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ABSTRACT 

 

Meeting the increasing demand for data due to the proliferation of high-specification 

mobile devices in the cellular systems has led to the improvement of the Long Term 

Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as 

Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple 

Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in 

the LTE-Advanced to improve the performance of the system. The small cells like the 

femtocells and the relays play a significant role in increasing the coverage and the capacity of 

the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, 

the user equipment (UE) are faced with the frequent handover problems in the heterogeneous 

systems than the homogeneous systems due to the users‟ mobility and densely populated 

cells.  

The objective of this research work is to analyse the handover performance in the current 

LTE/LTE-A network and to propose various handover management strategies to handle the 

frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, 

an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard 

to evaluate the proposed strategies.  

To start with, admission control which is a major requirement during the handover 

initiation stage is discussed and this research work has therefore proposed a channel 

borrowing admission control scheme for the LTE-A networks. With this scheme in place, 

resources are better utilized and more calls are accepted than in the conventional schemes 

where the channel borrowing is not applied. Also proposed is an enhanced strategy for the 

handover management in two-tier femtocell-macrocell networks. The proposed strategy takes 

into consideration the speed of user and other parameters in other to effectively reduce the 

frequent and unnecessary handovers, and as well as the ratio of target femtocells in the 

system. We also consider scenarios such as the one that dominate the future networks where 

femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call 

Admission Control (CAC)-based handover management strategy is proposed to manage the 

handover in dense femtocell-macrocell integration in the LTE-A network. The handover 

probability, the handover call dropping probability and the call blocking probability are 

reduced considerably with the proposed strategy.  



ix 

Finally, the handover management for the mobile relays in a moving vehicle is considered 

(using train as a case study). We propose a group handover strategy where the Mobile Relay 

Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group 

information prior to the handover time. This is done to prepare the UE‟s group information 

and services for timely handover due to the speed of the train. This strategy reduces the 

number of handovers and the call dropping probability in the moving vehicle. 
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  CHAPTER ONE

GENERAL INTRODUCTION 

 Introduction 1.1

Mobile cellular networks are becoming more complex due to the emergence of various 

technologies and the need to increase the bandwidth to meet the present and future data 

demands by the ever increasing smart phones around the world. It has been forecast that 

wireless data traffic will grow from over 190 exabytes in 2018 to over 500 exabytes in 2020 

[1]. In addition, with more than 50 billion mobile devices supporting varieties of services 

envisaged in the future, the present cellular networks will be challenged. In order to support 

these services and increase achievable data rates in the future, there is need to improve the 

performance of the present cellular networks. As a step towards meeting future data demand 

in cellular networks, various emerging technologies have been incorporated into the LTE-A 

(Long Term Evolution-Advanced) with others suggested proposals for the future cellular 

networks. For the LTE-Advanced, such technologies include Orthogonal Frequency Division 

Multiple Access (OFDMA), Multiple Input Multiple Output (MIMO), Co-ordinated Multi-

Point (CoMP) transmission, Carrier Aggregation (CA) and heterogeneous networks 

(HetNets) [2-6]. Technologies and techniques for future cellular networks include full-

dimensional massive MIMO, interference cancellation and suppression, massive small cell 

deployment and mm-wave. Heterogeneous networks offer an important role in delivering 

high data rate, extended coverage and increased capacities in the LTE-Advanced. Notably, a 

heterogeneous network is a mix of different network base stations. These include femtocells, 

microcells, picocells and relays [7]. 

The goals of cellular network include providing a fast seamless handover from one cell to 

another. This is very important in maintaining ongoing service during the handover procedure 

and to prevent service loss due to low signal from a particular base station or due to the 

mobility of users from one cell or base station to another. Also, performance is degraded if 

data transfer is delayed during the handover procedure. Therefore, it is important that the 

handover occurs seamlessly to prevent an ongoing service (or call) from being dropped or 

experience ping-pong effect [8] that is frequent movement of User Equipment (UE) from one 

cell or base station to another as a result of the UE‟s mobility and multiple low power base 
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stations in heterogeneous networks. At present, an important research area in wireless 

networks which is embodied in this research work is the design of an efficient and reliable 

handover in the LTE-Advanced networks. A brief overview of the LTE-A network is 

provided in section 1.3. 

 Evolution of wireless and cellular networks 1.2

A phenomenal growth has been recorded in the last few decades in the wireless and 

cellular networks. This is attributed to the rapid increase in the number of users of wireless 

cellular networks [9] and their increasing demand for more voice and data services caused by 

advancements in wireless technologies. The quest for better and secure connection, seamless 

handovers, higher bandwidth, reduced latency, as well as increasing, but useful and 

sophisticated applications on mobile devices, has prompted organisations such as ITU, 3GPP, 

IEEE etcetera to design new specifications leading to different evolutions of wireless and 

cellular networks [10]. The evolution of wireless and cellular networks started (as shown in 

Figure 1.1) with different generations aiming at providing increased data rate, coverage, 

spectral efficiency, decrease latency and improving quality of service (QoS) [11]. 1G and 2 G 

are circuit switch systems providing mainly voice services. 2.5 G and 3 G are both circuit and 

packet switch systems and provide both voice and data services. From 3.5 G up to the present 

generation are packet switches.  

 

Figure 1.1  Evolution of wireless and cellular networks [11] 
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Figure 1.1 also shows the difference between wireless systems that use licensed spectrum 

and those that use unlicensed spectrum. While Bluetooth, Wi-Fi and WiMAX uses unlicensed 

spectrum, evolving generations use licensed spectrum [11]. 

 First Generation (1G) 1.2.1

Mobile cellular evolution started with the first generation called 1G cellular networks. It 

was purely an analog system, which was made available in the 1980s and used analog 

transmission for speech services. The three most popular analog systems were Total Access 

Communication Systems (TACS), Nordic Mobile Telephones (NMT) and Advanced Mobile 

Phone System (AMPS) [12]. Although the 1G systems were capable of handover and 

roaming, they could not operate between different countries. Another shortcoming of these 

systems was limited capacity, which means that the systems could only accommodate fewer 

subscribers with a high decrease in performance as subscribers increased. In addition, there 

were security issues with 1G systems particularly the problem of eavesdropping during 

communication and inefficient spectrum utilization. To address these shortcomings, 

considerable efforts were made to develop a new system called second generation of cellular 

networks.    

  Second Generation (2G)  1.2.2

The second generation (2G) networks were introduced in the late 1980s and were 

deployed in the early 1990s. Unlike the 1G, the 2G systems were digital systems and 

addressed the shortcomings in 1G systems. 2G supported low bit rate data services up to 9.6 

kbps and traditional speech voice services. For higher spectrum efficiency, 2G used Time 

Division Multiple Access Technology (TDMA) and Code Division Multiple Access (CDMA) 

to provide better performance. Thus, they supported multiple users and more advanced 

roaming compared with the first generation. 2G primary technologies include CDMA2000 

1xRTT and GSM. In GSM, services such as Voice Mail Services (VMS) and the Short 

Message Service (SMS) were introduced. Although huge success was recorded in 2G 

compared to 1G in terms of security, enhanced capacity and international roaming; the 2G 

systems were however, not suitable for data services. As the popularity of internet and 

multimedia services increased, there was a paradigm shift in the field of mobile 

communication. Mobile phone users or subscribers wanted to enjoy internet services on the 

move such as instant messaging, email, internet surfing and other multimedia services while 



4 

on the move. To meet up with these requirements, the development of a new system becomes 

imperative. 

Against this backdrop, therefore, that more advanced systems such as 2.5G (General 

Packet Radio Service (GPRS) and Enhanced Data rates in GSM (EDGE)) [13] were 

developed based on the original 2G systems. These were designed to provide interim 

protocols and standards for data communication services. GPRS provides data services 

ranging from 40 Kbps to 60 Kbps. In addition, many slots can be set for data communication 

and be dynamically allocated based on demands by the GPRS. 2.5/2.75G system such as 

CDMA2000 1xRTT and EDGE are sometimes referred to as 3G as they have attained the 144 

kbps mobile throughput requirement set for 3G [12]. In EDGE, the modulation scheme used 

in GSM was improved to provide more data rate of about 384 Kbps.  

 Third Generation (3G) 1.2.3

The third generation (3G) networks deployment started in the 1990s as International 

Mobile Telephone (IMT) 2000 project. The requirements described by the International 

Telecommunication Union (ITU) for third generation included 144 kbps, 384 kbps and 2 

Mbps of throughput for mobile users, pedestrian users and indoor environments respectively. 

To fulfil these requirements, a group called 3
rd

 Generation Partnership Project (3GPP) was set 

up. The 3G primary technologies include Universal Terrestrial Mobile System-High Speed 

Packet Access (UMTS-HSPA) and CDMA2000 EV-DO. 3G technologies supported both 

circuit and packet switched data transmission. They supported single standard compatible 

with a variety of mobile devices across the globe to provide global roaming and Internet 

access anywhere in the world. Other 3G services were the wide-area wireless voice and video 

calls, broadband wireless data as well as the High Speed Packet Access (HSPA) data 

transmission capabilities close to 14.4 Mbps and 5.8 Mbps downlink and uplink respectively. 

The major limitation of 3G was that its mobile phone generally required more energy and 

was more expensive than 2G systems [11, 14, 15]. The intermediate generation between 3G 

and 4G aimed at improving data rate (that is by 5 Mbs-30 Mbps) using some of the 

techniques introduced in the 3G which are referred to as the 3.5G. Examples in this regard 

include the Evolution Data Optimized (EVDO) and the High Speed Uplink/Downlink Packet 

Access (HSUPA/HSDPA) [14].    
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 Fourth Generation (4G) 1.2.4

The fourth generation (4G) started as a 3GPP (third Generation Partnership Project) 

project. The requirement for IMT-Advanced issued by ITU for 4G includes high spectral 

efficiency which operates at 100 MHz radio channels with a peak spectral efficiency of 15 

bps/Hz resulting to a total throughput of 1 Gbps to 1.5 Gbps [12]. With 1 Gbps at a stationary 

position and 100 Mbps mobile, the goal of 4G could not be met by earlier versions of LTE 

and WiMAX. New technologies like LTE-Advanced and IEEE 802.16m were thus required 

to provide the desired capacity. Therefore, the original LTE and WiMAX were not regarded 

as true 4Gs. 4G applications include MMS, video chat, Digital Video Broadcasting (DVB), 

Mobile TV as well as High Definition TV [14, 16-18]. 

 

 Fifth Generation 1.2.5

Although 4G‟s (LTE-A) deployment are still on-going, work on the fifth generation of 

cellular networks which is expected to be deployed by 2020, has been started by various 

groups such as the 5GPP (5
th

 Generation Partnership Project), the EU‟s METIS, the Small 

Cell Forum, and the NGMN (Next Generation Mobile Networks) etcetera. [19-22]. With 5G, 

it is expected that the system capacity will be 1,000 times the present capacity and the end-to-

end latency will be less than 1 ms [23]. Also, battery life, energy efficiency, data rate, and 

spectral efficiency are each expected to be 10 times better than the previous generations. To 

achieve these, 5G will be driven by technologies like massive MIMO, millimetre-wave (mm-

wave), densely populated small cells, Cloud-based Radio Access Network (C-RAN), 

Machine-to-Machine Communications (M2M), Software Defined Networks (SDN) etcetera. 

Other favourable technologies for 5G include Beam Division Multiple Access (BDMA) and 

Filter Band Multi-Carrier (FBMC) multiple access [24]. In the BDMA technique, mobile 

stations communicating with a base station will be allocated an orthogonal beam. The BDMA 

technique then divides the antenna beam with respect to the mobile station‟s location and 

gives multiple access to the mobile stations [11, 25, 26]. This results in increased network 

capacity desired by the 5G system. Various challenges expected in 5G, design fundamentals 

and potential facilitators have been discussed in [11, 27]. Table 1.1 shows the evolution of 

mobile cellular networks from 1G to 5G.  
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Table 1.1   Evolution of Mobile Cellular Networks [28-30] 

 1G 2/2.5G 3G 4G Future 5G 

Year 1980s 1990s 2000s 2010s Vision 2020 

Frequency 800 MHz 
800/900/1800/190

0 MHz 

800/850/900/1800

/1900/2100 MHz 

1.8 GHz, 2.6 

GHz, 

1.8/2.6, 30 – 300 

GHz proposed 

Technology 

AMPS, 

NMT, 

FDMA 

GSM, TDMA, 

CDMA, 

GPRS, EDGE 

(2.5G) 

WCDMA, 

UMTS, CDMA 

2000 

HSUPA/HSDPA 

(3.5G) 

LTE, 

OFDMA/SC-

FDMA 

LTE, 

OFDMA/SC-

FDMA 

WiMAX 

LTE, 

OFDMA/SCFD

MA (4.5G) 

BDMA/FBMC 

Massive MIMO, 

Millimetre-wave, 

Software Defined 

Networks (SDN), 

Machine-to-

Machine 

Communication 

(M2M) 

Feature 
Analog 

voice 

Voice, SMS, data 

(i.e. 2.5) 

Voice, data,  

video, HDTV, 

security 

3D gaming, 

HDTV, DVB, 

expanded 

multimedia, 

higher 

bandwidth, high 

QoS and more 

security 

HDTV,  virtual, 

reality 

applications,  high 

speed and QoS 

Data Rate 2.4 kbps 
10 kbps 

50/200 kbps 

384 kbps, 2 Mbps 

(stationary), 100 – 

200 Mbps (with 

3.9G) 

Up to 1 Gbps 
Up to 20 Gbps 

expected 

Switching Circuit Circuit/Packet Circuit/Packet Packet Packet 

Limitation 

Analog 

voice, poor 

voice 

quality, 

security 

issues, 

limited 

capacity, no 

data and 

roaming 

between 

countries 

difficult 

Data rate still very 

low and too many 

standards 

Infrastructure 

more expensive, 

more power is 

required by 3G 

handsets, high 

bandwidth 

requirements, 3G 

phones very 

expensive 

High power 

consumption, 

implementation 

very hard, higher 

data prices for 

users, cost of 

buying new 

devices that 

support 4G 

High cost of 

developing 

infrastructure, 

security and 

privacy issue yet to 

be resolved. 
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 LTE and LTE-Advanced 1.3

 LTE 1.3.1

LTE started as a project under the Third Generation Partnership Project (3GPP) in 2004 

and was first published in 2009 as Release 8 specifications. By using wider bandwidths, 

system performance was improved in the LTE. LTE as an improvement to the UMTS is an 

all-IP-flat architecture. It aimed at achieving a 100 Mbps data rate at peak downlink and 50 

Mbps data rate uplink as well as less than 10 ms round-trip times for Radio Access Network 

(RAN) [31]. To increase the overall spectral efficiency in the LTE, MIMO was used. The 

OFDMA and Single Carrier-Frequency Division Multiple Access (SC-FDMA) were also 

used for the downlink and the uplink scenarios [32]. The LTE supports hard handover, 

seamless global roaming as well as high-speed mobile wireless broadband connectivity. 

Services like VoIP, video streaming and video TV are supported by the LTE. 

 LTE-Advanced 1.3.2

LTE-A which is regarded as the true 4G is an evolution of the LTE. It is backward 

compatible with the LTE and operates in the same frequency spectrum with the LTE without 

affecting the LTE terminals [33]. The LTE-Advanced was designed to meet the ITU 

standards for IMT Advanced, which is 100 Mbps data rate for highly mobile users and 1 

Gbps for users with low or no mobility. Other requirements for 4G by ITU include general 

acceptance of functions with support for advanced cost effective multimedia services and 

applications, compatibility of services with fixed network, internetworking, high quality 

service for user devices, universal user equipment acceptability [34], user-friendly 

applications and services, and global roaming capabilities. In order to meet these 

requirements, various functionalities have been added to the previous releases of the LTE by 

3GPP in the LTE-A framework [7]. These include heterogeneous network enhancement; that 

is, enhanced Inter-cell Interference Cancellation (eICIC) and mobility management, full 

dimension MIMO for the Uplink (UL) and the Downlink (DL), bandwidth extension through 

CA, and CoMP transmission for allowing different cells to cooperate and serve users better. 

The combination of these features increases the capacity and improves the performance in the 

LTE-A. HetNet enhancement reduces the implementation cost and improves the overall 

system capacity and throughput per-user [35].  
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 Motivation 1.4

The previous generations of cellular networks are homogeneous whereas the LTE-A 

systems are heterogeneous systems with different base stations. With heterogeneous systems, 

higher capacity and better network performance can be achieved. User equipment due to 

user‟s mobility and densely populated cells in heterogeneous systems face frequent handover 

problems than homogeneous systems. Since maintaining continuous connectivity without any 

service interruption is desirable of any cellular network, much still needs to be done to 

address the handover issues in the heterogeneous LTE-Advanced networks compared to 

homogeneous system where so much research has been done. It is pertinent to mention that 

there are interesting works that have already addressed handover issues in heterogeneous 

networks. However, no study has specifically considered handover problems in different 

network deployment scenarios such as femtocell/macrocell deployment, multi-tier networks, 

densely populated femtocell deployments and in an extremely fast moving vehicles 

environment in LTE-A heterogeneous network. Different network scenarios of the LTE-

Advanced need to be investigated so as to understand and analyse handover problems better. 

Therefore, considering handover issues as regards the above research gaps is of the utmost 

importance in this research work.  

 Problem Statement 1.5

Achieving a seamless and robust handover operation in the LTE-A heterogeneous 

network is a serious issue. Studies have shown that the frequency of handover in the 

heterogeneous environment is greater compared to the homogeneous environment. This can 

be attributed to the following factors:  

(a) High number of smaller cells such as femtocells in the heterogeneous environment.    

(b) Small cell lower coverage and capacity,  

(c) Various small cell signals detection, and 

(d) Lack of efficient handover management scheme for heterogeneous environment.  

Small cells such as femtocells and relay as part of the LTE-A heterogeneous network are 

often deployed in large quantity to improve and increase the network capacity. As a result, 

the UE detects many of the femtocell signals and because the femtocell coverage and 
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capacity is low, mobile UE tries to move from one femtocell to another and thus causes the 

ping-pong effect. In many cases, there is a lack of an effective handover management strategy 

to handle frequent handovers resulting from the large femtocell deployment and fast moving 

UEs. Therefore, this research work aimed to provide various handover management strategies 

that will reduce the number of handovers in LTE-A networks. 

 Objectives of the Research Work and It’s Contributions 1.6

The objective of this research work is to analyse the handover performance in LTE-

Advanced heterogeneous networks and then propose different strategies for handover 

management in LTE-Advanced heterogeneous networks. The thesis had the following 

objectives: 

(a) To propose Call Admission Control strategy for handover decisions. Admission 

control is required during handover initiation stage to manage the available radio 

resources at the target base station. One of the contributions of this thesis is to propose 

an efficient strategy to manage the radio resources in LTE-A femtocell-macrocell 

networks. 

(b) To propose an enhanced handover management algorithm for two-tier macrocell-

femtocell LTE-A networks. To propose an efficient handover algorithm based on the 

speed of the UEs and other parameters in the LTE-A macrocell-femtocell integration.  

(c) To propose a handover management strategy for densely deployed femtocell in the 

LTE-A networks. To propose a robust CAC-based handover management strategy to 

reduce frequent handovers and ping-pong effects associated with densely femtocell 

deployments.  

(d) To propose group handover management strategy for mobile relays in the LTE-A 

networks.   

 Methodology 1.6.1

The standardization of the LTE-A was done in 3GPP release 10 to release 12. These 

3GPP standardization documents and drafts were useful in addition to the previous studies, 

articles, and textbooks that discussed handover challenges and management in the LTE-A 

heterogeneous networks. Since the LTE-A is an improvement on the LTE, a preliminary 

study of the LTE has been done to provide adequate background for this research work. This 
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has provided the required information on the various aspects of the LTE-A technology such 

as architecture, deployments, protocols as well as network components. The literature review, 

which gives sufficient information regarding different handover methods proposed in the 

previous studies, has been reviewed. The LTE-A network was designed and simulation 

scenarios were investigated using event driven simulator designed for this research work. By 

using MATLAB, performance analysis of various metrics was done. The flowchart in Figure 

1.2 describes the step-by-step approach used in carrying out this research work. 

 Simulation Tools 1.6.2

An event-driven simulator implemented in C# using Microsoft Visual Studio environment 

was developed for this research work. The simulator was designed according to the 

LTE/LTE-A specification and standards. An object oriented C# programming was chosen 

because of its many advantages. These include its object oriented nature which makes it more 

user friendly, that is, easy to use, availability of many functions for computation of complex 

mathematical equations and better integration of the components with other languages. In 

addition, redundancy and replication of the software modules can be eliminated. The 

simulation script for each scenario consists of standard specification and configuration for the 

design of LTE/LTE-A. After several simulation scenarios, the expected results are achieved. 

The results are first displayed in the excel sheet and then transferred to the MATLAB code 

for graph presentation and easy analysis. 

 Thesis Outline 1.7

This research aimed to analyse handover problems in the LTE-A network with the view 

of providing different handover management strategies different from the existing ones and to 

improve the overall system‟ performance. To achieve this, an in depth knowledge of various 

technologies, standards, specifications and functional requirements related to handover in the 

LTE/LTE-A system was required. The research work includes the standards and 

specifications provided by the 3GPP. An extensive overview of the wireless cellular concept 

and detailed study of handover management in femtocell/macrocell and heterogeneous LTE-

A networks have been made. The thesis is organised as follows:  

Chapter two presents the background as well as the literature review of previous studies 

on LTE/LTE-A handover management. The various enhancements made to the previous LTE 
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Figure 1.2   Flowchart for the procedure of this work 
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releases have been explained in this chapter. The chapter also presents the general 

architecture of the LTE/LTE-A system as well as the handover types used. 

Chapter three discusses the call admission strategy for the handover decision in the LTE-

A system. During the handover initiation stage, admission control is required to determine the 

availability of resources before handover can occur. Therefore, a channel-borrowing strategy 

has been proposed for the admission procedure in the femtocell-macrocell integration. The 

system model for the femtocell-macrocell integration and the different femtocell access 

modes have been explained in this chapter. 

Chapter four proposes handover management based on the UE‟s speed and other 

parameters. The simulation environment for the femtocell-macrocell integration has been 

presented in this chapter. The traffic of calls has also been analysed in this chapter.  

Chapter five presents handover management in dense femtocell deployment in the LTE-A 

networks. In order to meet the future demand for data, huge femtocell deployment is 

required, however, this often leads to more handover among many femtocells in the densely 

populated femtocell environment. In providing a solution to this problem, the CAC scheme 

has been proposed and applied to the different call types while modelling the proposed 

scheme using the Markov chain. 

Chapter six proposes a group handover management strategy for the mobile relays in the 

LTE-A.  In our strategy, we have introduced a device called “mdev” to forecast the location 

and direction of the target base station and then prepare the mobile relay for timely handover 

to the target base station. 

Finally, Chapter seven provides a brief summary of the previous chapters and the 

conclusion of this research work. We also made future recommendations concerning 

handover in the LTE-A and future networks. 

 Resulting peer reviewed publications 1.8

The following are the peer-reviewed publications derived from this research work. The 

publications make up the topic of the chapters in this dissertation. 
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  CHAPTER TWO

LITERATURE REVIEW AND BACKGROUND OF STUDY 

2.1 Introduction 

Previous studies aiming at efficient handover management in LTE networks have been 

discussed in various literatures in section 2.2 and 2.3. Research on LTE started before the 

first release of standards by 3GPP and further research thereafter. To increase the capacity 

and for better quality of service, enhancements have been made to the LTE in the LTE-

Advanced framework. Careful consideration is required in designing LTE-Advanced 

involving macro and smaller nodes to reduce associated handovers. The technical background 

on LTE-Advanced and its related technologies are provided in this chapter. This chapter 

consists of five sections as follows. Section 1 outlines previous studies on handover 

management for two tier femtocell-macrocell integration as well as dense femtocell 

deployment in LTE-Advanced network. Section 2 gives an overview of previous studies on 

handover management in mobile relay network. Section 3 explains key features of LTE-

Advanced systems. Section 4 discusses LTE/LTE-A general architecture, interfaces and 

protocol layers. Also discussed in this section are the LTE-Advanced physical layer 

descriptions. Brief studies on handover techniques are discussed in section 5. 

2.2 Handover in femtocell-macrocell LTE/LTE-Advanced 

The procedure for handover and mechanism supporting user‟s mobility in 4G LTE 

networks have been described in [36, 37]. Ulvan et al. [38] studied these procedures and 

introduced the user equipment mobility prediction to achieve a more optimized procedure. 

This mobility prediction is based on Markov chain probabilities in order to determine the 

present position and the velocity as well as the direction of the UE. To reduce the frequent 

and unnecessary handovers, these authors proposed reactive and proactive handover 

strategies. In [39], the reactive handover decision strategy and mobility prediction proposed 

in [38] were used to investigate the handover procedure in both the horizontal and the vertical 

handovers. The authors explained that proactive handover can occur before the current base 

station RSSI level reaches the Handover Hysteresis Threshold (HHT) while the reactive 
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handover postpones the handover to as long as possible until the UE fully loses the signal 

from the source base station. To determine the distance of the next position of the UE in 

advance, direct movement mobility model was adopted. It was shown that the reactive 

handover produces the lowest number of handovers and latency because of its principle of 

postponing the handover until the signal is lost.  A new criterion like the base station capacity 

estimation was introduced to the handover procedures in [40]. With this, the base station 

utilization and type can be determined. This helps in preventing the base station from being 

overloaded. It also results in better load balancing and improved Quality of Service (QoS) for 

the users. An optimized handover management algorithm in [41] uses a call admission 

control to reduce the handover and the Handover Drop Rate (HDR) in a two-tier macrocell-

femtocell LTE network. This algorithm, however, only considers one macro-base station 

within many femtocell base stations. 

To improve the handover performance in a densely populated environment with many 

macrocells and femtocells such as the one by Lee et al. [42], new mobility strategies were 

introduced in [43, 44]. With the new strategies, which separate control plane and the user 

plane, the authors discussed that the Data only Carrier (DoC) network performed better in a 

network of densely deployed femtocells with very low handover failure and high-energy 

efficiency than the current LTE systems. From the literature above, it is noticed that more 

work needs to be done in the area of handover management for LTE/LTE-A femtocell-

macrocell system especially now that users‟ equipment requires more data and femtocell 

being deployed massively to boost the capacity and thus increase coverage. In addition, the 

admission control can be enhanced and introduced to handover management to handle calls 

effectively in such an environment and thereby reduce handover call dropping and blocking 

probabilities. 

2.3 Handover in mobile relay network 

Previous studies in this area indicate that by deploying supportive and coordinated relays 

on train tops, user‟s Quality of Service (QoS) in a train can be improved significantly [45-

47]. Dedicated MRN in [48, 49] were compared with the existing solutions such as layer 1 

repeaters, WiFi access points and dedicated macro eNBs serving the vehicular UEs and were 

found to offer great improvement in the vehicular user experience. To reduce the number of 

signalling messages in the network nodes, Chen and Lagrange [50] propose fixed relay 
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architecture with global tunnel concept and extends it to mobile relay. With the X2 and S1 

global tunnels concept, several tunnels were gathered and used to transmit data traffic for 

vehicular UEs served by a Mobile Relay Node (MRN). This results in the reduction of 

signalling messages and allows the possibility of grouping several handovers in mobile 

relays. 

To reduce handover failure in moving cells, Luo et al. [51] propose a Co-ordinated 

Multipoint Transmission (CoMP)-based handover strategy which allows the train to receive 

multiple signals from adjacent base stations, thus acquiring diversity gain whenever it passes 

through those base stations. Hwang and Shin [52] presented moving cell architecture as well 

as protocol stacks of control and user planes. They argue that the LTE-A fixed relay 

architecture is not suitable for mobile relay. This is because in mobile relay, all UEs 

communicate with a MRN which in turn communicates with the Donor E-UTRAN Node B 

(DeNB) as the vehicle moves. For better handover performance, all UEs handovers can be 

congregated into a single handover of one MRN which then performs the handover to the 

DeNB. This is, however, not supported by the fixed relay architecture of LTE-A. In [53], the 

architecture to support mobile relay and the key techniques to support mobile relay were 

presented albeit an effective handover management strategy is required to support this 

architecture. Based on this architecture, a group handover management strategy is proposed 

later in this research work for mobile relay such that MRN attached to a high-speed train 

effectively handovers all UEs related communications from the source donor eNB (DeNB) to 

the target DeNB.  

2.4 Key technologies for LTE-Advanced 

LTE-Advanced primarily is an air interface enhancement to LTE. It is an evolution of 

LTE aimed at meeting the increasing demand for improved service, bandwidth, quality of 

service at low cost as well as meeting the requirements set for the IMT-Advanced. Initial 

enhancements were made to 3GPP LTE Release 8 in Release 9 which were followed by more 

significant enhancements in Release 10 (LTE-Advanced). Beyond Release 10, further 

enhancements were made to the initial releases while the naming continues as LTE-

Advanced.  
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Some of the important enhancements mentioned in chapter one include Enhanced Carrier 

Aggregation, Enhanced MIMO for uplink and downlink, Coordinated Multi-point (CoMP) 

Transmitter and Receiver, Relay, Self-Organising Network (SON), Machine-to-Machine 

communications (M2M), Enhanced Inter-Cell Interference Coordination for Heterogeneous 

Network and relaying [54]. The importance of the enhancements in LTE-Advanced include 

enabling more efficient use of spectrum, increase the data rate for UEs and providing more 

coverage and capacity to system. Short notes on each of these enhancements are as follows: 

2.4.1 Enhanced Carrier Aggregation (CA) 

To achieve the LTE-Advanced goal of supporting maximum bandwidth of 100 MHz, 

LTE-Advanced allows a mobile equipment to transmit and receive using five Component 

Carriers (CCs) that is 1.4 MHz, 3.5 MHz, 10 MHz, 15 MHz and 20 MHz with each having a 

maximum of 20 MHz bandwidth [55]. This method of utilizing more than one carrier to 

achieve an increased transmission bandwidth (i.e. data rate) is referred to as Carrier 

Aggregation. CA also makes it possible to use fragmented spectrum efficiently. With LTE-

Advanced CA, different arrangements of CCs can be aggregated. These include adjacent or 

non-adjacent component carriers in the same or different frequency bands. Each CC can take 

any of 6, 15, 25, 50, 75 or 100 Resource Blocks (RBs) equivalent to 1.4, 3, 5, 10, 15 and 20 

MHZ channel bandwidths respectively [56]. 

Another reason for CA is the support for heterogeneous networks. In heterogeneous 

networks where low-power layer small cells and high-power layer macrocells co-exist, CA 

allows one carrier instead of two to be used by both layers. CA allows the use of multiple 

carriers for a given layer and avoids interference through cross-carrier scheduling [57]. 

 

Figure 2.1   Carrier Aggregation in LTE-A [58] 
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With Carrier Aggregation, a spectrum can be used more efficiently as shown in Figure 

2.1. For instance, UE can transmit or receive from multiple component carriers at 100 MHz 

maximum bandwidth [58]. Without carrier aggregation, UE can transmit or receive from a 

single component carrier only.   

2.4.2 Coordinated Multi-point (CoMP)  

Coordinated Multi-point (CoMP) enables dynamic coordination of transmission and 

reception over many separated base stations or eNBs. The purpose of CoMP in LTE systems 

is to enhance the system performance or cell edge throughput [59] by using the resources 

more effectively. CoMP can also improve the user service quality. By using CoMP, separated 

eNBs are dynamically coordinated to deliver joint scheduling and transmission and joint 

processing of the received signal [60]. Thus, the users at the cell edges are provided with 

improved signal reception/transmission and increased throughput. The two types of CoMP 

technologies in LTE-Advanced are: Joint Processing (JP) and Coordinated 

Scheduling/Beamforming (CS/CB). With JP, multiple data transmission points can be 

provided for each UE amid multiple cooperated eNBs. Notably CS/CB supports single data 

transmission point for each UE with scheduling/beamforming decisions [61]. In CS/CB, the 

sharing of user data among cells is not required. An example of CoMP architecture in a 

distributed network is depicted in Figure 2.2 [62]. 

 

 

 

 

 

 

 

Figure 2.2   CoMP in a distributed network architecture [62] 
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2.4.3 Enhanced Multiple Input Multiple Output (MIMO) Antenna Techniques 

MIMO is a default technology of the LTE system for boosting the overall data rates. 

MIMO offers high data rates without the need for additional bandwidth and transmission 

power [63]. It allows for the use of multiple antennas at both transmitting and receiving sides 

of the system. Unlike the traditional cellular systems where Line-of-Sight (LoS) is required 

for best performance, MIMO provides best performance under rich scattering conditions. 

Additionally, MIMO provides high data rates in the LTE systems using multipath 

characteristics of wireless channels. Also by leveraging on spatial dimensions, several signals 

from different antennas can be combined at both the transmitter and the receiver leading to 

high data rates [63, 64]. In LTE-A, enhanced MIMO features that is spatial multiplexing and 

transmission diversity can together achieve an improved coverage and enhanced peak data 

rate. 

In LTE-A, the 3GPP propose two techniques: high-order Single-User MIMO (SU-

MIMO) for higher data rates and Multi-User MIMO (MU-MIMO) for higher spectral 

efficiency. For better performance, 4x4 SU-MIMO is used in the uplink and transmit 

diversity is used for the control signalling [57]. In the downlink, higher order 8x8 SU-MIMO 

is used. 

2.4.4 Heterogeneous Networks (HetNets) 

The rapid increase in internet-connected mobile applications and devices has necessitated 

that the network providers increase their network capacity [65]. Heterogeneous network 

provides new paradigm cost effective approaches by increasing the network capacity and thus 

deliver uniform connectivity experience to the users. HetNets involves overlaying low power 

small cell nodes like pico cells, femtocells and relay nodes etcetera. on the existing macrocell 

layer [7]. In HetNet deployments, the macrocell provides a wider coverage as shown in 

Figure 2.3 while the smaller cells are deployed in a way that reduces the coverage of dead 

zones. The capacity offered by the macrocells in the macro-only network is not distributed 

evenly across the network, that is, UE in the centre tends to experience higher throughput 

compared to the UE at the cell edges. The HetNets provide a solution to the capacity needs in 

hotspot areas as well as pervasive user experience [52]. 

HetNets can also provide huge improvement to the network and service connectivity by 

dynamically offloading traffic from the macrocell for reasons such as network load balancing 
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and coverage extension. Picocells and relays are used for outdoor deployments whereas 

femtocells are usually deployed for indoor use in residential, cafeteria or enterprise buildings. 

In an enterprise deployment, femtocells are deployed in a well-coordinated manner by 

allowing self-organising and adapting to optimize transmission parameters. 

In HetNets, the small cells can operate at the same or different frequencies and thus 

transmit with less power than the macro cells. The small cells can be accessed in three 

different modes, namely, open mode, closed mode and hybrid mode. 

A. Open Access: In open access, all the network subscribers can access the femtocell 

resources without any restriction. To extend coverage to the macrocell UEs with 

reduced threat to adjacent channel and co-channel interferences, [66] the network 

operators generally adopt this mode.  In the public access mode, a macrocell UE has 

the opportunity to choose the femtocell that offers best service quality [67, 68]. This 

leads to macrocell UEs enjoying continuous connection to the core network. Open 

access femtocell is generally found in public places like malls, railway stations, 

cafeteria, airports and universities to improve the overall network throughput. One of 

the challenges with this access mode is service degradation due to the sharing of 

limited resources among large numbers of UEs [66]. Other challenges include 

increased handover between macrocell and femtocell open access, non-guaranteed 

QoS to femtocell UEs and privacy and security issues.  

B. Closed Access: In the closed access mode, only registered users have access to the 

femtocell services. In other words, it monopolizes the backhaul to the advantage of 

femtocell UEs [69] and prevents unregistered UEs from using the femtocell resources. 

The closed access femtocells are used privately by homes, offices, and small 

businesses to provide privacy and security to the information of the femtocell UEs 

[35]. Subscribers in this mode also enjoy high quality coverage, high rate multimedia 

services and high rates of success [70]. The closed access mode has lower network 

overhead and is more secure than the open access mode [71]. Since the closed access 

mode does not accept unregistered UEs, difficult handover mechanism is not required. 

The closed access mode, however, suffers from co-tier and cross-tier co-channel 

interference that are explained later in this study [66]. Therefore, good knowledge of 

frequency planning is required in closed access femtocell deployments to prevent co-

channel interference. 
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C. Hybrid Access: The hybrid access mode evolved to provide solutions to the inflexible 

access in the open and the closed access modes. It permits a particular number of 

macrocell UEs to access the limited amount of femtocell backhaul without affecting 

the quality of service provided to femtocell UEs. This method of deploying femtocells 

to allow macrocell UEs to access the resources of femtocell leads to overall increase 

in network throughput compared to the macrocell only deployment. In the hybrid 

access modes, though the macrocell or public UEs can access the femtocell service, 

however; priority is ideally be given to the registered users. The interfering Macrocell 

UEs can be readily selected and served in a way that minimizes adjacent channel and 

co-channel interferences [72]. However, like in the open access, the hybrid access 

mode challenges include privacy and security issues, complex signalling overheads 

and large billing amount resulting from traffic bottlenecks [73]. Most of the current 

deployment of femtocell allow users to select the type of mode of the femtocell to be 

used [74].   

 

Figure 2.3   Heterogeneous LTE-A networks 
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2.4.5 Enhanced Inter-Cell Interference Coordination (eICIC) for Heterogeneous 

The small cells overlaid by the macrocell provide higher spectral reuse due to cell 

splitting. It also leads to an improved system capacity for localized high traffic densities (that 

is hotspots) [57]. However, this also brings about sharing of the spectrum between macrocells 

and the small cells due to the limited availability of the spectrum, thereby causing more 

interference in HetNets than in homogeneous macrocellular networks. In 3GPP LTE-A, 

Enhanced-ICIC is a standardized time domain in the ICIC scheme for addressing the co-

channel deployment issues. With the eICIC, certain sub-frames in one layer of cell can be 

muted to reduce the interference in other layers [75]. Enhanced ICIC is due to common 

knowledge about protected resources, that is, sub-frames blanked by the strongest neighbour. 

The strongest neighbour corresponds to the surrounding macrocell in the picocell scenario 

with a bias-based cell range extension [76]. In a femtocell single carrier deployment with 

CSG, the HeNB blanks a fraction of sub-frames to eventuate protected resources necessary to 

schedule the macrocell UEs in the downlink (DL). 

2.4.6 Dual Connectivity and Inter-site Carrier Aggregation 

Dual connectivity is similar to CA but with a little difference. Dual connectivity occurs 

between different sites. It enables a UE to be connected simultaneously to at least two 

different nodes, that is, the master eNB (MeNB) of the macrocell and the secondary SeNB of 

the small cells with non-ideal backhaul [77]. This method of inter-node radio resource 

aggregation can be across different frequencies and locations and across different radio 

access technologies such as WLAN and cellular network. Dual connectivity is introduced to 

heterogeneous networks for robust UE mobility, improved data rate, and signalling of the 

overhead reduction [78, 79]. With dual connectivity, UEs can separate data and control 

planes by sending user data to the SeNB and control messages to the master eNB. Dual 

connectivity also reduces handover failures in the LTE-A heterogeneous network.  

Figure 2.4 shows the dual connectivity scenario where two SeNBs are connected to one 

MeNB through non-ideal backhaul links. In this scenario, three UEs are connected as 

follows; UE-1 and UE-2 are singly connected to MeNB and SeNB-2 respectively. UE-3 is 

connected to both MeNB and SeNB-1 using dual connectivity. By utilizing the radio 

resources from both MeNB and SeNB-1, increased throughput is noticed in UE-3 [80].  
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Figure 2.4   Dual connectivity deployment scenario [80] 

2.4.7 Self-Organising Network (SON) Enhancements  

Self-organizing networks are aimed at optimizing radio resource usage, network 

management simplification and operational cost reduction for the network operators [81]. 

This enhancement enables the network to automatically notice changes in the network and 

thus make intelligent decisions based on the changes and then take the required actions [82]. 

With SON, the systems are aware of their location and present situation(s) and can be 

configured dynamically in a distributed fashion. In terms of resource management, SON aids 

in automatic coordination of resources at the cell‟s border and thereby improves the 

performance and services at the cell-edges. In the initial LTE release, SON was associated 

with equipment installation (referred to as eNB self-configuration) such as Automatic 

Inventory, Automatic Software Download, Automatic Neighbour Relation and Automatic 

PCI Assignment [83]. Enhancements made to SON have resulted in various procedures for 

the covering of network optimization. Additional functionalities provided in the latest release 

to manage heterogeneous networks include [84]: 

(a) Capacity and Coverage Optimization. 

(b) Cell Outage Detection and Compensation. 

(c) Enhanced Inter-Cell Interference Coordination. 

(d) Energy Saving. 

(e) Drive Test Minimization. 
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(f) Self-healing Functions. 

(g) Mobility Robustness Optimization (MRO). 

The aim of SON-MRO feature includes detecting and preventing connection failures due 

to the mobility of the UEs. These failures include the following:  

(a) Too late handover causing failure in connection in the serving cell. 

(b) Coverage hole causing failure in connection in the serving cell. 

(c) Too early handover causing failure in connection in the target cell. 

(d) Inappropriate handover to a wrong target cell causing connection failure in the cell. 

Generally, the connection failure occurred because of the Radio Link Failures (RLFs) and 

the handover failures [85]. Respective solutions to the aforementioned failures have been 

provided by Sesia et al. [57]. 

2.4.8 Macrocell 

The macrocell base station (MBS) provides close to 40 Km wide area coverage at about 

40W to 100W transmission power to users. The number of users in the MBS, though, depends 

on the deployed cell and the environment is usually around 200 users to 1000 users [86]. The 

macrocell can also act as an overlay layer to the smaller cells in the LTE systems although 

this usually increases interference if there is no proper network planning. For example, 

macrocells can be made to operate on the same frequency with the smaller cells (that is co-

channel deployment) or on different frequencies. In the LTE-Advanced, co-channel 

deployment is preferred for both indoor and outdoor applications because of its many 

advantages which include channel optimisation. With channel optimization, more frequency 

channels can be saved leading to reduced network implementation cost and better spectral 

efficiency. However, co-channel deployment often leads to co-channel interference. To avoid 

co-channel interference and other interference problems, proper frequency planning is 

required during the deployment of the macrocells and the smaller cells. Resource allocation 

techniques for the frequency can be used to handle associated interference challenges [87].  

2.4.9 Picocell  

Picocell transmission is considerably lower compared to the macrocell. They are usually 

deployed in an ad-hoc manner which results in a lower Signal-to-Noise plus Interference ratio 
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(SNIR) and challenging RF channel for transmission of the control channel to the users at the 

cell edges. Picocells can cover up to 200 m and their base stations can be deployed indoor or 

outdoor with careful planning to extend the coverage of the macrocell thereby providing 

support for additional UEs. In the macrocell-picocell deployment, there is a large 

dissimilarity between the transmission power of both cells which leads to smaller downlink 

coverage of a picocell against a larger downlink coverage of the macrocell. For the uplink, 

the same transmission power strength is used by the UE to all base stations because the 

uplink depends solely on the UEs‟ transmission power [88]. Figure 2.5 shows picocell 

deployment within the coverage of the macrocell, extending the coverage of the macrocell 

and providing additional supports to the UEs.  

 

Figure 2.5   Macrocell-picocell range extension 

2.4.10 Relay 

The LTE-A includes another feature known as the relay nodes (RNs) which support the 

LTE deployment in areas where a wired backhaul is not available or too costly in order to 

expand the coverage or increase the network capacity. The RN first appears in the LTE 

Release 8 where the UEs receive and transfer all the control and data signals to and from the 

RN whereas in the LTE-A, the RN separately transmits control and data to and from a donor 

cell (eNodeB) [57]. Unlike the repeaters (used in UMTS) which only amplifies the signal and 

interference received, thus degrading the quality of signal received, the RN first processes the 

received signal and then forwards it to the appropriate UE [89]. Also unlike the repeaters 

which are operated independent of the RAN, the RNs are under the full control of the RAN 
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for easy monitoring and remote control functionalities. Figure 2.6 represents the processed 

signal of the RN against the simple amplification of a repeater. The 3GPP LTE-A defined 

type 1 (non-transparency) and type 2 (transparency) as the two RN types. Type 1 enables a 

remote UE to have access to the macrocell eNB. In order to extend the signal coverage and 

other services to the UE, the RN transmits common reference signal and control information 

from the eNB to the remote UEs. Type 2 enables a local UE within the macrocell and with 

direct communication to the eNB to experience an improved link capacity and better service 

quality. Details about the relay node and the other types are explained in chapter 6 of this 

work.  

 

Figure 2.6   Comparison of RN signal and Repeater signal  

2.4.11 Machine-To-Machine (M2M) Communications 

The M2M communications also referred to as Machine-Type Communications (MTC), 

are communication types involving entities with no human interaction [58]. To explain the 

communication scenarios between the entities, the 3GGP has provided transport and 

communication services support for the three scenarios described in Figure 2.7: 

(a) Scenario A – In this scenario, M2M application interacts directly with the UE. 

(b) Scenario B – In this scenario, M2M application interacts directly with the M2M 

server located outside the operator area. 

(c) Scenario C – In this scenario, M2M application interacts with the M2M server located 

inside the operator area.  

The 3GPP services include bearer services, Short Message Service (SMS) and IP 

Multimedia Subsystem. Besides, the following M2M problems have been addressed in 3GPP: 
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(a) Small data transmission – In M2M communications, high peak data rates, 

sophisticated channel estimations or advanced MIMO is not required.  

(b) Addressing – IP addressing is a big problem in M2M communication due to large 

number of devices. Therefore, common devices are grouped to share a common 

identifier.  

(c) Congestion and overloading of the CN – Delays, packet loss due to overloading, or 

service failure can result when a large number of MTM communication devices are 

deployed in certain areas. Load control mechanisms can be implemented based on 

different priorities in M2M devices to minimize this problem. Other methods that 

have been used are discussed in [58]. 

 

Figure 2.7   M2M scenarios [58] 

2.5 General Architecture of LTE-Advanced 

The LTE-Advanced architecture is similar to the LTE system except the introduction of 

smaller low power nodes in the LTE-Advanced. In the system architecture of the LTE-A with 

support for femtocell, the femtocell node, that is, HeNB can be plugged-in/off as the occasion 

requires. This LTE-A system architecture shown in Figure 2.8 consists of the Evolved 

Universal Terrestrial Radio Access Network (E-UTRAN) and the Evolved Packet Core 

(EPC). 
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The E-UTRAN is a radio interface and comprises of eNBs which functions as the 

macrocell base stations, mobile stations UEs and HeNBs which are femtocell base stations. 

The eNB performs radio resource management such as radio bearer control, radio admission 

and resource allocation to the UEs. It also performs data security and encryption over the 

radio interface. 

The EPC consists of Mobility Management Entity (MME), Packet data network Gateway 

(P-GW) and Serving Gateway (S-GW) [90]. The protocol layer planes manage the UE 

mobility shown in Figure 2.9 and 2.10 respectively. The user-plane serves as a protocol 

stacked between the UE and the connected eNB and it is layered from the physical layer 

(PHY) at the bottom followed immediately by the Medium Access Control (MAC), then to 

the Radio Link Control (RLC) and Packet Data Convergence Protocol (PDCP) at the top 

[90]. The control plane consists of a radio resource control (RRC) which is also layered 

between an UE and an eNB [90]. Furthermore, a non-access stratum (NAS) protocol is 

located between the UE and the MME in the control plane. The MME manages the UE 

mobility and performs UEs tracking and paging in idle-mode. It also selects S-GW/P-GW for 

an UE during its first attachment to the network. Moreover, the MME performs UE‟s 

authorization to the network service provider such as the Public Land Mobile Network 

(PLMN) required in roaming. S-GW functions include routing and forwarding of user data 

packets, accounting and charging and anchor point for different handovers. The P-GWs are 

responsible for the IP address allocation to the UEs. It also provides the UE connectivity to 

external networks such as non-3GPP. It filters the downlink user IP packets and executes 

policy enhancement.  

 

Figure 2.8   LTE-A system architecture with femtocell base station [91] 
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Figure 2.9   LTE-A user-plane protocol stack 

 

Figure 2.10   LTE-A control-plane protocol stack 

2.5.1 LTE-A Protocol Layers 

The LTE-Advanced protocol stack consists of a control plane and a user plane. Figures 

2.9 and 2.10 show LTE-A user and control planes protocol stacks. The user plane comprises 

of PHY, MAC, RLC and PDCP layers [92]. The control plane consists of these four (4) 

layers in addition to the Non Access Stratum (NAS) and Radio Resource (RRC) layers. The 

function of these layers can be explained as follows. 

A. Non Access Stratum (NAS): NAS is situated at the uppermost layer of the control 

plane protocol stack that directly connects the UE to the MME and is used for control 

purposes [93]. Its function includes mobility management and session management 

functions such as establishing and maintaining the IP connectivity of the UE to the 

PDN. The NAS protocol also performs other functions including the Public Land 

Mobile Network (PLMN) selection, paging, authentication and tracking of the area 

update.  
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B. Radio Resource (RRC) Layer: The RRC protocol layer only appears at the control 

plane. It is responsible for conveying information regarding dedicated and common 

NAS. Dedicated NAS information concerns specific UE whereas common NAS 

information has to do with every UE. It also renders services like paging 

establishment, Signaling Radio Bearers (SRB) and handover services. In addition, the 

RRC can perform modification and connection release. It manages UEs‟ information 

in the RRC-IDLE such as incoming calls notification and information in the RRC-

CONNECTED like channel configuration and handover information. Moreover, the 

RRC provides measurement configuration and Inter-RAT mobility [94].  

 

C. Packet Data Convergence Protocol (PDCP): The PDCP is found at the user and the 

control planes. It deals with the IP packet messages in the user plane and processes 

the radio resource control messages in the control plane. It provides services to both 

the lower layer and the upper layer. The major roles performed by the PDCP layer 

include header compression/decompression, ciphering and integrity protection [95]. 

The PDCP also provides procedures for data retransmission and reordering during 

handover [96]. 

D. Radio Link Control (RLC): The RLC is a layer located between the PDCP layer and 

the MAC layer. It communicates with the PDCP above it via Service Access Point 

(SAP), and beneath with the MAC layer via logical channels [57]. This layer function 

includes organizing upper layer packets into different sizes for transmission over the 

radio interface, recovering packets losses through re-transmitting radio bearers to 

avoid errors and reordering packets received out of order as a result of the HARQ 

functionality in the layer below the RLC [97]. The RLC provides three reliability 

modes for data transmission; Acknowledge Mode (TM), Unacknowledged Mode 

(UM) and Transparent Mode (TM) [93, 98]. 

 

1) Acknowledge Mode (AM): This is the most complex mode and the only mode for 

providing bi-directional data transfer. It is used for transmitting Non-Real Time 

(NRT) services like file downloads. It performs all the functions performed by 

UM and additionally retransmission of data to support error-free transmission i.e. 

ARQ (Automatic Repeat Request). 
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2) Unacknowledged Mode (UM): This mode is used for transmitting delay sensitive 

services that cannot wait for retransmissions such as Real Time (RT) services. 

However, the sequence number (SN) in the RLC packet header can be used to 

detect packet loss and provides packet re-ordering and re-assembling.   

3) Transparent Mode (TM): This is the simplest mode because it does not tamper 

with the upper layer data and can be used when the size of Protocol Data Unit 

(PDU) is known to broadcast system information. In RLC TM, data received from 

the upper layers are forwarded to the underlying MAC layer and there is no 

additional RLC header required. 

 

E. Medium Access Control (MAC): This layer is located between the RLC and the 

PHY layer. In the MAC, physical and logical channels are connected to allow data 

transmission between the physical layer and the MAC layer. The functions of the 

MAC layer include multiplexing and de-multiplexing of data between the RLC and 

the physical layer. The function of the MAC layer also includes radio resource and 

information transfer scheduling between the UEs, uplink timing alignment, random 

access procedure and discontinuous reception [99].  

 

F. Physical Layer (PHY): The physical layer functions include frame formation, the 

TDD or the FDD topology and the OFDMA structure based on the BW/FFT. It is 

responsible for modulation and coding of different traffic and control channels. The 

physical layer functions also include scrambling and code-word to layer mapping. It 

incorporates appropriate reference signals into uplink and downlink for the channel 

estimation and equalization.  

2.5.2 LTE-Advanced Physical Layer Descriptions 

In the LTE-Advanced, different radio access technologies are used for uplink and 

downlink communications. In this section, we will look at the physical layer characteristics 

briefly. A detailed explanation of the LTE/LTE-A physical layer can be found in [100]. 

A. Orthogonal Frequency Division Multiplexing (OFDM): The OFDM is simply a 

multi-carrier modulation technique used for providing high bandwidth efficiency. The 

OFDM was chosen in the LTE/LTE-A downlink mainly because of its simple 

implementation and good performance. In this technique, the frequency selective wide 
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band channel is separated into non-frequency selective narrowband sub-channels 

orthogonal to each other [57]. Modulation is carried out on each sub-carrier using 

modulation scheme (such as QPSK, 16-QAM or 64-QAM). Orthogonality simply 

implies that the maximum of one sub-carrier is at the minimum of the next sub-carrier 

thus removing inter-symbol interference (ISI) [63]. The division also makes each sub-

carrier nearly flat fading. The OFDM suffers from high Peak to Average Power Ratio 

(PAPR). The OFDM time domain symbols are taken as Gaussian waveform leading 

to a very high amplitude variation. This resulted in distorted signal from non-linear 

power amplifiers. Power amplifiers with large operating point are required to remove 

this distortion. The OFDM is also sensitive to carrier frequency offset and time 

varying channels. Loss of orthogonality causes blurring of information signals and 

degrades communication.   

 

B. Orthogonal Frequency Division Multiple Access (OFDMA): The OFDMA is 

defined as an access scheme which is based on the OFDM principle to organise and 

distribute scarce radio resources among several UEs at the same time thus enabling 

multi-user communication [101]. The OFDM carriers with different frequencies and 

Discrete Fourier Transform (DFT) are applied to create orthogonal subcarriers. In the 

LTE/LTE-A, the OFDMA as a downlink access technology, can be used in the 

downlink to deliver high data rate and high spectrum efficiency [102]. It divides the 

bandwidth into multiple narrow, mutually orthogonal subcarriers and then transmits 

the data in parallel streams. With the OFDMA, fading and interference are improved. 

The OFDMA like the OFDM, however, suffers from high Peak to Average Power 

Ratio (PAPR) that reduces the efficiency of transmitter RF power amplifier. Thus, to 

save the UE battery, the OFDMA is not used in uplink direction.  

 

C. Single Carrier Frequency Division Multiple Access (SC-FDMA): The LTE/LTE-A 

uses the SC-FDMA technology in the uplink because it enables the power amplifier in 

the transceiver antenna to be used efficiently [101]. This prolongs the battery life of 

the UEs. Another advantage of using the SC-FDMA for uplink transmission is its 

lower PAPR which reduces power amplifier cost for mobile users [103]. It also 

provides all the benefits of the OFDM. Like in the OFDM, the bandwidth in the SC-

FDMA can be divided into multiple parallel sub-carriers and by using the Cyclic 

Prefix (CP), orthogonality between the subcarriers can be maintained thereby, 
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eliminating Inter-Symbol Interference (ISI) in the SC-FDMA information blocks. It 

should be noted that in the OFDM, each subcarrier is modulated individually by data 

symbols to represent the amplitude of each sub-carrier at a time by each constellation 

point of digital modulation whereas in the SC-FDMA, all the data symbols are 

combined linearly, transmitted and modulated to a given subcarrier at the same time 

through a process called single carrier scheme of the SC-FDMA [57]. Implementation 

of the SC-FDMA is done in time and frequency domains. Implementation in the 

frequency domain is preferred in the LTE because it is more bandwidth efficient than 

implementing in the time domain [104]. Figure 2.11 shows the frequency domain 

implementation of the SC-FDMA. Details on the SC-FDMA signal generation in the 

frequency domain using the Discrete Fourier Transform Spread-OFDM (DFTS-

OFDM) can be found in [57, 105]. 

 

 

Figure 2.11   SC-FDMA Implementation in frequency domain [57] 

2.6 Handover Techniques 

Handover is required to maintain seamless connectivity during the UE transitioning from 

one cell or base station to another [106]. Handover involves transferring an ongoing voice or 
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data call from one base station (BS) to another due to user mobility or when the signal 

received from the serving base station becomes low. The call transfer can also occur between 

two sectors belonging to the same BS. The handover algorithm or strategy is required to 

handle the handover decision in such cases. Generally, a handover will be executed based on 

the handover‟ procedure or statement specified in the algorithm. Like in most wireless 

networks, the handover algorithm with multiple data transmission points as per each UE is a 

necessity in the LTE-A networks [59]. Handover can be classified into: “intra cell and inter 

cell” handover; and “hard and soft handover”.  

2.6.1 Intra cell vs inter cell handover  

For the intra cell handover, the source and the target base stations belong to the same cell. 

In this way, there is no change of the cell during the process of transferring calls. Inter cell 

handover on the other hand, requires that the source and the target base stations be located on 

the different cells. They can, however, be located on the same cell-site [91]. These handovers 

are sometimes called horizontal (intra technology) and vertical (inter technology) handovers. 

Horizontal handover occurs between the same radio access technology, that is, handover of 

the UE from one cell to another cell within an LTE system. Whereas vertical handover takes 

place between different radio access technologies, that is, between the WiMAX network and 

the LTE network [107]. 

2.6.2 Soft vs Hard Handover  

Handover can also be classified as soft and hard handover as depicted in Figure 2.12 and 

Figure 2.13 respectively. In the soft handover also referred to as make-before-break, the UE 

continues using the resources in the source base station together with the resources in the 

target base station. This is to ensure that the connection to the target base station has been 

established before breaking from the source base station. The soft handover can be said to be 

a state in the ongoing communication rather than an event [91]. Some parallel connections 

can exist where by signals from each connection are coalesced to provide a stronger one for 

transmission. In the hard handover, the UE first releases the channel with the source base 

station completely before engaging the channel in the target base station [108]. Thus, the UE 

initial connection with the source base station is broken before making connection to the 

target base station. Unlike the soft handover, the hard handover is referred to as an event in 

ongoing communication which requires the least processing by the network [91].   
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Figure 2.12   Soft handover 

 

Figure 2.13   Hard handover 

The handover type in the LTE-Advanced network is purely the hard handover. It is very 

simple compared to the soft handover. However, the hard handover usually experiences high 

data loss, frequent disruption and high outage probability as well as carrier interferences 

which lead to unpredictable handover procedures more especially for the broadband 

applications and multimedia services [109]. In addition, maintaining the QoS requirements in 

the hard handover is very difficult. Therefore, to provide fast and seamless access to the 

broadband applications and multimedia services with very little delay required by the LTE-

Advanced network, several other handover techniques like the Fractional Soft Handover 

techniques (FSHO), semi-soft handover and multicarrier handover have been proposed in the 

literature for the LTE-A [109]. All these techniques were introduced to the LTE-A to increase 

the reliability of handover in the LTE-A systems. 

Since the focus of this research work is on the handover management strategies for the 

LTE-Advanced, in the next chapter we will discuss the admission control strategy that can be 

used at the handover initiation stage to determine the availability of the resources in the LTE-

A femtocell-macrocell integration.  
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2.7 Chapter Summary 

This chapter discussed the theoretical background of this work. The key approaches 

available in literature to reduce frequent handovers and a number of target cells in the LTE-

Advanced heterogeneous networks were reviewed. Enabling technologies such as Enhanced 

Carrier Aggregation, Enhanced MIMO, CoMP Transmitter and Receiver, Relay, Self-

Organising Network, Enhanced ICIC for HetNets for LTE-Advanced as well as LTE-

Advanced architecture were presented. The handover technique, which is a key operation in 

the LTE-Advanced for UE to maintain connectivity during communication was also 

presented. Brief introduction to the heterogeneous network and the different access modes of 

smaller cells was given. Important contributions of macrocell, picocell, femtocell and relay as 

constituents of heterogeneous network were noted in this chapter. Other important areas in 

this research work have also been introduced in this chapter. 
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  CHAPTER THREE

HANDOVER INITIATION AND ADMISSION CONTROL 

3.1 Introduction 

The handover Initiation is the first stage of the three stages of handover procedure in 

LTE-Advanced network. Handover execution and handover completion are the other two 

stages. In this chapter, our focus is on the admission control during the handover initiation 

stage. We examine how the resources are determined at the handover initiation stage and thus 

propose an efficient CAC strategy to allocate resources to the UEs during handover. At the 

handover initiation stage, the source SeNB/HeNB makes handover decision to transfer UE‟s 

calls (or services) to target T-HeNB/eNB based on certain measurement reports and available 

radio resource information. Based on the reports, the SeNB/HeNB requests handover to the 

T-HeNB/eNB. This is followed by the exchange of necessary signalling information between 

the SeNB/HeNB and the T-HeNB/eNB via X2 interface. To guarantee that the resource is 

available to the UE, the T-HeNB/eNB performs admission control. After determining that the 

resource is available, the T-HeNB/eNB sends the handover response to the SeNB/HeNB. 

At the handover execution stage, the SeNB/HeNB issues a handover command message 

to the UE to start the handover execution. The UE starts synchronizing with the T-

HeNB/eNB for radio connection establishment. At this time, an uplink data path is created 

between the T-HeNB and the UE. To indicate the completion of radio connection set up, the 

UE sends a handover (HO) confirmation message to the T-HeNB/eNB.  

The handover completion stage concludes the handover procedure. This stage involves 

the T-HeNB/eNB sending path switch request messages to the HeNB-GW [110], which 

forwards the messages to the MME/S-GW for downlink data path set up completion. The 

MME on receiving the message sends path switch acknowledgement to the HeNB-GW which 

forwards it to T-HeNB/eNB. The T-HeNB/eNB upon receiving the path switch 

acknowledgement sends a resource release message to the HeNB-GW. The HeNB-GW 

notifies the MME/S-GW about the resource release which also informs the SeNB/HeNB. 

This signifies the end of the handover procedure and the SeNB/HeNB completely releases the 

UE resources as shown in Figure 3.1. 
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Figure 3.1   LTE-A femtocell-macrocell handover procedure [111] 

3.2 Admission Control in Handover Initiation Stage 

Admission control is required to know if a UE‟s call or service will be admitted or 

rejected, to know the amount of resources to allocate to the UE in the target cell and to 

determine whether existing sessions need to be stopped or not to admit new calls. Calls (new 

or handover) can be accepted only if there are enough bandwidth resources available in the 

target cell. Because of its importance during handover, we will first examine how the 

admission control can provide QoS to user equipment (UE) in the LTE-A. Admission control 

is needed to achieve load balancing across the different cells in LTE-A networks. This is 

especially so for small cells with different access modes where regulation of incoming calls 

plays an important role in achieving QoS to the UEs served by the small cells. The different 

access modes explained in chapter two can serve the different UE types. For example, the 

open access mode can serve the mobile UEs within its range. Closed access mode can serve 

pre-registered UEs while hybrid access can provide registered UEs with higher priority (that 
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is, high QoS) and then non-registered UEs with the resources remaining after traffic 

transmissions scheduling of the registered UEs [111]. With an efficient admission control 

strategy in place, more UE calls can be admitted into the network with good QoS. Different 

traffic types can be assigned different priority levels to accommodate more calls with 

stringent QoS. To achieve this, a channel borrowing admission control scheme for femtocell-

macrocell in the LTE-A networks are proposed in this chapter.  

Admission control is more complex in a mobile environment than in a fixed environment 

because in a mobile environment some bandwidths are reserved to admit handover calls. In a 

fixed network, admission control is simply based on the resources available and the new calls 

quality of service requirements. However, in the mobile network, if there are fewer handover 

calls compared to the reserved bandwidths, then the reserved resources are underused or 

wasted. If there are more calls than the reserved bandwidth, the handover may be dropped. 

The system‟s resources are distributed to the UEs using a minimum and a maximum 

threshold value. The following parameters can be considered when designing the call 

admission control. 

A. Resource availability: New call and handover call can be accepted into the system 

based on the resources available. The network load is considered when designing the 

call admission control scheme. Some decisions can be made to admit certain calls 

using the resource reservation method. 

B. Network parameters quality: The quality of network connection is very important in 

establishing interference free connection. Usually, the link between the network 

components is evaluated using received signal strength (RSS). Each element in the 

network is tested to know their quality requirements. This is taken into consideration 

during the design of the call admission scheme. 

C. Quality policies: Resource utilization, throughput and delay are some of the examples 

of parameters used to determine the QoS of a network. Traffic can be analysed to 

determine the parameters which leads to network performance degradation. In 

addition, network traffic conditions can be predicted to meet up with service 

requirements. 

D. Call prioritization: Calls can be classified into new and handover calls with the 

handover call having higher priority to the new call. Each of this calls can be further 

divided into the real time and non-real time calls. The highest priority is given to real 
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time calls while the non-real time receives the lowest priority. Reservation and 

queuing schemes can be employed to prioritise different call types.  

E. Mobility management: Mobility of the UEs (that is, speed of UEs) is put into 

consideration to lower call dropping and call blocking probabilities. This is useful in 

predicting the UE‟s movement towards a particular base station. It also helps to 

determine the call request type (that is, new call or handover call), thereby leading to 

efficient resource allocation. 

F. Optimization methodologies: Optimization can be performed to enhance the 

performance of the call admission process. The complexity in the call admission 

procedure and in determining parameters for every call request given the threshold 

value can be reduced by the optimization method.  

Generally, admission control schemes in cellular networks can be classified into: 

prioritized and non-prioritized admission control schemes as illustrated in Figure 3.2. In the 

prioritized admission control, priority is given to the calls with stringent QoS by allocating a 

guard (fixed or dynamic) channel to them. This scheme can be further broken down into 

reservation, call queuing and channel borrowing scheme. In contrast, in the non-prioritized 

admission control, no priority is given to any call, that is, new calls and handover calls are 

handled exactly the same way [112].  More discussion on prioritized and non-prioritized 

admission control has been given in [113]. 

 

Figure 3.2   Call admission control [113] 

 

Non-Prioritized 
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Various CAC strategies in literature favoured allocating more channels to the UE calls 

with high priority such as the handover calls and guaranteed bit rates. A dynamic guard 

channel [114] prioritized different services to reduce probability of the dropping handover 

calls. Similarly, the QoS of handover calls was guaranteed in [112] by using a priority-based 

resource reservation scheme. A scheduler algorithm proposed by Kosta et al. [115] assigned 

the highest priority to the guaranteed bit rate (GBR) services to improve their performance. 

The performance of non-guaranteed bit rate (NGBR) services was also improved. The QoS of 

some real-time services like videoconference, multimedia traffic was guaranteed using a 

reserved CAC scheme based on the account balance of the customer.  

Chowdhury et al. [116] reveal that the fixed guard channel scheme can reduce the 

dropping probability of prioritized calls and services. However, this was at the expense of the 

system‟s utilization and blocking probability. This proved further that the fixed guard channel 

scheme generally results in inefficient use of the network resources. To utilize the network 

resources better, dynamic schemes have been proposed in literatures. For instance, Vergados, 

and Cruz-Perez et al. [117, 118] propose strategies to reclaim some of the bandwidth 

resources of already admitted less priority calls for the high priority calls to utilize. However, 

these strategies can disrupt the ongoing handover call, as there was no means of 

differentiating handover calls from the new calls. Alagu and Meyyappan [119, 120] 

introduced the channel borrowing idea to the guard channel to admit more new calls but like 

[117, 118], the schemes did not differentiate the different call types.  

In this chapter, we propose a channel borrowing admission control strategy for femtocell-

macrocell integrated in the LTE-A networks. The uniqueness of this strategy is that first: the 

strategy differentiates handover calls from the new calls; secondly, real time (RT) call is 

differentiated from the non-real time (NRT) call. Finally, NRT new calls can make use of the 

reserved channel for handover calls when it is not being used by the handover calls. In 

addition, the pre-emptive method was employed so that the reserved channel can be used by 

handover calls at any time. 

3.3 System Model 

The system model for femtocell access point (FAP) deployment in the LTE-A network is 

shown in the Figure 3.3. The UE located within the macrocell coverage is equipped with a 
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dual interface so that it can communicate with both macrocell and the femtocell respectively. 

Femtocells are also located within the coverage of the macrocell. The UE initially connected 

to FAP are represented by the FUE and the ones connected to the macrocell initially by the 

MUE. The femtocell and macrocell coverage areas are given as Af and Am respectively. Calls 

are generated randomly within the macrocell coverage area. A call placed within the 

femtocell coverage has a probability of P = Af/Am since the femtocells are located within the 

macrocell coverage. A call placed outside the femtocell coverage has a probability of 1-P.   

 

Figure 3.3   System Model for FAP deployment in LTE-A Network 

We assumed that the LTE-A operates at 2 GHz and uses a frequency-division duplex 

(FDD) with 10 MHz bandwidth for the uplink and downlink. The new call arrival rate λn, and 

handover call arrival λh follows Poison distribution. The macrocell total channel capacity CT 

is divided into different channels in bandwidth units. Where CT represents the physical 

resource blocks in LTE/LTE-A networks allocated to the calls in a cell [121]. 

3.3.1 Proposed CAC with borrowing strategy 

We assumed that there are two types of UE calls: (i) new originating calls and (ii) 

handover (HO) calls. The new originating calls can be further divided into: Real Time (RT) 

and Non-Real Time (NRT) calls or services. The RT services can include real time gaming 

and video conferencing while NRT services include web browsing and non-real time video. 

Since it is more desirable for ongoing calls to be maintained than the new ones, the handover 

call is given the highest priority by allocating a dynamic reserved channel to it as shown in 
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the Figure 3.4. Also, since the QoS of NRT services are less stringent compared to the RT 

services, the NRT services can be delayed for a considerable time as opposed to RT services 

that requires very little or no delay [121]. Therefore, we employed the channel borrowing 

strategy to the reserved channel such that whenever the reserved channel is not being used or 

fully used, the new originating NRT services can make use of it. However, when the 

handover services are available, the new originating NRT services are pre-empted by the 

handover services thus forcing it to wait in the queue until the bandwidth resource is 

available. 

  

 

Figure 3.4   Channel borrowing CAC strategy 

3.3.2 Procedure for the Proposed CAC scheme 

Whenever a new originating call (RT/NRT) arrives in the LTE/LTE-A macrocell 

coverage area Af, the new call first checks if the femtocell resources are available. If the 

resources are available, the call is accepted into the femtocell. If not, the call tries to connect 

to the macrocell if the bandwidth resources are available in the macrocell unreserved channel 

(CL). The proposed strategy for accepting calls into the macrocell illustrated in Figure 3.4 can 

be described as follows. If the bandwidth resources are not available in the unreserved 

channel CL, the traffic type is determined. If the new originating call is NRT and the reserved 

channel CR is not fully utilized, then this channel will be borrowed and used by the NRT new 

originating call; otherwise, the call is blocked. For the handover calls, we have: femtocell-to-
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femtocell, femtocell-to-macrocell, macrocell-to-femtocell and macrocell-to-macrocell 

handover calls. When the call (RT/NRT) is femtocell-to-femtocell/macrocell-to-femtocell 

handover call, the call is connected to the femtocell if there are available resources in the 

femtocell. Otherwise, the call is dropped. However, the operation differs from femtocell to 

macrocell or macrocell-to-macrocell handovers. It is more difficult to perform handover from 

femtocell/macrocell to femtocell due to the large number of target femtocells whereas in 

femtocell/macrocell to macrocell, only one or few macrocells are involved.  

The handover calls from the femtocell or macrocell can be connected to the unreserved 

channel CL or to the reserved channel CR. If the CR is being used by the NRT new originating 

call and the CL is fully occupied, the HO call pre-empts the service of NRT call to make use 

of the CR. The connected NRT new calls are kept in the queue and make use of the CR again 

whenever it is free. The NRT new originating call operation can be delayed for some time 

since it is not delay sensitive. The size of the queue at time, „t‟ is denoted as X(t) and the NRT 

new call will be blocked if X(t) > 0. The essence of this proposed strategy is that it will 

utilize the network resources efficiently which eventually leads to reduced total blocking 

probability of the new originating calls. In the same vein, the reservation of the channel for 

handover calls is crucial for a good QoS of handover calls. 

Since the total channel (in terms of bandwidth) is CT, the reserved bandwidth for the 

handover calls is CR and the remaining bandwidth for both new calls and handover calls is 

CL, let the number of HO calls, new RT and new NRT calls be denoted as Nh, Nr and Nn 

respectively, then we have the following: 

(a) A HO call will be dropped if Nh + Nr + Nn ≥ CT and Nh ≥ CR 

(b) A HO arrival will be accepted if Nh + Nr + Nn ≥ CT and Nh < CR by pre-empting nRT 

call.  

(c) An RT arrival will be blocked if Nh + Nr + Nn ≥ CT or Nr + Nn ≥ CT-CR (i.e. CL) 

(d) An NRT will be blocked if x (t) ≥ 0 and Nh + Nr + Nn ≥ CT 

3.4 Performance Evaluation of the Proposed CAC Strategy 

As shown in the Figure 3.4, of all the three types of calls, only the pre-empt NRT calls 

can be in the queue. The proposed model is a mixed loss-queuing system which is very 
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difficult to analyse mathematically. Consequently, we propose two estimation methods which 

can be analysed mathematically by solving the global balance equation for each method.  

3.4.1 System Estimation 1 (SE1)  

In this estimation method, it is assumed that the pre-empt NRT calls return to make use of 

the reserved channel after they have been displaced by the HO calls. If p(Nh, Nr, Nn) is the 

steady-state probability of state (Nh, Nr, Nn) in the proposed CAC strategy, then the arrival 

rate to the queue can be given as follows: 

     
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state that all the channels used by the HO calls is less than CR. λh is the HO calls arrival rate. 

If the queue is removed, then the arrival rate of the NRT calls (
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Where 
new

NRT  is determined by the state probabilities and the arrival rate h of HO calls. 

From the system estimation method above, a three-dimensional Markov chain can be 

obtained as follows:  

  TnrhRTrnhnrh CNNNCCNNNNNNS  ,,0,0,|,,            (3.3) 

The transition rates for the Markov chain of this estimation can be given as follows [122]: 
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Figure 3.5   Markov chain for the channel-borrowing strategy 

A three dimensional Markov chain can be used to model a three state system. For 

instance, the HO calls, RT new calls and the NRT new calls represent the three systems we 

are dealing with in this research work. It is, however, difficult to mathematically solve a 

three-dimensional Markov chain like this. Hence, a two-dimensional Markov chain which is 

easy to analyse, is used in this research work to model a two-state system. We assume our 

system to be two-state (that is, NRT new calls and HO calls) as against the original three 

state. The Markov chain for this system (that is, two-state system) is time-reversible and can 

be solved using global balance equations. However, our assumption of the two-state system 

will not affect the channel borrowing idea as it can be applied without the RT calls. The state 

diagram of the two-dimensional Markov chain for the system estimation 1 is illustrated in 

Figure 3.5. The arrival rate of the NRT calls is represented by λNRT and the handover calls as 

λH. By using the global balance equations method in [122], the two-dimensional Markov 

chain can be solved numerically. Since λNRT is a function of the system‟s state, therefore, we 
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use new NRT arrival rate instead of the normal NRT value in the global balance equations. 

This resulted into non-linear equations that can be solved using non-linear solvers. 

To substantiate this fact, the new NRT arrival rate is represented by λ
new

NRT, and is used 

in the global balance equations of the state (0, CT) as follows: 
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     (3.4)  

The term    31,1,0 nnpCp T   
contains multiplicative terms which made the above 

equation non-linear. For example, the size of this equation increases rapidly as CT increases. 

In other to resolve the equation into linear equations, the system‟s estimation 2 is used.  

3.4.2 System Estimation 2 (SE2) 

In this estimation, λ
new

NRT = λNRT. Unlike the system estimation 1, it is assumed that the 

pre-empt NRT calls are dropped and will not return to make use of the reserved channel. The 

output of this estimation method yielded linear balance equations because the arrival rate of 

the pre-empt calls determine the accuracy of the system. Since system estimation 2 resulted 

in linear equations, which can be solved efficiently within a smaller time, it can, therefore, be 

useful in large systems with high number of channels. 

The performance evaluation of the proposed CAC with the channel strategy is compared 

with the existing strategy without channel borrowing using the following metrics: call-

blocking probability (CBP), call dropping probability (CDP) and resource utilization. The 

CBP is defined as the probability of rejecting new calls due to little or non-availability of the 

radio resources. The call dropping probability (CDP) is defined as the chances that an 

ongoing call will be dropped due to insufficient radio resources or handover failure. The 

resource utilization is the ratio of the number of resource blocks used in a cell (that is, 

macrocell) during the whole system‟s operations to the maximum load capacity of the cell. 

We first show the comparison in the results of the two estimation methods using global 

balance equations. For the two system estimations, the global balance equations can be 

solved mathematically to obtain CBP and CDP as follows: 
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These global balance equations can be solved using MATLAB with CT and CR assumed 

to be 16 and 8 respectively. The parameter used for the numeric analysis of the two 

estimations is indicated in Table 3.1. 

 

Table 3.1   Parameter for Numerical Analysis 

 

 

 

 

 

The obtained results for CBP and CDP are shown in Figure 3.6 and Figure 3.7 

respectively. It is noticed that the system estimation 2 performs better than the system 

estimation 1 with reference to both CBP and CDP because the pre-empted NRT calls are 

dropped in system estimation 2. This lowers the NRT load as well as the overall load in the 

system. Consequently, fewer numbers of calls can be blocked and dropped in the system 

estimation 2. 

 The system estimations were used to obtain values for CBP and CDP in the mixed loss 

queueing system used in the proposed channel borrowing strategy because the CBP and CDP 

cannot be easily obtained through analytic means from the mixed loss queueing model. We 

have also employed simulations to obtain CBP, CDP as well as resource utilization and then 

compared the results in the following sections.  

 

Parameter Value 

Total number of channels (CT) 16 

Reserved channels (CR) 8 

Service rate (µH, µR, µN ) 1 

ƛRT 0.5  

ƛH 0.5 * i 

ƛNRT 0.5* i (i.e. i = 1,2…..10) 
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Figure 3.6   Total Call blocking probability for system estimations 

 

Figure 3.7   Total Call dropping probability for system estimations 
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3.5 Results and Discussion 

The proposed CAC with channel borrowing strategy is evaluated and compared with the 

existing strategy without the channel borrowing scheme.  The simulation parameters are as 

shown in the Table 3.2. 

The simulation result of call blocking probability for both the existing strategy and the 

proposed strategy is as shown in Figure 3.8. We assumed that the existing strategy is the one 

without channel borrowing scheme as discussed in reference [114]. This strategy is simulated 

and evaluated together with our proposed strategy. In the existing strategy where channel 

borrowing is not employed, to admit more handover calls, part of the channel is reserved for 

the handover calls to guarantee a reduced handover blocking probability. New originating 

calls, therefore, suffered in the process as the resources are not being utilized effectively. The 

new originating calls (RT and NRT) only have access to the remaining non-reserved 

channels. In the proposed strategy, however, the channel borrowing strategy has been 

employed to increase the number of new originating calls while also guaranteeing reserved 

resources for the handover calls.  

For instance, more NRT calls will be accepted into the unused reserved channel while 

keeping the pre-empted ones in a queue. The pre-empted NRT calls resume making use of the 

channel as soon as it is available. Therefore, the overall call blocking probability of the new 

calls is considerably reduced. In Figure 3.8, the proposed strategy reduces the call blocking 

probability by about 10% of the existing strategy for every traffic load. The proposed strategy 

was able to accept newer NRT calls while allowing handover calls to use the resources 

anytime. 

The simulation result of the call dropping probability is presented in Figure 3.9 for both 

the existing strategy and the proposed strategy. The CDP though initially lower in the 

proposed strategy than the existing strategy owing to the lower traffic, however, as the traffic 

increases CDP becomes a bit higher in the proposed strategy than in the existing strategy. 

This is because fewer handover calls can now use the unreserved channel. Here, the increase 

in CDP is very insignificant compared to the high performance gain recorded in terms of 

CBP with the proposed strategy. The difference in CDP, which is only noticeable as the 

traffic increases, is less than 1%.   
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Table 3.2   Simulation Parameters 

Parameter Value 

Radius of the Enb 500 m 

Radius of HeNB 15 m 

Power of Enb 46 mW 

Power of HeNB 20 mw 

Macrocell Bandwidth capacity 10 Mbps 

Number of users Varies 

Initial number of users in a femtocell 4 

Mode access of femtocell Open/closed 

Ues mobility model Random WayPoint 

UE speed Varies 

Average call duration 150 seconds 

 

 

Figure 3.8   Total Call blocking probability 
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Figure 3.9  Total Call dropping probability 

 

Figure 3.10   Resource utilization 
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The simulation result of the resource utilization for both the existing the strategy and 

proposed strategy is as shown in Figure 3.10. An improved performance in the resource 

utilization can be noticed with the proposed strategy. In the existing strategy, the resource 

utilization is worse than the one of the proposed strategy because of the fixed channel 

reserved for the handover calls and when there is no handover call, the reserved channel is 

not used, thus resulting in the entire channel resources being under used. With the proposed 

strategy, channels are used effectively by ensuring that whenever there are no handover calls, 

the reserved channels are used by the NRT new originating calls. This increases the resource 

utilization by about 10%. In summary, the proposed strategy outperforms the existing 

strategy in terms of system resource utilization. 

3.5.1 Comparison of Analytical and Simulation Results 

The values of CBP and CDP obtained mathematically by solving global equations 3.5 and 

3.6 can be validated by comparing them with the values obtained through the simulation of 

the actual mixed loss-queueing model as follows. 

Since we have established that, System Estimation 2 yielded linear equation and 

performed better than System Estimation 1 in terms of CBP and CDP. Therefore, we show 

the accuracy of the analytic results of Estimation 2 by comparing the CBP and CDP obtained 

from the simulation of the actual mixed loss-queueing model of the proposed channel-

borrowing scheme with those obtained through mathematical derivation of the Estimation 2. 

By using the same parameter as in Table 3.1 and the same channel capacity (that is, CT = 16 

and CR = 8), the results of the analytic evaluation of System Estimation 2 show closeness in 

terms of CBP and CDP with the simulation results as shown in Figure 3.11 and Figure 3.12 

respectively. Since close results are obtained from the simulation and the analytic models, 

we, therefore, conclude that the System Estimation 2 is very useful in determining CBP and 

CDP values for the mixed loss-queueing model in the proposed channel-borrowing scheme.    

3.5.2 Traffic Analysis of the New NRT calls and the Handover Calls 

In this section, we further the analysis of the new NRT calls blocking probability and the 

handover call dropping probability as a function of the traffic loads. Recall that under the two 

dimensional Markov chain in system estimation 2, λNRT and λH represent the arrival rates for 

the new NRT calls and the handover calls respectively. Where 1/µNRT is average channel 

holding time for the new NRT calls, 1/µH is average channel holding time for the handover 

calls. 
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Figure 3.11   CBP System Estimation 2 vs Simulation Result 

 

Figure 3.12   CDP System Estimation 2 vs Simulation Result 
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Let NRT
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From the above, the new NRT calls and the handover call blocking probabilities can be 

obtained as follows:  
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where q

NPB
 
is the NRT new call blocking probability and q

HPB is the handover blocking 

probability. 

The results of the proposed strategy are presented and compared with the existing strategy 

by determining the NRT new call blocking probability and the handover call blocking 

probability. By using table 3.1, Figure 3.13 shows the graph of new call blocking probability 

versus the call traffic load. It is shown from the graph that when the traffic load is high, the 
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blocking probability increases for both the proposed strategy and the existing strategy. 

However, this occurs at a much higher rate in the existing strategy than the proposed one. 

This is as envisaged because the proposed strategy allows the channel to be used more 

effectively thereby reducing the number of blocked new NRT calls. 

The graph of the handover call dropping probability versus the call traffic load is as 

shown in Figure 3.14. In both the existing and the proposed strategies, there are no call drops 

when the traffic is very low because the channel has not been fully utilized. As the traffic 

becomes larger, the call dropping probability increases but at a higher rate in the existing 

strategy than in the proposed strategy. This is because the proposed strategy allows the 

channel to be reclaimed by the handover calls and thereby reduce the number of drop calls. 

As shown in the graph, the value of the call dropping probability when the traffic load is 15 is 

about 0.04 for the existing strategy and around 0.06 for the proposed strategy. This shows 

that the proposed strategy performs better than the existing strategy in terms of reducing the 

handover dropping probability. 

 

 

Figure 3.13   New Call Blocking Probability vs Call Traffic Load 

 



57 

 

Figure 3.14   Handover Call Dropping Probability vs Call Traffic Load 

3.6 Chapter Summary 

In this section, a channel borrowing call admission control strategy has been proposed for 

the femtocell-macrocell LTE-A networks to manage the UE calls efficiently and to ensure 

that the channels are used effectively. We started by looking at the parameters for designing 

call admission control schemes and then proposed our strategy. In our strategy, the channel 

resources reserved for the handover calls in the macrocell can be borrowed by the NRT new 

originating calls. On the arrival of handover calls, the ongoing NRT call is pre-empted and 

stored in a queue to use the channel later when it is available. The channel-borrowing strategy 

is modeled using a mixed-loss system with two system estimations proposed. In terms of the 

call blocking probability and the call dropping probability, the system estimation 2 performed 

better than the system estimation 1. From the simulation results, we showed that when 

comparing the proposed strategy with the existing strategy, the proposed strategy performed 

better with respect to call blocking probability and system utilization while there is a very 

little drop in the call dropping probability. Also, we validated our analytical evaluation by 

comparing the analytic results with the simulation results.  
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  CHAPTER FOUR

HANDOVER MANAGEMENT IN FEMTOCELL-

MACROCELL LTE-A NETWORK 

4.1 Introduction 

In the LTE-A integrated network, femtocells form a two-tier network with macrocell to 

offload traffic from the macrocell. This results in improved performance and enhanced 

quality of service of both macrocell and femtocell users. In LTE-A, a femtocell is positioned 

in a way that enables it to operate independently of the type of backhaul and connect to an 

operator‟s network through internet connection thus eliminating the cost associated with 

deployment of huge macrocells [40, 42, 123]. A Femtocell provides cost-efficient ways of 

enhancing the capacity of the cellular system as well as improving the performance especially 

at the cell edge. As low-cost, low power and energy-efficient base stations, they can be easily 

installed and managed [124]. In 3GPP, the femtocell base station is known as the Home E-

node B (HeNB) and provides the Radio Access Network (RAN) functions [38, 125]. 

This chapter focuses on the deployment of femtocell base stations within a macro base 

station with the aim of providing a solution to handover problems resulting from the 

integration of these two base stations. Thus, the main contribution of this chapter is to 

propose an efficient handover management algorithm in two-tier femtocell-macrocell in the 

LTE-A network. The proposed management scheme reduces the unnecessary increase in the 

number of handovers and the target femtocells in the network. A handover is considered 

unnecessary whenever the UE moves back and forth from one macrocell or femtocell to 

another within a very short time. We also investigate the effect of varying the number of 

deployed femtocells in the network. In addition, we look at the challenges facing the 

deployment of femtocells in the LTE-Advanced in this chapter.  

4.2 Femtocell challenges 

A major challenging issue in femtocells is its small coverage area which often leads to a 

typical increase in handover in high dense deployment. This can further lead to a very 
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frequent handover and ping-pong effect. Other challenges include interference between 

femtocells and macrocells, power management, mobility management, mode of operation, 

timing and synchronization, power management and security.  

4.2.1 Access mode challenge 

The different modes of femtocells have been discussed in chapter two. A femtocell access 

point (FAP) owing to its short coverage can provide services for a limited number of UEs. A 

Femtocell deployed openly provides services for public UEs although, few UEs can only be 

accommodated. This scenario results in service degradation due to the number of UEs 

striving to use the resources. When a femtocell is in a closed access mode which is a 

preferred mode installed by private individuals, the unregistered UEs nearby experiences high 

signal interference albeit, not having access to the femtocell resources leading to a reduction 

in the QoS. In [126], the hybrid access mode provides a solution to the interference 

management problem by allowing unregistered UEs to access the resources of the femtocell 

while providing services to the registered UEs. However, with this, more registered UEs can 

be denied access to the femtocell resources as the number of unregistered UEs increases. 

Therefore, as a way of eliminating this challenge, a FAP should be made intelligent to allow 

and give priority to the specified number of registered UEs to use the resources [127].         

4.2.2 Mobility challenge  

Mobility management is one of the important challenges to be addressed in the LTE-A 

with the femtocell access points which provide low coverage to the users. Due to the low 

coverage and limited radio resource of the FAP, a large number of neighbour list FAPs is 

recorded when UEs become mobile. Because of these large numbers of neighbours, it is very 

difficult to make handover decision. The handover problem can be aggravated by the 

different types of access mode of the femtocells (as discussed earlier in this work). Therefore, 

efficient handover algorithms are required to overcome mobility issues in the LTE-A 

femtocell network and to also ensure that the QoS of the overall network is not depreciated 

[128].  

4.2.3 Interference management  

Interference occurs when femtocells and macrocells are deployed within the same 

frequency band due to non-availability of unused spectrum. This is usually done to increase 
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the spectral efficiency and the network capacity [128]. This deployment type leads to two-tier 

interference: conventional macro-cellular and user deployed femtocell network [129]. The 

two-tiered interference can be divided into co-tier and cross-tier interferences as illustrated in 

Figure 4.1 and Figure 4.2. 

A. Co-tier interference: This interference arises when two FAPs located close to each 

other operate in the same frequency band. The resulting interference can have a 

colossal impact on the closed access mode than the open access mode [128]. In the 

co-tier interference, femto-UEs functions as the source of interference to the 

neighbour femtocell AP in the uplink while femtocell AP functions as the source of 

interference to the femto-UEs in the downlink. 

B. Cross-tier interference: This interference arises when the macro-UEs located close 

to the femtocell AP transmits at high power or when femto-UEs situated close to the 

macro BS transmits at a low power [130]. The femto-UE acts as a source of 

interference to the macro BS in the uplink while the femtocell AP acts as a source of 

interference to the macro-UE in the downlink [131]. 

These interferences can be reduced by using various interference cancellation and 

avoidance schemes discussed in [128]. In addition, power control schemes can be used to 

control the noise levels among the neighbouring FAPs and or femto and macro-UEs. 

 

 

Figure 4.1   Interference in two-tier femtocell network [128] 
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Figure 4.2   Co-tier versus cross-tier interference 

4.2.4 Timing and synchronization 

Timing and synchronization in the femtocell network involves network monitoring usage, 

tracking security breaches, event mapping, session establishment and termination [128]. In 

the femtocell networks, attaining time synchronization is very difficult for two main reasons: 

(i) as the number of femtocell increases, the network becomes denser thereby each femtocell 

location is unpredictable, (ii) the network provider has little or no control on the location and 

placement of each femtocell. Solutions to the timing and synchronization problem include 

incorporating a GPS receiver to the femtocell to provide subscribers with local information 

[128]. This help to locate and manage interference in the femtocell deployment. In addition, 

the femtocell can be synchronised with the core network with the help of neighbouring 

femtocells. 

4.2.5 Security 

This arises mostly when the privately owned femtocell operates in the hybrid mode. Since 

data traffic will be routed via the owner‟s internet backhaul, its confidentiality and privacy 

can be breached. Hackers can use the Denial of Service (DoS) attack to prevent the UEs from 

accessing the network by overloading the connection between the FAP and the Core Network 

(CN) [128]. A closed access mode also needs to be protected from unwanted users to prevent 

them from gaining access to the femtocell resources. The IPSec proposed in [132] can be 

used with the HeNB Gateway (HeNB GW) to provide a secured link between the HeNB and 

the core network [133]. The higher the number of deployed femtocells, the more challenging 

is the security of the network. 
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4.3 Related Studies 

Handover management algorithms in two-tier femtocell-macrocell have been researched 

in previous studies recently. For instance, the author in [134] highlights key areas and 

challenges facing femtocells in the LTE-Advanced networks. Existing handover decision 

techniques for the femtocell-macrocell in the LTE-A were categorised. A comparative 

difference of the decision parameters for the handover decision algorithms was also provided. 

The handover decision policy studied in [38] is based on the user‟s mobility prediction. The 

movement prediction uses the Markov chain probability to determine the position and the 

direction of the UEs which help to reduce the handover. Horizontal and vertical handovers 

were studied in [39]. To remove the frequent and unnecessary handovers, the authors 

predicted user movements and the target FAP using Markov chain discussed in [38]. The 

authors in [135] propose that the femtocell should be accessed openly by all cellular users in 

order to achieve high data rate, improved overall network coverage and handover.  

A handover mechanism based on the HeNB Policy function is proposed in [67]. The 

scheme which serves as a good basis for this study, considers user type, loads and femtocell 

access modes as metrics for determining the target femtocell for handover. Although this 

policy-based scheme takes the user type, access mode of HeNB and current load into 

consideration, there is however, no mechanism or scheme to handle different UEs‟ speed. In 

addition, the algorithm is applicable to macrocell to femtocell handover only. These are 

considered as the shortcomings of this scheme which we will compare with the proposed 

algorithm in this chapter. 

In this research work, we propose an enhanced handover algorithm based on the speed of 

the UEs. The main idea of our work is to first reduce the number of target femtocells in the 

list, which automatically implies a reduction in the number of time UE calls will be 

transferred from one femtocell to another and subsequently a reduction in the handover 

number. To achieve this, the present research work considers the speed of the UEs and 

additionally the mode access of the femtocells, capacity of the target femto/macro station and 

signal after handover.  
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4.4 LTE-Advanced Architecture with support for Femtocell 

The LTE-A system architecture in Figure 4.3 consists of the femtocell base stations and 

the macrocell base stations. A macrocell base station is called an eNB and the femtocell base 

station HeNB. The HeNBs are supported by the EPC which consists of the Serving Gateway 

(S-GW) and the Mobility Management Entity (MME) [38, 136]. The S-GW functions include 

routing and forwarding of the packets between the UEs, charging and accounting. It also acts 

as different anchor points for different handovers. The MME functions include managing the 

UE access and mobility, the UE bearer path creation as well as performing security and 

authentication [4]. The LTE-A EURAN architecture also consists of the HeNB-GW which 

acts as concentrator for the control plane to support large numbers of the HeNBs [111]. The 

HeNBs and the eNBs on the other hand, perform related functions of terminating the user and 

control plane protocols. They provide radio control functions, admission control, paging 

transmission or message broadcasting, routing and scheduling data towards the S-GW [134]. 

In Figure 4.4, the S1 interface is set in the macrocell-femtocell interfaces together with 

the gateways and units. Communication takes place between the HeNB nodes and the EPC 

via interface S1-U and S1-MME. The HeNB GW and management system entities perform 

the function of relaying packets to and from the femtocell stations.  

 

 

Figure 4.3   E-UTRAN architecture with Femtocells [134] 
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Figure 4.4   Macrocell-Femtocell Internal Interfaces for handover process [91] 

 

Figure 4.5   Logical architecture of femtocell 

The LTE femtocell logical architecture includes an entity called the HeNB GW which 

functions as the concentrator to support many HeNBs. The HeNB GW connects many 

HeNBs to the EPC as shown in Figure 4.5. Between the HeNB and the CN, the HeNB GW 

occurs to the MME as eNB and to the HeNB as MME [67].   

4.4.1 Handover Scenario in femtocell-Macrocell Networks 

The following are the possible handover scenarios in the macrocell-femtocell integration 

[137]:  

(a) Hand-in: In this scenario, the UE moves from the coverage of the macrocell to the 

femtocell coverage. This is the most challenging because of the difference in the 

   HeNB    SGW    HeNB GW    EPC 
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backhaul routes of both the macrocell and the femtocell. Another challenging issue 

here is choosing the right HeNBs among the many HeNBs available. This often 

causes too long neighbour list and enormous demands on the system resources. 

However, the proposed algorithm in this research work ensures that the list of target 

HeNBs is reduced by considering other factors such as mode access of the femtocell, 

capacity and speed of the UE in addition to the signal level of the HeNBs in the UE‟s 

direction 

(b) Hand-out: This is the scenario whereby the UE originally connected to the femtocell 

handovers to the macrocell. This is similar to the macrocell to macrocell handover. 

However, there is usually no direct X2 interface between the two base stations. 

Hence, the control signalling takes place between the backhaul link and the core 

network. Hand-out is usually simple because the UE can only choose the only 

macrocell available. Only one macrocell is usually available. Hence, there is no 

option of selecting any other macrocell unlike in the hand-in scenario with many 

target femtocells. When the signal received from the macrocell is better than the 

signal received from the serving HeNB, and the speed of the UE has been determined, 

the UE can attach to the macrocell eNB and start transmitting its packet without 

consideration for other factors as in the hand-in scenario. 

(c) Inter-HeNB: This is when the UE moves from the source femtocell to the target 

femtocell. The procedure for the femtocell to femtocell handover is similar to the one 

in the hand-in scenario [67] because the UEs‟ need to select from hundreds of the 

target HeNBs available in the neighbourhood during handover. Signalling takes place 

between the HeNB GW through the S1 and the X2 interfaces and the control traffic is 

received at the EPC [138]. Both the source and the target femtocells are usually 

connected to the same network and, therefore, they need to be in close proximity 

[139].  

4.4.2 Handover Procedure in femtocell-macrocell LTE-A networks 

The Serving-eNB (SeNB) at a regular interval sends measurement request to the UE as 

shown in Figure 4.6. This request is replied by the UE to the SeNB. Based on the 

measurement information, the list of potentials in the HeNBs is forwarded to the HeNB-GW 

by the MME [2, 5, 140]. This list is updated at the HeNB-GW which selects the HeNB with 

maximum signal level in the UE‟s direction. Once this is achieved, the algorithm proposed in 
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Figure 4.7 is used by the T-HeNB to accept the handover request. The handover response will 

then be sent to the HeNB-GW. On receiving the handover response, the HeNB-GW delivers 

it to the MME which then passes the received handover response to the SeNB. The SeNB 

informs the UE that the connection is complete. In order to access the target cell, the UE 

executes the handover by synchronising with the T-HeNB. At the completion of the 

handover, the downlink data path is changed to the T-HeNB by the MME. Once the resource 

release is completed, the T-HeNB begins transmitting the downlink packet data. 

 

 

Figure 4.6   Handover procedure in LTE-A [124] 
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4.4.3 Proposed handover algorithm in two-tier macrocell-femtocell LTE-A 

In this section, we propose an enhanced handover algorithm to reduce handover in two-

tier macrocell-femtocell in the LTE-A. The proposed algorithm is detailed graphically by the 

flow chart in Figure 4.7 and pseudo algorithm in Figure 4.8. The procedure for admitting 

calls and the required steps in setting up the connection with the T-HeNB in the proposed 

algorithm are described as follows: 

A. The signal level of the UE to the SeNB is first checked and compared with a threshold 

signal (k1). 

B. The UE‟s speed is determined according to Table 4.1 to know whether the UE will 

hand over to the T-HeNB or will remain in the eNB.  

C. For the UE to establish connection with the T-HeNB, the signal levels of the other 

connected UEs to the T-HeNB is checked to ensure that they are not affected below 

the threshold2 (k2). 

D. An UE is allowed to connect to the T-HeNB provided that the T-HeNB can be 

accessed openly and has not reached maximum capacity. 

 

Table 4.1   Different speed range of UE 

Speed type UE Speed in km/hr 

Low Speed 0 – 15 

Medium Speed 15 – 30 

High Speed 30 above 

4.4.4 Algorithm Complexity 

 The complexity of an algorithm is closely associated with the number of iterations 

and variables. To evaluate the complexity of the proposed algorithm, the required lines 

from the algorithm in determining the time complexity can be described as follows: 

O(1) – Initialization   //Line 1 to 7 

O(s) – for loop         //Line 8 

O(y) – number of HeNBs   //Line 17, already initialized as y in 6  

O(z) - total number of ListOf HeNB //Line 19 
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 Figure 4.7   Flowchart for the proposed handover scheme 
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Algorithm: Procedure for reducing the handover  

 

1. Initialize simulation time s 

2. Initialize a container n holding user calls 

3. Threshold = k1 // k1 is set threshold signal before handover 

4. Threshold 2 = k2    // k2 is set threshold signal after handover 

5. ListOf HeNBs = 0   // list of femtocells or HeNB 

6. y = HeNBs // number of femtocellsor HeNB in considered area  

7. T-HeNB // femtocell with highest signal 

8. For (i = 0; i < s; i++)  // run for loop until i it reaches s 

9. For each user x in n     

10. Handover Trigger Event 

11. Measurement x signal level of SeNB to the UE 

12. If signal level of SeNB < k1 

13.     Compute the speed of the UE  

14.     If the speed of the UE < 30 

15.         Compute HeNBs signal level measurement, CuNB 

16.                   y = HeNBs.count()  // get total HeNBs 

17.   for (i= 0; i<=y; i++)   // generate list of HeNBs in the range of the UE  

18.        ListOf HeNB.add(HeNB)  // add each HeNB that meets the HeNBs range to ListOf HeNB 

19.        z= ListOf HeNB.count() // get total number of HeNB in the list 

20.     foreach (HeNB in ListOf HeNB) //identify the HeNB with max signal as T-HeNB. 

21.              If (HeNB signal > k1) 

22.            T-HeNB = HeNB 

23.   If max signal level of T-HeNB > k2 and Bandwidth capacity available in T-HeNB and can be 

openly accessed            

24.    Handover to T-HeNB 

25. Remain in eNB //assuming speed of the UE > 30  

26. Simulation time s has not reached 

27.   Create new users and add to n 

Figure 4.8   Pseudo Algorithm 
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We considered two cases to properly evaluate the computational efforts related to the 

time complexity: one with speed (proposed) and the other without speed (as in existing) and 

then determine their time complexity. Note that line 15 to 23 in the proposed algorithm is not 

required in the existing algorithm as the speed of the UE is not considered in the existing 

algorithm. 

Case 1: time complexity of the proposed algorithm,  

t = O(I) + O(s) 

While equation (1) represents the time complexity for the best case scenario of the proposed 

algorithm, equation (2) indicates the time complexity for the worst case scenario of the 

proposed algorithm where the different speed of the UEs is put into consideration to achieve 

robustness.  

t = O(I) + O(s)O((y)*O(z)) 

Case 2: time complexity for the existing algorithm  

t = O(I) + O(s) 

Equation (3) on the other hand, represents the time complexity of the existing algorithm 

where the speed of the UE is not put into consideration which explains the low complexity 

obtained in this equation. However, this is not usually the case as the UEs speed are different. 

Some users/UEs move at a speed less than 30 km/hr while some at more than 30 km/hr. 

Eventhough, this matches with the time complexity obtained in equation (1), that is, the best 

case scenario of the proposed algorithm, the existing algorithm is not robust to handle the 

different UE speeds.  

 Since the worst case scenario of the proposed algorithm wholistically handles these 

different UE speeds, as expected, a higher time complexity is recorded for this scenario. 

Therefore, in contrast to the existing algorithm, the proposed algorithm achieved an 

encompassing robustness by considering the different speeds of the UEs. Thus, the overall 

performance of the proposed algorithm in terms of reducing handover is better than the 

existing algorithm as we will see in the result later.  
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4.5 System Model and Traffic Analysis 

We considered a scenario whereby the femtocells are placed within the coverage of a 

macrocell. Each femtocell initially serves four UEs and a maximum of eight UEs. Calls can 

be generated by Poisson Distribution with arrival rate γ. The macrocell‟ UEs and the 

femtocell‟ UEs are placed anywhere in the network and they can move from one location to 

another within the network. The user‟s speed is calculated for every 1 second interval using 

the Euclidean Distance method [111]. The distance travelled for every 1 second interval is 

also calculated. The speed of the UE is obtained by dividing the distance covered by the time 

spent to travel it, that is, speed v = d/t. 

It is assumed that o  and h  are the originating call arrival rates and the handover call 

arrival rates respectively. ffh, , fmh,  mfh,  and mmh,  represents the femtocell-to-femtocell, 

femtocell-to-macrocell, macrocell-to-femtocell and macrocell-macrocell handover call arrival 

rates in the system. If fbP , , mbP ,  are the new originating call blocking probabilities for both 

the femtocell and the macrocell then fdP , , mdP ,  are the handovers call blocking probabilities 

for the femtocell and the macrocell respectively. The average macrocell layer channel release 

rate can be increased by increasing the number of femtocells. This is done to offload more 

traffic from the macrocell. If f  and m are the average release rates of the femtocell and 

the macrocell respectively, then the average release rate can be determined from the 

following equations [141]. The average release rate for a femtocell layer 

  ff                (4.1) 

The average release rate for a macrocell layer 

        1nmm               (4.2) 

where 1 represents the average call duration. f1 and m1 are the cell dwell time for the 

femtocell and the macrocell respectively.  

From Figure 4.8, newly arrived calls to the system can either compete within the primary 

cell or handover to other cell(s) before completion [116]. The total calls rate (originating and 

handover) entering a cell is equal to the calls leaving the cell. The handover calls arrival rates 
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for the femtocell-femtocell, femtocell-macrocell, macrocell-femtocell and macrocell-

macrocell handovers can be determined by combining [2, 111] as follows: 

For the femtocell-femtocell handover 
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For the femtocell-macrocell handover 
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For the macrocell-femtocell handover 
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For the macrocell-macrocell handover 
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where ffhP , , fmhP , ,  mfhP ,  and mmhP ,  are the handover probabilities of the femtocell-femtocell, 

femtocell-macrocell, macrocell-femtocell and macrocell-macrocell cells, respectively and 

         represent traffic intensity for any of the handover type described above.  

 

Figure 4.9   Call rate traffic model 
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From Figure 4.8, the rate of the handover traffic entering a cell is given as λh(1-Pd). The 

average rate of calls leaving the cell would be equal to the average rate of calls requiring 

handover. 

Traffic Analysis of the femtocell network: The UE‟s traffic behavior in the femtocell 

network for the proposed algorithm is analyzed as follows. By using the Discrete Time 

Markov Model (DTMM), the behavior of the UE in the network can be captured. The 

handover probabilities of the UE in each femtocell can be used to obtain closed-form 

expressions for the handover performance parameters. Since the UEs can be placed anywhere 

in the network, they can also change the state at the end of a discrete time slot (∆t). State 

variables can be used to indicate an active UE call within the femtocell.  

Let N represent the number of the target femtocell in the network and the state variable 

S(N) represent that the UE is associated with N. Let the additional state variable Sno represent 

the UE with no active call. As earlier stated, the calls are generated with arrival rate γ with 

the call arrival probability Pγ = γ∆t. The call duration is exponentially distributed with the 

average call duration 1/µ. Therefore, the probability of the call termination is given as Pµ = 

µ∆t.  

Recall, the cell dwell time is the time the UE spent in its current cell. It is given as 1/ɳ and 

it is modeled using exponential distribution. The average cell residence time is given as 1/r 

and the probability of an UE leaving the current cell is Pr = r∆t. 

In the DTMM shown in Figure 4.9, the EU remains in an inactive state Sno with a 

probability of 1-Pγ. After the call arrival, the EU goes into any of the states Si based on the 

density of the cell in that state. The EU, thereafter, returns to the Sno from Si with a 

probability Pµ. The EU remains in the current cell during active call with a probability (1-

Pµ)(1-Pr) while the EU transition probability from Si to state Sj is given as Pr(1-Pµ)Psisj. 

The EU returns to state Sno at the end of a call. 

The Psisj can be calculated as follows: 

 

Psisj = {¼ if N > 3 or 1 if N = 3}                          (4.7) 

 

In Fig. 4.10, K is the total number of the femtocells in the network. 
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Figure 4.10   DTMM for all states  

The balance equations can be determined using the transition probability matrix of the 

DTMM as follows:  
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where id  is a stationary distribution used to obtain the handover performance parameters. 

The number of handover: this can be obtained by calculating the average handover number in 

the network. To calculate this, we consider the handover in each of the different call types 

and determine the average handover using the close-form expression as follows: 
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where  is the average number of handovers per UE. n is the number of handovers during an 

active call.  h is the handover number to a femtocell/macrocell in state S.   is the probability 

that a UE handover to a state which is not its current state.   is the probability of the EU 

handover from one femtocell/macrocell to another whose is state S.  K is as stated earlier. 
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4.6 Results and Discussion 

To determine the performance of the proposed algorithm, the proposed algorithm is 

compared with an existing algorithm in terms of the number of handovers and the ratio of the 

T-HeNB. By using the simulation parameters in Table 4.2, the simulation results generated 

are explained as follows.  

The result of the proposed algorithm is presented with respect to the number of handovers 

as shown in Figure 4.10. We called the algorithm with no mechanism to handle different UEs 

speed an existing algorithm, (that is, reference [67]). By comparing the results of the 

proposed algorithm with the existing algorithm, which allows the UE to handover to the 

femtocells without considering the speed of the UE, it can be noticed that there are more 

handovers in the existing algorithm. This can be attributed to the fact that when the UEs 

become highly mobile, they experience more handovers due to the low coverage area of the 

femtocells. This can lead to more packet loss, and a large load signalling in the core network. 

To prevent these frequent handovers, the speed of the UE has been considered in the 

proposed algorithm. Having determined the speed of the UE beforehand, the proposed 

scheme ensured that highly mobile UEs remained attached to the macrocell with the larger 

coverage area by initiating inter-frequency handover to the macrocell while stationary or low 

speed UEs can handover to the femtocell. Although the proposed algorithm exhibits a higher 

computational time (as determined in the algorithm complexity for the worst case scenario) 

due to encompassing the UE‟s speed consideration, however, as shown in Figure 4.10, the 

proposed algorithm has been able to reduce the total number of handovers in the network by 

almost 40% of the existing algorithm. 

To further show that the proposed algorithm performs better than the existing algorithm 

in terms of the number of handovers, we varied the number of the femtocells as shown in 

Figure 4.11. It can be seen that when few numbers of the femtocells were deployed, that is, 

less than 10, the number of handovers in both existing and the proposed scheme are almost 

the same. However, as the number of the femtocell increases and with the UEs becoming 

highly mobile, the UE experiences more frequent handovers with the existing algorithm 

compared to the proposed algorithm. Hence, the proposed algorithm outperforms the existing 

handover algorithm again in this regard.  
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Table 4.2   Simulation Parameters 

Parameter Value 

Radius of the eNB  500 m 

Radius of HeNB  10 m 

Power of eNB 46 mW 

Power of HeNB 20 mW 

Bandwidth capacity of macrocell 10 Mbps 

Number of users  Varies 

Initial number of users in a femtocell 4 

Mode access of femtocell Open 

UEs Mobility model Random WayPoint 

 UE speed (3, 25, 60, 150, 300) kmph 

Average call duration 150 seconds 

 

 

Figure 4.11   Number of handover against new call arrival rate 
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To evaluate the performance of the proposed algorithm in terms of the ratio of the T-

HeNB, the ratio of the T-HeNB is defined as the number of the target HeNBs in the list to the 

total number of the femtocells in the system. 

            
cellsTotalfemto

HeNBsT
RatioHeNBT


                (4.7) 

The graph of the ratio of the T-HeNB against the number of the femtocell is as shown in 

Figure 4.12. In comparing the proposed algorithm with the existing algorithm, it can be 

noticed that the ratio of the T-HeNB in the existing algorithm doubled the ratio of the T-

HeNB in the proposed algorithm for every increase in the number of the femtocell. This is 

because the mobile UE performed frequent handovers from one femtocell to another and 

because of the number of the femtocells, the rate of the ping-pong increases in the existing 

algorithm. However, with the proposed algorithm, only the stationary or low speed UEs can 

perform handover to the femtocell and the high speed UEs remain connected to the macrocell 

or handover to another macrocell thereby reducing the ping-pong effect. 

 

 

Figure 4.12   Effect of varying the number of femtocells on handover 
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Figure 4.13   Ratio of T-HeNBs 
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Figure 4.14   Handover simulation result vs Analytical result  

 

Figure 4.15   T-HeNBs simulation result vs analitical result  
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4.7 Chapter Summary 

In this chapter, an enhanced handover algorithm has been proposed to reduce the 

handover in the two-tier macrocell-femtocell LTE-A networks. The algorithm is based on the 

speed of the UE in addition to the signal level of the UE and capacity of the femtocell before 

making handover decision. The highly mobile UEs can be connected to the macrocell while 

the stationary or low speed UEs can be connected to the femtocell.  

Moreover, the potential target femtocells were listed and the algorithm further checks the 

femtocell with the highest signal level to the UE as well as its capacity to accommodate the 

UE‟s services. From the simulation results obtained, we established that the proposed 

algorithm outperforms the traditional algorithm with respect to the number of handovers and 

ratio of T-HeNB.  
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  CHAPTER FIVE

HANDOVER MANAGEMENT IN DENSE FEMTOCELL 

DEPLOYMENT IN LTE-ADVANCED 

5.1 Introduction 

Femtocells have been introduced in the previous chapters as low-power and low cost 

devices used to enhance the capacity and performance of mobile cellular networks. Apart 

from forming a two-tier network with the macrocell to offload traffic from the macrocell, 

femtocells can be deployed in a densely populated urban area to achieve more data rate with 

better QoS. However, this increases the frequency of the handover of the UEs. The large and 

frequent handover arises due to many neighbouring femtocells, thus making the handover 

management extremely difficult. Selecting a particular femtocell for handover is a serious 

challenge in a dense femtocell deployment environment. Due to this, a robust CAC-based 

handover strategy for dense deployment of the femtocell in LTE-A network is proposed in 

this chapter. We start by probing into the challenges attendant to high dense femtocell 

deployment. 

5.2 Challenges in high dense femtocell deployment 

Various challenges arise as a result of densifying cellular networks with femtocells. Thus 

in this section, we discuss these challenges which include handover failure, the ping-pong 

effect and cell association issues.  

5.2.1 Handover Failure 

In LTE-A, there is a huge instability of signal as many femtocells are deployed under the 

coverage of the macro base station (macrocell) where handover decision is determined 

basically by using the signal quality of the UE to these base stations [142]. Due to this signal 

instability caused by factors such as UE mobility and overloading of the base stations, the 

signal quality deteriorates resulting in the handover failure. Also, since both macrocell and 
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femtocell can operate in the same frequency, a strong interference occurs in the overlaid 

which further deteriorates the quality of the signal.   

5.2.2 Ping Pong Effect 

 Ping Pong is an effect caused by the frequent movement of UEs between the source and 

the target base stations. This effect arises as a result of deploying numerous femtocells at the 

hotspot areas such as shopping malls, airports, sport centres and railway stations to provide 

an increased capacity to users. Due to the smaller coverage of femtocells, the mobile UE 

continuously change its association from one cell to another. This causes interruption in the 

connection and unnecessary frequent handovers. Ping pong can also increase the dropping of 

calls and poor network performance [143].  

5.2.3 Cell Association Issue 

In dense femtocell networks, many femtocells with low power are placed within the 

coverage of the macrocell. Because of the high transmitting power of the macrocell, the UE 

tends to be associated with the macro base station irrespective of its distance to the femtocell. 

This unavoidable high transmitting power of the macro cell prevents the necessary handover 

from taking place. To solve this problem, various load balancing algorithms were developed 

in [144].  

5.3 Related Work  

Vasudeva et al. [145] investigated handover failures in heterogeneous networks. New 

models for analysing handover performance in heterogeneous networks such as cell size, 

vehicular UE velocity and mobility management parameters were presented. Chowdhury and 

Jang [146] proposed a handover algorithm for managing issues related to mobility in dense 

femtocell to macrocell network. To handle large numbers of FAPs within the macrocell 

coverage, the authors introduced SON-based network architecture. They also proposed an 

algorithm which exposed hidden FAPs that cause handover failure using SON features. The 

SON-features ensure that FAPs keep location information of one another thereby overcoming 

hidden FAP problems. This, however, can lead to increased neighbour cell list. For 

performance analysis, traffic model different from the macrocellular only network was used 

for the femtocell-macrocell integrated network. An adaptive user movement prediction 
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technique has been proposed in [147] to further minimize the list of neighbour femtocells in 

dense femtocellular networks. Their movement prediction technique aimed at enhancing the 

work in [146] by identifying parameters such as the movement direction of the Mobile 

Station (MS) and the neighbour FAPs‟ location in relation to the serving FAP. By using 

positioning technology, the authors were able to divide the femtocell area into sub-areas 

consisting of femtocell APs, user mobility analysis server and mobile terminals. To predict 

the next MS movement, server mobility rules were used and the predicted movement 

delivered to the femtocell BS.  

In this chapter, we propose a robust CAC-based handover management strategy for LTE-

Advanced network. We consider femtocell-to-macrocell, femtocell-to-femtocell and 

macrocell-to-femtocell handovers for effective handover analysis and management. We also 

consider a large-scale deployment of femtocell to upload huge traffic from the macrocell to 

the femtocell in the femtocell-macrocell integration. However, this leads to more challenges 

caused by large numbers of neighbouring femtocells. Thus, the proposed CAC strategy will 

be used with the handover algorithm proposed in chapter four to reduce handover probability, 

call blocking probability and call dropping probability. Also in this work, we differentiate 

call into various types and apply the proposed strategies to handle these various types. 

5.4 System Model  

The system model for femtocellular network is shown in Figure 5.1. Various femtocell 

access points (FAPs) are connected to the Femtocell Gateway (FGW) via Internet Service 

Provider (ISP) cable or Digital Subscriber Line (DSL) modem. The FGW can be used as both 

concentrator and security gateway for the FAPs. It should be noted that there is no direct link 

between FGW and RNC [2]; Hence, FGW communicates with RNC via the Core Network 

(CN). The FGW controls traffic flows in and out of the femtocell. The FGW also forwards 

traffic received from the access networks to the destination network. Femtocell UEs are 

connected to the macrocell UEs through the ISP network. An agreement is required between 

a femtocell operator/owner and an ISP to provide the required bandwidth to the femtocell 

UEs. FGW provides FAP‟s position and authorised UEs via CN to the macrocell database 

server (DBS) [2]. The FGW and RNC are connected to the user plane and control plane 

respectively. 
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A dense deployment of the femtocell base station within a macrocell is shown in Figure 

5.2. Finding an appropriate Target femtocell (T-HeNB) among the many neighbouring 

femtocells by the UE is a huge challenge. When a UE previously connected to a macrocell or 

a femtocell needs to handover to another femtocell for reasons such as low signal from the 

serving cell, signals are detected from the neighbouring femtocell stations. In the process, 

much power and overhead is required by the UEs to scan the potential numerous T-HeNBs. 

The large overhead is due to large amount of information broadcast by the UEs. This 

unnecessary scanning often leads to serious handover problems in the densely deployed 

femtocell network.  

Therefore, a robust handover management scheme is required in a dense femtocell 

deployment to reduce the overhead incurred in scanning a large number of femtocells which 

ultimately leads to a reduction in the rate of handovers in the network. 

 

 

 

Figure 5.1   Femtocellular network connection to the CN 
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Figure 5.2   Dense femtocell deployment scenario 

5.5 Proposed CAC-based Handover Management Strategy 

The proposed CAC-based handover management strategy combined the CAC scheme 

with the handover algorithm proposed in chapter four to reduce handover in the dense 

femtocell deployment LTE-A network. While the algorithm proposed in chapter four ensures 

that the speed of UE is put into consideration, the CAC scheme controls the admission of 

different UE‟s call types into the network. In addition, CAC manages a large number of calls 

between the macrocells and the femtocells. The proposed strategy can be grouped into three 

parts as follows: the first part is used to accept new calls, the second part is used to accept 

calls already connected to the macrocell and the third is used to accept calls already 

connected to the femtocells. Two threshold levels K1 and K2 of signal-to-noise plus 

interference ratio (SNIR) are used to accept a call into the system. K1 is the minimum signal 

level required to connect a UE‟s call to the HeNB. K2 is used to reduce undesired macrocell-

femtocell handovers. The QoS adaptive traffic in [146, 148] is used to accept more handover 

calls to the macrocell. The bandwidth required to accept a call and the minimum bandwidth 

allocated to call of n
th

 traffic class are βr,m  and βmin,m  respectively. Each n
th

 class calls releases 

bandwidth βr,m – βmin,m to accept a new call into the macrocell. Also, C and Cused represent the 
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total bandwidth of the macrocell and bandwidth used by the existing calls. The unused 

bandwidth Cunused in the macrocell is equal to C-Cused. 

5.5.1 New calls 

The CAC scheme applicable to the newly arriving call is as shown in Figure 5.3. 

Whenever a new call arrives the femtocell-macrocell coverage area, a femtocell availability is 

checked. If resources available are in the femtocell and the femtocell can be accessed openly, 

the new call is admitted to the HeNB provided the received signal level K2 condition is also 

met. The received signal level of the target HeNB is SNIRT, F. If these conditions are not met, 

the resources of the macrocell are checked. If there are sufficient bandwidth resources 

available in the macrocell, the call is connected to the macrocell otherwise it is rejected.  

 

 

 

Figure 5.3   CAC strategy to accept new calls 
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Algorithm for accepting new calls into the system 

1. Start 

2. //checking femtocell availability 

3. If UE receive signal from a femtocell/within the femtocell coverage then 

4. //check if femtocell signal is greater or equal to threshold K2 

5. If SNIRT, F ≥ K2 then 

6. //check if the femtocell is open access and resource availability 

7. If femtocell open access and resource available then 

8. Accept calls into HeNB 

9. End 

10. Else go to 14 

11. Else go to 14 

12. Else 

13. //check if bandwidth required to accept call ≤ available bandwidth in the macrocell 

14. If βr,m ≤ Cavailable then 

15. Accept UE call to the MBS 

16. Else 

17. Reject the call 
 

5.5.2 Existing calls with the Macrocell 

The CAC scheme applicable to the calls already connected to the eNB is as shown in 

Figure 5.4. Whenever a moving Macrocell UE (MUE) detects a stronger signal from HeNB, 

the scheme checks the signal received from that target HeNB. If the signal is equal to the 

threshold of K2 or if the current received signal level of macrocell is less than or equal to 

signal of the target HeNB, then the MUE call is handed over to the femtocell provided other 

conditions are satisfied. 

Algorithm for accepting handover call to the T-HeNB from eNB 

1. Start 

2. //compare target femtocell signal detected with the threshold K2 

3. If SNIRT, F ≥ K2 then 

4.     //check if target femtocell is open access and resource availability 

5.     If T-HeNB open access and resource available then 

6.        Handover to the HeNB 

7.        End  

8.     Else go to 14 

9.  Else 

10.   //check if target femtocell signal ≥ macrocell signal 

11.  If SNIRT, F ≥ SNIRT, M  then 

12.  Go to 5 

13.  Else  

14. UE call remain with the MBS 
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Figure 5.4   CAC strategy for existing call with eNB 

5.5.3 Existing calls with the Femtocell  

The CAC scheme for calls initially connected with the HeNBs is shown in Figure 5.5. 

The scheme is applicable to handovers from femtocell to femtocell or femtocell to macrocell. 

When the signal received from the HeNB by a moving UE becomes low, the UE based on its 

speed, begins a handover process either to the neighbour femtocell or to the macrocell. If the 

target femtocell signal is greater than or equal to K2, and can be openly accessed, the UE call 

will hand over to the T-HeNB. However, if the target femtocell signal is within the K1 and K2 

range, the UE tries to connect to the macrocell.  

If the bandwidth resources available in the macrocell are not enough to admit the call, the 

CAC scheme reduces the QoS of the existing calls to release some bandwidth. The maximum 

amount of bandwidth to be released for a requested handover call on existing calls has been 

given as: βr,m – βmin,m. Therefore, the total admitted calls in the system is increased. This 

reduces the handover dropping probability. However, the call is dropped if after some 

bandwidth have been released from the existing calls, the βmin,m is still not available in the 

macrocell.         

 



89 

 

Figure 5.5   CAC strategy for existing calls with the HeNB 

 

Algorithm for accepting handover call to the HeNB from S-HeNB 

1. Start 

2. //checking if signal received from Serving femtocell becomes low 

3. //checking signal from other neighbor femtocell 

4. If a femtocell signal detected then 

5.     If SNIRT, F ≥ K2  then 

6.        If HeNB open access and resource available then 

7.            Handover to HeNB 

8.            End  

9.        Else go to 19 

10.     Else  

11.     If SNIRT, F ≥ K1 then 

12.        If Br,m < Cavailable  then 

13.            Handover to MBS 

14.            End  

15.        Else  

16.        Go to 6 

17.     Else 

18.     //check if bandwidth remain < available bandwidth + releasable bandwidth in the macrocell 

19.     If Br,m < Cavailable + Creleasable then 

20.         Drop the UE call 

21.         End 

22.     Else go to 13 

23. Else go to 19      

24. End 

 



90 

5.6 Queuing Analysis and Traffic Model 

The Markov chain model in [146] has been modified for modelling the proposed strategy 

as shown in Figures 5.6 and 5.7 respectively. For the femtocell and macrocell layers, the 

number of calls represents the system‟s state. Let N be the maximum number of calls that the 

femtocell can accommodate in the system, where the number of calls in the system represents 

the state of system. We assumed that the arriving process for all calls follow Poisson 

distribution and then defined the femtocell and macrocell channel release rates as µf and µm 

respectively. Femtocells are deployed randomly within the coverage of the macrocell. 

 

Figure 5.6   Markov chain for the femtocell layer [146] 

 

Figure 5.7   Markov chain for the macrocell layer [146] 

where λo,f represents the total originated-call arrival rate in the femtocell area and λo,m is the 

total originated-call (RT and NRT) arrival rate in the macrocell area. n is the number of the 

femtocells within the macrocell area. ffh, , fmh,  represents the call rates for femtocell-to-
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femtocell, femtocell-to-macrocell respectively and mfh, , mmh,  represents macrocell-to-

femtocell, macrocell-to-macrocell handover respectively. fbP , , mbP ,  is the blocking 

probability of originated-call in the femtocell and macrocell respectively. fdP , , mdP ,  is the 

dropping probability of handover call in the femtocell and macrocell respectively.   is the 

probability of received SNIR of T-HeNB which is greater than k2 in a femtocell-femtocell 

handover.   is the probability of received SNIR of T-HeNB which is between k1 and k2 in a 

femtocell-to-femtocell handover. 

State X is the maximum calls that the macrocell can accommodate without QoS‟ scheme 

and Y is the additional state used to support the handover calls in the proposed QoS scheme 

that is, the proposed scheme provided additional state used only in the macrocell to accept 

more calls.  

The average channel release rate in the macrocell increases with respect to the increase in 

the deployed femtocell. This is because more traffic from the macrocell is handed over to the 

femtocells as the femtocell number increases. The average channel release rate for both 

femtocell and macrocell is as calculated in chapter four while the handover probabilities can 

be determined using the following equations: 
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The femtocell average CBP 
fbP ,
together with average CDP 

fdP ,
 can be determined as in 

[149] as: 
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where λT,f = λf,0 + λh,mf + αλh,f,f + Pd,mγλh,f, , α and β are as defined previously.  

The QoS policy having been applied to the macrocell only, the average CBP Pb,m and the 

average CDP of the macrocell can be determined as follows [149].  
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where   ffhffhfdfmhmh P ,,,,, 1    

5.7 Results and Discussion 

The simulation results of the proposed CAC-based handover management strategy for 

dense femtocell deployment together with a non CAC-based handover management strategy 

[147] are as shown in Figure 5.8, 5.9 and 5.10. The Simulation parameters and their values as 

used in this work are shown in Table 5.1. The two schemes are compared on the basis of the 

Handover Probability (HP), CBP and CDP. 

In the non CAC-based handover strategy, a HeNB/eNB is selected as the target 

HeNB/eNB only if the signal level received from the target HeNB/eNB is greater than or 

equal to the signal the UE receives from the serving HeNB/eNB. Figure 5.8 shows the 

comparison between the proposed CAC-based handover strategy and the non CAC-based 

handover strategy in terms of handover probability. It is noticed from the graph that the 

handover probability of calls connected to the femtocell increases initially up to the call 

arrival rate of 2 for both strategies.  
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Table 5.1   Simulation Parameters 

Parameter Value 

Radius of the eNB 500 m 

Radius of HeNB 15 m 

Power of eNB 46 mW 

Power of HeNB 20 mW 

Number of users in a macrocell 1000 

Initial number of users in a femtocell 4 

Mode access of femtocell Open 

k1: threshold value -80 dBm 

k2: threshold value -60 dBm 

Bandwidth capacity of a macrocell 10 Mbps 

Number of femtocell deployed within the macrocell area 100 – 1000 

Average call duration time for all calls  150 seconds 

UEs Mobility Random 

Users traffic model Real and Non real time 

UE Speed Varies 

Simulation duration 100 seconds 

 

However, the handover probability in the non CAC-based strategy doubles that of the 

proposed scheme from 2 up to the call arrival rate of 20. This is because in the proposed 

strategy, the handover algorithm ensures that mobile UEs are served by the macrocell while 

the QoS scheme ensures that some resources are released for the handover calls to be served. 

These together reduce the probability of handover calls in the proposed strategy. The 

handover probability of the non CAC-based handover strategy, on the other hand, is very 

high owing to the fact that the UEs are served by the femtocells irrespective of their mobility 

and there is no mechanism in place to allow more handover calls to be served in the 

macrocell. This causes frequent handovers from one femtocell to another. In addition, with 

CAC strategy, calls are adequately managed in the macrocell than without the CAC strategy.  
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Figure 5.8   Handover probability 

The blocking probability of the proposed CAC-based handover strategy and the non CAC 

based handover strategy with respect to the call arrival rate is as shown in Figure 5.9. It can 

be noticed that the call blocking probability at the call arrival rate of 2 calls/sec, is about 0.06 

and 0.12 in the proposed CAC-based strategy and the non CAC-based strategy respectively. 

In the proposed CAC strategy, the calls originated from the mobile UEs stay connected to the 

macrocell or handed over to the macrocell while the stationary UEs are connected to the 

femtocells. The QoS‟ scheme also allows more handover calls to be served by the macrocell 

without overloading it. Thus, fewer calls are blocked in the system as indicated in the graph. 

On the other hand, the large value of the CBP in the non CAC-based strategy is due to the 

fact that the calls from the mobile UEs are handed over to the femtocells which make them to 

be quickly used up thereby leading to more calls being dropped. This happened because the 

femtocells are of low coverage and with more UEs coming to the femtocell, its capacity is 

used up quickly and call dropping is inevitable. By looking at the arrival rates between 2 

calls/sec to 20 calls/sec, it can be concluded that the proposed CAC-based handover strategy 

performs much better and reduces the probability of calls being blocked by almost 50 % of 

the non CAC-based handover strategy. This shows that the proposed CAC-based handover 

strategy works efficiently and is suitable for dense femtocells network deployment than the 

non CAC-based handover strategy. 
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Figure 5.9   Call blocking probability 

The graph in Figure 5.10 shows the result in terms of the call dropping probability of the 

proposed CAC-based handover strategy and the non CAC-based handover strategy against 

new call arrival rates. The CDP is very high in the non CAC-based strategy compared to the 

proposed strategy throughout the new call arrival rates. For example, at the arrival rate of 2 

calls/sec, the CDP in the non CAC-based strategy is about 0.035 while it is around 0.005 in 

the proposed CAC strategy. This means that there is a significant improvement in the CDP of 

the proposed strategy. This is because in the non CAC-based strategy, the UEs handover to 

the nearby femtocells. This makes the femtocells to be quickly filled with UE calls while the 

macrocell is underused, hence, the existence of large CDP in the system.  

In the proposed strategy, on the other hand, apart from the fact that mobile UEs are 

handed over to the macrocell, the CAC scheme ensures that the macrocells are not overused 

or underused while also maintaining the QoS of the handover calls. In order words, the 

proposed strategy ensure that the resources of the macrocells are effectively utilized leading 

to a reduction in the CDP. 
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Figure 5.10   Call Dropping Probability 

Comparison of the Analytical and the Simulation Results: We compare the results 

obtained during simulation with those of the analytical framework. A numerical evaluation of 

the proposed CAC-based strategy is performed using the derived equations 5.5 and 5.6 for the 

call blocking probability and call dropping probability respectively.  

The results obtained for the call dropping probability from both the simulation and the 

analytical models are illustrated in Figure 5.11. Notably, between the call arrival rate of 0 and 

2 (calls/sec), the same CBP values were recorded in the two models with little difference 

noticed beyond arrival rate of 2 calls/sec. However, the increase in the CBP behavior can be 

noticed in both the simulation and the analytical results. Since the CBPs in both models 

follow each other closely, this validates our analytical framework with the simulation model. 

In Figure 5.12, the call dropping probability results of the analytical framework and the 

simulation model are compared. Notably, the CDP values obtained in both are closely related 

for all the new call arrival rates. However, just like the CBP, both the analytical framework 

and the simulation model exhibit an increase in the CDP. Thus, since we have similar 

behavior in both models, this shows that the analytical framework can also be used to capture 

the behavior of the proposed strategy in terms of the CBP and the CDP in the LTE-Advanced 

network.  
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Figure 5.11 CBP Simulation result vs Analytical result 

 

 

Figure 5.12 CDP Simulation result vs Analytical result 
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5.8 Chapter Summary 

Dense deployment of the femtocell is said to be one of the cost effective ways of 

achieving increased coverage and capacity in the present LTE-A heterogeneous networks and 

future networks. Through the overlaying of hundreds of femtocells within the coverage of the 

macrocell, critical traffic can be offloaded to the femtocells. However, this often leads to 

frequent handover of the mobile UEs from one femtocell to another. Therefore, to harness the 

great benefit provided by the femtocells and to utilize the femtocell and the macrocell 

resources effectively, a robust handover management algorithm is a necessity for successful 

deployment of the dense femtocell networks. In this chapter, a robust CAC-based handover 

management strategy has been proposed to address this handover problem.  

In the proposed strategy, many handovers were reduced by ensuring that the mobile UEs 

use the resources of the macrocell and the non-mobile UEs use the resources of the 

femtocells, and the QoS scheme enables the macrocell to accept more handover calls. There 

is high improvement in terms of the blocking and dropping probabilities with the proposed 

CAC-based handover strategy compared to the non CAC-based handover strategy. In 

addition, we have evaluated the call blocking probability and the call dropping probability 

through the analytical framework and achieved results closely related to those obtained 

through the simulation model. 
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  CHAPTER SIX

GROUP HANDOVER STRATEGY FOR MOBILE RELAYS IN 

LTE-ADVANCED NETWORK 

6.1 Introduction 

Data and voice services demands in public transport vehicles are currently on the increase 

and to provide these services to every UE inside the vehicles, the present architecture of the 

LTE-A system has been redesigned to allow the mobile cells handle mobile traffics. 

Hundreds of UEs on-board of high moving trains are served by small cells such as relays 

which have been integrated to the LTE-Advanced system [150]. The relay nodes can carry all 

the mobile traffic (UE traffic) and hand them over to the eNB as a group [53]. To effectively 

perform the handover and enhance the quality of experience of the moving UEs, an efficient 

handover strategy is required. 

This chapter proposes the group handover strategy for mobile relays in the LTE-A 

network. The objective is to provide solution to the frequent handover and call drop 

associated with UEs inside fast moving vehicles. The proposed strategy considers the mobile 

relay node deployed on fast moving trains and is evaluated by comparing it to the fixed relay 

node and direct UE deployments. 

6.2 Relay Node (RN) 

In this chapter, relay and RN are used interchangeably. Relays are small cells with a 

wireless backhaul connection to the eNBs. Communication takes place between a mobile UE 

and Donor eNBs (DeNBs) wirelessly and intelligently through the Relay Node (RN). Point-

to-Point connectivity between DeNB and RNs is similar to the one between eNB and UEs. 

Like femtocell‟s Internet Protocol (IP) backhaul connection to the core network [2], 

communication between the RNs and the DeNB occurs through a wireless backhaul 

connectivity [151]. The RN establishes Point to Multipoint (PMP) with the UEs to deliver the 

uplink and downlink to the UEs. The links DeNB to RN and RS to DeNB, are regarded as 

relay links while that of DeNB to UE and RS to UE are termed access links. In cellular 
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networks, the relay provides increased capacity with the support of frequency reuse. This 

means that an increased capacity can be achieved if RN and DeNB communicate with 

different UEs using the same frequency [152]. The relays provide an improved coverage and 

enhanced throughput [153, 154] through a low deployment cost since they use wireless 

backhaul to connect to the network. Where the DeNB is unable to deliver adequate coverage, 

a relay can be deployed in an ad-hoc manner to provide sufficient coverage. Also, where 

backhaul connection between the DeNB and the RNs exists, better propagations, that is, 

reduced shadowing and path loss plus good Line-of-Sight (LOS) are experienced. Vehicle 

penetration loss at varying frequencies, path loss and the impact of LOS have been 

determined in [155, 156].  

6.2.1 The Relay Node Deployment Scenarios 

Generally, the RN nodes can be used either to provide an additional traffic capacity or to 

extend the coverage of a cell. When it is used to provide the former, it results in higher SNIRs 

and with the latter, a large geographical area is covered by the cell. The practical deployment 

scenarios of RN include the following. 

A. Cell Coverage Extension: The RN is used to extend the cell coverage of an eNB in a 

cost effective manner [157]. For instance, in rural areas where it is expensive to install 

many macro base stations, only few macro base stations are installed and relaying can 

be a cheaper means of extending the coverage. In this kind of scenario, the RN is 

installed on a mast that transmits at 46 dBm, that is, same power as eNB. This is 

useful to maintain the same level of coverage without installing additional base 

stations. 

B. Outdoor Capacity Boost: RNs can be used to boost capacity in the hotspot areas or 

at the edges of the cell to make the throughput experienced in all parts of the cell 

equal. For example, lampposts can be used as RN sites to provide more capacity 

outdoor. Due to their smaller sizes and inter-cell interference, the RNs can be 

deployed easily on top of the lamppost. RNs transmit power at around 30 dBm in 

urban environment and 37 dBm in suburban. 

C. Indoor Coverage Boost: RNs can be used to provide increased coverage inside a 

building. In this kind of scenario, the RN is said to be functioning as femto eNodeB 

(or HeNB) with a wireless backhaul to the core network. This is mostly used in the 
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absence of the ADSL link or wired network infrastructure for backhaul access. To 

prevent interference, the RN installed indoors must have low transmission power [57].  

D. Temporary Deployments: the RN can be deployed temporarily to provide coverage 

during special events such as trade fairs, sports, convention, or during emergency or 

after a natural disaster such as the earthquake, flood, hurricane etcetera, which 

damages the existing wired network infrastructure. Low power RN is suitable for the 

provision of temporary coverage in such situations. 

E. Dead Spot Mitigation: The RN can be used to fill coverage holes caused by large 

obstacles. For instance, high buildings can block signal propagation in a particular 

direction in the macro network and with the RN installed in that area, coverage can be 

provided. The RN is deployed in line-of-sight with the DeNB and it radiates in the 

direction of the dead spot. In this case, RNs provide a cost effective alternative to the 

conventional eNBs in dead spot zones [158]. 

F. Group Mobility: RNs can provide coverage to users on a fast moving train, or bus. In 

this scenario, the RN is deployed on top of the moving vehicle and communicates 

with the suitable DeNB. However, it is required that the RNs deployed in this 

situation be able to support group handover. Generally, the RN deployed on vehicles 

has higher transmission power and more efficient antennas than the UEs [158], thus 

leading to a reduction in call drops and handovers. They also offer better coverage 

and better battery usage of the UE as UEs‟ uplink transmission power is lowered than 

the usual eNBs. 

6.2.2 Relay Node Selection Algorithm 

The relay node selection algorithms can be divided into four different categories as 

explained below.   

Classification based on the relay node numbers and attributes: the selection of the 

algorithm of a relay node can be divided into single-node and multi-node algorithms with 

respect to the number of nodes. The single node algorithm requires less power and it is fast 

and convenient. However, this algorithm is unsuitable when there is critical decline in signal 

or total signal loss from the node. Multi-node algorithm, on the one hand, can select the best 

cooperative node. On the relay node attributes, the selection algorithm can be divided into 

fixed node algorithm and mobile node algorithm. The design of a fixed node algorithm is less 
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complex and requires less energy between the base stations. On the other hand, the mobile 

node algorithm considered relative distance between the base station and the mobile station.  

Classification based on the cooperative approach: This approach includes decoding 

forward, amplifying forward and encoding cooperative. This approach combines cooperative 

diversity with channel coding. Different relay node algorithms require different cooperative 

approaches. For example, in amplifying forward cooperative on the one hand, cooperative 

nodes do not require any processing, albeit the nodes can transmit information on the source 

node. However, in decoding forward cooperative on the other hand, information needs to be 

decoded correctly by the nodes for proper transmission.   

Classification based on energy consideration: in mobile and wireless communication, 

energy consideration is important because the mobile station changes location frequently. 

Thus, the Relay node selection algorithm executes in two modes namely: central and 

distributed modes. For the central algorithms, central nodes are responsible for accepting and 

transmitting information in the network. They are usually designed with energy support and 

multiple antennas for strong information processing capability. There is no central node in the 

distributed mode. Each node chooses whether to be involved in the cooperation or not. The 

distributed algorithm relies on its own energy and thus has weak information processing 

capability.  

Classification based on the channel state information: algorithms are also classified on the 

basis of the state of the channel. The function of this algorithm is to transmit or send a request 

and or command between the source and the destination nodes. Channel measurement can be 

achieved in the process of sending this command or request. The node monitors, collects, and 

calculates the channel parameters and sends this information to the other nodes. The system 

then determines the best channel based on the information available and then end relay 

selection. 

6.3 Related Studies 

Relays have been classified into (i) fixed and (ii) mobile relays. A fixed relay node (FRN) 

supports many use cases and has been standardized in the 3GPP LTE release 10 standards 

[50]. Conversely, a mobile relay node (MRN) supports more use cases. The operators in a 

more deterministic fashion mostly deploy FRNs in coverage holes whereas MRNs are 
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deployed in a flexible way particularly where FRN does not exist or is not economically 

justified [159]. Key network requirements such as low latency, high spectral efficiency and 

reduced handover interruption time are addressed in the MRN.  

When an MRN is deployed at the top of a moving vehicle, it forms its own cell inside the 

vehicle thereby serving vehicular UEs efficiently [48] as shown in Figure 6.1. Signal strength 

enhancement to the UE can be achieved through an MRN which also decreases signaling 

overhead by handling multiple service connections simultaneously to the DeNB situated 

along the train routes [160]. Improved communication can be realized with MRNs through 

their smaller antenna size and power which exploit smart antenna and advanced signal 

processing techniques [48]. For the MRN to work effectively to improve communication in 

moving vehicles, the network connectivity to the DeNBs must be maintained to prevent 

frequent handovers associated with the direct UEs communication with the DeNBs. This can 

only be achieved with an efficient group handover management strategy in place. However, 

designing an appropriate handover management strategy for the group handover in the MRN 

is a huge challenge due to the difficulty in determining the actual point at which to trigger 

handover for group mobile users in moving vehicles. Also, the present architecture of the 

LTE-A supports the FRN, fixed relay architecture has been adapted to the mobile relay in 

[50].  

The global tunneling concept was introduced in [50] to reduce the signaling of messages 

kept by the network nodes. The global tunnel is used to transmit vehicular UEs‟ data traffic 

served by a mobile relay. To identify the global tunnel, a Tunnel Endpoint Identifier is used. 

To reduce handover failure in mobile relay, a CoMP-based handover proposed by Luo et al. 

[51] allows a train to receive different signals from adjacent base stations whenever it passes 

the overlapping areas. The scheme utilizes CoMP joint processing and transmission 

technology to enable a high-speed train to obtain diversity gain. This, however, leads to 

improved quality of received signal, reliable communication between the train and the eNBs 

and significant improvement in handover. Group handover management for moving the cell 

based on the LTE-A was proposed by Hwang and Shin [52]. The authors argued that the 

fixed relay architecture of the LTE-A was not suitable for the mobile relay as all the UEs 

handovers need to combine into a single handover of one MRN. Chen et al. [53] proposed an 

architecture for the mobile relay node in the LTE-A. However, there was no strategy in place 

to handle group handover. The authors discussed only key techniques such as group mobility 
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for supporting the mobile relay and there is no efficient strategy to handle handover resulting 

from the group mobility. Therefore, an enhanced group handover strategy for the mobile 

relay node in the LTE-A network is presented in this work. Reduction in the number of 

handover associated with the MRNs as well as maintaining the radio links between the MRN 

and DeNBs throughout the handover process is the main motivation for the proposed group 

handover strategy. The impact of the speed of the train on the call dropping probability is 

investigated.  

Figure 6.1 shows an MRN deployed on a high-speed train communicating with the source 

DeNB (DeNB1) performing group handover to the target DeNB (DeNB2). The point of 

attachment of the MRN is changed from DeNB1 to DeNB2. For clarity, the deployment of 

the MRNs on the public train scenario was considered albeit any high-speed transport system 

can make use of the proposed work.  

 

Figure 6.1   Group handover scenario in high-speed train 

6.4 General Relay Architecture 

In the LTE-A relay architecture, the RN supports full DeNB functionality as shown in 

Figure 6.2. It also supports other features such as the S1, X2 interfaces and the radio protocol 

termination. The backhaul interface which connects the RN to the DeNB via the S1 and the 

X2, is called the Un interface. The DeNB provides the S1 and the X2 proxy function between 

the RN and the other eNBs, MMEs and S-GWs [57]. This proxy-function includes passing 
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the S1 and the X2 signaling messages specific to the UE, GPRS Tunneling Protocol (GTP) 

data packets between the RN‟ S1/S2 interfaces and other network nodes‟ S1/S2 interfaces 

[33]. DeNB occurs to the RN in many different ways because of the proxy functionality, that 

is, as the MME, eNB and as S-GW.  

6.4.1 RN User Plane 

The DeNB serves as the S-GW and the P-GW to the RN [158]. The functions of the S-

GW and the P-GW include creating the RN session and the EPS bearer management in the 

RN. The DeNB and the RN perform signaling and data packets mapping to the evolved 

packet system (EPS) bearers. This mapping depends on the QoS mechanisms like the quality 

class identifier (QCI) in the UE and the P-GW. There are eight (8) data radio bearers (DRBs) 

per RN on the backhaul link. Data on the RN bearers is mapped according to the QCI values 

of the EPS bearers. The mapping configuration is achieved by the O&M with multiple to 

single mappings supported. The DeNB then completes the set up implementation and other 

implementation such as the timing and the Un bearers modification. The RN user plane 

protocol stack is depicted in Figure 6.3. 

 

Figure 6.2   RN network architecture and interfaces [57] 
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Figure 6.3   RN user plane protocol stack [57] 

 

Figure 6.4   RN control plane protocol stack [57] 

6.4.2 RN Control Plane 

In the control plane of the RN, all the S1 messages between the MMEs and the RN are 

processed and forwarded to the DeNB for all the UEs dedicated procedures. In the UE 

dedicated procedures, the S1 Application Protocol messages can be processed by modifying 

the UE message identities and the GTP Tunnelling End IDs (TEIDs). However, other parts of 

the messages remain unchanged. Non-UE dedicated procedures between the RN and the 

DeNB and between the DeNB and the MMEs are handled locally. Similarly, for mobility, the 

X2 messages are processed like the S1 messages. More explanation on the RN user and 

control planes can be found in [57]. Figure 6.4 shows the control plane protocol stack.  

6.4.3 Mobile Relay Architecture  

Due to different DeNBs serving the MRN, [53] proposed two possible architectures 

known as the initial GW and the relocated GW architectures as displayed in Figure 6.5 and 
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Figure 6.6 respectively. In Figure 6.5, the MRN PGW/SGW is always at the S-DeNB (initial 

DeNB) for typical operation of the mobile relay in the initial GW architecture. The 

forwarding of packets of data between the S-DeNB and the T-DeNB is accomplished by the 

S-DeNB which also performs the function of keeping the MRN, and the UE‟s content. 

During the MRN mobility, no additional signaling is required for handover in the network. 

 

Figure 6.5   Initial GW architecture [53] 

 

Figure 6.6   GW relocation architecture for MRN [53]. 

In the GW relocation architecture shown in Figure 6.6, SGW/PGW and Relay GW have 

been relocated to the T-DeNB. The MRN‟s SGW/PGW and Relay GW are relocated to the T-

DeNB whenever a handover occurs from the S-DeNB to the T-DeNB. If the MRN travels a 

long distance from the S-DeNB, a long routing path is created in the initial GW architecture 

[53]. Moreover, additional signaling overhead is guaranteed in situations where the GW 



108 

relocation occurs each time a handover is performed by the MRN in the GW relocation 

architecture. A combined solution has been provided in [53] where the GW relocation is only 

carried out when required.  

6.4.4 Proposed Group Handover Strategy 

The proposed group handover for the MRN is represented by the flowchart of Figure 6.7. 

To enable group handovers of in-train users, the relay node is mounted on the high-speed 

train with wireless backhauls to the DeNBs as shown in Figure 6.1. This way, a single group 

handover procedure displayed in Figure 6.7 ensures proper handover of the users served by 

the MRN between two DeNBs. The radio interface and the network overheads can be greatly 

lowered by the group handover aside the reduced number of handovers and call dropping 

probabilities achieved through the group handover. It should be noted that [53] proposed only 

the architecture for the MRN in the LTE-A, that is, no special scheme or strategy to handle 

the resulting group handover. In this work, however, we propose a special mobile device 

(mdev) to be integrated and deployed with the MRN, the function of which is to forecast the 

location and the direction of DeNBs and to prepare the MRN for timely handover to the 

target DeNBs. Multiple radio access technologies [48] can be supported by the MRNs since 

they act as regular eNBs. Steps for the proposed group handover strategy as depicted in the 

flowchart are highlighted below:  

A. The signal level to the S-DeNB is measured by the MRN and it compares the output 

with a threshold signal.  

B. In case the signal in (A) above is less, the MRN with the mdev measures its signal 

level to the T-DeNB and compares it with the threshold signal. 

C. Resource availability at the T-DeNB is determined if the signal in (b) above is greater 

than the threshold.  

D. In cases where resources are available, the MRN handovers the UEs group 

communication information to the T-DeNB otherwise there is no handover and the 

MRN remains with the S-DeNB. The steps are repeated until the new T-DeNB is 

found. 

It should be noted that the MRN performs a single measurement to the S-DeNB and the 

T-HeNB for the group handover and not the individual UE performing measurement to the S-

DeNB and the T-HeNB. 
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 Figure 6.7   Proposed group handover flowchart  

Equation (6.1) determines the available resources at the target DeNB: 

CCC requsers                 (6.1) 

where C signifies the total system capacity, Creq signifies the capacity requested by the group 

handover call, and Cusers signifies the actual capacity required by the connected users. 
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Figure 6.8   MRN Handover Procedure [161] 

The procedure for establishing the group in the MRN is shown in Figure 6.7. The signal 

measurement to the S-DeNB is performed by the MRN and if the signal is low, the S-DeNB 

initiates group handover by sending handover request to the target DeNB. The S-DeNB 

makes the handover decision based on the proposed strategy depicted by the flowchart of 

Figure 6.6. The target DeNB performs the admission control of the backhaul link to decide 

whether to accept the MRN or not. If yes, the T-DeNB replies to the S-DeNB with the 

handover request acknowledgement. 

The S-DeNB sends the RRC message containing the connection reconfiguration and the 

mobility control information to the MRN. The MRN is detached from the old cell (that is, S-

DeNB) and tries to synchronize with the new cell (that is, T-DeNB). A status transfer 

command which informs the T-DeNB about allocating the uplink resources to the MRN, is 

sent by the S-DeNB to the T-DeNB. After successful synchronization, a tracking area update 
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is sent by the MRN to the MME which updates the location of the MRN.  The T-DeNB sends 

path switch request to the MME in order to switch the routing path to the MRN. The MME 

sends and receives modified bearer requests to and from the SGW/PGW/Relay GW. The T-

DeNB receives the path switch request acknowledgement and the resource release is 

completed after the S-DeNB receives UE context release. 

6.5 Results and Discussion 

Analysis of the performance of the proposed group handover strategy on the UEs 

communication can be done against: 

Scenario 1, where the UEs communicate directly to the T-DeNB (that is, no group 

handover). This can be represented by the FRN GRP-HO. 

Scenario 2, where the FRN node (with group handover) is used. This can be represented 

by DIRECT-HO.  

Through the event-based simulator developed in C#, the number of handover and call 

dropping probabilities were evaluated. We assumed that the train moves in a straight line 

with the DeNBs deployed alongside the railway line. In order to represent different scenarios, 

the FRN and the MRN were deployed on top of the train separately. In the proposed strategy, 

mdev in the MRN monitors and detects signals from the DeNBs every few second. It also 

activates the group measurement report and prepares the MRN for timely handover once the 

condition in the proposed strategy is fulfilled. The threshold and other parameters were set by 

referring to the [162] and the default parameters used are as presented in Table 6.1. 

The two DeNBs: the S-DeNB and the T-DeNB discussed earlier in this study are 

represented by Bs and Bt respectively in Figure 6.9. The distance from Bs to Bt is designated 

as D and the train velocity as V. Let d be the distance from mdev in the MRN to the DeNB v, 

where v Є {Bs and Bt}. The signal strength from the DeNB to mdev can be given as: 

     dyKdvR log10,                       (6.2) 

where K represents a constant and signifies the revised transmit power of v.  is a zero-mean 

Gaussian-random variable with a shadowing fading represented by deviation . 
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We assumed that the MRN through mdev received messages on signal strength from the 

DeNBs and the DeNBs also receive messages from the MRN through the same means. If the 

quality of signal in T-DeNB is greater than a threshold U in dB and it is known by the mdev, 

the measurement report can be triggered immediately in the MRN. The mdev awaits the 

Radio Resource Connection (RRC) reconfiguration message from Bs which replies in a time 

Td after the measurement report is triggered.  However, if the message is lost, it is 

resubmitted within a fixed interval Tr by the Bs. Finally, the RRC configuration is received 

by the mdev, otherwise the radio link failure occurs.  

Assuming the measurement report is triggered at a location X of the mdev, if the RRC 

connection reconfiguration is sent by the Bs, the mdev with the MRN would have moved with 

the train to location X1. 

Where dTVXX *1                            (6.3) 

If the RRC connection reconfiguration message is, however, not received correctly by the 

mdev, the Bs resends the message when mdev is in location X2.where  

rTVXX *12                                           (6.4) 

Table 6.1   Simulation Parameters 

Parameter Value 

Bandwidth 10 MHz 

Frequency 2.6 GHz
 

Train speed Up to 350 km/h 

Transmit power (eNB/DeNB)
 

46 dBm 

Transmit power (Relay) 10 dBm 

Path Loss Model 32.4 + 20 log (f) + 20 log (d) dB 

Since the handover can be triggered between Bs and Bt, the probability of successful 

handover performed by mdev during the handover procedure can be given as:  
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From Equation (6.5), when mdev is at Bs, the handover procedure is triggered when the 

signal quality detected plus R is greater than or equal to U. Where R is known as a reward 

parameter used by mdev when moving towards a nearby DeNB to speed up the triggering 

process of a measurement report. Similarly, in case the signal quality in Bs is greater than S at 

any point in set Xs, the handover is successful. The distance Xt in Figure 6.9 becomes shorter 

for a fixed distance D and the probability of mdev triggering a handover is higher. However, 

the probability of mdev receiving the RRC connection reconfiguration becomes lower. 

The performance of the proposed MRN GRP-HO can be determined by comparing it with 

the two scenarios described above. We also refer these two scenarios as conventional 

procedure. The handover number in Figure 6.10 shows the three cases that we considered in 

this work. In the FRN GRP-HO and the Direct-HO, the handover number increases when the 

train‟s distance progresses further. This is because the FRN and the UEs respectively can no 

longer keep connection with the S-DeNB due to signal loss and the inability to timely detect 

the T-DeNB to communicate with. Since the UEs remain connected to the MRN throughout 

the train sojourn and the MRN can detect the T-DeNB on time with the aid of mdev, the 

number of handovers is the same throughout and much less in the proposed MRN GRP-HO. 

Consequently, compared to the overhead in both the Direct-HO and the FRN GRP-HO, the 

control signalling overhead in the MRN GRP-HO is significantly reduced.  

 

Figure 6.9   Distance between the DeNBs 
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Figure 6.10   Handover number 

However, with the FRN, better connection is available particularly at the edges of the cell 

compared to the direct UE connection to the DeNB. Hence, the number of handovers in the 

FRN GRP-HO is less than that of the Direct-HO. 

Most of the UEs calls were dropped in the DIRECT-HO, that is direct communication 

between the UEs and the DeNBs, as all the UEs try to perform handover to the T-DeNB 

individually because the strategy to prepare each UE for handover beforehand and to 

determine the availability of resources at the T-DeNB does not exist. This also applies to the 

FRN GRP-HO. In all, there were little call drops as the train moved a certain distance when 

the UEs were initially connected to the S-DeNB as shown in Figure 6.11. However, as the 

train moves further around 1500 m, the highest call drops from this point were noticed and 

throughout the rest of the train stay in the DIRECT-HO as the UEs could not handover timely 

to the T-DeNB. This is coupled with the unavailability of a mechanism to prepare handover 

before time. Compared to the DIRECT-HO, calls dropped in the FRN GRP-HO are lower 

because of the group handover scheme but lack in strategy to assist in preparing the group to 

handover to the T-DeNB on time and accurately. However, the lowest call drop is recorded in 

the proposed MRN GRP-HO due to mdev which determines the closeness of the MRN to the 

T-DeNB and prepares the MRN for timely and accurately handover to the T-DeNB. 
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6.5.1 Effect of the speed of the train on the CDP 

In the proposed MRN GRP-HO, the speed of the train has little effect on the CDP as 

shown in Figure 6.12. When the train is moving at a speed of 50 km/hr, the total CDP is 

about 0.02. By the time the speed of the train increases to 350 km/hr, there is a little increase 

in the CDP. The CDP is very small owing to the fact that the distance between the MRN and 

the UEs is very small and there is LOS link between the two. The signal loss is very little and 

therefore, there is no significant call drop as the train moves at a higher speed. If we compare 

this with the FRN curve where the UEs communicate with a dedicated DeNB, we can see that 

as the speed increases, a higher CDP is recorded. Due to the speed of the train, most of the 

ongoing UEs calls are dropped while trying to connect to another FRN. Also, since there is 

no LOS between the UE and the FRN, signal loss is increased and the CDP is higher than in 

the proposed MRN GRP-HO. Similarly, in the DIRECT-HO to the DeNB, there is no LOS 

between the UE and the DeNBs. Neither is there any dedicated FRN deployed along the train 

path. Therefore, a higher CDP than the proposed MRN GRP-HO and FRN GRP-HO is 

recorded in the DIRECT-HO. Since the CDP in the proposed MRN GRP-HO is the smallest, 

we can conclude that the proposed strategy performs better than the other two when the speed 

of the train is considered. 

 

Figure 6.11   Call dropping probability 
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Figure 6.12   CDP vs Speed of the Train   

6.5.2 Performance Analysis of the Distance between the S-DeNB and the T-DeNB  

Consider the distance D between the Bs and Bt as given in Figure 6.9, and the train 

moving between the two DeNBs at a velocity v along a straight line. The UE measures the 

signal strength between the DeNBs at constant intervals T. Due to distance, Path loss and 

Lognormal (shadow) fading affect the total received signal power level. Rayleigh fading is, 

however, neglected due to its shorter distance correlation which gets average out with respect 

to shadow fading. Therefore, we calculate the signal levels which the UE receives from Bs to 

Bt at time nT as:  

                      logk k k k k kP n d n d n                                               (6.6) 

where k = 0, 1 and d0, d1 are the distances of UE from Bs and Bt respectively.  

d0(n) = vTn and d1(n) = D - d0(n) where n = 1, 2 …... R and R = D/vT. 

And the path loss term  logk k kd n      , γk and χk are the mean signal strength 

parameters for the UE-DeNBs link. Ƞ1 and Ƞ2 refer to as self-dependent zero-mean stationary 

Gaussian modelling processes. 
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The handover and outage probabilities can be determined as follows. At every T seconds, 

the handover decision process can be defined as x(qG): 

                                    0 1x qG l qG l qG                                                (6.7) 

where q = 1, 2…N/G-1 

The following can be defined based on the equation (6.7) 

d(qG) = 0 if x(qG) ≥ 0 else d(qG) = 1 if x(qG) ≤ 0. 

where d(qG) is the DeNB the UE is connected to at (qG + 1) time. 

As handover occurs at time d(qG) and d(q+1)G, therefore, the performance of the 

proposed algorithm can be evaluated by defining the outage probability as: 

         out qgP qG g P Pd qG g                      (6.8) 

The handover probability PHO can be defined as: 

                                    HOP qG P d qG d qG G         (6.9) 

We evaluate the performance of the proposed strategy and existing strategy based on the 

handover probability of equation (6.9). We assumed that some of the UEs are initially 

connected to the Bs. When the UE is within or near the Bs as shown in Figure 6.13, the 

handover probability is almost around zero (0) for both strategies. This is because the UE 

remains connected to the Bs and no handover or handover attempt occurs between the Bs and 

Bt. As the train moves further in distance and towards the midway of the two DeNBs, the 

handover probability is at the highest level with the proposed MRN GRP-HO strategy 

performing better due to the mdev which helps to prevent unnecessary handover and also 

determine if resources available at the Bt. The FRN GRP-HO strategy, however, performs 

better than the DIRECT-HO due to the presence of the fixed relay which reduces the 

handover but unlike the MRN strategy, there is no mechanism in place to determine the 

available resources at the target-DeNB.  
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Figure 6.13   Handover Probability 

 

Figure 6.14   Outage Probability 
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The graph of the outage probability shown in Figure 6.14 is similar to the graph of the 

handover probability in Figure 6.13. The outage probability increases in all the strategies due 

to the distance of the UEs from the Bs and reaches the maximum midway Bs and Bt. This 

then becomes low as the UEs approaches Bt where it receives maximum coverage. However, 

the proposed strategy outperforms the others. This is because the mdev integrated into the 

MRN in the proposed strategy helps in the timely location of Bt and in determining the 

available bandwidth resources at the DeNBs. This means that the UE cannot only connect to 

the MRN but can also know through mdev the target DeNB as well as the available 

resources. This therefore, reduces the connection failure. The FRN strategy, on the other 

hand, performs better than the DIRECT connection as some of the UEs were able to connect 

to the fixed relay thereby reducing the connection failure to some extent. 

6.6 Chapter Summary 

An effective group handover strategy for the UEs in the LTE-A high-speed train systems 

have been proposed in this research work. It has been observed that the handover frequency is 

very high in the conventional handover procedure where the UEs communicate directly to the 

DeNBs. Also, due to the speed of the train, the recent LTE-A fixed relay node and the mobile 

relay node solutions which led to the group handover management is not effective without an 

additional strategy or mechanism to prepare the group information for timely handover 

though the two reduce the frequency of the handover and the probability of call drops to some 

extent. 

Therefore, the group handover management procedure has been enhanced with our 

strategy as a result of the appreciable reduction in the number of handovers and call dropping 

probabilities in the system with our strategy. Also, the speed of the train has little effect on 

the CDP with the proposed strategy.  
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  CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORKS 

7.1 Introduction 

This chapter concludes the work done on handover performance in LTE Advanced 

heterogeneous networks and advances the proposed strategies towards handover management 

in relation to the different scenarios considered in this research work. Contributions and 

outcomes of each chapter have been summarised. In addition, suggestions are made regarding 

future studies for further investigation in the subject matter.  

7.2 Conclusions 

The demand for voice and multimedia services in cellular networks is growing at a very 

high rate. The existing macro cellular network cannot alone meet this demand due to its 

insufficient capacity. Also, the cost of installing several macro-base stations to boost capacity 

and extends coverage is very high. This is coupled with the urban space restriction issues. 

Due to these, several methods have been proposed in LTE-A to increase the coverage, 

capacity and data rate. Among the most cost effective methods is the heterogeneous network 

deployment. LTE-A HetNet provides huge capacity and performance increase in wireless 

cellular networks. HetNets allow the use of different cell sizes such as femtocells, macrocells, 

picocells, microcells and relays to provide increased capacity and improved coverage. HetNet 

provides the most efficient, cost-effective and scalable way of enhancing the capacity of the 

present and future wireless networks. It provides the UEs with good network connection and 

better quality of experience. However, deployment of HetNet often leads to more handover 

for UEs if not properly managed. 

Handover is required for effective user mobility in a network. In LTE systems, handover 

occurs when a UE loses radio coverage or when the signal from a particular node or base 

station serving UE deteriorates which results in poor communication quality between the 

network and the UE. The UE connection to the old base station has to be undone so that new 

connection can be made to the new base station that offers better signal quality. Therefore, 
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handover may be required to maintain the UE‟s mobility, keeping traffic flowing across the 

network and to improve load balancing even when a good signal strength is maintained 

between the current serving node and the UE. Other reasons for handover which occur within 

a network include the need for better QoS, insufficient bandwidth, lower cost, etcetera. which 

causes the UEs to begin to search for base stations with better service conditions. In this 

research work, we propose different handover management strategies to reduce various 

handovers associated with LTE-Advanced heterogeneous networks. The major contributions 

made to the LTE-Advanced heterogeneous network in the areas of handover management 

delivered in this work are summarised as follows.   

In chapter two, related works on handover management in femtocell-macrocell integrated 

and mobile relay LTE/LTE-Advanced networks were presented. The general architecture of 

LTE-Advanced including the protocol layers was studied and key functions discussed. Key 

features and enhancements that define LTE-Advanced were examined and their important 

contributions highlighted. HetNet, which is the use of smaller base stations and one of the 

most cost effective ways of boosting capacity and increasing network coverage being the 

major area of concern of this work, was examined. Important contributions of small cells and 

their mode of access were discussed in this chapter. In addition, other important areas such as 

LTE-A handover techniques were discussed.   

In chapter three, we discussed handover initiation as one of the three stages required for 

successful handover. During handover initiation, handover decision is required to transfer 

UEs‟ services from the source base station to the target base station. The handover decision is 

based on signal measurement report of UE to the serving base station and available radio 

resources in the target base station. To determine the available radio resources in the target 

base station, we have introduced a channel borrowing call admission control strategy into the 

LTE-A femtocell-macrocell system. With this CAC strategy, radio resources in the system 

can be utilized more efficiently by controlling the admission of various traffics inside the 

system. Two types of call traffic (i.e. services) were differentiated as new originating call and 

handover call. These two services were further divided into RT and NRT services. The 

proposed strategy ensures that channel is reserved for handover services but when channel is 

not being utilized fully by the handover services, the new originating NRT services makes 

use of the channel. However, on arrival of handover services, the on-going NRT services are 

pre-empted, and forced to the queue until the resources are available again.  
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While we proposed a new system model for this strategy, an existing traffic model has 

been adapted for the analysis. Based on the results obtained during the analysis, the proposed 

strategy was able to accept more calls to the system thereby reducing the call blocking 

probability than the existing strategy without borrowing. In addition, an improved 

performance in resource utilization is recorded in the proposed strategy than the existing 

strategy. However, call dropping probability is less affected by the proposed strategy.  

Femtocells as an example of small cells form a two-tier network with macrocell to 

improve the capacity and UE quality of experience. Recently, femtocells have been deployed 

in urban areas such as modern cities characterized by big residential and office buildings to 

offload indoor and road traffic from the macrocell. However, as road traffic becomes clear 

and UE becomes mobile, the UEs unnecessarily handover to the other femtocells due to low 

coverage. This unnecessary handover leads to wasteful load and short failures in the network. 

In chapter four, an efficient handover management algorithm based on the speed of the UE 

was proposed to reduce the number of handovers in LTE-A networks. The algorithm ensures 

that mobile UEs are served by the macrocell while the stationary or low-speed UEs are 

served by the femtocell. In addition to the speed of the UE, the algorithm considered the 

capacity of the target cell as well as the signal after handover to further reduce handover 

problems. The results showed not only a reduction in the number of handover with the 

proposed algorithm but also a reduction in the ratio of the target femtocells. Notably, various 

femtocell challenges and possible solutions were discussed in this chapter. 

In a dense deployment of the femtocell, a simple handover-decision strategy may not be 

sufficient to reduce frequent handovers and improve the system performance. Therefore, an 

optimized call admission control scheme is required with the handover strategy for effective 

handover management. Due to this, CAC-based handover management strategy was proposed 

in chapter five to reduce frequent handovers and ping-pong effects associated with dense 

femtocell deployment. The proposed strategy grouped the calls in the system into three viz: 

the new call, the call connected to the macrocell and the call connected to the femtocells. This 

was necessary to control how a call is admitted into the system to efficiently manage the 

handover through the algorithm proposed in chapter four. The existing Markov model was 

used for the modelling and analysis of the proposed scheme. Based on the results obtained, 

the handover probability of the femtocell calls, the blocking probability of new calls and the 
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dropping probability of the macrocell calls were considerably reduced in the proposed 

strategy compared to the scheme without the CAC. 

Having proposed a robust handover management strategy for densely deployed femtocells 

in LTE-A in chapter five, we have considered the Relay Node in chapter six as another small 

cell node used to improve and extend the network coverage. These play a major role in 

enhancing the capacity within the macrocell coverage area. In LTE-A HetNets, RN provides 

cost effective advantages over homogeneous network of macro eNB for network providers. 

The two relay types FRN and MRN have been discussed in this research work and MRN has 

been considered due to its deployment flexibility. However, due to the high mobility of a 

moving vehicle and the need to prevent frequent handover, MRN needs to maintain 

connectivity with the DeNBs to deliver UEs‟ services to the DeNBs. To achieve this requires 

a good strategy. Therefore, a group handover strategy was proposed for the MRN 

architecture. In the proposed work, we integrated a special mobile device called mdev to the 

MRN so that the location and direction of the target DeNB can be predicted for timely 

handover of the UE services by the MRN. The results revealed that when comparing the 

proposed strategy to the direct UE communication with the DeNBs and the FRN with the 

group handover, the proposed group handover performed better in terms of the reduction of 

the number of handovers and call dropping probabilities.   

7.3 Future Research 

This research work focused on handover management strategies for LTE-Advanced 

heterogeneous networks. However, much can still be done in this area as future networks will 

be dominated by these heterogeneous networks. Therefore, we have highlighted the possible 

areas that can be considered in the future. 

In chapter three, a channel borrowing call admission control strategy was proposed to 

ensure that radio resources are effectively utilized during the handover initiation stages. 

While many researchers have also proposed other methods of utilizing radio resources 

efficiently, much attention is still required in the area of identifying and prioritising different 

call types. For example, in our research work we treat the handover call as one while new 

calls are divided into RT and NRT. In future studies, the handover can also be divided into 
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RT and NRT and the proposed dynamic channel borrowing can then be applied to prioritise 

calls with more stringent quality of service.  

In chapter four, an enhanced handover algorithm was presented. In this research work, the 

speed of the UEs, mode access of the femtocells, capacity of the target femto/macro station 

and signal have been considered as conditions for handover. Further research can consider 

adjusting the power of femtocell access point dynamically to reduce unnecessary handover. 

In chapter five, a CAC-based handover management strategy was proposed for dense 

femtocell deployment. People in the industry can take this research work further by 

performing real-life deployment of thousands of femtocells overlaid by the macrocell. The 

femtocells can be made to support self-organising capabilities because of their large numbers 

when deployed in real life. 

Further research can be done on the Group handover strategy for mobile relays in LTE-A 

proposed in chapter six. The group UE traffic can be differentiated into different services, for 

example voice and multimedia services with research focussing on the QoS of multimedia 

services during group handover. 

 

 

 

 

 

 

  



125 

REFERENCES 

[1] Cisco, "Cisco's Visual Networking Index: Global Mobile Data Traffic Forecast 

Update, 2014 - 2019," 2015. 

[2] O. O. Omitola and V. M. Srivastava, "A robust speed-based handover algorithm for 

Dense Femtocell/Macrocell LTE-A Network and Beyond," Journal of 

Telecommunication, Electronic and Computer Engineering, vol. 8, pp. 121-129, 2016. 

[3] Y. Mehmood, C. Gorg, M. Muehleisen, and A. Timm-Giel, "Mobile M2M 

communication architectures, upcoming challenges, applications, and future 

directions," EURASIP Journal on Wireless Communications and Networking, vol. 

2015, p. 250, 2015. 

[4] H. A. Salman, L. F. Ibrahim, and Z. Fayed, "Overview of LTE-Advanced Mobile 

Network Plan Layout," in 5th International Conference on Intelligent Systems, 

Modelling and Simulation, 2014, pp. 585-590. 

[5] M. W. H. Wang, W. Li, and J. Wan, "Handover parameter optimization for high-

speed railway LTE systems," Journal of Computational Information Systems, vol. 10, 

pp. 7591-7600, 2014. 

[6] 3GPP, "E-UTRA and UTRAN Overall Description: ETSI TS 136.300 V10.7.0," 

2012. 

[7] O. O. Omitola and V. M. Srivastava, "An effective CAC scheme in two-tier LTE-A 

macrocell/femtocell networks," in 2016 IEEE Uttar Pradesh Section International 

Conference on Electrical, Computer and Electronics Engineering (UPCON), 2016, 

pp. 323-327. 

[8] C. S. Collins, “3G Wireless Networks,” 2007.  

[9] C. X. Mavromoustakis, G. Mastorakis, and C. Dobre,  “Advances in Mobile Cloud 

Computing and Big Data in the 5G Era,”  Springer, 2017. 

[10] K. Abidi, E. Hajlaoui, and M. Abdellaoui, "Handover simulation of LTE and LTE-A 

standards," in 2014 6th International Conference on Soft Computing and Pattern 

Recognition (SoCPaR), 2014, pp. 157-162. 

[11] A. Gupta and R. K. Jha, "A Survey of 5G Network: Architecture and Emerging 

Technologies," IEEE Access, vol. 3, pp. 1206-1232, August 2015. 

[12] A. Kumar, Y. Liu, J. Sengupta, and Divya, "Evolution of mobile wireless 

communication networks: 1G to 4G," International Journal of Electronics and 

Communication Technology, vol. 1, pp. 68-72, July 2010. 



126 

[13] R. Prasad and S. Dixit, “Wireless World in 2050 and Beyond: A Window Into the 

Future,” Springer, 2016. 

[14] T. Halonen, J. Romero, and J. Melero, “GSM, GPRS and EDGE performance: 

evolution towards 3G/UMTS,” John Wiley & Sons, 2004. 

[15] K. Santhi, V. Srivastava, G. SenthilKumaran, and A. Butare, "Goals of true broad 

band's wireless next wave (4G-5G)," in Vehicular Technology Conference, 2003. VTC 

2003-Fall. 2003 IEEE 58th, 2003, pp. 2317-2321. 

[16] T. S. Rappaport, “Wireless communications: principles and practice,”  Prentice hall 

PTR New Jersey, vol. 2, 1996. 

[17] S. Sesia, I. Toufik, and M. Baker, "The UMTS long term evolution," From theory to 

practice, 2009. 

[18] B. Furht and S. A. Ahson, “Long Term Evolution: 3GPP LTE radio and cellular 

technology,” Crc Press, 2016. 

[19] C. N. Liu, "Trend, technology and architecture of small cell in 5G era," in 2016 

International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2016, 

pp. 1-2. 

[20] IMT-2020, "White paper on 5G concept," 2015. 

[21] N. Alliance, "5G white paper," Next generation mobile networks, White paper, 2015. 

[22] M. Project, "Final Report on the METIS 5G system concept and technology 

roadmap," 2015. 

[23] R. Liebhart, D. Chandramouli, C. Wong, and J. Merkel, "Group communication over 

LTE," LTE for Public Safety, pp. 157-189. 

[24] J. M. J. Laura García, Miran Taha, Jaime Lloret, "Wireless technologies for IoT in 

smart cities," Network Protocols and Algorithms, vol. 10, pp. 23 - 64, 2018. 

[25] C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, et al., "Cellular 

architecture and key technologies for 5G wireless communication networks," IEEE 

Communications Magazine, vol. 52, pp. 122-130, February 2014. 

[26] M. Fallgren and B. Timus, "Scenarios, requirements and KPIs for 5G mobile and 

wireless system," METIS deliverable D, vol. 1, p. 1, 2013. 

[27] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, "Design 

considerations for a 5G network architecture," IEEE Communications Magazine, vol. 

52, pp. 65-75, April 2014. 

[28] V. Pereira and T. Sousa, "Evolution of mobile communications: from 1G to 4G," 

Department of Informatics Engineering of the University of Coimbra, Portugal, 2004. 



127 

[29] A. Kumar, Y. Liu, and J. Sengupta, "Evolution of mobile wireless communication 

networks 1G to 4G," International Journal of electronics and communication 

technology, vol. 1, pp. 68-72, July 2010. 

[30] S. K. Routray and K. Sharmila, "4.5 G: A milestone along the road to 5G," in 

Information Communication and Embedded Systems (ICICES), 2016 International 

Conference on, 2016, pp. 1-6. 

[31] C. Zhang, S. L. Ariyavisitakul, and M. Tao, "LTE-advanced and 4G wireless 

communications [Guest Editorial]," IEEE Communications Magazine, vol. 50, 2012. 

[32] P. Zhang, X. Tao, J. Zhang, Y. Wang, L. Li, and Y. Wang, "A vision from the future: 

beyond 3G TDD," IEEE Communications Magazine, vol. 43, pp. 38-44, 2005. 

[33] X. Zhang and X. Zhou, “LTE-advanced air interface technology,” CRC Press, 2012. 

[34] I. F. Akyildiz, D. M. Gutierrez-Estevez, and E. C. Reyes, "The evolution to 4G 

cellular systems: LTE-Advanced," Physical communication, vol. 3, pp. 217-244, 

2010. 

[35] H. Zhang, X. Wen, B. Wang, W. Zheng, and Y. Sun, "A novel handover mechanism 

between femtocell and macrocell for LTE based networks," in Second International 

Conference on Communication Software and Networks (ICCSN'10), 2010, pp. 228-

231. 

[36] 3GPP, "3GPP-TS36.300 v8.5.0,“ E-UTRAN overall description, 2008. 

[37] 3GPP, "3GPP- TS 23.401 v9.4.0,“ GPRS enhancement for E-UTRAN Access,” 2010. 

[38] A. Ulvan, R. Bestak, and M. Ulvan, "Handover Scenario and Procedure in LTE-based 

Femtocell Networks," in UBICOMM 2010: The Fourth International Conference on 

Mobile Ubiquitous Computing, Systems, Services and Technologies, Florence, Italy, 

2010. 

[39] A. Ulvan, R. Bestak, and M. Ulvan, "Handover procedure and decision strategy in 

LTE-based femtocell network," Telecommunication systems, vol. 52, pp. 2733-2748, 

2013. 

[40] E. La-Roque, C. P. A. da-Silver, and C. R. Frances., "A new cell selection based and 

handover approach in heterogeneous LTE networks," presented at the Advanced 

International Conference on Telecommunications (AICT), 2015. 

[41] A. B. Cheikh, M. Ayari, R. Langar, G. Pujolle, and L. A. Saidane, "Optimized 

handover algorithm for two-tier macro-femto cellular LTE networks," in 2013 IEEE 

9th International Conference on Wireless and Mobile Computing, Networking and 

Communications (WiMob), 2013, pp. 608-613. 



128 

[42] C.-H. Lee, S.-H. Lee, K.-C. Go, S.-M. Oh, J. S. Shin, and J.-H. Kim, "Mobile small 

cells for further enhanced 5G heterogeneous networks," ETRI Journal, vol. 37, pp. 

856-866, 2015. 

[43] J. Zhang, J. Feng, C. Liu, X. Hong, X. Zhang, and W. Wang, "Mobility enhancement 

and performance evaluation for 5G ultra dense networks," in 2015 IEEE Wireless 

Communications and Networking Conference (WCNC), 2015, pp. 1793-1798. 

[44] X. Zhang, J. Zhang, W. Wang, Y. Zhang, I. Chih-Lin, Z. Pan, et al., "Macro-assisted 

data-only carrier for 5G green cellular systems," IEEE Communications Magazine, 

vol. 53, pp. 223-231, 2015. 

[45] Y. Sui, A. Papadogiannis, W. Yang, and T. Svensson, "Performance comparison of 

fixed and moving relays under co-channel interference," in IEEE Globecom 

Workshops (GC Wkshps), 2012, pp. 574-579. 

[46] V. Van Phan, K. Horneman, L. Yu, and J. Vihriala, "Providing enhanced cellular 

coverage in public transportation with smart relay systems," in IEEE Vehicular 

Networking Conference (VNC), 2010, pp. 301-308. 

[47] W. Li, C. Zhang, X. Duan, S. Jia, Y. Liu, and L. Zhang, "Performance evaluation and 

analysis on group mobility of mobile relay for LTE advanced system," in Vehicular 

Technology Conference (VTC Fall), 2012 IEEE, 2012, pp. 1-5. 

[48] Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, 

"Moving cells: a promising solution to boost performance for vehicular users," IEEE 

Communications Magazine, vol. 51, pp. 62-68, 2013. 

[49] Y. Sui, A. Papadogiannis, and T. Svensson, "The potential of moving relays - a 

performance analysis," in 75th IEEE Vehicular Technology Conference (VTC Spring), 

2012, pp. 1-5. 

[50] Y. Chen and X. Lagrange, "Analysis and Improvement of mobility procedures for 

mobile relays in LTE networks," in 26th IEEE Annual International Symposium on 

Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015, pp. 1769-

1774. 

[51] W. Luo, R. Zhang, and X. Fang, "A CoMP soft handover scheme for LTE systems in 

high speed railway," EURASIP Journal on Wireless Communications and 

Networking, vol. 2012, p. 196, 2012. 

[52] Y. Hwang and J. Shin, "Group handover management for V2x in moving cell based 

LTE-Advanced system," in Information and Communication Technology 

Convergence (ICTC), 2015 International Conference on, 2015, pp. 1054-1057. 



129 

[53] L. Chen, Y. Huang, F. Xie, Y. Gao, L. Chu, H. He, et al., "Mobile relay in LTE-

advanced systems," IEEE Communications Magazine, vol. 51, pp. 144-151, 2013. 

[54] M. S. Ali, "An overview on interference management in 3GPP LTE-advanced 

heterogeneous networks," International Journal of Future Generation 

Communication and Networking, vol. 8, pp. 55-68, 2015. 

[55] 3GPP, "LTE-Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved 

Universal Terrestrial Radio Access Network (E-UTRAN),” Overall description Stage 

2, 2011. 

[56] H. Bogucka, P. Kryszkiewicz, and A. Kliks, "Dynamic spectrum aggregation for 

future 5G communications," IEEE Communications Magazine, vol. 53, pp. 35-43, 

2015. 

[57] S. Sesia, M. Baker, and I. Toufik, “LTE - the UMTS long term evolution: from theory 

to practice,” John Wiley & Sons, 2011. 

[58] N. Cardona, J. F. Monserrat, and J. Cabrejas, "Enabling technologies for 3gpp lte-

advanced networks," LTE-Advanced and Next Generation Wireless Networks: 

Channel Modelling and Propagation, pp. 1-33, 2013. 

[59] C. C. Lin, K. Sandrasegaran, X. Zhu, and Z. Xu, "On the performance of capacity 

integrated CoMP handover algorithm in LTE-Advanced," in 18th Asia-Pacific 

Conference on Communications (APCC), 2012, pp. 871-876. 

[60] S. Hamalainen, H. Sanneck, and C. Sartori, “LTE self-organising networks (SON): 

network management automation for operational efficiency,” John Wiley & Sons, 

2012. 

[61] 3GPP TR 36.814 "Technical Specification Group Radio Access Network; Feasibility 

study for further advancements for E-UTRA (LTE-Advanced)," 2011-2013. 

[62] C. C. Lin, K. Sandrasegaran, and Z. Xu, "Performance testing of CoMP handover 

algorithms in LTE-Advanced," in Workshop on Advances in Real-time Information 

Networks, 2013. 

[63] S. V. George, L. Mathews, and S. S. Pillai, "Physical Layer Frame Structure in 4G 

LTE/LTE-A Downlink based on LTE System Toolbox," International Organization 

of Scientific Research Journal of Electronics and Communication Engineering, vol. 

10, pp. 12-16, 2015. 

[64] S. Ahmadi, LTE-advanced, “A practical systems approach to understanding 3GPP 

LTE releases 10 and 11 radio access technologies,” Academic Press, 2013. 



130 

[65] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, et al., 

"Heterogeneous cellular networks: From theory to practice," IEEE communications 

magazine, vol. 50, 2012. 

[66] S. Padmapriya and M. Tamilarasi, "A case study on femtocell access modes," 

Engineering Science and Technology, an International Journal, vol. 19, pp. 1534-

1542, 2016. 

[67] T. Bai, Y. Wang, Y. Liu, and L. Zhang, "A policy-based handover mechanism 

between femtocell and macrocell for LTE based networks," in Communication 

Technology (ICCT), 2011 IEEE 13th International Conference on, 2011, pp. 916-920. 

[68] V. K. Sakarellos, D. Skraparlis, and A. D. Panagopoulos, "Cooperation within the 

small cell: The indoor, correlated shadowing case," Physical Communication, vol. 9, 

pp. 16-22, 2013. 

[69] W. Bao and B. Liang, "Stochastic analysis of uplink interference in two-tier femtocell 

networks: Open versus closed access," IEEE Transactions on Wireless 

Communications, vol. 14, pp. 6200-6215, 2015. 

[70] İ. Demirdogen, İ. Güvenç, and H. Arslan, "Capacity of closed-access femtocell 

networks with dynamic spectrum reuse," in 21st IEEE International Symposium on 

Personal Indoor and Mobile Radio Communications (PIMRC), 2010, pp. 1315-1320. 

[71] W. C. Cheung, T. Q. Quek, and M. Kountouris, "Access control and cell association 

in two-tier femtocell networks," in IEEE Wireless Communications and Networking 

Conference (WCNC), 2012, pp. 893-897. 

[72] Z. Xiao, Z. Li, X. Zhang, E. Liu, and K. Yi, "An efficient interference mitigation 

approach via quasi‐access in two‐tier macro‐femto heterogeneous networks," 

International Journal of Communication Systems, vol. 28, pp. 901-909, 2015. 

[73] C.-H. Ko and H.-Y. Wei, "On-demand resource-sharing mechanism design in two-tier 

OFDMA femtocell networks," IEEE Transactions on Vehicular Technology, vol. 60, 

pp. 1059-1071, 2011. 

[74] P. Lin, J. Zhang, Y. Chen, and Q. Zhang, "Macro-femto heterogeneous network 

deployment and management: from business models to technical solutions," IEEE 

wireless communications, vol. 18, 2011. 

[75] T. Hu, P. Godin, and S. Palat, "Additional features of lte release 10," LTE-The UMTS 

Long Term Evolution: From Theory to Practice, Second Edition, pp. 701-714, 2011. 

[76] O. Stanze and A. Weber, "Heterogeneous networks with LTE‐Advanced 

technologies," Bell Labs Technical Journal, vol. 18, pp. 41-58, 2013. 



131 

[77] W. Kim, "Dual connectivity in heterogeneous small cell networks with mmWave 

backhauls," Mobile Information Systems, vol. 2016, 2016. 

[78] W. Kim, W. Yoon, and S. Seol, "A comparative study of dual connectivity in 

heterogeneous LTE-Advanced networks," 2016. 

[79] W. Kim, "Adaptive resource scheduling for dual connectivity in heterogeneous IoT 

cellular networks," International Journal of Distributed Sensor Networks, vol. 12, p. 

6036952, 2016. 

[80] R. P. Antonioli, G. C. Parente, C. F. e Silva, E. B. Rodrigues, T. F. Maciel, and F. R. 

P. Cavalcanti, "Dual connectivity for LTE-NR cellular networks,". 

[81] M. Dirani and Z. Altman, "Self-organizing networks in next generation radio access 

networks: Application to fractional power control," Computer Networks, vol. 55, pp. 

431-438, 2011. 

[82] G. De la Roche, A. A. Glazunov, and B. Allen, “LTE-advanced and next generation 

wireless networks: channel modelling and propagation,” John Wiley & Sons, 2012. 

[83] N. Cardona, J. F. Monserrat, and J. Cabrejas, "Enabling technologies for 3GPP LTE‐

Advanced networks," LTE-Advanced and Next Generation Wireless Networks: 

Channel Modelling and Propagation, pp. 1-33, 2013. 

[84] X. Su, J. Zeng, and C. Xiao, "Key technologies for SON in next generation radio 

access networks," in 23rd International Conference on Computer Communication and 

Networks (ICCCN), 2014, pp. 1-8. 

[85] P. Godin, "Self‐Optimizing Networks," LTE-The UMTS Long Term Evolution: From 

Theory to Practice, Second Edition, pp. 581-598, 2011. 

[86] L. Frenzel, "Understanding the small-cell and hetnet movement," Electronic design, 

vol. 18, 2013. 

[87] A. U. Ahmed, M. T. Islam, M. Ismail, and M. Ghanbarisabagh, "Dynamic resource 

allocation in hybrid access femtocell network," The Scientific World Journal, vol. 

2014, 2014. 

[88] A. Khandekar, N. Bhushan, J. Tingfang, and V. Vanghi, "LTE-advanced: 

heterogeneous networks," in 2010 European Wireless Conference (EW), 2010, pp. 

978-982. 

[89] A. Kalantari, M. Mohammadi, and M. Ardebilipour, "Performance analysis of 

opportunistic relaying over imperfect non-identical log-normal fading channels," in 

22nd IEEE International Symposium on Personal Indoor and Mobile Radio 

Communications (PIMRC), pp. 1909-1913, 2011. 



132 

[90] J. Lim and D. Hong, "Mobility and handover management for heterogeneous 

networks in LTE-advanced," Wireless Personal Communications, vol. 72, pp. 2901-

2912, 2013. 

[91] M. Behjati, J. P. Cosmas, R. Nilavalan, G. Araniti, and M. Condoluci, "Self-

organising comprehensive handover strategy for multi-tier LTE-Advanced 

heterogeneous networks," IET Science, Measurement & Technology, vol. 8, pp. 441-

451, 2014. 

[92] A. Kumar, J. Sengupta, and Y. F. Liu, "3GPP LTE: The future of mobile broadband," 

Wireless Personal Communications, vol. 62, pp. 671-686, 2012. 

[93] K. Rakshith, M. Rao, and L. Ratheesh, "Development of LTE UE (User Equipment) 

Protocol Stack at (Non Access Stratum) Layer." 

[94] 3GPP TS 23.331, "Radio Resource Control Protocol Specification". 

[95] A. Pratap and H. K. Pati, "Capacity estimation for cellular LTE using AMR codec 

with semi-persistent scheduling," in Intelligent computing, communication and 

devices, Springer, pp. 725-736, 2015. 

[96] 3GPP TS 23.323, "Packet Data Coverage Protocol Specification". 

[97] 3GPP TS 23.322, "Radio Link Control Protocol Specification". 

[98] S. Ahmadi, "An overview of 3GPP long-term evolution radio access network," in 

New Directions in Wireless Communications Research, Springer, pp. 431-465, 2009. 

[99] 3GPP TS 23.321, "Medium Access Control Protocol Specification". 

[100] F. Rezaei, M. Hempel, and H. Sharif, "A comprehensive performance analysis of LTE 

and mobile WiMAX," in 8th International Wireless Communications and Mobile 

Computing Conference (IWCMC), 2012, pp. 939-944. 

[101] J. Niu, D. Lee, T. Su, G. Y. Li, and X. Ren, "User classification and scheduling in 

LTE downlink systems with heterogeneous user mobilities," IEEE Transactions on 

Wireless Communications, vol. 12, pp. 6205-6213, 2013. 

[102] C. C. Lin, K. Sandrasegaran, and S. Reeves, "Handover algorithm with joint 

processing in LTE-advanced," in 9th International Conference on Electrical 

Engineering/Electronics, Computer, Telecommunications and Information 

Technology (ECTI-CON), 2012, pp. 1-4. 

[103] S.-w. Kim and K.-y. Kim, "Physical layer verification for 3GPP LTE (FDD)," in 

Advanced Communication Technology, 2009. ICACT 2009. 11th International 

Conference on, 2009, pp. 1095-1100. 



133 

[104] C. Ciochina, D. Castelain, D. Mottier, and H. Sari, "Single-carrier space-frequency 

block coding: Performance evaluation," in 66th IEEE Vehicular Technology 

Conference (VTC-2007 Fall), 2007, pp. 715-719. 

[105] A. Larmo, M. Lindström, M. Meyer, G. Pelletier, J. Torsner, and H. Wiemann, "The 

LTE link-layer design," IEEE Communications magazine, vol. 47, 2009. 

[106] F. Semiconductor, "Long Term Evolution Protocol Overview," White Paper, 

Document No. LTEPTCLOVWWP, Rev 0 Oct, 2008. 

[107] T. Goyal and S. Kaushal, "A study of energy efficiency techniques using DRX for 

handover management in LTE-A networks," in International Workshop on Multiple 

Access Communications, 2015, pp. 33-44. 

[108] B. Kubera and M. Ehammer, "A survey of multilink concepts for aeronautical data 

link communications," in Integrated Communications, Navigation and Surveillance 

Conference (ICNS), 2013, pp. 1-12. 

[109] I. Shayea, M. Ismail, and R. Nordin, "Advanced handover techniques in LTE-

Advanced system," in International Conference on Computer and Communication 

Engineering (ICCCE), 2012, pp. 74-79. 

[110] T. Guo, A. ul Quddus, N. Wang, and R. Tafazolli, "Local mobility management for 

networked femtocells based on X2 traffic forwarding," IEEE Transactions on 

Vehicular Technology, vol. 62, pp. 326-340, 2013. 

[111] O. Omitola and V. Srivastava, "An enhanced handover Algorithm in LTE-Advanced 

network," Wireless Personal Communications (WPC), vol. 97, pp. 2925-2938, 2017. 

[112] F. Zarai, K. B. Ali, M. S. Obaidat, and L. Kamoun, "Adaptive call admission control 

in 3GPP LTE networks," International Journal of Communication Systems, vol. 27, 

pp. 1522-1534, 2014. 

[113] M. Ghaderi and R. Boutaba, "Call admission control in mobile cellular networks: a 

comprehensive survey," Wireless Communications and Mobile Computing, vol. 6, pp. 

69-93, 2006. 

[114] W. Jie and Q. Yangfan, "A New Call Admission Control Strategy for LTE Femtocell 

Networks," in 2nd International Conference on Advances in Computer Science and 

Engineering (CSE), Los Angeles, USA, 2013. 

[115] C. Kosta, T. Sodunke, M. Shateri, and R. Tafazolli, "Two-stage Call Admission 

Control policy for LTE systems," in 6th International Wireless Communications and 

Mobile Computing Conference, 2010, pp. 1101-1105. 



134 

[116] M. Chowdhury, Y. M. Jang, and Z. J. Haas, "Call Admission Control based on 

adaptive bandwidth allocation for wireless networks," Journal of Communications 

and Networks, vol. 15, pp. 15-24, 2013. 

[117] D. Vergados, "Simulation and modeling bandwidth control in wireless healthcare 

information systems," Simulation, vol. 83, pp. 347-364, 2007. 

[118] F. Cruz-Perez and L. Ortigoza-Guerrero, "Flexible resource allocation strategies for 

class-based QoS provisioning in mobile networks," IEEE Transactions on Vehicular 

Technology, vol. 53, pp. 805-819, 2004. 

[119] S. Alagu and T. Meyyappan, "Efficient utilization of channels using dynamic guard 

channel allocation with channel borrowing strategy in handoffs," arXiv preprint 

arXiv:1206.3375, 2012. 

[120] S. Alagu and T. Meyyappan, "An efficient Call Admission Control scheme for 

handling handoffs in wireless mobile networks," International Journal on AdHoc 

Networking Systems, vol. 2, 2012. 

[121] O. Omitola and V. Srivastava, "A channel borrowing CAC scheme in two-tier 

LTE/LTE-Advance networks," in International Conference on Advanced Computing 

and Communication Systems (ICACCS), India, 2017, pp. 1-5. 

[122] H. Halabian, P. Rengaraju, C.-H. Lung, and I. Lambadaris, "A reservation-based call 

admission control scheme and system modeling in 4G vehicular networks," EURASIP 

Journal on Wireless Communications and Networking, vol. 2015, pp. 1-12, 2015. 

[123] Q. Technologies, " Enabling hyper-dense small cell deployment with UltraSon," San 

Diego, 2014. 

[124] O. Omitola and V. Srivastava, "Handover algorithm based on user‟s speed and 

femtocell capacity in LTE/LTE-A networks," International Journal on 

Communications Antenna and Propagation (IRECAP), vol. 7, pp. 417-422, 2017. 

[125] T. Taleb and A. Ksentini, "QoS/QoE predictions-based admission control for femto 

communications," in 2012 IEEE International Conference on Communications (ICC), 

pp. 5146-5150. 

[126] P. Xia, V. Chandrasekhar, and J. G. Andrews, "Open vs. closed access femtocells in 

the uplink," IEEE Transactions on Wireless Communications, vol. 9, pp. 3798-3809, 

2010. 

[127] A. Valcarce, D. Lopez-Perez, G. De La Roche, and J. Zhang, "Limited access to 

OFDMA femtocells," in 20
th

 IEEE International Symposium on Personal, Indoor and 

Mobile Radio Communications, 2009, pp. 1-5. 



135 

[128] M. Tamilarasi and S. Padmapriya, "Technical challenges in femtocell network," in 

International Conference on Green Computing, Communication and Conservation of 

Energy (ICGCE), 2013, pp. 679-684. 

[129] Y. Bai, J. Zhou, and L. Chen, "Hybrid spectrum usage for overlaying LTE macrocell 

and femtocell," in IEEE Global Telecommunications Conference (GLOBECOM), 

2009, pp. 1-6. 

[130] V. Chandrasekhar, J. G. Andrews, T. Muharemovic, Z. Shen, and A. Gatherer, 

"Power control in two-tier femtocell networks," IEEE Transactions on Wireless 

Communications, vol. 8, 2009. 

[131] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, "Interference management in 

femtocells," IEEE communications surveys & tutorials, vol. 15, pp. 293-311, 2013. 

[132] T. Chiba and H. Yokota, "Efficient route optimization methods for femtocell-based all 

IP networks," in IEEE International Conference on Wireless and Mobile Computing, 

Networking and Communications (WIMOB), 2009, pp. 221-226. 

[133] D. Pacifico, M. Pacifico, C. Fischione, H. Hjalrmasson, and K. H. Johansson, 

"Improving TCP performance during the intra LTE handover," in IEEE Global 

Telecommunications Conference (GLOBECOM), 2009, pp. 1-8. 

[134] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, "Mobility management for 

femtocells in LTE-Advanced: key aspects and survey of handover decision 

algorithms," IEEE Communications Surveys & Tutorials, vol. 16, pp. 64-91, 2014. 

[135] H.-S. Jo, P. Xia, and J. G. Andrews, "Open, closed, and shared access femtocells in 

the downlink," EURASIP Journal on Wireless Communications and Networking, vol. 

2012, p. 363, 2012. 

[136] D. Xenakis, N. Passas, A. Radwan, J. Rodriguez, and C. Verikoukis, "Energy efficient 

mobility management for the macrocell–femtocell LTE network," in Energy 

Efficiency-The Innovative Ways for Smart Energy, The Future Towards Modern 

Utilities, InTech, 2012. 

[137] G. Gódor, Z. Jako, A. Knapp, and S. Imre, "A survey of handover management in 

LTE-based multi-tier femtocell networks: Requirements, challenges and solutions," 

Computer networks, vol. 76, pp. 17-41, 2015. 

[138] F. Hu, “Opportunities in 5G networks: A research and development perspective” 

CRC press, 2016. 



136 

[139] K. Alexandris, N. Nikaein, R. Knopp, and C. Bonnet, "Analyzing x2 handover in 

LTE/LTE-A," in 14th International Symposium on Modeling and Optimization in 

Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2016, pp. 1-7. 

[140] H. Zhang, W. Ma, W. Li, W. Zheng, X. Wen, and C. Jiang, "Signalling cost 

evaluation of handover management schemes in LTE-advanced femtocell," in 73
rd

 

IEEE Vehicular Technology Conference (VTC Spring), 2011, pp. 1-5. 

[141] M. Schwartz, “Mobile wireless communications,” Cambridge University Press, 2004. 

[142] U. Sawant and R. Akl, "Performance evaluation of network productivity for LTE 

heterogeneous networks with reward-penalty weights assessment," in IEEE 7th 

Annual Computing and Communication Workshop and Conference (CCWC), 2017, 

pp. 1-6. 

[143] K. Ghanem, H. Alradwan, A. Motermawy, and A. Ahmad, "Reducing ping-pong 

handover effects in intra EUTRA networks," in 8th International Symposium on 

Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012, pp. 

1-5. 

[144] H. Zhou, D. Hu, S. A. Reddy, S. Mao, and P. Agrawal, "On cell association and 

scheduling policies in femtocell networks," arXiv preprint arXiv:1312.2030, 2013. 

[145] K. Vasudeva, M. Simsek, D. López-Pérez, and I. Guvenc, "Analysis of handover 

failures in heterogeneous networks with fading," arXiv preprint arXiv:1507.01586, 

2015. 

[146] M. Z. Chowdhury and Y. M. Jang, "Handover management in high-dense 

femtocellular networks," EURASIP Journal on Wireless Communications and 

Networking, vol. 2013, p. 6, 2013. 

[147] F. A. Al-Shahin, "Femtocell-to-femtocell handoff management in dense femtocellular 

networks," International Journal of Computer and Communication Engineering, vol. 

4, p. 346, 2015. 

[148] M. Zaman Chowdhury and Y. M. Jang, "Call Admission Control based on adaptive 

bandwidth allocation for multi-class services in wireless networks," arXiv preprint 

arXiv:1502.06388, 2015. 

[149] I. Stojmenovic, “Handbook of wireless networks and mobile computing,” John Wiley 

& Sons, vol. 27, 2003. 

[150] K. M. Addali, A. BenMimoune, F. A. Khasawneh, A. M. Saied, and M. Kadoch, 

"Dual-Backhaul Links in LTE-A Mobile Relay System for High-Speed Railways," in 



137 

IEEE International Conference on Future Internet of Things and Cloud Workshops 

(FiCloudW), 2016, pp. 98-102. 

[151] R. Balakrishnan, X. Yang, M. Venkatachalam, and I. F. Akyildiz, "Mobile relay and 

group mobility for 4G WiMAX networks," in IEEE Wireless Communications and 

Networking Conference (WCNC), 2011, pp. 1224-1229. 

[152] I. F. Akyildiz, E. Chavarria-Reyes, D. M. Gutierrez-Estevez, R. Balakrishnan, and J. 

R. Krier, "Enabling next generation small cells through femtorelays," Physical 

Communication, vol. 9, pp. 1-15, 2013. 

[153] H. Lin, D. Gu, W. Wang, and H. Yang, "Capacity analysis of dedicated fixed and 

mobile relay in LTE-Advanced cellular networks," in IEEE International Conference 

on Communications Technology and Applications (ICCTA'09), 2009, pp. 354-359. 

[154] Y. Jiang, G. Zhu, and Z. Wang, "A specific mobile relay with Doppler diversity in 

OFDM system for high-speed railway scenario," in 2nd IEEE International 

Conference on Network Infrastructure and Digital Content, 2010, pp. 742-747. 

[155] E. Tanghe, W. Joseph, L. Verloock, and L. Martens, "Evaluation of vehicle 

penetration loss at wireless communication frequencies," IEEE transactions on 

vehicular technology, vol. 57, pp. 2036-2041, 2008. 

[156] A. Alsharoa, H. Ghazzai, E. Yaacoub, and M.-S. Alouini, "Energy-efficient two-hop 

LTE resource allocation in high speed trains with moving relays," in 12th 

International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and 

Wireless Networks (WiOpt), 2014, pp. 528-533. 

[157] S.-L. Wang, Y.-B. Hou, J.-H. Huang, and Z.-Q. Huang, "Adaptive call admission 

control based on enhanced genetic algorithm in wireless/mobile network," in 18th 

IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06), 2006, 

pp. 3-9. 

[158] E. Hardouin, J. N. Laneman, A. Golitschek, H. Suzuki, and O. Gonsa, “Relaying,” 

LTE-The UMTS Long Term Evolution: From Theory to Practice, Second Edition, pp. 

673-700. 

[159] O. Bulakci, "Multi-hop moving relays for IMT-advanced and beyond," arXiv preprint 

arXiv:1202.0207, 2012. 

[160] S. N. Mane and P. C. Sayankar, "Handover scheme for mobile relays in LTE-A high 

speed rail network: A Review," International Journal of Innovative Research in 

Computer and Communication Engineering, vol. 4, pp. 6933 - 6936, 2016. 



138 

[161] G. T. V12.0.0, "3rd Generation Partnership Project, Technical Specification Group 

Radio Access Network, Evolved Universal Terrestrial Radio Access (E-UTRA). 

Study on mobile relay (Release 12)." 2014-06. 

[162] M. S. Pan, T. M. Lin, and W. T. Chen, "An enhanced handover scheme for mobile 

relays in LTE-A high-speed rail networks," IEEE Transactions on Vehicular 

Technology, vol. 64, pp. 743-756, 2015. 


