

DEVELOPMENT OF A GEOGRAPHIC DATA MODEL

FOR HYDROLOGICAL MODELLING

M J Bollaert

200272664

Submitted in partial fulfilment of the

requirements for the degree of MSc in Hydrology

School of Bioresources Engineering and Environmental Hydrology

University of KwaZulu-Natal

Pietermaritzburg

November 2006

 ii

PREFACE

The work described in this dissertation was carried out in the School of Bioresources

Engineering and Environmental Hydrology, University of KwaZulu-Natal, Pietermaritzburg,

from January 2004 to December 2006, under the supervision of Mr. David Clark.

These studies represent original work by the author and have not otherwise been submitted in

any form for any degree or diploma to any university. Where use has been made of the work

of others it is duly acknowledged in the text.

Signed: …………………………… Date: ……………

M.J.Bollaert (author)

Signed: …………………………… Date: ……………

D.J.Clark (supervisor)

 iii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation and gratitude to the following for the assistance they

rendered during this study:

 Mr David Clark, for supervising this project and providing invaluable assistance

throughout the duration of this study;

 Professor Roland Schulze, for his assistance and mentorship during my studies;

 Mr Mark Horan and Mr Sean Thornton-Dibb, for the time spent assisting with

technical matters;

 The School of Bioresources Engineering and Environmental Hydrology, for providing

a working environment and resources making this study possible;

 Mr. Thomas Bech from the Danish Hydrological Institute for his assistance with their

dfs0 format;

 My friends, for their help with various problems I encountered;

 My family, for the many years of encouragement and support they provided; and

 My Heavenly Father, Jesus Christ, for the many blessings he has given me, including

the opportunity to undertake this study.

 iv

ABSTRACT

Hydrology is a multi-disciplinary science, and therefore derives data from diverse sources,

with the data often of a spatio-temporal nature. A recent trend has been to combine these data

with GIS, due to the data’s geographic origin, and inherently requires an abstraction of reality

in order to deal with the multitude of data that would otherwise result. Consequently, data

models have been developed for this purpose, and these require a generalisation of processes

and variables, while offering a simplified structure for their storage.

The purpose of this study was to develop a data model for the storage and dissemination of

hydrological variables and associated data used in hydrological modelling. Data would be of

a spatial and temporal nature, and thus the design of the new data model needed to provide for

this. A number of existing geographic data models were therefore reviewed, including the

geodatabase model. This data model and the object-relational database model upon which it

was built, were ascertained as being the most suitable for the study, and were therefore

included in the design of the new data model. The related Arc Hydro data model was

subsequently reviewed, since it offered an established means by which to model geographic

features associated with surface hydrology. Following this, an investigation into time series

storage methods was carried out, as it was important that the new data model be able to store

large time series datasets in an efficient manner. Thus a number of methods were identified

and evaluated as to their advantages and disadvantages.

A new data model was thereby conceived, using the geodatabase as its foundation, and was

developed in order to offer efficient storage of hydrological data. The data model developed

was subsequently tested by populating it with data from the Quaternary Catchments database

which supports the ACRU model. Finally, additional functionality was added to the data

model, in the form of export options.

 v

TABLE OF CONTENTS

Page

1. INTRODUCTION…………………………………………………………………... 1

2. GEOGRAPHIC DATA MODELS………………………………………………...... 4

 2.1 History of Geographic Data Models…………………………………………5

 2.1.1 Spatial representations of geographic data………………………….. 5

2.1.2 The CAD data model………………………………………………... 9

 2.1.3 The coverage data model…………………………………………… 9

 2.1.4 The shapefile………………………………………………………...11

 2.1.5 Limitations of the preceding geographic data models………………12

 2.2 Database Models………………………………………………………….... 13

 2.2.1 The relational database model………………………………………14

 2.2.2 The object-oriented database model………………………………...16

 2.2.3 The object-relational database model……………………………….18

 2.3 The Geodatabase Data Model……………………………………………… 20

 2.3.1 Object-oriented design of a geodatabase…………………………....21

 2.3.2 How a geodatabase extends a relational database…………………..23

 2.3.3 Rasters and TINs in a geodatabase………………………………….27

 2.3.4 Features in a geodatabase…………………………………………... 28

 2.3.5 Geometric networks………………………………………………....30

 2.3.6 Geodatabase design…………………………………………………31

 2.4 A Geodatabase Application: The Arc Hydro Data Model………………..... 32

3. STORAGE OF TIME SERIES…………………………………………………….. 39

 3.1 Selection Criteria of the Time Series Storage Method………………….......41

 3.2 Data Used in the Evaluation of Time Series Storage Methods……………..42

 3.3 Relational Database Tables…………………………………………………44

 3.3.1 Simple database tables……………………………………………...44

 3.3.2 Dynamic database tables……………………………………………46

 3.4 Arc Hydro Time Series……………………………………………………..47

 3.5 SPATSIM Time Series Data Table………………………………………....50

 3.6 DHI’s dfs0 Format………………………………………………………….54

 3.7 Comparison of Time Series Storage Methods……………………………...58

 vi

4. DATA MODEL DESIGN…………………………………………………………..61

 4.1 Design Criteria……………………………………………………………....61

 4.2 Working with the Geodatabase Data Model………………………………...63

 4.3 The Arc Hydro Data Model………………………………………………....64

 4.4 The Time Series Data Model………………………………………………..64

 4.5 Attribute Data Model Design………………………………………………. 67

5. IMPLEMENTATION OF THE DATA MODEL…………………………………..72

 5.1 Quaternary Catchments Database…………………………………………...73

 5.2 Design of an Implementation-Specific Data Model………………………...73

 5.3 Importing Geographic Data…………………………………………………78

 5.4 Importing Attribute Data ……………………………………………….......80

 5.5 Data Analysis and Extraction Tools………………………………………...81

6. DISCUSSION AND CONCLUSION……………………………………………....84

7. RECOMMENDATIONS FOR FUTURE RESEARCH…………………………....87

8. REFERENCES……………………………………………………………………...88

9. APPENDIX…………………………………………………………………………92

 vii

LIST OF TABLES

 Page

Table 2.1 A comparison of relational and object-oriented databases………………….18

Table 2.2 Logical elements of a geodatabase with associated relational

 database elements…………………………………………………………...23

Table 2.3 The ten steps of geodatabase design……………………………………….. 33

Table 3.1 Sample from an ACRU composite format time series file,

 indicating the information specified in Table 3.1.…………………………..43

Table 3.2 An example of the simple table used to store rainfall data………………….45

Table 3.3 An example of the simple table used to store temperature data…………….45

Table 3.4 The various data types used in Microsoft Access tables, and

 their sizes……………………………………………………………………46

Table 3.5 An example of the TimeSeries_Attributes table used to store

 attribute time series information…………………………………………….47

Table 3.6 An example of the TimeSeries_Data table used

 for the storage of time series data……..……………………….……………47

Table 3.7 The format of the SPATSIM time series data table when used

 in Microsoft Access……………………………………………………....…53

Table 3.8 The various data types used in the dfs format, and their sizes……………... 56

 viii

LIST OF FIGURES

 Page

Figure 1.1 A guide to the structure of this dissertation…………………………………. 3

Figure 2.1 Diagram illustrating the difference between raster and TIN

representation…………………………………………………………...........6

Figure 2.2 A comparison of the three major geographic data models………………….12

Figure 2.3 An illustration of the basics of cardinality……………………………......... 15

Figure 2.4 A hierarchical view of the geodatabase, displayed using

 ArcCatalog ………………………………………………………………… 25

Figure 2.5 The components making up a geodatabase………………………………… 26

Figure 2.6 The geodatabase structure of the Arc Hydro data model, showing its

 various classes……………………………………………………………… 35

Figure 3.1 Sample from an ACRU composite format time series file………………….43

Figure 3.2 Three dimensions of the TimeSeries object class ……………………..........48

Figure 3.3 The Arc Hydro data model for storing time series ……………………........49

Figure 3.4 Structure of the SPATSIM modelling system……………………………... 51

Figure 3.5 The file structure of the dfs format…………………………………………... 56

Figure 3.6 A screen capture of Temporal Analyst’s integration with ArcMap………... 57

Figure 3.7 Comparison of the time series storage methods investigated……….............58

Figure 4.1 The combination of ArcHydro and SPATSIM methods of time series

storage……………………………………………………………………….66

Figure 4.2 The structure of the attribute data model, Part 1…………………………… 69

Figure 4.3 The structure of the attribute data model, Part 2………….........…………... 70

Figure 4.4 A database model (entity relational model) of the attribute data model........ 71

Figure 5.1 The portion of Arc Hydro’s hydrography feature data model used for

 this study………………………………………………………………….....74

Figure 5.2 The customised drainage feature data model of Arc Hydro………………...75

Figure 5.3 Topological rules of the drainage feature data model..........……………….. 76

Figure 5.4 Adapted Arc Hydro Network features data model……………………….....77

Figure 5.5 A portion of the Quaternary Catchments geometric river network

 showing an upstream trace.………………………………………………… 79

Figure 5.6 A schematic network of the Quaternary Catchments within

 ix

 the Thukela Primary Catchment ……………………………………………79

Figure 5.7 Creation of a mean annual precipitation table using the database

query tool…………………………………………………………………... 82

Figure 5.8 The user interface for the extraction of the QCDB data into its

 required formats…………………………………………….....................….83

Figure 9.1 Comparison of characteristics for the three spatial representations

of geographic data………………………………………………………….. 92

Figure 9.2 Differences between the three common data models which support

vector data………………………………………………………………….. 93

Figure 9.3 Properties of the multi-user and personal geodatabases…………………… 93

Figure 9.4 Time series component of the Arc Hydro data model……………………... 94

Figure 9.5 Drainage component of the Arc Hydro data model………………………... 95

Figure 9.6 Channel component of the Arc Hydro data model……………………….....96

Figure 9.7 Network component of the Arc Hydro data model………………………… 97

Figure 9.8 Hydrography component of the Arc Hydro data model…………………….98

Figure 9.9 A sample of the Visual Basic Code used in to extract data from

the Attribute Database, including much of the integrated SQL syntax……..99

 x

GLOSSARY OF TERMS

Attribute data Tabular data describing the geographic characteristics of features

Data model An abstraction of the real world which incorporates only those

properties relevant to the application at hand

Data structure The logical arrangement of data as represented by in computer form

Data type The storage format of data within a database as illustrated by text and

numbers

Entity A real world object that cannot be further subdivided into similar

objects. In a relational database, it is an object and its related attributes

Feature A representation of a real world object on a map

Feature class A collection of geographic features with the same geometry type,

attributes, and the same spatial reference

Feature dataset Collection of feature classes stored together that share the same

coordinate system

Feature type A grouping of similar features such as roads and rivers

Layer A visual representation of a geographic dataset in any digital map

environment, usually divided according to feature type

Object In GIS, a digital representation of a non-spatial entity

Object class A collection of non-spatial data of the same type or class

Representation A method of illustrating data so it can be viewed and understood

Spatial data Information about the locations and shapes of geographic features and

the relationships between them, usually stored as coordinates and

topology

Spatio-temporal Relating to both space and time

Topology The relationship of connectivity, or adjacency, which a feature has

relative to other features

 1

1. INTRODUCTION

Hydrology may be defined as the science dealing with the properties, distribution, and

circulation of water on the surface of the land, in the soil and underlying rocks and in the

atmosphere (Maidment, 2002). This concise description alludes to the multi-disciplinary

nature of the science, and the many variables and processes it tries to model or observe. As a

result, there is a substantial volume of hydrological data and related information, which has

been recorded and generated in an attempt to better understand the science. Many of these

data are spatio-temporal in nature, and have been integrated with other applications such as

hydrological models, in order to perform geographic and scientific analyses, as is evident

through the use of Geographical Information Systems (GIS) in the discipline. This integration

of hydrology with GIS requires an abstraction of reality in order to deal with the multitude of

data that would otherwise result from attempting to record real world hydrology in its full

intricacy. Consequently, numerous data models have been developed in an attempt to provide

a structure to store data describing hydrological processes and their variables in a simplified

approach.

The purpose of the study described in the chapters which follow, was to research and then

develop a data model which could deal with the many hydrological variables and their

associated data that exist either spatially or temporally, and thereby create a framework for

their storage and dissemination. Accordingly, a number of existing data models were

reviewed, which primarily dealt with the storage of geographic data. These data models were

predominantly sourced from the Environmental Systems Research Institute (ESRI) which has

been at the forefront of GIS development, and consequently their data models remain both

ground-breaking and popular. Data models are built upon database models, and research into

the relational and object-oriented database models was therefore required. This included

researching the more recent object-relational approach, which combines benefits found in the

relational and object-oriented models. Subsequently, the relatively new geodatabase data

model, which combines concepts found in the geographic data models and database models,

was assessed. The review of the geodatabase was due to its inclusion into the study as the

foundation upon which the proposed hydrological data model would be built. The Arc Hydro

data model was also evaluated for its potential to describe the spatial context of natural water-

related systems.

 2

The development of the new data model focused primarily on the storage of attribute data

related to hydrological modelling, and was directly aimed at supporting the ACRU model,

and its associated datasets, while remaining generic enough to provide the potential for

interfacing with other hydrological datasets and models. As a test of the suitability of the new

data model it was populated with the Quaternary Catchments Database (QCDB) containing

spatial and temporal data for use in the ACRU model. Since temporal data form a significant

portion of collected data and modelled hydrological values, an investigation was conducted

into various time series storage methods and their compatibilities with the geodatabase data

model, with a focus on voluminous time series datasets, and their storage in an efficient

manner. The selection of a time series storage method for implementation in the remainder of

the project influenced the design of the new data model. The time series storage method

selected also needed to be suitable for storing rainfall and temperature time series data as part

of the QCDB.

The design of the new data model was, above all, required to be generic and extensible.

Generic in the sense that it would be suitable for the storage of data types for use by any

hydrological model, and extensible such that the inclusion of new hydrological variables

would not require changes to the structure of the data model. Additional requirements of the

new data model were to:

 Store voluminous amounts of time series data;

 Store attributes for spatial features and non-spatial objects;

 Be able to include both input and output variables of the related hydrological models;

 Store a range of data types suitable for all hydrological models;

 Store units of measure for attributes where relevant; and

 Minimise the amount of data replication to maximise database storage efficiency.

These conditions consequently formed the premise of the data model and its structure. The

data model also needed to be compatible with the geodatabase, as it would serve as the GIS

and relational framework for its implementation. Arc Hydro was used in the study, since it

provided the new data model with an established hydrologically related spatial component. A

simplified structure of this dissertation is displayed in Figure 1.1.

 3

Figure 1.1 A guide to the structure of this dissertation

 4

2. GEOGRAPHIC DATA MODELS

There are many ways by which to model objects, or systems, of the real world. Rivers may be

modelled either as a network of lines, a border between two areas, as a local feature with

braids and banks, or as a winding line forming a trough in a surface model (Maidment, 2002).

The Association for Geographic Information (AGI) defines a data model as an abstraction of

the real world, where the data model incorporates only those properties relevant to the

application at hand. A data model would, therefore, normally define specific groups of

entities, and their attributes, as well as the relationships between entities (AGI, 2006). Thus

the purpose of a data model is to provide a simplified description of reality to the desired level

of precision, thereby helping to understand the static and dynamic properties of the world. As

a result, the data model is at the core of any information system. A data model can thereby be

evaluated as to the efficacy with which the information significant to the user is emphasised,

and details that are insignificant to the user are suppressed (Raza, 2001). In GIS, there are a

number of geographic data models available, where the context of the problems to be solved

will guide which model is best for a particular scenario.

In 2000 ESRI introduced a new object-oriented data model, viz. the geodatabase data model

(Nabar and Patel, 2003). This model has the ability to represent the natural behaviours and

relationships of a feature. In order to understand the significance of this new data model, the

two primary predecessors to the geodatabase, viz. the computer-aided design (CAD) data

model and the coverage data model are reviewed. Although not as ground-breaking as the

two aforementioned data models, the shapefile data model will also be reviewed, as it has

since become widely used. These data models will be reviewed as they were the precursors

leading to the introduction of the geodatabase – the platform on which the hydrological data

model outlined in this project was implemented. The geodatabase was chosen since at the

time of writing, it was the only widespread geographic data model that was implemented in a

Relational Database Management System, thereby enabling the development of a new data

model within a relational framework.

The geodatabase enables features to be characterised more naturally by allowing for the

definition of types of objects and relationships and by capturing how these objects interact

with one another (Zeiler, 1999). Furthermore, it allows for the storage of four representations

 5

of geographic data – vector, raster, triangulated irregular networks (TINs), and addresses and

locators – making it a unified data model. These representations of geographic data, as well

as other benefits of the geodatabase, will be detailed in subsequent sections of this chapter.

Apart from this ability to cope with the common spatial representations of geographic data,

the geodatabase also includes the functionality of the database models upon which it is built.

This chapter will also review the relational and object-oriented database models.

The design of a geodatabase is an important component in its implementation, as the

geodatabase developed must ultimately meet the requirements of its users. Development of

industry-specific data models, built upon the geodatabase, accordingly allude to its value, as is

evident in the success of the Arc Hydro data model (Maidment, 2002).

2.1 History of Geographic Data Models

DeMers (2000) describes a map as simply being a model of spatial phenomena. Thus it is not

the role of a map to show every detail, but rather to provide a simplification of reality,

relevant to its particular purpose. Although maps have been created and read throughout

much of human history, prior to the twentieth century they were only available as printed

documents that used sheets of paper or parchments as a means to record geographic

information. This information would have been in the form of objects and features such as

routes, cities, and coastlines. The advent and progress of computers, coupled with the

development of GIS technology, allowed for the creation of maps in either a printed or digital

form since as early as the 1960s (Coppock and Rhind, 1991). A GIS is the combination of

skilled people, spatial and descriptive data, analytical methods, as well as computer software

and hardware (Maguire, 1991; Chou, 1997). With GIS, users have been able to interact with

maps in ways that were previously impossible, such as the ability to customise maps through

GIS, and the many query and analysis options that are available. This resulted in the creation

of a system which was able to automatically manage and deliver geographic information

(Zeiler, 1999).

2.1.1 Spatial representations of geographic data

Modelling of real world features requires a reduction in complexity, such that only those

aspects of reality the user is interested in remain (Harmon and Anderson, 2003). Even with

 6

the advances in GIS, the options for representing the spatial nature of geographic data remain

limited with features most often being represented by simplified geographic representation

models, the three most common being rasters, TINs, or vectors (Zeiler, 1999). Rasters were

the first spatial data to have been digitally organised (Dangermond and Schutzberg, 1998).

A raster, also known as a grid, is a regularly spaced matrix of cells, with each cell having the

potential to hold attribute information as shown in Figure 2.1. The principal purpose of a

raster is to represent continuous data such as elevation and rainfall. It can, however, also be

used to represent discrete data. A common example of a surface raster model is the digital

elevation model (DEM). These models have become a popular and inexpensive way by

which to model relief. Unlike vector representations, discrete data are represented as either a

single cell (point), a series of adjacent cells (line), or a region of cells (polygon) – all of which

have an equal value for any particular feature. As a result of this basic structure, rasters are

conceptually simple models. However, datasets are often much larger than those of vectors

owing to replication of information and unnecessary detail in some areas, as a result of their

recording of values for each cell in their static grid structure (Singh and Fiorentino, 1996;

Chou, 1997). The resolution of a raster is important as it is associated with the level of object

detail, with resolution being directly related to grid size. This is evident with a high

resolution image such as a 0.5 x 0.5 metre DEM displaying more surface detail than a low

resolution (100 x 100 metre) DEM, such that small variations in topography are recorded.

Figure 2.1 Diagram illustrating the difference between raster and TIN representation

(Zeiler, 1999)

 7

Although analytically the dominant data model, rasters are limited by their grid structure

which, it may be argued, is too rigid to fit to the variable terrain of the real world. This results

in features (and in particular linear features), not being well represented, and consequently

original captured data are not maintained when interpolating it onto a grid, since it needs to

conform to its regular pattern (Zeiler, 1999; DeMers, 2000). Nevertheless, much of the

geographic information presently being collected is in the form of rasters captured as spectral

data from satellites and other remote sensing sources (Chou, 1997; Rigaux et al., 2002).

When thinking about maps, the concept of a vector representation is familiar to most people.

Vector data representations are those maps with discrete features, comprised of the specific

geometry types of point, line and polygon. Topographic maps and networks are examples of

vector data representations. Each feature is stored as a single coordinate, or as a set of x and y

coordinates, with points representing small features, while lines represent features with length

and polygons represent areas (Chou, 1997). Features can either be simple, implying that they

have no association with other features, or they can be topologically associated. Topology

refers to the relationship of connectivity, or adjacency, which a feature has relative to other

features. For example, a particular line representing a reach of a river is related to the river

network as a whole (Singh and Fiorentino, 1996). Thus for vector data, topologic

relationships need to be stored explicitly or must be constructed as needed, otherwise spatial

querying, which is fundamental to GIS, is not possible (Harmon and Anderson, 2003). The

advantage of vector data are that the geographic locations of features are precise since they

can be given exact coordinates (Singh and Fiorentino, 1996). Furthermore, vector databases

are relatively small since attributes for a particular feature are only captured once, whilst with

raster and TIN databases, attribute values need to be recorded for each cell or point, regardless

of whether they share a common feature value (Zeiler, 1999; DeMers, 2000).

As with rasters, TINs are commonly used to model surfaces, and are often used for elevation

mapping. Unlike rasters, however, TINs have the advantage of varying the density of

recorded surface points, with point density proportional to terrain variability, as shown in

Figure 2.1. This reduces data redundancy by only recording those points of importance.

Thus in the case of elevation, smooth areas would require few points, while in regions with

high topographic variability it would be necessary for more points to be recorded (Chou,

1997; Leung, 1997; Rigaux et al., 2002). A triangulation is then calculated for all the points

to create a continuous 3-D surface. A triangulation in this sense is a region of non-

 8

overlapping triangles that completely fill the target area, with each triangle being associated

with its neighbouring triangles. TINs are therefore suited to geographic analysis involving

elevation, slope, aspect, and volumes. A drawback of TINs is the effort required in data

collection, since where topographically variable areas occur, most sampling is necessary, but

these areas are simultaneously the most difficult to reach (Zeiler, 1999; Harmon and

Anderson, 2003).

Identifying the optimal spatial representation for geographic data is a critical step in any

problem-solving task involving the representation of spatial data. The choice as to which

representation to use has in the past been presented as an either-or question that debates over

the merits of each, and presumes that one representation is better than the others. A

comparison between the three main spatial representations described above is presented in

Figure 9.1 of the Appendix. For the most part, rasters and vectors have been identified as the

premier models of choice. It has, however, now been realised that the needs of a user may

incorporate multiple representations, depending on which aspects of the real world are being

modelled (Harmon and Anderson, 2003).

As the technology of computers and their associated programs advanced, so too did the art of

geographic representation. With the advent of computerised mapping came a change in the

way in which geographic information could be displayed. Vector maps were able to be drawn

on screens through the use of cathode ray tubes, while rasters could be displayed by using

overprinted characters on line printers. Thus the period of the 1960s and 1970s saw the

refinement of graphics hardware and software that could produce maps with acceptable

cartographic fidelity (Zeiler, 1999).

For over 30 years now maps have been produced with the assistance of geographic data

models that enable the digital storage of data that was previously recorded on paper. These

data models used one of the three representations mentioned in this section, and were

conceived in order to further automate the production of maps, and to enable the storage of a

simplified model of the real world to be used for display, query, editing and analysis. As

mentioned, the raster model of representation is conceptually very simple, and therefore the

associated data models, which include ArcInfo grids, digital images and DEMs, and will not

be elaborated upon further in this document. Vector data models are, however, more

 9

complex, with some of the most widely used vector data models being the CAD data model,

the coverage data model and the shapefile data model.

2.1.2 The CAD data model

During the 1960s and 1970s when GIS started becoming more popular, computer aided

design (CAD) models were the geographic data model of choice. This model was, however, a

general purpose model not specifically tailored towards geographic representation, and was a

basic graphic without any topology. Since this was the first commercially available model of

its type, many data have since been collected in CAD format. It is still commonly used in

detailed design and surveying, such as that used in architecture and engineering as it provides

a consistent, accurate and digital replacement for technical paper drawings (drafting). The

model itself stores geographic data in a binary file format, with specifications for points, lines

and areas. The CAD data model is different to its successors in that a single feature may be

made up of multiple layers, such that a river could be represented by multiple layers for each

river segment (Harmon and Anderson, 2003). Therefore, in a CAD dataset, CAD drawing

files are subdivided into CAD feature classes that aggregate all layers for points, lines,

polygons and annotation into a single dataset. This layering results in all layers of a similar

geometry (such as points) being combined into a common feature class, regardless of their

feature type. As a result, differing feature types with a common geometry, such as roads,

rivers and boundaries, become assimilated into a single feature class. The CAD data model is

most limited, by its inability to store much in the way of attribute data (Zeiler, 1999; Briggs,

2004).

2.1.3 The coverage data model

As GIS became more of a reality, so to did the need for exclusive GIS software. In 1981 the

Environmental Systems Research Institute (ESRI) developed the first commercial GIS

software; ArcInfo (Briggs, 2004). This software introduced a second-generation data model,

viz. the coverage, more broadly known as the georelational data model. This has become the

dominant model in GIS (Zeiler, 1999), and accounts for the majority of recorded geographic

data. The reason for the coverage data model’s success was due to its ability to make higher

performance GIS possible, by allowing for customisation of attribute tables and through the

model’s capability of storing topology, therefore assisting in improved geographic analysis

 10

and more accurate data entry (Zeiler, 1999). In retrospect, the model’s success could also be

attributed to its long-standing prominence as an established and popular ESRI product.

Coverages contain feature classes, which are defined as homogenous collections of features.

The primary feature shapes in a coverage are similar to that of vector representations, viz.

points, arcs (lines) and polygons. The model is distinguished by two characteristics. First,

spatial data are combined with attribute data and stored in indexed binary files. Secondly,

topological relationships between vector features can be stored, and among other things,

provide knowledge as to which nodes delimit a line and thus, by inference, which lines are

connected (Zeiler, 1999; Rigaux et al., 2002).

A major advance with the introduction of coverages has been the user’s ability to customise

attribute tables, thus allowing fields to be added or deleted, and database relationships to be

set up to external database tables. As a result, the model’s attribute tables can be replaced

with a relational database management system (Rigaux et al., 2002). The coverage data

model is, however, not without disadvantages. Owing to performance issues as a result of

slow processing power of computers and limitations of database software at the time of

development, it was impractical to store spatial data directly in a relational database. Thus

spatial data were stored in the aforementioned binary files, while related attribute data were

stored in the attribute tables, with both being joined through a common identifier. Further

limitations include the simplification of features into homogeneous collections of points, lines

and polygons. This generic categorisation, for example, results in a road having the same

behaviour as a river, which enforces the topological integrity of a dataset by automatically

altering features, causing unwanted changes at times (Zeiler, 1999; Briggs, 2004). Thus, if a

line were added across a polygon, the polygon is automatically split, which would be

undesirable if no change to the original polygon were intended. A feat to be achieved with

future data models was the ability to support special behaviours of real world features such as

river and roads. This is illustrated by the ability to have the volume of flow of two rivers

joining to become the addition of both. Although there had been some success with the

coverage model in this respect, it became apparent that a better way was needed to associate

behaviours with features (Zeiler, 1999).

 11

2.1.4 The shapefile

While topological datasets, such at those found in coverages, provide for complex geographic

analysis and map display, many uses can be satisfied with a simpler form of feature data

(Zeiler, 1999). Recognising the need for an additional data model that supported simple

feature classes, ESRI introduced the geographic data model known as the shapefile (Zeiler,

1999; Briggs, 2004). In this data model, simple feature classes store the shapes of features,

but do not store their topological associations, and have the advantage of simplicity and rapid

display performance. However, by not being able to enforce spatial constraints through

topologies, validation functions such as wanting to ensure no gaps exist between polygons,

are not possible. Other than this, shapefiles are similar to coverages in many respects and

thus were not thought of as a revolution in the modelling industry, although the shapefile has

since become widely used. This data model provides the framework for a simple feature

dataset and allows for map display and query.

Shapefiles are composed of multiple files that contain spatial and attribute data. These are the

.shp file which stores feature geometry, the .shx file which stores coordinate geometry and the

.dbf file which is a dBASE file which stores attribute information (HDS, 2001). An additional

dBASE table is sometimes used for the storage of attribute data relating to objects that do not

necessarily have a spatial context, yet are related to a particular spatial feature. This is

illustrated in the case of owners of a parcel of land, where the parcel of land has a geographic

reference, while the owner has a spatial context by association. Like the coverage, a shapefile

is a vector representation that uses a homogenous collection of point, multipoint, polyline and

polygon layers (Zeiler, 1999; DeMers, 2000). A comparison between the three ESRI data

models capable of storing vector data is presented in Figure 2.2. These data models represent

a progression of functionality and detail in the storage of geographic data, leading up to the

development of the geodatabase, which is included for the purpose of comparison although

the geodatabase is only discussed in detail in Section 2.3. Figure 9.2 in the Appendix,

provides additional information, as to the differences between the geographic data models in

the way they store feature topology and geometry.

 12

 Coverage Shapefile Geodatabase
D

a
ta

 C
o
ll

ec
ti

o
n

 An ArcInfo workspace is a collection of
coverages, grids and TINs.

Spatial data are stored in binary files.
Topological and attribute data are stored

in INFO tables.

For large datasets, coverages are

subdivided into tiles in a map library.

Behaviour is loosely coupled with features

A folder can contain shapefiles.

Spatial data are stored in binary files.
Attribute data are stored in dBASE

tables. No topological data are stored.

Shapefiles are continuous for small to

moderately sized datasets.

Behaviour is loosely coupled with

features through VBA macros.

A geodatabase is a collection of feature
datasets, rasters and TINs.

All spatial, topological, and attribute
data are stored in tables in a relational

database.

Geodatabases span continuous

geographic extents.

Behaviour is tightly coupled with

features through rules and code written

for custom feature classes.

F
ea

tu
re

 D
a

ta
se

t

A coverage contains topological

feature classes that participate in line or

polygon topology.

Line topology is implemented with arcs,

nodes and routes. Polygon topology is

implemented with arcs, label points,

polygons and regions.

Only one feature class is associated with a

topological role.

No associations are defined except for

topological associations among related

features like arcs and polygons.

Coverages have a defined coordinate

system.

A shapefile has one simple feature

class.

Polygon topology among a set of

shapefiles can be implemented with on-

the-fly topological editing.

There is no implicit topological role for

a shapefile.

No associations are established among

features in shapefiles.

Shapefiles have no defined

coordinate system.

A feature dataset in a geodatabase

contains simple or topological feature

classes.

Line topology is implemented through a

geometric network. Polygon topology is

implemented through on-the- fly

topological editing.

Many feature classes can be

associated with a topological role.

User-defined associations can be

established between features indifferent

feature classes.

Feature datasets have a defined

coordinate system.

F
ea

tu
re

 C
la

ss

A coverage feature class stores

feature geometry in a binary file and
attributes and topology in a feature

attribute table.

The primary coverage feature classes are

point, arc, polygon, and node

A coverage feature class cannot be
extended.

A shapefile stores feature geometries in

a binary file and attributes in a dBASE
file.

The types of shapefiles are

multipoint, point, line and polygon.

A shapefile cannot be extended.

A feature class stores features in a

relational table with a special field for
the geometric shape of a feature.

The types of feature classes are point,

line, polygon, annotation, simple

junction, complex junction, simple edge
and complex edge.

A feature class can be extended to a
custom feature class.

Figure 2.2 A comparison of the three major geographic data models (Zeiler, 1999)

2.1.5 Limitations of the preceding geographic data models

The review of the CAD, coverage and shapefile in the preceding sections provides some

insight into how geographic data models have changed over the years. The options for spatial

representation of geographic data have, at times, created a division in spatial modelling, such

that multiple geographic representation models could not be used concurrently. In addition,

as the previously reviewed coverage and shapefile data models demonstrate, geographic data

models in the past have used a combination of spatial and attribute data that have been stored

in separate file formats. In recent years, ESRI has developed and introduced a new geographic

data model known as the geodatabase to overcome these aforementioned limitations. Two of

the other main benefits of the geodatabase are the storage of both spatial and attribute data in

 13

a single database (Harmon and Anderson, 2003), and the tight coupling of behaviour with

features (Zeiler, 1999).

2.2 Database Models

In addition to the advances made in geographic data models, there were concurrent advances

being made in the field of database models, which will be outlined before detailing the

geodatabase. A database model may be described as a collection of logical constructs used to

represent the data structure and relationships found within the database (Rob and Coronel,

1997). A data structure is defined as the logical arrangement of data as used by a system for

data management and is the schematic representation of how the data will be stored for

retrieval (AGI, 2006). Early GISs all used the layer as the principal data structure, which

came from the past use of layering to produce analogue maps. This method is a longstanding

practice in GIS and has some advantages including the ease in which suitable layers can be

combined to produce maps, and how any unnecessary layers can be turned off during map

query. The issue at hand, however, is not that of display, but rather of representation in the

database, with two particular innovations paving the way for the development of the

geodatabase, viz. the object-oriented and relational database models (Harmon and Anderson,

2003).

Databases are an important component of any GIS and are ordinarily classified according to

the data structure they use. Thus, the data structure of a geographic data model has

traditionally been mapped to the user’s view of the data through the use of network,

hierarchical or relational database models. Both the network model which permits the

modelling of many-to-many relationships in data, and the hierarchical model which organises

data into a tree structure have since become outdated, while the relational model is still widely

used. The emergence of object-oriented modelling has allowed for a new way in which to

map a conceptual schema to its logical schema, and utilises the concepts of the network and

hierarchical models through the use of its relationships and tree data structure respectively

(Raza, 2001).

 14

2.2.1 The relational database model

The development of the relational database model came about through the concepts first set

out by E.F. Codd in 1970 concerning the relational model (Healey, 1991; Rob and Coronel,

1997). In comparison to previous approaches, the relational database model can perform the

same basic functions as the hierarchical and network database models. The relational

database model benefits, however, from an independent structure not found in the hierarchical

and network database models, such that the working of the database model is not affected by

any changes in the database schema (Rob and Coronel, 1997). Yet this database model is

characterised by simplicity in that it is merely perceived as a collection of related tables, while

each of the tables is a matrix consisting of a finite series of rows and columns (Healey, 1991;

Rob and Coronel, 1997; Raza, 2001). The characteristics of the relational table have been

elaborated upon by Healey (1991), Worboys (1995); cited by Raza (2001), and Rob and

Coronel (1997) and are as follows:

 Each row in a table represents the data for an individual entity;

 Each column in a table contains data for any one attribute and has a distinct name;

 The ordering of rows is not significant; however, each row must be distinct from the

others;

 All values in a column must conform to the same generic relational data type such as

integers or text; and

 Values for an entity are explicitly stored at the intersections of rows and columns.

A relational database consists of a set of tables, each with its own relational schema. The

principal features of relational databases are the primary key and relational joins. Since each

row must be distinct from the others in a relational schema, it follows that a single column, or

a combination of columns, can be used to define a primary key. The primary key allows each

row to be uniquely identified and can thereby be used as an addressing system for a particular

table. No physical links exist between tables in a relational database and therefore the only

way to join or relate one table to another is through a relational join. This involves matching

values in a column of one table to values in a column of another table. Matching is frequently

based on the primary key of one table being linked to a column of another table, which is

termed the foreign key. Cardinality restricts the number of relationships that can be formed

between the primary key and the foreign key. Cardinality therefore refers to the type of

 15

relationship found between columns in database tables or between features in a geographic

dataset. This cardinality of a relationship may be one to one, one to many, many to one and

many to many (Zeiler, 1999), as seen in the Figure 2.3. When working with a relational

database, relational joins can be used over multiple tables until the necessary data from the

requisite tables have been retrieved (Healey, 1991; Rob and Coronel, 1997; DeMers, 2000;

Raza, 2001).

 One to One One to Many Many to Many

Figure 2.3 An illustration of the basics of cardinality (ESRI, 2002)

As a result of the inherent relational algebra, a major advantage of the relational model is that

it enables queries to be performed on a database. This algebra consists of a set of operations,

designed to work with the generic relational data types, and is used on tables to produce new

relations (O’Neil, 1994; cited by Raza, 2001; ESRI, 2004). These query capabilities and

operations are based on the Structured Query Language or SQL (Raza, 2001).

As database management software has matured, so to have the advantages of its combination

with GIS become more established. This trend has been well marked within the relational

database management systems (RDBMSs) that have traditionally dealt with more tabular data

types, such as attribute data, rather than spatial data, as will be detailed in subsequent

chapters. This integration of GIS with relational databases demanded the development of new

middleware technology, of which the geodatabase is an example. The combination of this

new technology with enhanced RDBMSs allows for the storage of the different spatial data

types, and provides access and retrieval tools. Dangermond and Schutzberg (1998) point out

two distinct options when considering the union of spatial data with a relational database:

 Storage of spatial data in the RDBMS can be hidden, such that the software cannot

distinguish it from other data (such as Binary Large Objects). Middleware software is

then used to index, query and perform spatial analysis of the spatial data, as is the case

with the geodatabase; and

 16

 A new spatial data type is added to the database via a plug-in technology. This new

data type is fully registered in the database, along with its own set of spatial functions.

By July 1998, when this approach was quite new, it was only supported by a small

number of the commercial RDBMS’s; viz. Informix’s Dynamic Server and IBM’s

DB2 Universal Database.

Whether spatial or other, the storage of data in a relational database provides a number of

benefits, including the previously mentioned querying capacity. Other benefits include its

ease of use and implementation, reduced data redundancy from the elimination of much

duplicate information and simpler modification compared to other database models (Healey,

1991). Added to this are the management aspects of a RDBMS, which include security,

backup, client/server control, and the benefit of working in an application development

environment (Dangermond and Schutzberg, 1998). Additional information about the features

of a RDBMS is provided in Table 2.1. By storing large amounts of both spatial and non-

spatial data in a single RDBMS, data sharing is facilitated and can more readily result in the

establishment of large GIS projects (ESRI, 2003a).

2.2.2 The object-oriented database model

Since the 1990s, object-oriented modelling of geographic data has been gaining attention, and

has been used in the development of object-oriented databases. This extension of object-

orientation to databases was a logical outgrowth of the object-oriented programming style that

started gaining popularity during the 1990s (Harmon and Anderson, 2003). The fundamental

idea behind the object-oriented approach is to allow the user to model data in terms of real

world objects that interact with each other, rather than as computer records or tables (Batty,

1991).

Rob and Coronel (1997) define object-orientation as a set of design and development

principles based on conceptually independent computer structures known as objects, with

each object representing a real world entity with the ability to interact with itself and with

other objects. An object is an instance or occurrence of a class, where a class is defined as a

description or specification of a group of objects with similar attributes, common behaviour,

and relationships with other objects (Rob and Coronel, 1997; Twumasi, 2002). In an object-

 17

oriented system, an object is defined by three primary traits (Rob and Coronel, 1997;

Twumasi, 2002), viz.

 Its identity, which uniquely distinguishes it from other objects;

 Its state, described by the values of its attributes (Mitášová and Višòovcová, 2002);

and

 Its behaviour, which describes operations performed by the object and the way it

interacts with other objects (Mitášová and Višòovcová, 2002).

The object-oriented database model is characterised by three key qualities. The first is

polymorphism, which deals with the ability of an object class to adapt its behaviour in relation

to other objects. The second is encapsulation, which means that an object is only accessed

through a set of well-defined software protocols, thereby enforcing the use of a database

management system. The third trait is that of inheritance. This is of particular importance

since it enables an object class to include the behaviour of parent classes along with its

individual characteristics in a top down approach (Wachowicz, 1999). This results in reduced

data redundancy and more effective data modelling in terms of speed and simplicity (Zeiler,

1999; Rob and Coronel, 1997; Rigaux et al., 2002).

Object-oriented modelling and design are based on the concept of objects, their interactions,

relationships, and organisation. Similarly, these concepts form the basis for object-oriented

database management system (OODBMS), which integrates object-orientation and database

functionality (Khoshafian, 1993; cited by Twumasi, 2002; Rob and Coronel, 1997). Object-

oriented databases provide a new way in which to conceptualise and implement the storage of

data, and to overcome some of the limitations of the relational data structure. Table 2.1

provides a comparison between object-oriented and relational databases. With regard to the

application of database models to the spatial domain, the OODBMS allows for a map to be

more than just a visual interface, as it provides an understanding as to the real objects behind

the assembly of graphic elements (Mitášová and Višòovcová, 2002).

 18

Table 2.1 A comparison of relational and object-oriented databases (after Raza, 2001)

 Relational database Object-oriented database

Navigation

Slow:

Joins are inefficient for extensive navigation.

Fast:

Navigational queries are as fast as
accessing data in memory because of
smart caching strategies.

Advanced
features

Lacks advanced features:
Inheritance: No inheritance mechanism.
Schema evolution: Quality of database to change
the structure of database populated with data
Versioning: Various states of an object.
Configuration: Set of mutually consistent objects.
Long transaction: A series of database
commands that extend over a long period of time
(days, weeks, months etc). RDBMS provides short
transactions normally executed within few
seconds.
Change notification: Ability of database to notify
the user whenever an object is changed.

Data types

Few: New data types cannot be defined.

No limit: Many (complex) data types

can be constructed from primitive data
types, such as point from x and y data
types.

Paradigm

Table: Sometimes data do not naturally fit within
the confines of a table and decomposition is
required.

An object naturally fits in a file / table.
No decomposition is required.

Theory and
standard

Based on formal theory of relation and SQL
standards. Therefore, products are standardised.
Vendor independent.

Not based on formal theory, therefore
products are not standardised and
vary from vendor to vendor.

Availability Owing to standard and well-known data structure,
relational model is widely deployed.

Not widely available.

Extensibility

Much extensibility: The ability to change

database schema without changing the
applications programs.

Lack of logical extensibility: Existing

products lack logical data
independence; not a flaw of OO
databases but rather of commercial
products.

Database
corruption

Database and applications run in separate
processes; therefore chances of data corruption
are less, although some performance is lost.

Database is run in the application
process space. Therefore, database
runs the risk of security violation or
corruption by wild pointers.

2.2.3 The object-relational database model

Both the object-oriented and relational approaches have their strengths and weaknesses, as

shown in Table 2.1. The combination between these two modelling approaches has been

researched by many commercial database vendors and has led to the creation of a new

database model known as the object-relational database model. This model, also called the

extended relational model, is a compromise between the concepts set forth in both models and

aims to incorporate object-oriented features into a relational database. Thus many of the

shortcomings of the relational database can be overcome, whilst still including the simplicity

and functionality of the relational database model (Raza, 2001; Twumasi, 2002).

 19

The object-relational database has become increasingly popular for the storage and query of

geographic data, gradually replacing the traditional layered databases, as illustrated by the

decline in use of the CAD and coverage data model in GIS. Many software companies have

adopted object-relational technology for the storage of geographic data, and each has its own

terminology. Harmon and Anderson (2003), refer to this type of a database as a (SERD). A

SERD inherits many of the characteristics particular to object-oriented and relational

modelling, and applies them to spatial and attribute data. Modelling of geographic features in

a SERD requires that the database adhere to the following general principles (Harmon and

Anderson, 2003):

 Hierarchical organisation: Objects belong to a hierarchy with their position being of

importance, since objects lower in the hierarchy belong to and are influenced by the

objects above them;

 Objects have properties: A feature must have a property type, such as number or text

depending on what information is being recorded;

 A spatial object in a geographic database has location: In a layered geographic

database it is common for a feature to have two types of information, namely spatial

information and attribute information. In an object-oriented database this information

is stored collectively in a common object, and thus the idea is that location is just

another property of an object. This means that when an object is deleted in a database,

so too is its attribute information;

 Objects properties can be affected by their spatial context – An object may have

different properties relative to its existence in space. For example, by a change in

scale, a river in a catchment may appear as a simple line, but when magnifying a

particular section, braids and channels may become apparent;

 Relationships between objects have properties: Objects can relate to one another and

their relationships can have properties governing the way in which a change in one

object impacts a related object. This adds behaviour to a geographic database where,

for example, a control valve for a water network regulates the flow to the receiving

end of the network it is part of;

 Objects belong to classes: There are an infinite number of objects in reality, that when

viewed individually, are impossible to deal with in a geographic database. Logical

groups of objects are, however, normally distinguishable and would fall into

 20

appropriate classes. For example, the class called river could be split into sub-classes

of perennial, intermittent and ephemeral, each with their own properties; and

 Properties can be inherited: Combining the idea of hierarchical structure and

properties, object-oriented systems are designed so that subclasses inherit the

properties of the class to which they belong. Therefore, the subclasses of the river

class might inherit the properties of river length, width and depth. Nonetheless, all

could have unique values for each of these properties.

In the same way that object-oriented programming languages have become the new standard,

so too object-oriented geographic databases are likely to eventually replace layer-based

databases (Harmon and Anderson, 2003).

2.3 The Geodatabase Data Model

With the increasing utilisation of GIS applications in various industries, and the realisation

that a better way was needed to associate behaviours with features, came the requirement for a

new geographic data model. The coverage model was only partly successful with adding

behaviour to features through external code, and so further development of the model was

considered. This, however, was not viable as the new requisites for the application code and

feature classes were almost impossible to deal with jointly, as synchronicity between the two

had to continually be updated. Thus a new geographic data model with an infrastructure to

tightly couple behaviour with features was developed, known as the geodatabase (Zeiler,

1999). Past methods of storing spatial and attribute components of geographic data in

separate files were undesirable owing to the disaggregation of related data. Accordingly, the

new geographic data model places both spatial and attribute data in the same database, and

combines the benefits of the relational approach with those of object-orientation, to create an

object-relational model – ESRI’s interpretation of a SERD (Harmon and Anderson, 2003).

Zeiler (1999) describes the geodatabase model as the bridge between peoples’ cognitive

perception of the objects surrounding them in the world and how those objects are stored in

relational databases. The definitive purpose of the geodatabase data model is to enable the

features in a GIS dataset to attain greater functionality through closer association with real

world objects, by providing them with natural behaviours, and by allowing any sort of

relationship to be defined between features. Thus the geodatabase brings a physical data

 21

model closer to its logical data model. The geodatabase also has the ability to implement the

majority of custom behaviours without any further programming. This is made possible by

the various ways in which behaviours can be defined through options, including domains and

validation rules (Zeiler, 1999). The following section on the object-oriented design of the

geodatabase further explains many of these concepts

The introduction of ESRI’s SERD was not a concept exclusive to the company. Both the

software companies Intergraph and Oracle introduced their own interpretations of a SERD

around the same time. Owing to reasons including comparatively little marketing and the

high cost of products, these solutions have not been as successful as the geodatabase (Harmon

and Anderson, 2003).

2.3.1 Object-oriented design of a geodatabase

The geodatabase serves as a generic model for geographic information, as well as providing a

framework for the creation of an object-relational database schema and the implementation of

behaviours for objects in the database (Zeiler, 2001). Object-oriented concepts of inheritance,

encapsulation and polymorphism are supported by the geodatabase. Thus the object-

relational data model upon which a geodatabase is built, results in a number of important

characteristics (Zeiler, 1999):

 Adding and editing of features can be controlled through the use of built in functions

such as domains, that permit certain values to be assigned to an attribute, and

connectivity rules, which determine whether one feature can be placed adjacent or

connected to another feature; and

 Relationships among features can be set up including topological relationships in a

connected system such as a river network, or general relationships such as a parcel of

land and its relationship to its owner.

The use of object-relational database modelling provides advantages such as creating and

editing features and feature relationships, as discussed previously. There are, however,

further benefits that are evident when using the geodatabase data model and these include the

following (Zeiler, 1999; Evans and Millett, 2002):

 22

 All geographic data (including raster and vector) are held in a uniform repository and

can thus be managed as a single database;

 Data entry and editing is faster and more accurate through the use of data rules and

relationships and other validation methods;

 Since features and objects are assigned behaviour, a geodatabase can now correspond

to the user’s model of data instead of generic points, lines and polygons, thus making

the modelling process more intuitive, through the closer association of objects with

reality;

 The behaviour of features is further added to by polymorphism. This means that

features on a map display are dynamic in that they respond to changes in

neighbouring features;

 The relational database upon which the geodatabase is built, allows for the

simultaneous editing of geographic data by multiple users, enabling the management

of large databases (versioning);

 Complex feature interactions can be modelled through the creation and editing of

geometric networks and topologically integrated features; and

 The data model enables the development of industry-specific models such as the Arc

Hydro data model.

To state that these advantages are available solely to the geodatabase model would be

incorrect. Many of the aforementioned characteristics could have been achieved through

previous data models, but this would only have been possible through the creation of external

code and therefore added complexity. An additional advantage of the object-oriented

modelling nature of the geodatabase is that the object view of data allows one to focus on

building the data model, while hiding much of the underlying physical structure of the data

model (Zeiler, 1999).

A geodatabase does have potential constraints, created by the added complexity of the new

data model to its forebears. An example of this is where the single repository of geographic

data in the geodatabase, and the data validation built into the model, sometimes make the

exportation of subsets of geographic data more difficult. The use of a geodatabase can also

result in added complication, especially when the user does not require the advanced

functionality offered by the new data model.

 23

2.3.2 How a geodatabase extends a relational database

The geodatabase is built upon the relational database model and is comprised of tables

containing spatial and attribute data. A geodatabase’s logical elements are represented by a

relational model’s database elements, as shown in Table 2.2. This provides some insight into

how the geodatabase data model uses tables and rows as a substitute for classes and objects, in

order to implement the object-oriented method. The main improvement that results from the

interaction between a GIS and a RDBMS is that their combination allows for efficient storage

of geographic data (Batty, 1991). The common functions of a relational database

management system are therefore increased when incorporating a GIS. These include the

ability to store the geometric shape of features, the inclusion of a spatial index for rapid

retrieval of geographic information, and the use of versioning (Zeiler, 1999). Thus, as the

name implies, a geodatabase can be seen as the definitive instance of a GIS and a relational

database.

Table 2.2 Logical elements of a geodatabase with associated relational database elements

(Zeiler, 1999)

Logical Elements Database Elements

Class Table

Attribute Column, Field

Object Row

An important factor to consider when applying a geodatabase is the RDBMS it uses, as this

affects the geodatabase’s functionality. In this regard, two instances of a geodatabase exist,

viz. personal and multi-user. Figure 9.3 in the Appendix provides a summary of the

differences between the two. The ESRI product being used is an important consideration, as

only the multi-user Arc Spatial Database Engine (ArcSDE) can be employed to create and

manage both types, as it provides the necessary gateway between the GIS and the DBMS to

share and manage spatial data.

When dealing with the geodatabase it is possible to disaggregate it into a number of

components. The collective and primary unit of geographic data is the geodatabase itself. It

is, however, not necessarily the case that all geographic data for a particular project are

 24

present within a single geodatabase. Data are often sorted into multiple geodatabases

according to broad categories such as transportation or environment, with the geodatabase

being structured in such a way as to maintain the geographic data as a whole unit, so that there

is no partitioning of data.

The next level of division is that of the geographic dataset within a geodatabase. This dataset

is divided according to the geographic representation models of vector, raster and TIN. The

vector based feature dataset will be used as the example dataset for the remainder of this

section, as it is the most complex yet customisable of the three, and thus demonstrates the

geodatabases structure best (Zeiler, 1999). A hierarchical view of a geodatabases structure is

shown in Figure 2.4, and the various components making up a geodatabase are shown in

Figure 2.5.

The subsequent division of geographic data is that of classes. Classes are divided into object

classes, feature classes and relationship classes, and they can exist either within or external to

a feature dataset. Object classes are simply data tables within the geodatabase that store non-

spatial descriptive information about entities, yet are related to geographic features. The

owners of different parcels of land would constitute an object class since, although their

geographic location is not recorded, a relationship exists between them and the spatial data as

represented by the parcel of land they own. As with features, objects of the same kind are

grouped within an object class. A feature class is thus a collection of similar features with the

same type of geometry. Thus in terms of feature datasets, feature classes are split into

distinguishing groups of point features, line features and polygon features. A feature class

can additionally be split into two categories. The first is a simple feature class where no

topological associations exist between features. The second is a topological feature class,

which serves to bind together features that form an integrated topological unit, and is

illustrated by individual river reaches being bound together to form a network. Finally,

relationship classes are present in a geodatabase as tables that store relationships between

features and objects (Zeiler, 1999).

 25

Figure 2.4 A hierarchical view of the geodatabase, displayed using ArcCatalog (Zeiler,

1999)

 26

Figure 2.5 The components making up a geodatabase (Zeiler, 1999)

The geodatabase is an example of a unified data model in that it is created with the ability to

incorporate data in many formats and from different sources. Previous geographic data

models and the data they include, such as coverages and shapefiles, can either be incorporated

within, or be upgraded, to become part of a geodatabase. Thus a geodatabase provides the

ability to have a uniform set of tools with which previous geographic data models can be

 27

managed. In this respect, a geodatabase can contain four representations of geographic data.

These are vector data for representing features, raster data for representing grids, TINS for

representing surfaces, and addresses and locators for finding geographic position (Zeiler,

1999). Details particular to the first three of these in relation to a geodatabase will be

explained in the following section. Addresses and locators will be excluded, since they

pertain to finding a geographic position, and are not required for the remainder of this study.

2.3.3 Rasters and TINs in a geodatabase

Rasters, which were reviewed in Section 2.1.1, are a common representation of geographic

data and can be integrated into a geodatabase. Each cell attribute of a raster defines the class,

group, category or measure at the cell position, with cell values being recorded as either

integers or floating points. Cells with identical values can be placed in the same group, and

thus by using a one to many relationship, a single grid cell value can correspond to a group

and, by inference, to a number of individual cells. This can result in a reduced amount of

storage space used by a raster. At high resolutions, raster datasets can become hardware

intensive owing to the large amount of disk space used as a result of the added detail. Thus

raster pyramids are created in order to down-sample a raster to a sufficient resolution for a

particular scale. These pyramids therefore create instances of the same raster by averaging

cell values at different magnitudes of scale, with correspondence to the level of detail

required. Thus, when viewing a particular raster at a large scale, a higher resolution would be

required as opposed to when viewing the same raster at a smaller scale (Zeiler, 1999).

TINs are another geographic data representation that can be incorporated into a geodatabase.

Both raster and TINs are used in surface modelling. However, TINs are often more beneficial

in this respect because of their ability to represent a variable surface more accurately. Unlike

the uniform grid structure of a raster, TINs require a slightly more complicated method when

trying to model surface feature. For point surface features, a TIN uses preserved nodes from

triangulation, while for line surface features, connecting lines between nodes are used.

Uniform areas are defined by replacing individual triangle values, with a constant z value.

This produces a particular polygon according to the triangles amalgamated (Zeiler, 1999).

Refer to Figure 2.1 for clarity on the TINs structure.

 28

2.3.4 Features in a geodatabase

Objects in the real world have a systematic set of rules and relationships that they must

follow. For example, a river must flow downhill and plants must transpire in order to grow.

The geodatabase tries to incorporate these rules and has been most successful in the modelling

of vector features. Features in a geodatabase have many qualities such as shapes,

relationships, attributes and behaviours. All of these create a rich context by which a feature

can relate to its location or neighbouring features and the response it would have from a

change in these. The shape of a feature is stored in a relational table field called shape, as

either a point, multi-point, line or polygon. Each feature may have a number of properties

defined, such as its spatial reference, attributes, subtypes and relationships (Zeiler, 1999).

When developing features in a geodatabase, it is first necessary to account for all the types of

objects that are being modelled and the feature classes that represent them. This allows for

the creation of feature datasets that groups feature classes together. Some reasons for the

creation of a feature dataset include those instances when feature classes share a common

spatial reference, when they have topological associations as in a network, or when they have

similar thematic content such as land use. As mentioned previously in Section 2.3.2, there are

three basic types of feature classes, these being object, feature and relationship classes. The

feature classes in a feature dataset all share a common spatial reference. Features have a

geometry made up of x and y coordinates, with optional z (for height) and m (for distance)

values (ESRI, 2002; Evans and Millett, 2002). These coordinates relate to a spatial reference

inferred from the shape of the earth (Zeiler, 1999).

Attributes characterise the qualities of an object, or feature, with descriptors such as name,

area and location. Features on a map can have any number of associated attributes. Apart

from providing the characteristics of a feature, attributes can also define subtypes of a feature.

A subtype is a special attribute that allows one to assign distinct simple behaviour to different

classifications of objects or features (ESRI, 2002). Such a classification might be used for a

stream system, with subtypes of 1st, 2nd and 3rd orders. All subtypes share the same

attributes, but specific behaviour is possible through the use of distinct attribute domains,

default values and relationships. It is an important design decision as to whether a group of

related features should become a set of feature classes or a set of subtypes of a feature class.

 29

A key reason for the use of subtypes is their ability to improve performance and to help

enforce data integrity through domains and validation rules (Zeiler, 1999).

The basis for the use of domains and validation rules is to eliminate or minimise error in data

entry. An attribute domain is a specified set or range of valid attribute values that prevent

simple mistakes in data entry and editing. Range domains allow for numerical values

between a maximum and minimum value, while coded value domains are used to define a

particular set of values which can then be recorded as either numbers or text (ESRI, 2002;

Evans and Millett, 2002). A third option in domains is to have a default value, thereby

enforcing some specified value when none is available. Integrity of datasets is further ensured

by the use of validation rules that control features and attributes. Three types of validation

rules are described in Zeiler, 1999:

 Connectivity rules decide whether one feature or object can be connected to another,

such as a 20 mm valve only being able to be connected to a 20 mm pipe;

 An attribute rule is an attribute domain applied to a subtype of a class. Thus,

hypothetically speaking, a vegetation class may have a subtype of sugarcane, with an

evaporation attribute domain of between 0 and 10 mm a day. Attribute domains can

have additional rules attached. These are present as rules for either splitting or

merging features; and

 Relationship rules constrain cardinality (illustrated in Figure 2.3) of a relationship

between an origin class and a destination class.

Objects interact with each other in several ways. The association between objects can be

maintained by topological links or through relationships. In the geodatabase, relationships are

organised into relationship classes where each relationship in a set class has the same origin

and destination class (Evans and Millett, 2002). It is thus desirable to keep track of

relationships so that when one object is modified, the related object can react appropriately

(Zeiler, 1999). The object-relational model upon which the geodatabase is built provides the

facility for this to be done.

 30

2.3.5 Geometric networks

Networks are an essential part of our reality, as seen in the case of network infrastructure such

as roads, energy, pipelines and commodities. The structure, capacity and efficiency of

networks have a significant influence on our lives. The introduction of ESRI’s geodatabase

also debuted the geometric network. This new model was developed by ESRI from extended

experience with transportation and utility networks. The primary advantages of this new

model are that it makes editing easy through the use of connectivity rules, and allows network

features to represent complex features such as switches, thereby reducing potential clutter

(Zeiler, 1999).

Networks are made up by two types of objects, viz. edges and junctions. These are equivalent

to the arcs and nodes in a coverage. A geodatabase has a dual network representation system

in place. These are the geometric and logical network. As with standard vector line features

in a geodatabase, geometric networks share the same spatial and attribute characteristics, but

with the addition that they can preserve connectivity between lines and that they automatically

update network elements. Geometric networks are, in turn, connected to logical networks,

which are a collection of connected edges and junctions with the purpose of storing

connectivity information and some attribute information. The key difference between the two

types of networks is that in the case of a logical network there is no corresponding spatial

reference, while the geometric network stores the location data explicitly (Zeiler, 1999).

Connectivity rules play an important part in networks, with established rules relating to

connections between edges, junctions and edge-junctions. Consequently, cardinality is a

factor. Networks can be split into two key operational categories, viz. utility and

transportation networks. In a transportation network, the entities using the network have

choice. Thus in the case of a road, a driver might turn left or right. In a utility network, the

entity’s direction of flow follows the rules of the network, such as water in a river flowing

downstream. The changeable direction of any movement is controlled through the use of

switches, sources and sinks, with the direction of movement in edges being established

through interpretation of the layout of these controllers. The reason for this distinction is that

a switch dictates direction of movement, while a source (such as the spring of a river) is the

start of movement and a sink (such as a river estuary) is the end (Evans and Millett, 2002).

The ability to disable or enable features further adds to the control one can have over a

 31

network, since this allows certain routes to be opened or closed. Weight is also an important

factor to consider when discussing networks. Weight is recorded in a logical network and is

used to store the cost of moving through a network. It is commonly presented as distance;

however, any numeric field can be a weight. Sometimes a decision needs to be made which is

based on a network issue, such as finding the shortest route. Network analysis is thus a useful

way to solve such problems or queries. This is achieved through queries that navigate the

network and produce a result, such as finding shortest path or all elements upstream of a point

(Zeiler, 1999).

2.3.6 Geodatabase design

A GIS has the potential to achieve a number of tasks at a range of spatial and temporal scales,

from daily operations at a local scale, to long-term planning at a national scale. This is made

possible by simple operations such as storage and dissemination of data, to complex

integration with other technologies, achieved through the open architecture of object-oriented

models. What makes the implementation of such a GIS most effective is good design.

Traditional relational database design is characterised by the conception of a logical data

model and subsequent implementation of a physical database model. Thus a logical data

model captures the user’s view of the data, whilst the physical database model implements the

data model within the structure of a RDBMS (Zeiler, 1999).

The objectives of the design process are to define goals, identify and evaluate alternatives and

create an implementation plan. A design allows one to know the stage of development and

how to progress, while keeping an overall holistic view. As the design progresses, so to does

the amount of detail, such as adding data definitions or assigning spatial structures. The

characteristics of an efficient geodatabase include meeting organisational requirements and

objectives, reducing redundancy of data, creating alternate views of data and organising

geographic features appropriately. The creation of a geodatabase design can, however, be

quite time consuming and benefits from the following (Zeiler, 1999):

 Involving users, as this will create a sense of ownership and identify user

requirements;

 Using a multidisciplinary team of experts to achieve specific design objectives;

 Setting up milestones that can be used to gauge your progress;

 32

 Keeping a holistic view of the project at all times;

 Only adding detail once the basic structure of the geodatabase is in place; and

 Planning from your model in order to meet your organisation’s priorities.

Zeiler (1999) divides conventional geodatabase design into five steps. The first three steps

develop the conceptual model by classifying features and their spatial representations, while

the fourth and fifth step develop the logical data model and integrate the conceptual model

with the geographic datasets. The construction of a logical data model is a repetitious

process, with no single perfectly correct model, but rather better and worse ones.

Determining whether a data model is good enough is a question best answered by looking at

whether it has met the demands of the user with as little data duplication as possible. Upon

completion of the logical data model design, the next step is to implement it in a physical

database model. A benefit of the geodatabase in this respect is that it allows the structure of

the physical data to closely match the logical data model (Zeiler, 1999). Arctur and Zeiler

(2004) include a similar stepped design procedure, but expand the five-step design by Zeiler

(1999) into a ten-step design, as shown in Table 2.3.

2.4 A Geodatabase Application: The Arc Hydro Data Model

Many forms of geographic information are required for the management of water resources,

including catchment delineations, rainfall data and river connectivity. The purpose of this

section is to outline the use of geodatabases in a hydrological context, as well as to provide an

example of an industry-specific geodatabase schema. Developed by the Centre for Research

in Water Resources at the University of Texas at Austin, the ArcGIS Hydro Data Model (Arc

Hydro) is built upon the geodatabase model and provides a standardised framework that can

be used to manage various types of water resource data. In particular, Arc Hydro makes

extensive use of geometric networks and their analytical capabilities, and builds upon the

tools available to geodatabases. Arc Hydro describes natural water systems and not

constructed infrastructure, and focuses on the description of surface water hydrology and

hydrography. The aim of the model has not only been to build a complete hydrological data

model for use in a GIS environment, but also to create a database that can be employed by

other water resource models that operate independently of GIS (Maidment, 2002; Arctur and

Zeiler, 2004).

 33

Table 2.3 The ten steps of geodatabase design (Arctur and Zeiler, 2004)

1 Identify the information products that will be produced with the GIS.

Inventory map products, analytical models, database reports, web access, data flows, and

enterprise requirements.

C
o

n
cep

tu
a
l D

esig
n

2 Identify the key thematic layers based on the information requirements.

Specify the map use, data source, spatial representation, map scale and accuracy, and

symbology and annotation.

3 Specify scale ranges and spatial representations for thematic layers.

GIS data are compiled for specific scale use; feature representation often changes between

points, lines and polygons at larger scales. Rasters are sampled to include multi-resolution

pyramids.

4 Group representations into datasets.

Discrete features are modelled with feature datasets, feature classes, relationships, rules and

domains. Continuous data are modelled with rasters.

5 Define the tabular database structure and behaviour for attributes.

Identify attribute fields, specify values and ranges, apply subtypes to control behaviour, and

model relationships.

L
o

g
ica

l D
esig

n

6 Define the spatial properties of your datasets.

Use networks for connected systems of feature and topologies to enforce spatial integrity and

shared geometry. Set the spatial reference for the dataset.

7 Propose a geodatabase design.

Make informed decisions on applying structural elements of the geodatabase and prepare a

design.

8 Implement, prototype, review and refine the design.

From the initial design, build a geodatabase and load data. Test and refine the design.

P
h

y
sica

l D
esig

n

9 Design work flows for building and maintaining each layer.

Each layer has distinct data sources, accuracy, currency, metadata and access. Define work

flows to conform to the user.

10 Document and design using appropriate methods.

Use drawings, layer diagrams, schema diagrams and reports to communicate the data model.

 34

The Arc Hydro data model is what Maidment (2002) terms an essential data model, in that it

captures the concepts of features, at the core of river hydrology, while leaving the user to

customise it further by allowing addition to the existing structure. The goals of the model are

threefold: to allow for a comprehensive hydrological description, detailed hydrological

connectivity, and to provide a supporting structure for hydrological modelling. These

concepts are elaborated upon by Maidment (2002):

 Hydro Description allows for a geospatial account of water resource features. This

includes what they are, their shape, location and attributes;

 Hydro Connectivity provides details on how the water features are connected through

the environment. Thus it can provide answers to the movement of water in a

hydrological network, including what is upstream and downstream, as well as what

drainage areas and water resource structures (such as gauges and dams) are connected

to the network; and

 Hydro Modelling estimates water flow and properties for each spatial location. This

involves how time-varying properties of water are described, how water resources

analyses are to be carried out in ArcGIS, and the manner in which links can be

established between the GIS and external water resource models.

The Arc Hydro model uses two approaches in building a geographical model, namely the

inventory and behavioural approaches, which in practice are often blended together. The

inventory approach is used to identify objects of interest and formally define them by

recording their attributes, such as location, properties and individual behaviour. By

employing the inventory approach, the formation of the Hydro Description (the first goal of

the Arc Hydro data model) can be achieved. The behavioural approach identifies a system of

behaviour for relevant features and those linked to them, thereby providing a definition for the

complete system. The emphasis here is not on describing the environment in detail – this is

the goal of water resources models. However, some sort of simplification is required and

Maidment (2002) suggests that fundamentally, and regardless of its depiction, water resources

modelling always come back to one constant, viz. the river. Thus the passage of water from

land into a river system and beyond, allows for an orderly procedure to be established that

describes the second goal of Arc Hydro, i.e. Hydro Connectivity.

What becomes evident upon examination of Figure 2.6, are the distinct feature and object

classes in a geodatabase that allow for systematic processing. However, when this concept is

 35

applied to the flow of water along a specific river segment within a particular catchment

(while simultaneously allowing for the influence of specific entities such as lakes, canals and

weirs on flow patterns), it becomes necessary to view the system in its entirety. Therefore

knowledge of the connectivity between features in different layers is required. Although the

geometric network includes the relationship between points and lines, it does not factor in

areas, and therefore requires association with drainage data. Despite every object in an

object-relational database having a unique identifier, the Arc Hydro data model has further

engaged the use of an additional identifier to associate features through a HydroID. This is

done in order to better manage the integrity of foreign keys with many relationships, since no

unique identifier exists across multiple tables (Maidment, 2002).

Figure 2.6 The geodatabase structure of the Arc Hydro data model, showing its various

classes (ESRI, 2003b)

 36

Thus, a hydrological feature can be linked to another by storing the HydroID of the first

feature, but as an attribute of the second feature. A HydroCode is also included, that

distinguishes features from one another and provides a universal identifier to be used by

systems external to Arc Hydro, in order to be able to record other naming conventions that

might exist. This supports the third goal of the Arc Hydro data model, i.e. Hydro Modelling

(Maidment, 2002).

In order to support the various thematic layers used, the Arc Hydro data model organises the

natural water system into five distinct components, shown in Figure 2.6. These are Network,

Drainage, Channel, Hydrography, and Time Series. The first four are contained within

individual datasets within the geodatabase, while Time Series is stored in a single object class

(Arctur and Zeiler, 2004). The Hydro Network is the mainstay of the Arc Hydro data model

and is made up of connected sets of points and lines presenting pathways of water flow. The

network is based upon the integrated geometric network capabilities of the geodatabase, and

is comprised of HydroEdges and HydroJunctions. Edges represent flow lines through streams

and water bodies, as well as shorelines around water bodies. Junctions serve as connecting

points at intersections of edges, and as such they are one of the most important elements of

the Arc Hydro data model, which is to connect hydrographic features to the hydrological

network, such as assigning a gauging weir to a network junction. With a complete

hydrological network, flow direction along river segments is determined, and this allows for

querying of the network, for example upstream tracing (Maidment, 2002; Arctur and Zeiler,

2004).

Another important characteristic of Arc Hydro is the derivation of drainage areas (or

catchments) and stream lines from surface topography. A critical simplification of Arc Hydro

is the idea that drainage areas flow to points on lines rather than directly onto lines

themselves. This results in the assumption that all water within a catchment flows to its

outlet, and thereby removes potential inconsistencies of internal catchment drainage. A

subsequent benefit of this is the potential to substitute any drainage configuration in place of

those generated by Arc Hydro, whether they are river or catchment definitions. This brings to

the fore one of the useful tools made more readily available by the integration of Arc Hydro

into ArcGIS. Through the use of a detailed DEM, ArcGIS is able to analyse the drainage

patterns of the land surface terrain, and thereby derive its own river and catchment definitions.

This is made possible by a stepwise process of determining flow direction, flow

 37

accumulation, stream definition, stream segmentation and catchment grid delineation

respectively. These tools form part of a greater collection called the Arc Hydro Toolset. This

toolset allows for automated processing of drainage patterns that would otherwise take far

longer if trying to interpret them from contour lines on maps (Maidment, 2002; Arctur and

Zeiler, 2004). The aforementioned tools were also previously available in ArcInfo, and can

be used in ArcGIS independent of ArcHydro. ArcHydro does, however, provide a stepwise

and simpler user interface for their execution.

In some hydrological modelling the analysis is designed to work with the simple connectivity

of catchments or other water-related features. Thus a simplification of the Hydro Network is

available in Arc Hydro through the use of the Arc Hydro Toolset. The product is a schematic

network of nodes and links that connects catchments according to their logical routing. The

creation of a schematic network provides the connectivity between features, without the

complication of their complete geometry. The tool functions by establishing a relationship

between the outlet of each catchment, as well as the outlet point of the catchment downstream

from it (Maidment, 2002; Arctur and Zeiler, 2004). Thus a simple network can be created

that is suitable where internal drainage within a catchment is not an issue.

The third component of the Arc Hydro model is the channel, which is stored as a three

dimensional shape representing the river. These shapes are divided into cross-sectional lines

perpendicular to the river, and into parallel profile lines. The description of the river channel

is an important part of hydrology, especially in the case of floodplain mapping and stream

ecology and geomorphology. The physical properties of the channel such as roughness and

vegetation can be recorded and associated with their particular reach, where sufficient data

have been collected. The fourth and final of the individual datasets is the hydrography, which

holds base data collected from topographical maps and other sources. Multiple layers can be

stored in this dataset, and they are grouped according to point, line and area classes. Points

are further subclassed into dams, bridges and structures that do not alter flow, and water

withdrawal and discharge points along the Hydro Network. Two additional point feature

classes are defined, viz. monitoring points and user points (Maidment, 2002; Arctur and

Zeiler, 2004).

Since many observations important to hydrological modelling are taken at regular time

intervals, as is the case with daily rainfall, it is necessary to be able to incorporate these data

 38

into a database (Wachowicz, 1999). It has in the past been difficult to include time series data

with other GIS data, since GIS data models do not normally consider temporal information.

Thus the Arc Hydro data model includes an object class for time series which is stored as

tabular attribute data and describes the time varying water properties of a feature. It should be

noted that the time series information stored does not have to be exclusive to features

associated with that hydrological network, and can include data from rainfall gauges and other

disjunct features (Maidment, 2002; Arctur and Zeiler, 2004). Additional problems arise,

however, as a result of the large size of temporal databases and inefficiency of storage. More

detail on the time series component of Arc Hydro is provided in Section 3.3.

In order to meet particular user requirements, application or industry-specific data models

such as Arc Hydro have also been developed with the geodatabase and are, in a sense,

extensions of it. In addition to its various hydrological components, the Arc Hydro data

model has provided one means by which to store voluminous time series data. The storage of

time series data forms the basis for the following chapter, which reviews a number of

potential time series data storage methods.

 39

3. STORAGE OF TIME SERIES

The previous chapter explains why the geodatabase data model was selected to store spatial

data, and why the Arc Hydro data model was selected for the storage of hydrologically related

features. One of the other requirements of the data model was that it be able to store time

series data. Time series data is of particular importance in hydrological modelling as opposed

to just spatial data in many other GIS applications. The choice of which time series storage

method to use was important for the requirements of the new data model as listed in the

Introduction, since data output from or input into hydrological models is often made up of a

significant amount of time series data.

A time series may be defined as a set of ordered observations on a quantitative characteristic

of an individual, or collective, phenomenon recorded at different points in time (NCES,

2006). Stated simply, it is a set of observations that are arranged chronologically (Hipel and

McLeod, 1994). Time series data describe many components of the hydrological cycle and

they are often used as an input for hydrological analyses and modelling. The two main factors

that determine the use of time series data are the length of the time series record and its

frequency. Frequency refers to the time interval between recordings, and may differ in

relation to requirements, such that during a flood, frequency of recordings might be increased

in order to improve the detail of the event (Maidment, 2002).

Time series may be discrete (for example, recording only the biggest event of a year, or the

‘n’ biggest events) or continuous, in which case they may be recorded at regular intervals

(such as every 10 minutes or daily) or at irregular intervals (for example, when change takes

place, as in a flood hydrograph). In hydrology, time series originate in one of two ways:

actual observed data or values generated by models. It is important to know the origin of

values in a time series in order to distinguish actual measurements (or data) from simulations

(or values). The association of time series data with spatial objects (and therefore GIS),

results in spatio-temporally varying hydrological variables such as rainfall and temperature

being modelled and recorded more accurately, thus resembling their occurrence in reality

more closely. There are a number of properties associated with the recording of time series

data. These are its accuracy, duration and whether the time series has a regular or irregular

interval. Time series values are also commonly distinguished as instantaneous or step values.

 40

Instantaneous values represent a condition at any given instant (such as the temperature at

08:00), while step values represent a periodic or step statistic (illustrated by daily accumulated

rainfall). One problem in dealing with time series data, results from the fact that these data

are often voluminous, and as a result, storing and accessing them can be complicated. In the

past, standard databases have been inefficient in storing and retrieving time series data, and

for that reason many hydrological data models have included various designs of formatted

data files to circumvent this problem (Maidment, 2002).

 Since it would influence the design of the new data model, it was necessary to first select the

method of time series storage to be used. The times series storage method used would not

necessarily be a new design, and instead would draw on some of the methods currently

available. By having a defined data model for the storage of time series, it would be possible

to consider its integration with the remainder of the new data model to be developed. The

data used for the evaluation of the different time series storage methods investigated, was

sourced from the QCDB; discussed further in Section 3.2.

The following time series storage methods were identified, reviewed and subsequently

evaluated:

 Relational database tables (two methods);

 Arc Hydro time series;

 SPATSIM time series data table; and

 DHI’s dsf0 format.

These time series storage methods present different ways by which time series data can be

recorded and stored, and constitute a sample of the many potential time series storage

methods available at the time the study was undertaken. Those listed above were chosen from

a preliminary investigation into common methods of time series storage in a GIS, as well as

from peer recommendation.

 41

3.1 Selection Criteria of the Time Series Storage Method

In this chapter, several time series storage methods are evaluated in order to determine which

method would be best suited for implementation in the new data model. The time series

storage methods were evaluated based on the following requirements:

 The time series storage method chosen needed to be compatible with the geodatabase,

with preference to a method that was able to be stored within a Microsoft Access

database, thereby allowing for a single collective database, when considering the other

data to be included in the project;

 The time series method chosen was required to record the Station ID of the associated

time series, in order to be able to define the original location where the time series was

recorded, by relating it to a feature in GIS;

 The method of time series storage needed to be able to store discrete and continuous

data from observations, or that generated by simulations that could be used for

hydrological analyses and modelling;

 The precision in the storage of time series data at a minimum needed to enable storage

of a large values (up to 999 999 999), including a single decimal point, while a method

which could store greater accuracies of up to 10 decimal points would be beneficial;

 The potential storage of data quality flags associated with a particular set of records;

and

 The method of time series storage needed to have efficient data storage since time

series datasets are often voluminous.

The storage space efficiency (disk space used) was one of the main factors considered when

comparing the different time series storage methods. This was important, since from early in

the study it was noted that database sizes could quickly exceed 2GB. This 2GB limit is a

constraining factor in that it is the maximum file size of the FAT16 (File Allocation Table).

A file system is a method of storing and organising computer files, and FAT16 is a popular

file system in that it supports all versions of Microsoft Windows operating system, DOS

(Disk Operating System), and some UNIX operating systems. Other file systems such as

FAT32 and NTFS are more limited by the operating systems with which they can be used.

The 2GB limit is also applicable to the Microsoft Access RDBMS which has been designed to

limit its database size to the FAT16 limit of 2GB (Microsoft, 2007).

 42

Other factors in the choice of time series storage method included ease of use and the

potential cost of purchasing software or rights for the implementation of the chosen method.

The time it took to import and export the time series data into the various formats was not

evaluated as it is not possible to adequately measure, in that it requires the quantification of

the time it takes to run through the tasks involved in the import and export of data into each of

the time series storage methods. Thus, it is not only a record of computational time, but also

the physical time it takes to setup these processes. With added familiarity and more efficient

computation (in the form of tailored programming code), a marked difference in the time it

takes to import or export data may be seen for a particular time series storage method.

3.2 Data Used in the Evaluation of Time Series Storage Methods

South Africa, Lesotho and Swaziland have been delineated into 1 946 Quaternary Catchments

that act as the smallest spatial unit of division for the region’s catchments. A database of

historical climate data, forming part of the Quaternary Catchments Database, was selected as

the source of the time series data for the evaluation of the selected time series storage

methods. The database would also be used in the implementation phase of this study,

reviewed in Chapter 5. This database (Hallows et al., 2004; Schulze et al., 2005; Schulze et

al., 2006) was developed over the past 10 years by the School of Bioresources Engineering

and Environmental Hydrology (BEEH) at the University of KwaZulu-Natal, for use with,

inter alia, the ACRU agrohydrological simulation model (Schulze, 1995). The QCDB

comprises daily time series data, and includes rainfall and maximum and minimum

temperature. The time series data were originally stored in text files in the ACRU composite

format (Smithers et al., 1995) where one text file was used to store the time series data for

each of the 1 946 Quaternary Catchments. These composite files cater for a wide selection of

daily input data and have a fixed file format. Each text file was approximately 657 KB in size,

resulting in a total dataset size of roughly 1 280 MB. Every file had a total of 18 262 lines,

representing a complete discrete record of 50 years from 01/01/1950 to 31/12/1999.

A sample of an ACRU composite format time series file is shown in Figure 3.1, while Table

3.1 provides a description of this format. A problem with the original format of storage was

the large amount of data replication. This was as a result of there being one historical climate

file for each of the region’s Quaternary Catchments, and since rainfall data were unique to

 43

1 244 rainfall stations used in the 1 946 Quaternary Catchments, the rainfall time series data

were duplicated in some of the Quaternary Catchments climate files. Temperature data on the

other hand, were specific to each of the Quaternary Catchments, and therefore no data

replication occurred.

0674100W19990727 0.0 23.6 7.7

0674100W19990728 0.0 23.2 6.2

0674100W19990729 0.0 24.6 8.0

0674100W19990730 0.0 26.0 8.9

0674100W19990731 0.0P 26.6 8.7

0674100W19990801 0.0 28.3 9.9

0674100W19990802 0.0 29.5 9.7

Figure 3.1 Sample from an ACRU composite format time series file

Table 3.1 Description of the format of an ACRU composite file (Smithers et al., 1995)

Characters Description

1 – 8 Specifies the ID of the monitoring stations

9 – 16 Daily date stamp of the record

17 – 21 Specifies the rainfall amount in mm/day

22 A quality code

23 – 27 Maximum temperature in degrees Celsius

28 A quality code

29 – 33 Minimum temperature in degrees Celsius

34 A quality code

For the purpose of comparing the various methods of time series storage that were selected, it

was decided that historical climate data from 500 Quaternary Catchments would be used as a

sample of the complete historical climate files database. The exclusion of approximately

three quarters of the remainder of the database was done in order to fall within the 2GB limit

of Microsoft Access, and speed import and export of data. A quality code was included in the

composite format that represents the status of the recorded time series data, such that in the

case of rainfall data, missing or incorrect values have been synthetically derived and infilled

in order to improve the integrity of the time series. The quality code was excluded, however,

from the evaluations of time series storage methods, since the quality code was not

continuous and was incompatible with some of the methods that were to be evaluated. The

 44

dataset size of the selected ACRU composite files, including rainfall and temperature data,

was 329 MB.

3.2 Relational Database Tables

Two approaches of storing the time series in a relational database tables were investigated.

The first used simple database tables whereby data was split into two tables; one for

temperature and one for rainfall, with Station IDs and dates being recorded for each record in

both tables. The second approach utilised a single dynamic database table in a database, in

which all the time series data was stored. A second table was then used to capture attribute

data, including the Station ID, and the relative period of record of the time series.

3.3.1 Simple database tables

The purpose of the first of the two approaches was to import the ACRU composite files into a

relational database with two tables, one for rainfall data and another for temperature data.

The reason for the utilisation of two separate tables was to maintain the naming conventions

used in the original ACRU composite files, since rainfall data for a particular Quaternary

Catchment was uniquely identified by an internal station name held within the ACRU

composite file, while temperature data for a Quaternary Catchment was uniquely identified by

the external file name of the associated ACRU composite file. Although possible to produce,

the use of a single database table for the storage of both rainfall and temperature data, would

have resulted in the replication of rainfall data, had the complete historical climate dataset

been used. As a result of the aforementioned replication of rainfall data in some of the ACRU

composite files, it was decided to avoid unnecessary complication in subsequent data

dissemination, by storing the rainfall and temperature data separately. The creation of simple

database tables would also allow for a new option of time series storage to be researched, as

well as providing a necessary link in the application of the Arc Hydro time series storage

method. Microsoft Access was selected as the RDBMS in which the two tables (for

temperature and rainfall) would be created and populated. The decision to use this particular

RDBMS was its availability, as well as its suitability in terms of the geodatabase. Thus, two

tables were created in the RDBMS with attribute fields for station name and time stamp, as

shown by Tables 3.2 and 3.3. For the temperature database, additional fields for daily

maximum and minimum temperature were added, while the rainfall database included a field

 45

for daily rainfall. Both database table values for temperature and rainfall were stored as

single data types. The relevant Microsoft Access data types are listed in Table 3.4.

Table 3.2 An example of the simple table used to store rainfall data

Field Description Data Type Example

ID A unique number generated automatically Auto Number 180

StationName Stores the station name Text 0087635W

Time_Stamp Used to record the date of the record Date/Time 1950/07/01

Rain Daily total rainfall amounts Number

(Single)

4.6

Table 3.3 An example of the simple table used to store temperature data

Field Description Data Type Example

ID A unique number generated automatically Auto Number 180

StationName Stores the station name Number

(Long Integer)

233

Time_Stamp Used to record the date of the record

Date/Time 1950/07/01

MaxTemp Daily maximum temperature records Number

(Single)

24.0

MinTemp Daily minimum temperature records

Number

(Single)

5.1

The final size of the database was 497 MB. This size, as with all the relational databases

created during this study, is not exactly accurate in presenting the true size of the time series

data stored by the database, as some database overhead is required for other information used

by Microsoft Access to maintain database integrity. This is illustrated by an empty Access

database which has a file size of 96 KB. Although easy to manage, with simple export and

import options, a problem with this time series storage method was the large size of the

database. There was some data replication since the time stamp of each record needed to be

captured twice, once for each of the two database tables. Additionally, each record in the

database required an ID as well as a value in the StationName field, which added to the

storage space required. An important point to note is that no database indexing was used for

any of the time series storage methods reviewed, since this would potentially result in an

incorrect comparison of disk space used by the various methods.

 46

Table 3.4 The various data types used in Microsoft Access tables, and their sizes

(Databasedev.co.uk, 2006)

Data Type Storage Size
Auto Number 4 bytes

Text Variable

Integer 2 bytes

Long Integer 4 bytes

Single 4 bytes

Double 8 bytes

Date/Time 8 bytes

3.3.2 Dynamic database table

The second approach made use of a slightly more complicated, but more efficient database

structure. The data held in the tables created in 3.3.1 above, was imported into a single field

of a new database table; TimeSeries_Data. Only two fields were present in this new table; an

autonumber (ID), and a time series value field (data). Rainfall, maximum and minimum

temperature values were therefore combined together into a single field, with no identifiers to

differentiate between the two variables stored within the table. This differentiation was,

however, achieved through the use of a second table which stored time series attribute

information. This TimeSeries_Attributes table recorded the position of a particular time

series in the TimeSeries_Data table, by capturing the start record and end record for a

particular time series, along with the StationName, and TSType (rainfall, maximum or

minimum temperature). The number of records, start date and end date for each time series

were also recorded. Thus, it was possible to store the time series effectively as it had a fixed

interval with a known start, end date and number of records. This approach draws on the

method used by SPATSIM in Section 3.5 below, in that it subdivides time series data into

time series data values, and supporting attribute information. Tables 3.5 and 3.6 define the

structure of the tables.

The final size of the database was 220 MB. The advantage of using an efficient time series

storage method is demonstrated by this time series storage method having halved the size of

the database described in Section 3.3.1. This reduction in size was due to the absence of

unnecessary data replication. A disadvantage of this storage method is that due to the large

amount of data stored consecutively in the TimeSeries_Data table, extra care needed to be

taken to accurately record the time series attribute information, since date values are not

 47

recorded for each data value. This time series storage method has the limitation of only being

suitable for fixed interval time series.

Table 3.5 An example of the TimeSeries_Attributes table used to store attribute time

series information.

Field Description Data Type Example

ID A unique number generated automatically Auto Number 315

StationName Stores the station name related to the raingauge

or temperature recording station

Number

(Long Integer)

0087635W

TSType Records the type of time series data being stored.

Text Rainfall

Start Date Date at which the time series starts Date/Time 1950/01/01

End Date Date at which the time series ends Date/Time 1999/12/31

No. of Records Number of records contained in the time series Number

(Long Integer)

18262

Start_Record ID of the record in the Time Series table at

which the time series for a particular TS_Type

and StationName starts

Number

(Long Integer)

219144

End_Record ID of the record in the Time Series table at

which the time series for a particular TS_Type

and StationName ends

Number

(Long Integer)

237406

Table 3.6 An example of the TimeSeries_Data table used for the storage of time series

data.

Field Description Data Type Example

ID A unique number generated automatically Auto Number 913100

Data Value of a single record in the time series Number

(Single)

4.6

3.4 Arc Hydro Time Series

A brief summary of the Arc Hydro data model’s time series component was provided in

Section 2.4. The purpose of including time series data in the Arc Hydro data model is not

only to build a complete hydrological data model, but also to create a data model that is

accessible to water resource models that operate independently of a GIS. Integration of these

models with GIS can be addressed by knowing how the time series data are stored and by

knowing the format of the hydrological model input files.

Time series data that are directly stored in an Arc Hydro geodatabase are represented in a

table known as a Time Series Object Class. The time series data in an Arc Hydro geodatabase

are essentially an instance of a relational database table. Four particular fields are required for

 48

the storage of time series data in the Time Series Object Class, namely FeatureID, TSType,

TSDateTime and TSValue, as indicated by Figure 3.2. Maidment (2002) further points out

that the structure of time series data storage in Arc Hydro is such that all the time series data

are stored in one database table, regardless of its feature type (such as a rainfall monitoring

point or gauging weir) and the type of data stored in it (rainfall or streamflow respectively).

Figure 3.2 Three dimensions of the TimeSeries object class (Maidment, 2002)

In Arc Hydro, the Time Series Object Class manages the association between a spatial feature

and its multiple time series measurement attributes. Thus, when considering Figure 3.2, it is

possible that a table holding time series data may have many recorded values for the same

FeatureID, TSType or even TSDateTime when viewed individually. However, when all three

measurement attributes are considered, only one value is possible. Figure 3.3 shows the

specific model structure for time series in Arc Hydro. In this figure, table TimeSeries is

treated as a non-spatial table of records, with a FeatureID field that links to the associated

feature in a separate feature class MonitoringPoints, as in Figure 2.6. This FeatureID has a

cardinality of one-to-many and means that one feature (in feature class MonitoringPoints) can

be linked to any number of time series objects (in the Time Series table). A second database

table important to the Arc Hydro time series storage method is that of TSType. This table is in

turn, linked to the TSType field in the TimeSeries object class and provides attribute

information particular to the associated record. The TSType table in Figure 3.3 provides

details on the attributes recorded (Maidment, 2002).

 49

 Figure 3.3 The Arc Hydro data model for storing time series (ESRI, 2003b)

 50

A database founded on the Arc Hydro data model’s Time Series object class was created in

Microsoft Access. The previously created simple database tables were used as the data source

for this process. The results obtained from the Arc Hydro time series database produced a

significantly larger database size of 802 MB when compared to the simple database table

method. This large database size is as a result of a table record being created for each

individual time series value (such as maximum temperature), while the simple database table

method stores maximum and minimum temperature as a data pair, in the same record. Thus

there are twice the number of temperature records in the Arc Hydro time series table as there

are in the simple database table. In the case of the Arc Hydro time series storage method,

additional disk space is being used for the capturing of the associated TSDateTime, TSType

and FeatureID information. Although the Arc Hydro time series database used the single data

type for storage of its values, a second Arc Hydro database was created using the double data

type. This second table was created because the dfs0 format method, discussed in Section 3.5,

required the use of an Arc Hydro database with time series values stored as doubles, for future

importing purposes. The final size for this second Arc Hydro database using a double data

type was 941 MB. The Arc Hydro method nonetheless provides a structured and clear

method by which to store time series data.

3.5 SPATSIM Time Series Data Table

The Spatial And Time Series Information Modelling (SPATSIM) software package is

described by IWR (2004) as an integrated hydrology and water resources information

management modelling system. SPATSIM was developed by the Institute for Water

Research (IWR) at Rhodes University, and is based on a previous hydrological model

application system called HYMAS, which was developed by IWR during the late 1980s and

early 1990s. Although proving successful for applying a variety of hydrological and water

resource models, HYMAS had some major disadvantages, mainly in regard to its methods of

information storage, and its lack of a spatial reference component. A large part of the new

system design in SPATSIM was inspired by the approach adopted by the Centre for Ecology

and Hydrology at Wallingford, UK (Hughes and Forsyth, 2002).

The four main components in the design of SPATSIM are the spatial interface, the main

database structure, the internal utilities and the generic approach to accessing external utilities

and models. SPATSIM’s spatial interface is realised through ESRI’s MapObjects, with

 51

shapefiles accounting for most of the spatial information. Additional attribute information

contained by the shapefiles are not used in the original format, but are rather transferred to a

SPATSIM database. This is as a result of the need for consistency in data types, as well as

the inability for shapefiles to store time series data (Hughes and Forsyth, 2002).

The main database structure of SPATSIM is shown in Figure 3.4 and consists of shapefile

tables, four data dictionary tables and attribute data tables used to store attribute data

associated with each spatial element (point, line or polygon) in a shapefile (Hughes and

Forsyth, 2002). Each feature class is stored in an individual shapefile. The first of the data

dictionaries supplies a list of features, which provide a link to the spatial data stored in the

shapefiles. The second data dictionary uniquely associates attributes with a feature defined in

data dictionary 1, while the third data dictionary provides the link between the list of

attributes in data dictionary 2 and the database attribute data tables in which the attribute data

are stored. The fourth data dictionary links the attribute data table codes from data dictionary

3 with the unique record IDs in the shapefiles.

Figure 3.4 Structure of the SPATSIM modelling system (Clark, 2005)

 52

There are eight attribute type tables to account for the storage of data types commonly used in

water resource modelling. These include the following (Hughes and Forsyth, 2002):

 Text;

 Integer;

 Real for storing floating point values;

 Bitmap for storing images or videos;

 Array (data matrices);

 Memo for holding any metadata;

 Link for creating an association between an attribute and a different feature; and

 Time Series –for storage of SPATSIM’s format of time series.

SPATSIM uses a specific format to try and maximise the efficiency of time series storage and

thereby minimise the amount of disk space required. This is achieved through the

incorporation of a number of fields in the Time Series attribute data table that are used in an

attempt to prevent any unnecessary replication of data as shown in the time series data object

in Figure 3.4. A description of each of the fields in a time series attribute data table in

SPATSIM is provided in Table 3.7. The actual time series (observed data or generated

values) for each time series of at particular location and each type of data (such as rainfall or

temperature), are stored within a Binary Large Object (BLOB) in the Data field, as a single

record in a time series database table. When the time series data being stored have a regular

interval, the values are stored in the BLOB as consecutive floating point decimal numbers

represented using 4 bytes. Thus through the interpretation of the start and end date/time, and

the number of records, it is possible to reconstruct a table containing time and value pairs.

Other information pertinent to a time series can be inferred from the values contained in the

attribute fields, such as the units of measure, missing date code and metadata about the time

series. When the time series has an irregular interval of recording, an additional date/time

value is stored for each data value in the BLOB.

The time series storage method of SPATSIM was replicated in a Microsoft Access database.

This required that a table be created in Microsoft Access with the fields as listed in Table 3.7.

For the creation of the SPATSIM database, each of the maximum temperature, minimum

temperature and rainfall values were captured in separate BLOBs in the Data field of the

table. No other data other than the actual recorded values of these variables were present in

 53

the BLOBs. This was because the imported time series data had a regular interval and thus no

time stamp was required to be recorded, as this could be inferred through the other time series

attribute data table fields. The SPATSIM time series storage method does, however, allow

for the inclusion of time stamps associated with discrete TS data.

Table 3.7 The format of the SPATSIM time series data table when used in Microsoft

 Access (Hughes and Forsyth, 2002)

Field Description Data

Type

Example

RECID Table record field of data dictionary 4 Auto

Number

66

GeogID Up to 80 character description of the location of the

time series data

Text 0087635W

DataID Up to 80 character description of the type of data

stored

Text Rainfall

Area Catchment area if required (km
2
)

Number

(Single)

3451.85

Data Obj. Identifies regular or irregular time step of time series

data

Number

(Integer)

0

Time Units Units of time data; 1=minutes; 2=hours; 3=days;

4=months; 5=years

Number

(Integer)

3

Time Int. Time interval (integer) when the data regular time

step

Number

(Integer)

1

Time Int.

Type

Time interval type when the data object type = 1.

Intervals of recording or cumulative.

Number

(Integer)

0

Var. Type Variable type of the time series data

E.g. 1=length, 2=area

Number

(Integer)

1

Var. Unit Variable units type of the time series data. 1=Litres,

2=m
3
, etc.

Number

(Integer)

5

MD Code The code to be used to recognise missing data Number

(Single)

-9999

Scale A field used to scale the data to ensure that it

corresponds to the units specified in Var. Unit

Number

(Single)

0

Start Date Start date of the time series data Date/Time 1950/01/01

Start Time Start time of the time series data Date/Time 12:00:00 PM

End Date End date of the time series data Date/Time 1999/12/31

End Time End time of the time series data Date/Time 12:00:00 PM

No. Records Number of records in the time series data

Number

(Integer)

18262

Data BLOB of the time series values OLE

Object

Long Binary Data

The use of the SPATSIM time series storage method resulted in a database size of 111 MB, as

a result of the time series values in the BLOB being stored as single data types. This database

contained no data replication and maximised the database efficiency by using a relatively

small amount of disk space. A refinement of this time series storage method was evaluated by

creating a new database using an integer data type for the temperature and rainfall values, in

 54

place of the original single data type. This resulted in database size of 53 MB, approximately

half of the original. This was attributed to the fact that an integer data type value has a size of

2 bytes, whereas a single data type is 4 bytes. In order to preserve the integrity of the

database, the original climate values were multiplied by a factor of 10, thereby removing the

previously necessary decimal place, since there was a maximum of one decimal place for all

the original climate values. This change was captured by the Scale field in the database in

order to allow for the necessary alterations to be made when extracting the time series data.

It should be noted that the conversion of single data type into integer data types is also

possible for all of the other time series storage methods described in this chapter. This

conversion was not done for the other time series storage methods, as it would have resulted

in duplication of datasets, with little change in the manner of storage. It was, however,

implemented in the SPATSIM database since it was an option inherent to this time series

storage method, and allowed for the benefits of the conversion to be investigated.

A disadvantage of saving data in integer form, however, is that although it is appropriate for

the storage of rainfall and temperature data used for evaluation purposes, it is not suitable for

time series data requiring more precision. Consequnetly, it is not possible to accurately store

large data values of over 32 768 or data values with numerous decimal points using a 2-byte

integer.

The SPATSIM time series storage method resulted in a small database, which required

specific Visual Basic code in order to facilitate the importing of time series data from the

simple database tables into each BLOB. This is because the data stored in the BLOB is not

stored in a user readable form, and requires that it first be exported into a secondary format

before it can be reviewed or used.

3.6 DHI’s dfs0 Format

Developed by the Danish Hydrological Institute (DHI), the data file system (dfs) format is a

proprietary format developed specifically for the storage of geographic data, including time

series data. The dfs format is a general file format used by DHI, and as such has a structure

generic enough to support all data types required by DHI's suite of models. The dfs format

can be subdivided according to the number of spatial axes involved. Thus, where there is no

 55

spatial axis, a file suffix of dfs+0 would be given, while where there is one spatial axis a

suffix of dfs+1 would be required, and so on, with a final declination of dfs+U being given to

data stored as an unstructured grid. Time series points would therefore have the file extension

dfs0, lines would be dfs1, grids would be dfs2, and 3-D grids would be given the extension

dfs3. There is, however, no limitation to the types of data that could be stored within a single

dfs file, and both time series and gridded data can be found together in the same dfs file

(Bech, 2005).

The general file structure of the dfs format is shown in Figure 3.5 and is comprised of four main

components. The first component of the file is that of the necessary identification tags, and

classifies the type of data stored with regards to it having a combination of a regular or irregular

time and spatial axes. The second component is the header, which provides a list of items in the

file and acts like a table of contents. The header itself is further divided into three parts made up

of Global Parameters, Primary Axis and Item Description.

The Global Parameters part of the header contains basic information required to be able to read

and interpret the data correctly. These parameters are static information that applies to the entire

file. They include information about delete values, floating point formats, topography and

geographic information. The Primary Axis part of the header specifies properties of the time

series, such as the number of intervals, the length of intervals, the units and whether the time

series has a time stamp with a regular interval or not. In the case that the time series does not

have a regular interval, then each step in data block (which stores the actual time series values)

will have an initial primary axis value, such that its time stamp can be recorded. The final part of

the header is that of the Item Description, which although similar to the primary axis contains

additional information such as a textual description of the data. The third component is the static

vectors or static items, and is used to store data which does not vary in time, such as elevation

data used as input for DHI’s MIKE 21 model (DHI, 2006). The last component is the data block

which consists of N number of steps (N can be found in the Primary Axis part of the header)

which contains the actual recorded time series data. Different subsections in the file structure,

indicated by a small grey rectangle in Figure 3.5, are used to record the position in the binary file

of each subsection. A subsequent part of the dfs format is that of the binary implementation of

data storage, whereby imported data are recorded. Within the dfs format, a number of different

variable types are supported, as shown in Table 3.8 (Bech, 2005).

 56

 Header

 Data Block

Figure 3.5 The file structure of the dfs format (Bech, 2005)

Table 3.8 The various data types used in the dfs format, and their sizes (Bech, 2005)

Data Type Storage Size

Float 4 bytes

Double 8 bytes

Character 1 byte

Integer 4 bytes

Unsigned

Integer

4 bytes

There were two possible procedures whereby the data could be exported into the dfs0 format,

either through the use of a supplied Microsoft Excel spreadsheet with a built in macro, or

through the Arc Hydro database. For this study it was decided to use the Arc Hydro method,

as Microsoft Excel was limited by the amount of data it could store. In order to proceed with

the Arc Hydro method of importing data into the dfs0 format, it was necessary to use the Arc

Hydro time series database using doubles, as detailed in Section 3.3, as this was a prerequisite

to importing the time series data into the dfs0 format. It was then necessary to use DHI’s

Temporal Analyst software, which is an extension of ESRI’s ArcMap software, as shown in

Figure 3.6. The time series data in the Arc Hydro database was imported into Temporal

Analyst and subsequently exported into the dfs0 format.

The results of the dfs0 format of time series storage were surprising when compared to the

Arc Hydro database from which the data were imported. The dfs0 format resulted in a

 57

database size of 357 MB compared with 941 MB of the Arc Hydro time series storage method

when using a double data type. The dfs0 format was also highly compatible with Temporal

Analyst as a result of its supported format, and thus could take advantage of the tools

provided by this ArcMap extension. This method was a particularly difficult one to

implement when compared to the other time series storage methods researched, owing to the

complications involved in creating a suitable database from which to import data. Since a

particular format for the Arc Hydro Time Series database was required, unnecessary space

was used by importing the time series data as a double data type, and a smaller database

would have resulted had the use of a single data type been possible. An additional factor to

consider for the dfs0 time series storage method is the purchase cost of the software.

Figure 3.6 A screen capture of Temporal Analyst’s integration with ArcMap (Arctur and

Zeiler, 2004)

 58

3.7 Comparison of Time Series Storage Methods

The criteria used to evaluate the time series storage methods investigated are listed in Section

3.1. All the time series storage methods investigated were able to store the Station ID of the

associated time series, however, it was the original ACRU composite file format that was

least compatible with the geodatabase, and would have required the creation of specific visual

basic code to enable its integration. The original historical climate dataset made up of ACRU

composite files had a simple format of time series storage that found its main strength in the

fact that it was already compatible with the particular model for which it was created. In

terms of further use, ACRU composite file storage method is not suitable for use in other

hydrological models and requires processing to convert the data to other storage formats. In

addition, this format results in a large amount of data replication when the entire database is

considered, as it duplicates rainfall data in some of the composite files. Finally, a large

amount of disk space is required to store time series data in text files such as these. Figure 3.7

illustrates the amount of disk space used by each of the time series storage methods

investigated.

329

497

220

802

941

111
53

357

0

200

400

600

800

1000

A
C

R
U

 C
om

po
si

te

Fi
le

s

S
im

pl
e

D
at

ab
as

e

Ta
bl

e

D
yn

am
ic

D
at

ab
as

e
Ta

bl
e

A
rc

 H
yd

ro
 (s

in
gl

e)

A
rc

 H
yd

ro

(d
ou

bl
e)

S
P

A
TS

IM
 (s

in
gl

e)

S
P

A
TS

IM
 (i

nt
eg

er
)

D
H

I's
 d

fs
0

fo
rm

at

D
is

k
S

p
ac

e
U

se
d

 (
M

B
)

Figure 3.7 Comparison of the time series storage methods investigated

 59

The second time series storage method researched was that of relational database tables

implemented in Microsoft Access. Two approaches were investigated. The first was the

storage of time series data in simple database tables. This storage method proved to be a

valuable format for the exportation of time series data to the other storage methods researched

and, additionally, was relatively easy to manage. The main disadvantage with this format,

however, was that it still resulted in a considerable database size including significant data

replication. The use of a dynamic table of time series data greatly reduced data replication of

the simple database. This method produced an efficient database, with the overall database

size being small, at approximately half the size of the simple database tables. This method,

however, was only suitable for the storage of a continuous time series, as the timestamp of the

time series value was not recorded. Discrete time series data could therefore not be stored

using the method.

The third option of time series storage researched was the Arc Hydro time series database.

Although the database had a logical structure, the final database proved unsuitable as a result

of its large database size. This database size was a result of Arc Hydro using a single table

record for each independent time series observation as well as for each climatic variable of

rainfall and maximum and minimum temperature, which all required a TSDateTime, TSType

and FeatureID value. The structure of the time series component of the Arc Hydro data

model was, however, effective in that the attributes of each time series were only recorded

once in a TSType table. This storage of attribute data is significant as it captures information

about the time series data being stored, such as the origin of the data and its units of measure.

The Arc Hydro time series storage method was thereby similar to that of the SPATSIM

method in terms of the recording of attribute information.

SPATSIM created a database that had an efficient and logical design which allowed for an

extensible database structure and little data replication. Moreover, the database size, when

using either the option of a single or integer data type, was the smallest of the time series

storage methods researched. The primary disadvantages of this method was that in order to

view a time series, it was first necessary to extract the data from the BLOB in which it is

stored, and the method was one of the most difficult to implement. The SPATSIM time

series storage method could, however, benefit from the use of a table similar to the TSType

table in the Arc Hydro, as it would allow for reduced data replication with respect to attribute

information.

 60

The final time series storage method researched was that of DHI’s dfs0 format. This format

produced good results, considering it used time series values stored as doubles for its input.

The dfs0 format was also highly compatible with Temporal Analyst and other software

distributed by DHI, and was the only option to include immediate visualisation and simple

analysis of time series data, as illustrated by Figure 3.6. This time series storage method was

the only method evaluated which would not allow for the recording of data quality flags.

Another disadvantage of this format was the indirect approach required to place the time

series data into the dfs0 format. Another disadvantage was the high purchase cost of the

Temporal Analyst software, which is required for the importing process. A final concern of

this format was that, since it was a proprietary format, there was little documentation

available to describe the format of the dfs0 files.

In summary (with reference to the evaluation criteria), the ACRU composite file format was

not compatible with the geodatabase without the addition of external code. The simple

database table produced a database of a substantial size, while the composite file format did

not allow for the storage of discrete time series data. Both the single and double data type

implementation of the Arc Hydro method produced large databases, making them unsuitable

for use in the project, while DHI’s dfs0 format was unable to store data quality flags.

Based on the evaluation into time series storage methods, it was decided that the SPATSIM

method was the most suitable for use in the remainder of this study, as a result of its excellent

disk space efficiency and the logical design of the database structure, while Arc Hydro

presented design elements that could potentially improve the final implementation of a time

series storage method in this study.

This concluded the evaluation of the various time series storage methods investigated, and

thus the following chapter will focus on the design of a geographic data model for the storage

of data related to hydrological modelling.

 61

4. DATA MODEL DESIGN

The objective of this chapter is to describe how a new hydrological data model was designed

using the concepts and results described in Chapters 2 and 3 of this document. The emphasis

of the design was on the creation of a new data model that enabled the storage of spatio-

temporal data used for the running of hydrological models. Thus the database design needed

to remain generic enough to allow for the inclusion of data from any hydrological models that

may potentially be used. The geodatabase provides an existing platform on which to build a

new data model, but is not suitable for the storage of extensive attribute data in an extensible

manner. Likewise, Arc Hydro provides an established data model for the recording of data

relating to hydrological features, however, is limited by inextensibility. Both the geodatabase

and Arc Hydro lack the ability to store voluminous time series data in an efficient manner.

4.1 Design Criteria

With the geodatabase and Arc Hydro data model being used to meet the spatial and

hydrological feature requirements, the focus of the project turned to the development of a new

data model that would allow the integration of the aforementioned data models. Thus, a new

data model specifically designed for the storage of hydrological attribute data was

investigated. From the outset, it was decided that the new data model being developed would

adhere to two fundamental criteria. The first was that the data model would have a generic

design suitable for storage of data for use by any hydrological model, by making provision for

the data types used in hydrological modelling, such as single, text and boolean. Secondly, the

data model needed to be extensible, in order that the inclusion of new hydrological variables

would not require changes to the structure of the data model. The new data model would also

be required to be implemented within a suitable RDBMS supported by the geodatabase.

Apart from this, a number of more detailed stipulations had to be met. As mentioned in the

Introduction, the new data model would need to:

 Store attributes for spatial features and non-spatial objects;

 Be able to include both input and output variables of the related hydrological models;

 Store a range of data types suitable for all hydrological models;

 Store units of measure for attributes where relevant; and

 Minimise the amount of data replication to maximise database storage efficiency.

 62

The new data model was also required to be able to integrate with the ArcHydro data model

as it enabled the modelling of connectivity of rivers and catchments, which would support

functionality such as flow routing and network tracing. This would enable a user to perform

tasks, such as finding connected or upstream catchments from a particular point on a river. It

would also be necessary for there to be a geographic representation for the many hydrological

features and their associated data that might be stored in an implemented database, such as the

location of gauges, catchment outlets and abstraction points. Combined with this, would be

the desired ability to be able to model the relationship between features (topology). This is

illustrated by the idea that a Quaternary Catchment is part of an encompassing Tertiary,

Secondary and thus Primary Catchment, as delineated in South Africa.

A final part of the design was the implementation of a time series storage method. Thus the

outcome of Chapter 3 was important in the development of a time series component to the

new data model that could store both regular and irregular interval time series data in an

efficient manner, whilst remaining compatible with the rest of the data model.

The above design criteria were solved through the research into geographic data models,

database models, the geodatabase, Arc Hydro, and time series, as described through the

course of this dissertation. Several geographic data models were reviewed in Chapter 2, and

provided insight into the advantages available through the use of the geodatabase. These

included the advances in feature representation as illustrated by the geometric network, as

well as the ability to store multiple geographic representations in a single database. Thus it

was decided to use the geodatabase as the foundational geographic data model for this study,

and thereby benefit from the object-relational database upon which it was built.

The Arc Hydro data model has the potential to be used in its capacity to model surface

hydrology and hydrography, and provided a hydrological context to the development of the

new data model. Arc Hydro would be included in order to model the many hydrological

features and relationships that might be required, although the new data model under

development would be designed to operate independently of Arc Hydro if considered

necessary. Arc Hydro further provided a benefit in the form of a set of tools enabling the

query and analysis of hydrologically related geographic data. Based on the evaluation of time

series storage discussed in Chapter 3, it was decided to use the SPATSIM method of storing

time series data. In addition, the SPATSIM data structure could be combined with

 63

characteristics of the Arc Hydro time series structure, in order to improve efficiency and make

the time series database more compatible with the Arc Hydro data model.

The goal of the design was thus the creation of a generic and extensible data model, within the

confines of the geodatabase data model, which was to be suitable for the storage of data

required for input into hydrological models. The extensible prerequisite for the design is

restrictive when considering conventional geodatabase design, in which attribute data for each

feature class is stored within a unique relational table. This is because the inclusion of

additional spatial data in a geodatabase requires that a new feature class and table be created

for the spatial data and its associated attribute data. Furthermore, the addition of any new

attributes to an existing feature class requires the creation of a new field within the associated

attribute table, thereby altering the data model structure, and thus violating the prerequisite for

extensibility. Therefore the new data model would concentrate on the storage of attribute

data, and in turn would result in the development of a new data model, viz. an attribute data

model.

4.2 Working with the Geodatabase Data Model

The decision to work within the framework of ESRI’s geodatabase data model was the result

of numerous factors. First and foremost was the convenience of working with the

geodatabase itself, since it was an existing geographic data model that had the support of an

established developer of GIS software, and was also a widely used geographic data model.

Thus, one of the advantages is that the geodatabase data model and its related components

(such as the industry-specific data models like Arc Hydro, and the suite of GIS tools found in

ArcGIS) are under continual revision to meet the demands of their users. Another important

factor in the selection of the geodatabase was its foundation upon the object-relational

database model. The object-oriented manner in which the geodatabase is structured also

proved to be an influencing factor, in that it allows the new data model to take advantage of

the key characteristics seen in this emerging approach, in particular, the ability to create

relationships between tables that allows for the inheritance of qualities between tables.

 64

4.3 The Arc Hydro Data Model

The Arc Hydro data model covers many aspects of hydrological data storage and modelling,

and was selected as it was already an established hydrological data model for use with the

geodatabase, and was fully integrated into ArcGIS. Since it was to be a significant

component of this study, Arc Hydro’s data model structure was also explored. As it was built

upon the foundation of the geodatabase, the Arc Hydro data model used the object-relational

data model. The data model also provided insight into the way in which the geodatabase data

model managed geographic data, and thus provided clarity as to the necessary requirements of

the new data model under development, in order for it to be compatible with both Arc Hydro

and the geodatabase. Furthermore, ArcGIS provided a professional suite of GIS applications

and thus, by conforming to its spatial standards as in the manner in which it records feature

geometry, it would be possible to make use of its many tools.

To reiterate Section 2.4, the Arc Hydro data model is made up of drainage, network,

hydrography, channel and time series components. Each of these were considered as to how

the new data model would be able to interface with them, since it was preferable that minimal

alteration of the Arc Hydro data model take place, as that would interfere with Arc Hydro’s

tools and the data model’s functioning within ArcGIS. The primary element to take into

consideration for the design of the new data model was Arc Hydro’s HydroCode, as this

attribute provided a potential link between the data model under development, since it

distinguishes features from one another and provides a universal identifier for systems

external to Arc Hydro. Illustrations of the Arc Hydro data model used in this study are

provided in Figures 9.4 to 9.8 in the Appendix.

4.4 The Time Series Data Model

The storage of time series data was a critical part of the data model design, since the data

model would be required to store large time series datasets often used in hydrological

modelling. An important point to consider in the selection of a time series storage method

was whether the chosen method would meet the design criteria, and whether it would be

compatible with the remainder of the data model.

 65

In the case of the dfs0 format reviewed in Section 3.5, there was a strict configuration

governing its use. As a result, no alteration to the format could be made since it would

interfere with the functioning of Temporal Analyst (the ArcGIS extension used for the

importing of the dfs0 files). Furthermore, time series data stored in the dfs0 format would be

in files external to the main database, since it was not compatible with the relational database

model structure. Thus, if the dfs0 format were to be selected, some sort of link would need to

be established between the data model under development and the dfs0 files.

As concluded in Chapter 3, the SPATSIM time series storage method was noted for its

efficient storage of time series data with respect to the amount of disk space used, while the

Arc Hydro time series storage method provided a logical storage structure from which the

SPATSIM method could benefit. Both the SPATSIM and Arc Hydro time series storage

methods have an added advantage of being directly compatible with the data model being

developed, since they are both implemented within a relational database structure. A decision

was thus made to employ the SPATSIM time series storage method in the remainder of this

study, owing to its disk space efficiency.

Although the Arc Hydro method of time series was not chosen per se, it was decided that this

method of time series storage provided the potential to improve on the SPATSIM method.

This was possible through the use of Arc Hydro’s TSType table, because of its efficiency in

the recording of the attributes of each time series data. Since Arc Hydro provided a means by

which to reduced duplicate time series attribute information, both the SPATSIM time series

data model and Arc Hydro data model were combined. This was accomplished by including

the key fields from the SPATSIM data model into a Time Series table within the Arc Hydro

time series data model structure, as shown in Figure 4.1. The new time series data model

used the structure of the Arc Hydro time series data model as detailed in Section 3.4, and took

advantage of coded value domains. This enabled a simplification and reduction in the amount

of disk space required for the storage of time series attribute information detailing the origin

and format of the time series data. The integration of the SPATSTIM time series data model

enabled the inclusion of BLOBs which greatly reduced the storage space used. This design

provided an additional benefit in that the time series data model could now easily be

integrated with the rest of the Arc Hydro data model, because of its similar configuration to

the original time series data model of Arc Hydro.

 66

Figure 4.1 The combination of ArcHydro and SPATSIM methods of time series storage

(modified after ESRI, 2003b)

 67

4.5 Attribute Data Model Design

Concepts used in the design of the attribute data model were drawn from various sources.

One of the primary influences on the design of the data model came about from an

examination of the structure of the SPATSIM data model. Since the SPATSIM data model

was built upon a relational database structure, and had been developed with the storage of

spatial and time series data in mind, it offered many potential design elements that could be

used in the creation of the new data model. One particular feature was the grouping of

attribute data in SPATSIM into different attribute type tables, used for storage of data types

commonly used in water resource modelling, as indicated in Section 3.4. The other influences

on the design of the new attribute data model came from the evaluation of the time series data

model and the Arc Hydro data model. The design of the data model was an iterative process,

with a number of revisions being made before the final version was produced. The primary

purpose for the attribute data model design was to create an extensible data model for the

storage of hydrological data related to hydrological modelling. The data model therefore

needed to be able to manage a variety of data types. One of the goals of the data model

design was that there should be as little data replication as possible in order to increase

database efficiency and reduce the disk space required.

In order to make provision for the various attribute data types of the hydrological data

required for storage, a generic and extensible data model was designed. This data model

makes use of eight different data type tables in order to store the various data types used by

hydrological models, and provide a generic structure. These tables are, in turn, linked to two

reference tables that provide a context to the data they contain. Each attribute to be stored in

the data model is first recorded in the MTBL_AttributeType table, shown in Figure 4.2. This

table contains a single record for each attribute, and the descriptive data related to it

(including its description, units and default value). Thus in the case that additional attributes

are to be added, one would only need to include them in the MTBL_AttributeType table. This

table also serves to link each attribute with its particular data type table, through the use of the

DataTypeTable field. This information is then linked with the various data type tables used in

the attribute data model by using a table called MTBL_AttributeData. The

MTBL_AttributeData table serves as a hub that unites the various other tables used in the data

model. This connection is made possible by the creation of relationships between tables,

which are linked through common fields. Thus, by using the OBJECTID field of the

 68

MTBL_AttributeType table as the primary key, and the AttributeType field of

MTBL_AttributeData table as the foreign key, it is possible to determine which of the data

type tables correspond to the data held within the MTBL_AttributeData table. This is

necessary, since without this knowledge it would not be possible to distinguish the location of

the attribute data, as it would be unclear as to which data type table the relevant attribute data

were held in. Thus in the case of the OBJECTID field of the MTBL_AttributeType table, a

single record could relate to multiple records within the AttributeType field of the

MTBL_AttributeData table. The actual recorded variable data is contained in a number of

tables created for each of the possible data types, viz. Long Integer, Short Integer, Single,

Double, Text, Date and Boolean data tables as shown in Figure 4.2 and 4.3. This information

is then linked with the various data type tables used in the attribute data model by using the

MTBL_AttributeData table.

Thus, additional relationships were created that employed the OBJECTID field of the

particular data type table as the primary key, and the RecordInTable field of the

MTBL_AttributeData table as the foreign key. The knowledge of which data type table and

record in that table a particular hydrological attribute relates to, provides the means for the

extraction of any selected attribute. Finally, the hydrological attribute in question can be

linked to its original feature class (for example, Quaternary in Figure 4.2), through the

FeatureID field found in the MTBL_AttributeData table. Given that the geometric data are to

be stored within the Arc Hydro framework, the FeatureID can, in turn, be linked to the

HydroCode of the associated feature class. Figures 4.2 and 4.3 provide clarity on the

attribute data model’s structure.

Time series data were stored in a hybrid format of SPATSIM and Arc Hydro, as mentioned

previously, and illustrated in Figure 4.1. Its design, however, made it possible for the time

series data model to function independently of the rest of the Arc Hydro data model, since the

table could be linked to a separate feature class (such as Quaternary) via the FeatureID field

of the TimeSeries table, and the Feature ID of an associated feature class such as the

MonitoringPoints table in the Hydrography data model of Arc Hydro. At the same time,

however, it could still be used independently of the Arc Hydro data model, and thus act as a

ninth data type table in terms of the attribute data model, by using the time series data model’s

ObjectID as a primary key and the field RecordInTable within the MTBL_AttributeData table

as the foreign key.

 69

Figure 4.2 The structure of the attribute data model, Part 1

 70

Figure 4.3 The structure of the attribute data model, Part 2

 71

In the event that TIN and raster datasets were required for storage, they could be included

alongside the data model as independent classes. Thus they would appear in their original

format inside the geodatabase, and they would not interfere with the core model design and its

functioning. This has not been illustrated in this study, since TINs and raster conventionally

store only one attribute. Thus, storage of a single attribute within the attribute data model,

related to a single geographic dataset (of TIN or raster), although possible, would likely be

outweighed by the effort of conversion.

The design of the attribute data model creates a generic structure through the use of different

data type tables, while the use of a MTBL_AttributeType table explicitly for the recording of

attributes, allows for the addition of new hydrological variables to the data model without

altering its structure, thereby making it extensible. The data model structure also provides for

efficient storage of data as it minimises data replication by only recording attribute

information once. A simplification of Figures 4.1, 4.2 and 4.3, is shown in Figure 4.4 below.

The following chapter describes the implementation of the new data model design.

Figure 4.4. A database model (entity relational model) of the attribute data model

 72

5. IMPLEMENTATION OF THE DATA MODEL

Once the design of the attribute data model had been completed, the next phase was to test the

design by populating it with data, thereby creating a hydrological database. For this purpose,

the South African Quaternary Catchments Database (QCDB) (Schulze et al., 2005), to which

the ACRU agrohydrological modelling system (Schulze, 1995) is linked, was selected as a

suitable hydrological dataset containing a variety of attribute data types, including time series

data. The QCDB database has a simple structure from a spatial data perspective as it only

contains a single Quaternary Catchment feature class. Microsoft Access was chosen as the

RDBMS for the implementation of the data model, since it was readily available and

supported the geodatabase, as explained in Section 4.2, and had been used in the original time

series import process. The time series dataset for the QCDB, which had been investigated

earlier in Chapter 3, would be used. Other than the geometric data provided by the QCDB, it

would also be necessary to include additional geometric spatial data for use in completing the

hydrological database with respect to feature topology and flow routing. This would be

achieved through the population of Arc Hydro with the relevant feature datasets, including a

river network and rainfall stations. Upon completion of the data loading, it would be

necessary for tools to be developed in order to extract the necessary data from the database for

the generation of ACRU menus. In addition, a tool for the creation of thematic maps, using

data from the attribute data model, would be developed.

The goals for the implementation of the attribute data model are summarised in the following:

 Use the Arc Hydro data model for creation of feature classes for the geometric spatial

data, and for the modelling of flow routing and feature topology;

 Include relevant spatial data such as Quaternary Catchment boundaries and rainfall

station locations;

 Populate the data model with data from the QCDB (including time series);

 Be able to create thematic maps from data stored in the attribute data model, and

thereby support additional spatial querying; and

 Include an application for the extraction of Quaternary Catchments data into a format

suitable for the running of the ACRU model.

 73

5.1 Quaternary Catchments Database

ACRU is an agrohydrological modelling system used in the modelling of the natural and

anthropogenically influenced hydrological system (Schulze, 1995). The QCDB is a database

used to create default ACRU menus for each of Southern Africa’s 1 946 Quaternary

Catchments. Use of the QCDB allows one to run the ACRU model and thereby generate

various outputs, including streamflow peak discharge, groundwater recharge, sediment yield,

irrigation water supply/demand and /or crop yields. An initial investigation of the QCDB was

undertaken in order to determine its data storage requirements. This investigation revealed

that a total of 644 ACRU variables would be required to be stored as different attributes.

They consisted of numerical and textual values of varying precision and length, respectively.

These attributes were then identified as to which attribute data type table they would be stored

in. The 644 variables related to properties for each of South Africa’s 1 946 Quaternary

Catchments, including a hypothetical 1 947
th

 catchment (the ocean) used for flow routing in

the ACRU model. This made up a combined record set of 1 253 868 attribute values. Time

series data for the QCDB had already been used in the investigation done in Chapter 3, and

the complete time series dataset was prepared for import into the new database.

Since a single Quaternary Catchment is the representative container of spatial attribute data

for all 644 attributes in the QCDB, a significant degree of spatial averaging is assumed, since

the mean or modal values of spatially varying attributes such as soils characteristics are

assigned to each Quaternary Catchment. Thus, in the case of soils information, the QCDB

assumes average characteristics, despite soils typically not being of a uniform nature within

any one Quaternary Catchment. This averaging is, however, necessary in order to reduce the

complexity of modelling scenarios.

5.2 Design of an Implementation-Specific Data Model

For the purposes of this study only a portion of the Arc Hydro data model was required for

use, since the QCDB only required spatial data in the form of Quaternary Catchments and

monitoring point feature classes. Thus the channel component was excluded, while the

network, drainage, time series and a portion of the hydrography component were included in

revised formats. The channel component of the model was excluded since no channel data

was present in the QCDB, In addition, hydrography data were limited to the monitoring

 74

points represented by the rainfall stations, since this was the only hydrography data required

with regards to the QCDB, and therefore the remainder of feature classes in the hydrography

dataset could be omitted. In order to maximise detail, the figures showing the Arc Hydro data

model in this section only portray those parts of the individual components of Arc Hydro that

were used in this study. Figures 9.4 to 9.8 in the Appendix, provide a complete illustration of

the Arc Hydro data model.

The hydrography feature dataset was simplified, as illustrated in Figure 5.1, and included a

link between MonitoringPoint and the TimeSeries component, which had been altered as

described previously in Section 4. The Drainage feature dataset was modified slightly in

order to include the different levels of drainage features used in South Africa. This meant that

the basin, watershed and catchment polygon feature classes of the original Arc Hydro data

model were renamed to Primary, Secondary and Tertiary respectively. A forth drainage

feature class was then added in the form of Quaternary, as shown in Figure 5.2, and thus

would act as the representative feature class for the QCDB. Since temperature time series

data in the QCDB are associated with each of the Quaternary Catchments, a relationship was

created between the Quaternary and TimeSeries feature and object classes.

Figure 5.1 The portion of Arc Hydro’s hydrography feature data model used for this study

(modified after ESRI, 2003b)

 75

Figure 5.2 The customised drainage feature data model of Arc Hydro (modified after

ESRI, 2003b)

 76

The Arc Hydro data model assumes that related drainage feature classes are not necessarily

spatially coincident with one another. However, since catchment divisions in South Africa

are delineated by using their spatially coincident encompassing catchments, a number of

topological rules could be added to increase the data integrity of the new database. These

topological rules were defined in order to enforce data integrity, as shown in Figure 5.3, such

that:

 Quaternary Catchments tessellate Tertiary catchments;

 Tertiary catchments tessellate Secondary catchments;

 Secondary catchments tessellate Primary catchments;

 Catchments do not overlap; and

 Catchments have no gaps.

Figure 5.3 Topological rules of the drainage data model (modified after Arctur and Zeiler,

2004)

The Network dataset was the most utilised of the Arc Hydro model components in this study.

The reason for this was that it provided the necessary structure for storing the geometric

network data relating to Southern Africa’s river system enabled the Network dataset to model

the flow path between the Quaternary Catchments. Thus, although links between catchments

were recorded in the QCDB as to which catchment was downstream of another, the Network

feature dataset would make it possible to translate this into which rivers were upstream or

downstream of each other, and to provide knowledge as to the segment of river reach found in

each Quaternary Catchment. The Network dataset would also allow for the creation of a

simplified river network (schematic), which could be used in modelling flow between

Quaternary Catchments. Figure 5.4 shows the modified structure of the Network data model.

 77

Figure 5.4 Adapted Arc Hydro Network features data model (modified after ESRI, 2003b)

 78

5.3 Importing Geographic Data

A portion of the database population involved manipulation of related geographic datasets of

the QCDB. A simple Quaternary Catchments feature class was first included that provided

the polygon feature class for the QCDB, as well as the necessary drainage data for the Arc

Hydro drainage feature data model represented in Figure 5.2. Thus, through the relationship

between FeatureID in the MTBL_AttributeData table, and the HydroCode in the Quaternary

feature class, it would be possible to perform spatial analysis on any of the attribute data

stored in the attribute data model, as the two fields could be joined together, thereby providing

the spatial link to the attribute data model. A point feature class was included that provided a

spatial context for the rainfall time series data, and thus these rainfall monitoring stations were

represented by MonitoringPoints in Arc Hydro’s Hydrography dataset. Temperature time

series data were associated to each one of the 1 946 Quaternary Catchments in the related

feature class, through the HydroCode in the Quaternary feature class.

A river network was additionally required for potential flow routing and calculations

involving hydraulic length of river segments. Thus a river network was used in the form of

the Department of Water Affairs and Forestry’s (DWAF) Quaternary River coverage. This

coverage was first imported into a feature class, and was in turn simplified to include only

those river reaches that linked up individual Quaternary Catchments, as is illustrated in Figure

5.5. This was done since only a basic flow routing at Quaternary Catchment level was

required, and a simplification of the original river coverage thereby reduced complexity.

Once the simplified river network had been created, a geometric river network was generated

in ArcGIS using the original river network as input. This geometric network was then

manually edited in ArcGIS, and sinks in the network were defined, enabling flow direction to

be calculated. With flow direction determined, it was now possible (using Arc Hydro’s

toolset) to perform tracing tasks on the geometric network, illustrated by finding those rivers

connected to a particular reach, or the rivers (and by inference catchments) downstream of a

point. This would prove useful in modelling, especially modelling involving point and non-

point source pollution. Following the creation of a geometric network, a schematic network

was created using ArcHydro’s toolset. This was undertaken to further simplify river routing,

and thus provide the simplest instance of catchment connectivity, as shown in Figure 5.6. A

schematic network also enabled the representation of Quaternary Catchment flow routing, as

 79

conceptualised within the QCDB. This completed the spatial data requirements for the

implementation phase of the study.

Figure 5.5 A portion of the Quaternary Catchments geometric river network showing an

upstream trace

Figure 5.6 A schematic network of the Quaternary Catchments within the Thukela

Primary Catchment

 80

5.4 Importing Attribute Data

The importing of time series data into the attribute database was relatively simple, since the

required import process had already been developed in Chapter 3. The time series database

used was a combination of 1 244 unique rainfall station’s records, as well as maximum and

minimum temperature values for each of the 1 946 Quaternary Catchments, using the

historical climate dataset described in Section 3.1 as the source of the time series data.

Through the use of the previously developed import process, the entire climate database of

116 365 464 values was imported from its original ACRU composite format into a single

TimeSeries table, as illustrated in Figure 4.1. Thus the time series of daily rainfall, minimum

and maximum temperature for each station were recorded as individual records within the

TimeSeries table, while their attribute information was recorded in the TSType table.

It must be noted at this point that the one difference between the previous import process in

Chapter 3, and here, was that there was the requirement for the inclusion of time series data

quality flag values. These data quality flags had been excluded from the original investigation

into time series storage methods, since they were incompatible with some the dfs0 format.

Data quality flag values were changed from string to numeric values in order to simplify

importation, since numbers are easier to manage than text when considering SQL queries in a

relational database. An additional advantage of the storage of numerical data quality flag

values, was the reduction in disk space used. A lookup table matching the string flag values

to the corresponding numeric data quality flag values was simultaneously created, in order to

preserve the original string values for use during the subsequent extraction of time series data.

Static attribute data for each Quaternary Catchment in the QCDB were originally received in

the form of three files with a comma delimited CSV file format. These files were imported

into a temporary Microsoft Access table. An illustration of the format used is shown in

Figures 4.2 and 4.3. Thereafter each of the 644 ACRU variables that were present were

recorded in the MTBL_AttributeType table, along with the data type table its data would be

stored in, and if available, its description, units and default values. The various ACRU

variables data values were then carefully imported into their relevant data type tables, through

the use of SQL. Thus blocks of 1 947 values for each of the Quaternary Catchments

(including the ocean) were recorded in the attribute data model, for each ACRU variable.

Finally, the MTBL_AttributeData table was populated with the relevant data that would link

 81

up the other two tables of MTBL_AttributeType and the corresponding attribute data type

table. With regard to the QCDB, all attribute data were related to the Quaternary feature

class, and were recorded in the FeatureClass field of the MTBL_AttributeData table, while

the AttributeType field recorded the ACRU variable in the MTBL_AttributeType table with

which it corresponded. Finally, the RecordInTable field of the MTBL_AttributeData table

established the necessary link between the ACRU variables and their location in the relevant

attribute data type tables. Thus in order to extract a particular ACRU variable value, for a

specific Quaternary Catchment, it would be necessary to know the FeatureID of the

applicable Quaternary Catchment, the DataTypeTable it was stored in (and thus its

AttributeType) and the RecordInTable value.

5.5 Data Analysis and Extraction Tools

After population of the database had been completed it was necessary to add data extraction

capabilities, and thereby test whether the attribute data model functioned correctly. Two

types of data extraction were needed, viz. for spatial visualisation, querying and analysis

through ArcGIS, and then also for the creation of model input files for the ACRU model. The

first of these two would constitute a generic extraction method, suitable for use with any

hydrological attributes stored within the attribute database, while the second was expressly for

the purpose of creating ACRU menus. Verification of the data model could then be

undertaken by comparing outputs of the two methods of extraction with the original input data

used in populating the attribute database, namely the QCDB.

As concluded in Section 5.4, the data contained in any one of the attribute data model tables is

not meaningful when viewed as individual tables, and requires the use of the

MTBL_AttributeData, MTBL_AttributeType, and associated data type tables, in order to make

sense of it. The reason for this is that each of the aforementioned tables contain a portion of

the data required for creating a complete dataset, for a specified attribute. The data type

tables contain the recorded attribute values, while the MTBL_AttributeType table contains

their corresponding attribute names. The MTBL_AttributeData table is additionally

important, as it contains the FeatureID for any given attribute. Thus, by querying the

database through the use of SQL, it is possible to generate a single table containing a list of

desired attributes, and their associated FeatureID’s and values. This then allows for data in

the attribute data model to be linked to a related feature class through the use of FeatureID.

 82

This procedure is identical to how the database would be queried in ArcGIS in order to create

any necessary attribute tables, and thereby join them to the relevant feature class. In this

regard, the ArcObjects Developer Forum (ESRI, 2006) provided a SQL query tool for use in

ArcGIS, which was modified in order to provide a simple way in which to query the attribute

database and thereby generate the desired thematic maps. Figure 5.7 provides an example of

the modified user interface where an attribute is specified from which the specified attribute

table is generated. The user defines the workspace where the database is located, and then

chooses the attribute to be extracted (an ACRU variable in this case). The option to Always

add OID provides the choice as whether or not to include a unique ID in the creation of the

new temporary table. The Apply button results in a query being generated and this populates

an attribute data table in ArcGIS, with the specified table name. The table generated can

subsequently be joined to the appropriate feature class through the FeatureID field, thus

allowing for the creation of a thematic map using any associated hydrological attribute stored

in the attribute data model.

Figure 5.7 Creation of a mean annual precipitation table using the database query tool

The second method of extraction was required to generate suitable menus for the running of

the ACRU model. This was achieved through a two-part process. The first part was the

extraction of data from the attribute database, while the second part was the extraction of time

series data from the time series component of the database. The reason for this split was due

to the difference in storage methods and the required output formats of the two datasets.

While the QCDB attribute data had been stored in various data type tables, the time series

data had been placed in BLOBs that required Visual Basic code to access them, taking into

 83

consideration the requirement to revert to the original data quality flag values as strings. In

addition, the QCDB attribute data were required to be exported to their original CSV format,

while time series needed to be placed in ACRU’s composite file format. The application

shown in Figure 5.8 was developed to enable the data required to run the ACRU model for a

particular Quaternary Catchment’s ID, or set of IDs, to be extracted. Then, with an option to

include QCDB data, time series data, or both, the necessary data could be extracted for the

creation of ACRU menus. This results in three CSV files being generated when Include

QCDB Data is selected, and the related number of time series composite files if Include Time

Series Data is selected, thus placing the data back into its original format. These files were

subsequently compared with the original input files in order to determine whether the data

model had stored and processed them correctly, and they were found to be identical. With the

ability to export data from the attribute database into suitable input files for the running of the

ACRU model, the goals outlined in the implementation of the data model at the beginning of

this chapter were completed, thereby concluding the study. An example of the visual basic

code used in the exportation of data from the database, including an integrated SQL clause, is

shown in Figure 9.8 of the Appendix.

Figure 5.8 The user interface for the extraction of the QCDB data into its required formats

 84

6. DISCUSSION AND CONCLUSION

The initial review on the history of geographic data models provided perspective with respect

to what the geodatabase could offer in comparison, while the database data models, and the

structure of the geodatabase, enabled the evolution of ideas as to how the new data model

could be designed and implemented. Earlier geographic data models to the geodatabase have

been limited in their ability to represent multiple geographic representations models

concurrently and also stored their spatial and attribute data separately. Advances in databases,

have enabled the development of new technologies to aid in the storage of geographic data,

evident in the creation of the object-relational data model. Previous limitations have been

overcome with the geodatabase since it allows for the storage of multiple spatial

representations and their spatial and attribute data within a single database, while adding

functionality through the combination of behaviour with features. The geodatabase is,

however, unsuitable for the storage of attribute data in an extensible manner, and thus an

alternative was required.

The investigation into time series storage methods in Chapter 3 resulted in the identification

of a suitable method to store time series data with respect to the evaluation criteria. This

included the storage of data in an efficient manner, and enabled both regular and irregular

interval time series to be held within a single repository. The selection of the SPATSIM

method of time series storage enabled the development of a time series database with a logical

design and minimal use of disk space. Since Arc Hydro was to be a significant part of this

study, the SPATSIM method was incorporated into the time series component of this data

model, as it allowed for easier integration of time series with the Arc Hydro and attribute data

models, and could take advantage of Arc Hydro’s logical design.

The utilisation of the Arc Hydro data model in the modelling of the geographical context of

features and objects was particularly suitable owing to the data model’s focus on hydrology.

Thus spatial features such as gauges and catchments could be represented in the GIS. The use

of Arc Hydro enabled the modelling of connectivity between rivers and catchments, and could

therefore be used in flow routing and network tracing. The design of the new data model was

thus influenced by SPATSIM and Arc Hydro. By employing Arc Hydro in the modelling of

spatial data, advances in the design of a new data model could continue, and ultimately

 85

resulted in the formation of a new attribute data model. This new attribute data model

enabled the storage of attributes for spatial features and improved on previous designs as the

data model was extensible, such that the addition of any new model variables did not require

alteration to its structure. Furthermore, database efficiency was maximised by minimising

data replication. The attribute data model extended the Arc Hydro data model enabling the

storage of attribute and time series data in an extensible and efficient way.

Upon the completion of the design component for the project it was then necessary to validate

the attribute data model, through its implementation, in the creation of a hydrological

database. By selecting the QCDB, which contained significant amounts of attribute data

associated with the ACRU model, it was possible to create a complete hydrological database

using numerous data types. In addition, the full historical climate dataset of the QCDB was

used as a source of time series data, and was tested by implementing it within the modified

time series storage data model based upon SPATSIM and Arc Hydro. Thus both the time

series data model and the attribute data model were populated with relevant data. In order to

test the spatial link between the attribute data model and Arc Hydro, the related spatial

datasets were added. The Arc Hydro data model was thus populated, although in a revised

form, since only a portion of the Arc Hydro data model was required for the purposes of this

study.

Lastly, it was necessary to develop tools to enable data in the time series and attribute data

models, to be viewed and exported. A generic export tool was developed for the creation of

thematic maps, using data from the attribute data model and joining it with the associated

spatial feature class. This enabled the functionality offered by ArcGIS to be applied, and thus

common GIS operations such as the spatial querying of geographic data could be used. A

study-specific export tool was further added for the purpose of ACRU menu generation. The

tool made use of both the time series and attribute databases, and produced the files specified

for use by the ACRU model.

 86

With reference to the original design criteria for the project, the goal of designing a data

model for the storage of hydrological data has been met. The geodatabase and Arc Hydro

data models were extended by the attribute data model and the time series data model,

enabling the efficient storage of large attribute datasets in a generic and extensible manner.

Overall, the data models used created a spatial context for the storage of geographically

related hydrological data within a single database, for use in future hydrological modelling.

 87

7. RECOMMENDATIONS FOR FUTURE RESEARCH

Given the evolutionary nature of GIS and databases, there is always potential for more

efficient storage of data. Thus in terms of this study, the geodatabase was the container

for all the data stored. However, with the development of truly object-oriented GIS

databases, there would be the potential for a more logical design related to the attribute

data model, since external GIS object and feature classes could more closely resemble

their internal database counterparts. This potential future upgrade, as well as the current

instance of the attribute data model, depends on the proprietary software of ArcGIS and

would benefit from a tailored GIS that could operate independent of software licences.

As it exists, the attribute data model developed is unable to take full advantage of the

validation rules present in a conventional geodatabase. Therefore a recommendation for

future research would be for the inclusion of validation rules to the importation of data

into the attribute data model, based on either data ranges, or other data entry criteria. This

brings to the fore one of the main difficulties in applying the attribute data model, namely

the importation of data. This is as a result of no particular import process being

developed, since hydrological data models differ in their data storage formats and

requirements. Thus the population of the data model requires knowledge of its structure.

A subsequent improvement would therefore be the development of a generic import

procedure supporting the data formats common used by hydrological models.

The Arc Hydro data model used in this project concentrates on surface water flows, and

for the most part excludes the groundwater component of the hydrological system. An

upgrade to the Arc Hydro data model has now been developed which extends the Arc

Hydro data model by integrating groundwater modelling (Strassberg, 2005). The

inclusion of this groundwater data model component would create a complete data model

with regards to hydrology and its representation through GIS.

 88

8. REFERENCES

AGI, 2006. GIS Dictionary. [Internet]. Association for Geographic Information. Available

from: http://www.geo.ed.ac.uk/agidexe/term?727 [Accessed: August, 2006].

Arctur, D and Zeiler, M. 2004. Designing the geodatabase: Case studies in GIS data

modelling. Environmental Systems Research Institute, Redlands, USA.

Batty, P. 1991. Why Use a Single Database Management System for GIS. In: ed. Parker, DH.,

International GIS Sourcebook. GIS World, Inc. Fort Collins, USA.

Bech, T. 2005. Personal Communication. Danish Hydrological Institute, Hørsholm,

Denmark, November, 2005.

Briggs, R. 2004. GIS Management and Implementation. [Internet]. University of Texas.

Available from: http://www.utdallas.edu/~briggs/poec6383/dbconcept.ppt [Accessed:

September, 2004].

Chou, Y. 1997. Exploring Spatial Analysis in Geographic Information Systems. OnWord

Press, Santa Fe, USA.

Coppock, JT and Rhind, DW. 1991. The History of GIS. In: eds. Goodchild, MF, Maguire, D

J, and Rhind, DW, Geographical Information Systems - Principles and Applications,

Chapter 7. Longman Scientific & Technical, New York, USA.

Clark, DJ. 2005. Personal communication, School of Bioresources and Environmental

Engineering, at the University of KwaZulu-Natal, Pietermaritzburg, RSA, June 2005.

Dangermond, J and Schutzberg, A. 1998. Editorial. Journal of Computing in Civil

Engineering 12(3):121-122.

Databasedev.co.uk, 2006. Working with Database Fields - Database Solutions for Microsoft

Access. [Internet]. Databasedev.co.uk – Database solutions and downloads for

Microsoft Access. Available from:

http://www.databasedev.co.uk/fields_datatypes.html [Accessed: May 2006].

DeMers, MN. 2000. Fundamentals of Geographic Information Systems. Wiley, New York,

USA.

DHI. 2006. MIKE Flood. [Internet]. Danish Hydrological Institute, Hørsholm, Denmark.

Available from: http://www.dhisoftware.com/mikeflood/index.htm [Accessed:

November 2006]

 89

ESRI, 2002. Working with the Geodatabase: Powerful Multiuser Editing and Sophisticated

Data Integrity. [Internet]. Environmental Systems Research Institute, Redlands, USA.

Available from: www.esri.com [Accessed: August, 2004].

ESRI, 2003a. Spatial Data Standards and GIS Interoperability. [Internet]. Environmental

Systems Research Institute, Redlands, USA. Available from: www.esri.com

[Accessed: July, 2006].

ESRI, 2003b. The ArcGIS Hydro Data Model. [Internet]. Environmental Systems Research

Institute, Redlands, USA. Available from: www.esri.com [Accessed: July, 2006].

ESRI, 2004. RDBMS Concepts of a Geodatabase. [Internet]. Environmental Systems

Research Institute, Redlands, USA. Available from: www.esri.com [Accessed: July,

2006].

ESRI, 2006. RDBMS Concepts of a Geodatabase. [Internet]. Environmental Systems

Research Institute, Redlands, USA. Available from: http://edndoc.esri.com

/arcobjects/8.3/ [Accessed: July, 2006].

Evans, S and Millett, N. 2002. Working with the Geodatabase - Scalable GIS Solutions for

the Hydrographic Community. [Internet]. ESRI. Available from: www.thsoa.org

[Accessed: August, 2004].

Hallowes, LA, Schulze, RE, Horan, MJC and Pike, A. 2004. South African National

Quaternary Catchments Database: Refinements to, and links with, the ACRU model as a

framework for installed hydrological modelling systems. In: eds. Schulze, RE and Pike,

A, Development and Evaluation of an Installed Hydrological Modelling System, Chapter

6, 93-120. WRC Report 1155/1/04, Water Research Commission, Pretoria, RSA.

Harmon, JE and Anderson, SJ. 2003. The Design and Implementation of Geographic

Information Systems. John Wiley & Sons, Hoboken, USA.

HDS, 2001. GIS Data Formats and their Conversion. [Internet]. Harvard Design School.

Available from: http://www.clarku.edu/faculty/marcano/geo206/gis_data_formats.htm

[Accessed: September, 2004].

Healey, RG. 1991. Database Management Systems. In: ed. Maguire, DJ., Goodchild, MF.,

and Rhind, DW., Geographical Information Systems : Principles and Applications

Volume 1, 6, 251-267. Longman, Harlow, UK.

Hipel, KW and McLeod, AI. 1994. Time Series Modelling of Water

Resources and Environmental Systems. Elsevier, Amsterdam, Netherlands.

Hughes, D and Forsyth, D. 2002. SPATSIM – Spatial and Time Series Modelling Software.

Institute of Water Research. Rhodes University, Grahamstown, RSA.

 90

IWR. 2004. SPATSIM - Spatial and Time Series Information Modelling Software.

[Internet]. Institute for Water Research, Rhodes University. Available from:

http://www.ru.ac.za/institutes/iwr/software/spatsim.html [Accessed: November 2005].

Khoshafian, S. 1993. Object-Oriented Databases. John Wiley & Sons, New York, USA.

Leung, Y. 1997. Intelligent Spatial Decision Support Systems. Springer-Verlag, Berlin,

Germany.

Maguire, DJ. 1991. An Overview and Definition of GIS. In: ed. Goodchild, MF, Maguire, DJ,

and Rhind, DW. Geographical Information Systems - Principles and Applications, ch.

Longman Scientific & Technical, New York, USA.

Maidment, D. 2002. Arc Hydro - GIS for Water Resources. Environmental Systems

Research Institute, Redlands, USA.

Microsoft, 2007. FAT16 vs. FAT32. [Internet]. Microsoft. Available from: .

http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/core/fncc_fil_

blpd.mspx?mfr=true [Accessed: December 2007].

Mitášová, I and Višòovcová, MJ. 2002. Approaches to Data Modelling in GIS. Laboratory

of Geoinformatics Department of Theoretical Geodesy at Slovak Technical

University, ArtInAppleS Ltd, Bratislava, Slovakia.

Nabar, P and Patel, D. 2003. GIS Database Options. [Internet]. University of Texas at

Dallas, Dallas, US. Available from: http://charlotte.utdallas.edu/mgis/ClassFiles/

gisc6383/techassess_2004/GIS- DATABASE-OPTIONS.ppt [Accessed: October,

2006].

NCES. 2006. Projections of Education Statistics to 2013. [Internet]. National Center for

Education Statistics. Available from: http://nces.ed.gov/programs/projections

/appendix_D.asp [Accessed: January 2006].

O' Neil, P. 1994. Database Principles Programming Performance. Morgan Kaufmann

Publishers, San Francisco, USA.

Raza, A. 2001. Object-Oriented Temporal GIS for Urban Applications. Published PhD

Dissertation, University of Twente, Enschede, Netherlands.

Rigaux, P Scholl, M, and Voisard, A. 2002. Spatial Databases: With Application to GIS.

Morgan Kaufmann, San Francisco, USA.

Rob, P and Coronel, C. 1997. Database Systems: Design, Implementation and Management.

Course Technology, Cambridge, UK.

 91

Schulze, RE. 1995. Hydrology and Agrohydrology: A Text to Accompany the ACRU

Agrohydrological Modelling System. Report Number TT69/95, Water Research

Commission. Pretoria, RSA.

Schulze, RE, Warburton, M, Lumsden, TG and Horan, MJC. 2005. The Southern African

Quaternary Catchments Database: Refinements to, and Links with, the ACRU System

as a Framework for Modelling Impacts of Climate Change on Water Resources. In: ed.

Schulze, RE, Climate Change and Water Resources in Southern Africa: Studies on

Scenarios, Impacts, Vulnerabilities and Adaptation, Chapter 8, 111-139. WRC Report

1430/1/05, Water Research Commission, Pretoria, RSA.

Schulze, RE, Hallowes, LA, Horan, MJC, Lumsden, TG, Pike, A., Thornton-Dibb, S and

Warburton, ML. 2006. South African Quaternary Catchments Database. In: ed.

Schulze, RE, South African Atlas of Climatology and Agrohydrology, Section 2.3.

WRC Report 1489/1/06, Water Research Commission, Pretoria, RSA.

Singh, VP and Fiorentino, M. 1996. Geographical Information Systems in Hydrology. Kulwer

Academic Publishers, Dordrecht, Netherlands.

Smithers, JC, Dent, MC, Lynch, SD and Schulze, RE. 1995. Preparation of Daily Climatic

Input Files. In: ed. Schulze, RE, Hydrology and Agrohydrology: A Text to

Accompany the ACRU 3.00 Agrohydrological Modelling System, AM4-1 to AM4-2.

WRC Report TT69/95. Water Research Commission, Pretoria, RSA.

Strassberg, G. 2005. A Geographic Data Model for Groundwater Systems. Unpublished

PhD thesis, University of Texas at Austin, Austin, USA.

Twumasi, BO. 2002. Modelling Spatial Object Behaviours in Object-Relational

Geodatabase. Unpublished MSc Dissertation, International Institute for Geo-

information Science and Earth Observation, Enschede, Netherlands.

Wachowicz, M. 1999. Object-Oriented Design for Temporal GIS. Taylor & Francis, London,

UK.

Worboys, M. 1995. GIS: A Computing Perspective. Taylor & Francis, London, UK.

Zeiler, M. 1999. Modeling Our World - The ESRI Guide to Geodatabase Design.

Environmental Systems Research Institute, Redlands, USA.

Zeiler, M. 2001. Exploring Arc Objects – Volume 1: Applications and Cartography.

Environmental Systems Research Institute, Redlands, USA.

 92

9. APPENDIX

Figure 9.1 Comparison of characteristics for the three spatial representations of

geographic data (Zeiler, 1999)

 93

Figure 9.2 Differences between the three common data models which support vector data

(Zeiler, 1999).

Figure 9.3 Properties of the multi-user and personal geodatabases (Zeiler, 1999)

 94

Figure 9.4 Time series component of the Arc Hydro data model (ESRI, 2003b)

 95

Figure 9.5 Drainage component of the Arc Hydro data model (ESRI, 2003b)

 96

Figure 9.6 Channel component of the Arc Hydro data model (ESRI, 2003b)

 97

Figure 9.7 Network component of the Arc Hydro data model (ESRI, 2003b)

 98

Figure 9.8 Hydrography component of the Arc Hydro data model (ESRI, 2003b)

 99

Public Sub runQuery(strWhereClause As String) „Visual Basic Implements a SQL Query on the Microsoft Access Database

Dim Myquery As String

Dim rs As ADODB.Recordset

Dim objAttribute As clsAtttribute

Dim objFeature As clsFeature

„This code is used to create the SQL clause

Myquery = Myquery & ""

Myquery = Myquery & "SELECT MTBL_AttributeData.FeatureID, MTBL_AttributeType.AttributeID,"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_ShortIntegerData',Str(MTBL_ShortIntegerData.Value),"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_LongIntegerData',Str(MTBL_LongIntegerData.Value),"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_TextData',MTBL_TextData.Value,"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_BooleanData',Str(IIf(MTBL_BooleanData.Value=0,0,1)),"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_DoubleData',Str(MTBL_DoubleData.Value),"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_DataTimeData',Str(MTBL_DateTimeData.Value),"

Myquery = Myquery & " IIf(MTBL_AttributeType.DataTypeTable='MTBL_SingleData',Str(MTBL_SingleData.Value),'error'))))))) AS MyQuery

"

Myquery = Myquery & " FROM (((((MTBL_LongIntegerData RIGHT JOIN (MTBL_ShortIntegerData"

Myquery = Myquery & " RIGHT JOIN (MTBL_AttributeData INNER JOIN MTBL_AttributeType"

Myquery = Myquery & " ON MTBL_AttributeData.AttributeType = MTBL_AttributeType.OBJECTID)"

Myquery = Myquery & " ON MTBL_ShortIntegerData.OBJECTID = MTBL_AttributeData.RecordInTable)"

Myquery = Myquery & " ON MTBL_LongIntegerData.OBJECTID = MTBL_AttributeData.RecordInTable) LEFT JOIN MTBL_TextData"

Myquery = Myquery & " ON MTBL_AttributeData.RecordInTable = MTBL_TextData.OBJECTID) LEFT JOIN MTBL_SingleData"

Myquery = Myquery & " ON MTBL_AttributeData.RecordInTable = MTBL_SingleData.OBJECTID) LEFT JOIN MTBL_BooleanData"

Myquery = Myquery & " ON MTBL_AttributeData.RecordInTable = MTBL_BooleanData.OBJECTID) LEFT JOIN MTBL_DateTimeData"

Myquery = Myquery & " ON MTBL_AttributeData.RecordInTable = MTBL_DateTimeData.OBJECTID) LEFT JOIN MTBL_DoubleData"

Myquery = Myquery & " ON MTBL_AttributeData.RecordInTable = MTBL_DoubleData.OBJECTID"

„If a string value has been passed to the procedure append it to the statement created above as the “where” part of the query

If Len(strWhereClause) > 0 Then

 Myquery = Myquery & strWhereClause

End If

Figure 9.9 A sample of the Visual Basic code used in to extract data from the Attribute Database, including much of the integrated SQL

syntax

	Document 1 - Mark Bollaert Dissertation
	Document 2 - Mark Bollaert Dissertation

