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Abstract 

Fluorination chemistry is of interest due to fluorine being recognized as a crucial element in 

pharmaceuticals, and agrochemicals, with 30% of new small molecule drugs incorporating 

fluorine. The trifluoromethylation and trifluoromethylthiolation of the active pharmaceutical 

ingredients formed the basis for the modern trend of fluorination of pharmaceutical 

compounds.  

The incorporation of a trifluoromethyl group (CF3) into an organic molecule has a significant 

effect on its lipophilicity, permeability, and metabolic stability. Radical mediated 

trifluoromethylation facilitated by photoredox catalysis offers mild and highly selective 

reaction conditions. While there are several commercially available trifluoromethylation 

reagents, some limitations include the use of gaseous, volatile, and expensive reagents. 

Therefore, the development of cheaper and safer trifluoromethylation reagents is crucial. The 

utilisation of computational chemistry can facilitate the design of new potential agents. This 

study focused on the computational design and thereafter, the synthesis of sulfonimidamides 

as potential radical trifluoromethylation agents via photoredox catalysis. 

Despite all efforts to synthesise trifluoromethylated sulfonimidamides being unsuccessful, the 

synthesis and characterisation of precsuors compounds 5a-d were successful and resulted in 6 

novel X-ray crystal structures. In addition, a simple yet efficient computational method for 

calculating redox potentials was developed. The decision was then to synthesise 

trifluoromethylthiolated sulfonimidamides based on the success of sulfonamides as 

trifluoromethylthiolating agents.  

The trifluoromethylthio group (SCF3) has attracted particular interest in medicinal chemistry 

due to its remarkable lipophilicity. Due to its high lipophilicity and strong electron-

withdrawing ability, the SCF3 greatly improves the pharmacokinetic properties of lead 

compounds. Among the various electrophilic reagents available, N-SCF3 reagents are the most 

utilised. Previously developed reagents require a strong Brønsted or Lewis acid for activation 

of the reaction. To address this problem, the second part of this study focused on the 

computational design and thereafter synthesis of more efficient sulfonimidamide based 

electrophilic trifluoromethylthiolation agents.         

Sulfonimidamides 5c, f were successfully trifluoromethylthiolated, resulting in the 

corresponding N-trifluoromethylthio sulfonimidamides 7c, f. Novel X-ray crystal structures for 

5e and 5f are also obtained. The computationally calculated SCF3 electrophilic donation 
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potential of sulfonimidamides 7c, e, f revealed that sulfonimidamide 7c possessed the greatest 

potential for donation (36.51 Kcal mol-1) and has the potential to be more electrophilic than 

previously applied delivering agents (ranging from 9.8-59.1 Kcal mol-1). Therefore, 

sulfonimidamide 7c was chosen as the donating agent for the further electrophilic 

trifluoromethylthiolation of ethyl cyanoacetate and 2,4-dimethylpyrrole. The results from the 

trifluoromethylthiolation model reactions indicated that sulfonimidamide 7c is a potentially 

new SCF3 donating agent,  due to the trifluoromethylthio group leaving from sulfonimidamide 

7c as confirmed by crude 19F NMR and LC-MS analysis. However, further method 

optimisation is required and is ongoing to determine the substrate scope and reaction 

conditions.    

Various characterisation techniques were used to confirm the chemical synthesis of the 

compounds which include liquid chromatography-mass spectrometry (LC-MS), nuclear 

magnetic resonance (NMR), high resolution mass spectrometry (HRMS), X-ray powder 

diffraction (XRD), and infrared spectrometry (IR).  

A potential future recommendation for the N-trifluoromethylthiolation of the sp2 type 

nitrogen’s and N-trifluoromethylation of sulfonimidamides is the use of 

trifluoromethylthiolated and trifluoromethylated  amines for the amination of the sulfonimidoyl 

chlorides.   
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Chapter 1 

1. Introduction 

1.1 Fluorine in Pharmaceutical Applications 

The development of fluorine chemistry began more than 100 years ago, with the first 

electrophilic and nucleophilic fluorination reactions dating back to the mid-19th century.1, 2 

Currently, fluorination chemistry is of interest due to fluorine being recognised as a crucial 

element in pharmaceuticals, agrochemicals, and materials3, with 30% of new small molecule 

drugs incorporating fluorine.4 Prior to 1957, fluorine had not been utilised in drug development. 

A noticeable increase in the number of fluorine containing drug compounds began in the 

1980s.5 The trifluoromethylation of the active pharmaceutical ingredients formed the basis for 

the modern trend of fluorination of pharmaceutical compounds.5 At present more than 50% of 

all current agrochemical and pharmaceutical molecules contain fluorine6, with over 150 active 

ingredients already commercialised.5 

1.2 Trifluoromethylation  

The incorporation of a trifluoromethyl group (CF3) into an organic molecule has a significant 

effect on its lipophilicity, permeability, conformational behaviour, and metabolic stability.7, 8 

Incorporating a CF3 group into the structure of the anticancer agent epothilone (subsequently 

renamed fludelone) illustrates how trifluoromethylation can increase metabolic stability and 

retain comparable cytotoxic potency.9 

 

There are three main potential pathways of trifluoromethylation onto a small organic molecule. 

These are nucleophilic10, electrophilic11, and free radical trifluoromethylation12 (Scheme 1).13 
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Scheme 1: Potential pathways of trifluoromethylation.10-12 

1.2.1 Nucleophilic trifluoromethylation 

Nucleophilic trifluoromethylation utilises the unstable anion trifluoromethyl anion (CF3
━) 

(Scheme 2). The unstable anion rapidly forms a stabilised difluorocarbene and a fluoride 

anion.14 The instability of the CF3
━ is due to Coulombian compression.14 Initially, the instability 

of the anion hindered the development of nucleophilic trifluoromethylation strategies. 

However, currently the success of nucleophilic trifluoromethylation reactions are due to the 

availability of the trifluoromethylation reagents such as the unusual Chen’s reagent15, 

Ruppert−Prakash reagent16, 17 or Grushin reagent.18 3, 19    

 

Scheme 2: Nucleophilic trifluoromethylation of gem-difluoroalkenes.20 

 

1.2.2 Electrophilic trifluoromethylation 

Electrophilic trifluoromethylation makes use of a trifluoromethyl cation (CF3
+) (Scheme 3). 

Commonly used electrophilic CF3 donating agents are Togni’s reagent21, Umemoto reagent22, 

or Shibata reagent.3, 23 These reagents can react with soft nucleophiles such as thiols, alkenes, 

and (hetero)arenes. These reagents can also react with hard nucleophiles such as alcohols and 

nitriles.24 Controversy remains regarding the mechanism of electrophilic trifluoromethylation, 

whether a single electron transfer (SET) or alternatively a polar substitution pathway occurs.25  
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Scheme 3: Electrophilic ortho-trifluoromethylation of heterocycle-substituted arenes.26 

1.2.3 Radical trifluoromethylation 

In the radical trifluoromethylation reactions, the active trifluoromethyl species is the 

trifluoromethyl radical (CF3⦁) (Scheme 4). The trifluoromethyl radical can be generated under 

mild, neutral conditions from commercially available reagents27 such as CF3I28, CF3SO2Cl29, 

Togni reagent30, Umemoto reagent31, Langlois reagents32, and Ruppert–Prakash reagent.33 

Radical trifluoromethylations can easily be scaled up and proceed with high 

chemoselectivity.34, 35 Photoredox catalysis has provided access to reactive trifluoromethyl 

radicals.36 
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Scheme 4: Proposed mechanism for the radical N-trifluoromethylation of sulfoximines.7 

1.3 Photoredox catalysis 

The renewed interest in radical-mediated organic synthesis has correspondingly revitalised 

attention in photochemistry, particularly photoredox catalysis.37 The revived interest is due to 

the accessibility of species, which would be practically inaccessible by other forms of catalysis. 

Academics in various chemical fields ranging from organic synthesis to materials science.38-42 

are incorporating photoredox catalysis in order to facilitate unique chemical reactions.43 

Photoredox catalysis offers environmental benignity, high selectivity, mild conditions, and can 

be applied to numerous synthetically important reactions.44  

Photoredox catalysed reactions follow either an oxidative or reductive quenching cycle (Figure 

1). In an oxidative quenching cycle, the photocatalyst in the excited state (PC*) donates an 

electron to either a substrate (Sub) or an oxidant (ox) present in the reaction and returns to the 

ground state.43-45 The photocatalyst (PC⦁+) is then reduced by a substrate or reductant (red) to 

complete the cycle. In a reductive quenching cycle, the excited catalyst is quenched by 

obtaining an electron either from a substrate or a reductant present in the reaction mixture.43-45 

The catalysis is then oxidised by a substrate or oxidant to complete the cycle. Photoredox 

catalysed reactions are highly controlled as light is required for excitation and for the reaction 

to occur. The energy put into the system is selective for the photocatalyst instead of the entire 

system, as most simple organic molecules do not absorb energy in the visible region.43-45  
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Figure 1: The general mechanism for oxidative or reductive quenching cycles of a 

photoredox catalyst, adapted from literature.43 

The oxidation potential (E1/2
ox) of a donor measures the ability of a species to release an 

electron. The lower the oxidation potential, the more easily a species is oxidised. The reduction 

potential (E1/2
red) of an acceptor measures its tendency to accept an electron. The higher the 

reduction potential, the more easily a species is reduced. The oxidation potential of the donor 

and reduction potential of the acceptor can be utilised to understand the feasibility of a redox 

reaction between the donor/acceptor pair.43 The Nernst equation (1), is used to relate these two 

values to free energy, where ΔG is change in free energy, n is the number of electrons 

transferred, and F is the Faraday constant.46 

𝛥𝐺 = −𝑛𝐹𝐸 (1) 

𝐸 = 𝐸ଵ
ଶ

௥௘ௗ(𝐴) − 𝐸ଵ
ଶ

௢௫(𝐷) 

A negative ΔG indicates an exergonic process, for a favourable redox reaction the reduction 

potential for the acceptor should exceed the oxidation potential of the donor.43 

Photoredox processes can be facilitated by organic dye based catalysts47 (Scheme 5, A), 

transition metal-based catalysts48 (Scheme 5, B),  and photocatalyst free reactions49 (Scheme 

5, C). However, photocatalyst free reactions are rare.50 
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Scheme 5: A (Metal free trifluoromethylation of β-nitroalkenes), B (Metal based 

trifluoromethylation of terminal alkenes), C (Visible-light-driven Synthesis of Arylstannanes). 

1.3.1 Transition-metal complexes 

Since the MacMillan51 and Yoon52 groups simultaneously reported the first use of [Ru(bpy)3]2+ 

as a photocatalyst (PC), several other researchers have considered transition-metal based 

complexes as PCs in organic synthesis.53 Currently, the most popular photocatalysts employed 

are either Ir(III) or Ru(II) polypyridyl complexes.53     

 

Figure 2: Commonly used Ir(III) and Ru(II) photocatalysts.44 

Unfortunately, transition-metal based photocatalysts are expensive and the removal of toxic 

metal impurities are the main disadvantage.54  
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1.3.2 Organic dyes 

Organic photoredox catalysts possess a relatively lower cost, greater availability, and can have 

superior efficiency55, 56 when compared to metal based photocatalysts.57 Additionally, organic 

photocatalysts are non-toxic, easy to modify and handle.58 Therefore, the development of 

methodology using metal-free photoredox catalysis such as organic dyes is highly desirable.47 

 

Figure 3: Commonly used organic photocatalysts.43 

1.4 Limitations of current trifluoromethylation agents 

Although they are many commercially available trifluoromethylation reagents, they suffer 

from limitations such as the gaseous CF3I28, the volatile CF3SO2Cl29, the expensive Togni21, 

Umemoto22, and Rupert-Prakash16, 17 reagents.32, 59 Therefore, the development of cheaper and 

safer trifluoromethylation reagents is vital.60 

The utilisation of computational chemistry can facilitate the design of new potential 

trifluoromethylation agents.61-63 Coupled with experimental results, computations can lead to 

more effective reagents than currently available.64     

1.5 Computational design of trifluoromethylation agents 

Cheng and co-workers computationally studied the radical and electrophilic donating ability of 

various known trifluoromethylation agents (Scheme 6) by calculating the homolytic and 

heterolytic bond cleavage.61, 63 
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Scheme 6: Homolytic and heterolytic bond cleavage of trifluoromethylation agents.61, 63 

Cheng compared the trifluoromethyl cation-donating abilities (TC+DA) of various electrophilic 

trifluoromethylation agents with experimental data for the electrophilic trifluoromethylation of 

β-keto ester.19, 61 Upon comparing the TC+DA values with experimental yield, lower TC+DA 

values led to higher yields. Low TC+DA values correspond to a weaker bond between the CF3 

group and the donating agent. Therefore, the lower the TC+DA value, the greater the ability for 

donation. Furthermore, Cheng compared the TC+DA values for the electrophilic 

trifluoromethylation of pyrrole and terminal acetylenic carbon and found good correlation. 

 

 

Scheme 7: Comparison of computational and experimental data for the electrophilic 

trifluoromethylation of β-keto ester.61 

Cheng and co-workers computationally studied the radical donating ability (TR⦁DAs) of 

various known trifluoromethylation agents before and after a single electron reduction.63 Single 

electron reduction was found to activate the X-CF3 bond as indicated by the significantly 

reduced TR⦁DAs values (Scheme 8). Single electron reduction can be achieved either 

photochemically65 or electrochemically.66  
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Scheme 8: The effect of a single electron reduction on TR⦁DAs.63 

Computationally calculated bond dissociation enthalpies have also been used in the design of 

more efficient fluorinating agents.64 Computational chemistry has also been implemented in 

designing new Togni reagents.62 

Inspired by the work of Cheng and co-workers61, 63, this study was focused on the 

computational design and thereafter synthesis of more efficient radical trifluoromethylation 

agents using photoredox catalysis.         

1.6 Trifluoromethylthiolation 

The trifluoromethylthio group (SCF3) has attracted special interest in medicinal chemistry for 

its incredible lipophilicity (Hansch constants 1.44).67-69 Based on its strong electron-

withdrawing ability and high lipophilicity, the trifluoromethylthio group greatly improves the 

pharmacokinetic properties of lead compounds.69, 70 The trifluoromethylthio group is 

incorporated into several bioactive compounds (Figure 4), such as Tiflorex71, 72 (anorectic 

drug), Toltrazuril73, 74 (coccidiostatic drug), and Cefazaflur75, 76 (parenteral cephalosporin).77, 78 

The unique properties possessed by the trifluoromethylthio moiety has prompted much 

research into the development of efficient methods for its incorporation into desired scaffolds.79 
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Figure 4: SCF3 containing biologically active compounds.77 

The trifluoromethylthio group can be directly incorporated into desired scaffolds using 

nucleophilic80, radical81, and electrophilic82 strategies. 

1.6.1 Nucleophilic trifluoromethylthiolation 

The use of nucleophilic reagents represents one of the most popular strategies in 

trifluoromethylthiolation (Scheme 9).83 Amongst the several nucleophilic 

trifluoromethylthiolating reagents such as Hg(SCF3)2,84, 85 CuSCF3,86 (bpy)CuSCF3,87 

[R4N]SCF3,88 and CsSCF3,89 the commercially available AgSCF3
90 is the most popular.91 The 

major advantage of nucleophilic trifluoromethylthiolation is the use of relatively inexpensive 

SCF3 sources. However, the major limitation of the strategy is based on prefunctionalization 

of the substrates.92 

 

Scheme 9: Nucleophilic trifluoromethylthiolation of bromoalkynones.83 

1.6.2 Radical trifluoromethylthiolation 

Electrophilic and nucleophilic trifluoromethylthiolation methodologies have also been 

developed and utilised successfully in the last decade.81 In contrast, radical 

trifluoromethylthiolation (Scheme 10) has been studied and applied to a lesser extent due to 

NH

SCF3

Tiflorex

O

SCF3N

O

HN

O N O

Toltrazuril

N N

N
N

S

N

S
N
H

O

F3CS

O
HO

O

Cefazaflur



11 
 

the toxic and gaseous radical reagents (CF3SH and CF3SCl).78 81 The recent emergence of 

photoredox catalysis has prompted the revival of radical trifluoromethylthiolations.78, 93, 94 The 

success of photoredox catalysis81, 95-98 has been assisted by the recent availability of new shelf-

stable and easy to handle electrophilic and nucleophilic reagents.99 

 

Scheme 10: Radical trifluoromethylthiolation of aryl alkynoate esters.100 

1.6.3 Electrophilic trifluoromethylthiolation 

Electrophilic trifluoromethylthiolation offers a straightforward method for direct 

trifluoromethylthiolation (Scheme 11).  

 

Scheme 11: Electrophilic N-trifluoromethylthiolation of amines.101 

Among the various electrophilic reagents available, N-SCF3 reagents are the most interesting, 

with the main reagents based on saccharin, succinimide, and phthalimide scaffolds78, 79 (Figure 

5). The reagents PhNHSCF3 (Figure 5, A) and PhN(Me)SCF3 (Figure 5, B) developed by 

Billard and Langlois102, 103 are effective for trifluoromethylthiolation of alkenes102, indole104, 

Grigand reagents82, and alkynes.105 However, a strong Brønsted or Lewis acid is required for 

the activation of the reaction.79 To address this problem, Shen and co-workers developed the 

highly electrophilic, shelf-stable N-trifluoromethylthiosaccharin106 (Figure 5, E) and 

N-trifluoromethylthio-dibenzenesulfonimide107 (Figure 5, F). Both reagents have been shown 

to be highly electrophilic in both computational108 and experimental70 studies. These reagents 

have been shown to possess a greater reactivity than previous reagents with a broader substrate 

scope while under milder conditions.79, 106-109   
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Figure 5: Electrophilic trifluoromethylthiolating reagents.107 

1.7 Sulfonimidamides  

Sulfonimidamides are the aza-analogues of sulfonamides, where one of the oxygen atoms have 

been replaced by a nitrogen110 (Figure 6). Sulfonimidamides have received less attention 

compared to sulfonamides presumably due to the lack of commercial availability and synthetic 

methods.111, 112 

 

Figure 6: Comparision between sulfonamide and analogue sulfonimidamide.113 

Levchenko et al. first reported sulfonimidamides in the early 1960’s.114-117 However, only in 

the last decade has interest increased in the applications and reactivity of sulfonimidamides in 

the fields of biological and synthetic chemistry.118-121 Studies have shown that sulfonamides 

have the ability to act as highly electrophilic trifluoromethylthiolating reagent.106-108 Therefore, 

this study was focused on designing highly electrophilic sulfonimidamides based 

trifluoromethylthiolating reagents. 
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1.8 Computational design of trifluoromethylthiolation agents 

Cheng and co-workers additionally studied the electrophilic and radical donating ability of 

various known trifluoromethylthiolation agents (Scheme 12) by computationally calculating 

the homolytic and heterolytic bond cleavage.108, 122  

 

Scheme 12: Homolytic and heterolytic bond cleavage of trifluoromethylthiolation agents.108, 

122 

Cheng observed a good correlation between the computed Tt+DA values and experimental 

reactivity of the various electrophilic trifluoromethylthiolation agents (Scheme 13).  

 

Scheme 13: Electrophilic trifluoromethylthiolation of 2-(naphthalen-2-yl)ethanol.79, 106, 108 

In an additional study, Cheng and co-workers experimentally determined the electrophilicity 

parameters of various trifluoromethylthiolation agents, which correlated well with Tt+DA 

values.70 

Cheng and co-workers additionally computed the radical donating ability (Tt⦁DAs) of various 

known electrophilic trifluoromethylthiolation agents before and after a single electron 

reduction.122 Single electron reduction was found to activate the X-SCF3 bond as indicated by 

significantly reduced Tt⦁DAs values (Scheme 14). Single electron reduction can be achieved 

either photochemically81 or electrochemically.  
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Scheme 14: The effect of a single electron reduction on Tt⦁DAs values.122 

Inspired by the work of Cheng and co-workers108, 122 and Shen and associates106, 107, this study 

was focused on the computational design and thereafter, synthesis of more efficient 

sulfonimidamide based electrophilic trifluoromethylthiolation agents.         

1.9 Computational chemistry 

Chemistry is a branch of science pertaining to the transformation, construction, and properties 

of molecules.123 Computational chemistry comprises of quantum mechanics, molecular 

mechanics, simulations and other computational methods for understanding and predicting the 

behaviour of molecular systems. Computational chemistry has become an invaluable tool in 

modern industrial and academic chemistry. The solution of chemical problems otherwise 

extremely difficult or even impossible experimentally is possible due to the processing power 

of modern computers. Given a set of nuclei and electrons, computational chemistry can attempt 

to calculate things such as the geometrical arrangements of the nuclei corresponding to stable 

molecules, relative energies, dipole moment, polarizability, NMR coupling constants, and how 

different molecules will interact. To achieve this computational chemists use complex 

computational software that enables them to achieve an understanding of chemical processes, 

and avoid time-consuming expensive experiments.124-127   

1.9.1 Computational methods and background 

Chemical systems are modelled using a set of approximations, this is referred to as a theoretical 

model or method. These approximations in combination with an algorithm are applied to 

atomic orbitals in order to calculate molecular orbitals and energy.128, 129 Modelling of chemical 
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structures are based on two different methods which form the backbone of computational 

chemistry. These are molecular mechanics (MM) also known as force field methods and 

electronic structure methods.127  

1.9.1.1 Molecular mechanics 

MM utilises the laws of classical mechanics to determine molecular structures and properties. 

MM computations do not consider the electrons for a molecular system. Rather, calculations 

are centred on nuclei interactions. As a result of this approximation, MM calculations are 

computationally inexpensive. However, MM methods are not applicable to chemical problems 

in which electronic effects predominate. The numerous MM methods are characterised based 

on their particular force field.126, 127, 130 

1.9.1.2 Electronic structure methods 

Electronic structure methods utilise the laws of quantum mechanics (QM) instead of classical 

mechanics as the foundation for calculations. QM states that the energy and related molecular 

properties can be acquired by solving Schrödinger’s equation. The three classes of electronic 

structure methods are semi-empirical, ab initio, and density functional.127, 128, 130  

1.9.1.3 Semi-empirical and empirical methods 

Semi-empirical computations are set up where certain pieces of information are approximated 

or entirely removed. Therefore, to rectify the introduced errors, the method is parameterized. 

These calculations only consider the valence electrons and are therefore quicker than ab initio 

computations. However, results can be erratic.126-128  

1.9.1.4 Ab initio methods 

Ab initio computations are derived exclusively from theory, containing no experimental data. 

The approximations used are generally mathematical. Ab initio methods systematically 

approach the correct “answer” as the basis set size and level of theory are increased. However, 

ab initio computations require massive amounts of computer disk space, CPU time, and 

memory.127, 128  

1.9.1.5 Density functional methods 

Kohn, Sham and Hohenberg131, 132 proposed the use of density functional models in order to 

design an improved electronic structure method. Density functional theory (DFT) methods can 

attain a substantially greater increase in accuracy, as compared to Hartree-Fock theory. This 

improvement comes with a moderate rise in computational cost. This is obtained by including 
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certain electron correlation effects, which are less expensive as compared to traditional 

correlation methods.127, 128 

DFT methods compute electron correlation via the use of a general functional of the electron 

density. The DFT functionals compute electronic energy by partitioning it into numerous 

components. The partitioned components are then computed separately. Functionals are 

distinguished by their treatment of the exchange and correlation components.  

A prominent disadvantage in density functional development is that the functionals are not 

systematically improvable. Therefore, improvements to satisfy constraints or provide more 

flexible functional forms will not necessarily lead to improvement for all interactions. Presently 

no functional is universally accurate. The main limitations of density functionals are their 

treatment of nonlocal exchange and correlation.133 The accuracy of DFT computations are 

dependent on the basis set and density functional selected. DFT methods have improved due 

to the utilisation of hybrid functionals.127-130  

1.9.1.6 M06-2X 

The M06134, 135 suit of density functionals have gained recent attention for studies in which 

accurate calculations of molecular properties could be performed with improved accuracy in 

comparison with experiments.136-138 Truhlar and co-workers recommend the M06-2X139 

functional for calculations involving main-group thermochemistry.139 The M06-2X functional 

has shown accuracy in thermochemistry calculations involving systems which contain 

halogens, oxygen, and carbon atoms.137 

1.9.1.7 Basis sets in computational chemistry  

A basis set is a mathematical description of the orbitals in a molecular system and is utilised to 

execute calculations. The larger the basis set, the more accurate the approximated orbitals. This 

is due to a small number of restrictions imposed on electron locations in space.127-129  

1.9.1.8 Solvation models in computational chemistry  

The solute properties which depend on energy, such as geometry, and total energy, are 

dependent on the solvent due to the interaction energy between solute and solvent126. Solvent 

effects are included in computational calculations using both discrete140-146 and continuum147-

149 solvent models. Discrete methods work well on problems using chemical intuition. 

However, discrete methods are computational costly even for simple systems. In continuum 

models, the explicit solvent structure is not considered.150 Therefore, the solute’s electronic 

distribution can be treated quantitatively and polarization effects can be assessed at a minimal 
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computational cost. The PCM method is commonly used for solvent modeling since it is 

flexible and robust126. The SMD solvation model is recommended by Gaussian for the ΔG of 

solvation151 and is one of the most commonly used solvation model in recent literature.61, 63, 69, 

108, 122, 152 

1.10 Experimental techniques utilised 

1.10.1 Nuclear magnetic resonance (NMR) spectroscopy 

In the 1940s, NMR spectroscopy was developed in order to study the properties of nuclei.153-

155 NMR spectroscopy can aid in the identification of the carbon-hydrogen framework of 

organic compounds.156 Nuclei that possess spin (an odd number of protons and, or neutrons) 

permits them to be analysed by NMR techniques (1H, 13C, 15N, 19F, and 31P).157 Due to the 

nucleus possessing charge, nuclei with spin have a magnetic moment and generates a magnetic 

field.  When there is no applied magnetic field, the magnetic moments of these nuclei are 

randomly oriented. However, when there is an applied magnetic field, the magnetic moments 

of these nuclei line up either with or against the applied magnetic field.156, 158 The frequency of 

an NMR signal is dependent on the strength of the applied magnetic field experienced by the 

nucleus. If all of the protons in an organic compound experienced the same magnetic field, then 

all of the protons would produce a single signal of the same frequency.156 Nuclei are surrounded 

by electrons, which circulate about the nuclei and in a magnetic field induce a local magnetic 

field which opposes the applied magnetic field and therefore, subtracts from it159 (Figure 7). 

The electron density partly shields the protons from the applied magnetic field. The shielding 

varying for different hydrogens, all of the protons in an organic compound do not experience 

the same applied magnetic field. The greater the electron density of the proton’s environment, 

the greater the shielding from the applied magnetic field (diamagnetic shielding).156, 160 

 

Figure 7: The shielding effect by electrons on the nucleus from an applied magnetic field, 

adapted from literature.159 
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In electron-rich environments, protons are more shielded and resonate at lower frequencies 

(upfield). Whereas in electron-poor environments, protons are less shielded and resonate at 

higher frequencies (downfield). In NMR spectra high frequency appears on the left-hand side 

(Figure 8).156 

 

 
Figure 8: The effect of shielding on the resonance frequency of protons, adapted from 

literature.156 

When protons are in the same environment, they are chemically equivalent (Figure 9). 

Therefore, they produce the same signal in an NMR spectrum. Therefore, non-chemically 

equivalent protons produce a unique signal in NMR spectra. The 1H NMR spectrum of 1-

bromopropane possesses three signals due to three sets of chemically equivalent protons being 

present.156  

 
 

Figure 9: 1-bromopropane possesses three different sets of chemically equivalent protons, 

adapted from literature.156 

In the 1H NMR spectrum, integration of the area under a signal can determine the relative 

number of protons responsible for producing that signal. The number of peaks in a signal is the 

multiplicity of that signal. Splitting is due to protons that are bonded to adjacent carbons.156, 160 

In 13C NMR spectra, the number of signals indicates how many different kinds of carbons 

a compound has, similar to 1H NMR spectra the number of signals reveals the number of 
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non-chemically equivalent hydrogens a compound has. The principles behind 1H NMR and 13C 

NMR spectroscopy are essentially the same.156 

Complex molecules which are difficult to analyse by conventional 1H NMR and 13C NMR 

spectroscopy because of signals overlapping can be analysed by special techniques. These 

include DEPT (distortionless enhancement by polarization transfer) 13C NMR which 

distinguishes between CH, CH2, and CH3 groups.156 Two-dimensional NMR spectroscopy 

techniques such as COSY (Correlation spectroscopy), HSQC (heteronuclear single quantum 

coherence), and HMBC (heteronuclear multiple bond coherence spectroscopy). COSY is 

used to observe 1H−1H correlations. HSQC is used to observe 1H−13C correlations resulting 

from one-bond couplings. HMBC is used to observe 1H−13C correlations resulting from two-

bond and three-bond coupling.160, 161 Currently, even 3-D and 4-D NMR spectroscopy 

techniques have been employed in the elucidation of highly complex molecules.156 

1.10.2 Infrared (IR) spectroscopy 

IR radiation (4000 to 600 cm-1) corresponds to the frequencies associated with the bending and 

stretching vibrations of bonds (Figure 10). Each of these bond vibrations has a characteristic 

frequency. When a molecule is irradiated and the radiation of a frequency matches the 

characteristic frequency required for vibration, the molecule absorbs energy.156 

 

Figure 10: Examples of stretching and bending vibrations of bonds, adapted from 

literature.162 

IR spectroscopy provides a way of identifying functional groups.159 An IR spectrum, which is 

produced by irradiating a sample with IR radiation, is a graph of the percent transmission of 

radiation against the wavenumber (inverse of wavelength) of the radiation transmitted. At 

100% transmission, all IR radiation at a specific wavelength passes through the compound. The 

lower the value of percent transmission, the more energy is absorbed by the molecule.163 Each 

absorption band in an IR spectrum represents energy absorption. Absorption bands are 

produced by the stretching and bending vibrations of each bond in the compound. The intensity 

of an absorption band depends on the change in dipole moment. The more intense the 
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absorption, the greater the change. The stronger the bond or the heavier the atom, the greater 

the energy required to stretch it. Lighter atoms and stronger bonds absorb at larger 

wavenumbers.156  

An IR spectrum may be separated into two regions. The functional group region (4000-1400 

cm-1) is where the majority of organic functional groups produce absorption bands. Organic 

chemists generally focus on the functional group region. The fingerprint region (1400-600 cm-

1) is characteristic of the whole molecule. The fingerprint region of the spectrum can be used 

to identify a compound by comparing the spectrum of a known sample of the compound.162 

Stretching a bond requires more energy than to bending a bond. Consequently, absorption 

bands produced from stretching vibrations appear in the functional group region of the 

spectrum, whereas absorption bands produced from bending vibrations normally appear in the 

fingerprint region.156  

1.10.3 Liquid chromatography-mass spectrometry LC-MS) 

The combination of chromatography and mass spectrometry (MS) allows purified compounds 

to be introduced into a mass spectrometer. Therefore, the combination of high-performance 

liquid chromatography (HPLC) and MS permits for more definitive qualitative and quantitative 

analysis than each individual technique.164  

The most utilised of all the analytical separation techniques is liquid chromatography (LC). 

This is due to its accurate quantitative determinations, sensitivity, and ease of automation.165 

In LC separations the sample is dissolved in a liquid mobile phase. This mobile phase is then 

passed through an immiscible stationary phase. The relative interaction of the analyte with both 

phases determines the analytes retention characteristics. Analytes that interact strongly with 

the stationary phase more are retained longer in this phase. In contrast, analytes that interact 

weakly with the stationary phase travel quickly with the mobile phase and are less retained. 

These differences in migration rates allow for sample components to separate (Figure 11).164 

The majority of HPLC separations utilise reversed-phase chromatography. In reversed-phase 

chromatography, the mobile phase is more polar than the stationary phase. Therefore, the more 

polar the analytes, the lower the retention.164 



21 
 

 

Figure 11: Separation of a mixture of analytes A and B by HPLC chromatography adapted 

from literature.165 

In mass spectrometry, a small amount of an analyte is vaporized and then ionised (Figure 12).156  

 

Figure 12: The ionisation of a molecule by an electron beam.156 

There are several different types of ionisation methods. Amongst the most popular methods are 

electron ionisation (EI) and chemical ionisation (CI).164 In EI, the analyte is bombarded with 

high-energy electrons (generally 70 eV). A major disadvantage of EI is that the excess energy 

utilised during electron bombardment can cause rapid fragmentation which results in the 

molecular ion not being detected in the mass spectrum. In contrast, CI was developed to 

specifically enhance the production of the molecular ion. In CI, the analyte is introduced into 

a mass spectrometer source containing a reagent gas. The mixture is thereby ionised with an 

electron beam. Thereafter, Ion–molecule reactions occur between the neutral analyte molecules 

and the ionised reagent gas. During fragmentation, weaker bonds break in preference to 

stronger bonds, and bond breakage that leads to the formation of more stable fragments is 

preferred to those that lead to less stable fragments being formed.164  

After ionisation, an electric field accelerates the ions and then the ions pass into the mass 

analyser, which separates the ion in accordance to their mass-to-charge (m/z) ratios. In a 

quadrupole mass analyser (Figure 13), four solid rods are arranged parallel to the direction of 

the ion beam. A direct current voltage and a radiofrequency are applied to the rods, generating 
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an oscillating electrostatic field between the rods. Depending on the ratio of the radiofrequency 

amplitude to the direct current voltage, ions acquire an oscillation in this electrostatic field. 

Ions of an incorrect m/z ratio experience an unstable oscillation. The amplitude of the 

oscillation continuously increases until the ion strikes into one of the quadrupole rods. Ions 

possessing the correct m/z ratio experience a stable oscillation. These ions do not strike the rods 

but pass through the analyser to reach the detector.157  

 

Figure 13: Schematic diagram of a quadrupole mass analyser, adapted from literature.157 

1.10.4 Supercritical fluid chromatography  

Supercritical fluid chromatography (SFC) is a hybrid of gas chromatography (GC) and HPLC, 

combining the best features of each respective technique and can even offer superiority in 

specific applications.165 SFC can be chosen over GC for nonpolar and thermally labile 

compounds with higher molecular weights.165 SFC began gaining popularity upon becoming 

the favoured method for chiral separations, and thereby replacing chromatographic methods 

utilising normal phase chromatography and hydrocarbons. In contrast, SFC uses a solvent 

system that is greener, comprising of an organic modifier and supercritical CO2. In SFC, the 

mobile phase is a supercritical fluid.166 At pressures and temperatures above its critical pressure 

and temperature, a substance is called a supercritical fluid.167 Neat CO2 is a nonpolar fluid 

suitable for dissolving and separating nonpolar compounds. However, more polar compounds 

require the addition of a polar organic modifier (e.g. methanol, ethanol, and acetonitrile).166 
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The most common mobile phase used is CO2, as it is as readily available, non-toxic, inert, and 

miscible with numerous solvents.166, 167 The most commonly used modifier is methanol.167 The 

modifier decreases the retention characteristics of more polar compounds. The modifier also 

affects the density, and viscosity of the fluid mixture. Acidic or basic additives can also be 

added to the modifier, these attach to the active sites on the stationary phase. The additives can 

increase the stationary phases polarity and enhanced peak shape for polar compounds.166 Figure 

14 depicts a general schematic of a preparative SFC system. The mobile phase is delivered by 

two different pumps. The first pump is for liquid CO2, the pump head and incoming CO2 are 

chilled to ensure liquid CO2 is pumped. The second pump is for the organic modifier. After the 

mixing of the two streams, the mobile phase travels to the injector. Analyte from the injector 

is then carried to the column, and thereafter to the UV detector and finally the back pressure 

regulator. The back pressure regulator maintains the mobile phase in a dense state. The fraction 

collection system collects eluted bands. After the pressure is dropped, the CO2 vented or 

recycled, and the modifier waste is collected in an enclosed container.166  

 

Figure 14: Schematic of preparative SFC system, adapted from literature.168 
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1.10.5 Microwave-assisted reactions  

Gedye et al. and Giguere et al. were the first to report on the utilisation of microwave irradiation 

in organic synthesis in 1986.169, 170 Since then numerous studies have shown microwave-

assisted reactions have the potential to increase product yield, decrease reaction times and 

undesirable side reactions over conventional thermal heating methods (Scheme 15).171 

 

Scheme 15: Evaluation between microwave and conventional heating yields and reaction 

times.172 

The energy of the microwave photon (0.0016 eV) cannot cleave molecular bonds.173 Therefore, 

microwave-assisted reactions rely on the efficient heating of materials by microwave dielectric 

heating effects. These depend on the material’s ability (solvent or reagent) to absorb microwave 

energy and convert that energy into heat.174  

The ability of a particular material to generate heat upon microwave irradiation depends on the 

dielectric properties of that material. The loss tangent (tan δ) determines the ability of a 

particular substance to convert electromagnetic energy into heat at a given frequency and 

temperature.175 A high tan δ is necessary for efficient rapid heating and absorption. A material 

with a high dielectric constant may not necessarily possess a high tan δ value.175 Generally, 

solvents may be categorised as high (tan δ >0.5, polar organic solvents), medium (tan δ 0.1–

0.5), or low microwave absorbing (tan δ <0.1, non-polar organic solvents). A low tan δ value 

may not necessarily exclude a solvent from being utilised in microwave-assisted reactions.174 

Since the reagents or substrates may be polar, the overall dielectric properties of the reaction 

medium will generally allow for necessary heating by microwave irradiation.174  

Traditional organic synthesis is performed using conductive heating from an external heat 

source, typically a heating mantle or oil-bath. Conductive heating is relatively inefficient and 

slow method for energy transfer into the system since its dependents on the involved materials 

thermal conductivity and convection currents. As a result, the reaction vessel typically 

possesses a higher temperature versus the reaction mixture. Whereas microwave-assisted 
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reactions allow for effective internal heating by utilising direct microwave irradiation of 

molecules (solvents, and reagents) in the reaction. Microwave irradiation increases the 

temperature of the whole reaction mixture concurrently. In contrast to conventional heating, 

where heating first occurs with the reaction solution in contact with the vessel wall (Figure 

15).174  

 

Figure 15: Schematic of sample heating by conduction versus heating by microwaves, 

adapted from literature.176 

Aims 

The aims of the study are stated as follows: 

To determine if sulfonimidamides are suitable trifluoromethyl and trifluoromethylthiol 

donating agents using DFT computational methods. To synthesise sulfonimidamides based 

trifluoromethyl and trifluoromethylthiol donating agents. To evaluate these agents on a model 

photoredox trifluoromethylation reaction and a model electrophilic trifluoromethylthiolation 

reaction (Chapter 2-3).  

Objectives 

 To perform homolytic and heterolytic DFT bond enthalpy calculations on the N-CF3 

and N-SCF3 bonds in various sulfonimidamides before and after single electron 

reduction (Chapter 2-3). 

 To synthesise the most promising sulfonimidamide based trifluoromethyl and 

trifluoromethylthiol donating agents (Chapter 2-3). 

 To perform DFT calculations and experimental measurements to determine the redox 

potentials for the selected trifluoromethyl donating agents (Chapter 2). 

 To compare various potential photoredox catalysts for trifluoromethylation (Chapter 

2). 
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 To evaluate the sulfonimidamide based trifluoromethyl donating agents on a model 

photoredox trifluoromethylation reaction (Chapter 2). 

 To evaluate the sulfonimidamide based trifluoromethylthiol donating agents on an 

electrophilic trifluoromethylthiolation reaction (Chapter 3).  

 To compare all computational and experimental values for correlation (Chapter 2-3). 

1.11 Outline of thesis 

This thesis consists of 5 chapters that are presented as follows:  

Chapter 1 presents a literature review of the background information pertaining to this study.  

Chapter 2 presents the attempted use of sulfonimidamides as trifluoromethylating agents.  

Chapter 3 presents the direct electrophilic trifluoromethylthiolation via sulfonaimidamines and 

is in progress for submission. 

Chapter 4 provides a summary and conclusion.  

Chapter 5 provides the experimental procedures and spectra. 
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Chapter 2 

2. Sulfonimidamides as trifluoromethylating agents 

The introduction of a trifluoromethyl group (CF3) into an organic molecule can significantly 

affect its lipophilicity, conformational behaviour, and metabolic stability.1, 2 Radical mediated 

trifluoromethylation facilitated by photoredox catalysis offers mild and highly selective 

reaction conditions.3-5 Organic photocatalysts possess a lower cost, greater availability, and can 

have superior efficiency6, 7 when compared to metal based photocatalysts.8, 9 Therefore, the 

development of methodologies using organic photocatalysts is currently highly 

advantageous.10 

While there are several commercially available trifluoromethylation reagents, some limitations 

include the use of gaseous CF3I11, volatile CF3SO2Cl12, and expensive Togni13, Umemoto14, or 

Rupert-Prakash15, 16 reagents.17, 18 Therefore, the development of cheaper and safer 

trifluoromethylation reagents is vital.19 

Cheng and co-worker’s computational study illustrated that a single electron reduction can 

significantly reduce the radical donating ability (TR⦁DAs)20,  which corresponds to a weaker 

bond. Single electron reduction can be achieved either photochemically21 or 

electrochemically.22  

Inspired by the work of Cheng and co-workers20, 23, this study focused on the computational 

design and thereafter synthesis of sulfonimidamides as potential radical trifluoromethylation 

agents via photoredox catalysis. 

2.1 Trifluoromethyl radical donor abilities (TR⦁DAs) of 

sulfonimidamides 

All calculations were performed with the Gaussian 16 software package.24 Optimisations were 

performed with the M06-2X25 functional and 6-31+G(d)26, 27 basis set, using the SMD solvation 

model28 to account for solvation in dichloromethane. Thereafter, single point energy was 

calculated at the M06-2X/6-311++G(2df,2p)29, 30 level of theory on the pre-optimised 

structures. The TR⦁DAs of the proposed sulfonimidamides before and after a single electron 

reduction were calculated (Figure 1).  
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Figure 1: Calculated* TR⦁DAs values of the proposed sulfonimidamides before and after a 

single electron reduction in acetonitrile. *(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-

311++G(2df,2p)) 

Single electron reduction significantly lowered the TR⦁DAs values. Figure 1 illustrates that 

sulfonimidamides possess (6a-c) the potential to deliver a trifluoromethyl group comparable to 

known delivering agents (Figure 2). The trifluoromethyl cation donating abilities (TC+DA) of 

the proposed sulfonimidamides were also calculated (Appendix 1, Figure S1). However, the 

TC+DA values indicated poor donation potentials as compared to known electrophilic 

trifluoromethylating reagents (Appendix 1, Figure S2).   
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Figure 2: The reported calculated* TR⦁DAs values of trifluoromethylating reagents after a 

single electron reduction in acetonitrile.20 *(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-

311++G(2df,2p)) 

The computations illustrate that the proposed sulfonimidamides (6a-c, Figure 1) have the 

potential to donate a trifluoromethyl group upon single electron reduction, comparable to 

known delivering agents (Figure 2). Therefore, redox potentials were calculated to identify a 

suitable photocatalyst to reduce the sulfonimidamides. 

2.2 Calculated electrochemical potentials 

All calculations were performed using the Gaussian 09 software package.31 The reduction 

potentials (E1/2
red) and oxidation potentials (E1/2

ox) of the proposed sulfonimidamides were 

calculated by utilising an improved method initially developed by Nicewicz and co-workers32 

and are referenced to the saturated calomel electrode (SCE) (Table 1). The initial method 

utilised the CPCM solvation model33, 34 for the M06-2X and B3LYP35 functionals with the 6-

31+G(d,p) basis set. The M06-2X functional tends to overestimate the redox potentials, while 

the B3LYP functional underestimates the potentials. The average potentials of both functional 

provides a potential close to the experimental value. The improved method utilised the SMD 

solvation model for the M06-2X and HSEH1PBE36-42 functionals with and 6-31+G(d) basis 

set. The SMD solvation model is recommended by Gaussian for the ΔG of solvation43 and is 

one of the most commonly used solvation model in recent literature.20, 23, 44-47 The complete 

procedure for calculations can be found in Chapter 5, while the complete method optimisation 

can be found in Appendix 3 (Table S1-3).  
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Table 1: Redox potentials of the proposed sulfonimidamides in acetonitrile (V vs SCE) 

Sulfonimidamidea 

(E1/2
red)b 

M06-2X 

(V) 

(E1/2
ox) 

M06-2X 

(V) 

(E1/2
red)c 

HSEH1PBE 

(V) 

(E1/2
ox) 

HSEH1PBE 

(V) 

Average 

(E1/2
red) 

(V) 

Average 

(E1/2
ox) 

(V) 

6a -1.48 3.15 -1.36 3.00 -1.42 3.07 

6b -1.66 3.10 -1.39 2.99 -1.53 3.04 

6c -1.49 2.40 -1.34 2.42 -1.41 2.41 

aStructure number as designated in Figure 1. 
bSMD-M062X/6-31+G(d) 
cCPCM-HSEH1PBE/6-31+G(d) 

Table 1 illustrates that the proposed sulfonimidamides possess high oxidation potentials and 

relatively high reduction potentials. Therefore, a highly reducing photocatalysts is required for 

the photochemical reduction.   

2.3 Choice of photocatalyst 

Utilising the Nernst equation (1)48 in order to obtain a negative ΔG (spontaneous electron 

transfer) for the reduction of the sulfonimidamides, the reduction potential of the 

sulfonimidamides should be greater than the oxidation potential of the photocatalysts.49 

𝛥𝐺 = −𝑛𝐹𝐸 (1) 

𝐸 = 𝐸ଵ
ଶ

௥௘ௗ(𝐴) − 𝐸ଵ
ଶ

௢௫(𝐷) 

Possible organic photocatalysts are xanthone and 10-phenylphenothiazine (Figure 3) whose 

excited state oxidation values are E1/2
ox = -1.6150, 51 and E1/2

ox = -2.152 respectively.  

 

Figure 3: Possible organic photocatalysts for the reduction of the proposed sulfonimidamides. 

2.4 Synthesis of sulfonimidamides 

The various sulfonimidamides were synthesised according to an adapted method developed by 

Chen et al.53 (Scheme 1). The protection of sulfonamide (1a, Figure 4, A) was performed over 
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25 minutes using a microwave method (85 °C, 200 W) instead of the reported 20 hour room 

temperature reaction, the protected sulfonimidamide (2a) was confirmed by 1H, 13C NMR 

spectroscopy and LC-MS analysis. Tert-butyldimethyl-silyl (TBS) protection was necessary to 

prevent a reaction between the primary amine that could form and the in situ formed 

sulfonimidoyl chloride (3a). Bulkier silyl protecting groups (TBS and tert-butyldiphenylsilyl) 

generate more stable sulfonimidoyl chlorides and increased yields, as shown in studies by Chen 

and Gibson54 and Chinthakindi et al.55 The deoxychlorination of the protected sulfonamide 

(2a) using Ph3PCl2 was initially reported by Roy56, using tri-methylsilyl protected 

sulfonamides. The amination step of the sulfonimidoyl chloride (3a) can result in the formation 

of products with ring closure (4c, Figure 5, B) or without ring closure (4a, b, d), which is 

dependent on the reaction conditions as shown in literature.53 Compounds 4a-d were confirmed 

by novel X-ray crystal structures, 1H, 13C NMR spectroscopy and LC-MS analysis. 

Deprotection eventually leads to ring closure obtaining the final sulfonimidamides (5a-c) 

without an imine nitrogen present, confirmed by novel X-ray crystal structures, 1H, 13C NMR 

spectroscopy and LC-MS analysis. Deprotection of the ring closed products lead to a 

sulfonimidamide with an imine nitrogen present (5c), confirmed by 1H, 13C NMR spectroscopy 

and LC-MS analysis. Compound 5d (Figure 4, D) was obtained in trace amounts during the 

synthesis of compound 5c and was therefore, not considered further. Compounds 4b and 5b 

(Figure 4, C) are novel. Novel X-ray crystal structures for 4a and 5a are currently under 

analysis. A detailed experimental procedure is provided in Chapter 5. 
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Scheme 1: Synthesis route for the proposed sulfonimidamides. 
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Figure 4: Novel X-ray crystal structures obtained (unpublished results). 

2.5 Model photochemical reactions 

The following photoredox reactions (Scheme 2-3) were the proposed model reactions to 

evaluate the effectiveness of the proposed sulfonimidamides as trifluoromethylating agents. 

 

Scheme 2: Trifluoromethylation of electron rich heteroarenes.57 
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Scheme 3: Trifluoromethylation of β-nitroalkenes.2 

2.6 Attempted trifluoromethylation of sulfonimidamides 

Bolm and co-workers1 initially  developed a method for the N-trifluoromethylation of the 

sulfoximines, which was then adapted by Lücking and associates58 for the N-

trifluoromethylation of sulfonimidamides. This method was utilised for the 

trifluoromethylation of the sulfonimidamides in Scheme 4. In the reaction of sulfonimidamide 

5c, incomplete conversion with side product formation was observed from TLC analysis. 

Despite all efforts to improve the conversion, no formation of 6c was observed. In the reaction 

of sulfonimidamide 5a using the same conditions as 5c, no conversion of 5a occurred from 

TLC analysis. A detailed experimental procedure is provided in Chapter 5.  

 

Scheme 4: Trifluoromethylation following Bolm’s method.1, 58 

Thereafter, a method developed by Wang and co-workers for the electrophilic N-

trifluoromethylation of N-H ketimines was attempted59 (Scheme 5). However, again no 

formation of the desired product (6c) was achieved as 5c remain unreacted as observed from 

TLC analysis. A detailed experimental procedure is provided in Chapter 5. 
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Scheme 5: Trifluoromethylation following Wang’s method.59 

Finally, a recent method developed by Yi and associates for the N-trifluoromethylation of 

amines was attempted60 (Scheme 6). However, no formation of the desired product (6b) was 

achieved as no conversion of 5b occurred as observed from TLC analysis. A detailed 

experimental procedure is provided in Chapter 5.  

 

Scheme 6: Trifluoromethylation following Yi’s method.60 

 

2.7 Conclusion and outlook 

Despite all efforts to synthesise trifluoromethylated sulfonimidamides (Scheme 4-6) being 

unsuccessful, the synthesis and characterisation of compounds 5a-d were successful and 

resulted in 6 novel X-ray crystal structures. In addition, a simple yet efficient computational 

method for calculating redox potentials was also developed. The decision was then to 

synthesise trifluoromethylthiolated sulfonimidamides based on the success of sulfonamides as 

trifluoromethylthiolating agents and will be presented in Chapter 3. A potential future 

recommendation to synthesise the trifluoromethylated sulfonimidamides is the use of 

trifluoromethylated amines for the amination of the sulfonimidoyl chlorides (Scheme 1). The 

detailed experimental procedures for Schemes 4-6 are provided in Chapter 5. 
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Chapter 3 

3. Computationally aided direct electrophilic 

trifluoromethylthiolation via sulfonimidamides 

3.1. Introduction 

The trifluoromethylthio group (SCF3) has attracted special interest in medicinal chemistry due 

to its remarkable lipophilicity (Hansch constants 1.44).1-3 Due to its high lipophilicity and 

strong electron-withdrawing ability, the trifluoromethylthio group greatly improves the 

pharmacokinetic properties of lead compounds.3, 4 The trifluoromethylthio group is 

incorporated in several bioactive compounds (Figure 1), such as Tiflorex5, 6 (anorectic drug), 

Toltrazuril7, 8 (coccidiostatic drug), and Cefazaflur9, 10 (parenteral cephalosporin).11, 12 The 

unique properties possessed by the trifluoromethylthio group has prompted research into the 

development of efficient methods for the incorporation into desired scaffolds.13 

 

Figure 1: SCF3 containing biologically active compounds.11 

Among the various electrophilic reagents available, N-SCF3 reagents are the most utilised12, 13 

(Figure 2). The reagents PhN(Me)SCF3 (Figure 2, A) and PhNHSCF3 (Figure 2, B), developed 

by Billard and Langlois,14, 15 are effective for trifluoromethylthiolation of various substrates.14, 

16-18 However, a strong Brønsted or Lewis acid is required for the activation of the reaction.13 

To address this problem, Shen and associates developed sulphonamide based N-

trifluoromethylthiosaccharin19 (Figure 2, E)  and N-trifluoromethylthio-

dibenzenesulfonimide20 (Figure 2, F). Both reagents have been shown to be highly electrophilic  
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in both computational21 and experimental4 studies. These reagents have been shown to possess 

a greater reactivity than previous reagents with a broad substrate scope under mild 

conditions.13, 19-22   

 

Figure 2: Electrophilic trifluoromethylthiolating reagents.20 

Sulfonimidamides are the aza-analogues of sulfonamides, where one of the oxygen atoms have 

been replaced by a nitrogen.23 Sulfonimidamides have received less attention compared to 

sulfonamides, presumably to the lack of commercial availability and synthetic methods.24, 25 

Based on the success sulfonamides have had as highly electrophilic trifluoromethylthiolating 

reagent19-21, this study was focused on designing highly electrophilic sulfonimidamide based 

trifluoromethylthiolating reagents. 

Cheng and co-workers studied the electrophilic donating ability (Tt+DA) of various 

trifluoromethylthiolation agents  by computationally calculating bond dissociation enthalpies 

cleavage.21, 26 Good correlation was observed between the computed Tt+DA values and 

experimental reactivity. In an additional study, Cheng and co-workers experimentally 

determined the electrophilicity parameters of various trifluoromethylthiolation agents, these 

also correlated well with Tt+DA values.4 

Inspired by the work of Cheng and co-workers21, 26 and Shen and associates19, 20, this study was 

focused on the computational design and thereafter synthesis of more efficient 

sulfonimidamide based electrophilic trifluoromethylthiolation agents.         
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3.2 Results and Discussion 

3.2.1 Trifluoromethylthio cation donor abilities (Tt+DAs) of 

sulfonimidamides 

All calculations were performed with the Gaussian 16 software package.27 Optimisations were 

performed with the M06-2X28 functional and 6-31+G(d)29, 30 basis set, using the SMD solvation 

model31 to account for solvation in acetonitrile. Thereafter, single point energy was calculated 

at the M06-2X/6-311++G(2df,2p)32, 33 level of theory on the pre-optimised structures. The 

Tt+DAs of the proposed sulfonimidamides were calculated (Figure 3). Figure 3 illustrates that 

sulfonimidamides (7a-c, e, f) possess the potential to deliver a trifluoromethylthio group 

comparable to known delivering agents (Figure 4). The Tt+DAs values of the proposed 

sulfonimidamides illustrate that they have the potential to be more electrophilic than previously 

applied delivering agents.  

 

Figure 3: Calculated* Tt+DAs values of the proposed sulfonimidamides in acetonitrile. 

*(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-311++G(2df,2p)) 

The trifluoromethylthio radical donating abilities (Tt⦁DA) of the proposed sulfonimidamides 

were also calculated (Appendix 2, Figure S1). The Tt⦁DA values indicated the potential to 
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deliver a trifluoromethylthio group comparable to known delivering agents (Appendix 2, 

Figure S2). 

 

Figure 4: The reported calculated* Tt+DAs values of electrophilic trifluoromethylthiolation 

reagents in acetonitrile.20, 21 *(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-311++G(2df,2p)) 

3.2.2 Synthesis of sulfonimidamides 

The various sulfonimidamides were synthesised according to an adapted method developed by 

Chen et al.34 (Scheme 1). The protection of sulfonamide (1a, Figure 5, A) was performed over 

25 minutes using a microwave method (85 °C, 200 W) instead of the reported 20 hour room 

temperature reaction, the protected sulfonimidamide (2a) was confirmed by 1H, 13C NMR 

spectroscopy and LC-MS analysis. Tert-butyldimethyl-silyl (TBS) protection was necessary to 

prevent a reaction between the primary amine that could form and the in situ formed 

sulfonimidoyl chloride (3a). Bulkier silyl protecting groups (TBS and tert-butyldiphenylsilyl) 

generate more stable sulfonimidoyl chlorides and increased yields, as shown in studies by Chen 

and Gibson25 and Chinthakindi et al.35 The deoxychlorination of the protected sulfonamide 

(2a) using Ph3PCl2 was initially reported by Roy36, using tri-methylsilyl protected 

sulfonamides. The amination step of the sulfonimidoyl chloride (3a) can result in the formation 

of products with ring closure (4c, Figure 5, B) or without ring closure (4a, b, d), which is 

dependent on the reaction conditions as shown in literature.34 Compounds 4a-d were confirmed 

by novel X-ray crystal structures, 1H, 13C NMR spectroscopy and LC-MS analysis. 

Deprotection eventually leads to ring closure obtaining the final sulfonimidamides (5a-c) 

without an imine nitrogen present, confirmed by novel X-ray crystal structures, 1H, 13C NMR 

spectroscopy and LC-MS analysis. Deprotection of the ring closed products lead to a 

sulfonimidamide with an imine nitrogen present (5c), confirmed by 1H, 13C NMR spectroscopy 
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and LC-MS analysis. Compound 5d (Figure 5, D) was obtained in trace amounts during the 

synthesis of compound 5c and was therefore, not considered further. Compounds 4b and 5b 

(Figure 5, C) are novel. Novel X-ray crystal structures for 4a and 5a are currently under 

analysis. A detailed experimental procedure is provided in Chapter 5. 

 

Scheme 1: Synthesis route for the proposed saccharin based sulfonimidamides 5a-d. 
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Figure 5: Novel X-ray crystal structures obtained (unpublished results). 

Additional sulfonimidamides were synthesised according to an adapted method developed by 

Chen et al.25 (Scheme 2). The protection of sulfonamide 1b was performed in 25 minutes under 

ambient conditions using microwave instead of the previously reported three day air and 

moisture conditions. The protected sulfonimidamide (2b) was confirmed by 1H, 13C NMR 

spectroscopy and LC-MS analysis. Protection was necessary due to the reasons previously 

stated for the saccharin based sulfonimidamides. The deoxychlorination of the protected 

sulfonamide 2b was performed using in situ generated Ph3PCl2. The amination of the 

sulfonimidoyl chloride 3b resulted in the formation of protected sulfonimidamides 4e, f. 

Compounds 4e, f were confirmed by 1H, 13C NMR spectroscopy and LC-MS analysis. 

Deprotection of the compounds 4e, f led to the final products 5e, f, which was confirmed by 
1H, 13C NMR spectroscopy and LC-MS analysis. A detailed synthesis procedure is provided in 

Chapter 5. 

A (1a) B (4c) 

C (5d) D (5d) 
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Scheme 2: Synthesis route for the proposed sulfonimidamides 5e, f. 

Sulfonimidamides 5a-f were successfully synthesised. All of which possessed the potential to 

deliver a trifluoromethylthio group comparable to known delivering agents (Figure 3,4). 

Therefore, all of the synthesised sulfonimidamides with the exception of 5d (obtained in trace 

amounts) were selected for further N-trifluoromethylthiolation.     

3.2.3 Trifluoromethylthiolation of sulfonimidamides 

Bolm and co-workers37 initially  developed a method for the N-trifluoromethylthiolation of the 

sulfoximines, which was then adapted by Arvidsson and associates38 for the N- 

trifluoromethylthiolation of sulfonimidamides. This method was utilised successfully for 

trifluoromethylthiolation of the sulfonimidamides in Scheme 3. In the reaction the following 

sulfonimidamides reacted with the N-bromosuccinimide (NBS) to form N-

bromosulfonimidamides. The usually nucleophilic imine nitrogen of the sulfonimidamides was 

subjected to “umpolung” through bromination and thereafter nucleophilic replacement with the 

CF3S anion occurred.38 The formation of AgBr is suspected of promoting the N-

trifluoromethylthiolations of the sulfonimidamides.37 The trifluoromethylthiolation of the 

sulfonimidamides (5c, e, f) was confirmed by 1H, 13C NMR spectroscopy and LC-MS analysis. 

A detailed experimental procedure is provided in Chapter 5. 
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Scheme 3: N-trifluoromethylthiolation following Bolm’s method.37, 38 

The N-trifluoromethylthiolation of the sp2 type nitrogen’s were also attempted on derivative 

5b. Initially, the method developed by Bolm and co-workers37 was attempted (Scheme 4, path 

A). However, no bromination occurred as observed from TLC analysis. Thereafter, the NBS 

was replaced with N-chlorosuccinimide (NCS) following a method developed for the 

trifluoromethylthiolation of amines by Besset and co-workers (Scheme 4, path B).39 The 

sulfonimidamide 5b was chlorinated by the NCS, however, upon addition of the AgSCF3 only 

starting material was observed from LC-MS analysis. Finally the method developed by Shen 

and co-workers for the trifluoromethylthiolation of sulfonamides was attempted (Scheme 4, 

path C).19, 20 However, no conversion of the starting material (5b) occurred as observed from 

TLC analysis. A detailed experimental procedure is provided in Chapter 5.  
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Scheme 4: Attempted N-trifluoromethylthiolation of sulfonimidamide 5b. 

Despite all attempts, the N-trifluoromethylthiolation of sulfonimidamide 5b could not be 

achieved. Therefore, N-trifluoromethylthiolation on sulfonimidamide 5a was not attempted. 

Despite compound 5e possessing an imine nitrogen, compound 7e did not form. 

Sulfonimidamide 7c, f were successfully synthesised.    

Cheng and co-workers experimentally determined the electrophilicity parameters (E) of 

various trifluoromethylthiolation agents, which correlated well with the computational Tt+DA 

values (Figure 5).4 This is in agreement with previous reports stating Shen’s reagents being the 

most reactive.19, 20 The lower the E parameter and Tt+DA values, the more electrophilic the 

trifluoromethylthiolation agent. Figure 5 also depicts reactivities of carbon-centred 

nucleophiles. The higher the N parameter the more nucleophilic the carbon-centred 

nucleophiles. Each respective trifluoromethylthiolation agent should react with nucleophiles 

on the same or lower level at room temperature. Utilising the Tt+DA values as a guide 

sulfonimidamide 7c, e, f were positioned in the graph and therefore, should react with a 

correspondingly similar or lower placed nucleophiles. The computationally calculated Tt+DAs 

values of the proposed sulfonimidamides (Figure 3) illustrate that sulfonimidamide 7c 

possessed the greatest potential for donation as compared to sulfonimidamides 7e, f. Therefore, 

7c was chosen as the donating agent for direction electrophilic trifluoromethylthiolation.  

Using Figure 5 as a guide ethyl cyanoacetate and 2,4-dimethylpyrrole were chosen as the model 

substrates to evaluate the reactivity of sulfonimidamide 7c. The trifluoromethylthiolation of 
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2,4-dimethylpyrrole has been reported in literature using a broad range of reaction conditions 

and trifluoromethylthio donating agents.20, 40-42  

 

Figure 6: Comparison of reactivities between carbon-centred nucleophiles (N) and SCF3 
reagents, modified from literature to include Tt+DA values and sulfonimidamides 7c, e, f.4, 20, 

21 
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3.2.4 Direction electrophilic trifluoromethylthiolation via sulfonimidamides 

Ethyl cyanoacetate was deprotonated to form the highly nucleophilic ethyl cyanoacetate anion 

using sodium ethoxide in ethanol. Thereafter, sulfonimidamide 7c was added. After 12 hours 

LC-MS analysis indicated complete consumption of 7c. Interestingly, sulfonimidamide 5d was 

obtained as a by-product of the reaction and not 5c (Figure 7), as confirmed by 1H NMR and 

LC-MS analysis. This indicates a migration of the benzyl group after the trifluoromethylthio 

group leaves. The suspected product possesses two peaks in the 19F NMR indicating possible 

resonance between keto-enol forms of the desired product. This was similarly observed in the 

trifluoromethylthiolation of 1-phenylbutane-1,3-dione and ethyl 3-oxo-3-phenylpropanoate.4 

LC-MS analysis indicated the formation of the trifluoromethylthiolated ethyl cyanoacetate. 

Purification was attempted using gravity chromatography and supercritical fluid 

chromatography. However, a clean 1H and 13C NMR could not be achieved. All attempts to 

isolate the trifluoromethylthiolated ethyl cyanoacetate resulted in a mixture of the suspected 

product and sulfonimidamide 5c as indicated by 1H and LC-MS analysis. Further optimization 

towards the desired products is ongoing. A detailed experimental procedure is provided in 

Chapter 5. 

 

Scheme 5: Direction electrophilic trifluoromethylthiolation of ethyl cyanoacetate. 

O

O

N
Sodium
ethoxide

Absolute
ethanol

O

O

N

O

O

N

SCF3

N
S

O

NO SCF3

7c

OH

O

N

SCF3



56 
 

 

Figure 7: Structure of sulfonimidamides 5c, d. 

Additionally, the trifluoromethylthiolation of 2,4-dimethylpyrrole was also attempted to 

evaluate the reactivity of sulfonimidamide 7c. After 12 hours LC-MS analysis indicated 

complete consumption of 7c to form sulfonimidamide 5c. The 19F NMR of the crude reaction 

mixture revealed a single peak which corresponded to chemical shift reported in literature.40-42 

However, all attempts at purification of the desired product were unsuccessful and a clean 1H 

and 13C NMR could not be achieved. All attempts to isolate the trifluoromethylthiolated 2,4-

dimethylpyrrole resulted in a mixture compounds as indicated by 1H NMR and LC-MS 

analysis. Further optimization towards the desired products is ongoing. A detailed experimental 

procedure is provided in Chapter 5. 

 

Scheme 6: Direction electrophilic trifluoromethylthiolation of 2,4-dimethylpyrrole. 

The results from the trifluoromethylthiolation of ethyl cyanoacetate and 2,4-dimethylpyrrole 

indicate that sulfonimidamide 7c has the potential to be a new SCF3 donating agent. Due to the 

trifluoromethylthio group leaving as confirmed by crude 19F NMR and LC-MS analysis. 

However, further optimization is ongoing in our laboratory. 

Additionally, these sulfonimidamide based trifluoromethylthiolating agents have the indicated 

potential to deliver a trifluoromethylthio radical comparable to known delivering agents as 

indicated by calculated Tt⦁DA values (Appendix 2, Figure S1-2). N-trifluoromethylthio 

sulfonimidamides have been reported to show high antimycobacterial activity comparable to 
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ethambutol, a first line antibiotic for tuberculosis infection recommended by the world health 

organization. Interestingly, other work in our lab revealed a structure activity relationship using 

matched pair analysis, that concluded that the trifluoromethylthio moiety as compared to the 

trifluoromethyl moiety on sulfoximines was responsible for superior biological activity against 

bacterial presumably to the lability of the N-SCF3 bond.38 This result correlates to our 

experimental observation of losing the SCF3 group. Therefore, sulfonimidamides 7a-c have the 

potential to be biological active as well as potential trifluoromethylthio delivering agents. 

3.3 Conclusion  

Sulfonimidamides 5c, f were successfully trifluoromethylthiolated, resulting in the 

corresponding N-trifluoromethylthio sulfonimidamides 7c, f. Novel X-ray crystal structures for 

5e and 5f are currently under analysis. The computationally calculated Tt+DAs values of 

sulfonimidamides 7c, e, f (Figure 3) illustrate that sulfonimidamide 7c possessed the greatest 

potential for donation (36.51 Kcal mol-1) and has the potential to be more electrophilic than 

previously applied delivering agents (Figure 4). Therefore, sulfonimidamide 7c was chosen as 

the donating agent for the further electrophilic trifluoromethylthiolation of ethyl cyanoacetate 

and 2,4-dimethylpyrrole. The results from the trifluoromethylthiolation model reactions 

indicated that sulfonimidamide 7c is a potentially new SCF3 donating agent. Due to the 

trifluoromethylthio group leaving from sulfonimidamide 7c as confirmed by crude 19F NMR 

and LC-MS analysis. However, method optimisation is required and is ongoing to determine 

the substrate scope and reaction conditions.    

A potential future recommendation for the N-trifluoromethylthiolation of the sp2 type 

nitrogen’s is the use of trifluoromethylthiolated amines for the amination of the sulfonimidoyl 

chlorides (Scheme 1). This could lead to the synthesis of sulfonimidamides 7a, b which possess 

greater Tt+DAs values as compared to sulfonimidamide 7c (Figure 3).   
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Chapter 4 

Conclusion and outlook 

The computational calculated trifluoromethyl radical donor abilities of sulfonimidamides 6a-c 

illustrate the potential to deliver a trifluoromethyl group comparable to known delivering 

agents (Chapter 2, Figure 1-2). The synthesis and characterisation of compounds 5a-d were 

successful and resulted in 6 novel X-ray crystal structures, however, despite all efforts to 

synthesis of the trifluoromethylated sulfonimidamides (Chapter 2, Scheme 4-6) were 

unsuccessful. In addition, a simple yet efficient computational method for calculating redox 

potentials was also developed. A future recommendation is to synthesise the 

trifluoromethylated sulfonimidamides is the use of trifluoromethylated amines for the 

amination of the sulfonimidoyl chlorides (Chapter 2, Scheme 1).  

The decision was then to synthesise trifluoromethylthiolated sulfonimidamides based on the 

success of sulfonamides as trifluoromethylthiolating agents. Sulfonimidamides 5c, f were 

successfully trifluoromethylthiolated, resulting in N-trifluoromethylthio sulfonimidamides 7c, 

f. Novel X-ray crystal structures for 5e and 5f are currently under analysis. The computationally 

calculated Tt+DAs values of sulfonimidamides 7c, e, f (Chapter 3, Figure 3) illustrated that 

sulfonimidamide 7c possessed the greatest potential for donation (36.51 Kcal mol-1) and has 

the potential to be more electrophilic than previously applied delivering agents (Chapter 3, 

Figure 4). Therefore, sulfonimidamide 7c was chosen as the donating agent for direction 

electrophilic trifluoromethylthiolation of ethyl cyanoacetate and 2,4-dimethylpyrrole. The 

results from the trifluoromethylthiolation model reactions indicated that sulfonimidamide 7c is 

a potentially new SCF3 donating agent. Due to the trifluoromethylthio group leaving from 

sulfonimidamide 7c as confirmed by crude 19F NMR and LC-MS analysis. However, further 

method optimisation is ongoing to determine an ideal substrate scope and reaction conditions. 

Various characterisation techniques were used to confirm the chemical synthesis of the 

compounds which include liquid chromatography-mass spectrometry (LC-MS), nuclear 

magnetic resonance (NMR), high resolution mass spectrometry (HRMS), X-ray powder 

diffraction (XRD) and infrared spectrometry (IR).  

A future recommendation for the N-trifluoromethylthiolation of the sp2 type nitrogen’s is the 

use of trifluoromethylthiolated amines for the amination of the sulfonimidoyl chlorides 
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(Chapter 3, Scheme 1). This could lead to the synthesis of sulfonimidamides 7a, b which 

possess greater Tt+DAs values as compared to sulfonimidamide 7c (Chapter 3, Figure 3).   

Additionally, these sulfonimidamide based trifluoromethylthiolating agents have the indicated 

potential to deliver a trifluoromethylthio radical comparable to known delivering agents as 

indicated by calculated Tt⦁DA values (Appendix 2, Figure S1-2). Further studies can be 

performed on photochemical and electrochemical reactions to generate a trifluoromethylthio 

radical from sulfonimidamide based trifluoromethylthiolating agents. N-trifluoromethylthio 

sulfonimidamides have been reported to show high antimycobacterial activity and the saccharin 

scaffold is commonly utilised in drug discovery. Therefore, sulfonimidamides 7a-c have the 

potential to be biological active as well as potential trifluoromethylthio delivering agents. 

Further studies can be performed on the biological activity of these compounds. 
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Chapter 5 

5. Experimental Details 

5.1 Computational details 

5.1.1 Calculation of homolytic and heterolytic dissociation enthalpies 

All calculations were performed with the Gaussian 16 software package.1 Geometry 

optimisations and vibrational frequencies were performed with the M06-2X2 functional and 6-

31+G(d)3, 4 basis set, using the SMD solvation model5 to account for solvation in acetonitrile 

for  trifluoromethylating agents and in dichloromethane for trifluoromethylthiolating agents. 

Thereafter, single point energy was calculated at the M06-2X/6–311++G(2df, 2p) level of 

theory on the pre-optimised structures.  

5.1.2 Calculation of solution phase electrochemical redox potential 

All calculations were performed using the Gaussian 09 software package.6 Geometry 

optimisations and vibrational frequencies were performed with the HSEH1PBE7-13 and M06-

2X functionals and 6-31+G(d) basis set. The CPCM solvation model14, 15 was utilised for 

HSEH1PBE functional while the SMD solvation model was utilised for the M06-2x functional 

to account for solvation in acetonitrile.  

Redox potentials (𝐸భ

మ

௢,௖௔௟௖) were calculated according to equation 2.  

𝐸ଵ
ଶ

௢,௖௔௟௖ =
𝐺ଶଽ଼(𝑟𝑒𝑑𝑢𝑐𝑒𝑑) + 𝐺ଶଽ଼(𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑑)

𝑛௘𝐹
− 𝐸ଵ

ଶ

௢,ௌுா + 𝐸ଵ
ଶ

௢,ௌ஼ா(2) 

Where ne is the number of electrons transferred (ne = 1), F is the Faraday constant (value 23.061 

kcal mol-1 V-1), 𝐸భ

మ

௢,ௌுா  is the absolute value for the standard hydrogen electrode (SHE, value = 

4.281 V)16, and 𝐸భ

మ

௢,ௌ஼ாis the potential of the saturated calomel electrode (SCE) relative to SHE 

in acetonitrile (value = -0.141 V)16, and G298 (oxidised) and G298 (reduced) are the Gibbs free 

energies. Method optimisation can be found in Appendix 3 (Table S1-3). 

5.2 General experimental methods 

Reagents and solvents were purchased from Sigma Aldrich and Merck and unless otherwise 

noted used without further purification. All solvents were reagent grade or better. Deuterated 

solvents were used as received. Solvents were dried according to standard procedures.17 Thin 

layer chromatography (TLC) was performed using Merck Kieselgel 60 F254 plates. Synthetic 

steps were characterised using LC-MS (Shimadzu 2020 UFLC-MS, Japan). Purification was 
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done by gravity column chromatography (mesh particle size, 40-63 μm) and preparatory 

supercritical fluid chromatography performed on a Sepiatec Prep SFC basic/basic 30 

(Germany). High resolution mass spectrometric data were obtained with a Bruker micrOTOF-

Q II instrument that operated at ambient temperatures and at a sample concentration of 1 μg/ml. 

Infrared spectrometric data were recorded on a Perkin Elmer spectrum 100 instrument with a 

universal ATR attachment and optical rotations were measured out on a Bellingham + Stanley 

Polarimeter (Model 440+). NMR data were recorded using a Bruker AVANCE III 400 MHz 

at room temperature. Chemical shifts are expressed in ppm. The following abbreviations were 

used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, 

br = broad. 

5.2.1 Synthesis of TBS protected sulfonamides (2a,b) 

  

 

Scheme 1: Synthesis of TBS protected sulfonamides (2a,b). 

A mixture of methyl 2-(aminosulfonyl)benzoate (1a, 0.46 mmol), tert-Butyldimethylsilyl 

chloride (TBS-Cl, 1.18 eq.), and triethylamine (TEA, 3 eq.) in dichloromethane (DCM, 2 mL) 

was subjected to microwave heating (85 °C, 200 watts) for 25 minutes. The reaction progress 

was monitored with TLC analysis. Upon completion, the mixture was washed with brine (10 

mL) and extracted three times with DCM (10 mL). The resultant organic layer was dried over 

anhydrous MgSO4 and the solvent was evaporated under reduced pressure. The compound was 

thereafter dried under vacuum. The same general procedure was applied in the synthesis of 

sulfonamide 2b.  
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Methyl 2-(N-(tert-butyldimethylsilyl)sulfamoyl)benzoate (2a) 

 

Compound 2a was prepared according to the preceding general procedure. White solid. Yield: 

100%.  

Rf = 0.5 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 8.10 (d, 1H), 8.08 (d, 1H), 7.55-7.84 (m, 2H), 6.18 ( s, 1H), 

3.98 (s, 3H), 0.90 (s, 9H), 0.23 (s, 6H).  

13C NMR (100 MHz, CDCl3):  = 168.3, 143.4, 132.0, 131.7, 130.8, 129.4, 127.6, 53.4, 25.8, 

17.3, -4.3 

N-(tert-butyldimethylsilyl)-4-methylbenzenesulfonamide (2b) 

 

Compound 2b was prepared according to the preceding general procedure. White solid. Yield: 

100%.  

Rf = 0.5 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 7.76-7.74 (m, 2H), 7.28-7.26 (m, 2H), 4.30 (s, 1H), 2.41 (s, 

3H), 0.90 (s, 9H), 0.21 (s, 6H).  

13C NMR (100 MHz, CDCl3):  = 129.6, 128.9, 126.3, 126.1, 25.9, 21.6, 17.4, -4.3 

The spectroscopic data are in agreement with those in the literature.18 
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5.2.2 Synthesis of TBS protected sulfonimidamides (4)  

 

Scheme 2: Synthesis of TBS protected sulfonimidamides 4a-d. 

A mixture of Ph3P (1.18 eq.), Cl3C-CCl3 (1.18 eq.) in anhydrous chloroform (CHCl3) was 

heated at 85 °C under N2 for six hours. A suspension formed immediately upon heating. 

Thereafter, the suspension was cooled to 0 °C using an ice bath. A mixture of compound 2 in 

anhydrous DCM and TEA (3 eq.) was added to the suspension at 0 °C. The reaction mixture 

was then stirred at 35 °C overnight. Thereafter, amine (3 eq.) was added to the reaction mixture 

and the mixture was stirred at room temperature for six hours. The reaction progress was 

monitored by LC-MS analysis. Upon completion, the reaction mixture was washed with brine 

(10 mL) and extracted three times with DCM (10 mL). The resultant organic layer was dried 

over anhydrous MgSO4 and the solvent was evaporated under reduced pressure. The crude 

product was purified by gravity chromatography using a gradient of ethyl acetate (EtOAc) in 

hexane (5 - 25%) as the eluent. The same general procedure was applied in the synthesis of 

sulfonimidamides 4e, f with the exception of a shorter reaction times for the deoxychlorination 

and amination as illustrated in Scheme 3.  

 

Scheme 3: Synthesis of TBS protected sulfonimidamides 4e, f. 
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methyl 2-(N'-(tert-butyldimethylsilyl)sulfamidimidoyl)benzoate (4a) 

 

Compound 4a was prepared according to the preceding general procedure using 32% 

ammonium hydroxide solution. White solid. Yield: 30%.  

Rf = 0.3 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 8.16-8.14 (m, 1H), 7.67-7.64 (m, 1H), 7.50-7.59 (m, 2H), 

5.42 (br, 2H), 4.00 (s, 3H), 0.91 (s, 9H), 0.11-0.14 (d, 6H).  

13C NMR (100 MHz, CDCl3):  = 169.1, 145.6, 131.1, 131.0, 130.3, 129.8, 127.6, 53.2, 25.8, 

17.9, -2.8 

The spectroscopic data are in agreement with those in the literature.19 
 
methyl 2-(N'-(tert-butyldimethylsilyl)-N-isopropylsulfamidimidoyl)benzoate (4b) 

 

Compound 4b was prepared according to the general procedure as described above using 

isopropylamine. Colourless oil. Yield: 70%.  

Rf = 0.5 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 8.09-8.07 (m, 1H), 7.62-7.59 (m, 1H), 7.55-7.46 (m, 2H), 

5.49-5.47 (d, 1H), 3.93 (s, 3H), 3.45-3.37 (m, 1H), 1.04-1.02 (d, 3H), 0.97-0.95 (d, 3H) 0.90 

(s, 9H), 0.11 (s, 3H), 0.09 (s, 3H), 

13C NMR (100 MHz, CDCl3):  = 169.3, 144.2, 130.8, 130.7, 130.3, 129.9, 128.9, 53.1, 46.6, 

26.0, 24.0, 23.4, 18.1, -2.56, -2.6 

 

 



67 
 

2-benzyl-1-((tert-butyldimethylsilyl)imino)-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 

1-oxide (4c) 

 

Compound 4c was prepared according to the general procedure as described above using 

benzylamine. The crude product was purified by gravity chromatography using neutralised 

silica via a gradient of EtOAc in hexane (5 - 25%) as the eluent. Yellow solid. Yield: 60%.  

Rf = 0.5 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 7.88-7.86 (m, 1H), 7.65-7.55 (m, 3H), 7.34-7.32 (m, 2H), 

7.20-7.12 (m, 3H), 4.70-4.64 (q, 2H), 0.76 (s, 9H), 0.00 (s, 3H), -0.10 (s, 3H), 

13C NMR (100 MHz, CDCl3):  = 159.8, 142.7, 135.6, 134.2, 132.8, 128.5, 128.1, 127.7, 126.7, 

124.8, 119.7, 41.6, 25.7, 18.0, -2.8, -2.9 

The spectroscopic data are in agreement with those in the literature.19 

Methyl 2-(N-benzyl-N'-(tert-butyldimethylsilyl)sulfamidimidoyl)benzoate (4d) 

 

Compound 4d was obtained in trace amounts during the synthesis of compound 4c.  
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4-(N-(tert-butyldimethylsilyl)-4-methylphenylsulfonimidoyl)morpholine (4e) 

 

Compound 4e was prepared according to the general procedure as described above using 

morpholine. Colourless oil. Yield: 67%. Rf = 0.5 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 7.62 (d, 2H), 7.27 (d, 2H), 3.69-3.67 (m, 4H), 2.86-2.87 (m, 

4H), 2.40 (s, 3H), 0.93 (s, 9H), 0.12 (d, 6H).  

13C NMR (100 MHz, CDCl3):  = 142.3, 135.7, 129.2, 127.9, 66.7, 46.9, 26.1, 21.5, 18.2, -2.5, 

-2.5.  

The spectroscopic data are in agreement with those in the literature.20 

1-(N-(tert-butyldimethylsilyl)-4-methylphenylsulfonimidoyl)pyrrolidine (4f) 

 

Compound 4f was prepared according to the general procedure as described above using 

pyrrolidine. Colourless oil. Yield: 61%. Rf = 0.6 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 7.64 (d, 2H), 7.16 (d, 2H), 3.07-2.97 (m, 4H), 2.32 (s, 3H), 

1.59-1.55 (m, 4H), 0.84 (s, 9H), 0.01 (d, 6H).  

13C NMR (100 MHz, CDCl3):  = 141.7, 137.6, 129.1, 127.7, 48.4, 26.1, 25.2, 21.5, 18.2, -2.5. 
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5.2.3 Deprotection of sulfonimidamides (5) 

 

Scheme 4: Deprotected of sulfonimidamide 4a-d. 

1-amino-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide (5a) 

 

To a round bottom flask containing a solution of 4a (100 mg, 0.30 mmol) in acetonitrile (1.5 

mL), 32% aqueous ammonium hydroxide solution (76.68 μL, 1.3 mmol) was added. Thereafter 

the reaction mixture was stirred at room temperature for 14 hours. The reaction was monitored 

by LC-MS analysis. The solvent was then evaporated under reduced pressure and isopropanol 

(0.5 mL) was added. The mixture was stirred at room temperature for one hour. Subsequently, 

the product (5a) was filtered and dried under vacuum.  

White-off solid. Yield:  98% 

Rf = 0.04 (60:40 EtOAc/Hexane) 

1H NMR (400 MHz, DMSO-d6):  = 8.10 (br s, 2H), 7.96-7-94 (m, 1H), 7.88-8.82 (m, 3H) NH 

peaks missing 

13C NMR (100 MHz, DMSO-d6):  = 169.8, 143.7, 134.3, 133.4, 133.4, 123.8, 120.8. 

The spectroscopic data are in agreement with those in the literature.19 
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1-(isopropylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide (5b) 

 

To a round bottom flask containing a solution of 4b (100 mg, 0.27 mmol) in methanol (2.0 mL) 

a stock solution of 0.25 M HCl (1 mL) in MeOH/H2O (4:1) was added. Thereafter the reaction 

mixture was stirred at room temperature for one hour. The reaction was monitored by LC-MS 

analysis. The solvent was then evaporated under reduced pressure to afford the product 5b.  

White solid. Yield 99%. Rf = 0.2 (60:40 EtOAc/Hexane). mp 80.0 °C. 

1H NMR (400 MHz, DMSO-d6):  = 8.45 (s, 1H), 8.04-8.01 (m, 1H), 7.88-7.86 (m, 3H), 3.46-

3.40 (m, 1H), 1.14 (d, 3H), 0.95 (d, 3H).  

13C NMR (100 MHz, DMSO-d6):  = 170.05, 142.4, 134.5, 133.7, 124.1, 121.3, 46.1, 23.2, 

23.1. 

LC-HRMS: m/z calculated for [C10H12N2O2S+H]+ 225.0653, Found: 225.0563. 

2-benzyl-1-imino-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide (5c) 

  

Compound 4c was deprotected using the procedure applied for 5b.  

During the synthesis of 4c trace amounts of 4d was obtained, after deprotection 5d was 

separated from 5c using prep SFC.  

A mixture of 5c, d in acetonitrile was purified utilising prep SFC with the following 

parameters: Injection volume = 200 μL, column = silica gel (250x10 mm, 100 Å) at 40 °C, 

mobile phase = an acetonitrile modifier (10%), with tech grade-wet CO2 (90%), in 15 minutes, 

flow rate = 10 mL min-1, stacked injection program with a two minute equilibration time, BPR 

setting = 150 bar, monitoring and collection at 220 nm. 

Yellow oil. Yield 99%. Rf = 0.6 (60:40 EtOAc/Hexane) 

1H NMR (400 MHz, DMSO-d6):  = 8.11-7.89 (m, 4H), 7.43-7.26 (m, 5H), 5.92 (s, 1H), 4.76 

(q, 2H). 
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13C NMR (100 MHz, DMSO-d6):  = 159.3, 141.1, 136.1, 135.3, 134.2, 128.4, 127.8, 127.4, 

126.3, 124.5, 121.4, 40.7. 

The spectroscopic data are in agreement with those in the literature.19 

1-(benzylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide (5d) 

 

During the synthesis of 4c trace amounts of 4d was obtained, after deprotection 5d was 

separated from 5c using prep SFC.  

Yellow solid. 

Rf = 0.5 (60:40 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 9.06 (br, 1H), 7.83-7.62 (m, 4H), 7.27-7.21 (m, 5H), 4.20 (m, 

4H).  

13C NMR (100 MHz, DMSO-d6):  = 141.5, 136.5, 134.5, 133.8, 133.4, 128.4, 127.8, 127.6, 

124.0, 121.4, 46.0. Carbonyl carbon peak missing. 

The spectroscopic data are in agreement with those in the literature.19 

 

Scheme 5: Deprotected of sulfonimidamide 4e,f. 

Sulfonimidamides 4e,f were deprotected using the procedure applied to sulfonimidamides 4b, 

c. 
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4-(4-methylphenylsulfonimidoyl)morpholine (5e) 

 

Compound 4e was deprotected using the procedure applied for 4b. White solid. Yield: 99%   

Rf = 0.4 (60:40 EtOAc/Hexane) 

1H NMR (400 MHz, DMSO-d6):  = 7.86-7.84 (m, 2H), 7.55-7.53 (m, 3H), 5.56 (br s, NH 

peak), 3.66-3.62 (m, 4H), 3.06-3.03 (m, 4H), 2.43 (s, 3H).  

13C NMR (100 MHz, DMSO-d6):  = 146.1, 130.7, 130.5, 128.7, 128.1, 65.4, 46.4, 21.3. 

The spectroscopic data are in agreement with those in the literature.18 

1-(4-methylphenylsulfonimidoyl)pyrrolidine (5f) 

 

Compound 4f was deprotected using the procedure applied for 4b. White solid. Yield: 99%   

Rf = 0.5 (60:40 EtOAc/Hexane) 

1H NMR (400 MHz, DMSO-d6):  = 7.89 (s, 2H), 7.53 (d, 2H), 2.44 (s, 3H), 1.72 (s, 4H). NH 

peak missing   

13C NMR (100 MHz, DMSO-d6):  = 130.2, 128.2, 48.5, 24.9, 21.0. 

5.2.4 N-trifluoromethylation of sulfonimidamides (6)  

 

Scheme 6: Attempted N-trifluoromethylation of sulfonimidamides.21 
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To a Schlenk tube, sulfonimidamide (5, 50 mg), trifluoromethyltrimethylsilane (7 eq.), silver 

carbonate (0.4 eq.), 1,10- phenanthroline (0.8 eq.), and anhydrous 1,4-dioxane (3 mL) were 

added. Thereafter, a balloon charged with O2 was attached. The mixture was then stirred and 

heated for 16 hours at 60 °C in an oil bath. Thereafter, the reaction mixture was left to cool to 

room temperature, washed with brine (10 mL) and extracted three times with EtOAc (10 mL). 

The resultant organic layer was dried over anhydrous MgSO4 and the solvent was evaporated 

under reduced pressure. The crude product was purified by gravity chromatography using a 

gradient of EtOAc in hexane (5 - 25%) as an eluent. 

 

Scheme 7: Attempted N-trifluoromethylation of sulfonimidamide 5c.22 

To a Schlenk tube, sulfonimidamide 5c (50 mg, 0.18 mmol), anhydrous ACN (2.0 mL), Togni’s 

reagent II (1.51 eq.), and Cu(OAc)2 (0.05 eq.) were added under argon. Thereafter, the tube 

was sealed, and the reaction mixture was stirred at 60 °C for 18 hours. The reaction progress 

was monitored by TLC analysis. To work-up, water was added to the reaction mixture and 

extracted with DCM (3 × 10 mL). The resultant organic layer was dried over anhydrous MgSO4 

and the solvent was evaporated under reduced pressure. Sulfonimidamide 6c was not obtained.  

 

Scheme 8: Attempted N-trifluoromethylation of sulfonimidamide 5b.23 

To a Schlenk tube, sulfonimidamide 5b (50 mg, 0.22 mmol), CF3SO2Na (1.5 eq.), Ph3P (3 eq.), 

and anhydrous ACN (2.0 mL) were added under argon. The tube was then sealed, and the 

reaction mixture was stirred at room temperature for one hour. Thereafter, AgF (4.5 eq.) was 

added to the tube under positive argon pressure. The reaction mixture was further stirred at 50 
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°C for five hours. The reaction progress was monitored by TLC analysis. Sulfonimidamide 6b 

was not obtained. 

5.2.5 N-trifluoromethylthiolation of sulfonimidamides (7)  

 

Scheme 9: N-trifluoromethylation of sulfonimidamides.24, 25 

To a round bottom flask containing a solution of the sulfonimidamide (5c, 0.37 mmol) in 

anhydrous ACN (1 mL), N-bromosuccinimide (1 eq.) was added. The mixture was stirred at 

room temperature for 30 minutes. Thereafter, a solution of AgSCF3 (1.2 eq.) in anhydrous ACN 

(1 mL) was added dropwise. Subsequently, the reaction mixture was stirred at room 

temperature for 30 minutes. The crude product was concentrated and purified by gravity 

chromatography. 

 

Scheme 10: Attempted N-trifluoromethylation of sulfonimidamide 5b.26 

To a round bottom flask containing a solution of the sulfonimidamide (5b, 0.13 mmol) in 

anhydrous ACN (1 mL), N-chlorosuccinimide (1 eq.) was added. The mixture was stirred at 

room temperature for 30 minutes. Thereafter, a solution of AgSCF3 (1.2 eq.) in anhydrous ACN 

(1 mL) was added dropwise. Subsequently, the reaction mixture was stirred at room 
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temperature for 30 minutes. The reaction progress was monitored by LC-MS analysis. 

Sulfonimidamide 7b was not obtained. 

 

Scheme 11: Attempted N-trifluoromethylation of sulfonimidamides 5b.27, 28 

To a round bottom flask containing a stirred suspension of sulfonimidamide (5b, 0.13 mmol) 

in anhydrous ACN (1 mL), tert-butyl hypochlorite (tBuOCl, 20.65 μL) was added. Upon 

addition, a white precipitate formed. Thereafter, the reaction mixture was stirred for five 

minutes and was left to stand for five minutes. Subsequently, AgSCF3 (33.58 mg) was added 

and the reaction mixture was stirred at room temperature for ten minutes. The reaction progress 

was monitored by TLC analysis. Sulfonimidamide 7b was not obtained. 

2-benzyl-1-(((trifluoromethyl)thio)imino)-1,2-dihydro-3H-1l4-benzo[d]isothiazol-3-one 

1-oxide (7c) 

 

Compound 7c was purified by gravity chromatography using a 5% EtOAc in hexane as the 

eluent. White solid. Yield: 76%. Rf = 0.4 (20:80 EtOAc/Hexane). mp 160.0 °C. 

1H NMR (400 MHz, CDCl3):  = 8.08 (d, 2H), 7.90-7.84 (m, 3H), 7.51 (d, 2H), 7.39-7.32 (m, 

3H), 4.84 (q, 2H).  

13C NMR (100 MHz, CDCl3):  = 159.6, 136.3, 135.1, 135.1, 134.0, 131.6, 129.2, 128.8, 128.6, 

128.3, 125.3, 122.6, 42.6. 

19F NMR (100 MHz, CDCl3):  = -50.20 

LC-HRMS: m/z calculated for [C15H11F3N2O2S2+H]+ 373.0248, Found: 373.0210. 
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N-(oxo(pyrrolidin-1-yl)(p-tolyl)-l6-sulfaneylidene)-S-

(trifluoromethyl)thiohydroxylamine (7f) 

 

Compound 7f was purified by gravity chromatography using a 10% EtOAc in hexane as the 

eluent. White solid. Yield: 80%. Rf = 0.6 (20:80 EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3):  = 7.79 (d, 2H), 7.33 (d, 2H), 3.28-3.19 (m, 4H), 2.44 (s, 3H), 

1.80 (m, 4H).  

19F NMR (100 MHz, CDCl3):  = -50.65 

The spectroscopic data are in agreement with those in the literature.24 

 

Scheme 12: The trifluoromethylthiolation of ethyl cyanoacetate. 

To a Schlenk tube, ethyl cyanoacetate (4.70 μL, 0.044 mmol), and absolute ethanol (1.0 mL) 

were added under argon. The tube was then sealed, and the reaction mixture was stirred at room 

temperature for two hours. Thereafter, sulfonimidamide 7c (1.2 eq.) in absolute ethanol (1.0 

mL) was injected into the tube. The reaction mixture was further stirred at room temperature 

for 12 hours under argon. The reaction progress was monitored by LC-MS analysis.  
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Scheme 13: the trifluoromethylthiolation of 2,4-dimethylpyrrole. 

To a round bottom flask, 2,4-dimethylpyrrole (4.80 μL, 0.047 mmol), sulfonimidamide 7c (1.2 

eq.) and anhydrous ACN (1.0 mL) were added. The flask was then sealed, and the reaction 

mixture was stirred at room temperature for 12 hours. The reaction progress was monitored by 

LC-MS analysis. 
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Appendix 1. Supplementary material for Chapter 2 

The trifluoromethyl cation donating abilities (TC+DA) of the proposed sulfonimidamides are 

shown in Figure S1. The TC+DA values indicate a poor donation potential as compared to 

known electrophilic trifluoromethylating reagents (Figure S2).   

 

Figure S1: Calculated* TC+DAs values of the proposed sulfonimidamides in acetonitrile. 

*(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-311++G(2df,2p)) 
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Figure S2: The reported calculated* TC+DAs values of common electrophilic 

trifluoromethylating reagents in acetonitrile.1*(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-

311++G(2df,2p)) 
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Appendix 2. Supplementary material for Chapter 3 

The trifluoromethylthio radical donating abilities (Tt⦁DA) of the proposed sulfonimidamides 

are shown in Figure S1. The Tt⦁DA values indicate an excellent donation potential as 

compared to known electrophilic trifluoromethylating reagents (Figure S2).   

 

Figure S1: Calculated* Tt⦁DA values of the proposed sulfonimidamides in dichloromethane. 

*(SMD-M06-2X/6-31+G(d)// SMD-M06-2X/6-311++G(2df,2p)) 
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Figure S2: The reported calculated* Tt⦁DA values of common electrophilic 

trifluoromethylating reagents in dichloromethane.1 *(SMD-M06-2X/6-31+G(d)// SMD-M06-

2X/6-311++G(2df,2p)) 
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Appendix 3. Supplementary material for Chapter 5 

Method optimisation for theoretical redox potentials  

To develop a suitable method for the computational calculation of redox potentials, the 

oxidation potential of phenol was chosen as a model. Firstly, different density functional theory 

(DFT) functionals and ab initio methods using the SMD solvation model1 were compared using 

a 6-31+G(d)2, 3 basis set. The results were compared against calculations by Nicewicz and co-

workers.4 The SMD solvation model was found to decrease the oxidation potential. Thereafter, 

the CPCM solvation model5, 6 was used with the HSEH1PBE7-13 DFT functional, as expected 

this led to an increase in the oxidation potential. An increase in the size of the basis set resulted 

in an oxidation potential further from the experimental value. Single point energy calculations 

on a pre-optimised structure resulted in an oxidation potential further from the experimental 

value. Therefore, SMD-M062X14/6-31+G(d) and CPCM-HSEH1PBE/6-31+G(d) were chosen 

as the optimal methods and solvation model for further calculations (Table S1).  

Table S1: Method optimisation for the theoretical oxidation potential of phenol  

Method E1/2ox Experimental4 

CPCM-M062X/6-31+G(d) 1.994 1.63 

CPCM-B3LYP15/6-31+G(d) 1.794  

SMD-M062X/6-31+G(d) 1.73  

SMD-B3LYP/6-31+G(d) 1.52  

SMD-PBEPBE16/6-31+G(d) 1.24  

SMD-CAM-B3LYP17/6-31+G(d) 1.57  

SMD-HSEH1PBE/6-31+G(d) 1.53  

SMD-MP218-21/6-31+G(d) 2.06  

SMD-G322/6-31+G(d) 1.84  

CPCM-HSEH1PBE/6-31+G(d) 1.79  

SMD- M062X /6-311++G(2d,2p)23, 24 1.75  

SMD- M062X /6-311++G(2d,2pf) 1.77  

SMD- HSEH1PBE /6-311++G(2d,2p) 1.55  

SMD-CCSD(T)25-28/6-31+g(d,p)//SMD-

M062X /6-311++G(2d,2p) 
1.45  
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The M06-2X functional tends to overestimate the redox potentials, while the B3LYP and 

HSEH1PBE functionals underestimates the potentials. Therefore, the average potentials of 

both functional provides a potential close to the experimental value. To compare the newly 

developed method to Nicewicz and co-workers4 method, the average oxidation potential of the 

SMD-M062X/6-31+G(d) and CPCM-HSEH1PBE/6-31+G(d) calculations were compared 

against the CPCM-M062X/6-31+G(d) and CPCM-B3LYP/6-31+G(d) calculations by 

Nicewicz and associates (Table S2). Bolded values indicate oxidation potentials closer to the 

experimental value. Percent error was calculated according to equation 3. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 = |
௖௢௠௣௨௧௔௧௜௢௡௔௟ ௔௩௘௥௔௚௘ ௩௔௟௨௘ ି௘௫௣௘௥௜௠௘௡௧௔  ௩௔௟௨௘

௘௫௣௘௥௜௠௘௡௧௔௟ ௩௔௟௨௘
| 𝑥 100 (3) 

The Percent error was calculated for each compound and then averaged. The average percent 

error of the oxidation potentials for the new method was 5.31% as compared to the percent 

error for Nicewicz’s method was 7.74%. 

Table S2: Comparison between the optimised method and the literature method for the 

calculations of oxidation potentials 

Compound 
Average 

E1/2ox 

Average from 
literature4 

E1/2ox 
Experimental4 

1,4-Dioxane 2.40 2.31 2.50 

Diphenyl ether 1.74 1.86 1.88 

3,4-Dihydro-2H-pyran 1.36 1.54 1.51 

m-Dimethoxybenzene 1.54 1.58 1.50 

1,3-Di(iso-propoxy)benzene 1.48 1.49 1.47 

o-Dimethoxybenzene 1.31 1.34 1.43 

2-Methoxynaphthalene 1.30 1.37 1.32 

p-Dimethoxybenzene 1.10 1.22 1.30 

4-Cyanophenol 2.19 2.33 2.08 

4-Bromophenol 1.79 1.88 1.69 

Phenol 1.76 1.89 1.63 

3,4-Dimethylphenol 1.42 1.54 1.43 

Guaiacol 1.32 1.49 1.41 

2-Naphthol 1.37 1.47 1.40 

2,4,6-Trimethylphenol 1.28 1.44 1.35 

4-Methoxyphenol 1.17 1.30 1.17 
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Hydroquinone 1.25 1.40 1.14 

p-Anisaldehyde 1.96 2.09 2.06 

p-Hydroxybenzaldehyde 2.01 2.25 1.95 

 

Reduction potentials were also compared between the newly developed method and Nicewicz’s 

method (Table S3). Bolded values indicate reduction potentials closer to the experimental 

value. The average percent error of the reduction potentials for the new method was 5.66% as 

compared to the percent error for Nicewicz’s method was 11.68%. 

Table S3: Comparison between the optimised method and the literature method for the 
calculations of reduction potentials 

Compound 
Average 

E1/2red 

Average from 
literature4 

E1/2red 
Experimental4 

p-Nitrobenzaldehyde -0.72 -0.58 -0.86 

p-Cyanobenzaldehyde -1.33 -1.26 -1.42 

p-Trifluoromethylbenzaldehyde -1.56 -1.45 -1.66 

Biphenyl-4-carboxaldehyde -1.76 -1.70 -1.72 

2-Naphthaldehyde -1.79 -1.63 -1.73 

p-Chlorobenzaldehyde -1.79 -1.71 -1.85 

Benzaldehyde -1.91 -1.84 -1.93 

o-Tolualdehyde -1.82 -1.82 -1.94 

3-Methylbutyraldehyde -2.28 -2.70 -2.24 

Cyclohexanecarboxaldehyde -2.71 -2.73 -2.28 
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1H and 13C NMR spectra, HRMS spectra, IR spectra, and XRD data 

1H NMR of methyl 2-(aminosulfonyl)benzoate in CDCl3 (1a)

NH2S
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Table 1: Crystal data and structure refinement for methyl 2-(aminosulfonyl)benzoate. 

Empirical formula C8H9NO4S 

Formula weight 215.22 

Temperature/K 100.01 

Crystal system orthorhombic 

Space group Pbca 

a/Å 15.2056(7) 

b/Å 7.4587(3) 

c/Å 16.1330(8) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 1829.71(14) 

Z 8 

ρcalcg/cm3 1.563 

μ/mm‑1 0.341 

F(000) 896.0 

Crystal size/mm3 0.28 × 0.22 × 0.13 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 9.174 to 56.586 

Index ranges -19 ≤ h ≤ 19, -6 ≤ k ≤ 9, -20 ≤ l ≤ 21 

Reflections collected 8962 

Independent reflections 2235 [Rint = 0.0165, Rsigma = 0.0137] 

Data/restraints/parameters 2235/0/134 

Goodness-of-fit on F2 1.041 

Final R indexes [I>=2σ (I)] R1 = 0.0289, wR2 = 0.0786 

Final R indexes [all data] R1 = 0.0324, wR2 = 0.0821 

Largest diff. peak/hole / e Å-3 0.36/-0.49 
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Table 2: Fractional atomic coordinates (×104) and equivalent isotropic displacement 

parameters (Å2×103) for methyl 2-(aminosulfonyl)benzoate. Ueq is defined as 1/3 of of the 

trace of the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

S1 3462.6(2) 2452.6(3) 3835.6(2) 11.17(10) 

O1 6349.6(6) 2925.7(12) 3618.0(5) 15.35(19) 

O2 5341.9(6) 1437.0(12) 4367.4(5) 16.83(19) 

O3 3840.4(6) 3809.2(11) 4353.8(5) 16.59(19) 

O4 2568.9(6) 2682.3(12) 3557.0(5) 16.4(2) 

N1 3481.9(7) 583.6(14) 4334.4(6) 13.7(2) 

C1 6902.9(8) 3018.3(16) 4346.5(7) 16.3(2) 

C2 5570.8(8) 2128.3(16) 3724.2(7) 12.2(2) 

C3 5047.0(7) 2176.9(14) 2941.1(7) 12.0(2) 

C4 4120.2(7) 2252.5(14) 2926.0(7) 11.5(2) 

C5 3674.3(8) 2254.2(16) 2172.1(8) 14.9(2) 

C6 4138.3(9) 2162.2(17) 1429.3(7) 16.9(2) 

C7 5047.5(9) 2078.4(17) 1438.6(7) 16.3(2) 

C8 5496.7(8) 2099.5(16) 2186.8(7) 15.0(2) 
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1H NMR of 4-methylbenzenesulfonamide in CDCl3 (1b)  
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1H NMR of methyl 2-(N-(tert-butyldimethylsilyl)sulfamoyl)benzoate in CDCl3 (2a) 
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13C NMR of methyl 2-(N-(tert-butyldimethylsilyl)sulfamoyl)benzoate in CDCl3 (2a) 
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1H NMR of N-(tert-butyldimethylsilyl)-4-methylbenzenesulfonamide in CDCl3 (2b)  
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13C NMR of N-(tert-butyldimethylsilyl)-4-methylbenzenesulfonamide in CDCl3 (2b) 
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1H NMR of methyl 2-(N'-(tert-butyldimethylsilyl)sulfamidimidoyl)benzoate in CDCl3 (4a) 
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13C NMR of methyl 2-(N'-(tert-butyldimethylsilyl)sulfamidimidoyl)benzoate in CDCl3 (4a) 
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1H NMR of methyl 2-(N'-(tert-butyldimethylsilyl)-N-isopropylsulfamidimidoyl)benzoate in CDCl3 (4b) 
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13C NMR of methyl 2-(N'-(tert-butyldimethylsilyl)-N-isopropylsulfamidimidoyl)benzoate in CDCl3 (4b) 
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1H NMR of 2-benzyl-1-((tert-butyldimethylsilyl)imino)-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in CDCl3 (4c) 
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13C NMR of 2-benzyl-1-((tert-butyldimethylsilyl)imino)-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in CDCl3 (4c)
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Table 3: Crystal data and structure refinement for 2-benzyl-1-((tert-

butyldimethylsilyl)imino)-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide. 

Empirical formula C20H26N2O2SSi 

Formula weight 386.58 

Temperature/K 104.08 

Crystal system triclinic 

Space group P-1 

a/Å 6.8505(2) 

b/Å 10.5306(4) 

c/Å 28.4395(10) 

α/° 94.355(2) 

β/° 91.264(2) 

γ/° 96.252(2) 

Volume/Å3 2032.58(12) 

Z 4 

ρcalcg/cm3 1.263 

μ/mm‑1 0.235 

F(000) 824.0 

Crystal size/mm3 0.31 × 0.18 × 0.12 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 1.436 to 54.298 

Index ranges -8 ≤ h ≤ 8, -13 ≤ k ≤ 12, -36 ≤ l ≤ 36 

Reflections collected 21113 

Independent reflections 8737 [Rint = 0.0253, Rsigma = 0.0363] 

Data/restraints/parameters 8737/0/480 

Goodness-of-fit on F2 1.072 

Final R indexes [I>=2σ (I)] R1 = 0.0558, wR2 = 0.1556 

Final R indexes [all data] R1 = 0.0630, wR2 = 0.1626 

Largest diff. peak/hole / e Å-3 0.64/-0.32 
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Table 4: Fractional atomic coordinates (×104) and equivalent isotropic displacement 

parameters (Å2×103) for 2-benzyl-1-((tert-butyldimethylsilyl)imino)-1,2-dihydro-3H-1λ4-

benzo[d]isothiazol-3-one 1-oxide. Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

S1 2788.0(11) 6956.3(7) 5789.8(3) 12.34(16) 

Si1 778.4(12) 9300.5(8) 5947.0(3) 13.79(19) 

O1 4746(3) 7429(2) 5963.6(9) 18.2(5) 

O2 1581(4) 3369(2) 5650.5(10) 24.9(6) 

N1 1099(4) 7689(3) 5903.2(10) 15.8(5) 

N2 2208(4) 5462(2) 5952.2(10) 15.7(5) 

C1 -1330(5) 9472(3) 5542.6(13) 21.5(7) 

C2 3030(5) 10299(3) 5774.4(14) 23.3(7) 

C3 163(5) 9734(3) 6579.1(12) 21.4(7) 

C4 2036(6) 9869(4) 6896.0(14) 31.8(9) 

C5 -1316(6) 8685(4) 6752.5(14) 31.8(9) 

C6 -750(6) 11012(4) 6606.8(16) 32.3(9) 

C7 2876(4) 6386(3) 5191.7(11) 14.2(6) 

C8 3317(5) 7119(3) 4818.2(12) 18.9(7) 

C9 3301(5) 6466(4) 4373.0(13) 24.9(8) 

C10 2881(5) 5152(4) 4312.0(13) 25.6(8) 

C11 2452(5) 4419(3) 4694.1(13) 22.0(7) 

C12 2450(4) 5057(3) 5138.7(12) 16.7(6) 

C13 2028(4) 4485(3) 5590.6(12) 16.9(6) 

C14 1807(5) 5236(3) 6445.0(12) 19.9(7) 

C15 3614(5) 4907(3) 6704.2(12) 17.5(6) 

C16 4944(6) 5853(4) 6934.1(14) 28.7(8) 

C17 6648(7) 5526(4) 7149.8(14) 33.6(9) 

C18 7033(6) 4260(4) 7136.1(13) 29.2(8) 

C19 5703(6) 3322(4) 6912.8(13) 25.7(8) 

C20 4002(5) 3635(3) 6699.2(13) 21.8(7) 

S2 7692.8(11) 6649.0(7) 9210.0(3) 13.19(17) 
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Si2 5630.5(13) 8919.5(8) 9059.3(3) 14.44(19) 

O3 9635(3) 7107(2) 9066.1(9) 18.4(5) 

O4 6611(4) 3086(2) 9281.7(9) 22.2(5) 

N3 5978(4) 7318(2) 9085.3(10) 16.2(5) 

N4 7176(4) 5091(2) 9018.0(10) 14.4(5) 

C21 7931(5) 9983(3) 9233.5(14) 24.1(7) 

C22 3639(5) 9242(3) 9469.3(13) 21.1(7) 

C23 3239(6) 8057(4) 8254.0(14) 28.0(8) 

C24 6582(6) 9132(4) 8108.2(15) 33.5(9) 

C25 4818(5) 9141(3) 8434.2(12) 19.2(7) 

C26 3957(6) 10428(3) 8424.3(15) 27.1(8) 

C27 7811(4) 6261(3) 9802.7(12) 15.4(6) 

C28 8226(5) 7114(3) 10195.5(12) 20.5(7) 

C29 8219(5) 6588(4) 10631.0(13) 26.5(8) 

C30 7817(5) 5273(4) 10668.3(13) 25.3(8) 

C31 7424(5) 4439(4) 10267.1(13) 21.4(7) 

C32 7425(4) 4952(3) 9829.7(12) 16.1(6) 

C33 7026(4) 4230(3) 9364.9(12) 16.6(6) 

C34 6790(5) 4701(3) 8517.8(12) 17.0(6) 

C35 8543(5) 4194(3) 8284.0(11) 15.6(6) 

C36 10083(5) 5021(3) 8138.2(12) 21.5(7) 

C37 11678(5) 4532(4) 7918.2(13) 26.2(8) 

C38 11724(5) 3225(4) 7842.2(13) 26.1(8) 

C39 10207(6) 2402(4) 7990.6(13) 26.2(8) 

C40 8611(5) 2881(3) 8207.7(13) 21.1(7) 
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 1H NMR of 4-(N-(tert-butyldimethylsilyl)-4-methylphenylsulfonimidoyl)morpholine in CDCl3 (4e) 
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 13C NMR of 4-(N-(tert-butyldimethylsilyl)-4-methylphenylsulfonimidoyl)morpholine in CDCl3 (4e) 
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1H NMR of 1-(N-(tert-butyldimethylsilyl)-4-methylphenylsulfonimidoyl)pyrrolidine in CDCl3 (4f) 
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13C NMR of 1-(N-(tert-butyldimethylsilyl)-4-methylphenylsulfonimidoyl)pyrrolidinein CDCl3 (4f) 
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1H NMR of 1-amino-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5a) 

N
S

O

O NH2
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13C NMR of 1-amino-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5a) 

N
S

O

O NH2
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1H NMR of 1-(isopropylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5b) 
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13C NMR of 1-(isopropylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5b) 
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IR of 1-(isopropylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide (5b)
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HRMS spectrum of 1-(isopropylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide (5b) 
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Table 5: Crystal data and structure refinement for 1-(isopropylamino)-3H-1λ4-

benzo[d]isothiazol-3-one 1-oxide. 

Empirical formula C10H12N2O2S 

Formula weight 224.28 

Temperature/K 99.98 

Crystal system monoclinic 

Space group P21/c 

a/Å 10.2429(4) 

b/Å 8.4574(3) 

c/Å 11.9931(4) 

α/° 90 

β/° 98.409(2) 

γ/° 90 

Volume/Å3 1027.77(6) 

Z 4 

ρcalcg/cm3 1.449 

μ/mm‑1 0.295 

F(000) 472.0 

Crystal size/mm3 0.33 × 0.28 × 0.21 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 4.02 to 56.8 

Index ranges -13 ≤ h ≤ 13, -11 ≤ k ≤ 11, -16 ≤ l ≤ 15 

Reflections collected 15575 

Independent reflections 2521 [Rint = 0.0319, Rsigma = 0.0218] 

Data/restraints/parameters 2521/0/142 

Goodness-of-fit on F2 1.233 

Final R indexes [I>=2σ (I)] R1 = 0.0442, wR2 = 0.1057 

Final R indexes [all data] R1 = 0.0463, wR2 = 0.1066 

Largest diff. peak/hole / e Å-3 0.39/-0.47 
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Table 6: Fractional atomic coordinates (×104) and equivalent isotropic displacement 

parameters (Å2×103) for 1-(isopropylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide. Ueq is 

defined as 1/3 of of the trace of the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

S1 7837.3(4) 7844.5(6) 4323.1(4) 14.11(13) 

O1 7481.6(14) 5110.9(18) 6575.8(11) 20.3(3) 

O2 8879.9(13) 8976.6(17) 4324.0(12) 20.0(3) 

N1 7418.3(16) 7354(2) 5486.9(13) 17.1(3) 

N2 6565.3(16) 8543(2) 3545.0(14) 15.9(3) 

C1 7668.3(18) 5770(2) 5703.1(15) 15.8(4) 

C2 8173.6(17) 4928(2) 4746.9(15) 14.4(4) 

C3 8512.0(18) 3356(2) 4655.7(16) 16.4(4) 

C4 8954.8(18) 2863(2) 3663.1(16) 18.2(4) 

C5 9054.3(19) 3928(3) 2792.3(16) 18.8(4) 

C6 8716.3(18) 5510(3) 2876.0(15) 17.2(4) 

C7 8287.1(17) 5967(2) 3872.1(15) 14.1(4) 

C8 5302.9(19) 7634(2) 3371.0(16) 18.1(4) 

C9 4306(2) 8372(4) 4030(2) 33.6(6) 

C10 4796(2) 7591(3) 2126.0(18) 30.4(5) 
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1H NMR of 2-benzyl-1-imino-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5c) 
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13C NMR of 2-benzyl-1-imino-1,2-dihydro-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5c) 



121 
 

1H NMR of 1-(benzylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 (5d) 
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13C NMR of 1-(benzylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide in DMSO-d6 
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Table 7: Crystal data and structure refinement for 1-(benzylamino)-3H-1λ4-

benzo[d]isothiazol-3-one 1-oxide. 

Empirical formula C14H12N2O2S 

Formula weight 272.32 

Temperature/K 100.03 

Crystal system monoclinic 

Space group P21/c 

a/Å 8.9031(2) 

b/Å 10.2561(2) 

c/Å 14.2232(3) 

α/° 90 

β/° 102.9750(10) 

γ/° 90 

Volume/Å3 1265.58(5) 

Z 4 

ρcalcg/cm3 1.429 

μ/mm‑1 0.254 

F(000) 568.0 

Crystal size/mm3 0.33 × 0.21 × 0.14 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 4.696 to 56.728 

Index ranges -11 ≤ h ≤ 11, -13 ≤ k ≤ 12, -18 ≤ l ≤ 18 

Reflections collected 14000 

Independent reflections 3129 [Rint = 0.0146, Rsigma = 0.0119] 

Data/restraints/parameters 3129/1/176 

Goodness-of-fit on F2 1.062 

Final R indexes [I>=2σ (I)] R1 = 0.0299, wR2 = 0.0801 

Final R indexes [all data] R1 = 0.0330, wR2 = 0.0829 

Largest diff. peak/hole / e Å-3 0.46/-0.40 
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Table 8: Fractional atomic coordinates (×104) and equivalent isotropic displacement 

parameters (Å2×103) for 1-(benzylamino)-3H-1λ4-benzo[d]isothiazol-3-one 1-oxide. Ueq is 

defined as 1/3 of of the trace of the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

S1 5352.3(3) 5232.8(3) 2830.2(2) 13.01(9) 

O1 4666.0(10) 8003.7(8) 4250.4(6) 18.27(18) 

O2 6679.3(9) 4392.7(8) 3021.7(6) 17.87(18) 

N2 4742.2(11) 5283.0(9) 1686.6(7) 14.91(19) 

N1 5556.5(11) 6691.0(9) 3183.8(7) 15.94(19) 

C2 3743.9(12) 5800.6(10) 4029.2(8) 13.6(2) 

C7 3963.6(12) 4739.1(10) 3471.9(8) 13.6(2) 

C1 4691.2(13) 6945.2(11) 3852.1(8) 14.5(2) 

C8 3356.8(13) 6044.4(11) 1238.0(8) 16.8(2) 

C6 3223.7(13) 3556.6(11) 3492.6(8) 16.3(2) 

C9 1872.4(13) 5410.6(11) 1341.0(8) 16.4(2) 

C3 2760.3(13) 5711.2(11) 4654.4(8) 16.1(2) 

C4 2007.2(13) 4525.3(12) 4694.6(8) 18.1(2) 

C5 2224.6(13) 3472.5(11) 4119.5(8) 18.0(2) 

C14 894.5(15) 6040.5(12) 1832.2(9) 21.6(2) 

C10 1493.9(14) 4166.8(12) 971.4(9) 22.2(2) 

C11 150.6(15) 3565.4(14) 1088.4(10) 27.9(3) 

C13 -450.2(15) 5431.4(14) 1951.5(10) 27.1(3) 

C12 -823.2(15) 4198.2(14) 1578.3(11) 28.7(3) 
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1H NMR of 4-(4-methylphenylsulfonimidoyl)morpholine in DMSO-d6 (5e) 
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13C NMR of 4-(4-methylphenylsulfonimidoyl)morpholine in DMSO-d6 (5e)  



127 
 

 

1H NMR of 1-(4-methylphenylsulfonimidoyl)pyrrolidine in DMSO-d6 (5f) 
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13C NMR of 1-(4-methylphenylsulfonimidoyl)pyrrolidine in DMSO-d6 (5f) 
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1H NMR of 2-benzyl-1-(((trifluoromethyl)thio)imino)-1,2-dihydro-3H-1l4-benzo[d]isothiazol-3-one 1-oxide in CDCl3 (7c) 
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13C NMR of 2-benzyl-1-(((trifluoromethyl)thio)imino)-1,2-dihydro-3H-1l4-benzo[d]isothiazol-3-one 1-oxide in CDCl3 (7c) 
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19F NMR of 2-benzyl-1-(((trifluoromethyl)thio)imino)-1,2-dihydro-3H-1l4-benzo[d]isothiazol-3-one 1-oxide in CDCl3 (7c)
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HRMS spectrum of 2-benzyl-1-(((trifluoromethyl)thio)imino)-1,2-dihydro-3H-1l4-
benzo[d]isothiazol-3-one 1-oxide (7c) 
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IR of 2-benzyl-1-(((trifluoromethyl)thio)imino)-1,2-dihydro-3H-1l4-benzo[d]isothiazol-3-one 1-oxide (7c)  
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19F NMR of N-(oxo(pyrrolidin-1-yl)(p-tolyl)-l6-sulfaneylidene)-S-(trifluoromethyl)thiohydroxylamine in CDCl3 (7f) 
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19F NMR of N-(oxo(pyrrolidin-1-yl)(p-tolyl)-l6-sulfaneylidene)-S-(trifluoromethyl)thiohydroxylamine in CDCl3 (7f) 


