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Abstract 

In this thesis we study spherically symmetric spacetimes with a perfect fluid source 

which incorporates charge. We seek explicit solutions to the Einstein- Maxwell sys­

tem of equations. For nonaccelerating spherically symmetric models a charged, dust 

solution is found. With constant pressure the equations reduce to quadratures. Par­

ticular solutions are also found, with no acceleration, with the equation of state 

P = h - 1)f.l. The Lie analysis is utilised to reduce the Einstein- Maxwell equations 

to a syst.em of ordinary differential equations. The evolution of the model depends 

on a Riccati equation for this general class of accelerating, expanding and shearing 

spacetimes with charge. Also arbitrary choices for the gravitational potentials lead 

to explicit solutions in particular cases. With constant gravitational potential A we 

generate a simple nonvacuum model. The analysis, in this case, enables us to reduce 

the solution to quadratures. With the value I = 2, for a stiff equation of state, we 

find that the solution is expressable in terms of elementary functions. Throughout 

the thesis we have attempted to relate our results to previously published work, and 

to obtain the uncharged perfect fluid limit where appropriate. 
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1 Introduction 

The general theory of relativity is a relativistic theory of gravitation. It has wide 

applications in relativistic astrophysics and cosmology. The theory of general rela­

tivity extends the special theory of relativity by incorporating gravitational effects. 

In general relativity the gravitational field of a body is contained in the curvature of 

the spacetime. The Riemann tensor describes the curvature of the spacetime mani­

fold . Spacetime is taken to be a four- dimensional, differentiable manifold endowed 

with a symmetric, nondegenerate metric tensor field. In relativity the line element 

describes, not only the metric properties of the manifold, but also incorporates the 

gravitational field. The spacetime geometry of general relativity only locally resem­

bles that of special relativity. However, globally the geometries differ in that the 

differentiable manifold is not fiat. The geometry of spacetime is represented by the 

Einstein tensor which is defined in terms of the Ricci tensor, the Ricci scalar and met­

ric tensor. The matter content and the electromagnetic contribution are described by 

the symmetric energy-momentum tensor, which is coupled to the gravitational field 

via the Einstein field equations. The electromagnetic field is subject to the Maxwell 

equations. The Einstein-Maxwell field equations are a system of highly nonlinear 

second order partial differential equations and difficult to solve. 

There exist many solutions to the Einstein field equations in the literature. 
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Exact solutions to the field equations are very important because they facilitate the 

investigation of the physical properties of specific models. Although a large number 

of solutions are known today, many of these are not physically significant. For a com­

prehensive list of known exact solutions which are of physical relevance, the reader 

is refered to Kramer et al (1980), Krasinski (1997), Ryan and Shepley (1975) and 

Shapiro and Teukolsky (1983), amongst others. In this thesis we study spherically 

symmetric gravitational fields with a perfect fluid energy- momentum tensor and an 

electromagnetic field. In particular we seek exact solutions to the Einstein- Maxwell 

system by choosing a specific form for the electromagnetic gauge potential. Spher­

ically symmetric models are physically significant and are extensively utilised in a 

variety of applications. In astrophysics the collapse of a star can be modelled by a 

spherically symmetric gravitational field as pointed out by Shapiro and Teukolsky 

(1983) . In cosmology spherically symmetric spacetimes have been used to model the 

gravitational behaviour and evolution of the early universe (Krasinski 1997). The 

spherically symmetric models are an important generalisation of the Robertson­

Walker models, the standard cosmology models which are both homogeneous and 

isotropic. To describe many situations of physical significance we need to incorpo­

rate the effects of anisotropies and inhomogeneities. Anisotropic cosmologies have 

been analysed by a number of authors to study the effect of deviations from the 

isotropic universe (Ryan and Shepley 1975). The motivation for studying inhomoge­

neous models is to analyse the deviation from homogeneity based on observational 

evidence (Krasinski 1997). Inhomogeneous, spherically symmetric models are prov­

ing to be highly useful in the study of gravitational collapse as observed by Joshi 

(1993). 
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Most of the exact solutions found have vanishing shear. The evolution of 

shear-free models can be reduced to an Emden- Fowler equation. These shear- free 

models are mathematically simpler to study than their counterparts with shear. A 

recent general treatment of the shear- free case is given by Maharaj et at (1996) . 

Broad classes of shear- free solutions have also been presented by Srivastava (1987), 

Stephani (1983) and Sussman (1988a, 1988b). Kramer et at (1980) have listed and 

categorised most shear-free spherically symmetric solutions. These solutions are 

normally given in comoving coordinates which facilitate the physical interpretation 

of the models. In contrast there are few spherically symmetric solutions having 

nonzero shear. Some known solutions with shear, are those of Gutman and Bespalko 

(1967) and of Wesson (1978); these admit a stiff equation of state in comoving 

coordinates. McVittie and Wiltshire (1975, 1977), Szafron (1977), Szekeres (1975) 

and Vaidya (1968) also found shearing solutions but these were given in noncomoving 

coordinates and are more difficult to interpret. In recent attempts to obtain exact 

solutions a conformal symmetry requirement is imposed on the spacetime manifold, 

so that spacetime is invariant under the action of a group of conformal motions. A 

number of exact solutions have been found including those of Herrera and Ponce de 

Leon (1985a, 1985b), Herrera et at (1984), Maartens and Maharaj (1990), Maartens et 

at (1986, 1995, 1996), Mason and Maartens (1987), Saridakis and Tsamparlis (1991) 

and Tsamparlis and Mason (1985). Most of these solutions have been concerned with 

astrophysical applications. Spherically symmetric cosmological models, admitting a 

conformal Killing vector, have been studied by Dyer et at (1987) and Maharaj et 

at (1991), amongst others. Various spacetimes admitting an inheriting conformal 

Killing vector, a special conformal symmetry, have been analysed by Coley (1991) 

and Coley and Tupper (1989, 1990). The spherically symmetric perfect fluid solutions 

obeying a barotropic equation of state are related to those obtained by Gutman 
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and Bespalko (1967), Hajj - Boutros (1985), Lake (1983), Shaver and Lake (1988) 

and Wesson (1978). These are incorporated in the general class of Maharaj et al 

(1993) which obey an equation of state that generalises the stiff equation of state. 

Kitamura (1989, 1994, 1995a, 1995b), using the characteristic system method devised 

by Takeno (1966), derived exact solutions for a perfect fluid with shear, expansion and 

acceleration. The Kitamura class is related to the models of Gutman and Bespalko 

(1967), Sussman (1991), Van den Berg and Wils (1985) and Wesson (1978). All the 

solutions listed above are in comoving coordinates. Noncomoving coordinates are 

more to difficult to analyse physically as pointed out by Knutsen (1995). 

In most cases the solutions given above apply to neutral matter. Our in­

tention in this thesis is to incorporate the electromagnetic field which means that 

the Einstein field equations are supplemented with the Maxwell equations. We are 

therefore seeking solutions to the Einstein- Maxwell system in spherically symmetric 

spacetimes. Clearly this is more complicated than the case of uncharged matter with 

only the Einstein field equations. By assuming a particular form for the electromag­

netic gauge potential we find shearing solutions under a variety of assumptions. 

This thesis is organised as follow: 

• Chapter 1: Introduction. 

• Chapter 2: In this chapter we present an overview and background material 

necessary for later chapters. 

• Chapter 3: We present solutions to the Einstein-Maxwell system of equations 

that are nonaccelerating. The solutions are separated into the categories Y' = 0 
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and Y' =f. O. Nonexpanding solutions are also found. An equation of state is 

specified and exact solutions are demonstrated. 

• Chapter 4: A Lie analysis of the Einstein- Maxwell system is performed. The 

system is reduced to a quadrature. We regain the uncharged solution of Goven­

der (1997) in the appropriate limit . 

• Chapter 5: Particular solutions to the Einstein- Maxwell system are found by 

making ad hoc choices for the gravitational potentials . We also utilise the Lie 

analysis and specify a stiff equation of state to obtain explicit solutions which 

are expanding, accelerating and shearing. 

• Chapter 6: Conclusion 
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2 Spacetime Geometry and Field Equations 

2.1 Introduction 

In this chapter we discuss briefly those concepts in differential geometry, the general 

theory of relativity and electromagnetism relevant to this thesis . For a more detailed 

account of differential geometry and tensor calculus the reader is referred to Choquet­

Bruhat et al (1977), de Felice and Clarke (1990), Hawking and Ellis (1973) and Misner 

et at (1973). In §2 .2 we introduce the metric tensor field , the connection coefficients, 

the Riemann tensor , the Ricci tensor , Ricci scalar and the Einstein tensor. We define 

in §2.3, the spherically symmetric line element in comoving coordinates and give the 

kinematical quantities . The nonvanishing components of the connection coefficients, 

the Ricci tensor, the Ricci scalar and the Einstein tensor are explicitly calculated for 

spherically symmetric spacetimes. In §2.4 we derive the Einstein- Maxwell system 

of equations for spherically symmetric spacetimes containing a charged perfect fluid. 

These equations are obtained for a particular form of the electromagnetic gauge 

potential which is chosen on physical grounds. Exact solutions to the Einstein­

Maxwell system are presented in subsequent chapters. The Einstein field equations 

for an uncharged fluid are regained in §2.5 as a special case of the results from §2.4. 
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2.2 Spacetime Geometry 

In the general theory of relativity we take spacetime to be a four- dimensional differ­

entiable manifold. The manifold is endowed with a symmetric, nonsingular metric 

field g with signature (- + + +) and locally has the structure of Euclidean space in 

that it may be covered by coordinate patches . The manifold supports a differentiable 

structure because the passage between the coordinate patches in the overlapping co-

ordinate neighbourhoods is smooth. Note that the global structure of the manifold 

may be very different from that of Euclidean space. Points on the manifold are la-

belled by real coordinates (x a
), where XO is timelike and Xl, x 2

, x3 are spacelike. For 

convenience we use units in which the speed of light c = 1. For a rigorous definition 

of differentiable manifolds and for material on differential geometry the reader is re-

ferred to texts by Bishop and Goldberg (1968), de Felice and Clarke (1990), Hawking 

and Ellis (1973), Misner et al (1973) and Wald (1984). 

The fundamental line element defining the invariant distance between neigh-

bouring points on the manifold is given by 

(2.1 ) 

where g is the symmetric, nondegenerate metric tensor field. The metric connection 

r is defined in terms of the metric tensor field and its derivatives by 

ra I ad( ) 
be = 2g g ed ,b + gdb,e - gbe,d , (2.2) 

where a comma denotes partial differentiation. The fundamental theorem of Rie-

mannian geometry implies the existence of a unique symmetric connection r that 

preserves inner products under parallel transport (do Carmo 1992). 
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Let Z be a type (0,1) vector field defined on the manifold. Then the 

covariant derivative of Z is given by 

Z a;b = Z a,b - rd abZd, 

where the semicolon denotes covariant differentiation. The covariant derivative is a 

generalisation of the partial derivative such that when operating on an (I, s) tensor 

field it produces an (I, S + 1) tensor field. On covariantly differentiating twice and 

forming the difference Za;be - Za;cb we obtain 

where Rd abc are the components of the Riemann tensor field R . The Riemann tensor 

provides a measure of the curvature of a manifold; it gives a measure of deviation 

from the flatness of the Minkowski spacetime of the special theory of relativity. In 

a curved spacetime R does not vanish globally. The Riemann tensor is a type (1 ,3) 

tensor and is defined as 

R
a 

bed = r a 
bd ,e - r a 

be,d + r a 
ee r e 

bd - r a 
ed r e 

be (2.3) 

in terms of the connection coefficients (2.2). The Riemann tensor components Rabed 

satisfy the following useful identities 

Rabed = - Rbaed 

Rabed = - Rabde 
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Rabcd = Rcdab 

Rabcd + Racdb + Radbc = ° 

Rabcd;e + Rabde;c + Rabec;d = 0. 

These identities assist in calculations that involve the curvature of the manifold and 

are important in the formulation of the Einstein field equations. 

On contraction of the Riemann tensor (2.3) we obtain the Ricci tensor 

(2.4) 

On contracting the Ricci tensor (2.4) we obtain the Ricci scalar or curvature scalar 

(2.5) 

The Einstein tensor G is constructed in terms of the Ricci tensor (2.4) and the Ricci 

scalar (2.5) as follows 

(2.6) 

The Einstein field tensor G has zero divergence so that 

G ab;b = 0, (2.7) 
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which follows directly from the definition (2.6). This property of the Einstein tensor 

is sometimes called the Bianchi identity and generates the conservation of energy-

momentum via the Einstein field equations. 

2 .3 Spherically Symmetric Spacetimes 

We are principally concerned with the behaviour of the gravitational field in spher-

ically symmetric spacetimes . The most general line element (2 .1) in the case of 

spherically symmetric spacetimes in coordinates (x a
) = (t, r, e, q» is given by 

where the gravitational potentials v, A and Y are functions only of the spacetime 

coordinates t and r. It should be noted that the coordinates used in the line element 

(2.8) are comoving and not isotropic. The four-velocity u has the form 

(2.9) 

In the comoving frame of reference (2.9), for the spherically symmetric metric (2.8), 

the various kinematical quantities are given by 

Wab = 0 (2 .10a) 

it a = (0, v' , 0, 0) (2.10b) 

(. 2Y) 8 = e- v A + Y (2.10c) 
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(2.10d) 

where dots and primes denotes partial differentiation with respect to t and r respec-

tively. The kinematical quantities are the vorticity tensor Wab, the acceleration vector 

ua , the expansion scalar 8 (or the rate of expansion) and the magnitude ofthe shear 

(J (or the rate of shear). The vorticity vanishes since the spacetime is spherically 

symmetric. The acceleration, expansion and shear are nonzero in general. Note that 

most of the exact solutions listed in the literature, corresponding to the metric (2.8), 

are categorised in terms of the kinematical quantities as pointed out by Kramer et 

al (1980) and Krasinski (1997). In this thesis we are concerned with nonzero shear 

so that our solutions must satisfy the condition 

If the shear becomes zero then, after a suitable coordinate transformation, (2.8) 

assumes the form 

(2.11) 

where v = v(t, r) and A = A(t, r) are metric functions. In the form (2.11) the 

coordinates are simultaneously comoving and isotropic; the line element has this 

form only when the shear vanishes. A comprehensive analysis of the shear-free field 

equations corresponding to (2.11) was performed by Maharaj et al (1996). The 

governing equation for the evolution of the spacetime (2.11) is of the form 

which is a generalised Emden- Fowler equation of index two. 
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The nonzero connection coefficients (2.2) for the line element (2.8) are given 

by 

2 Y 
r 02 =­y 

r233 = - sin e cos e 

Y' r 3
13 = -

Y 

3 Y 
r 03 =-y 

The number of nonzero coefficients is higher when the shear is nonvanishing; this 

is related to the greater range of behaviour for the potentials. It is now possible to 

calculate the Ricci tensor (2.4) using the above connection coefficients. 

The nonzero Ricci tensor components take the form 
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· .. 
.. ·2 .. . y Y 

Roo = -A - A + AV + 2v Y - 2y 

(
. y' y y,) 

ROI = 2 A y + v' Y - Y 

y' y" 
Ru = -v" - v,2 + A'V' + 2A'- - 2-

Y Y 

2 . ( . Y y) 
R22 = e- vYY A - V + Y + Y 

( Y' Y") 2'>- , , , + e - YY A - v - - - - + 1 
Y Y' 

R33 = sin2 
() Rn. 

(2.12a) 

(2.12b) 

(2 .12c) 

(2.12d) 

(2.12e) 

With the help of the Ricci tensor components of (2.12) and the definition (2.5) we 

calculate the Ricci scalar 

R = 2e A + A -AV + 2A- - 2v- + - + --2v (.. ·2 .. . y . Y y2 Y) 
Y Y y2 Y 

- 2e-2
'>- v" + V,2 - v' >.' - 2>.'- + 2v'- + - + 2- + - (2.13) ( 

Y' Y' y,2 Y") 2 
Y Y y2 Y Y2 · 
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The Ricci tensor components (2.12) and the Ricci scalar (2.13) generate the nonzero 

components of the Einstein tensor (2.6). These components are 

Y· V2 (Y' y,2 y,,) e211 
. 2(11->') _ ,_ __ __ __ 

Goo = 2A - + -2 - e 2A Y + y2 + 2 Y + y2 
Y Y • 

. y' ,V V' 
G = 2A- + 2v - - 2-

01 Y Y Y 

Gn = _ e- 211 [(~ + ~2 - ~v) y2 + (~V - vV + y) y] 

+ e-2>' [(v" + v,2 - v' A') y2 + (v'Y' - A'Y' + Y") Y] 

for the line element (2.8). 

2.4 The Einstein-Maxwell Field Equations 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

(2.14e) 

The Einstein- Maxwell field equations describe the coupling between the curvature 

of spacetime and the matter content T which also includes the electromagnetic field. 

In addition to the Einstein equations we also need to consider the Maxwell equa-

tions which govern the behaviour of the electromagnetic field. Charge is introduced 
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through the electromagnetic four- potential A which defines the electromagnetic field 

tensor F . The electromagnetic field tensor F is defined in terms of the four- potential 

A, and is given by 

(2.15) 

The electromagnetic contribution E to the energy- momentum tensor is given by the 

result 

The uncharged matter contribution to T is 

which corresponds to a perfect fluid. Here f-l is the energy density and P IS the 

isotropic pressure. The total energy- momentum tensor is then given by 

for barotropic matter and charge respectively. Then the Einstein- Maxwell field equa-

tions can be expressed as the system 

G ab = T ab 

Gab = Mab + Eab (2 .16a) 

Fab;c + Fbc;a + F ca;b = 0 (2 .16b) 

F
ab - Ja ;b - , (2 .16c) 
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where Ja is the four-current density. We write the four-current as 

(2.17) 

The quantity E in (2.17) is the proper charge density. 

We utilise the freedom in the gauge by choosing the four- potential A. We 

make the choice 

Aa = (4)( t, r), 0, 0, 0), (2 .18) 

which is consistent with spherical symmetry and has been widely used in the study 

of inhomogeneous cosmological models (Sussman 1987, Sussman 1988a, Sussman 

1988b). The quantity 4>(t,r) in (2.18) is called the electromagnetic gauge potential. 

Note that we have taken 4> to be a function of both the radial and time coordinates 

t and r which is the same as the dependence of the metric potentials 1/, ). and Y. 

The nonzero components of the electromagnetic field tensor are 

FlO = -Fol = 4>'. (2.19) 

On using the components (2.19) we calculate the electromagnetic contribution to the 

energy-momentum tensor which is given by 

E = diag (~e-2A ,+,,' 2 _~e-2V ,+..,2 ~ -2(v+).)y2 ,+..,2 ~ -2(v+).)y2 ,+..,2 . 2 e) 
ab 2 If', 2 If', 2 elf', 2 e If' sm . 

The uncharged matter contribution to the energy- momentum tensor T is 

The nonzero components of the total energy-momentum tensor become 
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From (2.20) and (2.14) we obtain the Einstein field equations (2.16a) as 

(2 .21a) 

2 
( 

Y '2) 2 ( y2 ) 1 , , -2v·· .. 

P =--+-- vY +- --e Y-vY+-
y2 Ye 2A 2Y Y 2Y 

(2 .21b) 

p = e- 2A [ (VII + v,2 - v' ).,) + ~ (v'Y' - ).'Y' + YII)] 

_ e-2v [ (~ + ~2 _ ~v) + ~ (~y - vY + f)] 

(2 .21c) 

o = Y' - Y v' - Y'~, (2.21d) 

for a spherically symmetric model with charged matter. 

Given the nonzero components of the electromagnetic field tensor (2.19) it 

is possible to generate the Maxwell equations. The first Maxwell equation (2.16b) is 

identically satisfied. The second Maxwell equation (2.16c) is identically satisfied for 

a = 2,3 . We generate the conditions 
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( 

).../1 y,) 
e- 2A -

1I ¢' )..' + 1/' - ~ - 2 Y = E (2.22a) 

(2.22b) 

from (2.16c), (2.17) and (2.19) where we have set a = 0 and a = 1, respectively. 

We take (2 .22a) as the definition of the proper charge density, given in terms of the 

gravitational potentials and the electromagnetic gauge potential. Equation (2.22b) 

can be immediately integrated to give the expression 

where K(r) is a function of integration. We can treat this expression as a definition 

for ¢. Consequently we need consider only (2.21) to generate a solution and treat 

(2.22b) as a consistency condition. Note that (2.22b) does not arise for static gravi­

tational field. The system of equations (2.21 )- (2.22) comprise the Einstein- Maxwell 

equations for the spherically symmetric models corresponding to the four- potential 

(2.18). 

For charged matter the conservation of energy- momentum is given by 

where we have used the field equation (2.16a) and the Bianchi condition (2.7) . With 

a = 1 and a = 0 the conservation equations become 

(2.23a) 
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tL + (!t+ p)(~ + ~Y) + e-2>-2V</1
2 (-~ - V+ ~ + 2~) = O. (2.23b) 

Of course the conservation equations (2.23) may be derived directly from the field 

equations. 

Exact solutions in cosmology to the system (2.21 )-(2.22) have been found 

for particular choices of the electromagnetic gauge potential ¢. A comprehensive 

review of such solutions is provided by Krasinski (1997). Of particular note are the 

extensive analyses of Sussman (1987, 1988a, 1988b) and Srivastava (1992) for in­

homogeneous cosmological models with an electromagnetic field. The recent class 

of solutions of Moodley et al (1999), regains in the uncharged limit, many familiar 

shearing models, including the Gutman- Bespalko (1967) solution with a stiff equa­

tion of state. Examples of solutions corresponding to charged relativistic stars are 

given by Humi and Mansour (1984), Pant and Sah (1979) and Patel and Mehta 

(1995). Exact solutions of (2.21)-(2.22) , for charged stars with a conformal symme­

try, were found by Herrera et al (1984), Herrera and Ponce de Leon (1985a, 1985b) 

and Maartens and Maharaj (1990), amongst others . 

2.5 The Einstein Field Equations 

For uncharged matter the energy momentum tensor T is given by 

Tab = (f-l + p)UaUb + P9ab · 

With ¢ = ¢(t) we observe that F = 0 from (2.19). The Einstein- Maxwell equations 

then reduce to those corresponding to the above form of T for uncharged matter. 
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The Einstein equations become 

= ~ _ ~ -2>. Y" _ A'Y' + _ + _e-2v ~y +-
( 

Y '2) 2 ( Y2 ) 
J-l y2 ye 2Y Y 2Y 

(2.24a) 

2 
( 

Y '2 ) 2 ( y2 ) 1 , , 2v " . ' 
P = - - + -- v Y + - - -e- Y -vY + 2Y 

y2 Ye2>' 2Y Y 
(2.24b) 

P = e- 2>' [ (VII + V,2 - v' A') + ~ (v'Y' - A'Y' + Y II )] 

_ e-2v [ (~ + ~2 _ ~v) + ~ (~y - vY + y) ] (2.24c) 

o = y' - y v' - Y'~, (2.24d) 

from (2 .21) for uncharged matter. 

The Maxwell equations (2.22) are identically satisfied. The conservation 

equations (2 .23) become 

P' + (J-l + p)v' = 0, (2.25a) 

(. 2.) 
!-i+(J-l+p) A+yY =0, (2.25b) 

corresponding to momentum conservation and energy conservation respectively. The 

equations (2 .25) are first order differential equations which can also be derived di-

rectly from the field equations (2.24) . 

Previous attempts have succeeded, in some cases, in finding exact solutions 

to the system (2.24) for nonzero shear. Maharaj et al (1993) presented a class of 
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accelerating, expanding and shearing metrics which contain the solutions of Gutman 

and Bespalko (1967), Hajj - Boutros (1987), Shaver and Lake (1988) and Wesson 

(1978). The solutions of Maharaj et al (1993) admit a conformal Killing vector and 

contain a stiff equation of state (see also Maharaj and Maharaj 1994) . Van den 

Berg and Wils (1985) found shearing solutions for nonaccelerating and accelerating 

fluids. Kitamura (1994) recently presented a class of shearing metrics using a method 

proposed by Takeno (1966); this class admits a conformal Killing vector acting in the 

radial direction (Kitamura 1995a, 1995b). A number of solutions have been found 

in noncomoving coordinates. These include the solutions of Mc Vittie and Wiltshire 

(1975, 1977) and Vaidya (1968). The physical analysis of solutions in noncomoving 

coordinates has been performed by Bonnar and Knutsen (1993) and Knutsen (1992, 

1995). Clearly few solutions are known for nonzero shear as the field equations are 

difficult to integrate; the shear- free case is easier to handle. 
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3 Nonaccelerating and Nonexpanding Solutions 

to the Field Equations 

3.1 Introduction 

In this chapter we consider non accelerating and nonexpanding solutions to the cou­

pled Einstein-Maxwell system. A number of exact solutions are identified. In §3.2 we 

investigate solutions having both shear and expansion but the acceleration vanishes . 

This class of solutions is divided into two categories, according to whether Y ' = 0 

or Y' "I O. Firstly we consider the case Y' = 0 in §3 .2.1 and a particular solution is 

given for charged dust. Then the case Y ' "lOis studied in§3.2 .2. The solution of the 

field equations is reduced to quadratures by assuming that p = constant. Three cases 

arise in the solution and we consider each case in turn. The uncharged solutions of 

Govender (1997) are regained by setting a constant to zero. Nonexpanding solutions 

are considered briefly in §3.3 and the behaviour of the potentials is reduced to a 

quadrature. In §3.4 we impose the equation of state p = (, - 1 )p,. A solution valid 

for all, is found by assuming that the potential), is constant. With no restriction 

on ). and by setting, = 2, a second solution is generated. 
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3.2 N onaccelerating Solut ions 

In this section we find solutions having shear and expansion, but no acceleration so 

that ita = O. Therefore from (2.10b) this condition implies that 

l/ = l/(t). (3 .1 ) 

Kramer et at (1980) and Govender (1997), in their analysis of uncharged fluids, point 

out that the nonaccelerating models may be divided into two categories : Y' = 0 and 

Y' f. O. We analyse the case Y' = 0 in §3 .2.1. Later in §3.2.2 we investigate the case 

Y' f. O. 

3. 2. 1 The Case Y' = 0 

If we consider the case Y' = 0, then we can take 

Y = t, (3 .2) 

without any loss of generality. Then the field equations (2 .21) reduce to 

(3.3a) 

(3.3b) 

(3 .3c) 
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The energy density and pressure are defined by (3.3a) and (3.3b) respectively. Equa-

tions (3.3b) and (3.3c) generate the condition of pressure isotropy 

Thus a solution to (3.4) generates a solution to the Einstein- Maxwell system (3.3). 

Equation (3.4) contains three dependent functions cp , 1/ and A; to obtain a solution we 

need to specify the form of two functions, and then integrate (3.4) to find the third 

function. We have reduced the evolution of the cosmological model, with Y' = 0, to 

the single equation (3.4). 

Van den Berg and Wils (1985) and Covender (1997) have presented solu-

tions to (3.3) , for uncharged spherically symmetric fluid3, corresponding to radiation 

and st)ff matter. Here we demonstrate! simple solution to the system (3 .3). We 

make the assumptions 

1/ = I/o (3.5a) 

p = 0, (3.5b) 

where I/o is a constant . Then the energy density is 

2 . 
I/. = _e- 2vQ A 
r t ' 

and the electromagnetic gauge potential is given by 

We observe that both f1 and cp are given in terms of A. It remains to obtain the 

gravitational potential A: this follows from (3.3b) and (3.3c). The constraint on the 
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behaviour of >. is given by 

(3.6) 

It is convenient to make the transformation 

>. = In 0". 

Then (3 .6) is transformed to 

This is a linear second order equation which has solution 

0" = C1 cos (VI + 2evos) + C2 sin (VI + e2Vos ) , 

where C1 and C2 are constants. Finally the gravitational potential>' has the form 

>. = In [C1 cos ( VI + 2eVO In t) + C2 sin ( VI + 2eVO In t)] . (3.7) 

Therefore we have demonstrated the explicit solution (3.7) to the nonlinear equation 

(3 .6) , and consequently the system (3.3). The line element is given by 

ds2 = _ e2vo dt2 + [C1 cos VI + 2evo In t + C2 sin VI + 2evo In t r dr2 

+ t 2 (d02 + sin2 OdCI>2) . 

This solution follows because of the simple choice in (3.5). Other choices will repre­

sent wider possibilities for the behaviour of the gravitational potentials. Our objec­

tive here was to demonstrate the existence of solutions. A general analysis on the 

system (3 .3) will be the object of future investigations . 
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3.2 .2 The Case Y' =f 0 

In this section we consider the second possibility Y ' =f 0, in the class of nonacceler-

. ating solutions. If Y' =f 0, then we can make the choice 

1/=0 

as pointed out by Kramer et at (1980) and Govender (1997) . The field equations 

(2 .21) then become 

1 2 -2-\ (1/ " y'2) 2 (.. Y2 ) fl = - - - e Y -,\ Y + - + - ,\Y + -y2 Y 2Y Y 2Y 

(3.8a) 

(3 .8b) 

(3.8c) 

0= Y' - Y'~. (3 .8d) 

It is possible to study the integration of the system (3.8) in general. 
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Equations (3 .8d) has solution 

1 - ff2(,) f = 0, ±1, (3.9) 

where 1(1) is a function of integration. A combination of equations (3.8a), (3 .8b) 

and (3.8c) yields 
.. 2 

(.. ·2) Y cP' 
11 + 3p = -2 A + A - 4- - - . Y e2 'x 

With the help of (3.8d) and (3.9), we can eliminate the variable A appearing in the 

last equation. Thus we obtain the energy density 11 in terms of Y, cP, and p: 

(3 .10) 

In order to obtain an expression for p in terms of Y, we substitute (3 .9) into (3.8b) 

.which results in 

A-.,2y2 
2 ·· · 2 2 'f' Y p = -2YY - Y - f1 (I) + --. 

2e2'x 
(3.11) 

It remains to find a solution to (3.11). The remaining field equation (3 .8c) becomes 

a consistency condition; we can treat this equation as a definition for cPo Once (3 .11) 

is integrated we can express the solution as the line element 

(3.12) 

where f = 0, ±l. It remains to determine Y for the line element (3 .12). To find Y 

we must specify p explicitly in (3 .11). We make the particular choice 

p = constant, 

which was also used by Govender (1997) for uncharged fluids. This choice enables 

us to solve (3.11) in terms of quadratures. 
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It seems that the explicit integration of (3 .11) is not possible as Y depends 

on both t and r, and f is arbitrary. However, we will demonstrate that it is possible 

to make progress. In order to further facilitate the integration procedure in (3.11), 

it is convenient to introduce the new variables T and y: 

Then (3 .11) can be written as 

1 
t=-T 

yP 

f Y=-y. 
yP 

../.J2 2 

2 2 2 'f' Y 0 
YYTT + YT + Y + E - -2 2>' = , pe 

(3.13) 

where the subscript refers to differentiation with respect to T. Note that, even though 

Y = Y(T, r), we may essentially treat (3.13) as an ordinary differential equation. We 

shall now present solutions to (3.13) for the three different values of Eo 

Case 1 : E = 0 

It is necessary to eliminate the electromagnetic gauge potential from (3.13). We 

make the choice 

for the electromagnetic gauge potential where C is constant. We let E = 0 and it is 

convenient to replace Y by 

Under this transformation (3.13) reduces to the simple differential equation 

4uTT + (3 - C)u = 0 
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in terms of u. The above equation is immediately integrated to yield 

. )(3 - C) )(3 - C) 
u = a1 sm 2 T + a2 cos 2 T, 

where a1(r) and a2(r) are functions of integration. The solution of (3.13) then 

becomes 

f(r) [ . )(3 - C)p )(3 - C)p ]2/3 
Y = vp a1 sm 2 t + a2 cos 2 t (3.14) 

for the case E = O. When C = 0, we regain the uncharged solution of Govender 

(1997) which is given by 

f(r) [ . V3P V3P]2/3 
Y = vp a1 sm -2-t + a2 cos -2-t 

from (3.14) . 

Case II: E = -1 

In this case we make the choice 

for the electromagnetic gauge potential and C1 is a constant. It is easy to show that 

(3.13) becomes 

(3.15) 

Then it is easy to see that (3.15) admits the first integral 
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where a3(r) is an integration function. This is a first order equation and the variables 

separate. Then a second integration results in 

where To(r) is a function of integration. At this stage we need to introduce a new 

variable 

1 
v =-, 

y 

to bring the integral into standard form. The above integral can then be written as 

(3.16) 

Thus the differential equation (3.15) has been reduced to the quadrature (3.16) which 

can be evaluated in terms of elliptic integrals in general (Gradshteyn and Ryzhik 

1994). Note that when C1 = 0, then (3 .16) reduces to the integral of Govender 

(1997) in his analysis of uncharged matter. We obtain his solution 

from (3.16). 

Case III: f. = 1 

Here we make the choice 

for the electromagnetic gauge potential and C2 is a constant. Then equation (3.13) 

becomes 

2yy".". + y". 2 + y2 + 1 - C2 = o. 
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It is easy to show that this second order equation can be integrated to give 

where a4(r) is an integration function. This is first order differential equation which 

reduces to the quadrature 

As for Case II, we utilise the transformation 

1 
v =-, 

y 

so that the above integral can then be written as 

(3.17) 

The cubic expression a3v3-v2( C2+ 1) - ~ may be factorised and the integral expressed 

in terms of elliptic functions (Gradshteyn and Ryzhik 1994). Note that when C2 = 0 

we regain the uncharged solution of Govender (1997) which is given by 

from (3.17) . 

3 .3 Nonexpanding Solutions 

In this section we briefly study solutions that are shearing and accelerating, but are 

expansion- free. If the cosmological model is nonexpanding, then it can be seen from 
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(2.10c) that the condition 

. y 
). = -2-

Y 

must hold, where Y #- O. Integration of the above equation gives the metric potential 

e2>' _ y-4 - , 

where we have eliminated the constant of integration by a coordinate transformation 

in the metric. In order to find an expression for the metric potential v we substitute 

this form of e2>. into (2.21d) , and then integrate the resulting equation to obtain 

where f(t) is a function of integration. We observe from (2.23b) and (2.22b) that 

the energy density f.L (for nonexpanding solutions) is a function of r only. Equation 

(2.21a) can be written as 

(3.18) 

which relates the two quantities f.L and Y. Equation (2.21b) can be used to express 

the pressure p in terms of Y: 

(3.19) 

Thus we have reduced the solution of the field equations to (3.18) and (3.19). (Note 

that (2.21c) has to be satisfied in addition). The metric can now be written solely 

in terms of Y as 
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To complete the solution we need to determine the gravitational potential Y. 

If Y is known, and l1(r) and f(t) prescribed, then p can be computed from 

(3.19). To find Y we must specify l1(r) explicitly in (3.18). We make the choice 

11 = constant, 

and assume that 

for the electromagnetic gauge potential and C3 is constant. With this choice of 11 

(3..18) can be integrated to give 

where A(t) is an integration constant. This differential equation may be reduced to 

quadratures. For a qualitative treatment see Skripkin (1960) for uncharged fluids . 

We can write the solution to the above differential equation as the quadrature 

y 4 dY 
r - ro = J 1/2' 

[;, + Ay3 + y4(J - C3) - ~y6l 
(3.20) 

We observe that, in the special case when A = 0, this integral may be expressed in 

terms of elliptic functions (Gradshteyn and Ryzhik 1994). When C3 = 0, we regain 

as a special case the solution of Govender (1997) in his analysis of uncharged matter. 

We obtain his solution 

from (3 .20). 
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3.4 Equation of State 

In this section we assume that the equation of state 

p=(--y-l)fL 

relates fL to p. The quantity I is a constant. As in §3.2 we take 

v = v(t) 

so that solutions in this section are also nonaccelerating. Here we introduce the new 

independent variable 

Then the equations governing the behaviour of the gravitational potentials are 

(3.21a) 

(3.21b) 

(3.21c) 

( 
cP/2 ) 

+ 2 2e2 /.1 +2.\-2s ' (3.21d) 
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where subscripts denotes differentiation with respect to s. Note that equation 

(3.21a), (3 .21b) and (3.21c) correspond to the field equations (2.21) . We have also 

include the conservation equation (3.21d), which corresponds to (2.23b) . In this 

section we find that the conservation equation simplifies the solution process . 

If we differentiate (3.21a) with respect to s we obtain 

(3.22) 

From (3.21a) and (3.21 b) we obtain 

(3.23) 

Substituting (3.22) and (3.21b) in equation (3 .21d) we generate the result 

(3 .24) 

We need only consider the case 

As = 0, (3 .25) 

arising from (3 .24). The second case of -2e-211 (l/s + As) + If-l = 0 is equivalent to 

(3.23). With the condition (3.25), the system (3.21) becomes 

,,--/2 

= 1 + e- 211 _ 'f' f-l -2e~2~1I+~2~A--2-S (3.26a) 

(3.26b) 

,,--/2 

( - 1) - e- 211 l/ 'f' 
I f-l - s - 2e211+2A-2s (3.26c) 
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( 
¢/2 ) 

+ 2 2e2/./+ 2,\-2s ' 
(3.26d) 

which we now attempt to integrate. 

From equation (3.23) we have 

2 -2/./ 
iJ-l = e l/s· (3.27) 

Also adding equations (3.26b) and (3.26c) gives 

(3.28) 

Eliminate J-l from (3.27) and (3.28) to get the first order differential equation 

(3.29) 

Note that (3.29) can be written as 

which has the solution 

(3.30) 

where A is constant. From (3.27) and (3.30) we can write the energy density as a 

function of t: 

(3.31 ) 

Finally substituting (3.30) and (3.31) in (3.26a), we get the gravitational gauge 

potential ¢: 
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The line element for this class of solutions has the form 

(3.32) 

where A = constant . Hence we have found a simple class of solutions (3 .30) to the 

Einstein- Maxwell equations by taking A to be constant in the nonaccelerating case. 

The gravitational potential and the energy density are given explicitly in terms of 

the variable t. This is a simple class of solutions which does not constraint the range 

of,. When A = 0, fJ = 0 and we regain vacuum. We believe that this class of 

models is new. 

The solution (3 .32) holds for constant A. We now seek a solution to the 

system (3.26) with A =1= constant . From (3 .21c), (3.23) and (3.21a), we can eliminate 

fJ to obtain 

(3.33) 

Similarly eliminating fJ from (3.21a) , (3 .23) and (3.21d) gives 

(3.34) 

Clearly (3.33) and (3.34) are same. Hence we need only consider three equations. 

We take the relevant equations to be 

(3 .35a) 

(3 .35b) 

2 'f' _ _ _ -2v 2 
( 

--1,./ 2 ) . 

2 e 2v+2A-2s 1 - e (Ass + As - AsVs + Vs - 1) . (3.35c) 
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From (3 .35a) and (3.35b) we have 

We can eliminate ¢ from (3.35c) and (3.36) to obtain 

Let us now make the transformation 

to simplify (3.37). Under this transformation (3.37) can be written as 

It is convenient to introduce the quantities 

A = Ass + As2 + 4As (1 -1/,) + 1 
As - 1 + 4/, 

Then (3.38) can be written as 

US 2A 
- - - - B = O. 
u2 U 

This equation can be simplified further if we let 

so that 

1 
v =-, 

u 

Vs + 2Av + B = O. 
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This linear equation has the solution 

(3.39) 

in terms of v where J{ is constant . 

It is not possible to evaluate the integrals in (3.39) for general /. We can 

make progress with / = 2 corresponding to the stiff equation of state. With this 

assumption (3.39) becomes 

J{ e- 2(Ms) - 1 
v=-----

(As + 1)2 

Then using the transformation v = ~ and u = e21) we get 

21) (As + 1)2 
e = - ---,----,'---

J{ e- 2(Ms) - 1 . 

From equation (3 .35c), we get the gravitational gauge potential ¢ as 

From equation (3 .35b), we get the energy density J1 as 

(As + 1)2 (As + vs) 
J1 = - J{ e- 2(.-\+s) - 1 

In terms of the variable t we have 

",/2 t-2 21)+2'\ (1 -21) (2( \ \ 2 \ ) ( ) 
<p = e - e t Att + At - AtVt + t Vt + At) - 1 

39 

(3.40a) 
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(3.40c) 



Thus for this case with, = 2, for a stiff equation of state, the line element becomes 

(3.41 ) 

We observe that the solution (3.41) is given in terms of A. Note that the energy 

density f-l and the electromagnetic gauge potential ¢ are also defined in terms of A in 

(3.40): the quantity 11 is given in terms of A. The behaviour of A is arbitrary in this 

class of solution. This is in contrast to the stiff equation of state solution presented 

in §5.4 when we specify initially that A should be constant. 
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4 Self-Similar Solutions 

4.1 Introduction 

In this chapter we utilise the Lie analysis of differential equations to generate a solu­

tion to the Einstein- Maxwell system. In §4.2 we briefly introduce the basic concepts 

related to the technique of the Lie analysis. We need to choose an infinitesimal gen­

erator G such that its extension leaves the field equations invariant . This method is 

used to generate ordinary differential equations that arise in our relativistic charged 

model. A Lie analysis of the symmetry generators , for the appropriate equations, 

motivates a form for the self-similarity variable. In §4.3 we generate the self- similar 

form of the field equations. The Einstein- Maxwell field equations and conservation 

equations, which are highly nonlinear differential equations, are written in terms of 

this self- similar variable, and they are reduced to a system of ordinary differential 

equations. The field equations are further simplified by redefining one of the grav­

itational potentials . In §4.4 we determine the solutions to the field equations, in 

principle, by introducing a new independent variable 'TI, and choosing a form for the 

electromagnetic gauge potential. The solution to the Einstein- Maxwell system is 

reduced to a second order, nonlinear equation in one of the gravitational potentials. 

This equation is transformed firstly to a first order Riccati equation, and then to a 

linear, second order differential equation. Two cases arise: C = 0 and C i= O. When 

41 



C = 0 we regain the uncharged solution of Govender (1997). When C i- 0 we reduce 

the behaviour of the model to quadratures. 

4.2 Lie Symmetries and the Similarity Generator 

In this section we briefly discuss those concepts in the Lie analysis which help in 

finding solutions to the field equations . For a more detailed account of the Lie 

analysis of differential equations the reader is referred to texts by Bluman and Kumei 

(1989), Olver (1993), Kamke E (1983) and Stephani (1989). The Lie analysis of 

differential equations is an important area of research in mathematical physics and 

a detailed analysis is not possible here. In particular the Lie approach has proved 

to be a useful technique in finding exact solutions in general relativity. Different 

classes of solutions for spherically symmetric models have been found by Leach et 

at (1992), Maharaj et at (1996) and Stephani (1983). The analyses of Srivastava 

(1987) and Sussman (1986 , 1987, 1988a, 1988b) are comprehensive reviews, in terms 

of invariance transformations of differential equations, for the same class of models 

for both neutral matter and charged matter. 

We first define some important concepts concerning Lie symmetries of alge­

braic equations and then proceed to Lie symmetries of partial differential equations. 

Let y = (yl , y2, . . . , yn) lie in the region D c Rn and E is an element of C c R Then 

y* = G(y; E) ( 4.1) 

represents a one- parameter (E) Lie group of transformations. We define the infinites-
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imal generator G as the operator 

p. 8 
G = G(y) = e(y) . \l = L C(Y)8i' 

i=l Y 

where \l is the gradient operator 

and 

The infinitely differentiable function F(y) is said to be an invariant function of the 

Lie group of transfor-ations (4.1) if and only if 

GF(y) == O. (4.2) 

The associated characteristic system of equations 

follows from (4.2). The general solution of (4.2) can then be written as 

F I( I P) _ Y , ... , y - CI 

F 2( I P) _ Y , ... , y - C2 

F P-l( I P) _ Y , ... , y - Cp-l, 

where the CI, ... ,Cp-l are constants of integration. 

Similar results may be presented for systems of partial differential equa-

tions. Consider a system of n- th order partial differential equations, with p inde-

pendent variables y = (yl , . .. ,yP) and q dependent variables w = (WI, ... ,wq ) and 
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with derivatives of w with respect to y up to order n, given by 

(4.3) 

We let gt = exp( EG) be a one- parameter (E) Lie group of the system with transfor-

mations given by 

(y*, w*) = gt ' (y, w) = (W t(Y, w) , <I> t(Y, w)). ( 4.4) 

Let us suppose that the generator given by 

P, 8 q 8 
G = ~ f(y, w) 8yi + E 4Ya(Y, w) 8wa' (4.5) 

with 

, d . 
f(y, w) = dE W~ (y, w) It=o , i=l, ... ,p 

a = l, ... ,q 

is an infinitesimal generator of the system (4.3). Then G[nl, the n- th extension of G 

given by (4.5), is defined as 

where 

a 8wJ 
WJ,i = 8yi 

and the total derivative D J is defined by 
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It should be noted that the summation is over all multi- indices J = (jl, ... ,jk) with 

1 ~ j k ~ p, 1 ~ k ~ n. The transformations defined by (4.4) leave the system of 

partial differential equations (4.3) invariant if and only if 

where G[n] is given by (4.6) . 

4.3 Self-Similar Form of the Field Equations 

We now apply the theory of Lie symmetries to the field equations (2.21) to reduce the 

number of ~ndependent variables appearing in them. We have performed these cal-

culations by hand but for more complicated systems it is advisable to use computer 

packages designed for this purpose. We need to choose an infinitesimal generator G 

such that its extension leaves the field equations invariant. We choose the infinitesi-

mal generator G as 

o 0 0 0 0 0 
G = Ar- + Bt- + Cf-l-. + Vp- + £Y- + 9¢-or ot Of-l op oY o¢ 

(4.7) 

where A,B,C,V , £ , Q, 'H and I are constants . Note that we cannot use 'HA tA and 

Iv ;v because this will introduce a multiplier of AI v in the exponential terms ap-

pearing in (2.21) . The 1 st and 2nd extensions of G follow from (4.7). With the help 

of (4.6) we obtain for the lsi extension 

G[l] = G + (C - A)/-l' >-l0 + (C - B)jt :. + (V - A)p' ~ + (V - B)p~ 
uf-l' Uf-l op' op 
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,a · a A,a B· a 
-AA--BA-. - 1/-- 1/-. 

aA' aA al/' aI/ 
( 4.8) 

and for the 2nd extension 

+(V - 2A)p" a!1I + (V - A - B)j/ a~' + (V - 2B)jj :jj 
a . a .. a 

+(£ - 2A)ylI ~ + (£ - A - B)Y'-. + (£ - 2B)Y-.. 
uP a~ . ay 

a . a ··a 
+(9 - 2A)cjJ"- + (9 - A - B) cjJ'-. + (9 - 2B)cjJ-.. 

acjJ" acjJ' acjJ 

II a (A B) ;" a B;: a A II a -2AA - - + /\ -. - 2 /\-.. - 2 1/-
a A" a A' a A aI/" 

-(A + B)i/~ - 2Bj)~. 
ai/ aj) 

( 4.9) 

In order to determine the constants A , ... , I appearing in G we apply (4.7) and its 

extensions (4.8) and (4.9) to the system of field equations (2.21) and the conservation 

equations (2.23). This generates the following system of equations: 

( £) 1 ( A) 2 -2,\ (" " y '2) Cp = -2 - - -2H - 2 -e Y - A Y + -
y2 Y 2Y 

2 2 (.. Y2) + (-2I - 2B)-e- 1/ AY + -
Y 2Y 
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1 2 2.\ ( " Y'2) Dp = (-2£) y2 + (-2H - 2A) y e- v Y + 2Y 

2 ( .. . Y2) 
- (-2'I - 2B) y e- 2V Y - vY + 2Y 

(D + £)pY = (-2H + £ - 2A)e-2.\ [(v" + v,2 - v' X) + ~ (v'Y' - XY' + Y")] 

_ (-2'I + £ - 2B)e-2V [(~ + ~2 - ~v) + ~ (~Y - vY + y)] 

¢,2 
- -- (g - A - H - 'I + £) 

e2v+2'\ 

0= (£ - B - A)Y' - (£ - B - A)Yv' - (£ - B - A)Y'~ 

(D - A)p' = - [(C - A )f.Lv' + (D - A)pv'] 

¢,2 [ ¢" 2Y'] + e2v+2A -41 + X + v' - y [2(9 - A) + 2'I + 4H + A] 

. . 2Y 2Y [ 
.. 

(C - 8)jJ. = - (C - 8)1" + (V - 8)p, + (C - 8)l'y + (V - 8)y] 
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_ - + - - v -.A [2(9 - A) - 4I + 21l - B] . 4/2 [2Y 4>' 'j 
e211+2A y ¢' 

The above equations will be satisfied if we set 

c = V = -2£ 

9 = 1l = I = O. 

The above set of conditions is consistent with the field equations (2.21) and the 

conservation equations (2.23). Without any loss in generality we set 

£=1. 

Thus the infinitesimal generator (4.7) becomes 

o 0 0 0 0 
G - r- + t- - 211- - 2p- + y-- or ot oil op oy' ( 4.10) 

where G is known as the self- similar infinitesimal generator. We observe that the 

form of G given in (4.10) is the same as that utilised by Govender (1997) in his 

investigation of uncharged inhomogeous cosmological models. It is remarkable that 

the presence of charge does not affect the form of the generator G. 

To make progress we need to reduce the' number of variables in the field 

equations. We introduce the new invariant F( u, y, j, g) as pointed out in §4.2. The 
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associated characteristic system is written as 

dr dt dY dJ.L dp 
r t Y -2J.L -2p' 

which upon integration yields 

r 
u=-

t 

l' 
y= -

Y 

where u, y, f and 9 are characteristics. Thus the characteristic u = Tit (also called 

the similarity variable) allows the introduction of the new independent variable u 

which simplifies the field equations. In this way the field equations are converted 

to a system of ordinary differential equations. The metric potentials, the electro-

magnetic gauge potential , energy density and pressure are expressed in terms of the 

independent variable u = r It as 

,\ = '\(u) 

¢ = ¢(u) 

f(u) 
J.L = --

1'2 

where the new functions y , f, 9 depend on u only. 
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Y = ry(u) 

g(u) 
p = -2- ' 
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It should be kept in mind that the infinitesimal generator G allows the new 

independent variable to reduce the field equations to a simpler form . The form of G 

has to be carefully chosen so that simplification does in fact occur. The similarity 

variable u allows us to express the field equations (2.21) as the following system 

1 2 ( 2 (y + UYu )2 ) f = 2" - 2:\ 2uyu + u Yuu - (y + UYu)UAu + """'--------'-
Y e Y 2y 

( 4.11a) 

(4.11b) 

(4.11c) 

( 4.11d) 

where the subscripts denote differentiation with respect to u. The conservation 

equations (2.23) transform to 
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ugu - 2g = -Ul/u(f + g) 

(4.12a) 

( 2Yu ) f u = - (g + 1) Au + y 

(4.12b) 

We apply the conservation laws (4.12) and the field equations (4.11) to obtain solu-

tions with a self- similar variable. Note that we do not get new information from the 

conservation equations. However the conservation equations help in the integration 

process and are used in addition to the field equations . 

It is possible to further simplify the form of the differential equations 

(4.11)- (4.12) by introducing a new independent variable 'Tl given by 

U = e'r!. 

Then equations (4.11) and (4.12) transform to 

( 4.13a) 
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(4.13b) 

( 4.13c) 

( 4.13d) 

g, - 2g = -v,(J + g) - etv:" (~,' + A, + v, - 2(y + y,») ( 4.13e) 

(4.13f) 

The field equations (4.13) may be simplified further by introducing a new variable. 

This new potential CJ is related to the old potential v by 

CJ=v-'r/. 

As a result we are in a position to express the field equations as the system 
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( 4.14a) 

(4.14b) 

( 4.14c) 

( 4.14d) 

g7) - 2g = -(0"7) + 1)(/ + g) 

( 4.14e) 
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( 2Y",) I", = -(1 + g) A", + Y 

+ cP",2 (2Y", _ cP",,,, -(0"-"1+1) -A",). 
e2v+2"\ Y cP", 

( 4.14f) 

The system of equations (4.14) is essentially equivalent to (4.13) . The simplified 

system of field equations (4.14) governs the behaviour of the gravitational field and 

electromagnetic field with a self- similar variable for a charged spherically symmetric 

relativistic fluid . 

4.4 The Gravitational Potential y 

The system (4.14) is highly nonlinear and it seems unlikely that these equations can 

be solved in general. We can make progress for a particular case by assuming that 

0" = A. 

Then the system of ordinary differential equations (4.14) reduces to the simpler form 

_ 1 2 ( Y ) <p",2 1 - y2 - e2ay y",,,, + 2y", + 2" - (y + 2y",)0"", - 2e2v+2a ( 4.15a) 

_ 1 2 ( 3y ) 9 - -2 + -2- -y",,,, + 20"",y", + 2y", + O"",y + -
y e ay 2 

(4 .15b) 
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( 4.15c) 

( 4.15d) 

gT) - 2g = -(aT) + 1)(1 + g) 

( 4.15e) 

(4.15f) 

We now investigate the integration of (4.15) in general. The objective is to obtain 

specific forms for the variables 1/, a, y, ¢ (the potential functions) and f, 9 (the 

matter functions), a total of six variables. This is not possible in general as (4.15) 

is a system of only four independent equations as we have included the conservation 

equations (4.15e) and (4.15f). However it is possible to obtain a differential equation 

containing only the gravitational potential y, which then enables us to obtain a 

particular explicit solution to the system (4.15). We eliminate YT)T) from (4.15b), with 

the help of (4.15d), to obtain 

( 4.16) 
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Then it is possible to eliminate the variable 9 by taking a combination of (4.15c) and 

(4.16) to give 

( 4.17) 

To proceed we need to make a choice for the electromagnetic gauge potential. An 

appropriate choice is 

(4.18) 

where C is a positive arbitrary constant . Then equation (4.17) becomes 

( 4.19) 

with the help of (4.18) . Differentiating (4.19) with respect to TJ leads to 

( 4.20) 

We substitute for 0"." from (4.15d), and e2a from (4.19), in equation (4.20) to obtain 

a second order differential equation 

(4.21 ) 

Hence we have succeeded in isolating the gravitational potential y . Equation (4.21) 

is a nonlinear, second order differential equation; it is homogeneous and accordingly 

integrable. Two cases arise in the integration of the master equation (4.21) which 

we consider in turn: 

CASE J: C = 0 

Note that CASE J corresponds to uncharged matter and is accordingly related to 
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the Einstein equations (2.24). With C = 0, (4.21) becomes 

2 2 2 3 2 2-0 Yrr,.,Y - 5y'1 Y - Y'1 - Y'1 Y - . ( 4.22) 

The substitution 

q=y 

converts (4.22) to the Riccati equation 

This first order equation is integrable, and consequently the solution to (4.22) IS 

given by 

( 4.23) 

where Cl and C2 are constants. The solution (4.23) for uncharged matter was also 

obtained by Govender (1997). 

CASE II: C # 0 

Note that CASE II corresponds to charged matter and is accordingly related to the 

Einstein- Maxwell equations (2.21)-(2.22). Again we make the substitution 

q=y ( 4.24a) 
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(4.24b) 

Then (4.21) is converted to the Riccati equation 

Qq (1 + ~) = (:,) Q' + m Q +2 ( 4.25) 

We have failed to integrate (4.25), in the given form, with C =f 0; however progress 

can be made if we convert this equation to second order. Let 

where 0: = 0:( q). Then (4.25) becomes 

W w 2 
W 

0: (q2 + C) ~ - 0: (q2 + C + 20:) -T + O:q (q2 + C) -q - 2q2 = O. 
W W W 

The choice 

eliminates the term containing the nonlinearity Wq 2. Hence the transformation 

Q 1 ( 2 ) Wq =-2 q +C -;-

converts the first order equation (4.25) to the second order equation 

which is linear in w. Equation (4.27) is simplified if we let 
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( 4.26) 

( 4.27) 

( 4.28a) 



q = ax (4.28b) 

(4.28c) 

Then (4.27) becomes 

(x 2 + l)Wxx - xWx + W = 0, ( 4.29) 

which is a linear second order differential equation. The general solution of (4 .29) is 

given by Kamke (1983) in the form 

where d1 , d2 are constants . Then in terms of the intermediate variables wand q in 

(4.28) we can write 

where 

are constants. 

Then utilising the original transformation (4.24), and (4.26), gives 
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Thus we have reduced the problem to generating a solution of (4.30). Note that 

equation (4.30) is a separable first order equation which is in principle integrable. 

However this is a nontrivial task in practice. The solution to (4.30) can be expressed 

as 

T' 
In - - 'rio = 'rI - 'rio 

t 

jY=Y/ r 
= I(y)dy 

where 'rio is a constant and the integrand is given by 

(4.31 ) 

Hence we have a solution to the system (4.15) (and consequently the original system 

of partial differential equations (4.11 )- ( 4.12)) in principle. The behaviour of the 
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gravitational potential Yis specified by (4.31). The remaining gravitational potential 

(v, .>t), the electromagnetic gauge potential (¢), and the matter variables (}-l,p) are 

then easy to obtain, as these quantities are defined in terms of y (and therefore Y). 

Thus we have demonstrated a solution to the Einstein- Maxwell system 

where we have utilised the Lie analysis of differential equations. This cosmological 

model is expanding, accelerating and shearing. We believe that our solution corre-

sponding to (4.31) is new and has not been published before. Our solution extends 

the Govender (1997) solution to include charge (that is C i= 0 in (4.21)). Note that 

it would appear that by setting D2 = 0 in (4.30), a simple analytic expression for the 

potential Y is obtainable. However this is not the case because then (4.30) simplifies 

to 

dy 2 1 
y- = -y - -C. 

dT/ 2 

This then gives e2a = 0 from (4.19) which is an inconsistency. Thus we require 

Dl i= 0 and D2 i= 0 in (4.30) which implies that there will be no simple analytic 

expression arising from (4.31). This is not surprising because the presence of the 

electromagnetic field increases the nonlinearity of the field equations and allows for 

a wider range of behaviour of the gravitational field. 
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5 Solutions with Constant Potential 

5.1 Introduction 

In chapter 4 we utilised the Lie analysis of differential equations on the Einstein­

Maxwell system ab initio to generate a solution. It is important to note that an ad hoc 

choice of one of the potential functions sometimes greatly simplifies the integration 

procedure. In this chapter we investigate a new class of solutions to the Einstein­

Maxwell field equations. By assuming that the metric potential A is constant in 

§5.2 we are able to simplify the field equations. In this case the line element is 

expressed in terms of the gravitational potential Yonly. A suitable choice for Y 

yields a charged spherically symmetric nonvacuum model in §5.3. This particular 

charged solution reduces to a vacuum model found previously. In order to find more 

physically relevant solutions we utilise the Lie analysis in §5.4. A particular Lie point 

symmetry reduces the relevant partial differential equation to a third order ordinary 

differential equation. This ordinary differential equation is reduced to quadratures for 

inhomogeneous cosmological models with shear and charge. We regain the solution 

of Govender (1997) in the uncharged limit. In §5.5 we consider the case with A = 

constant and p = 11. The field equations are converted into a third order ordinary 

differential equation with the help of the Lie analysis . This is solved in general in 

terms of elementary functions . 
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5 .2 Field Equations for Constant A 

In this section our intention is to find a solution of the system (2.21) that gives a 

new class of shearing solutions that are expanding and accelerating. We make the 

assumption 

). = constant, 

and then the factor e2A in the line element (2.8) can be absorbed by redefinit ion of 

the radial coordinate r. With this value for)' the field equation (2 .21d) reduces to 

Y'-Yv' =o. 

On integration the above equation gives 

where we have set the function of integration to unity. Thus the line element, for 

this class of solution, is 

(5.1 ) 

Here we need Y -=I 0. From (2.10) the acceleration vector, the expansion scalar and 

the magnitude of the shear are given, respectively, by 

'a (0 Y ' ) u = 'Y ,0,0 

2 
0=­

Y 
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Therefore the assumption A = constant is restrictive but allows the kinematical 

quantities (shear, expansion, acceleration) to remain nonvanishing. Note that the 

line element (5.1) is the simplest form possible with the assumption A = constant. 

With the simplified form of the line element (5.1), the field equations (2.21) 

reduce to the system of partial differential equations 

2 2 ( ya) ~2 
f-l = y2 - Y Y" + 2Y - 2e2v (5 .2a) 

(5 .2b) 

Y" Y' Y' Y" ¢/2 
p=-. +-. -+---. 

Y Y Y Y 2e2v (5.2c) 

On equating equations (5.2b) and (5.2c) we generate the partial differential equation 

Y" Y" Y' Y' y,2 2 ¢,2 
Y + 17 - y Y _ . y2 + y2 - e2v = o. (5.3) 

If ¢ = ¢(t), then (5.3) becomes 

Y" Y" y' Y' y,2 2 
Y + 17 - y y - y2 + y2 = o. (5.4) 

Equation (5.4) was generated by Govender (1997) for uncharged matter. This is 

sometimes called the condition of pressure isotropy. 
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5.3 A Simple Solution 

Equation (5.3) is difficult to integrate because of the nonlinearity and the appearance 

of two functions, namely Y and ¢, in one equation. However, it is possible to generate 

a simple solution by assuming an ad hoc form for Y. We make the assumption 

Y = g(t) + h(T), 

where 9 and h are functions of t and T respectively. Then we observe that (5.3) is 

simplied if h is linear: 

h = aT + b, 

where a and b are constants. We therefore have 

Y=g(i) + aT + b 

as our choice for the gravitational potential. 

With the help of (5 .5) , equation (5 .3) generates the expression 

¢' = IJy'2 - a
2 

9 + ar + b' 

which may be immediately integrated to give 

¢ = IJy'2 - a2 ln(g + ar + b) 
a 

(5 .5) 

for the electromagnetic gauge potential. The funct ion of integration has been set 

equal to zero as it does not contribute to the dynamics . The energy density and 

pressure are given respectively by 
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p = - 2(g + ar + b)2 . 

We observe that this solution has the equation of state 

and our model corresponds to the line element 

As the pressure may be negative (J-l and p are of opposite sign) we do not claim that 

the choice (5.5) for Y, corresponding to the metric (5.6), is physically significant; 

however the model found does indicate the existence of nonvacuum solutions with 

nonvanishing electromagnetic field . This is in contrast to the case for neutral matter. 

When a = V2, b = 0, (5.6) becomes 

which was found by Govender (1997). With this form of the line element we have 

¢ = J-l = p = o. 

Thus the line element (5.7) corresponds to vacuum with no electromagnetic field . We 

have demonstrated the existence of a nonvacuum model (5 .6) (with F # 0), which 

reduces to the model of Govender (1997) in the relevant limit . 
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5.4 The Lie Analysis 

In order to find a general solution to (5.3) we utilise the now familiar method of Lie 

symmetries of differential equations. We recall that (5 .3) is said to possess the Lie 

point symmetry 

if the following equation 

G[2] (YIIY + ~" y2 _ ~' yY' _ yl2 + 2 _ q;
/
2
Y2

) = 0 
y y e2v ' 

taking (5.3) into account , is satisfied, where G[2] is the 2nd extension of G. It can 

be checked that (5.3) admits the three Lie point symmetries 

where 9 is an arbitrary function of t . It is unlikely that another similarity reduc­

tion (to reduce (5 .3) to an ordinary differential equation) will recl.uce the resulting 

equations to quadratures given the number and forms of the symmetries. 

The nature of the similarity generators G1 and G2 suggests that we intro-

duce a new variable u such that 

u = g(t) + T', 
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(where g(t) = - J 0) dt) with the gravitational potential of the form 

y = y(u). 

Then (5.3) can be reduced to 

2 A./2 
2 3 + 2 Y Yu<.p 0 y Yuuu - Yu Yu - 2v = , 

e 
(5.8) 

where the subscript denotes differentiation with respect to u. Thus the partial dif-

ferential equation (5.3) has been reduced to the simpler differential equation (5.8). 

This is a third order highly nonlinear differential equation. To integrate (5.8) we 

need to choose a form for cP: 

where C1 is a constant. Equation (5.8) can now be written as 

This is easily integrated to give 

(5.9) 

where A is an integration constant. We can rewrite (5 .9) as 

y2 dy~ 2 2dY - YYu + (2 - Cdy = A, 

which is of first order. Upon integration we obtain 

2 2A 2 
Yu = -3; + By + (2 - C1 ), 

where B is an integration constant . The last equation is of first order and is separable. 

On integration the above equation is reduced to the quadrature 

J .J'JYdy 
u - Uo = j3By3 + 3y(2 _ C

1
) _ 2A' 
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where Uo is an integration constant. In terms of the radial coordinate l' we have that 

J
y y1Ydy 

l' - 1'0 = - g(t). J B y3 + (2 - Ci)y - (2/3)A 
(5 .10) 

We can simplify (5 .10) if we make the substitution 

1 
v =-. 

y 

Then equation (5.10) can then be written as 

J 
dv 

l' - 1'0 = - v [B + (2 _ Ct}V2 _ (2/3)Av3]1/2 - g(t). (5 .11) 

Note that when C i = 0, (5.11) reduces to 

J dv 
l' - 1'0 = - v [B + 2v2 _ (2/3)Av3]1/2 - g(t), 

which is the quadrature of Covender (1997) in his analysis of inhomogeneous cosmo-

logical models with shear for neutral matter. A general solution of the Einstein field 

equations (5.2) , with A = constant, is given by the line element (5.1) . The potential 

Y is related to the .spacetime coordinates t and l' by (5 .10). Observe that for the 

special case 

A = B = 0, 

we regain the metric potential Y as considered in §5.3. 

We have solved the partial differential equation (5.3) by the Lie analysis 

and introduction of a new variable. The solution has been reduced to the quadrature 

(5.11) . The integral in (5 .11) may be expressed in terms of elliptic functions for 

particular values of the constants A, B, Ci . We do not pursue this here as Covender 
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(1997) has demonstrated the existence of real solutions for the special case C1 = o. 

Clearly other solutions are generated for different values of C1 . 

5.5 Stiff Fluid Solutions 

In this section we investigate the existence of solutions to the field equations for 

constant A with 

P= /-l, 

which corresponds to a stiff equation of state. Here a second differential equation 

arises in addition to (5.3). If we let /-l = p, then (5 .2a) and (5 .2b) can be equated to 

gIVe 

(5.12) 

The electromagnetic gauge potential ¢ may be eliminated from (5.3) and (5 .12) to 

yield 

Y" Y" Y'Y' y ,2 2 
3-+-. +-·-+---=0. y y yy y2 y2 (5.13) 

We seek solutions to the partial differential equation (5.13) . Once a form for Y is 

obtained from (5.1~) then expressions for ¢, /-l and p follow immediately. Equation 

(5.13) is the governing equation in the case for stiff matter with A = constant. 

The Lie analysis of differential equations is utilised to generate closed form 
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solutions . It is easy to see that (5 .13) admits the three point symmetries: 

where a(t) is an arbitrary function of t. The associated characteristic system for the 

Lie symmetry G3 is 

dt dr dY 
o r Y 

from which we obtain the characteristics 

Hence we can take 

u = t 

Y 
v =-. 

r 

Y = ry(t), (5 .14) 

where y is an arbitrary function of t. However (5.14) is not useful because (5.13) im-

plies that y is constant. This situation arises because of the use of the Lie symmetry 

G3 • Another choice for the Lie symmetry may lead to a more useful solution as we 

now demonstrate. 

A linear combination of G1 and G2 creates the generator 

G = a(t) :t + :r· 
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The associated characteristic system for the Lie symmetry G is 

dt dr dY 

a(t) 1 0 ' 

from which we obtain the characteristics 

J dt 
u = r - a(t) = r - a(t), 

v = Y. 

Hence we can take 

Y = y(u), (5.15) 

where y is an arbitrary function of u . Substituting (5.15) in (5.13) gives 

(5.16) 

which is a third order equation in y . Note that (5.16) admits the Lie point symmetry 

tu' Hence we take 

r = z, 

s = Yu 

Then (5 .16) becomes 

Z2 (ss" + S,2) + 4zss' + S2 - 2 = 0, (5 .17) 

which is second order differential equation . Primes denotes differentiation with re-

spect to z . 
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It is possible to further simplify the form of the differential equation (5.17) 

by introducing a new variable q given by 

1 2 
q = -s . 

2 

Then equation (5.17) becomes 

Z 2q" + 4z q' + 2q - 2 = 0, 

which is a linear, second order Euler equation. It has solution 

. 2A B 
q = - + - + 1, z Z 2 

- -
where A and B are constants. In terms of the variables y and u we have 

We can rewrite (5.18) in the form 

u - Uo = r - a ( t ) 

Jy ydy 

(2y2 + Ay + B)~ 

where we have set 

A=4A 

B=2B , 

(5.18) 

(5.19) 

for convenience and Uo is a constant. The integral in (5.19) is of standard form and 

we find the general solution 

(5.20) 
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Hence we have generated an expression, namely (5.20), governing the behaviour of 

the gravitational potential Y. The remaining quantities (cp, f.L, p) now easily follow as 

the solution of the master equation (5.13) has been specified. Thus we have exhibited 

an exact solution for the Einstein- Maxwell system of equations for an inhomogeneous 

shearing and charged relativistic fluid corresponding to a stiff equation of state. We 

believe that this is a new charged model and has not been published before. 

74 



6 Conclusion 

Our objective in this thesis was to find new solutions to the Einstein- Maxwell field 

equations for spherically symmetric gravitational fields. We were primarily concerned 

with the case of nonvanishing shear. A number of new classes of shearing solutions 

extended those of Govender (1997) who performed a comprehensive analysis in the 

uncharged case. A number of simple solutions to the Einstein- Maxwell field equa­

tions, which we believe to be physically reasonable, were obtained explicitly. We 

employed the following techniques in generating new solutions: the Lie analysis of 

differential equations, imposing an equation of state, ad hoc choices for the grav­

itational potentials, converting Riccati 'equations to second order linear equations, 

and converting nonlinear equations to simpler equations using the appropriate Lie 

symmetry. 

We now highlight the main points and conclusions obtained in this thesis . 

We give only those items of principal interest : 

• After reviewing the differential geometry applicable to general relativity we 

obtained the Einstein-Maxwell field equations for a perfect fluid source in the 

presence of charge in spherically symmetric spacetimes . 

• The class of nonaccelerating spacetimes was comprehensively analysed. Two 

cases arose: Y' = 0, and Y' i= O. A particular charged, dust solution was 

presented when Y' = O. When Y' i= 0 we assumed that p = constant . The 

evolution of the model was reduced to a second order nonlinear equation which 

has solution in terms of quadratures. The solutions of Govender (1997) are 
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regained when the charge vanishes. For nonexpanding solutions we reduced the 

solution to quadratures. We also imposed an equation of state p = (r - 1 )f-l. 

With)' = constant we find that the solution was valid for all values of the 

constant ,. When ). I- constant then we set, = 2 and the line element then 

depended on the gravitational potential), only . 

• The Lie symmetries of differential equations was used to reduce the Einstein­

Maxwell field equations to a system of ordinary differential equations. This 

reduction depended on the choice of a suitable infinitesimal generator, which 

generates a self- similar variable. After a number of simplifications the solution 

was reduced to a Riccati equation depending on the constant C. When C = 0 

we regained the uncharged solution of Govender (1997). When C I- 0 we 

reduced the behaviour of the model to a separable first order equation . 

• We also found new solutions to field equations by assuming that the metric 

potential), is constant. We generated a nonvacuum charged solution which 

has a simple form. This solution reduced to the vacuum solution of Govender 

(1997) in the uncharged limit. We choose a form for the electromagnetic gauge 

potential and performed the Lie analysis. The evolution of model was reduced 

to quadratures. For the stiff equation of state p = f-l, the solution was expressed 

in terms of elementary functions. 

We have considered spherically symmetric spacetimes in the presence of 

charge. The governing equations are the Einstein- Maxwell partial differential equa­

tions which we showed admit a variety of solutions. Therefore we have demonstrated 

that it is possible to handle the complex system including charge and nonvanishing 

shear. Researchers in the past avoided this case because of the perceived difficulty in 
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making any progress. We have provided a strong case for the comprehensive analysis 

of the Einstein- Maxwell system in general by demonstrating the existence of explicit 

solutions. 
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