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Abstract

Nanostructures are fast becoming the material of choice consequentially opening a
new research frontier. Classical continuum computational techniques have proven in-
sufficient in modelling the mechanical behaviour of these structures. The surface and
nonlocal effects contributes to the size dependence of nanomaterial mechanical prop-
erties. Convex modelling techniques are employed in dealing with uncertainties asso-
ciated with the lack of accurate measurements of nanostructures, molecular defects,
and manufacturing anomalies. Numerical results are produced relating the level of
uncertainty to maximum deflection for the nonlocal nanobeam, as well as determining
the lowest buckling load subject to the effects of material uncertainty for nanoplates.
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Introduction

The whole thrust of this dissertation is to contribute certain aspects towards a sys-
tem that will serve as a framework in the description and analysis of nanostructures.
Given the scale of nanostructures which is comparable to that of crystals, classical
continuum modelling methods fail to factor in important phenomenons taking place
in the system. Classical continuum techniques consider stress acting at a point to be
a function of strain at that particular point. Further more there is no provision made
to accommodate material property variations as well as loading anomalies which may
prove to be detrimental to the structure in question.

At a small-scale structures tend to display exaggerated characteristics that are at-
tributable to small-scale or even uniquely scale-dependant effects. Atomic arrange-
ments or patterns near the surface of the structures are disrupted and anomalous
when compared to the atoms in the body of the same structure. This in turn tends to
give rise to the surface energy associated with the extension of the surface front, but
more importantly bringing forth the surface stress that is responsible for the density
arrangement of atoms near the surface. Material imperfections (i.e., inclusions, etc.)
further complicates these structural arrangements. Added to this is the fact that the
atomic length-scale is such that the stress at a point is a function of strain everywhere
in the body of these nanostructures. The loading mechanism at this scale as well as
the nature of the loads remain uncertain and indeterministic. Given all of the above a
shift in the framework of the analysis of the small-scale structures becomes necessary,
which proved to be the main motivation for this project.

The most distinguishing factor between what is covered in the literature and what
is presented in this dissertation is the fact that material properties and the static
loads are assumed to be uncertain but bounded in our study. Convex models of
the uncertain parameters are proposed where the solution is attainable by using the
method of Lagrange multipliers. The study covers the deflection of a nano-beam
subject to small-scale effects, load and material property uncertainty. It also deals
with the nonlocal and surface effects on the buckling of isotropic nanoplates together
with nonlocal effects on the buckling of orthotropic nanoplates subject to the variation
of the material properties. Analysis of the sensitivity of the deflection for the nanobeam
and buckling load for nanoplates, to material uncertainty is also presented.

1



Dissertation overview

The structure of the dissertation follows this format;

Part I of the dissertation covers the back-ground theory and derivations of the
equations used in the greater portion of the dissertation more especially the
sections that do not appear in the papers.

Chapter 1 deals with convex modelling. Theoretical formalities around the
development of a metric space are introduced followed by the description
and attributes of the interval in an attempt to conceptually bridge the two
spaces namely the Euclidean space and set-theoretic space. Essential
characteristics of the set-theoretic space are sequentially constructed from
the basic elementary sets to the complex convex sets. Convex models are
covered culminating with materials and loading uncertainty models as well
as a brief coverage of issues around sensitivity analysis.

Chapter 2 deals with small-scale effects. In this chapter aspects of nanotechnology
are covered starting with the practical end-product related usage of
nanostructures, followed by the process of synthesising nanostructures and
the determination of the material properties. Theoretical back-ground of
the nonlocal and surface effects in the context of nanostructures is also
given.

Chapter 3 deals with the beam theory at a small-scale. The governing equations of
the nonlocal beam are derived first via a static element model followed by
the energy model.

Chapter 4 deals with plate theory at a small-scale. Classical governing equations for
an orthotropic nanoplate are derived leading to their expansion covering
nonlocal effects. In the last section the governing equation for an isotropic
nanoplate subject to surface effects is derived.

Chapter 5 presents the final discussion of all the work covered in the dissertation and
the summary of the results in the three papers.

Part II contains publications that serve as an anchor to this dissertation. The chapters
are arranged in the following order;

Paper 1 Isaac Sfiso Radebe and Sarp Adali, “Static and sensitivity analysis of
nonlocal nanobeams subject to load and material uncertainties by convex
modelling”, accepted for publication in the Journal of Theoretical and
Applied Mechanics.

Paper 2 Isaac Sfiso Radebe and Sarp Adali, “Buckling and sensitivity analysis of
nonlocal orthotropic nanoplates with uncertain material properties”,
Composites: Part B, V. 56, 840-846, 2014.

Paper 3 Isaac Sfiso Radebe and Sarp Adali, “Effect of surface stress on the
buckling of nonlocal nanoplates subject to material uncertainty”, accepted
for publication in the Latin American Journal of Solids and Structures.
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Part I

Theoretical Background
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Chapter 1

Convex Space

Quality control and continuous evaluation of manufacturing processes involved in the
production of various structural materials used in designing various products, have
been steadily improving. Material testing under controlled environment and loading
conditions have resulted in the production of large data banks pertaining to mechan-
ical properties of various materials. However demands of exotic high end products
coupled with competition amongst producers dictates that input materials and means
of production be continuously renewed. Resulting from this venturesome exercise im-
perfections are bound to occur, be it in the modelling phase, or in producing required
materials, or even at a fabrication stage. In production lines there is always going be
some variation and inconsistencies taking place.

For precise analysis of any mechanical system the practitioner must have reliable tools
at hand that will assist in giving a definitive understanding of the phenomena involved
together with some prediction for the structural performance. There are numerous
models that were developed in the past and have been used successfully for years with
some degree of accuracy and reliability. Most of these models take it for granted that
the information supplied in relation to the influences, external and internal, affecting
the structure are certainly known and can be relied upon not to vary to the detriment of
the structure. However if there is uncertainty [1,3,56] in relation to input information
careful consideration of the modelling regime becomes necessary and can make or
break the solution. Probabilistic models have been used extensively where data on
random variables and functions were identifiable. Numerical characterisation that
encompasses joint probability density functions relies on the data being known a priori
if the model is to yield accurate outcome without distorting the results. Following this
path normally leads to the determination of reliability of the structure or system in
question as an end product [11,24]. In most applications this information is not readily
available, thus presenting a problem in the implementation which cannot be trivialised.

On the other hand in cases where known data is insufficient for probabilistic analysis
[2, 11, 24, 25], convex modelling has proven to be reliable. Convex modelling is a set
theory based technique where in its formulation uncertain phenomena are modelled
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and represented according to defined admissible convex sets and functions together
with the extrema of convex sets and functions. The implications from this technique
translate to the fact that it is not a prerequisite to have all the information beforehand.
Solutions to difficult problems can be found by bounding uncertainties and matching
them to specific perturbed solution sets . Thus a brief description of the set theory,
conventions and topological properties of convexity applied to abstract metric space
are presented.

1.1 Metric space

When constructing an abstract metric space or a distance function, elementary il-
lustrations of the concepts and properties at play in the Euclidean En space which is
understood and well established, can enhance our perspective at the same time serving
as a bridge or some projection onto the characteristics of the former space. Einstein
is recorded as having said [22];“A geometrical-physical theory as such is incapable of
being directly pictured, being merely a system of concepts. But these concepts serve the
purpose of bringing a multiplicity of real or imaginary sensory experience into connec-
tion in the mind. To “visualise” a theory, or bring it home to one’s mind, therefore
means to give a representation to that abundance of experiences for which the theory
supplies the schematic arrangement” As such the following definitions are important
in understanding the structure of Euclidean space with respect to its basic subsets.

Take E to be a non-empty universal set with points as elements [38]

{X1, X2, . . . , Xn} (1.1)

such that its complement cp(E) is a null set ∅. If the ordered pairs associated with it
have a real number

{f(X1, X2) : (X1, X2) ∈ E , f ∈ E} (1.2)

then the real valued function f is said to be a metric for E subject to the following
restrictions and regulations;

i) f(X1, X2) ≥ 0 equality if and only if X1 = X2.

ii) f(X1, X2) = f(X2, X1) symmetry.

iii) f(X1, X2) + f(X2, X3) ≥ f(X1, X3) ∀ {X1, X2, X3} ∈ E triangle inequality.

Thus set E and f make up the metric space. Following from this subsequent definitions
apply.

Boundedness in the metric space: If a set L is bounded above [38], this translates
to the set being contained in some ball{

‖X −Xn‖ : {∃k : f(X1, X2) ≤ k, k ∈ E}, ∀ {X1, X2} ∈ L
}

(1.3)
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where
‖X −Xn‖ =

√
(X1 −X2)2 (1.4)

is the Euclidean distance between points. Using above mentioned definitions further
attributes and restrictions are deducible.

Connectedness in the Euclidean metric space E : The concept of connectedness
can be better explained by defaulting to the basic sets of the Euclidean space namely
the intervals. The bounded intervals (for a < b) are defined with respect to real
numbers if the sets are contained as follows;

a) open interval
(a, b) = {x : a < x < b} (1.5)

with a typical example of the neighborhood in a following manner;

i) neighborhood
N(xc, δ) = {x : f(xc, x) < δ} (1.6)

where xc =
(a+ b)

2
, δ =

(b− a)

2

ii) deleted neighborhood

N0(xc, δ) = {x : 0 < f(xc, x) < δ} (1.7)

where the open interval is (xc − δ, xc + δ).

b) closed interval
[a, b] = {x : a ≤ x ≤ b} (1.8)

with the ball as a prototype of a closed interval ;

ball B(xc, δ) = {x : f(xc, x) ≤ δ} (1.9)

where xc =
(a+ b)

2
, δ =

(b− a)

2

bounded above and below;

c) endpoints interval {a, b} is the 1-dimensional sphere

sphere S(xc, δ) = {x : f(xc, x) = δ} (1.10)

where xc =
(a+ b)

2
, δ =

(b− a)

2

d) half open interval

greatest lower bound [a, b) = {x : a < x < b} (1.11)

least upper bound (a, b] = {x : a < x < b} (1.12)

e) unbounded interval
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i)
(a, ∞) = {x : a < x} (1.13)

ii)
[a, ∞) = {x : a ≤ x} (1.14)

iii)
(−∞, a) = {x : x < a} (1.15)

iv)
(−∞, a] = {x : x ≤ a} (1.16)

v)
(−∞, ∞] = R (1.17)

Compactness in Euclidean metric space En: Following from the results already
established it possible to describe the concept of set compactness using the following
theorem.

Theorem 1 [38, p.49] A set of real numbers is compact and connected if and only if
it is a closed, bounded interval.

Mappings of metric space:

Theorem 2 [38, p.50] If f : D → R is a continuous, real valued function, and D is
a compact, connected subset of a metric space, then f achieves a minimum value, a
maximum value, and every intermediate to these.

Linear function: f : En → E on a vector space En is the image under f of some s ∈ En
linear combinations of vectors onto (surjective) [35] the same linear combinations t ∈ E .

f(s) = {t : f(s) ∈ E , s ∈ En} (1.18)

Systems of linear inequalities possess functions that are bounded or sometimes un-
bounded where the governing boundary conditions have both strict <,> or non-strict
≤,≥ constraints. Simplified linear transformation can be explicitly characterised as a
linear function if and only if there exist a unique vector a in vector space En such that

f(x) = a x. (1.19)

where mapping in the linear subspace contains the origin. The general subspace of En
(affine space) that does not include the origin relates to linear translation of En

f(x) = a x+ υ (1.20)

by a vector υ ∈ En. Therefore a general subspace of En is a translate of a n-dimensional
linear subspace.
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1.2 Concept of affine sets and functions

Affine sets: The basic concepts of affine combination of vectors [59] in vector space
are best demonstrated by observing a group of transformations. Suppose there are two
points with coordinates x1 and x2 in Rn space, joined together by some transformation
in a form of

(1− α)x1 + αx2 where α ∈ R

α = 1

α > 1

α = 0

x1

x2

α < 0

0 < α < 1

Figure 1.1: Line

generally referred to as a line through x1 and x2. A subset C of Rn in a form

{(1− α)x1 + αx2 ∈ C : x1 ∈ C, x2 ∈ C,α ∈ R}

is an affine set. An affine set must contain x1 and x2 as well as the entire line [13,38,55]
through x1 and x2. Generally a subset C of Rn is affine if for every points x1, . . . , xn ∈
C and every number αi ∈ R contains every affine combination of points α1x1 + . . .+
αnxn ∈ C where the affine coefficients α1 + . . .+ αn = 1. Further more the affine set
is closed under summation and scalar multiplication. The set C ⊆ Rn that contains
all affine combinations of points in C,

affC =

{
N∑
n=1

αnxn

∣∣∣xn ∈ C, {∀α ∈ R
∣∣ N∑
n=1

αn = 1
}}

(1.21)

is called the affine hull. It is the smallest affine set that contains C, also defining the
affine dimension of the same set.

Affine function: The same applies to a functional transformation where a function
maps every affine combination of points xn in Rn space, onto the same affine combi-
nation of their image.

f

(
N∑
n=1

αnxn

)
=

{
N∑
n=1

αnf(xn)
∣∣∣xn ∈ C, {∀α ∈ R

∣∣ N∑
n=1

αn = 1
}}

(1.22)

It has been shown again through theorems and proofs [11, 13, 55] that the following
assertions are true. If a 6= 0 then the linear functional f(x) = a x and the affine
functional g(x) = a x + υ map bounded sets onto bounded sets, neighborhoods onto
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neighborhoods, balls onto balls, and open sets onto open sets. Convex modelling is
a generalisation of linear programming problems with special or unique restrictions.
Every affine set is convex, and in the extreme cases it includes an empty set φ and
sets that consist of solitary points of the Rn space.

1.3 Convex sets

A set C ∈ Rn is convex if for any points x1, . . . , xk ∈ C and any number αi ∈ R
where α1 + . . . + αn = 1 and αi ≥ 0, i = 1, . . . , k it contains all convex combinations
α1x1 + . . . + αnxn ∈ C of elements within the set [13]. Similarly to the affine set
discussed above, the convex hull of set C,

convC = {α1x1 + . . .+αkxk : x1, . . . , xk ∈ C,αi ≥ 0, i = 1, . . . , k, α1 + . . .+αk = 1},
(1.23)

is the smallest set that contains all convex combinations of C. The distinguishing
factor that makes convex sets more general than affine sets is the restriction imposed
in its formulation i.e., {(1 − α)x1 + αx2 : 0 ≤ α ≤ 1} which is referred to as the
(closed) line segment between x1 and x2 [55].

f(x)

p1

p2

x

Figure 1.2: Convex set

Naturally the generalisation of convex combinations include infinite sums, such that
α1, . . . , α∞ satisfy

αi, i = 1, 2, . . .

∞∑
i=1

αi=1

and x1, x2, . . . ∈ C where C ⊆ Rn is convex. Then

∞∑
i=1

αixi ∈ C

provided the series converges [13].

They also cover integrals such that; P : Rn → R satisfies P (x) ≥ 0 for all x ∈ C and∫
C P (x).dx = 1, where C ⊆ Rn is convex. Then∫

C
P (x).x.dx ∈ C

9



if the integral exists [13].

Other convex sets of function [11, p.51] are:

A = {f : |f(x)| ≤ 1}

B = {f : | df
dx
| ≤ 1}

C = {f :

∫ ∞
−∞

f2(x)dx ≤ 1}

of which the proof is shown in the above mentioned reference.

It has been shown through theorems and proofs that the following assertions are true
[38]. Convex span of a finite set R is also its convex hull. The extreme point of convex
set R belong to every finite subset of convex set R whose convex span is convR. These
extreme points of a convex set R are contained in every subset of R whose convex hull
is R. If R is convexly independent, then R is the set of extreme points of convR. The
convex hull of any set L is the union of the convex spans of all the finite subsets of
L. Therefore the convex hull of any set L can be be built-up from inside by forming
unions of convex spans of finite subsets of L. If R is a convex, compact set then the
convex hull of set R is a finite set of extreme points of R:- R = conv[extem(R)].

1.3.1 Cones

The conic hull of a set C is convex if the conic combinations or non-negative linear
homogeneous combinations is as follows,

{α1x1 + . . .+ αkxk : xi ∈ C, αi ≥ 0, i = 1, . . . , k} (1.24)

the smallest convex cone containing C.

1.3.2 Hyperplanes and half-spaces

a) A hyperplane is a set of the following form

{x : aT x = b a ∈ Rn, a 6= 0, b ∈ R} (1.25)

Theorem 3 [38, p.94] Corresponding to a hyperplane H, there exists a non-null
vector a and a real number υ such that H is the graph of a · x = υ. The vector a is
orthogonal to PQ for all P, Q in H, and LS(a) (linear span of a) is precisely the set
of vectors that have this property.

Theorem 4 [38, p.98] Each point P in space has a unique foot P0 in a hyperplane;
H : f(x) = a · x = υ, and

d(P,H) =
|f(p)− υ|
|a| (1.26)

=
|a · P − υ|
|a| (1.27)
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x1

x2

0

0 υ
R

aa

S1 : ax ≥ υ
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Figure 1.3: Hyperplanes

Then if there are two distinct parallel hyperplanes H1 : f(x) = a · x = υ1 and
H2 : f(x) = a · x = υ2 with a common normal direction and same linear functional,
the distance between them d(H1,H2) is expressed as follows;

d(X2,H1) = d(X1,H2) =

{
|υ1 − υ2|
|a| ∀X1 ∈ H1 andX2 ∈ H2

}
(1.28)

Every supporting hyperplane to a convex body K contains an extreme point of K.

b) Opposite sides of half-spaces are a closed sets of the form

{x : aT x ≤ b or aT x ≥ b, a ∈ Rn, a 6= 0, b ∈ R} (1.29)

c) opposite sides of half-spaces are open sets represented as follows

{x : aT x < b or aT x > b, a ∈ Rn, a 6= 0, b ∈ R} (1.30)

1.3.3 Euclidean ball

An Euclidean ball is of the following form

B (xc, r) = {x : ‖ x− xc ‖2≤ r} = {xc + ru : ‖ u ‖2≤ 1}
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where the radius r > 0, xc the center of the ball and ‖ ‖2 the L2 norm,i.e., ‖ u ‖2=√
(uTu). Convex norm ball with r as the radius, xc the center is represented as follows
{x : ‖ x− xc ‖≤ r}.

1.3.4 Ellipsoids

Ellipsoids are of the following form

ε = {xc + Au : ‖ u ‖2≤ 1}

where A is assumed to be a symmetric and positive definite matrix.

1.3.5 Polyhedron

A polyhedron is the following

P = {x : Ax � b, Cx � d}

where A =

a
T
1
...
aTm

 , C =

c
T
1
...
cTm


� denotes componentwise vector inequality.

1.4 Convex functions

For a convex function the domain of a function domf specifies the range for which
f(x) is defined.

f : Rn → R then f is convex if for the coefficients {α1, α2, . . . , αn}

f

(
N∑
n=1

αn xn

)
≤

N∑
n=1

αn f(xn)

Topological expressions of a convex function serves to further enhance the understand-
ing of issues at play. Suppose there is a function with an epigraph epif as shown in
Figure 1.4. This is a set Rn+1 that contains [55] all the points on or above the surface
f .

epif = {(x, y) : x ∈ D, y ∈ R, y ≥ f(x)} whereD ⊂ Rn

Conditions imposed on a proper epigraph epif are:
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Figure 1.4: Epigraph

a) epif = (x, y) 6= 0 and has no vertical lines.
b) convf = domf 6= 0 where

domf = {x : ∃y, (x, y) ∈ epif}

f is convex in D if and only if

(1− α)(x1, y1) + α(x2, y2) = {(1− α)x1 + αx2, (1− α)y1 + α y2}

belongs to epif whenever (x1, y1) and (x2, y2) belongs to epif and 0 ≤ α ≤ 1. This
condition is equivalent to

((1− α)x1 + αx2) ∈ R and
((1− α)x1 + αx2) ≤ ((1− α)y1 + α y2) whenever
x1 ∈ D, x2 ∈ D, f(x1) ≤ y1 ∈ R, f(x2) ≤ y2 ∈ R and
0 ≤ α ≤ 1

It has been shown again through theorems and proofs [13, 38, 55] that the following
assertions are true. If the domain domf of an affine functional f is a compact, convex
set, then f achieves its maximum values and its values on the set extrem{domf}.

Useful variances of functional convexity subject to different constraints [55]
a) Let f : D → (−∞, +∞] where D is a convex set, then f is convex on D subject to
the following restriction;

f

(
N∑
n=1

αnxn

)
≤

N∑
n=1

αnf(xn), 0 < α < 1
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whenever x ∈ D.

b) Let f : R→ [−∞, +∞], then f is convex subject to the following restriction;

f

(
N∑
n=1

αnxn

)
<

N∑
n=1

αnyn, 0 < α < 1

whenever f(xn) < yn.

c) (Jensen’s Inequality). Let f : R → (−∞, +∞], then f is convex subject to the
following restriction;

f

(
N∑
n=1

αnxn

)
≤

N∑
n=1

αnf(xn)

whenever αn ≥ 0,
∑N

n=1 αn = 1.

1.5 Convex Models

Convex modelling is a process [11, 23, 25, 50] where a set of vectors or functions are
specified using deterministic basis characteristics to estimate some uncertain quantity
of the phenomenon in question. These quantities [24] of uncertainty can be stated and
classified as sets of variables in groups bounded as follows;

a)
|x| ≤ a (1.31)

where x is the uncertain parameter and a is a constant,

b)
xlower(t) ≤ x(t) ≤ xupper(t) (1.32)

where xlower(t) and xupper(t) are the deterministic functions,

c) ∫ ∞
−∞

x2(t) dt ≤ a (1.33)

where the uncertain function x(t) has an integral square bound. When modelling
the uncertainty of the vector or function space [11], quantities of its definition are
formulated in terms of a convex set R of allowed functions. A set of linear functions
E whose convex hull is R, is then used to maximise the set of allowed functions.
This set is not restricted to having only the extremum of R, but can contain just the
fundamental functions of R. The vector function quantities can also be modelled using
set-theoretic method as follows [50];

Fn =

{
f : f(t) =

1

n

n∑
i=1

gi(t), gi(t) ∈ Γ, i = 1, 2, . . . , n

}
(1.34)
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where Fn is the set of n-fold averages of vector functions in Γ. Various convex models
are available and cover probably most applications to a certain degree. They are
listed [11] as follows;

a) Density functions
Set of density functions of unit mass,

Rdf =

{
f : f(x) ≥ 0 and

∫
J
f(x)dx = 1

}
, (1.35)

and the extreme points are

Edf =

{
f : f(x) = δ(x− ξ) for ξ ∈ J

}
, (1.36)

where δ is the Dirac-function.

b) Monotonic functions
Set of real functions monotonically increasing

Rmf =

{
f : f(0) = 0, f(1) = 1, f(x) ≤ f(y) for 0 ≤ x ≤ y ≤ 1

}
, (1.37)

and the extreme points are

Emf =

{
f : f(x) = K[0,ξ](x) for 0 ≤ ξ ≤ 1

}
, (1.38)

where

KV (x) =

{
1 if x ∈ V, V ⊂ En,
0 otherwise.

c) Uniformly bounded functions
Set of functions defined on a domain J ∈ En

Rubf =

{
f : |f(x)| ≤ 1

}
, (1.39)

and the extreme points are

Eubf =

{
f : f(x) = KU (x)−KV (x) for U∩V = J, U∪V = ∅, {U, V } ⊂ En

}
, (1.40)

d) Envelope bounded functions

Rebf =

{
f : fmin(x) ≤ f(x) ≤ fmax(x)

}
, (1.41)

where fmin(x) and fmax(x) are specified functions. The extreme points are

Eebf =

{
f : f(x) = KV (x) fmax(x)+KU (x) fmin(x) for U∪V = J, U∩V = ∅

}
(1.42)
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e) Functions of bounded energy
Set of uniformly bounded functions,

Rfbe =

{
f :

∫
J
f2(x) dx ≤ 1

}
, (1.43)

and the extreme points are

Efbe =

{
f :

∫
J
f2(x)dx = 1

}
, (1.44)

f) Frequency bounded functions
Set of uniformly bounded functions,

Rfbf =

{
f : f =

N∑
n=1

cn ϕn(x) for c ∈ A
}
, (1.45)

if A is the solid ellipsoid then

A =

{
c = (c1, . . . , cn) :

N∑
n=1

(
cn
ωn

)2

≤ 1

}
, (1.46)

with the convex hull

B =

{
c = (c1, . . . , cn) :

N∑
n=1

(
cn
ωn

)2

= 1

}
, (1.47)

and the extreme points are

Efbf =

{
f : f =

N∑
n=1

cn ϕn(x) for c ∈ B
}

(1.48)

1.6 Material uncertainty

Assuming that material property scatter on average are limited or bounded in some
neighbourhood such that;

S(E, δ) = {Ẽ : d(E, e) ≤ δ} (1.49)

where E is the uncertain elastic moduli and radius δ. Thus the buckling load Ncr can
be perturbed [1] with respect to uncertain quantity Ẽ ,such that;

Ncr = Ncr(E
0) +

(
∇Ncr(E

0), [Ẽ]
)

(1.50)

where E0 is the deterministic elastic moduli. Due to the convexity of this formulation
the minimum value of Ncr is the hull of S such that;

N∗cr(E
0, e) = min

Ncr(E) :

k∑
i=1

(
Ẽi
ei

)2

= α2, Ẽ ∈ ∂S

 (1.51)
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where ∂S is the boundary of the convex set S with first partial derivatives at relative
minimum. Because the variables Ẽi(i = 1, 2, . . . , k) are not independent but must
satisfy a condition of constraints α the extremum can be found using a method of
Lagrange multipliers such that;

L
(
Ẽ,Λ

)
=
(
∇Ncr(E

0), [Ẽ]
)

+ Λ

 k∑
i=1

(
Ẽi
ei

)2

− α2

 (1.52)

subject to
∂L
∂Ẽ

= 0 (1.53)

which is a sufficient condition for the extremum points. Evaluating the partial differ-
ential the following equation is obtained

∂L
∂Ẽ

= ∇Ncr(E
0) + 2Λ[Ẽ] = 0 (1.54)

Ẽ = −(2Λ)−1∇Ncr(E
0) (1.55)

where Λ is the Lagrange multiplier with the following value;

Λ = − 1

4α2
∇T Ncr(E

0) ξ−1∇Ncr(E
0) (1.56)

letting

ξ =
δij
e2i
, with (i, j) = (1, or 2, . . . , or 4) (1.57)

where δ is the Dirac-function.

Then by substitution equation(1.56) into equation(1.52) and evaluating it terms of
N∗cr, the least favourable buckling load subject to constraint is obtained having the
following value;

N∗cr = Ncr(E
0)− α

(
k∑
i=1

(
ei
∂Ncr(E

0)

∂Ei

)2
) 1

2

(1.58)

which is the [1] semi-axis of the uncertain ellipsoid ei linked with the scatter in the
i-th elastic modulus.

1.7 Load uncertainty

When assessing structures for their inherent material properties it is common practice
to subject them to various loading conditions. Variations in the loads (distribution,
orientation, etc) result in different reactions within the material which can be corre-
lated to the type of the applied load. However when there is uncertainty with respect
to the nature of the load, modelling becomes difficult and unpredictable. On the other
hand convex modelling in its formulation presents a mechanism of factoring into the
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model elements of uncertainty with the solution providing a glimpse to the worst case
scenario.

Assuming that load bearing f j(xi) on the structure is bounded with variations confined
within a neighbourhood. The load is then divided [1] into two components namely the
deterministic f j0 (xi) and uncertain component f̃ j(xi) as follows;

f j(xi) = {f j0 (xi) + f̃ j(xi) : ‖f̃ j(xi)‖22 ≤ ε2j , i = 1, 2, 3, j = 1, 2, . . . , ζ} (1.59)

where εj is the prescribed level of uncertainty for the j-th loading, ζ denoting the
number of loads, i representing the orientation, and the L2 norm‖ ‖22 defined as follows;

‖f̃ j(xi)‖22 =

∫ 1

0
|f̃ j(xi)|2 dxi (1.60)

the extremum values are when

N∑
n=1

[
f̃ j(xi)

]2
= ε2j (1.61)

Utilising the method of Lagrange multiplier for the extremum the procedure work as
follows;

L(x0, f̃
j) = ϕ

(
x0; f̃

j(x0)
)

+ λ

(
N∑
n=1

(f̃ j)2 − ε2j

)
(1.62)

where ϕ denotes the deflection of the structure in question. The extremum condition
for the Lagrangian is as follows;

∂L(x0, f̃
j)

∂f̃ j
= 0 (1.63)

The solution in terms of unknown coefficients at a particular position x0 is the follow-
ing;

f̃ j(x0) = − 1

2λ

ϕ
(
x0; f̃

j(x0)
)

∂f̃ j
(1.64)

where x0 is to be determined with respect to the maximum deflection subject to the
load.

1.8 Sensitivity analysis

Sensitivity analysis is an attempt to assess the response of perturbed design param-
eters relative to the overall system performance. Perturbation means gradual and
continuous modification of the easy original problem and its solution so that difficult
problems in the neighbourhood can be solved or approximated closely [29]. In order for
this to occur there must be an explicit solution to the original problem. The difficulty
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associated with problems of material uncertainty is that, it is not easy to identify ac-
tual solutions thus making it even more difficult to properly formulate the domain for
parameterised solution. Sensitivity analysis with respect to the set of possible solution
is often used and preferred for identifying optimality. The structure of convex prob-
lems is such that points satisfying a first-order necessary conditions for optimality are
sufficient and are a true solution [41]. That has proven to be beneficial in a sense that
numerous first order conditions can be formulated into generalised equations where a
quasi-solution can be tested for stability.

Numerous authors contributed in developing formal theories that attempt to deal
decisively with the issue of stability. For instance Robinson’s work [54] deals with
B-derivatives, strong-derivatives and strong B-derivatives. The culmination of this
work was to set on a strong footing the implicit function theorem and a theorem on
approximation of implicit-function using simpler functions with an extension covering
the non-linear approximating functions. The interpretation of these results is given by
Rockafellar [41] in terms of the sensitivity to perturbation as follows;

S(γi) = {x ∈ C : −f(γi, x) ∈ H(x)} (1.65)

where C is a bounded convex set in the Hilbert space, f(γi, x) is the single -valued
mapping and H(x) is the input multifunction. Theories relating to the stability of
various formulations of the sensitivity analysis together with the alignment of these to
the systems in question are important but beyond the scope of the thesis. However the
technique adopted in this report is the relative sensitivity approach [14] which is based
on linear statistical analysis. Relative sensitivity evaluates the covariance-variance
matrix of the input parameters such that the high quantity of relative sensitivity
results in elevating the importance of the stated specific input parameter. The system
formulation is as follows;

∂ϕ∗

∂xi
=

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣ ∣∣∣∣x0iϕ0

∣∣∣∣ (1.66)

such that it compares relative importance of input parameters on the response. If on
the other hand the concept is constructed using the buckling load the procedure work
as follows;

Ncr = Ncr(β)

Φ = {γ1, γ2, . . . , γk}

where Φ is the k-dimensional uncertain vector belonging to a convex set S, and γi
being the material uncertain parameters.

f(γi) =

∣∣∣∣∂Ncr(β)

∂γi

∣∣∣∣ ∣∣∣∣ γ0i
Ncr(0)

∣∣∣∣ (1.67)

If the quantity of the value is such that ∂Ncr(β)
∂γi

> 0, then the system’s response is
monotone increased around γi, and if the opposite is true then the system is monotonic
degressive around the same parameter.
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Chapter 2

Small scale effects

The size dependence of nanostructure material properties makes it necessary to utilise
a modelling mechanism sensitive to their unique attributes. Therefore combining the
nonlocal effects and surface effect in the theory of analysis of nanostructures is im-
portant. Several authors [9, 44, 67] have in the past worked with both nonlocal and
surface effects showing improvement in the theoretical analysis. The lack of precise
stress-strain measuring mechanism at nanoscale, combined with molecular defects and
manufacturing variances for nanostructure further complicates modelling and create
uncertainty.

2.1 Nanotechnology

Generally most materials can be synthesised into nanostructures to a varying degree.
Eutectic microstructures can be tailored by modification resulting with materials char-
acterised by mechanical, electrical, chemical, and optical properties at various levels.
However carbon nanostructures get most of the attention due to their potential of-
fering in relation to numerous physical properties. The are possibilities of developing
these [17,30,42] nanostructures into nano-electronics and micro-electromechanical de-
vices based on mechanical and electrical properties which can be modulated through
various synthesis techniques. Nanostructures have proven to be reliable [69] and stable
to perform as expected when subjected to various loading conditions.

2.1.1 Carbon nanostructure composites

Over the past few years composite materials have been projected as an important al-
ternative to the traditional materials [61]. This is due to fact that they possess unique
material properties that can be tailor made to suit almost any loading environment.
There are various types of composite materials, which in the main consist of two or
more distinct materials. Commonly a matrix of some kind (natural or synthetic) is used
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together with some load bearing reinforcement in a form of short or long fibres or parti-
cles of some kind. The cost and the working environment usually dictates the specifics
when it comes to the choice of materials used for the composite in question. With
the advent of nanotechnology the scope for choosing materials has widened. Problems
associated with manufacturing and load bearing capacity of composite materials [6]
can now be addressed by manipulating constituents at a macroscopic, microscopic as
well as at nanoscale.

One attractive feature that resonates with most designers when using composites is the
high-strength to mass ratio. To achieve this property the reinforcement should have
high strength together with high aspect ratio in order to facilitate optimal load transfer
between the matrix and stiffner. Carbon nanotubes present [4, 5, 12] a perfect model,
structurally, in fulfilling some of these demands if not all of them in the foreseeable fu-
ture. They consist of a single-walled or multi-walled hollow rolled graphite sheets [37].
Carbon chains form molecules and are covalently bonded producing a structure with
high specific thermal and electrical conductivity ratio as well as mechanical properties
superior to traditional filler reinforcements [8, 42,60].

Manufacturing nanostructures consistently into continuous long fibres has some chal-
lenges [6,10] and this has limited the use of these fibres to just being matrix modifiers.
As a function of their size they inherently have a tendency to agglomerate and clus-
ter into bundles and fail to disperse homogeneously in the matrix. Given the large
surface area of nanotubes per volume of mixture, normally there is poor solubility of
nanofibre in the matrix resulting in these composites tending to be very viscous and
not easy to process or mould. Although the increased surface area of nanotubes can
cause difficulties it’s also an attractive feature that can be exploited for other gains.
For example, due to their high aspect ratio together with their tendency percolate
in the matrix this serves as a mechanical strengthening character for composites and
it facilitates an electrical conductivity property which can be modulated by applying
mechanical stress in the composite. Nanotubes can be arranged in a three dimensional
array in the matrix resulting in the improvement of material properties in all planes.
Numerous issues [6] related to mechanical bonds at the interface between the matrix
and nanofibres have caused some challenges and have to be sorted out before making
these composites cost effective and widely available.

2.1.2 Growth and synthesis of nanostructures

The uniqueness of carbon to assimilate numerous structural forms helped in facilitat-
ing the possibility for the discovery of nano-tubes accredited to Iijima in 1991 [37].
Since their discovery a lot off activity in the research area of nano-tube composites
has been inspired. There are various techniques [17, 30, 48] that are currently being
investigated and utilised to produce carbon nano-tubes. A full understanding of the
mechanism involved in the production of these fibres is imperative, as this will in
turn aid consistency in producing these nano-structures with predictable mechanical
properties [5].
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Materials with eutectic composition have a low melting point [10] and are easily infused
as the Greek word eutectos suggests. The freezing range for these materials transforms
them from liquid state to solid state at a constant temperature called eutectic tem-
perature. The end product is a function of the distribution of atoms characteristic
to a specific eutectic system resulting with either a tubular structure or a laminar
microstructure. The shapes of the primary phases plays an important role and the
surface energy helps in retaining this shape whilst the interaction between the phases
are progressing. Nanowires are synthesised in the same manner taking advantage of
the low melting temperature associated with eutectic reactions.

It is understood that Iijima [4, 5, 37] used carbon arc process where a direct current
is passed between two carbon electrodes in chamber saturated with inert gas at an
elevated temperature above the eutectic temperature levels. Gas in the atmosphere
decomposes and is absorbed in the carbon electrode and diffuses resulting in the for-
mation of nanoparticles. These particles are then held at a constant temperature
whilst increasing the gas content. This gas continuously diffuses into the rod until
the nanoparticles are completely molten. Then the increased gas content that is con-
tinuously diffused into the catalyst reacts resulting with the formation a solid phase.
This interaction between the catalyst and the anode gas facilitates the precipitation
of graphite sheets shaped into a multiwalled nanotubes. It is also understood that by
incorporating various types of metal catalyst single walled nanotubes can be produced.
The nanostructure will continues to grow with the liquid leading edge producing the
nanowire, as long as the environment provides sufficient reaction to facilitate precipi-
tation.

Accordingly it has been established that nanofibre growth is dependent on the abrupt
shape in the catalyst particle to which in turn depends on the reaction between the
catalyst and vapour [5]. Helveg et al. [34] reckons that “step edges act as growth centres
for graphene growth mainly because carbon binds more strongly to such sites than to
sites at the closed-packed facets on Ni”. The typical dimension [6, 12, 48] of these
multiwalled nanotubes (with slight variation from one reference text to another) with
4 − 24 concentric shells ranges between 2 − 50nm in diameter. On the other hand
single walled nanotube consist of 0.5− 2nm in terms of their diameter. Various other
techniques are available for synthesising carbon nanotubes; i.e. laser evaporation,
catalystic combustion, chemical vapour deposition and ion bombardment [12].

Once the process of producing nanotubes is done the system has to be purified from
contaminants. Nanoparticles that did not form part of the beam or lamina structure
are the main by-product [20] and constitute about one third in terms mass per pro-
duction of the total nanostructure. An oxidation reaction at a slow rate is reported as
the preferred technique in purifying nanostructures.

2.1.3 Mechanical properties

The literature is populated [12, 30, 48] with various methods used in determining me-
chanical properties of nanotubes. These properties are important for the practical

22



application of nanotubes, be it as matrix reinforcement, sensors or as nano-device ac-
tuators. Characterisation of the mechanical properties of structural materials is based
on elastic modulus which is a relationship between stress and strain subject to pre-
determined loading conditions. The modulus of elasticity for homogeneous materials
is understood to be an intensive property defined at arbitrary points in the material
continuum. Due to the discrete nature of the composite material elements and the de-
pendency of nano-composites to the properties of its constituents, characterisation of
its modulus is an averaged quantity based on the relative fraction of each constituents
referred to as the effective modulus.

The basic formation of carbon nanotubes can be viewed as a rolled tube of graphite
sheet with caps that resemble half of a sphere at the ends [10, 15, 33, 44]. Graphene
sheets can be rolled into single or multi-walled pattens resulting with different physical
properties for the tube. As reinforcements and stiffeners for polymer matrix, its under-
stood from material science that at the interface between the two phases atomic bond
structure is interrupted and irregular. This phenomenon is a function of distribution
of electrons at the surface of each phase which in turn affects the bond at the interface.
Not only does it affect the relationship between the two phases but it also disrupts
the even distribution of energy within each phase creating differences between energy
associated with the surface atoms to those in the bulk of the material. Thus the elastic
moduli of the surface region differs to that of the bulk region. This phenomenon is at
the core of this study and the essence in terms of theoretical models that are going be
subsequently implemented.

Further more the composition of these nano-sized structural materials is such that
surface to volume ratio is high making it necessary to model these structures with the
bias to surface energy and surface stress. Surface free energy (or surface tension) as
a concept is credited to Gibbs [16] which is viewed as a thermodynamic quantity. It
is thought of as reversible work responsible for creating or extending by filling new
surface lattice sites with atoms at constant temperature and volume without changing
the density of atoms at the surface. Surface stress on the other hand is responsible for
stretching the substrate thus changing the density of surface atoms but keeping the
same quantity of atoms at the surface.

2.2 Nonlocal theory

Structures [19] in general can be examined at five different scale levels namely;

a) atomic scale 1Å,

b) short and long-range atomic arrangement scale 1− 10Å,

c) nanostructure 1− 100nm,

d) microstructure (single crystal or grain size) 0.1− 100µm,
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Figure 2.1: Atoms in array (a) Cubic array with a typical inter-atomic spacing r0 of
0.2nm. (b) Carbon atoms with each layer in a hexagonal array [10,19].

e) macrostructure > 100µm.

Material features at these levels have a distinct and profound influence on the proper-
ties or behaviour of the material. Atomic structure also affects the types of material
bonds be it covalent bonding or otherwise. The response of solid materials to external
stimuli or loading mechanism (point loads, distributed loads, etc.) at an atomic scale
is dependant on the nature and magnitude of the force as well as material properties
of the solid in question. The material may fracture if the intensity of the load exceeds
the internal tolerable limit or may deform permanently without fracture for a lesser
magnitude or might just elastically deform. Thus it is important to properly quantify
linear elasticity using a model that best fits the scale effects of the object concerned.

The classical theory of elasticity works well at macroscopic level since in its formulation
long range effects are catered for. However the applicability of the same theory at a
nanoscale or even at microstructure scale is seriously doubted [21,66,68,70]. Atomic or
molecular simulation models are available for undertaking this analysis but computa-
tional costs may prove to be a deterrent. Responding to the short comings of classical
continuum mechanics, Eringen et al, [26–28], introduced the nonlocal theory of elastic-
ity. The postulation forwarded by nonlocal continuum mechanics asserts that stress
at a point in the body is a function of strain in all other points in the body [26,28,53].
Theoretical formulation proceeds as follows;

τij,j + ρ(fi − üi) = 0 (2.1)
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where τij , ρ, fi, and ui are, respectively, the stress tensor, mass density, body force
density and the displacement vector at a reference point in the body, at time t. The
nonlocal tensor is defined by

τij(x) =

∫
V
κ(‖x− x′‖, ξ)σij(x)dx (2.2)

The kernel function κ(‖x − x′‖, ξ) constitutes the nonlocal modulus, together with
the norm ‖x − x′‖. This integral computes an averaged strain quantity at all the
points in the body for the stress at a referenced point [51, 53]. ξ is the material
constant derived from internal and external characteristic lengths (e.g. lattice spacing
and wavelength), and σij(x

′) is the macroscopic classical stress tensor at point x in
accordance with generalised Hooke’s law

σij(x) = Cijkl(x)εkl(x) (2.3)

εkl(x) =
1

2

(
∂uk(x)

∂xl
+
∂ul(x)

∂xk

)
(2.4)

where Cijkl are the elastic modulus components.

In determining the properties of the nonlocal modulus for homogeneous and isotropic
elastic solids, Eringen [27] made the following observations:

i) The modulus κ(‖x− x′‖, ξ) attains its maximum value when the norm ‖x− x′‖
is minimised such that x = x′.

ϑ = κ(‖x− x′‖, ξ) where ξ =
e0a

l
(2.5)

where e0, a, l is the material constant, internal and external characteristics
respectively, for the specific material in question.

ii) To cater for the inclusion of the classical elastic limit the material constant for
internal characteristic length must vanish i.e.; ξ → 0,

lim
ξ→0

κ(‖x− x′‖, ξ) = δ(‖x− x′‖) (2.6)

where δ(‖x− x′‖) is the Dirac delta function.

iii) For ξ → 1 (small scale), nonlocal theory should approximate atomic lattice
dynamics.

iv) ϑ for various materials can be determined by matching dispersion curves of
plane waves with those of atomic lattice dynamics. To this end Eringen [27]
experimented by matching the dispersion curve of one -dimensional plane wave
based on the nonlocal elasticity and the Born-Kármán model of the atomic
lattice dynamics, two-dimensional and three dimensional lattices with minimal
error levels.
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v) Assuming ϑ to be the Green’s function of a linear differential operator

Lκ(‖x− x′‖, ξ) = δ(‖x− x′‖) (2.7)

applying the the differential operator L to the nonlocal constitutive equation it
reduces to;

Lτij = σij (2.8)

resulting in the simplification of the integropartial differential equation to
having the partial differential equation;

σij + L(ρfi − ρüi) = 0 (2.9)

vi) From matching dispersion curves with Born-Kármán model of the atomic
lattice dynamics the differential operator L is;

L = 1− ξ2l2∇2 (2.10)

Substituting the relevant terms yields an equivalent simplified expression for
the stress tensor given as follows;(

1− ξ2l2∇2
)
τij = σij (2.11)

.

2.3 Surface effects

x

z

h
2

Bulk - B (E, ρ, λ, µ)

Surface - S (ρ0, λ0, µ0, τ0)

Figure 2.2: 2D Half-space

It has been established that when the overall structural dimensions are at a scale
comparable with the atomic scale, surface stress becomes prominent and cannot be
ignored [15, 33, 44]. Nanostructure materials have a large surface area per unit mass
as a result of a large number of atoms at the surface compared to those within the
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body of the material. The anomalous arrangement of atoms at the surface dictates
that equilibrium satisfaction for surface atoms be different to the atoms in the bulk
of the structure. This phenomenon facilitates the development of different energy
levels between the two spaces resulting with the occurrence of size dependant material
properties giving rise to surface stress.

Classical continuum theories fail to factor this phenomenon and cannot therefore pro-
vide analysis acceptable at this scale. Gurtin and Murdoch [32, 33] realised this, thus
presented a general continuum theory of surface stress that accommodates these resid-
ual stresses. Surface traction caused by the residual stresses affects the modelling of
the small scale elements resulting with a coupled system of field equations that con-
tain non-classical boundary conditions. In formulating the basic equations for surface
effects Gurtin and Murdoch [33] considered the body as constituted by two distinct
sections (bulk and the surface) Figure 2.2 with pronounced differences in terms of their
material properties.

Consider the body B described in Figure 2.2 by a coordinate system xi(i = 1, 2, 3)
which is bounded by the surface S regarded as having two dimensional xα(α = 1, 2)
continuous structure. The surface structure is strained as a result of residual stresses
but bonded to the bulk perfectly but still behaves like a surface region even if through
the bulk is unstrained. The stress localised at the surface region is regarded as a tensor
ταβ subject to the following ;

v

n

Γ

Figure 2.3: Surface

a) take Γ as the surface curvature (see Figure 2.3) with vector v acting tangential
to Γ and is normalised;

b) S contains an orthogonal projection such that;

{n.v = 0 ∀ Γ ⊂ S} (2.12)

c) then ταβ v is the force per unit length produced by the residual stresses in the
direction of the vector v projection;

d) both S and B are regarded as having homogeneous, linear elastic and isotropic
material properties.

From the classical equations, equilibrium for the bulk stress tensor consists of the
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following

τij,j = ρü (2.13)

τij = λδijεkk + 2µεij (2.14)

εij =
1

2
(ui,j + uj,i) (2.15)

In the determination of the surface phenomenon the quantity γ represents surface free
energy per unit area produced by surface effects. This quantity can be interpreted
as reversible work per unit area needed to create a new surface through cleavage or
creep [15].

dW = γda (2.16)

Work needed to elastically stretch the existing surface can be represented by a surface
stress tensor ταβ with dεαβ representing a small variation of the area. Relating the
two quantities yields;

d(γA) = Aταβdεαβ (2.17)

from calculus we know that
d(γA) = γdA+Adγ (2.18)

and dA = Aδαβdεαβ where δαβ → Kronecker delta. Then the surface stress constitu-
tive relation becomes

ταβ = γδαβ +
∂γ

∂εαβ
(2.19)

The surface stress tensor as a linear function of strain tensor is expressed as follows

ταβ = τ0 + Kαβrϕ εrϕ (2.20)

where τ0 is the surface stress tensor when the bulk is unstrained (see Shenoy [44]) and
Kαβrϕ is the surface elastic modulus tensor.
The expanded format of the surface stress tensor constitutive relation (see Gurtin
Murdoch [33]) is formulated as follows:

τiα,α + σi3 = ρ0üi (2.21)

ταβ = τ0δαβ + (µ0 − τ0) (uα,β − uβ,α) + (λ0 + τ0) ur,rδαβ + τ0 uα,β (2.22)

τ3β = τ0 u3,β (2.23)

where µ0, γ0, σi3 are the Lamé moduli and traction in the direction of α respectively,
with α, β, r = 1 and 2.
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Chapter 3

Nonlocal Nanobeam
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q(x) q̃(x)

dw

dx

M + ∂M
∂xN

Q

Q + ∂Q
∂x

N + ∂N
∂x

M

q̃(x)

Figure 3.1: Beam deformation

3.1 Nano-beams

Technological advancement has resulted in the design and production of numerous
nano-devices that are used for various applications. Devices such as atomic force
microscope employ micro-cantilever-tip systems, together with numerous other critical
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parts such as nano-tubes, nano-wires, and cantilever actuators being used in micro-
electromechanical systems. It is imperative therefore to utilise models that are accurate
in the analysis of the deformation properties of these structures. There are numerous
classical beam theories [2,36,62,63], going as far back as the 18th century, attempting
to appropriately model the mechanics of beam deformation under various loads. The
Euler-Bernoullis formulation is based on the assumption that the transverse plane
remains plane and perpendicular to the neutral axis under small elastic deformation
of bending. Timoshenko beam theory on the other hand takes into account the effects
shear deformation and rotary inertia. The latter [40] is regarded as more accurate and
an improvement of the former.

Developments of nanotechnology and advancements have created a necessity for the
adaptation of these classical macro-scale theories to micro-to-nanoscale theories. Other
than classical continuum mechanics there are other options namely the atomic or
molecular models. However these models are very complex computationally and diffi-
cult to accurately formulate [70]. The nonlocal theory [21,31,45,66,68] was developed
to link the atomic theory of lattice mechanics with the classical continuum mechanics.
In classical continuum mechanics it is postulated that the stress at a point x is a
functional of strain at point x. Eringens nonlocal theory postulates that stress at a
reference point x is a functional of the strain field at every point x’ in the small scale
body. Application of this theory by various authors has demonstrated it is effective-
ness on a wide range of physical phenomenon spanning micro-to-nanoscale and even
convertible to classical local theories.

In its essence the nonlocal kernel function factors in the influences of strain on all
locations of the small scale volume. Naturally accurate determination of buckling, de-
flection, and vibration of various structural elements require compliance with boundary
conditions. Due to difficulties in solving mathematically the nonlocal integropartial
differential equations little progress has been made in acquiring knowledge of the inter-
action between this function and the boundary value problems. In this paper, convex
modelling is proposed in handling not only uncertainties in the boundary condition
but even the effects of uncertain loading and displacement.

3.1.1 Governing equations

The derivations of the governing equations [52, 53] are based on the Euler-Bernoulli
beam theory where the displacement field are modelled as follows;

u1 = u(x)− z ∂w
∂x

(3.1)

u2 = 0 (3.2)

u3 = w(x) (3.3)

where u is the axial displacement and w the transverse displacement of the point from
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the mid-plane position of the beam. The constitutive relations for the nonlocal stress
tensor τij at point x are defined as [26–28];

τij(x) =

∫
V
κ(‖x− x′‖, ξ)σij(x)dx (3.4)

The nonlocal integropartial is replaced by the equivalent differential form expressed
as follows (

1− τ2l2∇2
)
τij = σij , τ =

e0 a

l
(3.5)

Uniaxial Hook’s law taking into account the nonlocal equivalent differential form equa-
tion (3.5) yields

σ − (e0 a)2∂2σ

∂x2
= E ε (3.6)

Euler-Bernoulli axial and curvature strain relations yields the following expression;

ε =
∂u1
∂x

(3.7)

ε =
∂u

∂x
− z ∂

2w

∂x2
(3.8)

Substituting in the stress equation (3.6), the following equation is obtained;

σ − (e0 a)2∂2σ

∂x2
= E

(
∂u

∂x
− z ∂

2w

∂x2

)
(3.9)

For the element shown in the Figure 3.1, the equilibrium of forces and moments is
derived as follows;
In summing vertical forces

∑
Fv = 0 the following equations are obtained

−∂Q
∂x

dx− q dx = 0 (3.10)

∂Q

∂x
= −q (3.11)

When summing moments
∑
M = 0, and ignoring (dx)2 or higher will result with the

following;

N dw +Qdx− ∂M

∂x
dx = 0 (3.12)

by differentiating equation (3.12) with respect to x once, substitution using equation
(3.11) we get

∂2M

∂x2
= N

∂2w

∂x2
− q (3.13)

where N and M are the transverse load per unit length and bending moment respec-
tively. They are defined as follows;

N =

∫
A
σ dA (3.14)

M =

∫
A
z σ dA (3.15)
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If the stress equation is integrated for N and M as shown above respectively the
following terms are obtained;

N =

∫
A
σ dA = E A

∂u

∂x
(3.16)

M =

∫
A
z σ dA = −E I ∂

2w

∂x2
(3.17)

Where I is defined as follows;

I =

∫
A
z dA (3.18)

with

A =

∫
A
dA (3.19)

Expanding the nonlocal stress equation (3.9) with respect to the moment equation
(3.17) and differentiating it twice with respect to x, the following equations are ob-
tained;

M − µ2∂
2M

∂x2
= −E I ∂

2w

∂x2
(3.20)

∂2M

∂x2
− µ2∇2∂

2M

∂x2
= −E I ∂

4w

∂x4
(3.21)

Substituting with the resultant moment equation (3.13) in the above equation (3.21),
gives the following;

N
∂2w

∂x2
− q − µ2∇2

(
N
∂2w

∂x2
− q
)

= −E I ∂
2w

∂x2
(3.22)

where µ2 = (e0 a)2 and ∇2 = ∂2

∂x2
. Simplifying the expression yields;

E I wxxxx +
(
1− µ2∇2

)
(N wxx − q) = 0 (3.23)

3.2 Principle of virtual work

An alternative method [52, 64] for deriving the governing equations is based on the
principle of virtual work. Assuming that the particle is in equilibrium then the total
work of all the forces acting on it (forces are assumed to be constant and preserving
their line of action), in any virtual displacement is zero or vanishes. If δu, δv, and δw
are components of virtual displacement in the x, y, and z directions and

∑
X,
∑
Y,

and
∑
Z are sums of projected forces in the same direction as the coordinates system

on the particle, then by applying the principle of virtual work the following is obtained:∑
X δu = 0 (3.24)∑
Y δv = 0 (3.25)∑
Z δw = 0 (3.26)
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satisfied for any virtual displacement if the projected forces are in equilibrium.∑
X = 0,

∑
Y = 0,

∑
Z = 0 (3.27)

Expressed differently if the forces in equilibrium in a system of equations are multi-
plied by their respective virtual displacements we obtain the virtual work equations.
Relating these to strain the following is obtained

δεij =
1

2
(δui,j + δuj,i) (3.28)

Virtual work for the volume

δV0dxi =
∑

τij δεij dxi (3.29)

where V0 is the amount of the strain energy per unit volume. Work done by external
forces consists of the surface forces X̄ds, Ȳ ds, Z̄ds on the surface element ds. It also
consists of body forces X̄dv, Ȳ dv, and Z̄dv on the volume of the element dv = dx, dy,
and dz. The change in strain energy measures the work done against mutual forces
between the particle. To quantify work done by mutual forces on the particles the sign
must be reversed.

surface forces + body forces−mutual forces = 0 (3.30)∫ (
X̄δu+ Ȳ δv + Z̄δw

)
ds+

∫
(Xδu+ Y δv + Zδw) dv −

∫
δV0dv = 0 (3.31)

Applying the principle of virtual displacement with its formulation in terms of dis-
placement for the nonlocal beam,

δU =

∫
v
τij δεij dv (3.32)

where δU is the strain energy variation in the beam, based on the Euler-Bernoulli
beam theory

δU =

∫ L

0

{∫
A
σx δεxda

}
dx (3.33)

=

∫ L

0

{∫
A
σx

∂δu

∂x
da− z

∫
A
σx

∂2δw

∂x2
da

}
dx (3.34)

=

∫ L

0

{
N
∂δu

∂x
−M∂2δw

∂x2

}
dx (3.35)

Variation of externally applied loads with respect to the displacement of the beam;

δW =

∫ L

0

[
q δw + ~N

∂δw

∂x

]
dx (3.36)

where ~N = N ∂w
∂x . Putting the terms together and integrating by parts, from the

principle of virtual displacement the procedure is as follows;

=

∫ L

0

{
N
∂δu

∂x
−M∂2δw

∂x2

}
dx−

∫ L

0

{
q δw + ~N

∂δw

∂x

}
dx (3.37)
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resulting with the following set of equations;∫ L

0
M
∂2δw

∂x2
dx =

[
M
∂δw

∂x
− ∂M

∂x
δw

]L
0

+

∫ L

0

∂2M

∂x2
δwdx (3.38)∫ L

0

~N
∂δw

∂x
dx = ~Nδw|L0 −

∫ L

0

∂ ~N

∂x
δw dx (3.39)∫ L

0
N
∂δu

∂x
dx = Nδu|L0 −

∫ L

0

∂N

∂x
δu dx (3.40)

noting that there is no variation at the boundary, which translates to δw(L) = δw(0) =
0. From this the following is obtained;[

M
∂δw

∂x
− ∂M

∂x
δw

]L
0

= 0 (3.41)

~Nδw|L0 = 0 (3.42)

Nδu|L0 = 0 (3.43)

From the fundamental lemma of the calculus of variations: [18, 57]∫ x1

x0

η(x)ϕ(x) dx = 0 ∀ η ∈ C1 (3.44)

where C1 is the set of real valued functions defined and differentiable with continuous
derivative on x. Simplifying by collecting terms with similar coefficients δu and δw,

δu :

∫ L

0
δu

{
∂N

∂x

}
dx = 0 (3.45)

δw :

∫ L

0
δw

{
∂2M

∂x2
− ∂ ~N

∂x
+ q

}
dx = 0 (3.46)

obtaining the Euler-Lagrange equations which are;

δu :
∂N

∂x
= 0 (3.47)

δw :
∂2M

∂x2
−N ∂2w

∂x2
+ q = 0 (3.48)

by substitution the nonlocal equation

E I wxxxx +
(
1− µ2∇2

)
(N wxx − q) = 0 (3.49)

can be determined. When determining constants, boundary conditions in the beam
can be specified in the span 0 ≥ x ≥ L with information relating to

u→ axial deflection or N → axial force
w → transverse deflection or Q→ shearing force
dw
dx → slope or M → bending moment

By setting µ = 0, the classical local equation of motion can determined for the beam.
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Chapter 4

Small Scale Plate

w0

u0
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zy
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∂u
∂y
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∂v
∂x
dx

x

h

dx

u+ ∂u
∂x
dx dy

dx

S−

S+

Figure 4.1: Plate deformation

4.1 Plate theory

The popularity of nanostructures as a relatively new class of material is due to their
unique mechanical, electrical, electronic and thermal properties. These attributes
are linked to the small scale effects of these structures [39, 46, 49]. Nanostructures
specifically graphene sheets show promise of possible use in a variety of technological
applications [7, 58]. It is imperative therefore to have a proper understanding of all
the factors at play when modelling nanostructures subjected to various loads and
environments.

For an expansion of a specific continuum theory governing structural deformation
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[43,47,67] the study of the classical plate theory attributed to or known as Kirchhoff’s
hypothesis is considered. According to this theory it is assumed that the normal to the
mid-plane remains normal even after small deformation and do not change in length.
Obviously this is in contradiction to the fact that transverse strain exists (ε3 6= 0) if one
were to consider the hygrothermal and Poissons ratio effects. However as a function of
differences between lateral and transverse dimensions when considering pure bending,
it is assumed that the middle surface is the neutral surface of the plate, implying that
the direct stress is zero. This can only be true if the middle surface of the bent plate
is a developable surface [64,65] in a sense that:

a) The thickness of the plate is very small when compared with the radius of
curvature

b) Deflection of the plate is very small when compared with the width of the plate

c) Deflection of the plate is very small when compared with the thickness of the
plate.

The same understanding is used when analysing the response of nano-plates subjected
to uncertain transverse and buckling loads. Using special cases [64,65] the investigation
will be limited to the effects of stiffness and deflections. But first the general governing
equations will be derived and later refined to suit the special cases investigated in this
dissertation.

4.2 Governing equations

According to the classical theory [52, 64], the plane stress and strain system is suffi-
cient for the analysis of rectangular thin plates. Loads are normally taken as acting
parallel to the plane system referenced at mid-plane. The following stress components
σz, τxz, τyz are regarded as negligible at the surface S as well as in the bulk B. This
implies that σx, τxy, σy are the only components required to determine the stress state
in the plate.

4.2.1 Classical plate equations

Given the scenario where there are transverse loads, lateral loads as well as moments
acting on the plate we have an option of proceeding as follows;

Summing vertical forces
∑
Fz = 0 (see Figure 4.2) and then simplifying the equation

we get:
∂Vx
∂x

+
∂Vy
∂y

+ q(x, y) = 0 (4.1)
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Vx +
∂Vx

∂x
dxVy

Vx

y z
x

Vy +
∂Vy

∂y
dy

Figure 4.2: Transverse loading

where {q, V } represents the distributed load and transverse shearing force/unit length
respectively projected in the z-direction as:

Vx =

∫ h
2

−h
2

τxz dz (4.2)

Vy =

∫ h
2

−h
2

τyz dz (4.3)

Mxy
My +

∂My

∂y
dy

Mx +
∂Mx

∂x
dx

Mxy +
∂Mxy

∂x
dx

Myx +
∂Myx

∂y
dy

Myx

My

Mx

Figure 4.3: Moments

Summing moments
∑
Mxi = 0 with respect (see Figure 4.3) to the x and y axis

respectively yields:

∂Mxy

∂x
− ∂My

∂y
+ Vy = 0 (4.4)

∂Mxy

∂y
− ∂My

∂x
+ Vx = 0 (4.5)

Given that Myx = −Mxy , substituting equation (4.4) and (4.5) into equation (4.1)
and simplifying yields:

∂2Mx

∂x2
+
∂2My

∂y2
− 2

∂2Mxy

∂x∂y
= −q (4.6)
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When considering the lateral loading (see Figure 4.4) the forces are first projected in
the x and y directions yielding after simplification the following equations:

Nxy +
∂Nxy

∂x
dx

Nx

Nxy

Nyx

Ny Nx +
∂Nx

∂x
dx

Nyx +
∂Nyx

∂y
dy

Ny +
∂Ny

∂y
dy

Figure 4.4: Lateral loads

∂Nxy

∂y
+
∂Nx

∂x
= 0 (4.7)

∂Nxy

∂x
+
∂Ny

∂y
= 0 (4.8)

Taking into account the curvature (see Figure 4.1) on the plate and projecting the
lateral loads as well as the shearing forces in the z-direction, after simplification where
second order and higher quantities are ignored, the following equations are obtained;

Nx
∂2w

∂x2
dx dy +

∂Nx

∂x

∂w

∂x
dx dy (4.9)

Ny
∂2w

∂y2
dx dy +

∂Ny

∂y

∂w

∂y
dx dy (4.10)

noting the fact that Nyx = Nxy when shearing forces are projected on the z-axis, after
simplification the following equation is obtained:

2Nxy
∂2w

∂x∂y
dx dy +

∂Nxy

∂x

∂w

∂y
dx dy +

∂Nxy

∂y

∂w

∂x
dx dy (4.11)

Summing all the vertical forces and simplifying the equation yields the following:

∂2Mx

∂x2
+
∂2My

∂y2
− 2

∂2Mxy

∂x∂y
= −

(
q(x, y) +Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y

)
(4.12)

where M represents the moments projected in the z-direction as:
Mx

Mx

Mxy

 =

∫ h
2

−h
2


σx
σy
τxy

 z dz (4.13)

For small deflection (see Figure 4.1) implementing Kirchhoff’s hypothesis the following
is obtained; 

u
v
w

 =


u0(x, y)− z ∂w∂x

v0(x, y)− z ∂w∂y

w(x, y)

 (4.14)
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resulting with general strain components as follows;


εx
εy
γxy

 =



∂ u
∂ x

∂ v
∂ y

∂ u
∂ x + ∂ v

∂y


=



∂ u0
∂x − z ∂

2w
∂ x2

∂ v0
∂y − z ∂

2w
∂ y2

∂ u0
∂ x1

+ ∂v0
∂y − 2z ∂2w

∂x∂y


(4.15)

When considering the orthotropic case but ignoring hygrothermal effects the equation
for constitutive relations is as follows;


σx
σy
τxy

 =


Ex

(1−νxyνyx)
νxyEy

(1−νxyνyx) 0

νxyEy

(1−νxyνyx
Ey

(1−νxyνyx) 0

0 0 Gxy



εx
εy
γxy

 (4.16)

Where E is the modulus of elasticity in x and y direction, G and ν being the modulus
of rigidity and Poissons ratio, respectively. The strain components for pure bending
are as follows;


κx
κy
κxy

 = −



z ∂
2w
∂ x2

z ∂
2w
∂ y2

2z ∂2w
∂x∂y


(4.17)

Expanding the moment terms the following are obtained;


Mx

Mx

Mxy

 =

∫ h
2

−h
2

−


Ex

(1−νxyνyx)
νxyEy

(1−νxyνyx) 0

νxyEy

(1−νxyνyx
Ey

(1−νxyνyx) 0

0 0 Gxy





∂2w
∂ x2

∂2w
∂ y2

2 ∂2w
∂x∂y


z2 dz (4.18)

Substituting the moment terms (4.18) into equation (4.12), the classical governing
deflection is obtained as follows;

D11
∂4w

∂x4
+D22

∂4w

∂y4
+2(D12+D66)

∂2w

∂x2∂y2
+q(x, y)+Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+2Nxy

∂2w

∂x∂y
= 0

(4.19)
where the D’s represents the stiffness coefficients as follows:

D11 =
h3Ex

12(1− νxyνyx)
, D12 =

h3 νxyEy
12(1− νxyνyx)

D22 =
h3Ey

12(1− νxyνyx)
D66 =

h3Gxy
12
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4.2.2 Nonlocal equations

According to Eringen’s nonlocal theory of elasticity, stress at a reference point is
considered to be a function of strain field at every point in the bulk of the body [26–28].
This based on the fact that in the atomic theory of lattice dynamics long range cohesive
forces are known to be active given the scale of these crystals. The same considerations
are applicable to nanostructures as a function of their small scale comparable to that
of crystals. However in the classical theory of elasticity the effects of this phenomenon
are neglected. The basic formulation of the constitutive equation for nonlocal theory
of linear elasticity in the continuum is given as follows;

τij(x) =

∫
V
κ
(
|x− x′|, ξ

)
Cijkl(x)ε(x) dx (4.20)

where C, κ (|x− x′|, ξ) is the classical macroscopic tensor and the kernel function
respectively, with |x − x′| as the Euclidean norm and ξ the material constant. It is
difficult to solve for the integral constitutive equation however it can be represented
by its equivalent form as follows;(

1− ξ2l2∇2
)
τij = Tij , ξ =

e0a

l
(4.21)

where e0, a, l is the material constant, internal and external characteristics lengths
respectively. By rearranging the compatibility equations in terms of stress for the
orthotropic case a nonlocal stress-strain system is obtained in the following format;


σx
σy
τxy

− η2∇2


σx
σy
τxy

 =


Ex

(1−νxyνyx)
νxyEy

(1−νxyνyx) 0

νxyEy

(1−νxyνyx
Ey

(1−νxyνyx) 0

0 0 Gxy



εx
εy
γxy

 , (η2 = e20a
2)

(4.22)

Where ∇2 = ∂2

∂x21
+ ∂2

∂x22
and the matrix is symmetrical along the upper left to lower

right diagonal. The moments equation then becomes;


Mx

Mx

Mxy

− η2∇2


Mx

Mx

Mxy

 =

∫ h
2

−h
2

−


Ex

(1−νxyνyx)
νxyEy

(1−νxyνyx) 0

νxyEy

(1−νxyνyx
Ey

(1−νxyνyx) 0

0 0 Gxy





∂2w
∂ x2

∂2w
∂ y2

2 ∂2w
∂x∂y


z2 dz

(4.23)
The nonlocal governing deflection equation is obtained as follows;

D11
∂4w
∂x4

+D22
∂4w
∂y4

+ 2(D12 +D66)
∂2w

∂x2∂y2
=

(η̃2∇2 − 1)
(
q(x, y) +Nx

∂2w
∂x2

+Ny
∂2w
∂y2

+ 2Nxy
∂2w
∂x∂y

) (4.24)
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4.2.3 Surface equations

When modelling for the surface effects [33] the thin plate is regarded as having two
physically distinct material sections namely the surface S and the bulk B. The surface
area is considered to be a two dimensional continuum that adheres to the body without
slipping with a coordinates system of Greek symbols (x{α, β, γ} = x{1, 2}). On the other
hand the bulk complement is considered to be a three dimensional continuum with
a coordinate system that uses Latin symbols (x{i, j, k} = x{1, 2, 3}), bounded by the
surface. Neglecting body forces the state of stress in the bulk B is defined by the
following differential equation;

τij,j = 0 with i, j = 1, 2, or3. (4.25)

where τij denotes stress and commas implying differentiation with respect to the cor-
responding index. Applying the index system with the following definitions;σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

 =

τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33


with the coordinate system working as follows;

{x, y, z} = {x1, x2, x3}
Expanding the differential equation (4.25) based on the variation of stress in a three
dimensional parallelepiped (see Figure 4.5) element the following equations are ob-
tained;

∂τ11
∂x1

+
∂τ12
∂x2

+
∂τ13
∂x3

= 0 (4.26)

∂τ22
∂x2

+
∂τ12
∂x1

+
∂τ23
∂x3

= 0 (4.27)

∂τ33
∂x3

+
∂τ13
∂x1

+
∂τ23
∂x2

= 0 (4.28)

As shown in Figure 4.1,h in the z or x3 direction is the thickness of the plate and is
taken as significantly small in comparison to the x and y dimensions. Based on this
assumption and applying integration through the thickness [43, 47, 67] the resultant
forces and moments can be concisely specified in the following manner;

Nij =

∫ h
2

−h
2

(τij) dx3 (4.29)

Mij =

∫ h
2

−h
2

(τij)x3 dx3 (4.30)

Multiplying equation 4.25 by dx3 and subsequently by x3 dx3 respectively and inte-
grating through the thickness the following is obtained;

Niβ,β + τ+i3 − τ−i3 = 0, (4.31)

Miβ,β −Ni3 +
h

2
(τ+i3 + τ−i3) = 0 (4.32)
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Figure 4.5: Half-space (surface and cubic element)

For the two dimensional surface continuum S the stresses [33] in the system are subject
to boundary equilibrium, with equations determined as follows;

τ±βi,β = ±τi3 at x3 = ±h
2

(4.33)

where ±τi3 are bulk stress components which must equal the surface stress per unit
area. Substituting equilibrium equation (4.33) into equation (4.31) and (4.32), the
governing equations for the plate containing surface effects are obtained as follows;

Niβ,β + τ+βα,β + τ−βα,β = 0 (4.34)

Mαβ,β −Nα3 +
h

2
(τ+αβ,β − τ−αβ,β) = 0 (4.35)

The plate is assumed to be composed of two physically distinct sections but within
each continuum materials properties such that they are homogeneous, isotropic and
linearly elastic, for both surface S and the bulk B. From the compatibility of stress
and strain equations, linear elasticity within the element, the stress components are
expressed in terms of strain as follows;

τij = λδijεkk + 2µεij (4.36)

where δij denotes Kronecker delta such that;

δij =

1 0 0
0 1 0
0 0 1


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and {i, j, k} = {1 or 2 or 3}.

Strain equations can be replaced by the concise version as follows;

εij =
1

2
(ui,j + uj,i)

where the nine components of strain are expressed as follows;

εij =

{
∂ui
∂xi

if i = j,
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
if i 6= j.

Based on the fact that the material is isotropic the Lam é constants are specified as
follows;

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)

and repeated subscripts implies summation such that with strain εkk the following is
obtained;

εkk = ε11 + ε22 + ε33

and this applies equally to stress τii. Gurtin-Murdoch’s [33] model for the constitutive
relations at the surface layers with the top S+ and bottom S− layers having the same
material properties,the following is given;

τ±αβ = τ0 δαβ + (µ0 − τ0)
(
u±α,β − u±β,α

)
+ (λ0 + τ0) u±r,rδαβ + τ0 u

±
α,β, (4.37)

τ±3β = τ0 u
±
3,β (4.38)

where µ0 and γ0 are the Lamé moduli. The nonlocal constitutive relation for the
isotropic plane stress and strain system is as follows;


τ11
τ22
τ12

− η2∇2


τ11
τ22
τ12

 =


E

(1−ν2)
νE

(1−ν2 0

νE
(1−ν2

E
(1−ν2) 0

0 0 2G



ε11
ε22
ε12

 , (η2 = e20a
2) (4.39)

Using equations (4.29, 4.30, 4.34, 4.35, 4.37, 4.38, 4.39) the governing equation is ob-
tained as follows;(
D +

1

2
h2Es

)
∇4w − 1

2
µ2h2Es∇6w =

(
1− µ2∇2

)(
2τ̃0∇2w +Nx

∂2w

∂x2
+Ny

∂2w

∂y2

)
(4.40)

where

D =
Eh3

12(1− ν2) , Es = 2u0 + λ0. (4.41)
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Chapter 5

Final Discussion

A robust non-probabilistic modelling regime that demonstrated high levels of effec-
tiveness in handling uncertainties has been presented. Using the Euclidean space and
the inference from its geometric properties as a foundation, a set-theoretic formulation
of uncertainty has been applied to nanostructures. The impact of variations in the
loading and material properties has been the main objective of the study. Convex
modelling methods consider variations within the bearing load as well as in the mate-
rial properties to be uncertain-but-bounded. Inherent scale related material features
dictates that small scale effects namely nonlocal and surface effects be considered for
the analysis of nanostructures.

Summary of the research results

The main findings of each publication are summarised and presented as per the order
of appearance of the respective papers in the dissertation.

Paper 1

The study of the effects of uncertainty using convex modelling has been applied to
the deflection of a statically loaded beam. Fourier series expansion of the load into
deterministic and uncertain components has been implemented in the beam prob-
lem. The elastic constants and the small scale parameter have also been expanded
into deterministic and uncertain quantities, in order to determine the maximum de-
flection. Uncertain coefficients utilised in the constitutive equations were linearised
and computed accordingly. Since these parameters were not independent a method of
Lagrange multipliers has been applied in determining the solution with results show-
ing increased uncertainty levels producing higher deflection. Sensitivity analysis of
the deflection relative to the level of uncertainty in the material parameters has been
investigated. Results demonstrate higher sensitivity of the deflection to the elastic

44



constant than to the small scale parameter with a ratio of about 5 : 1.

Remarks

The results produced in this beam problem proved beneficial in a sense that although
theoretical formulation of the model was predictable it highlighted issues that were
not expected otherwise. For instance the fact that there is a higher rate of sensitivity
with respect to small scale parameter as opposed to that of the Young’s modulus
parameter is informative and highlights the importance of modelling appropriately for
the relevant scale.

Paper 2

Buckling of the orthotropic nano-scale plate with material uncertainty and nonlocal
effects has been presented. The buckling load expression has been expanded around
its nominal value using the Taylor series expansion. The solution has been obtained
by solving a min-max optimization problem subject to a set of extreme points in
the domain. Material uncertainty properties investigated were the following; Young’s
modulus, shear modulus, in-plane Poisson’s ratio, and the nonlocal small scale pa-
rameter. Correspondence between uncertainty levels to worst-case combination of
material properties was implemented to determine the lowest buckling load. The least
favourable buckling load computed by convex modelling lead to a five-dimensional el-
lipsoid bound for uncertainty. Relative sensitivity of the buckling load to uncertainty
in the elastic constants investigated has been normalised with respect to the deter-
ministic load. Sensitivity to Young’s modulus was mostly influenced by the level of
uncertainty.

Remarks

As in the previous case there is consistency when it comes to the small-scale effects on
the model. Results also show some measure of sensitivity of the buckling load to the
nonlocal parameter.

Paper 3

Buckling of isotropic nano-scale plates with material uncertainty and small scale ef-
fects was presented. Material uncertainty properties investigated were the following;
Young’s modulus, surface elastic modulus, residual surface elastic modulus, residual
surface stress, and nonlocal small scale factor. The correspondence between uncer-
tainty levels to worst-case combination of material properties to determine the lowest
buckling load have been established in this case as well. The analysis of an isotropic
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case led to a four-dimensional ellipsoid bounding for the convex model of uncertainty.
Relative sensitivity of the buckling load and uncertainty in the elastic constants was
given. Sensitivity results demonstrated that the buckling load is most sensitive to
Young’s modulus for the plate with some measure of sensitivity to small scale effects
as well. Sensitivity to the nonlocal parameter and surface elastic modulus increased
with the upwards scaling in the size of the plate.

Remarks

This study complemented the finding in the literature that deals with various statically
loaded structures containing cases that assume loading and material properties to be
deterministic.

Future research

The study of dynamically loaded structures did not form part of this investigation
thus affording an opportunity for future research. This may entail issues around
the fundamental frequency and resonance frequency of these nanostructures subject
to uncertain dynamic load and material properties. Convex modelling of uncertain
design parameters for various elements coupled with the optimisation of the same
parameters, resulting from inadequate information presents another chance for further
investigation. There are prospects of investigating relative sensitivity of the optimised
uncertain design parameters to the loads and material properties. Optimum alignment
of the design modelling regimes with design problem sets using convexity and the fine
tuning of the manufacturing techniques will result with reliable products. The study
of the interaction between small scale effects with various boundary conditions is still
outstanding as far as the assessment of the literature and the opinion of the author
is concerned. Convex modelling of approximate solution to clamped plate problems
produces non-linear results, thus presents a challenge and opportunity for further
studies.
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At the nano-scale, loads acting on a nanobeam and its material properties are likely to be not known 
precisely, i.e., uncertain. In the present the deflection of a nanobeam subject to load and material 
uncertainties is studied by convex modeling of the uncertainties. The level of uncertainty is taken to be 
bounded and the maximum deflection corresponding to the worst-case of loading or material properties is 
obtained, that is, the uncertainties are determined so as to maximize the deflection. The sensitivity of the 
deflection to the uncertainty in the material properties is also investigated.  Numerical results are given 
relating the level of uncertainty to maximum deflection. 
 
Key words: nanobeams, load uncertainty, material uncertainty, convex modeling, sensitivity 

 

1.    Introduction 

Mechanics of nanobeams has been studied extensively using continuum based models in an effort to 
quantify their behavior under static, buckling and dynamic loads. Several studies focused on continuum 
modeling and mechanics of nano and micro-sized beams and carbon nanotubes using various beam 
theories (see Wang and Shindo, 2006; Reddy, 2007; Reddy and Pang, 2008; Adali, 2008; Zhang et al., 
2010; Di Paola et al., 2011; Muc, 2011; Adali, 2011; Hosseini-Ara et al., 2012; Thai, 2012; Thai and Vo, 
2012; Eltaher et al., 2013). These studies employed Euler-Bernoulli and Timoshenko beam models 
coupled with the nonlocal elastic theory (see Eringen, 2002) to formulate the variational principles and the 
governing equations for nanobeams undergoing static bending, buckling and vibrations.  
       The bending behavior of nano-scale structures has been the subject of several studies and, in 
particular, nanobeams under static transverse loads have been studied in (Wang and Shindo, 2006; Reddy, 
2007; Reddy and Pang, 2008; Zhang et al., 2010; Di Paola et al., 2011; Thai, 2012; Thai and Vo, 2012; 
Eltaher et al., 2013; Challamel and Wang, 2008; Wang et al., 2008; Ansari and Sahmani, 2011; Fang et 
al., 2011; Roque et al., 2011; Li et al., 2012; Khajeansari et al., 2012). These studies took into account a 
number of effects such as shear deformation, surface stress, and elastic foundation but neglected the load 
and material uncertainties.  
       As such in the previous studies, the loading was taken as deterministic and the material properties 
were defined taking their average values. However, under operational conditions, the loads often have 
random characteristics making it difficult to predict their magnitude and distribution with accuracy. 
Similarly it is usually difficult to determine the elastic constants of nano-sized beams with some certainty. 
The scatter in the geometric and material properties of carbon nanotubes is known and has been discussed 
in (Kalamkarov et al., 2006, Huang et al., 2006, Scarpa and Adhikari, 2008, Lu and Zhong, 2012, 
Fereidoon et al., 2014).  
       The main trust of the present work is to study the bending of nanobeams in a non-deterministic setting 
by taking the load and material variations into account. Thus the maximum deflection of nanobeams is 
determined taking the transverse loading as non-deterministic and the material properties as uncertain.       
Problem analysis is conducted using convex modeling of uncertainties to determine the least favourable 
conditions to produce the highest deflection. Convex modeling has been used extensively in the past to 
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deal with various engineering problems containing data uncertainties (see Adali et al., 1995a, b, Pantelidis 
and Ganzerli, 1998, Jiang et al., 2007, Kang and Luo, 2009, Hu and Qiu, 2010, Radebe and Adali, 2013). 
For further information the reader is referred to the review articles by Wang et al. (2001) and the book by 
Ben-Haim and Elishakoff (1990). 
       In the present study, the effect of load and material uncertainties on the deflection of a nanobeam is 
studied based on the nonlocal Euler-Bernoulli beam theory. Previous work on the subject involves the 
study of the effect of material uncertainties on the buckling of a nonlocal plate by Radebe and Adali 
(2014). Load and material uncertainties are modeled as uncertain-but-bounded quantities. Explicit 
expressions are obtained for the least favorable deflection of a nanobeam for a given level of uncertainty. 
The sensitivity of the deflection to the level of uncertainty in material properties is also studied. Numerical 
results are given to investigate the effect of uncertainty on deflection and on the sensitivity to material 
properties.  
 
 

2.    Load uncertainty 

The nanobeam under consideration is subject to a combination of deterministic and uncertain transverse 
loads denoted by )(xp  and )(~ xq , respectively, as well as a compressive axial load 0N  as shown in Fig. 
1.  The beam has a rectangular cross-section of dimensions bh×  where h  is the height and b  is the 
width (Fig. 1).  

 

Fig. 1.  Beam geometry and uncertain loading 
 
       The differential equation governing its deflection )(xw  based on the nonlocal elastic theory is given 
by (Reddy, 2007) 

)~~()()( 222
0 xxxxxxxxxxxxxx qqppwwNEIw ηηη −+−=−+    for  Lx ≤≤0               (2.1) 

where E  is the Young’s modulus, I  is the moment of inertia and η  is the small-scale parameter. The 
subscript x  denotes differentiation with respect to x . Compressive axial load  0N  satisfies the buckling 
constraint crNN <0  where the buckling load crN  is given by (see Reddy, 2007) 

222

2

ηµ
µ
+

=
L

EINcr                                                          (2.2) 

with µ  denoting a coefficient depending on the boundary conditions.  
      The uncertain load )(~ xq  acting on the beam is unknown, and only limited information is 
available on its coefficients. The information required on the uncertain load is that it should have 
a finite norm, i.e., it should satisfy the constraint  

[ ] 2

0

22 )(~)(~
2

ε∫ ≤=
L

L dxxqxq
                                                 

(2.3) 
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where 10 << ε  is a given constant which determines the level of uncertainty and the subscript 2L
 denotes the 2L  norm. The solution of the deflection problem is obtained by expanding the deterministic 

and uncertain loads in terms of orthogonal functions )(xnψ  satisfying the boundary conditions, viz. 

∑
∞

=

=
1

)( )(
n

nn xpxp ψ ,             ∑
∞

=
=

1
)( ~)(~

n
nn xqxq ψ                             (2.4) 

where the coefficients are given by 

∫=
L

nn dxxxp
r

p
0

)( )(1 ψ ,            ∫=
L

nn dxxxq
r

q
0

)( )(~1~ ψ                          (2.5) 

with r  given by 

[ ]∫==
L

nLn dxxxr
0

22  )()(
2

ψψ                                             (2.6) 

Here the coefficients np  are known since the deterministic load )(xp  is given, however the coefficients 

nq~  are unknown and have to be determined to maximize the deflection corresponding to the least 
favourable (worst-case) loading. The solution for the deflection function )(xw  is also expanded in terms 
of )(xnψ  and can be expressed as 

∑
∞

=

=
1

)( )(
n

nn xWxw ψ                                                      (2.7) 

The coefficients nW  are computed by substituting Eq. (2.7) into the differential equation (2.1). Next the 
worst-case uncertain loading causing the highest deflection is obtained. From Eqs. (2.3) and (2.5), it 
follows that 

∑
=

≤
N

n
n r

q
1

2
2)~( ε

                                                        (2.8) 

where N  is a large number. The highest load is obtained when ∑
=

=
N

n
n rq

1

22 /)~( ε , i.e., the inequality is 

taken as an equality. Thus the deflection )~;( qxw  is to be maximized with respect to the uncertain load 

subject to the constraint ∑
=

=
N

n
n rq

1

22 /)~( ε . For this purpose the method of Lagrange multipliers is 

employed with the Lagrangian at a point 0xx =  given by  











−+= ∑

=

N

n
nn r

qxqxwqxL
1

2
2

000 )~())(~;()~;( ελ                                        (2.9) 

where λ  is a Lagrange multiplier and Lx ≤≤ 00  is a point which has to be determined such that 

))(~;( 00 xqxw  is maximum at 0xx = . The maximum of )~;( 0 nqxL
 
with respect to nq~   produces the least 

favourable uncertain load, viz. 

)~;(max 0~ n
q

qxL
n

                                                        (2.10) 

which can be computed by setting its derivative with respect to nq~  to zero, viz. 

0~
)~;( 0 =

∂
∂

n

n
q

qxL

       
for          Nn ,...,2,1=

                                
(2.11) 

This computation gives the coefficient nq~  at a point 0x  as
 

  ~
))(~;(

2
1)(~ 00

0
n

n
n q

xqxwxq
∂

∂
−=

λ        
                                       (2.12) 
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The point 0x  is an unknown and has to be determined to maximize the deflection. 
 
2.1.    Simply supported beam 

The method of solution outlined above is now applied to a simply supported beam subject to a 
deterministic load ( )30 /)( Lxpxp =  and the uncertain load )(~ xq . The simply supported boundary 
conditions for the nonlocal nanobeam are given by (Reddy, 2007) 

0)0( =w ,            0)0(~)0()0()0()( 22
0

2
0

2 =−−++− qpbwkwNEI xx ηηηη                (2.13) 

0)( =Lw ,        0)(~)()()()( 22
0

2
0

2 =−−++− LqLpLbwkLwNEI xx ηηηη                (2.14) 

The deterministic and uncertain loads are expanded in terms of orthogonal functions xx nn αψ sin)( =  

where 
L

n
n

πα = . Thus 

∑
=

=
N

n
nn xpxp

1
sin )( α ,             ∑

=

=
N

n
nn xqxq

1
sin ~)(~ α                            (2.15) 

where the coefficients np  are given by 

( )6
)(

2
)1( 22

3
01 −−= + π

π
n

n
π

π n
n                                                (2.16) 

The deflection )(xw  satisfying the boundary conditions Eqs. (2.13) and (2.14) can be obtained by 
expanding it in terms of xnαsin  as 

∑
=

=
N

n
nn xWxw

1
sin )( α                                                   (2.17) 

Substituting Eq. (2.17) into the differential equation (2.1), the coefficients nW  are computed as  

0
2224

22

)1(
)~)(1(
NEI

qpW
nnn

nnn
n

ααηα
αη
+−

++
=                                           (2.18) 

Lagrangian )~;( 0 nqxL  given by Eq. (2.9) becomes 











−+

+−

++
= ∑∑

==

N

n
n

N

n
n

nnn

nnn
n L

qx
NEI

qpqxL
1

2
2

1
0

0
2224

22

0
2)~(sin

)1(
)~)(1()~;( ελα

ααηα
αη

            
(2.19)

 
The coefficients )(~

0xqn  are computed from Eqs. (2.11) and (2.19) as 

  )(
2
1)(~ 0

0
n

n
n B

xAxq
λ

−=                                                (2.20) 

where 

0
22

0 sin)1()( xxA nnn ααη+= ,            )1( 0
2224 NEIB nnnn ααηα +−=

             
(2.21)

 
 
Noting that the worst case loading is given by 

∑
=

=
N

n
n L

q
1

2
2 2)~( ε

                                                     (2.22) 

we can compute the Lagrange multiplier from Eqs. (2.20) and (2.22) as 
2/1

1
2

0
22/1 )(

8 









±= ∑

=

N

n n

n

B
xAL

ε
λ

                                                    
(2.23)

 
where the plus and minus signs correspond to the least and most favourable loading cases. The 
coefficients nq~  can be computed by inserting the Lagrange multiplier (2.23) into Eq. (2.20). This 
computation gives 
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  )()(2)(~ 0
2/1

1
2

0
2

2/10
n

n
N

n n

n
n B

xA
B

xA
L

xq
−

=










= ∑ε
                                      (2.24) 

The uncertain load producing the maximum deflection is given by Eq. (2.15) with the coefficients given 
by Eq. (2.24).   
 

3.     Material uncertainty 
3.1.    Uncertain constants 

Next the effect of uncertainty in material properties on the deflection is investigated. The Young’s 
modulus E~  and the small scale parameter η~

 
are taken as uncertain material parameters and they are 

defined as  
)1(~

10 δ+= EE ,
                        

)1(~
20 δηη +=

                                 
(3.1) 

where 0E  and 0η  are the nominal (deterministic) values, and 1δ
 

and 2δ  are margins of error 
(uncertainty) to be determined to maximize the deflection. The unknown constants 1δ

 
and 2δ  are required 

to lie in an ellipse and satisfy the inequality ∑
=

≤
2

1

22

i
i γδ  which corresponds to the inequality (2.3) of the 

uncertain loading case. The least favourable solution is given when the constants lie on the boundary of 
the ellipse, i.e., they satisfy the equality constraint   

∑
=

=
2

1

22

i
i γδ                                                            (3.2) 

Material uncertainty is studied for a simply supported nanobeam under a sinusoidal load 
)/sin()( 1 Lxpxp p= . For this case the maximum deflection occurs at the mid-point and is given by 

 
)~1(~

)~1(~,~;
2 0

2
1

22
1

4
1

1
22

1

NEI
pELw
αηαα

ηαη
+−

+
=








                                         (3.3) 

where L/1 πα = . Substituting Eq. (3.1) into Eq. (3.3), we obtain 

( )
( )  

 )1(1)1(
 )1(1~,~;

2 0
2
1

2
2

2
0

2
110

4
1

1
2

2
2
0

2
1

NIE
pELw

αδηαδα
δηα

η
++−+

++
=








                             
(3.4) 

which can be linearized leading to the expression 

22110
~,~;

2
δδη cccELw ++=








                                                    
(3.5)

 
where  

1
0

2
1

2
0

2
10

4
1

2
0

2
1

0 )1(
1 p

NIE
c

αηαα
ηα

+−
+

=                                                    (3.6)
 

( )
( ) 12

0
2
0

2
10

2
1

2
0

2
10

1
)1(

1 p
NIE

IEc
ηαα

ηα

+−

+
−=                                                  (3.7) 

( ) 12
0

2
0

2
10

2
1

2
00

2
1

2
)1(

2 p
NIE

IEc
ηαα

ηα

+−
=                                                    (3.8) 

To derive the expression (3.5), the relation  

)()1()1( 2δδδ Occ +≅± ≅                                                (3.9) 
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was employed where the superscript c  can take positive or negative values and 1<<δ . Lagrangian 

),( 21 δδL
 
to compute the maximum deflection subject to the constraint (3.2) is given by  











−+++= ∑

=

2

1

22
2211021 ),(

n
icccL γδλδδδδ

                                   
(3.10)

 
The constants iδ  are computed from Eq. (3.10) as 

  
2λ

δ i
i

c
−=                                                             (3.11) 

Lagrange multiplier λ
 
can be computed from Eqs. (3.2) and (3.11) as 

2/12

1

2
2
1











±= ∑

=i
ic

γ
λ

                                                       
(3.12)

 
where the plus and minus signs correspond to least and most favourable cases. The coefficients iδ  can be 
computed by inserting the Lagrange multiplier (3.12) into Eq. (3.11). This computation gives 

( )    
2/12

2
2
1 ii ccc

−
+= γδ                                                 (3.13) 

The values of iδ  given by Eq. (3.13) are substituted into Eq. (3.5) to compute the mid-point deflection 

( )η~,~;2/ ELw  subject to material uncertainty.   

3.2.   Sensitivity analysis 

The sensitivity of the deflection to the level of uncertainty in material data can be studied by sensitivity 
analysis. In general the deflection shows different sensitivities to the material parameters E~  and η~

 
and 

this can be investigated by defining relative sensitivity indices )( iKS δ  given by  

( )
( )00 ,;2/

 
~,~;2/)(

η
δ

δ
ηδ

ELw
ELwS i

i
iK ∂

∂
=                                         (3.14) 

which is normalized with respect to the deterministic mid-point deflection ( )00 ,;2/ ηELw . In Eq. (3.14), 
the sensitivity )( 1γES  denotes the relative sensitivity of the mid-point deflection with respect to 

uncertainty in E~ , and )( 2δηS  with respect to uncertainty in η~  so that the subscript K  stands for the 

respective material property. The sensitivities )( iKS δ  can be computed from Eqs. (3.5) and (3.14) as 

0

  
)(

c
c

S ii
iK

δ
δ =                                                                (3.15) 

noting that ( ) 000 ,;2/ cELw =η  where the values of ic  are given by equations Eqs. (3.6)-(3.8). 
 

4.    Numerical results 

The effect of uncertain loads and material properties on deflection is studied in the present section. The 
cross-section of the nanobeam is taken as square, and the height and the length of the nanobeam are 
specified as 1== hb nm and 10=L nm. The material properties are specified as 1000=E GPa,        

20 ≤≤η nm. 

   
4.1.   Load uncertainty 

2L  norms of the uncertain and the deterministic loads can be related as  
22

0
22

22
)()(~

LL xpRxq == ε                                                   (4.1) 
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where 0R  is a proportionality constant and determines the degree of uncertainty relative to the 

deterministic load with 00 =R  corresponding to no uncertainty, i.e., the deterministic case. For 

the present case Lpxp L
2
0

2

7
1)(

2
= , hence 

       
007

RpL
=ε

                                                              
(4.2) 

       In the calculations the load coefficient 0p  is taken as 10 =p  N/m. Fig. 2 shows the curves of 
deflection vs x-axis for various uncertainty levels 0R  with 2=η  nm and 00 =N . In Fig. 2, and in the 
subsequent figures, the curves are obtained by setting xx =0

 
in equation (2.7) and consequently at every 

point x  the deflection is the least favourable deflection.  
 

 
Fig. 2.  The curves of deflection vs x-axis for various uncertainty levels with 20 =η nm and 00 =N   
       Fig. 2 shows that, compared to the deterministic case corresponding to 00 =R , the deflection 
increases as the level of load uncertainty increases.  The corresponding results for a beam subject to a 
compressive axial load of crNN 5.00 =  are given in Fig. 3 which shows the effect of compressive axial 
load on the uncertain deflection. For a simply supported beam the coefficient πµ =  in (2.2) for crN . 

 
Fig. 3.   Curves of deflection vs x-axis for various uncertainty levels with 20 =η nm and crNN 5.00 =  
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Fig. 4.   The curves of deflection vs x-axis for the deterministic case (full lines) and for an uncertainty 

level of 3.00 =R  (dotted line) with 2,1,00 =η nm and 00 =N         
 
The effect of the small scale parameter 0η  on the deflection of the nanobeam subject to an uncertain load 

with 3.00 =R  is shown in Fig. 4. It is observed that both the small-scale parameter 0η  and the level of 
deflection are factors in increasing the mid-point deflection. Next the combined effect of the small-scale 
parameter and the axial load on the maximum deflection is studied in Fig. 5 which shows the contour plots 
of the maximum deflection with respect to crNN 6.00 0 ≤≤  (x-axis) and nm 20 0 ≤≤η (y-axis) for 

uncertainty levels 3.00.0 0 ≤≤ R . The maximum deflection of the beam is computed by 









= ∑

=≤≤≤≤

N

n
nnLxLx
xWxw

100
sin max)(max a

                                                
(4.3) 

using a minimization routine in Mathematica. Fig. 5 figure shows that an increase in the parameters 0η  or 

0N  as well as in the level of load uncertainty leads to higher deflection. 
 

 
                                             (a)                                                                              (b)    
Fig. 5.  Contour plots of maximum deflection with respect to 0N  (x-axis) and η  (y-axis) for: (a) 00 =R , 

(b) 3.00 =R
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4.2.   Material uncertainty 

Next numerical results are given for the problem studied in Section 3 for a square nanobeam of 
1== hb nm and length 10=L nm with 1.01 =p N/m and 00 =N . The nominal (deterministic) value 

of the Young’s modulus is taken as 10000 =E GPa. The results in the following figures are obtained by 
employing the exact expression (3.4) for the mid-point deflection of the nanobeam. In the figures the mid-
point deflection is normalized by the height h  by defining ( ) hELww /~,~;2/0 h= . 
         Fig. 6 shows the curves of mid-point deflection 0w  plotted against the uncertainty level γ  for 
various values of the uncertain small-scale parameter 0η . It is observed that the maximum deflection 
increases with increasing material uncertainty and the increase is given by a nonlinear curve. The effect of 
the small-scale parameter 0η  on the mid-point deflection is shown in Fig. 7. It is observed that the effect 
of uncertainty becomes more pronounced at higher values of the small-scale parameter. 
        Next the sensitivity of the deflection to material properties is studied in Fig. 8 which shows the 
contour plots of the mid-point deflection 0w  with respect to the level of uncertainty and the small-scale 
parameter. It is observed that the sensitivity of the deflection with respect to the Young’s modulus is about 
5 times more than the sensitivity to the small-scale parameter. Moreover the sensitivity with respect to the 
Young’s modulus is not affected much with respect to the small-scale parameter, but the sensitivity with 
respect to the small-scale parameter increases with increasing 0η . 

 

 

Fig. 6. Mid-point deflection vs the uncertainty parameter γ  for various values of 0η  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Mid-point deflection vs the small-scale parameter for various levels of uncertainty 
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                                        (a)                                                                                       (b)   
 
Figure 8.   Contour plots of sensitivities with respect to level of uncertainties and small-scale parameter: 
                (a) ES ,  (b) ηS  
 

5.    Conclusions 

Non-probabilistic analysis of the uncertainties which can arise in the transverse loads and in the material 
properties of nanobeams was given using convex modelling. The variations in the uncertain quantities 
were taken as uncertain-but-bounded by imposing a constraint on the 2L  norm of the uncertainties. The 
nanobeam was modelled as a nonlocal Euler-Bernoulli beam and the effect of axial compression was 
taken into account. The uncertain load was approximated by a Fourier series expression and the 
coefficients of the series were determined to obtain the worst-case uncertain loading. Closed form 
solutions of the problems were given and the theory was illustrated for simply supported boundary 
conditions. It was observed that increasing uncertainty as manifested by increasing the 2L  norm of the 
uncertain load leads to higher deflections. The effect of uncertainties in the Young’s modulus and the 
small-scale parameter was also studied and a sensitivity index was proposed to assess the sensitivity of the 
deflection to these parameters. Numerical results were given to observe the effect of various problem 
parameters on the deflection. The present study complements the studies in the literature on the static 
deflection of nanobeams which have taken the loads acting on the nanobeams and its properties as 
deterministic neglecting the uncertainties which can occur under operational conditions. 
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a b s t r a c t

Accurate estimates of the orthotropic properties of nano-materials are usually not available due to the
difficulties in making measurements at nano-scale. However the values of the elastic constants may be
known with some level uncertainty. In the present study an ellipsoidal convex model is employed to
study the biaxial buckling of a rectangular orthotropic nanoplate with the material properties displaying
uncertain-but-bounded variations around their nominal values. Such uncertainties are not uncommon in
nano-sized structures and the convex analysis enables to determine the lowest buckling loads for a given
level of material uncertainty. The nanoplate considered in the present study is modeled as a nonlocal
plate to take the small-size effects into account with the small-scale parameter also taken to be uncertain.
Method of Lagrange multipliers is applied to obtain the worst-case variations of the orthotropic constants
with respect to the critical buckling load. The sensitivity of the buckling load to the uncertainties in the
elastic constants is also investigated. Numerical results are given to study the effect of material uncer-
tainty on the buckling load.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the deterministic analysis, variations in the material proper-
ties are neglected and the average values of the elastic constants
are used to obtain a mean value for the structural response. This
approach does not take the deviations from the average into
account even though it is usually difficult to determine the proper-
ties of a material with any certainty. This is more so for nano-sized
structures which exhibit large variations in their material proper-
ties due to defects and imperfections in their molecular structures.
Moreover experimental difficulties in making accurate measure-
ments at the nano-scale lead to significant scatter in the values
of elastic constants. For example the values of Young’s modulus
of carbon nanotubes have been reported between 1 and 5 TPa in
the literature [1–3].

Nanoplates, made of mono or multilayer graphene, are often
employed in nanotechnology applications as sensors [4] and
actuators [5] as well as in many other capacities and their usage
is expected to increase [6]. Quite often they are subject to in-plane
loads making them susceptible to buckling due to their extremely
small thickness measured in nanometers. This situation has led to

several studies on the subject and the buckling of single layer
graphene has been studied in [7] without taking small-scale effects
into account and in [8,9] employing the nonlocal theory. Buckling
of isotropic nanoplates has been studied in [10,11] and orthotropic
plates in [12–17] employing nonlocal constitutive relations and
taking various effects such as nonuniform thickness [10], temper-
ature [13], shear deformation [14] and nonuniform in-plane loads
[15] into account. Variational principles for vibrating multi-layered
orthotropic graphenes sheets were given in [16,17]. Studies on the
vibrations of orthotropic nanoplates include [18–21]. The nonlocal
theory developed in the 1970s [22,23] includes the small-scale
effects by expressing stress as a function of strain at all points of
the continuum.

Buckling and vibration results given in [10–21] for graphene
and nanoplates are based on the deterministic values of the elastic
constants and as such neglect the variations in the material prop-
erties even though such variations are common. Nominal buckling
load, corresponding to a deterministic model, could be higher than
the applied compressive loads, indicating a safe design. However, a
safe design based on deterministic material values is not robust
due to inherent uncertainties in elastic constants [24]. This situa-
tion necessitates taking the data uncertainties into account in a
non-deterministic model which will improve the reliability of the
results by providing conservative load-carrying estimates.

Such a model could be probabilistic or statistical requiring
information on the probability distributions of random variables.
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Obtaining this information in many cases is a difficult task. How-
ever, data on upper and lower bounds of uncertain parameters
may be known or can be estimated with reasonable accuracy in
which case an approach based on convex modeling would yield
the reliable results. In this case the total level of uncertainties is
bounded by an n-dimensional ellipsoid where the number of
dimensions is equal to the number of uncertain parameters [25].
Examples of convex modeling applied to engineering problems with
uncertain data include [24–32]. A comparison of convex modeling
with probabilistic methods is given in [33] and the book by Ben-
Haim and Elishakoff [34] details the techniques of convex modeling.

The present study involves the computation of the buckling
load of an orthotropic nanoplate in the presence of material uncer-
tainties using convex modeling with the L2 norm of the uncertain-
ties bounded. The constitutive relations are based on the nonlocal
theory of plates which takes nano-scale effects into account. The
sensitivity of the critical load to uncertainty is also investigated
by defining relative sensitivities in terms of uncertainty parame-
ters [35,36]. Further information on sensitivity indices can be
found in [37–39]. Numerical results are given to investigate the
effect of uncertainty on the buckling loads and the dependence
of the relative sensitivities on the aspect ratio is studied by means
of contour plots.

2. Convex modeling

In this section, the method of solution to compute the uncer-
tainty parameters corresponding to the least-favorable buckling
load is summarized. Let eUi ¼ U0ið1þ ciÞ denote the ith uncertain
material property (i = 1,2, . . . ,n) where U0i is the nominal value ofeUi and ci is an unknown parameter to be computed to minimize
(the least favorable solution) or to maximize (the most favorable
solution) the critical buckling load. The convex model of uncertain-
ties can be described by an n-dimensional uncertainty vector U =
(c1,c2,c3, . . . ,cn)T defined on a convex set S such that U 2 S. In the
present study uncertainty parameters ci belong to a bounded qua-
dratic convex set defined as

SðU;bÞ ¼ fUjU 2 Rn;UTU 6 b2g ð1Þ

where b is the prescribed measure of uncertainty satisfying the
inequality b < 1. Thus

SðU;bÞ ¼ UjU 2 Rn;
Xn

i

c2
i 6 b2

( )
ð2Þ

Here b is the radius of the n-dimensional ellipsoid. The problem
investigated involves the computation of the unknown parameters
ci such that the buckling load becomes the lowest or highest possi-
ble subject to the constraint

Pn
i c2

i 6 b2. The buckling load can be
expressed as a function of the uncertain quantities eUi, viz.

Ncr ¼ f ðeUiÞ ð3Þ

Since the variations of the uncertain parameters around their
nominal values are small, the function f ðeUiÞ can be expanded
around U0i by substituting eUi ffi U0ið1þ ciÞ into Eq. (3) and keeping
only the terms which are of zero and first order in ci and neglecting
the higher order terms. This computation can be carried out using
the Taylor series expansion of the expression

ð1� eÞc ffi ð1� ceÞ þ Oðe2Þ ð4Þ

where the superscript c can take positive or negative values and
jej � 1. The expansion of the buckling load around U0i using Eq.
(4) leads to

Ncr ffi f0ðU01;U02; . . . ;U0nÞ þ
Xn

i¼1

fiðU01;U02; . . . ;U0nÞci ð5Þ

where f0(U01,U02, . . . ,U0n) is the deterministic (nominal) value of
the buckling load. The solutions are obtained by solving the follow-
ing optimization problems

min
ci

Xn

i¼1

fiðU01;U02; . . . ;U0nÞci and max
ci

Xn

i¼1

fiðU01;U02; . . . ;U0nÞci ð6Þ

subject to the constraint
Pn

i c2
i 6 b2. It is noted that every affine

functional whose domain is a compact convex set takes on its max-
imum value on the set of extreme points of its domain which is the
boundary of the ellipsoid in the present case [31,32]. Thus the
inequality (2) can be replaced by the equalityXn

i¼1

c2
i ¼ b2 ð7Þ

and the problem can be solved by introducing the Lagrangian

LðeUi; ciÞ ¼
Xn

i¼1

fiðU01;U02; . . . ;U0nÞci þ k
Xn

i¼1

c2
i � b2

 !
ð8Þ

where k is the Lagrange multiplier. By taking the derivatives of
LðeUi; ciÞ with respect to ci, we obtain

@LðeUi; ciÞ
@ci

¼ fiðU01;U02; . . . ;U0nÞ þ 2kci ¼ 0 ð9Þ

Thus

ci ¼ �
1

2k
fiðU01;U02; . . . ;U0nÞ; i ¼ 1;2; . . . n ð10Þ

The Lagrange multiplier is computed by substituting Eq. (10)
into Eq. (7). This computation gives

k ¼ � 1
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðfiðU01;U02; . . . ;U0nÞÞ2
vuut ð11Þ

In Eq. (11) the plus and minus values of k correspond to the mini-
mum and maximum values of the buckling load. The uncertain
parameters ci are computed from Eqs. (10) and (11).

3. Orthotropic nanoplate with material uncertainty

The basic formulation is given next for an orthotropic rectangu-
lar plate subject to material uncertainty and biaxial buckling loads.
Let eE1 and eE2 denote Young’s moduli in the material coordinates,
G
�

12 in-plane shear modulus, and ~m12 and ~m21 in-plane Poisson’s ra-
tios where a tilde indicates an uncertain quantity. The plate has the
length a, width b and thickness h in the x, y and z directions,
respectively, with the aspect ratio denoted as r = a/b. The axial
loads in the x and y directions are denoted as Nx and Ny, and the
deflection function as wðx; y; eWÞ where W

�
is the set of uncertain

material constants defined as

W
�
¼ fW

�
jeE1; eE2;G

�
12; ~m12; ~gg ð12Þ

noting ~m21 ¼ ~m12
eE2=eE1. The differential equation governing the biax-

ial buckling of an orthotropic nanoplate based on nonlocal constitu-
tive relations can be expressed as [12]

eD11
@4w
@x4 þ 2ðeD12 þ 2eD66Þ

@4w
@x2@y2 þ eD22

@4w
@y4

þ ð1� ~g2r2Þ Nx
@2w
@x2 þ Ny

@2w
@y2

 !
¼ 0 ð13Þ

where

eD11 ¼
deE1

1� ~m12~m21
; eD12 ¼

d~m12
eE2

1� ~m12~m21
; eD22 ¼

deE2

1� ~m12~m21
;

eD66 ¼ dG
�

12; d ¼ h3

12
ð14Þ
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and ~g ¼ e0a is the uncertain small-scale parameter [XX]. The differ-
ential Eq. (13) is subject to the simply supported boundary condi-
tions given by

w ¼ 0; eD11
@2w
@x2 þ eD12

@2w
@y2 ¼ 0 for x ¼ 0; a ð15Þ

w ¼ 0; eD12
@2w
@x2 þ eD22

@2w
@y2 ¼ 0 for y ¼ 0; b ð16Þ

The uncertain material constants are defined aseE1 ¼ E0
1ð1þ c1Þ; eE2 ¼ E0

2ð1þ c2Þ; eG12 ¼ G0
12ð1þ c3Þ;

~m12 ¼ m0
12ð1þ c4Þ; ~g ¼ g0ð1þ c5Þ ð17Þ

where the superscript ‘‘0’’ denotes the nominal quantities foreE1; eE2;G
�

12; ~m12 and g0 is the nominal value for the small-scale
parameter ~g. The variations ci, satisfying the inequalities jcij � 1,
are unknown constants to be determined by convex analysis to
yield the least favorable buckling load. The bending stiffnesses eDij

can be expressed in terms of ci using the first-order approximation

ð1� eÞc ffi ð1� ceÞ þ Oðe2Þ ð18Þ

where the superscript c can take positive or negative values and
jej � 1. For this purpose we first linearize ~m21 ¼ ~m12

eE2=eE1 in terms
of ci by noting that

~m21 ¼
m0

12E0
2

E0
1

ð1þ c4Þð1þ c2Þ
1þ c1

ffi m0
12E0

2

E0
1

ð1� c1 þ c2 þ c4Þ ð19Þ

Similarly,

1� ~m12~m21 ffi ð1� a1Þð1þ a2c1 � a2c2 � 2a2c4Þ ð20Þ

where

a1 ¼ m0
12m

0
21; a2 ¼

a1

1� a1
ð21Þ

Substituting Eqs. (17) and (20) into Eq. (14), using Eq. (18) and
keeping only the terms linear in ci, we obtaineD11 ffi D0

11ð1þ ð1� a2Þc1 þ a2c2 þ 2a2c4Þ ð22ÞeD12 ffi D0
12ð1� a2c1 þ ð1þ a2Þc2 þ ð1þ 2a2Þc4Þ ð23ÞeD22 ffi D0
22ð1� a2c1 þ ð1þ a2Þc2 þ 2a2c4Þ ð24ÞeD66 ffi D0
66ð1þ c3Þ ð25Þ

where

D0
11 ¼

dE0
1

1� m0
12m0

21

; D0
12 ¼

dm0
12E0

2

1� m0
12m0

21

; D0
22 ¼

dE0
2

1� m0
12m0

21

;

D0
66 ¼ dG0

12 ð26Þ

4. Least favorable solution

In this section the least favorable buckling load is computed by
convex analysis. The variations ci are subject to the constraintX5

i

c2
i 6 b2 ð27Þ

where b < 1 determines the level of uncertainty and b = 0 corre-
sponds to the deterministic case. Thus the set of uncertain-but-
bounded variations can be defined as

SðU;bÞ ¼ UjU 2 Rn;
X5

i

c2
i 6 b2

( )
ð28Þ

where U = (c1,c2,c3, . . . ,c5)T. Thus U 2 S and b is the radius of the
5-dimensional ellipsoid.

Let Nx = Ncr and Ny = lNcr, l = Ny/Nx, where Ncr is the non-deter-
ministic buckling load corresponding to the solution of the eigen-
value problem (2) subject to the boundary conditions (15) and
(16) and is given by [12]

NcrðbÞ ¼ min
m;n

p2ðm4 eD11 þ 2m2n2ðeD12 þ 2eD66Þr2 þ n4 eD22r4Þ
~g2ðm4 þm2n2ðlþ 1Þr2 þ n4lr4Þ þm2 þ n2lr2 ð29Þ

Fig. 1. Buckling load vs small-scale parameter for various uncertainty levels with
l = 0 and a/b = 1.

Fig. 2. Buckling load vs small-scale parameter for various uncertainty levels with
l = 1 and a/b = 1.

Fig. 3. Buckling load vs the buckling load ratio l for various uncertainty levels with
g/a = 0.3 and a/b = 1.
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where m and n are the mode numbers and Ncr(0) corresponds to the
deterministic buckling load. The buckling load depends on the level
of material uncertainty as measured by b and its least favorable va-
lue corresponding to the worst-case material uncertainty can be
determined by convex analysis. Substituting Eqs. (11)–(14) and
~g ¼ g0ð1þ c5Þ into Eq. (29), using Eq. (18) and keeping only the
terms linear in ci, we obtain

Ncr �
p2

pmn
ðb0mn þ b1mnc1 þ b2mnc2 þ b3mnc3 þ b4mnc4 þ b5mnc5Þ

ð30Þ

where the terms bimn, i = 1,2, . . . ,5 and pmn are given in Appendix A.
The expression (30) has to be minimized subject to the constraint
(27) to compute the constants ci. For this purpose, the following
Lagrangian is formulated

Lðbimn; ciÞ ¼
p2

pmn
b0mn þ

X5

i¼1

bimnci

 !
þ k

X5

i¼1

c2
i � b2

 !
ð31Þ

The minima and the maxima of the Lagrangian are determined
from

@Lðbimn; ciÞ
@ci

¼ 0 ð32Þ

The parameters ci and the Lagrange multiplier k are computed
from Eq. (32) as

ci ¼ �
p2

pmn

bimn

2k
; k ¼ � p2

2bmn

1
b

X5

i¼1

b2
imn

 !1=2

ð33Þ

Thus

ci ¼ �b bimn

X5

i¼1

b2
imn

 !�1=2

for i ¼ 1;2; . . . ;5 ð34Þ

where the plus and minus signs correspond to the lowest and high-
est buckling loads.

5. Sensitivity analysis

The sensitivity of the buckling load to uncertainty can be inves-
tigated by defining relative sensitivity indices SK(ci) given by

SKðciÞ ¼
@NcrðbÞ
@ci

���� ���� jcij
Ncrð0Þ

ð35Þ

which is normalized with respect to the deterministic buckling load
Ncr(0). In Eq. (35), the sensitivities of the buckling load with respect
to the uncertainty in the ith constant indicated by ci, i = 1,2, . . . ,5
are denoted by SE1 ðc1Þ, SE2 ðc2Þ; SG12 ðc3Þ; Sm12 ðc4Þ and Sg(c5), respec-
tively, so that the subscript K indicates the respective material
property. Eq. (35) indicates that the buckling load will have zero
sensitivity for ci = 0 corresponding to the deterministic case as
expected. The sensitivities SK(ci) can be computed from Eqs. (30)
and (35) as

Fig. 4. Buckling load vs the buckling load ratio l for various uncertainty levels with
g/a = 0.3 and a/b = 2.5.

Fig. 5. Buckling load vs the aspect ratio a/b for various uncertainty levels with g/
a = 0.3 and l = 0.

Fig. 6. Buckling load vs the aspect ratio a/b for various uncertainty levels with g/
a = 0.3 and l = 1.

Table 1
Sensitivities SK(ci) with respect to a/b for the sensitivity level b = 0.1 with g/a = 0.3.

a/b l = 0 l = 1

m, n SE1 ðc1Þ SE2 ðc2Þ Sm12 ðc4Þ Sg(c5) m,n SE1 ðc1Þ SE2 ðc2Þ Sm12 ðc4Þ Sg (c5)

0.5 1, 1 0.075 0.004 0.003 0.005 1, 1 0.075 0.004 0.003 0.005
1.0 1, 1 0.041 0.023 0.004 0.012 1, 1 0.041 0.023 0.004 0.012
1.5 2, 1 0.046 0.009 0.003 0.049 1, 1 0.015 0.047 0.003 0.023
2.0 3, 1 0.040 0.005 0.002 0.087 1, 1 0.005 0.059 0.003 0.037
2.5 5, 1 0.038 0.002 0.002 0.128 1, 1 0.001 0.063 0.003 0.052
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SKðciÞ ¼
jbimncij

b0mn
ð36Þ

noting that Ncrð0Þ � p2

pmn
b0mn. In Eq. (36), the mode numbers m and n

correspond to the modes (m,n) minimizing the buckling load Ncr(b).

6. Numerical results

The nanoplates based on graphene sheets exhibit different
Young’s moduli in different directions due to zigzag and armchair
configurations of the atomic structure. In a zig-zag configuration,

Table 2
Sensitivities SK(ci) with respect to a/b for the sensitivity level b = 0.3 with g/a = 0.3.

a/b l = 0 l = 1

m, n SE1 ðc1Þ SE2 ðc2Þ Sm12 ðc4Þ Sg(c5) m,n SE1 ðc1Þ SE2 ðc2Þ Sm12 ðc4Þ Sg (c5)

0.5 1, 1 0.225 0.013 0.010 0.014 1, 1 0.225 0.013 0.010 0.014
1.0 1, 1 0.123 0.070 0.011 0.035 1, 1 0.123 0.070 0.011 0.035
1.5 2, 1 0.137 0.026 0.008 0.147 1, 1 0.044 0.140 0.010 0.070
2.0 4, 1 0.127 0.007 0.006 0.322 1, 1 0.014 0.176 0.008 0.112
2.5 10, 1 0.116 0.002 0.005 0.485 1, 1 0.004 0.190 0.007 0.157

Fig. 7. Contour plots of sensitivities with respect to level of uncertainties and aspect ratio for g/a = 0.3 and l = 1, (a) SE1 , (b) SE2 , (c) Sm12 , and (d) Sg.
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one third of the bonds are aligned with the loading direction, while
every bond stays at an angle with the loading direction in the arm-
chair configuration. There have been estimates of the product E 	 h
for zig-zag and armchair nanotubes by Hernandez et al. [40] and
Wang [41] with Young’s modulus for the armchair direction yield-
ing a higher value. As the nanotube diameter increases, Young’s
modulus of the nanotube approaches that of graphene since a car-
bon nanotube can be viewed as a sheet of graphene that has been
rolled into a tube (Li and Chou [42]). For the graphene sheet the
values of Young’s modulus were obtained as E1 = 1765 GPa and
E2 = 1588 GPa for the two orientations corresponding to the zig-
zag and armchair configurations with the other elastic constants
specified as m12 = 0.3 and G12 = 0.5E1/(1 + m12) in several publica-
tions [12–15]. In the present study these values are adopted in
the numerical calculations with the thickness of the nanoplate
taken as h = 0.34 nm. The dependence of the shear modulus G12

on E1 reduces the number of independent elastic constants from
four to three, that is, the independent orthotropic constants are
now E1, E2 and m12. As the solution given in Section 3 is for the
general case of four independent constants, new expressions for
bimn have to be given reflecting the fact that for this case
G12 = 0.5E1/(1 + m12). The results for this calculation are given in
Appendix A. In the numerical results, the non-dimensional
buckling load N0 normalized by the expression

N0 ¼
Ncra2

D0
11

ð37Þ

is used.

6.1. Buckling load

The effect of the small-scale parameter on the buckling load is
shown for square plates in Figs. 1 and 2 for the buckling ratios of
l = 0 and l = 1, respectively, for various uncertainty levels. The
lines for b = 0 in these figures correspond to the deterministic cases
given in [12]. It is observed that the buckling load corresponding to
the least-favorable combination of the material properties de-
creases as the uncertainty increases. Next the variation of the
buckling load with respect to the buckling load ratio l is shown
for various uncertainty levels in Fig. 3 for a/b = 1 and in Fig. 4 for
a/b = 2.5. Mode changes as l increases can be observed from
Fig. 4. Figs. 5 and 6 show the curves of non-dimensional buckling
load N0 vs the aspect ratio a/b for various uncertainty levels for
l = 0 (Fig. 5) and l = 1 (Fig. 6).

6.2. Sensitivity

The sensitivity of the buckling load to the level of uncertainties
are investigated in Table 1 for b = 0.1 and in Table 2 for b = 0.3
which show the sensitivity values SK(ci) for various aspect ratios
a/b. It is observed from Table 1 (b = 0.1) that for l = 1, SE1 ðc1Þ
monotonically decreases, and SE2 ðc2Þ and Sg(c5) monotonically
increase with increasing aspect ratio. For low aspect ratios SE1 ðc1Þ
is higher than SE2 ðc2Þ, and SE2 ðc2Þ exceeds SE1 ðc1Þ as the aspect ratio
increases. Thus the magnitude of the relative sensitivity for E1

could be larger or smaller than that of E2 depending on the aspect
ratio due to orthotropy. Sm12 ðc4Þ is not monotonically increasing as
a/b increases as it reaches a maximum and then decreases. It is
noted that for l = 1, the mode numbers do not change and m = 1,
n = 1 for all a/b. For the case l = 0, only Sg(c5) shows a monotonic
increase with increasing aspect ratio. The other sensitivities show
a non-monotonic behavior. SE2 ðc2Þ decreases with increasing a/b
after an initial increase which is different from the case of l = 1.
The differences in the dependence of the sensitivities on a/b for
the two cases of l = 0 and l = 1 are the result of changes in the

mode numbers which go from m = 1, n = 1 for a/b = 0.5 and
a/b = 1 to m = 5, n = 1 for a/b = 2.5 when l = 0. It is observed from
Table 2 that the sensitivity trends for b = 0.3 are similar to the ones
for b = 0.1. An interesting observation is that for l = 1, the sensitiv-
ity SE1 ðc1Þ is higher for low aspect ratios and the sensitivity SE2 ðc2Þ
is higher for high aspect ratios and the cross-over point is around
a/b = 1.3. However for l = 0, SE1 ðc1Þ is higher than SE2 ðc2Þ for all as-
pect ratios as E1 contributes more to the stiffness of the nanoplate
when the compressive loads are axial as opposed to biaxial (l = 1).

Next the relative sensitivities SE1 ; SE2 , Sm12 and Sg are plotted
against the level of uncertainty and the aspect ratio in Fig. 7 for
l = 1 by means of contour plots. It is observed that SE1 is higher
for low aspect ratios (Fig. 7a) and SE2 is higher for high aspect ratios
(Fig. 7b) due to the orthotropy of the graphene. On the other hand
Sm12 is not affected much by the aspect ratio (Fig. 7c), but by the le-
vel of uncertainty and its value is much lower than the sensitivities
of Young’s moduli. Fig. 7d shows the corresponding counter plot
for Sg. It is observed that the buckling load is fairly sensitive to
the small-scale parameter g.

7. Conclusions

The effect of variations in the material properties of a rectangu-
lar orthotropic nanoplate have been studied with respect to the
critical buckling load. Small-scale effect was taken into account
by employing the nonlocal theory for the governing equation.
The uncertain quantities were identified as the elastic constants
and the small-scale parameter and treated as uncertain-but-
bounded quantities. Convex modeling of the uncertainties led to
a five-dimensional ellipsoid bounding the uncertainties and the
method of Lagrange multipliers were implemented in obtaining
the least favorable solution, i.e., the most conservative buckling
load given the bound on the uncertainties. Numerical results are
given for various levels of uncertainty.
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Appendix A

In the case of four independent orthotropic constantseE1; eE2; eG12; ~m12, the expressions for bimn, i = 1,2, . . . ,5, pmn and qmn

appearing in the buckling load (19) are given by

b0mn ¼ m4D0
11 þ 2m2n2r2D0

12 þ 4m2n2r2D0
66 þ n4r4D0

22 ðA1Þ
b1mn ¼ m4ð1� a2ÞD0

11 � 2m2n2r2a2D0
12 þ n4r4ð1� a2ÞD0

22 ðA2Þ
b2mn ¼ m4a2D0

11 þ 2m2n2r2ð1þ a2ÞD0
12 þ n4r4a2D0

22 ðA3Þ
b3mn ¼ 4m2n2r2D0

66 ðA4Þ
b4mn ¼ 2m4a2D0

11 þ 2m2n2r2ð1þ 2a2Þ þ 2n4r4a2D0
22 ðA5Þ

b5mn ¼ �b0mnqmn ðA6Þ

where

pmn ¼ g2
0smn þm2 þ n2lr2; qmn ¼

2g2
0smn

pmn
;

smn ¼ m4 þm2n2ðlþ 1Þr2 þ n4lr4 ðA7Þ

In the case of three independent orthotropic constantseE1; eE2; ~m12 with G
�

12 given in terms of eE1 and ~m12 as eG12 ¼
eE1

2ð1þ~m12Þ
,

the corresponding expressions are
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b0mn ¼ m4D0
11 þ 2m2n2r2D0

12 þ 4m2n2r2D0
66 þ n4r4D0

22 ðA8Þ
b1mn ¼ m4ð1� a2ÞD0

11 � 2m2n2r2a2D0
12

þ 4m2n2r2D0
66 � n4r4a6a2 ðA9Þ

b2mn ¼ m4a2D0
11 þ 2m2n2r2ð1þ a2ÞD0

12 þ n4r4ð1þ a2ÞD0
22 ðA10Þ

b3mn ¼ 0 ðA11Þ
b4mn ¼ 2m4a3a2D0

11 þ 2m2n2r2ð1þ 2a2ÞD0
12

� 4m2n2r2a3D0
66 þ 2n4r4a2D0

22 ðA12Þ
b5mn ¼ �k0qmn ðA13Þ

where a3 ¼
m0

12
1þm0

12
.
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Abstract 
At the nano scale, the effect of surface stress becomes prominent as 
well as the so-called small scale effect. Further complicating the 
phenomenon is the uncertainty involved in the determination of the 
material properties of nano structures due to difficulties in making 
accurate measurements at nano scale and also due to molecular 
defects and manufacturing tolerances. This introduces some degree 
of uncertainty in the computation of the mechanical response of the 
nano-scale components. In the present study a convex model is em-
ployed to take surface tension, small scale parameter and the elastic 
constants as uncertain-but-bounded quantities in the buckling anal-
ysis of nanoplates. The objective is to determine the lowest buckling 
load for a given level of uncertainty to obtain a conservative estimate 
by taking the worst-case variations of material properties. Moreover 
the sensitivity of the buckling load to material uncertainties is also 
investigated.  
 
Keywords 
Nanoplates, surface stress, buckling, material uncertainty, nonlocal 
theory, sensitivity analysis. 
 
 
 
 

 
 
Effect of surface stress on the buckling of nonlocal 
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1 INTRODUCTION 

At nano scales, surface area to volume ratio increases to the extent that the surface stress effects can 
no longer be ignored as noted by Miller and Shenoy (2000) and Sun and Zhang (2003). This phe-
nomenon has been observed and noted in a number of studies and, in particular, the effect of surface 
tension on the properties of nano-sized structures in (Cuenot et al 2004; Jing et al 2006; Park and 
Klein, 2008; Stan et al 2008; Eremeyev et al 2009; Wang et al 2010).  These effects arise due to the 
fact that atoms at or near a free surface behave differently as compared to the atoms in the bulk of 
the material leading to a higher elastic modulus and mechanical strength (Murdoch, 2005). A review 
of the effect of surface stress on nanostructures was given by Wang et al (2011). 
     Nano-sized structures include nanowires, nanobeams and nanoplates. Recent work on the effect of 
surface energy on the mechanical behavior of nanowires include (Jiang and Yan 2010; Hasheminejad 
and Gheshlaghi 2010; Lee and Chang 2011; Samaei et al 2012). Vibrations of nanobeams with surface 
effects have been studied by Gheshlaghi and Hasheminejad (2011), Sharabiani and Yazdi (2013), 
Hosseini-Hashemi and Nazemnezhad (2013), Malekzadeh and Shojaee (2013). 
     High area to volume ratio of nanoplates makes them particularly susceptible to surface effects and 
the accuracy of solutions improves by including these effects in the governing equations. Theory of 
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plates with surface effects has been developed in (Lu et al 2006).  The effect of surface stress on the 
stiffness of cantilever plates was studied by Lachut and Sader (2007). Buckling of nanoplates includ-
ing the effects of surface energy as well as the small scale effect was studied by Wang and Wang 
(2011a) and Farajpour et al 2014, employing the nonlocal elastic theory. Several studies on the vi-
brations and dynamics of nanoplates were conducted taking the surface effects into account in (An-
sari and Sahmani, 2011; Wang and Wang 2011b; Assadi 2013; Narendar and Gopalakrishnan 2012). 
     In the above studies only the average values of the material properties were used and the possibil-
ity of variations and/or inaccuracies in the data was not considered.  Main drawback of the studies 
using deterministic material properties of the nano-sized structures is that the elastic constants and 
other material properties such as surface tension and the small-scale parameter often cannot be de-
termined with a high degree of accuracy. The values of these constants may be known with some 
degree of uncertainty for a number of reasons such as processing difficulties, measurement inaccura-
cies, and defects and imperfections in the molecular structures. For example experimental difficulties 
for making accurate measurements at the nano scale can lead to significant scatter in material data as 
noted by Kis and Zetti (2008) and Lee et al (2008).  
     Results obtained by neglecting the possibility of uncertainty in material properties are, in general, 
not reliable in the sense that the load carrying capacity of the structure may be overestimated (Au et 
al 2003). In the case of buckling, premature buckling may occur when these uncertainties affect the 
structure in a negative way. However structural reliability can be improved by calculating a con-
servative buckling load by incorporating the uncertain data in a non-deterministic model of the prob-
lem. In the present study this is done by convex modeling which requires that the uncertain quanti-
ties are bounded by an ellipsoid (Luo et al 2009). Examples of convex modeling applied to various 
engineering problems with uncertain data can be found in (Sadek et al 1993; Adali et al 1995; Qiu et 
al 2009; Kang et al 2011; Luo et al 2011; Radebe and Adali 2013), where beams, plates and columns 
have been studied with respect to static and dynamic response, vibration and buckling response.  
     Nanoplates are used in several nanotechnology applications and often subjected to in-plane loads 
which can lead to failure by buckling, especially considering their extremely small thickness (Asemi 
et al 2014). Buckling behavior and sensitivity of nonlocal orthotropic nanoplates with material un-
certainty have been investigated by Radebe and Adali (2014) neglecting the surface effect. In the 
present study buckling of isotropic nanoplates is studied including the effect of surface stress. The 
material parameters taken as uncertain are residual surface stress, surface elastic modulus, the small 
scale parameter of the nonlocal theory and Young’s modulus. The sensitivity of the critical load to 
uncertainty including the surface effect is investigated by defining relative sensitivities (Cacuci 2003; 
Conceição António and Hoffbauer 2013). The effect of uncertainty on the buckling load is studied in 
the numerical examples and the sensitivity to uncertainty is studied by means of contour plots.  
 

2  NONLOCAL NANOPLATE WITH SURFACE EFFECTS 

We consider a rectangular nanoplate subject to biaxial buckling loads xN  and yN  acting in the x  

and y  directions, respectively. The dimensions of the plate are specified as a  in the x -direction and 
b  in the y -direction with the plate thickness given by h . The differential equation governing the 

buckling of the nanoplate based on nonlocal elastic theory and including the effect of surface energy 
is given in (Wang and Wang 2001a) as   
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where ),( yxw  is the deflection of the plate,  
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The buckling load can be obtained by substituting Eq. (2) into Eq. (1). This computation gives [24] 

 2222

0
2262224

,
cr ~1)(

~2~~
5.0)~~2

~
5.0

~
(

min









R

EhEhD
N

ss

nm
                                    (3) 

where am /  , bn /  , 222   , xy NNR /  and ...3,2,1, nm   The buckling load can be 

expressed as 
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where the constants 1g  and 2g  appearing in Eq. (4) are given by 
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Introducing the uncertainty parameters i , the uncertain material constants can be expressed as 

)1(
~

10  EE ,          )1(
~

20  ss EE ,         )1(~
30   ,         )1(~

40                    (6) 

where the subscript "0"  denotes the nominal quantities.  The parameters i  
are unknown and have 

to be determined to obtain the so-called “worst-case” buckling load which is the lowest buckling load 
for a given level of uncertainty. Substituting Eq. (6) into Eq. (4) and keeping only the terms linear in 

i , we obtain 
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

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

R

EgEgEgA
N

ss

nm
i

          

(7) 

where  
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6

2
2
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4
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0
21                    (8) 

The expression (7) for )(cr iN   can be approximated as 


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by linearizing it using the relation )()1()1( 2 Occ    where the superscript c  can take posi-

tive or negative values and 1 . The values of imna  appearing in Eq. (8) are given in the Appendix. 

 
2.1  Simply supported beam 
 
The method of solution outlined above is now applied to a simply supported beam subject to a de-

terministic load  30 /)( Lxpxp   and the uncertain load )(~ xq . The simply supported boundary con-

ditions for the nonlocal nanobeam are given by (Reddy 2007) 

0)0( w ,
            

0)0(~)0()0()0()( 22
0

2
0

2  qpbwkwNEI xx                             (13) 

0)( Lw ,        0)(~)()()()( 22
0

2
0

2  LqLpLbwkLwNEI xx                             (14) 

        The deterministic and uncertain loads are expanded in terms of orthogonal functions 

xx nn  sin)(   where Lnn /  . Thus 





N

n

nn xpxp
1

sin )(  ,             



N

n

nn xqxq
1

sin ~)(~                                                 (15) 

where the coefficients np  are given by 

 6
)(

2
)1( 22

3
01   


n

n

p
p n

n                                                                  (16) 

The deflection )(xw  satisfying the boundary conditions (13) and (14) can be obtained by expanding 

it in terms of xnsin  as 





N

n

nn xWxw
1

sin )(                                                                             (17) 

Substituting Eq. (17) into the differential equation (1), the coefficients nW
 
are computed as  

0
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(18) 

Lagrangian )~;( 0 nqxL  given by Eq. (9) becomes 
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(19)

 

The coefficients )(~
0xqn  are computed from Eqs. (11) and (19) as 
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2

1
)(~ 0

0
n

n
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xq


                                                                          (20) 

where 
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0
22

0 sin)1()( xxA nnn  ,               )1( 0
2224 NEIB nnnn  

                           

(21)

 

 

Noting that the worst case loading is given by 



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N

n

n
L
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2
2 2

)~(


                                                                          (22) 

we can compute the Lagrange multiplier from Eqs. (20) and (22) as 

2/1

1
2

0
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
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(23)

 

where the plus and minus signs correspond to the least and most favourable loading cases. The coef-

ficients nq~  can be computed by inserting the Lagrange multiplier (23) into Eq. (20). This computa-

tion gives 

  
)()(2

)(~ 0
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1
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
                                                   (24) 

The uncertain load producing the maximum deflection is given by Eq. (15) with the coefficients given 
by Eq. (24).   
 

3     CONVEX MODELING  

Next the unknown constants i  
are determined to obtain the most conservative buckling load in the 

presence of material uncertainties. The convex modeling of the uncertainties is expressed as requir-

ing that the unknown parameters i  
are bounded such that they satisfy the inequality 

2
4

1

2  
i

i

                                                                                

(10) 

where   is the radius of a 4-dimensional ellipsoid. As such   is a measure of the level of uncertain-

ty and satisfies the inequality 1  since 1 .  It is known that the buckling load takes on its ex-

treme values on the boundary of the ellipsoid defined by Eq. (10) (see Sadek et al 1993, Adali et al 
1995). Thus the inequality (10) can be replaced by the equality 

2

1

2  


n

i

i                                                                                   (11)
 

The expression (9) for crN  is to be minimized subject to the constraint (11) to compute the con-

stants i  and to obtain the lowest buckling load. For this purpose, the following Lagrangian is intro-

duced 
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By setting 0/),(  iiimnaL 

 

and using Eq. (11), the parameters i  and the Lagrange multiplier   

are computed as 
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Thus 
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
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where the plus and minus signs correspond to the lowest and highest buckling loads. 

 

4   SENSITIVITY ANALYSIS 

The sensitivity of the buckling load to uncertainty can be investigated by defining relative sensitivity 

indices )( iKS   given by  

)0(
 

)(
)(

cr

i

i

cr
iK

N

N
S











                                                                       (15) 

which is normalized with respect to the deterministic buckling load )0(crN . In Eq. (15), the sensitivi-

ties of the buckling load to E
~

, sE
~

, ~  and ~  with respect to uncertainty parameters i , 4,3,2,1i  

are denoted by )( 1ES , )( 2sE
S , )( 3S  and )( 4S , respectively, so that the subscript K  stands 

for the respective material property. Equation (15) indicates that the buckling pressure has zero 

sensitivity for 0i  corresponding to the deterministic case as expected. The sensitivities )( iKS   

can be computed from Eqs. (9) and (15) as 

mn

iimn
iK

a

a
S

0

)(


                                                                                        (16) 

noting that mncr aN 0)0(  .  

 
 
5  NUMERICAL RESULTS 

The effect of uncertain loads and material properties on deflection is studied in the present section.      
The results are given for a square silver nanoplate of thickness 5h nm. The nominal values of the 

elastic constants are taken as 760 E GPa, 3.0 , 22.10 
sE  N/m and  89.00   N/m which are 

the values used in (Wang and Wang 2011a). The buckling load is normalized by the buckling load 

LN of a plate without surface and nonlocal effects and with deterministic constants which can be 

obtained from Eq. (7) by setting 0000  i
sE  . Thus the normalized buckling load is given 

by LicrR NNN /)( . 

     Figure 1 shows the curves of RN  plotted against the length a  for various uncertainty levels with 

20   nm under the biaxial loading yx NN   ( 1R ). It is noted that the buckling load curve for 



7                                                                             I.S. Radebe and S. Adali / Effect of surface stress on the buckling of nanoplates subject to material uncertainty 

Latin American Journal of Solids and Structures xx (20xx) xxx-xxx 

 

the deterministic case ( 0.0 ) corresponds to the result given in Figure 1 of Wang and Wang 

(2011a). The corresponding results for the uniaxial loading with 0yN  ( 0R ) are given in Figure 

2. It is observed that the buckling load decreases as the level of uncertainty increases as expected. 
 
 

 
       Figure 1   Curves of RN  plotted against a  for various uncertainty levels with ab  , 20  nm and 1/ xy NN  

 
 

 
         Figure 2   Curves of RN  plotted against a  for various uncertainty levels with ab  , 20   nm and 0yN  

 

     The sensitivity results are given in Figure 3 with respect to E
~

, sE
~

, and Figure 4 with respect to ~  
and ~  which show the contour plots of the sensitivity indices plotted against the level of uncertainty 

and the length a  for a square nanoplate with 1/ xy NN .  In all cases the sensitivity of the buckling 

load to elastic constants increases with increasing uncertainty, but the buckling load shows the most 

sensitivity to E
~

 (Figure 3a). The second most sensitivity is observed towards the uncertain small-
scale parameter ~  (Figure 4b). This sensitivity, as well as the sensitivity to surface elastic modulus 



8                                                                           I.S. Radebe and S. Adali / Effect of surface stress on the buckling of nanoplates subject to material uncertainty 

Latin American Journal of Solids and Structures xx (20xx) xxx-xxx 

 

sE
~

(Figure 3b), increases as the size of the nanoplate becomes smaller, i.e., as 0a . On the other 

hand the sensitivity towards the residual surface stress 0
~  increases as the nanoplate becomes larger 

(Figure 4a). 
 

 

Figure 3   Contour plots of sensitivities plotted against uncertainty level   and a  with ab  , 20   nm and

1/ xy NN , a) )( 1ES , b) )( 2sE
S  

 

 

Figure 4   Contour plots of sensitivities plotted against uncertainty level   and a  with ab  ,  20   nm and 

1/ xy NN , a) )( 3S , b) )( 4S  
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6    CONCLUSIONS 

The study is directed to the buckling of nano-scale plates with material uncertainties and including 
the effect of surface stress. The uncertain parameters are the Young’s modulus, surface elastic modu-
lus, residual surface stress and small scale parameter of the nonlocal theory. The effect of uncertainty 
in these constants is studied with respect to the buckling of an isotropic nanoplate. The uncertainty is 
taken into account by convex modeling which determines the worst-case combination of material 
properties to determine the lowest buckling load for a given level of uncertainty. 
     In the present case convex modeling leads to a four-dimensional ellipsoid bounding the uncertain-
ties and the method of Lagrange multipliers is implemented to compute the uncertainty parameters. 
Moreover sensitivity indices are developed to investigate the relative sensitivity of the buckling load 
to the uncertainties in the elastic constants. The numerical results show the effect of increasing un-
certainty on the buckling load for biaxial and uniaxial buckling loads (Figures 1 and 2). The sensitivi-
ty studies indicate that the buckling load is most sensitive to uncertainty in Young’s modulus and the 
size of the nanoplate affects various sensitivities in different ways. The sensitivity to small-scale pa-
rameter and surface elastic modulus increases as the nanoplate gets smaller and the sensitivity to 
residual surface stress increases as the nanoplate becomes larger (Figures 3a and 4). Sensitivity to 
Young’s modulus is mostly influenced by the level of uncertainty (Figures 4a). 
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