
and 
graphical 
represen
tation 

Master gain 1030 1030 638 951 900 

Digital gain 1.2 1 1 1 1 

Digital offset 1 1 1 3 1 

Bit depth 8 8 8 8 8 

Pinhole 51.1 (1 
AU) 

56.1 (1 
AU) 

56.1 (1 
AU) 

56.1 (1 
AU) 

178.4 (1 
AU) 

Average number 2 2 2 2 2 

Frame size 512 x 512  512 x 512  512 x 512 512 x 512 512 x 512 

 

* DIC: differential interference contrast (imaging) 
 
 

 

 



 

3.6.5.2       Fluorescence of algal lipidic bodies using bodipy 505/515 dye stain 

 

In contrast to nile red, this dye has a high quantum yield and accumulates in lipidic intracellular 

compartments by a diffusion trap mechanism (Cooper et al., 2010). Bodipy 505/515 has a high 

oil/water partition coefficient thereby granting it easier access to the cell organelles. The 

selective partitioning of bodipy into lipid bodies allows for the rapid identification and isolation of 

cells with high oil content relative to other cells within the same sample (Cooper et al., 2010; 

Govender et al., 2012). This isolation of algal cells with high oil content can be accomplished 

with the use of a fluorescent - activated cell sorter (FAC) (Brennan et al., 2012). This is an ideal 

method for isolation as it individually interrogates the cells in contrast to bulk fluorescent 

measurements which depend upon cell density. Cooper et al. (2010) used bodipy 505/515 as a 

stain for the visualization and monitoring of oil storage within live algal cells. They conducted 

analysis on various ‘green algae’ such as Chrysochromulina spp. and Prorocentrum spp. and 

reported that the dye serves as an excellent stain for the oil - containing lipid bodies in algae.   

 

Under the same wavelength (488 nm) utilized for the excitation of bodipy 505/515 dye, algal 

chloroplasts exude moderate red autofluorescence from endogenous chlorophyll molecules 

(3.6.4.1). Notably, the green emission spectrum of bodipy 505/515 is spectrally separate from 

algal autofluorescence. Lipidic bodies appear yellow (Figure 3.47) when they overlap spatially 

with chloroplasts. Unlike with the use of nile red, which enables the differentiation of algal 

components, bodipy fluorescence is currently known only to spectrally distinguish between the 

natural chloroplast autofluorescence and lipidic fluorescence (Figures 3.47 and 3.48).  

 

Cooper et al. (2010) stated that the spectral separation, as well as photostability of the bodipy 

505/515 fluorophore, permits confocal time - lapse recordings of algal lipidic bodies. This 

analysis could potentially be performed in transgenic and mutant algal strains to aid the 

elucidation of genetic pathways involved in intracellular oil accumulation (Cooper et al., 2010). 

Govender et al. (2012) reported that in contrast to nile red - stained algal cells, bodipy 505/515 - 

stained algal cells showed resistance to photobleaching, maintaining their fluorescence longer 

than 30 minutes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.47. Micrograph showing 
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Micrograph showing  (A)  Fluorescence image of unstressed C. vulgaris
bodipy 505/515 dye stain. 
(B) Fluorescence image of stressed C. vulgaris cells using 
bodipy 505/515 dye stain. 
(C) Split fluorescence image of stressed C. vulgaris
bodipy 505/515 dye stain visualizing the lipid bodies (top left) 
and chlorophyll (top right) and a composite image of all the 
fluorescence patterns.   
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C. vulgaris cells using 

cells using  

vulgaris cells using 
bodipy 505/515 dye stain visualizing the lipid bodies (top left) 
and chlorophyll (top right) and a composite image of all the  



 

 

 

Figure 3.48.  Confocal micrograph showing 

      

    

    

    

    

    

 

* DIC: differential interference contrast (imaging)
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Confocal micrograph showing  (A) Fluorescence image of unstressed D. primolecta

 bodipy 505/515 dye stain. 

 (B) Split fluorescence image of stressed 

 using bodipy 505/515 dye stain visualizing the lipid 

 bodies (top left) and chlorophyll (top right), 

 (bottom left) and a composite image of all the 

 fluorescence patterns (bottom right). 

* DIC: differential interference contrast (imaging) 

D. primolecta using 

Split fluorescence image of stressed D. primolecta 

visualizing the lipid    

bodies (top left) and chlorophyll (top right), *DIC image 

of all the  



 

Cooper et al. (2010) reported that lipidic fluorescence emission was captured using 488 nm 

excitation wavelength and a 500- to 530- nm band - pass emission filter. Autofluorescence 

emission was acquired using a 610- nm long - pass filter with the same excitation. In this study, 

lipidic fluorescence of the unstressed algal cultures was captured in the range of 517 - 537 nm 

(Figures 3.47A and 3.48A), whilst chloroplast fluorescent emission was attained in the range of 

673 - 702 nm (Figures 3.52 and 3.53). For both algal components, the 488 - nm argon laser 

was used for the excitation of fluorophores. As a result of the minimal literature published on 

the use of bodipy 505/515 for the visualisation of neutral lipids and phospholipids in algal 

species, it is difficult to indicate conclusively as to the exact wavelength range that one would 

detect these specific components. Therefore, one can assume that these components may be 

detected at a similar wavelength range as produced by the lipidic bodies. In the case of 

stressed cultures, the 488- nm excitation laser was used for the capture of fluorescence of 

lipidic bodies in the range of 490 - 540 nm (Figures 3.47B and 3.48B). A 633nm laser was used 

to read the fluorescence emission from a range of 637 - 721nm (Figures 3.47C and 3.48B). 

This is the range for chlorophyll detection. Lastly, the 488nm laser was used to read the 

fluorescence emission from a range of 415 - 726nm for the light microscope image (DIC) of the 

stressed C. vulgaris alga. Analysis of the graphical plots (Figures 3.49 - 3.52) shows sharper 

peaks in the region of approximately 500 - 540 nm, which is the region known for lipidic 

fluorescence, in the stressed algal cultures rather than the unstressed. This supports the 

hypothesis that nitrogen - deficient cultures will develop higher percentage lipid content than N - 

sufficient cultures (Weldy and Huesemann, 2007). 

 

The fluorescent intensity measurements revealed by the graphical representations (Figures 

3.49 - 3.52)  correlate with fluorescence emitted by the algal culture when emission is captured 

in the lambda stack images at the range of 420 - 702 nm (Figures 3.53 - 3.56). According to the 

lambda stack of the unstressed C. vulgaris alga (Figure 3.53), the lipidic fluorescence is not 

seen as the intensity was too low; this is evident by the peak generated in the corresponding 

graphical representation (Figure 3.49). The different coloured peak emissions on the graphical 

representations do not indicate specific algal components but rather different locations in the 

algal cell.  

 



 

 

 

 

Figure 3.49. Graphical representation of the intensity of fluorescence emitted by unstressed 

  cells in the range of 420
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Graphical representation of the intensity of fluorescence emitted by unstressed C. vulgaris 



 

Figure 3.50. Graphical representation of the intensi

  the range of 420 - 722nm.
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Figure 3.51. Graphical representation of the intensity of fluorescence emitted by unstressed 

  cells in the range of 420

 

 

 

 

 

 

  

 

 

Graphical representation of the intensity of fluorescence emitted by unstressed 
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Lipids 

Chlorophyll 

 

Graphical representation of the intensity of fluorescence emitted by unstressed D. primolecta 



 

Figure 3.52. Graphical representation of the intensi

  cells in the range of 420

 

 

 

 

 

 

 

 

Graphical representation of the intensity of fluorescence emitted by stressed D. primolecta 

range of 420 - 722nm. 
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Figure 3.53. Wavelength scanning of fluorescence pattern observed in unstressed C. vulgaris cells subject 

  to bodipy staining indicating chlorophyll fluorescence at 673 nm. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3.54. Wavelength scanning of fluorescence pattern observed in stressed C. vulgaris cells subject to 

  bodipy staining indicating lipidic and chlorophyll fluorescence at 517 and 663 nm, respectively.  

 

 

 

 

 

 

 

 

 

 

 



 

Table 3.14. Confocal parameters of lipid detection in C. vulgaris 

Unstressed C. vulgaris 

Confocal microscope setting Digital parameters 

 Microscope image Lambda stack and 
graphical 
representation 

Master gain 850 875 

Digital gain 1 1 

Digital offset 1 1 

Bit depth 8 8 

Pinhole 168.4 (1 AU) airy unit 178.4 (1 AU) airy unit 

Average number 2 2 

Frame size 512 x 512  512 x 512  

 

Stressed C. vulgaris 

Confocal microscope setting Digital parameters 

 Micrograph 
(B) 

Split image 
(C) 
Green 
channel 

Split image 
(C) 
Red 
channel 

Lambda 
stack and 
graphical 
representatio
n 

Master gain 800 820 700 900 

Digital gain 1 1 1 1 

Digital offset 1 1 1 1 

Bit depth 8 8 8 8 

Pinhole 56.1 (1 AU) 60 (1 AU) 60 (1 AU) 56.1 (1 AU) 

Average number 2 4 2 2 

Frame size 512 x 512  512 x 512  512 x 512  512 x 512  

 



 

 

 

Figure 3.55. Wavelength scanning of fluorescence pattern observed in unstressed D. primolecta cells  

  subject to bodipy staining indicating lipidic and chlorophyll fluorescence at 517 and 673 nm, 

  respectively. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3.56. Wavelength scanning of fluorescence pattern observed in stressed D. primolecta cells subject 

  to bodipy staining indicating lipidic and chlorophyll fluorescence at 517 and 617 nm,  

  respectively. 

 

 

 

 

 

 

 

 

 

 



 

Table 3.15. Confocal parameters of lipid detection in D. primolecta 

Unstressed D. primolecta 

Confocal microscope setting Digital parameters 

 Microscope image Lambda stack and 
graphical 
representation 

Master gain 755 900 

Digital gain 1 1 

Digital offset 1 1 

Bit depth 8 8 

Pinhole 168.4 (1 AU) airy unit 178.4 (1 AU) airy unit 

Average number 2 2 

Frame size 512 x 512  512 x 512  

 

Stressed D. primolecta 

Confocal microscope setting Digital parameters 

 Green 
channel 

Red 
channel 

*DIC Lambda 
stack and 
graphical 
representatio
n 

Master gain 800 820 700 900 

Digital gain 1 1 1 1 

Digital offset 1 1 1 1 

Bit depth 8 8 8 8 

Pinhole 56.1 (1 AU) 60 (1 AU) 60 (1 AU) 56.1 (1 AU) 

Average number 2 2 2 2 

Frame size 512 x 512  512 x 512  512 x 512  512 x 512  

 

 

 

 

 

 

 



 

CHAPTER FOUR 

 

CONCLUSIONS 

 

According to the literature, nutrient limitation or high light intensity is known to trigger 

triacylglycerol (TAG) accumulation (Tornabene et al., 1983; Uriarte et al., 1993; Gordillo et al., 

1998; Su et al., 2003; Carvalho and Xavier Malcata, 2005; Weldy and Huesemann, 2007; Chen 

et al., 2010).  Spoehr and Milner (1949) initially reported the accumulation of lipidic bodies in 

algal cells when grown in nitrogen - deprived media.  In the present study, the oil - hydrocarbon 

yields for Chlorella vulgaris and Dunaliella primolecta, in a nitrogen - deprived environment 

were 0.01 % and 0.02 % greater, respectively than when grown in conventional BG 11 medium 

(Appendix A). In spite of the relatively low increments when compared to literature, autotrophic 

propagation results in low oil yields as natural sunlight is the sole source of energy, coupled 

with CO2 sequestration from air as the source of carbon. CO2 supplementation may aid the 

evaluation of lipid production (Chinnasamy et al., 2009; Khozin - Goldberg and Cohen, 2010). A 

block in starch biosynthesis yields also enhances formation of lipidic bodies and TAG. Starch 

biosynthesis is impaired in the sta6 mutant of Chlamydomonas reinhardtii harbouring a 

mutation that leads to inactivation of ADP - glucose pyrophosphorylase. In this nitrogen - 

starved mutant, Khozin - Goldberg and Cohen (2010) reported a 30 - fold increase in the 

cellular content of lipid bodies thus, providing direct evidence that genetic interference of the 

starch biosynthesis pathway can stimulate lipid accumulation. A further study conducted by Li 

et al. (2010) revealed a 10 - fold increase in cellular TAG production when a starchless mutant 

of the C. reinhardtii was exposed to stressful conditions. Modification of fatty acid chain length 

and levels of saturation to produce monosaturated and saturated TAG, the ideal form of 

biodiesel, can be further accomplished via the silencing of desaturases and expression of 

thioesterases. These studies were made possible by understanding lipid metabolism in higher 

plants (Khozin - Goldberg and Cohen, 2010) and the success of manipulating lipid - 

biosynthesis pathways with molecular tools (Khozin - Goldberg and Cohen, 2010). Moreover, 

these strategies can be applied to algae which produce greater levels of TAG under stressful 



 

conditions and are amendable to genetic manipulation. Another feasible approach, to modulate 

lipid metabolism, is the regulation of gene expression by transcription (Khozin - Goldberg and 

Cohen, 2010; Moellering and Benning, 2010). 

The newly discovered major lipid droplet protein (MLDP) is considered rare and unique to green 

algae (Moellering and Benning, 2010). The expression of its gene is strictly limited to conditions 

favouring TAG biosynthesis thus, providing indirect evidence for a role of this protein in lipid 

droplet formation or maintenance. These properties could potentially yield MLDP a marker for 

lipid droplets and TAG accumulation. The ability of cells to accumulate polyunsaturated fatty 

acids (PUFAs) intrinsically is limited in most algae, since fatty acids are generally components 

of membranal lipids; whose content is strictly regulated (Bigogno et al., 2002).  

 This study has shown: 

I. Lipid bodies accumulate in microalgae when grown in nitrogen - restricted BG 11 

medium although biomass accumulation is impeded as also shown by Uriarte et al. 

(1993) in their studies involving D. primolecta.  

II. The hexane soluble oil - hydrocarbon fraction of C. vulgaris and D. primolecta cells 

contained acylglycerols, phospholipids, carotenoids and chlorophyll. TLC analyses and 

spectrophotometry gave a tentative identification of these components and their 

differing Rf and spectral properties in test and control cultures. 

III. Nile red differentiated fluorescence patterns of neutral lipids, phospholipids and 

chlorophyll. The ZEN software of the Zeiss LSM 710 confocal microscope generated 

graphical fluorescence plots against specific wavelengths to confirm the fluorescent 

components reported by similar published data. Fluorescent component addition was 

confirmed using the lambda stack facility which enabled sequential wavelength 

scanning and pseudo - colouring of each component. Bodipy fluorescence could only 

distinguish between the composite oil body and chlorophyll.  

IV. Protein analyses from the algal oil proved to be difficult as extraction procedures could 

have denatured protein components into subunit structure. In comparison with the data 

presented by Moellering and Benning (2010) where 259 proteins were estimated from 

the oil of C. reinhardtii, it is likely that a band smear will result if a similar protein mixture 

is separated by PAGE. This is especially true for protein mixtures where molecular 



 

weights differ by small increments. The effect of protein extractants, urea and SDS, do 

affect protein quantitation from algal oil as determined using the Bio - Rad RC - DC 

quantitation kit. Nitrogen starvation correlated with lower protein content in the oil of C. 

vulgaris although D. primolecta oil showed similar yields of protein from test and control 

cultures, regardless of nitrogen supplementation or exclusion, respectively.  

V. The predominant fatty acid of all algae tested herein was the palmitic acid methyl ester 

especially in control nitrogen - starved cultures of D. primolecta. Nitrogen starvation also 

correlated with production of the C18 stearic acid fatty acid in both D. primolecta and C. 

vulgaris. In addition, only D. primolecta produced linolelaidic acid (C18:2n6t) under both 

test and control conditions. The longest fatty acid chain, namely, the C22:0 docosanoic 

acid fatty acid, was produced by C. vulgaris under test conditions involving nitrogen 

supplementation.  

The current study has identified key components associated with oil of Chlorella vulgaris and 

Dunaliella primolecta, however their role and structural assembly within the oil droplet itself 

requires further study.  
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APPENDIX A 

 

Media and reagents 

 

Media 

 

i. Bovine serum albumin (BSA) commercial stock 

 

This was prepared by adding 20 ml of sterile distilled water to BSA (Sigma Chemicals Co., 

USA) to attain a BSA stock of concentration 1.45 mg/ml. Of this, 0.1 ml was extracted and 

added to 9.9 ml distilled water for further use.  

 

ii. BG11 medium (ATCC Medium 616) (1X) 

 

The BG11 medium known as “Medium 616” by the American Type Culture Collection (ATCC) 

(Chinnasamy et al., 2009) was used for the autotrophic growth of the experimental alga. In 

grams per litre, the medium was composed of 1.5 g NaNO3 (Merck, FRG), 0.04 g K2HPO4 

(Merck, FRG), 0.075 g MgSO4.7H2O (BDH. Ltd., England), 0.036 g CaCl2.2H2O (Merck, FRG), 

0.006 g citric acid (Saarchem, SA), 0.006 g ferric ammonium citrate (Saarchem, SA), 0.02 g 

NaCO3 (Merck, FRG) and 0.001 g EDTA (Saarchem, SA). Approximately 1 ml of Trace metal 

mix A5 was added, this comprised of the following (g/l); 2.86 g H3BO3 (Merck, FRG), 1.81 g 

MnCl2.4H2O (Merck, FRG), 0.222 g ZnSO4.7H2O (Merck, FRG), 0.39 g NaMoO4.2H2O (Fluka 

analytical, England), 0.079 g CuSO4.5H2O (Merck, FRG) and 0.049 g Co(NO3)2.6H2O (Merck, 

FRG).  



 

The medium was brought up to 1 litre with distilled water and the pH set to 7.4 before 

autoclaving at 121 ºC for 20 minutes in a Hirayama autoclave (Hirayama, Japan). 

 

iii. Control BG 11 medium for marine algae (1X) 

 

The BG 11 control medium used was prepared using the same reagents of exact quantity as 

mentioned above. However, 1.5g NaNO3 (Merck, FRG) and 0.049 g Co(NO3)2 (Merck, FRG) 

were excluded from the medium.  

 

Reagents 

 

i. DMSO - nile red stock solutions 

 

Of the stock DMSO (Merck, FRG) solution, 25 ml was mixed with 40 mg of nile red (Sigma 

Chemicals Co., USA). The dye stock solution was stored in a foil - covered McCartney bottle to 

avert any possible effects of light on the dye. 

 

ii. DMSO - bodipy dye stock  

 

Bodipy dye of 1 mg (Invitrogen, U.S.A) was added to 0.800 ml of DMSO in a McCartney bottle. 

The emulsion was shaken to enable an even distribution of the contents and was thereafter 

covered in foil to avert any possible effects of light on the dye.  

 

 



 

iii. Thin layer chromatography standards  

 

Standards used were: L - α - dioleoylphosphatidylethanolamine (DOPE) (Sigma Chemicals Co., 

USA), evening primrose oil (Vital, South Africa), salmon oil (Vital, South Africa), sunflower oil 

(Flora, South Africa) and olive oil (Santagata, South Africa). The DOPE standard was 

suspended in chloroform to obtain a final concentration of 10 µg/µl. Other oil standards were 

made up of 0.2% v/v in CHCl3. 

 

iv.  Protein sample buffer (SDS reducing buffer) 

 

The sample buffer was made up of 1.2 ml of 0.5 M Tris - HCl (pH 6.8) (Sigma Chemicals Co., 

USA), 1.0 ml glycerol (Sigma Chemicals Co., USA), 2.0 ml of 10 % (w/v) SDS (Sigma 

Chemicals Co., USA), 0.5 ml of 0.1 % (w/v) bromophenol blue (Bio - Rad, USA) and 4.8 ml 

deionised water. Prior to use, 50 µl β - mercaptoethanol (Sigma Chemicals Co., USA) was 

added to 950 µl of buffer in an eppendorf tube which made up the SDS reducing sample buffer. 

 

v. Electrode running buffer (10 X) (pH 8.3) 

 

The running buffer was made up using 7.5 g Tris base, 36 g glycine and 2.5 g SDS which was 

brought up to a volume of 250 ml with deionised water. All the aforementioned reagents were 

purchased from Sigma Chemicals Co., (USA). For the electrophoresis run, 50 ml of the buffer 

was diluted with 450 ml deionised water.  

 

 

 



 

vi. Coomassie blue R - 250 staining solution (0.1 %) 

 

The staining solution comprised 0.1 g of coomassie blue R - 250 (Bio - Rad, USA) dissolved in 

500 ml deionised water, 10 % acetic acid (Sigma Chemicals Co., USA) and 40 % methanol 

(Sigma Chemicals Co., USA). Destaining of the gels was achieved using the same solution 

minus the dye.  

 

vii. Silver staining solution 

 

Fixative: 10 % acetic acid (Sigma Chemicals Co., USA), 40 % ml methanol (Sigma Chemicals 

Co., USA), 50 % water 

Wash solution: 30 % ethanol (Merck, FRG) in deionised water 

Reductant solution: 50 mg sodium thiosulphate (Sigma Chemicals Co., USA) in 250 ml 

deionised water 

Silver stain: 0.5 g silver stain (Bio - Rad, USA), 50 µl formaldehyde (Sigma Chemicals Co., 

USA), 250 ml deionised water 

Stop solution: 5 % acetic acid (Sigma Chemicals Co., USA) in deionised water 

Gels were immersed in the fixative solution prior to being washed three times in the wash 

solution. These were then placed in the reductant solution and followed by the wash step being 

repeated. The silver staining solution was then used for the staining of the gels and bands were 

developed in 7.5 g sodium carbonate, 1.25 mg sodium thiosulphate, 125 µl formaldehyde and 

250 ml deionised water. The final step involved the gels being washed three times followed by 

immersion into the stop solution. 



 

Appendix B 

 

Other Technical Information 

 

i. Use of a haemocytometer 

 

A haemocytometer is a specialized slide that has a counting chamber with a known volume of 

liquid.  

� The haemocytometer consists of a heavy glass slide with two counting chambers, each 

of which is divided into nine large 1 mm squares, on an etched and silvered surface 

separated by a trough.  

� A coverslip sits on top of the raised supports of the 'H' shaped toughs enclosing both 

chambers. There is a 'V' or notch at either end where the cell suspension is loaded into 

the haemocytometer. When loaded with the cell suspension it contains a defined 

volume of liquid.  

� The engraved grid on the surface of the counting chamber ensures that the number of 

particles in a defined volume of liquid is counted.  

� The haemocytometer is placed on the microscope stage and the cell suspension is 

counted.  

 

 

 



 

Figure B1.        Diagram of a heamocytometer chamber (http://toolboxes.flexiblelearning.net.htm).  

 

The entire chamber has nine 1.0 mm × 1.0 mm large squares separated from one another by 

the triple lines. The area of each is 1 mm².  

The central 1 mm² area is divided into 25 small squares, each 0.04 mm² and marked into a 

further 16 squares.  

 

Magnification:  

 

Using 40X magnification, a 16 block grid can be visualized; however 6 of the 16 blocks are in 

the field focus when viewed under a 100X magnification. The area of each block of 0.05 × 

0.05mm is 2.5×10-3 mm2.  

Therefore, the volume is calculated as follows:  

Volume = area of block × h  

= (0.05 mm × 0.05 mm) × 0.1mm  

= 2.5 × 10-4 mm3  

Bearing in mind that 1cm3 = 1ml = 1000mm3, calculating cell number / ml :  

1 mm corner 

square 

Middle square 



 

Eg. Assuming 4 algal cells were counted per block, the cell number / ml was established as 

follows: 

   → 4 algal cells per 2.5×10-3 mm2  

   → 4 algal cells per 2.5×10-3 mm2 × 0.1mm  

                                                               → 4 cells / 2.5×10-4 mm3  

                                                                  

Hence: 4 cells ……………….. 2.5×10-4 mm3  

X ………………. 1000mm3  

Where X = 4000 / 2.5×10-4  

= 1.6×107 cells / ml  

 

ii. Standard curves 

 

 

 

Figure B2. Standard curve of BSA versus absorbance using the Bio - Rad RC - DC kit. 

Deviation bars were too small for insertion as these located within the shading of each point. 
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Figure B3. Standard curve of SDS treated BSA and standards versus absorbance using the Bio - 

Rad RC - DC kit. 
 
Deviation bars were too small for insertion as these located within the shading of each point. 

 

 

 

 
Figure B4. Standard curve of urea treated BSA versus absorbance using the Bio - Rad RC - DC 

kit. 
 
Deviation bars were too small for insertion as these located within the shading of each point. 
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Figure B5. Standard curve of SDS and urea treated BSA versus absorbance using the Bio - Rad 

RC - DC kit. 
 
Deviation bars were too small for insertion as these located within the shading of each point. 

 

 

 

Figure B6. Standard curve of log of the molecular weight of the broad range protein standards 
versus the relative mobility. 
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iii.  G Force conversion  

 

a. The equation (Eppendorf centrifuge handbook 2005) for G force conversion from rpm 

settings, using an Eppendorf rotor FA-45-24-11 without adaptor, in an Eppendorf 5424 

microfuge, is 

 RCF (G force) = 1.118. 10-5 .n2. rmax  

  where n = speed in rpm and rmax =  maximum centrifugal radius in cm. 

b. For the JA 10 rotor and Beckman Avanti J-26 XPI centrifuge, rpm conversion is 

facilitated automatically on scale setting in the console of the machine. 

 
 
 


