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ABSTRACT 

 

Powdery mildew of cucurbits costs the South African cucurbit-growing industry millions of Rands per 

year in reduced yields and compromised fruit quality. Amongst the many bacterial and fungal 

antagonists of cucurbit powdery mildew, certain aerobic endospore-forming bacteria (AEFB) species 

show promise as biocontrol agents of this disease. When embarking upon biocontrol agent selection, 

multifaceted screening strategies are crucial. A study was undertaken with the aim of isolating AEFB 

from the cucurbit phylloplane for evaluation as potential antagonists of cucurbit powdery mildew 

using various screening approaches. Three hundred and nine AEFB isolates were isolated from 

cucurbit leaf material sourced from eight locations in the greater Msunduzi, KZN region. Dual-culture 

antifungal bioassays were performed using surrogate phytopathogenic fungi Botrytis cinerea and 

Rhizoctonia solani in place of the obligately biotrophic Podosphaera spp.. Two PCR-based genotyping 

methods were used to differentiate and group 55 antifungal AEFB isolates: internal-transcribed 

spacer region (ITS) PCR and randomly amplified polymorphic DNA (RAPD) PCR. The RAPD-PCR 

distinguished greater levels of genetic polymorphisms amongst isolates than did the ITS-PCR, 

revealing 14 different profiles as opposed to the three obtained from ITS-PCR; with 42% of isolates 

associated with a single RAPD-PCR banding profile. Phylogenetic relationships between 

representatives of each of the RAPD-PCR fingerprint groupings were determined by sequence 

analysis of 16S rRNA and gyrase subunit A (gyrA) gene fragments. In each instance, several distinct 

clusters were discernable, though gyrA sequences displayed higher levels of strain-level sequence 

heterogeneity. Comparisons of both gene sequence types with reference strains from the GenBank 

database revealed similarities to several known plant-associated strains of AEFB, including B. 

amyloliquefaciens subsp. plantarum and B. subtilis. Matrix-assisted laser deionisation-desorption 

time-of-flight mass spectrometry (MALDI-TOF-MS) based identification of selected AEFB was 

evaluated by comparing spectral data from AEFB isolates with reference strains in a Bruker BDAL 

Biotyper database. Only three out of the 14 isolates evaluated were identified to species level with 

acceptable confidence levels. This poor taxonomic resolution was ascribed to a paucity of applicable 

reference strains in the BDAL library. Nevertheless, mass spectra profiles of each isolate allowed for 

the clustering of related isolates to be achieved when dendograms were created. Antifungal 

compounds were extracted from 14 isolates using an acid-precipitation and methanol extraction 

protocol. Detection and identification of lipopeptide compounds in these extracts was assessed using 

thin-layer chromatography (TLC) and MALDI-TOF-MS. PCR-based screening for lipopeptide 

production potential using selected lipopeptide gene markers (viz. surfactin, iturin, bacillomycin, and 
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fengycin) was also evaluated for the selected 14 isolates. These isolates were found to produce 

multiple lipopeptide compounds; including homologues of surfactin, iturin, and fengycin. However, 

disparities that emerged between PCR, TLC, and MALDI-TOF-MS data suggest that some PCR primers, 

the ituD marker in particular, showed limited specificity amongst the AEFB strains screened. Based 

on the overall findings, nine isolates proceeded to in vivo screening against Podosphaera spp. using 

an agarised detached cotyledon assay and a biocontrol pot trial. Isolates achieving the most effective 

antagonism of Podosphaera spp. differed in each respective assay. Isolate cce175 provided the 

highest antagonism in the biocontrol pot trial, and isolate sqo279 provided the best results in the 

detached cotyledon assay. The impacts of inoculum preparation were assessed using isolate cce175 

in a biocontrol pot trial. Treatments varied in cell growth phase and assessed cell-free supernatant, 

whole broth, and cell-only fractions on biocontrol efficacy compared to a Tebuconazole (430 g/l) 

fungicide control. None of the treatments were found to impact disease at a statistically significant 

level. The merits and limitations of the various screening approaches used, and issues surrounding 

the isolation and assessment of biocontrol efficacy in plant-associated AEFB, are discussed. 
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UV = Ultraviolet 
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INTRODUCTION 

 

Disease control is an age-old challenge facing agriculture, which has relied heavily on chemical 

pesticides as the principle means of controlling crop pests. Dependence on pesticides has escalated 

the prevalence of pathogen resistance and poses risks to the health of the environment, which 

highlights the need to develop sustainable and environmentally compatible ways of controlling crop 

pests (Razdan and Gupta, 2009; Pal and McSpadden Gardener, 2006). Over the last few decades 

research into the development of more eco-friendly means of controlling plant diseases has 

expanded significantly (Heydari and Pessarakli, 2010). An avenue that has gained favour in recent 

years is the application of biocontrol agents, specifically amongst bacteria that exhibit antagonism 

towards plant pathogens (Heydari and Pessarakli, 2010; Mathre et al., 1999). Such formulated 

biopesticide products are able to target a desired pest at lower levels of application and also offer 

lower levels of environmental persistence compared to traditional pesticides (Thakore, 2006).  

 

The isolation and screening of potential biocontrol agents from the environment is a complex 

process and success in controlling a disease cannot be guaranteed (Schisler and Slininger, 1997). 

Screening strategies are inherently selective and there are always risks of excluding a potentially 

useful candidate. The key to discovering a successful biocontrol agent lies in implementing screening 

strategies which take into account ecological considerations as well as the modes of action linked to 

disease antagonism (Schisler and Slininger, 1997). Ideally, screening protocols should be able to deal 

with large numbers of candidates and achieve results within a relatively short space of time (Schisler 

and Slininger, 1997; Spurr, 1985). Knowledge of the ecological requirements of an antagonist and 

the modes of action it employs will also influence the screening approaches used (Jijakli and 

Lepoivre, 1998; Schisler and Slininger, 1997). In the field, a biocontrol agent will need to compete 

and establish within a targetted niche, and carry out antagonistic activities under the prevailing 

conditions associated with the intended habitat (Schisler and Slininger, 1997). The application of a 

streamlined approach to biocontrol agent screening prevents the squandering of time and 

resources. Furthermore, well thought out screening protocols reduce the likelihood of promising 

candidate isolate(s) being overlooked (Schisler and Slininger, 1997). 
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A study was initiated to develop screening protocols for selecting candidate biocontrol agents (BCAs) 

specifically targetting AEFB isolates antagonistic towards cucurbit powdery mildew. This group of 

bacteria were chosen as candidates for BCA screening since various species and strains have been 

associated with phytopathogen control (Borriss, 2011; Ongena et al., 2010). A number of Bacillus 

and Paenibacillus species are antagonistic towards many fungal, oomycete and bacterial plant 

pathogens; and their significance in plant health maintenance and interactions with the plant host 

are widely recognised (Borriss, 2011; Govindasamy et al., 2010; Ongena et al., 2010; Nagórksa et al., 

2007; McSpadden Gardener, 2004).  

 

Powdery mildew of cucurbits disease is caused by either of two biotrophic fungal pathogens, 

Podosphaera fusca (syn. P. xanthii) and Golovinomyces cichoracearum (Pérez-García et al., 2009; 

Pérez-García et al., 2001; Zitter et al., 1996). Cucurbit powdery mildew is relevant to most species of 

cucurbits grown under both field and greenhouse conditions, and is found throughout South Africa, 

and indeed in all parts of the world where cucurbits are cultivated (Pérez-García et al., 2009; Pérez-

García et al., 2001; Zitter et al., 1996). Hundreds of thousands of tons of cucurbits are produced 

annually in South Africa (South African Department of Agriculture, Forestry and Fisheries, 2013). In 

2007 alone, South African losses to powdery mildew were estimated at between R7 million to R11 

million (Haupt, 2007). Historically fungicides were the primary means of controlling this disease, with 

alternative control methods including sulfur, mineral, and natural oil applications being used (Pérez-

García et al., 2009, Robinson and Decker-Walters, 1997, Bélanger et al., 1998). Previous research has 

shown that B. subtilis isolates have potential as antagonists of P. fusca; and several Bacillus spp. 

strains have been commercialised for use against powdery mildew of cucurbits (Borriss, 2011; Pérez-

García et al., 2011; Ongena et al., 2010; Romero et al., 2004). 

 

The aim of this study was to isolate and screen for phyllosphere-competent AEFB antagonistic 

towards cucurbit powdery mildew. Fungal antagonism was applied as the primary selection 

characteristic of AEFB isolates. However, due to the biotrophic nature of P. fusca, isolates were 

initially screened for fungal antagonism using surrogate fungal pathogens. The production of 

lipopeptide compounds was also investigated since compounds within the surfactin, iturin, and 

fengycin families have been shown to contribute to the success of AEFB in disease control activities 

and play an important role in facilitating plant colonisation (Ongena et al., 2010; Ongena et al., 2009; 

Ongena and Jacques, 2008; Nagórksa et al., 2007; Romero et al., 2007a).  
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The objectives of this research can be summarised as follows:- 

1. The isolation of phyllosphere-dwelling AEFB from a range of cucurbit species. 

2. Screening AEFB isolates for antifungal activity in vitro using surrogate fungal pathogens. 

3. Use of genotyping methods to differentiate and group AEFB isolates. 

4. Evaluating different screening methods for detecting lipopeptide compounds, including gene 

marker PCR and the use of MALDI-TOF-MS.  

5. Assessing a detached cotyledon assay as a laboratory-based in vivo method for screening for 

antagonists of cucurbit powdery mildew. 

6. Evaluating selected isolates against the P. fusca pathogen in biocontrol pot trials. 
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CHAPTER ONE  

Literature Review 

1.1. Introduction 

It is estimated that at least 10% of global crop yields are lost to plant diseases annually, costing 

billions of US dollars (Cawoy et al., 2011). With increased pressure on food production from a 

growing human population, crop management is crucial to increase yield. In recent years, alternative 

crop management programs have been developed to lessen the dependence on chemicals. This shift 

has been driven by a growing awareness of the environmental risks associated with the widespread 

application of synthetic chemical pesticides (Cawoy et al., 2011). The emergence of pathogen 

resistance to many of the active chemical constituents is also a major concern (Heydari and 

Pessarakli, 2010). Biological control of plant diseases offers a viable alternative to traditional 

chemical disease control practices. In particular, many microbial biological control products are now 

being used in place of chemical pesticides (Cawoy et al., 2011). Such biopesticides have many 

advantages over traditional chemical products. Aside from reduced environmental impacts, 

biopesticides are effective in smaller quantities, non-target effects on beneficial organisms are 

lower, and they decompose faster than traditional chemicals (Thakore, 2006). 

 

In plant pathology, microbial biological control (or biocontrol) is defined as the use of either the 

beneficial microorganism itself or its separated metabolites to control plant disease (Pal and 

McSpadden Gardener, 2006; Thakore, 2006). For this review, the term biocontrol agent (BCA) refers 

to microbial antagonists of phytopathogens. The successful implementation of a biocontrol strategy 

is often dependent on the compatibility of the BCA with the habitat conditions (Schisler and 

Slininger, 1997). This has led to consumer distrust regarding the predictability and sustainability of 

biocontrol practices (Emmert and Handelsman, 1999; Jijakli and Lepoivre, 1998; Handelsman and 

Stabb, 1996). The microbial populations in a given habitat will constantly interact with each other 

and their host, with the activities of each species being influenced by the surrounding environment 

(Heydari and Pessarakli, 2010). Knowledge of the modes of action of an introduced antagonist, its 

interactions with the extant microbial community, and its ability to establish within the habitat will 

greatly increase the likelihood of successful disease control (Cawoy et al., 2011; Schisler and 

Slininger, 1997). Microbial antagonists must therefore be screened for compatibility with both the 

intended habitat and targetted pathogen(s) (Cawoy et al., 2011; Schisler and Slininger, 1997). 
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Various methods of formulating and applying a BCA are assessed and optimised in order to maximise 

the benefits of the biocontrol strategy (Heydari and Pessarakli, 2010; Schisler and Slininger, 1997). A 

substantial portion of the BCA development process involves screening the candidate antagonists 

under conditions mimicking the intended habitat. This is a change from the traditional in vitro assays 

performed on highly nutritious cultures, which often do not translate to performance in the field 

(Schisler and Slininger, 1997; Knudsen and Spurr, 1988; Spurr, 1985). Laboratory-based assays and 

intensive artificial culture practices can alter the wild-type characteristics of the microbe, which 

ultimately determine its survival as an introduced agent (Schisler and Slininger, 1997; Knudsen and 

Spurr, 1988).  

 

Diseases affecting members of the plant family Cucurbitaceae are of great interest. Cucurbit fruits 

include squashes, melons, and cucumbers, making them an economically important group of crop 

plants worldwide. An estimated 600,000 tons of cucurbit fruits worth over R 3.5 billion were 

harvested in South Africa in 2012 (South African Department of Agriculture, Forestry and Fisheries, 

2013). Cucurbits are prone to many diseases, the most recognisable and ubiquitous of which is 

powdery mildew (Pérez-García et al., 2009). In cucurbits this disease is caused by either of two 

biotrophic fungal species, namely Podosphaera fusca (syn. P. xanthii) and Golovinomyces 

cichoracearum (Pérez-García et al., 2009; Pérez-García et al., 2001; Zitter et al., 1996). The host 

ranges of these agents comprise most of the cucurbit species throughout the world that are grown 

in both greenhouse and field conditions (Glawe, 2008; Zitter et al., 1996). The disease causes yield 

losses by severely damaging the plant’s ability to photosynthesise and produce fruit (Zitter et al., 

1996). Like many phytopathogens, powdery mildews have developed fungicide resistant races, 

prompting growers to adopt alternative measures of disease control, such as integrated pest 

management (IPM) strategies, which often incorporate microbial BCAs. Several species of AEFB show 

antagonism towards powdery mildew of cucurbits, with certain strains having been developed 

commercially as biofungicides against a variety of crop diseases (Borriss, 2011; Cawoy et al., 2011; 

Romero et al., 2007a, Romero et al., 2007b; Romero et al., 2007c; Romero et al., 2004; Bettiol et al., 

1997). 

 

Ideally, antagonist screening protocols for powdery mildew in cucurbits should be amenable to 

screening large numbers of candidates with a high throughput, and allow for rapid differentiation 

between isolates (Schisler and Slininger, 1997). Screening of BCA candidates must take into account 
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not only the efficacy of antagonism, but also the modes of action, the ability of an isolate to survive 

and perform under the prevailing habitat conditions, and its interactions with the target pathogen 

on the desired plant host(s) (Schisler and Slininger, 1997; Spurr, 1985). The screening of bacterial 

isolates for antagonism of powdery mildew of cucurbits is complicated by the biotrophic nature of 

the causal fungal pathogens, which require live host tissue to survive (Pérez-García et al., 2009). 

 

This review focuses on topics pertinent to the screening and application of AEFB as biological control 

agents against powdery mildew of cucurbits and addresses the following elements:  

(i) The phyllosphere as a habitat for biological control of foliar diseases; 

(ii) Epidemiology of cucurbit powdery mildew pathogens and current disease control 

methods; 

(iii) Roles of AEFB species in disease control and their and modes of action; and 

(iv) Screening approaches that can be used to select for AEFB as antagonists of cucurbit 

powdery mildew. 

 

1.2. The phyllosphere habitat and foliar biocontrol 

The size of the global phyllosphere habitat has been estimated at 6.4 x 108 km2 of leaf surface area, 

where bacteria constitute the major component of microbial populations, averaging up to 108 cells 

per gram of leaf (Lindow and Brandl, 2003). Epiphytic bacterial populations are variable in size due 

to fluctuations in the physical and nutritional conditions experienced by the exposed leaf surface 

(Andrews, 1992). The phylloplane microclimate is defined by a translaminar boundary layer created 

by the release of stomatal water vapour, which serves as a buffer against the worst of the 

environmental extremes (Lindow and Brandl, 2003). However, the boundary layer is not rigid, and is 

affected by several environmental variables such as temperature, relative humidity, dew, rain, wind, 

and radiation (Lindow and Brandl, 2003). The boundary layer and leaf surface topography—defined 

by structures such as trichomes, hydathodes, leaf veins, and stomata—ultimately determine the 

successful establishment of a microorganism (Lindow and Brandl, 2003; Andrews, 1992).  

 

Indeed, the phyllosphere is a harsh habitat for microorganisms, which must adapt to the shifting 

abiotic and biotic conditions in order to colonise a niche and survive there (Vorholt, 2012). Nutrients 

and water are unevenly distributed across the phylloplane and their availability is constantly 
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changing (Lindow 2006; Lindow and Brandl, 2003). Plant cell leakage and secretory organs such as 

trichomes and hydathodes provide most of the nutrients available to the microflora, though 

exogenous sources as pollen or honeydew are seasonally available (Blakeman and Fokkema, 1982). 

In addition to nutrients, the leaf may also secrete antimicrobial compounds—such as phenolics and 

terpenoids—which can negatively impact microbial survival (Blakeman and Fokkema, 1982). 

Microflora establishment is also influenced by the availability of free space and shelter which is 

determined by the leaf cuticle layer and surface topography (Vorholt, 2012).  

  

The phyllosphere is considered a short-lived environment because the presence of leaves on many 

plants is variable. Annual plants complete their life cycle within one year, while perennial plants are 

constantly shedding and replacing leaves (Vorholt, 2012). Due to the more transitory and exposed 

nature of the phylloplane, biocontrol of plant diseases has generally been more successful in the 

rhizosphere than in the phyllosphere (Vorholt, 2012; Andrews, 1992). Above-ground plant biomass 

and the associated microbial populations are prone to spatial and temporal variability, which results 

in seasonal microbial successions (Knudsen and Spurr, 1988). Microbial community composition over 

time, the manner of BCA application, and the prevailing phyllosphere conditions influence the 

establishment and survival of an introduced antagonist (Lindow, 2006; Lindow and Brandl, 2003; 

Andrews, 1992; Andrews, 1990; Knudsen and Spurr, 1988).  

 

The microflora of the above-ground biomass of plants is highly species rich, and complex 

interactions exist between bacteria and fungi, and between the microbial populations and the host 

plant (Vorholt, 2012). When selecting a BCA, an understanding of the epidemiology of the pathogen 

is required because this will ultimately determine which type of antagonist should be applied in a 

given situation (Andrews, 1992). The ability of a BCA to establish itself within a particular niche is 

essential for successful disease control. The mode(s) of action of a BCA and its ability to establish 

itself within a particular niche are essential for successful disease control (Schisler and Slininger, 

1997). Several approaches to foliar biocontrol have been developed in order to promote BCA 

establishment and antagonistic activity, as outlined by Andrews (1992): 

(i) ensuring pre-emptive leaf colonisation by the BCA to exclude the establishment of 

pathogens; 

(ii) matching the agent to the intended environment; 

(iii) using foreign antagonists only where the habitat is conducive to their growth; and 
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(iv) relating the antagonist’s mode of action to the pre-penetration requirements of the 

pathogen. For example: biotrophic rusts and mildews require little or no exogenous nutrient 

supply to penetrate the plant, thus antibiosis or mycoparasitism are effective in decreasing 

or inhibiting pathogen sporulation (Fokkema, 1996; Andrews, 1992). Alternately, 

necrotrophic pathogens are best repelled using saprophytic antagonists, whose actions will 

deplete exogenous nutrients before pathogen establishment (Blakeman and Fokkema, 1982). 

 

The established community of non-pathogenic epiphytic microorganisms can exert a degree of 

background-level biocontrol against phytopathogens by outcompeting them for available resources 

(Lindow and Leveau, 2002; Andrews, 1990; Singh and Faull, 1988). Extant phylloplane microflora can 

be modified to promote the establishment of an introduced BCA through the application of foliar 

nutrients (Mercier and Lindow, 2000; Andrews, 1990; Blakeman and Fokkema 1982). For example, 

nutrients such as inosine, tyrosine, adenosine, and L-alanine are known to trigger endospore 

germination and have been used to revive dormant AEFB species (Knudsen and Spurr, 1988). 

Additionally, increasing nutrition stimulates metabolic activity in BCAs, rendering the bacterial 

antagonists more effective at disease suppression. Thus, keeping the BCAs in a metabolically active 

state will extend their usefulness (Schisler and Slininger, 1997; Andrews, 1992; Andrews, 1990; 

Knudsen and Spurr, 1988).  

 

1.3. Bacillus and related genera in plant health and disease control 

The AEFB are of the phylum Firmicutes, order Bacillales. The family Bacillaceae are comprised of the 

genus Bacillus and eighteen other related genera as defined by 16S rRNA gene phylogeny (Schleifer, 

2009). The characteristics of the genus Bacillus according to Bergey’s Manual of Systematic 

Bacteriology are briefly listed in Table 1.1. These bacteria are renowned for resistant endospore 

formation, synthesis of peptide and non-peptidal antibiotics, and the production of a wide range of 

extracellular enzymes. The diversity among Bacillus species—in terms of nutrient utilisation, motility, 

and physicochemical growth optima—allows them to occupy many different niches (McSpadden 

Gardener, 2004). The ecology of many Bacillus and Paenibacillus species in agriculture is widely 

recognised, as these saprophytes are commonly found in soil and in association with plants 

(Schleifer, 2009; McSpadden Gardener, 2004). Their pervasiveness throughout the agricultural 

ecosystem is considered to be the root of their competence in plant disease control and plant health 

maintenance (Jacques, 2011; Govindasamy et al., 2010; Ongena et al., 2010). 
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Table 1.1. General characteristics of Bacillus species (Schleifer, 2009; Slepecky and Hemphill, 

2006). 

Characteristic Appearance 

Cell morphology  and Gram 
reaction 

Gram positive rods. 

Rods have rounded ends, although squared ends define the Bacillus cereus 
group. 

Diameter 0.4–1.8 µm, length 0.9–10.0 µm. 

Gas requirements Aerobic or facultatively aerobic. 

Metabolism Chemo-organotrophic. 

Endospore formation 
Formed at the completion of the exponential phase of growth. Triggers 
include nutritional deprivation, temperature, pH, population density, and 
presence and concentrations of certain minerals. 

Endospore location 
and morphology 

Sporangium morphology can be indicative of species, sporangial swelling 
variable between strains. 

Spore shapes: cylindrical, ellipsoidal, spherical and, rarely, kidney-shaped. 

Spore positions frequently subterminal; although central, paracentral, and 
terminal locations are present in some species (position can be 
diagnostic). 

Growth conditions Variable tolerances to pH, salt and temperature. 

Predominant environments 

Highly ubiquitous. 

Predominantly associated with soil, or habitats contaminated by soil. 

Some obligate pathogens. 

Some animal or insect associations. 

Colony morphology 

Colony texture, margin, elevation and surface appearance are highly 
variable. 

Colouring ranges from buff, creamy grey to off-white; some pigmented 
colonies such as black, brown, orange, pink and yellow. 

 

The ability to synthesise a spectrum of antimicrobial compounds is a desirable trait for microbial 

BCAs. Approximately 167 compounds have been identified among Bacillus spp. which are 

antagonistic towards bacteria, fungi, protozoa, and viruses (Bottone and Peluso, 2003). A range of 

antifungal peptides are produced by Bacillus spp. and these can be divided into cyclic lipopeptides, 

phosphono-oligopeptides, and dipeptides (Quan et al., 2010). The production of lipopeptide 
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compounds, although not necessary for sporulation, has been linked to a bacterial survival response 

and advancement into specific ecological niches (Ongena and Jacques, 2008; Stein, 2005). 

Substantial portions of Bacillus spp. genomes are dedicated to the production of antimicrobial 

compounds, allowing for the synthesis of a range of structurally and functionally diverse compounds 

(Ongena and Jacques, 2008; Nagórksa et al., 2007; Stein, 2005).  

 

The ability to produce antifungal compounds has played a significant role in the application of AEFB 

species in biocontrol strategies. Phytopathogen antagonism has been described in a range of Bacillus 

and Paenibacillus species including B. subtilis, B. amyloliquefaciens, B. cereus, B. licheniformis, B. 

megaterium, B. mycoides, B. pumilus, P. polymyxa, and P. macerans (McSpadden Gardener, 2004; 

Shoda, 2000). No individual species or strain is able to produce an entire range of antibiotic 

compounds, and synthesis of these compounds is often strain-specific (Nagórksa et al., 2007; Stein, 

2005). 

 

Plant-associated and free-living AEFB species may also be involved in other aspects of plant health 

maintenance besides antibiosis. These include nutrient competition and solubilisation (e.g. inorganic 

phosphates), extracellular enzyme secretion (including chitinases, glucanses, cellulases, and 

amylases), and plant growth stimulation through secretion of auxins, gibberellins and cytokinins 

(Kumar et al., 2012; Laslo et al., 2012; Heydari and Pessarakli, 2010; Quan et al., 2010; McSpadden 

Gardener, 2004). Research has shown that Bacillus and Paenibacillus spp. are also involved in 

stimulating plant host resistance to pathogens (Govindasamy et al., 2010). Induced resistance 

mechanisms in the plant can be defined as induced systemic resistance (ISR) and systemic acquired 

resistance (SAR) which are differentiated by their respective elicitor compounds and pathways 

(Choudhary and Johri, 2009). Bacillus species known to activate defence systems in the plant include 

B. amyloliquefaciens, B. cereus, B. mycoides, B. pumilus, B. sphaericus, B. pasteurii, B. thuringiensis, 

B. cereus, and B. subtilis (Choudhary and Johri, 2009; Kloepper et al., 2004; McSpadden Gardener, 

2004; Bargabus et al., 2002; Raaijmakers et al., 2002). 

 

Bacillus spp. have been commercially developed for fungal disease control since 1990 (Quan et al., 

2010). They are among the most predominant microbes used in biopesticide formulations in North 

America, representing 9% of the market share (Borriss, 2011). The list of commercially formulated 

Bacillus-based BCAs is extensive, with some notable examples including: Serenade (B. subtilis 
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QST713), Kodiak (B. subtilis GB03), Phosphobacter (B. megaterium and B. coagulans), Ecoguard (B. 

licheniformis), Yield Shield (B. pumulis GB34), Bioyield (B. amyloliquefaciens and B. subtilis GB 122), 

HiStick and Subtilex (both B. subtilis MB1600), and Taegro (B. amyloliquefaciens subsp. plantarum 

FZB24) (Borriss, 2011; Pérez-García et al., 2011; Govindasamy et al., 2010; Ongena et al., 2010). In 

particular, the biocontrol and plant health promotion capabilities of B. subtilis isolates have been 

extensively described against a range of crop diseases (Malfanova et al., 2012; Zeriouh et al., 2011; 

Baysal et al., 2008; Cazorla et al., 2007; Romero et al., 2007b; Ongena et al., 2005a; Bais et al., 2004; 

Chitarra et al., 2003; Collins and Jacobsen, 2003; Collins et al., 2003; Bettiol et al., 1997; Ferreira et 

al., 1991; McKeen et al., 1986). The United States Food and Drug Administration (USFDA) has 

categorised many of these B. subtilis strains as “generally regarded as safe” (GRAS) in their capacity 

as biopesticides (Cawoy et al., 2011). 

 

1.3.1. Bacillus spp. lipopeptide compounds and their roles in plant disease control 

Lipopeptide compounds consist of a cyclic or short linear oligopeptide linked to a lipid tail 

(Raaijmakers et al., 2010). These substances are renowned for their antimicrobial, antitumor, and 

general surfactant properties (Raaijmakers et al., 2010; Ron and Rosenberg, 2008). Lipopeptide 

compounds are produced by certain fungi (e.g. Aspergillus spp.) and bacteria (e.g. Streptomyces 

spp., Pseudomonas spp., and many Bacillus spp.) (Raaijmakers et al., 2010). Lipopeptides are among 

the antibiotic compounds most consistently produced by B. subtilis, with more than 30 variants 

discovered in various strains (Jacques, 2011; Stein, 2005). Recently, strains of B. amyloliquefaciens 

have also been found to synthesise cyclic lipopeptide compounds which are thought to play a role in 

their biocontrol abilities (Xun-Chao et al., 2013; Alvarez et al., 2011; Balhara et al., 2011; Chen et al., 

2010; Alvindia and Natsuaki, 2009; Arguelles-Arias et al., 2009; Yu et al., 2002; Yoshida et al., 2001). 

 

Lipopeptides are low-molecular-mass surfactants that function as bio-emulsifiers through the 

modification of the physical and/or chemical properties at interfaces (Jacques, 2011; Stein, 2005). 

Stein (2005) suggests that lipopeptides offer three main advantages to general bacterial survival: 

(i) increasing the surface area of hydrophobic water-insoluble growth substrates; 

(ii) improving the bioavailability of hydrophobic substrates by improving their solubility; and 

(iii) assisting in bacterial detachment and attachment to or from surfaces. 
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In most cases, peptide antibiotics are produced at the early stages of sporulation, and it has been 

suggested that they may play roles in sporulation (Ron and Rosenberg, 2001). 

The lipopeptides of Bacillus spp. are classified into four classes: surfactins, iturins, fengycins (or 

plipastatins), and kurstakins (Jacques, 2011; Ongena and Jacques, 2008; Hathout, 2000). Synthesis of 

lipopeptide compounds is ribosome-independent, using the multimodular enzymes non-ribosomal 

peptide synthetase (NRPS) and polyketide synthetase (PKS) (Fickers, 2012; Tapi et al., 2010). Each 

lipopeptide family is synthesised by open reading frames (ORFs) which vary in number between 

compounds and code for the various modules of these compounds (Fickers 2012; Tapi et al., 2010). 

These ribosome-independent synthesis systems are responsible for lipopeptide compound diversity 

in fatty acid and peptide amino acid constituency, chain lengths, branching, and cyclisation (Jacques, 

2011; Ongena and Jacques, 2008; Nagórksa et al., 2007; Stein, 2005). Such structural features 

ultimately determine biological activity, activity spectra, resistance to enzyme hydrolysis, and high 

temperature and pH tolerances of the lipopeptides (Nagórksa et al., 2007). 

 

The surfactin family variants are lipoheptapeptides characterised by a cyclic lactone ring structure, 

interlinked with a β-hydroxy fatty acid (Ongena and Jacques, 2007; Stein, 2005). Surfactins are 

amphiphilic in nature and readily link up to lipid layers. Their structures allow them to act 

antagonistically by altering biological membrane integrity in a dose-dependent manner (Jacques, 

2011; Ongena and Jacques, 2008). The members of this family include esperin, lichenysin, 

pumilacidin, and surfactin (Ongena and Jacques, 2008). Surfactins are haemolytic, and display 

antiviral, antimycoplasma, and antibacterial properties (Stein, 2005). However, surfactins have 

limited antifungal ability owing to sensitivity to sterols (e.g. ergosterol) which interfere with the 

compounds’ interaction with the phospholipid bilayer (Jacques, 2011). 

 

The iturin family are comprised of heptapeptides linked to a β-amino fatty acid chain of variable 

length (C14–C17) (Jacques, 2011; Ongena and Jacques, 2007). Iturins possess haemolytic and in vitro 

antifungal and anti-yeast activities, yet exhibit neither antibacterial nor antiviral effects (Jacques, 

2011; Ongena and Jacques; 2008, Latoud et al., 1990). They cause osmotic imbalance in affected 

cells by creating ion-conducting pores in biomembranes, rather than direct membrane disruption as 

seen in surfactins (Ongena and Jacques, 2008). Their efficacy against filamentous fungi has shown 

dependence on membrane sterol composition, being more active against cholesterol-containing 



 
 

13 
 

membranes (Balhara et al., 2011; Latoud et al., 1990). The variants in this family are bacillomycin D, 

F, L and LC; iturin A, AL, C; and mycosubtilin (Ongena and Jacques, 2008). 

 

The third lipopeptide family are the fengycins, often referred to as plipastatins. These are 

lipodecapeptides, with an internal lactone ring in the peptidic moiety between the carboxyl terminal 

amino acid (Isoleucine) and the hydroxyl group in the side chain. The β-hydroxy fatty acid chain 

(C14–C17) can be saturated or unsaturated (Ongena and Jacques, 2007). Fengycin variants include 

fengycin A and B; and plipastatin A and B (Ongena and Jacques, 2008). The A and B forms differ in 

the amino acid residue in position 6, with alanine in form A and valine in form B (Jacques, 2011). 

Fengycins exhibit no haemolytic abilities, but they are toxic to a broad range of filamentous fungi 

(Jacques, 2011). This activity is believed to be linked to the compounds’ interaction with lipid layers, 

which potentially modifies cell membrane packing and permeability in a dose-dependent fashion 

(Jacques, 2011; Ongena and Jacques, 2008).  

 

Kurstakins were originally isolated from B. thuringiensis kurstaki HD-1 (Hathout et al., 2000). 

Researchers suggest that kurstakin-related compounds may exist in other AEFB species (Price et al., 

2007; Madonna et al., 2003). Kurstakins have also been implicated in the swarming growth on agar 

of B. thuringiensis strains able to produce it, and facilitate bacterial colonisation of the insect 

cadaver (Bechet et al., 2012). Kurstakin acts similarly to its lipopeptide relatives as a pore-forming 

compound, though it exhibits a limited antifungal spectrum (Bechet et al., 2012). Antagonism 

towards Stachybotrys charatum has been described, though whether this compound has activities in 

association with plants or against plant diseases in the wild habitat is as yet unknown (Hathout et al., 

2000).  

 

Lipopeptide compounds have been shown to play various roles in association with plants (Pérez-

García et al., 2011). Surfactin is perhaps the most studied of the lipopeptides with regards to its 

capacity to facilitate bacterial swarming and biofilm formation, as well as inhibiting biofilm 

formation of other bacteria (Jacques, 2011; Nagórksa et al., 2007). The surfactins also contribute 

directly to bacterial pathogen antagonism and signal mediation to plant cells (i.e. induced resistance 

mechanisms); iturins are involved in bacterial spreading and show antibacterial and antifungal 

activity; and fengycins are involved in signal mediation to plant cells and have antifungal activity 

(Ongena et al., 2005a; Ongena et al., 2005b). The lipopeptide families have been shown to interact 
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synergistically on the plant host, with partnerships including surfactin and iturin, surfactin and 

fengycin, and iturin and fengycin (Ongena and Jacques, 2008; Nagórksa et al., 2007; Ongena et al., 

2007). 

 

1.4. Powdery mildew on cucurbits 

There are over 200 recognised cucurbit diseases, of which powdery mildew is considered to be the 

most recognisable and ubiquitous, appearing in a wide range of climates on various cucurbit species 

(Pérez-García et al., 2009; Agrios, 2005; Robinson and Decker-Walters, 1997). Symptoms are 

characterised by white spots on the leaf surface, petioles and stems (Zitter et al., 1996), as shown in 

Figure 1.1. These spots increase in size and coalesce over time, eventually covering the entire leaf 

surface as infection advances (Zitter et al., 1996). 

 

Powdery mildew on cucurbits is attributed either of two species of fungi belonging to the 

Ascomycete family, namely Podosphaera fusca (Fr.) U. Braun & Shishkoff (2000) (previously P. 

fuliginea, P. xanthii, Sphaerotheca fuliginea, S. fusca) and Erysiphe cichoracearum (DC.) (1805) 

(previously E. orontii or Glovinomyces cichoracearum) (Pérez-García et al., 2009; Agrios, 2005; Pérez-

García et al., 2001; Zitter et al., 1996). The taxonomy of these two organisms has been complicated 

due to the wide degree of natural variations and genetic plasticity found with each species, which 

has resulted in the multiple name modifications (Pérez-García et al., 2009; Zitter et al., 1996). It is 

now generally accepted that the genus Sphaerotheca has been incorporated into Podosphaera 

(Pérez-García et al., 2009). Races of both pathogens have been recognised throughout the world 

(Zitter et al., 1996). A lesser form of cucurbit powdery mildew is caused by Leveillula taurica, and is 

restricted to the Mediterranean and few other regions (Robinson and Decker-Walters, 1997). 

Podosphaera fusca is considered to be the main causal agent of cucurbit powdery mildew worldwide 

(Pérez-García et al., 2009). 

 

These fungi are obligate biotrophic parasites unable to be cultivated on conventional artificial 

laboratory media (Pérez-García et al., 2009; Agrios, 2005). Mycelia remain external to the leaf tissue 

using penetrative haustoria to gain nutrients from plant cells (Agrios, 2005; Robinson and Decker-

Walters, 1997). For research purposes, live plant host tissue is required to culture these fungi (Bardin 

et al., 2007). Some success has been achieved in preserving conidia and inducing germination of 
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barley powdery mildew spores in the laboratory, although most species of biotrophic fungi cannot 

be induced to germinate without live host tissue (Bardin et al., 2007; Pérez-García et al., 2006; Arabi 

and Jawhar, 2002).  

 

Powdery mildew seldom kills the host plant, but acts to the detriment of plant nutrition, 

photosynthetic capacity, growth, and yield by promoting early leaf senescence and defoliation 

(Bélanger et al., 1998). Infected cucurbits produce lower yields, both in the number and size of fruit 

and in a lowered length of time over which the fruit can be harvested (Pérez-García et al., 2009; 

Zitter et al., 1996). The fruits of infected plants are not directly attacked by the disease but—as a 

consequence of infection—fruits have reduced quality due to sunscald, incomplete or premature 

ripening, and poor flavour and storability (Zitter et al., 1996). Overall plant growth may show 

decreases of between 20–40%, with economic damage thresholds of 20% infected leaf area 

recorded (Agrios, 2005; Bélanger et al., 1998). 
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Plate 1.1. A cucurbit powdery mildew infected 4-week-old greenhouse-grown zucchini displaying 

characteristic white spots of powdery mildew colonies visible (A) on the leaves (B) and stem (C), 

which eventually lead to leaf chlorosis (D) and senescence. 
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1.4.1. Cucurbit powdery mildew life cycle and epidemiology 

The basic life cycle of the primary powdery mildew causal agent, P. fusca, is presented in Figure 1.1. 

Both P. fusca and E. cichorearum generally follow this life cycle, with some variation between each 

species as described below. In the asexual cycle of P. fusca, conidia produce short germ tubes when 

they come into contact with a susceptible host. A primary differentiated appressorium forms at the 

tip of a germ tube, from which a primary haustorium forms inside the host epidermal cell. A primary 

hypha then emerges which goes on to form secondary appressoria, eventually leading to secondary 

haustoria formation. At later stages, the primary hypha branches into secondary hyphae (Pérez-

García et al., 2009). The secondary hyphae give rise to conidiophores, which form chains of 5–10 

circular, rectangular, or ovoid conidia at their tips (Pérez-García et al., 2009; Agrios, 2005; Robinson 

and Decker-Walters, 1997). The mat of secondary hyphae and conidia creates the white mycelium 

on the leaf surface that is visible to the naked eye (Plate 1.1) (Pérez-García et al., 2009). This external 

existence leaves both mycelia and spores exposed to the environment and susceptible to being 

washed away by heavy rains or spread by air movement (Agrios, 2005; Robinson and Decker-

Walters, 1997). 

 

 

Figure 1.1. Life cycle of Podosphaera fusca, the primary causal agent of cucurbit powdery mildew 

(Pérez-García et al., 2009). 
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The sexual cycle of cucurbit powdery mildew is initiated when a compatible mating type is found for 

the heterothallic P. fusca, while the sexual cycle of the homothallic E. cichoracearum involves self-

compatible mating (Zitter et al., 1996). A chasmothecium is the result of sexual reproduction in both 

fungi and are generally perceived as overwintering and oversummering sources of inoculum (Pérez-

García et al., 2009). The chasmothecium in P. fusca has branched appendages and contains one 

ascus bearing eight ascospores, whereas that of E. cichoracearum is unbranched with multiple asci 

(Zitter et al., 1996). In the case of P. fusca, formation of a chasmothecium is a rare occurrence and 

has never been observed in the field, thus the prevalence of this sexual cycle is unknown (Pérez-

García et al., 2009; Robinson and Decker-Walters, 1997). 

 

The time interval between infection and disease appearance ranges from 3–7 days and many spores 

will be released during this time (Zitter et al., 1996). Symptoms of powdery mildew infection initially 

appear as pale yellow spots on the leaf, which evolve into the characteristic powdery white 

appearance with the onset of sporulation. In the case of P. fusca, infection may advance to a brown 

colouration (Pérez-García et al., 2009). The small, white circular spots are visible on both leaf 

surfaces, particularly in shaded leaves, and will progressively enlarge and coalesce until they cover 

the entire leaf (Robinson and Decker-Walters, 1997; Cheah et al., 1996). Initially symptoms appear 

on older leaves aged 7–8 weeks, thereafter symptoms appear progressively earlier with disease 

proliferation (Cheah et al., 1996). 

 

Powdery mildew inoculum enter an uninfected crop via windblown spores from infected areas, from 

out-of-season greenhouse cultivation of cucurbits, or from the pathogen overwintering through 

chasmothecia or bud perennation (dormancy within host plant buds) (Glawe, 2008; McGrath, 2001). 

Non-cucurbit plants are not considered to be major inoculum sources, due to the specialisation of 

the causal fungi to cucurbit hosts (Zitter et al., 1996). Once established, dry conditions favour 

disease colonisation, sporulation, and dispersal (Zitter et al., 1996). The conidia remain viable for up 

to 8 days under ambient conditions, and are spread to healthy leaves by air currents or water 

movement (Agrios, 2005; Zitter et al., 1996). Germination occurs in wet conditions and high 

humidity, although in sufficiently high relative humidity conidia are able to germinate without a 

surface film of water (Agrios, 2005; Cheah et al., 1996; Zitter et al., 1996). The optimum temperature 

range for disease development is 20–27°C (Cheah et al., 1996). Disease severity increases in shade, 
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where plants are closely spaced, and when luxuriant growth occurs due to high nitrogen levels 

(Zitter et al., 1996). 

 

The two primary causal agents of powdery mildew manifest on hosts almost identically, but can be 

distinguished by conidia morphology, inclusions that are detectable under bright field microscopy, 

and genetic studies (Pérez-García et al., 2009; Glawe, 2008). Bright field microscopy can assist in 

rapid differentiation between these two fungi by the following characteristics (Zitter et al., 1996): 

(i) Fibrosin bodies in conidia are unique to P. fusca and are visible in conidia treated with 3% 

potassium hydroxide solution (Figure 1.2). These bodies are straight to slightly curved, 

rodlike birefringent structures. Their presence is influenced by environmental conditions 

and do not appear in herbarium specimens.  

(ii) The edge line shapes between chained immature conidia appear sinuate (viz. wavy) in 

the genus Erysiphe, and crenate (viz. scalloped) in the genus Podosphaera.  

(iii) Germ tubes of P. fusca produces are forked, while those of E. cichoracearum are straight. 

 

 

 

Figure 1.2. Asexual conidia of powdery mildew cucurbits pathogens Podosphaera fusca (left) and 

Erysiphe cichoracearum (right). Fibrosin bodies are observable in the P. fusca conidia as indicated 

by the arrows (Bruce Watt, University of Maine; Paul Bachi, University of Kentucky Research and 

Education Center).  
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1.4.2. Control measures for powdery mildew of cucurbits 

Many fungicides are registered for use against cucurbit powdery mildew (Pérez-García et al., 2009; 

McGrath, 2001; Bélanger et al., 1998; Robinson and Decker-Walters, 1997). Repeated and excessive 

use of many of the commonly used, registered fungicides has led to the evolution of resistant races 

of the pathogen (McGrath, 2001; Zitter et al., 1996). In the wake of fungicide resistance, a variety of 

alternative control methods for cucurbit powdery mildew have been investigated, including the 

employment of IPM strategies (Bélanger et al., 1998; Reuvani et al., 1995).  

 

Management practices are important to the IPM approach because they break the disease cycle. For 

the IPM of cucurbit powdery mildew, such practices include alternative host eradication, deep 

ploughing, increased plant spacing (to lower relative humidity in the canopy), and plant monitoring 

for early detection (Razdan and Gupta, 2009). Resistant cultivars are currently seen as the best form 

of powdery mildew prevention and have been successfully bred in a variety of cucurbit species 

(Glawe, 2008; Robinson and Decker-Walters, 1997). Prophylactic methods for powdery mildew 

control include the application of unpasteurised milk, sulphur powder, plant extracts, compost 

extracts, salts, oils, clays, antitranspirants, or detergents to plant leaves (Pérez-García et al., 2009; 

Tesfagiorgis, 2009; Bélanger et al., 1998; Robinson and Decker-Walters, 1997).  

 

The development of BCAs for cucurbit powdery mildew has focussed largely on hyperparasitic fungi 

and yeasts, rather than bacteria (Bélanger et al., 1998). Fungal agents antagonistic towards cucurbit 

powdery mildew include: Acremonium alternatum, Pseudozima flocculosa, Sporothrix flocculose, 

Tilletiopsis spp., Ampelomyces quisqualis, and Verticillium lecanii (Razdan and Gupta, 2009; Kiss, 

2003; Romero et al., 2003; Bélanger et al., 1998). Antibiosis is the preferred method of biocontrol for 

powdery mildews, with research now shifting focus onto microorganisms such as Agrobacterium 

radiobacter, Gliocladium virens, Trichoderma spp., Pseudomonas spp., and Bacillus spp. (Bélanger et 

al., 1998). Certain Bacillus strains have been commercialised as biofungicides, and some are also 

active against powdery mildew, these include: B. subtilis GB03 (Companion), B. subtilis QST713 

(Rhapsody), B. subtilis QST713 (Serenade), B. pumilus QST2808 (Sonata), and B. subtilis CMB26 

(Pomex) (Borriss, 2011; Cawoy et al., 2011). 
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1.4.2.1. Bacillus subtilis and powdery mildew biocontrol 

Bacillus subtilis isolates have been reported as successful antagonists of powdery mildew of 

cucurbits, whether live cells or extracted antifungal lipopeptides are applied against the disease 

(Romero et al., 2007a; Romero et al., 2007b; Romero et al., 2007c; Romero et al., 2004; Romero et 

al., 2003; Bettiol et al., 1997). Certain isolates obtained from the cucurbit phyllosphere and 

rhizosphere have displayed antagonistic activity toward P. fusca, with the establishment of the 

bacteria on the leaf surface and colonisation of fungal hyphae and conidia observed (Romero et al., 

2004). The biocontrol efficiency of the B. subtilis strains UMAF6614, UMAF6619, UMAF6639, and 

UMAF8561 were found to be determined by lipopeptide production (Romero et al., 2007a; Romero 

et al., 2007b; Romero et al., 2007c; Romero et al., 2004). 

 

Romero et al. (2007a) reported reduced conidial germination and concomitant disruption of fungal 

leaf colonisation achieved with cell-free culture filtrates. These filtrates were found to contain 

surfactin, fengycin, iturin A, and bacillomycin, with the latter three compounds recognised for their 

antifungal activity (Ongena and Jacques, 2008). Disease antagonism persisted while lipopeptides 

could still be detected, and ceased with the absence of these compounds. The requirement of 

lipopeptides for the antagonism of cucurbit powdery mildew was further supported by an absence 

of disease antagonism after site-directed mutagenesis of a single locus in the bacterial genome 

controlling production of key lipopeptides (Romero et al., 2007a). Furthermore, those mutants 

producing a combination of iturin A and surfactin continued to provide significant antifungal activity, 

which implies some degree of synergism between these two compounds (Romero et al., 2007a). 

Based on previous findings, researchers have extrapolated that the powdery mildew fungus may 

show increased susceptibility to AEFB lipopeptides as these fungi contain lower amounts of sterols in 

their cell membranes (Jacques, 2011; Romero et al., 2007a). 

 

The ultrastructural damage caused to P. fusca after exposure to antagonistic B. subtilis isolates was 

further explored by Romero et al. (2007b). Bacillus subtilis strains UMAF6614 and UMAF6639 

lowered P. fusca germination rates in assay, achieving decreases of 11% and 17% respectively. It was 

observed that exposure to lipopeptides caused conidia to shrink in size, and germ tube and first 

hypha development was diminished due to observable depressions in conidia and a loss of conidial 

turgidity. Other lipopeptide-mediated structural deformations included deformed appressoria, 

interlaced hyphae, and hyphal cell vacuolisation, cytoplasmic disorganisation, and granulation. 
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Despite no apparent damage to the fungal cell wall, the cell membrane and nuclear membrane 

showed indications of structural disruption. Certain fungal cells also showed an absence of key 

organelles, including the nucleus. These findings concur with previous observations of fungal 

structural disruption after exposure to antifungal compounds synthesised by Bacillus spp. (Arrebola 

et al., 2010; Chaurasia et al., 2005; Fiddaman and Rossall, 1993). 

 

Bacillus subtilis strains UMAF6614, UMAF6639 and UMAF8561 showed antagonism towards P. fusca 

on a level comparable to an azoxystrobin fungicide and the commercialised mycoparasites AQ10 

(Ampelomyces quisqualis) and Mycotal (Lecanicillium lecanii) (Romero et al., 2007c). The application 

of the active vegetative bacteria was able to reduce disease incidence, and examinations of bacterial 

survival after 30 days showed populations of mostly vegetative cells. The researchers concluded that 

effective bacterial colonisation is the key to successful biocontrol of powdery mildew of cucurbits, 

and that active vegetative cells provided effective and continued antifungal activity (Romero et al., 

2007c). 

 

Similar research was conducted by Bettiol et al. (1997) using the B. subtilis strain AP-3 against 

cucurbit powdery mildew, where a concentrated bacterial metabolite extract was applied to 

powdery mildew-infected leaves of cucumber and zucchini. Bacterial metabolite extracts at a 

concentration of 5,000 µg/ml achieved lesion reductions on cucumber of 90–99%, and 94.7–100% 

on zucchini. Total control of powdery mildew was achieved with a wettable powder formulation of 

bacterial cells and concentrated metabolites at 1000 and 10 000 µg/ml respectively. Furthermore, 

leaf weight was observed to increase with applications of either the metabolite or active cell 

formulations. 

 

1.5. Screening methods for AEFB as BCAs of cucurbit powdery mildew 

The performance of a candidate BCA in the laboratory is often not comparable to its field 

performance, and this limitation has been seen as a significant obstacle to the acceptance of 

biocontrol in agriculture (Jijakli and Lepoivre, 1998). A primary cause of BCA failure under field 

conditions has been attributed to in vitro culture practices. Extended periods of culturing on 

nutrient-rich media have been linked to the loss of important wild-type characteristics, such as pili, 

flagella and the glycocalyx, which are essential to bacterial survival in their native habitat (Andrews, 
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1990; Knudsen and Spurr, 1988). Despite microbial adaptability in gene expression, the maintenance 

of wild-type characteristics is essential in biocontrol to ensure the maximum degree of compatibility 

between the microbe and its environment, and will greatly increase the chances of isolating a stable 

BCA able to establish within the target habitat (Schisler and Slininger, 1997; Andrews, 1990). Schisler 

and Slininger (1997) summarise some key aspects which should be considered when isolating and 

evaluating BCA candidates: 

(i) Candidates should be isolated from areas where the disease can occur but is absent. 

(ii) The maximum numbers of isolates should be screened for biocontrol potential. 

(iii) Candidates should be isolated from appropriate plant parts grown under appropriate field 

conditions. 

(iv) In vitro assays and highly selective media should be avoided. 

(v) Bioassays should mimic field conditions. 

(vi) Isolate activity should be stable. 

(vii)  Growth kinetics in liquid culture should favour formulation. 

 

Preliminary screenings of large numbers of isolates for biocontrol suitability can be time-consuming 

and resource demanding. It is for this reason that dereplication steps are often included to 

streamline the numbers of isolates carried forward for further study (Ghyselinck et al., 2011). 

Dereplication is a term commonly applied to natural product selection which involves separating 

previously studied organisms from a group of candidates (Dieckmann et al., 2005). In microbiological 

terms a dereplication step involves separating “knowns” from “unknowns”, i.e. creating defined 

groupings from a large pool of isolates prior to further evaluation (Ghyselinck et al., 2011).  This step 

is seen to eliminate unnecessary time and resource expenditure by focussing further screenings on 

representatives of groupings defined by a dereplication step. Techniques applied for dereplication 

purposes should (Ghyselinck et al., 2011): 

(i) Be universally applicable to all  bacterial strains; 

(ii) Be robust; 

(iii) Yield data that is simple to process; 

(iv) Have high taxonomic resolution; and 

(v) Be high-throughput, have low operational costs and labour intensity. 

 

The historical approach to achieve dereplication involved variations bacterial phenotypic 

characteristics. Due to several disadvantages of such methods and decreased costs and time 
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demands of newer technologies, alternative approaches have emerged as useful dereplication tools. 

Sequencing of genes to identify isolates can be applied for dereplication purposes; although cost and 

processing time requirements of gene sequencing have yielded to higher-throughput methods such 

as DNA fingerprinting and whole-cell analyses as techniques better suited for the purposes of 

preliminary study (Dieckmann et al., 2005). Modern approaches applied to dereplication include 

repetitive element sequence based PCR (rep-PCR), RAPD-PCR, fatty acid methyl ester (FAME) 

analyses, and several mass spectrometry techniques including MALDI-TOF-MS (Ghyselinck et al., 

2011; Dieckmann et al., 2005).  

 

1.5.1. Isolation and characterisation of AEFB 

The resilience of bacterial endospores makes AEFB relatively simple to target during isolation from 

their respective habitats. Heat treatment for the selection of endospores and the consequent plating 

of samples onto suitable medium is a common means of isolating AEFB (Schleifer, 2009). Media 

fortified with selective antimicrobial compounds can be employed, although the heat treatment 

method of endospore isolation remains the easiest and simplest method (Alvindia and Natsuaki, 

2009; Zhang et al., 2008; Yoshida et al., 2001; Mizuki et al., 1999).  

 

Colonies which grow after heat treatment may then be selected randomly for screening, or by 

differentiating phenotypic characteristics or morphological traits (Schleifer, 2009). The evaluation of 

cell appearance can allow further discrimination between isolates to be made using bright field 

microscopy (viz. cell size, diameter, rod morphology, endospore location, and sporangial distension 

by the forming endospore). Metabolic phenotypic traits can also be used to differentiate between 

species and strains (Logan et al., 2009; Schleifer, 2009). 

 

1.5.2. Genetic fingerprinting to assess AEFB diversity  

Reliability, time demands, and cost factors associated with phenotyping has resulted in bacterial 

differentiation based on metabolic characteristics being replaced by DNA-based means of bacterial 

strain differentiation (Li et al., 2009; Olsen and Woese, 1993). Currently, genotyping is widely used 

to distinguish between closely related bacterial species and strains because it is able to provide the 

high resolution required (Li et al., 2009). Methods of bacterial strain typing can be divided into three 

categories (Li et al., 2009): 
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(i) DNA banding patterns separate strains by their DNA fragment sizes after 

amplification protocols or restriction enzyme digest (i.e. DNA fingerprinting); 

(ii) DNA sequencing examines polymorphisms within a genomic DNA sequence; and 

(iii) DNA-DNA hybridisation uses DNA macro- and micro-array studies, whereby strains 

are differentiated by hybridisation of probes to known sequences in the genome. 

 

In prokaryotes there exist repetitive sequences spread throughout the genome, whose length and 

frequency are exploited as a means of fingerprinting (van Belkum, 1994). Alternately, tRNA 

sequences, protein structure genes, and gene expression regulators which occur frequently in the 

genome may be selected for (van Belkum, 1994). PCR-based genotyping studies rely on separation 

by gel electrophoresis to resolve the amplified DNA segments into their respective fingerprints (Olive 

and Bean, 1999). The resultant PCR amplicons will arise from either the presence of the specific 

target site or the distance between sites of primer annealing, depending on the type of PCR-primer 

protocol applied (van Belkum, 1994).  

 

Factors considered in selecting a genetic fingerprinting technique include ease of interpretation, 

ease of application, level of technical difficulty, cost, and time required (Olive and Bean, 1999). 

Within the scope of this study, methods applied for DNA fingerprinting of AEFB isolates were 

intergenic spacer region PCR (ITS-PCR) and randomly amplified polymorphic DNA PCR (RAPD-PCR), 

which will be further described below. 

 

1.5.2.1. Fingerprinting of AEFB using RAPD-PCR  

RAPD-PCR has been employed in microbiology for differentiation between bacterial isolates because 

it provides a high taxonomic resolution up to subspecies and strain levels. This technique has been 

successfully applied in the study of AEFB in both environmental and medical isolates (Kwon et al., 

2009; Li et al., 2009; Rademaker et al., 2005; Nilsson et al., 1998; Tyler et al., 1997). RAPD-PCR 

fingerprinting employs randomly sequenced, DNA oligonucleotide primers of 9–10 base pairs in 

length, which will anneal to sites throughout the genome aided by non-stringent annealing 

temperatures (Li et al., 2009; Rademaker et al., 2005; van Belkum, 1994).  
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Amplimers in RAPD protocols arise from two primers annealing at separate locations, resulting in a 

product the length between these two points (Li et al., 2009; Olive and Bean, 1999). The number and 

location of these random sites of compatible annealing throughout the genome are variable 

between bacterial strains, representing a means by which to discriminate between close relatives (Li 

et al., 2009; Ranjard et al., 2000; Olive and Bean, 1999). The migration patterns of the variable-

length products are visualised on agarose or acrylamide gels (Li et al., 2009). In theory, the arbitrary 

primers will detect polymorphisms arising from deletions, mutations, or insertions to distinguish the 

strain or species by a distinct DNA fragment pattern (i.e. fingerprint) (Olive and Bean, 1999; Tyler et 

al., 1997). 

 

Compared to other PCR-based strain differentiation methods, RAPD-PCR is fast, sensitive and 

relatively inexpensive (Li et al., 2009). Furthermore, the arbitrary primers are empirically designed 

and no previous knowledge of a target sequence is required (Rademaker et al., 2005). However, as 

RAPD is not targetted at any specific locus in the genome, it is more easily influenced by DNA and 

primer concentration, to the extent that changes in these variables may see amplification of new 

targets or the reduced amplification of others (Li et al., 2009; Olive and Bean, 1999; Tyler et al., 

1997). Furthermore, RAPD-PCR works best with a pure DNA template (Rademaker et al., 2005). 

 

The RAPD-PCR fingerprint patterns derived after electrophoresis may be complex and issues in 

interpretations may compromise the suitability of the method as a reliable and reproducible 

subtyping technique (Olive and Bean, 1999). Analysis of RAPD profiles has been greatly assisted by 

computer-aided analyses (Rademaker et al., 2005). Methods used in genotyping for strain 

differentiation require reproducibility to be fully trusted, and the main disadvantage to RAPD 

protocols is low reproducibility, making comparison among laboratories difficult (Li et al., 2009; Tyler 

et al., 1997). However, there are commercially available kits for RAPD-PCR which may assist in 

addressing some of this variability (Li et al., 2009). The worth of RAPD-PCR lies in its suitability for in-

house comparisons of environmental bacterial strains, where resolution to strain level is highly 

valued for comparison and dereplication among a set of isolates (Logan et al., 2009; Rademaker et 

al., 2005).  
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1.5.2.2. Fingerprinting of AEFB using ITS-PCR  

The 16S ribosomal RNA (rRNA) subunit sequence is highly conserved in bacteria and therefore 

exhibits limited variability for the purposes of bacterial strain differentiation (Shaver et al., 2001). 

This invariability necessitates the utilisation of non-coding sequences under less selection pressure 

than coding genes (Li et al., 2009). The intergenic spacers (ITS) (or intergenic spacer regions (ISR)) 

located between the 16S–23S rRNA subunit genes are sufficiently hypervariable in sequences and 

lengths to be suitable for bacterial strain typing (Daffonchio et al., 2003; Shaver et al., 2001; 

Mileham, 1997). 

 

ITS-PCR employs universal primers with 3’ ends facing outward from the 16S and 23S genes, 

resulting in a string of amplimers unique to a strain or species (Daffonchio et al., 1998a). ITS-PCR 

shows great promise in the discrimination of AEFB species (Dingman, 2012; Martínez and Siñeriz, 

2004; Xu and Cote, 2003; Shaver et al., 2001). Bacillus and related genera have multiple ribosomal 

operons in their genomes, with members of the B. cereus group having as many as 12, and reference 

strain B. subtilis 168 possessing 10 operons (Daffonchio et al., 2003; Shaver et al., 2001). Within 

these operons the ITS lengths vary and, given variable mutations, the PCR amplification can generate 

species-specific banding patterns (i.e. fingerprints) after separation on low-resolution gel 

electrophoresis (Daffonchio et al., 2003; Shaver et al., 2001). However, this technique has been 

shown to fail to sufficiently differentiate between closely related species in a group, yet it is useful as 

a supplementary technique when different fingerprinting methods are being compared (Daffonchio 

et al., 1998a). 

 

1.5.3. DNA sequence polymorphisms for AEFB differentiation 

16S rRNA gene sequencing is widely regarded as the benchmark for bacterial species identification 

(Maughan and Van der Awera, 2011). However, recent advances in bacterial strain typing have 

shown that 16S rRNA does not always differentiate between closely related species, as is the case 

for members of the B. cereus and B. subtilis groups of related taxa (Maughan and Van der Awera, 

2011; Daffonchio et al., 1998b). Consequently, alternate gene sequences have been used to 

distinguish these organisms at the species level. Genes used to differentiate AEFB species include: 

gyrase subunit A (gyrA) (Roberts et al., 1994); gyrase subunit B (Dickinson et al., 2004a); histidine 

kinase (cheA) (Borriss et al., 2011); RNA polymerase subunit B (rpoB); DNA polymerase III subunit 

alpha (polC); heat-shock protein groEL (groEL); phosphoribosylaminoimidazolecarbox-amide 
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formyltransferase (purH) (Rooney et al., 2009); alpha-amylase gene (amyA and amyB); and genes for 

antibiotic resistance (tetB and tetL) (Reva et al., 2004). Gyrase subunit A sequences have shown 

sufficient sequence heterogeneity to allow closely related members of the B. subtilis group to be 

distinguished and was therefore chosen for the current study (Chun and Bae, 2000). 

 

1.5.4. Antifungal activity screening and assessment of powdery mildew antagonism 

Initial antagonism screenings of BCA candidates can assist in saving time and resources if 

performance in an assay can be directly translated to performance in the field (Anith et al., 2003). 

Traditionally, plant disease BCAs have been discovered by applying empirical approaches to 

screening using simple in vitro bioassays (Spurr, 1985). These bioassays are typically designed around 

specific characteristics of the disease and antagonist mode of action, and serve as simple evaluation 

systems to screen potential antagonists in a regulated environment (Spurr, 1985). Primary bioassays 

are usually qualitative in vitro tests involving potential microbial agents and the target plant 

pathogen(s). However, secondary bioassays using the plant host and pathogen in a controlled 

environment (in vivo) strengthen the likelihood of antagonists being identified (Spurr, 1985).  

 

In vitro dual-culture bioassays allow visualisation of broad-spectrum antimicrobial compound activity 

(Raaijmakers et al., 2002). The primary means of screening an isolate for antifungal activity involves 

either an agar-based dual-culture technique, or the observation of pathogen development on glass 

slides (Blakeman and Fokkema, 1982). The former technique provides evidence of antagonism which 

may involve mechanisms such as hyperparasitism or antibiosis, whereas other mechanisms such as 

nutrient competition and stimulation of host resistance are excluded, which can lead to a potentially 

useful isolate being overlooked (Blakeman and Fokkema, 1982). Hence, it is recommended that 

more than one type of in vitro bioassay be applied in order to evaluate as many antagonistic 

mechanisms as possible to determine the most versatile antagonist for use in biocontrol (Spurr, 

1985).  

 

Laboratory conditions lack the stresses prevalent in the field (e.g. limited nutrient or water 

availability, competition with the indigenous microflora) and are not truly representative of a natural 

habitat (Schliser and Slininger, 1997; Spurr, 1985). Consequently, interactions in vitro may not 

necessarily correlate to the in vivo state. Antagonistic actions in vitro are influenced by external 
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factors—such as medium pH and nutrient concentration—which may introduce a bias into the 

isolate’s performance (Schliser and Slininger, 1997; Leifert et al., 1995). This phenomenon has been 

demonstrated by Leifert et al. (1995), where isolates B. subtilis CL27 and B. pumilus CL45 both 

showed similar antagonism in dual-culture bioassays, but showed marked differences in their ability 

to prevent damping-off in vivo. Furthermore, bioassays alone cannot provide conclusive information 

on the exact mechanisms the bacteria employ in fungal antagonism because inhibition may arise 

from interplay of many factors, such as antibiotic compounds, extracellular enzymes, and 

siderophores (Leifert et al., 1995). Hence, while laboratory-based bioassays remain rapid and 

efficient means of screening large numbers of candidate antagonists, these assays run the risk of 

neglecting such mechanisms as induced resistance as the plant is not present in the interaction 

(Schisler and Slininger, 1997; Spurr, 1985). 

 

The dual-culture bioassay has proven useful in determining antifungal ability of AEFB in vitro 

(Alvindia and Natsuaki, 2009; Chaurasia et al., 2005; Ongena et al., 2005a; Ongena et al., 2005b; 

Romero et al., 2004; Touré et al., 2004; Yoshida et al., 2001; Fravel and Spurr, 1977; Leifert et al., 

1995; May et al., 1997). Indications of antagonism from both diffusible and volatile compounds 

produced by bacteria are often visible to the naked eye as morphological changes in the fungus 

(Chaurasia, 2005). In the case of biotrophic fungi, where laboratory culture is not possible, surrogate 

pathogens may be applied for the purposes of bioassay. Fungal species Botrytis cinerea, Fusarium 

oxysporum f. sp. lycopersici, Rosellinia necatrix, Phytophthora cinnamomi, Rhizoctonia solani and 

Penicillium digitatum have been used in studies of cucurbit powdery mildew as laboratory-culturable 

substitutes for the biotrophic pathogen (Romero et al., 2004). 

 

Despite the valuable information that can be gleaned from performing in vitro bioassays with 

surrogate fungal species, a screening protocol which includes the host plant, pathogen and 

antagonist offers a more realistic extrapolation of biocontrol performance (Anith et al., 2003). The 

biotrophic nature of powdery mildew causal agents necessitates the use of field trials or whole-plant 

assays to confirm in vitro findings under field conditions, but field-scale testing demands resources 

and time. Therefore, smaller-scale screenings incorporating live host plant tissue provide a means of 

assessing isolate antagonism against biotrophic phytopathogens. One commonly used bioassay is 

the detached leaf assay, which allows for the study of biotrophic disease progress and suppression in 
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a controlled environment at a smaller scale (Tesfagiorgis, 2009; Romero et al., 2007a; Romero et al., 

2003; Shishkoff and McGrath, 2002; Quinn and Powell, 1982).  

 

A conventional detached leaf assay uses two stacked Petri dishes, with a small hole made through 

the bottom of the upper plate into the lid of the lower plate (Figure 1.3). The petiole of the leaf 

protrudes through these holes, into plant nutrient solution in the lower plate. The leaf itself then 

rests within the upper plate where it can be inoculated and examined. The lid of the upper plate is 

closed over the leaf to ensure a closed environment, maintain humidity, and lessen cross-

contamination between treatments (Quinn and Powell, 1982). A similar method, as used by 

Shishkoff and McGrath (2002), involves the uppermost lid (Figure 1.3.c) replaced by an inverted 

drinking cup of suitable diameter. 

 

 

Figure 1.3. Diagram of the detached leaf assay, adapted from Quinn and Powell (1982) showing: 

(A) the lower Petri dish containing nutrient solution; (B) the joined lower plate lid and upper plate 

bottom, through which the leaf petiole extrudes; and (C) the upper plate lid used to protect the 

system from cross-over contamination and to maintain the microclimate. 

 

Discs of cotyledonous tissue from a susceptible host plant species have been applied as an 

alternative to use of the adult leaf in the detached leaf assay (Fernández-Ortuño et al., 2006; 

Romero et al., 2004, Romero et al., 2003). Discs are inoculated with the bacterial culture or 

extracted metabolites, and maintained on an agarised medium supplemented with carbohydrates 

and antimicrobial compounds to exclude contaminant microbes (Álvarez and Torés, 1997). The 

powdery mildew fungus can be applied by spraying a suspension of spores at a predetermined 
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concentration or by placing individual fungal spores onto the disc aided by a microscope (Fernández-

Ortuño et al., 2006; Shishkoff and McGrath, 2002). The treatments can then be examined 

microscopically and rated for disease presence and conidial germination incidence.  

 

As discussed by Knudsen et al. (1997) a biocontrol pot trial presents a compromise between the 

laboratory-scale antagonism assays and full-scale field trails. Like field trials, biocontrol pot trials are 

carried out on susceptible host plants but on a more manageable scale under simulated field 

conditions. It has been found that antagonism potential on pot-scale screenings can be extrapolated 

to performance in the field (Teperi et al., 1998). A biocontrol pot trial also lends itself to the 

evaluation of other disease control mechanisms and host–pathogen interactions (e.g. induced 

resistance in the host plant and BCA niche colonisation) and possible synergy between mechanisms 

(González-Sánchez et al., 2010). Furthermore, the BCA may be able to colonise niches which may 

contribute to the protection of other parts of the plant biomass (Knudsen et al., 1997). Factors such 

as culture age, growth medium, application method, and dosage can affect an antagonist’s efficacy 

in field and pot trials (Knudsen et al., 1997). Hence, the impacts of some pertinent variables should 

be explored prior to full-scale field trials. 

 

1.5.5. Lipopeptide compounds analysis and production potential in AEFB 

1.5.5.1. Extraction and analysis of lipopeptide compounds  

The spectrum of lipopeptide compounds that AEFB species produce has been reported extensively, 

along with the functions of these compounds in the bacteria–plant host relationship (Ongena et al., 

2010). Lipopeptide compounds, in particular, have attracted significant attention for their 

antagonistic potential against fungal phytopathogens and their functions in plant host colonisation 

and signalling (Jacques, 2011; Stein, 2005; Ongena and Jacques, 2008). There are various methods by 

which the extraction and analysis of lipopeptides can be carried out, as summarised by Gordillo and 

Maldonado (2012). Analysis techniques range from simple assays—such as drop collapse assay, 

tensiometry, haemolytic activity, turbidometric and spectrophotometric analysis, and thin-layer 

chromatography (TLC)—to advanced methods such as liquid chromatography, mass spectrometry, 

crystallography, nuclear magnetic resonance (NMR), Edman degradation, and ultraviolet (UV) and 

infrared spectrum analysis, (Gordillo and Maldonado, 2012; Athukorala et al., 2009; Mukherjee et 

al., 2009; Li et al., 2008; Cazorla et al., 2007; Raaijmakers et al., 2006; Souto et al., 2004; Wang et al., 

2004; Williams et al., 2002; Razafindralambo et al., 1993). 
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Methods of obtaining antimicrobial extracts from live cultures vary depending on the type of 

medium, culture optima, and medium constitution. For the biosurfactants produced by many AEFB 

species, the most common and perhaps simplest extraction involves acidifying the culture's cell-free 

supernatant and extracting the desired compounds using an appropriate solvent, or lyophilisation of 

the supernatant without solvent extraction (Das et al., 2008; Hsieh et al., 2008; Ji and Wilson, 2003; 

Leifert et al., 1995). Extracted lipopeptides can be both qualified and quantified using TLC, and these 

can be achieved cost effectively using simple methods compared to other analysis techniques (Lin et 

al., 1998b). Methods such as liquid chromatography and NMR likewise require pure compounds and, 

although demanding a higher degree of purity and costly equipment than TLC, the sensitivity and 

resolution achievable with these techniques is far higher (Souto et al., 2004; Lin et al., 1998b).  

 

Mass spectrometry (MS) has also been widely applied in its various forms for lipopeptide analysis 

(Arguelles-Arias et al., 2009; Li et al., 2008; Price et al., 2007; Tendulkar et al., 2007; Madonna et al., 

2003; Vater et al., 2002; Williams et al., 2002; Leenders et al., 1999). Mass spectrometry carries 

perhaps the most costly demand for specific equipment of all the methods which can be applied to 

lipopeptide identification. However the resolution of lipopeptide compound adducts and structures 

achievable with mass spectrometry is of great value (Price et al., 1997). In particular MALDI-TOF-MS 

has proven to be effective in determining the presence of lipopeptide compounds produced by 

Bacillus spp. applying either compound extracts or whole cells (Price et al., 2007; Koumoutsi et al., 

2004; Madonna et al., 2003; Vater et al., 2002; Leenders et al., 1999).  

 

1.5.5.2. Gene marker PCR to determine lipopeptide production potential 

An alternative to laborious compound extraction and analysis is offered by the examination of 

genetic markers for lipopeptide synthesis, which may provide indications of production potential. 

These markers are contained within gene regions associated with the synthesis of lipopeptides, viz. 

within the non-ribosomal peptide synthetase (NRPS) or polyketide synthetase (PKS) genes (Fickers, 

2012; Tapi et al., 2010).  

 

As discussed by Fickers (2012) and Tapi et al. (2010), each lipopeptide family is synthesised by open 

reading frames (ORFs) which vary in number between compounds and code for the various 
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modules. Surfactin comprises srfA-A, srfA-B, srfA-C, and srfA-D; plipastatins are encoded by ppsA, 

ppsB, ppsC, ppsD and ppsE; and fengycins by fenC, fenD, fenE, fenA and fenB. Iturins differ as they 

are created by a PKS–NRPS hybrid complex consisting of ORFs ituD, ituA, ituB and ituC. PCR-based 

targetting of these gene clusters can assist in screening large numbers of potentially antagonistic 

AEFB for lipopeptide synthesis capability, before performing compound extraction and analysis (Tapi 

et al., 2010; Joshi and McSpadden Gardener, 2006). A number of genetic markers associated with 

lipopeptide biosynthesis in Bacillus spp. have been developed as a means of examining lipopeptide 

production capability, including bmyB (bacillomycin D), fenD and fenB (fengycin), ituC (iturin), and 

srfA-A and srfA-B (surfactin) (Athukorala et al., 2009; Hsieh et al., 2008; Joshi and McSpadden 

Gardener, 2006; Lin et al., 1998a).  

 

1.5.6. MALDI-TOF-MS for bacterial identification  

MALDI-TOF-MS has been extensively applied in the field of microbiology to analyse microorganisms 

and their secondary metabolites, such as pigments and toxins (Carbonnelle et al., 2011; Price et al., 

2007; Vater et al., 2002; Lay, 2001; Wang et al., 1998). Applications of MALDI-TOF-MS in proteomic 

microbial identification arose with the development of ‘intact-’ or ‘whole-cell’ mass spectrometry 

(IC-MS or WC-MS) which offers the advantage of analysing crude protein mixtures in cells without 

additional fractionation procedures (Welker and Moore, 2011; Wang et al., 2004). Many of the 

peaks in IC-MS mass spectra represent ribosomal protein variants and fragments, detectable at the 

3,000–20,000 Da range (Welker and Moore, 2011). The technique targets both internal and cell-

surface proteins, with other less abundant structural proteins such as ribosomal modulation factors, 

carbon-storage regulators, cold-shock proteins, DNA binding proteins, and RNA chaperones also 

detectable (Welker and Moore, 2011; Dare, 2006). 

 

For bacterial identification IC-MS applies as few as 105–106 whole bacterial cells to generate mass 

spectra (Welker and Moore, 2011). Typically, sample preparation for IC-MS is a simple protocol 

(Figure 1.4) involving the placement of the culture grown on agar onto a target plate and the 

addition of a matrix compound prior to ionisation. Additional extraction steps prior to target plate 

inoculation can be included to provide cleaner spectra for certain microorganisms (e.g. yeast, 

mycobacteria, and spore-formers) and commonly involve 80% TFA or ethanol–formic acid extraction 

procedures (Šedo et al., 2011; Welker and Moore, 2011; Freiwald and Sauer, 2009). 
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Figure 1.4. Diagrammatic representation of the process of intact cell MALDI-TOF-MS (IC-MS) 

analysis of bacterial isolates (Freiwald and Sauer, 2009). 

 

Microbial identification using mass spectra involves spectral comparison to those in a reference 

database. This technique uses a list of the peaks’ m/z values and intensities to produce a mass-

fingerprint (Welker and Moore, 2011; Fox 2006). One or many peaks that remain conserved 

between different strains may be highlighted as protein biomarkers, which can be specifically 

applied in identifying bacteria at genus, species, and strain levels (Carbonnelle et al., 2011; Lay, 

2000; Wang et al., 1998). Software-aided comparison to a database of reference strains generates a 

list of possible matches assigned a numerical value of similarity defined as the “score value” (MALDI 

Biotyper, Bruker Daltonics) or “confidence value” (SARAMIS, Anagnostec/BioMérieux) (Welker and 

Moore, 2011). Currently, a major restriction in the application of this technique to the 

characterisation of environmental isolates is the limited nature of standardised databases of 

reference strains (Welker and Moore, 2011; Dickinson et al., 2004b). However, it is possible to 

generate supplementary mass spectra libraries of bacterial species and strains specifically relevant 

to the area of study (Welker and Moore, 2011). Patterns of protein masses in mass spectra can also 

be analysed by other methods, including cluster analysis, hierarchical clustering, and inter-spectra 

analysis to determine spectral diversity within a set of isolates, and as compared to reference strains 

(Fernández-No et al., 2013; Freiwald and Sauer, 2009; Sauer et al., 2008; Alm et al., 2006).  
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Replicate mass spectra are required for accurate interpretation and pattern recognition, hence 

spectral reproducibility is important for microbial characterisation (Dare, 2006; Wunschel et al., 

2005; Keys et al., 2004; Lay, 2001; Wang et al., 1998). Standardisation of materials and protocols is 

critical because peaks are affected by the manner of sample preparation, culture growth phase and 

conditions, sample storage, sample numbers, specified mass range used, laser energy, 

instrumentation, and mass drift experienced during analysis (Carbonnelle et al., 2011; Pavankumar 

et al., 2011; Wunschel et al., 2007; Dare, 2006; Valentine et al., 2005; Keys et al., 2004; Lay, 2000; 

Saenz et al., 1999; Wang et al., 1998). When applied to bacterial identification, MALDI-TOF MS 

represents a rapid and sensitive means of protein profiling with high resolution and reproducibility. 

Despite the requirement for expensive instruments and complex data handling, mass spectrometry-

based bacterial fingerprinting and identification is rapid, simple to prepare, costs little to run, and 

can process large numbers of isolates (Ghyselinck et al., 2011; Welker and Moore, 2011; Schleifer, 

2009; Dare, 2006; Dickinson et al., 2004b). Furthermore, the strain-level resolution achievable with 

MALDI-TOF-MS is higher than the more commonly used DNA electrophoresis or other protein 

profiling methods (Ghyselinck et al., 2011; Welker and Moore, 2011).  

 

1.6. Conclusion  

The key to a successful biocontrol strategy lies is gaining as much information as possible about the 

candidate BCA and its capabilities to establish within the intended habitat and antagonise 

phytopathogens (Schisler and Slininger, 1997; Knudsen and Spurr, 1988). It is essential to screen 

large numbers of potential candidates against the target pathogen(s) under conditions 

representative of the intended habitat. A polyphasic screening approach applying high-throughput 

protocols is recommended to highlight candidates with the greatest potential prior to field-scale 

testing (Schisler and Slininger, 1997). 

 

Several members of the AEFB are ideal candidates for application in biocontrol as their ecology in 

agriculture, genetics, and lipopeptide compounds have been intensively studied (Govindasamy et al., 

2010; Ongena and Jacques, 2008; Cawoy et al., 2011; Jacobsen et al., 2004; McSpadden Gardener 

and Diks, 2004). Furthermore, the success of some AEFB species BCAs has been widely established. 

Certain Bacillus spp. have been successfully commercialised for the control of a variety of 

phytopathogens, most notably strains of B. subtilis and B. amyloliquefaciens (Borriss, 2011; Cawoy et 

al., 2011; Pérez-García et al., 2011). Bacillus subtilis isolates have shown remarkable success in 



 
 

36 
 

antagonism toward P. fusca, a causal agent of powdery mildew on cucurbits (Romero et al., 2007a; 

Romero et al., 2007b; Romero et al., 2004).  

 

This study aims to isolate and screen for plant-associated, phyllosphere-competent AEFB that are 

antagonistic towards cucurbit powdery mildew. The screening of leaf-dwelling AEFB as antagonists 

of P. fusca represents an opportunity to apply a polyphasic approach to BCA selection against an 

obligately biotrophic disease which is not readily assayed assayed in vitro. Since AEFB are easily 

isolated from a range of plant hosts, and are present in a variety of agricultural settings, the 

possibility of finding promising candidates for BCAs application is high. This situation therefore 

provides a basis from which to examine the ideal attributes of an AEFB isolate as a powdery mildew 

antagonist. 

 

The objectives of this study can be summarised as follows: 

(i) Isolation of a pool of phyllosphere-dwelling AEFB from a range of cucurbit species. 

(ii) Screen AEFB isolates for antifungal activity in vitro against surrogate fungal pathogens. 

(iii) Differentiation and grouping of AEFB isolates using of genotyping methods. 

(iv) To characterise lipopeptide production amongst selected representative isolates using 

various screening methods.  

(v) Evaluating the detached leaf assay as a means of laboratory-based assessment of isolates 

antagonistic towards cucurbit powdery mildew. 

(vi) Evaluating biocontrol potential of selected isolates against P. fusca in in vitro and in vivo 

pot trials. 
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CHAPTER TWO 

Preliminary assessment of antifungal activity and diversity amongst AEFB isolated from 

the leaf material of various cucurbit species 

 

2.1. Introduction 

Several members of the AEFB have gained prominence as potent BCAs due to their activities within 

the phytosphere, which have resulted in a number of strains being commercialised as biopesticides 

and biofertilisers (Jacobsen et al., 2004; McSpadden Gardener, 2004). Many of these bacteria 

produce a range of antimicrobial compounds active against fungal, oomycete, and bacterial plant 

pathogens (Velho et al., 2011; Govindasamy et al., 2010; Nagórksa et al., 2007; Pryor et al., 2007; 

Emmert and Handelsman, 1999; Bélanger et al., 1998). In addition, some plant-associated AEFB 

species are able to contribute to plant growth promotion through various mechanisms, such as: 

nutrient solubilisation, plant growth hormone production, and the stimulation of host plant 

resistance mechanisms (Heydari and Pessarakli, 2010; Choudhary et al., 2009; Bargabus et al., 2004; 

Kloepper et al., 2004; McSpadden Gardener, 2004).  

 

Much of the focus on AEFB as potential biocontrol agents has fallen on their activity within the 

rhizosphere. However, members of this grouping are also common residents of the phyllosphere, 

with some having been successfully applied as foliar disease antagonists (Collins et al., 2003; 

Bargabus et al., 2002; Nair et al., 2002). A number of Bacillus spp. are able to establish in this 

habitat, and their activities within the phyllosphere have enabled their use as biocontrol agents 

against a range of foliar diseases, including: powdery mildew of cucurbits, Cercospora leaf spot on 

sugar beet, and Colletotrichum dematium on mulberry (Romero et al., 2004; Collins and Jacobsen, 

2003; Yoshida et al., 2001; Bettiol, 1997). The successful colonisation of the leaf surface by 

introduced microbes is impacted by the manner in which biocontrol agents are applied as well as by 

the prevailing phyllosphere conditions (Lindow, 2006; Andrews, 1992; Andrews, 1990; Knudsen and 

Spurr, 1988).  

 

Screening of candidate BCAs requires evaluation of a large pool of isolates to minimise the risk of 

excluding promising candidates. Dereplication steps are often included after initial isolate culture as 
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a means of streamlining candidate numbers and selecting representative isolates from groupings for 

further study (Ghyselinck et al., 2011). Dereplication allows taxonomic-level differentiation and 

subsequent grouping of isolates with the aim of minimising time and resource wastage and 

unnecessary downstream analyses (Ghyselinck et al., 2011). Phenotypic characterisation has, until 

recently, been the principal means by which bacteria were identified and their species-level diversity 

assessed. However, this approach does not readily distinguish between closely-related organisms, 

and thus is unsuitable for differentiation of closely-related isolates, and cannot resolve strain-level 

variations (van Belkum, 1994). Hence, molecular approaches have largely superseded phenotypic 

characterisation methods (Li et al., 2009). Since dereplication is achieved by grouping isolates at a 

taxonomic level, the accessibility and resolution of genotyping methods greatly increases the ability 

to accurately differentiate and group bacterial isolates. There is a wide range of high-throughput 

PCR-based methods suitable for dereplication purposes, including commonly-used DNA 

fingerprinting approaches (Ghyselinck et al., 2011).  

 

DNA fingerprinting is often employed as a means of assessing strain diversity amongst a set of 

bacterial isolates (Ghyselinck et al., 2011; van Belkum, 1994). This approach exploits genetic 

polymorphisms to differentiate between microorganisms based on differences in banding patterns 

generated by PCR amplicons after gel electrophoresis (Daffonchio et al., 2003; Shaver et al., 2001; 

Tyler et al., 1997; van Belkum, 1994). Isolates displaying the same fingerprint can generally be 

assumed to belong to the same species or strain (Logan et al., 2009). Randomly amplified 

polymorphic DNA PCR (RAPD-PCR) and intergenic transcribed spacer region PCR (ITS-PCR) 

fingerprinting methods were selected for use in the present study. RAPD-PCR applies a single short 

primer (~ 10 bp) that anneals to compatible sites throughout the genome, which results in a series of 

variably-sized fragments in the PCR product (Li et al., 2009; Olive and Bean, 1999). In contrast, ITS-

PCR targets polymorphic differences within the intergenic transcribed spacer (ITS) region located 

between the 16S–23S rRNA subunit operons, which are under less conservation pressure than the 

adjacent rRNA genes (Li et al., 2009; Daffonchio et al., 2003; Shaver et al., 2001; Nagpal et al., 1998). 

Both of these fingerprinting methods have been successfully applied in the differentiation of Bacillus 

spp., with some studies showing that RAPD-PCR offers a greater degree of resolution at strain-level 

compared to ITS-PCR (Logan et al., 2009; Martínez and Siñeriz, 2004; Daffonchio et al., 2000; 

Daffonchio et al., 1998a; Daffonchio et al., 1998b).  
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Identifying promising candidate BCAs at the taxonomic level is important when isolating and 

evaluating for biocontrol potential. This knowledge can offer insight into ecotypes amongst isolates, 

and can provide information as to the bacterial species extant in the chosen environment. Although 

16S rRNA gene sequencing is widely regarded as the standard for bacterial characterisation, it is 

often insufficiently heterogenous to allow differentiation between closely-related species; 

particularly in certain of the Bacillus groups of related taxa (Maughan and Van der Awera, 2011; 

Daffonchio et al., 1998b). A range of alternate gene sequences have been used to differentiate AEFB 

species (Borriss et al., 2011; Rooney et al., 2009; Dickinson et al., 2004a; Reva et al., 2004; Roberts et 

al., 1994). Sequences of gyrase subunit A (gyrA) have shown sufficient sequence heterogeneity to 

allow closely-related members of the B. subtilis group to be distinguished and was therefore chosen 

for the current study (Chun and Bae, 2000). 

 

Mass spectrometry has been widely used for the study of proteins and compounds produced by 

bacteria (Dare, 2006). Recently, MALDI-TOF-MS has been applied to the identification of bacteria 

(Lay, 2000). Whole bacterial cell preparations have been used to generate m/z peak lists to produce 

mass-fingerprints which have been used for identification purposes (Welker and Moore, 2011; Fox 

2006). The mass spectrum is then compared to spectra within a database, using matching analysis 

software to provide an identity match (Welker and Moore, 2011). Conserved biomarker peaks in 

mass spectra can be specifically applied to identify bacteria at genus, species and strain levels 

(Carbonnelle et al., 2011; Lay, 2000; Wang et al., 1998). Cluster and inter-spectra analysis can also be 

applied to examine spectral diversity within an isolate set, or between isolates and reference strains 

(Fernández-No et al., 2013; Welker and Moore, 2011). Its ease-of-use and high-throughput has seen 

MALDI-TOF-MS applied for dereplication of bacterial isolates, assessments of genus- and species-

level diversity within a set of isolates, and utilisation in taxonomic studies in microbiology (Ghyselinck 

et al., 2011; Welker and Moore, 2011). 

 

Since Podosphaera fusca, is a biotrophic fungus, screening for BCA presents a challenge to 

researchers as the pathogen cannot be cultured under laboratory conditions without living host 

tissue. However, certain fungal species culturable on agar media have been applied as surrogates to 

screen for potential biocontrol candidates of cucurbit powdery mildew, and include: Botrytis cinerea, 

Fusarium oxysporum fsp. lycopersici, Rosellinia necatrix, Phytophthora cinnamomi and Penicillium 

digitatum (Romero et al., 2004). Consequently, surrogate pathogens have been applied in in vitro 

screening as a means of selecting for potential antagonists (Romero et al., 2004; Tewelde, 2004).  
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A study was undertaken with the aim of isolating AEFB extant in the cucurbit phyllosphere and to 

screen them for antagonism of the foliar disease powdery mildew of cucurbits. Candidate AEFB 

isolates were assessed for antifungal activity in vitro using surrogate pathogens Rhizoctonia solani 

and Botrytis cinerea. Diversity amongst the selected isolates was then determined using RAPD- and 

ITS-PCR fingerprinting. Partial 16S rRNA and gyrA gene sequences were used to identify and 

differentiate selected isolates. The use of MALDI-TOF-MS to determine isolate diversity was also 

assessed. 

 

2.2. Materials and Methods 

2.2.1. Isolation of AEFB from cucurbit leaf material 

Leaves from representative cucurbit species showing diminished powdery mildew symptoms were 

harvested from mature plants of: butternut (Cucurbita moschata), cucumber (Cucumis sativa), 

chayote (Sechium edule), marrow, gem squash, squash, and pumpkin (Cucurbita pepo). These plants 

were grown in soil or growing media at various sites in the greater Msunduzi area in KwaZulu-Natal, 

South Africa. A minimum of two leaves per plant were harvested, and 1–5 plants were sampled from 

each location. The leaf material was transported to the laboratory in plastic bags to prevent cross-

contamination and processed on the same day of harvesting. 

 

Bacterial isolation was carried out using a procedure modified from de Jager et al. (2001), whereby 

leaf discs were punched out from representative regions of the leaf using an aluminium pipe borer 

(diameter 1 cm). The borer was disinfected with ethanol (70% v/v) between each sampling. Leaf 

discs from replicate leaves of each individual plant were pooled and added to 20 ml sterile quarter-

strength Ringer's solution. In order to dislodge surface-attached bacteria, sample bottles were 

vortexed for 15–20 minutes, followed by sonication for 15–20 minutes. The leaf discs were then 

removed from each bottle with sterile forceps and the remaining liquid filtered (Sterile Whatman no. 

1 filter paper, 150 mm diameter) into sterile centrifuge tubes (50 ml) (Beckman Coultier) and 

centrifuged for 15 minutes at 12,096 x g (Avanti Centrifuge, Beckman Coultier). The supernatants 

were discarded and the pellets resuspended in 1 ml sterile quarter-strength Ringer's solution before 

being transferred into sterile 1.5 ml microfuge tubes, and heated at 80°C for 15 minutes in order to 

eliminate vegetative cells. Each sample was serially diluted to 10-4 and aliquots (0.1 ml) from each 

dilution were inoculated onto duplicate sterile tryptic soy agar (TSA) plates (Biolab, Merck, Germany) 



 
 

41 
 

using the standard spread plate method. Plates were incubated at 30°C for 24–48 hours. If a sample 

could not be inoculated immediately, the heat-treated spore suspensions were stored at -20°C until 

use. 

 

Colonies with representative morphologies were selected from each set of agar plates (i.e. from 

each individual plant sampled), and streaked onto fresh TSA and incubated overnight at 30°C. These 

cultures were used for observations of colony morphology, and then inoculated into 10ml tryptic soy 

broth (TSB) (Biolab, Merck, Germany) and incubated for 24 h at 28°C and 150 rpm, before Gram 

staining to confirm the presence of Gram positive rods. Slides were viewed using bright–field 

microscopy and cell dimensions were estimated using an ocular graticule. The broth cultures were 

incubated further for 48 h and then evaluated for endospore formation by Gram staining and 

viewing prepared slides using bright field microscopy. Endospores were distinguished as hyaline 

regions within the parent cell. 

 

To ensure culture purity isolates were streaked onto 10% (w/w) TSA, containing: 13.8 g/l TSA premix 

supplemented with 11.7 g/l bacteriological agar (Biolab, Merck, Germany). In order to maintain wild-

type characteristics glycerol stock cultures (20 % v/v) of each AEFB isolate were prepared for long-

term storage at -80°C. Isolates were first cultured in 10ml TSB at 28°C and 150 rpm for 24 h before 

being dispensed into cryotubes containing appropriate aliquots of sterile glycerol.  

 

2.2.2. Assessment of antifungal activity of AEFB using dual-culture bioassays  

Two fungal species, Rhizoctonia solani and Botrytis cinerea, obtained from the Discipline of Plant 

Pathology (University of KwaZulu-Natal) culture collection, were used in the dual-culture antifungal 

assays (Romero et al., 2007a; Tewelde, 2004). To ensure purity fungal cultures were initially cultured 

on water agar (15 g/l bacteriological agar) before being subcultured onto potato dextrose agar (PDA) 

(Biolab, Merck, Germany) and incubated at 30°C.  Subculturing was performed every 7 d to ensure 

culture viability.  

 

Antifungal potential of AEFB isolates was investigated using a dual-culture bioassay method 

modified from Tewelde (2004). Sterile antibiotic discs (diameter 9 mm) (Macherey-Nagal, Germany) 
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were placed onto PDA plates (4 discs per plate) and inoculated with 20 μl of 24 h TSB culture (~ 108 

cells/ml). Plates were incubated overnight at 30°C before a PDA plug (5x5 mm) fully colonised with 

fungal mycelium was placed onto the centre of each plate. Bioassays were incubated at 30°C and 

examined periodically over a 14 d period in order to rate the extent of antifungal activity.  

 

The presence and extent of inhibition zones were measured from bacterial colony edge to the fungal 

mycelium boundary. Visible changes in each test fungus after exposure to a bacterial culture was 

also noted. A rating system was developed to rank antifungal activity, where: (+++) denoted a zone 

of inhibition greater than 5 mm; (++) denoted a zone of inhibition 2–5 mm; (+) denoted a zone of 

inhibition less than 2 mm; and (-) denoted an absence of antifungal activity. Based on this 

information, isolates showing the greatest zones of inhibition and/or antifungal activity against both 

test fungi were carried forward for further characterisation and evaluation. 

 

2.2.3. Genotyping and identification of AEFB isolates using DNA fingerprinting and gene 

fragment sequencing 

Based on their ability to inhibit fungi under dual-culture bioassay conditions, isolates were selected 

for DNA fingerprinting using ITS-PCR and RAPD-PCR. This data was used to group isolates, with gene 

sequence analysis and bacterial identifications subsequently carried out on representative isolates. 

Evolutionary relationships between isolates were inferred through the construction of phylogenetic 

trees based on the sequences of the 16S rRNA (Garbeva et al., 2003; Heuer et al., 1997) and gyrase 

subunit A (gyrA) gene fragments (Roberts et al., 1994). Primers used for the above-mentioned PCR 

protocols are listed in Table 2.1. Primers were synthesised and supplied by Inqaba Biotech™ Hatfield, 

Pretoria, South Africa. 

 

Template DNA used for ITS-PCR was obtained directly from vegetative cells picked off from 10% TSA 

using a freeze-thaw DNA extraction technique modified from Moré et al. (1994). Briefly, single 

colonies picked off from 24 h 10% TSA culture were suspended in 50 µl ultrapure water; and 

subjected to 2–3 cycles of freezing (-20°C) for 10 minutes and heating (95°C) for 10 minutes. For the 

remaining PCR protocols (viz. RAPD-PCR, gyrA, and 16S rRNA) template DNA was extracted from 

isolates cultured (24 h) in Luria-Bertani (LB) broth (10 ml) using a Nucleospin DNA Extraction Kit 
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(Macherey-Nagal, Germany). DNA extraction was carried out as per the manufacturer’s instructions, 

following the protocol recommended for Gram positive bacteria. 

 

Table 2.1. PCR primers for diversity assessment and taxonomic classification of AEFB isolates. 

 

 

All PCR reaction protocols were carried out using Promega GoTaq® PCR reagents (Promega, 

Madison, USA). Each PCR reaction consisted of the following: 0.4 µM of the appropriate primer(s) 

(Table 2.1); 1x GoTaq® Flexi Buffer (without MgCl2); 200 μM of each deoxyribonucleotide (dNTP); 2.5 

U GoTaq® polymerase; 1.5 mM MgCl2; and 1 μl template DNA; and nuclease-free water (Promega, 

Madison, USA) to bring the final volume to 25 μl. The thermal cycler used in all the protocols was a 

Bioer XP Cycler Model TC-XP-G (Bioer Technology Co. Ltd., China). Each PCR protocol was conducted 

using the conditions specified in Table 2.2. Holding temperature after the PCR run was 4°C for all PCR 

protocols. 

 

For all of the PCR protocols a negative (template-DNA free) and positive (previously amplified 

template DNA) control were included. Several reference strains belonging to the Bacillus genus were 

included in the DNA fingerprinting for comparative purposes. These included the type strains B. 

amyloliquefaciens DSM 7T and B. subtilis subsp. subtilis DSM 10T; and plant-associated strains 

(isolated previously from rhizosphere material) which, based on 16S rRNA sequencing, were 

previously identified as B. amyloliquefaciens subsp. plantarum strains R51 and R43; B. subtilis strain 

B81; and B. cereus strain R73 (Personal communication: Hunter, C. H.; Discipline of Microbiology, 

School of Life Sciences, University of KwaZulu-Natal, Private bag X01, South Africa).   

Protocol Primers Sequence (5’ – 3’) Expected  

Product Size 

Reference 

ITS-PCR ISR-1494 GTCGTAACAAGGTAGCCGTA Variable Martínez and Siñeriz 
(2004) 

ISR-35 CAAGGCATCCACCGT  

RAPD-PCR OPG-11 TGCCCGTCGT Variable Daffonchio et al. (1998b) 

16S rRNA  BacF GGGAAACCGGGGCTAATACCGGAT 1187 bp Heuer et al. (1997) 
Garbeva et al. (2003) 

R1378 CGGTGTGTACAAGGCCCGGGAACG  

gyrA  p-gyrA-f CAGTCAGGAAATGCGTACGTCCTT 892 bp Roberts et al. (1994) 

p-gyrA-r CAACGTAATGCTCCAGGCATTGCT  
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Table 2.2. PCR reaction conditions for the primers used in DNA fingerprinting and gene fragment 

sequence analysis. 

Protocol  PCR cycle (Temperature and duration) Cycles 

 Initialisation Denaturation Annealing Elongation Final Extension 

ITS 95°C/ 4 min 94°C/ 1 min 55°C/ 2 min 72°C/ 2 min 72°C/ 10 min 30 

RAPD 94°C/ 4 min 94°C/ 1 min 36°C/ 1 min 72°C/ 30 sec 72°C/ 5 min 40 

16S rRNA 94°C/ 5 min 94°C/ 1 min 65°C/ 90 sec 72°C/ 2 min 72°C/ 10 min 35 

gyrA 95°C/ 2 min 95°C/ 1 min 60°C*/ 30 sec 72°C/ 1 min 72°C/ 5 min 30 

* Optimised to 58°C for certain isolates 

 

The PCR products were separated and visualised by agarose gel electrophoresis using a 1.5% agarose 

gel (Laboratorois Conda, Madrid, Spain) prepared with 1x Tris-Borate-Ethylenediaminetetraacetic 

acid (TBE) buffer (89 mM Tris base, 89 mM Boric acid and 2 mM EDTA, adjusted to pH 8.0). Gels 

were pre-stained with 1x SYBR Safe (Invitrogen, California, USA). The PCR products were prepared in 

final volumes of 5 μl per lane, with a ratio of 3 μl DNA to 2 μl loading dye (6x blue-orange) (Promega, 

Madison, USA). A 1 kb molecular weight ladder (Promega, Madison, USA) was used to determine 

product band sizes. Gels were run at 90 V for 50–60 minutes and images of each gel electrophoresis 

were captured under ultra violet (UV) light on SynGene G:Box using the Syngene GeneSnap software 

(version 7.09) (Syngene, Cambridge, England).  

 

Isolate banding profiles used for DNA fingerprinting purposes were grouped visually based on 

banding pattern similarities. Representatives of each grouping were combined on a single gel for 

comparative purposes. Dendograms were subsequently generated for both the ITS- and RAPD-PCR 

gels using Syngene GeneTools software (version 4.01). The ITS-PCR dendogram was generated using 

the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method with matching 

parameters based on profile, Jaccard similarity coefficient, alignment by molecular weight, and a 1% 

tolerance. The RAPD-PCR dendogram also used UPGMA with matching parameters using profile, 

Jaccard similarity coefficient, alignment by position, and a 1% tolerance. 
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2.2.4. DNA sequencing of 16S rRNA and gyrase subunit A gene fragments 

Amplicons from the 16S rRNA and gyrA gene fragment PCRs were sequenced using an ABI 3500XL 

Genetic analyser (Applied Biosystems, California, USA) at Inqaba Biotec Laboratories (Hatfield, 

Pretoria, South Africa) in order to generate phylogenetic trees from sequence data. The 16S rRNA 

gene fragment was sequenced using only the forward (BacF) primer, and the gyrA gene fragment 

was sequenced using both the forward and reverse primers (see Table 2.1). Sequences were 

visualised and edited in Chromas Lite (version 2.01) and BioEdit (version 7.1.3.0) (Hall, 1999) and 

consensus sequences aligned using MAFFT online (http://mafft.cbrc.jp/alignment/server). 

Subsequently, the nucleotide sequences were submitted to NCBI Blast 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Zhang et al., 2000) for comparison to existing 16S rRNA and 

gyrA gene sequences in the GenBank database using the Megablast algorithm and NCBI whole 

genome database.  

 

16S rRNA and gyrA gene sequences for selected reference strains of significant Bacillus spp. were 

also obtained from the GenBank database for comparative purposes (Date accessed: 20 March 

2015). The reference sequences used for 16S rRNA gene sequence phylogenetic comparisons were: 

Bacillus sp. JS (NC017743.1), B. amyloliquefaciens subsp. plantarum YAU B9601-Y2 (NC017061.1), B. 

amyloliquefaciens subsp. plantarum CAU B946 (NC016784.1), B. amyloliquefaciens subsp. plantarum 

FZB42  (NC009725.1), B. amyloliquefaciens subsp. amyloliquefaciens KHG19 (CP007242.1), B. 

amyloliquefaciens subsp. amyloliquefaciens DSM 7 (NC014551.1), B. subtilis BSn5 (CP002468.1), B. 

subtilis QB928 (NC018520.1), B. subtilis subsp. subtilis RO-NN-1 (CP002906.1), B. subtilis subsp. 

subtilis NCIB 3610 (NZCM000488.1), B. subtilis subsp. subtilis 168 (NC000964.3), B. subtilis subsp. 

subtilis 6051-HGW (NC020507.1), B. subtilis subsp. spizizenii NRRL B-23049 (NR024931.1), B. subtilis 

subsp. spizizenii TU-B-10 (CP002905.1), B. subtilis subsp. spizizenii W23 (CP002183.1), B. subtilis 

subsp. spizizenii NRS 231 (CP010434.1), B. inaquosus NRRL BD-571 (EU138495.1), B. tequilensis NRRL 

B-41771 (EU138487.1), B. mojavensis NRRL BD-600 (EU138506.1), B. cereus ATCC 14579 

(NC004722.1), and B. megaterium DSM 319 (NC014103.1). The outgroup sequence for the 16S rRNA 

gene sequence phylogenetic tree was Staphylococcus pasteuri ATCC51129 (NR024669.1). 

 

The reference sequences used for gyrA gene sequence phylogenetic comparisons were: Bacillus sp. 

A053 (NZJXAJ01000001.1), Bacillus sp. JS (NC017743.1), B. amyloliquefaciens subsp. plantarum 

FZB42 (NC009725.1), B. amyloliquefaciens subsp. plantarum CAU B946 (NC016784.1), B. 
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amyloliquefaciens subsp. plantarum YAU B9601-Y2 (NC017061.1), B. amyloliquefaciens subsp. 

amyloliquefaciens KHG19 (CP007242.1), B. amyloliquefaciens subsp. amyloliquefaciens DSM7 

(NC014551.1), B. amyloliquefaciens L-H15 (CP010556.1), B. amyloliquefaciens IT-45 (NC020272.1), B. 

amyloliquefaciens X1 (NZJQNZ01000021.1), B. amyloliquefaciens SQR9 (CP006890.1), B. 

amyloliquefaciens LFB112 (NC023073.1), B. subtilis ATCC 19217 (CP009749.1), B. subtilis BSn5 

(CP002468.1), B. subtilis XF-1 (CP004019.1), B. subtilis GXA-28 (NZJPNZ01000003.1), B. subtilis subsp. 

subtilis 168 (NC000964.3), B. subtilis subsp. subtilis BAB-1 (CP004405.1), B. subtilis subsp. subtilis 

3NA (NZCP010314.1), B. subtilis subsp. spizizenii TU-B-10 (CP002905.1), B. subtilis subsp. spizizenii 

W23 (CP002183.1), B. subtilis subsp. spizizenii NRS 231 (CP010434.1), B. atrophaeus NRRL NRS-213 

(EU138654.1), B. mojavensis NRRL BD-600 (EU138644.1), B. inaquosus NRRL BD-571 (EU138633.1), 

B. tequilensis NRRL B-41771 (EU138625.1), B. megaterium DSM 319 (NC014103.1), and B. cereus 

ATCC 14579 (NC004722.1). The outgroup sequence for the phylogenetic tree of the gyrA gene 

sequences was Peptoclostridium difficile 630 (NC009089.1). 

 

Phylogenetic trees for 16S rRNA and gyrA gene fragment sequences were generated using MEGA6 

software (version 6.0) (Tamura et al., 2013) and aligned using MUSCLE in MEGA6 (Edgar, 2004). 

Evolutionary relationships between the isolates were inferred using the Neighbour-Joining method, 

incorporating a 1000 replicate bootstrap test (Tamura et al., 2004; Saitou and Nei, 1987; Felsenstein, 

1985) and evolutionary distances were computed using the Jukes-Cantor method (Jukes and Cantor, 

1969). The trees were drawn to scale, with branch lengths in the same units as those of the 

evolutionary distances used to infer the phylogenetic tree. All positions containing gaps and missing 

data were eliminated.  

 

2.2.5. AEFB classification using MALDI-TOF-MS   

Analysis of selected AEFB isolates was carried out using a bench-top Bruker Microflex L20 MALDI-

TOF mass spectrometer (Bruker Daltonics, Germany) equipped with an N2 laser (337 nm). Mass 

spectra were generated, processed and analysed using FlexControl (version 2.4), and the laser 

energy level automatically optimised using the AutoX method (MBT_AutoX.axe) function of the 

FlexControl operation. For calibration purposes an Escherichia coli DH5α Bacterial Test Standard 

(BTS) (Bruker Daltonics) (Mass range: 3637.8–16957.4 Da) (Bruker Daltonics, Germany) was included 

in each analytical run. The matrix solution used was α-cyano-hydroxycinnamic acid (HCCA) (Bruker 

Daltonics). The HCCA was dissolved in 50% (v/v) acetonitrile and 2.5% (v/v) trifluoroacetic acid to 
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provide a final concentration of 10 mg HCCA/ml. The protocol applied was as recommended and 

specified in the Bruker Daltonics operating manual. 

 

AEFB cultures were prepared for MALDI-TOF-MS following an ethanol-formic acid extraction 

procedure outlined in the Bruker Daltonics operations manual; whereby bacterial colonies picked off 

from a 24 h TSA plate were suspended in 200 µl of ultra-pure water dispensed into 1.5 ml microfuge 

tubes. Nine hundred microlitres of absolute ethanol was then added to each cell suspension before 

homogenisation. Each tube was centrifuged at 15,996 x g for 2 minutes after which the supernatants 

were removed, and the cell pellets air dried. Pellets were then resuspended in 10 µl of 70% (v/v) 

aqueous formic acid and an equal volume of pure acetonitrile. Tubes were centrifuged again at 

15,996 x g for 2 minutes and 1 µl of each resultant supernatant was spotted onto a stainless steel 

target plate, air-dried and overlaid with an equal volume of HCCA matrix.  

 

Spectra for bacterial identification purposes were acquired in positive reflector mode in the 1.9–20.1 

kDa range were detected by measuring 40 laser shots from six different positions per spot. Spectra 

analysis was carried out using MALDI Biotyper (version 3.0) software (Bruker Daltonics, Germany). 

This software compared the spectra for each isolate to the spectra contained within the Biotyper 

Reference Library 1.0 (version 3.1.2 (2011)), and assigned each isolate an identity supported by a 

score value. The confidence of the isolate identity was denoted as follows: Highly probable genus 

and species identification (score 2.300–3.000); secure genus and probable species identification 

(score 2.000–2.299); probable genus identification (1.700–1.999); no consistency in genus or species 

(score 0.000–1.699). 

 

Generation of phyloproteomic dendograms was achieved by the generation of a mass spectra profile 

(MSP) for each of the AEFB isolates. Bacterial samples were prepared for analysis as described 

above, with each bacterial sample spotted in ten replicate spots on the target plate, in addition to a 

single BTS calibrant spot per isolate set. The mass spectra were generated with the laser in positive 

linear mode, as the mean of 240 laser shots per spectrum (generated after 40 shots in six positions) 

at 60Hz in the mass range of 1.9–20.1 kDa. The ten test spots were analysed three times each for a 

total of 30 spectra per bacterial sample. Spectral processing and analysis was carried out using 

FlexControl (version 2.4), with MALDI Biotyper and FlexAnalysis software used for the creation of an 

MSP library, from which dendograms were created.   
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Independent cluster analysis of the MSPs was performed using SPECLUST 

(http://bioinfo.thep.lu.se/speclust.html) (Alm et al., 2006). Ten of the mass spectra profiles 

generated for each isolate underwent baseline subtraction (Precision set at 100, relative offset at 

90), smoothing (Gaussian method, window size 0.3 m/z, with 2 cycles) and peak picking (S/N 

threshold 3.0, absolute intensity threshold 1.0, relative intensity threshold 5%, picking height at 80) 

using mMass open source software (version 5.5.0) (Niedermeyer and Strohalm, 2012; Strohalm et 

al., 2010; Strohalm et al., 2008). The ten peak lists generated for each isolate were submitted to 

SPECLUST for the identification of common peaks. The parameters for the peaks-in-common 

SPECLUST function were defined as pairwise score cut-off of 0.7, measurement error of 5.0 Da, and 

multiple score cut-off of 0. From the SPECLUST consensus peak lists, peaks appearing nine or more 

times in an isolate’s mass spectra were deemed sufficiently representative and retained for 

generation of the final peak list for that isolate. The final peak list for the 14 isolates underwent 

cluster analysis in SPECLUST to render a dendogram of relatedness, with the parameters “metric” as 

liberal, “linkage” as average, and σ (sigma value) set to 1.0 Da.  

 

2.3. Results 

2.3.1. In vitro screening for antifungal ability using dual-culture bioassays 

Of the 309 AEFB isolates screened, 151 isolates showed antifungal activity. Isolates antagonistic 

toward the test fungi were isolated from all the cucurbit host plant species sampled. For rating 

purposes the level of fungal antagonism was assessed at 2, 5, and 14 d; since these intervals were 

found to yield the most useful data. Examples of the rating system used to rank the degree of fungal 

antagonism observed, are presented in Plate 2.1. Control plates for both fungal species tested were 

fully colonised within 48 hours, though R. solani appeared to grow slightly faster than B. cinerea. 

Approximately 73% (110) of the isolates exhibiting antifungal capacity showed activity against both 

fungi. Specific antagonism towards B. cinerea was noted in 34 isolates (~23%); whereas only seven 

isolates (~4%) exhibited exclusive antagonism towards R. solani. Botrytis cinerea appeared to be 

more sensitive to bacterial antagonism than R. solani and generally produced larger, more sustained 

zones of inhibition over the incubation period. Of the antagonistic isolates screened, 54 were 

selected for further characterisation and evaluation (Table 2.3). These isolates were chosen based 

on an antagonism rating of (++) or greater at day 5 against B. cinerea, and where antifungal activity 

was still in evidence after 14 d of incubation. 
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Fungal antagonism was also characterised according changes in mycelium appearance, usually in the 

region adjacent to the zone of inhibition. These changes were evident in both fungi, and became 

more prominent over time. However, not all bacterial isolates screened produced the same 

antagonism response, and distinctions between dual-culture interactions could be made on this 

basis. For R. solani mycelial changes included mycelial thinning or thickening at the inhibition zone 

interface. In all but five of the isolates exhibiting antifungal activity R. solani mycelia exhibited a 

progressive “browning” which was evident from 3 d onwards (Plate 2.2). Botrytis cinerea mycelium 

showed mycelial thinning which was usually accompanied by “yellowing” of the hyphae and the 

appearance of a darkened ring at the periphery of the inhibition zone from 6 d onwards (Plate 2.3). 

For both fungi, colour changes became more prominent over time.  

 

For most isolates antifungal activity was distinguished within 2–3 d post fungal inoculation. 

However, a significant number of isolates showed a fungistatic response from day 5 onwards, 

whereby the test fungi overgrow the zones of inhibition (Plate 2.4). Of the 54 antagonistic isolates 

selected for further characterisation (Table 2.1) 41 (~76%) showed a fungistatic response towards R. 

solani by day 14, whereas only 23 (~43%) isolates did so against B. cinerea. Overall, a greater number 

of isolates scored higher on the rating system for sustained, high levels of activity against B. cinerea 

than for R. solani.  

 

A common occurrence associated with the B. cinerea dual-culture bioassay plates was the 

appearance of a pink to red colouration in the PDA medium adjacent to bacterial colonies after 

several days of incubation (Plate 2.5). This colour development was associated with isolates showing 

pronounced fungal antagonism that did not alter over time. The phenomenon was not observed in 

the R. solani dual-culture bioassays, or when isolates were cultured without fungus on TSA or 10% 

TSA. 
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Plate 2.1. Dual-culture antifungal bioassays illustrating varying levels of AEFB antagonism against 

Botrytis cinerea and Rhizoctonia solani on PDA after 4 d of incubation at 30°C. The rating system 

applied to measure antagonism was determined by the size of the zone of inhibition where: (+++) 

is greater than 5mm; (++) measures between 2–5mm; (+) measures less than 2mm; and a (-) rating 

indicated that no observable antagonism was evident. 
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Plate 2.2. Influence of bioassay duration on fungal antagonism of Rhizoctonia solani by isolate 

ccc103 illustrating changes in mycelial appearance and colour over time. Dual-culture bioassays 

were performed on PDA and incubated at 30°C over a 14-d period.  

 

 

Plate 2.3. Influence of bioassay duration on fungal antagonism of Botrytis cinerea by isolate 

cce147 illustrating changes in mycelial appearance and colour over time. Dual-culture bioassays 

were performed on PDA and incubated at 30°C over a 14-d period.  
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Plate 2.4. Effect of dual-culture antifungal bioassay duration on fungal antagonism of Botrytis 

cinerea by isolate bng119, illustrating the onset of fungistatic interactions over a 14-d period. 

 

 

 

 

Plate 2.5. Dual-culture bioassay illustrating antifungal interaction between isolate bng216 and 

Botrytis cinerea in which the development of a red/pink colouration in the PDA medium (7 d) is 

evident.  
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Table 2.3. Results for dual-culture antifungal bioassays of selected AEFB isolates against Botrytis cinerea and Rhizoctonia solani. 

Isolate 
B. cinerea Antifungal Bioassay Rating R. solani  Antifungal Bioassay Rating Host 

Plant 
Sampling Location# 

2-day 5-day 14-day Interaction 2-day 5-day 14-day Interaction 

bna75 ++ +++ +++ Fungicidal ++ ++ ++ Fungicidal Butternut PMB (Scottsville 1) 
bna78 ++ +++ ++ Fungistatic +++ ++ ++ Fungicidal Butternut PMB (Scottsville 1) 
bna81 +++ +++ ++ Fungistatic ++ + + Fungistatic Butternut PMB (Scottsville 1) 
bna85 ++ +++ +++ Fungicidal ++ ++ ++ Fungicidal Butternut PMB (Scottsville 1) 
mwb86 +++ +++ +++ Fungicidal + + + Fungicidal Zucchini PMB (Scottsville 1) 
mwb87 +++ +++ +++ Fungicidal + + + Fungicidal Zucchini PMB (Scottsville 1) 
ccc103 +++ +++ +++ Fungicidal +++ +++ +++ Fungicidal Chayote PMB (Scottsville 1)  
bnd109 +++ +++ +++ Fungicidal +++ +++ + Fungistatic Butternut PMB (Epworth 1) 
bnd115 +++ +++ +++ Fungicidal +++ ++ + Fungistatic Butternut PMB (Epworth 1) 
bnd116 +++ +++ +++ Fungicidal ++ ++ + Fungistatic Butternut PMB (Epworth 1) 
bnd119 +++ +++ ++ Fungistatic ++ + + Fungistatic Butternut PMB (Epworth 1) 
bnd124 +++ +++ +++ Fungicidal +++ +++ ++ Fungistatic Butternut PMB (Epworth 1) 
bnd125 +++ ++ +++ Fungicidal +++ +++ +++ Fungicidal Butternut PMB (Epworth 1) 
bnd134 +++ +++ +++ Fungicidal + + + Fungicidal Butternut PMB (Epworth 1) 
bnd136 +++ +++ ++ Fungistatic +++ ++ + Fungistatic Butternut PMB (Epworth 1) 
bnd137 ++ +++ +++ Fungicidal +++ +++ ++ Fungistatic Butternut PMB (Epworth 1) 
bnd139 ++ +++ +++ Fungicidal + + + Fungicidal Butternut PMB (Epworth 1) 
cce140 ++ +++ +++ Fungicidal + + + Fungicidal Chayote PMB (Chase Valley 1) 
cce142 +++ +++ +++ Fungicidal +++ +++ ++ Fungistatic Chayote PMB (Chase Valley 1) 
cce146 ++ +++ +++ Fungicidal ++ ++ + Fungistatic Chayote PMB (Chase Valley 1) 
cce147 +++ +++ +++ Fungicidal ++ ++ + Fungistatic Chayote PMB (Chase Valley 1) 
bnd149 +++ +++ +++ Fungicidal ++ ++ + Fungistatic Butternut PMB (Epworth 2) 
bnd150 +++ +++ +++ Fungicidal +++ + + Fungistatic Butternut PMB (Epworth 2) 
bnd154 ++ +++ ++ Fungistatic +++ +++ + Fungistatic Butternut PMB (Epworth 2) 
bnd156 +++ +++ +++ Fungicidal - - - N/A Butternut PMB (Epworth 2) 
bnd157 +++ +++ +++ Fungicidal + ++ ++ Fungicidal Butternut PMB (Epworth 2) 
bnd160 +++ +++ +++ Fungicidal ++ ++ ++ Fungicidal Butternut PMB (Epworth 2) 
bnd162 +++ +++ +++ Fungicidal +++ ++ ++ Fungicidal Butternut PMB (Epworth 2) 
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Table 2.3.  Continued. 

Isolate 
B. cinerea Antifungal Bioassay Rating R. solani  Antifungal Bioassay Rating Host 

Plant 
Sampling Location 

2-day 5-day 14-day Interaction 2-day 5-day 14-day Interaction 

bnd166 +++ +++ ++ Fungistatic +++ ++ ++ Fungicidal Butternut PMB (Epworth 2) 

pkf167 +++ +++ +++ Fungicidal ++ ++ ++ Fungicidal Pumpkin PMB (Allan Wilson) 

cce174 +++ +++ +++ Fungicidal ++ ++ ++ Fungicidal Chayote PMB (Chase Valley 2) 

cce175 +++ +++ +++ Fungicidal +++ +++ +++ Fungicidal Chayote PMB (Chase Valley 2) 

cce183 ++ +++ ++ Fungistatic +++ +++ +++ Fungicidal Chayote PMB (Chase Valley 2) 

bng199 +++ +++ ++ Fungistatic ++ +++ ++ Fungistatic Butternut PMB (Voortrekker) 

bng202 +++ +++ + Fungistatic +++ ++ + Fungistatic Butternut PMB (Voortrekker) 

bng210 +++ +++ +++ Fungicidal ++ ++ + Fungistatic Butternut PMB (Voortrekker) 

bng215 +++ +++ ++ Fungistatic + + - Fungistatic Butternut PMB (Voortrekker) 

bng216 +++ +++ ++ Fungistatic + + - Fungistatic Butternut PMB (Voortrekker) 

bng217 +++ +++ ++ Fungistatic +++ +++ ++ Fungistatic Butternut PMB (Voortrekker) 

bng218 +++ +++ ++ Fungistatic +++ ++ + Fungistatic Butternut PMB (Voortrekker) 

bng221 ++ +++ + Fungistatic ++ ++ + Fungistatic Butternut PMB (Voortrekker) 

bng224 ++ +++ ++ Fungistatic +++ +++ ++ Fungistatic Butternut PMB (Voortrekker) 

bng227 +++ +++ +++ Fungicidal ++ ++ + Fungistatic Butternut PMB (Voortrekker) 

bng230 +++ +++ ++ Fungistatic ++ ++ + Fungistatic Butternut PMB (Voortrekker) 

pkl242 +++ +++ + Fungistatic +++ +++ ++ Fungistatic Pumpkin Wartberg 

pkl247 +++ +++ + Fungistatic +++ ++ ++ Fungicidal Pumpkin Wartberg 

pkk252 +++ +++ + Fungistatic +++ ++ ++ Fungicidal Pumpkin Wartberg 

sqo271 +++ +++ ++ Fungistatic ++ ++ + Fungistatic Squash Hilton 

sqo272 +++ +++ ++ Fungistatic +++ +++ + Fungistatic Squash Hilton 

sqo275 +++ +++ + Fungistatic +++ +++ + Fungistatic Squash Hilton 

sqo277 +++ +++ ++ Fungistatic +++ +++ ++ Fungistatic Squash Hilton 

sqo279 +++ +++ +++ Fungicidal + + + Fungistatic Squash Hilton 

bnn282 +++ +++ +++ Fungicidal +++ +++ ++ Fungistatic Butternut Wartberg 

sqo298 +++ +++ ++ Fungistatic + + + Fungistatic Squash PMB (Scottsville 2) 

N/A = Not Applicable.  
# 

PMB = Pietermaritzburg 
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2.3.2. Observations of AEFB isolate colony morphology, cell morphology, and sporangial 

characteristics  

AEFB isolates cultured on TSA were cream or white on colour; and gave rise to a range of different 

colony morphologies, including circular, punctiform or irregular colony shapes. Two colony types 

predominated (Table 2.4): one with a firm texture and matte appearance (Plate 2.6a); and the 

second comprising highly mucoid colonies, which displayed a tendency to swarm on TSA (Plate 2.6b). 

The surface appearance of the mucoid colonies altered with age, taking on a rugose appearance 

(Plate 2.6c). When isolates were cultured on 10% TSA colony morphologies arose which were 

different from those observed from full-strength TSA, being of a distinctly drier texture and with a 

puckered, matte appearance.  

 

Table 2.4. Colony and Gram stain characteristics of AEFB isolates displaying high levels of fungal 

antagonism in dual-culture bioassay. 

Isolate 
Colony Characteristics Cell Size  

(µm) 

Endospore Characteristics 

Colour Appearance Texture Location Sporangial Distension 

bna75 White Shiny Mucoid 0.7x4 Subterminal Slight 

bna78 Cream Shiny Mucoid 0.7x3.5 Subterminal Slight 

bna81 White Matte Hard 0.7x3.5 Subterminal Slight 

bna85 Cream Matte Mucoid 0.7x3.5 Central Slight 

mwb86 White Shiny Mucoid 0.7x3.5 Subterminal No 

mwb87 Cream Matte Mucoid 0.7x3.5 Subterminal Yes 

ccc103 White Shiny Hard 0.7x4 Subterminal Yes 

bnd109 White Matte Mucoid 0.7x3 Central Slight 

bnd115 White Matte Hard 0.7x2 Central No 

bnd116 White Matte Mucoid 0.7x3 Subterminal No 

bnd119 White Matte Hard 0.7x3 Subterminal Slight 

bnd124 White Shiny Mucoid 0.7x2.5 Central No 

bnd125 White Shiny Mucoid 0.7x3 Subterminal No 

bnd134 White Matte Hard 0.7x3 Central Slight 

bnd136 White Matte Hard 0.7x2.5 Central No 

bnd137 White Shiny Mucoid 0.7x3 Central No 

bnd139 White Matte Mucoid 0.7x3 Subterminal Slight 

cce140 White Matte Hard 0.7x3.5 Subterminal Slight 

cce142 White Matte Mucoid 0.7x2.5 Central Slight 

cce146 White Matte Hard 0.7x3.5 Subterminal No 

cce147 White Matte Hard 0.7x3.5 Subterminal Slight 

bnd149 White Shiny Mucoid 0.7x3 Central Yes 

bnd150 White Matte Mucoid 0.7x3.5 Subterminal No 
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When Gram stained all AEFB isolates were confirmed to be Gram positive rods capable of producing 

endospores (Table 2.4). The AEFB rods under Gram stain showed lengths ranging from 2.5–4 µm, 

and a diameter of 0.7 µm. All isolates produced spores within 48–72 h of aerobic incubation in TSB. 

The location of the forming endospore in the sporangium was predominantly subterminal, but 

centralised endospore locations were observed for some isolates. Most isolates did not display 

swelling of the parent cell by the forming spore, though prominent sporangial swelling was evident 

for four isolates, whereas slight swelling was evident for 19 isolates.  

 

2.3.3. Fingerprinting of AEFB isolates using RAPD-PCR and ITS-PCR 

 

 

 

 

 

 

 

 

Table 2.4. Continued. 

Isolate 
Colony Characteristics Cell Size  

(µm) 

Endospore Characteristics 

Colour Appearance Texture Location Sporangial Distension 

bnd154 White Shiny Mucoid 0.7x3.5 Central No 

bnd156 White Matte Hard 0.7x4 Central No 

bnd157 White Matte Hard 0.7.5x4 Subterminal No 

bnd160 White Shiny Mucoid 0.7x4 Subterminal No 

bnd162 White Shiny Hard 0.7x2.5 Central No 

bnd166 White Matte Hard 0.7x2.5 Subterminal No 

pkf167 White Shiny Mucoid 0.7x3 Central No 

cce174 White Shiny Mucoid 0.7x2.5 Central No 

cce175 White Shiny Mucoid 0.7x2.5 Central Slight 

cce183 White Shiny Mucoid 0.7x3 Subterminal Yes 

bng199 White Matte Mucoid 0.7x3.5 Subterminal No 

bng202 White Matte Hard 0.7x2.5 Subterminal No 

bng210 White Shiny Mucoid 0.7x2.5 Subterminal No 

bng215 Cream Shiny Mucoid 0.7x3.5 Central Slight 

bng216 Cream Shiny Hard 0.7x3.5 Central Slight 

bng217 White Shiny Mucoid 0.7x2.5 Subterminal No 

bng218 White Matte Hard 0.7x2.5 Subterminal No 

bng221 White Matte Hard 0.7x2.5 Subterminal No 

bng224 White Matte Mucoid 0.7x3 Subterminal Slight 

bng227 White Matte Mucoid 0.7x3 Subterminal No 

bng230 White Matte Mucoid 0.7x2.5 Subterminal No 

pkl242 White Shiny Mucoid 0.7x3.5 Subterminal No 

pkl247 White Shiny Mucoid 0.7x2.5 Subterminal No 

pkk252 White Shiny Mucoid 0.7x2.5 Subterminal Slight 

sqo271 White Matte Hard 0.7x2.5 Subterminal Slight 

sqo272 Cream Shiny Mucoid 0.7x2 Subterminal Slight 

sqo275 White Matte Mucoid 0.7x3.5 Central No 

sqo277 White Matte Mucoid 0.7x3 Subterminal No 

sqo279 White Matte Mucoid 0.7x3 Central Slight 

bnn282 White Matte Mucoid 0.7x2.5 Central No 

sqo298 White Matte Mucoid 0.7x2.5 Subterminal No 
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Plate 2.6. Representative colony morphologies of selected AEFB isolates cultured on TSA after 48 h 

at 30°C. Colony morphology (A) was characterised a dry texture and matte appearance, whereas 

morphology (B) was highly mucoid and globose in appearance. Over time (B) type colonies dried 

out taking on a more rugose appearance with a firmer texture (C). 
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Fifty five phyllosphere-isolated AEFB isolates from the initial dual-culture bioassays were carried 

forward for DNA fingerprinting using ITS-PCR and RAPD-PCR. These isolates were selected, primarily, 

on the basis of their antifungal activity against one or both test fungi screened in the dual-culture 

bioassays, and were representative of each location and cucurbit species sampled. The antifungal 

isolates chosen for DNA fingerprinting were: bna75, bna78, bna81, bna85, mwb86, mwb87, ccc103, 

bnd109, bnd115, bnd116, bnd119, bnd124, bnd125, bnd134, bnd136, bnd137, bnd139, cce140, 

cce142, cce146, cce147, bnd149, bnd150, bnd154, bnd156, bnd157, bnd160, bnd162, bnd166, 

pkf167, cce174, cce175, cce183, bng199, bng202, bng210, bng215, bng216, bng217, bng218, 

bng221, bng224, bng227, bng230, pkl242, pkl247, pkk252, sqo271, sqo272, sqo275, sqo277, sqo279, 

bnn282, and sqo298. Isolate bng241 was also included as a non-antifungal representative isolate. 

 

2.3.4. RAPD-PCR differentiation of phylloplane-isolated AEFB isolates 

Representative RAPD-PCR profiles obtained for the AEFB isolates are shown in Figure 2.1. Isolates 

could be grouped on a visual basis into 14 distinct RAPD fingerprint profiles (designated by letters a–

n) based on the number, size, and intensity of the bands (Figure 2.2). Similarities between each of 

the RAPD profiles were determined using Syngene GeneSnap software (version 7.09) (Syngene, 

Cambridge, England) employing a UPGMA, taking into account the overall band profile of each 

isolate to a 1% tolerance (Figure 2.2).  

 

Forty two percent of the AEFB isolates screened displayed RAPD fingerprint patterns consistent 

matching to profile a (Figure 2.2). Five isolates matched profiles c and f respectively; while profiles b 

and k comprised 4 isolates matches each.  Profile g was matched to 3 isolates and profiles d, h and l 

were represented by 2 isolates each. The profiles e, i, j, m, n were each represented by a single 

isolate, namely bng199, bng241, bng216, sqo275, and bng230 respectively.   

 

Four major groupings were discernable in the dendogram. Group I comprised profiles a, b, f, g, e, 

and c; Group II comprised profiles n, k, l, and m. Profile d clustered separately from the remainder of 

the profiles (Group III), and whereas profiles i, h, and j clustered together (Group IV). The isolates 

corresponding to the fingerprint groupings in the dendogram are presented in Table 2.7. 
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Figure 2.1. Fingerprint profiles of AEFB isolates from RAPD-PCR with primer OPG-11 as seen after electrophoresis using 1.5% agarose gel. 
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Figure 2.2. UPGMA dendogram demonstrating relationships between the representative banding 

patterns of RAPD-PCR profiles (a–n) of phyllosphere-isolated AEFB generated with primer OPG-11, 

as determined by GeneTools software (version 4.01.03, Syngene). 

 

RAPD-PCR fingerprints of each of the reference strains used in this study are shown in Figure 2.3. 

Each reference strain was found to have a unique fingerprint. Visual comparisons of RAPD profiles 

determined in this study indicated that reference strains B. amyloliquefaciens subsp. plantarum 

strains R43 and R51, and B. subtilis strain B81 could be matched to profiles a, b, and k respectively.  

Group I 

Group II 

Group III 

Group IV 
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Figure 2.3.  RAPD-PCR fingerprint profiles of selected AEFB reference strains generated with 

primer OPG-11, as seen after electrophoresis using 1.5% agarose gel. 

 

2.3.5. ITS-PCR differentiation of phylloplane-isolated AEFB isolates 

Representative ITS-PCR profiles obtained for the AEFB isolates are shown in Figure 2.4. Two major 

fingerprint groupings were distinguished, based on band number and size: Profile B had two 

fragments with band sizes at ~450 bp and ~250 bp; while similar fragments were noted for profile A, 

with additional bands ~300 bp and ~350 bp also distinguished. A third minor profile unique to isolate 

bng241 was observed (designated profile C). This also comprised two bands, ~240 bp and ~470 bp in 

size. Approximately 44% of isolates belonged to profile A, with the remainder (excepting isolate 

bng241) showing fingerprint profile B (Figure 2.5).
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 Figure 2.4. Fingerprint profiles of AEFB isolates from ITS-PCR as seen after electrophoresis using 1.5% agarose gel. 

 

 



 
 

63 
 

The relationships between these three profiles were determined using Syngene GeneSnap software 

(version 7.09) (Syngene, Cambridge, England). The relationships between these fingerprints showed 

a low level of diversity, the similarity of approximately 96% between profile A and bng241; and 86% 

between these and profile B (Figure 2.5). 

 

 

Figure 2.5. UPGMA dendogram showing the relationships between the representative ITS profiles 

derived from AEFB isolates screened in this study, as determined by GeneTools software (version 

4.01.03, Syngene) using parameters of band molecular weight with a 1% tolerance. 

 

The ITS fingerprint profiles determined for the reference strains are shown in Figure 2.6. Intraspecific 

and interspecific variations in ITS-PCR banding profiles were evident amongst the reference strains 

evaluated, based on band molecular weight and intensities. The reference strains B. subtilis subsp. 

subtilis DSM10, B. subtilis B81, and B. amyloliquefaciens R43 visually match to profile B; while B. 

amyloliquefaciens subsp. plantarum R51 and B. amyloliquefaciens subsp. amyloliquefaciens DSM7 

visually match profile A. Interestingly, profile C correlates to B. cereus R73. 
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Figure 2.6. ITS-PCR fingerprint profiles of selected AEFB reference strains, as seen after 

electrophoresis using 1.5% agarose gel. 

 

From RAPD- and ITS-PCR fingerprinting results (Table 2.7), it was observed that fingerprint profiles 

were neither host plant nor region specific. No apparent correlation between ITS and RAPD 

fingerprints could be determined, since isolates with similar RAPD profiles were found to have varied 

ITS profiles (e.g. within RAPD profile a, both ITS profiles A and B are represented).  
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2.3.6. 16S rRNA and gyrA gene fragment sequencing 

Representative isolates were chosen for sequencing of 16S rRNA and gyrA gene fragments based on 

fingerprint grouping, cucurbit host species, and geographical sampling location. A total of 32 isolates 

were selected (viz. bna81, mwb86, mwb87, ccc103, bnd109, bnd134, bnd136, bnd137, cce140, 

cce142, cce146, bnd156, bnd160, pkf167, cce174, cce175, cce183, bng199, bng210, bng215, bng216, 

bng221, bng230, pkl242, pkl247, pkk252, sqo271, sqo275, sqo277, sqo279, bnn282, and sqo298). 

 

2.3.7. Sequencing of 16S rRNA gene fragment  

The 16S rRNA gene fragments amplified from the AEFB isolates resulted in PCR products ~1200 bp in 

size (Figure 2.7).  

 

Figure 2.7. Examples of 16S rRNA gene fragment PCR amplicons (~1200 bp) as viewed after gel 

electrophoresis in 1.5% agarose gel. 

 

After editing, the forward primer read 16S rRNA gene fragment sequences (~783 bp in length) were 

submitted to the NCBI BLAST whole genome database for comparative identification (Table 2.5). All 

the AEFB isolates gave >99% similarity matches for the top three 16S rRNA gene sequence matches 

identified from the GenBank database. The majority of isolates (75%) matched to strains of B. 
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amyloliquefaciens including the subspecies B. amyloliquefaciens subsp. plantarum (100% similarity). 

The remaining isolates were matched to strains of B. subtilis subsp. subtilis or B. subtilis subsp. 

spizizenii (99–100% similarity). The query cover for all sequences was 100% with an E-value of zero. 

 

16S rRNA gene sequence data from the AEFB isolates and reference strains from GenBank were used 

to infer phylogenetic relationships (Figure 2.8). All isolates clustered within the B. subtilis group of 

closely-related taxa; the majority of which fall within one distinct sub-cluster grouping strains of B. 

amyloliquefaciens (Cluster A). The 16S rRNA gene sequence results revealed that there was a very 

high level of sequence similarity (>97%) amongst the isolates evaluated, although clear distinction 

between species and subspecies was not always evident.  
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Table 2.5. Comparative matches of AEFB isolates after a BLAST search on GenBank of the 16S rRNA 

subunit gene fragment after sequencing (Date accessed: 20 March 2015). 

 Isolate BLAST Sequence Matches 
Max 
score 

Total 
score 

Identity Accession No. 

bna81 

mwb86 

mwb87 

ccc103 

bnd109 

bnd137 

cce140 

cce142 

cce146 

cce174 

cce175 

cce183 

bnd160 

pkf167 

bng199 

bng210 

bng230 

pkl242 

pkl247 

pkk252 

sqo275 

sqo277 

sqo298 

     

     

     

     

     

     

     

     

     

     
Bacillus amyloliquefaciens DSM7  1476 14765 100% NC_014551.1 

B. amyloliquefaciens subsp. plantarum FZB42  1476 13342 100% NC_009725.1 

B. subtilis subsp. subtilis 168 1465 14522 99% NZ_CP010052.1 

     

     

     

     

     

     

     

     

     

     
bnd134 

bnd156 

sqo279 

B. subtilis subsp. subtilis 168 1476 14666 100% NZ_CP010052.1 

B. subtilis subsp. subtilis 6051-HGW 1476 14642 100% NC_020507.1 

B. subtilis subsp. subtilis NCIB 3610  1476 14603 100% NZ_CM000488.1 

      
bnd136 

bng221 

sqo271 

B. subtilis subsp. subtilis 168 1471 14655 99% NZ_CP010052.1 

B. subtilis subsp. subtilis 6051-HGW 1471 14620 99% NC_020507.1 

B. subtilis subsp. spizizenii TU-B-10 1471 14693 99% NC_016047.1 

      

bng215 

bng216 

B. subtilis subsp. subtilis 168 1476 14688 100% NZ_CP010052.1 

B. subtilis subsp. spizizenii TU-B-10 1476 14749 100% NC_016047.1 

B. subtilis subsp. subtilis 6051-HGW 1471 14653 99% NC_020507.1 

      

bnn282 

B. amyloliquefaciens subsp. plantarum FZB42 1476 13336 100% NC_009725.1 

B. amyloliquefaciens DSM7  1471 14710 99% NC_014551.1 

B. subtilis subsp. subtilis 168 
 

1459 14555 99% NZ_CP010052.1 

 

http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&DISPLAY_SORT=3&HSP_SORT=3
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Figure 2.8. Evolutionary relationships of phylloplane AEFB isolates and selected reference strains 

based on partial 16S rRNA gene sequences as inferred by the Neighbour-Joining method from 

bootstrap values from 1000 replicates (MEGA6). The scale bar represents 0.005 nucleotide 

substitutions per sequence position.  

Cluster A 

Cluster B 
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2.3.8. Sequencing of gyrA gene fragment  

To differentiate between the AEFB isolates further, gyrA gene fragment amplification and 

sequencing was undertaken. Within the B. subtilis group this gene marker has been shown to display 

a greater degree of sequence variation than the 16S rRNA gene and has been used to differentiate 

closely related strains (Borriss et al., 2011; Chun and Bae, 2000). Amplicons resulting from gyrA PCR 

yielded fragments ~1000 bp in size (Figure 2.9).  

 

 

Figure 2.9. Examples of gyrA gene fragment PCR amplicons (~1000 bp) as viewed after 

electrophoresis in 1.5% agarose gel. 

 

After editing and the generation of consensus sequences generated from reads of both forward and 

reverse primers, these sequences (~896 bp in length) were compared with reference sequences 

contained within the GenBank BLAST-N whole genome database (Table 2.6). The gyrA gene 

fragments of the AEFB isolates were assigned high levels of similarity (99–100%) to NCBI whole 

genome reference strains. The bulk (75%) of the isolates showed high levels of sequence similarities 

that could be matched to strains of B. amyloliquefaciens. Three isolates (viz. bnd136, bng221, and 

sqo271) were found to be similar to an unidentified AEFB Bacillus sp. JS. The whole genome of this 

particular strain has been sequenced due to interest in its biocontrol attributes (Song et al., 2012). 

The remaining isolates were all matched to B. subtilis strains (99%). The query cover for all 

sequences was 99–100% and the E-value for all sequences was zero. 
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The GenBank database matches for the gyrA sequences were consistent with those obtained for the 

16S rRNA sequence fragments, but revealed a greater sensitivity to intraspecific variation between 

the isolates and showed additional strain variation. In particular this was observed amongst those 

isolates matched to B. amyloliquefaciens based on 16S rRNA partial gene sequence analysis. A 

summary of the RAPD- and ITS-PCR profile groupings is presented in Table 2.7. Interestingly, the 

gyrA sequences revealed identity matches that were consistent with RAPD fingerprints, with profiles 

a, b, f, e, g, h, n, and m being associated with B. amyloliquefaciens; and the profiles c, d, i, j, and k 

being associated with B. subtilis strains.  

 

Table 2.6. Comparative matches of AEFB isolates after a BLAST search on GenBank of the gyrA 

gene fragment after sequencing (Date accessed: 20 March 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolate BLAST Sequence Matches 
Max 
score 

Total 
score 

Identity Accession No. 

bna81 
cce140 

Bacillus amyloliquefaciens SQR9 1580 1580 99% NZ_CP006890.1 

B. subtilis  ATCC 19217 1580 1580 99% NZ_CP009749.1 

B. amyloliquefaciens  X1 1580 1580 99% NZ_JQNZ01000021.1 

mwb86 
ccc103 
bnd160 
pkf167 
cce183 
pkl247 
pkk252 

     

     
B. amyloliquefaciens SQR9 1576 1576 99% NZ_CP006890.1 

B. subtilis  ATCC 19217 1576 1576 99% NZ_CP009749.1 

B. amyloliquefaciens  X1 1576 1576 99% NZ_JQNZ01000021.1 

     

     

mwb87 
bnd109 
bnd137 
cce142 
cce174 
cce175 
bng210 
pkl242 
sqo277 
sqo298 
bnn282 

     

     

     

     
B. amyloliquefaciens SQR9 1585 1585 99% NZ_CP006890.1 

B. subtilis  ATCC 19217 1585 1585 99% NZ_CP009749.1 

B. amyloliquefaciens  X1 1585 1585 99% NZ_JQNZ01000021.1 

     

     

     

     

cce146 

B. amyloliquefaciens SQR9 1602 1602 100% NZ_CP006890.1 

B. subtilis  ATCC 19217 1602 1602 100% NZ_CP009749.1 

B. amyloliquefaciens  X1 1602 1602 100% NZ_JQNZ01000021.1 

      

bng199 

B. amyloliquefaciens  L-H15 1585 1585 99% NZ_CP010556.1 

B. amyloliquefaciens IT-45 1580 1580 99% NC_020272.1 

B. amyloliquefaciens LFB112 1591 1591 99% NC_023073.1 

      

 

http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&DISPLAY_SORT=3&HSP_SORT=3
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Table 2.6. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gyrA gene sequence data from the AEFB isolates and reference strains obtained from GenBank 

were used to infer phylogenetic relationships (Figure 2.10). A greater degree of sequence 

heterogeneity was evident in the gyrA phylogenetic tree than for the 16S rRNA sequence 

phylogenetic tree (Figure 2.8). The majority of the isolates grouped with B. amyloliquefaciens strains, 

with reference strains of B. amyloliquefaciens subsp. plantarum grouping throughout this clade 

(Cluster A). The remaining isolates were grouped separately from other representatives of the B. 

subtilis group (Cluster B). The gyrA sequences overall proved better able to illustrate both inter- and 

intra-species variability than 16S rRNA gene sequences.  

 

 

Isolate Description 
Max 
score 

Total 
score 

Identity Accession No. 

bng230 

B. amyloliquefaciens  L-H15 1602 1602 100% NZ_CP010556.1 

B. amyloliquefaciens IT-45 1596 1596 99% NC_020272.1 

B. amyloliquefaciens LFB112 1574 1574 99% NC_023073.1 

      

sqo275 

B. amyloliquefaciens  L-H15 1596 1596 100% NZ_CP010556.1 

B. amyloliquefaciens LFB112 1596 1596 99% NC_023073.1 

B. amyloliquefaciens subsp. plantarum CAU B946  1596 1596 99% NC_016784.1 

 
 

   
 

bnd134 

B. subtilis subsp. subtilis  BAB-1 1596 1596 99% NC_020832.1 

B. subtilis XF-1 1596 1596 99% NC_020244.1 

B. subtilis subsp. subtilis  3NA 1585 1585 99% NZ_CP010314.1 

      
bng215 
bng216 
sqo279 

B. subtilis subsp. subtilis  BAB-1 1591 1591 99% NC_020832.1 

B. subtilis XF-1 1591 1591 99% NC_020244.1 

B. subtilis subsp. subtilis  3NA 1568 1568 99% NZ_CP010314.1 

      

bnd156 

B. subtilis subsp. subtilis  BAB-1 1574 1574 99% NC_020832.1 

B. subtilis XF-1 1574 1574 99% NC_020244.1 

B. subtilis  GXA-28  1557 1557 99% NZ_JPNZ01000003.1 

 
 

   
 

bnd136 
bng221 
sqo271 

Bacillus sp. JS 1574 1574 99% NC_017743.1 

Bacillus sp. A053  1568 1568 99% NZ_JXAJ01000001.1 

B. subtilis subsp. subtilis  BAB-1 
 

1382 1382 95% NC_020832.1 

 

http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=346226632&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=sequence_from_type%5bfilter%5d%20NOT%28environmental%20samples%5borganism%5d%20OR%20metagenomes%5borgn%5d%20%20OR%20txid32644%5borgn%5d%29&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=FX58D59C014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&DISPLAY_SORT=3&HSP_SORT=3
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Figure 2.10. Evolutionary relationships of phylloplane AEFB isolates and selected reference strains 

based on partial Gyrase subunit A gene sequences as inferred by the Neighbour-Joining method 

from bootstrap values from 1000 replicates (MEGA6). The scale bar represents 0.05 nucleotide 

substitutions per sequence position.  

Cluster B 

Cluster A 
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The combined data obtained from DNA fingerprinting and partial gene sequence analysis is 

presented in Table 2.7. Those RAPD profiles included in the Group I of Figure 2.2 are largely matched 

by gene sequencing to B. amyloliquefaciens; while profiles c, n, and k matched to Bacillus sp. JS or B. 

subtilis. Comparing the ITS profiles, those isolates closely related to B. subtilis possessed profile B, 

while profile A occurs amongst both B. amyloliquefaciens and B. subtilis related isolates. The data 

highlights that similar fingerprint profiles and Bacillus spp. were found throughout the sampling 

areas on various cucurbit host species.  

 

Table 2.7. Comparative data for DNA fingerprinting and gene sequence fragment with plant host 

and geographical sampling location for Bacillus spp. isolates. 

Isolate 
 

Fingerprint RAPD 
Groupˠ 

Sequence Matches* 
Plant Sampling Location# 

ITS RAPD 16S rRNA gyrA 

bna75 A a I ND ND Butternut PMB (Scottsville 1) 

bna78 A a I ND ND Butternut PMB (Scottsville 1) 

bna81 A b I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Scottsville 1) 

bnb85 B a I ND ND Butternut PMB (Scottsville 1) 

mwb86 A a I B. amyloliquefaciens B. amyloliquefaciens Marrow PMB (Scottsville 1) 

mwb87 B a I B. amyloliquefaciens B. amyloliquefaciens Marrow PMB (Scottsville 1) 

ccc103 A a I B. amyloliquefaciens B. amyloliquefaciens Chayote PMB (Scottsville 1) 

bnd109 A a I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Epworth 1) 

bnd115 B c I ND ND Butternut PMB (Epworth 1) 

bnd116 B a I ND ND Butternut PMB (Epworth 1) 

bnd119 A b I ND ND Butternut PMB (Epworth 1) 

bnd124 B a I ND ND Butternut PMB (Epworth 1) 

bnd125 B a I ND ND Butternut PMB (Epworth 1) 

bnd134 B d III B. subtilis B. subtilis Butternut PMB (Epworth 1) 

bnd136 B k I B. subtilis Bacillus sp. JS Butternut PMB (Epworth 1) 

bnd137 B a I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Epworth 1) 

bnd139 B c I ND ND Butternut PMB (Epworth 1) 

cce140 A b I B. amyloliquefaciens B. amyloliquefaciens Chayote PMB (Chase Valley 1) 

cce142 B a I B. amyloliquefaciens B. amyloliquefaciens Chayote PMB (Chase Valley 1) 

cce146 A g I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Chase Valley 1) 

cce147 A g I ND ND Butternut PMB (Chase Valley 1) 

bnd149 A g I ND ND Butternut PMB (Epworth 2) 

bnd150 B a I ND ND Butternut PMB (Epworth 2) 

bnd154 A a I ND ND Butternut PMB (Epworth 2) 

bnd156 B d III B. subtilis B. subtilis Butternut PMB (Epworth 2) 

bnd157 A b I ND ND Butternut PMB (Epworth 2) 

bnd160 A a I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Epworth 2) 

bnd162 B c I ND ND Butternut PMB (Epworth 2) 
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Table 2.7. Continued. 

Isolate 
 

Fingerprint RAPD 
Groupˠ 

Sequence Matches* 
Plant Sampling Location# 

ITS RAPD 16S rRNA gyrA 

bnd166 B c I ND ND Butternut PMB (Epworth 2) 

pkf167 A a I B. amyloliquefaciens B. amyloliquefaciens Pumpkin PMB (Allan Wilson) 

cce174 B a I B. amyloliquefaciens B. amyloliquefaciens Pumpkin PMB (Allan Wilson) 

cce175 B a I B. amyloliquefaciens B. amyloliquefaciens Pumpkin PMB (Allan Wilson) 

cce183 A a I B. amyloliquefaciens B. amyloliquefaciens Chayote PMB (Chase Valley 2) 

bng199 A e I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Voortrekker) 

bng202 B k II ND ND Butternut PMB (Voortrekker) 

bng210 B a I B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Voortrekker) 

bng215 B h IV B. subtilis B. subtilis Butternut PMB (Voortrekker) 

bng216 B j IV B. subtilis B. subtilis Butternut PMB (Voortrekker) 

bng217 B a I ND ND Butternut PMB (Voortrekker) 

bng218 B k II ND ND Butternut PMB (Voortrekker) 

bng221 B k II B. subtilis Bacillus sp. JS Butternut PMB (Voortrekker) 

bng224 A l II ND ND Butternut PMB (Voortrekker) 

bng227 A l II ND ND Butternut PMB (Voortrekker) 

bng230 A n II B. amyloliquefaciens B. amyloliquefaciens Butternut PMB (Voortrekker) 

bng241 C i IV ND ND Butternut PMB (Voortrekker) 

pkl242 B f I B. amyloliquefaciens B. amyloliquefaciens Pumpkin Wartberg 

pkl247 A f I B. amyloliquefaciens B. amyloliquefaciens Pumpkin Wartberg 

pkk252 A f I B. amyloliquefaciens B. amyloliquefaciens Pumpkin Wartberg 

sqo271 B k I B. subtilis Bacillus sp. JS Squash Hilton 

sqo272 A f I ND ND Squash Hilton 

sqo275 A m II B. amyloliquefaciens B. amyloliquefaciens Squash Hilton 

sqo277 B f I B. amyloliquefaciens B. amyloliquefaciens Squash Hilton 

sqo279 B h IV B. subtilis B. subtilis Squash Hilton 

bnn282 B a I B. amyloliquefaciens B. amyloliquefaciens Butternut Wartberg 

sqo298 B a I B. amyloliquefaciens B. amyloliquefaciens Squash PMB (Scottsville 2) 

* ND = not determined. 
# 

PMB = Pietermaritzburg. ˠ Clusters of RAPD-PCR fingerprint profiles detailed in Figure 2.2 * 
Sequence matches from 16S rRNA and gyrA gene fragment sequencing.  

 

2.3.9. Applying MALDI-TOF-MS to differentiate AEFB isolates 

A study to differentiate AEFB isolates using MALDI-TOF-MS was carried out on 14 isolates in 

conjunction with Bruker Biotyper software (Bruker Daltonics, Germany). These isolates were 

selected on the basis of their identities from 16S rRNA and gyrA gene fragment sequences, and as 

representatives from RAPD fingerprint profile groups distinguished in the study. These isolates 

included B. amyloliquefaciens strains mwb86, ccc103, cce140, cce146, cce175, bng199, sqo275, 

sqo277, and bnn282; B. subtilis strains bnd134, bnd136, bng216, sqo279; and unidentified isolate 

bng241. Mass spectra were determined for each of the isolates and compared to reference strains 
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contained within the Bruker Daltonics (BDAL) bacterial strain library (Bruker Daltonics, Germany). 

Dendograms were generated using the Biotyper software to establish relationships between the 

AEFB isolates themselves (Figure 2.16), and in relation to selected AEFB reference strains in the BDAL 

library (Figure 2.17). The mass spectra were also processed using mMass and analysed using 

SPECLUST for additional cluster analysis (Figure 2.13). 

 

The results for Biotyper identification of the AEFB isolates are presented in Table 2.8. Bacillus 

amyloliquefaciens strain ccc103 was omitted from this analysis owing to insufficient culture growth. 

The similarity of the isolates’ spectra to those in the BDAL library was ranked according to 

confidence levels reflecting overall identity match at the genus or species level. Bacillus subtilis 

strains bnd134, bng216 and sqo279 were assigned confidence rankings to the genus and species 

levels. The remaining isolates all scored with confidence in genus only, with B. amyloliquefaciens 

strain sqo277 scoring an unreliable identification.  
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Table 2.8. MALDI-TOF-MS identification of AEFB using the Bruker Daltonics Biotyper spectra 

database, as compared to the 16S rRNA partial gene sequence matches from GenBank. 

Isolate 16S rRNA GenBank Match BDAL Match Score Value# 

mwb86  B. amyloliquefaciens subsp. plantarum Bacillus sp. 1.706 

bnd134  B. subtilis B. subtilis 2.069 

bnd136  B. subtilis Bacillus sp. 1.972 

cce140  B. amyloliquefaciens subsp. plantarum Bacillus sp. 1.793 

cce146  B. amyloliquefaciens subsp. plantarum Bacillus sp. 1.806 

cce175  B. amyloliquefaciens subsp. plantarum Bacillus sp. 1.733 

bng199  B. amyloliquefaciens subsp. plantarum Bacillus sp. 1.824 

bng216  B. subtilis B. subtilis 2.081 

bng241  ND Bacillus sp. 1.863 

sqo275  B. amyloliquefaciens subsp. plantarum Bacillus sp. 1.765 

sqo277  B. amyloliquefaciens subsp. plantarum Not reliable  1.663 

sqo279  B. subtilis B. subtilis 2.045 

bnn282  B. amyloliquefaciens Bacillus sp. 1.749 

ND = not determined. #  Confidence of isolate identity in Bruker Daltonics Biotyper database where: Highly probable genus 
and species identification (score 2.300–3.000); secure genus and probable species identification (score 2.000–2.299); 

probable genus identification (1.700–1.999); no consistency in genus or species (score 0.000–1.699). 

 

 

Owing to the disparity between the 16S rRNA partial gene sequence matches and the Biotyper 

matches, a mass spectra profile (MSP) was generated for each isolate. From these MSPs a 

dendogram was generated to reflect the relationships between the isolates based on variances in 

their mass spectra (Figure 2.10). Bacillus amyloliquefaciens strains ccc103 and sqo277, B. subtilis 

strain bng216, and unidentified isolate bng241 were clearly distinguished from the remainder of the 

isolates which clustered closely together and display high levels of similarity.   
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Figure 2.11. Dendogram depicting clustering of phylloplane AEFB isolates as determined from 

spectral variances after MALDI-TOF-MS analysis and MSP creation.  

 

 

A second dendogram was generated incorporating AEFB reference strains from the Biotyper 

database, as shown by Figure 2.12. The majority of the AEFB isolates grouped closely with a B. 

amyloliquefaciens strain in the BDAL database, which is in agreement with the sequence matches to 

this species obtained from the 16S rRNA partial gene sequence BLAST searches (see Table 2.6). 

Exceptions within this grouping were B. subtilis strains bnd134, bnd136, and bng216; and B. 

amyloliquefaciens strains sqo277 and sqo279 which were matched based on 16S rRNA partial gene 

sequences to strains of B. subtilis. As seen previously in Figure 2.10, the MSPs for isolate bng241 and 

B. amyloliquefaciens strain ccc103 clustered separately from the other isolates. Isolate bng241 

groups with B. subtilis and related taxa, while B. amyloliquefaciens strain ccc103 groups instead with 

B. megaterium and P. ehimensis.  
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Figure 2.12. Dendogram depicting clustering between AEFB isolates as determined by variances in mass spectra after MSP creation, and compared to 

selected AEFB reference strains from the BDAL database. 
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The dendogram generated from the MSP peak lists using the online clustering tool SPECLUST (Figure 

2.13) grouped isolates along similar lines to those achieved with the dendogram generated using 

MALDI Biotyper (Figure 2.10). Isolate bng241 and B. amyloliquefaciens strain ccc103 were again 

found to be clearly differentiated from the other isolates, as were B. subtilis strain bng216 and B. 

amyloliquefaciens strain sqo277. The remaining isolates display high similarity and cluster closely 

together. Closely-related isolates such as B. subtilis strains bnd134 and bnd136, and B. 

amyloliquefaciens strain sqo279 appear together in both dendograms. However, B. 

amyloliquefaciens strains mwb86 and cce140, and bnn282 and cce175 are not clustered as closely as 

in the Biotyper-generated dendogram (Figure 2.11). These slight variations in clustering may be 

attributed to the parameters applied in dendogram creation between the Biotyper and SPECLUST 

software. 

 

 

Figure 2.13. Dendogram of mass spectra data representing clusters of AEFB isolated from the 

cucurbit phyllosphere. Cluster analysis was performed using SPECLUST online software, with the 

scale bar indicating the distance measure (d) applied during clustering. 
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In summary, PCR-based DNA fingerprinting allowed for isolates to be differentiated and groupings to 

be determined for dereplication purposes. The analysis of the 16S rRNA gene fragment sequences 

confirmed the identities of representatives of the isolate groupings. Higher levels of species 

variations were resolved when analysis of the gyrA gene fragment sequence was performed. The 

taxonomic resolution of the MALDI-TOF-MS Biotyper system was limited owing to poor reference 

strain representation in the BDAL database. Yet, the MSP dendograms and SPECLUST analysis were 

able to group isolates based on spectral variances, though limited correlation between these 

groupings and DNA fingerprint profiles was noted.  

 

2.4. Discussion 

Powdery mildew of cucurbits infects a range of cucurbit species grown under both field and 

greenhouse conditions. Cucurbit production in South Africa contributes millions of Rands towards 

the national agricultural output (South African Department of Agriculture, Forestry and Fisheries, 

2013). In light of the ecological issues and expense associated with pesticide use, BCAs have been 

advocated as promising alternatives against various crop diseases. In several studies, strains of 

Bacillus spp. have shown promise as antagonists of cucurbit powdery mildew (Romero et al., 2007b; 

Romero et al., 2004; Bettiol et al., 1997). The present study was undertaken with the aim of isolating 

phyllosphere AEFB from various cucurbit species and screening them for fungal antagonism in vitro; 

and establishing the diversity of antagonistic organisms selected using DNA fingerprinting, gene 

fragment sequencing, and MALDI-TOF-MS. 

 

Since powdery mildews are biotrophic, and require live host tissue to survive, they are not amenable 

to conventional agar-based dual-culture bioassay screening approaches (Pérez-García et al., 2009). 

For the purposes of assessing antifungal activity in this study, B. cinerea and Rhizoctonia solani were 

chosen as surrogate test organisms. Over half of the AEFB isolates obtained from cucurbit leaves 

showed in vitro antifungal activity against Rhizoctonia solani and/or B. cinerea. Approximately 73% 

of antagonistic isolates displayed activity against both fungal species, and representatives of these 

were selected for further evaluation. The incidence of antifungal activity observed during screening 

was regarded to be high, considering that similar studies reported that only 8–10% of isolates 

showed fungal antagonism in vitro (Ghyselinck et al., 2013; Mari et al., 1996).  
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In general, B. cinerea exhibited higher levels of sensitivity to antagonism by the AEFB isolates than 

did R. solani (Table 2.3). The inhibitory effect of antifungal lipopeptide compounds, such as iturin 

and fengycin, are known to be influenced by sterol composition of fungal cell membranes (Balhara et 

al., 2011; Ongena and Jacques, 2008; Latoud et al., 1990). The observed browning (R. solani) and/or 

darkening (B. cinerea) of fungal mycelia on bioassay plates may be attributed to a fungal response to 

compounds produced by the antagonistic bacteria, as has been reported previously (Fiddaman and 

Rossall, 1993; Ferreira et al., 1991). In addition, extracellular cell wall degrading enzymes (viz. 

cellulases, glucanases, and chitinases) can also contribute to antagonistic activity and induce fungal 

morphology aberrations which can be detected with the naked eye (Cantu et al., 2009; Pal and 

McSpadden Gardener, 2006; Shoda, 2000). Given the variations in sensitivity of these two fungal 

species to the actions of antagonistic AEFB isolates, it is recommended that a range of surrogate 

fungi be used when screening for potential antagonists of unculturable biotrophic fungi in vitro.   

 

In some instances dual-culture interactions were found to be fungistatic, whereby test fungi 

overgrew the initial zone of inhibition formed by AEFB isolates (Table 2.4). This phenomenon was 

attributed to various factors, such as: a decrease in active compound concentration due to 

degradation or diffusion; discontinued bacterial production of antifungal compounds due to 

sporulation or depleted nutrients; or the possible development of fungal resistance to the antibiotic 

compounds (Tewelde, 2004; Leifert et al., 1995; Fiddaman and Rossall, 1994; Fiddaman and Rossall, 

1993; Ferreira et al., 1991). Isolates which displayed sustained antifungal activity for the duration of 

the bioassay suggest that the active compound(s) are produced in sufficiently high concentrations or 

are more stable over longer periods. Alternatively, the production of synergistic mixtures of active 

compounds may account for the sustained antifungal activity observed. 

 

Laboratory-based in vitro antifungal bioassays are economical and rapidly yield results; hence they 

are considered important in the initial evaluation of fungal antagonism (Spurr, 1985). They are 

convenient for screening large numbers of isolates and provide insights into antimicrobial compound 

or extracellular enzyme activity (Raaijmakers et al., 2002). Dual-culture bioassays have been widely 

used to determine the antifungal ability of AEFB in vitro (Alvindia and Natsuaki, 2009; Chaurasia et 

al., 2005; Ongena et al., 2005b; Romero et al., 2004; Touré et al., 2004; Yoshida et al., 2001; May et 

al., 1997; Leifert et al., 1995; Ferreira et al., 1991; Fravel and Spurr, 1977). Despite the valuable data 

that can be gleaned from in vitro studies, the in vivo performance of antagonistic strains selected on 
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this basis is not guaranteed (Schisler and Slininger, 1997; Leifert et al., 1995). The laboratory 

conditions under which in vitro bioassays are carried out are not representative of those found in 

the field, and lack stresses such as nutrient and water limitation, and competition from indigenous 

microbial communities (Schisler and Slininger, 1997; Leifert et al., 1995; Spurr, 1985). The 

antagonism evidenced in the in vitro bioassays is influenced by factors such as medium composition, 

pH, and incubation temperature (Yoshida et al., 2001; Leifert et al., 1995). Furthermore, fungi vary in 

their sensitivity to diffusible or volatile compounds (Fiddaman and Rossall, 1994; Fiddaman and 

Rossall, 1993). Thus, antagonism in vitro should not be the sole criterion by which an isolate’s 

biocontrol suitability is determined. In the present study, the dual-culture bioassay formed an 

integral part of selecting potential powdery-mildew antagonists, if only for the purpose of 

determining promising fungal antagonists from amongst the isolate set.  

 

Morphology and phenotypic characteristics alone are no longer considered viable for the 

dereplication and identification of bacterial isolates. This is largely due to reproducibility issues, 

insufficient strain-level resolution, and high resource and time demands incurred when phenotyping 

large numbers of isolates (Li et al., 2009; Olsen and Woese, 1993). Consequently, these methods 

have been largely superseded by genomic approaches which offer more informative results within a 

relatively short time period (Li et al., 2009). The use of morphological characteristics to distinguish 

AEFB is complicated, as there are few distinctive traits amongst these species that can be 

consistently applied to this end (Maughan and Van der Auwera, 2011). Although such characteristics 

have been applied as selection criteria by other researchers (Savadogo et al., 2011; Tewelde et al., 

2004; Reva et al., 2001); in the present study colony characteristics and cell morphology (Table 2.4) 

were inadequate criteria for isolate differentiation. For this reason DNA fingerprinting was applied 

for dereplication purposes, and to establish the distribution of related strains from different 

geographical locations and cucurbit host species.  

 

Despite the accessibility of DNA-sequencing, sequencing of all the gene fragments from a large pool 

of isolates remains expensive and time-consuming. For this reason, the present study chose to 

include a DNA fingerprinting dereplication step prior to gene fragment sequence analysis. The 

fingerprint profiles generated using ITS- and RAPD-PCRs both allowed the differentiation of distinct 

groupings amongst isolates to be achieved; however RAPD-PCR proved to be more valuable of the 

two approaches as it generated more profile variants (Figure 2.2). A significant percentage (~42%) of 
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isolates could be ascribed to one RAPD profile (variant a), with representatives isolated from various 

cucurbit host species and locations. The ITS-PCR provided lower diversity levels but still proved 

useful in distinguishing isolate bng241 as an outgroup (Figure 2.4). It should be noted that it was not 

possible to use either fingerprinting method alone as a means to group isolates, as some isolates 

with different ITS-PCR profiles possessed similar RAPD-PCR profiles and vice versa (Table 2.7).  

 

RAPD-PCR fingerprinting proved to be a fast, sensitive and relatively inexpensive method to use, as 

has been previously reported in the literature (Li et al., 2009; Olive and Bean, 1999; Tyler et al., 

1997). RAPD-PCR requires good quality DNA template, which adds to the overall time and resource 

investment, whereas the ITS-PCR works well with the crude DNA template material obtained using 

the freeze-thaw DNA extraction method. Pre-treatment of crude DNA extracts with proteinase K has 

been shown to provide more distinct banding patterns in RAPD-PCR (Damiani et al., 1996).This 

approach may prove to be a cost-effective alternative to the use of DNA extraction kits for obtaining 

good quality RAPD profiles. To improve the resolving power of RAPD-PCR, it is recommended that 

multiple RAPD primers be used to assure an accurate reflection of isolate variation within a sample 

set (Rademaker et al., 2006). The fingerprint profiles of the included Bacillus spp. reference strains 

did not allow for conclusive comparative identification of the isolates, thus gene sequence analysis 

was used to determine the identities of the isolates. 

 

Sequence analysis of the 16S rRNA gene is considered a benchmark for bacterial isolate 

identification and diversity assessment (Woo et al., 2008; Goto et al., 2000). The isolates chosen for 

gene sequencing in the current study were identified as members of the B. subtilis group of related 

taxa. Analysis of 16S rRNA gene fragment sequences revealed that the majority of AEFB isolates 

applied in this study were strains of B. amyloliquefaciens; the remainder of the isolates were 

identified as strains of B. subtilis (Table 2.5). The differentiation of members of the B. subtilis group 

of related taxa using 16S rRNA sequences has proven difficult, particularly owing to limited 

variations present within the 16S rRNA gene between B. subtilis group members (Borriss et al., 2011; 

Logan et al., 2009; Reva et al., 2004; Chun and Bae, 2000). This lead to the inclusion of gyrA 

sequences as a means by which to further differentiate strains. Analysis of the gyrA gene sequences 

confirmed the finding of 16S rRNA subunit gene analysis. Most of the isolates (75%) were found to 

be closely related to strains of B. amyloliquefaciens, including the subspecies B. amyloliquefaciens 

subsp. plantarum which is known to be active in plant growth promotion (Table 2.6). The gyrA 
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sequence fragments offered greater levels of sequence heterogeneity within subspecies and strains 

and showed some correlation with the RAPD fingerprint profile groupings. Further divisions were 

made possible when the ITS-PCR fingerprint profiles and 16S rRNA sequence matches are included 

(Table 2.7). 

 

In previous studies involving AEFB antagonism toward powdery mildew of cucurbits, Romero et al. 

(2004) determined that four candidate isolates showed 93–97% sequence homology to B. subtilis 

based on partial 16S rRNA gene sequencing. Representative strains of both B. amyloliquefaciens and 

B. subtilis species have been described as plant-associated, and many are capable of acting as 

disease antagonists and plant-health-promoting bacteria (Borriss, 2011; Nagórska et al., 2007). 

Several plant-associated strains of these species are known to produce a range of lipopeptide 

compounds which are considered essential to their niche establishment and antagonistic actions 

(Jacques, 2011).  

 

Sequencing of 16S rRNA gene fragments confirmed that representatives from each RAPD grouping 

were closely related (Table 2.7). Eight of the RAPD fingerprint profiles were distinguished as strains 

of B. amyloliquefaciens strains when 16S rRNA and gyrA gene fragment sequences were analysed. 

These findings are indicative of strain-level resolution achievable with the RAPD primer OPG-11. A 

number of these profiles grouped together when UPGMA analysis of the profiles was performed 

(Figure 2.2). The B. subtilis isolates showed greater levels of profile heterogeneity and were 

separated into several distinct RAPD banding profiles, and were present in all four clusters identified 

in Figure 2.2. Hence, the inclusion of genotyping methods as a dereplication step—in particular the 

RAPD-PCR—saved time and resources. By aiding in the grouping of related isolates, the dereplication 

step eliminated additional unnecessary and costly steps to taxonomically identify each of the 

individual isolates. 

 

Compared to gene sequencing as a means of bacterial identification and dereplication, MALDI-TOF-

MS has great potential as a “one-stop” dereplication and identification system. Whole-cell MALDI-

TOF-MS bacterial identification is simpler and faster than PCR or gene sequencing, with data 

interpretation easily achieved by comparison to an adequately representative strain library (Dare, 

2006). Furthermore, MALDI-TOF-MS is well-suited for microbial identifications as the analysis time is 

less than a minute, requires very little sample, provides resolution to strain level, and is easily 
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standardised for maximum reproducibility from a large pool of unknown isolates (Sauer, 2008; 

Dickinson et al., 2004a). MALDI-TOF-MS was evaluated in the present study as a means of rapidly 

identifying isolates, since its resolution is considered to be similar to that achievable by 16S rRNA 

gene sequence analysis and RAPD-PCR fingerprinting (Welker and Moore, 2011; Dickinson et al., 

2004b).  

 

Applying MALDI-TOF-MS has been reported to provide a simpler and faster method of characterising 

isolates than sequencing and is capable of achieving levels of sensitivity comparable 16S rRNA 

sequence analysis (Ghyselinck et al., 2011). The MALDI Biotyper system was able to confidently 

identify all but one isolate as belonging to the genus Bacillus (Table 2.8). A confident match to 

species level was only possible for B. subtilis strains bnd134, bng216 and sqo279, which were all 

accurately assigned as strains of B. subtilis. However, the Biotyper system was unable to accurately 

distinguish the eight isolates identified by 16S rRNA gene sequencing as B. amyloliquefaciens. It is 

possible that isolate identification using the Biotyper library would be more accurate if the database 

possessed a more representative range of AEFB subspecies and strains, particularly of the 

environmentally-relevant Bacillus spp. and related genera.  

 

The MSP dendogram (Figure 2.11) shows that the majority of the isolates grouped closely together 

and showed a close association with B. amyloliquefaciens CIP103265T. Several isolates (viz. bng241, 

B. amyloliquefaciens strains ccc103 and sqo277, and B. subtilis strain bng216) were grouped 

separately in both mass spectra dendograms (Figures 2.11 and 2.13), which was contrary to the 16S 

rRNA gene sequence findings. This disparity could be attributed to slight variations in culture growth 

stage—including sporulation—or sample handling when the mass spectra were generated 

(Carbonnelle et al., 2011; Šedo, 2009; Valentine et al., 2005; Wunschel et al., 2005). 

 

The existence of plant-associated ecotypes amongst Bacillus spp. strains has been reported by Reva 

et al., (2004). Cohan (2001) describes an ecotype as a population of cells in the same ecological 

niche, and which can be out-competed by any adaptive mutant arising within the population. Both 

Chen et al. (2009b) and Reva et al. (2004) report that phylogenetic analysis of gyrA and cheA gene 

sequences in Bacillus spp. suggest that strains exhibiting biocontrol and plant growth promotion 

activity such as B. amyloliquefaciens FZB42 and FZB24 (RhizoPlus), and B. subtilis strains GB03 

(Kodiak) and QST713 (Serenade), form a closely-related group that is distinct from the B. 
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amyloliquefaciens type strain DSM7T. In the current study the strains of B. amyloliquefaciens 

identified from 16S rRNA and gyrA gene sequence data showed high levels of similarity to plant-

associated strains, suggesting that they were probable ecotypes. Borriss et al. (2011) suggests the 

existence of the B. amyloliquefaciens subsp. plantarum, based on genetic variations between the 

plant-colonising B. amyloliquefaciens strains and the type strain B. amyloliquefaciens DSM7T. In 

order to investigate the possible existence of AEFB ecotypes on the cucurbit phyllosphere, more in-

depth studies of population diversity would be valuable. These can include such techniques as 

gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), 

and multiple locus sequence typing (MLST) (Prabhakar and Bishop, 2014; Kim et al., 2010; Schütte et 

al., 2008). 

 

The incidence of fungal antagonism amongst the isolates assessed using the dual-culture bioassays 

was found to be high. Although limited discrimination between the isolates could be determined 

from colony and cell morphologies, the dual-culture bioassays identified certain isolates as promising 

candidates for further study of powdery mildew antagonism. Representatives of these antifungal 

isolates were carried forward for genotyping using DNA fingerprinting. RAPD-PCR proved very useful 

for the generation of taxonomic groupings of isolates for dereplication purposes. While the 16S rRNA 

gene fragment sequencing remains useful in separating AEFB species and assigning taxonomic 

affiliations, sequence analysis of gyrA fragments were better able to resolve interspecies variation, 

particularly in the case of isolates identified as strains of B. amyloliquefaciens.  

 

MALDI-TOF-MS is considered to be a bacterial identification technique that circumvents many of the 

complexities associated with PCR-based genotypic strain identification methods; and is able to offer 

fast, sensitive and higher resolution profiling than offered by gel electrophoresis or protein profiling 

(Ghyselinck et al., 2011; Carbonnelle et al., 2011; Schleifer, 2009; Dare, 2006; Dickinson et al., 

2004a). However, due to inadequate representation of environmental strains in the BDAL library, 

many of the AEFB isolates analysed in this study were not confidently identified to species level by 

the Biotyper system. The dendograms generated from the mass spectra showed some correllations 

to the phylogenetic trees obtained from 16S rRNA sequences. Yet, the inclusion of gyrA sequence 

analysis data combined with RAPD-PCR fingerprinting was able to offer a greater level of resolution 

to distinguish between closely-related isolates. Many of the AEFB isolates were found to be related to 

plant-associated and/or biocontrol strains on the basis of gene sequence analyses. Hence there is 

potential for applying these bacterial isolates as antagonists of cucurbit powdery mildew. Further 



 

87 
 

investigation into isolate modes of action, antifungal compound biosynthesis, and evaluation against 

the P. fusca pathogen is required. 
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CHAPTER THREE 

Evaluation of lipopeptide production by Bacillus spp. isolates using gene marker PCR, TLC, 

and MALDI-TOF-MS analysis  

 

3.1.  Introduction 

Many species of AEFB—specifically members of the genus Bacillus—are well known for their ability 

to produce antimicrobial compounds; with over 167 different compounds being identified to date 

(Bottone and Peluso, 2003). Many of range of diverse compounds synthesised by Bacillus spp. have 

shown activity against a variety of fungal, oomycete, and bacterial plant pathogens (Govindasamy et 

al., 2010; Nagórksa et al., 2007; Pryor et al., 2007; Emmert and Handelsman, 1999; Bélanger et al., 

1998). The ability to produce antifungal compounds has contributed to the commercialisation of a 

number of AEFB strains, particularly amongst members of the B. subtilis group, as BCA of plant 

diseases (Borriss, 2011; Pérez-García et al., 2011; Govindasamy et al., 2010; Ongena et al., 2010).  

 

Lipopeptides are an important group of bioactive compounds produced by many Bacillus spp. which 

have gained prominence for their role in biocontrol mechanisms (Ongena et al., 2010). They 

comprise a group of low molecular-mass surfactants which have a lipid tail linked to a short linear or 

cyclic oligopeptide (Raaijmakers et al., 2010; Stein, 2005). The lipopeptides commonly produced by 

AEFB have been divided into four major classes: surfactins, iturins, fengycins, and kurstakins (Ongena 

and Jacques, 2008; Hathout et al., 2000). The members of the surfactin family include esperin, 

lichenysin, pumilacidin, and surfactin (Ongena and Jacques, 2008). Iturin variants include 

bacillomycin D, F, L and LC; iturin A, AL, C; and mycosubtilin (Ongena and Jacques, 2008). The 

fengycin family is comprised of fengycin A and B; and plipastatin A and B (Ongena and Jacques, 

2008). A fourth lipopeptide variant named kurstakins was isolated from B. thuringiensis, though the 

relevance of this compound to biocontrol activities has not as yet been established (Bechet et al., 

2012; Hathout et al., 2000). 

 

Ribosome-independent biosynthesis involving multi-modular enzyme systems accounts for the 

diversity evident in lipopeptide structures, chemical properties, and modes of action (Jacques, 2011; 

Ongena and Jacques, 2008; Nagórksa et al., 2007; Stein, 2005). Surfactins are able to alter biological 
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membrane integrity in bacteria, but exhibit no or limited antifungal activity due to the mitigating 

effect of sterols located in the phospholipid bilayer (Jacques, 2011; Ongena and Jacques, 2008; Stein, 

2005). Iturins create ion-conducting pores in membranes, which results in an osmotic imbalance in 

the affected cell (Ongena and Jacques, 2008). The iturins have antifungal properties, but are neither 

antibacterial nor antiviral (Jacques, 2011; Ongena and Jacques; 2008, Latoud et al., 1990). Fengycins 

are toxic to a range of filamentous fungi through interaction with membrane lipid layers by 

interference with cell membrane packing and permeability (Ongena and Jacques, 2008).  

 

Many AEFB lipopeptide variants are thought to play a range of roles within the plant-associated 

environment (Ongena et al., 2010; Ongena et al., 2009; Ongena and Jacques, 2008). Surfactin 

production has been linked to the swarming activities of bacteria which facilitate niche colonisation; 

it has also been shown to interfere with biofilm formation by competing bacteria, and to play a role 

as an elicitor of host plant resistance mechanisms (Jacques, 2011; Jourdan et al., 2009; Ongena et al., 

2009; Ongena et al., 2007; Nagórksa et al., 2007). Iturins are thought to play important roles in 

bacterial spreading; antifungal activity, and plant host resistance stimulation (Ongena et al., 2009; 

Ongena and Jacques, 2008). The fengycins are believed to play a role in plant host resistance 

stimulation, and exhibit antifungal abilities (Ongena and Jacques, 2008; Ongena et al., 2007; Ongena 

et al., 2005b). 

 

In light of the contribution of these compounds to biocontrol activities, the determination of 

lipopeptide synthesis ability is considered an important criterion when screening AEFB as candidate 

BCAs. Several simple direct-detection assays have been developed to determine the presence of 

lipopeptides (Raaijmakers et al., 2010; Mukherjee et al., 2009). However, conclusive identification of 

lipopeptides is best achieved using more complex methods such chromatography and mass 

spectrometry (Gordillo and Maldonado, 2012; Raaijmakers et al., 2006; Razafindralambo et al., 

1993). PCR-based detection of gene markers associated with lipopeptide biosynthesis has been 

applied as an approach for determining production potential prior to compound analysis (Joshi and 

McSpadden Gardener, 2006). This study was undertaken to examine the lipopeptide production 

potential of selected Bacillus spp. isolates using PCR to detect gene markers, and to analyse 

lipopeptide extracts using TLC and MALDI-TOF-MS. 
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3.2. Materials and Methods 

3.2.1. PCR detection of gene markers associated with lipopeptide production 

PCR-based screening of Bacillus isolates for lipopeptide production targetted genetic markers 

associated with lipopeptide biosynthesis. The primers used in this study are listed in Table 3.1; and 

included: fenD F/R, targetting the fengycin synthetase fenD gene which activates the third and the 

fourth amino acids of fengycin (Lin et al., 2005); bacC F/R targeting bmyC, the synthetase C gene 

involved in bacillomycin D synthesis (Moyne et al., 2004); sur3 F/R, targetting the srfDB3  gene 

proposed  to  be  involved  in the  biosynthesis  of a putative  thioesterase (Ramarathnam, 2007); 

and ituD F/R, which encodes a malonyl coenzyme A transacylase involved in iturin A biosynthesis 

(Tsuge et al., 2001). Primers were synthesised and supplied by Inqaba Biotech™ Hatfield, Pretoria, 

South Africa. Bacillus amyloliquefaciens strain R16, a rhizosphere-associated isolate, was used as a 

positive control reference strain. This strain has been shown to produce lipopeptide compounds in 

previous studies (Personal communication: Hunter, C. H.; Discipline of Microbiology, School of Life 

Sciences, University of KwaZulu-Natal, Private bag X01, South Africa).   

 

Template DNA was extracted from bacterial isolates using a Nucleospin DNA Extraction Kit 

(Macherey-Nagal, Germany). Isolates were cultured (150 rpm at 30°C for 24 h) in Luria-Bertani (LB) 

broth (10 ml), which contained: tryptone, 10.0 g, yeast extract, 5.0 g, NaCl, 10.0 g and deionised 

water 1000 ml; adjusted to pH 7.5 and autoclaved at 121°C (103.4 kPa) for 15 minutes. DNA 

extraction was carried out according to the manufacturer’s instructions, following the protocol 

recommended for Gram positive bacteria. For all PCR protocols a negative (template-DNA free) and 

a positive control (template DNA of reference strain B. amyloliquefaciens R16) were included. The 

template DNA was stored in cryotubes at -20°C until use. 
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Table 3.1. PCR primers used for lipopeptide gene marker detection in Bacillus isolates. 

  

 

 

 

 

 

 

 

 

PCR reactions were carried out using Promega GoTaq® PCR reagents (Promega, Madison, USA) with 

each PCR reaction consisting of the following: 0.4 µM of the appropriate primer (Table 3.1); 1x 

GoTaq® Flexi Buffer (without MgCl2); 200μM of each deoxyribonucleotide (dNTP); 1.5 mM MgCl2; 2.5 

U of GoTaq® polymerase; 1 μl template DNA; and nuclease-free water to bring the final volume to 25 

μl. A Bioer XP thermalcycler (Model TC-XP-G, Bioer Technology Co. Ltd., China) was used to run each 

PCR protocol. The reaction conditions are specified in Table 3.2; and were adapted from 

Ramarathnam et al. (2007) for surfactin, fengycin and bacillomycin primers; and Hsieh et al., (2008) 

for the iturin primer. After completion of the PCR run, the holding temperature for all protocols was 

4°C. 

 

Table 3.2. PCR reaction conditions for the primers used for lipopeptide gene marker screening of 

Bacillus isolates. 

Protocol  PCR cycling (Temperature and duration)  Cycles 

 Initialisation Denaturation Annealing Elongation Final Extension  

ituD 94°C / 2 min 94°C / 1 min 50°C / 1 min 72°C / 90 sec 72°C / 7 min 30 

sur3 94°C / 4 min 94°C / 1 min 60°C / 30 sec 72°C / 1 min 72°C / 10 min 35 

bacC1 94°C / 4 min 94°C / 1 min 60°C / 30 sec 72°C / 1 min 72°C / 10 min 25 

fenD1 94°C / 4 min 94°C / 1 min 60°C / 30 sec 72°C / 1 min 72°C / 10 min 25 

 

 Lipopeptide Primers Sequence (5’ – 3’) Reference 

Iturin ituD - F ATGAACAATCTTGCCTTTTTA Hsieh et al. (2008) 

 ituD - R TTATTTTAAAATCCGCAATT  

Surfactin sur3 – F ACAGTATGGAGGCATGGTC Ramarathnam (2007) 

 sur3 – R TTCCGCCACTTTTTCAGTTT  

Bacillomycin bacC1 – F GAAGGACACGGCAGAGAGTC Ramarathnam et al. (2007) 

Athukorala et al. (2009)  bacC1 – R CGCTGATGACTGTTCATGCT 

Fengycin fenD1 – F TTTGGCAGCAGGAGAAGTTT Ramarathnam et al. (2007) 

Athukorala et al. (2009)   fenD1 – R GCTGTCCGTTCTGCTTTTTC 
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PCR products were analysed and visualised by agarose gel electrophoresis using 1.5% (w/v) agarose 

gel (Laboratorois Conda, Madrid, Spain) prepared with 1x Tris-Borate-Ethylenediaminetetraacetic 

acid (TBE) buffer (89 mM Tris base, 89 mM Boric acid and 2 mM EDTA, adjusted to pH 8.0). Gels 

were pre-stained with SYBR Safe (1x) (Invitrogen, California, USA). The PCR products were prepared 

in final volumes of 5 μl per lane, with a ratio of 3 μl amplicon to 2 μl loading dye (6x blue-orange) 

(Promega, Madison, USA). A 1 kb molecular weight ladder (Promega, Madison, USA) was included to 

estimate the molecular weight of each PCR product. Gels were run at 90 V for 50–60 minutes and 

images of each gel electrophoresis were captured under ultra violet (UV) light on a SynGene G:Box 

imaging system (Syngene, Cambridge, England) using the Syngene GeneSnap software (version 7.09).  

 

To confirm the sequence homology of PCR products obtained from the positive control B. 

amyloliquefaciens R16, each of the four gene marker amplicons were sequenced using an ABI 

3500XL Genetic analyser (Applied Biosystems, California, USA) at Inqaba Biotec Laboratories 

(Pretoria, South Africa). Consensus sequences were visualised and edited using Chromas Lite 

(version 2.01) and BioEdit (version 7.1.3.0.) (Hall, 1999) software and aligned using MAFFT online 

(http://mafft.cbrc.jp/alignment/server). Sequences were then submitted to the BLAST-N database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) for comparison to existing sequences within the 

EMBL/GenBank/DDBJ database.  

 

3.2.2. Lipopeptide compound extraction from Bacillus cultures 

For the purposes of lipopeptide compound extraction, selected Bacillus isolates were cultured in a 

defined antibiotic production medium (McKeen et al., 1986). The medium comprised (per litre of 

deionised water): D-glucose, 15.0 g; L-glutamic acid, 5.0 g; MgSO4.7H2O, 1.02 g; K2HPO4.3H2O, 1.0 g; 

and KCl, 0.5 g; and  1 ml of a trace element solution. The trace element solution consisted of: 

CuSO4.5H2O, 0.16 g; MnSO4.7H2O, 0.1 g; and FeSO4.7H2O, 0.015 g in 100 ml deionized water. The 

medium pH was adjusted to pH 6.0-6.2 using 1 N NaOH before decanting and autoclaving at 121°C 

(103.4 kPa) for 15 minutes. 

 

Starter cultures were established by inoculating a single colony from a 10% TSA culture (24 h at 

30°C) into 10 ml of antibiotic production medium and incubating at 30°C at 150 rpm for 18 h. Three 
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millilitres of the starter culture was then aseptically inoculated into 50 ml of the antibiotic 

production medium, and incubated for a further 48 h (30°C at 150 rpm). 

 

Lipopeptide extraction was performed following an acid precipitation method modified from Vater 

et al. (2002) and McKeen et al., (1986). The broth cultures were centrifuged at 12,096 x g (Avanti 

centrifuge, Beckman Coultier) for 30 minutes at 4°C after which the supernatant was transferred into 

sterile glass bottles and acidified to pH 2.0–2.2 using 1 M HCl. The solution was refrigerated (4°C) for 

3–4 h to encourage the precipitation of any lipopeptide compounds present. The contents of the 

bottle were centrifuged as before, and the supernatant discarded. The precipitate was resuspended 

in 1 ml methanol and decanted into a microfuge tube. The centrifuge tube was washed out with an 

additional 1 ml methanol, and this decanted into a separate microfuge tube. Both of the tubes from 

each respective isolate were centrifuged at 15,996 x g for 5 minutes, after which the two 

supernatants were combined and filter-sterilized (GxF 0.45 µm GHP Acrodisc, Pall Life Sciences) into 

sterile 10 ml glass polytop vials, and stored at -20°C.  

 

3.2.3. Determination of antifungal activity of methanol extracts using a disc-diffusion 

bioassay  

To determine the antifungal activity of the methanol extracts, disc-diffusion bioassays were 

performed using Rhizoctonia solani obtained from the Discipline of Plant Pathology (University of 

KwaZulu-Natal) culture collection. To ensure purity the fungus was initially cultured on water agar 

(15 g/l bacteriological agar) before being subcultured onto potato dextrose agar (PDA) (Biolab, 

Merck, Germany) and incubated at 30°C.  Subculturing was performed every 7 d to ensure culture 

viability.  

 

Sterile filter-paper discs (9 mm diameter) (Macherey-Nagal, Germany) were placed onto PDA plates 

and inoculated with 20 μl of methanol extract, with each extract being tested in triplicate (i.e. three 

discs per plate). Methanol-inoculated discs (20 μl) were included as a control. Colonised R. solani 

agar plugs (5 x 5 mm) were taken from PDA cultures (4 d), and aseptically transferred to the centre 

of each assay plate. Incubation was carried out at 30°C, and the plates were examined and rated 

after 72 h for signs of antifungal activity. Observations were recorded as measurements of the zone 
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of inhibition, measured from the disc edge to fungal mycelium boundary. The degree of antifungal 

activity was rated as described previously (Section 2.2.2). 

  

3.2.4. TLC analysis of lipopeptide-methanol extracts 

TLC analysis of the methanol extracts was carried out on an oven-dried TLC Silica Gel 60 F254 

aluminium plate (20 cm x 20 cm) (Merck, Germany). The plate was spotted with 20 μl of each 

methanol extract approximately 1 cm from the bottom edge. For comparative purposes lipopeptide 

standards surfactin and iturin A (20 ppm in methanol) (Sigma-Aldrich, Chemie Gmbh, Munich, 

Germany) were included.  

 

The TLC plate was placed into a glass tank containing a 70:30 (v/v) propan-1-ol : water mobile phase 

(Tewelde, 2004). After sealing the tank, the TLC was allowed to proceed until the solvent front 

reached approximately 1 cm from the plate edge (~ 3 h). Where after the plate was removed from 

the tank, the solvent front marked, and the plate air-dried. Bands were visualised under UV 

illumination (260 nm) for UV-active regions; and hydrophobic regions were determined by misting 

the plate with water. In each instance visible bands were marked and the relative mobility (Rf) values 

of each band were calculated using the following formula (Kowalska et al., 2003): 

 

Rf  = 
distance of the chromatographic band centre from the spotted region (mm) 

distance between the spotted region and the solvent front (mm) 
 

  

3.2.5. MALDI-TOF-MS analysis of lipopeptide-methanol extracts  

MALDI-TOF-MS analysis of methanol extracts was carried out using a bench-top Bruker Microflex L20 

MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) equipped with an N2 laser (337 nm). 

Spectral processing and analysis was carried out using FlexControl software (version 2.4) (Bruker 

Daltonics). The matrix solution used was α-cyano-hydroxycinnamic acid (HCCA) (Bruker Daltonics) 

dissolved in 50% (v/v) acetonitrile and 2.5% (v/v) trifluoroacetic acid (TFA) to provide a final 

concentration of 10 mg HCCA/ml. For calibration purposes a Bovine Serum Albumin Digest standard 

(tryptic digest of bovine serum albumin, ~500 pmol/tube) (Bruker Daltonics, Germany) was used, 

which contained peptide fragments with a mass range of 927.493 Da to 2045.029 Da.  
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Included in the analysis were surfactin and iturin A standards (20 ppm in methanol) (Sigma-Aldrich, 

Chemie Gmbh, Munich, Germany). Methanol extracts from two plant-associated reference strains 

(B. amyloliquefaciens R16 and B. subtilis B81) were also included as examples of previously 

characterised lipopeptide-producing Bacillus spp. (Personal communication: Hunter, C. H.; Discipline 

of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private bag X01, South Africa).   

 

Aliquots (0.5 µl) of each methanol extract were spotted, in duplicate, onto a stainless steel target 

plate and allowed to air-dry before being overlaid with 0.5 µl of HCCA matrix. The co-crystallized 

complex was then allowed to air-dry prior to analysis. Mass spectra of the lipopeptide extracts were 

generated with the laser in positive linear mode at 60 Hz (with laser power at 12%), as an average of 

300 laser shots per spectrum (50 shots in 6 positions) in the mass range of 750–2500 Da. Post 

processing utilised the snap-peak detection algorithm with averaging. 

 

For the differentiation and identification of peaks associated with lipopeptide compounds, the mass 

spectra were exported to mMass open source software (version 5.5.0) (Niedermeyer and Strohalm, 

2012; Strohalm et al., 2010; Strohalm et al., 2008) and SPECLUST 

(http://bioinfo.thep.lu.se/speclust.html) (Alm et al., 2006). Using mMass, the duplicated mass 

spectra from each sample were subjected to spectral processing which involved baseline subtraction 

(Precision set at 100, relative offset at 90); smoothing (Gaussian method, window size 0.3 m/z, with 

2 cycles); and peak picking (S/N threshold 3.0, absolute intensity threshold 1.0, relative intensity 

threshold 5%, and picking height at 100). The spectra peak data generated was used to create a gel 

view for visual comparisons between the mass spectra using mMass. 

 

The duplicate peak lists of the lipopeptide standards and reference strains were also submitted to 

SPECLUST for the identification of common peaks between the replicate spectra for each isolate. The 

parameters for the peaks-in-common SPECLUST function were defined as pairwise score cut-off of 

0.7, measurement error of 5.0 Da, and multiple score cut-off of 0. Those peaks common to both 

peak lists per isolate comprised the final peak list from which lipopeptide-associated peaks were 

identified using the m/z values previously published in literature (Price et al., 2007; Koumoutsi et al., 

2004; Vater et al., 2002; Leenders et al., 1999).  
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3.3. Results 

3.3.1. PCR detection of gene markers associated with lipopeptide biosynthesis 

Fifty five isolates were selected for PCR screening based on their performance in the dual-culture 

antifungal assays and data obtained from DNA fingerprinting and gene fragment sequencing. The 

isolates chosen were: B. amyloliquefaciens strains bna75, bna78, bna81, mwb86, mwb87, ccc103, 

bnd109, bnd137, cce140, cce142, cce146, bnd160, pkf167, cce174, cce175, cce183, bng199, bng210, 

bng230, pkl242, pkl247, pkk252, sqo275, sqo277, bnn282, and sqo298; B. subtilis strains bnd134, 

bnd136, bnd156, bng215, bng216, bng221, sqo271, and sqo279; and unidentified isolates bna85, 

bnd115, bnd116, bnd119, bnd124, bnd125, bnd139, cce147, bnd149, bnd150, bnd154, bnd157, 

bnd162, bnd166, bng202, bng217, bng218, bng224, bng227, and sqo272. Isolate bng241 was also 

included as a negative control, as this isolate that did not exhibit any antifungal activity in the initial 

dual-culture bioassays.  

 

The gene markers used to detect the functional genes involved in lipopeptide synthesis were those 

associated with fengycin (fenD), bacillomycin (bacC), surfactin (sur3) and iturin (ituD). Each of these 

gene markers were detected in the reference strain B. amyloliquefaciens R16. The approximate 

product sizes for each PCR are visualised in Figure 3.1. 

 

The four gene marker amplicons from reference strain B. amyloliquefaciens R16 from were 

sequenced and submitted to GenBank for a BLAST search to confirm sequence identity (Table 3.3). 

The surfactin, bacillomycin and fengycin sequences were found to be homologous to their respective 

markers. However, the ituD amplicon showed sequence homology to bmyD, a malonyl CoA-acyl 

carrier protein associated with the production of bacillomycin D, an iturin variant. Compound 

analysis previously undertaken has shown that B. amyloliquefaciens R16 is not known to produce 

iturin A, but does synthesise bacillomycin D (Personal communication: Hunter, C. H.; Discipline of 

Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private bag X01, South Africa). 
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Figure 3.1. Expected PCR product sizes for the respective lipopeptide gene markers in reference 

strain B. amyloliquefaciens R16, as viewed after gel electrophoresis using 1.5% (w/v) agarose. 

 

Table 3.3. Sequence identities of lipopeptide gene markers derived from reference strain B. 

amyloliquefaciens R16 (Date accessed: 10 August 2013). 

Primer Product Size (bp) BLAST Sequence Match Accession Number Similarity  

fenD 431 Fengycin synthetase (fenD) 

B. amyloliquefaciens subsp. 

plantarum YAU B9601-Y2 

 

NC017061.1 

99 

ituD 1115 Malonyl CoA-acyl carrier protein 

associated with bacillomycin D 

synthesis (bmyD) 

B. amyloliquefaciens FZB42 

 

NC009725.1 

100 

sur3 361 Surfactin synthase thioesterase 

subunit (srfA-D) 

B. amyloliquefaciens subsp. 

plantarum UCMB5036 

 

NC020410.1 

100 

bacC 763 Bacillomycin D synthetase C (bmyC) 

B. amyloliquefaciens FZB42 

 

NC009725.1 

99 
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Results for the screening of isolates for lipopeptide gene markers are shown in Table 3.4, with 

examples of positive banding shown in Figure 3.2. Isolates that yielded PCR fragments consistent 

with the expected amplicon size of each gene markers were recorded as positive. The absence of a 

PCR product was considered a negative result. Positive marker bands for fengycin and iturin were 

detected in 41 isolates; 39 isolates were distinguished as positive for surfactin; and 22 isolates had 

positive banding for the bacillomycin primer. For comparative purposes Table 3.4 also includes the 

RAPD-PCR fingerprint groupings of the isolates and their sequence matches to the GenBank 

database for 16S rRNA and gyrA gene sequence fragments. 

 

Eighteen isolates were positive for all markers screened for, and many had been identified to be 

closely-related to stains of B. amyloliquefaciens (Table 3.4). These isolates included B. 

amyloliquefaciens strains mwb86, mwb87, bnd109, bnd137, cce142, cce174, cce175, pkl242, 

sqo277, and sqo298; as well as unidentified isolates bna85, bnd116, bnd119, bnd124, bnd125, 

bnd150, bnd157, and bng217. Isolate bng241 did not produce any positive results for the gene 

markers screened, which was not unexpected owing to this isolate’s lack of antifungal activity. A 

further thirteen isolates showed negative results for all gene markers screened, and included B. 

subtilis strains bnd134, bnd136, bnd156, bng216, bng221, and sqo271; as well as unidentified 

isolates bnd115, bnd139, bnd157, bnd162, bnd166, bng202, and bng218. Interestingly, 

representatives from the group of marker-negative isolates (viz. B. subtilis strains bnd134, bnd136, 

bnd156, bng216, bng221, and sqo271) comprise RAPD fingerprint groupings c, d, j, and k (Table 3.4), 

which showed high levels of gene sequence homology to strains of Bacillus sp. JS and B. subtilis. 

Additionally, B. subtilis strains bng215 and sqo279 showed a positive result for the surfactin marker 

only; and comprised RAPD fingerprint grouping h, which also closely matched to B. subtilis. Owing to 

the lack of specificity of the ituD primer, it is difficult to determine which isolates were able to 

produce iturin, and which were co-producing iturin and bacillomycin. 
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Table 3.4. Lipopeptide gene markers associated with fengycin (fenD), bacillomycin (bacC), surfactin 

(sur3), and iturin (ituD) biosynthesis amongst Bacillus isolates compared to RAPD fingerprint 

grouping.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolateˠ RAPD Group ˣ 
Lipopeptide Gene Markers* 

Fengycin Bacillomycin Surfactin Iturin 

bna75 a + - + + 

bna78 a + - + + 

B. amyloliquefaciens bnb85 a + + + + 

B. amyloliquefaciens mwb86 a + + + + 

B. amyloliquefaciens mwb87 a + + + + 

B. amyloliquefaciens ccc103 a + - + + 

B. amyloliquefaciens bnd109 a + + + + 

bnd116 a + + + + 

bnd124 a + + + + 

bnd125 a + + + + 

B. amyloliquefaciens bnd137 a + + + + 

B. amyloliquefaciens cce142 a + + + + 

bnd150 a + + + + 

bnd154 a + - + + 

B. amyloliquefaciens bnd160 a + - + + 

B. amyloliquefaciens pkf167 a + - + + 

B. amyloliquefaciens cce174 a + + + + 

B. amyloliquefaciens cce175 a + + + + 

B. amyloliquefaciens cce183 a + - + + 

B. amyloliquefaciens bng210 a - + + + 

bng217 a + + + + 

B. amyloliquefaciens bnn282 a - + + + 

B. amyloliquefaciens sqo298 a + + + + 

bna81 b + + - + 

bnd119 b + + + + 

B. amyloliquefaciens cce140 b + + - + 

B. subtilis bnd157 b + + + + 

bnd115 c - - - - 

B. subtilis bnd136 c - - - - 

B. subtilis bnd139 c - - - - 

bnd162 c - - - - 

bnd166 c - - - - 

B. subtilis bnd134 d - - - - 

B. subtilis bnd156 d - - - - 

B. amyloliquefaciens bng199 e + - + + 

B. amyloliquefaciens pkl242 f + + + + 

B. amyloliquefaciens pkl247 f + - + + 
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Table 3.4. Continued. 

Isolateˠ RAPD Group ˣ 
Lipopeptide Gene Markers* 

Fengycin Bacillomycin Surfactin Iturin 

B. amyloliquefaciens bng199 e + - + + 

B. amyloliquefaciens pkl242 f + + + + 

B. amyloliquefaciens pkl247 f + - + + 

B. amyloliquefaciens pkk252 f + - + + 

sqo272 f + - + + 

B. amyloliquefaciens sqo277 f + + + + 

B. amyloliquefaciens cce146 g + - + + 

cce147 g + - + + 

bnd149 g + - + + 

B. subtilis bng215 h + - - - 

B. subtilis sqo279 h + - - - 

B. subtilis bng216 j - - - - 

bng202 k - - - - 

bng218 k - - - - 

B. subtilis bng221 k - - - - 

B. subtilis sqo271 k - - - - 

bng224 l + - + + 

bng227 l + - + + 

B. amyloliquefaciens sqo275 m + - + + 

B. amyloliquefaciens bng230 n + - + + 

bng241$ i - - - - 

B. amyloliquefaciens R16 # a + + + + 
* (+) positive band after PCR, (-) no band present after PCR.  ˣ OPG-11 RAPD-PCR fingerprint groupings. ˠ Sequence 

homology based on 16S rRNA and gyrA partial gene sequences. 
$ 

Negative control isolate bng241.  
# 

Reference strain B. 
amyloliquefaciens R16. 

 
 
 
 



 

101 
 

 

Figure 3.2. Gel electrophoresis images demonstrating PCR products for lipopeptide gene marker 

primers bacC (A), fenD (B), ituD (C), and sur3 (D) obtained for isolates bnd162 and bnd166, and B. 

amyloliquefaciens strains pkf167, cce175, cce183, and bng199. The presence of a band indicated a 

positive result for the gene marker, and band absence indicated a negative result. 

 
 
 

3.3.2. Extraction and characterisation of lipopeptide compounds from Bacillus isolates  

3.3.2.1. Disc-diffusion bioassay   

Fourteen isolates were selected for lipopeptide compound extraction analysis based on their 

antifungal rating in the initial dual-culture bioassays, and as representatives of the groupings from 

DNA fingerprint and phylogenetic groupings distinguished previously (Chapter 2). The isolates 

selected that had provided positive results for one or more gene marker PCR were B. 

amyloliquefaciens strains mwb86, ccc103, cce140, cce146, cce175, bng199, sqo275, sqo277, and 

bnn282; B. subtilis strain sqo279.  Bacillus subtilis strains bnd134, bnd136, and bng216 were 

included as representatives of those isolates providing negative results for all lipopeptide gene 

markers. The inclusion of isolate bng241 served as a negative control, as this isolate exhibited 

A B 

C D 
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neither antifungal activity nor any positive results for lipopeptide gene marker PCR. The methanol 

extracts from all the isolates displayed antagonism towards R. solani, excepting the negative control 

isolate bng241 (Table 3.5). The methanol control did not appreciably affect fungal growth.  

 

Table 3.5. Disc-diffusion bioassay of methanol extracts from Bacillus isolates antagonistic towards 

Rhizoctonia solani.  

Isolate Antifungal Activity Rating* 

B. amyloliquefaciens mwb86 +++ 

B. amyloliquefaciens ccc103 +++ 

B. subtilis bnd134 ++ 

B. subtilis bnd136 ++ 

B. amyloliquefaciens cce140 +++ 

B. amyloliquefaciens cce146 +++ 

B. amyloliquefaciens cce175 +++ 

B. amyloliquefaciens bng199 +++ 

B. subtilis bng216 ++ 

B. amyloliquefaciens sqo275 +++ 

B. amyloliquefaciens sqo277 + 

B. subtilis sqo279 +++ 

B. amyloliquefaciens bnn282 +++ 

bng241$ - 

Methanol control - 

* Rating system of zone of inhibition 72 h post fungal inoculation: (+++) greater than 5 mm; (++) 2–5 mm; and (+) less than 

2 mm; (-) no zone observed.  
$ 

Negative control isolate. 

 

3.3.2.2. Analysis of methanolic extracts using TLC 

TLC analysis of the methanolic extracts resolved several bands for the thirteen antifungal isolates 

when the plate was viewed under UV light and after wetting (Plate 3.1). After exposure to both 

visualisation methods the Rf values of all the visible bands were marked and calculated (Table 3.6). 

Many of the UV-fluorescent bands also exhibited hydrophobic properties; though in some instances 

hydrophobic regions did not fluoresce under UV, as was noted for B. amyloliquefaciens strain cce140 

and the lipopeptide standards (Plate 3.2).  
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* Purified standards : Itu = iturin A, Sur = surfactin. 

Plate 3.1. TLC plate showing marked bands of lipopeptide extracts in methanol after separation 

using a 70:30 (v/v) propan-1-ol : water mobile phase and visualised under UV illumination and/or 

atomisation with water. 

  

Plate 3.2. Sections of TLC plates of methanol extracts from B. amyloliquefaciens strains cce140, 

cce146, and cce175 showing band fluorescence as seen under UV illumination (A) and band 

hydrophobicity after atomisation with water (B). 

 

Hydrophobic 
non-UV 
fluorescent 
band  
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In all of the fourteen methanol extracts analysed, a faint brown-coloured band was observed just 

above the region spotted at Rf 0.35–0.37 which possessed neither UV-activity nor hydrophobicity, 

and was not present in the lipopeptide standards. This is the only band noted for negative control 

isolate bng241. Though recorded, other coloured bands without fluorescence or hydrophobic 

properties appeared at locations in other profiles (Table 3.6). Owing to their lack of any lipopeptide-

associated characteristic these bands were disregarded.  

 

With the exception of isolate bng241, all methanol extracts showed a band corresponding to that of 

surfactin at Rf 0.94. The iturin A standard showed a prominent band at Rf 0.82, with an additional 

band also present with an Rf value of 0.94. A band corresponding closely to the Rf 0.82 band of the 

iturin A standard was not resolved in B. amyloliquefaciens strains cce175, sqo275,  and bnn282; and 

B. subtilis strains bnd134, bng216, and sqo279. 
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Table 3.6. Rf values of all bands visible after TLC analysis of methanol extracts, recorded by 

colouration and after UV illumination and/or after atomising with water. 

Sample Rf Values* 

Iturin A 0.82 0.95 
       

Surfactin 0.94 
        

B. amyloliquefaciens mwb86 0.36 0.61 0.71 0.79 0.82 0.9 0.94 
  

B. amyloliquefaciens ccc103 0.36 0.6 0.66 0.7 0.74 0.81 0.86 0.88 0.94 

B. subtilis bnd134 0.35 0.61 0.7 0.73 0.79 0.92 
   

B. subtilis bnd136 0.37 0.71 0.78 0.83 0.87 0.88 0.9 
  

B. amyloliquefaciens cce140 0.37 0.61 0.71 0.78 0.81 0.87 0.9 0.93 
 

B. amyloliquefaciens cce146 0.36 0.61 0.71 0.76 0.81 0.86 0.9 0.91 0.93 

B. amyloliquefaciens cce175 0.37 0.6 0.7 0.74 0.87 0.9 
   

B. amyloliquefaciens bng199 0.37 0.61 0.71 0.77 0.82 0.9 0.91 
  

B. subtilis bng216 0.36 0.61 0.71 0.76 0.88 0.92 0.94 
  

B. amyloliquefaciens sqo275 0.35 0.59 0.7 0.75 0.79 0.89 0.93 
  

B. amyloliquefaciens sqo277 0.35 0.59 0.7 0.74 0.81 0.86 0.9 0.91 0.94 

B. subtilis sqo279 0.35 0.59 0.7 0.75 0.76 0.87 0.94 
  

B. amyloliquefaciens bnn282 0.35 0.59 0.7 0.79 0.9 0.93 
   

bng241$ 0.36 
        

* Values marked in bold indicate fluorescence under UV illumination. Underlined values denote hydrophobicity. Plain text 

values represent those bands visible by colouration only, and possessed neither UV-fluorescence nor hydrophobicity.  
$ 

Negative control isolate bng241. 

 
 
 

3.3.2.3. Detection of lipopeptide compounds using MALDI-TOF-MS 

Methanolic extracts from the selected isolates were also analysed with MALDI-TOF-MS to screen for 

lipopeptide biomarkers. Only thirteen extracts were analysed, as the extract of B. subtilis strain 

sqo279 was omitted from analysis due to excessive production of extracellular matter during culture 

in the antibiotic production medium, which hampered lipopeptide recovery and interfered with 

detection using MALDI-TOF-MS.  

 

To accurately define the presence of lipopeptide peaks, purified standards of iturin A and surfactin 

were analysed. The m/z values obtained from the mass spectra were assigned to specific lipopeptide 
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isoforms based on m/z values in literature (Price et al., 2007; Koumoutsi et al., 2004; Vater et al., 

2002; Leenders et al., 1999). It was then possible to assign peaks to protonated species; as well as to 

sodium and potassium adducts of known isoforms, indicated by ions detected respectively as 22 or 

38 mass units larger than the protonated species (Table 3.7) (Price et al., 2007; Koumoutsi et al., 

2004). The iturin A standard provided prominent peaks from m/z 1043.72–1071.71; and the 

surfactin standard main peaks appeared at the m/z range 994.46–1059.11. The averaged mass 

spectrum of the duplicate mass spectra for each of the surfactin and iturin A standards are 

presented in Figures 3.3 and 3.4 respectively. 

 

Table 3.7.  m/z values of prominent peaks detected by MALDI-TOF-MS in duplicate mass spectra of 

surfactin and iturin A standards. 

Peak Assignment m/z Std.Dev. 

   

Iturin Species   

C14 [M+H+] 1043.72 0.0003 

C14 [M+K+] 1082.63 0.04 

C14 [M+Na+] 1065.74 0.11 

C15 [M+H+] 1057.72 0.47 

C15 [M+K+] 1079.69 0.04 

C16 [M+H+] 1071.71 0.02 

   

Surfactin Species   

C12 [M+H+] 994.96 0.5 

C13 [M+H+] 1009.53 0.13 

C14 [M+H+] 1023.08 0.07 

C14 [M+K+] 1061.04 0.10 

C14 [M+Na+] 1047.27 0.88 

C15 [M+H+] 1037.10 0.08 

C15 [M+K+] 1075.07 0.10 

C15 [M+Na+] 1059.11 0.08 
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Figure 3.3. Mass spectrum of reference standard surfactin (m/z 800–1150). 

 

 

Figure 3.4. Mass spectrum of reference standard iturin A (m/z 800–1150). 

 

The mass spectra for the methanol extracts of reference strains B. amyloliquefaciens R16 and B. 

subtilis B81 are shown in Figures 3.5 and 3.6 respectively. In both cases lipopeptide compounds were 

distinguished and identified based on similarities to the spectra derived from the surfactin and iturin 
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standards, and from the m/z values of lipopeptides previously described in the literature (Price et al., 

2007; Koumoutsi et al., 2004; Vater et al., 2002; Leenders et al., 1999).  

 

 

 

Figure 3.5. MALDI-TOF-MS mass spectra of reference strain B. amyloliquefaciens R16. These 

demonstrate the peak profiles appearing in the m/z ranges 950–1150 (A) in which surfactins and 

bacillomycins were detected; and m/z 1400–1590 (B) in which fengycins were detected.  

 

 

A 

B 
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Figure 3.6. MALDI-TOF-MS mass spectra of reference strain B. subtilis strain B81. These 

demonstrate the peak profiles appearing in the m/z ranges 950–1150 (A) in which surfactins and 

bacillomycins were detected; and m/z 1400–1590 (B) in which fengycins were detected.  

 

Peaks corresponding to isoforms of surfactin were distinguished for both reference strains B. 

amyloliquefaciens R16 and B. subtilis B81 (Table 3.8). Peaks correlating to isoforms for the fengycin 

family were also distinguished in both of these strains (Price et al., 2007; Koumoutsi et al., 2004; 

Vater et al., 2002; Leenders et al., 1999). However, iturin isoforms were not distinguishable in the 

extracts of either reference strain, although a suite of peaks corresponding to isoforms of 

bacillomycin D, an iturin variant, were detected in B. amyloliquefaciens R16 (Koumoutsi et al., 2004). 

A 

B 
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The peak clustering indicative of the various lipopeptide families detected for these two reference 

strains is presented in Figure 3.7. 

 

Table 3.8. m/z values of lipopeptide associated peaks from Bacillus spp. reference strain mass 

spectra. 

Peak Assignment m/z * 

  
B. amyloliquefaciens strain R16 

Surfactin  
Surfactin C13 [M+Na, K]+ 1029.32, 1045.37 

Surfactin C14 [M+K]+ 1060.47 
Surfactin C15 [M+K]+ 1074.46 

  
Bacillomycin D  

Bacillomycin D C14 [M+H, Na, K]+ 1031.28, 1053.33, 1069.34 
Bacillomycin D C15 [M+Na, K] + 1067.38, 1083.35 
Bacillomycin D C16 [M+Na, K]+ 1081.41, 1097.37 

  
Fengycin  

Ala-6-C15 Fengycin M+H, Na, K]+  1435. 68, 1487.64, 1471.65 
Ala-6-C16 Fengycin [M+H, Na, K]+  1463.62, 1485.63, 1500.16 

Ala-6-C17 Fengycin [M+H, K]+  1477.69, 1516.18 
Val-6-C15 Fengycin [M+H, Na, K]+ 1491.22, 1513.66, 1529.66 

Val-6-C17 Fengycin [M+H, Na]+  1505.7, 1528.2 
  

B. subtilis strain B81 

Surfactin  
Surfactin C13 [M+Na, K]+ 1031.81, 1047.22 
Surfactin C14 [M+H, Na]+ 1023.89, 1045.69 

Surfactin C15 [M+H, Na, K]+ 1037.78, 1060.14, 1075.54 
  
Fengycin  

Ala-6-C15 Fengycin [M+H, K] + 1449.72, 1487.16 
Ala-6-C16 Fengycin [M+H, K] + 1463.72, 1502.23 

Ala-6-C17 Fengycin [M+H, Na] + 1478.22, 1500.25 
Val-6-C15 Fengycin [M+H, Na, K] + 1491.75, 1515.25, 1530.24 
Val-6-C17 Fengycin [M+H, Na, K] + 1505.78, 1527.8, 1543.79 

 
* m/z values represent averaged values from duplicate mass spectra. 
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Figure 3.7. MALDI-TOF-MS mass spectra of reference strains B. amyloliquefaciens R16 (A) and B. 

subtilis B81 (B) demonstrating the peak clusters indicative of lipopeptide compounds appearing in 

the m/z range 717–1650.  

 

Results for the detection of lipopeptide biomarkers amongst Bacillus isolates screened are presented 

in Figure 3.8 and Table 3.9. Lipopeptide biomarkers in the mass spectra obtained from methanol 

extracts were distinguished using the m/z values from the iturin A and surfactin standards (Table 

3.7), reference strains (Table 3.8), and literature values. The lack of lipopeptide peaks for isolate 

bng241 was not unexpected (Figure 3.10a), as this isolate did not exhibit any antifungal ability, 

possessed none of the lipopeptide gene markers targetted in PCR screening, and did not resolve any 

lipopeptide-associated bands after TLC analysis (Figure 3.10a and Table 3.6). Of the remaining 

A 
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samples, all were found to contain peaks corresponding to surfactin and fengycin isoforms. Most of 

the isolates screened produced isoforms of all three lipopeptide classes; although B. subtilis strains 

bnd134, bnd136, and bng216 did not produce peaks indicative of iturins or bacillomycins. 

Interestingly, these three isolates had yielded negative results for the gene markers screened, but 

were found to produce surfactin and fengycin under MALDI-TOF-MS analysis.  

 

Table 3.9. Detection of lipopeptide biomarkers in methanol extracts from Bacillus isolates using 

MALDI-TOF-MS analysis. 

Isolate Surfactins Bacillomycins Iturins Fengycins 

B. amyloliquefaciens strain mwb86 + + + + 

B. amyloliquefaciens strain ccc103 + + - + 

B. subtilis strain bnd134 + - - + 

B. subtilis strain bnd136 + - - + 

B. amyloliquefaciens strain cce140 + + + + 

B. amyloliquefaciens strain cce146 + + + + 

B. amyloliquefaciens strain cce175 + + + + 

B. amyloliquefaciens strain bng199 + + + + 

B. subtilis strain bng216 + - - + 

B. amyloliquefaciens strain sqo275 + + + + 

B. amyloliquefaciens strain sqo277 + + + + 

B. amyloliquefaciens strain bnn282 + + + + 

bng241$ - - - - 

B. amyloliquefaciens strain R16# + + - + 

B. subtilis strain B81# + - - + 

(+) presence of band indicating marker; (-) no band present and no marker detected.  
$ 

Negative control isolate bng241.   
# 

Reference strains B. amyloliquefaciens R16 and B. subtilis B81. 
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Figure 3.8. MALDI-TOF-MS mass spectra of isolates bng241 (A), B. subtilis strain bnd134 (B), and B. 

amyloliquefaciens strain cce175 (C) demonstrating the peak clusters indicative of lipopeptide 

compounds appearing in the m/z range 717–1650.  

 

 

B 

C 

A 
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For comparative purposes, these mass spectra were also transformed using mMass software 

(version 5.5.0) to generate a gel view of the mass spectra (Figure 3.9). The m/z values were 

converted into vertical lines and the peak intensity represented as a function of greyscale lightening 

(low intensity) or darkening (high intensity). The B. amyloliquefaciens grouping of isolates (viz. 

mwb86, ccc103, cce140, cce146, cce175, bng199, sqo275, sqo277, and bnn282) produced all three 

compound families, while the three isolates belonging to the B. subtilis grouping (viz. bnd134, 

bnd136, and bng216) produced only fengycin and surfactin. Bacillus subtilis strain bnd134 and 

isolate bng241 produce peaks of high intensity at approximately m/z 825 which are not, to our 

knowledge, associated with the lipopeptides being screened for. 
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Figure 3.9. Mass profiles of methanol extracts from Bacillus isolates, reference strains, and reference standards represented as a gel view generated 

using mMass software (m/z 750–1750). 
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Some disparity was observed when the results for MALDI-TOF-MS analysis and lipopeptide 

gene markers were compared (Table 3.10). Though there are no instances where a gene 

marker positive result was not confirmed by MALDI-TOF-MS. Fengycin and surfactin are widely 

produced, with MALDI-TOF-MS also detecting these compounds in the three gene marker 

negative isolates (viz. B. subtilis strains bnd134, bnd136, and bng216). Iturin and bacillomycin 

production was variable amongst the isolates. Excluding the three gene marker negative 

isolates discussed above, there are some instances where MALDI-TOF-MS detected compound 

isoforms for a negative PCR result. However, these instances are only for one lipopeptide class 

each: B. amyloliquefaciens strain ccc103 for bacillomycin; B. amyloliquefaciens strain cce140 

for surfactin; B. amyloliquefaciens strain bng199 for bacillomycin; B. amyloliquefaciens strain 

sqo275 for bacillomycin; and B. amyloliquefaciens strain bnn282 for fengycin. Only in B. 

amyloliquefaciens strains mwb86, cce175, and sqo277 do MALDI-TOF-MS and PCR results 

correlate for all lipopeptides screened for. 

 

Table 3.10. Comparative data of lipopeptide PCR gene markers and MALDI-TOF-MS detection 

of lipopeptide compounds in methanol extracts from Bacillus isolates.  

Isolate 
Surfactin Bacillomycin Iturin Fengycin 

MALDI PCR MALDI PCR MALDI PCR MALDI PCR 

B. amyloliquefaciens mwb86 + + + + + + + + 

B. amyloliquefaciens ccc103 + + + - + + + + 

B. subtilis bnd134 + - - - - - + - 

B. subtilis bnd136 + - - - - - + - 

B. amyloliquefaciens cce140 + - + + + + + + 

B. amyloliquefaciens cce146 + + + - + + + + 

B. amyloliquefaciens cce175 + + + + + + + + 

B. amyloliquefaciens bng199 + + + - + + + + 

B. subtilis bng216 + - - - - - + - 

B. amyloliquefaciens sqo275 + + + - + + + + 

B. amyloliquefaciens sqo277 + + + + + + + + 

B. amyloliquefaciens bnn282 + + + + + + + - 

bng241$ - - - - - - - - 

 (+) lipopeptide isoforms detected; (-) no lipopeptide isoforms present. 
$ 

Negative control isolate bng241.   
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3.4. Discussion 

Several strains of Bacillus spp. have been commercially formulated for the control of a variety 

of fungal crop diseases, with some of these products also effective against cucurbit powdery 

mildew (Borriss, 2011; Cawoy et al., 2011). Biosynthesis of lipopeptide compounds has shown 

to be a major determinant of the biocontrol potential of many AEFB strains (Alvarez et al., 

2011; Arguelles-Arias et al., 2009; Chen et al., 2009a; Ongena et al., 2008). Applications of live 

cells of B. subtilis or extracted lipopeptide metabolites have both been found to be effective in 

reducing the severity of powdery mildew on cucurbits (Romero et al., 2007a; Romero et al., 

2007b; Romero et al., 2004; Romero et al., 2003; Bettiol et al., 1997). Furthermore, Romero et 

al. (2007a) found that powdery mildew antagonism of P. fusca by several strains of B. subtilis 

was directly linked to the synthesis of fengycin and iturin. The research presented in this 

chapter was undertaken with the aim of screening the lipopeptide production capabilities of 

selected Bacillus isolates as candidate BCA of P. fusca. Three screening approaches were 

applied and evaluated, namely PCR screening of gene markers, and analysis of lipopeptide 

extracts using TLC and MALDI-TOF-MS.  

 

When evaluating Bacillus spp. as BCA, lipopeptide biosynthesis is an important consideration, 

as these compounds play many roles the bacteria–plant host relationship, and are considered 

to be crucial to the success of many Bacillus spp. as biocontrol agents (Nagórska et al., 2007). 

Not only are lipopeptide compounds known to directly antagonise fungi (fengycins and 

iturins), they assist in niche colonisation and biofilm establishment (surfactins), and stimulate 

plant host resistance mechanisms (surfactins and fengycins) (Ongena et al., 2009). The Bacillus 

isolates screened in the present study were able to produce a range of lipopeptide 

compounds, with biosynthetic capability variable between B. amyloliquefaciens and B. subtilis 

isolates. PCR gene marker screening and MALDI-TOF-MS analysis provided the most useful 

data of lipopeptide production. The detection capability of TLC was found to be insufficiently 

sensitive without additional band analysis techniques. Fengycin and surfactin lipopeptide 

classes were most widely produced by the isolates, while synthesis of compounds within the 

iturin family was found to be variable. The negative control isolate bng241 had not shown any 

antifungal activity in prior dual-culture bioassays, and no evidence of lipopeptide production 

was detected from this isolate by any of the three evaluation methods applied. 
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PCR gene marker screening determined differences in the biosynthetic capabilities between 

isolates belonging to the B. amyloliquefaciens and B. subtilis species. Isolates which had been 

placed into different groups based on RAPD fingerprints generally displayed similar gene 

marker PCR profiles (Table 3.4). Those isolates which grouped together as B. amyloliquefaciens 

strains were found to be positive for surfactin and fengycin markers, barring negative marker 

results for B. amyloliquefaciens strains bng210 and bnn282 for fengycin, and B. 

amyloliquefaciens strains bna81 and cce140 for surfactin. Amongst this species the iturin 

marker was present in many cases, bacillomycin marker presence was variable. Thirteen 

isolates (24%) grouped together as strains of B. subtilis and were negative for all markers 

screened for. Bacillus subtilis strains bng199, bng215, and sqo279; and isolates bng224 and 

bng227 were the only isolates to possess any of the markers screened for (Table 3.4). 

However, MALDI-TOF-MS analysis of methanolic extracts from twelve antifungal isolates—

representative of both species—found that all of these were able to produce surfactin and 

fengycin. MALDI-TOF-MS showed that the only isolates which did not produce bacillomycin 

and/or iturin compounds were B. amyloliquefaciens strain ccc103, and B. subtilis strains 

bnd134, bnd136, and bng216. Banding was detected in all extracts after TLC analysis, with 

bands correlating to Rf values of the surfactin and iturin reference standards widely observed 

(Table 3.6). Fengycin presence could not be determined by TLC owing to a lack of reference 

standard.  

 

Gene marker PCR screening for lipopeptide production is considered a useful method of 

evaluating Bacillus spp. candidates for biocontrol applications (Joshi and McSpadden 

Gardener, 2006). This is also convenient method of evaluating lipopeptide synthesis potential 

prior to field testing and can provide information on the lipopeptide production potential 

without compound extraction (Hsieh et al., 2008; Hsieh et al., 2004). Hence, a number of 

genetic markers associated with lipopeptide biosynthesis in Bacillus spp. have been developed 

as a means of examining lipopeptide production capability (Alvarez et al., 2011; Mora et al., 

2011; Velho et al., 2011; Hsieh et al., 2008; Ramarathnam et al., 2007; Joshi and McSpadden 

Gardener, 2006; Abushady et al., 2005; Hsieh et al., 2004; Koumoutsi et al., 2004). A potential 

shortfall in the use of PCR screening in this study was observed when sequencing data from 

reference strain B. amyloliquefaciens R16 gene marker amplicons identified the ituD PCR 

product as a region of the bacillomycin synthetase (Table 3.3). This demonstrates that this 
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primer set was unable to distinguish between the biosynthetic genes of these closely-related 

compounds, and the lack of specificity highlights the limitations of the ituD primer set used. 

Hence, in order to be fully trusted, the ituD primer set requires some level of refinement, or 

the inclusion additional primers for iturin-associated markers (Alvarez et al., 2011; Mora et al., 

2011; Tsuge et al., 2001). 

 

Disparity between the iturin and bacillomycin gene marker PCR data was further highlighted by 

MALDI-TOF-MS analysis data (Table 3.8). All isolates positive for the bacillomycin gene marker 

were confirmed to be bacillomycin producers when extracts were analysed using MALDI-TOF-

MS extract analysis. Interestingly, the bacillomycin primer failed to detect bacillomycin 

synthesis in four instances (viz. B. amyloliquefaciens strains ccc103, cce146, bng199, and 

sqo275) (Table 3.10). Detection of the co-production of bacillomycin and iturin with gene 

marker PCR was limited, as isolates showing positive results for both the ituD and bmyC 

regions may not necessarily indicate the co-production of these two compounds. Although 

MALDI-TOF-MS revealed instances of concurrent iturin and bacillomycin biosynthesis in some 

isolates which had returned positive results for both of these gene markers (viz. B. 

amyloliquefaciens strains mwb86, cce140, cce175, and sqo277). All isolates which provided 

positive results for the iturin marker were found to produce iturin under MALDI-TOF-MS 

analysis; though positive results for the ituD marker using PCR data alone need to be 

interpreted with caution as they may not necessarily indicate the production potential of iturin 

but possibly also that of bacillomycin.  

 

Differences in primer sensitivity between Bacillus species was observed amongst the gene 

marker primers. It is unlikely that the negative results for some of the B. subtilis isolates were 

indicative of a lack of biosynthetic ability as this species is known as a prolific lipopeptide 

producer (Stein, 2005). Given that MALDI-TOF-MS confirmed the presence of lipopeptide 

biomarkers in all B. subtilis isolates screened, a more likely scenario is that the gene marker 

primers used in the current study lacked specificity. This is an unexpected outcome as these 

primer sets had been successfully applied to a variety of Bacillus spp. by other researchers 

(Athukorala et al., 2009; Hsieh et al., 2008; Ramarathnam et al., 2007). Yet, differences in the 

synthetic capability of these two species were revealed by MALDI-TOF-MS analysis of 
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reference strains B. amyloliquefaciens R16 and B. subtilis B81. Both reference species were 

found to synthesise surfactin and fengycin variants; though B. subtilis B81 did not produce any 

of the iturin family variants and B. amyloliquefaciens R16 was only able to synthesise 

bacillomycin D (Table 3.8). In light of these findings, future prospects for the use of lipopeptide 

gene marker PCR screenings would require either the inclusion of additional primer sets, or the 

synthesis of new primers better able to detect markers in both B. subtilis and B. 

amyloliquefaciens groupings.  

 

Chromatographic methods such as ion exchange chromatography, TLC, and gel permeation 

chromatography have been frequently-used techniques for the analysis of biosurfactant 

compounds from Bacillus spp. (Gordillo and Maldonado, 2012). In the present study, TLC was 

applied to detect the presence of UV-active hydrophobic bands indicative of amphiphilic 

compounds in the methanol extracts. Isolate bng241 notwithstanding, multiple bands were 

detected in all of the extracts analysed, and bands showing correlation to the two reference 

standards in hydrophobicity and Rf values were widely detected (Table 3.3). In agreement with 

MALDI-TOF-MS and PCR results, bands of Rf values correlating to surfactin were detected in all 

antifungal isolates. Rf values correlating to iturin were less commonly observed, and detection 

of iturin by TLC did not entirely correlate with the PCR and MALDI-TOF-MS findings. UV-

fluorescence was of little assistance in discriminating related bands.  

 

The purified iturin A standard displayed two bands after TLC separation (Plate 3.1), which 

could be the attributed to iturin isoforms (Price et al., 2007). Alternately, the standard might 

have possessed low levels of a contaminant lipopeptide—which matched the Rf values of 

surfactin—although MALDI-TOF-MS data from these reference standards could not confirm 

this (Table 3.7). The data obtained from extract analysis using TLC highlights the need for a full 

complement of purified lipopeptide reference standards in order for banding comparisons to 

be considered reliable without including individual band analyses (Gordillo and Maldonado, 

2012). Additional band-qualification methods after TLC would have required considerably 

more of a time investment than other techniques available (e.g. MALDI-TOF-MS), and were 

therefore not pursued further for the purposes of this study. 
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Despite the convenience PCR offers in the evaluation of lipopeptide production potential, the 

findings of the present study, and those of other researchers, have determined that 

lipopeptide production in situ is not guaranteed by the presence of a gene marker (Alvarez et 

al., 2011; Savadogo et al., 2011; Athorkurala et al., 2009; Leenders et al., 1999). Gene marker 

PCR for the purposes of this study requires the inclusion of more gene marker primer sets, or 

the refinement of the existing ituD primer, in order to offer accurate extrapolations of 

compound synthesis. MALDI-TOF-MS is able to yield data much faster and with a lower 

resource demand than PCR, and is highly sensitive to compositional variations amongst 

compounds in a mixture, which TLC does not offer. Nevertheless, as MALDI-TOF-MS hardware 

is expensive and often unavailable TLC presents a “low-tech” means of both separation and 

qualification of biosurfactant compounds, that is able to be carried out with minimal sample 

purification (Gordillo and Maldonado, 2012). TLC can form a useful part of a polyphasic 

lipopeptide screening approach should a suite of reference standards be included (Tewelde, 

2004; Poole, 2003; Lin et al., 1998b). Of the three methods used to determine lipopeptide 

production potential, MALDI-TOF-MS proved to be a rapid, powerful, and effective tool for 

detecting lipopeptides in methanolic extracts. Nevertheless, both PCR and MALDI-TOF-MS 

have proven to be valuable tools when used in conjunction to screen for lipopeptide-producing 

Bacillus strains (Athukorala et al., 2009).  

 

All of the antifungal isolates screened in this study were found to be able to produce variants 

of some, if not all, of the three major lipopeptide compound families known to be synthesised 

by AEFB. Overall, those isolates related to B. amyloliquefaciens were found to be the most 

consistent producers of the three lipopeptide compound families assayed for. The fact that 

surfactin and fengycin classes were produced by all of the isolates screened is two compounds 

are known to play roles in bacterial establishment on the host plant (Ongena et al., 2008). 

Antibiosis is an easily assayed mechanism involved in biocontrol activity, though it is not the 

only mechanism by which Bacillus spp. act as BCAs, nor can it be a guarantee of successful 

disease antagonism in the field.  However, preliminary screening evaluating candidate BCAs 

that is based on antibiosis has shown this ability to be highly valuable (Athukorala et al., 2009). 

On the basis of the data presented here those isolates exhibiting an ability to produce 

lipopeptide compounds were considered promising candidates warranting further evaluation. 



 

122 
 

CHAPTER FOUR 

Screening of selected Bacillus spp. isolates for antagonism towards Podosphaera 

fusca using an agarised detached cotyledon assay and biocontrol pot trials 

 

4.1. Introduction 

A polyphasic screening approach applied prior to field trials provides a strong basis from which 

to select candidate biocontrol agents most likely to be successful against a target pathogen 

(Pliego et al., 2010; Knudsen et al., 1997). This strategy has been shown to be useful in 

selecting antagonistic bacterial isolates against a variety of plant diseases (Pliego et al., 2011; 

Anith et al., 2003; Knudsen et al., 1997). In vivo screening is an important aspect of biocontrol 

screening programs. Despite the valuable information that can be gleaned from performing 

laboratory-based in vitro bioassays for large numbers of isolates, a screening protocol which 

includes the host plant, pathogen, and antagonist offers a more realistic extrapolation of 

biocontrol performance in the field (Anith et al., 2003). Due to the biotrophic nature of P. fusca 

preliminary in vitro screenings rely on surrogate fungal species. This necessitates the use of in 

planta assays to confirm in vitro findings under conditions reflective of natural growing 

conditions.   

 

The detached cotyledon assay represents a laboratory-scale technique for the evaluation of 

antagonism for biotrophic species. The protocol involves the artificial maintenance of leaf or 

cotyledonous tissue, thereby allowing the study of pathogen antagonism in a controlled 

environment, and has been applied for P. fusca with some success (Tesfagiorgis, 2009; Bardin 

et al., 2007; Romero et al., 2007a; Romero et al., 2003; Shishkoff and McGrath, 2002; Álvarez 

and Torés, 1997; Quinn and Powell, 1982). Biocontrol pot trials represent a means of 

evaluating plant–pathogen–antagonist interactions under conditions that approximate normal 

growing conditions (Anith et al., 2003). Since biocontrol pot trials are usually carried out in 

greenhouses under controlled growth conditions the influence of environmental variables 

associated with the field environment are minimised.  Pot trials are useful for assessing an 

organisms’ ability to colonise its host and compete with the existing microflora (Pliego et al., 

2011). Additional mechanisms contributing to antagonism are also afforded opportunity to be 
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revealed (e.g. induced plant host resistance, siderophore production, and competitive 

exclusion) (González-Sánchez et al., 2010).  

 

In this study nine Bacillus isolates, selected previously from preliminary screening assays, were 

evaluated for powdery mildew antagonism. Two methods, namely an agarised detached 

cotyledon assay and a biocontrol pot trial, were used to evaluate disease antagonism. A 

subsequent pot trail was conducted to assess the impacts of inoculum preparation of isolate 

cce175 on the targetted pathogen.  

 

4.2. Materials and Methods 

4.2.1. Bacterial isolates 

Nine Bacillus isolates (viz. B. amyloliquefaciens strains mwb86, ccc103, cce140, cce175, 

bng199, sqo275, and bnn282; and B. subtilis strains bnd136 and sqo279) were chosen for in 

vivo screening of cucurbit powdery mildew antagonism. These isolates were selected on the 

basis of their antagonism towards surrogate test fungi in Botrytis cinerea and Rhizoctonia 

solani in vitro, their lipopeptide profiles determined by MALDI-TOF-MS, and genomic 

fingerprint profiles determined by RAPD-PCR (Chapters 2 and 3). Isolates were stored as 

glycerol stock cultures at -80°C and cultured on TSA (30°C) prior to use.  

 

4.2.2. Cultivation of powdery mildew disease and conidia harvesting 

A source of cucurbit powdery mildew inoculum was established and maintained on susceptible 

zucchini plants (Cucurbita pepo) (Partenon hybrid F1, Starke-Ayres (Pty) Ltd., South Africa) 

grown under greenhouse conditions. The plants were initially inoculated from diseased plant 

material. The powdery mildew pathogen was identified as P. fusca based in conidia 

morphology and evidence of fibrosin bodies present in conidia when treated with 3% (w/v) 

KOH solution and viewed under bright-field microscopy (Zitter et al., 1996). The host plants 

were grown in pots (25 cm diameter) filled with ~8 L of a composted pine bark medium, and 

the pots placed 30 cm apart in rows. The plants were drench-fertigated every 3 d using 1 g/l of 

a commercial fertilizer preparation Dr. Fisher’s Multifeed Classic (N 19 : P 8 : K 16) (Plaaskem 
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(Pty) Ltd., South Africa). This formulation contained (per kg): nitrogen, 190 g; phosphorus, 82 g; 

potassium, 158 g; magnesium, 900 mg; zinc, 350 mg; boron, 1000 mg; molybdenum, 70 mg; 

iron, 750 mg; manganese, 900 mg; and copper, 75 mg. The plants were watered as required 

between fertigations. The disease was allowed to advance unimpeded and new host plants 

were added to the collection every 4–6 weeks as dictated by disease progress.  

 

For disease inoculation purposes fungal conidia were harvested from infected 6-week old 

plants. Diseased leaves were collected and placed into 250 ml sterile deionised water, before 

being agitated by hand for 2 minutes to promote conidial removal. The leaf material was 

removed and conidia counted within 2–3 h of harvesting using a haemocytometer (0.1 mm 

depth, counting area 0.0025 mm2) (Thoma, Marienfield) with each sample counted in 

triplicate. Conidial suspensions were adjusted to the required concentration by dilution with 

sterile deionised water. An ethanol-disinfected polyethylene terephthalate (PET) plastic 

atomiser (capacity 250 ml) was used to apply the conidial suspension over the whole plant 

until runoff was visible. 

 

4.2.3. Antagonism screening using an agarised detached cotyledon bioassay  

A modified detached leaf assay was adapted from Álvarez and Torés (1997) and Bardin et al. 

(2007) using zucchini cotyledons which were embedded into an agar-based medium. The 

agarised basal medium used was adapted from Álvarez and Torés (1997) and consisted of (per 

litre): mannitol, 0.1 M; sucrose, 0.02 M; and bacteriological agar, 10 g. The medium was 

autoclaved at 121°C (103.4 kPa) for 15 minutes.  

 

Zucchini cotyledons (14 d old) (Partenon F1 hybrid) (Starke-Ayres, South Africa) were removed 

from the plant at the petiole using ethanol-disinfected scissors. Cotyledons were surface-

sterilised by soaking for 15–20 minutes in an aqueous solution of 0.5% (v/v) bleach and 0.1% 

(v/v) Tween80. This was followed by three successive rinse steps in sterile deionised water, at 

1 minute each. Transfers between beakers were carried out aseptically using ethanol-flamed 

forceps. The leaves were blotted dry using disinfected paper towel (18 h oven incubation at 
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70°C) before placement onto the agarised medium (one cotyledon per plate) as demonstrated 

in Plate 4.1. Three cotyledons were used per treatment, including diseased and non-diseased 

controls. 

 

Single colonies taken from TSA cultures (18 h at 30°C) of each selected isolate were inoculated 

into 10 ml TSB (Merck, Biolab) and incubated for 36 h (30°C at 150 rpm). Thereafter, 5 ml 

aliquots were removed and centrifuged for 30 minutes at 17,969 x g (Avanti centrifuge, 

Beckman Coultier). Supernatant was removed and the bacterial pellets resuspended in 5 ml 

quarter-strength Ringer’s solution. Bacterial cells were enumerated using a bacterial counting 

chamber, counting the number of cells within five squares over three replicates (0.02 mm 

depth, counting area 0.0025 mm2) (Thoma, Marienfield) and the samples kept on ice to arrest 

cell division until completion of counting. The suspensions were adjusted to ~108 cells/ml using 

sterile quarter-strength Ringer’s solution, and applied to sterile cotton wool swabs until 

saturated. Each cotyledon on the agar medium was then aseptically swabbed with the 

saturated cotton wool. Petri dish lids were closed, and the plates dried for 1–2 h in a laminar 

flow bench before transfer into a controlled environment growth chamber (PGI-500H Growth 

Chamber, MRC Labs, Israel). Incubation conditions were a constant temperature of 21°C, with 

16 h of illumination (~2,000 lux) per day at 65% relative humidity (RH). Each treatment was 

performed in triplicate and included diseased and non-diseased controls. The plates were 

arranged in the incubator in a randomised block design. 

 

After 72 h of incubation the cotyledons (excepting the negative controls) were inoculated with 

~105 powdery mildew conidia/ml as described above (Section 4.2.1). The cotyledons were 

visually rated for leaf area infected (l.a.i.) at 4, 6, 9, 11, and 12 d post inoculation (Plate 4.2). 

Statistical analysis of leaf area infected was carried out using Area Under Disease Progress 

Curve (AUDPC) (Shaner and Finney, 1977) and one-way analysis of variance (ANOVA) carried 

out on Genstat software (Version 14, VSN International Ltd.). Disease reduction percentages 

were expressed as a function of the treatment AUDPC value and the diseased control AUDPC 

value. 
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Plate 4.1. Agarised detached cotyledon assay demonstrating zucchini cotyledon embedded 

in basal agar medium. 

 

 

Plate 4.2. Examples of leaf area infected (l.a.i.) benchmarks used for rating of powdery 

mildew of cucurbits disease in the biocontrol pot trial. The images represent the leaf area 

infected values: (A) 10%, (B) 50%, (C) 70%, (D) 100%. 
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4.2.4. Biocontrol pot trial screening of Bacillus isolates against powdery mildew  

Potted zucchini host plants (Partenon hybrid F1) (Starke-Ayres (Pty) Ltd., South Africa) were 

grown in pots (18 cm diameter) containing composted pine bark medium (~2.3 L volume) and 

maintained in a controlled environment growth chamber (Controlled Environment Research 

Unit, University of KwaZulu-Natal, Pietermaritzburg, South Africa). The growth chamber was 

illuminated (~3,500 lux) for 16 h per day, with a day temperature of 25°C, night temperature of 

20°C, and 70% RH. The plants were drench-fertigated and watered as described above (Section 

4.2.1). 

 

Bacterial inoculum was prepared as described previously (Section 4.2.3). The bacterial 

suspensions were adjusted to ~108 cells/ml using sterile quarter-strength Ringer’s solution. 

Each suspension was sprayed onto the 14 d old zucchini plants (Partenon hybrid F1) (Starke-

Ayres (Pty) Ltd., South Africa) with 3–4 adult leaves present. The whole plant was sprayed with 

the bacterial suspension until runoff was visible. The plants were maintained in a growth 

chamber (Controlled Environment Research Unit, University of KwaZulu-Natal, 

Pietermaritzburg, South Africa) at 70% RH, illuminated for 16 h per day, with a day 

temperature of 25°C, and a night temperature of 20°C. The powdery mildew disease was 

inoculated 72 h later using powdery mildew spores (of ~105 spores/ml) harvested and applied 

to the whole plant, following the method previously described (Section 4.2.1). The treatments 

were performed in triplicate, and arranged in a randomised block design. Both diseased and 

non-diseased control plants were included. The non-diseased plants were placed in a separate 

unit, and housed under the same conditions as the biocontrol pot trial. 

 

The second adult leaf on each plant was marked for the purpose of rating disease progress. 

Disease levels were rated by means of visual estimates of infected leaf area at 2, 9, 11, and 13 

d post fungal inoculation. Examples of benchmarks used for rating infected leaves are shown in 

Plate 4.2 (adapted from Tesfagiorgis, 2009 and Haupt, 2007). Statistical analysis of l.a.i. was 

carried out using AUDPC (Shaner and Finney, 1977) and one-way ANOVA analysis carried out 

on Genstat software (Version 14, VSN International Ltd). Disease reduction percentages were 

expressed as a function of the treatment AUDPC value and the diseased control AUDPC value. 
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4.2.5. Impacts of inoculum preparation on cucurbit powdery mildew antagonism  

The impacts of bacterial inoculum preparation of P. fusca antagonism was carried out using a 

biocontrol pot trial with B. amyloliquefaciens strain cce175; which was chosen based on data 

obtained from previous screenings. Powdery mildew susceptible patty pan host plants (Yellow 

Scallop hybrid STAR 8081) (Starke-Ayres (Pty) Ltd., South Africa) were grown in pots (18 cm 

diameter) filled with composted pine bark medium (~2.3 L volume). The plants were 

maintained in a growth chamber (Controlled Environment Research Unit, University of 

KwaZulu-Natal, Pietermaritzburg, South Africa) at 70% RH with illuminated (~3,500 lux) for 16 

h per day, day temperature at 25°C, and dark temperature at 20°C. The plants were drench-

fertigated and watered as required between fertigations as described above (Section 4.2.1).  

 

Bacillus amyloliquefaciens strain cce175 was cultured in antibiotic production medium 

(McKeen et al., 1986). The medium comprised (per litre of deionised water): D-glucose, 15.0 g; 

L-glutamic acid, 5.0 g; MgSO4.7H2O, 1.02 g; K2HPO4.3H2O, 1.0 g; and KCl, 0.5 g; and  1 ml of a 

trace element solution. The trace element solution consisted of: CuSO4.5H2O, 0.16 g; 

MnSO4.7H2O, 0.1 g; and FeSO4.7H2O, 0.015 g in 100 ml deionised water. The medium pH was 

adjusted to pH 6.0–6.2 using 1 N NaOH before decanting and autoclaving at 121°C (103.4 kPa) 

for 15 minutes. 

 

Single bacterial colonies taken from TSA culture (18 h at 30°C) were inoculated into 10 ml of 

antibiotic production medium to create starter cultures, which were incubated for 48 h in a 

rotary shaker (30°C at 150 rpm). Thereafter, these starter cultures were aseptically added to 

100 ml sterile antibiotic production medium in sufficient quantity to achieve A550 0.5. Broth 

cultures were incubated in a rotary shaker (30°C at 150 rpm) for 48 h or 72 h as dictated by the 

experimental treatment protocol. A summary of the various inoculum preparations applied in 

the pot trial are shown in Table 4.1.  
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Table 4.1. Treatments used for a biocontrol pot trial determining effect of bacterial inoculum 

preparation of B. amyloliquefaciens strain cce175 against cucurbit powdery mildew. 

Treatment Powdery Mildew Inoculum Preparation 

T1 (Uninoculated Control) None None 

T2 102 conidia/ml Live cells, 108 cells/ml (48 h) 

T3 102 conidia/ml Cell-free supernatant  (48 h) 

T4 102 conidia /ml Whole broth, 108 cells/ml (48 h) 

T5 102 conidia /ml Whole broth, 108 cells/ml (72 h) 

T6 (Diseased Control) 102 conidia /ml None 

T7 (Fungicide Control) 102 conidia /ml Tebuconazole 430 g/l  

 

Treatment 1 comprised a non-diseased control, and was housed in a separate unit under the 

same conditions as the biocontrol pot trial. For Treatments 2 and 3, bacterial cultures were 

incubated for 48 h; thereafter, 100 ml of broth culture was centrifuged for 30 minutes at 

17,969 x g (Avanti centrifuge, Beckman Coultier). The supernatant was decanted and placed 

into an ethanol-disinfected PET atomiser (250 ml capacity) prior to inoculation. The cell pellets 

were resuspended in 100 ml sterile quarter-strength Ringer’s solution and cell enumeration 

was carried out (five squares per view, in triplicate) using a bacterial counting chamber (0.02 

mm depth, counting area 0.0025 mm2) (Thoma, Marienfield). The cell number was corrected 

to ~3 x 108 cells/ml and the solution placed into a disinfected atomiser. The broth culture for 

Treatments 4 and 5 were sampled and cells enumerated and numbers adjusted as described 

above, before being decanted into disinfected PET atomisers. Treatment 6 consisted of sterile 

deionised water only, and Treatment 7 comprised a fungicide control Folicur 430 SC (active 

ingredient 430 g/l Tebuconazole) (Bayer CropScience, Monheim, Germany) mixed at 1 ml/l.  

 

Each treatment was atomised onto patty pan host plants (14 d old) with a minimum of 5 adult 

leaves present. The whole plant was sprayed with the treatment suspension until runoff was 

visible. Treatments 2–7 were re-applied at 10 d post fungal inoculation. The powdery mildew 

disease was inoculated 72 h after bacterial treatments were applied. Powdery mildew spores 

were harvested and applied to the plants (barring Treatment 1) following the method 

previously described (Section 4.2.1.) at a concentration of ~102 spores/ml.  
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The treatments were performed in triplicate, and arranged in a randomised block design. The 

non-diseased control was housed in a separate growth chamber under the same conditions of 

the experimental treatments. Five leaves on each of replicate plant were randomly marked for 

the purposes of disease rating. Disease levels were rated by means of visual estimates of 

infected leaf area; examples of the l.a.i. benchmarks used for rating infected leaves are shown 

in Figure 4.2. Initial ratings were taken 10 d after powdery mildew inoculation; and thereafter 

at 72 h intervals 10 d after the re-applications of each experimental treatment. Statistical 

analysis of leaf area infected was carried out using AUDPC (Shaner and Finney, 1977) and one-

way ANOVA using Genstat software (Version 14, VSN International Ltd). Disease reduction 

percentages were expressed as a function of the treatment AUDPC value and the diseased 

control AUDPC value. 

 

On the day of final rating, the trial plants were assessed for numbers of fungal spores per 

centimetre (cm2) of leaf material in a procedure adapted from Romero et al. (2004). The five 

rated leaves from each plant were removed, and three leaf discs were taken from each leaf (1 

cm diameter) using a disinfected aluminium pipe borer. The fifteen discs from each replicate 

plant were pooled in 10 ml deionised water amended with 0.02% (v/v) Tween80. The bottles 

were placed on a rolling bench agitator for 2 h, and samples removed for conidia enumeration 

using a counting chamber (0.1 mm depth, counting area 0.0025 mm2) (Thoma, Marienfield) 

with each sample counted in triplicate and the conidia numbers averaged. The spore numbers 

were averaged between the three plants per treatment, and calculated to express the number 

of conidia/cm2 of leaf material. 

 

4.3. Results 

4.3.1. Agarised detached cotyledon assay 

During cell enumeration using phase-contrast microscopy, bacterial cells were observed as 

motile rods in a vegetative state. In some instances forming endospores were observed as 

refractile areas in the cells, though no free endospores were observed.  
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The diseased controls for the agarised detached cotyledon assay showed initial symptoms of 

powdery mildew infection within 5 d of fungal inoculation, after which symptoms progressed 

rapidly. All of the bacterial treatments showed disease symptoms by 6 d, though some 

replicates showed slight signs of infection at 5 d. At the first disease rating (5 d post disease 

inoculation) the l.a.i. was estimated at between 10–20% between treatments, but rose to 40–

50% at the second rating 3 d later. The cotyledon tissue on all assays survived a total of 11 d on 

the medium after disease inoculation, before fungal infection overwhelmed the cotyledon.  

 

Statistical data or the treatment ratings are presented in Figure 4.1 and Table 4.2. 

Experimental treatments were all found to be statistically significant (p ≤ 0.05). The only 

bacterial treatments to be statistically different from the diseased control were B. 

amyloliquefaciens strains sqo275, bng199, and cce175; and B. subtilis strain sqo279. Bacillus 

subtilis strain sqo279 gave the greatest degree of disease retardation at 16.2%, followed 

closely by B. amyloliquefaciens strains sqo275, bng199, and cce175 (Table 4.2). Bacillus 

amyloliquefaciens strains mwb86, cce140, bnd136, bnn282 and ccc103 all performed poorly, 

with disease reductions of less than 9% over the experimental period (Figure 4.1) but were not 

significantly different from the diseased control.  

 

 

 

 

 

 

 

 



 

132 
 

Table 4.2. Results from agarised detached cotyledon assay of AEFB antagonism of cucurbit 

powdery mildew as generated by AUDPC and ANOVA using GenStat software. 

Treatment AUDPC Mean* Disease Reduction %# 

Control: Non-diseased 0 a  

B. subtilis strain sqo279 427.5 b 16.2 

B. amyloliquefaciens strain sqo275 449.2 bc 11.9 

B. amyloliquefaciens strain bng199 460.0 bc 9.8 

B. amyloliquefaciens strain cce175 461.7 bc 9.5 

B. amyloliquefaciens strain mwb86 467.5 bcd 8.3 

B. amyloliquefaciens strain cce140 473.3 cd 7.2 

B. subtilis strain bnd136 482.7 cd 5.4 

B. amyloliquefaciens strain bnn282 487.5 cd 4.4 

B. amyloliquefaciens strain ccc103 489.2 cd 4.1 

Control: Diseased 510.0 d - 

p-value <0.001  

L.S.D. 42.53  

C.V. % 5.9  

F-ratio 20.45  

S.E. 25.04  

* Treatment mean values followed by the same letter(s) are not significantly different according to Fischer’s LSD 
test (P ≤ 0.05). 

# 
Percentage calculated between treatment AUDPC value and the diseased control AUDPC value. 
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Figure 4.1. AUDPC analysis of an agarised detached cotyledon assay evaluating nine AEFB 

isolates against powdery mildew of cucurbits. Error bars indicate standard deviation 

between replicates. 

 

4.3.2. Biocontrol pot trial of powdery mildew antagonism 

During enumeration using phase-contrast microscopy bacterial cells were observed to be 

motile rods in a vegetative state, with some evidence of endospore formation observed as 

refractile areas within the cells. No free endospores were observed in any of the samples.  

 

The powdery mildew disease applied at ~105 spores/ml resulted in a rapid and severe disease 

progression over the 13 d experimental period. Initial infection symptoms were evident on the 

plants from 2 d post fungal inoculation. In some replicates chlorosis and mild necrosis began to 

appear on certain leaves 9 d post disease inoculation (Plate 4.3), though this did not appear to 

have been as a result of nutrient or water stress or other diseases. The plants survived in 

excess of 16 d under artificially controlled conditions before the disease began to induce leaf 

senescence. Most of the marked leaves rated throughout the trial had senesced after 13 d. 

Those marked leaves that had died during rating were assigned a rating equal to the mean 

value ascribed to that leaf number from previous ratings (Marroni et al., 2006). 
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Plate 4.3. Development of powdery mildew disease on zucchini (Partenon hybrid F1, Starke-

Ayres, South Africa) inoculated with B. amyloliquefaciens strain cce175 as seen at 7, 9, and 

11 d post disease inoculation. 
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Statistical data and treatment AUDPC values are presented in Table 4.3 and Figure 4.2. No 

bacterial treatments provided disease reductions that were statistically significant compared 

to the diseased control. Although B. amyloliquefaciens strain cce175 provided the lowest 

AUDPC value (Figure 4.5). B. subtilis strain sqo279, and B. amyloliquefaciens strains cce140, 

bng199, and sqo275 had disease levels exceeding those of the diseased control treatments. 

Overall, disease reduction percentages were low, with all isolates achieving less than 10% 

disease reduction over the period of assay (Table 4.3).  

 

Table 4.3. AUDPC statistical results from biocontrol pot trial of AEFB antagonism of cucurbit 

powdery mildew. 

Treatment AUDPC Mean* Disease Reduction %# 

Control: Non-diseased 0 a  

B. amyloliquefaciens strain cce175 726.7 b 8.6 

B. amyloliquefaciens strain bnn282 768.3 bc 3.4 

B. amyloliquefaciens strain mwb86 768.3 bc 3.4 

B. subtilis strain bnd136 771.7 bc 3.0 

B. amyloliquefaciens strain ccc103 786.7 bcd 1.0 

Control: Diseased 795.0 bcd - 

B. subtilis strain sqo279 816.7 bcd - 

B. amyloliquefaciens strain cce140 856.7 cd - 

B. amyloliquefaciens strain bng199 858.3 cd - 

B. amyloliquefaciens strain sqo275 870.0 d - 

p-value <0.001  

L.S.D. 97.6  

C.V. % 7.9  

F-ratio 47.0  

S.E. 57.6  

* Treatment mean values followed by the same letter(s) are not significantly different according to Fischer’s LSD 
test (P ≤ 0.05). 

# 
Percentage calculated between treatment AUDPC value and the diseased control AUDPC value. 
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Figure 4.2. AUDPC analysis of a biocontrol pot trial evaluating nine AEFB isolates against 

powdery mildew of cucurbits. Error bars indicate standard deviation between replicates. 

 

4.3.3. Impacts of bacterial preparation and culture age of B. amyloliquefaciens 

strain cce175 on cucurbit powdery mildew antagonism  

The bacterial cells of B. amyloliquefaciens strain cce175 were examined under phase contrast 

microscopy during cell enumeration. The bacterial cells in Treatments 2 and 4 (48 h old live 

cells and whole broth respectively) were predominantly vegetative motile cells. In some 

instances forming endospores were observed as refractile areas within cells, although free 

endospores were rarely observed. In contrast Treatment 5 (72 h whole broth) was found to 

comprise predominantly sporulating cells and free endospores.  

 

Symptoms of powdery mildew infection appeared on the diseased control plants at 7 d post-

disease inoculation. Some of the replicates for the other treatments also showed symptoms of 

initial infection at this time, though disease was mostly observed at 9 d. Little incidence of 

disease was noted on the Treatment 7 (Folicur control) replicates until after 22 d. Overall, the 

progression of the disease was slower than the previous pot trial, owing to the lower 

concentration of P. fusca conidia in the suspension applied. Ratings carried out 10 d after 
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disease inoculation revealed l.a.i estimates between 2–20%. The rating conducted 10 d later 

showed a progression of disease in the treated plants, with l.ai. estimates doubling from the 

10 d rating figures.  

 

The statistical data obtained from the AUDPC values is presented in Table 4.4 and Figure 4.3. 

No statistical difference was found between the experimental cce175 treatments and the 

diseased control. Overall, the Folicur fungicide control gave the greatest degree of disease 

control. Only Treatments 3 and 4 offered any reduction in disease, though these disease 

reductions were substantially lower than that achieved by the fungicide control at 8.14% and 

1.34% respectively. Some leaf senescence had occurred from 28 days post-disease inoculation, 

hence for AUDPC purposes these leaves were rated equal to the mean value ascribed to that 

leaf from previous ratings (Marroni et al., 2006). 

 

The numbers of conidia/cm2 of leaf material varied between treatments and did not correlate 

the AUDPC figures calculated (Table 4.4). Interestingly, Treatment 3 (48 h cell-free 

supernatant) provided the highest fungal spore count at 3.91 x105 spores/cm2 of leaf material. 

Treatment 2 gave the lowest conidia count (1.30 x105 conidia/cm2), followed by the Folicur 

control (1.49 x105 conidia/cm2).  
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Table 4.4. AUDPC results from a biocontrol pot trial assessing the effects of inoculum 

preparation of B. amyloliquefaciens strain cce175 on antagonism of cucurbit powdery 

mildew. 

Treatment AUDPC Mean* Disease Reduction %# Conidia/cm2 (std.dev) 

T1  Control: Non-diseased 0 a  0 

T7  Control: Folicur 229.9 a 66.1 1.49 (±0.183) x105  

T3  Supernatant (48 h) 622.9 b 8.14 3.91 (±0.183) x105  

T4  Whole broth (48 h) 669.0 b 1.34 2.23 (±0.323) x105 

T6  Control: Diseased 678.1 b - 2.60 (±0.190) x105  

T2  Active Cells (48 h) 771.1 b - 1.30 (±0.183) x105  

T5  Whole broth (72 h) 794.0 b - 1.67 (±0.318) x105  

p-value <0.001   

L.S.D. 332.85   

C.V. % 35.3   

F-ratio 155.19   

S.E. 155.2   

* Treatment mean values followed by the same letter(s) are not significantly different according to Fischer’s LSD 
test (P ≤ 0.05).   

# 
Percentage calculated between treatment AUDPC value and the diseased control AUDPC value. 
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Figure 4.3. AUDPC analysis of a biocontrol pot trial assessing the performance of various 

formulations of B. amyloliquefaciens strain cce175 against powdery mildew of cucurbits 

disease, where: T1 Non-diseased Control; T2 Active Cells (48 h); T3  Supernatant (48 h); T4 

Whole broth (48 h); T5 Whole broth (72 h); T6 Diseased Control; and T7 Folicur Control. Error 

bars indicate standard deviation between replicates. 

 

4.4. Discussion 

When screening candidate BCAs, pathogen antagonism assessments should ideally be carried 

out in the field. However, antifungal screening is impractical when evaluating large numbers of 

isolates due to labour, time, and resource constraints (Pliego et al., 2010). For this reason in 

vitro bioassays are commonly used to screen and select candidate BCAs prior to undertaking 

lengthy assessments of field performance (Spurr, 1985). However, in vitro dual-culture 

bioassays risk overlooking certain interactions with the plant, hence in planta assays—which 

incorporate the host plant, pathogen, and antagonist—are considered to provide a more 

relevant evaluation of disease antagonism (Anith et al., 2003). The present study was 

undertaken to evaluate the performance of nine AEFB isolates against cucurbit powdery 

mildew using a detached cotyledon assay and biocontrol pot trials. 
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Disease reductions observed for the nine isolates in the detached cotyledon assays and the pot 

trial were marginal, with reductions in the agarised cotyledon assay ranging between 9.5–

16.2% (Table 4.2), and a maximum of 8.6% disease reduction recorded in the pot trial (Table 

4.3). The detached cotyledon assay and biocontrol pot trial data yielded conflicting results with 

regards to the performance of individual isolates in antagonising P. fusca. Results obtained 

from the assessment of different inoculum preparations are disappointing, with some possible 

trends apparent, but overall the AUDPC values of experimental treatments are not significantly 

different from diseased control. All of the candidate isolates were effective in antagonising 

surrogate fungi in the dual-culture antifungal bioassays and able to synthesise antifungal 

lipopeptides. Ultimately, many treatments failed to achieve statistically significant levels of 

powdery mildew disease reduction in either assay method.  

 

Previous studies report high incidences of disease reduction after application of B. subtilis 

vegetative cells or extracted metabolites. Romero et al. (2007c) reported that B. subtilis strains 

applied negatively impacted P. fusca conidia production, achieving conidial number reductions 

of 83–94%, which was statistically indistinguishable to that achieved using the fungicide 

azoxystrobin. The numbers of bacterial cells were found to persist on the leaf at levels 

comparable to those at application. Additionally, the bacteria were found to have established 

on the leaf surface at regions associated with higher nutrient availability, which indicated their 

capacity to establish vegetative microcolonies on the leaf. Bettiol et al. (1997) report disease 

reductions greater than 90% achieved from concentrated B. subtilis metabolites (5000 µg/ml). 

Detached leaf assays conducted by Romero et al. (2004) reported reduced conidial 

germination by over 80% and overall and disease reductions over 40%.  

 

Disparity between BCA performance in vitro and in vivo is not uncommon (Folman et al., 2003; 

Leifert et al., 1995; Merriman and Russel 1990). There are several parameters which could 

account for the lacklustre performance of the chosen AEFB isolates against P. fusca in the 

present study. These include conditions favouring pathogen over-infestation; interactions with 

the extant microflora which may impede isolate establishment; pathogen and treatment 

application protocols; and inoculum preparation of the bacterial treatments (Pliego et al., 

2010; Knudsen et al., 1997; Schisler and Slininger, 1997; Leifert et al., 1995; Spurr, 1985). 
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Manipulation of environmental variables has been shown to influence the establishment and 

activity of both mycoparasites and Bacillus spp. against powdery mildew of cucurbits (Romero 

et al., 2004; Dik et al., 1998). The environmental parameters applied in the current study were 

very similar to those applied by Romero et al. (2007c), Romero et al. (2004), and Gilardi et al. 

(2008). However, the present study applied RH 70%, while Romero et al. (2007c) and Romero 

et al. (2004) found better performance by isolates was achieved at RH 75–90%. Although RH 

90–95% offered greater isolate performance for Romero et al. (2007c).  

 

Pathogen loading was found to be largely consistent between detached leaf assays and 

greenhouse trials in published literature, ranging from 104–105 conidia/ml (Romero et al., 

2007c; Perez-Garcia et al., 2001; Romero et al., 2004; Romero et al., 2003; Bettiol et al., 1997). 

In the present study conidia were applied in similar concentrations. Owing to the rapid 

progress of the disease in the biocontrol pot trial, the pot trial undertaken to assess the 

impacts of inoculum preparation on disease antagonism applied disease at ~102 conidia/ml. 

Disease progress in the latter trial was found to be slower, and offered a greater window of 

time over which to rate disease incidence.  A concern with the use of growth chambers and 

small greenhouses for disease trials is the potential for continued disease inoculation of the 

plants owing to air currents generated by fan-driven ventilation systems, which may 

exacerbate the artificially high disease pressure already present in enclosed growing areas. 

 

Biocontrol strategies can be broadly grouped into two categories: applying BCA in a 

preventative capacity, to persist within the introduced environment; or applying a curative 

approach, whereby the BCA or its metabolites are used as a short-term remedy (i.e. 

biopesticides) (Pliego et al., 2010). The choice of strategy will have a direct bearing on the 

screening approach used, as the focus of each strategy is on different activities of the 

candidates. Hence, the timing of fungal and bacterial inoculations is an important factor in 

disease reduction, as bacterial cells require time to establish on the leaf in order to carry out 

their antagonistic activities and hence should be applied before the pathogen (Andrews, 1992; 

Andrews, 1990). However, when metabolites are being applied it could be argued that the 

pathogen be applied before the treatment to prevent compound decay and digestion by 

resident microflora. Bettiol et al. (1997) compared metabolite extracts applied at 1 h before 
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pathogen application, 1 h after the pathogen, and 24 h after the pathogen and reported 

disease reductions of 99.4%, 98.1%, and 99.5% respectively. Romero et al. (2007c) applied P. 

fusca after B. subtilis (3–4 d after bacteria, repeated 10 d later); Romero et al. (2004) applied P. 

fusca 4 h after the bacteria; and Gilhardi et al. (2008) applied P. fusca 24 h after fungicide 

treatments. The present study applied the disease 72 h after the bacterial treatments in all 

cases. This approach intended not only to allow the bacteria time to establish and colonise the 

leaf, but also to initiate lipopeptide synthesis prior to arrival of the pathogen. However, in 

order to establish the validity of this approach, further experiments to determine the 

prevalence of endospore numbers versus the populations of active cells are required.  

 

Lipopeptide compounds synthesised by Bacillus spp. are generally produced during the 

stationary growth phase, therefore the age of the bacterial culture at the time of application 

has been shown to influence the efficacy of powdery mildew disease control (Romero et al., 

2004). In the present study much higher bacterial numbers were applied (~108 cells/ml) than 

those reported previously in the literature were applied. Furthermore, the 36 h old culture 

previously been shown to have lipopeptides present in the supernatant. Various preparations 

of B. amyloliquefaciens strain cce175 were applied to assess the impact of inoculum 

preparation on cucurbit powdery mildew antagonism in a biocontrol pot trial (Table 4.1). 

Unfortunately, all treatments performed poorly when compared to disease control levels 

achieved by the Folicur fungicide control (Table 4.4). Romero et al. (2004) observed that B. 

subtilis cells applied in stationary growth phase (48 h old) achieved disease reductions of up to 

69%. Nevertheless, bacterial cells applied at the log phase of growth were still shown to 

negatively impact disease. Romero et al. (2007c) report that cells applied at the log phase of 

growth (27–30 h old), achieved disease reductions of 80–97%. Both Romero et al. (2007c) and 

Romero et al. (2004) report stable bacterial population numbers at 104–105 cfu/cm2 regardless 

of growth phase at the time of application. Furthermore, previous studies examining the 

influence of lipopeptides against P. fusca have included concentrated purified extracts, which 

can be argued to offer more concentrated levels of active compounds than a simple cell-free 

supernatant (Romero et al., 2007a; Romero et al., 2007b; Bettiol et al., 1997). Hence, it can be 

concluded that the application of P. fusca 72 h post bacterial treatment inoculation may have 

been too long.  
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Conidia enumeration conducted at the close of the inoculum preparation pot trial found that 

conidial numbers did not correlate with the AUDPC data of the experimental treatments (Table 

4.4). The highest numbers of spores were found for Treatment 3 (48 h cell-free supernatant). 

Although no conidial abnormalities were noted during enumeration, it is possible for the 

conidia to have been negatively affected by exposure to the activities of lipopeptide 

compounds present in Treatments 3, 4, and 5. Compounds produced by Bacillus spp.— 

particularly those of the lipopeptide families—have been shown to impact the reproductive 

capability of fungal conidia (Chaurasia et al., 2005). Conidiophore aberrations and conidial 

malformation in P. fusca has been reported after exposure to lipopeptide compounds (Romero 

et al., 2007b). However, the present study did not examine the harvested conidia any further, 

hence it was not conclusively established whether conidia were structurally intact and 

reproductively functional.  

 

The evaluation of disease antagonism potential using in vitro bioassays alone are often of little 

extrapolative value, as the interplay of many mechanisms determines an isolates’ ability to 

survive and thrive in a niche on the host plant (Folman et al., 2003). Nevertheless, in vitro 

assessments such as the dual-culture bioassay, and small-scale in planta methods such as 

detached cotyledon assays can contribute to narrowing the field of prospective antagonists 

prior to field testing. Despite employing a polyphasic screening approach to BCA selection, the 

present study was unable to identify Bacillus spp. candidates warranting further evaluation on 

the basis of the detached cotyledon assay and biocontrol pot trial. The detached cotyledon 

assay represents a rapid and simplified means of assessing antagonism on a laboratory-scale, 

but offers only a small area of which to evaluate antagonism potential. In contrast, a 

biocontrol pot trial is considered to be a reasonable compromise between in vitro screening 

methods and full-scale field trials (Pliego et al., 2010). A pot trial retains indigenous microflora, 

and is considered a more accurate representation of the natural habitat conditions and 

interactions with the plant host and extant microflora than the detached cotyledon assay 

(Anith et al., 2003). Nevertheless, optimising the agarised detached cotyledon assay to ensure 

greater statistical rigour would be beneficial, as this assay has the potential to be implemented 

earlier in the screening process and possibly in place of the in vitro dual-culture bioassay. 

Investigation into the influence of bacterial inoculum preparation on powdery mildew 

antagonism yielded no conclusive results in the present study, yet bacterial establishment in 
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the introduced environment and the biosynthesis of lipopeptide compounds contribute to the 

efficacy of B. subtilis against P. fusca, and hence merit further consideration and investigation 

(Romero et al., 2007a; Romero et al., 2007c; Romero et al., 2004).  
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CHAPTER FIVE 

General Overview and Conclusions 

 

Bacterial biocontrol agents have been extensively researched as potential alternatives to 

conventional chemical-based plant disease control methods (Heydari and Pessarakli, 2010; Pal 

and McSpadden Gardener, 2006). Of the bacterial species evaluated for biocontrol and plant 

growth promotion capabilities, applications of various strains of Bacillus and Paenibacillus spp. 

have demonstrated great potential in this regard (McSpadden Gardener and Diks, 2004; 

McSpadden Gardener, 2004). Previous studies have shown that strains of B. subtilis are 

promising as antagonists of powdery mildew of cucurbits (Romero et al., 2007a; Romero et al., 

2007b; Romero et al., 2004; Bettiol et al., 1997). Much of the antagonistic potential 

demonstrated by these bacteria has been traced to the biosynthesis of lipopeptide compounds 

(Borriss, 2011; Jacques, 2011; Ongena et al., 2010; Ongena et al., 2008). 

 

This study was undertaken with the aim of isolating AEFB from cucurbit species showing 

diminished powdery mildew symptoms grown in various locations in the greater Msunduzi 

area of KwaZulu-Natal. Isolates were assessed for antifungal capability against surrogate 

pathogens in vitro, and ultimately against cucurbit powdery mildew in vivo. This research also 

explored means of identifying and distinguishing between isolates using MALDI-TOF-MS, DNA 

fingerprinting (ITS-PCR and RAPD-PCR), and analysing 16S rRNA and gyrA gene fragment 

sequence analyses to establish species- and strain-level diversity amongst the isolates. 

Lipopeptide compound biosynthesis by selected isolates was evaluated using TLC and MALDI-

TOF-MS and lipopeptide gene marker PCR. The findings of this study established that: 

 

 More than 70% of the AEFB isolated were antagonistic towards Rhizoctonia solani 

and/or Botrytis cinerea in in vitro dual-culture bioassays. These isolates originated from 

various geographical locations and cucurbit species, viz. pumpkin, chayote, butternut, 

squash, and marrow. Colony morphology and endospore location characteristics did 

not provide sufficient grounds for discrimination or dereplication amongst the isolates. 

Hence DNA fingerprinting methods RAPD-PCR and ITS-PCR were compared for isolate 
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differentiation and dereplication purposes. Among the 55 isolates examined, RAPD-

PCR was able to distinguish 14 distinct RAPD fingerprint profiles, while ITS-PCR was 

able to determine two variants, with a third minor profile exclusive to one isolate. 

These two methods were able to give insights into the levels of genetic diversity 

amongst the isolates, and showed that certain profiles were widespread amongst 

cucurbit species and geographical location of isolation. This finding may indicate the 

existence of ecotypes, which suggests that these strains would exhibit some degree of 

adaptation enabling them to colonise and survive on the cucurbit phylloplane. Analysis 

of 16S rRNA and gyrA gene fragment sequences was undertaken to distinguish and 

identify AEFB species. The gyrA partial gene sequences showed greater sequence 

heterogeneity than 16S rRNA gene sequences; and were able to distinguish isolates to 

the subspecies and strain levels. Antagonistic AEFB isolates were found to be closely 

related to either B. amyloliquefaciens or B. subtilis. MALDI-TOF-MS showed promise as 

a rapid means of identifying environmental isolates. The Bruker Daltonics MALDI 

Biotyper library was of limited use in identifying isolates by comparison to the existing 

reference spectra database, due to a lack of environmentally relevant subspecies and 

strains within the BDAL database. However, the generation of dendograms 

demonstrated spectral variances amongst the pool of isolates, which was reflected 

after cluster analysis with SPECLUST was employed. Both dendograms allowed the 

grouping of isolates, though variations in the parameters used for dendogram 

construction created some differences between the respective dendograms generated. 

MALDI-TOF-MS proved a very useful tool in distinguishing isolates. However, further 

optimisation and expansion of the Biotyper spectral library is needed.  

 

 MALDI-TOF-MS was a rapid and powerful tool for determining the presence of 

lipopeptide compounds from methanol extracts of culture supernatants. The m/z 

values from the mass spectra generated were compared to values ascribed in 

literature, from reference strains, and purified standards of iturin and surfactin. 

Biomarker peak data were able to provide information not only of the lipopeptide 

variants present, but also of compound isoforms and adducts. All of the antifungal 

extracts tested were found to contain surfactins and fengycins; though the prevalence 

of iturin- and bacillomycin-associated peaks was found to vary between isolates. The 

isolates which showed the most prolific lipopeptide production where found to be 
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related to B. amyloliquefaciens. Podosphaera fusca is known to be sensitive to these 

lipopeptides, therefore MALDI-TOF-MS is a very convenient method for the screening 

of potential candidate BCAs against this fungus. TLC analysis of the methanol extracts 

provided a crude means of detecting the presence of compounds when bands were 

compared to the iturin and surfactin purified standards. However, little information 

could be gathered as to the isoforms of the lipopeptide compound families present in 

the bands.  Compared to MALDI-TOF-MS, TLC appears to be an outdated approach as it 

allows only the separation of compounds present within a mixture. Further 

characterisation of the constituents of individual bands was not possible with TLC 

alone; and would require additional extraction and analysis to determine individual 

band constituents. The application of gene marker PCR to detect lipopeptide 

production potential demonstrated a wide distribution of lipopeptide markers amongst 

the isolates; with markers indicative of iturin, fengycin, and surfactin synthesis 

prevalent amongst the isolate set. However, gene sequence data for reference strain B. 

amyloliquefaciens R16 suggests that the ituD gene marker primer may have been non-

specific, as this amplicon was identified after sequencing as a marker for bacillomycin D 

synthesis (BmyD). Certain isolates related to B. subtilis displayed negative results for all 

gene markers, yet MALDI-TOF-MS analysis detected biomarker peaks associated to 

some—if not all—of the lipopeptide families in methanol extracts from these isolates. 

Further investigation of the accuracy of the gene marker PCR primers is therefore 

required before this method can be considered a fully reliable assessment of 

lipopeptide production potential.  

 

 Based on the in vitro screening and selection criteria used in this study, nine isolates 

were selected as potential antagonists of powdery mildew of cucurbits. These isolates 

were assessed using a simple agarised detached cotyledon assay and a biocontrol pot 

trial, both applying live bacterial cells. Statistical analysis showed that both of these 

methods would benefit some level of optimisation. The detached cotyledon assay is 

attractive as a simplified screening method for candidate BCAs of biotrophic 

pathogens. The biocontrol pot trial remains the cornerstone for evaluation of isolate 

performance under field-representative conditions. Overall, any of the methods of in 

planta assay are dependent on many factors, which need to be addressed and refined 

to establish a reliable disease antagonism-assessment assay. Hence, isolate cce175 was 
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selected for assessment of the effects of inoculum preparation against powdery 

mildew. This isolate was selected on the basis of its antifungal activity, the production 

of lipopeptide compounds, and its relation to strains of B. amyloliquefaciens. 

Unfortunately no statistical differences between the performance of the experimental 

treatments and the diseased control were found. This suggests that some degree of 

optimisation and refinement of the biocontrol pot trial conditions could benefit the 

outcomes of this trial.  

 

Screening a large pool of isolates for antagonistic potential is a complicated process and 

requires the examination of many biocontrol traits. This is achievable with use of multiple 

high-throughput methods without extensive resource demands. In this study it was 

demonstrated that a large pool of isolates can be successfully rationalised during the early 

stages of screening, and that DNA fingerprinting is useful for dereplication purposes and 

establishing diversity levels amongst candidate isolates. MALDI-TOF-MS presents a very 

promising high-throughput approach for both characterising isolates and evaluating 

lipopeptide production potential. Field trials remain the basis for the evaluation and 

development of isolates for commercial products. However, due to the resource intensive 

nature of field trials only limited numbers of candidates can be assessed. Hence preliminary 

screening and selection criteria play an essential role in short-listing suitable isolates for field 

trial evaluation.  

 

The performance of an isolate under field conditions remains the final criterion by which a 

candidate antagonist is judged as a biocontrol agent, though laboratory-scale assays and 

biocontrol pot trials present manageable options to this end. Screening and selection protocols 

which investigate multiple aspects contributing to the survival of that agent can assist a 

researcher in selecting the candidate most likely to survive and remain active before lengthy 

field trials are embarked upon. 

 

Additional research into the population diversity, ecology, and prevalence of AEFB within the 

cucurbit phyllosphere and is warranted in order to identify ecotypes and establish which traits 

are associated with phyllosphere competence. In order to improve and expand on the DNA 
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fingerprinting techniques used in this study, different RAPD-PCR primers could be evaluated to 

further differentiate between closely-related strains of AEFB. In addition, sequence analysis of 

alternative house-keeping genes (e.g. gyrase subunit B (gyrB), histidine kinase (cheA), and RNA 

polymerase subunit B (rpoB)) would aid in distinguishing and identifying plant-associated 

species of the B. subtilis group of related taxa; as isolates proved difficult to distinguish based 

on conventional 16S rRNA sequence analysis methods. MALDI-TOF-MS proved to be a valuable 

tool for the rapid identification of isolates, however there is a pressing need to create MSPs for 

environmentally-relevant AEFB strains. In addition, MALDI-TOF-MS is also an effective for 

resolving the presence of lipopeptide compounds produced by the AEFB isolates. This is an 

avenue that needs to be expanded upon, for example there is the potential to apply whole-cell 

material for a high-throughput determination of lipopeptide production by antifungal isolates. 

The biocontrol pot trials evaluating powdery mildew antagonism by AEFB isolates require 

some optimisation of parameters such as the age of bacterial cells at application, and further 

analysis of the impacts of bacterial inoculum preparation. The detached cotyledon assay also 

merits further investigation, as this technique has potential as a means of distinguishing AEFB 

isolates antagonistic to powdery mildew at an earlier stage in the screening process. 
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