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ABSTRACT 

Polyploidy is a naturally-occurring phenomenon in plants and has been reported as an important 

pathway for evolution and speciation; it is estimated that a large percentage of flowering plants 

are polyploid in origin. Although the first plant polyploid was discovered over a century ago, the 

genetic and evolutionary implications of polyploidy have not been fully elucidated. On a more 

practical level, there are many opportunities for utilizing induced polyploidy as a valuable tool in 

traditional plant breeding programmes. South Africa has the highest recorded plant species 

density in the world, however, many of these species have only marginal potential due to size and 

other constraints. Induced polyploids may be expected to exhibit one, or more, of the following 

characteristics resulting in the improvement or the development of new economically important 

plants: larger tuber, rhizome or root size; increased flower or fruit size; enhanced flower colour 

intensity, improved drought tolerance, increased bio-mass; improved photosynthetic capacity; 

larger and/or thicker leaves; dwarfism; increased secondary metabolite production, e.g. medicinal 

compounds. Several plant species (Crocosmia aurea, Tetradenia riparia, Siphonochilus 

aethiopicus and Plectranthus esculentus) were selected for the induction of polyploidy and 

various horticultural characteristics evaluated. Methods for the successful induction of polyploidy 

were developed for all selected species. By evaluating various horticultural characteristics of the 

induced polyploids it was determined that flower size, plant vigour and nematode resistance, as 

well as essential oil content and bioactivity could be significantly improved in all tested species. 

Induced polyploidy could, therefore, have a significant impact on the development of 

economically-viable novel crops indigenous to southern Africa. 
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CHAPTER 1: INTRODUCTION  

1.1 Rationale for the research 

South Africa has the highest plant species diversity in the world. Many of these species are not 

economically-viable in terms of cultivation potential due to various marginal horticultural constraints, 

depending on the species in question. Only a few species, albeit highly profitable, have been improved, 

and then only outside South Africa’s borders, using conventional breeding and improvement methods. 

Various Gerbera species and Gladiolus spp. are key examples and have earned the developer countries 

(Holland, Germany) enormous revenue. With over 22 000 indigenous South African plant species, there 

is enormous potential for improvement. It is with this potential in mind that investigations into the 

development of several species with both, marginal and multiple horticultural uses was conducted to 

determine whether induced polyploidy (chromosome doubling), could be used to improve under-

utilised species with commercial potential. There are, in fact, very few published reports on the 

induction and consequences of induced polyploidy in South African plant species (see Chapter 2, 

Section 2.6).  

Chromosome doubling, or induced polyploidy, is a several decades-old technique which has been 

applied to plant species from a wide range of plant families (Soltis et al., 2004). Although most plant 

species are diploid, several species are natural polyploids with three or more sets of chromosomes. 

Polyploidisation is a naturally-occurring phenomenon and is widely recognised as a major mechanism 

of adaptation and speciation in plants and has been reviewed by a number of authors (Ramsey and 

Schmeske, 1998; Otto and Whitton, 2000; Adams and Wendel, 2005; Otto, 2007; Parisod, et al., 2010; 

Storme and Mason, 2014). Although exceptions occur, previous research in agricultural systems has 

indicated that polyploids commonly have altered physiological and phenotypical attributes not present 

in their progenitors. As such, these alterations have the potential to result in polyploid varieties having 

improved characteristics, such as larger tuber, rhizome or root size, increased or enhanced flower and/ 

or fruit size and/or colour intensity (Yamaguchi, 1989; Takamura and Miyajima, 1996; Gu et al., 2005; 

Notsuka et al., 2005; Allum et al., 2007), improved drought tolerance (Riddle et al., 2006; Xiong et al., 

2006; Li et al., 2009), increased bio-mass (Dewey, 1980), improved photosynthetic capacity, larger 

and/or thicker leaves (Wu amd Mooney, 2002; Eeckhout et al., 2004; Li et al., 2009), dwarfism and 

increased secondary metabolite production (e.g. medicinal compounds) (Gao et al., 1996; Berkov and 

Philipov, 2002). 

1.2 Objectives of the study 

The objectives of the study were to determine the effect and possible impact of induced polyploidy on 

several selected indigenous South African plant species. The species investigated in this study were 

chosen to explore a wide diversity of characteristics important in horticultural/agricultural industries 
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and, therefore, the possible impact of induced polyploidy was investigated. In each instance, however, 

each species has potential in its own right. Chromosome doubling and verification was achieved for 

four indigenous plant species and comparative studies on various wide-ranging horticultural aspects 

were carried out to determine the possibility of using chromosome doubling as a means of improving 

South African species with marginal potential.  

1. Crocosmia aurea 

Falling stars iris, Crocosmia aurea, is a member of the Iridaceae family and has enormous 

ornamental potential. There are a number of economically-important iris species which are 

important cut-flower and/or ornamental crops. These include a number of Freesia, Gladiolus, 

Watsonia and Iris species, all of which have been improved using chromosome doubling and/or 

conventional breeding practices. Polyploidy usually results in larger flowers which are highly 

desirable on the cut flower markets or a more compact stature which is more desirable in the 

ornamental industry. The effect of induced polyploidy on plant and flower morphology as well 

as phenology was therefore investigated for Crocosmia aurea.    

 

2. Tetradenia riparia 

Ginger Bush, Tetradenia riparia (Family: Lamiaceae), is an aromatic shrub that occurs 

throughout tropical Africa and in South Africa, has traditionally been used in the treatment of 

cough, dropsy, diarrhoea, fever, headache, malaria, and toothache. The essential oils are also 

used in the perfume industry (Hutchings, 1996; van Wyk and Gericke, 2000). Polyploidy has 

been reported to effect an alteration in not only the biochemical profile of the essential oils of 

induced polyploids, but also the volume of essential oil produced by the polyploid (Lavania, 

1988; McArthur and Sanderson, 1999; Parida and Misra, 2015). As a result the relationship 

between the plant and pollinators, herbivores and micro-organisms could be altered. It was with 

this premise in mind that a study on the essential oil was carried out to determine biochemical 

changes as well as bioactivity against known postharvest fungal pathogens, Geotrichium 

candidum and Penicillium digitatum. 

 

3. Plectranthus esculentus 

Plectranthus esculentus, Livingstone potato (Family: Lamiaceae), is an edible tuberous 

vegetable which originated in Africa. Although the tubers are edible, limited crop improvement 

has been achieved in this under-utilised crop with enormous potential. Further, the crop is 

highly susceptible to rootknot nematode, Meloidogyne spp., which globally causes extensive 

losses to a wide range of crops. Since induced polyploidy has been reported to influence tuber 

size and yield in other tuberous crops (Smith et al., 2004; Sakhanokho et al.; Kun-Hua et al., 

2011), a study into the effect of polyploidy on tuber yield and nutritional value was initiated. 



4 
 

Further, polyploidy can also have an effect on the relationship between the induced polyploid 

and biotic stressors and to this end, the effect of induced polyploidy and its effect on rootknot 

nematode development was investigated. 

 

4. Siphonochilus aethiopicus 

Siphonochilus aethiopicus (wild ginger; family: Zingiberaceae) is one of only several thousand 

plant species used in traditional medicinal preparations in South Africa. The plant is threatened 

with extinction and is already extinct in the wild in the KwaZulu-Natal Province. The species 

is increasingly threatened in the Mpumalanga Province where small populations are reported 

to exist. The cone-shaped rhizomes and fleshy roots are extremely popular and are widely used 

in traditional medicines which include treatments for asthma, hysteria, colds, coughs and flu, 

as well as malaria, amongst others (Hutchings, 1996; van Wyk and Gericke, 2000). Previous 

reports on induced polyploids in culinary ginger, Zingiber officinale (Smith et al., 2004; Kun-

Hua et al., 2011), showed that rhizome size and yield could be substantially improved and thus 

resulted in the study on induced polyploidy in S. aethiopicus. 

All of these relationships were studied on a case-by-case basis in order to assess the polyploidisation 

effect on the potential of developing formal crop cultivation in the agricultural/horticultural sectors.  

This thesis is presented in the form of chapters represented by manuscripts either accepted, published, 

or under review, in peer-reviewed journals. The Appendix contains the pdf documents of published 

manuscripts. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Polyploidisation, i.e., whole genome duplication, is a powerful strategy for the development and/or 

improvement of plant genotypes (Soltis et al., 2004). While polyploidisation is a naturally-occurring 

phenomenon, it has been used for crop improvement across a wide range of plant species (Renny-

Byfield and Wendel, 2014). In vitro-induced polyploidy induction is facilitated by the relatively small 

piece of tissue selected compared with methods carried out ex vitro; however, the conditions for 

polyploid induction are not only tissue-specific but also species-specific. Induced polyploidy is usually 

carried out by treating the target tissue with an antimitotic agent, the concentration and timing of which 

needs to be optimised. Following treatment with the antimitotic agent, the resulting population must be 

verified for polyploid production as well as mixoploidy to prevent the selection of unstable genotypes. 

Various verification methods such as chromosome counting and morphological observations have been 

used to confirm the ploidy level of treated tissues, with flow cytometry being the most commonly used 

method in recent times due to its efficiency and accuracy. 

Induced polyploidy has several consequences for crop development and improvement; however, the 

effects of induced polyploidy are not predictable and are largely dependent on the species investigated. 

While new genetic material is not introduced into the genome in question, additional gene copies are 

added resulting in gene duplications and, therefore, potential changes in gene expression with 

subsequent changes in various horticultural characteristics Osborn et al., 2003; Otto, 2007; Parisod et 

al., 2010). These alterations may include anatomical and morphological changes, genetic adaptability 

and tolerance to abiotic and biotic stresses many of which have important applications, and implications 

for the development of superior genotypes (te Beest et al., 2012).  

As indicated earlier in this Chapter, very few induced polyploidy studies have been carried out on South 

African indigenous plant species with the aim of developing superior polyploid genotypes. As such, 

this study sought to apply the technique across a range of plant families and species targeting different 

potential uses. The studies aimed to investigate the impact of induced polyploidy, if any, on horticultural 

characteristics such as ornamental value, nutritional value, pest resistance/tolerance and bioactivity on 

selected indigenous South African plant species. 

This Literature Review seeks to provide an appraisal of polyploidy and its potential for the development 

of improved genotypes. It includes background to methods for induction and verification of induced 

polyploids as well as the consequences of polyploidy in terms of various aspects of plant performance 

including morphological, physiological, stress tolerance and secondary metabolite production and the 

possible applications of these consequences on plant improvement. 
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2.2 Polyploidy in the Angiosperms 

Polyploidy, defined as the possession of three or more complete sets of chromosomes, is acknowledged 

as a major mechanism of adaptation and speciation in plants (Ramsey and Schmeske, 1998; Jiao et al., 

2011). It is estimated that at least half of all Angiosperms are polyploid and that polyploid evolution is 

an ongoing process (Grant, 1981; Masterson, 1994; Fawcett and Van de Peer, 2010). Extensive research 

on agricultural crops as well as non-agricultural crops over the last nine decades has revealed that 

polyploids have altered morphological and physiological characteristics when compared with their 

diploid progenitors. It is these alterations that have potential and have resulted in a number of studies 

focusing on crop/plant improvement. Although the technique is generally well-established, there has 

been a re-stimulation of research on polyploidy over the last ten to fifteen years (reviews by Leitch et 

al., 2004 and Soltis et al., 2004; Udall and Wendel, 2006; Soltis and Soltis, 2009; Tayale and Parisod, 

2013). These studies have included mechanisms of polyploid formation and establishment, frequency 

of polyploidisation, physiological and ecological effects as well as genetic and genomic consequences 

of polyploidisation.  

Two types of polyploids have been described, namely “autopolyploids” and “allopolyploids”. 

Autopolyploids arise within populations of individual species as a result of duplication of a single 

genome (sometimes termed whole genome doubling). Allopolyploids are the product of interspecific 

hybridisation, i.e., a combination of two or more differentiated genomes (Kihara and Ono, 1926; 

Stebbins, 1947; Grant, 1981). Wendel and Doyle (2005) described several routes to polyploid 

formation; diploids may double their chromosome complement (a strict autopolyploid), while 

hybridisation between individuals from different species (strict allopolyploids) can also occur. While 

Ramsey and Schmeske’s (1998) review highlighted several pathways of natural polyploid formation, 

with the advances in the genomics era, there is now an even greater awareness of the importance and 

extent of chromosome doubling in plants. Chromosome doubling events have a fundamental 

significance in plant speciation and adaptation and several reviews have detailed the mechanisms, 

frequency and potential ecological and functional consequences of polyploidisation as well as the 

diversity of genetic mechanisms characteristic in the evolution of genome doubling (Ramsey and 

Schmeske, 1998; Soltis et al., 2004; Wendel and Doyle, 2005). These reports suggest that there is 

evidence that both autopolyploids and allopolyploids are common in nature although allopolyploidy is 

more common.  Furthermore, Hilu (1993) also reported that both types of polyploids are common in 

important food crops (allopolyploids include wheat, cotton and canola while autoployploids include 

bananas, apples and potato) thus highlighting its potential value in plant/crop improvement 

programmes. 

The morphological, physiological and ecological consequences of polyploidy in plants, while immense, 

are poorly understood. Research indicates that in nature, and in agricultural systems, polyploids often 
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possess physiological characteristics not present in their diploid progenitors, and it is for these reasons 

that induced chromsosome doubling warrants investigation as a mechanism for the improvement of 

plant species.  

 

2.3 In vitro methods of induced chromosome doubling for plant/crop improvement   

Induced chromosome doubling (polyploid induction) is a powerful method for the production of 

transformed genotypes for breeding and improvement of plants. Polyploids are induced through two 

different mechanisms, each with huge potential in plant breeding. Mitotic polyploidisation involves the 

doubling of chromosomes in somatic tissue, whereas meiotic polyploidisation is based on the doubling 

of gamete chromosome number, i.e., the generation of di-haploids (Ramsey and Schmeske, 1998). 

These 2n gametes can be used directly in direct crossings and can, therefore, reduce the breeding process 

by one generation. Furthermore, 2n gametes enhance progeny genetic variation resulting in higher 

diversity and, therefore, a potentially greater degree of expression of traits.  

There are a large number of vegetatively-propagated flower and fruit species as well as agricultural 

crops which are natural polyploids; however, since natural polyploidy does not exist across all genera 

in angiosperms and chromosome doubling has potentially highly beneficial results, polyploids of 

economically-important crops have been artificially induced over several decades. First experiments 

were carried out by Blakeslee and Avery (1937) in the 1930s. These early induced polyploids were 

developed using plants established in the field. Colchicine was the mitotic inhibitor of choice and 

axillary buds were soaked in colchicine solutions (Pei, 1985). Blakeslee (1939) reported on the 

chromosome doubling of several plant species and for agricultural crops, in vivo polyploidisation was 

successful for sugar beet, rye and clover (Dewey, 1980). However, despite these developments, the rate 

of polyploidisation was extremely low with a concomitant excessively high incidence of mixoploids. 

These mixoploids (also known as chimeras) contain any ratio of diploid: chromosome-doubled cells 

randomly distributed throughout the resulting plants population making the genotype highly unstable 

and commercially non-viable.  

In the 1960s, Murashige and Nakano (1966) reported on the first in vitro polyploidisation experiment 

using tobacco. Micropropagation provides a controlled environment in which chromosome doubling 

treatments can take place and has a greater potential for improving the efficiency of polyploidisation 

events. Furthermore, due to the nature of in vitro systems, pure polyploids can be harnessed from 

mixoploids (De Schepper et al., 2004; Chen and Gao, 2007; Aleza et al., 2009); this cannot be achieved 

in vivo where vegetative propagules are far larger than in vitro and propagules are restricted to large 

multi-cellular structures. In vitro chromosome doubling was regularly used as in vitro propagation 

methods evolved and has now become the method of choice for many plant species.  
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Chromosome doubling is usually achieved with the application of anti-mitotic agents which interfere 

with the plant’s cell cycle (Dhooghe et al., 2011). Although there has been extensive research on the 

effects of various chemicals on polyploid induction, it is only the so-called “Group 1” chemicals which 

are antimitotic agents able to disrupt spindle formation and function (Vaughn, 2000). During somatic 

cell division (mitosis), cells have a doubled chromosome complement between the S-phase (DNA 

synthesis) and completion of mitosis. The cell cycle can be disrupted at metaphase with chemicals 

known as metaphase inhibitors. During metaphase, chemicals which interfere with the organisation of 

the spindle threads, or microtubules by associating with the alpha- and beta-dimers of the spindle, will 

prevent the migration of chromosomes during anaphase. As a result, the chromosomes do not separate 

resulting in cells with double the number of chromosomes (Planchais et al., 2000). 

Colchicine is the most commonly used antimitotic agent. It is extracted from the seeds and bulbs of 

Colchicum autumnale (Eigsti and Dustin, 1955) and is commonly used as an anti-inflammatory 

medication for gout. Blakeslee and Avery (1937) made use of colchicine in their early experiments on 

polyploid induction in the field; the chemical was also used in subsequent in vitro studies on 

polyploidisation. One of its major advantages is that it is stable under high temperatures and can, 

therefore, be readily sterilised with culture media without losing its efficacy (Zhang et al., 2007), 

making polyploidy induction experiments simpler. Colchicine, however, causes sterility, abnormal 

growth, loss and/or rearrangement of chromosomes and is highly toxic to animal (and therefore human) 

cells due to its higher affinity for animal cell microtubules compared with plant microtubules; therefore, 

alternatives to colchicine have been sought after. Extensive research revealed that a number of 

herbicides on the market belonging to diverse classes of chemicals, affect mitosis as their mode of 

action. Chemical classes include: dinitroanilines (oryzalin and trifluralin) (Morejohn et al., 1987; 

Verhoeven et al., 1990; van Tuyl et al., 1992; Hansen and Andersen, 1996), phosphorothioamidates 

(amiprophos-methyl), benzamides (pronamide), carbamates (chlorpropham, isopropyl N-(3-

chlorophenyl) carbamate) and others (Molin and Khan, 1997; Vaughn, 2000). As these herbicides and 

pesticides also have a higher affinity for plant tubulin dimers than colchicine and other antimitotic 

agents, they can be used at lower concentrations and are also less toxic than colchicine, presenting 

alternatives to colchicine. Despite the variety of antimitotic chemicals available, the majority of 

publications describes the use of colchicine or oryzalin as antimitotic agents for use in chromosome 

doubling experiments. 

 

Chromosome doubling in vitro is a multi-step process: treatment of the tissue of choice with the 

antimitotic agent/s of choice and a growth cycle to determine polyploidisation efficiency. Once ploidy 

level has been determined, the selected polyploids are proliferated for further studies. Apart from tissue 

choice and antimitotic agent, variables such as antimitotic agent concentration, exposure time, 
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application and method of polyploid verification need to be taken into account for successful 

chromosome doubling. 

 

Since the advent of in vitro chromosome doubling, several explant (i.e. tissue) types have been used for 

a wide variety of species. Dhooghe et al. (2011) carried out an extensive review of explant types where 

polyploidisation has been successful. These include shoots, buds or shoot tips, callus, somatic or zygotic 

embryos, seeds, seedlings, nodal segments and tuber segments. Sometimes, the suitability of several 

explant types needs to be investigated depending on the species under study. Several authors have 

reported that polyploidisation success is dependent on explant type (Kermani et al., 2003; Petersen et 

al., 2003), as well as genotype (de Mello e Silva et al., 2000; Chauvin et al., 2005; Stanys et al., 2006; 

Khosravi et al., 2008).  

 

For each plant species, concentration and exposure time to the antimitotic agent is critical. Low 

colchicine concentrations (0.5mM) are generally reported to have no effect on the cell cycle, while too 

high a concentration (>5mM colchicine) is lethal. High concentrations of antimitotic agents can also 

lead to doubling of the doubled chromosomes leading to higher, but undesirable ploidy levels (Allum 

et al., 2007). The solvent used to dissolve the antimitotic agent can also be critical; solvents such as 

dimethylsulphoxide (DMSO) have been reported to increase permeability and therefore facilitate 

increased absorption of chemicals. DMSO, however, can also induce plant mortality such that the 

survival rate of treated explants and plants is reduced compared with dissolving the antimitotic agent in 

water. In instances where DMSO is lethal, other solvents such as NaOH (Dhooghe et al., 2009) or 

ethanol (Petersen et al., 2002) (oryzalin), acetone (Dhooghe et al., 2009) (trifluralin) or water (Hamill 

et al., 1992; Dhooghe et al., 2009) (colchicine) have been used. Wetting agents are commonly used to 

improve contact with the explant surface (Eeckhaut et al., 2002).  

 

2.4 Methods for verification of polyploidisation induction  

There are a variety of methods of application of the antimitotic agent including direct application to the 

apical meristem or axillary buds, soaking of seeds in liquid antimitotic agent or soaking of embryogenic 

or organogenic callus in liquid antimitotic agent. Antimitotic agents can also be incorporated into the 

culture medium and therefore integrated into the micropropagation protocol, although treatment for a 

short period in liquid medium followed by culture of new polyploid shoots on regeneration medium is 

a common method for polyploid induction. Dhooghe et al. (2011) carried out an extensive review of 

the currently used methods for in vitro polyploidisation across a wide range of species.  

Polyploid induction can be verified using a number of techniques, including chromosome counting, 

flow cytometry and evaluation of anatomical and morphological traits of the so-called induced 
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polyploids compared with the diploid progenitors. Chromosome counts are the most complete as they 

determine actual chromosome number within cells, but the method is time-consuming and labour 

intensive as cells must be effectively stained and visualised microscopically. Apart from three 

dimensional effects of cells which can lead to errors in counting chromosomes, errors readily occur 

when counting very small chromosomes. Flow cytometry, on the other hand, while it cannot determine 

chromosome number of a plant where little research has been carried out in terms of chromosome 

number, is an extremely efficient method for determination of ploidy level (Ochatt et al., 2011). In 

essence, cell nuclei are released from cells by chopping a representative sample of a potentially induced 

polyploid in a buffer, staining with a fluorescent dye which binds to DNA and analysis using a flow 

cytometer which aligns nuclei that fluoresce under UV light. The fluorescence emitted is proportional 

to the amount of DNA in a cell and can be correlated with its DNA content (Dolezal and Bartos, 2005). 

Flow cytometry allows for the screening of large numbers of samples within a relatively short space of 

time and further, very small pieces of tissue from any part of the plant may be used. Moreover, flow 

cytometry is an extremely useful technique to screen out mixoploids from large populations as large 

numbers of cells can be analysed. Early screening and detection of pure polyploids saves both time and 

space in research facilities (Dolezal et al., 2007).  

Morphological and anatomical observations have also been used to verify polyploid induction, however, 

these may be highly inaccurate (Zlesak et al., 2005). Typically, characteristics used to identify induced 

polyploids have included increased stomatal size and reduced distribution as well as increased stomatal 

aperture and guard cell size. The chloroplast number of stomatal guard cells has also been used as a 

marker for selection of polyploid plants. Dhooghe et al. (2011) reviewed a number of reports on a wide 

range of plant species and reported larger stomata, reduced stomatal distribution and an increased 

chloroplast number as features in polyploids. Although typical polyploid morphological characteristics, 

such as thicker stems, increased width to length ratio of leaves and decreased stomatal distribution can 

be used as selection criteria for polyploids, verification of chromosome doubling using other methods 

is necessary. As an example, Zhang et al. (2010) reported that only 50% of Lagerstroemia indica plants 

screened initially, based on morphological characteristics, were pure polyploids when verified using 

flow cytometry.     

 

2.5 Effects of polyploidy on aspects of plant performance and the role of polyploidy in crop/plant 

improvement – morphological, physiological and ecological consequences 

Polyploid plants can be markedly different from their diploid progenitors in terms of biochemical, 

cellular, morphological and physiological aspects (Stebbins, 1947). Moreover, polyploid plants are used 

as sources of variation and new genotypes in plant improvement programmes. In general, polyploids 

usually have larger cells and larger, but fewer stomata resulting in plants with thicker and larger leaves, 
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larger flowers as well as larger fruit. Autotetraploids may be significantly larger and have larger seeds, 

but fertility may be compromised. Phenology may also be affected with tetraploids flowering and 

fruiting later in the season compared with diploids. The shoots of polyploids may also be shorter and 

thicker resulting in a dwarfed appearance, a trait highly desirable in fruit tree crops in order to facilitate 

orchard management or in ornamentals where a more compact appearance is more desirable Ascough 

and van Staden, 2008)). Other novel physiological characteristics which may be expressed in polyploids 

include drought stress tolerance as well as pest and/or disease resistance and various characteristics 

relating to pre- and postharvest performance – characteristics important for commercial application in 

the agricultural and horticultural industries. As early as the 1930s and 1940s, it was found that polyploid 

plants occupied different ecological niches (usually drier or higher in altitude) compared with their 

diploid counterparts (Müntzing, 1936; Stebbins, 1942, Clausen et al., 1945). As a result, it has been 

postulated that polyploids may therefore be more highly adapted to adverse conditions (Soltis and 

Soltis, 2000). As such, it has been reported that polyploids have a higher resistance to water stress. 

Furthermore, palatability and digestibility as well as nutrient value are increased in certain polyploid 

fruit species (Dewey, 1980). In some polyploid species, tetraploids were also more tolerant to heat stress 

than their diploid counterparts (Zhang et al., 2010). These altered characteristics present serious 

advantages in any agricultural/horticultural industry; with an increase in chromosome number, DNA 

content, cell enzyme activity and cell volume increase, - these advantages are, however, not expressed 

in all cases. And this is the challenge! 

Several researchers postulated that polyploids could have certain advantages over diploids with respect 

to certain attributes (Dhawan and Lavania, 1996; Levin, 2002) and that these could be exploited in terms 

of plant/crop improvement. Although induced chromosome doubling has been successfully used across 

the agricultural crop spectrum, the majority of reports and therefore success has been reported in the 

ornamental industry. This can be attributed to the efficient in vitro propagation protocols which are 

employed when chromosome doubling is performed in vitro. For many agricultural crops, successful 

clonal propagation in vitro is limited, thereby limiting knowledge of in vitro polyploidisation in these 

crops, although dihaploidisation (double haploids) has been investigated in a few crops, such as wheat 

(Kim and Baenziger, 2005), asparagus (Dore, 1976) and other vegetables (Juhasz et al., 2006). 

Furthermore, successful induction is a compromise between toxicity and chromosome doubling 

efficiency and there is a marked contrast in terms of the definition of a successful event as reviewed by 

Dhooghe et al. (2011). Success rates are reported to range from 15% to 55% and may be based on the 

number of treated plants or survival of treated plants. Polyploidisation may even include mixoploid 

numbers where individuals have a mixture of diploid and tetraploid cells scattered throughout. Success 

can also mean that a single confirmed induced polyploid can successfully and stably be propagated in 

vitro - but successful polyploidisation should also include hardening-off to ambient conditions. 
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Somatic chromosome doubling results in additional copies of existing genes and consequently many 

genome alterations. These alterations may be in the form of loss of duplicated genes, changes in gene 

expression as well as epigenetic changes which control gene expression. These effects were extensively 

reviewed by Osborn et al. (2003); Otto (2007) and Parisod et al. (2010). Polyploids are usually, although 

not in all instances, superior to their diploid progenitors in terms of trait expression. These can include 

phenotypic changes (Stebbins, 1947; Stebbins, 1971; Levin, 2002; Soltis et al., 2004; Knight and 

Beaulieu, 2008) as well as adaptability and tolerance to biotic and abiotic stressors (Otto and Whitton, 

2000; Levin, 2002; Treier et al., 2009). Although reasons for these differences are not fully understood, 

Parisod et al. (2010) postulated there may be a better response to environmental changes due to 

increased genome flexibility. Further, as reviewed by Osborn et al. (2003), polyploids have an increased 

level of gene expression and this could result in dosage-related expression. 

 

2.5.1 Morphology 

Alterations in morphology due to polyploidy have been widely reported and reviewed by Kazi et al. 

(2015). Morphological changes such as increased leaf thickness, increased width/length ratio of the 

leaves, darker green colour of the leaves as well as larger flowers have all been reported. Flowers may 

exhibit a deeper hue, may have more petals per flower than the diploids but fewer flowers on the 

inflorescence stem which may also be stronger than the diploid inflorescence stem. Generally, 

polyploidy results in a more compact growth form due to shorter internodes. Fruit size, seed set and 

size is reportedly larger for polyploids although fruit quality may be compromised (Ranney, 2006).  

One of the major consequences of polyploidy is cell enlargement (Stebbins, 1971) - polyploids generally 

have larger cells than diploids. Such an enlarged cell size is correlated with altered plant morphology, 

resulting in polyploids being more vigorous, taller and producing larger flowers and seeds. There is, 

however, a limit as to the optimum nucleic acid content, i.e., chromosome number beyond which 

cellular metabolism cannot operate and the plant becomes less vigorous and possibly even unviable. 

The growth rate of polyploids can become severely reduced as a result of the reduced metabolism due 

to changes in cellular structure.(Müntzing, 1936; Bennett and Leitch, 2005; Gregory, 2005); however, 

as far back as the 1970s, it was reported that the slower metabolism facilitated by larger cell size, may 

in fact facilitate plant longevity. Stebbins (1971) and Levin and Wilson (1976) reported that the 

occurrence of polyploids was more common in perennial herbs and woody plants which have an obvious 

competitive advantage over species which are annual in nature.  

Not only does polyploidy commonly result in an increase in flower size, but also in a possible change 

in shape, thus attracting a different suite of pollinators (Segraves and Thompson, 1999). Moreover, the 

type of flower may also be influenced by polyploidy – some species produce higher numbers of 
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cleistogamic flowers which in turn influence self-pollination which could facilitate seed set under 

adverse conditions (Bernström, 1950). Not only is flower morphology affected by polyploidy, but 

phenology may also be influenced. Changes in flowering phenology, prolonged flowering and later 

onset of flowering have all been reported (Smith, 1946; Bose and Choudhury, 1962; Garbutt and 

Bazzazz, 1983; Petit et al., 1997). These changes in phenology could contribute to the successful 

establishment of polyploids which are able to avoid competition for growing conditions, space and other 

resources (Wolkovich and Cleland, 2010; te Beest et al., 2012). With increasing flower size comes 

increased seed size which produce strong seedlings with a more rapid growth rate, although the 

germination rate of polyploids is often reportedly lower than of diploids (Bretagnolle et al., 1995). Fast-

growing seedlings have obvious competitive advantages in terms of establishment (Jakobs et al., 2004; 

Stastny et al., 2005). 

 

2.5.2 Physiology 

Plant morphology is a visibly obvious alteration in polyploids of many plant species, however, 

polyploidy can also, but not always, have a significant impact on plant physiological processes, 

including plant-water-relations. Not only are plant cells generally larger in polyploids, but they also 

have fewer, albeit larger, stomata. This means that transpiration rates are lower and, therefore, 

polyploids have a higher water use efficiency than diploids (Chen and Tang, 1945; Maherali et al., 

2009). In a study carried out by Garbutt and Bazzazz (1983), polyploid Phlox drummondii plants 

showed a greater preference for drier soil conditions and several more recent studies support these 

findings (Lowry and Lester, 2006; Hahn et al., 2012). These observations led researchers to deduce that 

polyploids are better adapted to drier conditions and that, furthermore, this adaptation to and success 

under these conditions, could be one of the underlying factors of successful establishment of invasive 

species (Treier et al., 2009; te Beest et al., 2012). Gaseous exchange rates and, therefore, photosynthetic 

capacity, as for transpiration rates mentioned above, are expected to be lower in polyploid plants than 

in diploids, a phenomenon reported across a wide range of species (Levin, 2002). Warner et al. (1987; 

1989) showed that there is a positive relationship between ploidy level and photosynthetic rate per unit 

leaf area in Panicum virgatum and Atriplex confertifolia., however, the number of cells per unit leaf 

area decreases with increasing ploidy level; so even if the photosynthetic rate per cell is higher, overall 

the rate per leaf may be the same, or even lower, than of diploids. In contrast, Li et al. (2009) reported 

that under water-stressed conditions, Japanese honeysuckle polyploids outperformed their diploid 

progenitors in terms of photosynthetic rate. These authors also found that the polyploids generally had 

a higher CO2 assimilation rate per unit leaf area. These findings supported the earlier work of Li et al. 

(1996) on Betula papyrifera and seem to indicate that polyploid plants are more resistant to water stress 

than diploids. Furthermore, these authors, and others, reported that polyploids recovered more quickly 
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than the diploids on rehydration (Pustovoitova et al., 1996 and Li et al., 2009). Tetraploids were also 

found to have smaller leaves, thicker epidermal and palisade layers and were highly pubescent 

compared with the the diploids. These results clearly indicate the enormous potential of polyploids in 

the light of climate change, an issue high on the agenda of many food-producing countries across the 

globe. Producing polyploids should therefore form an integral part of any breeding and improvement 

programme.  

 

 2.5.3 Abiotic stress tolerance 

Drought (water stress) tolerance is not the only abiotic stressor where polyploids may outperform 

diploids. It is well-known that polyploidy may increase abiotic stress tolerance and may therefore be an 

important factor in the success of polyploids. Almost 150 years ago, reports of better performance by 

tetraploids of various species on nutrient-poor soils was reported (Rohweder, 1937; Noguti et al., 1940) 

and more than half a decade later, it was revealed that tolerance to low nutrient levels and high salinity 

was likely due to greater nutrient uptake efficiency in polyploids (Meng et al., 2011). However, studies 

also showed the inverse to be true and that tolerance could also be species-specific (Cacco et al., 1976). 

Cold tolerance in polyploids is also reported to be species-specific with some authors reporting 

increased tolerance to low temperature (Lachmuth et al., 2010; Liu et al., 2011) while others reported 

high sensitivity to low temperature (Wit, 1958; Tyler et al., 1978). There was speculation that polyploids 

were able to colonise higher altitudes, however, there is little evidence for this. In contrast, there appears 

to be a strong correlation of polyploidy with latitude, but Soltis et al. (2004) reported that this correlation 

was not due to cold tolerance but due to the colonising ability of perennial polyploids which occur more 

frequently in northern latitudes. A further postulation is successful polyploid colonisation after ice age 

events (Brochmann et al., 2004). As such, greater ecological tolerance by polyploids compared with 

diploids remains a question and it is speculated that polyploids with greater stress tolerance may be able 

to establish in a wider range of habitats (Lowry and Lester, 2006) and have a wider distribution. It is 

possible that distribution differentiation along ecological gradients between polyploids and diploids 

occurs given the effect of polyploidy on growth, morphology, physiology etc. as well as higher 

competitive and colonisation ability.  

 

2.5.4 Biotic stress tolerance 

The interaction between polyploids and biotic stressors such as insects, soil organisms and pathogens 

has not been studied in great depth. However, it has been suggested that the impact of the interactions 

could potentially have enormous consequences on communities and ecologies (te Beest et al., 2012). In 
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agriculture such interactions could play an important role in resistance/tolerance to biotic stressors. 

Polyploidisation can affect insect visitors, as pollinators or pests, through altered biochemical profile or 

even altered flower structure (Thompson et al., 1997; Thompson and Merg, 2008). In general, 

polyploids are reported to be resistant/ more tolerant to pathogens such as fungi (Oswald and Nuismer, 

2007; Innes et al., 2008) and nematodes (Mehta and Swaminathan, 1957; Busey et al., 1993). However, 

reports have shown that in some cases polyploids are more resistant to herbivory by insect pests 

(Choudhury et al., 1968), but for other species, polyploids were found to be highly susceptible (Nuismer 

and Thompson, 2001; Janz and Thompson, 2002).  

 

2.5.5 Secondary metabolites 

Polyploidisation events are not strictly the sum of the two parent genomes and the combination may 

bring about structural and functional changes resulting in gene maintenance, loss or addition. Of 

particular interest in terms of medicinal and aromatic plants, compounds of pharmaceutical interest are 

generally present in higher concentrations in polyploids than diploids and several studies involving the 

mechanism/s thereof have been carried out (Dhawan and Lavania, 1996; Zhang et al., 2005; Caruso et 

al., 2011). These authors reported that the artificial induction of polyploidy can lead to an increase not 

only in secondary metabolite production but also an improvement of pharmaceutical compound quality. 

Since both the biochemical profile and the concentration of secondary metabolites can differ in 

polyploids compared with diploids these changes can result in changes in the relationship/s between 

plants and their insect pests, pollinators and even soil organisms and microbes.  

Due to the complex nature of polyploidisation, there is no ‘hard and fast’ method for every plant species, 

although it has been shown that antimitotic agent, concentration and exposure time need to be optimised 

for the species under study. Although colchicine is highly toxic, it is still the most widely used and 

successful chromosome doubling agent used across a wide range of genera. Other antimitotic agents 

have been used successfully for relatively few plant species but it is only a matter of time before new 

compounds which are more efficient and less harmful to the user, become more readily available. The 

success rate of polyploidisation is extremely variable and further in-depth studies are required to 

understand the mechanism of formation as well as the mechanism of mixoploid development. 

Polyploidy in the field of plant breeding has led to the development of new and improved varieties of a 

wide range of crop plants with improved morphological and physiological attributes in a far shorter 

time than conventional breeding methods. However, the understanding of the genetics behind these 

improved attributes is now receiving attention and studies on gene expression and regulation will enable 

breeding programmes to specifically target their efforts towards achieving the desired results, enabling 

breeders to manipulate gene expression of desirable traits (Aversano et al., 2012; Clevenger et al., 

2015). 
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2.6 Summary 

Since the induction of polyploidy is a relatively complex process affecting not only additional gene 

insertions, but also gene expression, there is no single protocol which ‘guarantees’ that a polyploid can 

be developed. Further, there is also no certainty that such a polyploid will be a superior genotype 

compared with its diploid progenitor. Several questions remain unanswered - while colchicine remains 

the anti-mitotic inhibitor of choice, concentration and timing must still be optimised for each tissue type 

and species. Since there is limited knowledge overall, resulting in low success rates, the availability of 

new anti-mitotic agents could further facilitate insights into the sites of anti-mitotic agent activity as 

well as their permeability into tissues resulting in the optimisation of polyploidisation efficiency. 

Furthermore, deeper investigations into the development of in vitro regeneration protocols using tissues 

identified as polyploid in a specific part of the plant tissue would further enhance the success of 

polyploidisation studies where currently there is a ‘hit or miss’ approach.  

Although there have been an enormous number of studies on the induction of polyploidy across a wide 

range of plant families as well as the consequences thereof, as highlighted in this Chapter, there is 

relatively little knowledge of the effects on genetic factors. Studies on genomic changes and gene 

expression and regulation provide the ideal opportunity to enable breeding programmes to carry out 

targeted manipulation of gene expression. Some of these studies are highlighted in Chapter 7. 

As outlined earlier in this Chapter, decades of induced polyploidy studies in plants have resulted in the 

development of a number of improved, and economically-important, polyploid plants with superior 

characteristics compared with their diploid progenitors (Stebbins, 1947; Udall and Wendel, 2006; Soltis 

et al., 2014).Characteristics such as alterations in colour, size and other important marketing 

characteristics in ornamentals, improved fruit size in fruit crops, increased secondary metabolite 

production, better adaptation (higher stress tolerance) to non-optimal conditions such as drought as well 

as tolerance to pests and diseases have resulted in induced polyploids becoming economically-important 

crops. Improvements such as these have potential for the development and improvement of South 

African indigenous plant species. South Africa has the world’s highest plant species diversity and with 

approximately 22 000 species, an enormous gene pool which has not yet been harnessed – very few of 

South Africa’s indigenous plant species have been improved apart from several bulbous species and 

Gerbera and, very few studies on induced polyploidy in South African plant species have been 

published (Colophospermum mopane, Rubuluza et al., 2007; Plectranthus sp., Brits and Li, 2008; 

Coccinia palmata and Lagenaria spaerica, Ntuli and Zobolo, 2008; Watsonia spp., Ascough and van 

Staden, 2008; Thompson et al., 2010). In this study, four South African plant species, each with a 

different use, but with potential for development, were investigated in order to determine whether 

substantial improvement of horticultural characteristics such as ornamental or nutritional value, 

bioactivity in terms of pest (nematode) and disease (fungal) resistance could be enhanced and/or 



21 
 

induced with the aim of using this technique for the development of other, diploid plants/crops into 

more productive or attractive polyploids. 
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Abstract 

South Africa is home to approximately 10% of the world’s flora, many of which are endemic 

to the country. A large number of South African genera have been improved for horticultural 

use and many of these are economically important as cut flowers or ornamentals on 

international markets. The genus Crocosmia, an attractive member of the family Iridaceae, has 

potential both as an ornamental plant and for cut flower production, although market potential 

of the species may be increased by improving the size of the flowers and inflorescence. 

Polyploidy has been used as a tool in the improvement of ornamental plants and has led to the 

development of several improved ornamental species. This study established a 

micropropagation protocol for C. aurea, using seed as the source material. Tetraploidy was 

induced by treating seeds with colchicine. These seeds were subsequently germinated and 

multiplied in vitro using the established protocol. The resulting tetraploid plantlets were 

successfully hardened-off and used to study the effect of the induced tetraploidy on the plant 

characteristics. The tetraploid (4n) plants were found to have longer, wider leaves as well as 
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longer inflorescence stems and fewer, but larger, flowers than their diploid (2n) counterparts. 

These polyploid selections have potential in the ornamental/floriculture trade. 

 

1. Introduction 

 

The family Iridaceae comprises 65 genera and over 2000 species, of which 38 genera and more 

than half the species occur in South Africa. The plants are cormous or rhizomatous and have 

sword-like leaves. In general, the flowers are attractive and many species are important garden 

ornamentals across the globe. Although numerous species of the family have been improved 

by plant breeders throughout the world (Niederwieser et al., 2002; Ascough et al., 2009), there 

are many more species with potential for further horticultural development. Crocosmia aurea 

is no exception. This iris has bright orange-red flowers which appear from January to June on 

a branched inflorescence, following which a fleshy seed capsule containing purple-black seeds 

develops. The plant is wide-spread in the eastern parts of South Africa, where it occurs 

predominantly in moist areas from the coast to 2000 m above sea level (Pooley, 1993). Owing 

to its inherent beauty, C. aurea was selected for investigation of its potential as an ornamental 

plant and for cut flower production.   

 

Conventional breeding has resulted in substantial improvement of genera within the family 

Iridaceae and many of these, such as Gladiolus, Iris and Freesia are important cut flowers on 

both local and international markets. The development of polyploid (chromosome doubling) 

induction protocols offer enormous potential for further improvement in the family. Naturally-

occurring polyploidy is a phenomenon that has provided an important pathway for evolution 

and speciation in plants. Although the first polyploid was discovered over a century ago, the 

genetic and evolutionary implications of polyploidy are still being elucidated (Yang et al., 

2011). The relative ease with which artificial induction of polyploidy can be achieved provides 

an opportunity for using this naturally-occurring phenomenon as a valuable tool in plant 

breeding programmes, where polyploidy has been used extensively as a tool for creating 

novelty in ornamental crops (Levin, 1983; Väinölä, 2000; Ascough et al., 2008). In general, 

tetraploids have larger flowers and fruit than their diploid counterparts and furthermore, 

because of their altered blooming periods, may have wider harvesting and marketing windows 

(Levin, 1983). These factors are particularly important in ornamental plants and cut flowers, 

when the potential for commercialisation is addressed. The artificial induction of polyploidy 



35 
 

has been reported for a number of South African iridaceous genera, including Watsonia 

(Ascough et al., 2007; Ascough et al., 2008) and Gladiolus (Suzuki et al., 2005). 

 

Because naturally-occurring polyploid genotypes are usually unavailable, polyploidy is 

typically induced in breeding programmes through mitotic spindle inhibition or microtubule 

polymerization, often by exposure to colchicine (Caperta et al., 2006). Polyploid induction 

depends on the concentration of colchicine, the duration of exposure, explant type, and tissue 

penetrability (Allum et al., 2007). Colchicine-induced polyploidy is characterized by low 

induction rates and a high frequency of chimeras or mixoploids which must be screened out of 

the population; this is most commonly achieved through flow cytometry analysis (Galbraith et 

al., 1997). If colchicine-induced pure tetraploids are not produced, rapid in vitro proliferation 

can be used to segregate pure tetraploids from chimeras, due to the nature of the in vitro 

proliferation system.  

 

Micropropagation has increasingly become a valuable tool for breeders, assisting in releasing 

new selections and cultivars into the market more rapidly. Ascough et al. (2009) reported that 

the first published record of Crocosmia micropropagation was by Koh et al. in 2007. Ovaries 

and florets of C. crocosmiiflora were cultured with 2,4-dichlorophenoxyacetic acid (2,4-D), 

naphthaleneacetic acid (NAA), 6-benzylaminopurine (BAP) or kinetin. Callus formed on 

ovaries at low frequencies (1–28%) with BA and 2,4-D, but rooting was prolific with either 

NAA or 2,4-D. When florets were used as starting material, roots and corms were induced 

using a combination of kinetin with either 2,4-D or NAA. These corms produced shoots when 

kinetin was applied, callus when 2,4-D was used in combination with BA, and corms when 

kinetin was used in combination with 2,4-D. 

 

The primary objective of this study was to develop a rapid and efficient protocol for the 

micropropagation of C. aurea, to establish methods for polyploid induction and to assess 

selected floral characteristics of the resulting polyploid plants, with a view to the development 

and improvement of the species.  
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2. Materials and methods 

 

2.1. Development of micropropagation protocols 

Diploid seeds (obtained from Silverhill Seeds, Cape Town) of C.  aurea were used as starting 

material to develop a micropropagation protocol. Five hundred seeds were sterilised for 20 min 

using a 1% [w/v] calcium hypochlorite solution. The sterilised seeds were rinsed three times 

with sterile distilled water before being cultured on standard MS medium (Murashige and 

Skoog, 1962 [MS]) containing 30g l-1 sucrose, adjusted to pH 5.7 and sterilized by autoclaving 

for 20 min at 121 °C at 1 bar. Each seed was germinated in a glass tube containing 10 ml 

medium. The germinated seedlings were then transferred to MS medium containing one of four 

concentrations of BAP - 0.0 µM, 4.4 µM, 8.8 µM or 13.2 µM - to determine the most 

appropriate medium for plantlet multiplication. Each of the four BAP treatments comprised 

three replicates with 20 plantlets per replicate. Plantlets were maintained at 25 to 27 °C under 

a 16/8 h light/dark regime with cool white fluorescent light (81 µmol m-2 s-1, Phillips 65W), 

and were subcultured every 4 to 6 weeks. Once multiplied and rooted, the medium was rinsed 

from the roots and plantlets were hardened-off for four weeks in a mistbed (housed within a 

polycarbonate tunnel maintained at 15 to 27 ºC) in Speedling® trays containing a 1:1 (v/v) 

mixture of composted pine bark and coarse river sand, before being planted out into 2 l potting 

bags containing a 1:1 (v/v) mixture of composted pine bark and sand. Plants were thereafter 

maintained in a shadehouse (40% shadecloth) at ambient conditions. Plants were watered daily 

on an irrigation system and Osmocote® was applied as a slow-release fertiliser. 

 

2.2. In vitro induction of polyploidy 

Diploid seeds of C.  aurea were used as starting material to produce tetraploid plants, with the 

protocol  described above being used to multiply plantlets generated from the treated seed. Five 

hundred diploid seeds were physically scarified to facilitate colchicine uptake and then treated, 

under aseptic conditions, with a 25 µM sterile colchicine solution for 3 days or, alternatively, 

a 0.25 µM solution overnight (based upon results previously obtained in our laboratory). The 

treated seeds were cultured on the previously determined optimum in vitro medium (MS 

medium supplemented with 4.4 µM BAP). Germination rate was recorded over six weeks, as 

was the final germination percentage. Proliferation rate (number of shoots per 4-6 week 

subculture interval), shoot height and rooting percentage were measured to determine 

differences between the two colchicine treatments as well as between diploid and tetraploid 

shoot cultures. Plants were maintained in vitro until they were large enough for ploidy analysis 
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(approximately 12 weeks after treatment) and subculture. The experiment was repeated three 

times.  

 

2.3. Ploidy analysis and proliferation of confirmed tetraploid plants 

The ploidy level of treated seedlings was verified using a Partec PA ploidy analyser (Partec, 

Germany). Samples were prepared for flow cytometry analysis using approximately 1 cm2 of 

leaf tissue. The tissue was macerated with a razor blade in 125 μl of nucleus extraction solution 

(Partec, Germany), after which the homogenate was filtered through a 50 μm mesh filter. The 

isolated nuclei were stained with 1250 μl 4'-6-diamidino-2-phenylindole (DAPI) stain (Partec, 

Germany) prior to commencing flow cytometry analysis. Nuclei isolated from untreated, 

diploid plantlets were used as a standard. Histograms were analysed using the Partec software 

package. Seedlings confirmed as tetraploid were proliferated on MS medium containing 4.4 

µM BAP under the same conditions described above. Plantlets were hardened-off as described 

above and used to determine polyploidy effects on various horticultural characteristics. 

 

2.4. Morphological characterisation of tetraploids 

In order to evaluate whether polyploidy induction had an effect on the horticultural 

characteristics of Crocosmia, diploid and tetraploid plantlets were proliferated and maintained 

as described above. The following characteristics were evaluated once the micropropagated 

plants had hardened-off and reached maturity: leaf width and length; flower diameter; petal 

width and length; stigma, stamen and anther length; inflorescence diameter and length, as well 

as flower bud number per inflorescence. 

 

2.5. Statistical analysis   

The experimental layout for all experiments was a complete randomised design (CRD) with 3 

replications. An analysis of variance (t-test) was performed at the 5% significance level.  

 

 

3. Results and Discussion 

 

3.1. Development of a simple method for in vitro micropropagation of C.  aurea 

Despite the wealth of available germplasm amongst the Iridaceae, only 40 species from 12 

genera have been micropropagated (Ascough et al., 2009). George (1993) and Ascough et al. 

(2009) presented extensive summaries of bulbous and cormous species which were 
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micropropagated in vitro, and subsequently successfully hardened-off and established ex vitro. 

According to Ascough et al. (2007), root and leaf explants of Watsonia spp. were incapable of 

shoot regeneration, but hypocotyl segments were highly regenerative when both an auxin 

(NAA) and cytokinin (BAP) were present in the medium. However, shoot multiplication was 

greatest when only BAP (2.2 µM) was added to the medium. Similar results were obtained for 

Dierama latifolium (Page and van Staden, 1985) and Schizostylis coccinea (Hussey, 1976), 

both iridaceous species. In the current study, aseptic cultures of C. aurea were readily 

established using the methods described above. Although BAP at a concentration of 4.4 µM 

had a tendency to produce a slightly higher multiplication rate (3.35 shoots every 4-6 weeks) 

than BAP at a concentration of 8.8 µM (3.2 shoots every 4-6 weeks), the difference in 

treatments was not significant after a period of 4 months. The addition of BAP at a 

concentration of 13.2 µM gave a shoot multiplication rate of 2.75. Although growth regulator 

addition usually speeds up the rooting process and increases rooting percentage, as has been 

reported for several other genera (George, 1993), transfer of C. aurea shoots to a growth 

regulator-free MS medium resulted in root formation on 100% of shoots cultured in this 

experiment.  

 

3.2. Germination rate of colchicine-treated seeds 

The germination rate and percentage of seeds treated with 0.25 µM colchicine tended to be 

higher than that of the 25 µM treatment (p < 0.05), although the difference was not statistically 

significant (Fig 1). However, colchicine had a significant negative effect on germination for 

both the 0.25 µM overnight and 25 µM three day treatments, when compared with the control. 

The differences in germination rate manifested five to six weeks after initial exposure to 

colchicine. Similar findings have been reported on a wide range of species (Ramsey and 

Schmeske, 1998).  
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Fig 1. Effect of colchicine concentration on seed germination of Crocosmia aurea. 

 

3.3. Effect of colchicine on polyploidy induction and in vitro development of induced plantlets 

Samples of leaf material were harvested for flow cytometry analysis from in vitro-grown shoots 

12 weeks after colchicine treatment. Flow cytometry analysis was carried out to determine the 

ploidy levels of in vitro regenerants, which included mixoploids (Fig. 2). Of the plants treated 

overnight with 0.25 µM colchicine, 29.82% were identified as tetraploids, with 8.77% 

identified as 2n:4n mixoploids and 3.51% as 4n:8n mixoploids (Table 1). A small percentage 

(4.39%) was identified as octoploid for the same treatment. For the 25 µM three-day treatment, 

16.04 % of the seedlings were identified as tetraploid, with 9.8% being 2n:4n mixoploids and 

no octoploids identified (Table 1). All mixoploids were discarded to prevent proliferation of 

an unstable population of such plants. The effectiveness of colchicine application and 

polyploidy induction in vitro not only depends highly on the plant species but also on the 

colchicine concentration applied, duration of treatment, type of explant, and the penetration of 

the compound (Allum et al., 2007). Colchicine has been used effectively at both lower (i.e. 

0.25 μM for Lychnis senno (Chen et al., 2006)) and very high concentrations (i.e. 38,000 μM 

for Chaenomeles japonica (Stanys et al., 2006)). Within the Iridaceae family, polyploidy has 

been successfully induced in Gladiolus spp. (Suzuki et al., 2005) and Watsonia lepida 

(Ascough et al., 2008).  
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Fig 2. Representative flow cytometric histograms documenting the ploidy level of nuclei 

isolated from leaves. A. diploid; B. tetraploid, C. diploid:tetraploid mixoploid, D. 

tetraploid:octoploid mixoploid. 
 
 
 
 
Table 1. Effect of in vitro colchicine treatments on polyploidy induction in Crocosmia aurea. 
 

Treatment 
Exposure 

time 

 
Ploidy (%) 

   diploids 2n:4n 
mixoploids 

tetraploids 4n:8n 
mixoploids 

octoploids 

Control   100.0 0 0 0 0 

0.25 µM overnight  53.51 8.77 29.82 3.51 4.39 

25 µM 3 days  74.16 9.80 16.04 0 0 

 
 
 

There was no significant difference in in vitro shoot height, multiplication rate or rooting 

between in vitro diploid and tetraploid shoots (Table 2). Rooted plantlets, both diploid and 

tetraploid, were readily hardened-off in the mistbed. There was no difference in survival rate 

or in plant growth and development between diploid and tetraploid plants. Survival rate was in 

the order of 98% for both diploid as well as for tetraploid plants.  
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Table 2. Comparison after 4 months of the in vitro performance of diploid and tetraploid Crocosmia aurea 

plantlets on MS nutrient medium supplemented with 30g/l sucrose and various concentrations of 6-

benzylaminopurine (BAP). Different letters denote a significant difference at p < 0.05. 

 
 

Treatment 
 

0 µM BAP 4.4 µM BAP 8.8µM BAP 13.2 µM BAP 

diploid tetraploid diploid tetraploid diploid tetraploid diploid tetraploid 

Proliferation rate* 2.13a 2.25a 3.35b 3.25b 3.20b 3.32b 2.75a 2.63a 

Shoot height (mm) 45.2a 42.3a 46.5a 45.3a 42.5a 41.8a 43.5a 42.1a 

Rooting (%) 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 

*number of shoots per 4-6 week subculture interval 
 

 

3.4. Morphological characteristics of tetraploid C. aurea plants 

Overall flower size i.e. flower diameter, petal width, petal length, stamen length, diameter and 

length of the inflorescence stem as well as the number of flowers on the inflorescence were 

significantly different for the induced tetraploid plants compared with the diploid plants (Table 

3). Overall flower size i.e. flower diameter and petal length and breadth (Fig. 3), as well as the 

diameter of the inflorescence stem, were significantly larger and thicker, respectively, for the 

induced tetraploids compared with the diploids. Conversely, the length of the inflorescence 

stem and number of flower buds per inflorescence was significantly lower for the induced 

tetraploids. Polyploidy can result in significant cell enlargement, which is particularly desirable 

for flowering ornamental species. Several reports since the advent of induced polyploidy 

research on ornamentals describe increases in flower size (Emsweller and Ruttle, 1941; Tulay 

and Unal, 2010), alterations in inflorescence stem length (Griesbach and Bhat, 1990; Takamura 

and Miyajima, 1996), and number of flowers per stem (Kafawin and Chen, 1991; Tulay and 

Unal, 2010) for a wide range of ornamental species, and with differing results. There is no 

means to predict direction of morphological or physiological change for induced polyploids for 

a particular species. For C. aurea, there appeared to be no significant difference between 

induced tetraploids and diploids regarding certain reproductive parts of the flower (anther and 

stigma length), while others (stamens) were significantly longer in the tetraploids than in the 

diploids. The induced tetraploids appeared to be sterile since no seed was set over the 
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evaluation period compared with the diploids, 100% of which set seed. This could be a physical 

constraint during pollination due to the altered morphology of the plant parts, since pollen 

viability studies using acetocarmine staining showed no difference in viability between diploid 

and tetraploid pollen (results not shown). Changes in flower shape, due to polyploidy, have 

been reported to attract different species of insects to the polyploid flowers which could 

preclude pollination (Thompson and Merg, 2008). Although tetraploid plants did not set seed, 

the in vitro micropropagation method developed would facilitate the establishment of a mother-

block of polyploid plants (and thereby establish a genebank) which are easily hardened-off. 

Producers could then successfully vegetatively propagate C. aurea through division of corms. 

 

 
Table 3. Effect of polyploidy on selected morphological characteristics of Crocosmia aurea. (different letters 

within a row denote significant difference at p<0.05, n= 12). 

 
Morphological characteristic diploid tetraploid 

Flower diameter (mm) 62.78a 78.2b  
Width of petal (mm) 8.936a 15.04b  
Length of petal (mm) 31.05a 36.72b 
Length of stamens (mm) 26.07a 32.27b  
Length of stigma (mm) 29.70a 29.03a   
Length of anther (mm) 9.53a 8.585a   
Diameter of inflorescence stem (mm) 3.09a 3.54b   
Length of inflorescence stem (mm) 794.67b 577.70a 
Number of flowers 29.00b 21.67a 
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Fig 3. Comparison of diploid (A and B) and induced tetraploid (C and D) C.  aurea flowers. Scale bar represents 

1cm. 

 

 

C. aurea is thus readily propagated in vitro, and in vitro tetraploid induction provides a method 

for the development of C. aurea plants with significantly larger flowers than their diploid 

counterparts. Preliminary observations of flowering of the tetraploid plants indicated that 
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flowering appears to be initiated several weeks after the diploids. In fact, flowering mimics the 

vegetative phenological cycle, with the dormant tetraploid corms producing vegetative growth 

several weeks after the diploids (preliminary observation; data not shown). It has previously 

been reported that tetraploids, which may have a slower growth rate, may flower later or over 

a longer period than their diploid progenitors (Datta, 1963; Roy and Dutt, 1972; Levin, 1983). 

This is an attribute of particular interest in ornamental breeding (Weiss, 2002). Furthermore, 

Kehr (1996) reported that flowers are longer lasting in polyploid plants – vase life has yet to 

be determined for the tetraploid plants produced in this study. In conclusion, additional research 

is needed to establish possible alterations in vase-life of tetraploids compared with the diploids; 

phenological studies to determine flowering times are also required to determine a potential 

increase or decrease of marketing windows. 
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Abstract 

Tetradenia riparia, a medicinal aromatic shrub with multiple uses, occurs throughout tropical 

Africa and as far south as South Africa. In vitro-induced polyploidy of T. riparia  was carried 

out by treating seeds with colchicine and subsequently verifying the duplication of 

chromosomes using flow cytometry. Significant differences between diploid and tetraploid 

plants in terms of leaf morphology, essential oil content and characterisation as well as in vitro 

bioactivity against Geotrichum candidum, a fungal species causing postharvest rot in fruit and 

vegetables, were recorded. Tetraploid plants produced essential oil with the potential for 

mitigating postharvest diseases. This is the first report on the bioactivity of T. riparia essential 

oil against a plant pathogenic fungal species of postharvest concern. 

 

Keywords: bioactivity, essential oil, induced polyploidy, plant characteristics 
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1. Introduction 

Tetradenia riparia, commonly referred to as ‘ginger bush’, is an aromatic shrub occurring 

throughout tropical Africa and the north eastern regions of South Africa. It has a range of 

medicinal uses (Coopoosamy and Naidoo, 2011) and is also used widely as a flavouring agent 

as well as in the perfume industry. The major chemical components of interest include the 

diterpenes, alpha-pyrones and phytosterols, as well as essential oils comprising a number of 

compounds. Previously reported essential oil bioactivity includes moderate anti-malarial 

activity against Plasmodium falciparum (Campbell et al., 1997), anti-spasmodic activity (Van 

Puyvelde et al., 1987), antiviral activity, antimicrobial activity against various human 

pathogenic bacteria (Boily and Van Puyvelde, 1986; Van Puyvelde et al., 1994; Ndamane et 

al., 2013) as well as insecticidal (Weaver et al., 1992) and acaricidal activity (Gazim et al., 

2011).  

 

To our knowledge there has been no genetic improvement, breeding or selection of Tetradenia 

riparia. Induced polyploidy has been reported to result in the improvement, although not 

always, of a range of horticultural characteristics including larger tuber, rhizome or root size; 

increased fruit size; enhanced flower size and/or colour intensity, improved drought tolerance, 

increased biomass; improved photosynthetic capacity; larger and/or thicker leaves; dwarfism 

and increased secondary metabolite production e.g. medicinal compounds (Ranney, 2006, 

Caruso et al., 2011). Chromosome doubling (polyploidy) has, moreover, been reported to have 

significant effects on not only secondary metabolite (e.g. essential oil) yield but also secondary 

metabolite profiles across diverse species including Petunia (Griesbach and Kamo, 1996); 

Chamomill arecutita (Svehlikova and Repcak., 2008); Artemisia annua (De Jesus-Gonzalez 

and Weathers, 2003)  and Ocimum basilicum (Omidbaigi et al., 2010). This topic has also been 
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reviewed by Dhawan and Lavania (1996). There is also widespread interest in the potential 

applications of bioactive phytochemicals of aromatic and medicinal plants which have been 

shown to exhibit anti-microbial, anti-fungal and insecticidal properties, as they have the 

potential for substituting synthetic chemicals which are often detrimental to the environment. 

Further, Dhawan and Lavania (1996) and Lavania (2005) suggested that artificial polyploids 

could be used to achieve commercial impact with respect to the production of secondary 

metabolites. The current investigation reports on methods for polyploidy induction and 

verification, a comparison of selected horticultural characteristics between the diploid 

progenitor and induced tetraploids, as well as a first report on the bioactivity of the induced 

tetraploid-derived essential oil against a fungal species (Geotrichum candidum) of postharvest 

importance. 

 

2. Materials and Methods 

2.1 In vitro polyploid induction 

Tetradenia seeds obtained from Silverhill Seeds (Cape Town, South Africa) were surface-

sterilised in 1% [v/v] calcium hypochlorite before being rinsed three times using autoclaved 

distilled water. The sterilized seeds, one hundred per treatment, were submerged in colchicine 

solutions, either 25 µM or 250 µM, overnight or for three days, respectively. These 

combinations of colchicine concentration and incubation time have proven successful for 

polyploid induction in a number of other species studied in this laboratory (Hannweg et al., 

2013; Hannweg et al., 2015). Following treatment, seeds were cultured individually in glass 

culture tubes containing 10 ml Murashige and Skoog [MS] (1962) medium (nutrients and 

vitamins) supplemented with 30 g l-1 sucrose and 3 g l-1 Gelrite®. Seeds were germinated at 

25ºC under a 16:8 hour light:dark regime (cool white fluorescent light; 81 µmol m-2 s-1, Phillips 
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65W). The seedlings were large enough for ploidy analysis using flow cytometry after 10-12 

weeks.  

 

2.2 Analysis of ploidy level using flow cytometry 

Samples of leaf material were harvested for flow cytometry analysis from in vitro-grown 

shoots. The ploidy level of treated seedlings was verified using a Partec PA ploidy analyser 

(Partec, Germany). Samples were prepared for flow cytometry analysis using approximately 

0.5 cm2 leaf tissue. The tissue was macerated with a razor blade in 125 μl nucleus extraction 

solution (Partec, Germany), after which the homogenate was filtered through a 50 μm mesh 

filter. The isolated nuclei were stained with 1250 μl 4'-6-diamidino-2-phenylindole (DAPI) 

stain (Partec, Germany) prior to commencing flow cytometry analysis. Nuclei isolated from 

untreated, diploid plantlets were used as a standard. Histograms were analysed using the Partec 

software package. Seedlings confirmed as tetraploid were proliferated on the MS medium 

described above, supplemented with 4.4 µM 6-benzylaminopurine (BAP) under the same 

conditions. Rooting occurred spontaneously in vitro, and rooted plantlets were readily 

acclimatised in the mistbed with a 5 second misting per hour. Acclimatised plants were planted 

initially into 2 l potting bags containing a 1:1 mixture of pine bark and sand for plant 

establishment before being transplanted into 20 l bags for establishment and maintenance in a 

shadehouse (40% black shade net). Plants were drip-irrigated and Osmocote® slow-release 

granules were applied to the potting medium at the manufacturer’s recommended rate. 
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2.3 Characterisation of selected morphological characteristics, essential oil and bioactivity 

of tetraploids 

 

To determine if there were differences in selected morphological characteristics, established 

diploid control plants and tetraploid plants were evaluated for plant stature, leaf shape (leaf and 

leaf margin morphology) and petiole length as well as essential oil yield and quality (n=12 each 

of diploid and tetraploid plants). Essential oils were extracted by steam-distillation using a 

Clevenger-type apparatus for 1 hour using freshly-harvested leaves, and essential oil yield 

determined on a fresh weight basis. The essential oils were stored in amber vials at 4 ºC. Major 

constituents were analysed using gas chromatography and mass spectrometry (GC-MS), using 

standard methods (Tshwane University of Technology, Pretoria, South Africa). Bioactivity of 

the essential oils derived from diploid and tetraploid plants against Geotrichum candidum was 

investigated by isolating the fungus from cucumber and culturing on potato dextrose agar 

(PDA, LABM, United Kingdom) medium in 90 mm Petri dishes before being used to produce 

fungal spore dilutions. No result was obtained when the disc diffusion method was used to 

determine bioactivity and since the limited volume of the essential oil available precluded an 

investigation of zones of inhibition, fungal spores and essential oils were incubated together 

before being cultured on PDA medium as follows: Fungal spores at three different 

concentrations, determined using a haemocytometer, and essential oils (0, 100, 200, 500 and 1 

000 ppm) were incubated for 1, 6 h and 12 h, at ambient temperature. The essential oil-fungal 

spore solutions were well-mixed for three seconds using a bench-top vortex prior to incubation. 

Since the pathogen has a relatively short disease cycle, the incubated mixtures were inoculated 

and cultured on PDA medium in 90 mm Petri dishes and fungal colonies counted over a period 

of one week to determine potential bioactivity. Petri dishes containing PDA and inoculated 

with the fungal spore suspensions only were used as controls. EC50 values were also 
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determined across incubation time, number of fungal spores and diploid- compared with 

tetraploid-derived essential oils. 

 

2.4 Statistical analysis 

 

For the polyploid induction/colchicine applications, an appropriate analysis of variance was 

fitted to the data using PROC GLM procedure of SAS software Version 9.2 of the SAS System 

for Windows (SAS Institute, 2015).  The Shapiro-Wilk test was performed to test for normality 

(Shapiro and Wilk, 1965) and a Fisher t-test with Least Significant Difference was calculated 

at the 5% significance level to compare treatment means (Ott and Longnecker, 2001). For all 

other experiments, the experimental layout for all experiments was a complete randomised 

design (CRD) with 3 replications. An analysis of variance (student’s t-test) was performed at 

the 1% significance level for these experiments except the EC50 values where various non-

linear regression models (Gompertz, sigmoid, natural growth, modified exponential and 

logistic regression) were fitted to the data, with the natural growth model being the best fit. 

Observations where there was no variation in response to the various concentrations were 

removed from the data set before the ANOVA was performed (SAS Institute, 2015).  

 

3. Results and discussion 

3.1 Polyploid induction and verification 

Colchicine is a highly-effective mitotic spindle inhibitor and has been used with great success 

for the improvement of horticultural characteristics for a variety of species via polyploidy 

induction (Dhooghe et al., 2011). Polyploid induction has successfully been used with other 

species rich in economically-useful essential oils (Table 1) and has considerable potential to 
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alter both oil quantity and the profile of its components. As such, this study was initiated to 

determine the effect of induced polyploidy on various characteristics of Tetradenia riparia, 

including its oil profile.  Following colchicine treatment, it is critical to identify plant lines in 

which polyploidy has successfully been induced. Flow cytometry provides a quick, reliable 

method for determination of ploidy level and is thus an efficient means of screening large 

populations emanating from plant improvement programmes (Ochatt et al., 2011). In this study, 

flow cytometry analysis was carried out to determine the ploidy levels of in vitro regenerants, 

which included mixoploids (Table 2). For the 25 µM overnight treatment, 61% of shoots 

remained diploid, 25.6% of shoots were verified as pure tetraploids and 13.4% were identified 

as 2n:4n mixoploids. For the 250 µM, 3 day treatment, 18.0% of the shoots were verified as 

tetraploids, 72.1% were not transformed and remained diploid, while 9.9% were identified as 

2n:4n mixoploids. No octoploids or 4n:8n mixoploids were identified for either of the 

treatments, in contrast to Hannweg et al. (2013) where significant levels of these were induced. 

All mixoploids were discarded to prevent the multiplication of unstable plant populations. 

Efficacy in ploidy transformation is dependent on exposure time, colchicine concentration and 

plant species and successful polyploid induction is unpredictable.  

 
Table 1. Important crop plant species where essential oils have been improved using 
polyploidy induction. 
 

Scientific name Common name Family Reference 
Vetiveria zizanioides Vetiver Poaceae Lavania, 1988 
Ocimum kilimandscharicum Camphor basil Lamiaceae Bose and Choudhury, 1962 
Carum carvi Caraway Apiaceae Dijkstra and Speckman, 1980 
Mentha arvensis Jammu mint Lamiaceae Janaki Ammal and Sobti, 1962 
Humulus lupulus Hops Cannabaceae Koutoulis et al., 2005 
Ocimum basilicum Basil Lamiaceae Omidbaigi et al., 2010 
Acorus calamus Bacha Araceae Pattanaik et al., 2013 
Mentha piperita Peppermint Lamiaceae Rita and Animesh, 2011 
Chamomilla recutita Chamomile Asteraceae Svehlikova and Repcak, 2008 
Aframomum corrorima Korarima Zingiberiaceae Wannakrairoj and Wondyifraw, 2013 
Zingiber officinale Culinary Ginger Zingiberiaceae Wohlmuth et al., 2005 
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Table 2. Effect of in vitro colchicine treatments on polyploidy induction in Tetradenia riparia.  
 
Treatment 

(g.l-1) 
Exposure 

time Ploidy (%) 

  diploids 2n:4n 
mixoploids 

tetraploids 4n:8n 
mixoploids 

octoploids 

Control  100.0 0 0 0 0 

0.01 overnight 61.0 13.4 25.6 0 0 

0.10 3 days 72.1 9.9 18.0 0 0 

 

 

 

3.2 Characterisation of tetraploid Tetradenia riparia plants 

3.2.1 Morphological characteristics 

Although there were no obvious differences in plant height, (and no difference in internode 

length) between induced tetraploid and diploid plants (results not shown), the induced 

tetraploid plants were characterized by thicker and stickier leaves compared with the diploid 

plants. Leaves of the induced tetraploids were also more rounded in shape while the leaves of 

the diploids were cordiform (heart-shaped) (Figure 1). Further, the induced tetraploid plants 

had highly-lobed leaf margins compared with the diploids. Tetraploid leaf petioles were 

significantly shorter than the diploids (on average, 20 mm compared with 31 mm, respectively).  
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Fig 1. Morphological comparison between leaves from diploid and tetraploid plants showing 
adaxial (L) and abaxial (R) leaf shape, leaf surfaces and deeply dentate leaf margins (scale bar: 
1cm  = 1.5 cm). 

 

3.2.2 Comparison of essential oil characteristics between diploid and tetraploid 

Tetradenia riparia plants 

Tetraploid plants produced three and a half times more oil than diploid plants on a fresh weight 

basis (0.25% compared with 0.07%) and, interestingly, the essential oil derived from the leaves 

of tetraploid plants was colourless compared with the yellow essential oil distilled from leaves 

from diploid plants, probably due to differences in the oils’ component compounds. This 

increase in oil content is consistent with several plant species producing greater quantities of 

important secondary metabolites, as reviewed by Lavania (2005). When oil samples were 

analysed for their major constituents, marked differences between certain components in the 

tetraploid- and diploid-derived essential oils were revealed (Table 3). Tetraploids contained 

significantly more fenchone than diploids, and tetraploids contained alpha-humulene, alpha-
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terpineol and viridiflorol which were not present in the diploids. Conversely, the diploid 

essential oils contained fenchyl acetate and large amounts of isopimara-8,15-diene, which were 

not present, or present in extremely low concentrations respectively, in the tetraploid samples 

(Table 3). Induced polyploidy in essential oil crops was comprehensively reviewed by Dhawan 

and Lavania (1996). In this review, the authors describe a number of studies on essential oil-

bearing plant species in which induced tetraploids and diploids had significantly different 

secondary metabolite profiles from each other, as found in this study. The alteration of 

components of the essential oil profiles could be ascribed to changes in the regulation of 

synthesis of biochemicals (Lavania, 2005). Further, Levy (1976) suggested that a reduction or 

even loss of components could be due to functional repression of genes, while gains are 

ascribed to derepression of silent genes previously not expressed.   

 
 
Table 3. Comparison between major chemical components of essential oils distilled from  
diploid and induced tetraploid plants§ 

Component Diploid Tetraploid 
alpha-pinene 0 2.26 
camphene 0 0.76 
limonene 1.84 1.68 
gamma-terpinene 1.74 0 
terpinolene 0 1.32 
p-Cymene 0.72 0 
fenchone 25.42 48.4 
fenchyl actetate 16.68 0 
alpha-Copaene 2.74 0 
beta-Bourbonene 1.04 0 
camphor 0.86 2.68 
fenchol 0 1.4 
bornyl acetate 2.02 0 
beta-caryophyllene 1.34 0 
terpinen-4-ol 0.62 0 
alpha-humulene 0 7.92 
alpha-terpineol 0 10.16 
germacrene D 2.46 0 
bicyclogermacrene 0.84 0 
delta-Cadinene 1.26 0.82 
viridiflorol 0 5.58 
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§Only components where the component percentage was ≥0.5 have been included 
in the Table. 
¥Where there are major differences between components, these have been 
highlighted in bold. 
*Components denoted by * were identified using mass spectrometry only 

 

3.2.3 Bioactivity of essential oil against Geotrichum candidum 

The effect of polyploidy on the bioactivity of the essential oils steam-distilled from diploid and 

tetraploid leaves was tested against Geotrichum candidum, a fungal species of postharvest 

concern which occurs during storage of fruits and vegetables. Bioactivity of the oils increased 

with incubation time and essential oil concentration (Table 4), as evidenced by a corresponding 

decrease in the number of fungal colonies. The number of colonies counted was also 

significantly lower when spores were incubated with essential oil derived from the induced 

tetraploids compared with the essential oil of the diploids. Analysis of the EC50 values, a 

measure of the effectiveness of the essential oil, indicated that a one hour incubation time was 

not significant across the treatments and did not have any effect on fungal spore germination 

and was therefore ineffective under these conditions (Table 5). However, essential oils derived 

from the induced tetraploids had a more pronounced effect at each spore concentration tested 

in this study compared with the diploids at both the six hour and twelve hour incubation times 

and this was highly significant. α-Terpineol and viridiflorol, the major constituents known to 

have anti-fungal properties (Tabassum and Vidyasagar, 2013), were present only in the 

tetraploid oil and not in the diploid oil. The bioactivity of the oil derived from tetraploid 

cubedol 0.86 1.22 
caryophyllene oxide 0.5 0 
   
thymol 3.14 0 
unknown compound 1.9 1.36 
isopimara-8,15-diene* 14.44 0.8 
abietatriene* 0.74 0.12 
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individuals may be due to the presence of these compounds. Further, Dhawan and Lavania 

(1996) stated that where changes in constituent profile occur as a result of chromosome 

doubling, there may be an effect on the biochemical pathway of the relevant constituent’s 

biosynthesis and as alluded to in Section 3.2.2 above, could be controlled genetically. This is 

yet to be elucidated for Tetradenia riparia regarding the constituents involved in anti-fungal 

activity. 

 

This is the first published report describing the bioactivity of Tetradenia riparia essential oils 

against a plant pathogen. The essential oils derived from tetraploid plants appear to have a 

higher bioactivity against G. candidum than essential oils derived from diploid plants. The use 

of essential oils as amendments to or alternatives to chemical fungicides is a relatively new 

approach to the control of postharvest pathogens (Klieber et al., 2002, Ahmed et al., 2007, du 

Plooy et al., 2009; Kouassi et al., 2010). The use of natural products is environmentally-friendly 

and would allow organic producers to use such a product, as it is likely to meet the organic 

requirements, result in reduced environmental concerns and greater consumer acceptance while 

providing significant disease control. Further studies into the application of the essential oils 

to products susceptible to G. candidum under postharvest storage conditions needs to be 

investigated and is continuing. The essential oils should also be tested for their possible efficacy 

against other pathogens of postharvest concern and the effect of induced polyploidy on the 

mechanisms of biochemical pathway alteration should also be investigated.
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Table 4. Comparison of fungal colony number after incubation of Geotrichum candidum with different concentrations (0-1000ppm) 
of tetraploid- and diploid-derived essential oil of Tetradenia riparia with increasing incubation time. Means with the same letter are 
not significant. 

 

  

 1 hour 6 hours 12 hours 

 diploid tetraploid diploid tetraploid diploid tetraploid 

No. of 
spores/ml 

2.
4 

x 
10

5  

2.
4 

x 
10

6  

2.
4 

x 
10

7  

2.
4 

x 
10

5  

2.
4 

x 
10

6  

2.
4 

x 
10

7  

2.
4 

x 
10

5  

2.
4 

x 
10

6  

2.
4 

x 
10

7  

2.
4 

x 
10

5  

2.
4 

x 
10

6  

2.
4 

x 
10

7  

2.
4 

x 
10

5  

2.
4 

x 
10

6  

2.
4 

x 
10

7  

2.
4 

x 
10

5  

2.
4 

x 
10

6  

2.
4 

x 
10

7  

                   

Concentration 

0 ppm 
 

91O 
 

1500A 
 

1500A 
 

200M 
 

1200B 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 
 

1500A 

100 ppm 68P 
 1500A 1500A 225K 1200B 1500A 60Q 500D 1500A 12X 350G 1500A 50R 320H 1500A 15W 500D 1000C 

200 ppm 38S 1500A 1500A 32T 900C 1500A 20V 500D 1500A 8Y 350G 1500A 10XY 360F 1500A 4aZ 280I 1500A 

500 ppm 58Q 1500A 1500A 49R 480E 1500A 59Q 500D 1500A 11XY 350G 1500A 15X 250J 1500A 4abZ 208L 1500A 

1000 ppm 4aZ 1500A 1500A 5Z 27U 1500A 16W 500D 1500A 0c 350G 1500A 3abc 150N 1500A 5bc 63Q 1500A 
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Table 5. Effectiveness of diploid- and tetraploid-derived essential oils of Tetradenia riparia against Geotrichum candidum was 
calculated after incubation for 1 hour, 6 hours and 12 hours with increasing fungal spore concentrations. Means with the same letter are 
not significant.  

Incubation 
time 1 hour 6 hours 12 hours 

Essential 
oil diploid tetraploid diploid tetraploid diploid tetraploid 

 
No. of 

spores/ml 

2.
4 

x1
05  

2.
4 

x1
06  

2.
4 

x1
07  

2.
4 

x1
05  

2.
4 

x1
06  

2.
4 

x1
07  

2.
4 

x1
05  

2.
4 

x1
06  

2.
4 

x1
07  

2.
4 

x1
05  

2.
4 

x1
06  

2.
4 

x1
07  

2.
4 

x1
05  

2.
4 

x1
06  

2.
4 

x1
07  

2.
4 

x1
05  

2.
4 

x1
06  

2.
4 

x1
07  

EC50w 
(ppm) 420.2c * * * 442.9a * 266.7g 420.8b * 261.1i 354.8d * 262.1h 313.0e * 260.7j 298.9f * 

*Indicates no effect on spore viability 
w Essential oil concentration estimated to produce 50% inhibition. 
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Abstract 

Plectranthus esculentus (Family: Lamiaceae), or Livingstone potato, is an edible tuberous vegetable which 

originated in Africa, with central Africa being the centre of origin. Plectranthus esculentus is found throughout 

the continent, including the north-eastern regions of South Africa.  Although the tubers are edible, limited crop 

improvement has been achieved; therefore, a study comprising in vitro polyploidisation was carried out with 

subsequent evaluation of plant nutritional value and nematode tolerance of the induced tetraploids compared with 

the diploid controls. Tetraploid tubers had a higher starch content compared with the diploids, however there was 

no significant difference in mineral element content for either the leaves or the tubers when induced tetraploids 

were compared with the diploid control. Further, induced tetraploids appeared to be significantly more tolerant to 

rootknot nematode, Meloidogyne spp., than the diploids. A significantly higher number of egg masses per root 

system and number of eggs and J2 (juvenile stage 2) individuals per root system were detected in control plants, 

compared with tetraploid plants. Induced tetraploidy resulted in plants with a higher nutritional starch 

concentration and tolerance to rootknot nematode, characteristics which will improve the cultivation and 

utilisation of the crop. Morphologically, tetraploid plants had fewer, thicker stems per plant compared with diploid 

plants.  
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Introduction 

Root and tuber crops are globally amongst the most important staple foods. The introduction of crops developed 

and/or improved using biotechnological methods combined with traditional breeding and selection methods as 

well as optimum soil fertility and pest management measures could significantly improve yield and crop 

nutritional value. In general, very little research has been carried out on the nutritional value of edible wild root 

and tuber species, although indigenous knowledge throughout the world suggests that numerous such species are 

nutrient-rich and have potential for further development. Moreover, because of their greater tolerance of sub-

optimal conditions, the potential of under-utilised wild species to contribute to food security is currently being 

investigated world-wide. Plectranthus esculentus, the Livingstone potato, originated in central Africa, but is 

distributed throughout the Continent, including the north-eastern regions of South Africa (Codd 1985). The plant 

is a perennial shrub of 600 mm to 1200 mm in height, with square pubescent stems and subsessile, oppositely-

arranged leaves. The edible parts of the plant are the tubers, which are produced by a fibrous root system. The 

tubers are cylindrical, sometimes branched, 50-100 mm in length and up to 20 mm in diameter. Although there is 

little information describing cultivation practises, the plant is propagated from sections of stem tubers, usually 

planted 50 mm to 100 mm deep, on prepared ridges or in beds. After harvesting, tubers used for vegetative 

propagation can be successfully stored for at least two months under cool, well-ventilated conditions for planting 

in the following season (Dhliwayo 2002). The species produces tubers even under extremely adverse climatic 

conditions and therefore contributes to food security in rural areas (Van Wyk and Gericke 2000). Although P. 

esculentus is cultivated throughout Africa as an important vegetable crop, one of the major cultivation challenges 

experienced by smallholder farmers is a high susceptibility to rootknot nematode (Goodey et al. 1965; Allemann 

2002; Xaba and Coertse 2011), made especially more challenging due to the cultivation of other vegetable crops 

on their lands with consequently high nematode populations in the soil.  

 

A relatively common technique, polyploid induction, has been used in plant breeding since the early 1900’s for 

the development and improvement of a variety of economically-important crops (Gates 1909, Stebbins 1947). 

Blakeslee and Avery (1937) reported on the first applications in agricultural crops. Such is its importance that a 

number of reviews have been published in the last decade (Osborn et al. 2003; Soltis et al. 2004; Wendel and 

Doyle 2005; Chen and Ni 2006; Balao et al. 2011), several highlighting enlargement and induced vigour as well 

as the enhancement of pest and disease tolerance. Mehta and Swaminathan (1957) and Busey et al. (1993) reported 
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on the higher resistance of polyploids compared with diploids to nematode parasitism. Although polyploidy is a 

naturally-occurring phenomenon (Soltis and Soltis 2009; Jiao et al. 2011) it can also be artificially induced. 

Mitotic spindle inhibitors such as colchicine and oryzalin are most widely used to induce chromosome doubling 

(Dhooghe et al. 2011). Polyploidy has been induced in several species of the Lamiaceae family including basil 

(Omidbaigi et al. 2010) and lavender (Urwin 2014). Previous studies in our laboratory, and by others (Beltram 

and Kam 1984; Ramachandran 1982; Ramachandran and Nair 1992; Smith et al. 2004) showed that various plant 

characteristics of culinary ginger (a rhizomatous species), Zingiber officinale, could be improved by inducing 

polyploidy. Further, several highly-prized and staple root crop species such as potato, sweet potato, turnip, taro, 

cassava and yam, are natural or induced polyploids (Hilu 1993). Artificial induction of polyploidy therefore 

provides a means of potentially improving various characteristics of an under-utilised species such as Plectranthus 

esculentus. The aim of this study was, therefore, to induce polyploidy in vitro in P. esculentus and subsequently 

evaluate and compare selected plant characteristics, nematode tolerance, yield and nutritional value of diploid and 

tetraploid tubers.  

 

Materials and Methods 

Micropropagation of shoot cultures of P. esculentus 

In vitro shoot cultures were obtained from the Agricultural Research Council’s Vegetable and Ornamental Plant 

Institute, South Africa.  Shoots were subcultured on a 4-weekly basis on Murashige and Skoog (1962) nutrient 

medium with 3 g l-1 Gelrite® and 30 g l-1 sucrose added (proliferation medium). No growth regulators were added 

to the culture medium. All media was autoclaved for 20 minutes at 121 °C and 1KPa. Shoot cultures were grown 

at 25 to 27 °C with cool white fluorescent light (81 μmol m−2 s−1, Phillips 65 W) 27 under a 16:8 hour light:dark 

cycle and shoots rooted spontaneously. Rooted plantlets were washed under running tap water before being 

planted into Speedling® trays for acclimatisation in a mist-bed at 85% shading and misting for 5 seconds every 

hour for 3 weeks, before being transplanted into larger planting bags containing a 1:1 [v/v] mixture of sand and 

pine bark. Plants were maintained in a 40% black shade cloth shadehouse. 
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Induction of polyploidy 

Single nodes were excised from in vitro shoot cultures and subsequently incubated in sterile (autoclaved) solutions 

containing 0.01 g l-1, 0.10 g l-1, 1.0 g l-1 and 10.0 g l-1 colchicine, either overnight or for three days. Two hundred 

and fifty nodes were used for each treatment. The treated nodes were then cultured on proliferation medium, 

allowing the axillary buds to grow out and elongate. Once shoots were large enough to be harvested for flow 

cytometry analysis, usually after 3-4 weeks, samples were collected to verify polyploid induction. 

 

Verification of polyploid induction 

Ploidy level of shoots resulting from colchicine treatment was verified using flow cytometry. Samples were 

prepared for flow cytometry analysis using approximately 0.5 cm2 leaf tissue. The tissue was macerated with a 

razor blade in 125 μl nucleus extraction solution (Partec, Germany), after which the homogenate was filtered 

through a 50 μm mesh filter. The isolated nuclei were stained with 1250 μl of 4'-6-diamidino-2-phenylindole 

(DAPI) stain (Partec, Germany) prior to commencing flow cytometry analysis using a Partec CYFLOW space 

flow cytometer. Nuclei isolated from untreated, diploid plantlets were used as a standard. Histograms were 

analysed using the Partec software package. Shoots confirmed as tetraploid were proliferated on MS medium 

under the conditions described above. Plantlets were acclimatised as described above. After 12 weeks, plants were 

transplanted into 20 l potting bags containing a 1:1 [v/v] mixture of pine bark and sand and controlled-release 

fertiliser granules (Osmocote®). 

 

Morphological characterisation 

Morphological characteristics such as plant growth form, number of shoots produced per plant and leaf shape 

were evaluated and compared between diploid and tetraploid plants.  

 

Nutritional analysis of tubers and leaves 

Mature, but not senescing, leaves were harvested from plants and were analysed for macro- and micronutrient 

content. Tubers were harvested eight months after the acclimatised plantlets were planted into the 20 l potting 
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bags. All analyses were carried out using standard methods (at a South African National Accreditation System- 

accredited facility) particular to each nutrient with three replicates, twelve plants per replicate for each analysis 

for both diploids and tetraploids. 

Leaf samples were oven-dried at 60 ºC for 48 hours before being finely milled. Milled samples were extracted 

overnight using 2:1 nitric acid (55%), [v/v]: perchloric acid (70%) solution. Samples were then digested for 6 

hours at 180 ºC on a digestion block before being cooled. Calcium, magnesium, zinc, copper, manganese and iron 

were determined using atomic absorption spectrophotometry (AOAC Official Method 975.03) whereas potassium 

and sodium were analysed using flame emission spectroscopy (Varian SpectraAA 250 Plus) according to the 

method described by Poluektov (1973). Phosphorous and boron were analysed colorimetrically, phosphorous at 

660 nm and boron at 430 nm, using an Auto Analyzer (Bran and Luebbe Auto Analyser 3) according to standard 

methods, Phosphorus reagents, Technicon Industrial Method, method 144-71A (1972) and AOAC Official 

Method 982.01, respectively.  

For nitrogen analysis, samples were oven-dried at 60 ºC for 48 hours before being extracted for 2 hours with 

concentrated sulphuric acid followed by digestion with hydrogen peroxide. Nitrogen was analysed 

colorimetrically at 640 nm (ammonia-salicylate complex) using an Auto Analyzer (Bran and Luebbe Auto 

Analyser 3 (AOAC Official Method 990.02). 

The β-carotene content of tubers was analysed using standard methods as described by Horwitz (2000) by the 

South African Bureau of Standards, Pretoria, South Africa.  

Diploid and tetraploid tuber material was analysed for ash, protein, carbohydrate and fat content as well as for 

vitamins B1 and B2. Amino acid content (serine, aspartic acid, glutamic acid, glycine, threonine, alanine, tyrosine, 

proline, methionine, valine, phenylalanine, isoleucine, leucine, histidine and lycine) was also determined 

according to Gehrke et al. (1985).  

Ash content was determined by heating the sample at 550 ºC overnight. The remaining residue (inorganic matter) 

was used to determine ash content (AOAC Official Methods 934.01 and 930.15). Protein content of samples was 

determined using the Kjeldahl method which measures total organic nitrogen (AOAC Official Method 954.01). 

The organic matter was digested with hot concentrated sulphuric acid and a catalyst mixture added to the acid to 

raise the boiling point.  All nitrogen was converted to ammonia which was measured by titration. Soluble and 

insoluble carbohydrates were determined by analysing moisture content, crude protein, ash and fat content with 
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the remainder being total carbohydrates (Greenfield and Southgate 2003). Soluble unbound fat was dissolved in 

ether at boiling point and evaporated at 105 ºC using the Soxtec method (AOAC Official Method 920.39 and its 

content expressed as a percentage.  

The tissue vitamin B1 concentration was determined by derivatising samples to form thiochrome (a highly 

fluorescent oxidised product of thiamine) after autoclave extraction. A C18 cartridge was used to remove 

interferences and the vitamins chromatographed by using reversed phase separation as described by Sims and 

Schoemaker (1993). The vitamin B2 concentration was determined after autoclave extraction, centrifugation and 

dilution. The samples were analysed using reversed phase separation. 

Amino acid content was analysed as described by Einarsson et al. (1983) using acid hydrolysis followed by pre-

column derivatisation, HPLC separation and detection using a fluorescence detector.   

Starch was determined using an iodine-based colorimetric method as described by Xu et al. (1998). Tubers were 

oven-dried at 65 ºC for 48 hours for sample preparation and starch content was determined at 620nm using a 

WPA-lightwave spectrophotometer. 

 

Nematode studies 

Fifteen plants each of diploid control plants and induced tetraploids were evaluated for their tolerance to local 

Meloidogyne incognita race 2 and M. javanica populations in a greenhouse experiment. To test the virulence of 

the nematodes, a highly susceptible tomato (Solanum lycopersicon L.) cv. ‘Rodade’ was used as a reference plant 

in all experiments. One litre (1l) black plastic potting bags were filled with steam-pasteurised sandy soil (84% 

sand, 14% silt, 2% clay and 0.5% organic matter content). The soil pH (H2O) was 5.75. Nutrition in the form of 

Multifeed® Classic (Efekto), was applied as a soil drench every 14 days at a rate of 7.5g l-1 water. One plant was 

planted per bag. Populations of M. incognita race 2 and M. javanica were established and maintained on the 

‘Rodade’ tomatoes in a separate greenhouse. Eggs and second stage juveniles (J2) of each of the appropriate 

species were used to inoculate plants. Inoculation was performed 32 days after planting by pipetting approximately 

1000 eggs and J2 of the respective population on exposed roots of each of the seedlings. The roots were covered 

with soil again after the inoculation.  

Fifty six days after nematode inoculation, the plants were carefully removed from the bags. This period allowed 

completion of at least one nematode generation (Kleynhans 1991; Fourie 2005). The root systems were rinsed 

free of adhering soil and debris with running tap water and blotted dry on paper towel. The number of egg masses 
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per root system was counted. Staining of the egg masses to facilitate counting was done by immersion of the root 

systems in a Phloxine B solution for 20 minutes (Hussey and Boerma 1981). Root systems were individually 

inspected and the red-stained egg masses were counted using a stereo microscope. Eggs and J2 were extracted 

from the root systems using Riekert’s (1995) modified NaOCl method. Eggs and J2 were counted and the 

reproductive potential of each nematode population on each genotype was determined according to Oosterbrink’s 

reproduction factor (Windham and Williams 1988) and calculated as follows: Rf = final egg and J2 numbers (Pf) 

/ initial egg and J2 numbers (Pi).  

 

Statistical Analysis 

For the polyploid induction/colchicine applications, an appropriate analysis of variance was fitted to the data using 

PROC GLM procedure of SAS software Version 9.2 of the SAS System for Windows (SAS Institute, 2015).  

Shapiro-Wilk test was performed to test for normality (Shapiro and Wilk 1965) and a Fisher t-test with Least 

Significant Difference was calculated at the 5% significance level to compare treatment means (Ott and 

Longnecker, 2001).  For all other experiments, the experimental layout was a complete randomised design (CRD) 

with 3 replications, twelve measurements per replicate. An analysis of variance was performed at the 5% 

significance level using SAS software Version 9.2 of the SAS System for Windows (SAS Institute, 2015).   

 

Results and Discussion 

In vitro proliferation and acclimatisation of P. esculentus shoots 

Plectranthus esculentus shoots were readily proliferated and spontaneously rooted in vitro. There was no 

difference between the multiplication rate (5.0 at a subculture interval of 6 weeks) of diploid and tetraploid plants, 

although the tetraploid plants did have a tendency for thicker stems and larger leaves in vitro than the diploids. 

Both diploid and tetraploid plants were readily acclimatised in the mistbed using the methods described, and 

transplanted into 1 l potting bags 3-4 weeks after acclimatisation.  
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Verification of polyploid induction of in vitro shoot cultures P. esculentus using flow cytometry analysis 

 

Flow cytometry analysis facilitated the identification of pure polyploid plants from the colchicine-treated 

population containing diploids, mixoploids and polyploids. Polyploidy was induced in in vitro shoots of 

Plectranthus esculentus for all treatments except the three day 10 g l-1 colchicine treatment where all shoots died. 

A relatively high percentage of tetraploids was induced and survived for the overnight, 1.0 g l-1 (20.40%), three 

day, 0.1 g l-1 (11.20%) and three day, 1.0 g l-1 (26.80%) treatments (Table 1). No octoploids were identified. The 

interaction of exposure time and colchicine concentration (p-value = 0.5501) as well as exposure time and ploidy 

interaction (p-value = 0.9987) were not significant. Further, an investigation of comparison of means for the 

interaction between concentration and ploidy level was also not significant. However treatment of nodes at             

10 g l-1 at both exposure times tested appeared to be toxic based on the extremely high mortality of shoots. Earlier 

studies reported that successful chromosome doubling is dependent on explant type, duration of exposure and 

concentration of colchicine as well as the genome doubling capacity of the species under investigation (Khosravi 

et al. 2008; Sun et al. 2009; Dhooghe et al. 2011) and therefore each species requires testing.  

Table 1 Effect of colchicine exposure time and concentration on polyploidy induction of in vitro shoots of 
Plectranthus esculentus. Data is expressed based on the number of nodes surviving as a percentage of the total 
number of nodes treated for each exposure time and concentration. 
 

Treatment (g/l) 2n (%) 2n/4n (%) 4n (%) 4n/8n (%) 8n (%) 

       

Overnight 0.00 100.0 0.00 0.00 0.00 0.00 

 0.01 29.60 0.00 2.40 0.00 0.00 

 0.1  54.80 0.00 7.60 0.00 0.00 

 1.0  42.00 0.00 20.40 0.00 0.00 

 10.0  2.80 1.20 0.40 0.00 0.00 

 

3 days 

 

0.00 

0.01  

 

100.0 

90.40 

 

0.00 

4.80 

 

0.00 

1.60 

 

0.00 

0.00 

 

0.00 

0.00 

 0.1 8.80 8.80 11.2 4.0 0.00 

 1.0  26.80 0.00 26.80 0.00 0.00 

 10.0 0.0 0.0 0.0 0.0 0.0 
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Morphological characteristics of polyploid P. esculentus plants 

In contrast to diploids, induced tetraploid plants showed marked differences amongst various morphological 

characteristics compared with the diploids (Table 2). Tetraploid plants had, on average, fewer stems than their 

diploid progenitors (11 stems per plant compared with 24 stems per plant, respectively). Furthermore, stem 

diameter, was also significantly larger for the induced tetraploids compared with the diploids (5.30 mm compared 

with 3.29 mm, respectively), although there was no difference in plant height. Leaf index, an indication of leaf 

shape, was higher for the tetraploids than the diploids, but it was not significant. Leaves of the tetraploid plants 

were a darker shade of green than the diploids.  The alteration of leaf morphology of P. esculentus is in line with 

reports that polyploidisation can alter plant morphology, phenology and physiology (Levin 2002). In a review of 

polyploidy in plants, Tate et al. (2005) reported on a variety of well-documented studies in which ploidy level 

alterations can result in higher growth rates, increased secondary metabolite production as well as larger vegetative 

and reproductive plant parts – particularly in ornamental and food crops. 

 

 

Table 2 Comparison of various plant characteristics between diploid and tetraploid Plectranthus esculentus plants. 
n = 12 each for diploid and tetraploid plants, 3 replicates, P<0.05). Different letters within columns represent 
significant differences. 

 

 

 
Number of 
stems/plant 

 

 
Stem diameter 

(mm) 

 
Leaf index 

(breadth/length) 

 
diploid  24.0b 3.29a 0.41a 

 
tetraploid  

 
11.0a 5.30b 0.51b 
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Nutritional characteristics of polyploid P. esculentus plants 

Tuberous crops are cultivated for their starch-rich storage organs which are a rich source of energy in the form of 

carbohydrates, including starch. There is a dearth of literature describing the impact of induced polyploidy on 

starch content of tubers. However, most commercial tuber crops such as potato, sweet potato, yam and cassava 

are all polyploid, many of them being high-yielding triploid varieties (Atherton and Rees 2008) compared with 

the diploids. Although dry matter content, a characteristic important in the improvement of tuber crops, was not 

significantly different between the diploid and tetraploid plants (results not shown), tuber starch content of the 

tetraploid plants was significantly higher than that of  the diploids (47.1% on a dry weight basis compared with 

40.0% for the diploids). Although these figures are lower than that reported previously for P. esculentus (Temple 

et al. 1991), this difference may be ascribed to factors such as cultivation, edaphic conditions or analytical 

procedures. The starch content still remains significantly higher than potato, 17.1%,  (Potato Board, 1980) and 

sweet potato, average of 23%, (ARC, 1979).  β-Carotene, an important anti-oxidant in tuber crops and precursor 

of provitamin A, while higher for the tetraploids than the diploids, it was not significantly so, 0.112 mg kg-1 

compared with 0.07 mg kg-1 respectively, under the cultivation conditions of the experimental trial (Table 3). 

Vitamin A is an essential vitamin and is required for the development and maintenance of eyesight. An extreme 

deficiency can ultimately lead to the development of blindness. Vitamin A is also required by the body for healing 

processes after wounding or infection. Polyploidy affects the biosynthesis of a number of metabolites of a variety 

of biochemical pathways in plants and are generally present in higher concentrations in polyploids than diploids. 

Several studies involving the mechanism/s thereof have been carried out (Dhawan and Lavania 1996; Zhang et 

al. 2005; Caruso et al. 2011) although there are few studies describing the effect of polyploidy on β-carotene 

biosynthesis and levels in induced polyploids. Jaskani et al. (2005), however, reported that β-carotene content was 

higher in induced tetraploids of watermelon compared with the diploids. There were no significant differences 

between diploids and tetraploids in terms of any of the other macro- and micronutrients evaluated (Table 4), but 

this, together with the effect of polyploidy on β-carotene, needs to be investigated further under in-field cultivation 

conditions which are sub-optimal compared with a pot trial.    
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Table 3 Comparison between selected nutritional values of tubers harvested from diploid and tetraploid  
P. esculentus plants. n = 12 each for diploid and tetraploid plants, 3 replicates, P<0.05). The same letter across 
rows indicates no significant difference. (results are expressed as fresh weight) 
 
 

 
Component 

 

 
Diploid 

 
Tetraploid 

Ash (%) 0.64a 0.61a 
Protein (%) 0.82a 0.79a 
Carbohydrates (%) 21.78a 18.99a 
Fat (%) 0.198a 0.268a 
Starch (g/kg) 400a 470b 
β-Carotene (mg/kg) 0.07a 0.112a 
Vitamin B1 (mg/100g) 0.01a 0.01a 
Vitamin B2  (mg/100g) 0.01a 0.01a 
Alanine (g/100g) 0.042a 0.036a 
Aspartic acid (g/100g) 0.056a 0.050a 
Glutamic acid (g/100g) 0.07a 0.06a 
Histidine (g/100g) 0.04a 0.056a 
Isoleucine (g/100g) 0.032a 0.032a 
Leucine (g/100g) 0.034a 0.032a 
Lysine (g/100g) 0.038a 0.034a 
Methionine (g/100g) 0.01a 0.01a 
Phenylalanine (g/100g) 0.036a 0.032a 
Proline (g/100g) 0.028a 0.022a 
Serine (g/100g) 0.034a 0.032a 
Threonine (g/100g) 0.046a 0.042a 
Tyrosine (g/100g) 0.022a 0.028a 
Valine (g/100g)  0.038a 0.036a 
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Table 4 Comparison between selected mineral values of leaves and tubers harvested from diploid and tetraploid  
P. esculentus plants. n = 12 each for diploid and tetraploid plants, 3 replicates, P<0.05). The same letter across 
rows indicates no significant difference. Results are presented as per dry mass. 
 
 

 
Component 
 

 
diploid 

 
tetraploid 

 
LEAVES 

 
N (%) 2.65a 3.10a 
P (%) 0.154a 0.153a 
K (%) 2.01a 2.23a 
Ca (%) 1.11a 1.00a 
Mg (%) 0.554a 0.546a 
Zn (mg/kg) 46.75a 41.75a 
Cu (mg/kg) 9.00a 8.33a 
Mn (mg/kg) 804a 714.14a 
Fe (mg/kg) 94.91a 91.63a 
B (mg/kg) 32.5a 19.7a 

 
TUBERS 

 
N (%) 0.59a 0.63a 
P (%) 0.122a 0.125a 
K (%) 1.22a 1.14a 
Ca (%) 0.10a 0.08a 
Mg (%) 0.149a 0.141a 
Zn (mg/kg) 17.00a 17.40a 
Cu (mg/kg) 3.40a 4.00a 
Mn (mg/kg) 16.60a 17.5a 
Fe (mg/kg) 34.50a 34.75a 
B (mg/kg) 17.40a 18.8a 
Na (%) 0.0238a 0.0212a 

 

Tolerance of polyploid plants to nematodes 

One of the most significant biotic factors affecting any tuber crop is nematode infestation. Nematodes cause 

significant yield losses and applications of both chemical and environmentally-friendly products to reduce the risk 

of damage to crops is an industry worth millions of US dollars. Management strategies, as well as breeding and 

selection of more tolerant varieties, is critical for any tuber crop industry (Jones et al. 2011). Plectranthus 

esculentus is highly susceptible to rootknot nematodes (Meloidogyne spp.). Tetraploid and diploid plants were 

challenged with rootknot nematodes in a pot experiment to determine if polyploidy resulted in any degree of 

tolerance. The results of the trial showed that tetraploid plants were significantly more tolerant to rootknot 

nematodes (Table 5). There was a significant difference in the number of egg masses per root system for the 

diploids compared with the tetraploids. Tetraploid plants had a significantly lower egg mass number per root 

system compared with the diploids (7.9 egg masses/root system compared with 28 egg masses/root system, 
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respectively). Tetraploids were therefore found to be moderately resistant to rootknot nematodes compared with 

the diploids which were highly susceptible according to the classification system of Murray et al. (1986). 

Similarly, the number of eggs and J2 per root system was also significantly lower for the tetraploids compared 

with the diploids, 3196 compared with 12187, respectively). The reproduction factor (Rf-value) is an indication 

of tolerance to nematode infestation, the lower the Rf-value the more tolerant the plant species is to nematode 

attack. Tetraploids had a significantly lower Rf-value, 3.17, compared with the diploids, 12.15. Although there 

was a significant improvement in nematode tolerance over the diploids, host status is considered good compared 

with diploids with a host status defined as excellent according to the Rf classification system described by 

Windham and Williams (1988). In this study, the tolerance of tetraploids compared with diploids to rootknot 

nematode was investigated and examination of tuber anatomy at light microscope level did not reveal any 

fundamental differences between the induced tetraploids and diploids prior to nematode challenging, nor after 

challenging, possibly due to the young plant age. However, future histopathological studies may reveal symptoms 

of nematode infestation such as feeding sites and associated changes in cell structure on more established plants. 

In potato, rootknot nematode damage to tubers which is characterised not only by losses in yield, but damage can 

manifest as blistering on the surface of tubers as well as internal browning (Vovlas et al. 2005). Furthermore, 

Jatala et al. (1982) reported that externally-visible symptoms may only develop after a period of storage after 

internal symptoms have developed on potato. This manifestation of tuber damage is critical in terms of P. 

esculentus tubers which are commonly stored for relatively long periods of time before consumption or re-

establishment (van Wyk and Gericke 2000) and this should be investigated further. Moreover, there is the 

possibility that growers unwittingly facilitate the spread of nematodes using diseased seed tubers which may not 

yet exhibit symptoms externally.  

Table 5 Comparison of number of egg masses per root system, number of eggs and J2 per root system and 
reproduction factor value for diploid and tetraploid Plectranthus esculentus plants inoculated with J2 and eggs of 
Meloidogyne species. n = 15 each for diploid and tetraploid plants, 3 replicates (P<0.05). Different letters within 
columns represent significant differences. 

 
 

  
Number of egg masses 

per root system 

 
Number of eggs and J2 

per root system 

 
Reproduction factor 

value (Rf-value) 
 

 
Diploid 

 
28b 12187b 12.15b 

 
Tetraploid 

 
7.9a 3196a 3.17a 
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Future prospects regarding improvement  

Almost no breeding and selection or improvement has been carried out on Plectranthus esculentus. This is the 

first report on the improvement of this species using artificial polyploid induction. Furthermore, it is also one of 

the few published reports on the induction of nematode tolerance in induced polyploid plants. Although the 

histopathological response/s and manifestation of symptoms of infestation as well as the mechanism of tolerance 

to nematodes by the tetraploid plants still needs to be elucidated, polyploid induction could provide a valuable 

tool in improving nematode-tolerance in a number of crops; however, the effect of polyploidy on other critical 

horticultural characteristics such as yield and crop quality would need to be taken into account and investigated. 

Physiological investigations i.e. assimilation and water stress studies are being explored further after preliminary 

investigations revealed that the tetraploids appeared to have higher assimilation rates and superior water stress 

tolerance than the diploids.   
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Abstract  

Siphonochilus aethiopicus (wild ginger) is one of only several thousand plant species 
used in traditional medicinal preparations in South Africa. The plant is threatened with 
extinction and is already extinct in the wild in the KwaZulu-Natal Province and is 
increasingly threatened in the Mpumalanga Province where small populations are 
reported to exist. The cone-shaped rhizomes and fleshy roots are extremely popular and 
are widely used in traditional medicines which include treatments for asthma, hysteria, 
colds, coughs and flu, as well as malaria, amongst others. Due to the unsustainable wild 
harvesting of this species, efficient in vitro micropropagation and acclimatization 
protocols were developed in efforts to conserve the species. Furthermore, using the 
aforementioned protocols, induced polyploid selections were developed in vitro and 
verified using flow cytometry. The effect of polyploidy on wild ginger with respect to 
selected horticultural characteristics was evaluated. 

 
Keywords: Siphonochilus aethiopicus, tetraploidy, horticultural characteristics, 

micropropagation 
 

INTRODUCTION  
Over 4,000 plant species are used in traditional medicines throughout southern Africa. Uses 

are as diverse as the ailments being treated and Siphonchilus aethiopicus is no exception. The 
plant is highly prized for its medicinal value and as a result has been over harvested from the wild 
almost to extinction and consequently is currently listed in the Red Data book of South African 
plants. Although the species was widespread, it is now thought to be extinct in the wild in 
KwaZulu-Natal and only small populations are reported to exist in Mpumalanga (van Wyk and 
Gericke, 2000). Siphonochilus aethiopicus, or wild ginger, (Family Zingiberiaceae) has aromatic 
rhizomatous roots and grows on forest floors. The leaves are deciduous and sprout annually from 
the underground stems in spring and plants reach a height of 500 mm to 1 m. The leaves are 
lance-shaped and borne on the end of stem-like leaf bases. Small berry-like fruits are produced at 
or near ground level after the flowers (October to February) which are extremely short-lived.  The 
large flowers are extremely delicate and may vary in colour from bright pink to white with a 
yellow centre and are delicately scented. The cone-shaped rhizomes and fleshy roots are sold on 
the traditional medicine (muti) markets in South Africa. The highly aromatic roots have a variety 
of medicinal and traditional uses. It is used by the Zulu people as a protection against lightning  
________________________________________________ 
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and snakes. The rhizomes and roots are chewed fresh to treat asthma, hysteria, colds, coughs & 
flu. A preparation is administered to horses as prevention against horse sickness. Wild ginger is 
used by the siSwati people to treat malaria and is chewed by women during menstruation 
(Hutchings, 1996). 

Improvement of selections in terms of yield is an important factor in terms of the survival 
of the species as well as sustainability of harvesting. Polyploidy, or chromosome doubling, has 
been reported to result in an increase in not only crop yields but also increases in size and 
function of plant parts such as flowers, roots, tubers, leaves as well as photosynthesis and 
secondary metabolite production. In previous experiments carried out in our own laboratories as 
well as others (Smith et al., 2004; Kun-Hua et al., 2011) on induced tetraploids of culinary ginger, 
Zingiber officinale. Substantial increases in leaf length and width and tuber and flower size were 
recorded. It was with these results in mind that we investigated the effect of polyploidy on wild 
ginger with regard to plant morphology, biomass and potential yield. 
 
METHODS AND MATERIALS 
 
Establishment of in vitro cultures of Siphonochilus aethiopicus 

S. aethiopicus rhizomes were sterilised using various sterilising agents and time intervals 
as follows. Rhizomes were initially rinsed until all visible soil was removed, 5 min before being 
placed into a solution of 2 g L-1 CAPTAB (active ingredient: captab at 500 g kg-1; Villa Crop 
Protection) fungicide for 2 h. Thereafter, rhizomes were treated with a 1% [v/v] solution of 
calcium hypochlorite (CaOCl, 680 g kg-1) containing a few drops of detergent for 15, 20 or 30 min 
before being rinsed 3 times with sterile distilled water. Rhizome buds were excised from the 
rhizomes using a sharp scalpel blade and cultured individually in culture tubes containing the MS 
(Murashige and Skoog, 1962) nutrients and vitamins, 30 g L-1  sucrose and solidified with 3 g L-1  
Gelrite.  Buds which did not show any contamination by bacteria and/or fungi were transferred 
to fresh nutrient medium supplemented with 1 mg L-1 benzylaminopurine (BAP) for proliferation. 
Shoots were then cultured on various combinations of cytokinins and auxins in efforts to 
stimulate increased rates of shoot multiplication. Single shoots were cultured on medium 
containing either 1 mg L-1, 2 mg L-1 or 4 mg L-1 BAP or Kinetin (KIN), alone or in combination with 
1 mg L-1  indoleacetic acid (IAA). Multiplication rates were assessed over a period of 12 months 
with explants being subcultured every 4 weeks. To further stimulate shoot proliferation, shoots 
were longitudinally sliced and cultured on medium supplemented with 2 mg L-1 BAP (Smith et al., 
2004). The proliferation rate of these ‘half’ shoots was compared with that of the whole shoots. 
 
Acclimatization of in vitro shoots 

Tissue cultured plants of a range of sizes, with (average 6mm shoot base diameter and 30 
mm shoot height) and without roots (average 4.5 mm rhizome diameter & 30mm shoot height), 
were planted into seedling trays containing a 1:1 mixture of pine bark and coarse sand. Before 
planting, plantlet height and rhizome diameter were measured before being dipped in captab 
fungicide. The trays were placed in the mist bed for 4 weeks before the plants were transferred 
to individual potting bags. Shoot growth rate, root length, rhizome size (diameter) and 
development of root storage organs were recorded. 

  
Induction of polyploidy of in vitro shoots 

‘Half’ and ‘whole’ shoots were treated with colchicine at 3 different concentrations (0.01 g 
L-1, 0.1 g L-1 and 1.0 g L-1) in colchicine solutions either overnight or for 3 days. After treatment, 
explants were transferred aseptically onto proliferation medium supplemented with 2 mg L-1 
BAP. Axillary shoots were allowed to grow out and proliferate over four generations before ploidy 
levels were verified using flow cytometric analysis. 
 
Verification of ploidy level of colchicine-treated shoots 

Leaf samples of maximum 1 cm2 in size were harvested from axillary shoots and nuclei 
isolated and stained according to standard methods as described by Partec (Germany) using the 
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Partec Cystain® kit for nucleus isolation and staining. Ploidy level determinations were carried 
out using a Partec Cyflow Space ploidy analyser and histograms obtained for each sample. To 
ensure that plants with leaves verified as tetraploid were solid polyploids, rhizomes were also 
analysed. Non-chimeric polyploid plants were proliferated using the methods outlined above for 
further evaluation. 
 
Evaluation of selected horticultural characteristics 

Various horticultural characteristics including stomatal distribution, plant height, leaf 
length and width, growth rate and biomass of leaves and rhizomes, were evaluated. Epidermal 
peels were produced by applying a layer of clear nail varnish to the adaxial surface of the leaf, 
allowed to dry and then peeled off using sticky tape which was subsequently stuck onto a 
microscope slide and viewed. Number of stomata per square mm were counted using a Nikon 
E400 Eclipse microscope at 400x magnification. Twelve plants were analysed, with five fields of 
view recorded and averaged for each ploidy level. Biomass was calculated by drying leaves for 3 
days in a drying oven (70°C) and comparing with the fresh weight of harvested leaves.  
 
Statistical analysis 

The experimental layout for all trials was a complete randomised design (CRD) with 3 
replications with a minimum of twelve plants per replicate. Student’s t test was carried out to 
determine significant differences in the results obtained at 5% significance level. 
 
RESULTS AND DISCUSSION 
 
Effect of growth regulators and explant type on in vitro shoot proliferation of Siphonochilus 
aethiopicus shoot cultures 

None of the sterilisation methods investigated produced significantly better results than 
any other in terms of promoting successful initiation of rhizome buds into the aseptic 
environment. As such, any further investigations used disinfestation procedures which entailed 
a 30 sec wash in 70% [v/v] ethanol, followed by 30 min in a 1% [v/v] CaOCl (680 g kg-1 active 
ingredient) solution and subsequently 3 rinses with sterile distilled water prior to placing 
rhizome buds onto the culture medium. Uncontaminated buds were initially transferred to a 
nutrient medium comprising MS nutrients and vitamins, 30 g L-1  sucrose and solidified with 3 g 
L-1 Gelrite. The medium was supplemented with 1 mg L-1 BAP to induce shoot proliferation; 
however, after 4 generations, the multiplication rate remained exceptionally low, 1.54. The best 
shoot proliferation rate was obtained when shoots were transferred to the same medium 
supplemented with 2 mg L-1 BAP whilst the multiplication rate of shoot cultures remained below 
2.0 for all the other growth regulator combinations tested (Table 1). Since shoot cultures showed 
extremely slow proliferation rates, in attempts to increase the rate, shoots were longitudinally 
sectioned (termed ‘half’ shoots) in an attempt to break apical dominance and thereby increase 
multiplication. The multiplication rate was significantly increased and an average proliferation 
rate of 4.38 was obtained on medium supplemented with 2 mg L-1 BAP. In all instances, medium 
containing BAP only, resulted in higher multiplication rates than any of the other treatments. A 
very high percentage of leaf senescence was observed in shoot cultures where KIN was used as 
growth regulator compared with any of the other treatments. 

  
Effect of plant size and the presence of roots on acclimatisation of tissue cultured plants 

Tissue culture methods provide a means for the proliferation of the species but any 
micropropagation method’s success is dependent on whether or not the in vitro shoots can be 
acclimatized to ambient conditions. In our study, both the size of the plantlets (shoot height and 
rhizome diameter) and the presence or absence of roots on deflasking were identified as potential 
limiting factors to successful acclimatization. For both shoots planted out without roots and for 
plantlets with roots a 87% success survival rate was achieved. For all horticultural characteristics 
evaluated, there were significant increases in plant height, leaf width and length as well as 
number of stems per plant and rhizome diameter from plants with roots 3 months after 
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deflasking (Table 2). Plantlets originating from both shoots without roots and plantlets with 
roots, showed development of new rhizomes from the original rhizome. From the results 
obtained, acclimatization success and development of root storage organs do not appear to be 
affected by the size of the explant or the presence/absence of roots on deflasking. Plantlets 
originating from rootless shoots were of a similar size to those deflasked with roots 6-8 weeks 
after transfer to potting bags. A considerable benefit of being able to plant out very small, rootless 
tissue culture shoots is the major cost- and time-saving obtained if the final step (plant growth 
and rooting) in the tissue culture protocol can be eliminated. There was no difference between 
diploid and tetraploid plants in terms of acclimatization success. 

 
Effect of colchicine treatments on polyploidy induction in Siphonochilus aethiopicus 
explants 

Polyploidy was induced in ‘half’ shoots only and  furthermore, only the colchicine treatment 
at a concentration of 0.1 g L-1  over a period of 3 days, resulted in the induction of tetraploids and 
then only at a rate of 4.44% of the shoots treated (Table 2). There was no difference in plant 
survival rate between treatments and all polyploid shoots survived. No tetraploids were induced 
for the overnight treatment at the same concentration. No mixoploids or non-chimeric polyploids 
were induced in shoots treated with 0.01 g L-1 colchicine over 3 days and a similar trend was 
observed for the overnight treatment at the same concentration. Diploid:tetraploid mixoploids 
were detected for all treatments except the overnight 1 g L-1  treatment. No tetraploid:octoploid 
mixoploids or octoploids were detected for any of the treatments. Mortality rate increased with 
increasing concentration and exposure time. 

 
Effect of polyploidy on selected horticultural characteristics 

A summary of the comparison of diploid and tetraploid lines for selected horticultural traits is 
presented in Table 4. 
 
1. Stomatal distribution in leaves.  

Stomatal distribution in tetraploids was significantly lower than in diploids with the 
diploids showing on average 73 stomata per square millimetre compared with 40 stomata per 
square millimetre for the tetraploids, i.e. 1.8X increase in stomatal density. This phenomenon is 
commonly observed in polyploid plants and lower stomatal density is reported to be indicative 
of improved adaptation to such environmental stressors such as water stress (Li et al., 1996; 
Maherali et al., 2009) and changes in atmospheric CO2 concentration (McElwain and Chaloner, 
1995; Kürschner et al., 2008). 

 
2. Biomass of leaves.   

Leaves harvested from tetraploid plants had a significantly higher biomass compared with 
diploid progenitors. It is expected that the rhizomes will also have a higher biomass and, in the 
case of the rhizomes, this could have significant consequences in terms of not only rhizome yield 
per plant and therefore per hectare, but also the yield of secondary metabolites. In medicinal plant 
species, the leaves, stems, flowers, and roots are often the parts used in traditional medicines as 
they are the source of the active compounds and S. aethiopicus is no exception (Zhang et al., 2008). 
The increased biomass of polyploid plants is therefore a very attractive characteristic in plant 
improvement and further study on yield and active component composition is ongoing.  

 
3. Plant morphology and growth rate.  

Although there were no significant differences in plant height when diploid and tetraploid 
plants were planted out for acclimatization (plants averaged a height of 30 mm regardless of 
ploidy level), there were marked differences in leaf morphology. Tetraploid plants had 
significantly shorter and broader leaves than the diploids. However, 3 months after 
establishment, tetraploid plants had significantly longer leaves than the diploids, averaging 145 
mm in length compared to 67. Leaf width, however, was significantly broader in tetraploids. The 
tetraploid plants also appeared to have a faster growth rate than the diploid controls. Even though 
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diploid and tetraploid plants of the same height were planted out, 3 months after planting, 
tetraploid plants were significantly taller than diploids (211 mm vs  55 mm, average values). 
Similar results were obtained when polyploidy was induced in culinary ginger, Zingiber officinale 
(Smith et al., 2004; Kun-Hua et al., 2011). Tetraploid plants had significantly larger rhizomes than 
the diploid plants for the tetraploids compared with the diploids. Interestingly, the tetraploids 
had, on average, 3.25 stems per plant compared with the diploid plants which had an average of 
1.25 stems per plant 3 months after planting. Morphological differences between induced 
tetraploids and their diploid progenitors of a wide variety of plant species have long been 
reviewed (Gates, 1909; Stebbins, 1947; Stebbins, 1971; Levin, 2002; Knight & Beaulieu, 2008) 
and several agriculturally and economically-important tuberous/rhizomatous species, i.e. potato, 
sweet potato, yam, banana, etc., are polyploid. 
 
CONCLUSIONS 

A method for successful in vitro production of tetraploids was developed for Siphonochilus 
aethiopicus. Furthermore, acclimatized tetraploid S. aethiopicus plants were morphologically 
distinct from the diploids in that they had larger leaves and a higher growth rate as measured 3 
months after deflasking. Tetraploid plants had fewer stomata than the diploids. Future 
investigations will include the effect of polyploidy on both rhizome and essential oil yield as well 
as potential effects on the composition of secondary metabolites. 
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Tables 
 
Table 1. Effect of plant growth regulator on multiplication rate of different explants (‘whole’- and 

‘half’ shoots) of in vitro Siphonochilus aethiopicus over a period of 24 weeks (3 replicates, 
n=30 per replicate, P0.05). Different superscripts indicate a significant difference at 
P≤0.05.  

 

Plant growth regulator 
Composition (mg L-1) 

Explant type 
‘whole’ shoots ‘half’ shoots 

1 BAP 1.74a 1.94b 
2 BAP 3.32a 4.41b 
3 BAP 1.47a 1.74b 
   
1 BAP + 1 NAA 1.63a 1.78a 
2 BAP + 1 NAA 2.06a 2.14a 
4 BAP + 1 NAA 1.46a 1.57a 
   
1 KIN 1.40a 1.56ab 
2 KIN 1.52a 1.66a 
3 KIN 1.43a 1.56ab 
   
1 KIN + 1 NAA 1.35a 1.38a 
2 KIN + 1 NAA 1.91a 2.01a 
4 KIN + 1 NAA 1.39a 1.43a 

 
 
Table 2. Comparison of various factors potentially impacting on the survival of in vitro shoots and 

plantlets of Siphonochilus aethiopicus (n = 30, 3 replicates). For each trait, different 
superscripts indicate a significant difference at P≤0.05 either at planting or after 4 weeks 
acclimation. 

 

Factor 
Plantlets 
with roots 

Shoots 
without 
roots 

Plantlets with 
roots 

Shoots without 
roots 

 (at planting) (4 weeks acclimation) 

Hardening-off success rate - - 87.7a 87.4a 
Average shoot height (mm) 53.2a 40.8ab 114.2 (115%)a 80.4 (97%)b 
Average root length (mm) - - 170.4a 90.2b 
Percentage plants developing 
root storage organs 

- - 62.5a 60.7a 

Average rhizome diameter 
increase (mm) 

6.4a 4.2b 9.2 (44%)a 5.5 (30%)b 
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Table 3. Effect of colchicine concentration and exposure time on polyploidy induction in in vitro 
shoots of Siphonchilus aethiopicus. Leaf explants of approximately 1cm2 were harvested 
from in vitro shoots for analysis. 

 

Imbibition 
time 

Treatment 
(g L-1) 

Percentage 
2n 

Percentage 
2n/4n 

Percentage 
4n 

Percentage 
4n/8n 

Percentage 
8n 

Overnight 
(n=200) 

0.01 
(n=133) 

99.25 0.75 0 0 0 

 0.1  
(n=56) 

73.21 26.79 0 0 0 

 1.0  
(n=11) 

100 0 0 0 0 

       
 

3 days 
(n=141) 

0.01 
(n=89) 

100 0 0 0 0 

 0.1  
(n=45) 

86.67 8.89 4.44 0 0 

 1.0 
(n=11) 

71.43 28.57 0 0 0 
 

 
 
Table 4.    Effect of induced polyploidy on selected horticultural characteristics of 

Siphonochilus aethiopicus plantlets (3 replicates, n=12 per replicate). For 
each trait, different superscripts indicate a significant difference at P0.05. 

 

Horticultural trait Diploid Tetraploid 

Stomatal distribution (mm2) 73a    40b 
Plant height at exflasking (mm) 30a    30a 
Plant height after 3 months (mm) 55a 211b 
Leaf width at planting (mm)   8a    16b 
Leaf length at planting (mm) 58a    45b 
Leaf width after 3 months (mm) 13a    29b 
Leaf length after 3 months (mm) 68a 145b 
Number of stems per plant after 3 months 1.25a 3.25b 
Rhizome diameter (mm) 10a   18b 
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CHAPTER 7: CONCLUDING REMARKS AND  

FUTURE RESEARCH DIRECTIONS 

 

7.1 Introduction 

Southern Africa’s vast plant diversity of almost 30 000 angiosperm species accounts for 10% of the 

world’s flowering plants. The area is also rich in cultural diversity with a history of plant use and 

ethnobotanical knowledge. Southern Africa’s plants have been used in beverages, as important 

medicinal preparations as well as in traditional arts and crafts. Even though the traditional knowledge 

base has been vastly reduced due to changes and moves towards modern health care, education, 

urbanization and moves towards agricultural production away from subsistence farming, the inherent 

traditional knowledge systems still remain. Fortunately, a vast amount of this knowledge has been 

formally recorded (Watt and Breyer-Brandwijk, 1962; Hutchings, 1996; van Wyk and Gericke, 2000) 

by champions of southern African ethnobotany. Although scientific study and documentation remains 

under-developed, this study area has relatively recently received a vast amount of impetus with several 

research groups making great strides towards research in indigenous plant knowledge. Van Wyk and 

Gericke (2000) describe how this impetus has rapidly advanced with the collaborative research efforts 

of government departments, science councils, tertiary education institutions, communities, traditional 

healers and farmers as well as business developers. These kinds of interactions have led to various plant-

derived natural products being developed and marketed on both local and international markets.  

Traditional knowledge is an important aspect of any plant and crop improvement programme as it lays 

the foundation for development. Southern Africa’s diverse plant species with their enormous potential, 

lend themselves to improvement. New crop advancement is required in order to establish opportunities 

for the development of sustainable livelihoods, particularly in the rural sector. One such mechanism is 

through the generation of induced polyploids and this thesis presents case studies of species of different 

familial origins with polyploid development potential. The results of polyploidisation potentially 

represent important plant breeding attributes and therefore further promotes the use of polyploids in 

agriculture. It must be noted, however, that consideration of the socio-economic aspects (such as benefit 

sharing and indigenous knowledge systems) of new crop uptake should be taken into account especially 

where there is a history of usage. 

 

7.2 Summary of research findings 

Although artificial induction of polyploidy has been carried out since the 1930s, and several plant traits 

have been improved upon, there is still enormous scope for development of improved plant varieties – 

no more so than with indigenous southern African species. Doubling the chromosome complement 
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artificially has previously been reported for numerous species across a wide range of plant families. As 

highlighted in Chapter 2, although the effects of chromosome doubling are not predictable they may be 

visible morphologically, biochemically, or not at all. Phenotypic advantages may include morphological 

changes, physiological changes as well as metabolic changes.  Other traits such as resistance to water 

stress and pathogens, improved vase-life and larger vegetative and reproductive structures are often the 

target of breeders and could potentially stimulate the use of polyploids in agricultural crop development. 

The current studies have shown that a variety of characteristics can be affected and furthermore, 

enhanced, through induced polyploidy using colchicine, a mitotic spindle inhibitor. Apart from species 

constraints, conditions for successful polyploidy induction need to be established. Duration of exposure 

as well as the mutagen (colchicine or other mutagen) concentration are key to successful polyploidy 

induction and these were established for each case study. Verification of polyploidy induction is 

generally carried out using flow cytometry which negates the three dimensional and artifact effects of 

chromosome visualisation using microscopy.  

 

For all species used in this study polyploidy was successfully induced and verified using flow cytometry 

and these are the first reports published for each species. The polyploids of each species were evaluated 

for morphological and physiological changes pertaining to floriculture (Crocosmia aurea), enhanced 

nutritional value and nematode tolerance (Plectranthus esculentus), essential oil content and bioactivity 

(Tetradenia riparia) and rhizome size (Siphonochilus aethiopicus). For each case study, several 

questions have arisen and further research is required to (better) understand changes brought about by 

induced polyploidisation events. These are summarized and highlighted below: 

 

1. Crocosmia aurea 

Induced polyploidy was traditionally studied with the aim of crop domestication in terms of 

specific fruit/flower size breeding targets. Several polyploid cut flower and ornamental plant 

species are now standard commercial varieties due to their enhanced size. There are a number 

of economically-important Iris species which are important cut-flower and/or ornamental crops. 

These include a number of Freesia, Gladiolus, Watsonia and Iris species, all of which have been 

improved using chromosome doubling and/or conventional breeding practices. Falling stars 

iris, Crocosmia aurea is a member of the Iridaceae family and has enormous ornamental 

potential. The current studies showed that there was a marked improvement in flower size, 

although the number of flowers per inflorescence stem was reduced.  Further, although 

polyploidy can lead to improvements in fertility, the induced polyploids did not set seed. It is 

speculated that this could possibly be due to altered flower structure and therefore reduced 

access to pollinators. For induced polyploids of Crocosmia aurea highlighted in Chapter 3, 

unanswered questions regarding vase-life effects and the mechanism/s of potentially enhanced 

longevity remain to be studied. 
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2. Plectranthus esculentus 

Plectranthus esculentus (Family: Lamiaceae), or Livingstone potato, is an edible tuberous 

vegetable which originated in Africa. Although the tubers are edible, limited crop improvement 

has been achieved in this under-utilised crop with enormous potential. Further, the crop is 

highly susceptible to rootknot nematode which globally causes extensive losses to a host of 

crops. In this study induced tetraploids were found to be highly tolerant to rootknot nematode 

and were also found to have improved nutritional (starch) value compared with the diploid 

controls. This is one of very few reports on the development of induced polyploids exhibiting 

nematode tolerance and has huge potential for other crops and further molecular breeding 

studies considering the extent of nematode damage to crops and resultant crop and income 

losses world-wide. The mechanism of tolerance is currently unknown and is proposed to either 

be biochemical or physical in nature. Investigations are underway to determine if there are any 

biochemical changes in response to nematode challenge as well as histopathological studies to 

determine if there are physical deterrents to nematode entry. The identification of simple yet 

linked markers for tolerance would facilitate screening, selection and breeding of tolerant 

cultivars – not only for this species but also for other crops highly susceptible to rootknot 

nematode. 

 

3. Tetradenia riparia 

Ginger Bush, Tetradenia riparia (Family: Lamiaceae), is an aromatic shrub that occurs 

throughout tropical Africa and in South Africa, has traditionally been used in the treatment of 

cough, dropsy, diarrhoea, fever, headaches, malaria, and toothache. The essential oils are also 

used in the perfume industry. In this investigation, induced tetraploids contained at least twice 

the amount of essential oil compared with the diploids and the biochemical profile was 

significantly altered in the tetraploids compared with the diploids. Results indicated that the 

essential oils from tetraploid plants significantly inhibited the in vitro growth of Geotrichum 

candidum, an important fungus of post-harvest concern, at different spore concentrations and 

incubation times. Therefore, tetraploid plants produce essential oil with potential to mitigate 

post-harvest diseases. Further research needs to be carried out to determine the potential to 

develop environmentally-friendly products arising from T. riparia. This is the first report on 

the bioactivity of T. riparia essential oil against any fungus. 
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4. Siphonochilus aethiopicus 

Siphonochilus aethiopicus (wild ginger family Zingiberaceae) is one of only several thousand 

plant species used in traditional medicinal preparations in South Africa, albeit one of the most 

widely-used and therefore scarce, species. The plant is threatened with extinction and is already 

extinct in the wild in the KwaZulu-Natal Province and is increasingly threatened in the 

Mpumalanga Province. The cone-shaped rhizomes and fleshy roots are extremely popular and 

are widely used in traditional medicines which include treatments for asthma, hysteria, colds, 

coughs and flu, as well as malaria, amongst others. Previous reports on induced polyploids in 

culinary ginger, Zingiber officinale, showed that rhizome size and yields could be substantially 

improved, hence the study on S. aethiopicus. Preliminary findings showed that polyploid plants 

had a higher growth rate and rhizome size compared with their diploid progenitors – even at a 

relatively young age. Polyploids also showed a tendency to be more cold-tolerant during the 

winter months and did not become completely deciduous, however this needs further 

investigation. Such changes in phenology could indicate higher assimilation rates during the 

colder winter months and therefore greater propensity for storage of assimilates and therefore 

faster growth rate of rhizomes. An assessment of changes in bioactive compounds will need to 

be carried out to determine the effect of polyploidy on these compounds. 

 

7.3 Strategies for future research in terms of breeding and molecular breeding strategies for the 

elucidation of control mechanisms and gene expression 

Polyploid plants have more than two complete sets of chromosomes and are common in the angiosperms 

(Stebbins, 1947; Gregory and Mable, 2005). Evolution and speciation have arisen as a result of 

naturally-induced polyploidisation events and plant breeders have sought to harness this natural 

phenomenon for the improvement of useful plant species Soltis et al. (2009). Many crops including 

cereals, legumes, industrial plants, tuberous plants, fruit trees and forage grasses are polyploid, both 

natural and induced. Novel phenotypes and a higher degree of variation compared with the parental 

diploids is often, but not always, observed following polyploidisation events (Otto and Whitton, 2000). 

Phenotypic differences may include alterations in morphology, physiology and biochemistry and with 

these alterations come traits such as drought tolerance, pest and disease tolerance, alterations in 

flowering time as well as larger vegetative (e.g. tubers) and reproductive (e.g. flowers and fruits) organs, 

some of these conferring increased ability to withstand non-optimal conditions. This has led to the 

development of several polyploids of agricultural importance (Renny-Byfield and Wendel, 2014).  

 

In the current investigation, based on the incredible diversity of differences across all the case studies 

summarised above, further research will require deciphering of biological processes and their control 

mechanisms on a case-by-case basis. New genomics tools through the use of genome-wide and targeted 
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approaches should assist in unravelling such biological mechanisms for use in breeding and 

improvement programmes.  Knowledge accumulated on polyploid development and subsequent 

performance at genome level can assist plant breeders in designing strategies for crop improvement 

using induced polyploidy. Madlung (2013) described three major advantages of polyploids over 

diploids. The first being that the increased allele number should mask deleterious effects of recessive 

mutations thereby ensuring against loss of viability. Secondly, heterosis allows the polyploid’s 

subsequent generations to have transgressive performance compared with the diploid where hybrid 

vigour can be drastically reduced due to homologous recombination. A third advantage, and the most 

important in terms of polyploid crop performance is the potential that duplicated gene copies evolve 

and assume altered or even new functions which would allow for expansion into niche environments or 

increased ability to respond to biotic and/or abiotic stress events.  

 

Advances in the field of genomics as well as genome sequencing are now beginning to provide the 

opportunity for discovering and monitoring the molecular basis of polyploidisation. It is thought to be 

correlated with genomic sequence and changes in gene expression and as such there are vast differences 

between diploids and polyploids in terms of gene expression (Adams and Wendel, 2005; Jackson and 

Chen, 2010; Birchler, 2012; Hegarty et al., 2013). There is a slew of recent literature highlighting the 

fact that advantageous or deleterious changes in polyploids compared with their progenitors are due to 

changes in transcriptomes, genomic architecture, gene silencing or activation as well as loss of DNA 

making polyploids markedly different from their diploid progenitors (Soltis et al., 2009; Olsen and 

Wendel, 2013; Renny-Byfield and Wendel, 2014; Zhang et al., 2014; Borrill et al., 2015).  Several 

methods including in situ hybridization, marker-based genetic mapping, comparative genome analysis, 

high-throughput sequencing and high resolution melting analysis, and others, have all been used for 

genome analysis of polyploids. Northern hybridization and CDNA-AFLPs (amplified fragment length 

polymorphism transcript profiling), SSCP (single strand conformational polymorphism), microarrays 

and high throughput RNA sequencing are used in the quest for exploring and understanding gene 

expression and regulation analysis (Aversano et al., 2012). The discovery of SNPs (single nucleotide 

polymorphisms) has led to the development of high throughput genotyping of large populations where 

genetically-mapped SNPs are now commonly used in breeding programmes (Bundock et al., 2009). 

SNP discovery is also exceptionally useful for sequencing individuals with contrasting phenotypes 

(such as in the case of polyploids which are phenotypically distinct from their diploid progenitors) to 

identify specific markers for a trait/s of interest thereby facilitating breeding towards specific outcomes. 

 

With technology improving at a rapid rate and the application of genomic tools, polyploidy research is 

expanding rapidly such that studies involving multidisciplinary approaches will facilitate the translation 

of genomic knowledge gained into practical application. Next-generation sequencing in particular will 

not only advance gene and marker discovery but will also facilitate the quantification of gene expression 
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– such as those coding for resistance, secondary metabolites and assimilation. New genomic resources 

will increase the ability to identify, understand and even facilitate the manipulation of allele variation 

and hence phenotypic variation thus allowing this variation to be made available for breeding, selection 

and improvement of crops – although this is as yet not fully understood (Moghe and Shiu, 2014).  

Although there remain a number of unanswered questions regarding polyploidy and the success of 

polyploid plants compared with diploids, particularly the genetic basis of what constitutes success, 

improvement of crops, including South Africa’s plant resources, using artificial polyploidy induction 

has the potential for developing improved varieties. These polyploid varieties may be resistant to abiotic 

and biotic stressors associated with climate change (drought, pests, diseases etc.) and at the same time 

address the issue of food security in a world where food resources are becoming scarcer.  
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SouthAfrica is home to approximately 10% of theworld'sflora,many ofwhich are endemic to the country. A large
number of South African genera have been improved for horticultural use and many of these are economically
important as cut flowers or ornamentals on international markets. The genus Crocosmia, an attractive member
of the family Iridaceae, has potential both as an ornamental plant and for cut flower production, althoughmarket
potential of the species may be increased by improving the size of the flowers and inflorescence. Polyploidy has
been used as a tool in the improvement of ornamental plants and has led to the development of several improved
ornamental species. This study established a micropropagation protocol for Crocosmia aurea, using seed as the
source material. Tetraploidy was induced by treating seeds with colchicine. These seeds were subsequently
germinated and multiplied in vitro using the established protocol. The resulting tetraploid plantlets
were successfully hardened-off andused to study the effect of the induced tetraploidy on the plant characteristics.
The tetraploid (4n) plants were found to have longer, wider leaves as well as longer inflorescence stems
and fewer, but larger, flowers than their diploid (2n) counterparts. These polyploid selections have potential in
the ornamental/floriculture trade.

© 2013 SAAB. Published by Elsevier B.V. All rights reserved.

1. Introduction

The family Iridaceae comprises 65 genera and over 2000 species, of
which 38 genera and more than half the species occur in South Africa.
The plants are cormous or rhizomatous and have sword-like leaves.
In general, the flowers are attractive and many species are important
garden ornamentals across the globe. Although numerous species
of the family have been improved by plant breeders throughout the
world (Niederwieser et al., 2002; Ascough et al., 2009), there are
many more species with potential for further horticultural develop-
ment. Crocosmia aurea is no exception. This iris has bright orange-red
flowerswhich appear from January to June on a branched inflorescence,
following which a fleshy seed capsule containing purple-black seeds
develops. The plant is wide-spread in the eastern parts of South Africa,
where it occurs predominantly in moist areas from the coast to
2000 m above sea level (Pooley, 1993). Owing to its inherent beauty,
C. aureawas selected for investigation of its potential as an ornamental
plant and for cut flower production.

Conventional breeding has resulted in substantial improvement of
genera within the family Iridaceae and many of these, such as Gladiolus,
Iris and Freesia are important cut flowers on both local and international
markets. The development of polyploid (chromosome doubling) induc-
tion protocols offers enormous potential for further improvement in
the family. Naturally-occurring polyploidy is a phenomenon that has
provided an important pathway for evolution and speciation in plants.
Although the first polyploid was discovered over a century ago, the
genetic and evolutionary implications of polyploidy are still being eluci-
dated (Yang et al., 2011). The relative ease with which artificial induc-
tion of polyploidy can be achieved provides an opportunity for using
this naturally-occurring phenomenon as a valuable tool in plant breed-
ing programmes, where polyploidy has been used extensively as a tool
for creating novelty in ornamental crops (Levin, 1983; Väinölä, 2000;
Ascough et al., 2008). In general, tetraploids have larger flowers and
fruit than their diploid counterparts and furthermore, because of their
altered blooming periods, may have wider harvesting and marketing
windows (Levin, 1983). These factors are particularly important in orna-
mental plants and cutflowers,when the potential for commercialisation
is addressed. The artificial induction of polyploidy has been reported
for a number of South African iridaceous genera, including Watsonia
(Ascough et al., 2007, 2008) and Gladiolus (Suzuki et al., 2005).

Because naturally-occurring polyploid genotypes are usually
unavailable, polyploidy is typically induced in breeding programmes
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throughmitotic spindle inhibition or microtubule polymerization, often
by exposure to colchicine (Caperta et al., 2006). Polyploid induction
depends on the concentration of colchicine, the duration of exposure,
explant type, and tissue penetrability (Allum et al., 2007). Colchicine-
induced polyploidy is characterized by low induction rates and a high
frequency of chimaeras or mixoploids which must be screened out
of the population; this ismost commonly achieved through flow cytom-
etry analysis (Galbraith et al., 1997). If colchicine-induced pure tetra-
ploids are not produced, rapid in vitro proliferation can be used to
segregate pure tetraploids from chimaeras, due to the nature of the
in vitro proliferation system.

Micropropagation has increasingly become a valuable tool for
breeders, assisting in releasing new selections and cultivars into the
market more rapidly. Ascough et al. (2009) reported that the first pub-
lished record of Crocosmia micropropagation was by Koh et al., 2007.
Ovaries and florets of Crocosmia crocosmiiflora were cultured with 2,4-
dichlorophenoxyacetic acid (2,4-D), naphthalene acetic acid (NAA), 6-
benzylaminopurine (BAP) or kinetin. Callus formed on ovaries at low
frequencies (1–28%) with BA and 2,4-D, but rooting was prolific with
either NAA or 2,4-D. When florets were used as starting material,
roots and corms were induced using a combination of kinetin with
either 2,4-D or NAA. These corms produced shoots when kinetin was
applied, callus when 2,4-D was used in combination with BA, and
corms when kinetin was used in combination with 2,4-D.

The primary objective of this study was to develop a rapid and effi-
cient protocol for themicropropagation of C. aurea, to establishmethods
for polyploid induction and to assess selected floral characteristics of
the resulting polyploid plants, with a view to the development and
improvement of the species.

2. Materials and methods

2.1. Development of micropropagation protocols

Diploid seeds (obtained from Silverhill Seeds, Cape Town) of C. aurea
were used as starting material to develop a micropropagation protocol.
Five hundred seeds were sterilised for 20 min using a 1% [w/v] calcium
hypochlorite solution. The sterilised seeds were rinsed three times with
sterile distilled water before being cultured on standard MS medium
(Murashige and Skoog, 1962 [MS]) containing 30 g l−1 sucrose, adjusted
to pH 5.7 and sterilized by autoclaving for 20 min at 121 °C at 1 bar.
Each seed was germinated in a glass tube containing 10 ml medium.

The germinated seedlingswere then transferred toMSmedium contain-
ing one of four concentrations of BAP – 0.0 μM, 4.4 μM, 8.8 μM or
13.2 μM – to determine the most appropriate medium for plantlet mul-
tiplication. Each of the four BAP treatments comprised three replicates
with 20 plantlets per replicate. Plantlets were maintained at 25 to
27 °C under a 16/8 h light/dark regime with cool white fluorescent
light (81 μmol m−2 s−1, Phillips 65 W) and were subcultured every 4
to 6 weeks. Once multiplied and rooted, the medium was rinsed from
the roots and plantlets were hardened-off for 4 weeks in a mist bed
(housed within a polycarbonate tunnel maintained at 15 to 27 °C) in
Speedling® trays containing a 1:1 (v/v) mixture of composted pine
bark and coarse river sand, before being planted out into 2 l potting
bags containing a 1:1 (v/v) mixture of composted pine bark and sand.
Plants were thereafter maintained in a shade house (40% shade cloth)
at ambient conditions. Plantswerewatered daily on an irrigation system
and Osmocote® was applied as a slow-release fertiliser.

2.2. In vitro induction of polyploidy

Diploid seeds of C. aurea were used as starting material to produce
tetraploid plants, with the protocol described above being used to mul-
tiply plantlets generated from the treated seed. Five hundred diploid
seeds were physically scarified to facilitate colchicine uptake and then
treated, under aseptic conditions, with a 25 μM sterile colchicine solu-
tion for 3 days or, alternatively, a 0.25 μM solution overnight (based
upon results previously obtained in our laboratory). The treated seeds
were cultured on the previously determined optimum in vitro medium
(MS medium supplemented with 4.4 μM BAP). Germination rate was
recorded over 6 weeks, as was the final germination percentage. Prolif-
eration rate (number of shoots per 4–6 week subculture interval), shoot
height and rooting percentage weremeasured to determine differences
between the two colchicine treatments as well as between diploid and
tetraploid shoot cultures. Plants were maintained in vitro until they
were large enough for ploidy analysis (approximately 12 weeks after
treatment) and subculture. The experiment was repeated three times.

2.3. Ploidy analysis and proliferation of confirmed tetraploid plants

The ploidy level of treated seedlings was verified using a Partec
PA ploidy analyser (Partec, Germany). Samples were prepared for
flow cytometry analysis using approximately 1 cm2 of leaf tissue. The
tissue was macerated with a razor blade in 125 μl of nucleus extraction
solution (Partec, Germany), after which the homogenate was filtered
through a 50 μm mesh filter. The isolated nuclei were stained with
1250 μl 4′-6-diamidino-2-phenylindole (DAPI) stain (Partec, Germany)
prior to commencing flow cytometry analysis. Nuclei isolated from
untreated, diploid plantlets were used as a standard. Histograms were
analysed using the Partec software package. Seedlings confirmed as
tetraploid were proliferated on MS medium containing 4.4 μM BAP
under the same conditions described above. Plantlets were hardened-
off as described above and used to determine polyploidy effects on
various horticultural characteristics.

2.4. Morphological characterisation of tetraploids

In order to evaluate whether polyploidy induction had an effect on
the horticultural characteristics of Crocosmia, diploid and tetraploid
plantlets were proliferated and maintained as described above. The fol-
lowing characteristics were evaluated once themicropropagated plants
had hardened-off and reached maturity: leaf width and length, flower
diameter, petal width and length, stigma, stamen and anther length,
inflorescence diameter and length, as well as flower bud number per
inflorescence.Fig. 1. Effect of colchicine concentration on seed germination of Crocosmia aurea.

368 K. Hannweg et al. / South African Journal of Botany 88 (2013) 367–372



Author's personal copy

2.5. Statistical analysis

The experimental layout for all experiments was a complete
randomised design (CRD) with 3 replications. An analysis of variance
(t-test) was performed at the 5% significance level.

3. Results and discussion

3.1. Development of a simple method for in vitro micropropagation
of C. aurea

Despite the wealth of available germplasm amongst the Iridaceae,
only 40 species from 12 genera have been micropropagated (Ascough
et al., 2009). George (1993) and Ascough et al. (2009) presented
extensive summaries of bulbous and cormous species which were
micropropagated in vitro, and subsequently successfully hardened-off
and established ex vitro. According to Ascough et al. (2007), root and
leaf explants of Watsonia spp. were incapable of shoot regeneration,

but hypocotyl segments were highly regenerative when both an auxin
(NAA) and cytokinin (BAP) were present in the medium. However,
shoot multiplication was greatest when only BAP (2.2 μM) was added
to the medium. Similar results were obtained for Dierama latifolium
(Page and van Staden, 1985) and Schizostylis coccinea (Hussey, 1976),
both iridaceous species. In the current study, aseptic cultures of
C. aurea were readily established using the methods described above.
Although BAP at a concentration of 4.4 μM had a tendency to produce
a slightly higher multiplication rate (3.35 shoots every 4-6 weeks)
than BAP at a concentration of 8.8 μM (3.2 shoots every 4–6 weeks),
the difference in treatments was not significant after a period of
4 months. The addition of BAP at a concentration of 13.2 μM gave
a shoot multiplication rate of 2.75. Although growth regulator addi-
tion usually speeds up the rooting process and increases rooting
percentage, as has been reported for several other genera (George,
1993), transfer of C. aurea shoots to a growth regulator-free MS
medium resulted in root formation on 100% of shoots cultured in
this experiment.

Fig. 2.Representativeflow cytometric histogramsdocumenting theploidy level of nuclei isolated from leaves. A. diploid, B. tetraploid, C. diploid:tetraploidmixoploid,D. tetraploid:octoploid
mixoploid.

Table 1
Effect of in vitro colchicine treatments on polyploidy induction in Crocosmia aurea.

Treatment Exposure time Ploidy (%)

Diploids 2n:4n Mixoploids Tetraploids 4n:8n Mixoploids Octoploids
Control 100.0 0 0 0 0
0.25 μM Overnight 53.51 8.77 29.82 3.51 4.39
25 μM 3 days 74.16 9.80 16.04 0 0
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3.2. Germination rate of colchicine-treated seeds

The germination rate and percentage of seeds treated with
0.25 μM colchicine tended to be higher than that of the 25 μM treat-
ment (p b 0.05), although the difference was not statistically signifi-
cant (Fig 1). However, colchicine had a significant negative effect on
germination for both the 0.25 μM overnight and 25 μM three day treat-
ments, when comparedwith the control. The differences in germination
rate manifested five to 6 weeks after initial exposure to colchicine.
Similar findings have been reported on a wide range of species (Ramsey
and Schmeske, 1998).

3.3. Effect of colchicine on polyploidy induction and in vitro development of
induced plantlets

Samples of leaf material were harvested for flow cytometry analysis
from in vitro-grown shoots 12 weeks after colchicine treatment. Flow
cytometry analysis was carried out to determine the ploidy levels of
in vitro regenerants, which included mixoploids (Fig. 2). Of the plants
treated overnight with 0.25 μM colchicine, 29.82% were identified as
tetraploids, with 8.77% identified as 2n:4n mixoploids and 3.51% as
4n:8n mixoploids (Table 1). A small percentage (4.39%) was identified
as octoploid for the same treatment. For the 25 μMthree-day treatment,
16.04 % of the seedlings were identified as tetraploid, with 9.8% being
2n:4nmixoploids and no octoploids identified (Table 1). All mixoploids
were discarded to prevent proliferation of an unstable population of
such plants. The effectiveness of colchicine application and polyploidy
induction in vitro not only depends highly on the plant species but
also on the colchicine concentration applied, duration of treatment,
type of explant, and the penetration of the compound (Allum et al.,
2007). Colchicine has been used effectively at both lower (i.e. 0.25 μM
for Lychnis senno (Chen et al., 2006)) and very high concentrations
(i.e. 38,000 μM for Chaenomeles japonica (Stanys et al., 2006)). Within
the Iridaceae family, polyploidy has been successfully induced inGladiolus
spp. (Suzuki et al., 2005) andWatsonia lepida (Ascough et al., 2008).

There was no significant difference in in vitro shoot height, multi-
plication rate or rooting between in vitro diploid and tetraploid shoots

(Table 2). Rooted plantlets, both diploid and tetraploid, were readily
hardened-off in the mist bed. There was no difference in survival rate
or in plant growth and development between diploid and tetraploid
plants. Survival rate was in the order of 98% for both diploid as well as
for tetraploid plants.

3.4. Morphological characteristics of tetraploid C. aurea plants

Overall flower size i.e. flower diameter, petal width, petal length,
stamen length, diameter and length of the inflorescence stem and
the number of flowers on the inflorescence were significantly different
for the induced tetraploid plants compared with the diploid plants
(Table 3). Overall flower size i.e. flower diameter and petal length and
breadth (Fig. 3) and the diameter of the inflorescence stemwere signif-
icantly larger and thicker, respectively, for the induced tetraploids com-
paredwith thediploids. Conversely, the length of the inflorescence stem
and number of flower buds per inflorescencewas significantly lower for
the induced tetraploids. Polyploidy can result in significant cell enlarge-
ment, which is particularly desirable for flowering ornamental species.
Several reports since the advent of induced polyploidy research on
ornamentals describe increases in flower size (Emsweller and Ruttle,
1941; Tulay and Unal, 2010), alterations in inflorescence stem length
(Griesbach and Bhat, 1990; Takamura and Miyajima, 1996), and num-
ber of flowers per stem (Kafawin and Chen, 1991; Tulay and Unal,
2010) for awide range of ornamental species, andwith differing results.
There is nomeans to predict direction ofmorphological or physiological
change for induced polyploids for a particular species. For C. aurea, there
appeared to be no significant difference between induced tetraploids
and diploids regarding certain reproductive parts of the flower (anther
and stigma length), while others (stamens) were significantly longer in
the tetraploids than in the diploids. The induced tetraploids appeared to
be sterile since no seed was set over the evaluation period compared
with the diploids, 100% of which set seed. This could be a physical con-
straint during pollination due to the altered morphology of the plant
parts, since pollen viability studies using acetocarmine staining showed
no difference in viability between diploid and tetraploid pollen (results
not shown). Changes in flower shape, due to polyploidy, have been
reported to attract different species of insects to the polyploid
flowers which could preclude pollination (Thompson and Merg, 2008).
Although tetraploid plants did not set seed, the in vitromicropropagation
method developed would facilitate the establishment of a mother-block
of polyploid plants (and thereby establish a genebank) which are easily
hardened-off. Producers could then successfully vegetatively propagate
C. aurea through division of corms.

C. aurea is thus readily propagated in vitro, and in vitro tetraploid
induction provides a method for the development of C. aurea plants
with significantly larger flowers than their diploid counterparts. Prelim-
inary observations of flowering of the tetraploid plants indicated that
flowering appears to be initiated several weeks after the diploids.
In fact, flowering mimics the vegetative phenological cycle, with the
dormant tetraploid corms producing vegetative growth several weeks
after the diploids (preliminary observation; data not shown). It has

Table 2
Comparison after 4 months of the in vitro performance of diploid and tetraploid Crocosmia aurea plantlets onMS nutrient medium supplementedwith 30 g/l sucrose and various concen-
trations of 6-benzylaminopurine (BAP).

Treatment 0 μM BAP 4.4 μM BAP 8.8 μM BAP 13.2 μM BAP

Diploid Tetraploid Diploid Tetraploid Diploid Tetraploid Diploid Tetraploid

Proliferation ratea 2.13a 2.25a 3.35b 3.25b 3.20b 3.32b 2.75a 2.63a

Shoot height (mm) 45.2a 42.3a 46.5a 45.3a 42.5a 41.8a 43.5a 42.1a

Rooting (%) 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a

Different letters denote a significant difference at p b 0.05.
a Number of shoots per 4–6 week subculture interval.

Table 3
Effect of polyploidy on selected morphological characteristics of Crocosmia aurea.

Morphological characteristic Diploid Tetraploid

Flower diameter (mm) 62.78a 78.2b

Width of petal (mm) 8.936a 15.04b

Length of petal (mm) 31.05a 36.72b

Length of stamens (mm) 26.07a 32.27b

Length of stigma (mm) 29.70a 29.03a

Length of anther (mm) 9.53a 8.585a

Diameter of inflorescence stem (mm) 3.09a 3.54b

Length of inflorescence stem (mm) 794.67b 577.70a

Number of flowers 29.00b 21.67a

Different letters within a row denote significant difference at p b 0.05, n = 12.
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previously been reported that tetraploids, which may have a slower
growth rate, may flower later or over a longer period than their diploid
progenitors (Datta, 1963; Roy and Dutt, 1972; Levin, 1983). This is an
attribute of particular interest in ornamental breeding (Weiss, 2002).
Furthermore, Kehr (1996) reported that flowers are longer lasting in
polyploid plants — vase life has yet to be determined for the tetraploid
plants produced in this study. In conclusion, additional research is
needed to establish possible alterations in vase life of tetraploids
compared with the diploids; phenological studies to determine
flowering times are also required to determine a potential increase
or decrease of marketing windows.
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Abstract Plectranthus esculentus (Family: Lami-

aceae), or Livingstone potato, is an edible tuberous

vegetable which originated in Africa, with central

Africa being the centre of origin. P. esculentus is

found throughout the continent, including the north-

eastern regions of South Africa. Although the tubers

are edible, limited crop improvement has been

achieved; therefore, a study comprising in vitro poly-

ploidisation was carried out with subsequent evalua-

tion of plant nutritional value and nematode tolerance

of the induced tetraploids compared with the diploid

controls. Tetraploid tubers had a higher starch content

compared with the diploids, however there was no

significant difference in mineral element content for

either the leaves or the tubers when induced tetraploids

were compared with the diploid control. Further,

induced tetraploids appeared to be significantly more

tolerant to rootknot nematode,Meloidogyne spp., than

the diploids. A significantly higher number of egg

masses per root system and number of eggs and J2

(juvenile stage 2) individuals per root system were

detected in control plants, compared with tetraploid

plants. Induced tetraploidy resulted in plants with a

higher nutritional starch concentration and tolerance

to rootknot nematode, characteristics which will

improve the cultivation and utilisation of the crop.

Morphologically, tetraploid plants had fewer, thicker

stems per plant compared with diploid plants.

Keywords Livingstone potato � Crop improvement �
Chromosome doubling � Polyploid

Introduction

Root and tuber crops are globally amongst the most

important staple foods. The introduction of crops

developed and/or improved using biotechnological

methods combined with traditional breeding and

selection methods as well as optimum soil fertility

and pest management measures could significantly

improve yield and crop nutritional value. In general,

very little research has been carried out on the

nutritional value of edible wild root and tuber species,

although indigenous knowledge throughout the world

suggests that numerous such species are nutrient-rich

and have potential for further development. Moreover,

because of their greater tolerance of sub-optimal

conditions, the potential of under-utilised wild species

to contribute to food security is currently being

investigated world-wide. Plectranthus esculentus,
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the Livingstone potato, originated in central Africa,

but is distributed throughout the Continent, including

the north-eastern regions of South Africa (Codd 1985).

The plant is a perennial shrub of 600–1200 mm in

height, with square pubescent stems and subsessile,

oppositely-arranged leaves. The edible parts of the

plant are the tubers, which are produced by a fibrous

root system. The tubers are cylindrical, sometimes

branched, 50–100 mm in length and up to 20 mm in

diameter. Although there is little information describ-

ing cultivation practises, the plant is propagated from

sections of stem tubers, usually planted 50 mm to

100 mm deep, on prepared ridges or in beds. After

harvesting, tubers used for vegetative propagation can

be successfully stored for at least two months under

cool, well-ventilated conditions for planting in the

following season (Dhliwayo 2002). The species pro-

duces tubers even under extremely adverse climatic

conditions and therefore contributes to food security in

rural areas (Van Wyk and Gericke 2000). Although P.

esculentus is cultivated throughout Africa as an

important vegetable crop, one of the major cultivation

challenges experienced by smallholder farmers is a

high susceptibility to rootknot nematode (Goodey

et al. 1965; Allemann 2002; Xaba and Croeser 2011),

made especially more challenging due to the cultiva-

tion of other vegetable crops on their lands with

consequently high nematode populations in the soil.

A relatively common technique, polyploid induc-

tion, has been used in plant breeding since the early

1900’s for the development and improvement of a

variety of economically-important crops (Gates 1909;

Stebbins 1947). Blakeslee and Avery (1937) reported

on the first applications in agricultural crops. Such is its

importance that a number of reviews have been

published in the last decade (Osborn et al. 2003; Soltis

et al. 2004; Wendel and Doyle 2005; Chen and Ni

2006; Balao et al. 2011), several highlighting enlarge-

ment and induced vigour as well as the enhancement of

pest and disease tolerance. Mehta and Swaminathan

(1957) and Busey et al. (1993) reported on the higher

resistance of polyploids compared with diploids to

nematode parasitism. Although polyploidy is a natu-

rally-occurring phenomenon (Soltis and Soltis 2009;

Jiao et al. 2011) it can also be artificially induced.

Mitotic spindle inhibitors such as colchicine and

oryzalin are most widely used to induce chromosome

doubling (Dhooghe et al. 2011). Polyploidy has been

induced in several species of the Lamiaceae family

including basil (Omidbaigi et al. 2010) and lavender

(Urwin 2014). Previous studies in our laboratory, and

by others (Beltram and Kam 1984; Ramachandran

1982; Ramachandran andNair 1992; Smith et al. 2004)

showed that various plant characteristics of culinary

ginger (a rhizomatous species), Zingiber officinale,

could be improved by inducing polyploidy. Further,

several highly-prized and staple root crop species such

as potato, sweet potato, turnip, taro, cassava and yam,

are natural or induced polyploids (Hilu 1993). Artifi-

cial induction of polyploidy therefore provides ameans

of potentially improving various characteristics of an

under-utilised species such as Plectranthus esculentus.

The aim of this study was, therefore, to induce

polyploidy in vitro in P. esculentus and subsequently

evaluate and compare selected plant characteristics,

nematode tolerance, yield and nutritional value of

diploid and tetraploid tubers.

Materials and methods

Micropropagation of shoot cultures of P.

esculentus

In vitro shoot cultures were obtained from the

Agricultural Research Council’s Vegetable and Orna-

mental Plant Institute, South Africa. Shoots were

subcultured on a 4-weekly basis on Murashige and

Skoog (1962) nutrient medium with 3 g l-1 Gelrite�

and 30 g l-1 sucrose added (proliferation medium).

No growth regulators were added to the culture

medium. All media was autoclaved for 20 min at

121 �C and 1 kPa. Shoot cultures were grown at

25–27 �C with cool white fluorescent light

(81 lmol m-2 s-1, Phillips 65 W) 27 under a 16:8 h

light: dark cycle and shoots rooted spontaneously.

Rooted plantlets were washed under running tap water

before being planted into Speedling� trays for accli-

matisation in a mist-bed at 85 % shading and misting

for 5 s every hour for 3 weeks, before being trans-

planted into larger planting bags containing a 1:1 [v/v]

mixture of sand and pine bark. Plants were maintained

in a 40 % black shade cloth shadehouse.

Induction of polyploidy

Single nodes were excised from in vitro shoot cultures

and subsequently incubated in sterile (autoclaved)
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solutions containing 0.01, 0.10, 1.0 and 10.0 g l-1

colchicine, either overnight or for 3 days. Two hundred

and fifty nodes were used for each treatment. The

treated nodes were then cultured on proliferation

medium, allowing the axillary buds to grow out and

elongate. Once shoots were large enough to be

harvested for flow cytometry analysis, usually after

3–4 weeks, samples were collected to verify polyploid

induction.

Verification of polyploid induction

Ploidy level of shoots resulting from colchicine

treatment was verified using flow cytometry. Samples

were prepared for flow cytometry analysis using

approximately 0.5 cm2 leaf tissue. The tissue was

macerated with a razor blade in 125 ll nucleus

extraction solution (Partec, Germany), after which

the homogenate was filtered through a 50 lm mesh

filter. The isolated nuclei were stained with 1250 ll of
40-6-diamidino-2-phenylindole (DAPI) stain (Partec,

Germany) prior to commencing flow cytometry anal-

ysis using a Partec CYFLOW space flow cytometer.

Nuclei isolated from untreated, diploid plantlets were

used as a standard. Histograms were analysed using

the Partec software package. Shoots confirmed as

tetraploid were proliferated on MS medium under the

conditions described above. Plantlets were acclima-

tised as described above. After 12 weeks, plants were

transplanted into 20 l potting bags containing a 1:1 [v/

v] mixture of pine bark and sand and controlled-

release fertiliser granules (Osmocote�).

Morphological characterisation

Morphological characteristics such as plant growth

form, number of shoots produced per plant and leaf

shape were evaluated and compared between diploid

and tetraploid plants.

Nutritional analysis of tubers and leaves

Mature, but not senescing, leaves were harvested from

plants and were analysed for macro- and micronutrient

content. Tubers were harvested eight months after the

acclimatised plantlets were planted into the 20 l

potting bags. All analyses were carried out using

standard methods (at a South African National Accred-

itation System- accredited facility) particular to each

nutrient with three replicates, twelve plants per repli-

cate for each analysis for both diploids and tetraploids.

Leaf samples were oven-dried at 60 �C for 48 h

before being finely milled. Milled samples were

extracted overnight using 2:1 nitric acid (55 %), [v/v]:

perchloric acid (70 %) solution. Samples were then

digested for 6 h at 180 �C on a digestion block before

being cooled. Calcium, magnesium, zinc, copper, man-

ganese and iron were determined using atomic absorp-

tion spectrophotometry (AOACOfficialMethod 975.03)

whereas potassium and sodium were analysed using

flame emission spectroscopy (Varian SpectraAA 250

Plus) according to the method described by Poluektov

(1973). Phosphorous and boron were analysed colori-

metrically, phosphorous at 660 nm and boron at 430 nm,

using an Auto Analyzer (Bran and Luebbe Auto

Analyser 3) according to standard methods, Phosphorus

reagents, Technicon IndustrialMethod,method 144-71A

(1972) and AOACOfficial Method 982.01, respectively.

For nitrogen analysis, samples were oven-dried at

60 �C for 48 h before being extracted for 2 h with

concentrated sulphuric acid followed by digestion

with hydrogen peroxide. Nitrogen was analysed

colorimetrically at 640 nm (ammonia-salicylate com-

plex) using an Auto Analyzer (Bran and Luebbe Auto

Analyser 3 (AOAC Official Method 990.02).

The b-carotene content of tubers was analysed using
standard methods as described by Horwitz (2000) by the

South African Bureau of Standards, Pretoria, South

Africa.

Diploid and tetraploid tuber material was analysed

for ash, protein, carbohydrate and fat content as well as

for vitamins B1 and B2. Amino acid content (serine,

aspartic acid, glutamic acid, glycine, threonine,

alanine, tyrosine, proline, methionine, valine, pheny-

lalanine, isoleucine, leucine, histidine and lycine) was

also determined according to Gehrke et al. (1985).

Ash content was determined by heating the sample

at 550 �C overnight. The remaining residue (inorganic

matter) was used to determine ash content (AOAC

Official Methods 934.01 and 930.15). Protein content

of samples was determined using the Kjeldahl method

which measures total organic nitrogen (AOAC Offi-

cial Method 954.01). The organic matter was digested

with hot concentrated sulphuric acid and a catalyst

mixture added to the acid to raise the boiling point. All

nitrogen was converted to ammonia which was

measured by titration. Soluble and insoluble carbohy-

drates were determined by analysing moisture content,
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crude protein, ash and fat content with the remainder

being total carbohydrates (Greenfield and Southgate

2003). Soluble unbound fat was dissolved in ether at

boiling point and evaporated at 105 �C using the

Soxtec method (AOACOfficial Method 920.39 and its

content expressed as a percentage.

The tissue vitamin B1 concentration was deter-

mined by derivatising samples to form thiochrome (a

highly fluorescent oxidised product of thiamine) after

autoclave extraction. A C18 cartridge was used to

remove interferences and the vitamins chro-

matographed by using reversed phase separation as

described by Sims and Schoemaker (Sims and Shoe-

maker 1993). The vitamin B2 concentration was

determined after autoclave extraction, centrifugation

and dilution. The samples were analysed using

reversed phase separation.

Amino acid content was analysed as described by

Einarsson et al. (1983) using acid hydrolysis followed

by pre-column derivatisation, HPLC separation and

detection using a fluorescence detector.

Starch was determined using an iodine-based

colorimetric method as described by Xu et al.

(1998). Tubers were oven-dried at 65 �C for 48 h for

sample preparation and starch content was determined

at 620 nm using aWPA-lightwave spectrophotometer.

Nematode studies

Fifteen plants each of diploid control plants and

induced tetraploids were evaluated for their tolerance

to local Meloidogyne incognita race 2 and M. javanica

populations in a greenhouse experiment. To test the

virulence of the nematodes, a highly susceptible tomato

(Solanum lycopersicon L.) cv. ‘Rodade’ was used as a

reference plant in all experiments. One litre (1 l) black

plastic potting bags were filled with steam-pasteurised

sandy soil (84 % sand, 14 % silt, 2 % clay and 0.5 %

organic matter content). The soil pH (H2O) was 5.75.

Nutrition in the form of Multifeed� Classic (Efekto),

was applied as a soil drench every 14 days at a rate of

7.5 g l-1 water. One plant was planted per bag.

Populations of M. incognita race 2 and M. javanica

were established and maintained on the ‘Rodade’

tomatoes in a separate greenhouse. Eggs and second

stage juveniles (J2) of each of the appropriate species

were used to inoculate plants. Inoculation was per-

formed 32 days after planting by pipetting approxi-

mately 1000 eggs and J2 of the respective population on

exposed roots of each of the seedlings. The roots were

covered with soil again after the inoculation.

Fifty-six days after nematode inoculation, the

plants were carefully removed from the bags. This

period allowed completion of at least one nematode

generation (Kleynhans 1991; Fourie 2005). The root

systems were rinsed free of adhering soil and debris

with running tap water and blotted dry on paper towel.

The number of egg masses per root system was

counted. Staining of the egg masses to facilitate

counting was done by immersion of the root systems in

a Phloxine B solution for 20 min (Hussey and Boerma

1981). Root systems were individually inspected and

the red-stained egg masses were counted using a stereo

microscope. Eggs and J2 were extracted from the root

systems using Riekert’s (1995) modified NaOCl

method. Eggs and J2 were counted and the reproduc-

tive potential of each nematode population on each

genotype was determined according to Oosterbrink’s

reproduction factor (Windham and Williams 1988)

and calculated as follows: Rf = final egg and J2

numbers (Pf)/initial egg and J2 numbers (Pi).

Statistical analysis

For the polyploid induction/colchicine applications,

an appropriate analysis of variance was fitted to the

data using PROC GLM procedure of SAS software

Version 9.2 of the SAS System for Windows (SAS

Institute 2015). Shapiro–Wilk test was performed to

test for normality (Shapiro and Wilk 1965) and a

Fisher t test with least significant difference was

calculated at the 5 % significance level to compare

treatment means (Ott and Longnecker 2001). For all

other experiments, the experimental layout was a

complete randomised design (CRD) with 3 replica-

tions, twelve measurements per replicate. An analysis

of variance was performed at the 5 % significance

level using SAS software Version 9.2 of the SAS

System for Windows (SAS Institute 2015).

Results and discussion

In vitro proliferation and acclimatisation of P.

esculentus shoots

Plectranthus esculentus shoots were readily prolifer-

ated and spontaneously rooted in vitro. There was no
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difference between the multiplication rate (5.0 at a

subculture interval of 6 weeks) of diploid and

tetraploid plants, although the tetraploid plants did

have a tendency for thicker stems and larger leaves

in vitro than the diploids. Both diploid and tetraploid

plants were readily acclimatised in the mistbed using

the methods described, and transplanted into 1 l

potting bags 3–4 weeks after acclimatisation.

Verification of polyploid induction of in vitro shoot

cultures P. esculentus using flow cytometry

analysis

Flow cytometry analysis facilitated the identification

of pure polyploid plants from the colchicine-treated

population containing diploids, mixoploids and poly-

ploids. Polyploidy was induced in in vitro shoots of

Plectranthus esculentus for all treatments except the 3

day 10 g l-1 colchicine treatment where all shoots

died. A relatively high percentage of tetraploids was

induced and survived for the overnight, 1.0 g l-1

(20.40 %), 3 day, 0.1 g l-1 (11.20 %) and 3 day,

1.0 g l-1 (26.80 %) treatments (Table 1). No octo-

ploids were identified. The interaction of exposure

time and colchicine concentration (P value = 0.5501)

as well as exposure time and ploidy interaction (P

value = 0.9987) were not significant. Further, an

investigation of comparison of means for the interac-

tion between concentration and ploidy level was also

not significant. However treatment of nodes at

10 g l-1 at both exposure times tested appeared to

be toxic based on the extremely high mortality of

shoots. Earlier studies reported that successful

chromosome doubling is dependent on explant type,

duration of exposure and concentration of colchicine

as well as the genome doubling capacity of the species

under investigation (Khosravi et al. 2008; Sun et al.

2009; Dhooghe et al. 2011) and therefore each species

requires testing.

Morphological characteristics of polyploid P.

esculentus plants

In contrast to diploids, induced tetraploid plants

showed marked differences amongst various morpho-

logical characteristics compared with the diploids

(Table 2). Tetraploid plants had, on average, fewer

stems than their diploid progenitors (11 stems per

plant compared with 24 stems per plant, respectively).

Furthermore, stem diameter, was also significantly

larger for the induced tetraploids compared with the

diploids (5.30 mm compared with 3.29 mm, respec-

tively), although there was no difference in plant

height. Leaf index, an indication of leaf shape, was

higher for the tetraploids than the diploids, but it was

not significant. Leaves of the tetraploid plants were a

darker shade of green than the diploids. The alteration

of leaf morphology of P. esculentus is in line with

reports that polyploidisation can alter plant morphol-

ogy, phenology and physiology (Levin 2002). In a

review of polyploidy in plants, Tate et al. (2005)

reported on a variety of well-documented studies in

which ploidy level alterations can result in higher

growth rates, increased secondary metabolite produc-

tion as well as larger vegetative and reproductive plant

parts – particularly in ornamental and food crops.

Table 1 Effect of

colchicine exposure time

and concentration on

polyploidy induction of

in vitro shoots of

Plectranthus esculentus

Data is expressed based on

the number of nodes

surviving as a percentage of

the total number of nodes

treated for each exposure

time and concentration

Treatment (g/l) 2n (%) 2n/4n (%) 4n (%) 4n/8n (%) 8n (%)

Overnight

0.00 100.0 0.00 0.00 0.00 0.00

0.01 29.60 0.00 2.40 0.00 0.00

0.1 54.80 0.00 7.60 0.00 0.00

1.0 42.00 0.00 20.40 0.00 0.00

10.0 2.80 1.20 0.40 0.00 0.00

3 days

0.00 100.0 0.00 0.00 0.00 0.00

0.01 90.40 4.80 1.60 0.00 0.00

0.1 8.80 8.80 11.2 4.0 0.00

1.0 26.80 0.00 26.80 0.00 0.00

10.0 0.0 0.0 0.0 0.0 0.0
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Nutritional characteristics of polyploid P.

esculentus plants

Tuberous crops are cultivated for their starch-rich

storage organs which are a rich source of energy in the

form of carbohydrates, including starch. There is a

dearth of literature describing the impact of induced

polyploidy on starch content of tubers. However, most

commercial tuber crops such as potato, sweet potato,

yam and cassava are all polyploid, many of them being

high-yielding triploid varieties (Atherton and Rees

2008) compared with the diploids. Although dry

matter content, a characteristic important in the

improvement of tuber crops, was not significantly

different between the diploid and tetraploid plants

(results not shown), tuber starch content of the

tetraploid plants was significantly higher than that of

the diploids (47.1 % on a dry weight basis compared

with 40.0 % for the diploids). Although these fig-

ures are lower than that reported previously for P.

esculentus (Temple et al. 1991), this difference may be

ascribed to factors such as cultivation, edaphic con-

ditions or analytical procedures. The starch content

still remains significantly higher than potato, 17.1 %,

(Potato Board 1980) and sweet potato, average of

23 %, (ARC 1979). b-Carotene, an important anti-

oxidant in tuber crops and precursor of provitamin A,

while higher for the tetraploids than the diploids, it

was not significantly so, 0.112 mg kg-1 compared

with 0.07 mg kg-1 respectively, under the cultivation

conditions of the experimental trial (Table 3). Vitamin

A is an essential vitamin and is required for the

development and maintenance of eyesight. An

extreme deficiency can ultimately lead to the devel-

opment of blindness. Vitamin A is also required by the

body for healing processes after wounding or infec-

tion. Polyploidy affects the biosynthesis of a number

of metabolites of a variety of biochemical pathways in

plants and are generally present in higher

concentrations in polyploids than diploids. Several

studies involving the mechanism/s thereof have been

carried out (Dhawan and Lavania 1996; Zhang et al.

2005; Caruso et al. 2011) although there are few

studies describing the effect of polyploidy on b-
carotene biosynthesis and levels in induced

Table 2 Comparison of various plant characteristics between diploid and tetraploid Plectranthus esculentus plants

Number of stems/plant Stem diameter (mm) Leaf index (breadth/length)

Diploid 24.0b 3.29a 0.41a

Tetraploid 11.0a 5.30b 0.51b

n = 12 each for diploid and tetraploid plants, 3 replicates, P\ 0.05)

Different letters within columns represent significant differences

Table 3 Comparison between selected nutritional values of

tubers harvested from diploid and tetraploid P. esculentus

plants

Component Diploid Tetraploid

Ash (%) 0.64a 0.61a

Protein (%) 0.82a 0.79a

Carbohydrates (%) 21.78a 18.99a

Fat (%) 0.198a 0.268a

Starch (g/kg) 400a 470b

b-Carotene (mg/kg) 0.07a 0.112a

Vitamin B1 (mg/100 g) 0.01a 0.01a

Vitamin B2 (mg/100 g) 0.01a 0.01a

Alanine (g/100 g) 0.042a 0.036a

Aspartic acid (g/100 g) 0.056a 0.050a

Glutamic acid (g/100 g) 0.07a 0.06a

Histidine (g/100 g) 0.04a 0.056a

Isoleucine (g/100 g) 0.032a 0.032a

Leucine (g/100 g) 0.034a 0.032a

Lysine (g/100 g) 0.038a 0.034a

Methionine (g/100 g) 0.01a 0.01a

Phenylalanine (g/100 g) 0.036a 0.032a

Proline (g/100 g) 0.028a 0.022a

Serine (g/100 g) 0.034a 0.032a

Threonine (g/100 g) 0.046a 0.042a

Tyrosine (g/100 g) 0.022a 0.028a

Valine (g/100 g) 0.038a 0.036a

n = 12 each for diploid and tetraploid plants, 3 replicates,

P\ 0.05)

The same letter across rows indicates no significant difference.

(results are expressed as fresh weight)
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polyploids. Jaskani et al. (2005), however, reported

that b-carotene content was higher in induced

tetraploids of watermelon compared with the diploids.

There were no significant differences between diploids

and tetraploids in terms of any of the other macro- and

micronutrients evaluated (Table 4), but this, together

with the effect of polyploidy on b-carotene, needs to
be investigated further under in-field cultivation

conditions which are sub-optimal compared with a

pot trial.

Tolerance of polyploid plants to nematodes

One of the most significant biotic factors affecting any

tuber crop is nematode infestation. Nematodes cause

significant yield losses and applications of both

chemical and environmentally-friendly products to

reduce the risk of damage to crops is an industry worth

millions of US dollars. Management strategies, as well

as breeding and selection of more tolerant varieties, is

critical for any tuber crop industry (Jones et al. 2011).

Plectranthus esculentus is highly susceptible to root-

knot nematodes (Meloidogyne spp.). Tetraploid and

diploid plants were challenged with rootknot nema-

todes in a pot experiment to determine if polyploidy

resulted in any degree of tolerance. The results of the

trial showed that tetraploid plants were significantly

more tolerant to rootknot nematodes (Table 5). There

was a significant difference in the number of egg

masses per root system for the diploids compared with

the tetraploids. Tetraploid plants had a significantly

lower egg mass number per root system compared

with the diploids (7.9 egg masses/root system com-

pared with 28 egg masses/root system, respectively).

Tetraploids were therefore found to be moderately

resistant to rootknot nematodes compared with the

diploids which were highly susceptible according to

the classification system of Murray et al. (1986).

Similarly, the number of eggs and J2 per root system

was also significantly lower for the tetraploids com-

pared with the diploids, 3196 compared with 12,187,

respectively). The reproduction factor (Rf-value) is an

indication of tolerance to nematode infestation, the

lower the Rf-value the more tolerant the plant species

is to nematode attack. Tetraploids had a significantly

lower Rf-value, 3.17, compared with the diploids,

12.15. Although there was a significant improvement

in nematode tolerance over the diploids, host status is

considered good compared with diploids with a host

status defined as excellent according to the Rf

classification system described by Windham and

Williams (1988). In this study, the tolerance of

tetraploids compared with diploids to rootknot nema-

tode was investigated and examination of tuber

anatomy at light microscope level did not reveal any

fundamental differences between the induced tetra-

ploids and diploids prior to nematode challenging, nor

after challenging, possibly due to the young plant age.

However, future histopathological studies may reveal

symptoms of nematode infestation such as feeding

sites and associated changes in cell structure on more

established plants. In potato, rootknot nematode

damage to tubers which is characterised not only by

losses in yield, but damage can manifest as blistering

Table 4 Comparison between selected mineral values of

leaves and tubers harvested from diploid and tetraploid P.

esculentus plants

Component Diploid Tetraploid

Leaves

N (%) 2.65a 3.10a

P (%) 0.154a 0.153a

K (%) 2.01a 2.23a

Ca (%) 1.11a 1.00a

Mg (%) 0.554a 0.546a

Zn (mg/kg) 46.75a 41.75a

Cu (mg/kg) 9.00a 8.33a

Mn (mg/kg) 804a 714.14a

Fe (mg/kg) 94.91a 91.63a

B (mg/kg) 32.5a 19.7a

Tubers

N (%) 0.59a 0.63a

P (%) 0.122a 0.125a

K (%) 1.22a 1.14a

Ca (%) 0.10a 0.08a

Mg (%) 0.149a 0.141a

Zn (mg/kg) 17.00a 17.40a

Cu (mg/kg) 3.40a 4.00a

Mn (mg/kg) 16.60a 17.5a

Fe (mg/kg) 34.50a 34.75a

B (mg/kg) 17.40a 18.8a

Na (%) 0.0238a 0.0212a

n = 12 each for diploid and tetraploid plants, 3 replicates,

P\ 0.05)

The same letter across rows indicates no significant difference

Results are presented as per dry mass
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on the surface of tubers as well as internal browning

(Volvlas et al. 2005). Furthermore, Jatala et al. (1982)

reported that externally-visible symptoms may only

develop after a period of storage after internal

symptoms have developed on potato. This manifesta-

tion of tuber damage is critical in terms of P.

esculentus tubers which are commonly stored for

relatively long periods of time before consumption or

re-establishment (vanWyk and Gericke 2000) and this

should be investigated further. Moreover, there is the

possibility that growers unwittingly facilitate the

spread of nematodes using diseased seed tubers which

may not yet exhibit symptoms externally.

Future prospects regarding improvement

Almost no breeding and selection or improvement has

been carried out on Plectranthus esculentus. This is

the first report on the improvement of this species

using artificial polyploid induction. Furthermore, it is

also one of the few published reports on the induction

of nematode tolerance in induced polyploid plants.

Although the histopathological response/s and mani-

festation of symptoms of infestation as well as the

mechanism of tolerance to nematodes by the tetraploid

plants still needs to be elucidated, polyploid induction

could provide a valuable tool in improving nematode-

tolerance in a number of crops; however, the effect of

polyploidy on other critical horticultural characteris-

tics such as yield and crop quality would need to be

taken into account and investigated. Physiological

investigations i.e. assimilation and water stress studies

are being explored further after preliminary investi-

gations revealed that the tetraploids appeared to have

higher assimilation rates and superior water stress

tolerance than the diploids.

Acknowledgments The authors would like to thank the

Agricultural Research Council and Department of Science and

Technology (ECS Programme) for financial assistance. Mr

Gerrit Visser and Ms Elsabe Aylward of the ARC-Institute for

Tropical and Subtropical Crops are thanked for technical

assistance for the flow cytometry and mineral nutrition

samples, respectively, as well as ARC-Irene Analytical

Services for the nutritional analyses. Mardé Booyse of the
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