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Abstract 

Spatial analysis and cluster analysis are important statistical tools in decision making, planning, and 

information management, and are applicable in epidemiological and public health research. Patterns 

and variations in disease occurrence or epidemiology can be easily spotted and resolved through these 

visual and statistical procedures. The evolution of Bayesian statistics with its underlying benefits and 

accuracy over frequentist statistics prompted its application in this study.  

The study aimed at investigating the pattern of Diabetes occurrence across Africa with the 

identification of some underlying high-risk factors associated with the diseases using both frequentist 

and Bayesian approaches.  

Metadata from WHO, the World Bank data and other United Nations sources were extracted to form 

the data for the study. Diabetes prevalence metadata for the year 2015 from World Bank data with 

age 20-65 years was used.  Spatial analysis of prevalence was used to examine the geographical 

distribution of the disease and its indicator factors on the continent. The data was further stratified 

into five regions and analysis was carried out both across the continent and across the regions. A 

spatial autocorrelation test with the use of Global Moran index (GMI) was used to determine the 

spatial pattern for the whole continent. Local Indicator Spatial Autocorrelation clustering map was 

used to identify the hotspots countries. Cluster analysis was performed to further investigate the 

clustering of the disease and to show similar groups of countries. Classical and Bayesian techniques 

form the statistical methods used to examine the impact of the moderators’ variables on diabetes 

prevalence in Africa. Linear regression, fractional probit, Poisson and a Negative binomial regression 

model were used to investigate the risk factors. The analysis was done using R software using libraries 

“maptools”, “ape”, “spdep” “msclust” and SAS software.  

The GMI result shows that there is spatial autocorrelation of diabetes prevalence in Africa, with a 

spatial pattern of clustering in the Southern and East Africa region and a spatial pattern of dispersion 

in the West, Central and North Africa regions. A positive spatial Autocorrelation was observed in the 

West, Central and East Africa region and a negative spatial autocorrelation within the North and 

Southern Africa region.  The LISA cluster maps indicated that there are sixteen hotspot countries 

identified, which are: South Africa, Mali, Congo DRC, Ethiopia, Uganda, Madagascar, Cote d’Ivoire, 

Liberia, Senegal, Chad, Eritrea, Tanzania, Lesotho, Libya, and Morocco.  Cluster analysis was used to 

strengthen the LISA Maps, where homogenous groups of countries with similar pattern were 



 
v 

 

clustered. Likewise, because of the significance of some socioeconomic risk factors of diabetes (GDP, 

Population age, physician density per 1000 person and urbanization), from the fractional probit 

regression model, a group of clusters were created based on countries with high prevalence of those 

significant risk factors. No significant difference was observed between the classical analysis and 

Bayesian analysis of the disease using simple regression model, loglinear, fractional probit, Poisson 

and negative binomial model due to the over dispersion of the data and because of unavailability of 

non-informative prior. 

In conclusion, diabetes is heterogeneous in Africa. However, homogenous grouping of the disease can 

help policy makers in forming a joint collaborative effort in the planning, control and effectively 

managing the disease in Africa, instead of fighting the disease in silos. At the population level, GDP, 

population age, urbanization, and physician density have been identified as significant and correlated 

socioeconomic risk factors of diabetes in Africa. 

Keywords:  Spatial distribution, Spatial Autocorrelation, Geographic weighted regression, Cluster 

Analysis, fractional probit, Poisson, Negative-binomial, Bayesian Statistics, Diabetes.  
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1 Chapter 1 

Introduction 

 Background  

Diabetes is a chronic disease which occurs when the pancreas does not produce enough insulin or 

when the body does not effectively use the insulin it produces. This then leads to an increased 

concentration of glucose in the blood (hyperglycaemia). There are three types of diabetes: type 1, 

type 2 and gestational diabetes. Type 1 diabetes, which was previously known as insulin-dependent 

or childhood-onset diabetes, is mainly characterized by a lack of insulin production. Type 2 diabetes, 

previously called non-insulin dependent or adult-onset diabetes, is characterized and caused by the 

ineffective use of insulin in the body, which often results from excess body weight and physical 

inactivity. Gestational diabetes, on the other hand, is a form of hyperglycemia that occurs during 

pregnancy (IDF, 2015; ADA, 2014). 

The general symptoms of diabetes are polyuria, polydipsia, weight loss, blurred vision, and abnormally 

higher levels of glucose, a form of sugar in the blood (ADA, 2014). Symptoms can also be so mild as to 

escape notice. With Type 2 diabetes, many people don’t get to know until long-term damage has been 

caused. Type 1 symptoms usually manifest quickly in a matter of days or weeks, and can be very 

severe, even to the point of causing sudden death. Common symptoms for both types of diabetes are 

hunger and fatigue, frequent urinating (average normal urination rate is 4 to 7 times in 24 hours, but 

an individual with diabetes may experience a much higher rate), dry mouth and itchy skin, blurred 

vision, slow-healing sores or cuts, nausea and vomiting (WHO, 2000). For many decades, diabetes 

diagnosis criteria have been based on glucose criteria, either through the FPG or the 75g Oral Glucose 

tolerance test (OGTT) (ADA, 2014).     

According to the World Health Organisation (WHO) report of 2000, the criteria and methods of 

diabetes diagnosis include:  a random venous plasma glucose concentration ≥ 11.1 mmol/l or, a fasting 

plasma glucose concentration ≥ 7.0 mmol/l or two hours plasma glucose concentration ≥11.1 mmol/l 

two hours after 75g anhydrous glucose in an OGTT. A Haemoglobin A1c (HbA1c) testing of 

48mmol/mmol (6.5%) is recommended as a cut-off point for diagnosing diabetes but is not 

appropriate in the following situations: with children and young people, an individual taking 

medication that can cause a rapid rise in glucose level, pregnant women, and the presence of genetic 
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factors.   When the Haemoglobin A1c (HbA1c) is a less frequent diabetes test than home monitoring.   

An HbA1c of 6.5% is recommended as the cut point for diagnosing diabetes. Therefore, an HbA1c value 

of less than 6.5% does not exclude diabetes diagnosed using glucose test. However, finger-prick HbA1c 

is an alternative diagnostic test which should not be used except when the quality of the procedure is 

guaranteed. A person with <48mmol/mmol (6.5%) should be treated as at high risk of diabetes, with 

a repeat test conducted after six months or sooner if symptoms persist (WHO, 2000).  

There are several options available in the treatment and management of diabetes. These include 

change of diet, active exercise, a constant check-up of blood sugar, administration of medications as 

injectable drugs (GLP-1 receptor agonists, pramlintide) to bring the blood sugar under control, insulin, 

and weight loss surgery. Different disease situations may necessitate some changes in the patient’s 

medication.  

In this 21st century, diabetes is one of the largest global health emergencies with one in every eleven 

adults having diabetes (IDF, 2015; WHO, 2000). An estimated 415 million adults currently have 

diabetes, with 318 million adults being diagnosed with impaired glucose tolerance which puts them 

at risk of developing the disease in future (IDF, 2015; Bonow and Gheorghiade, 2004; Day, 2016; 

Ogurtsova et al., 2017; Shaw et al., 2010; Whiting et al., 2011). 

According to IDF (2015), the number of adults who died from diabetes globally is 5.0 million as 

compared to the numbers for HIV/AIDS which stand at 1.5 million, tuberculosis at 1.5 million, and 

malaria at 0.6 million. Therefore, this alarming number of death attributed to diabetes globally as 

compared to tuberculosis, HIV/AID and malaria necessitates an urgent intervention through the 

development and implementation of a cost-effective framework of improving the health condition of 

people with diabetes and prevention of new occurrences. In halting the rise of diabetes, a global 

diabetes awareness network by countries in the Africa continent through joint policy and collaborative 

effort became the background to this study (Day,C 2016). 

Africa is the second-largest and second most-populous continent on earth with an estimated 

population in 2016 of 1.2 billion people. It is home to 54 recognized sovereign states and countries. In 

2015, 14.2 million people (aged 20-79) were estimated to have diabetes in Africa with a regional 

prevalence of 2.1-6.7% (Day,C 2016).  Therefore, a closer look at the countries within the Africa 

continent with a similar pattern of diabetes occurrence may aid in decreasing its prevalence.  
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Several factors account for diabetes prevalence both at the individual and country level.  At the 

individual level, diabetes risk factors are categorized into two. The first category contains complex 

non-modifiable factors which include genetic, age, gender, ethnicity and family history. The second 

category comprises significant modifiable risk factors such as overweight, physical inactivity, 

sedentary behavior and change in dietary/carbohydrate intake, smoking, alcohol consumption, age 

distribution, and urbanization. At the country level, indicators of diabetes prevalence are Gross 

Domestic Product (GDP) and Gross National Income (GNI). 

 Research Problem 

On the African continent where diabetes was once rare, there has been a tremendous increase in its 

prevalence due to an increase in economic development. According to IDF (2015), in Africa, the adult 

population (age 20-69) with diabetes is 441 million, with a projection of 926 million in 2040 and a 

regional prevalence of 3.2% with a projection of 3.7% in 2040. 

In Africa, an increasing and alarming issue is the fact that people’s lifestyles are becoming more 

sedentary, unhealthy eating habits are becoming widely adopted, and urbanization is increasing. 

These are environmental factors contributing to the rise of diabetes prevalence on the continent. Type 

2 Diabetes is the common type of diabetes which affects 90% of the people who have diabetes (IDF, 

2015). As was stated by Azevedo and Alla (2008), the potential severity of diabetes is such that some 

epidemiologists predict that its economic impact and the death toll will surpass the ravages of HIV and 

AIDS in the near future.  However, many studies have been focusing on the estimating risk factors at 

the individual level but none at the population level. Likewise, many studies have been seen on 

developed nations like America and China on the spatial distribution of obesity, mortality but no study 

has been found on the spatial distribution of diabetes in Africa as a continent but few on the Sub-

Sahara Africa countries. Therefore, more investigation needs to be performed on diabetes dynamics 

to establish the disease pattern and clustering and the likely socio-economic risk factors of diabetes 

prevalence across Africa. Since disease risk factors often exist in space and time, it would be 

appropriate to conduct the study in space and time for adequate understanding. 

Statistical modelling has been one of the successful tools employed in analyzing and understanding 

the possible trends exhibited in infectious diseases. This study seeks to investigate the spatial pattern 
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of diabetes in the Africa region with the aim of providing a suitable recommendation aimed at its 

eradication on the continent.  

 

 Significance of the Study 

Today in Africa, diabetes and its complications are considered a pandemic. This has compelled African 

governments to start paying more attention to its impact and contributing factors, as thousands of 

Africans run the risk of dying young. In 2015, the number of death caused by diabetes in the continent 

was 321,000. The poor healthcare system in the most countries on the continent is a huge concern, 

with health expenditure due to diabetes of 3.4 Billion dollars in 2015 with a projection of 5.5. Billion 

dollars in 2040 (IDF, 2015). This study is significant, as it aims to reveal the underlying high-risk factors 

of diabetes and hotspots countries in Africa. Countries and regions with a similar pattern of the 

prevalence will be revealed and this could aid the approach in curbing the disease collectively. 

Furthermore, the study will reveal the competence and superiority of the Bayesian method as against 

classical statistical methods. 

 

 Research Questions 

The study sought to provide answers to the under listed research questions: 

1. How is Diabetes prevalence spatially distributed in Africa? 

2. Which countries have a similar pattern in Diabetes prevalence? 

3. What are the highest contributing risk factors of Diabetes prevalence in Africa? 

4. How are the risk factors of Diabetes spatially distributed geographically in Africa? 

5. How Bayesian statistics can perform compared to classical statistics. 
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 Aim and Objectives 

The study aimed at investigating the spatial distribution of diabetes prevalence across Africa with the 

identification of underlying risk factors associated with the diseases using both classical and Bayesian 

approach.  

The specific objectives of the study are to: 

i. Determine the relationship between identified factors of diabetes and its prevalence in 

Africa, 

ii. Examine spatial configurations of diabetes prevalence levels and its underlying related 

factors in Africa, 

iii. Compare the Bayesian statistics technique to classical statistics techniques as applied  

 

 

 Thesis Structure  

The thesis is structured into six (6) chapters, summarised as follows: 

In Chapter 1, the research background, research problem, significant of the study, research aim, 

objectives and questions are described  

In Chapter 2, a review literature related to the epidemiology of diabetes prevalence, diabetes 

prevalence in the world and in Africa with its underlying risk factors is discussed.  

In Chapter 3, we explain the statistical techniques used, such as cluster analysis, spatial analysis, spatial 

autocorrelation measure using Global and Local Moran indices, along with Local indicator spatial 

analysis (LISA) and cluster analysis, to determine the spatial pattern of diabetes across Africa using 

2015 data. Classical and Bayesian methods of linear regression, Poisson, and negative binomial 

regression analysis are also discussed.  

In Chapter 4, we present the findings of the data analysis. 

In Chapter 5, the discussion, conclusion, and recommendation of the results are explained.



 

2 Chapter 2 

Literature Review 

 Introduction 

This chapter gives a literature review of diabetes prevalence. The epidemiology of diabetes is 

discussed, followed by a review of diabetes prevalence in different continents and regions in the 

world, as well as in Africa. The last section discusses the risk factors of diabetes.   

 Epidemiology of Diabetes 

Diabetes is a chronic condition that occurs when the body cannot produce enough insulin or cannot 

use insulin and is diagnosed by the observation of a rise in the level of glucose in the blood (IDF, 2015; 

ADA, 2014). Insulin is a hormone produced in the pancreas which is required to transport glucose from 

the bloodstream into the body cells where it is used as energy. A person with diabetes is characterized 

by the lack or ineffectiveness of insulin in the body and the resulting circulation of glucose in the blood. 

Over time, this results in a high level of glucose in the blood, which is known as hyperglycaemia (high 

blood sugar), causing a huge damage to many tissues in the body and leading to the development of 

disabling or life health complications, and when no treatment is given or not early diagnosed, sudden 

death. People with diabetes face more health problems. Consistently high blood glucose levels can 

lead to serious diseases affecting the heart and blood vessels, eyes, kidneys, and nerves. People with 

diabetes are at an increased risk of developing numerous infections. In most high-income countries, 

diabetes is a leading cause of cardiovascular disease, blindness, kidney failure and lower-limb 

amputation.

According to IDF (2015), WHO (2000) and ADA (2014), diabetes is currently classified into four 

categories.  Type 1 diabetes is caused by an autoimmune reaction in which the body’s defense system 

attacks the insulin-producing beta-cells in the pancreas. This results in the body’s inability to produce 

insulin. Type 1 can affect people at any age, but usually occurs among children or young adults. This 

type of diabetes requires a daily dose of insulin to control the level of glucose in the blood, and a lack 
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of this can result in death. Type 1 often develops suddenly, with abnormal thirst and dry mouth, 

frequent urination, lack of energy, extreme tiredness, continuous hunger, sudden weight loss, and 

blurred vision as symptoms. Type 2 diabetes is the most common type of diabetes. It occurs in adults 

but is becoming increasingly seen in children and adolescents. With type 2 diabetes, the body can 

produce insulin but develops resistance so that the insulin is ineffective, resulting in an insufficient 

level of insulin in the body. Both insulin resistance and deficiency lead to high glucose levels. 

Symptoms of type 2 diabetes are similar to those of type 1, which include frequent urination, excessive 

thirst, weight loss, and blurred vision. Many people with type 2 diabetes can be unaware of the 

condition for a long time, as the symptoms are less marked than in type 1 diabetes and may take years 

before they are established. Although the cause of Type 2 diabetes is still unknown, there are several 

risk factors such as being overweight, physical inactivity, and poor nutrition, and diagnosis in middle 

or old age. The third category is known as gestational diabetes. It occurs during pregnancy tends to 

occur from the 24th week of pregnancy (slightly raised blood glucose level) and diabetes mellitus in 

pregnancy (women with substantially elevated blood glucose). The fourth category of diabetes is a 

less common type of diabetes that results from genetic defects, drug or chemical use, infections, or 

other diseases. This study data was on type 2 diabetes and this is our point of focus. 

As noted in Day ,C (2016), Shaw et al. (2010), Bonow and Gheorghiade (2004), Ogurtsova et al. (2017), 

IDF (2015), and WHO (2000), diabetes imposes a large economic burden on the global health care 

system and economy at large. This burden can be measured in terms of direct and indirect medical 

costs associated with productivity loss, national GDP, GNI, and increase in total global diabetes health 

expenditure. 

The incidence of diabetes, especially type 2, is rapidly growing in the world. In 1985, an estimated 30 

million people suffered from this chronic disease, which, by the end of 2006, had increased to 230 

million, representing 6% of the world population. Of this number, 80% is found in the developing world 

(Roglic et al., 2005; Roglic and Unwin, 2010). In 2000 it was predicted that 366 million people will have 

diabetes in the year 2030, just 20 million more than the 2011 estimate (Wild et., al. 2004).   

It is estimated that during the next 35 years, diabetic world-wide prevalence will reach 25% of the 

world’s population, with India being the hardest hit (IDF, 2015). For a long time, Africa was considered 

safe from many of the diseases that are called “diseases of affluence,” which plague the Western world 
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(Day, C 2016, Whiting et al., 2011). Similarly, there was a time when Africa was thought to be a 

continent relatively free of diabetes mellitus. However, diabetes is now considered to be a common 

disease in Africa, a situation that seemed to have remained virtually static until recent years.  Indeed, 

from 1959 to the mid-1980s, medical statistics showed that the prevalence of diabetes in Africa was 

equal to or less than 1.4%, apart from South Africa, where the rate was estimated to be as high as 

3.6% in 2001 (Motala, 2002; Motala et al., 2003; Omar et al., 1993). As at 1994, the continent-wide 

prevalence of diabetes mellitus stood at 3 million and was then predicted to double or triple by the 

year 2010 (Peer et al., 2014, Sobngwi et al., 2012, Sobngwi et al., 2001, Kengne et al., 2013).  

Approximately 7.1 million Africans were said to be suffering from diabetes at the end of 2000, a figure 

that was expected to rise to 18.6 million by 2030 (Wild et al., 2004). 

According to Organisation (2000), an estimated 2.9 million people died globally from diabetes in 2000, 

i.e. a case-fatality rate (CFR) of 0.0161. Also, in 2000, the prevalence of diabetes in the WHO African 

Region was estimated at 7.02 million people, out of which about 0.702 million (10%) people had type 

1 diabetes and 6.318 million (90%) had type 2 diabetes (IDF, 2015). It was estimated that about 

113,100 people died from diabetes-related causes, 561,600 were permanently disabled, and 

6,458,400 experienced temporary disablement (IDF, 2015, Whiting et al., 2011).  

By 2030, the prevalence of type 2 diabetes in the Middle East, Indian, South Asia and Sub Sahara Africa 

is expected to increase by more than 150% (Hossain et al., 2007). Diabetes has been associated with 

poverty in low and high-income countries, compared to middle-income countries where it is 

associated with overconsumption of high fats foods with low or no physical activity due to 

urbanization (Aspray et al., 2000; Assah et. al., 2011). 

Globally in 2013, it is estimated that almost 382 million people suffered from diabetes, a prevalence 

of 8.3%. North America and the Caribbean is the region with the highest prevalence of 11%, having 37 

million people with diabetes. It is followed by the Middle East and North Africa with a prevalence of 

9.2% (35 million people). Western Pacific is the region with the highest number of people living with 

diabetes (138 million). However, its prevalence is 8.6%, close to that of the World. (IDF, 2015, Alwan, 

2011, Bonow and Gheorghiade, 2004, Shaw et al., 2010). 

According to IDF (2015), the top 10 countries with the highest prevalence of diabetes in 2013 are 

Tokelau (37.5%), Federated States of Micronesia (35%), Marshall Islands (34.9%), Kiribati (28.8%), 
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Cook Islands (25.7%), Vanuatu (24%), Saudi Arabia (23.9%), Nauru (23.3%), Kuwait (23.1%) and Qatar 

(22.9%). It is interesting to highlight that 35 out of 219 countries (16% of the total) have very high 

prevalence of diabetes of 12% or higher. These countries are located mainly in Western Pacific, and 

the Middle East and North Africa regions. Africa is the region with the lowest prevalence of diabetes 

(4.9%), having Réunion (15.4%), Seychelles (12.1%) and Gabon (10.7%) as the top three countries with 

high prevalence and 10 out of 48 countries with prevalence of diabetes higher than the upper quartile 

(6.3%) prevalence (IDF, 2015). In 2015, Europe had 56 million people with diabetes (8.5%) having 

Turkey in the upper extreme of the prevalence of diabetes with 14.9%, four percentage points higher 

that Montenegro (ranked number two) with 10.1% of prevalence. Likewise, in North America and the 

Caribbean, Belize (15.9%), Guyana (15.8%) and Curacao (14.5%) are the top three countries with the 

higher prevalence of diabetes. At the same time, this region presents the highest values of the 

prevalence of Impaired Glucose Tolerance (IGT) with a median of 12% (IDF, 2015, Riste et al., 2001). 

As stated by (Færch et., al. 2016), Type 2 diabetes is a heterogeneous disease with large variation in 

the relative contributions of insulin resistance and beta cell dysfunction between subgroup and 

individual. Many studies ascertain that magnitude and geographic distribution of the prevalence of 

diabetes heterogeneous (Barker, 2011; Tuomi, 2014; Schwitzgebel, 2014).   

 

 Prevalence of Diabetes in the World 

From the diabetes prevalence statistics given in the previous section, the importance of learning about 

risks and warning signs of diabetes in order to take actions to prevent it and seek health care when it 

is developed becomes evident. However, diagnosis of diabetes is both a personal and health system 

and services responsibility. Diabetes risk assessment and testing must be integrated into primary 

health care with universal health coverage.   

As stated by IDF (2015), Majeed et., al. (2013), Matiner (2013), 35 out of 219 (that is 16 % of the total) 

countries in the Western Pacific, Middle East and North Africa region have a high prevalence of 

diabetes. In the Middle East and North Africa, approximately 34.4. Million people or 9.1% of adults 

ages 20-79 are living with diabetes with over 40% of undiagnosed cases. Countries with high diabetes 

prevalence include Saudi Arabia (raw diabetes prevalence of 17.6%) and Kuwait (14.3 %). Diabetes 
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was responsible for 342,000 deaths in 2015, and over half (51.3) of all death from diabetes in the 

region occurred in people under 60 years. Azeem et. al., (2013) mentioned that the prevalence of 

diabetes is also very high by international standards in countries within the region which are not as 

affluent as the Gulf States, such as Egypt, Lebanon, and Oman. Likewise, the largest number of cases 

is seen in Egypt, Pakistan, and Iran, reflecting their status as the countries with largest populations in 

the MENA region. 

In Europe, the number of people with diabetes is estimated to be 59.8 million (aged 20-79), including 

23.5 million undiagnosed cases (IDF, 2015). While the Europe region has the second-lowest age-

adjusted comparative diabetes prevalence rate of any IDF region (after the Africa Region), there are 

still many countries with relatively high diabetes prevalence rates (IDF, 2015). Turkey has the highest 

age-adjusted comparative prevalence of diabetes with 12.8% and the third highest number of people 

with diabetes in the Europe region with 6.3 million, after Germany (6.5 million) and Russia (12.1 

million) (IDF, 2015). Tamayo et. al., (2013), in their study, showed that in 2013, the number of people 

with diabetes was estimated to be 56 million, with an overall estimated prevalence of 8.5%, and with 

diabetes being responsible for 10% of total health expenditure in 2010.  Age is an important risk factor 

for diabetes. In the Europe region, 30.8% of the general population were aged between 20 and 79 

years in 2015, and this is expected to increase to 35.6% by 2040. In 2015, approximately 627 000 

people aged 20 -79 died from diabetes in the Europe region (IDF, 2015). 

According to IDF (2015), the North America and Caribbean (NAC) region has the highest prevalence of 

diabetes compared to other IDF regions. An estimated 44.3 million people aged 20-79 lived with 

diabetes in the region in 2015, of which 13.3 million (29.9%) are undiagnosed, with 12.9% of the adult 

population being affected. The USA has the highest prevalence at 29.3 million, followed by Mexico 

(11.5 million) and Canada (2.5 million). In the region, the total number of deaths in 2015 attributable 

to diabetes was 324,000. More men (173,000) than women (151,000) died from diabetes-related 

causes. In addition, diabetes mortality in this region was not limited to older age groups. Over one-

third (38.3%) of deaths occurred in adults under 60 years. In the USA, more than 219,000 people died 

from diabetes in 2015.  14% of the region’s total expenditure is spent on diabetes. In North America 

and the Caribbean, Belize (15.9%), Guyana (15.8%) and Curacao (14.5%) are the top three countries 



Chapter 2. Literature Review.   11 
 

 
 

with the highest prevalence of diabetes. At the same time, this region presents the highest values of 

the prevalence of Impaired Glucose Tolerance (IGT) with a median of 12%. 

According to IDF (2015), in the South and Central America (SCA) region, an estimated 29.6 million 

people or 9.4% of the adult population had diabetes in 2015. 11.5 million (39.0%) were undiagnosed. 

Over 82% of people with diabetes lived in urban areas and 81% with diabetes were living in middle-

income countries. Puerto Rico has the highest prevalence of diabetes among adults (12.1 % age-

adjusted comparative prevalence and 14.2% raw prevalence). Brazil has the highest number of people 

with diabetes (14.3 million).  In 2015, 247 000 died because of diabetes (122 100 men and 125 400 

women). Over 42.7% of these deaths occurred in people under 60 years. Diabetes health spending in 

the region was estimated at between USD34.6 billion and USD 59.9 billion, accounting for 5.0% of the 

global total. Brazil spent at least USD21.8 billion on people with diabetes. 

Furthermore, the South East-Asia (SEA) region, consisting of India, Sri Lanka, Bangladesh, Bhutan, and 

Mauritius and Maldives, was home to more than 72 million adults with diabetes in 2013 and is 

expected to exceed 123 million in 2035, with a substantial number (24.3million) of people also having 

impaired glucose tolerance (IGT) (IDF, 2015). A sharp increase in the prevalence has been observed in 

the SEA Region, both in urban and rural areas, which is mostly associated with the lifestyle transitions 

towards urbanization and industrialization. The highest prevalence in the South East-Asia region is 

found in Mauritius (14.8%) and followed by India (9.1%). Study have highlighted that Asian Indians 

have a higher risk of diabetes compared to other Asians, whether they are living in their land of birth 

or in an affluent foreign country (Ramachandran et. al., 2010). 

According to IDF (2015), in the Western Pacific region, 9.3% of adults aged 20-69 were estimated to 

be living with diabetes in 2015, equivalent to 153 million people. Over half (52.1%) of these were 

undiagnosed. 61.6% live in the cities and 90.2% live in low or middle-income countries. The Western 

Pacific is home to 36.9% of the total number of people with diabetes in the world, with China having 

the highest number of people (110 million) with diabetes in the world. 1.9 Million Deaths occurred 

among adults, the highest number of deaths in the IDF region. Over 44.9% of diabetes deaths occurred 

in people under the age of 60 years.  
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 Diabetes Prevalence in Africa 

The Africa Region (AFR), where diabetes was once rare, has witnessed an increase in the prevalence 

(Peer et al., 2013). As mentioned by Levitt (2008), diabetes is an increasing problem in sub-Sahara 

Africa with Type 2 the most common form. The number of people suffering from diabetes in Africa 

remains uncertain, although as stated by IDF (2015) estimate from 2000 put the figure at 7.5 million 

diabetic adults between 20 and 79 years of age. Likewise, it is estimated that the diabetes population 

will double over the next twenty-five years in Africa (IDF 2015). This raises enormous health care 

questions, as all African countries are already struggling to cope with the diabetes burden. Awareness 

is regarded as being poor, and the concentrations of the disease vary considerably between different 

ethnic groups. Type 1 diabetes, although still rare in many areas, is becoming increasingly more 

prevalent. IGT is also becoming problematic and exceeds 30 per cent in many African countries. 

As stated by Motala (2002), Ogurtsova et al. (2017), Peer et al. (2014),  IDF (2015), and WHO (2014), 

in the world, Africa is the region with the lowest prevalence of diabetes (4.9%), having Réunion 

(15.4%), Seychelles (12.1%) and Gabon (10.7%) as the top three countries with highest prevalence and 

10 out of 48 countries with prevalence of diabetes higher than the upper quartile (6.3%). The only 

high-income countries in the region are Equatorial Guinea and Seychelles, both of which have GNIs of 

over ID22 000 per capita. The Central African Republic has the world’s lowest GNI of ID610 per capita. 

According to Motala (2002), Motala et al. (2003a), and IDF (2015), an estimated 14.2 million adults 

aged 20-79 have diabetes in the Africa Region, representing a regional prevalence of 2.1-6.7%. This is 

expected to increase to 34.2 million adults by 2040, more than double the number in 2015. The Africa 

Region has the highest proportion of undiagnosed diabetes – over two thirds (66.7%) of people with 

diabetes are unaware they have the disease. The majority (58.8%) of people with diabetes live in cities, 

even though the population in the region is predominantly (61.3%) rural. 

As stated by IDF (2015), some of Africa’s most populous countries have the highest number of people 

with diabetes, including South Africa (2.3 million), Democratic Republic of Congo (1.8 million), Nigeria 

(1.6 million), and Ethiopia (1.3 Million). Nearly half of all adults with diabetes in the region live in these 
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four countries. Increase in urbanization and population age pose an ever-growing threat of type 2 

diabetes in this region.  

In 2015, The Africa Region accounted for 0.5% health expenditure on diabetes with over USD 3.4 

billion spent on health care with a projection of USD 5.5 billion in 2040, the lowest of any region (IDF 

2015). This is equivalent to 7% of the region’s total health budget per person with diabetes per year. 

An estimated number of 321,121 deaths was recorded due to diabetes with 79% under age 60 years 

old.  This shows that investment, research and health systems are slow to respond to this burden and 

primary focus has remain on infectious disease.  From the Africa population of 441 million, an 

estimated 14.2 million number of adult age 20-79 is living with diabetes with a projection of 34.2 

million in 2040, making a regional prevalence of 3.2% and a projection of 3.7% in 2040. Among the IDF 

regions, Africa region with 49 diverse sub-Sahara countries and territories has the highest proportion 

of undiagnosed diabetes; with over two third (66.7%) of people with diabetes are unaware they have 

the disease. Majority of people (58.8%) with diabetes lives in the cities, even though the population 

in the region is predominantly rural (61.3%) (IDF Atlas 2015).  

However, in 2013, the African adult population (aged 20–79 years) was around 374 million, and the 

prevalence of diabetes in this age group was estimated to be around 9.2%, equivalent to 34.6 million 

people with diabetes. This figure is expected to increase to 67.9 million by 2035 or 11.6% of the adult 

population. Of the 34 million people affected by diabetes, nearly 17 million were estimated to be 

undiagnosed and therefore at considerable risk of diabetes complications and poor health outcomes 

(IDF 2013). The prevalence is rising due to the rising rate of obesity, physical inactivity and 

urbanisation. As mentioned by Levitt (2008), the current morbidity rate of diabetes in Africa is 

primarily due to high rate of microvascular complication. 
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 Evolution of Diabetes Prevalence in Africa  

Diabetes was regarded as a rare disease in Sub-Sahara Africa (SSA) prior to the 1990s (Mbanya and 

Ramaiya 2006). Since the 1990s, demographic and epidemiological transitions, as well as urbanization, 

have rendered diabetes one of the Non-Communicable Disease burdens in SSA. There are 10.4 million 

individuals with diabetes in SSA, representing 4.2% of the global population with diabetes (Kengne et. 

al., 2013). 

Studies by Tobin et. al., (2015) show that the trends in diabetes prevalence have paralleled high rates 

of overweight and obesity, which are leading risk factors for the development of diabetes. As stated 

by Kengne et.al., (2013) by 2025, it is estimated that the prevalence of diabetes will increase by 80% 

to reach 18.7 million in this region, with a higher prevalence in the urban areas. Among the aging 

population coupled with rapid urbanization, is expected to lead to the increasing prevalence of 

diabetes in SSA.  

 Risk Factor of Type 2 Diabetes 

The diabetes epidemic is rising due to rapid globalization and urbanization, increase in sedentary 

lifestyle, and changes in diet in line with the worldwide rise in obesity and overweight. Peer et al 

(2014), classified factors that drive the development of type 2 diabetes into two: a complex gene-

environment interaction of non-modifiable (genetics, age, gender, ethnicity and family history) and 

modifiable risk factors which include obesity, excessive alcohol ingestion, poor dietary habits and 

physical inactivity. The non-modifiable risk factors include aging and genetic predisposition. Similarly, 

Whiting and colleagues (2003) noted that the contextual, clinical, and health system challenges to the 

delivery of health care for diabetes in Africa is influenced by several factors, including poor patient 

attendance at health clinics, short consultation time with physicians (leaving little or no time for 

patient education), inadequate staff, limited staff training, poor control of blood glucose and blood 

pressure, inadequate referral systems, and almost non-existent patient education. Some of these 

factors in the context of African countries are discussed briefly in this section.  
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 Demographics 

According to IDF (2009), the population of sub-Saharan Africa is set to grow from around 860 million 

in 2010 to more than 1.3 billion by 2030.  For age groups above 40 years, the population size will 

double. People aged 45-59 years are 8.5 times more likely to develop diabetes than those aged 15-29 

years, and those above the age of 60 are 12.5 times more likely to develop diabetes. Based on the 

present prevalence rates in sub-Saharan Africa, demographic changes alone will account for an 

increase of 9.5 million people with diabetes between 2010 and 2030 (Azevedo and Alla (2008); 

Sobngwi et al. (2012)). 

The age of onset of type 2 diabetes is also decreasing in sub-Saharan Africa. Peak occurrence of type 

2 diabetes is between the ages of 20 and 44, already 40 years lower than the peak age of occurrence 

in high-income countries, and it is predicted to fall further. Studies from Levitt et.al., (1999), Omar et. 

al. (1994), Ramaiya et. al. (1991), and McLarty et. al. (1989) showed that the highest diabetes 

prevalence is in people of Indian origin, followed by native Africans.  

According to Jamison D.T, et al (2006), age and ethnicity are the two main non-modifiable risk factors 

of diabetes in Africa. In most developed communities, the peak of occurrence falls in the age group of 

65 years or older, whereas in developing countries it is in the age group 45 to 64, and in Sub-Saharan 

Africa, it is in the age groups 20 to 44 and 45 to 64 years.  

A strong relationship has been found between population age and diabetes. Diabetes has also been 

found to increase the risk of dementia (Shaw et al., 2010, Booth et al., 2006, Biessels et al., 2002, Wang 

et al., 2014). Studies show that diabetes is rising globally, particularly in Africa due to population 

ageing and rapid urbanisation of (Hall et al., 2011, Assah et al., 2011, Mbanya et al., 2010, Kanmogne 

et al., 2010, Lim et al., 2012, De Ramirez et al., 2010, Wang et al., 2014). Since the risk of developing 

diabetes increases with age, the global aging of the population, especially Africa, is a major driver of 

the global rise in diabetes. According to IDF (2015), by 2035, diabetes peak in Africa is expected to be 

in the oldest individuals. 

Despite the HIV epidemic, the number of people with diabetes in Africa is expected to grow because 

of changing demography (Levitt, 2008). Therefore, a concerted multi-sectorial effort is essential in 

ensuring improvement in health care delivery for people with diabetes in Africa.  
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 Poverty 

According to the World Bank (2015), poverty (otherwise known as extreme or absolute poverty) is 

defined as living with an income of less than $1.90 per day. It is measured in the international dollar, 

with adjustment on purchasing power parity (PPP) adjustment. It is calculated and measured as the 

ratio of the share of the population living below a certain poverty line over the total number of 

population.  

Studies from Indian and America shows that poverty and depression has an impact and increase 

diabetes (Ramachandran (2002), Levine (2011), De Groot (2003). Holtgrave and Crosby (2006) in an 

exploratory study found that there is a strong correlation between   poverty and diabetes.   Everson 

et al. (2002) found a similar pattern of epidemiological evidence for the relationship between socio-

economic status, depression, obesity and diabetes. 

 Urbanization 

The Africa region is currently experiencing the most rapid increase in urbanization and changes in 

lifestyle (Motala, (2002); (Assah et al., 2011)). The continent is undergoing urbanization faster than 

any other region, with the urban population growing at an average annual rate of 4.5% (Parnell and 

Pieterse, 2014). Studies have also shown a global rise in diabetes prevalence, particularly in Africa at 

large, due to population aging and rapid urbanization. Studies on the African region show that diabetes 

is more prevalent in urban compared to rural areas (Mbanya et al., 2010, Motala, 2002, Motala et al., 

2003a, Peer et al., 2014).  According to Godfrey and Julien (2005), a major factor increasing diabetes 

prevalence in Africa is urbanisation, which is because of continuous movement of people from rural 

to urban areas, particularly in the sub-Saharan Africa. Studies have showed that high prevalence of 

diabetes is associated with urbanisation lifestyle (Ramachandran et al., 2008, Ramachandran et al., 

1999, Esteghamati et al., 2008, Whiting et al., 2011). This migration is inevitably associated with a shift 

in lifestyle from a relatively healthy traditional pattern to the urban scenario of increased food 

quantity and reduced quality, low level of exercise, smoking, and increased alcohol availability. 

It is predicted that 45% of the population will live in urban areas in 2025 (UN, 2008). This urbanization 

process has a significant impact on the prevalence of diabetes, as urban residents have a 1.5 to 4 times 

higher prevalence of diabetes than rural residents (Jamison et. al., 2006). Currently, 68% of people 

with diabetes in sub-Saharan Africa live in urban areas, and this number is expected to increase to 
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78% in 2030. Type 2 diabetes in sub-Saharan Africa primarily affects the poorest people living in urban 

areas Azevedo and Alla (2008), (Sobngwi et al., 2012, Mbanya et al., 2010). Increase in urbanization 

and population age will pose an ever-growing threat in the increase of diabetes. Ramachandran et. al. 

(2007) has shown that urbanization plays a significant role in increasing the burden of cardiovascular 

diseases, a class of diseases which diabetes falls under.  

 Overweight/Obesity 

Driven by rapid globalization and urbanization with subsequent changes in diet and the adoption of a 

sedentary lifestyle, the diabetes epidemic has expanded in line with the worldwide increase in 

overweight and obesity (Assah e., al. 2009). Being overweight or obese massively increases the risk of 

diabetes (Mbanya et. al., 2010).  

Studies by Assah et., al. (2009) and Rotimi et. al. (1995), described overweight/obesity as a major and 

well-known modifiable risk factor for diabetes. A high growing prevalence of overweight and obesity 

has been observed in SSA. For example, in a meta-analysis of obesity among West African populations, 

the prevalence of obesity was 10.0% (95% CI, 6.0-15.0) (Abubakari and Bhopal, 2008; Abubakari et. 

al., 2008). A study in Benin found that abdominal obesity was positively associated with increased 

probability of metabolic syndrome (Ntandou et. al., 2009). Across many sub-Saharan African 

countries, obesity has been linked to both urban residence and wealth – the more wealth a person 

has, the more likely he or she is to be overweight or obese due to nutritional transition (Ntandou et. 

al., 2009), transitions in energy expenditure due to urbanization, and other unknown factors. As stated 

by Sobngwi et. al. (2004) in a study which explored the effects of lifetime exposure to an urban 

environment in Cameroon in relation to obesity and other cardiovascular risk factors, urbanization is 

associated with a drastic decrease in physical activity and changes in dietary habits. Mbanya et. al. 

(2006), Dugas et. al. (2009), Njelekela (2009), Holdsworth (2006), and Duda et., al. (2007) have found 

that the prevalence of obesity is mostly among women in West Africa, South Africa, and Tanzania. 

However, in South Africa, it has been reported that 61% of the population is overweight and obese 

(SAMRC, 2014), with an estimate of 2 million people having diabetes (Adele and Fiona 2014). In 

addition, a complex set of cultural, psychosocial, and biological factors influences the maintenance of 

healthy weight (Scott et. al., 2013; Popkin, 2006), particularly in the Africa region where access to food 

remains a daily challenge.   
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This shift in dietary habits in the last decade has been driven by a change in lifestyle and socio-

economic status. These changes have affected diet, physical activity and ultimately the prevalence of 

obesity, leading to an increase in both diabetes and IGT. 

 Diet and Alcohol, Tobacco and CVD Risk 

Because of foreign direct investment from transnational food companies, processed foods have 

become easily available, contributing to the rise of diabetes. According to Peer et.al. (2014), Tuei et. 

al. (2010), and Madu et al. (2003), the intake of unhealthy foods that are high in fat, refined 

carbohydrates, and sugar contributes to increased energy imbalance and subsequent obesity and 

diabetes. 

Likewise, studies have shown that alcohol consumption is also correlated with an increased risk of 

glucose intolerance (GI) and diabetes (Peer et. al., 2014; Tuei et. al, 2010). However, a few studies 

have reported that alcohol was independently related to diabetes in rural South Africa (Motala et., al. 

2008), and in Kenya, frequent alcohol intake in men was associated with glucose intolerance 

(Christensen et. al, 2009). 

Some studies have revealed that an emerging diabetes risk factor is associated with smoking and 

psychosocial factors, environmental pollutants, and biomarkers of metabolic pathways (Tamayo et. 

al., 2013, Rotella & Mannucci, 2013). Prospective studies also observed that exposure to components 

of traffic and industry-related air pollutants such as Nitrogen Oxide (NO2) and fine particulate matter 

increases the risk of type 2 diabetes (Rjagopalan & Brook, 2012). Therefore, an increase in the level of 

alcohol consumption, unhealthy dieting, and smoking are contributing factors to higher diabetes 

prevalence in Africa.  

 

 Physical Activity 

A physically inactive lifestyle is prevalent in the Africa region (Peer el., al 2014), and can be attributed 

to rapid urbanization and transition in socio-economic life (Tuei et. al., 2010, Unwin et. al., 2010). 

According to WHO, insufficient physical activity is defined as less than 150 minutes’ moderate physical 

activity per week or its equivalent, which is present in about a quarter of men and a third of women 

in Africa region (WHO, 2011). Studies have shown that there is a significant relationship between 
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physical inactivity and diabetes and obesity (Sobngwi et. al., 2002, Assah et al. (2011)). Physical activity 

is more common in rural than urban regions of Africa because rural populations rely on walking for 

transport and often have intense agricultural activities as their main occupation. In Sub-Saharan 

Africa, walking time and pace is drastically reduced (by factors of 2 to 4 for walking at a slow pace and 

6 to more than 10 for walking at a brisk pace) in an urban community as compared with a rural 

community.  Abubakari et., al. (2009) stated that one in seven people in West Africa is physically 

inactive. Some studies report that up to three-quarters of urban residents are sedentary in their daily 

occupation and half of government workers do not undertake any leisure time physical activity. An 

elevated level of physical inactivity increases the risk of developing diabetes (Tuei et. al., 2010). A 

world health survey data indicated that 7-19% of the population in West Africa countries is physically 

inactive. Studies from Cameroon, Kenya and in sub-Saharan Africa have found that higher physical 

activity levels are inversely related to abnormal glucose tolerance (Assah et. al., 2011; Christensen, 

2009; Aspray et. al., 2009). 

 Access to Care 

The healthcare system in Africa is often challenged by insufficient resources to provide adequate 

patient care. Both lack of institutional resources and up-to-date practical information for health care 

providers often jeopardize patient care. A review by Motala (2002) noted that the increasing diabetes 

trends in Africa are influenced by inadequate health care infrastructure, inadequate supply of 

medications, and lack of available healthcare facilities and providers.  

Watkins et al. (2001) suggest that the management of chronic disorders such as diabetes in rural 

African communities could be improved by decentralizing care to local village healthcare facilities to 

improve access to treatment and reduce mortality. This proved to be effective in improving diabetes 

control in a rural Ethiopian village. Gil et al. (2008) attributed the lack of glycemic control among 

diabetics in rural Ethiopia to geographically scattered populations, shortage of drugs, and insulin. Also, 

a lack of diabetes team care is a major factor behind these serious issues of diabetic control and 

complications. 
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2.6. Spatial Clustering of diabetes 

Understanding the local and global pattern of diabetes prevalence and its associated socio0economic 

risk factor can assist in the design of location specific intervention. Technology development such as 

GIS and the advancement of spatial statistics have allowed the application of not only disease mapping 

but also spatial analysis, such as spatial clustering in epidemiological research (Green et., al. 2003, 

Jemal et., al.  2002).  Recent advances in spatial analytical techniques such as exploratory data analysis 

implemented in Geo Data software and statistical software like R provide the capability to uncover 

spatial clusters (Anselin et., al 2007).  These techniques have been used for spatial analysis on different 

disease such as obesity, physical activity, cancer, the pattern for prescribing cardiovascular drugs, 

malaria, and sexually transmitted disease (Goovaerts, 2010; Michimi and Wimberly (2010); Schuurman 

2009, Chen and Wen, 2010).   

Several studies have used spatial clustering methods to identified clusters of deaths due to NCD, such 

as cancer in developed country, for example Rosenger et., Jemal et., al 2002. There are few studies of 

spatial clustering of diabetes that has been conducted using United State county level data (Shrestha 

et., al. 2013, Hipp and Chalise (2016), Gartner et., al. 2016).  Several studies have been carried out on 

different diseases and especially infectious, NCD and high mortality disease, to assist public health 

planning and providing location specific intervention. For example in Denmark spatial cluster of 

leukaemia and type 1 diabetes has been studied (Schmiedel et., al. 2011), also studies on spatial 

clustering in some Africa countries and sub-Sahara countries do exist on different diseases such as on 

cholera in Ghana (Frank et., al. 2000), on HIV mortality in South Africa (Namoshan et., al. 2013) and 

also on tuberculosis in as urban West Africa country (Touray et., al. 2010).  As mentioned by   

Namoshan et., al. 2013, there are several examples of work that have used spatial clustering methods 

to help understand the epidemiology of infectious disease in rural Africa settings. For example, study 

by Nomashan et., al. (2013) demonstrated substantial geographical heterogeneity in the prevalence 

of HIV infection in the rural area of Mthubathuba in KwaZulu-Natal province in South Africa. As cited 

by Namoshan et., al 2013, (Snow et., al. 1999) demonstrated a space time clustering of seven 

childhood morbidity on the Kenyan coast with seasonal peaks in incidence of severe malaria. Similar 

studies on micro epidemiology of malaria were done in Nouna, a rural area in Burkina Faso (Sankoh 

et., al. 2001) and the results are likely to help better understand the observed clustering of mortality 
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in the area. However, we are aware of no previous studies on spatial clustering of diabetes and its 

correlates in Africa as a continent using meta-data.  Therefore, for a NCD related cases like diabetes, 

spatial clustering has not been previously done both at the local level of individual countries or at the 

national level on the continent, this has necessitated the study.  

 

 

 Conclusion 

This chapter reviewed previous studies on diabetes by various researchers on the risk factors and the 

prevalence of diabetes. From all the past studies reviewed, it was found that risk factors such as 

population age, obesity, alcohol consumption, urbanization, physical inactivity, and access to care, all 

have a significant association with diabetes prevalence. This justifies the selection of these variables 

as risk factors for diabetes. 



 
 

3 Chapter 3 

Methodology 

 Introduction 

This chapter introduces the data set and the methodologies used in achieving the objectives. Some 

simple descriptive statistics were conducted to explore the relationship that exists between each 

independent variable and diabetes. Other statistical techniques such as cluster analysis, spatial 

analysis, classical and Bayesian statistical methods were also used.  

 Data Building 

The dataset used in this study is a collection of data from previous studies. Most of the variables 

included in the data are from the World Bank, derived from a UN source (see Appendix A). The 

summary table of definitions and sources of each indicator are shown in Appendix B. The diabetes 

prevalence (20-69 years ages) variables for 2015 were extracted from World Bank data. The next 

section explains the statistical methodology used for the data analysis. 

 

3.2. Exploratory data analysis  

3.2.1: Shapiro–Wilk Normality Test 

This is a test of normality in frequentist statistics. It whether a sample 𝑦1, … , 𝑦𝑛 came from a normally 

distributed population. The test statistics is 

 
𝑊 = 

(∑ 𝑏𝑖𝑦(𝑖)
𝑛
𝑖=1 )

2

∑ (𝑦𝑖 − 𝑦̅)2
𝑛
𝑖=1

 (3.0) 

 

Where 𝑦(𝑖) is the ith order statistics, 𝑦̅ is the sample mean, and 𝑏𝑖 is the constant. The null hypothesis 

of this test is that the population is normally distributed (𝐻𝑜: 𝑃𝑖  ~ 𝑁). Thus, the null hypothesis is 

rejected if the p-value is less than the chosen alpha level, and we conclude that the samples are not 
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from a normally distributed population. On the contrary, if the p-value is greater than the chosen 

alpha level (in this study we choose 𝛼 = 0.05), then the null hypothesis that the data came from a 

normally distributed population cannot be rejected.  

 

3.2.2. Spearman Rho Correlation Test  

Spearman’s rho, denoted as 𝜌 (rho) or (r), is a non-parametric measure of statistical dependency 

(degree of association) between two variables. It is used to assess the relationship between two 

variables. Spearman’s test is like the Pearson correlation, but while Pearson correlation assesses linear 

relationships, Spearman’s correlation assesses monotonic relationships (whether linear or not). The 

formula is given as: 

 
𝜌 = 1 − 

6∑𝑑𝑖
2

𝑛(𝑛2 − 1)
 (3.1) 

 

Where 𝜌 is the spearman correlation, 𝑑𝑖 the difference between the ranks corresponding values 𝑋𝑖 

and 𝑌𝑖 and n is the number of value in each data set. 

 

3.2.3. Ordinary Least Square Regression (OLS)  

Ordinary Least Square (OLS) linear regression is a statistical technique used for the analysis and 

modelling of linear relationships between a response variable and one or more predictor variables. If 

the relationship between two variables appears to be linear, then a straight line can be fit to the data 

to model the relationship. For one of this study objective of determining the relationship between 

diabetes prevalence (response variables) and the risk factors (predictors). The linear equation or 

equation for a straight line for a bivariate regression takes the following form: 

𝑦 = 𝑚𝑥 + 𝑐 

where 𝑦 , is the response (dependent) variable, is 𝑚 the gradient (slope), 𝑥 is the predictor 
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 (Independent) variable and  𝑐 is the intercept.  The modelling application of OLS linear regression 

allows one to predict the value of the response variable for varying inputs of the predictor variable 

given the slope and intercept coefficients of the line of best fit 

 

3.2.4. Geographic Weighted Regression (GWR) 

Geographically weighted regression (GWR) is a spatial analysis technique that takes non-stationary 

variables or data into consideration and then model the local relationships between the predictors 

and an outcome of interest (Brunsdon et., al. 1996, Brunsdon et., al. 1998, Fotheringham et., al. 2002, 

Goovaerts, 2008).  

Consider a global regression model written as:  

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑘 𝑥𝑖𝑘 + 𝜀𝑖     (3.2.1) 

 

GWR is an extension of the traditional regression model, which allow local parameter rather than 

global parameters to be estimated so that the model above equation 3.2.1 can be rewritten as: 

 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘𝑘 (𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖    (3.2.2) 

 

Where ( (𝑢𝑖 , 𝑣𝑖)   denotes the coordinates of the  𝑖𝑡ℎ  point in space and 𝛽𝑘 (𝑢𝑖𝑣𝑖)    is a realisation of 

the continuous function  𝛽𝑘(𝑢, 𝑣)    at point 𝑖. That is, we allow a continuous surface of parameter 

values, and the measurements of this surface are taken at certain points to denote the spatial 

variability of the surface. In this case equation 3.2.1 is the special case of equation 3.2.2 in which the 

parameters are assumed to be spatially invariant. Thus, the GWR in equation 3.2.2 recognises that 

spatial variations in relationship might exist and therefore provides a way in which they can be 

measured.  

GWR is an outgrowth of ordinary least square regression (OLS) that add a level of sophistication by 

allowing the relationship between the independent and dependent variables to vary by locality 
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(Wheeler and Paez 2010). GWR allows visualization of stimulus response relationships and if that 

relationship varies in space and it also accounts for spatial autocorrelation of variables (Mitchell, 2012, 

Fotherigham et., al. 2002). In summary, GWR constructs a separate OLS equation for every location in 

the data set, which incorporates the dependent and explanatory variables of locations falling within 

the bandwidth of each target location. Bandwidth can be manually entered by the user with the option 

of selecting the default or adaptive.  

   Also, GWR can be applied under the assumptions that the strength and direction of the relationship 

between a dependent variable and its predictors may be modified by contextual factors (Mitchell 

2012). However, GWR has some limitations, which include the problem of multicollinearity and the 

approaches to calculation goodness of fit statistics (Charlton and Fotheringham 2009, Leung et., al. 

2000, Wheeler and Tiefelsdorf 2005) 

 

3.3. Cluster Analysis 

3.3.1. Definition  

Cluster analysis is a multivariate method which aims to classify a sample of subjects (or objects) based 

on a set of measured variables into several different groups such that similar subjects are placed in 

the same group (Cornish R., 2000). Cluster analysis groups objects (countries) based on the 

information found in the data describing the objects or their relationship.  It is a convenient method 

for identifying a homogenous group of objects called clusters. The clusuters in this study are African 

countries. The aim is that countries in the same group will be similar (or related) to one another and 

different from (or unrelated) to those in other groups. As stated by Tango (2010), clusters should 

exhibit high internal homogeneity and high external heterogeneity. The objectives of cluster analysis 

are exploratoration and relationship identification which are not possible with observed data. This 

similarity measure can be done either by distance, correlation or association. 
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3.3.2. Cluster Criteria for Continuous Data 

One of the possible ways of extracting information from data is to find homogeneity clusters or similar 

units (Romesburg, 2004). Therefore, an informative partitioning of the objects will produce groups of 

similar patterns.  

As stated by (Tango, 2010), the most common clustering criteria derived from an  n x p matrix X of 

continuous data makes use of a decomposition of the p x p dispersion matrix G, given by: 

 

 

 
𝐺 =  ∑∑(𝑋𝑚l − 𝑋̅) (𝑋𝑚𝑙 − 𝑋̅)

′

𝑛𝑚

𝑙=1

𝑔

𝑚=1

 (3.3) 

 

Where 𝑋𝑚𝑙 is the p-dimensional vector of observation of the 𝑙𝑡ℎ object in group m, and 𝑋̅ is the p-

dimensional vector of overall sample means of each variable. The total dispersion matrix can then be 

partitioned into the within-group dispersion matrix, denoted as: 

 
𝑇 =  ∑∑(𝑋𝑚𝑙 − 𝑋̅𝑚) (𝑋ml − 𝑋̅𝑚 )

′

𝑛𝑚

𝑙=1

𝑔

𝑚=1

 (3.4) 

 

Where 𝑋̅𝑚  is the p-dimensional vector of sampled means within group 𝑚 and the between-group 

dispersion matrix, denoted as: 

 
𝑊 = ∑ 𝑛𝑚 (𝑋̅𝑚 − 𝑋̅)

𝑔

𝑚=1

(𝑋̅𝑚 − 𝑋̅ )
′ (3.5) 

 

So that we have, 

 𝐺 = 𝑇 +𝑊 (3.6) 
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Because of this partitioning, the within-group and between-group variation needs to be minimised 

through taking into consideration the Euclidean distance between individual and group means, given 

as: 

 
𝐸 = ∑∑(𝑋𝑚𝑙 − 𝑋̅𝑚) (𝑋ml − 𝑋̅𝑚 )

′

𝑛𝑚

𝑙=1

𝑔

𝑚=1

  

∑∑𝑑𝑚𝑙,𝑚
2

𝑛𝑚

𝑙=1

𝑔

𝑚=1

 

 

(3.7) 

 

Where 𝑑𝑚𝑙,𝑚is the Euclidean distance between the 𝑙𝑡ℎ individual in the 𝑚𝑡ℎ group and the mean of 

the 𝑚𝑡ℎ group, also derived based on distance matrix: 

 
𝐸 =  ∑

1

2𝑛
 ∑∑𝑑𝑚𝑙,𝑚𝑣

2

𝑛𝑚

𝑣=1

𝑛𝑚

𝑙=1

 

𝑔

𝑚=1

 (3.8) 

 

 

Where  𝑑𝑚𝑙,𝑚𝑣 is the Euclidean distance between the 𝑙𝑡ℎ and in 𝑣𝑡ℎ individual in the 𝑚𝑡ℎ group.  

 

3.4. Clustering Techniques 

In this section, we explain the most renowned clustering methods, types of clustering and the 

techniques in clustering. The main reason for having many clustering methods is the fact that the 

notion of “cluster” can be defined differently or measured differently or apprehended in different 

angles (Estivill-Castro, 2000). Consequently, many clustering methods have been developed, each of 

which uses a different induction principle. Therefore, a precise definition of “similarity” (or “closeness 

“, or proximity”) is required in cluster analysis. However, it is natural to employ the familiar concept of 

distance when the grouping is based on variables. Therefore, this study groups the African countries 

by analyzing the similarity in the pattern of diabetes and associated predictors. 
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Farley and Raftery (1998) suggest dividing the clustering methods into two main groups:  hierarchical 

and non-hierarchical (or partitioning) methods. Nonetheless, this study uses both methods as 

suggested by (Romesburg, 2004). The most commonly used non-hierarchical method is the k-mean 

method (Tango, 2010) which is also used in this study.  

The hierarchical method constructs the clusters by recursively partitioning the instances in an either 

top-down or bottom up fashion. This method can be subdivided as agglomerative or divisive. The 

agglomerative method is a bottom-up approach where each observation starts in its own cluster, and 

pairs of clusters are merged as one moves up the hierarchy. The divisive method, on the other hand, 

is a top down approach where all observations start in one cluster and splits are performed 

concurrently as one moves down the hierarchy. The result of hierarchical clustering is a dendrogram 

representing the nested grouping of objects and similarity levels at which groupings change. Clustering 

is obtained by cutting the dendrogram at the desired similarity level. The emerging division of clusters 

is performed according to some similarity measure, chosen to optimise some criterion. The 

hierarchical clustering methods could be further divided according to how the similarity measure is 

calculated. These are single-link, complete-link and average-link clustering (Jain et. al., 1999). 

Partitioning or non-hierarchical methods relocate instances or objects by moving them from one 

cluster to another, starting from an initial partitioning. This method requires that the number of 

clusters be pre-set by the user. Diverse types of partitioning methods include error-minimizing 

algorithms, graphic-theoretic, density-based, or model-based methods, grid-based methods and soft-

computing methods. The method of soft-computing is classified into k-means, simulated annealing 

(SA), genetic algorithm (GA), and centroid methods. 

In choosing which technique to use, an empirical study of K-Means, GA, and SA was presented by Al-

Sultan and Khan (1996). GA and SA were judged comparable in terms of solution quality, and all were 

better than K-mean. However, the K-mean method is the most efficient in terms of execution time, as 

against other methods.  
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3.4.2. K-Means Clustering  

This is a prototype-based, non-hierarchical clustering technique that attempts to find a user-specified 

number of clusters (k), which are represented by their centroids (Tango, 2010). Prototype-based 

clustering techniques create a one-level partitioning of the data objects. There are many of such 

techniques, but two most used are K-means and K-medoid. The K-mean defines a prototype in terms 

of a centroid, which is usually the mean of a group of points and is typically applied to objects in a 

continuous n-dimensional space. This study uses K-means, which is one of the oldest and most widely-

used clustering algorithms (Tango, 2010). 

The aim of K-means clustering is to partition an observation into k clusters. Therefore, the observation 

is said to belong to the cluster with the nearest mean which serves as a prototype of the cluster. The 

strengths and weaknesses of K-means clustering are that it is efficient, simple to apply, and can be 

used for a wide variety of data types. However, it cannot handle non-globular clusters or clusters of 

varied sizes and densities, although it can typically find pure sub-clusters if a large number of clusters 

is specified. In addition, the K-means technique has trouble clustering data that contains outliers. 

Outlier detection and removal can be of significant help in such cases. However, K-mean is restricted 

to data for which there is a notion of a center (centroid). A related technique, K-medoid clustering, 

does not have such restrictions but is very expensive.   

Clustering can be treated as an optimization problem. One way to solve this problem is to find a global 

optimum. This is done by enumerating all possible ways of dividing the points into clusters and then 

choose the set of clusters that best satisfies the objective function, for example, minimising the total 

sum of squares (SSE). This approach is computationally intractable, and so a more practical approach 

is needed. One approach to optimizing a global aim function is to rely on algorithms that are often 

good but not optimal.  An example of this approach is the K-means clustering algorithm which tries to 

minimize the sum of the squared distances (error) between objects and their cluster centers. The 

assumption here is that the data is one-dimensional, that is,  𝑑𝑖𝑠 (𝑥, 𝑦) =  (𝑥 − 𝑦)2, which does not 

essentially change anything, but greatly simplifies the notation.   
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3.4.3. K-Means Algorithm  

The K-means algorithm is simple, and the first step is to choose the initial centroid, where K is a user-

specific parameter, namely the number of desired clusters. Each point is then assigned to the closest 

centroid, and each collection of points assigned to a centroid is a cluster. The centroid of each cluster 

is then updated based on the points assigned to the cluster. The assignment is repeated and update 

steps until no points change clusters or until the centroid remains the same. 

The K-means algorithm is described as: 

1. Select K points as initial centroids 

2. Repeat 

3. Form K clusters by assigning each point to its closest centroid 

4. Recompute the centroid of each cluster 

5. Until centroids do not change 

For some combination of proximity functions and types of centroids, K-means usually converges to a 

solution, that is, K-means reaches a state in which no points shift from one cluster to another, and 

hence, the centroid is stable. Because most of the convergence occurs at the initial steps, however, 

the condition (step 5) of the algorithm is often replaced by a weaker condition, for example, repeat 

until only 1% of the points change clusters. 

In assigning a point to the closest centroid, a proximity measure that will quantify the notion of 

“closest” is needed for the specific data under consideration. Euclidean (𝐿2) distance is often used in 

Euclidean space, while cosine similarity is more appropriate for documents. However, there are 

several types of proximity measures that are appropriate for a given type of data. For example, 

Manhattan (𝐿2) distance can be used for Euclidean data, while the Jaccard measure is often used for 

document.  

Since the algorithm repeatedly calculates the similarity of each point to each centroid, the similarity 

measures used in K-mean are relatively simple. Consider some data whose proximity measure is 

Euclidean distance. The objective function which measures the quality of clustering uses the sum of 

squared error (SSE), also known as scattering. The error of each data point is calculated, that is, its 

Euclidean distance to the closest centroid, and then the total sum of squared errors is computed.  
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3.4.4. K-Means as an Algorithm to Minimise the Sum of Squared Errors (SSE) 

This section shows how the centroid for the K-means algorithm can be mathematically derived when 

the proximity function is Euclidean distance and the objective is to minimise the SSE. Specifically, we 

investigate how we can best update a cluster centroid to minimise the cluster's SSE. Consider the 

geometrical representation of the object set  𝜗 by a cloud of points designated as 

 𝑁(I) =  {𝑜𝑖 | 𝑖 ∈ 𝐼 } (3.7) 

 

Equally weighted in space  ℝ𝑝 and endowed with the usual Euclidean distance measure.  

The initial state of the algorithm can be either a partition  

 𝑃0 = { 𝑝1
0 , 𝑝2

0, ……𝑝𝑘
𝑜 , … . . , 𝑝𝐾

𝑜   } (3.10) 

of  𝜗 or a set  

 𝐺0 = { 𝑔1
0 , 𝑔2

𝑜 , ……𝑔𝑘
𝑜 , … . . , 𝑔𝐾

𝑜} (3.11) 

 

of   K distinct points, which define the K attraction centers. This can be determined at random or 

from expert knowledge. Without loss of generality, it is assumed that we start with 𝐺0 =

 { 𝑔1
0 , 𝑔2

𝑜 , ……𝑔𝑘
𝑜 , … . . , 𝑔𝐾

𝑜} 

In satisfying the proximity requirement, the first encountered in selected. 𝜗 is then divided in K cluster, 

denoted as: 

𝑃0 = { 𝑝1
0 , 𝑝2

0, ……𝑝𝑘
𝑜 , … . . , 𝑝𝐾

𝑜  } 

Partition obtained. 

Steinley (2003), suggested the procedure in k-means methods as follows: 

Step 1: randomly partition the object into k clusters (specify the number of clusters to work with). 

Step 2: calculate initial centroid from this partition (mean within a cluster is calculated). 

Step 3: assign each data point to its nearest centroid (iteratively, to minimise the within-cluster) until 

no major differences are found. 
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Step 4: also, a further use of locally optimal k solution can be defined by combining information 

regarding the cluster problem (number of variables, number of clusters) 

Step 6: finally, from the number of k defined, empirically derive the cluster membership. 

 

3.4.5. Hierarchical method (Ward’s and Centroid method) 

The five most popular hierarchical methods of clustering are single linkage, complete linkage, average 

linkage, centroid methods, Ward's method and Mahalanobis distance (Kaufman and Rousseeuw, 

2009). 

Ward’s method simply joins clusters with a small number of observations and is strongly biased toward 

producing clusters with the same shape and width, and roughly the same number of observations. 

The aim in Ward’s method is to join cases into clusters such that the variance within a cluster is 

minimised. This is done such that each case begins as its own cluster. Clusters are then merged in such 

a way as to reduce the variability within a cluster. In this method, at each stage, the average similarity 

of the cluster is measured, and the difference between each case within a cluster and the average 

similarity is calculated and squared. Therefore, the sum of square deviation is used as a measure of 

error within a cluster. The result produces both a dendrogram and other statistical analysis results 

which are shown in Chapter Four.  

Generally, hierarchical cluster analysis provides an excellent framework with which to compare any 

set of cluster solutions. The method is used in predicting and judging the number of clusters that 

should be retained or considered. 

This study uses K-mean, Ward's and Centroid methods of cluster analysis to compare the results. The 

results of these methods are shown in Chapter Four. 

 

3.4.6. Conclusion  

Generally, K-means aims at partitioning a given data set into distinct, exclusive clusters so that the 

data points in each group are quite like each other. The underlying idea of K-means clustering is that 

the cluster that contains the smallest possible within-cluster variation of all the observation in relation 
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to each other is said to be a good cluster. The most common way of defining the variation is by using 

the Euclidean or Mahalanobis distance (to compensate for correlated variables). 

 

3.5. Spatial Analysis 

In this section, we discuss the spatial configuration/distribution of diabetes prevalence through 

clustering with the aim of showing the pattern of a disease cluster.  The section is divided into three 

sub-sections. The first section explains the importance of investigating disease clustering and its 

classification. The second and third sections describe the statistical methods for computing spatial 

analysis of a geographical distribution area. The subsequent sections deal with the estimation of the 

parameters. 

3.5.2. Introduction    

In epidemiology studies, it is important to evaluate and investigate whether a disease is randomly 

distributed or clustered over time and/or space after adjusting for known confounding factors that 

may contribute to the study of the disease (Tango, 2010). Furthermore, since the 1980s, interest has 

grown in the study of relationship between risk of a disease and proximity of residence to the source 

of the disease. In 1990, “Guidelines for investigating clusters of health events” was issued by the 

Centers for Disease Control and Prevention. A statistical summary of methods used in assessing 

clusters of health events was provided as a resource for researchers and investigator as a basis for 

analysis. This section introduces statistical methods for detecting disease clustering which are widely 

used in the literature. 

3.5.3. Classification of Disease Clustering 

According to Tango (2010), disease clustering is classified into one of three groups: temporal, spatial 

or space-time clustering. Temporal clustering examines the question of whether cases tend to be 

located close to each other in time (Kaplan et. al., 1982), while spatial clustering examines the question 

of whether cases tend to be located close to each other in space. Space-time clustering examines the 

question of whether cases that are close in space are also close in time (Tango, 2010). 

To investigate whether clustering is real and significant, many different tests have been proposed for 

different purposes. Besag and Newell (1991) classified these tests into 
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a) General tests (designed for investigating the question of whether clustering occurs over the 

study region), and  

b) Focused tests (designed for assessing the clustering around a prefixed point) (Michelozzi et. 

al., 2002). 

General tests were further classified by Kulldorff (1988) into  

a) Global clustering tests: designed for evaluating cases which tend to come in groups or are 

located close to each other no matter when and where they occur. 

b) Cluster detection: designed both for detecting localized clusters and evaluating their 

significance ((Arslan et al., 2013, Xiang and Song, 2016, Yazdy et al., 2015, Condoleo et al., 

2016, Gartner et al., 2016). 

In general, the type of data used for cluster investigation can be classified into two types: 

a) individual geographical location data on coordinates of disease or incidence by residence, 

usually by street address, zip code or post code unit;  

b) regional count data, which includes number of cases and population at risk in specific areas.  

However, due to the restriction of clinical confidentiality, obtaining individual data can be 

impossible. 

This study considered the problem of detecting disease clustering in space based on regional count 

data (diabetes prevalence data), which is illustrated in the section below. In this section, firstly, we 

describe the construction of neighbors and spatial weights which are a prerequisite in determining 

the spatial autocorrelation, which is an important aspect in spatial statistics that measure the 

similarity (correlation) between nearby observations. We then go into ways of measuring spatial 

autocorrelation. 

 

 



Chapter 3. Methodology.   35 
 

 
 

3.5.4. Spatial Neighbours and Weights 

3.5.4.1. Spatial Neighbours 

This is the first step in spatial autocorrelation. It simply identifies which regions or states are neighbors 

of a given region or state.  Here, the first step is to define which relationships between observations 

are to be given a non-zero weight, i.e. choose the neighbor criterion to be used. Secondly, assign 

weights to the identified neighbor links.  This takes the form of a square symmetric R X R matrix with 

(i, j) element equal to 1 if regions i and j are neighbors of one another (or spatially related) and zero 

otherwise.  

Conventionally, the diagonal matrixes are set to zero. The matrix can be constructed using different 

approaches such as linear continuity, rook contiguity, queen contiguity and distance base (Renard, 

2011). 

3.5.4.2. Spatial Weights 

A slight transformation of a spatial neighbour is referred to as a spatial weight. The most common 

transformation is called row standardization, in which the rows of the neighbour’s matrix are made to 

sum to unity. 

Let W with elements 𝑤𝑖𝑗̃  be a spatial neighbour matrix. To row-standardize, we divide each element 

in a row by the sum of the elements in the row. This gives a spatial weights matrix W, with element 

𝑤𝑖𝑗 , which can be defined by: 

 
𝑤𝑖𝑗= 

𝑤̃𝑖𝑗
∑ 𝑤̃𝑖𝑗𝑗

 (3.12) 

 

The library package “spdep” was used in R for the analysis of the nb2listw function. 
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3.5.5. Spatial Autocorrelation Tests 

Spatial autocorrelation tests are one of the many tests which examine the entire population area for 

spatial autocorrelation, assuming the spatial process is the same everywhere. Spatial autocorrelation 

measures how much close objects are in comparison with other close objects. It helps to understand 

the degree to which one object is similar to other nearby objects. (Fischer and Getis, 2009, Pfeiffer et 

al., 2008, Olsen et al., 2010). 

One of the reasons why spatial autocorrelation is important is because statistics relies on observations 

being independent from one another. Therefore, if autocorrelation exists in a map, then there is a 

violation of the facts that observations are independent from one another. Since observations may 

not be independent when made at various locations, measurements may be closer in value when 

made at the nearby location than measurements made at a location that is far apart. This 

phenomenon is referred to as spatial autocorrelation. Spatial autocorrelation measures the 

correlation of a variable with itself through space. Also, spatial autocorrelation indicates if there is 

clustering or dispersion in a map.  (Druck et al., 2004, Fotheringham and Rogerson, 2013, Fischer and 

Getis, 2009).   

Spatial autocorrelation is defined as the coincidence between similarity in value location (Fischer and 

Getis, 2009). Statistically, this can be explained as, if 𝑦𝑖 and 𝑦𝑗 are realizations of random variable y, 

indexed by spatial locations, then we have spatial autocorrelation if 

 𝐶𝑜𝑟𝑟 (𝑦𝑖, 𝑦𝑗)  = 𝐸 (𝑦𝑖𝑦𝑗) − 𝐸(𝑦𝑖)𝐸(𝑦𝑗)   ≠ 0 (3.13) 

 

A positive spatial autocorrelation is said to occur when similar values occur near one another (or say 

when similar values cluster together in a map), while a negative spatial autocorrelation occurs when 

dissimilar values occur   near one another (or say cluster together in a map). As stated by (Renard, 

2011), the test statistics usually used for spatial autocorrelation are the Moran Index, Geary’s C, 

Gestis-Ord G, and Mantel test. This study uses only Moran Indices due to its popularity. It is discussed 

in the next section. 
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3.5.5.1. Moran Indices Test 

Moran’s I indices were developed by Patrick Moran in 1950 as a tool for spatial exploratory data 

analysis. It is a diagnostic statistical tool used to detect spatial autocorrelation in a dataset, given that 

one has a weight matrix  𝑤  with entries 𝑤𝑖𝑗  representing distances between observations  𝑋𝑖  and 

𝑋𝑗  (Elliot et al., 2000).  

It follows the basic form for Global Moran Index (GMI) with similarity between regions i and j defined 

as the product of the respective difference between 𝑋𝑖 𝑎𝑛𝑑 𝑋𝑗 . The statistic is defined for a data 

vector Y by dividing the basic form by the sample variance. This tool has been subsequently used in 

almost all studies employing spatial autocorrelation (Arslan et al., 2013, Xiang and Song, 2016). 

Moran I take the form of a correlation coefficient where the mean of a variable is subtracted from 

each sample value in the numerator. It is calculated as a ratio of the product of the variable of interest 

and its spatial lag, with the cross-product of the variable of interest and adjusted for the spatial 

weights used. This results in coefficients ranging from (-1) to (+1), where a value between (0) and (+1) 

indicates a positive association between variables, a value between (0) and (-1) indicates negative 

association, and (0) indicates no correlation between variables. Therefore, a positive spatial 

autocorrelation is said to occur when Moran’s I is close to +1 and if close to -1, then we say a negative 

spatial autocorrelation occurs. While a positive Moran’s I hints at data is clustered, a negative Moran’s 

I implies data is dispersed.  (Fischer and Getis, 2009, Fotheringham and Rogerson, 2013). 

In the study of spatial patterns, it may logically follow that close observation should or is likely to be 

similar than those far apart. It is usual to associate a weight to each pair 𝑥𝑖  and  𝑥𝑗   which quantifies 

it. In its simplest form the weight usually takes the values 1 for close neighbours, and 0 otherwise. We 

set 𝑤𝑖𝑖 = 0 , and the weights are sometimes referred to as a neighbouring function. The formula for 

Moran I is given as:  

 

 

I(d)  =

1
𝑛
∑ 〖∑ 𝑤𝑖𝑗

𝑛
𝑗 (𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅))

𝑛
𝑖

1
𝑛
∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖

 

 

(3.14) 
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where I(d) = Moran correlation coefficient as a function of distance 

  𝑤𝑖𝑗  = spatial weights of the link between i and j, a matrix of weighted values 

 1 = 𝑥𝑖  and  𝑥𝑗are within a given distance class, for  𝑥𝑖 ≠ 𝑥𝑗 

 𝑥𝑖  and  𝑥𝑗=   value of variable at location i and j 

 𝑥̅  = the mean of variable of interest 

 n = sample size, and  𝑆0 is the sum of all 𝑤(𝑖𝑗)
2 

therefore, equation 3.14 can also be rewritten as equation 3.15 below: 

 

 

 

(3.15) 

 

Though Moran I is similar to Pearson correlation, it is not bounded on [-1, 1] because of the spatial 

weights. In R, the function to compute Moran I is “Moran. Test”. 

3.5.6. General Test for Detecting Spatial Clustering (Moran I Indices and Local Indexes)   

3.5.6.1. Moran I Indices Spatial Clustering  

GMI is a spatial statistics tool used to describe the overall spatial pattern of attributes over definite 

geography. In this case, GMI is used to determine the spatial correlation of diabetes prevalence among 

the entire population across the Africa continent (Aselin, 1996; Daniella et., al., 2016). The goal of GMI 

in spatial autocorrelation is to summarize the degree to which similar observation tend to occur near 

each other. That is, we want to check if the same pattern (of diabetes) or process occurs over the 

entire geographic area. However, it is good to know that global statistics only suggests that there is 

clustering but does not identify the areas of clusters. Therefore, GMI is often used first to determine 

if there is an evidence of spatial association. Therefore, the similarities of values at location 𝐵𝑖 𝑎𝑛𝑑 𝐵𝑗  
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are weighted by the proximity of i and j. The weight 𝑤𝑖𝑗 defines proximity. The extent of similarity is 

represented by the weighted average of similarity between the populations.   

Thus, the GMI tool is an inferential statistic which provides a test of the null hypothesis, which states 

that the spatial distribution shows a complete randomness of the attributes being studied. That is, the 

attribute value of the location does not depend on the values of neighboring locations. 

3.5.6.2. Monte Carlo Simulation 

There is currently no simple and systematic way  and method of significance testing in spatial 

clustering, these methods are  normal permutation and Monte carlo simulation. Monte Carlo 

simulation was used in order to minimise and understand error in the map.  This is a permutation test 

for Moran I statistics, calculated by using random permutations for the given spatial weighting 

scheme, to establish the rank of the observed statistics in relation to the nsim simulated values. 

This approach repeats randomization of the observation a large number of times (for example  

𝑁𝑠𝑖𝑚  ~   999). A Moran’s I statistic is calculated for each randomization and  can be compared to the 

Moran’s I. The function “moran.mc” is used to carry out the test in R.  

 

3.5.6.3. Moran Correlograms 

Spatial correlograms are used to examine the patterns in spatial autocorrelation. The correlograms of 

the Moran’s I statistic are used to determine the appropriate number of neighbors or distance. They 

are used to show how correlated pairs of spatial observations are when we increase the distance (lag) 

between them. This approach is used to calculate Moran’s I based on the number of k’s for a range of 

k lags (also known as spatial lag).  

 

3.5.6.4. Local Indexes of Spatial Autocorrelation (LISA) 

Global statistics can establish if there is clustering, but do not identify the areas of particular clusters. 

In spatial analysis, the global test is often used first to determine if there is evidence of spatial 

association. Once that is detected and established, it is necessary to detect local areas of similar 

values. This is done by estimating local statistics such as Local Indexes of Spatial Autocorrelation (LISA). 
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The aim of the LISA test is generally to detect local areas of similar values. It therefore requires local 

statistics. LISA tests are decompositions of global indicators into the contribution of each individual 

observation, indicating the extent of significant spatial clustering of similar values located around that 

observation. LISA can be used to detect clusters, it allow for a classification of the significant locations 

as high-high and low-low spatial clusters and high-low and low-high spatial  outliers.  In this case, a 

reference  to high and low is relative to the mean of the variable and should not be interpreted in an 

absolute sense. Usually four types of spatially  associated cluster can be identified. These are: 

High-High (denoted as H-H) : this is a cluster region where those  above mean prevalence are 

neigboured by other similar countries 

Low-Low ( denoted as L-L) : this is the cluster states where those with below mean prevalence is 

neigboured by other similar countries  

Low-High ( denoted as L-H and High –Low ( denoted as H-L) : are cluster countries where countries of 

isolated low and high prevalence  with similar neighbors). 

Similarly, from  Local Moran’s I also known as  Hot spot  concentration is on the spatial concentration 

of high-low  and low-high values that is the  spatial outliers 

As a result, the sum of LISA’s for all observation is proportional to the Global Moran I, denoted as: 

 
𝐼𝑡  =    ∑∑ 𝑤𝑖𝑗𝑧𝑖𝑗

𝑇

𝑗=1
𝑡

 

 

(3.16) 

 

where 𝑧𝑖𝑗  is the elements of a spatial contiguity matrix. Under the null hypothesis of no spatial 

association, the moment for 𝐼𝑡 statistics can be derived for a randomnisation hypothesis.  

Generally, with LISAs, each test gives an indication of the extent of significant spatial clustering of 

similar values located around that observation of interest. Therefore, the location of a particular 

observation is identified and defined as a neighborhood, and then formalized with the spatial 

adjacency weight matrix, W. However, it should be noted that W can be based on the sharing distance 

from one location to another or share a border in full or partially.  



Chapter 3. Methodology.   41 
 

 
 

Waller and Gotway (2004), (Elliott and Wartenberg, 2004) describe spatial outliers as a spatially 

referenced object whose non-spatial attributes are significantly different from those of other spatially 

referenced objects in its spatial neighbourhood. The two types of spatial outliers are multi-

dimensional space-based outliers which use Euclidean distances to define their spatial 

neighbourhoods and graph-based outliers which use graph connectivity. 

The results of the LISA maps clusters which is used to identify the outliers (hotspots) is shown in 

chapter four. 

3.4.6. Conclusion 

In investigating spatial correlation, spatial autocorrelation test is suggested using GMI. However, with 

limitation of GMI which only shows the global pattern, additional method of Moran I was used to 

investigate spatial pattern as the regional level which helps in detecting the similarity function of the 

prevalence among the regions. There is a need to identify the outliers (hotspots) countries in other to 

help formulate network collaboration in the control over diabetes.  

 

3.6. Distribution for Count data 

3.6.2. Modelling Count Data 

Most analyses of public health data involve disease counts, proportions, or rates as outcome variables 

rather than continuous outcomes (Waller and Gotway, 2004). Spatial analysis often focuses on counts 

from geographical areas with relatively few subjects at risk, and few expected cases. Such cases 

require modeling appropriate count outcomes. Count data are typically used to model the number of 

occurrence of an event within a fixed period. Examples of count data may include: 

 The number of goals scored by a team 

 The number of murders in a city 
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3.6.3. The Poisson distribution  

The most popular distribution used in modeling count data is the Poisson distribution, which is derived 

under three assumptions: 

1. The probability of one event happening in a short interval is proportional to the length of the 

interval. 

2. The number of events in non-overlapping intervals is independent, and  

3. The probability of two events happening in a short interval is negligible in comparison to the 

probability of a single event happening. 

 

The probability mass function of the Poisson (λ) distribution is 

 
Pr(𝑌 = 𝑦)  =    

𝑒−𝜆 𝜆𝑦

𝑦!
 (3.17) 

 

For 𝜆 > 0, The mean and variance of a Poisson distribution are shown as  
       𝐸(𝑌) = 𝑉𝑎𝑟(𝑌) = λ  

 
(3.18) 

 
The assumption of a Poisson distribution having mean equal to its variance is known as the 

equidispersion assumption. This assumption implies that the Poisson distribution does not allow for 

the variance to be adjusted independently of the mean. Likewise, in the presence of underdispersion 

data (variance is less than the mean) or over-dispersion data (variance is greater than the mean), the 

Poisson distribution is not an appropriate model and one has to use another parametric model, with 

an additional parameter compared to Poisson. In the case of over-dispersed data, one of the 

distributions that can provide a better fit is the negative binomial distribution. 
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3.6.4. The Negative Binomial Distribution 

The probability mass function of the negative binomial (𝜇, 𝑘) distribution is 

       𝑃(𝑌 = 𝑦|𝜇, 𝑘) =  𝑘𝑦(1 − 𝑘)𝜇 (𝑦+𝜇−1
𝑦

)     y=0,1,2, … 

 

(3.19) 

the mean and variance of an NB(𝜇, 𝑘) are respectively 

 
𝐸[𝑌] =  

𝑘𝜇

(1 − 𝑘)′
 

 

        𝑉[𝑌] =  
𝑘𝜇

(1 − 𝑘)2
 

(3.20) 

 

An alternative formulation of the negative binomial distribution is  

 

𝑃(𝑌 = 𝑦|𝜇, 𝑘) =  
Ґ (
1
𝑘
+ 𝑦)

Ґ (
1
𝑘
)𝑦!

(
𝑘𝜇

1 + 𝑘𝜇
)
𝑦

(
1

1 + 𝑘𝜇
)

1
𝑘

 (3.212) 

 

Thus, the mean and variance for the NB (𝜇, 𝑘) is  

                                                           

 𝐸[𝑌] =  𝜇 

𝑉[𝑌] = 𝜇 +  𝑘𝜇2 
(3.22) 

 

The first parameter in equation 3.20 of the formulation is the mean of the distribution, whereas the 

second (equation 3.22) is referred to as the dispersion parameter. A large value of k is a sign of over-

dispersion, but when 𝑘 → 0, the variance of the distribution in equation 3.22 is equal to the mean, 

and that gives us a special case of Poisson. 
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3.6.5. The Fractional Probit Model 

The Fractional Probit Model was introduced by Bliss Chaster (Bliss C.I 1934) as a fast method for 

computing maximum likelihood estimates as proposed by Ronald Fisher. The model is a type of 

regression model where the dependent variable can take only two values (say 0 or 1). The aim of this 

is to estimate the probability that observations with a characteristic will fall into a specific one of the 

categories (0 or 1). 

Suppose we have a continuous dependent variable y in (0,1) and a vector of independent variables 

(x). Assume we want to fit a regression to the mean of y conditional on x, that is, E (y | x), and because 

y is in [0,1], we want to restrict that E (y | x) is also in [0,1]. Thus, the fractional Probit objective is 

achieved by using the following model: 

 Probit:  𝐸 (𝑦|𝑥) = ∅ (𝑥, 𝛽) 

 Heteroskedastic Probit:  𝐸 (𝑦|𝑥) =  ∅(𝑥𝛽 exp(𝑍𝛾)) 

 Logit: 𝐸(𝑦|𝑥) = exp(𝑥𝛽) /(1 + exp(𝑥𝛽)) 

The fractional regression implements quasi-likelihood estimators, which implies that there is no need 

to know the distribution to obtain consistent parameter estimates, that there is need for the correct 

specification of the conditional mean, and that by default, a robust standard error is computed. 

 

3.6.6. Regression Model for Count Data 

3.6.6.1. Linear Regression Model 

In classical terms, linear regression is also known as a least square regression model. This is a statistical 

method that allows us to summarize and study the relationship between two continuous variables. 

One variable, denoted as X, is regarded as a predictor, explanatory, or independent variable, and the 

other, denoted as Y, is regarded as the response, outcome, or dependent variable. A linear regression 

model with a single predictor variable is known as a simple linear regression model (Kutner et al., 

2004, Seber and Lee, 2012, Montgomery et al., 2015, Williams, 1959). 
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The simple linear regression model is written as: 

 𝑌 = 𝑋𝛽 + 𝜖 (3.23) 

where 

𝑌 = (

𝑦1
⋮
𝑦𝑛
) , 𝑋 =  (

1 𝑥11⋯ 𝑥1𝑘
⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛𝑘

) , 𝛽 = (
𝛽1
⋮
𝛽𝑘

) , 𝜖 =   (

𝜖1
⋮
𝜖𝑘
)  

Y is the response variable, 𝛽0  is the intercept, 𝛽  is the vector of the coefficient estimates of the 

random variables (an unknown pparameter that needs to be estimated) and 𝜀 is the error term (or 

residual) used to capture the deviation of the data from the model. The aim is to find the values for 

the parameters 𝛽𝑎 {𝑎 = 1, 2, … . . 𝑘} which would provide a best fit for the data. The regression must 

follow the following assumptions: linear relationship, independence of errors with each other and the 

covariates, multivariate normality, no or little multicollinearity, no autocorrelation and 

homoscedasticity (errors must have zero mean and constant variance) (Kutner et al., 2004, Seber and 

Lee, 2012, Montgomery et al., 2015).  

Applying the zero-mean assumption of the errors in equation 3.23, the expectation of the random 

matrix is defined as: 

        𝐸[𝑌] = [𝐸{𝑌𝑖𝑗 }] (3.24) 

 

Where 𝑖 = (1,… . . 𝑛; 𝑗 = 1,……𝑝). Least squares regression describes the behaviour of the location 

of the conditional distribution, using the mean of the distribution to represent its central tendency. 

The residual 𝜀𝑖  are defined as the difference between the observed and the estimated values. 

Minimizing the sum of the square residuals, 

 
∑𝑟(𝑌 − 𝑋𝑇𝛽̂) =  ∑(𝑌 − 𝑋𝑇𝛽̂)

2
𝑛

𝑖=1

𝑛

𝑖=1

 (3.25) 

 

Where 𝑟(𝜇) =  𝜇2 is the quadratic loss function, which gives the least squares estimator 𝛽̂ by 
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 𝛽̂ =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌    𝑤ℎ𝑒𝑟𝑒 𝑋 ≠ 𝑋𝑇 (3.36) 

        

Also, the additional assumption that the errors (residual) 𝜀𝑖 follow a Gaussian distribution 

  𝜀𝑖~ N(0, 𝜎
2𝐼𝑛) (3.27) 

 

Where 𝐼𝑛  is the n x n identity matrix, it provides a framework for testing the significance of the 

coefficient found in equation 3.26. Under this assumption, the least square estimator is also the 

maximum likelihood estimator. By taking the expectations, with respect to 𝜀𝑖  in equations 3.25.and 

3.26, as well as noting that the linear function of a normally distributed random variable is normally 

distributed itself, we can rewrite the model in 3.26 as:  

 𝑋 ~ 𝑁(𝜇, 𝜎2𝐼𝑛), 𝑤ℎ𝑒𝑟𝑒 𝜇 = 𝑋𝑇𝛽 (3.28) 

 

Therefore, the model in 3.26 represents the relationship between the mean of 𝑦𝑖. for 𝑖 = 1,2, … 𝑛, and 

the covariates linearly. 

 

3.6.6.2. Generalized Linear Model 

The family of generalized linear models (GLMs) provides a collection of models extending basic 

concepts from linear regression to applications where error terms follow any wide range of 

distributions, including binomial and Poisson for modeling count data (Waller and Gotway, 2004). 

Thus, equation 3.28 refers to data that are normally distributed, but can be generalized to any 

distribution of the exponential family (Nelder and Baker, 1972, McCullagh and Nelder, 1989). GLMs 

consist of three components:  

1. a probability distribution that belongs to the exponential family of distributions (known as a 

random component which defines the distribution of error terms) 

2. a linear predictor 𝜌𝑖=    𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑘𝑥𝑖𝑘    =  𝑋
𝑇𝛽̂  ( also known as a systematic 

component defining the linear combination of explanatory variables) and 
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3. A link function which defines the relationship between the systematic and random 

components, given as: 𝐸[𝑌] =  𝜇𝑖 = 𝜗
−1 (𝜌𝑖). 

 

GLM parameters generally require an iterative procedure rather than closed-form solutions for linear 

models (McCullagh and Nelder, 1989, Waller and Gotway, 2004). A GLM can be used for data that are 

not normally distributed and for cases where the relationship between the mean of the response 

variable and the covariates is not linear. The GLM includes many important distributions such as 

Gaussian, Poisson, Gamma, and Inverse-Gamma (Cameron and Trivedi, 2013, Kutner et al., 2004, 

Seber and Lee, 2012, Montgomery et al., 2015, Waller and Gotway, 2004).  

 

3.6.2.1. Poisson regression 

This is a special case of GLM commonly used to model count data. Poisson regression has been used 

for modelling count data in many fields such as public health (Arslan et al., 2013, Duncan et al., 2002, 

Xiang and Song, 2016) , Epidemiology (Best et al., 2000, Frome and Checkoway, 1985, Zou, 2004, 

Gartner et al., 2016, Hanewinckel et al., 2010, Sobngwi et al., 2001), insurance (Boucher and Denuit, 

2006, Christiansen and Morris, 1997, Ismail and Jemain, 2007)  and many other research areas. The 

canonical link function is logarithm.  

The model is specified as:  

 Pr(𝑌 = 𝑦)  =    
𝑒−𝜆 𝜆𝑦

𝑦!
 (3.29) 

 

For 𝜆 > 0, the mean and variance of a poison distribution are shown as  

 𝐸(𝑌) = 𝑉𝑎𝑟(𝑌) =  𝜆 (3.30) 
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The likelihood function is given as 

 𝐿(𝛽|𝑦, 𝑥) =  ∏Pr(𝑦𝑖|𝑢𝑖) =  ∏
exp(−𝑢𝑖) 𝑢𝑖

𝑦𝑖

𝑦!

𝑁

𝑖=1

𝑁

1

 (3.31) 

 

The assumptions are: 

Response Y has a poison distribution, 𝑌 ~𝑃𝑜𝑖𝑠(𝜆), (𝐸(𝑌)   = 𝜆, 𝑎𝑛𝑑   𝑉𝑎𝑟( 𝑌) = 𝜆 

With the assumption that the mean is equal to the variance, any factor that affects one will affect the 

other. This poses a problem when the data exhibits a different behavior. Thus, the usual assumption 

of homoscedasticity would not be appropriate for Poisson data (Preston, 2005). Statistically, an 

important motivation for the Poisson distribution, however, lies in the relationship between the mean 

and the variance. Most of the proposed approaches to this problem focus on over-dispersion (Ismail 

and Jemain, 2007, Berk and MacDonald, 2008).  

 

3.6.2.2. Negative binomial 

One of the ways to handle the situation posed by a Poisson regression is to fit a parametric model that 

is more dispersed than Poisson. A natural choice is the negative binomial (NB), given as: 

 𝑃(𝑌 = 𝑦|𝜇𝑖, 𝑘) =  
Ґ (
1
𝑘
+ 𝑦𝑖)

Ґ (
1
𝑘
) 𝑦𝑖!

(
𝑘𝜇𝑖

1 + 𝑘𝜇𝑖
)
𝑦

(
1

1 + 𝑘𝜇𝑖
)

1
𝑘
, (3.42) 

 

 log{𝜇𝑖} =  𝑋
𝑇𝛽 (3.33) 

 

Where the parameters 𝜇𝑖 𝑎𝑛𝑑 𝑘 represent the mean and the dispersion of the negative binomial. The 

respective mean and variance of this model are: 
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         𝐸[𝑌𝑖] = exp{𝑋𝑇𝛽} ,        𝐸[𝑌𝑖] = exp{𝑋𝑇𝛽}, (3.34) 

 

 

The variance of a negative binomial is a quadratic function of its mean. The negative binomial 

approaches the Poisson (𝜇𝑖 ) model for 𝑘 → 0.  

The negative binomial PDF can be described as the probability of observing y failures before kth 

success in a series of Bernoulli trials. Under such description, r is a positive integer (Hilbe, 2011). 

However, there is no compelling mathematical reason to limit this parameter to integers.  

Negative binomial is a generalization of Poisson regression. It loosens the highly restricted assumption 

that the variance is equal to the mean. this is based on the mixture of the poison -gamma mixture 

distribution. This model is popular because it models the Poison heterogeneity with a gamma 

distribution. 

 

Given the negative binomial PDF with parameter ((𝜇, 𝑘): 

 

 

Or  

 

 

 

 𝑉[𝑌𝑖] = exp{𝑋
𝑇𝛽} +   𝑘 𝑒𝑥𝑝{𝑋𝑇𝛽}2 (3.35) 

 𝑓(𝑦| 𝜇, 𝑘) =  (
𝑦𝑖 + 𝑘 − 1

𝑘 − 1
) 𝜇𝑖

𝑘 (1 − 𝜇𝑖)
𝑦𝑖 (3.36) 

 𝑓 (𝑦| 𝜇, 𝑘) =  
(𝑦𝑖 + 𝑘 − 1)

𝑦𝑖!  (𝑘 − 1)!
 𝜇𝑖
𝑘 (1 − 𝜇𝑖)

𝑦𝑖  (3.37) 
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Converting the NB PDF into exponential family form results in 

 

Where                                               

 exp{𝑦𝑖 𝑙𝑛(1 − 𝜇𝑖)} is the link, and 𝑘 ln(𝜇𝑖) + ln(
𝑦𝑖+𝑘−1
𝑘−1

)  is the cumulant. 

Thus, the canonical link and cumulant can easily be extracted from a PDF when expressed in 

exponential family form. This gives:  

                        

Therefore, the first and second derivates, with respect to 𝜃, respectively yield the mean and variance 

functions, given as: 

 

𝑉(𝜇) therefore equals 𝑟(1 − 𝑘) 𝑘2⁄ . Assume we now parameterize 𝑘 and 𝜇 in terms of 𝜋 and 𝛾 

 (𝑦| 𝜇, 𝑘) = exp {𝑦𝑖  𝑙𝑛(1 − 𝜇𝑖)  + 𝑘 ln(𝜇𝑖) + ln (
𝑦𝑖 + 𝑘 − 1

𝑘 − 1
)} (3.38) 

 

 𝜃𝑖 =  ln (1 − 𝜇𝑖) → 𝜇𝑖 = 1 − 𝑒𝑥𝑝(𝜃)𝑖 

𝑏(𝜃𝑖) = −k ln 𝜇𝑖 → −𝑘 (1 − exp(𝜃𝑖) 

=  𝛼𝑖∅(𝑠𝑐𝑎𝑙𝑒) = 1 

(3.59) 

 

E[𝑌] = 𝑏′ (𝜃𝑖) =  
𝛿𝑏

𝛿𝑘𝑖
 
𝛿𝑘𝑖

𝛿𝜃𝑖
= − 

𝑟

𝑘𝑖
(− (1 − 𝑘𝑖)) =  

𝑟(1−𝑘𝑖)

𝑘𝑖
= 𝜇𝑖 

 

V[Y]= 𝑏′′(𝜃𝑖) =  
𝛿2𝑏

𝛿𝑘𝑖
2 (

𝛿𝑘𝑖

𝛿𝜃𝑖
)
2

+ 
𝛿𝑏

𝛿𝑘𝑖
 
𝛿2𝑘𝑖

𝛿𝜃𝑖
2 =

𝜇

𝑘𝑖
2  (1 − 𝑘𝑖)

2 +
−𝜇

𝑘𝑖
 (−(1 + 𝑘𝑖)) 

 

=
𝑟 (1 − 𝑘𝑖)

𝑘𝑖
2  

 

 

 

 

 

 

(3.40) 
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(1 − 𝑘𝑖 (𝑘𝑖) =  𝛾𝜋𝑖⁄  

 

Where 𝛾 = 1 𝑟⁄  given the defined values of 𝜇 𝑎𝑛𝑑 𝛾 . negative binomial PDF can then be re-

parametrization such that 

This is identical to equation 3.59, which we derived via Poisson-gamma mixture. 

 

 

 

3.7. Principles of Bayesian Methods 

The Bayesian approach to univariate and multivariate linear regression with normal errors has long 

been of interest in areas such as econometrics and epidemiology (Koop, 2003; Poirier, 1995; Zellner, 

1971). The Bayesian statistical model incorporates prior non-information about the unknown 

parameters. Incorporating such prior knowledge into statistical analysis of diabetes prevalence has 

the potential of enhancing the quality of the statistical results.  

As described by Lesaffre & Lawson (2012), Rafia & Schlaifer (1961), Bolstad (2007), Bernado & Smith 

(1994), and Congdon (2006), the fundamental idea of Bayesian analysis framework is that `the 

unknown model parameters are the random variables, hence specified by prior distribution.' 

The measures of degree of belief is interpreted as the probability statement. The underlying Bayesian 

analysis is from Bayes’ theorem, which is used to revive the beliefs about the parameters considering 

 (1 − 𝑘𝑖 (𝛾𝑘𝑖) =  𝜋𝑖⁄  (3.41) 

  𝑘𝑖 = 1 (1 + 𝛾𝜋𝑖)  ⁄  (3.42) 

 𝑓(𝑦| 𝜋, 𝛾) =  (
𝑦𝑖 +

1
𝛾 − 1

𝛾 − 1
) (

1

1 +  𝛾𝜋𝑖
)

1
𝛾
 (

𝛾𝜋𝑖
1 + 𝛾𝜋𝑖

)
𝑦𝑖

 (3.43) 
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the observed data to obtain the posterior distribution. The posterior distribution gives relative weights 

to each parameter value after analyzing the sample data.    

The relationship between the prior distribution, the observed data, and the posterior distribution is 

expressed as posterior = prior X likelihood (Press, 1989; Bolstad, 2007; Gill, 2009; Congdon, 2006; 

Gellman & Rubin, 1996).  

The Bayesian approach has several features and advantages as compared to frequentist (or classical) 

statistical analysis. It allows a consistent way of modifying one's belief about the parameter given the 

data that occurred, which implies that inference is based on actual data and not on all possible data 

sets that might have occurred (as in the case of the frequentist approach), as presented by Rao (2011), 

Raiffa & Schlaifer (1961), and Bolstad (2007). Likewise, according to Congdon (2006) and Lesaffre & 

Lawson (2012), it provides a way of formalizing the process of learning from data to update beliefs in 

accord with recent notions of knowledge synthesis. It can also assess the probability on both nested 

and non-nested models (unlike the classical approach). Using modern sampling methods, it readily 

adapts to complex random effect models that are more difficult to fit using classical methods (Carlin 

et al., 2001; Gilks et. al., 1993). The approach also provides a way of improving estimation in sparse 

data sets by borrowing strength (Richardson & Best 2003; Stroud, 1994). Bayesian methods may also 

improve on classical estimators in terms of the precision of the estimate (Congdon 2006). Allowing a 

parameter to be a random variable enables one to make a probability statement about it (the 

parameter) posterior to observing the data. However, the use of both classical and Bayesian approach 

has gained popularity in many practical analyses in which design-based inferences can be derived from 

the Bayesian perspective, using classical models with noninformative prior distribution. 

However, the arguments and debate around the drawbacks and benefits of the classical and Bayesian 

approach in statistical analysis emanate mainly from the differing fundamental interpretation of 

probability. As described in Bolstad (2007), classical methods define probability as long-run tendencies 

of events that eventually converge on some true population proportion, whereas Bayesian interprets 

probability as a “degree of belief”.  

The Bayesian philosophy implies that prior distribution is descriptions of relative likelihoods of events 

based on past knowledge, personal intuition, expert opinion, or from the posterior distribution. The 

prior knowledge being updated by conditioning on newly observed data. 
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It is argued that the Bayesian analysis paradigm works than a frequentist approach in biological, health 

and social science research (Bostad 2007; Press, 1989). This is mainly due to the availability of 

immense prior data information on most of the phenomena in these fields.   

Suppose we have an observable random vector 𝑦 with probability mass (or density for continuous) 

function  (𝑦|𝜃) , where 𝜃 denotes an unobservable parameter. The Bayes’ theorem as stated by Press 

(1989), asserts that the probability function of  𝜃 , for a given value of 𝑦 os expressed as  

 

Here, 𝑝(𝜃|𝑦) is called the posterior probability function of 𝜃 given the observed data, and 𝑔(𝜃) is the 

prior probability function  𝜃 .  This study has continuous parameters; therefore, the focus is on 

Bayesian inference for continuous data. Therefore, the equation 3.42 can be rewritten considering 

only the continuous parameters, given by Bayes theorem: 

 

where the normalizing constant is  

𝑝(𝑦)  =   ∫𝑝(𝑦|𝜃) 𝑔(𝜃) 𝑑𝜃 

Equation 3.45. Is the marginal probability of the observed data given the model that is the likelihood 

and the prior while ignoring the constant gives: 

 

 𝑝(𝜃|𝑦) =

{
 
 
 
 

 
 
 
 

𝑓 (𝑦|𝜃)𝑔(𝜃)

∑ 𝑓(𝑦|𝜃)𝑔(𝜃)  
      𝜃

        𝑓𝑜𝑟 𝑎 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

               
𝑓(𝑦|𝜃)𝑔(𝜃)

∫ 𝑓(𝑦|𝜃)𝑔(𝜃) 𝑑𝜃         
         𝑓𝑜𝑟 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                 .

 (3.44) 

 𝑝(𝜃|𝑦)  =
𝑝(𝑦|𝜃)𝑔(𝜃)

𝑝(𝑦)
     (3.45) 

 𝑝(𝜃|𝑦)    ∝    𝑝(𝑦|𝜃) 𝑋 𝑔(𝜃) (3.66) 
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more colloquially,  

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝   𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  𝑋  𝑝𝑟𝑖𝑜𝑟 

where ∝  denotes the proportionality and 𝑝 (𝑦|𝜃)  denotes  the likelihood function 𝑔 (𝜃)   is the prior 

and 𝑝 (𝜃|𝑦)  is the posterior distribution. 

 

3.7.2. The Likelihood 

Fisher (1992) first introduced the concept of likelihood, expressed the plausibility of the observed data 

given as a function of the parameters of a stochastic model. Likelihood contain information provided 

by the observed sample. 

Let us consider observed data denoted as  𝑦 =  (𝑦𝑖, …… . . , 𝑦𝑛), and an unobservable parameter  𝜃, 

the likelihood function, denoted by 𝑝 (𝑦|𝜃) is given as  

 

However, the likelihood function can be viewed as representing the plausibility of 𝜃 considering the 

data, where the value of 𝜃 that maximizes  𝑝(𝑦|𝜃) is called the maximum likelihood estimate (MLE). 

The observed data y affects the posterior distribution through 𝑝(𝑦|𝜃). It is necassry to note that the 

bayesian inference is based on the assigned probability due to the observed data, and not due to other 

imaginary data (in the classical case) that might have been observed. Therefore, adherence to the 

likelihood principle implies that inferences are conditional on observed data since the likelihood 

function is parameterized by the data. 

 

 

 𝑝(𝑦|𝜃) =  ∏𝑝(𝑦|𝜃)

𝑛

𝑖=1

 (3.47) 
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3.7.3. Choice of Prior Distribution 

In Bayesian analysis, incorporating prior information is argued to make the approach more suitable to 

much empirical research (Lesaffre & Lawson 2012; Press, 1989). Often, priors are expressed 

probabilistically or by using a distribution by which their parameters are called hyperparameters. 

The pivotal point in the Bayesian paradigm is the choice of a prior, with an option of choosing between 

informative and non-informative (Lesaffre & Lawson, 2012; Press, 1989). The term “prior” means that 

the prior knowledge should be specified independently of the collected data (Cox, 1999; Lesaffre & 

Lawson 2006). In modeling the data, at first the prior could represent lack of information (non-

informative), but in the second step, the prior can be informative. However, the subjectivity 

surrounding the choice of a prior, and the problems stemming from model misspecification provide a 

basis for most of the critics of Bayes methods (De Finetti, 1937; Raiffa & Sclaifer, 1961). 

The choice of a prior distribution in Bayesian inference is significant. In Bayesian methods, the prior 

distributions generate the most controversial issue. This choice of the prior may affect Bayesian 

estimation, as a strong prior can have a profound influence on Bayesian estimation. Therefore, in the 

absence of any prior information from any solid and scientific evidence or sources, one may use non-

informative priors. This will be further discussed in the next section.  

The Bayesian technique is flexible compared to classical techniques because the prior can be 

informative or non-informative. An informative prior distribution describes the available (prior) 

knowledge about the model parameters. Some prior knowledge is available basically in all research.  

An informative prior is one that summarises the evidence about the parameters concerned from 

various sources and usually has a significant impact on the results. Prior information provides specific 

and definite information about a parameter, which usually comes in form of historical data mainly 

from past studies and expert knowledge (Lesaffre & Lawson, 2012; Congdon, 2006; Spielgelhalter et. 

al., 2003; Vail et. al., 2001). Box & Tiao (1973) argue that we are almost never in the state of ignorance. 

The challenge is to incorporate the available little prior knowledge into a probabilistic framework. 

Therefore, the question of whether to include the beliefs of one expert or a community of experts 

forms the main question in Bayesian analysis.  
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3.7.4. The Prior Distribution  

As stated earlier, the Bayesian approach is based on a prior belief about the parameter of interest. 

However, this prior belief can be described in terms of a density function, which is then referred to as 

prior distribution. When the sample size is low or poor, the prior distribution will dominate the 

analysis. In contrast, for a large sample size, the likelihood function will effectively contribute to the 

relative risk estimation. 

In the Bayesian paradigm, the parameters are stochastic, and thus can be assigned a prior distribution 

accordingly. Thus, the prior distribution is a distribution assigned to a given parameter 𝜃 before the 

observed data 𝑥𝑖. Given a single parameter, the prior distribution can be denoted as  𝑃(𝜃). However, 

for a parameter vector, similar notation can be used for the joint distribution provided  𝜃   is well 

understood to be a vector parameter.  

The prior distribution has different properties. One of such properties is that, it can be improper or 

proper. A prior distribution is said to be an improper prior under the condition where the integration 

of the prior distribution of a random variable 𝜃  over its range  𝛺  is infinite (that is, the normalising 

constant is infinite) ((Lesaffre and Lawson, 2012); (Lawson, 2013). This is denoted mathematically as: 

 

As noted by Lesaffre and Lawson (2012), the improper prior is a limitation of any prior distribution, 

but it is not necessarily being the case that some improper prior leads to the same property in the 

posterior distribution. 

 

 

 

 

 ∫𝑃(𝜃)𝑑𝜃 =  ∞
𝛺

 (3.48) 



Chapter 3. Methodology.   57 
 

 
 

3.7.5. Non-Informative Priors  

A non-informative prior, also referred to as a vague, subjective, objective or reference prior, is defined 

by Tiao and Box (1973), (Bernardo and Rueda, 2002, Congdon, 2014) as one that provides little or no 

information relative to the experiment or expresses a minimal effect relative to the data. A non-

informative prior is often regarded as a formal representation of ignorance. Non-informative priors 

that are not a distribution or that have an infinite area under the curve are called improper priors 

(Lesaffre & Lawson, 2012; Condgon, 2006; Press, 1989; Bernardo & Smith, 1994).  

As mentioned earlier, the choice of a non-informative prior distribution can depend upon that the 

prior distribution of a variance parameters must have a positive real line. Such possible cases are often 

seen in the gamma, inverse gamma or uniform distribution families. 

 

 

3.7.6. Conjugate Prior 

Similarly, a combination of a prior distribution and likelihood function can lead to the same 

distribution family in the posterior 𝑃(𝜃|𝑦) for a prior distribution 𝑃(𝜃). Thus, such prior and posterior 

distributions are referred to as a conjugate distribution, and for that likelihood, the prior is called a 

conjugate prior. For example, the Poisson likelihood with parameter 𝜃  and the gamma prior 

distribution for 𝜃 is also a gamma distribution. The same holds for the binomial likelihood, and the 

beta prior distribution for the probability of success, as well as the normal data likelihood with a 

normal prior distribution for the mean (Lesaffre and Lawson, 2012).  

All members of the exponential family have conjugate priors. By examining the kernel of the prior 

likelihood product, the conjugacy prior can be identified. However, the prior likelihood must be the 

same for the prior distribution. In affirmation to this, Lesaffre and Lawson (2012) stated often time 

conjugacy always guarantees a proper posterior distribution.  
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3.7.6.1. Jefferey’s Prior 

The Jefferey’s prior is a non-informative prior distribution on parameter  𝜃 that is proportional to the 

square root of the determinant of the Fisher information 𝐼(𝜃).  Thus, Jefferey’s prior for a single 

parameter 𝜃 is defined as: 

 

Hence, the Jeffery’s prior can a further be defined as 

 

To find such vague or flat prior for a given distribution, Jeffreys prior was developed. 

From the equation 3.50 above, the Jeffrey's prior for the Poisson mean 𝜃 of the positive real value can 

be defined and denoted as: 

 

Therefore, the prior is known to be improper and not non-informative (Lawson, 2013).  

Also, the Jeffreys prior for the normal distribution of the positive real value X with fixed mean 𝜃  is: 

The prior does not depend upon 𝜃. Likewise, the Jeffreys prior for the normal distribution of the 

positive real value y with standard deviation, 𝜎 > 0  is:     

 𝑃(𝜃) ∝  √𝐼 (𝜃)  where 𝐼 (𝜃) =  −𝐸 [
𝑑2  ln𝑃(𝑦|𝜃)

𝑑𝜃2
] (3.49) 

                       𝑃(𝜃) ∝  √𝐼 (𝜃) =  √[(
𝑑

𝑑𝜃
 ln 𝑃( 𝑦| 𝜃))

2

] (3.50) 

                     𝑃(𝜃) =  √∑𝑃 ( 𝑦 | 𝜃) (
𝑦 −  𝜃

𝜃
)
2+∞

𝑥=0

   
1

√𝜃
 (3.51) 

            𝑃(𝜃) =  √ ∫ 𝑃 ( 𝑦 |𝜃 ) (
𝑦 − 𝜃

𝜎2
)
2

 𝑑𝑦 =   √
𝜎2   

𝜎4 

+∞

−∞

 ∝  1 (3.52) 



Chapter 3. Methodology.   59 
 

 
 

 

Also, using equation 3.53, Jeffery’s prior for binomial likelihood with parameter 𝜃 and sample size n is 

denoted as: 

 

Thus, equation 3.53 above can be written as 𝑃 ( 𝜃) ∝    𝜃−1 2⁄  (1 − 𝜃)−1 2⁄ ,  where 𝜃 ~  𝐵𝑒𝑡𝑎 (
1

2
,
1

2
). 

Hence, the data formation helps in determining the prior in equation 3.53, but not the real observed 

data, since we are averaging over y.  

However, it should be noted that it is sometimes more important to be more informative with the 

prior distribution if the likelihood function has little information about the identification of the 

parameter. In this case, identification can only come from the prior specification. Therefore, Lesaffre 

and Lawson (2012) described identification as an issue relating to the ability to differentiate between 

parameters and with a parametric model. 

3.7.6.2. The Posterior Distribution  

In the Bayesian approach, the posterior distribution contains all the information of interest, as it 

combines the prior information and the likelihood of the data. After the data has been observed and 

the prior assumptions have been made, the outcome is the posterior distribution which describes the 

behaviour of the parameter of interest.  

The posterior distribution is obtained from the product of the likelihood and the prior distribution, 

denoted mathematically as: 

           𝑃(𝜎) =  √ ∫ 𝑃 ( 𝑦 |𝜃 ) (
(𝑦 −  𝜃)2𝑦 − 𝜎2

𝜎3
)

2

 𝑑𝑦 =   √
2   

𝜎2 

+∞

−∞

 ∝  
1

𝜎
 (3.73) 

             𝑃 ( 𝜃) =  √
𝑛

𝜃(1 − 𝜃
 =  𝑛

1
2⁄  𝜃−1 2⁄  (1 − 𝜃)−1 2⁄  (3.54) 

 𝑃(𝜃 | 𝑦) =  
𝑃 ( 𝑦 |𝜃)𝑃( 𝜃)

∫𝑃(𝑦|𝜃)𝑃(𝜃)𝑑𝜃
 (3.55) 
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Where ∫𝑃(𝑦|𝜃)𝑃(𝜃)𝑑𝜃 is known as the normalizing constant, which is equal to the marginal pdf of y 

with no information about 𝜃, which can also be taken as a constant. Because of this the distribution 

can be taken as a proportion, which is denote mathematically as: 

 

Where the constant of proportionality is the reciprocal of ∫𝑃(𝑦|𝜃)𝑃(𝜃) 𝑑𝜃. From equation 3.56, the 

right-hand side is the product of the likelihood and the prior distribution. 

Hence, in disease mapping where often the data are counts or can be transformed to count, the 

assumption, as explained by Lesaffre and Lawson (2012), is that the likelihood follows a Poisson 

distribution with a common relative risk parameter and a single gamma prior distribution. 

The posterior distribution is usually presented as (a) summary measures for location and variability; 

(b) interval estimators for the parameters of interest, and (c) the posterior predictive distribution (PPP) 

used to predict future observations.  

The most popularly used measures of location are the posterior mean, posterior median, and posterior 

mode. The posterior mean is defined by 𝜃̅ =   ∫ 𝜃𝑝 (𝜃|𝑦) 𝑑𝜃, which minimizes the squares loss, that 

is ∫      (𝜃 − 𝜃)
2
  𝑝(𝜃|𝑦) 𝑑𝜃 . The posterior median is the solution to the equation 0.5 =

   ∫     
𝜃̅𝑀
  𝑃(𝜃|𝑦) 𝑑𝜃.  The posterior mode is defined by 𝜃𝑀 arg𝑚𝑎𝑥𝜃 𝑝 (𝜃|𝑦), and gives the value of 

𝜃  for which 𝑝 (𝜃|𝑦)  is maximal. A measure of variability which determines the shape of the 

distribution is the posterior variance 𝜎2 (together with the posterior standard deviation 𝜎), which is 

defined as 𝜎2  =  ∫  (𝜃 − 𝜃)
2
 𝑝 (𝜃|𝑦). A range of plausible parameter values of 𝜃, which is termed 

credible interval with probability 1 −  𝛼 , can also be obtained from the posterior distribution. 

Formally, an interval [𝑎, 𝑏] is a 100 (1 − 𝛼)%  credibility interval for 𝜃 if  

𝑃 (𝑎 ≤  𝜃 ≤ 𝑏|𝑦)  = 1 − 𝛼. 

 𝑃(𝜃 | 𝑦)  ∝  𝑃(𝑦 | 𝜃) 𝑃(𝜃) (3.56) 
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It is worth nothing that PPD is the distribution of unobserved observations conditional on the observed 

data. Suppose 𝑝 (𝑦|𝜃)  is the distribution of y and assume an i.i.d. sample 𝑦 ≡  {𝑦1, … . . , 𝑦𝑛}  is 

available and suppose we wish to predict future observation  𝑦̃ or sets of observations 𝑦 ,̃ that is, we 

wish to obtain the distribution of  𝑦 ,̃  as the PPD and is given as : 

Many examples of posterior distributions and PPD under such distributions such as binomial for binary 

and Poisson for count data were given by Lesaffre & Lawson (2012).  

 

3.7.7. Bayesian Linear Regression model 

The Bayesian linear regression model (BLRM), is a statistical approach to linear regression in which the 

statistical analysis undergoes the context of Bayesian analysis. A BLRM combines prior information on 

the regression parameters and residual variance with the derived normal regression likelihood.  

The general linear regression model assumes a linear relationship between a response y 𝑦 and 𝑑  

regressors 𝑥1, 𝑥2, … . . , 𝑥𝑑, for a sample of n observations. Thus, mathematically given as  

 

 

With 𝛽𝑇 = (𝛽0, 𝛽1, … . . , 𝛽𝑛  ), (𝑥
𝑇 = (1, 𝑥1, 𝑥2, … . , 𝑥𝑛)), 𝑎𝑛𝑑  𝜀𝑖 ~ 𝑁(0, 𝜎

2)   

In matrix notation, the classical normal linear regression model is written as:  

 

where 𝑦 is the 𝑛 𝑥 1  ( n times 1 matrix) vector of responses, 𝑋 is the 𝑛 𝑥 (𝑑 + 1) design matrix with 

rows 𝑥𝑖
𝑇 and 𝜀 the 𝑛 𝑥 1 vector of the random errors, assuming a normal distribution  𝑁(0, 𝜎2, 𝐼) with 

the 𝐼  identity 𝑛 𝑥 1 matrix.  

 𝑝 (𝑦̃ |𝜃)  =     ∫ 𝑝  (𝑦̃ |𝜃)  𝑝 (𝜃|𝑦)  𝑑𝜃 (3.57) 

 𝑦 = 𝑋𝑇𝛽 + 𝜀𝑖     (𝑖 = 1,… , 𝑛) (3.58) 

 𝑦 = 𝑋𝛽 +  𝜀 (3.59) 
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Bayesian linear regression in a Bayesian framework is then expressed in words as the response data 

point 𝑦 from a multivariate normal distribution that has a mean which is equal to the product of the 

𝛽 coefficients and the predictors 𝑋, and a variance of 𝜎2. 𝐼  is the identity matrix, which is necessary 

because the distribution is multivariate. Therefore, the BLRM is expressed mathematically as: 

3.7.7.1. The Likelihood 

From the assumption in section 3.6.6 above the likelihood is: 

 

The classical estimate of 𝛽 is the Maximum Likelihood Estimate (MLE), which is also equal to the least 

square estimate (LSE), given as 𝛽̂ =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌. 

Furthermore, the residual variability of the observed response to the fitted response is thus expressed 

as 𝑆𝑆𝐸 =  (𝑦 − 𝑋𝛽)𝑇  (𝑦 − 𝑋𝛽̂ ), which is called the residual sum pf square and the mean sum pf 

square is thus given as 𝑆2 = 𝑆𝑆𝐸 (𝑛 − 𝑑 − 1)⁄  . 

 

3.7.7.2. Prior  

A BRLM combines prior distribution on the regression parameters and the residual variance with the 

above-derived normal regression likelihood. Prior information can be either non-informative or 

formative or conjugate, as discussed in section 3.6.4 and 3.6.5.  

If we possess prior knowledge about the parameter, then we can choose a prior distribution that 

reflects this, otherwise a noninformative prior can be used. Let us consider a non-informative prior for 

the parameters  (𝛽, 𝜎2), the choice will then be: 

 

 𝑦 ~ 𝑁(X𝛽, 𝜎2 𝐼) (3.60) 

 𝑌 = 𝑍 + 𝜀 (3.61) 

 𝑝 (𝛽, 𝜎2)  ∝  𝜎−2 (3.62) 
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A popular non-informative (NI) prior for the BLRM is obtained from Jefferey’s multi parameter rule, 

which is the product of a flat prior for the regression parameters and the classical Jefferey prior for 

the scale parameter. Often a normal prior with large variance is recommended and chosen for the 

regression coefficients 𝛽, 𝜎2 and with a small 𝜀. 

However, a prior 𝑝 (𝛽, 𝜎2) is conjugate to the likelihood function if it has the same functional form 

with respect to 𝛽 and 𝜎2. Since the log-likelihood is quadratic in 𝛽, it can then be re-written in such 

that the likelihood becomes normal in (𝛽 − 𝛽̂), stated as: 

 

 

Then, the likelihood can now be rewritten as  

Where 𝑣𝑠2 = (𝑦 − 𝑋𝛽̂)
𝑇
(𝑦 − 𝑋𝛽̂)   and 𝑣 = 𝑛 − 𝑘 , and k is the number of regression 

coefficient.  

This then suggests a form for the prior given as: 

 

Where 𝑝(𝜎2) is an inverse-gamma distribution given as: 

 

 

 

 (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) =  (𝑦 − 𝑋 𝛽̂)
𝑇
(𝑦 − 𝑋𝛽̂) + (𝛽 − 𝛽̂)

𝑇
(𝑋𝑇𝑋)(𝛽 − 𝛽̂) (3.63) 

 

𝑝 (𝑦 | 𝑋, 𝛽, 𝜎2)  

∝ (𝜎2)𝑣 2⁄ exp
(−

𝑣𝑠2

2𝜎2
) (𝜎2)−

𝑛−𝑣
2⁄  𝑒𝑥𝑝 [−

1

2𝜎2
(𝛽 − 𝛽̂)

𝑇
 (𝑋𝑇𝑋)(𝛽 − 𝛽̂)] ,

 
(3.64) 

 𝑝(𝛽, 𝜎2) = 𝑝(𝜎2)𝑝(𝛽|𝜎2), (3.65) 

 𝑝(𝜎2) ∝  (𝜎2)𝑝(𝛽|𝜎2) (3.66) 
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And the conditional prior density 𝑝(𝛽|𝜎2) is a normal distribution, denoted as: 

 

And the conditional prior distribution for equation (3.67) is 𝑁 (𝜇0, 𝜎
2, 𝜗0

−1) 

 

3.7.7.3. Posterior  

Having specified the prior, the posterior distribution can be stated as: 

 

Because all models are conditional on the design matrix 𝑋, 𝑋 will be omitted in the notation of the 

posterior. With some re-arrangement as stated by Lesaffre and Lawson (2012), the posterior can then 

be re-written so that the posterior mean 𝜇𝑛 of the parameter vector 𝛽 can be expressed in terms of 

the least square estimator 𝛽̂ and the prior mean 𝜇0, with the strength of the prior indicated by the 

prior precision 𝜗0. 

The joint posterior distribution is (𝑑 + 2)-dimensional: (𝑑 + 1) dimensions pertain to the regression 

parameters 𝛽  and one dimension pertains to the residual variance 𝜎2 . With the choice of a non-

informative prior in section 3.7.4, the posterior distribution can be mathematically derived. 

 

 𝑝(𝛽|𝜎2)  ∝  (𝜎2)−
𝑘
2 exp (−

1

2𝜎2
 (𝛽 − 𝜇0)

𝑇) 𝜗0 (𝛽 − 𝜇0) (3.67) 

 

 

𝑝(𝛽, 𝜎2 |𝑦, 𝑋)  ∝ 𝑝(𝑦|𝑋, 𝛽, 𝜎2) 𝑝(𝛽|𝜎2) 𝑝(𝜎2)

∝  (𝜎2)−
𝑛
2  exp (−

1

2𝜎2
  (𝑦 − 𝑋𝛽)𝑇 (𝑦

− 𝑋𝛽)) (𝜎2)−
𝑘
2 exp (−

1

2𝜎2
 (𝛽 − 𝜇0)

𝑇𝜗0 (𝛽

− 𝜇0)(𝜎
2)−(𝑎0+1) exp (−

𝑏0
𝜎2
)) 

(3.68) 
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3.7.8. Bayesian Poisson Regression   

In this section, we present a Bayesian regression model for Poisson regression. For a spatial-

structured, over-dispersed, count or clustered data, there are several assumptions that can be 

implemented in modeling such data in Bayesian statistics (Lesaffre & Lawson, 2012; Ntzoufras (2011)):  

A1: The n regions are unique, not related to each other. Under this assumption, information 

from region 𝑗 on 𝜃𝑖   ( 𝑗 ≠ 𝑖) does not provide any in is equal to SMR with asymptotic variance 

𝜃𝑖
𝑒𝑖⁄  . In this case, SMR   shows a high variability for a sparsely populated region (with small 

𝑒𝑖)and the Bayesian estimate of 𝜃𝑖  𝑑epends only on 𝑦𝑖. 

A2:  The counts 𝑦1, …… . 𝑦𝑛 are simple random sample of a population and hence each 𝑆𝑀𝑅𝑖 

estimate same risk 𝜃. Since the reference region is internal, that means that 𝜃1 = ⋯ = 𝜃𝑛 𝜃 =

1.  For an external reference region, that is when 𝜃 ≠ 1,  and the Poisson assumption, the MLE 

of  𝜃  is  ∑ 𝑦𝑖 /∑ 𝑒𝑖𝑖𝑖 .  

A3: The regions share some common environmental conditions, especially when they are close 

together geographically. For example, climatological conditions, air pollution, and life style do 

not change drastically when crossing the border of a region. Which implies that the  𝜃𝑖 𝑠 are 

related. To express this, we assume that {𝜃1, …… . , 𝜃𝑛}  is a random sample from 𝑝(𝜃. |. ),  

which is called the prior of 𝜃𝑖. 

The choice between assumptions A1 and A3 depends on subjective arguments. Assumption A2 can be 

tested statically. Because of sample heterogeneity, A3 seems reasonable and was recommended. 

Therefore, assumption A3 is a compromise between A1 and A2, implying that 𝜃1, … . . , 𝜃𝑛  have a 

common distribution 𝑝(𝜃|𝜆), with λ a vector of hyperparameters. Under these assumptions, the set 

𝜃 =  {𝜃1, … . . , 𝜃𝑛} is called exchangeable. The subject within the population are exchangeable but not 

between regions. Thus, exchangeability is applied on the two levels of the hierarchy. However, the 

implication of exchangeability is that 𝜃𝑖  are estimated using information from all the region. This 

phenomenon is called “borrowing strength “from other regions."  
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The standard Poisson regression model was adopted: 

= 𝑌𝑖    ~   𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖, 𝜃𝑖)  

For 𝑖 = 1, 2, ……… , 𝑛 

where the density function is given by 

𝑔(𝜃|𝛼, 𝛽) =
𝛽(𝛽𝜃)𝛼−1 𝑒𝑥𝑝(−𝛽𝜃)

𝛤(𝛼)
 

 

 

3.7.8.1. Likelihood  

The marginal likelihood of the Poisson model is given by integrating the random effect 𝜃𝑖 . The 

conditional likelihood is given as 𝑓(𝑦| 𝜆1, 𝜆2, 𝛼1, 𝛽2, 𝜃 ). 

 

3.7.8.2. The Prior 

With a choice of assumption A3 above, the prior choice that is computationally convenient is the 

conjugate for the Poisson distribution, with the prior mean and variance of the parameter  𝜃𝑖s is 

𝐸(𝜃) =  
𝛼

𝛽
  𝑎𝑛𝑑 𝑉𝑎𝑟(𝜃) =

𝛼

𝛽2
   respectively. Without specifying a prior distribution for the 

hyperparameters 𝛼  𝑎𝑛𝑑 𝛽, the above model is a frequentist hierarchical model. Generally, the choice 

of the hyperprior 𝑝(𝛼 , 𝛽)  depends on our prior belief about the hyperparameters. The Poisson-

gamma model is a two-level hierarchical model with the following levels: 

 Level 1: 𝑦𝑖  | 𝜃𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖𝑦𝑖)  𝑓𝑜𝑟  𝑖 = 1,… . , 𝑛 

 Prior: (𝛼, 𝛽) ~  𝑝(𝛼, 𝛽) 

The distribution of  𝜃𝑖   is often referred to as a prior in the Bayesian literature, since in the paradigm, 

there is no difference between parameters and latent random variables. Likewise, in a more general 

setting, we may have  𝑚𝑖 counts 𝑦𝑖 for each 𝜃𝑖, in which case the first level of the above two level 

hierarchical model becomes: 

   𝜆(𝑥) = 𝑋𝑇𝛽,   𝜃(𝑥) = 𝑒𝜆(𝑥), 𝑦    (3.69) 
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 Level 1: 𝑦𝑖𝑗  | 𝜃𝑖   ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖𝑒𝑖) 𝑓𝑜𝑟 𝑗 = 1,… . . , 𝑚 ; 𝑖 = 1,…… , 𝑛 

 

3.7.8.3. The Posterior Distribution 

Based on the distributional assumptions made above, the posterior distribution can be derived. Let 𝑦 

reperesent the set of observed counts {𝑦1, … . . , 𝑦𝑛}, then the joint posterior distribution is 

 

By assuming that 𝑦𝑖   ~  𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖𝑒𝑖), implicit hierarchical independence is assumed for the counts, 

and thus, 

 

However, a Gibbs sampling approach requires the determination of the full conditionals. Choosing an 

independent exponential prior for the hyperparameters: 𝑝(𝛼) =  𝜆𝛼 exp(−𝜆𝛼𝛼)  and  𝑝(𝛽) =

 𝜆𝛽 exp(−𝜆𝛽𝛽, for this choice, the full conditionals are:  

𝑝(𝜃𝑖  | 𝜽𝒊, 𝛼, 𝛽, 𝑦)   ∝ 𝜃𝑖
𝑦𝑖+ 𝛼−1 exp[− (𝑒𝑖 +  𝛽)𝜃𝑖]  (𝑖 = 1,… , 𝑛), 

𝑝(𝛼 | 𝜃, 𝛽, 𝑦)   ∝  
(𝛽𝑛  ∏ 𝜃𝑖)

𝛼−1

Ґ (𝛼)𝑛
 exp(−𝜆𝛼𝛼), 

𝑝(𝛽| 𝜃, 𝛼, 𝑦)   ∝   𝛽𝑛𝛼  exp [− (∑𝜃𝑖 + 𝜆𝛽) 𝛽],  

With 𝜃𝑖  is equal to 𝜃  without 𝜃𝑖  (Cameron and Trivedi, 2013). 

 

 

 𝑝(𝛼, 𝛽, | 𝑦)  ∝    ∏𝑝(𝑦𝑖 | 𝜃𝑖 , 𝛼, 𝛽)  ∏𝑝(𝜃𝑖 | 𝛼, 𝛽)

𝑛

𝑖=1

𝑛

𝑖=1

 𝑝(𝛼, 𝛽) (3.70) 

 𝑝(𝛼, 𝛽, 𝜃 | 𝑦)  ∝  ∏
(𝜃𝑖𝑒𝑖)

𝑦𝑖

𝑦𝑖 !

𝑛

𝑖=1

exp(−𝜃𝑖𝑒𝑖) ∏
𝛽𝛼

Ґ(𝛼)

𝑛

𝑖=1

 𝜃𝑖
𝛼−1𝑒−𝛽𝜃𝑖  𝑝(𝛼, 𝛽) (3.71) 
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3.7.9. Bayesian Negative-Binomial   

The standard model for over-dispersion count data is the negative binomial (Collaboration, 2010, 

Cameron and Trivedi, 2013, Barron, 1992, Lachin, 2011). 

In regression analysis of count data, the main objective is to explain the relationship between the data 

and its covariates. Based on the estimated regression coefficient, the future count can be replicated 

(or rather predicted) from the explained covariates (Christensen and Waagepetersen, 2002, Cameron 

and Trivedi, 2013). 

 

3.7.9.1. Likelihood  

A discrete random variable Y follows a negative binomial (NB) distribution  𝑌 ~ 𝑁𝐵 (𝜇, 𝑘) with the 

probability function given as: 

 

Where 𝑦 = 0,1,2, … , 𝑘   and 𝑘 > 0,  a positive parameter. The mean and the variance of this 

distribution are equal to 𝐸(𝑌) =  𝜇 = log(𝜇) = 𝑋𝑇𝛽 and 𝑉𝑎𝑟 (𝑌) =  𝜇 + 𝑘𝜇2. 

 

3.7.9.2. Prior 

The normal distribution is assumed to be the natural prior for the process model and the embedded 

linear regression coefficient or say the parameter r is assumed to follow a gamma distribution because 

of its positive nature and the dispersion: 

𝑘 ~ 𝑔𝑎𝑚𝑚𝑎 (0.001, 0.001) 

     𝑏𝑒𝑡𝑎 ~  𝑑𝑛𝑜𝑟𝑚 (0, 0.001) 

From the prior, the posterior mean and variance can then be computed. 

 

 

 𝑓𝑁𝐵 (𝑦: 𝜇, 𝑘) =  
Ґ (𝑦 + 𝑘)

𝑦!  Ґ (𝑘)
 𝜇𝑘 (1 − 𝜇)𝑦 (3.72) 
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3.8. Bayesian Markov Chain Monte Carlo Methods (MCMC) Methods: Parameter Estimation 

This section briefly describes the elementary theory of the Markov Chain Monte Carlo (MCMC) 

algorithm. The MCMC algorithm is widely used to perform posterior inference in the case where the 

product of the likelihood and the prior are analytically intractable (Congdon, 2014, Ntzoufras, 2011). 

MCMC is a technique used for drawing samples that will approximate a posterior distribution with 

respect to its complexity. However, this draw will not be independent, but from a Markov chain.   

MCMC techniques have contributed greatly to the development and propagation of Bayesian theory. 

The aim of MCMC algorithm is to combine a Markov process with Monte Carlo simulation techniques, 

to generate random numbers of a stationary distribution similar to a posterior distribution. The 

summary statistics of the MCMC samples will approximate the properties of the posterior 

distributions. However, there are assumptions and requirements to be fulfilled to ensure that MCMC 

random numbers generated converge to the distribution. There are multiple methods of MCMC, 

which can be implemented in the popular Win BUGS software (Ntzoufras, 2011), as well as in R and 

SAS software. This method involved a set of steps that use iterative simulation of parameter values 

from the posterior distribution based on a Markov chain (MC) formulation. 

A Markov chain is a sequence of random variables (𝜃𝑛)𝑛=0
∞   in which the future is independent of the 

past, given the present. This can be written as: 

  

For MCMC methods to function, we should use a Markov chain that has a stationary posterior 

distribution  𝜋(𝜃) = 𝑝(𝜃 |𝑦). The main aim of this method is that after a period, they will consist of a 

sample from the posterior distribution. 

MCMC is carried out starting from one chain and subsequently increasing the number of chains to 

ensure the convergence of the iterative process to a stable estimation of posteriors. MCMC 

conveniently generates many independent posterior estimates, handling non-normal and skewed 

posterior distributions, such as those that arise when testing indirect or interactive effects (Ntzoufras, 

2011). Therefore, in relation to classical (traditional or frequentist) methods, MCMC also sounds like 

other forms of simulation such as bootstrapping which may be a helpful analogy (Lawson, 2013). 

 𝜋 (𝜃𝑛+1 | 𝜃0, 𝜃1, …… , 𝜃𝑛) =  𝜋 (𝜃𝑛+1 |𝜃𝑛) (3.73) 
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3.8.2. The MCMC Algorithm 

According to (Ntzoufras, 2011) Markov chain is stochastic process θ(1), θ(2), …… , θ(T)}, such that [ 

 

That is the distribution of θ  at sequence t+1 given all the preceding  θ values (for times t, t-1, …, 1) 

depend only on the value θ(t) of the previous sequence t. Let us consider the case where, f (θt+1| θ(t)) 

is independent of time t. We also consider the situation where a homogenous Markov chain is 

irreducible, aperiodic, and positive recurrent. As t →  ∞ , the distribution of θ(t)  converges to its 

equilibrium distribution, which is independent of the initial values of the chain θ(0). 

 

Therefore, a sample from f (θ| y)  the posterior must be generated. It is called an ergodic MC, which 

then follows the construction of a Markov chain with two desired properties: 

1. f (θ(t+1) | θ(t))  should be easy to generate from, and  

2. The equilibrium of distribution of the selected Markov chain must be the posterior distribution 

of interest𝑓 (𝜃| 𝑦). This condition occurs when the MC is irreducible, aperiodic and positive-

recurrent (Nummelin 2004). 

Therefore, we describe an MCMC algorithm for which this property holds. The standard approach to 

Bayesian inference using MCMC is as follows: 

1. Select an initial value 𝜃0. 

2. Generate S values until the equilibrium distribution is reached 

3. Monitor the convergence of the algorithm using the convergence diagnostic. If convergence 

diagnostic fails, we further generate more samples. 

4. Cut off the first R observations. This is referring to as Burn-in period. Here the first R iterations 

are eliminated from the samples to avoid the influence of the initial values. However, Ntzoufras 

(2011) stated that if the sample generated is large enough, the effect of the burn-in periods 

on the calculation of the posterior will be minimal, therefore a large refresh value is 

 f (θ(t+1) | θ(t), … . θ(1))  =   f (θt+1| θ(t)) (3.84) 
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recommended for simple models while for a complicated model (while the algorithm will be 

slower) a low refresh value is recommended.  

5. Consider as the sample for the posterior analysis 

6. Plot the posterior distribution. 

7. Finally, obtain summaries of the posterior distribution (that is mean, median, standard 

deviation, quantiles, and correlations) 

From the above, steps 6-7 are referred to as the convergence diagnostic. A convergence diagnostic is 

a statistical test used in identifying cases where convergence is not achieved. The MCMC output 

provides us with a random sample. 

From this sample, for any function 𝐽(𝜃) of parameter of interest 𝜃, a sample of the desired parameter 

𝐽(𝜃) by simply considering 𝐽(𝜃(1)), 𝐽(𝜃(2)),… ,… . , 𝐽(𝜃(𝑆
′)). A posterior summary 𝐽(𝜃)  can also be 

obtained from the sample distribution using the traditional sample estimates (Ntzoufras, 2011). Thus, 

the posterior mean  𝐸 ̂(𝐽(𝜃)|𝛽  can be estimated by 

 

And the posterior standard deviation 𝑆𝐷̂ by 

 

Other measures of interests such as the posterior median or quantiles (25% and 95% credible 

intervals) can be obtained in the similar form (Ntzoufras, 2011). Monitor correlations between the 

parameters can also be obtained, as well as produce plots of the marginal posterior distributions such 

as histograms, density plots, boxplots, error boxplots. 

According to (Ntzoufras, 2011), the two most popular MCMC algorithms are the Metropolis-Hastings 

(Metropolis et., al., 1953; Hasting, 1970) and the Gibbs Sampler (German and German, 1984). These 

 𝐸 ̂(𝐽(𝜃) | 𝛽 =  
1

𝑆′
∑𝐽(𝜃𝑠)

𝑆′

𝑠=1

 (3.95) 

 𝑆𝐷̂ (𝐽(𝜃)|𝛽 =
1

𝑆′
∑[𝐽(𝜃𝑠) − 𝐸 ̂(𝐽(𝜃) | 𝛽]

2
𝑆′

𝑠=1

 (3.106) 
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two algorithms have many variants with further extensions that have been developed which are more 

advanced and sometimes more specific to some problems. The choice between the two methods 

often depends on the problem at hand. Other MCMC algorithms that exist recently in the MCMC 

literature are the slice sampler (Hidgon, 1998; Damien et. al., 1999; Neal, 2003), the reversible MCM 

(RJMCMC) algorithm (Green, 1995), and perfect Sampling (Propp and Wilson, 1996; Merller 1999; 

(Ntzoufras, 2011). 

This study uses the Metropolis-Hastings algorithm because the full conditional is easy to sample, and 

it is most popular, with accurate implementations in SAS (Lesaffre & Lawson 2006; Overt & Casella 

2004). The next section gives a brief general discussion of both methods. 

 

3.8.3. The Metropolis-Hastings Algorithm (M-H) 

The Metropolis Hastings (M-H) is a MCMC technique that was introduced by Metropolis et al. (1953) 

and generalized by Hastings in 1970. 

Suppose we have 𝜋 as a vector-valued parameter 𝑃(𝜃|𝑦) the target posterior distribution from which 

we wish to generate the sample of size T. in Bayesian paradigm, the M-H algorithm follows a step by 

step iterative steps, as follows: 

1. Begin with initial values 𝜃(0) . 

2. For t = 1,..., T, repeat the following steps 

 Set 𝜃 =  𝜃(𝑡−1), 

 generate entirely new values denoted as 𝜋′ from proposal distribution 𝑞(𝜃′ |𝜃)  

 calculate the ratio 

 

 update 𝜃(𝑡) = 𝜃′  with probability  𝛽 or  𝜃(𝑡) = 𝜃(𝑡−1),  with probability 1 − 𝛽  

 𝛽 = min (1,
𝑃(𝜃′|𝑦)𝑞(𝜃|𝜋𝜃′)

𝑃(𝜃|𝑦)𝑞(𝜃′|𝜃)
) (3.117) 
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An important characteristic of this algorithm to note is that it convergence depends on the proposal 

distribution. Thus, practically, it is essential to carefully choose the proposal distribution, as a poor 

choice can considerably delay convergence to the targeted distribution. 

3.8.4. The Gibbs Sampler (GS) 

The Gibbs Sampler (GS) was introduced by German and German (1984). It is a special case of the single-

component Metropolis-Hastings algorithm which is usually cited as a separate simulation technique 

due to its convenience and popularity. GS became popular in the statistical world when Gelfand and 

Smith (1990), showed its ability to tackle complex estimation problems in a Bayesian manner.   

One advantage of GS is that at each step, random variables must be generated from unidimensional 

distributions from which a wide range of computational tools emerge (Gilk,1996). However, it can be 

ineffective if the parameter space is complicated or highly correlated (Ntzoufras, 2011). GS is an 

algorithm for simulating samples from the posterior distribution. The algorithm can be summarized 

below: 

1. set initial values 𝜃0. 

2. For 𝑖 = 1,… . . 𝐺. repeat the steps below: 

(i) set 𝜃 =  𝜃𝑖−1 

(ii) for 𝑗 = 1,… . . 𝑑, update 𝜃𝑗 from 𝜃𝑗  ~ 𝑃 (𝜃𝑗  |𝜃   /𝑗 , 𝑦), where  

𝜃   /𝑗 = 𝜃1, … . 𝜃𝑗−1, 𝜃𝑗+1, …………𝜃𝑗        

(iii) set 𝜃𝑖 = 𝜃  and save it as generated set of values at 𝑖 + 1 iteration of the 

algorithm. 

Hence, given a particular state of the chain 𝜃(𝑔),  we generate new values by  

𝜃1
𝑖   𝑓𝑟𝑜𝑚          𝑃 (𝜃1 |𝜃2

𝑖−1, … , 𝜃𝑝
𝑖−1

   
 , 𝑦) 

𝜃2
𝑖   𝑓𝑟𝑜𝑚          𝑃 (𝜃2 |𝜃1

𝑖−1, 𝜃3
𝑖−1… , 𝜃𝑝

𝑖−1
   
 , 𝑦) 

𝜃3
𝑖   𝑓𝑟𝑜𝑚          𝑃 (𝜃3 |𝜃1

𝑖−1, 𝜃2
𝑖 , 𝜃4

𝑖−1… , 𝜃𝑝
𝑖−1

   
 , 𝑦) 

    .         .                           . 

    .         .                          . 
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𝜃𝑗
𝑖  𝑓𝑟𝑜𝑚          𝑃 (𝜃𝑗  |𝜃1

𝑔
, 𝜃2

𝑔
… , 𝜃𝑗−1

𝑖 , 𝜃𝑗+1
𝑖−1, … . 𝜃𝑗

𝑔−1

   
 , 𝑦)     

               .          .                     . 

                .           .                     . 

𝜃𝑝
𝑖   𝑓𝑟𝑜𝑚          𝑃 (𝜃𝑝 |𝜃1

𝑔
, 𝜃2

𝑔
… , 𝜃𝑝−1

𝑖 , … . 𝜃𝑝−1
𝑔
, 𝑦    

As stated by Ntzoufras (2011), generating values from  

𝑃 (𝜃𝑗  |𝜃   /𝑗 , 𝑦) =  𝑃 (𝜃𝑗  |𝜃1
𝑔
, 𝜃2

𝑔
… , 𝜃𝑗−1

𝑖 , 𝜃𝑗+1
𝑖−1, … . 𝜃𝑗

𝑔−1

   
 , 𝑦) 

is relatively easy since it is a univariate distribution and can written as 𝑃 (𝜃𝑗  |𝜃   /𝑗 , 𝑦)  ∝ 𝑃(𝜃|𝑦), 

where all the variables except 𝜃𝑗  are kept constant at their given values. 

3.8.5. Gibbs Sampler versus Metropolis-Hastings 

There are advantages and disadvantages of using Gibbs sampler and Metropolis Hastings methods. 

(Lawson, 2013, Lesaffre and Lawson, 2012) stated that the Gibbs Sampler gives a single new value for 

each estimate at each interaction. On the contrary, each step of M-H does not require the evaluation 

of a conditional distribution, though the acceptance of a new value is not guaranteed.  

GS can provide faster convergence chains when computations at the conditional distribution at each 

iteration are not time consuming. On the other hand, Metropolis-Hastings steps are usually faster at 

each iteration, but do not guarantee exploration acceptance of the generated value. Using a more 

global proposal in Metropolis Hastings algorithm may produce a higher efficiency, but the drawback 

stands with the choice of the proposal distribution. 

It is worthy of note that GS is a special case of M-H algorithm which uses Open BUGS and JAGS 

software for Bayesian inference analysis. On the other hand, M-H is easy to understand and can use 

other software like SAS, Stata and SPSS.  

Unlike GS, different proposals can be used for Metropolis-Hastings. As a result, most research is being 

conducted on this basis for efficient sampling of the posterior distribution. 
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3.8.6. Monte Carlo Error 

In MCMC analysis, an important measure that must be reported and monitored from the output is the 

Monte Carlo error (denoted as MC error). The MC error measures the variability of each estimate due 

to the simulation. The MC error must be low to calculate the parameter of interest with increased 

precision. 

The MC error is proportional to the inverse of the generated sample size that can be controlled by the 

user. Therefore, for enough iterations, T, the quantity of interest can be estimated with increased 

precision.  Two common ways of estimating MC errors are the batch mean and window estimator 

methods. The first one is simple and easy to implement, and thus widely used, while the latter is more 

precise. For the batch mean method, the resulting output sample is partitioned into K batches, which 

must be sufficiently large to enable the estimation of the variance consistently and eliminate 

autocorrelation (Ntzoufras, 2011). 

The Monte Carlo error of the posterior mean of 𝐺(𝜃) is calculated thus: 

First, calculate each batch mean 𝐺𝜃𝑏̅̅ ̅̅ ̅  by  

 

For each batch b=1, … , K and the overall sample mean by  

 

If we keep 𝜃(1), … , 𝜃(𝑇
′)   observations, then an estimate of the MC error is simply given by the 

standard deviation of the batch means estimates 𝐺𝜃𝑏̅̅ ̅̅ ̅ 

MCE [𝐺(𝜃)]  = 𝑆𝐸  ̂  

𝑀𝐶𝐸 [𝐺 (𝜃)]   =  𝑆𝐸  ̂ [𝐺(𝜃)̅̅ ̅̅ ̅̅ ] =  √
1

𝐾
 𝑆𝐷̂̅̅ ̅̅  [𝐺𝜃𝑏̅̅ ̅̅ ̅] 

 𝐺𝜃𝑏̅̅ ̅̅ ̅  =  
1

𝑣
 ∑ 𝐺(𝜃𝑡)

𝑏𝑣

𝑡=(𝑏−1)𝑣+1

 (3.78) 

 𝐺(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅   =  
1

𝑇′ ∑
𝑇′
𝑡=1

 𝐺(𝜃𝑡)   =  
1

𝐾
 ∑ 𝐺𝜃𝑏̅̅ ̅̅ ̅

𝐾

𝑏=1
 (3.79) 
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= √
1

𝐾 (𝐾−1)
 ∑ (𝐺(𝜃)𝑏̅̅ ̅̅ ̅̅ ̅̅ )  − 𝐺(𝜃)2𝐾

𝑏=1  

Since the procedure for calculating the MC error for any other posterior quantity of interest is 

equivalent to 𝑈̂ = 𝑈(𝜃1, … . . , 𝜃𝑠), to estimate the corresponding Monte Carlo error, we calculate 

𝑈̂𝑏 =  𝑈(𝜃((𝑏−1)𝑣+1), … . . , 𝜃𝑏𝑣) from each batch 𝑏 = 1,… . . , 𝑘, then get the MC error by 

  

 

The batch mean estimators of the MCMC errors are discussed in more detail by Hasting (1970), Geyer 

(1992), Roberts (1996), Carlin and Lois (2000), and Givens and Hoesting (2008). 

The second method, known as window estimator, is based on the expression of the variance in 

autocorrelated samples given by Roberts (1996). 

3.8.7. Assessing MCMC Convergence Diagnostic 

The convergence of an algorithm is a term used to determine whether an algorithm has reached its 

equilibrium or target distribution. Several methods can be used to monitor convergence. The simplest 

and reliable way is to monitor the Monte Carlo (MC) error. A small value of the MC error (less than 

0.5) is an indication that the quantity of interest has been calculated with precision. This was discussed 

explicitly in section 3.7.6. The second way is to monitor the trace plots (that is the plot of iteration 

versus the generated values). We assume convergence if all the values are within a strong periodicity, 

and most importantly, tendency zone. 

A major decision to make is the number of iterations to be used to represent the posterior density 

and to ensure that Markov chain converged. However, the convergence of a model does not 

necessarily indicate a good model. It is just the starting point of model assessment.  

Suppose we have I iterations and after discarding (burning) some, the remain is 𝐼′. Using the batch 

mean method, the MC error is calculated by first partitioning the resulting output into K batches, 

usually K = 30 or K = 50. To enable consistency in estimation and eliminate autocorrelation, both the 

 𝑀𝐶𝐸 (𝑈̂) =   √
1

𝐾(𝐾 − 1)
∑(𝑈̂𝑏 − 𝑈̂)

2
𝑘

𝑏=1

 (3.80) 
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number of batches and the sample size 𝑠 =  𝐼
′

𝐾⁄ .  The MC error of the posterior mean  𝑇 (𝑥)̅̅ ̅̅ ̅̅ ̅    is 

calculated firstly by calculating batch means denoted by 𝑇(𝑥)𝑏̅̅ ̅̅ ̅̅ ̅̅ . 

where 

 

For each batch b = 1, 2…., K and the overall sample mean is given as 

 

Assume we keep 𝑋1 , … . . 𝑋𝑇
′
  observations. Then the MC error is given as:  

 

 

However, the window estimator method is based on the expression of variance in an autocorrelated 

samples as:  

 

Where (ρk) ̂[T(X)] is the estimated autocorrelation of lag k.  When k is large, the autocorrelation 

estimation cannot be reliable due to the small number of observations that remains. For a sufficiently 

 𝑇(𝑥)𝑏̅̅ ̅̅ ̅̅ ̅̅  =  
1

𝑠
  ∑  𝑇 (𝑋(𝑡))

𝑏𝑠

𝑡=(𝑏−2)𝑠+1

 (3.81) 

 n  𝑇 (𝑥)̅̅ ̅̅ ̅̅ ̅  =  
1

𝐾
 ∑  𝑇(𝑥)𝑏̅̅ ̅̅ ̅̅ ̅̅
𝐾

𝑏=1

 (3.122) 

 𝑀𝐶𝐸[𝑇(𝑥)] = 𝑆𝐸 [ 𝑇 (𝑥)̅̅ ̅̅ ̅̅ ̅]    =  √
1

𝐾 (𝐾 − 1)
  ∑(𝑇(𝑋) − 𝑇(𝑥)𝑏̅̅ ̅̅ ̅̅ ̅̅  )

2
𝐾

𝑏=1

  (3.133) 

 𝑀𝐶𝐸[𝑇(𝑋)] =
𝑆𝐷 [ (𝑇 (𝑥)  ]

√𝐼
′    =  √1 + 2  ∑𝜌𝑘̂

∞

𝑘=1

  [𝑇(𝑋)] (3.84) 
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large k, the autocorrelation should be close to zero. In this method, a window ω was identified after 

which autocorrelation are considerably low and discard ρk with k > ω from the preceding MC error 

estimate. Thus, equation 3.82 is modified as 

 

The output of the algorithm produces a variety of results which are used for discussion and further 

conclusion. The summary of the outputs are discussed below. 

 Autocorrelation Function (ACF) Plots: Autocorrelation is a situation where the estimated 

parameters in the chain are correlated. Congdon (2010) noted that the absence of vanishing 

autocorrelation with high lags is an indication of less information about the posterior, because 

for each iteration a high sample size is required to cover the parameter space. However, 

autocorrelation can be reduced by “thinning”. Thinning involves storing of samples from jth 

iteration, where j>1 is the value of the field thinned (Congdon, 2010).  When a long run is being 

carried out, thinning reduces MCMC errors. Likewise, (Lawson, 2013) mentioned “over-

relaxation” as another way of reducing correlation. This generates multiple samples at each 

iteration and allows selection of one that is negatively correlated to the current value. 

 Gelman and Rubin Multiple Chain Convergence:  This is based on using two or more parallel 

chains with different starting values (Lawson et al., 2003, Ntzoufras, 2011). However, a 

multiple-chain convergence diagnostic is an evidence of the robustness across different 

subspaces ((Lawson et al., 2003). Thus, the convergence of a Markov Chain can be improved 

by standardizing covariates and the unstructured random effect (Condgon, 2010) 

 Kernel Density Plots: For marginal posterior distributions that are approximately normal, a 

satisfactory density plot for a convergence chain should look more bell-shaped (Lawson et al., 

2003, Ntzoufras, 2011) 

 Node Statistics:  This tool gives the posterior summary, which gives the estimates of posterior 

mean, standard deviation, MC errors, median, the quantiles, total number of iteration 

 𝑀𝐶𝐸[𝑇(𝑋)] =
𝑆𝐷 [ (𝑇 (𝑥)  ]

√𝐼
′    =  √1 + 2  ∑𝜌𝑘̂

𝜔

𝑘=1

  [𝑇(𝑋)] (3.85) 
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generated sample size and the number of iterations that the sample started (the burn-in 

period) with. Here, focus is on the MC error, which measures the variation of the mean of the 

parameter of interest due to the simulation. The MC error should not be greater than 0.05 and 

increasing the number of iterations will decrease the MC error (Ntzoufras, 2011).   

 Running quantiles: Monitoring the evolution of selected quantiles is essential. This plot is an 

indication of stability in the stated quantiles, which also implies convergence  

 CODA: Here two windows are created for each chain. The first is the output file with all the 

generated values, sequentially stored for each monitored parameter with their corresponding 

iteration number. This file must be stored as text file for further transformation analysis in 

CODA library in R.  The second windows are the index file with details of each nodes stored.  

The Markov Chain Monte Carlo diagnosis of the model output as explained above will be 

discussed below: 

3.9. Comparison of Bayesian and Frequentist Approaches 

Both Bayesian and frequentist statistical inference approaches allow one to evaluate evidence about 

competing hypothesis. The goal of this comparison is to explain the difference between the p-value in 

frequentist and a posterior distribution probability in Bayesian.  

The Bayesian school of thought models’ uncertainty using a probability distribution, as against 

hypothesis. Therefore, the ability to make inference depends on one's degree of confidence in the 

chosen prior, and the effectiveness of the findings to alternate prior distributions is highly relevant 

and important. However, the frequentist school of thought only uses conditional distributions of data 

given specific hypotheses. The presumption is that some hypothesis (parameters specifying the 

conditional distribution of the data) is true and that the observed data is sampled from that 

distribution. Particularly, the frequentist approach does not depend on a subjective prior that may 

vary from one researcher to another. These two schools of thought can be further contrasted as 

follows: 

Bayesian inference  

 Uses probabilities for both data and hypothesis. 

 Depends on the prior and likelihood of observed data. 
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 Requires one to know or contrast a “subjective prior”. 

 Has dominated statistical practice before the 20th century. 

 Computation may be intensive due to integration over many parameters. 

 

Frequentist inference 

 Does not use or give the probability of a hypothesis (No prior or posterior). 

 Depend on the likelihood P(D/H) for both observed and unobserved data. 

 Dominated statistical practice during the 20th century. 

 Less computationally intensive. 

Frequentist measures like the p-value and confidence interval continue to dominate research, 

especially in the life sciences. However, in the current era of powerful computers and big data, 

Bayesian methods have undergone an enormous renaissance in research. The main critique of 

Bayesian methods is hinged on the subjective prior which may often lead to different posteriors and 

conclusions, unlike a straight objective frequentist approach. 

The goal of a statistical inference is to help make a decision. The decision rule, however, combines 

both the expected and the observed data into a statistical framework for making decisions. In a 

decision-making rule, the frequentist will consider the expected variable given a hypothesis, whereas 

the Bayesian combines that expectation with a posterior distribution. In the long run, a significant 

theoretical result is that for any decision rule, there is a Bayesian decision rule which is more precise 

and better. 

 

3.10. Conclusion 

The Bayesian method is becoming very popular in statistical data analysis. Bayesian statistics differ 

from classical methods in terms of the use of prior information and likelihood functions, which give 

more power to the analysis.
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Chapter 4  

 Results 

3.0. Introduction 

This chapter provides results of the application of statistical techniques to determine the spatial 

clustering and distribution of diabetes and the impact of its relative risk factors in Africa. Cluster 

analysis, Moran I indices and LISA approaches was used to determine which countries have similar 

pattern of diabetes and their spatial configuration and detect countries with a high risk of diabetes in 

Africa. Bayesian statistical analysis techniques were used to determine the risk factors that have more 

impact on diabetes prevalence in Africa.   

 

4.1.1. Data Exploratory Analysis Results 

The African continent with its 53 countries is the study area. The response variable considered in this 

study is the diabetes prevalence rate of adults between 20-69 years old. The predictors are prevalence 

of obesity, GDP, prevalence of alcohol consumption, percentage of physical activity, percentage of 

people aged 15-69, percentage of population growth, age dependency ratio, physician density per 

person, health expenditure, GNI, MYS, and HDI. 

 

4.1.2. Summary Statistics of Diabetes and predictors 

Table 4.1. Shows the summary statistics of variables in the study. The mean and median estimates of 

diabetes prevalence, obesity, GDP, age dependency ratio, urbanization, health expenditure shows 

that most of their values are concentrated on the high scale. In the same line of analogy, alcohol, and 

MYS are on the low scale. These variables are almost symmetrical and normally distributed. All the 

variables are positively skewed except HDI. 
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Table 4.1:  Summary statistics of variables in the data set 

 

From Table 4.1. Mean prevalence of diabetes is 5.36 with the median of 4.050, 95% Confidence 

Interval (CI) is (2.3, 7.5) and positive skewness of 2.159. All the risk factors were positively skewed 

with HDI negatively skewed. 

 

Variable Mean Median  Min  Max 95% CI Skewness 

Diabetes  5.36 4.050 0.80 22.3 (2.3, 7.5) 2.159 

Age dependency  6.23 5.670 4.34 13.45 (5.1, 6.7) 2.14  

Alcohol 3.13 1.830 0.00 10.72 (0.5,5.3) 0.92 

GDP 2767.810 1091.113 255.04 18918.28 (582.6,3393.6) 2.609 

GNI 4838.38 772.207 0.00 23300.31 (1353.8,6032.3) 1.783 

HDI 0.50 0.020 0.00 0.78 (0.43,0.59) -1.054 

Health expenditure  5.83 5.587 0.00 11.09 (4.04,7.25) 0.348 

MYS 4.79 0.306 0.00 9.94 (3.12,6.23) 0.111 

Obesity  11.50 9.250 2.60 33.10 (6.53,15.03) 1.248 

Physical inactivity 17.66 19.050 0.00 46.90 (7.13, 25.25) 0.179 

Physician density  0.31 0.104 0.00 2.83 (0.05,0.30) 3.129 

Population age (20-
75) 

56.60 55.036 46.95 71.11 (52.55,59.24) 0.906 
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4.1.3. Spatial Pattern of Diabetes and Predictors 

The geographic description of each variable in the study is made and visually presented on the African 

map using R software and library “maptools” and “spdep”. 

 

Figure 4.1. Spatial Distribution of Diabetes Prevalence in Africa 

From Figure 4.1 above, it can be visualized that the prevalence of diabetes is not uniformly distributed 

in the continent. Countries with the higher diabetes prevalence are Mauritius (22.3%), Seychelles 

(17.4), Egypt (16.7), Libya (10.4%), Comoros (9.9%), Tunisia (9.6%), Sudan (8.9%), Djibouti (8.4%), 

South Sudan (8.1%), Morocco (7.1%), Gabon (7.8%), Equatorial Guinea (7.7, South Africa (7.6) and 

Algeria (7.5%). The countries with lower prevalence (less than 2.3%) in the continent are Benin (0.8%), 

Gambia (2%), Burkina Faso (2.2%), Niger (2.2%), Mali (2.2%), Senegal (2.2%), Sierra Leone (2.2%) , 

Guinea  (2.2%,Guinea Bissau  (2.2), Cabo Verde (2.3%), Ghana (2.3%), Liberia (2.3%), Mauritania 

(2.3%), Nigeria (2.3%), Sao Tome Principe (2.3%) and Kenya (2.4%). Overall, the highest prevalence is 
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seen within the North, Central and South regions, with the West Africa region having the lowest 

prevalence of diabetes. The map clearly expresses some regional patterns which will be investigated 

in the following sections.  

Because of the regional pattern exhibited in the Figure 4.1, a summary statistic of the continent region 

is necessary. This is expressed through a bar plot. A bar plot is a method of summarising a dataset. A 

bar plot of the median diabetes prevalence by country region in Figure 4.2 shows the that North region 

has the highest median prevalence of 8.90%, followed by Central Africa region with 6.45%, South 

region has 4.10%, East region has 3.85% and the lowest is in West Africa 2.20%.  

 

Figure 4.2. Bar plot of median prevalence 
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4.1.4. Spatial distribution of socio economic variables   

 

Figure 4.3. Spatial Distribution of African countries GDP 

Figure 4.3 shows the GDP prevalence, with highest GDP prevalence in the North and Southern Africa 

region shown in red. The top ten countries with the highest GDP are Equatorial Guinea (18918.28), 

Seychelles (15564.64), Gabon (10772.06), Mauritius (10016.65), Botswana (7123.339), Libya 

(6573.387), South Africa (6483.855), Angola (5900.53), Algeria (5484.07), and Namibia (5408.234). The 

countries with lowest GDP are in blue. These are Guinea (539.6168), Liberia (457.86), Madagascar 

(449.40), Gambia (441.29), Niger (427.37), Niger (427.37), Cote d’Ivoire (422.37), Central Africa 

(358.54), Burundi (286.00) and Malawi (255.04).  
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 Figure 4.4. Spatial Distribution of African countries' Obesity Prevalence 

From Figure 4.4 which shows the Obesity prevalence (covariate 2), the highest prevalence of obesity 

is seen within the North and Southern Africa region. The top eight highest countries are Libya (33.1), 

Egypt (28.9), Togo (27.1), South Africa (26.8), Seychelles (26.3), Algeria (24.8), Botswana (22.4) and 

Morocco (22.3).  The countries with the lowest obesity prevalence are Tunisia (4.9), Somalia (4.6), 

Congo Republic (4.4), Niger (4.3), Eritrea (4.1), Rwanda (4.0), Ethiopia (4.0) and Burundi (2.6).  
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Figure 4.5. Spatial distribution of African countries' age dependency ratio 

Figure 4.5 shows age dependency ratio, showing North Africa region having the highest countries with 

highest prevalence rate. The eight countries with the highest age dependency ratio are Mauritius 

(13.44), Tunisia (10.99), Seychelles (9.87), Morocco (9.26), Algeria (9.06), Gabon (8.83), Egypt (8.47) 

and South Africa (7.66). Those with the lowest age dependency ratio are Eritrea (4.33), Gambia (4.49) 

Burkina Faso (4.60), Angola (4.62), Burundi (6.69), Sierra Leone (4.86), Comoros (4.91), Chad (4.92), 

Rwanda (4.97), and Equatorial Guinea (4.99). 
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Figure 4.6. Spatial distribution of African countries' population age (15-65) 

Figure 4.6 shows the distribution of Population age 15-65 in the continent. Countries with high 

population age are: Mauritius (71%), Seychelles (70%), Tunisia (70%), Morocco (67%), Cabo Verde 

(66%), South Africa (66%), Libya (66%), Algeria (66%), Botswana (64%), Djibouti (63%) and Egypt (61%). 

The countries with the lowest population age are Niger (47%), Uganda (49%), Chad (50%), Mali (50%), 

Angola (50%) and Somalia (50%).  
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Figure 4.7. Spatial distribution of African countries' urban population growth 

Figure 4.7 shows the distribution of urban population growth on the continent. Countries with the 

highest urban population growth are: Gabon (87.2 %), Libya (78.55%), Djibouti (77.3%), Algeria 

(70.7%), Tunisia (66.8%), Cabo Verde (65.5%), Congo Republic (65.3%), Sao Tome Principe (65.1%), 

South Africa (64.8%), Morocco (60.2%). Countries with lowest urban population growth are   Burundi 

(12.1%), Uganda (16.1%), Malawi (16.3%), Niger 18.4%), South Sudan (18.8%), and Ethiopia (19.4%). 

Generally, highest distribution of urban population growth is seen more at the North Africa and central 

Africa region, with East Africa region having the lower distribution.  
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Figure 4.8. Spatial distribution of African countries' alcohol consumption prevalence 

Figure 4.8 shows the distribution of Alcohol prevalence. The nine countries with highest alcohol 

consumption rate are Equatorial Guinea (10.7 %), Uganda (10.7%), Seychelles (9.7%), Gabon (8.9%), 

Rwanda (8.3%) Angola (8.3%), Nigeria (8.3%), Namibia (7.8%) and South Africa (7.4%). Countries with 

lowest prevalence of less than 0.2% are Niger, Mauritania, Senegal, Guinea Bissau, Guinea, Liberia, 

Egypt, South Sudan, Somalia, and Tanzania. The general overview shows that Southern Africa, Central 

Africa, and East Africa regions have a cluster of highest prevalence, while West and East Africa regions 

have most of the lowest prevalence of alcohol.  
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Figure 4.9. Spatial distribution of African countries' physician density per 1000 person 

Figure 4.9 shows the distribution of the physician density per 1000 person on the continent. The 

countries with highest rate are Egypt (2.8%), Libya (1.9%), Togo (1.2%), Algeria (1.2%), Seychelles 

(1.1%), Mauritius (1.1%), South Africa (0.8%), Morocco (0.6%), Sao Tome Principe (0.5%), Nigeria 

(0.4%), Botswana (0.4%), Namibia (0.4%), both Cabo Verde and Equatorial Guinea having 0.3%. The 

countries with the lowest rates of less than 0.036% are South Sudan, Uganda, Ethiopia, Somalia, 

Djibouti, Burundi, Malawi, Niger, Chad Liberia and Sierra Leon. North, West and Southern region 

shows the highest number of countries with high rate of physician density while the East region shows 

the lowest. 
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Figure 4.10. Spatial distribution of African countries' health expenditure 

Figure 4.10 shows the distribution of the health expenditure in the continent. Countries with highest 

rate spent on health are Sierra Leone (11.1 %), Lesotho (10.6%), Djibouti (10.6%), Liberia (10.0%), 

Malawi (9.6%), Swaziland (9.3%), Namibia (8.9%), South Africa (8.9%), Sudan (8.4%), Sao Tome 

Principe (8.4%), Burundi (7.5%) and Rwanda (7.5%), while countries with lowest rate of health 

expenditure are Ghana (3.6%), Gabon (3.4%), Seychelles (3.4%), Eritrea (3.3%), Angola (3.3%), 

Madagascar (3.0%) South Sudan (2.7%) and Congo DRC (2.6%). General overview shows that Southern 

region has the highest rate of health expenditure. 
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Figure 4.11. Spatial distribution of African countries' physical activity prevalence 

Figure 4.11 shows the distribution of physical activity prevalence rate (covariate 9). Countries with 

highest physical activity rate are South Africa (46.9 %), Mauritania (45.1%), Libya (38.0%), Swaziland 

(36.8%), Algeria (34.4%), Egypt (32.3%), Namibia (31.8%), Cabo Verde (30.7%), Liberia (27.5%), 

Botswana (27.2%), Gabon (26.0%) and Cote D’Ivoire (26.0%), while countries with lowest physical 

activity rate (between 0% – 4.6%) are Morocco, Sudan, South Sudan, Uganda, Burundi, Somalia, 

Equatorial Guinea, Angola, Djibouti and Guinean Bissau. The highest prevalence is seen mostly within 

the North and Southern region, while the Central and West region has the lowest prevalence rate.  
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Figure 4.12. Spatial distribution of African countries' HDI 

Figure 4.12 shows the distribution of the HDI (Covariate 10) in the continent. Countries with the 

highest are Mauritius (0.78%), Seychelles (0.78%), Algeria (0.74%), Tunisia (0.72%), Botswana (0.69%), 

Egypt (0.69%), Gabon (0.68%), South Africa (0.67%), Cabo Verde (0.65%), Morocco (0.63%), Namibia 

(0.63%) and Congo Republic (0.59%), and countries with lowest rates are Sierra Leone (0.41%), Guinea 

(0.41%), Burkina Faso (0.40%), Burundi (0.39%), Chad (0.39%), Eritrea (0.39%), Central Africa Republic 

(0.35%), Niger ( 0.35%), Somali (0.00%), Libya (0.00%). The general overview shows that Northern, 

Southern and few parts of Central Africa region have the highest distribution of HDI, while the West 

Africa region has the lowest rate on the continent.  
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Figure 4.13. Spatial distribution of African countries' GNI 

Figure 4.13 shows the distribution of GNI across the continent. Countries with the highest GNI are 

Seychelles (USD2330.31), Equatorial Guinea (USD 21 055.96), Mauritius (USD 17 469.78), Botswana 

(USD 16 646.23), Gabon (USD 16 366.93), Tunisia (USD 14 910.92), Algeria (USD 13 054.31), South 

Africa (USD 12 122.32), Egypt (USD 10 512.42), Namibia (USD 9 417.80), Morocco (USD 6 850.14). 

Countries with the lowest GNI are Mozambique (USD 1 123.44), Guinea (USD 1 095.76), Niger (USD 

908.34), Liberia (USD804.95), Burundi (USD 758.18), Malawi(USD747.33), Congo DRC (USD680.47), 

Central Africa Republic (USD580.73), Somalia (USD0.00) and Libya (USD0.00). The general overview 

shows that the Northern, Southern, and Central regions have the highest distribution, while the West 

and Central Africa region shows the lowest distribution.  
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Figure 4.14. Mean Year of Schooling in Africa 

Figure 4.14 shows the distribution of the Mean Year of Schooling (MYS) on the continent. MYS is 

defined as the average number of completed years of education of a country’s population aged 25 

years and older, excluding years spent repeating individual grades. MYS is an indicator of human 

capital available in an economy and countries and is comparable across populations.  Education and 

literacy are key drivers of economic development, with also a strong correlation with health and 

wellbeing.  A uniform pattern is seen across the continent. Countries with the highest rate are South 

Africa (9.94), Seychelles (9.41), Botswana (8.87), Mauritius (8.54), Gabon (7.79), Algeria (7.61), Tunisia 

(7.31), Zimbabwe (7.25), Swaziland (7.12), Ghana (6.99), Zambia (6.60). The countries with the lowest 

rate are Burundi (2.67), Senegal (2.48), Guinea (2.42), Ethiopia (2.41), Mali (2.05), Chad (1.93), Niger 

(1.45), Burkina Faso (1.37), Somalia (0.00), Libya (0.00). The general overview shows thee Southern 

Africa region to have the highest distribution while the West and East Africa region has the most 

cluster of lowest rate.   
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4.1.5. Normality Tests 

4.1.5.1. Shapiro–Wilk Normality Test  

Normality test was carried out using the Shapiro Wilk test, a non-parametric test to ascertain if the 

sample is from a normally distribution population. The result is shown in Table 4.2, at alpha 

significance level 0.05, from the p-values, we can conclude that the diabetes prevalence are not from 

a normally distributed population. 

Table 4.2: Shapiro–Wilk normality test of diabetes prevalence across Africa 

Country/Region W (Shapiro test) P-value Median prevalence 

Africa 0.76763 0.00000007472 4.05 

West Africa 0.55696 0.00000631 2.20 

Central Africa 0.79303 0.02409 6.45 

East Africa  0.79956 0.01432 3.85 

South Africa 0.61411 0.00008691 4.10 

North Africa 0.73731 0.009332 8.90 

 

However, since the test is biased by sample size, the test may be significant from a normal distribution 

in any large samples. That is why we have Kolmogorov Smirnov test (n>50) 

A Q-Q plot can be used to verify the test. As an additional check of the normality of the variables 

visually, a Q-Q plot is a visual plot of the observed value versus the expected normal value. Figure 4.15 

shows the Normal Q-Q plot of diabetes prevalence. The results hence show that diabetes is not 

normally distributed. 
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Figure 4.15. Normal Q-Q plot of diabetes prevalence. 

 

Figure 4.16. Bar, Box, and Histogram of diabetes prevalence. 

4.1.5.2. Kruskal -Wallis Test by Ranks 

This is a non-parametric method for testing whether samples originate from the same distribution and 

is mostly used for comparing more than two independent samples of equal or different sizes. Thus, in 

performing the comparison between multiple groups, we cannot run an ANOVA test for multiple 

comparisons if the group does not follow a normal distribution. Instead, the Kruskal-Wallis test is used. 

The result gave a Kruskal Wallis value of 35.448 with df = 4 and the p-value of 0.000000379. In 

comparing the value of median prevalence for the region in Table 4.2 with the Kruskal-Wallis test, we 

then conclude that there is a significant difference among the country regions.  This means that the 
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prevalence level in the West Africa region can be different from that in the South Africa region. Kruskal 

Wallis test function is then used to compare the independent diabetes prevalence. 

We can then conclude that diabetes is independently distributed across the continent.  

 

4.1.5.3. Spearman Rho Correlation Test  

Spearman’s rho correlation test was used to measure statistical dependency of the data set.   The 

Table 4.3 below show the result of the spearman correlation test of diabetes and the risk factors. If 

the p-value < 𝛼 = 0.05, then we say there is a significant relationship between the variables. We also 

look at if the rho value is positive (+) or negative (-). Lastly, when  

 r = 0.1 to 0.29, the strength of correlation is said to be small 

 r = 0.30 to 0.49, the strength of correlation is said to be medium 

 r = 0.50 to 1, the strength of correlation is said to be large 

Table 4.3: Spearman Rho correlation test of diabetes and risk factors 

Variables  Rho (r) p-value Interpretation  

Obesity 0.335 
 
 

0.013 Significant, positive medium strength correlation 

Health expenditure -0.132 0.340 Non-significant, negative, small strength correlation 

GDP 0.573 0.0000058 Significant, positive, large strength correlation 

Alcohol -0.015 0.915 Non-significant, negative, small correlation 

Population age 0.504 0.0001 Significant, positive, large strength correlation 

Age dependency  0.534 0.000032 Significant, positive, large strength correlation 

Urban population  0.190 0.169 Non-significant, positive, small strength correlation 

Physical activity 0.050 0.718 Non-significant, positive, small strength correlation 

Physical density 0.389 0.0036 Significant, positive, medium 

HDI 0.439 0.00090 Significant, positive, medium strength correlation 

MYSC 0.470 0.00034 Significant, positive, medium strength correlation 

GNI 0.389 0.0036 Significant, positive, medium strength correlation  
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The results show that obesity, physician density, HDI, MYSC, and GNI are significantly correlated to 

diabetes with positive medium strength correlations. GDP, population age, and age dependency ratio 

are significant and positive with larger strength correlations with diabetes. Health expenditure and 

alcohol are not significantly correlated with diabetes. Urban population growth and physical activity 

show a nonsignificant correlation as well. 

 

4.1.5.4. Relationship Between Diabetes and Risk Factors 

The scatter plot is the best way to assess linearity between two numeric variables. From a scatter plot, 

the strength, direction and the form of the relationship can be identified. The analysis was conducted 

in R using library. Figure 4.17 to 4.20 shows the scatter plots for diabetes prevalence (dependent 

variable) and its association with the risk factors (independent variables).  This is a linear 

representation of the results showing the relationship between diabetes and the risk factors as well 

as country particularities. 
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Figure 4.17. Relationship between diabetes prevalence with Obesity and Urbanisation 

The results in the Figure 4.17 show that countries such as Egypt and Seychelles have high levels of 

diabetes prevalence as well as high percentage of obesity, while countries such as South Arica and 

Togo have high obesity prevalence, but low diabetes. 

 

Figure 4.18. Relationship between diabetes prevalence with Alcohol consumption prevalence and 

Physical Activity in Africa 
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Figure 4.19. Relationship between diabetes prevalence with HDI, GNI, and MYSI 
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Figure 4.20. Relationship between diabetes prevalence with Age dependency ratio y and Physician 

density 
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Figure 4.21. Relationship between diabetes prevalence with GDP, Health expenditure, and 

Population age 

Figures 4.17 – 4.21 visually illustrate the relationship between the significant risk factors at a 

descriptive level and diabetes prevalence, with a linear association observed in all the variables. It also 

visually shows the outlier countries within the relationship between each covariate and diabetes 

prevalence. Countries that have high diabetes prevalence are identified both at the continent at large 
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and within the regions. Three countries are identified which have a diabetes prevalence rate above 

15%, and they are Egypt (16.7%), Seychelles (17.4%), and Mauritius (22.3%). Within the region, East 

Africa shows Comoros and Djibouti as outliers, as their prevalence rate was above 8%, 9.9%, and 8.4% 

respectively, and the highest in the region. In the West Africa region, Togo with a 4.8% diabetes 

prevalence (a little above 4%) and Benin 0.8% below the mean prevalence of 2 in the region are both 

outliers compared to other countries in the region. In the Central Africa region, Sao Tome and Principe 

is an outlier and its diabetes prevalence are below 3%. In the North Africa region, Egypt is the only 

outlier with a prevalence rate of 16.7%, and the highest in the region.  In the South Africa region, 

Mauritius, Seychelles, and South Africa are outliers with diabetes prevalence rates of 22.4%, 17.4%, 

and 7.6% respectively, and the highest in the region. 

Upon visual inspection, the relationship appears to be linear, with all variables having negative 

direction and looks moderately strong, except alcohol and health expenditure. The strength of the 

relationship was quantified using spearman rho correlation test. 

 

4.2. Clustering of Diabetes prevalence in Africa 

Cluster analysis was performed and Tables 4.4 and 4.5 show the results of K-means and Ward’s cluster 

analysis using R, while Figures 4.22 and 4.23 show the dendrogram result of Ward’s and Centroid 

methods of cluster analysis.  
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4.2.1. K-Means Results 

Table 4.4: Summary of clustering of Diabetes in Africa using K - mean clustering techniques 

Countries in clusters n Mean Minimum 
1st 
Quartile 

Median  
3rd 
Quartile 

Maximum  

Cluster 1: 

Algeria, Comoros, 
Djoubti, Gabon, Libya, 
Morocco, South Africa, 
South Sudan, Sudan, 
Tunisia, Equatorial 
Guinea. 

11 6.97 2.30 4.13 6.70 7.95 16.70  

Cluster 2: 

Angola, Botswana, 
Cameroon, Central 
Africa, Chad, Congo DRC, 
Congo, Eritrea, Ethiopia, 
Lesotho, Madagascar, 
Malawi, Namibia, 
Rwanda, Somalia, 
Swaziland, Tanzania, 
Togo, Uganda, Zambia, 
Zimbabwe 

21 3.58 0.80 2.20 3.25 4.10 9.90 

Cluster 3: 

Benin, Burkina-Faso, 
Burundi, Carbo Verde, 
Cote D’Ivoire, Gambia, 
Ghana, Guinea, Guinea 
Bissau, Kenya, Liberia, 
Mali, Nigeria, Sao Tome 
Principe, Senegal, Serial 
Leone 

19 10.74 5.60 7.60 7.80 10.40 22.30 

Cluster 4: 

Egypt and Seychelles 
2 4.25 2.20 2.30 2.40 5.70 8.90 

Cluster 5: 

Mauritius  
1 12.55 7.70 10.12 12.55 14.98 17.40 
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The diabetes prevalence rates differ significantly between the clusters (Kruskal Wallis test: p=0.01). 

From Table 4.4. Cluster 1 has a total of eleven (11) countries, with mean of 6.97, median of 6.70, 

minimum value of 2.30, and maximum value of 16.70. Cluster 2 has a total of twenty-one (21) 

countries with mean of 3.58, median of 3.25, and minimum and maximum values of 0.80 and 9.90 

respectively.  Cluster 3 has nineteen (19) countries with mean of 10.75, median of7.80, and minimum 

and maximum values of 5.60 and 22.30 respectively.  Cluster 4 comprises of two (2) countries (Egypt 

and Seychelles) with mean of 4.25, median of 2.40, 1st and 3rd quartiles of 2.30 and 5.70 respectively. 

The minimum and maximum value in this cluster is 2.30 and 5.70 respectively. Cluster 5 has one 

country (Mauritius) with mean and Median of 12.55, 1st and 3rd quartiles are 10.12 and 14.98, 

respectively, and the minimum and maximum values are 7.70 and 17.40. The highest mean diabetes 

prevalence rate is found in Cluster 5 followed by Cluster 3. The lowest mean is found in Cluster 2 

(3.58). 
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4.2.2. Ward Clustering Result 

Table 4.5: Summary of clustering of diabetes in Africa using Ward clustering technique 

Countries in same 
cluster 

N Mean  Minimum 
1st 
Quartile 

Median 
3rd 
Quartile 

Maximum  

Cluster 1: 
Algeria, Comoros, 
Djoubti, Equatorial 
Guinea, Gabon, Libya, 
Morocco, South Africa, 
South Sudan, Sudan 
and Tunisia 

11 7.00 4.10 4.90 7.5 8.6 10.4 

Cluster 2: 
Angola, Eritrea, 
Ethiopia, Lesotho, 
Madagascar, Malawi, 
Namibia, Rwanda, 
Swaziland, Tanzania, 
Zambia, Zimbabwe 

12 3.81 0.80 2.30 3.10 4.10 9.90 

Cluster 3: 
Benin, Burkina-Faso, 
Burundi, Cabo Verde, 
Cote D’Ivoire. Gambia, 
the, Ghana, Guinea, 
Guinea Bissau, Kenya, 
Liberia, Mali, 
Mauritania, 
Mozambique, Niger, 
Nigeria, Sao Tome 
Principe, Senegal, 
Sierra Leone, Uganda 

20 7.38 2.30 4.48 6.70 7.80 16.70 

Cluster 4: 
Botswana, Cameroon, 
Central Africa, Chad, 
Congo DRC, Congo 
Rep, Somalia, Togo  

8 12.55 7.70 10.12 12.55 14.98 17.40 

Cluster 5: 
Egypt, Mauritius and 
Seychelles 

3 15.05 7.80 11.42 15.05 18.68 22.30 
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Table 4.5 above using the ward techniques showed that diabetes prevalence rate differs significantly 

between the clusters (Kruskal Wallis test: p=0.01). 

Cluster 1 has eleven countries with mean of 7.0, median of 7.5, 1st and 3rd quartiles of 4.90 and 8.6 

respectively, and minimum and maximum values of 4.10 and 10.4 respectively. Cluster 2 comprises of 

twelve countries with mean of 3.81, median = 3.10, 1st and 3rd quartiles of 2.30 and 4.10 respectively, 

and minimum and maximum values of 0.80 and 9.90 respectively. Cluster 3 have twenty countries 

with mean of 7.38, median 6.70, 1st and 3rd quartiles are 4.48 and 7.80 respectively, while the 

minimum and maximum values are 2.0 and 16.70 respectively. Cluster 4 has eight countries with mean 

and median of 12.55. The 1st and 3rd Quartiles are 10.12 and 14.95 respectively, and the minimum and 

maximum values are 7.70 and 17.40, respectively. Cluster 5 has three countries (Egypt, Seychelles, 

and Mauritius) with mean and median = 15.05, minimum and maximum value of 7.80 and 22.30 

respectively, and the 1st and 3rd quartiles of 11.42 and 18.86, respectively. The highest mean diabetes 

prevalence rate is found in Cluster 5 followed by Cluster 4 which are characterised with developed 

countries, high GDP and urbanisation. The lowest mean is found in Cluster 2, which is characterised 

with developing countries. 
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Figure 4.22. Dendrogram showing cluster of countries using Ward technique 
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The dendrogram in Figure 4.22 shows Ward’s method of cluster analysis. The Ward’s dendrogram 

result shows five clusters with cluster 1 having eleven countries, these are: Algeria, Comoros, Djoubti, 

Equatorial Guinea, Gabon, Libya, Morocco, South Africa, South Sudan, Sudan and Tunisia. Cluster 2 

has twelve countries, which are Angola, Eritrea, Ethiopia, Lesotho, Madagascar, Malawi, Namibia, 

Rwanda, Swaziland, Tanzania, Zambia, and Zimbabwe. Cluster 3 is made up of twenty countries: Benin, 

Burkina Faso, Burundi, Cabo Verde, Cote dvoire, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, 

Liberia, Mali, Mauritania, Mozambique, Niger, Nigeria, Sao Tome Principe, Senegal, Serial Leone and 

Uganda. Cluster 4 has eight countries. These are Togo, Somalia, Congo, Congo DRC, Chad, Central 

Africa Republic, Cameroon and Botswana. Cluster 5 has three countries which are Egypt, Mauritius 

and Seychelles.  
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4.2.3. Centroid Linkage Result 

 

Figure 4.23. Dendrogram showing cluster of countries using Centroid technique 
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Using the centroid method of cluster analysis, Figure 4.23 above shows the dendrogram result. Five 

clusters were created, with Cluster 1 having eleven countries, which are Algeria, Comoros, Djibouti, 

Equatorial Guinea, Gabon, Libya, Morocco, South Africa, South Sudan, Sudan and Tunisia. Cluster 2 

has the largest number of countries at thirty-two. Cluster 3 has a total of eight countries, which are, 

Botswana, Cameroon, Central Africa Republic, Chad, Congo DRC, Congo Republic, Somalia and Togo. 

Cluster 4 has two countries: Egypt and Seychelles, and Cluster 5 has only Mauritius. 

 

Table 4.6: Overall grouping of countries with similar pattern of diabetes in Africa according to 

clustering analysis 

CLUSTERS COUNTRIES 

Cluster 1 

(11 Countries) 

Algeria, Comoros, Djoubti, Equatorial Guinea, Gabon, Libya, Morocco, South 
Africa, South Sudan, Sudan and Tunisia 

Cluster 2 

(13 Countries) 

Angola, Eritrea, Ethiopia, Lesotho, Madagascar, Malawi, Namibia, Rwanda, 
Swaziland, Tanzania, Uganda, Zambia and Zimbabwe 

Cluster 3 

(19 Countries) 

Benin, Burkina-Faso, Burundi, Cabo Verde, Cote D’Ivoire. Gambia, the, Ghana, 
Guinea, Guinea Bissau, Kenya, Liberia, Mali, Mauritania, Mozambique, Niger, 
Nigeria, Sao Tome Principe, Senegal and Sierra Leone 

Cluster 4 

(8) 

 

Botswana, Cameroon, Central Africa, Chad, Congo DRC, Congo Rep, Somalia 
and Togo 

Cluster 5  

(3) 

Egypt, Seychelles, Mauritius 

 

Table 4.6 describe the overall grouping of countries with similar pattern of diabetes as derived from 

the three clustering methods used.  
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Table 4.7: Overall grouping of countries with similar pattern of socioeconomic risk factors in Africa  

Risk variable Countries 

Highest GDP Equatorial Guinea, Seychelles, Gabon, Mauritania, Botswana, Libya, South 

Africa, Angola, Algeria, Namibia, Tunisia, Cabo Verde, Swaziland, Egypt, 

Nigeria, Morocco and Congo DRC 

High population age 
(60 above) 

Mauritania, Seychelles, Tunisia, Morocco, Cabo Verve, South Africa, Libya, 

Algeria, Botswana, Djoubti and Egypt 

High Physician 
density  

Egypt, Libya, Togo, Nigeria, Seychelles, Mauritania and South Africa, 

Morocco. 

High Urbanization Gabon, Libya, Djoubti, Algeria, Tunisia, Cabo Verde, Congo Rep, Sao Tome 

Principe, South Africa, Morocco, Mauritania and Gambia  

 

Table 4.7 described the overall grouping of countries with similar pattern of socio economic risk 

factors, having identified four consistently significant risk factors (GDP, population age, physician 

density and urbanization) from the regression analysis in section 4.4.  

4.2.4. Conclusion  

In comparing the combination of three cluster analysis methods (k-means, ward, and centroid), it was 

found that there is similarity in the countries that are members of Cluster 4 in the Centroid technique 

and in Ward’s technique. Likewise, Cluster 2 is similar for both methods. Egypt, Seychelles, Mauritius 

are characterised as a developed, rich country which is seen in there GDP, GNI. Clusters 2 are also 

characterised with countries that are developing; this may explain why diabetes is low in these 

countries.  

At the end of this analysis, five groups were identified based on consistency of countries, though some 

countries were difficult to group. 
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4.3. Spatial Analysis Results 

In this section, we consider already existing grouping of Africa countries into regions to check for 

similarities in terms of diabetes prevalence. 

 

4.3.1. Global Moran Indices (GMI) and Moran Indices (MI) 

This tool measures spatial autocorrelation (feature similarity) based on both feature locations and 

feature values simultaneously. Given a set of features and an associated attribute, it evaluates 

whether the pattern expressed is clustered, dispersed, or random. The tool calculates the Moran's I 

Index value and both a Z score and p-value evaluating the significance of that index. In general, a 

Moran's Index value near +1.0 indicates clustering while an index value near -1.0 indicates dispersion 

Table 4.8 shows the summary of Moran tests for the entire Africa continent and the five regions. The 

results of the Moran I indices provide the expected, observed and the p-value.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Results.   116 

 
 

Table 4.8:  Global Moran’s Indices and spatial patterns of diabetes prevalence in Africa for 2015 

(under assumption of normality) 

Region 

Number of 
Countries 
used in 
calculation 

P-value 
Standard 
Deviation 
(SD) 

Expected 
value  
(E) 

Observed 
value (O) 
(Z score) 

Spatial 
Autocorrelation 
Pattern 

Africa 
continent 
(combined) 

54 0.000902 0.0270 -0.0188 0.0867 Clustered 

 

Table 4.8 shows that there is an evidence of spatial autocorrelation of diabetes prevalence across 

Africa and in some regions. This implies that the diabetes prevalence pattern is consistent across the 

Africa continent.  Furthermore, there is a significant spatial clustering pattern in diabetes prevalence 

on the African continent with p-value = 0.000902 and Z-score = 0.0867. We found significant spatial 

clustering and dispersion at region-level diabetes prevalence on the African continent. 

A further analysis of Moran indices to strengthen the earlier result was carried out. Using the spatial 

weights, spatial distance was used under randomisation. In this case, some countries that do not share 

spatial polygons were taken out, and the number of observations were reduced for the African 

continent and some regions. 49 countries were observed instead of 54, taking out Seychelles, 

Comoros, Madagascar, Cape Verde, and Sao Tome Principe because of their locations, since they were 

considered Medium Island countries. Table 4.9 shows the summary table of Moran Statistics under 

randomisation. 
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Table 4.9:  Summary table of Moran statistics under randomisation 

Regions 
No 
observations  

Moran's I 
statistics 

Expected  Variance  SD P-value 
Spatial auto 
Correlation 
pattern 

Overall  49 0.035 0.086 0.011 1.604 0.0342 Positive spatial 
autocorrelation 

Southern 
Africa  

9 0.027 -0.111 0.005 1.920 0.027 Positive Spatial 
autocorrelation 

West Africa 15 -0.139 -0.071 0.019 -0.494 0.621** Negative spatial 
autocorrelation 

North Africa 7 0.076 -0.167 0.033 1.337 0.181** Positive spatial 
correlation 

Central Africa 7 -0.309 -0.167 0.049 -0.646 0.518** Negative spatial 
correlation 

East Africa 9 -0.009 -0.125 0.024 0.755 0.450** Negative spatial 
correlation 
 

**Not 
significant 

       

 

In the case of Moran’s I, a large positive value is an evidence of positive spatial correlation, while a 

large negative value is evidence of negative spatial correlation. A positive spatial autocorrelation 

occurs when Moran's I is close to +1 and a negative spatial autocorrelation is said to occur when Moran 

I is near -1.  We found that the Southern region on the continent has positive spatial autocorrelation 

with Moran's I of 0.027. This implies that the countries at this regions level are clustered together. The 

Z score of 0.027 for the Southern region indicates that there is a less than 1% likelihood that the 

clustered pattern could be the result of random choice. The results show no significant pattern for 

other regions. This implies that dissimilar countries with patterns of diabetes are next to each other 

and there is little influence. 

To compare the results of the original Moran’s I,  Monte Carlo simulation was done to account for 

non-normality of the data. Table 4.10 presents the summary statistics of the moran.mc test. 
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Table 4.10:  Summary table of Monte Carlo (MCMC) across the region 

 Statistics Observed rank p-value 

Central Africa  -0.309 320 0.68** 

East Africa  -0.009 780 0.22** 

North Africa  0.076 897 0.103** 

West Africa  -0.139 289 0.711**  

Southern Africa  0.027 800 0.20** 

**Not significant  

Moran statistics of Tables 4.9 and 4.10 show a slightly dissimilar result in the p-value, where the MCMC 

simulation shows a non-significant result in all the regions as against the summary result under 

randomisation. However, there is a similarity in the value of the Moran I in table 4.9 (under 

randomisation) and the p-values in Table 4.10.   

 

4.3.2. Methodological steps in model building  

A strong negative correlation was observed among the variables, note that correlation does not imply 

causation, but indicates whether a mutual relationship, causal or not, exist between variables. If the 

relationship is non-linear, common approach is linear modelling is to transform both the response and 

the predictor variables to coerce the relationship to one that is more linear. Common transformations 

include natural and base ten logarithmic, square root and inverse transformations. Therefore, the 

relationship was strengthened using a square root transformation.  

The first step in the model building process is to map the dependent variable and explore spatial 

heterogeneity. If the dependent variable is not clustered, there is no need to build a spatially explicit 

model. Without clustering, the global model will be similar to the local model (Fotheringham et., al. 

2002). Having seen that diabetes is clustered across the continent from the Moran I statistics in Table 

4.8 and 4.9. 

Initial data exploration and model specification using OLS was completed using R 3.2 software. Three 

factors motivated the decision to first specify the OLS model: 1) we wished to identify variables  
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significantly correlated with the dependent variable before specifying the regression model; 2) the 

GWR software used for spatial analysis does not provide a variance inflation factor (VIF) to assess 

multicollinearity; and 3) the GWR software does not enable the researcher to extract regression 

residuals to assess spatial autocorrelation for the global model. 

 

In the OLS regression we included only variables significantly correlated with the dependent variable, 

diabetes prevalence. Residuals from the global OLS model were mapped and analysed for spatial 

autocorrelation using Moran’s I. The same set of variables was then used to specify a GWR model 

using the GWR4 software (http://geodacenter.asu.edu/gwr). While conducting GWR, we used the 

adaptive kernel, which was produced using the bi-square weighting function. The adaptive kernel uses 

varying spatial areas but a fixed number of observations for each estimation, a method most 

appropriate when the distribution of observations varies across space. Finally, a process that 

minimizes the Akaike Information Criteria (AIC) was used to determine the best kernel size.  

The residuals of GWR models are assumed to be normally distributed; a further assumption is that 

they are not spatially autocorrelated or clustered across space. Such clustering suggests that the local 

model underestimates or overestimates diabetes prevalence in particular areas.  
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Table 4.11: Results from Ordinary Least Square Model of Diabetes prevalence in Africa (2015) 

Variables 
Parameter 
estimate 

Standard 
error 

t- 
value 

Pr > |t| 

Intercept -0.581 2.084 -0.279 0.782 

Obesity  -0.189 0.143 -1.326 0.192 

Health 
expenditure 

-0.011 0.147 -0.077 0.939 

GDP 0.012 0.007 1.73 0.091 

Population age 0.164 0.332 0.496 0.623 

Urban Population  -0.093 0.059 -1.564 0.125 

Physician density 0.920 0.362 2.542 0.015 

MYSC 0.463 0.265 1.75 0.088 

Age dependency 
ratio 

0.987 0.349 2.830 0.007 

Alcohol 
consumption 

-0.142 0.091 -1.551 0.129 

Physical activity -0.060 0.035 -1.705 0.096 

HDI -1.498 1.214 -1.234 0.242 

GNI -0.0004 0.0066 -0.064 0.949 
Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 4.11 shows that there is statistical significant association of diabetes with country GDP, Age 

dependency ratio, Physical inactivity and physician density. 

Result of OLS also shows that   residual standard error is 0.4594, multiple R-squared is 0.725, and the 

adjusted R-square of 0.6445. The OLR model was significant (F12,41 = 9.007, P < .001). The model 

explained 64.4% of the variance in the continent diabetes prevalence.  

As a result of the limitation of OLS, the global GWR model in Table 4.12 produced coefficient of 

estimates for each variable, the minimum and maximum coefficient, standard error and mean, the t-

value and the confidence intervals. The change in both magnitude direction of the coefficients 

suggests spatial non-stationarity of the relationship between the predictors and diabetes prevalence. 

The R-squared is 0.3283 with the adjusted R-squared of 0.110009. The model was significant (F12,41 = 

4.741, P < .001). The model explained 11.0% of the variance in the continent diabetes prevalence. 
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However, there is a need to account for the local variability which is the strength of geographic 

weighted regression in the case of a spatial clustering in the continent. Therefore, bandwidth and 

geographic ranges of x coordinates (minimum -25.17, maximum 200.00 and range 227.17) and a Y 

coordinates (minimum (-29.58, maximum 34.11 and range 63.69) was selected during analysis. The 

model summary of the local GWR gives R-square of 1.0000 and adjusted R-squared of 1.0000, the local 

GWR result is shown in Table 4.13. 
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Table 4.12: Results of Global Geographical Weighted Regression model of diabetes prevalence in 

Africa 2015 

Variables 
Parameter 
estimate 

Standard 
error 

t- 
value      

 Lower Median Upper 

 Quartile  Quartile 

Intercept 5.511964        0.646        8.5291
56 

 5.511964 5.511964 5.511964 

Obesity  -0.5559        1.173        -0.474  -0.555929 

 

-0.555929 

 

-0.555929 

 

Health 
expenditure 

-0.059 0.927 0.064  0.058908 

 

0.058908 

 

0.058908 

 

GDP -0.529 2.115 -0.250  -0.529274 

 

-0.529274 

 

-0.529274 

 

Population 
age 

-0.829 2.373 -0.349  -0.828562 

 

-0.828562 

 

-0.828562 

 

Urban 
Population  

-0.660 0.787 -0.838  -0.659873 

 

-0.659873 

 

-0.659873 

 

Physician 
density 

1.909 2.481 0.769  1.908624 

 

1.908624 

 

1.908624 

 

MYSC -0.506 1.493 -.339  -0.505818 -0.505818 -0.505818 

Age 
dependency 
ratio 

-0.718 3.421 -0.210  -0.717885 -0.717885 -0.717885 

Alcohol 
consumption 

0.757 0.875 0.864  0.756968 0.756968 0.756968 

Physical 
activity 

-0.693 0.789 -0.878  -0.692921 -0.692921 -0.692921 

HDI -1.244 1.493 -0.339  -1.244072 -1.244072 -1.244072 

GNI 1.888 2.387 0.791  1.887590 1.887590 1.887590 
 

The adjusted R2 for the local GWR model is 1.00; the adjusted R2 in the OLS model was 0.64. Explicitly, 

the global OLS R2 of 0.64 masks a wide distribution of local associations between the predictors and 

diabetes prevalence. The Confidence interval (CI) for all the variables shows that they are significant. 
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Without GWR, we would have been unable to estimate local models.  The local GWR account for 100% 

of variation a spatial variation that would have been missed with the OLS model alone. Residuals for 

the GWR model, although significant, were less spatially autocorrelated than residuals for the OLS 

model (Moran’s I = 0.01; z = 3.74; P < .001). Compared with OLS, the local GWR model greatly 

improved model fit. We looked at the corrected Akaike Information Criterion (AICc) which is a measure 

of model performance and help in comparing the OLS and GWR models, model with lower AICc is said 

to provide a better fit. From the results output OLS model AICc is 344.718595 while the GWR model 

AICc is 341.508827 with a model improvement of 3.209768.   

Comparing the GWR AICc value to the OLS AICc value is one way to assess the benefits of moving from 

global model to a local regression model GWR.  The local GWR model explained more variance in 

diabetes prevalence and reduced the AICc (ΔR2 = 0.36; ΔAICc = 2.45). Adaptive kernel bandwidth was 

used, which accounted for differences in the size of countries and therefore the distance of influence. 

In conclusion, the AICc is usually preferred as a means of comparing models in GWR because the 

effective number of degree of freedom is a function of the bandwidth so the adjustment is usually 

marked in comparison to a global model like OLS. 
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Table 4.13 Results of the local Geographic Weighted Regression model of diabetes in Africa 2015 

Variables Mean 
Standard 

deviation 

Lower 

Quartile  
Median  

Upper 

Quartile  

Intercept 5.409891        0.101124 5.511964      5.511964      5.511964      

Obesity   -0.545634 0.010199 -0.659873 

 

-0.659873 

 

-0.659873 

 

Urban 

population 

growth 

-0.647853 0.012106 -0.659873 

 

-0.659873 

 

-0.659873 

 

Age 

dependency 

ratio 

-0.704591       0.013170 -0.717885 

 

-0.717885 

 

-0.717885 

 

Physician 

density 

1.873279       0.035016        1.908624 

 

1.908624 

 

1.908624 

 

HDI -1.221034 0.022824 -1.244072 -1.244072 -1.244072 

GNI 1.852635 0.034630 1.887590         1.887590         1.887590         

 

The final model in Table 4.13, is the output of the improved model and this indicate a perfect fit, while 

other variables not in the table became a fixed term and then obesity, urban population growth, age 

dependency ratio, physician density, HDI, and GNI became the final parameters that remain in the 

model, the output result gave the mean, standard deviation and the confidence interval. Obesity, 

urban population growth, age dependency ratio, physician density, HDI and GNI were each 

significantly associated with diabetes prevalence, relationships that were spatially nonstationary 

across Africa. The variation in parameter estimates from GWR suggests the need to apply this spatial 
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analysis tool to other diabetes studies that have been restricted to global models. A result like this is 

expected when regressing a strongly trended series like diabetes.  

In conclusion the OLS with adjusted R square of 0.11 ( 11.0% variability) shows a lesser spatial 

variability  and shows that all variables are significant , whereas the  global GWR shows an adjusted R 

square of 0.64 ( 64% variability ) more variability with all variables significant, local GWR improved the  

model fit accounting for 100% variability with six significant variables (  obesity, urban population 

growth, Age dependency ratio, physician density, HDI and GNI). This shows that there is a relationship 

between these variables and diabetes in Africa , with consideration on the non-stationarity of the 

variables.   

 

4.4. Local Indicator of Spatial Association (LISA) 

The Lisa maps in Figure 4.23 to 4.27 display the spatial distribution of diabetes prevalence in 2015 for 

Africa and its respective regions, also known as the hot spots.  

The LISA analysis yielded five categories of spatial units. These categories were defined as “high-high” 

(HH), “low-low” (LL), “high-low” (HL), “low-high” (LH), and “not significant” (NS). The high-high and low-

low locations (positive local spatial autocorrelation) are referred to as spatial clusters, while the high-

low and low-high locations (negative local spatial autocorrelation) are referred to as spatial outliers. 

Similarly, HH clustering denotes countries with high diabetes prevalence and are associated with 

neighbouring countries with high diabetes prevalence rates. 

 LH clustering denotes countries with low diabetes prevalence which are associated with 

neighbouring countries with high diabetes prevalence rates. 

 LL clustering denotes countries with low diabetes prevalence which are associated with 

neighbouring countries with low diabetes prevalence rates. 

  HL clustering denotes countries with high diabetes prevalence which are associated with 

neighbouring countries with low diabetes prevalence rates. 
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Figure 4.24. LISA Cluster map of diabetes prevalence in West Africa region 

 

From the LISA map in Figure 4.24, within the West Africa region, countries such as Senegal, Cote 

D'Ivoire and Liberia (in the HL category) as well as Mali and Serial-Leone (in the LH category) are spatial 

outliers with negative spatial autocorrelation. Therefore, diabetes prevalence was significantly 

dispersed in the region. The region has the highest number of outliers. 
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Figure 4.25. LISA cluster map of diabetes in Central Africa region 

The LISA map in Figure 4.25 shows that from the Central Africa region, countries such as Chad (in the 

HL category) as well as Congo DRC (in the LH category) are spatial outliers with negative spatial 

autocorrelation. Therefore, diabetes prevalence was significantly dispersed in the region.  
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Figure 4.26. LISA cluster map of diabetes in North Africa region 

 

The LISA map in Figure 4.26 shows that from the North Africa region, Libya in the HL category, as well 

as Morocco in LH category are spatial outliers with negative spatial autocorrelation. Therefore, for 

diabetes in the North Region, two HH areas and two LL spots were detected, the largest HH areas 

being in Algeria and Sudan, while the two smaller hotspots were found in Egypt and South Sudan. In 

addition, diabetes prevalence was significantly dispersed in the region.  

 

 

 

 

 



Chapter 4. Results.   129 

 
 

 

Figure 4.27. LISA cluster map of diabetes in East Africa region 

The LISA map in Figure 4.27 shows that from the East Africa region, Eritrea and Tanzania (in the HL 

category), as well as Ethiopia and Uganda, are spatial outliers with negative spatial autocorrelation. 

The region shows a non-significant association with diabetes. Diabetes prevalence was significantly 

clustered in the region.  
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Figure 4.28. LISA cluster map of diabetes in the Southern Africa region 

The LISA map in Figure 4.28 shows that from the Southern Africa region, countries such as South Africa 

and Madagascar (in the HL category) and Lesotho (LH category) are spatial outliers with positive spatial 

autocorrelation. The region shows a significant association with diabetes. Diabetes prevalence was 

significantly clustered in the region. Other countries in this region are Angola, Mozambique, and 

Zambia in High-High categories with Botswana, Namibia and Zimbabwe in the with Low-Low 

categories.  

The spatial clusters shown on the LISA cluster map only referred to the core of the cluster. The cluster 

is classified as such when the value at a location (either high or low) is more like its neighbours (as 

summarized by the weighted average of the neighbouring values and its spatial lag) than would be the 

case under spatial randomness. 
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In the North Region, two HH areas and two LL spots were detected, the largest HH areas being in 

Algeria and Sudan, while two smaller hotspots were found in Egypt and South Sudan. 

  

4.4.1. Conclusion  

The results of the LISA cluster analysis and scatter plots for the five regions show that the following 

countries have high diabetes prevalence alongside neighbouring countries also with high diabetes 

prevalence rates (they are denoted with red and in the high-high category (HH)): Benin, Guinea, 

Guinea Bissau, Cameroon, Equatorial Guinea, Rwanda, Angola, Mozambique, Zambia, Sudan, Algeria, 

Burundi. 

Likewise, the countries which have high diabetes prevalence and have neighbouring countries with 

low diabetes prevalence rates (HL) are Cote D’Ivoire, Liberia, Senegal, Chad, Eritrea, Tanzania, Lesotho, 

Libya, and Swaziland. They are denoted with pink. The countries with low diabetes prevalence which 

have neighbouring countries also with low diabetes prevalence rates (in the low-low category (LL)) are 

denoted in royal blue and are Burkina Faso, Nigeria, Guinea Bissau, Central Africa Republic, Gabon, 

Somalia, Djibouti, Namibia, Botswana, and Zimbabwe. 

Similarly, countries with low diabetes prevalence, but which have neighbouring countries with high 

diabetes prevalence rates (in the LH category) are denoted in light blue, and are South Africa, Mali, 

Sierra Leone, Congo republic, Congo DRC, Ethiopia, Uganda, and Madagascar. 

From the overall analysis, we saw the importance of LISA in identifying the countries from the map 

which have contributed strongly to the overall trend of the positive autocorrelation in the GMI and 

Moran I. Countries with high diabetes surrounded by low diabetes countries are: from Southern Africa 

region are: South Africa and Madagascar, from East Africa region are: Eritrea and Tanzania, from North 

Africa region: Libya, from Central Africa region: Chad, from West Africa region are: Senegal, Cote 

d’Ivoire and Liberia. These countries need urgent action. Likewise, countries with low diabetes 

surrounded by high diabetes countries are: from Southern Africa region: Lesotho, from East Africa 

region: Ethiopia and Uganda, from North Africa region: Morocco, from central Africa region: Congo 

DRC and from West Africa region: Mali. These countries can be used as an example for their 

neighbours. 
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In conclusion the LISA map of the African continent has helped to identified (16) sixteen outlier 

countries such as South Africa, Mali, Serial-Leon, Congo DRC, Ethiopia, Uganda, Madagascar, Cote 

‘Ivoire, Liberia, Senegal, Chad, Eritrea, Tanzania, Lesotho, Libya, Morocco. These countries are 

contributing strongly to the global diabetes prevalence in Africa based on the pattern of the 

prevalence observed from the analysis. 
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4.5. Results of Classical Statistics 

4.5.1. Simple Linear Regression Result 

The result of the linear regression for the data is indicated in Table 4.14 below. 

Table 4.14: Parameter estimate and overall fit for Simple linear regression (All variables) 

Variables DF 
Parameter 
estimate 

Standard 
error 

t- 
value 

Pr > |t| 

95% confidence 
limits 

Low High 

Intercept 1 -3.962 4.701 -0.84 0.404 -13.455 5.531 

Obesity  1 -0.20039 0.09611 -2.09 0.043* -0.394 -0.006 

Health 
expenditure 

1 -0.049 0.141 -0.35 0.730 -0.334 0.236 

GDP 1 0.0004 0.0003 1.73 0.091 -
0.00007 

0.0009 

Population age 1 0.101 0.101 0.99 0.326 -0.104 0.306 

Urban Population  1 -0.030 0.021 -1.44 0.1551 -0.073 0.012 

Physician density 1 4.622 1.121 4.12 0.0002* 2.358 6.885 

MYSC 1 0.463 0.265 1.75 0.088 -0.072 0.999 

Age dependency 
ratio 

1 1.061 0.308 3.44 0.001* 0.438 1.684 

Alcohol 
consumption 

1 -0.107 0.135 -0.79 0.435 -0.380 0.166 

Physical activity 1 -0.036 0.028 -1.31 0.198 -0.092 0.020 

HDI 1 -5.574 4.693 -1.19 0.242 -15.052 3.903 

GNI 1 -0.00003 0.0002 -0.17 0.869 -0.0005 0.0004 

 

Residuals: 
    Min              1Q              Median         3Q            Max  
-2.9483           -1.3793           -0.1717       0.6411       5.6512  
 
Residual standard error: 2.085 on 41 degrees of freedom 
Multiple R-squared:  0.8044, Adjusted R-squared:  0.7472  
F-statistic: 14.05 on 12 and 41 DF, p-value: 6.266e-11 < 0.0001 
SS Model =732.73       SSE = 178.16      SST = 910.89   Root Mean = 2.08 
Coefficient variation = 38.86        Dependent mean = 5.36 

* significant variables 
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The result shows that the sum of squares (SS) associated with three sources of variance are the sum 

of square model (SS Model), sum of square of residual (SSResidual), also known as sum of square error, 

and sum of square total (SSTotal). The SSModel is given by  𝑆𝑆𝑇𝑀𝑜𝑑𝑒𝑙 =  Ʃ(𝑌̂ − 𝑌̅)
2 
= 732.73 , 

SSError by 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 =  Ʃ( 𝑌 − 𝑌̂)2 = 178.16,  and SSTotal (the total variability around the mean) by 

Ʃ(𝑌 − 𝑌̅)2 = 910.89.  One of the important results is the F statistics, used to answer the question 

“Do the independent variables reliably predict the dependent variable?” With the value of 

 𝐹(12,41) =  𝑀𝑆𝑀𝑜𝑑𝑒𝑙 𝑀𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ⁄ = 14.05, and a p-value of 0.0001 (less than 𝛼 = 0.05), it can be 

inferred that the independent variables included in the model reliably predict the dependent variable. 

Therefore, this group of variables can be used to reliably predict diabetes prevalence.  

Also, in checking the overall model fit, it is important to compute the R-square. The R-square is the 

proportion of variance in the dependent variable which can be predicted from the independent 

variables. Our findings show that R-square = 0.8044, which indicates that 80.4% of the variance in 

diabetes prevalence can be predicted from all the independent variables. However, this is an overall 

measure of strength of association, and does not reflect the extent to which any independent variable 

is associated with the dependent variable. To determine the extent to which each of the independent 

variables is associated with the dependent variable, we look at the coefficients of the parameter 

estimates table. This means that for every increase in obesity prevalence by one percent, we expect 

diabetes prevalence to decrease by -0.20039 on average, holding all other variables constant. 

Similarly, for every increase in health expenditure by one percent, we expect diabetes prevalence to 

decrease by -0.049 on average, holding all other variables constant. Also, for every increase in 

population age by one percent, we expect diabetes prevalence to increase by 0.101 on average, 

holding all other variables constant. Similarly, for every increase in age dependency ratio by one 

percent, we expect diabetes prevalence to increase by 1.061 on average, holding all other variables 

constant. We expect diabetes prevalence to be higher by 4.622 for every increase in physician density 

per 1000 person and by 0.463 for every increase in Mean year of school age.  

Findings from this analysis show that obesity (p-value = 0.04), age dependency ratio (p-value = 0.0013), 

physician density (p-value = 0.0002), and GDP are the significant predictors of diabetes. 
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4.5.1.1. Diagnostic Plots Results for Linear Regression 

There is a need to check if the model works well for the intended data. After fitting the model, 

residuals could reveal some unexplained pattern in the data by the fitted model. 

Residuals could show how poorly a model represents data. With this knowledge, it is not easy to check 

if linear assumptions are met. This is then further revealed by performing a diagnostic plot. A 

diagnostic plot is a plot used in checking for heteroscedastic, normality, and influential observations 

in the model data.  

In R, there is a built-in diagnostic plot for linear regression which by default gives a four-diagnostic 

plot which shows residuals in four separate ways. The “plot” command in R gives the result in Figure 

4.29. The plots are individually explained in the following subsections.  

 
 

Figure 4.29. Diagnostic plot of linear regression 
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4.5.1.1.1. Residual vs Fitted 

This plot shows if residuals have a non-linear pattern, that is, verifying the assumptions of a linear 

model.  It is possible to have a non-linear relationship between predictor variables and an outcome 

variable, which could show up in the plot if the model does not capture the non-linear relationship. 

Note that an equally-spread residual around the horizontal line without a distinct pattern is an 

indication of a non-linear relationship.  

The plot indicates dependency between the residual and fitted values. Thus, the plot suggests that 

there is heteroscedastic linear model. 

 

4.5.1.1.2. Normal Q-Q Plot (Quantile-Quantile Plot) 

The Q-Q plot shows if residuals are normally distributed. It answers the question whether residuals 

close a straight line well or deviate severely. A good plot will show residuals lined well on the straight 

dashed line. 

Similarly, often, we are concerned about what is happening at the tails of our distribution. To get a 

better resolution of this, a Q-Q plot can be computed. A Q-Q plot is useful in many ways. It is used to 

compare distribution shapes (skewness, location). Also, it can be used to compare two samples of data 

as a non-parametric approach. It is also used to compare a dataset to a theoretical model, assessing 

goodness of fit. 

The above Q-Q plot in Figure 4.29 compares randomly generated, independent standardized residual 

data on the vertical axis to a standard normal population on the horizontal axis. The plot suggests that 

the data are right-skewed with observations 11, 10, and 15 as outliers.  

 

4.5.1.1.3. Scale-Location plot 

This is also called spread-location plot. This plot shows if there is an equal spread of residuals along 

the ranges of predictors. It is used in assessing the assumption of equal variance (homoscedasticity). 

A horizontal line with equally (randomly) spread points shows a good model. 
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From the plot above, the residual is not randomly spread, the residual begins to spread wider along 

the x axis as it passes around 5. Because the residuals spread wider and wider, the red smooth line is 

no longer horizontal and shows a steep angle and curve. This suggests that there is homoscedasticity 

and over dispersion of the location on the study area.  

 

4.5.1.1.4. Residual vs Leverage  

This plot helps to determine influential cases (i.e. subjects), if any. In linear regression, not all outliers 

are influential. Data may have extreme values and might thus not be influential to determine a 

regression line. This means that either the outliers are included or excluded from the analysis, the 

results wouldn’t be much different. On the other hand, extreme cases could be very influential if 

within a reasonable range of the values. However, if these outliers are excluded from the analysis, 

there could be another extreme case against the regression line which can alter the result. Unlike the 

other plots, here, patterns are not relevant. We look out for outlaying values at the upper right corner 

or at the lower right corner. Those spots are the places where cases can be influential against a 

regression line.  

We look for cases that are outside of a dashed line, known as Cook’s distance. Cases that are outside 

the Cook’s distance have high Cook’s distance scores and are influential to the regression results. 

However, the regression results will be altered if those cases are excluded.  

From our results, one case is far beyond the Cook’s distance lines. Also, the plot identifies outliers at 

case #1. Some countries were removed, bringing the variables to eight from twelve.  
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Figure 4.30. Diagnostic plot of linear regression 
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4.5.2. Result of Linear Regression (6 variables) 

Six variables were removed because of collinearity among the variables. Collinearity test was 

estimated using the Spearman Rho correlation coefficient test of the dependent variable and the 

initial twelve independent variables, as shown in Table 4.3.   The result of the fitted linear regression 

model with outlier variables removed is indicated in the Table 4.15 and Figure 4.31 below. This is 

denoted as model 2. 

Table 4.15:  Parameter estimate and overall fit for linear regression 

Variables DF 
Parameter 
estimate 

Standard 
error 

t-value Pr > |t| 

95% confidence 
limits 

low High 

Intercept 1 -0.113 4.691 -2.417 0.019 -20.267 -2.915 

Health 
expenditure 

1 -0.239 0.166 -1.447 0.155 -0.459 0.165 

GDP 1 0.0002 0.0001 1.904 0.063 -0.459 0.165 

Population age 1 0.325 0.0995 3.266 0.002 * 0.152 0.520 

Urban Population  1 -0.056 0.024 -2.313 0.025* -0.082 0.011 

Physician density 1 2.947 0.832 3.545 0.0009* 3.384 8.159 

MYSC 1 0.115 0.198 0.580 0.564 -0.162 0.578 

Residual standard error: 2.609 on 47 degrees of freedom 
Multiple R-squared:  0.6488, Adjusted R-squared:  0.6039  
F-statistic: 14.47 on 6 and 47 DF, p-value: 0.000000002.878 
 
SSModel=732.73       SSE = 178.16      SST = 910.89   Root Mean = 2.08 
Coefficient variation = 44.69       Dependent mean = 5.36 
 
Residuals: 
  Min         1Q           Median        3Q             Max  
-5.2540    -1.5957        -0.3406       1.6479         7.3674  
 

*significant variables 

The result shows that the F statistics = 14.47 with a p-value < 0.001, this indicates a good fit of the 

overall model. A residual standard error of 2.609 can also be observed. The R2= 0.6488, which indicates 

that 64.88% of the variance in diabetes prevalence can be predicted from all the independent 

variables. The adjusted R2 = 0.6039. A coefficient of variation of 44.691 can be for the model also aims 
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to describe the model fit in terms of the relative sizes of the square residuals and outcome value. This 

indicates that the overall measure of dispersion is high. 

Findings from this analysis shows that population age, with p-value = 0.002, urban population growth 

(p-value = 0.025), and physician density (p-value = 0.0009) are the significant predictors of diabetes. 

Therefore, for every increase by one percent of population age, we expect diabetes prevalence to 

increase by 0.325 on average, holding all other variables constant. 

The parameter of estimates shows that for every increase in population age by one percent, we expect 

diabetes prevalence to increase by 0.325 on average, holding all other variables constant. Also, for 

every increase in urban population by one percent, we expect diabetes prevalence to decrease by -

0.056 on average, holding all other variables constant. Lastly, for every increase in physician density 

by one percent, we expect diabetes prevalence to increase by 2.947 on average holding all other 

variables constant.  

From the diagnostic plots in Figure 4.31, the residual plot, and the q-q plot, it is can be seen that the 

data is normally distributed.  
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Figure 4.31. Diagnostic plots of the linear regression 

  

4.6. Model Transformation 

We estimate the model by transforming the data using the log form of the dependent variable.  

Generally, there are two reasons for taking the log of a variable in regression, one statistical, and the 

other substantive.  

Statistically, OLS regression assumes that the errors, as estimated by the residuals, are normally 

distributed. When they are positively skewed (long right tail), taking logs can sometimes help. 

Sometimes logs are taken of the dependent variables, sometimes of one or all the independent 

variables, sometimes both dependent variable and independent variables. 
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This section compares the results of the different transformations implemented, which are: 

 Log taken on dependent variable only 

 Log taken on dependent variable and all the independent variables 

 Fractional probit regression. 

4.6.1. Results of Log Linear Regression Model  

Table 4.16: Log -linear Regression Dependent variable transformed (Model 2) 

Coefficients  Estimates  Standard error t-value Pr (> |t|) 

Intercept  -0.797 0.877 -0.948 0.368 

Health 
expenditure 

-0.033 0.031 -1.081 0.285 

GDP 0.00004 0.00002 1.568 0.124 

Population age 0.041 0.019 2.219 0.031* 

Urbanization -0.006 0.005 -1.416 0.164 

Physician density 0.368 0.155 2.369 0.022* 

MYSC 0.036 0.037 0.970 0.337 

Residuals: 
     Min           1Q        Median          3Q         Max  
-1.43218        -0.27361    -0.07971     0.22681      0.96483  

Residual standard error: 0.4876 on 47 degrees of freedom 
Multiple R-squared:  0.5143,    Adjusted R-squared:  0.4523  
F-statistic: 8.295 on 6 and 47 DF, p-value: 0.00000380 

*significant variables 

The result of log linear regression with the six variables (model 2) shows that urban population growth 

and physician density are significant with p-values of 0.031 and 0.022 respectively. 

𝑅2 = 0.5143, which shows that 51.43% of the variance in the diabetes prevalence can be predicted 

from all the independent variables in the data set. The overall model fit given  𝐹(12,41) = 8.295  >

𝑝(𝑣𝑎𝑙𝑢𝑒) = 0.0000 , leading us to conclude that the independent variables reliably predicts the 

dependent variable. 

From the parameter of estimates in Table 4.16, it can be seen that for every increase in population 

age by one unit, we expect diabetes prevalence to increase by 0.041 on average, holding all other 
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variables constant. Lastly, for every increase in physician density by one unit, we expect diabetes 

prevalence to increase by 0.368 on average, holding all other variables constant. 

 

 

Figure 4.32. Diagnostic plots of the-Log linear regression 

The diagnostic, residual, and q-q plots show that the data is normally distributed. 
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4.6.2. Result of Fractional Probit Model  

Table 4.17: Parameter estimates for fractional Probit regression model 

Variables 
Parameter 
estimate 

Standard 
error 

z- value Pr > |t| 
95% confidence limits 

Low High 

cons -3.030 0.360 -8.41 0.000 -3.735 -2.324 

Health 
expenditure 

-0.22 0.015 -1.44 0.149 -0.510 0.008 

GDP 0.00001 0.000006 2.26 0.024* 0.000001 0.00003 

Population age 0.026 0.008 3.45 0.001* 0.011 0.414 

Urban Population  -0.004 0.002 -1.61 0.108 -0.008 0.0008 

Physician density 0.182 0.039 4.66 0.000* 0.012 0.259 

MYSC 0.125 0.012 0.99 0.324 -0.012 0.037 

Wald Chi (6) = 169.35 
Prob > chi2 = 0.0000 
Pseudo R2 = 0.0417 
 
Pseudo likelihood = -10.819 

*significant variables 

The fractional probit (also known as fractional response estimator) used the proportion of the diabetes 

prevalence which was first calculated as the percentage of diabetes prevalence divided by the total 

population for each country. The fractional response estimator fits models on continuous zero to one 

data using probit, logit, and heteroskedastic probit. The result of a fractional probit with the six 

variables (model 3) shows that GDP, population age, and physician density are significant with p-values 

of 0.024, 0.001 and 0.000 respectively. 

The parameter of estimates shows that for every increase in GDP proportion, we expect diabetes 

prevalence to increase by 0.00001 on average, holding all other variables constant. Also, for every 

increase in the proportion of physician density, we expect diabetes prevalence to increase by 0.183 

on average, holding all other variables constant. 
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4.6.3. Poisson Regression Results 

In this section, instead of working with prevalence of diabetes, the dependent variable is transformed 

into count and a Poisson regression was utilised. The Poisson regression model was estimated in SAS 

using the PROC GENMOD and the result of the parameter estimate is shown in Table 4.18.  

Table 4.18: Parameter estimates of Poisson regression 

Parameter DF Estimate 
Standard 
error 

Wald 95% Confidence 
Limits 

Wald 
Chi-
Square 

Pr > Chi 
square 

Intercept 1 15.2881 0.0020 15.2842 15.2921 5.712E7 < .0001 

Health 
expenditure 

1 -0.0789 0.0001 -0.0791 -0.0787 984347 <.0001 

GDP 1 -0.0001 0.0000 -0.0001 -0.0001 2098808 < .0001 

 Population age 1 -0.0367 0.0000 -0.0369 -0.0367 739373 < . 0001 

Urbanization 1 -0.0021 0.0000 -0.0021 -0.0002 39139.5 < .0001 

Physician 
density 

1 1.0227 0.0001 1.0924 1.0929 5,937E7 < .0001 

MYSC 1 0.1975 0.0001 0.1973 0.1977 3606594 < .0001 

Scale  0 1.0000 0.0000 1.0000 1.0000   

AIC = 55551557.29   AICC = 55551560.80      BIC = 555515 
Deviance = 1293835.13, Scaled Deviance = 1293839.13, Pearson Chi-Square = 1670118.01   with 
degree of freedom 43 

*significant variables 

Table 4.18 shows the result of the parameters estimates, using a maximum likelihood method. All the 

predictors were significant with p-value < 0.05. Therefore, we can conclude that for a one-unit 

increase in physician density, the difference in the logs of expected counts would be expected to 

increase by 1.0227 units while holding other variables in the model constant.  

However, for a one-unit increase in urbanization, the difference in the logs of expected counts would 

be expected to decrease by 0.0021 units while holding other variables in the model constant. 
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4.6.4. Negative binomial model result 

Table 4.19.  Parameter estimates of Negative binomial model 

Parameter DF Estimate 
Standard 
error 

Wald 95% Confidence 
Limits 

Wald 
Chi-
Square 

Pr > Chi 
square 

Intercept 1 13.9574 2.774 9.8857 18.0290 45.14 < 
.0001* 

Health 
expenditure 

1 -0.1388 0.0934 -.0.3236 0.0459 2.17 0.1407 

GDP 1 -0.0001 0.0001 -0.0003 0.0000 3.79 0.0517* 

Population age 1 0.0052 0.0478 -0.0885 0.0989 0.01 0.9130 

Urbanization 1 -0.0166 0.0176 -0.0511 0.0179 0.89 0.3463 

Physician 
density 

1 1.2683 0.5245 0.2403 2.2962 5.85 0.0156* 

MYSC 1 0.1940 0.1128 -0.0270 0.4150 2.96 0.0854 

Dispersion 0 1.3729 0.2345 0.9823 1.9189   

AIC = 1478.18   AICC = 1481.69      BIC = 1493.47   deviance = 1.3999, Pearson Chi-Square 1.4128 
with 43 degrees of freedom 

*significant variables 

The output in Table 4.19 begins with the model information and the criteria for assessing goodness of 

fit. The number of observations is 50, and the link function is log. Pearson Chi-square is 1.4128, the 

deviance statistics is 1.3999 with 42 degrees of freedom for both, and with the dispersion ratio as 

given. The deviance statistics shows that there is over-dispersion, and a non-significant value of 

Pearson statistics suggested that the model adequately fits the data. A dispersion ratio value close to 

one is an evidence of over-dispersion in the model. Therefore, the model shows convincing evidence 

of over-dispersion. The AIC, BIC, and AICC are 1478.18, 1493.47, and 1481.69, respectively. Finally, 

from the Table 4.16, the algorithm for parameter estimates has converged, implying that a solution 

was found.  

GDP and physician density were seen to be the significant variables in this model with p-values of 

0.0517 and 0.0156, respectively. The coefficient estimates of physician density =1.2683 shows an 

increase compared with Poisson regression results), with SE=0.5245, 95% CI of (0.2403, 2.2962), a 

wider interval as compared to Poisson regression, with p-value = 0.0693, and a Wald chi square 
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statistic of 5.85. This means that for a one-unit increase in physician density, the expected log count 

of the diabetes prevalence will increase by 1.2683. A significant GDP of p-value = 0.0517 means that 

for each unit increase in GDP, the expected log count of the diabetes prevalence will decrease by 

0.0001. This shows that with a negative binomial model, physician density per 1000 persons, GDP, and 

population age are significant and have a positive relationship with diabetes prevalence on the 

continent. 

In addition, there is an estimate of the dispersion coefficient (often called alpha) = 1.3729. A Poisson 

model is one in which this alpha value is constrained to zero. In this study, the estimated alpha has a 

95% CI that does not include zero, which suggested that the negative binomial is more appropriate 

than Poisson. An estimate greater than zero suggest over-dispersion (variance greater than mean), 

and an estimate less than zero suggest under-dispersion, which is rare.  

With a sign of over-dispersion in Poisson regression, negative binomial is used to relax the 

assumptions stated earlier and to uses a different probability which allow for more variability in the 

data. 

 

 

4.7. Results of Bayesian Analysis of Factors Affecting Diabetes  

Bayesian analysis in this section was done in SAS, with procedure PROC REG for the Bayesian linear 

regression, PROC GENMOD for the Bayesian Poisson-gamma, and Negative binomial regression. PROC 

GENMOD works with the scale parameter that is related to the exponential family. With PROC 

GENMOD, the Gamermen algorithm is the default sampling method, and uses a non-informative prior 

(conjugate and Jeffrey prior). 

The aim in Bayesian modelling is to determine the parameter(s) of interest of the posterior distribution 

of a predictor along with their credible interval. An accurate estimation of the posterior distribution 

can be difficult, and thus require a considerable amount of computation. Simulation-based methods 

are one of the most-used for such computations. A repeated simulation process draws samples from 

a target distribution and uses the collection of samples to empirically approximate the posterior. 

Somewhat, the credible interval is like confidence interval in classical statistics. The credible interval 
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informs us that the true parameter of interest can be found within the range of the interval 95% of 

the time. The parameter of interest can be mean, mode or median. Here, the mean was the parameter 

of interest.  

The Bayesian modelling procedure begins with the selection of a prior distribution for the predictor of 

interest, usually a non-informative prior that is conjugate to the distribution of the model. In the 

Bayesian context, the  conjugate distribution is one where the posterior distribution for a model 

parameter has the same form as the prior. For example, the gamma distribution is conjugate for the 

Poisson mean, as is the beta distribution to negative binomial. 

Markov chain convergence is an important focus in Bayesian analysis. A non-convergence chain does 

not explore the parameter space efficiently, and we say that the samples cannot approximately target 

the distribution accurately. However, inference should not be based upon unconvergence of the 

Markov chain, as this could produce a misleading result. Convergence terminologies include: 

 Convergence: this explains drift in the samples towards a stationary (target) distribution 

 Burn-in: This refers to samples at start of the chain that are discarded to minimize their impact 

on the posterior inference. 

 Slow mixing: This is the tendency for high autocorrelation in the samples. A slow-mixing chain 

does not traverse the parameter space efficiently. 

 Thinning: This is the practice of collecting every kth iteration to reproduce autocorrelation. 

However, thinning a Markov chain can be wasteful as one throws away a  
𝑘−1

𝑘
th fraction of all 

the posterior samples generated. However, it is used to reduce autocorrelation and results in 

an independent sample that can be used otherwise. Similarly, autocorrelation does not lead 

to a biased Monte Carlo estimate, but it is simply an indicator of poor sampling efficiency. 

 Trace plot: This is a visual plot of the sampled values of a parameter versus iteration number, 

often the most useful approach. 

In general, the Bayesian methods can be more easily implemented for members of the family of 

generalized linear models (GLM) than for models not based on an exponential distribution (Hilbe, 

2011). This is because the GLMs have clearly identified likelihood and deviance function, and many 
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conjugate distributions are members of GLM. This compatibility of GLM and Bayesian methodology 

has allowed the SAS software to incorporate Bayesian modelling into its GLM procedure.  

The results of the output in SAS are explained in the sections below. 

 

4.7.1. Results of Bayesian Linear Model 

The section below describes the posterior summaries and MCMC diagnostic convergence plots of the 

analysis, after running the MCMC algorithm for 1000000 iterations and thinning of 50 with burn-in 

size of 2000, with an improper normal prior distribution. Statistics of the posterior samples contain 

the size of the sample, the mean, the standard deviation and the quartiles for each model parameter. 

The fit statistics is displayed with the deviance information and the effective number of parameters. 

The interval estimates for the posterior sample table contain the HPD intervals and credible intervals 

for each model parameter. Since non-informative prior distributions for the regression coefficients 

were used, the mean and standard deviations of the posterior distributions for the model parameters 

are close to the maximum likelihood estimates and standard errors. 
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Table 4.20: Results of Bayesian Linear Regression 

Parameter N Mean 
Standard 
Deviation 

Percentiles 

25% 50% 75% 

Intercept  20000 -11.3423 4.8003 -14.5540 -11.3280 -8.1607 

Health 
expenditure 

20000 -0.2404 0.1696 -0.3542 -0.2399 -0.1269 

GDP 20000 0.0002 0.0001* 0.0002 0.0002 0.0003 

Population 
age 

20000 0.3249 0.1017 0.2583 0.3254 0.3929 

Urbanization 20000 -0.0555 0.0256* -0.0719 -0.0556 -0.0393 

Physician 
Density 

20000 2.9456 0.8492 2.3907 2.9410 3.5129 

Mean Year 
of School 
age 

20000 0.1140 0.2028 -0.0223 0.1152 0.2502 

Dispersion 20000 7.1133 1.5294 6.0318 6.9085 7.9515 

 

Posterior Intervals 

Parameter  Alpha  Equal-Tailed interval  HPD Interval  

Intercept 0.050 -20.72221 -1.8826 -20.7946 -1.9715 

Health 
expenditure 

0.050 -0.5720 0.0941 -0.05547 0.1085 

GDP 0.050 -0.00001 0.00050 -0.00000008 0.000502 

Population 
Age 

0.050 0.1236 0.5232 0.1225. 0.5215 

Urbanization 0.050 -0.1039 -0.0069 -0.1045 -0.0075 

Physician 
density  

 1.2531 4.6161 1.3087 4.6554 

Mean year of 
school age 

0.050 -0.2849 0.5090 -0.2915 0.5003 

Dispersion 0.050 4.7469 10.7112 4.4494 10.1647 

 
DIC = 255.445 
pD(effective number of parameters) = 8.139 
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The posterior summary of Bayesian linear regression in Table 4.20 shows that GDP is significant with 

mean = 0.0002 and standard deviation of 0.0001, which indicates that for every increase in GDP, there 

is a positive increase in diabetes prevalence by 0.0002. Also, a significant urban population with mean 

of -0.0555 and standard deviation of 0.0256 is an indication that for every unit in urbanization, there 

is a decrease in urbanization by 0.0555.  

The bottom part of the Table 4.17 shows the posterior intervals, which are: 

Equal tail: 100 (
𝛼

2
) 𝑡ℎ 𝑎𝑛𝑑 100 (1 −

𝛼

2
) 𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑠, and  

Highest Posterior Density (HPD): posterior probability is 100 (1 - 100 (1 −
𝛼

2
))% 

HPD interval for GDP is (0.0000008, 0.000508) which means that there is a 95% chance that GDP is in 

the credible interval of (0.00000008, 0.000508). 

 

4.7.2. MCMC Diagnosis Plots of Diabetes and Risk Factors for Bayesian Linear Model 

A convergence diagnostic test, as explained in section 3.7.6 above, was conducted to assess the 

convergence of the Markov chain before obtaining the poterior summary table, since the aim of 

MCMC diagnostic plots are to check convergence, autocorrelation, and the efficiency of the function. 

The SAS function produces, for each variable along with its dispersion and intercept, three plots which 

are, posterior density at the bottom right, autocorrelation at the bottom left, and trace plot at the 

top.  
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Figure 4.33. Diagnostic plot of GDP in Bayesian linear regression 

 

The top frame shows that MCMC (Gamerman sampling algorithm) convergence steadily reaches the 

appropriate mean value of the posterior for all the variables. The lower left frame displays the 

autocorrelation and indicates the approximate independence of the sampling from the posterior 

distribution. All the variables thin out at around 1 thin. Thinning reduces autocorrelations and allows 

one to obtain seemingly independent samples. The plots show that there is no autocorrelation in the 

variables. The lower right displays the kernel density (posterior density) which estimates the marginal 

posterior distribution of the parameters using the sampling mechanism. The posterior mean is at the 

top of the distribution, which shows where most of mass rests.  

From the diagnostic plots in Figure  4.33  and Appendix C, all the trace plots show a significant upward 

and downward trend along the iterations with the so called “thick pen” as described by Gelfand et al. 

(1990). This indicates insignificant deviations from the stationarity. The MCMC algorithm can then be 

considered to have converged. The density plot also shows a symmetrical distribution. 

 

4.7.3. Results of Bayesian Poisson Model of Diabetes and Predictors 

This section described the results of the Poisson model of diabetes and the predictors in SAS using 

PROC GENMOD, with non-informative prior distributions. By default, the maximum likelihood 



Chapter 4. Results.   153 

 
 

estimates of the model parameters were computed using a non-informative independent normal prior 

distribution with zero means and variance. The command produces varied outputs such as initial 

values for the Markov chain, fit statistics, interval statistics, posterior sample correlation matrix, and 

MCMC convergence diagnostics plots such as autocorrelations, posterior density, and trace plots.  

Table 4.21 gives the descriptive statistics such as mean, standard deviation, and credible intervals of 

the estimate of the posterior distribution.  

Table 4.21:  Statistics of the Posterior samples of Bayesian Poisson model 

Parameter  N Mean 
Standard 
Deviation 

                     Percentiles 

25% 50% 75% 

Intercept  50000 15.2881 0.00203 15.2868 15.2881 15.2895 

Health 
expenditure 

50000 -0.0789 0.00008 -0.0790 -0.0789 -0.0789 

GDP 50000 -0.0001 0.00000 -0.0001 -0.0001 0.0001 

 Population age 50000 -0.0369 0.00004 -0.0369 -0.0369 -0.0368 

Urban population 50000 -0.0021 0.00000 -0.0021 -0.0021 -0.0021 

Physician Density 50000 1.0927 0.00014 1.0926 1.0927 1.0927 

Mean Year of 
School age 

50000 0.1975 0.00010 0.1975 1.1975 0.1976 

Posterior Intervals 

Parameter  Alpha  Equal-Tailed interval  HPD Interval 

Intercept 0.050 15.2841 15.2922 15.2841 15.2921 

Health 
expenditure 

0.050 -0.0791 -0.0787 -0.0791 -0.0788 

GDP 0.050 -0.000010 0.00010 -0.00010 0.00010 

Population 
Age 

0.050 -0.0369 -0.0368 -0.0369 -0.0368 

Urbanization 0.050 -0.00215 -0.00211 -0.00215 -0.00211 

Physician 
density 

0.050 1.0924 1.0929 1.0924 1.0929 

DIC = 55635658 
pD (effective number of parameters) = 6.985 
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 The posterior distribution was obtained after one million iterations performed gradually while 

assessing convergence at every stage with burn-in of 50000 and thinning of 50. The posterior summary 

of Poisson model in Table 4.18 shows that all the variables are significant but indicates that for a one-

unit increase in urbanization, the difference in the logs of expected counts of diabetes would be 

expected to decrease by 0.0021 units while holding other variables in the model constant. However, 

for a one-unit increase in physician density per 1000 persons, the difference in the logs of expected 

counts of diabetes would be expected to increase by 1.0927 units, while holding other variables in the 

model constant. 

From the posterior interval result, in the Bayesian paradigm, the interpretation of the credible interval 

is that interval indicates that there is a 95% probability that the true parameter (for respective 

intervals) is included in the given interval. For instance, for the risk variable population age, there is a 

95% probability that the parameter falls in the interval (-0.0369 -0.0368). 

 

4.7.4. Convergence Diagnosis Results of Bayesian Poisson Model of Diabetes and Covariates  

 

Figure 4.34. Poisson diagnostics plots for health expenditure 

The diagnostic plots in figure 4.34 show that there is convergence in all the samples, that is, initial drift 

in all the parameter toward a stationary distribution. The trace plots show a good-mixing with no 
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autocorrelation and asymmetric posterior density, indications of a good model. Other variable 

diagnostic plots for the Poisson is shown in Appendix D. 

 

4.7.5. Results of Bayesian Negative Binomial Model of Diabetes and Predictors 

Table 4.22:  Posterior Summaries Negative Binomial model 

Parameter N Mean Standard Deviation 
Percentiles 

25% 50% 75% 

Intercept  20000 14.0835 2.1926 12.6105 14.0979 15.5586 

Health expenditure 20000 -0.1408 0.1003 -0.2090 -0.1423 -0.0739 

GDP 20000 -0.0001 0.00009* -0.0002 -0.0001 0.00007 

Population age 20000 0.0054 0.0502* -0.0284 0.0047 0.0387 

Urban population 20000 -0.0189 0.0184* -0.0312 -0.0189 -0.0064 

Physician Density 20000 1.4146 0.5808 1.0015 1.3446 1.7641 

Mean Year of School age 20000 0.1864 0.1218 0.1051 0.1867 0.2677 

Dispersion  20000 1.5688 0.2856 1.3632 1.5377 1.7415 

Posterior Intervals 
Parameter  Alpha  Equal-Tailed interval  HPD Interval 
Intercept 0.050 9.7301 18.3371 9.8197 18.3830 
Health 
expenditure 

0.050 -0.3358 0.00582 -0.3340 0.0599 

GDP 0.050 -0.00026 0.000079 -0.00027 0.000057 
Population Age 0.050 -0.0913 -.1059 0.0977 0.0990 
Urbanization 0.050 -0.0551 0.0175 -0.0536 0.0187 
Physician 
density 

0.050 0.4638 2.7211 0.3557 2.5668 

Mean Year 
school age 

0.050 -0.0541 0.4250 -0.0556 0.4222 

Dispersion 0.050 1.0978 2.2184 1.0648 2.1547 
 
DIC = 1477.85  

PD (effective number of parameters) = 7.332 

(* significant variables) 

Table 4.22 shows the posterior summaries of a negative binomial model with GDP, Urbanization, and 

Population age being significant. The posterior mean of GDP is -0.0001 and SD of 0.00009. Similarly, a 

population age posterior means of 0.0054 and SD of 0.0502 shows an increase in diabetes prevalence 

is associated with increase in population age, that is a high probability population age predicting 
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diabetes prevalence. The urbanization posterior mean estimate is 0.0189, with an SD of 0.0184 shows 

a low prediction on diabetes, indicating that an increase in diabetes prevalence is associated with a 

decrease of 0.0189 in urbanization. For negative binomial, the dispersion parameter is an important 

parameter, dispersion mean is given as 1.5688 and SD is 0.2856. 

From the posterior interval result, in the Bayesian paradigm, the interpretation of the credible interval 

is that it indicates that there is a 95% probability that the true parameter (for the respective intervals) 

is included in the given interval. For instance, for the risk variable GDP, there is a 95% probability that 

the parameter falls in the interval (-0.00027, 0.00057), for urbanization credible interval (CI) is    

 (-0.0536, 0.0187) and   credible interval for population age is (0.0977 ,0.0990). 

 

 

Figure 4.35.  Negative binomial diagnostic plots for GDP 

 

Negative diagnostic plot for GDP in figure 4.35 shows a stationary plot and no autocorrelation. Other 

variables diagnostic plots for the Poisson is shown in Appendix E with similar results. 
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4.8. Conclusion  

We computed a linear regression model using all twelve risk variables from the data, but due to 

linearity and high missing values of some of the variables, the number variables were reduced to six. 

The six variables used were GDP, health expenditure, population age, urbanisation, physician density, 

and mean year of school age. The linear regression model revealed that population age, urbanization, 

and physician density were significant.  

A transformation of the data by taking the log of the dependent variable was deemed fit to further 

assess the normality of the distribution. The log-linear model results show that population age and 

physician density were significant. Further transformation by using a fractional probit regression 

model revealed that GDP, population age, and physician density were significant risk factors for 

diabetes. In modeling count data, a Poisson model was deemed fit, and the Poisson regression model 

was computed which showed that all the variables were significant. To relax the assumption of the 

Poisson regression, and due to over-dispersion, a negative binomial model was computed which 

revealed that GDP and physician density are significant risk factors for diabetes.  

A Bayesian linear regression was computed from a GLM perspective, Bayesian Poisson model and 

Bayesian Negative binomial model for diabetes and the social- economic factors at the population 

level was computed to compare the classical result. A non-informative prior probability distribution 

was used in the building of the model. From the Bayesian paradigm, the Bayesian linear regression 

revealed that GDP and urbanization were significant risk factors of diabetes. We computed the 

Bayesian Poisson regression, and it also revealed that all the variables are significant. The Bayesian 

negative binomial model revealed that GDP, Urbanization, and population age are significant 

socioeconomic risk factors for diabetes.  

In general, it was revealed that physician density, GDP, population age, and urbanization were 

consistently significant in all the models. This implies that countries with high GDP will be associated 

with high diabetes. This shows the economic impact diabetes imposes on the economy of a nation, 

the global health care system, and the wider global economy. This burden of diabetes as measured 

through direct and indirect cost has a negative impact on the nations’ GDP. Overall, the population 

age (15-65) was also significant, implying that this age group contributed significantly to diabetes 

prevalence on the continent. Also, results showed that as life expectancy increases, diabetes 
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prevalence increases. Likewise, a significant physician density implies that access to health care 

system, health capability, the number of physician servicing the population play a significant role in 

diabetes prevalence. Lastly, it was revealed that urbanization was significant, which implies that as 

countries continue to urbanize, the changing pattern of people's standards of living has a positive 

impact on diabetes prevalence, that it is Urbanization increases diabetes prevalence in Africa.  
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 Chapter 5  

Discussion and Conclusion 

5.0. Introduction 

This chapter gives a general discussion of the results, the conclusions of the study, its implications, 

and recommended areas of further work/study. 

5.1. Discussion  

This study has the main aim of investigating the spatial distribution of diabetes prevalence across 

Africa and the associated risk factors using both classical and Bayesian approach. The first objective of 

the study was to determine the relationship between identified factors of diabetes and its prevalence 

in Africa. The second objective was to examine spatial configurations of diabetes prevalence levels 

and its underlying socio-economic factors in Africa. The third objective was to compare Bayesian 

statistics and classical statistics as applied in spatial clustering. However, identification of high diabetes 

mortality risk countries and the underlying risk factors is generally hampered by lack of reliable data. 

This study attempts to address this lacuna and mostly succeeds.  

The first objective of the study was met by using different techniques such as scatter plot, spearman 

rho correlation coefficient ordinary least square regression and geographic weighted regression to 

model the predictor and the response variables to determine the relationship between diabetes 

prevalence and the associated risk factors.  

Country GDP, Age dependency ratio, physical inactivity and physician were each significantly 

associated with country diabetes prevalence, relationships that were spatially nonstationary across 

the Africa continents. The variation in parameter estimates from GWR suggests the need to apply this 

spatial analysis tool to other diabetes studies that have been restricted to global models. In the global 

OLS model, 32.2% of county-level diabetes prevalence was explained by population age, alcohol 

consumption, health expenditure, country GDP, the mean year of school age as well as physical 

inactivity of the population. However, at an individual country level, the explanatory percentage 

increased to 100%, and the individual county-level models were significantly clustered. This clustering 

suggests that local contexts, policies, programs, and built environment attributes are associated with 
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diabetes prevalence and that the amplitude of such contexts, policies, programs, and environments 

varies across the nation. The relationships among physician density, physical inactivity, and diabetes 

are not new (Green et., al. 2003, Hu et., al. 1999). Others found these relationships have a spatial 

component (Hu et., al. 2004). Except for recent work by Siordia and colleagues (2012), there has been 

no investigation into the non-stationarity of these relationships. Similarly, the strong association 

between physical activities and diabetes is consistent with findings of other studies (Hu et., al. 2004), 

but it has not been investigated for spatial heterogeneity or nonstationary. That there is a significant 

association between obesity, GDP, physical inactivity, age dependency ratio, physician density and 

diabetes and that this relationship has a spatial but nonstationary association highlights the need for 

local, context-specific diabetes prevention programs. Using GWR, public health researchers and 

practitioners can gain a nuanced understanding of health-related issues and respond to the notion 

that “all health is local” (Tobler 1970, Gebreab and Diez Roux, 2012). In doing so, they can provide 

clarity for designing and funding context-specific public health programs and policies, especially for 

national programs that have local reach, including those of the Centre for Disease and Control (CDC), 

IDF, UN and WHO. Our analyses could also be used by local public health departments and offices for 

resources such as MIYO (Make It Your own - http://www.miyoworks.org/) to tailor messages and 

materials for their target audiences. The use of GWR is a key advancement in public health research 

and practice because many health behaviours and outcomes vary spatially (e.g., obesity) (Kohl et., al.  

2013). 

Shedding light on spatial variations can provide new insights into well-established relationships. The 

methodology of GWR needs to be expanded to additional public health efforts to understand the 

impact of environment and place on health and how these relationships may vary across space. For 

diabetes prevalence, we presented an initial step in this direction, but much work remains before we 

understand why these variations exist and why alcohol consumption, population age, health 

expenditure, GDP, and physical inactivity have little explanatory effect in some regions but explain up 

to 100% of diabetes prevalence in other regions. 

To achieving the second objective of this study, by examining the spatial configuration of diabetes in 

Africa, different techniques were implemented for comparison purposes. Moran I indices both under 

randomization and specific distance measures were used to determine the spatial configuration. LISA 
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and cluster analysis were also implemented in determining which countries have similar patterns of 

diabetes prevalence.  Firstly, it was revealed that the disease is heterogeneous across the Africa 

continent as stated by (Schwitzgebel, 2014; Tuomi et al., 2014). Secondly, diabetes was seen to be 

spatially correlated and clustered across the continent. By further stratifying the data into regions, in 

the West, Central and North regions, diabetes was seen to be dispersed, while clustered in the East 

and South regions. Under randomization, the West, Central, and East regions showed a negative 

spatial correlation, while the South and North regions showed positive spatial correlation of diabetes. 

This could be because of the elevated level of risk factors of diabetes in these regions. For example, 

countries like South Africa, Botswana, Gabon, Libya, Mauritius, Equatorial Guinea, and Seychelles are 

seen to have high GDP, obesity, alcohol consumption, physician density, urban population age, urban 

population growth, health expenditure and age dependency, which shows an enormous impact on 

the countries high diabetes prevalence rate. Likewise, countries with low risk factor rates show low 

diabetes prevalence rates. In general, the North and South regions have high diabetes prevalence and 

high-risk factors of diabetes. This shows a relative linear association between the risk factors and 

diabetes. Also, many countries in these regions were seen to have high GDP, high population age, high 

physician density, and high urbanization. 

The study likewise gives a big picture of countries that are referred to as hot spots, as well as low spots 

in terms of diabetes prevalence, considering the factor of neighboring countries. That is, a country can 

be classified as having a high prevalence depending on both her risk factors as well as those of her 

neighboring countries.  The results of LISA cluster map analysis and scatter plots for the five regions 

show that the following countries have high diabetes prevalence with neighbouring countries which 

also have high diabetes prevalence (in the high-high category): Benin, Guinea, Guinea Bissau, 

Cameroon, Equatorial Guinea, Rwanda, Angola, Mozambique, Zambia, Sudan, Algeria, and Burundi. 

This High-High clusters identifies swath of the countries in which diabetes is high, interventions to 

prevent complications from diabetes might be needed in these areas. 

Similarly, the countries with high diabetes prevalence with neighboring countries with low diabetes 

prevalence rates are Cote d’Ivoire, Liberia, Senegal, Chad, Eritrea, Tanzania, Lesotho, Libya, Swaziland. 

These High- low clusters categories serve to remind policy makers that a country may need 

intervention even when its neighbour needs are less severe.  
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The countries with low diabetes prevalence with neighboring countries with low diabetes prevalence 

rates (in the low-low category) are Burkina Faso, Nigeria, Guinea Bissau, Central Africa Republic, 

Gabon, Somalia, Djibouti, Namibia, Botswana, and Zimbabwe. These low-low clusters identified broad 

areas of the country where diabetes is less common; perhaps there are lessons from these areas that 

can be applied elsewhere, such as in countries in H-H and H-L.   

Similarly, countries with low diabetes prevalence and having neighboring countries with high diabetes 

prevalence rates (in the low-high category) are South Africa, Mali, Sierra Leone, Congo Republic, 

Congo DRC, Ethiopia, Uganda, and Madagascar. The low –high clusters identifies pockets with regions 

in which effort to prevent diabetes have perhaps been successful or have lowered risk factors for 

diabetes. All this knowledge along with information on the influence of associated socio-economic risk 

factors moves us toward better preventing diabetes and its complications. 

The third objective of this population-based study was met by modelling diabetes prevalence in Africa 

using both classical and Bayesian statistical methods. These techniques  used are simple linear 

regression, log linear regression, fractional probit, Poisson regression, negative binomial, Bayesian 

linear model, Bayesian Poisson regression model, and Bayesian Negative-binomial model. This is to 

ascertain the extent to which diabetes is related to various risk factor variables.  Because of over-

dispersion of the study population and since the variables of the study are in the form of continuous 

count data, GLM using a Poisson distribution and negative binomial was deemed an appropriate 

technique for analyzing the data. In examining the impact of the explanatory risk factor variables of 

diabetes, the classical approach revealed that GDP, Population age, physician density, and 

urbanization are significant. On the contrary, there was no significant difference in the results from 

classical and Bayesian techniques, due to the use of a non-informative prior. As revealed in the 

literature (Mbanya et. al, 2010; Hu, 2011; Bruro & Landi, 2011; Levitt, 2008; Gill et. al., 2009, Chen et. 

al., 2012; Mensah et. al, 2014; Hall et. al., 2011; Motala, 2008; Hu, 2011; Bruno and Landi, 2011; Levitt, 

2008; Ramachandran et. al., 2007; Hopkins et. al, 2010), this study shows that health care access, 

population age, urbanization, and GDP have an impact on the increase of diabetes in Africa. We show 

that countries with high GDP, high obesity, high MYSC, high physician density, high population age, 

and high urbanization also have high diabetes prevalence rates.



 
 

Lastly, the study found that obesity, physical activity, alcohol consumption, physician density, GDP, 

GNI, Population age, urban population growth, and health expenditure are key risk factors which are 

associated with and have an impact on diabetes prevalence in Africa. Countries with elevated risk 

factor rates also tended to have high diabetes prevalence. Egypt, Seychelles, Mauritius, Libya, 

Comoros, Tunisia, Sudan, Djibouti, South Sudan, Gabon, Equatorial Guineas, Algeria and South Africa 

were identified as the top countries with high diabetes prevalence. The high prevalence in these 

countries can be attributed to their high GDPs, physician densities, population ages, and population 

growth factors. The countries with low prevalence rate on the continent are Benin (0.8%), Gambia, 

Burkina Faso, Niger, Mali, Senegal, Sierra Leon, Guinea, Guinea Bissau, Cabo Verde, Ghana, Liberia, 

Mauritania, Nigeria, Sao Tome and Principe, and Kenya, all having less than 2.3% diabetes prevalence 

rates. This can be attributed to their relatively low rates of the risk factors GDP, Urban population 

growth and physician density.  

Our study has several limitations. First, the diabetes prevalence estimates were modelled from survey 

data, and we did not account for the survey sampling uncertainty or the biases and limitations of the 

survey. Second, we did not consider changes over time and therefore do not know how rapidly the 

diabetes prevalence in our spatial clusters could change. Third, we did not account for the movement 

of people between countries in our estimates of prevalence of diabetes. It is not known what 

percentage of the residents developed diabetes while residing in another county. Fourth, the Moran 

I for the regions was not included due to small sample size, as the number of countries in those regions 

were included in the data and not local counties or municipalities level. 

 

5.2. Conclusion  

This study of diabetes prevalence in Africa has been modeled using Bayesian GLM and classical 

statistics to ascertain the extent to which diabetes prevalence is related to various explanatory risk 

variables. 

One of the objectives of this study was to examine the spatial configuration distribution of diabetes 

across Africa. This was achieved using GMI, Moran’s I, and LISA map analyses. 
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From the LISA results, outlier countries were identified, that is, countries with high diabetes 

prevalence, but surrounded by countries with low diabetes (South Africa, Mali, Sierra Leone, Congo 

Republic, Congo DRC, Ethiopia, Uganda, Madagascar). Countries with low diabetes but surrounded 

with countries with high diabetes (Cote d’Ivoire, Liberia, Senegal, Chad, Eritrea, Tanzania, Lesotho, 

Libya, Swaziland) were also identified. This pattern should be given a close attention as it has 

implications on the spread of diabetes on the continent. As mentioned in the literature review 

(Motala, 2002; Ogurtsova et. al, 2015; Peer et. al, 2014), it has been discovered that a good percentage 

of these countries are high-income countries and the most populous ones. However, risk factors are 

not limited to high income or populous countries as Non-communicable disease (NCD) burden is 

common to developing countries.  As positioned by the International Diabetes Federation (IDF), in 

efforts towards halting the rise of diabetes, a global network for diabetes awareness at the country 

and continental levels can be created and facilitated through joint policies and collaborative efforts 

(Day, 2016).  The result of LISA and cluster analysis from this study could be used as a tool or 

instrument in mapping the joint policies and collaborative effort in the fight against diabetes instead 

of individual country fighting the disease in silos. Likewise, countries in this region need to improve on 

non-communicable disease surveillance and monitor policies can be formed with best evidence. 

Efficient and continuous program for prevention and awareness need to be put in place.  

In conclusion the use of cluster analysis and LISA map helps in strengthening the results, due to the 

heterogeneity of the population and diabetes in Africa, the cluster analysis brings together the 

homogenous groups of countries in the same clusters, that is countries with similar pattern in terms 

of the level of their prevalence and risk factors can come together to form joint policies. On the similar 

pattern, the hot spots countries from LISA maps can be further identified and re- grouped from their 

various clusters and then given more attention and urgent action in order to reduce diabetes burden 

in the continent. 

To achieve one of the study's objectives of comparing classical and Bayesian statistics, we fitted 

several models such as linear regression, Poisson, and negative binomial from the classical 

perspective, and their respective Bayesian models from the Bayesian perspective. The Bayesian linear, 

Poisson, and negative binomial models were fitted using the MCMC estimation method. The 

regression analysis showed that GDP, physician density, urbanization, and population age were 
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significant across the models, with population age and physician density having positive significance 

in all the regression analyses.  The differences between the classical and Bayesian approaches were 

observed, as well as differences in the mean and the parameter of estimate. We can conclude that 

the use of Bayesian techniques did not make a significant difference in the result due to the use of a 

non-informative prior. Using information from previous years can help strengthen the use of Bayesian 

techniques.  

Overall, the highest prevalence is seen within the North, Central, East and South regions, while the 

West Africa region having has the prevalence. The high prevalence rate within the North, Central, East, 

and South regions could be attributed to increasing urbanization, demographic changes, and  

increases in population within the older age groups with the associated changes in levels of risk factors 

such as obesity, physical inactivity, alcohol consumption, and tobacco smoking.  Countries in Sub-

Saharan Africa, especially South Africa, are currently known to be undergoing a wide range of 

epidemiological transitions, with an increasing burden of non-communicable disease (Azevedo and 

Alla, 2008; Mbanya et al., 2010; Sobngwi et al., 2012) However, the determinant factors for low 

diabetes prevalence in the West Africa region could be the low rates of obesity, physical inactivity, 

and urbanization in most of the countries as compared with the other regions. Another contributing 

factor of low diabetes prevalence in this region could be the climate condition (Adeghate et al., 2006; 

Fisch et al., 1987; Vandenheede et al., 2012; Aikins, 2005; Tishkoff and Williams, 2002). 

In determinng the relationship between diabetes and the socio economic risk factors,  OLS and GWR 

was compared and the strenght of GWR was established. The improved model from local GWR shows 

that Obesity,Urban population growth, age dependency ratio, physician density , HDI and GNI are 

significant variables. However,there are also limitations to our findings. The local R2s accounted for 

100% of country-level diabetes prevalence. The residual parameters was not tested for spatial 

correlation because it was not part of the study objective. A further analysis could have been done by 

mapping the residuals to visualised the variables that are significants and then identify which country 

they are most significant. The primary strength of this study is the use of GWR in the analysis of the 

spatial distribution and correlates of diabetes prevalence. Siordia and colleagues (7) introduced the 

concept of spatial. 
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5.3. Implications and Recommendations 

In an attempt to reduce the number of people diagnosed or living with diabetes in Africa, efforts 

should be directed towards having joint policies towards the implementation, control, and planning 

of diabetes awareness and care in Africa either at the regional level or among countries in the same 

clusters or hotspots countries. In other words, a collaborative initiative is recommended between 

countries and key international and national diabetics organizations to improve diabetes care and 

awareness in Africa and worldwide.  

Strategic actions should be taken in terms of meaningful population-based intervention policies and 

projects, management of urbanisation, and programs to fight diabetes in Africa both at the national 

and at the international level such as the NCD alliance strategy plan by United Nation for NCDs.   

The identified hotspot countries can be used as a form of NCDs alliance strategy to curb this 

prevalence.  Explicit or implicit measures should be instituted by governments to influence population 

size, growth, distribution, and composition, as well as the health care management of diabetes. 

Likewise, risk factors that can be controlled such as physician density and urban population growth 

can be used as instruments in reducing diabetes in the Africa.  

Special attention should be given to countries in the Southern and Northern regions of Africa like 

South Africa, Botswana, Mauritius, Namibia, Libya, Egypt, Seychelles, and Egypt where the diabetes 

prevalence is high and the significant risk factors such as GDP, population age, urban population 

growth and physician density are also high. 

 

 

5.4. Further Study 

In the analysis, this study puts into consideration the way data was extracted. Further work can 

therefore be done on Bayesian spatial models with applications to other disease in Africa or specific 

countries (e.g. South Africa). One of the limitations to this study was the unavailability of diabetes 

prevalence data for previous years. A trend of the disease and the risks could have been investigated, 
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leading to a strengthening of the Bayesian technique. Therefore, an area of further work could be the 

acquisition of the said data and conducting of such investigations, based on which stronger Bayesian 

analyses can be done. Finally, further work can be done on the contribution of ethnicity to the spread 

of diabetes in Africa. 

Lastly, with the identification of the hot spots countries, an intervention project could be considered 

with the government of these countries to curb the mortality of diabetes. A cohort study on each of 

these hot spots countries on the individual level can be done to further identify the hotspots states, 

district, province or town where diabetes is prevalence. This will assist in the fight against the increase 

of diabetes and a systematic reduction can be realised as against the projected figures for 2020. 
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Appendix A: Data Indicators, Sources, and Definitions 

 

 INDICATORS DEFINITION SOURCES 

1 DIABETES 

PREVALENCE (% OF 

POPULATION AGES 

20 TO 69) 

Diabetes prevalence refers to the 

percentage of people ages 20-79 

that have type 1 or type 2 diabetes. 

 

World Bank national accounts 

data, and OECD National 

Accounts data files. 

 

2 GDP per capita 

(current US$) 

 

GDP per capita is gross domestic 

product divided by midyear 

population. GDP is the sum of gross 

value added by all resident 

producers in the economy plus any 

product taxes and minus any 

subsidies not included in the value 

of the products. It is calculated 

without making deductions for 

depreciation of fabricated assets or 

for depletion and degradation of 

natural resources. Data are in 

current U.S. dollars. 

 

World Bank national accounts 

data, and OECD National 

Accounts data files. 

 

3 HEALTH 

EXPENDITURE 

Total health expenditure is the sum 

of public and private health 

expenditure. It covers the provision 

of health services (preventive and 

curative), family planning activities, 

nutrition activities, and emergency 

World Health Organization 

Global Health Expenditure 

database (see 

http://apps.who.int/nha/datab
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aid designated for health but does 

not include provision of water and 

sanitation. 

ase for the most recent 

updates). 

4 Urban population (% 

of total) 

Urban population refers to people 

living in urban areas as defined by 

national statistical offices. It is 

calculated using World Bank 

population estimates and urban 

ratios from the United Nations 

World Urbanization Prospects. 

 

United Nations, World 

Urbanization Prospects. 

5 Literacy rate, adult 

total (% of people 

ages 15 and above) 

 

Adult literacy rate is the percentage 

of people ages 15 and above whom 

can both read and write with 

understanding a short simple 

statement about their everyday 

life. 

. 

United Nations Educational, 

Scientific, and Cultural 

Organization (UNESCO) Institute 

for Statistics. 

 

6 Daily smoking of any 

tobacco product (age-

standardized rate) 

Prevalence estimates for daily 

smoking of any tobacco product are 

age-standardized rates for adults 

aged 15 years and over, estimated 

using the method described in the 

Method of Estimation below. 

"Tobacco smoking" includes 

cigarettes, cigars, pipes or any 

other smoked tobacco products. 

The definition of "daily tobacco 

WHO 

http://apps.who.int/gho/data/v

iew.main.TOB30011 

 

http://apps.who.int/gho/data/view.main.TOB30011
http://apps.who.int/gho/data/view.main.TOB30011
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smoking" varies between surveys, 

but often means current smoking of 

any tobacco product at least once a 

day. 

7 Smoking prevalence, 

females (% of adults) 

Prevalence of smoking, female is 

the percentage of women ages 15 

and over who smoke any form of 

tobacco, including cigarettes, 

cigars, pipes or any other smoked 

tobacco products. Data include 

daily and non-daily or occasional 

smoking. 

World Health Organization, 

Global Health Observatory Data 

Repository 

(http://apps.who.int/ghodata/). 

8 Smoking prevalence, 

males (% of adults) 

Prevalence of smoking, male is the 

percentage of men ages 15 and 

over who smoke any form of 

tobacco, including cigarettes, 

cigars, pipes or any other smoked 

tobacco products. Data include 

daily and non-daily or occasional 

smoking. 

. World Health Organization, 

Global Health Observatory Data 

Repository 

(http://apps.who.int/ghodata/). 

9 Population ages 15-

64 (% of total) 

 

Total population between the ages 

15 to 64 is the number of people 

who could potentially be 

economically active. Population is 

based on the de facto definition of 

population, which counts all 

residents regardless of legal status 

or citizenship--except for refugees 

World Bank staff estimates 

based on age distributions of 

United Nations Population 

Division's World Population 

Prospects 

http://apps.who.int/ghodata/
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not permanently settled in the 

country of asylum, which are 

generally considered part of the 

population of the country of origin. 

1

0 

Prevalence of 

insufficient physical 

activity among adults 

aged 18+ years 

Percent of defined population 

attaining less than 150 minutes of 

moderate-intensity physical activity 

per week, or less than 75 minutes of 

vigorous-intensity physical activity 

per week, or equivalent. 

WHO: 

http://apps.who.int/gho/data/v

iew.main.2463 

 

1

1 

Recorded alcohol per 

capita (15+ years) 

consumption of pure 

alcohol 

 

  

Recorded APC 

Recorded APC is defined as the 

recorded amount of alcohol 

consumed per capita (15+ years) 

over a calendar year in a country, in 

liters of pure alcohol. The indicator 

only considers the consumption 

which is recorded from production, 

import, export, and sales data often 

via taxation. Numerator: The 

amount of recorded alcohol 

consumed per capita (15+ years) 

during a calendar year, in liters of 

pure alcohol. Denominator: 

Midyear resident population (15+ 

years) for the same calendar year, 

UN World Population Prospects, 

medium variant. 

WHO 

http://apps.who.int/gho/data/v

iew.main.52160 

 

 

 

Global Information System on 

Alcohol and Health (GISAH 

http://apps.who.int/gho/data/view.main.2463
http://apps.who.int/gho/data/view.main.2463
http://apps.who.int/gho/data/view.main.52160
http://apps.who.int/gho/data/view.main.52160
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1

2 

OBESITY: 

Prevalence of obesity, 

BMI ≥ 30 

Percentage of defined population 

with a body mass index (BMI) of 30 

kg/m2 or higher. 

WHO: 

http://apps.who.int/gho/data/v

iew.main.2450A 

 

1

3-

1

5 

Development index 

 Human 

Development 

Index (HDI) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A composite index 

measuring average 

achievement in three basic 

dimensions of human 

development—a long and 

healthy life, knowledge and 

a decent standard of living. 

See Technical note 1 at 

http://hdr.undp.org/en for 

details on how the HDI is 

calculated. 

 

 

 Average number of years of 

education received by 

people ages 25 and older, 

converted from education 

attainment levels using 

official durations of each 

level. 

 

 

 

 HDRO calculations based 

on data from UNDESA 

(2015), UNESCO 

Institute for Statistics 

(2015), United Nations 

Statistics Division (2015), 

World Bank (2015a), 

Barro and Lee (2014) and 

IMF (2015). 

 

 

 

 

 

 

 

 

 

 

 

http://apps.who.int/gho/data/view.main.2450A
http://apps.who.int/gho/data/view.main.2450A
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 Mean year of 

Schooling  

 

 

 

 

 

 

 

 

 

 

 

Gross national 

income (GNI) per 

capita: 

Aggregate income of an economy 

generated by its production and its 

ownership of factors of production, 

less the incomes paid for the use of 

factors of production owned by the 

rest of the world, converted to 

international dollars using PPP 

rates, divided by midyear 

population. 

 

 

 

 

 UNESCO Institute for 

Statistics (2015), Barro 

and Lee (2014), UNICEF 

Multiple Indicator 

Cluster Surveys and ICF 

Macro Demographic and 

Health Surveys. 

 

 

 

 

 

 

 

 

 

 

World Bank (2015a), IMF (2015) 

and United Nations Statistics 

Division (2015) 
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 Density of physicians 

(per 1 000 

population) 

 

Physician density per 

1000 population 

Number of medical doctors 

(physicians), including generalist 

and specialist medical practitioners, 

per 1 000 population. 

 

Physicians include generalist and 

specialist medical practitioners. 

WHO 

http://apps.who.int/gho/data/v

iew.main.92100 

 

World Health Organization's 

Global Health Workforce 

Statistics, OECD, supplemented 

by country data. 

 

WHO compiles data on health 

workforce from four major 

sources: population censuses, 

labour force and employment 

surveys, health facility 

assessments and routine 

administrative information 

systems (including reports on 

public expenditure, staffing, and 

payroll as well as professional 

training, registration and 

licensure)? Most of the data 

from administrative sources are 

derived from published national 

health sector reviews and/or 

official country reports to WHO 

offices. In general, the 

denominator data for 

physicians’ density (i.e. national 

http://apps.who.int/gho/data/view.main.92100
http://apps.who.int/gho/data/view.main.92100
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population estimates) are 

obtained from the United 

Nations Population Division's 

World Population Prospects 

database. 

1

6 

Per capita 

government 

expenditure on 

health at average 

exchange rate (US$) 

 

i.e.  

 

Health expenditure 

per capita, all 

countries, selected 

years 

Estimates by country 

Per capita, general government 

expenditure on health (GGHE) 

expressed at average exchange rate 

for that year in US dollar. Current 

prices. 

WHO 

http://apps.who.int/gho/data/v

iew.main.HEALTHEXPCAPLATES

Tv 

 

1

7 

Age dependency 

ratio, old (% of 

working-age 

population) 

 

Age dependency ratio, old, is the 

ratio of older dependents--people 

older than 64--to the working-age 

population--those ages 15-64. Data 

are shown as the proportion of 

dependents per 100 working-age 

population. 

 

World Bank staff estimates 

using the World Bank's 

population and age distributions 

of the United Nations 

Population Division's World 

Population Prospects. The 

World Bank's population 

estimates are from various 

sources including the United 

http://apps.who.int/gho/data/view.main.HEALTHEXPCAPLATESTv
http://apps.who.int/gho/data/view.main.HEALTHEXPCAPLATESTv
http://apps.who.int/gho/data/view.main.HEALTHEXPCAPLATESTv
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Nations Population Division's 

World Population Prospects; 

census reports and statistical 

publications from national 

statistical offices; Eurostat's 

Demographic Statistics; United 

Nations Statistical Division, 

Population and Vital Statistics 

Report (various years); U.S. 

Census Bureau: International 

Database; and Secretariat of the 

Pacific Community, Statistics 

and Demography Programme. 
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Appendix B: Data Sources 

 

I. Prevalence of Diabetes, this information was obtained at: 

http://data.worldbank.org/indicator/SH.STA.DIAB.ZS/countries?display=defaulthttp3A2F2Fdata.worl

dbank.org.cn2Findicator2FNY.GDP.PCAP.CD2Fcountries2F1W3Fdisplay3Ddefault .   For all the 

countries. 

2. The data on percentage of country GDP for all the countries was found at 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.Z

S# 

3. The data on percentage of unemployment for all the countries was found at 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.Z

S# 

And  

http://unstats.un.org/unsd/demographic/products/socind/ 

3. The data on percentage of population ages 15 above was found at 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DI

AB.ZS# 

 

 

 

4. The data on percentage pf physical activity for the countries was found at: 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DI

AB.ZS# 

http://data.worldbank.org/indicator/SH.STA.DIAB.ZS/countries?display=defaulthttp3A2F2Fdata.worldbank.org.cn2Findicator2FNY.GDP.PCAP.CD2Fcountries2F1W3Fdisplay3Ddefault
http://data.worldbank.org/indicator/SH.STA.DIAB.ZS/countries?display=defaulthttp3A2F2Fdata.worldbank.org.cn2Findicator2FNY.GDP.PCAP.CD2Fcountries2F1W3Fdisplay3Ddefault
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://unstats.un.org/unsd/demographic/products/socind/
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
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5. The data on percentage of population living in poverty for all the countries was found at: 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DI

AB.ZS# 

6. The data on percentage of country health expenditure was found at 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DI

AB.ZS# 

 

 

7. The data on percentage of nurses and mid wives for the countries except      …….was found at: 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DI

AB.ZS# 

8. The data on percentage of physicians per head for the countries except   ……was found at: 

The data on percentage of population living in poverty was found at 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.Z

S# 

9. The data on Prevalence of insufficient physical activity among adult by country was found at: 

http://apps.who.int/gho/data/node.main.A893?lang=en       and  

http://gamapserver.who.int/gho/interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?i

ndicator=i1&date=Male 

 

10. The data on Percentage  of population living under 1.90 and 3.10 a day 2011 dollars (Purchasing 

power parity) was found at 

https://en.wikipedia.org/wiki/List_of_countries_by_percentage_of_population_living_in_povert

y 

11. The data on Tertiary school gross enrolment was found at: 

http://unstats.un.org/unsd/demographic/products/socind/ 

 

http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://databank.worldbank.org/data/reports.aspx?source=2&type=metadata&series=SH.STA.DIAB.ZS
http://apps.who.int/gho/data/node.main.A893?lang=en
http://gamapserver.who.int/gho/interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?indicator=i1&date=Male
http://gamapserver.who.int/gho/interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?indicator=i1&date=Male
https://en.wikipedia.org/wiki/List_of_countries_by_percentage_of_population_living_in_poverty
https://en.wikipedia.org/wiki/List_of_countries_by_percentage_of_population_living_in_poverty
http://unstats.un.org/unsd/demographic/products/socind/
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12.  Resources 

Source of Information (Data Source):  

http://data.worldbank.org/indicator/SH.STA.DIAB.ZS/countries?display=defaulthttp3A2F2Fdata.worl

dbank.org.cn2Findicator2FNY.GDP.PCAP.CD2Fcountries2F1W3Fdisplay3Ddefault  

http://www.un.org/en/databases/ 

 

13. Global and regional trends by UN Regions, 1990-2025 

Overweight: 1990-2015: Overweight prevalence 

http://apps.who.int/gho/data/view.main.NUTUNOVERWEIGHTv 

Urban population:  http://apps.who.int/gho/data/view.main.100015 

http://gamapserver.who.int/gho/interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?i

ndicator=i1&date=Male 

 

 

 

 

 

 

 

 

 

 

 

http://data.worldbank.org/indicator/SH.STA.DIAB.ZS/countries?display=defaulthttp3A2F2Fdata.worldbank.org.cn2Findicator2FNY.GDP.PCAP.CD2Fcountries2F1W3Fdisplay3Ddefault
http://data.worldbank.org/indicator/SH.STA.DIAB.ZS/countries?display=defaulthttp3A2F2Fdata.worldbank.org.cn2Findicator2FNY.GDP.PCAP.CD2Fcountries2F1W3Fdisplay3Ddefault
http://www.un.org/en/databases/
http://apps.who.int/gho/data/view.main.NUTUNOVERWEIGHTv
http://apps.who.int/gho/data/view.main.100015
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Appendix C: MCMC Plots of Bayesian Linear Regression 
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Appendix D: MCMC Plots for Bayesian Poisson Regression  
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Appendix E: MCMC Plots for Negative Binomial  
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