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ABSTRACT

The objective of this study was to investigate the effects of land use and management practice on the

soil organic matter content and the size, activity and diversity of the microbial biomass. These effects

were investigated using samples taken from the top (0-10 cm) layer of the soils from long-term

agricultural managements including natural grassland, maize under conventional (maize CT), maize

under zero tillage (maize ZT), annual ryegrass, Eucalyptus, Pinus, and permanent kikuyu pasture. The

natural grassland was used as a control since records indicated that no agricultural activity had ever

been exerted on the soil. The measurements used to investigate these effects included soil organic C,

total N, soil pH, microbial biomass C, basal respiration rate, microbial quotient, metabolic quotient,

dehydrogenase activity, fluorescein diacetate (FDA) hydrolysis, arginine ammonification rate,

arylsulphatase activity and acid and alkaline phosphatase activities. The microbial functional diversity

was measured using the Biolog Eco plate and catabolic response profiles methods.

Soil organic C and total Nwere lowest under maize CT, followed by maize ZT and annual ryegrass and

were higher under natural grassland, Eucalyptus and Pinus plantations while permanent kikuyu pasture

had the highest values. The other analyses, namely microbial biomass C, basal respiration rate, FDA

hydrolysis, arginine ammonification rate and arylsulphatase activity also followed the same pattern.

Annual cultivation was responsible for a decrease in microbial biomass C, basal respiration rate and

enzyme activity, principally because there was an appreciable decrease in soil organic matter content.

Conversely, permanent pasture, Eucalyptus and Pinus plantations increased appreciably the amount of

organic Cand consequently, promoted the size and activity ofthe microbial biomass in the soils.



The principle component scores showed that management practices affected the microbial functional

diversity because different treatments were found in separate zones of the principle component spaces.

The regression analysis showed that the variation in the PC1 and PC2 scores was correlated with the

variation in soil organic C, exchangeable acidity, extractable P and exchangeable Kand Mg. In addition,

richness, evenness, Shannon, and Simpson diversity indices showed that any management practice

affects the dynamics ofsoil microbial diversity.
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GENERAL INTRODUCTION

Soil is a dynamic, living resource that plays many key roles in terrestrial ecosystems (Pankhurst, Doube

and Gupta, 1997) and its use for agriculture, pasture, forestry, and urbanization can cause soil

degradation. The biological composition of soil is a very sensitive measurement of soil degradation

(Sims, 1990). A number ofauthors have considered the size and activity of the soil microbial community

as one indicator of soil health, soil quality and fertil ity and a key to sustainable agriculture (Doran and

Parkin, 1994; Kennedy and Papendick, 1995; Warkentin, 1995; Sparling, 1997). This is because soil

microbial communities are responsible for many processes in soil related to soil fertility. They are

responsible for organic matter decomposition, humus formation, nutrient cycling, soil aggregation,

nitrogen fixation, symbiotic association with plant roots, and degradation of toxic residues in soil

(Alexander, 1977; Kirchner, Wollum and King, 1993; Kennedy and Papendick, 1995; Sparling, 1997).

In South Africa, soil degradation has resulted in low fertility (Harrington and Grace, 1997), low organic

matter content, soil acidity and soil salinity (Scotney and McPhee, 1991; Beukes, 1995) and, therefore,

low crop productivity. The microbial status ofSouth African soils is not well documented. In addition, little

research has considered the functional diversity of microbial communities in managed soils and little is

known regarding the microbiological activity in arable, pasture and forest agro-ecosystems in South

Africa. Because microbiological indicators of soil quality are responsive to management practices,

quantifying these indicators through long-term monitoring may lead to an understanding of the effects

that land management practices and human-caused disturbances have on the soil component of

ecosystems.
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In this research, the effects of management practices on soil microbial activity and diversity were

evaluated. Following the general introduction, this thesis is subdivided in 4 chapters. The first chapter is

a review of organic matter and microbiological characteristics of soils and the main changes that occur

due to pasture, cultivation, fertilizer and pesticide application. Chapter 2 is an assessment of organic

matter content and the size and activity ofmicrobial biomass in soils under different agricultural systems;

namely natural grassland (control), maize under zero tillage, maize under conventional tillage, annual

ryegrass, permanent kikuyu (Penisetum clandestinum) pasture, Pinus and Eucalyptus plantations.

Chapter 3 the effects of management on the functional diversity of soil microbial communities are

investigated under the above land uses. Chapter 4 will be general conclusions.
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CHAPTER 1

SOIL ORGANIC MATTER AND SOIL MICROBIAL CHARACTERISTICS:

AREVIEW OF LITERATURE

1.1 INTRODUCTION

Soil quality is a topic of interest to soil scientists, agriculturists, biologists, and agricultural and

environmental policy makers (Warkentin, 1995; Karlen, Mausbach, Doran, Cline, Harris and Schuman,

1997). Soil quality has been differently characterized. Some authors have suggested that soil quality

may be simply related to the yield of crop produced (Romig, Garlynd, Harris and McSweeney, 1995).

Others have emphasized the importance ofdemonstrating how soil quality affects feed and food quality

(Hornick, 1992), or how soil quality affects the habitat provided for a wide array of biota (Warkentin,

1995). Aldo Leopold cited by Steinhardt (1995) suggested that land evaluations should be based on the

number and type of plant or animal species inhabiting that land (Romig et al., 1995; Warkentin, 1995;

Karlen et al., 1997). Scientists used descriptive and analytical aspects and defined soil quality as "the

capacity of a specific soil to function, within natural or managed ecosystem, to sustain plant and animal

productivity, maintain or enhance water and air quality, resist erosion, and support human health and

habitation" (Doran, Sarrantonio and Liebig, 1996; Karlen et al., 1997; Karlen, Rosek, Gardner, Allan,

Alms, Bezdicek, Flock, Huggins, Miller and Staben, 1999; Islam and Weil, 2000).

For example, soil quality parameters that may be used to evaluate how soil accepts, retains, and

transmits water to crops could include measurement of soil structure, pore space size, aggregate
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stability, saturated hydraulic conductivity, particle bonding, orretention mechanisms (Karlen etal., 1997) .

Soil physical, chemical and biochemical properties were suggested as being sensitive indicators of agro

ecosystem changes (Kennedy and Papendick, 1995; Islam and Weil, 2000) . This review outlines the role

oforganic matter in the soil and characterizes the size, activity, and diversity of the microbial biomass in

the soil. Following that, the effects of management practices on soil organic matter and microbiology are

discussed.

1.2.1 SOIL ORGANIC MATTER

Soil organic matter was defined by Schnitzer (2000) and Smith, Peterson and Needelman (2000) as "a

heterogeneous mixture of living, dead, decomposing organic materials in soil and substances

synthesized microbiologically and/or chemically from the breakdown of products". It includes plant,

animal and microbial residues, water-soluble organics, carbohydrates, amino acids, aliphatic fatty acids

and humic substances.

Soil organic matter is viewed as the most importantfactor in evaluating the effects of soil management

systems on soil quality (Bayer, Neto, Mielniczuk and Ceretta, 2000) because of its impact on other

biological, chemical and physical indicators of soil quality (Reeves, 1997). Soil organic matter is an

important nutrient reservoir and energy source for soil biota and nutrient source for plants. It also

improves soil structure and water-holding capacity, increases the cation exchange capacity and reduces

the toxicity of toxic substances (Haynes and Beare, 1996; Stott, Kennedy and Cambardella, 1999; Smith

etal. , 2000) and isoften a good indicator ofsoil fertility (Swift and Woomer, 1991; Stott etal., 1999).
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The amount of soil organic matter is greatly influenced by management, increasing under pastoral

management and decreasing under arable cropping . For example, in temperate agricultural soils,

organic C ranges from 3 to 6% in pastoral soils (Haynes and Beare, 1996) and between 1 and 4% soil

organic matter under continuous arable crops (Schnitzer, 2000). The rate of decomposition of organic

matter is dependent on soil type, texture and mineralogy. For example, in the tropic zone, soil organic

matter decomposes five times faster than in temperate regions (Bayer etal., 2000).

1.3 SOIL MICROBIAL BIOMASS

1.3.1 Definition

Soil microbial biomass is defined as the living microbial component of the soil (Wardle, 1992) and

usually accounts for 1-5% of total soil organic C, and 1-6% of total soil organic N (Sparling, 1997).

Although the microbial biomass represents a small portion of total soil organic matter, it responds more

quickly to changes in management practices than does the total soil organic matter (Powlson, Brookes

and Christensen, 1987; Anderson and Domsch, 1989; Haines and Uren, 1990; Campbell , Biederbeck,

Zentner and Lafond, 1991; Sparling, 1995; Lovell, Jarvis and Bardgett, 1995; Franzluebbers and Arshad,

1997). For this reason, soil scientists often measure the microbial biomass as an indicator of soil quality

and soil fertility (Doran and Parkin, 1994; Karlen etal. , 1997; Yao, He, Wilson and Campbell, 2000).

1.3.2 Role ofsoil microbial biomass

Soil microorganisms contribute to the maintenance of soil quality because they control many important

processes in the soil (Kennedy and Papendick, 1995). Microorganisms are responsible for organic
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matter decomposition, humus formation, nutrient cycling, nitrogen fixation, and symbiotic association

with plants (Alexander, 1977; Kirchner et al., 1993; Kennedy and Papendick, 1995; Pankhurst et al.,

1997) and therefore, a labile source of nutrients (Carter, 1991; Oalal, 1998). They also play a major role

in the formation of good soil structure. For example, bacterial mucigel and the hyphae of fungi and

actinomycetes bind the soil particles together (Haynes and Beare, 1996). Microbial aggregation reduces

erosion, facilitates water infiltration, and maintains adequate aeration of the soil (Kennedy and

Papendick, 1995; Carter, Gregorish, Angers, Beare, Sparling, Wardle and Voroney, 1999). Their key

roles in soil formation and pollutant degradation are also well known (Paul and Clark, 1989; Gewin,

Kennedy and Miller, 1999; Prescott, Harley and Klein, 1999). In biological control, microbes have been

used to control insects, pathogens and weeds because of their ability to lower the populations of target

organisms (Kennedy and Papendick, 1995; Oalal, 1998). The above-mentioned traits make soil

microorganisms one of the most sensitive indicators of soil quality (Turco, Kennedy and Jawson, 1994;

Kennedy and Papendick, 1995; Franzluebbers, 1999).

1.3.3 Variability of soil microbial biomass

The amount of microbial biomass in the soil depends on carbon and nitrogen contents, residues and

nutrient amendment, root biomass, soil pH, concentration of heavy metals and pesticides, and soil

physical factors (clay content, moisture, temperature) (Carter, 1991; Wardle, 1992). The microbial

biomass is enhanced around the rapidly growing portion of the root, and decreases as roots age and

with increasing distances from the root (Paul and Clarck, 1989). Soil pH exerts adominating influence on

the incorporation of organic matter into the microbial biomass, and is probably at least as important a

factor as soil carbon and nitrogen and an increased acidification of a soil reduces the microbial biomass

values (Wardle, 1992). Microbial biomass increases with annual precipitation but decreases with an
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increase of annual temperature (Dalal, 1998). Seasonal fluctuations of microbial biomass are common

due to changes in amounts of substrate, temperature and moisture (Dalal, 1998 citing Wardle and

Parkinson, 1990).

Microbial biomass is a function of soil management practices (Carter, 1991; Pankhurst et al., 1997). Its

size declines when soils under forest and grassland vegetation are brought under cultivation (Dalal,

1998). The quantity and quality of plant litter returned to the soil also greatly influences the size of the

microbial biomass (Carter etal., 1999). The effects of management on microbial biomass are discussed

later in section 1.6.

1.3.4 Microbial quotient

Microbial quotient is the ratio of microbial biomass C to total organic C (Anderson and Domsch, 1989).

Many authors have suggested that the microbial quotient indicates changes in soil processes and soil

health, and is a more useful measure than microbial C or organic C measured individually (Sparling,

1995) because the ratio avoids the problems of working with absolute values when comparing soils with

different organic matter contents. Lower microbial quotients are found in soil under intensive agriculture

and they tend to be greater under permanent pastures (Sparling, 1997; Haynes and Tregurtha, 1999).

Microbial quotient was observed to be lower under monocropping than that under multicropping

(Anderson and Domsch, 1989).
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1.3.5 Measurement 01 microbial biomass

Several methods have been used to estimate microbial biomass in soil. These include chloroform

fumigation incubation (CFI), chloroform fumigation extraction (CFE), substrate induced respiration (SIR),

adenosine triphosphate analysis and analysis of phospholipid fatty acids (Turco et al., 1994; Martens,

1995; Dalal, 1998; Franzluebbers, Haney, Hons and Zuberer, 1999). Other biochemical methods for

measuring microbial biomass have been developed such as ninhydrin reactive-extraction, rehydration­

extraction, microwave irradiation-extraction, and hot water extraction (Franzluebbers, 1999). Results of

soil microbial biomass determinations can be influenced by sieve size, intensity of sieving of soil

samples, soil water content and storage condition prior to treatment [e.g. temperature and duration of

storage and soil moisture] (Martens, 1995).

1.4 SOIL MICROBIAL ACTIVITY

Soil microbial biomass is a measure of intact, active or dormant microbial cells inhabiting the soil.

Measurement ofmicrobial activity in soil is an estimation ofactive biomass. Microbial activity includes all

biochemical reactions catalysed by microorganisms. In this review, microbial respiration and enzyme

activities in soil are discussed.

1.4.1 Microbial respiration

Soil microorganisms need to oxidize compounds to meet their energy requirements for metabolism,

growth and reproduction (Schlegel, 1993). Heterotrophic microflora gain energy from the transformation

of organic compounds such as cellulose, proteins, nucleotides and humified compounds. These
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reactions are typically oxidation-reduction reactions. Respiration expresses the process in which

different substrates are broken down with a release of electrons to produce energy. In this process

oxygen acts as a terminal electron acceptor for aerobic microorganisms, whereas anaerobic

microorganisms utilize other electron acceptors such as nitrate (NOr), ferric iron (Fe3+), sulfate (S042-),

carbonate (C032-), and even certain organic compounds. Nitrifying bacteria also show preference for

C02 as terminal electron acceptors (Schlegel, 1993; Prescott etal., 1999). Anaerobic processes such as

denitrification and sulfate-reduction occur in anaerobic microsites of the soil by anaerobic bacteria such

as Clostridia (Paul and Clark, 1989).

The end products of respiration are carbon dioxide and water. Measurement of C02 production or 02

consumption can express the metabolic activity of soil microorganisms (Nannipieri et al., 1990 cited by

A/ef, 1995b). The measurement of microbial respiration without addition of organic substrates to soil is

termed basal respiration, whereas in substrate-induced respiration (SIR) the soil is amended with

glucose, amino acids, etc. (Alef, 1995b; Martens, 1995). The relative metabolic activity of bacteria and

fungi can be performed by addition of antibiotics to soil, which inhibit one target group. The well-used

antibiotics are streptomycin, as an inhibitor of bacteria and cycloheximide for inhibiting fungi (Beare,

Neely, Coleman and Hargrove, 1990; Neely, Beare, Hargrove and Coleman, 1991).

In the laboratory, before measuring soil microbial respiration, the soil is bulked, sieved and mixed. These

operations remove macrofauna and plant parts; therefore the microorganisms present become central

for the measurement of soil respiration (Anderson, 1982). The procedures available for determining

basal respiration and substrate-induced respiration are described by Alef (1995b) and Sparling (1995).

9



Microbial respiration is a function of moisture, temperature, structure, aeration, the availability of

nutrients in soil, management practices, and the season as well as the size of the microbial community.

Itdecreases with soil depth and correlates with soil organic matter content (Singh and Gupta, 1977; Alef,

1995b: Haynes and Tregurtha, 1999).

Microbial respiration was used to quantify microbial activities in soils (Heinemeyer, Insam, Kaiser and

Walenzik, 1989; Beare et al., 1990; Nay, Mattson and Bormann, 1994; Alef, 1995b). For example, a

significant correlation between soil respiration and abundance of soil hyphae was found (Vose, Elliott,

Johnson, Walker, Johnson and Tingey, 1995). Soil microbial respiration has also been used to assess

the effects ofpesticides and heavy metals on the soil (Alef, 1995b) and to measure the metabolic activity

of heterotrophic microorganisms (Rochette, Ellebert, Gregorish, Desjardins, Pattey, Lessard and

Johnson, 1997).

Microbial respiration may be expressed as a ratio of the amount ofC02-C produced per unit ofmicrobial

biomass C. This ratio is termed metabolic quotient, respiratory quotient or specific respiratory rate

(Anderson and Domsch, 1993; Sparling, 1995). Metabolic quotient has been used to investigate

microbial activity in response to soil development, substrate quality, soil disturbance, microbial stress

and field management (Anderson and Domsch, 1990, 1993; Wardle and Ghani, 1995). The increases in

metabolic quotient indicate the stress or unfavourable conditions for microorganisms. In such conditions,

microorganisms maintain their life by repairing damage due to disturbance by increasing the rate of

respiration per unit of microbial biomass (Anderson and Domsch, 1993). For example, metabolic

quotient was found to be higher in agricultural soi ls and lower in less disturbed soils (Anderson and

Domsch, 1990; Wardle and Ghani, 1995). Metabolic quotient was suggested to be higher in young

microbial communities than that from matured sites (Anderson and Domsch, 1989).
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1.4.2 Soil enzyme activities

Soil enzymes are the mediators and catalysts of important soil functions that include decomposition of

organic inputs, transformation of native soil organic matter, release of organic nutrients for plant growth,

detoxification of xenobiotics, N2 fixation, nitrification and denitrification (Dick, 1997). Enzyme activities in

soils are derived from exoenzymes released from living cells, endoenzymes released from disintegrating

cells and enzymes bound to cell constituents (Tabatabai and Minhong, 1992). Exoenzymes may be

associated with enzyme-substrate complexes, adsorbed to clay minerals or associated with humic

colloids (Tabatabai, 1982; Alef and Nannipieri, 1995). Measurement ofenzymes in the soil may provide

information on the microbial activity in the soil. Dehydrogenases, phosphatases and arylsultatases are a

few of the enzymes that may be helpful to assess soil quality (Dick, 1994; Kennedy and Papendick,

1995) as well as the measurement of the rate of enzymes involved in the process of arginine

ammonification and FDA hydrolysis (Haynes and Tregurtha, 1999).
./

1.4.2.1 Role ofsoil enzymes

Enzymes excreted by microorganisms into the soil solution could have three main roles: (i) hydrolysis of

substrates that are too large or insoluble to be taken up directly by cells; (ii) detoxification of the

surrounding environment; and (iii) creation of a favourable environment for the survival of the organisms

(Dick,1997).

Soil enzymes are of ecological importance because they can be used as an index of soil fertil ity and

indicators of soil pollution. They may be useful to assess ecosystem status and the impact of land use.

For example, Metting (1993) and Dick and Tabatabai (1993) noted a close relationship between nutrient
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availability, soil fertility and enzyme activities. Thus, enzymatic approaches can play a significant role in

reclamation management (Klein, Sorensen and Redente, 1985) and are considered as sensitive

indicators ofmanagement-induced changes in soil properties (Bergstrom, Monreal and King, 1998).

Enzyme measurements answer qualitative questions about specific metabolic processes and in

combination with other measurements (C02 evolution, etc.), may increase understanding of the effect of

agrochemicals, cultivation practices, and environmental and climatic factors on the microQiological--- /

activity of soil (Alef and Nannipieri, 1995). Soil enzyme activities can be measured to assess ecosystem

function (Kulinska, Kamargo and Drozdowicz, 1982; Bergstrom etal. , 1998). Enzymes have been useful

in determining the impact of severe perturbations (e.g. open cast mining) on soil health and to evaluate

the success of remediation activities (Pankhurst et al. , 1997). They have also been used to assess the

effects caused by acid rain , heavy metals, pesticides and other industrial and agricultural chemicals

(Dick and Tabatabai, 1993; Dick, 1997). Dick (1997) considered soil enzyme activities as sensitive

indicators of soil health. Many researchers have used enzyme activities to study the dynamics of the

microbial population in various ecosystems and to assess the effects of land management on microbial

activity (Dick, 1984; Deng and Tabatabai, 1997; Perucci et al., 1997; Bandick and Dick, 1999; Haynes,

1999; Acosta-Martinez and Tabatabai, 2000).

1.4.2.2 Groups ofsoil enzymes

Research into soilenzymes has increased over the past 30 years. New approaches and methods have

been introduced and information on various enzyme reactions in soil has been collected (Alef and

Nannipieri, 1995). These methods have to be interpreted with caution because the data represent the

maximum potential rather than the actual enzyme activity and the incubation conditions of enzyme
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essays are chosen to ensure optimum rates ofcatalysis. The concentration ofsubstrate is in excess and

optimal values of pH and temperature are selected so as to permit the highest rate of enzyme activity,

and the volume of the reaction mixture is such that it allows free diffusion of substrate (Alef and

Nannipieri, 1995; Dick, 1997).

According to Pankhurst et al. (1997) methods for measuring over 50 different enzymes are available.

Alef and Nannipieri (1995) and Tabatabai (1982; 1994) describe some of the methods. These methods

use different biochemical reactions involved in nutrient cycling (Martinez and Tabatabai, 2000),

especially those involved in organic residue decomposition and those that show a correlation with

organic C, such as proteases, phosphatases, arylsulfatases, glutaminase, catalase, and urease (Alef

and Nannipieri, 1995). The following sections describe some of the enzyme activities that can be

measured in soils, namely dehydrogenase activity, fluorescein diacetate hydrolysis, arginine

ammonification rate, phosphatases, sulphatases, urease and proteases.

(i) Dehydrogenase activity

Dehydrogenases are a group of enzymes involved in all living cells and take part in many reactions

involving the transfer of pairs of electrons. In catabolic reactions, dehydrogenases catalyse the transfer

of electron pairs from some substrate to NAD+ forming NADH, which transfers electrons to another

compound. As dehydrogenases take part in the electron transfer system of aerobic organisms, the

activity of these enzymes is a measure of respiration (Alef, 1995a; Papper, Gebra and Brendecke,

1995). Because dehydrogenase is a specific intracellular enzyme, there is a correlation between

dehydrogenase activity and oxygen uptake (Turco et al., 1994). Because of its role in the respiratory

chain, dehydrogenase activity could be used to measure the total oxidative activities of the microbial
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population in a soil (Turco, et al., 1994). Dehydrogenase activity has been widely studied because it is

an intracellular enzyme and exists only in viable cells (Dick, 1997).

The most frequently used assay involves incubation ofsoil mixed with asolution of the competitive NAD+

inhibitor, 2,3,5-triphenyltetrazolium chloride (TTC), which in respiration serves as the ultimate electron

acceptor. Nearly all microorganisms reduce TTC to triphenyl formozan (TPF), which is estimated

colorimetrically (Alef, 1995a; Papper etal., 1995).

Several treatments may affect dehydrogenase activity such as toluene and CHCI3, which can inhibit its

activity. Inhibition ofup to 70% of the original activity may occur in soil treated with 3% chloramphenicol.

Because of this inhibition effect, bactericidal and bacteriostatic compounds are not included in the

reaction mixture for essay ofdehydrogenase in soil (Tabatabai, 1982).

(ii) Fluorescein diacetate hydrolysis

Microbial hydrolysis of fluorescein diacetate (FDA) into ftuorescein can be used as an indicator of total

microbial activity. A good correlation was found between FDA hydrolysis and respiration rate (SchnOrer

and Rosswall, 1982). The rate of fluorescein diacetate hydrolysis in soils is considered an index of

overall microbial activity because different enzymes such as proteases, lipases and esterases carry out

FDA hydrolysis (Haynes and Tregurtha, 1999).

The method for estimating the hydrolysis of fluorescein diacetate involves the incubation of soil with .

FDA, which will be converted into fluorescein as the end product by microbial activity. Fluorescein is

visualized within cells by fluorescence microscopy or quantified by spectrophotometry (SchnOrer and
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Rosswall, 1982; Alef, 1995c). This method has the advantage of being simple, rapid, sensitive, and can

prove useful in comparative studies of microbial activities in natural habitats (SchnQrer and Rosswall,

1982).

(iii) Arginine ammonification

Soil microorganisms take up amino acids released during extracellular proteolysis. In the cells the amino

acids are deaminated and amino group parts are excreted as ammonia. Since most heterotrophs

possess ammonifying capacity (Alef and Kleiner, 1995), arginine ammonification has been .proposed as

a general indicator of microbial activity (Turco et al., 1994) and its activity has been correlated with

microbial activity in laboratory studies (Haynes and Tregurtha, 1999). The method of assay of arginine

ammonification is based on the determination of ammonium concentration after the incubation of soil

mixed with arginine solution for 3h at 30°C (Alef and Kleiner, 1995).

(iv) Phosphatases

Phosphatases are enzymes with relatively broad specificity that catalyse the hydrolysis of phosphate

esters and anhydrides of phosphoric acid (Deng and Tabatabai, 1997; Martinez and Tabatabai, 2000) .

Phosphomonoesterases play an important role in plant nutrition because they catalyse the hydrolysis of

organic phosphomonoesters to inorganic phosphorus, which can then be absorbed by plants (Alef and

Nannipieri, 1995). Acid and alkaline phosphatases are the commonly measured enzymes in the soil

(Tabatabai, 1982; 1994) and play an important role in plant nutrition because they catalyse the

hydrolysis oforganic phosphomonoester to inorganic phosphorus, which can be taken up by plants (Alef

and Nannipieri, 1995). These enzymes are usually extracellular (Kang and Freeman, 1999).
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The method for estimating acid and alkaline phosphatase activities is based on the determination of p­

nitrophenol released after the incubation of soil mixed with p-nitrophenyl phosphate for 1 h at 37°C,

using a modified universal buffer pH 6.5 for acid phosphatase and pH 11 for alkaline phosphatase (Alef

and Nannipieri, 1995).

(v) Sulphatases

Sulphatases catalyse the hydrolysis of organic sulphate esters and are important for the mineralization

ofsulphur-containing compounds in soils (Alef and Nannipieri, 1995). The main group ofsulphatases are

arylsulphatases, alkylsulphatases, steroid sulphatases, glucosulphatases, chondrosulphatases, and

myrosulphatases (Tabatabai, 1994) and arylsulphatase is the commonly measured in soils (Tabatabai,

1994). These enzymes are usually extracellular (Kang and Freeman, 1999).

The determination of arylsulphatase activity involves the measurement of p-nitrophenol released after

the incubation of soil sample mixed with a buffered p-nitrophenyl sulphate solution and toluene at 37°C

for 1h (Tabatabai and Bremner, 1970a cited by Tabatabai, 1994).

(vi) Urease

Urease is an enzyme that catalyses the degradation of urea to C02 and NH3 and catalyses also the

hydrolysis of hydroxyurea, dihydroxyurea and semicarbazid. This enzyme is,very widely distributed in

nature and is present in microbial, plant and animal cells (Alef and Nannipieri, 1995). The estimation of
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urease activity in soils involves the determination of ammonium released after incubation of soil with a

buffered urea solution (Tabatabai, 1994; Alef and Nannipieri 1995, citing Tabatabai and Bremner, 1972).

(vii) Proteases

Proteases are enzymes that catalyse the hydrolysis of proteins to polypeptides and oligopeptides to

amino acids. These enzymes are present in living, active, and dead cells as free enzymes, adsorbed to

organic, inorganic or organomineral particles. Under laboratory conditions, significant correlation was

found between protease activity and arginine ammonification, substrate-induced respiration, nitrogen

mineralization and adenosine triphosphates (Alef and Nannipieri, 1995).

Protease activity is estimated by the determination of amino acids released after incubation of soil with

sodium caseinate for 2 h at 50°C using folin-ciocalteu (Ladd and Butler, 1972, cited by Alef and

Nannipieri, 1995).

1.5 SOIL MICROBIAL DIVERSITY

Soil contains a vast diversity of microorganisms (Roper and Gupta, 1995). A single gram of soil can

contain more than 10000 different species (Turco et al., 1994). Many of them are unknown because

they are nonculturable (Beare, Coleman, Crossley, Hendrix and Odum, 1995). Soil microbial diversity

provides for extensive physiological capabilities and can be studied according to nutritional, functional,

systematic, orgenetic relationships (Sims, 1990; Zak, Willig, Moorhead and Wildman, 1994).

Nutritional groups among microorganisms are based on carbon source, energy source and hydrogen or

electron source (Metting, 1993, Prescott et al., 1999). Organisms that assimulate C from inorganic
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sources are termed autotrophic, whereas heterotrophs require organic C sources. Phototrophs use

sunlight as their energy source and chemotrophs obtain energy from the oxidation of reduced organic or

inorganic compounds. Lithotrophs use reduced inorganic substances as their electron source whereas

organotrophs extract electrons or hydrogen from organic substances. Photoautotrophic,

chemoautotrophic, photoheterotrophic, and chemoheterotrophic organisms result from the combination

ofthe above different nutritional requirements (Metting, 1993; Schlegel, 1993; Prescott etal., 1999).

Soil microorganisms are systematically grouped into eubacteria, cyanobacteria, actinomycetes,

archaebacteria, fungi, algae, protozoa, viruses, and some nematodes (Paul and Clark, 1989; Sims,

1990; Roper and Gupta, 1995). Their number and their collective biomass vary according to soil type.

For example, the number and biomass of five major groups of microorganisms in a temperate soil in

North America isshown in Table 1.1.

Table 1.1 Number and biomass of microorganisms in a fertile soil in North America (Metting, 1993;

Miller, 1990, cited by Pankhurst, 1997)

Microorganisms Number g-1 soil Biomass (kg ha')

Bacteria 108-109 300-3000

Actinomycetes 107-108 300-3000

Fungi 105-106 500-3000

Microalgae 103-106 10-1500

Protozoa 103-105 5-200
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Bacteria are most numerous in soil (Paul and Clark, 1989) because of their small size, but fungi, with

their greater biomass, are of more importance in many soils because of their intimate association with

plant roots and their saprophytic competence with larger detritus and complex compounds (Metting,

1993). These values (Table 1.1) are not necessarily absolute because some microorganisms in soil are

viable but non-culturable and do not grow on laboratory media (Sims, 1990; Turco etal., 1994; Bakken,

1997). For example, Marilley, Vogt, Blanc and Aragno (1998) estimated that only 0.3-20% of soil

bacteria are culturable. Turco etal. (1994) indicated that 99.5 to 99.9 %of the soil bacteria, observed by

fluorescence microscopy, cannot be isolated or cultured on laboratory media. For this reason, novel

methods (See section 1.5.6) have been developed to circumvent problems with culturability.

The soil microbial community is not evenly distributed within the surface soil. For example, a plate count

on a natural grassland soil showed a decrease with depth and soil around the roots showed a greater

number of microorganisms than the bulk soil (Paul and Clark, 1989) because living roots release many

types of organic materials into the rhizosphere, which stimulate the growth of microorganisms (Tisdall,

1994). Paul and Clark (1989) observed that the total number ofmicrobes in the rhizosphere increased by

10- to 50-fold compared with the bulk soil.

1.5.1 Bacteria

Bacteria have many varied functions in the soil. The majority of soil inhabiting bacterial species is

chemoorganotrophic (Paul and Clark, 1989; Bakken, 1997). They decompose animal, plant and

microbial residues. However, their degree of substrate selectivity varies greatly from one species to

another. Chemoautotrophic bacteria in soil consist of the nitrifiers and the sulphur oxidizers. Nitrification

in soil is carried out largely by the chemoautotrophic bacteria (Nitrosomonas, Nitrosococcus,
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Nitrosocystis), which oxidize ammonium to nitrite and Nitrobacter, Nitrosinus, etc., which oxidize nitrite to

nitrate (Paul and Clark, 1989). Sulphur oxidation in soil is largely performed by species of the aerobic

genus Thiobacillus (Paul and Clark, 1989; Killham and Foster, 1994).

The heterotrophic bacterial community of the soil has a number of additional functions other than

decomposition of organic material. Non-symbiotic nitrogen fixation is carried out by species of the

genera, Azotobacter, Azomonas, Beijerinkia, Clostridium and Bacillus. Azotobacter, Azomonas and

Beijerinkia are obligatory aerobic N2-fixers, whereas Clostridium is obligately anaerobic and Bacillus is

facultatively anaerobic. Species of the genus Rhizobium live in soil and incite nodule formation on

leguminous plant roots as aerobic saprophytes. Other groups of heterotrophic bacteria in soil are plant

pathogens, which are the causal agents of many plant diseases. These include Agrobacterium (causing

gall diseases), Pseudomonas and Erwinia (Paul and Clark, 1989; Killham and Foster, 1994). In soil, the

well known genera of bacteria are Arthrobacter (40%), Streptomyces, Pseudomonas, Bacillus (5-20%),

Clostridium, N2-fixing bacteria (Azotobacter, Rhizobium), Nitrosomonas and Nitrobacter which are

chemolithotrophs, and Lactobacillus, afermentative organotroph (Paul and Clark, 1989).

The actinomycetes are now considered as bacteria. Most soil inhabiting actinomycetes are free-living

saprophytes, able to decompose very large molecular mass substrates such as chitin, cellulose and

hemicellulose, particularly under high soil pH. A few soil actinomycetes are also important plant

pathogens, for example Streptomyces scabies, the causal agent of potato scab. Many soil

actinomycetes exude antibiotics such as streptomycin. This group predominates in soil under high pH,

high water stress, orhigh temperature (Killham and Foster, 1994).
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1.5.2 Fungi

Fungi dominate the soil microbiota in terms of their biomass and are quantitatively more important in

acidic and forest soils. They also dominate in well-aerated temperate soils, rich in carbon and nitrogen

(Thorn, 1997; Metting, 1993). Fungi are heterotrophic in metabolism and the great majority are obligate

aerobes. The most numerous genera are Phytophthora, Pythium, Mucor, Rhizopus, Glomus, Gigaspora

and Acaulospora (Paul and Clark, 1989).

The most important ecological role of fungi in soil is the decomposition of organic components such as

lignin and complex soil humic substances. Because of the greater fungal tolerance to acidity, the

decomposition oforganic matter in more acidic soils is predominantly a fungal process. The role of soil

fungi in forming symbiotic, mycorrhizal associations with most plant roots is important in terms of

regulating nutrient uptake [N and P have been best studied], disease resistance, water relations, and

growth of the plant partner in the association (Paul and Clark, 1989; Killham and Foster, 1994; Thorn,

1997).

Several fungi have been investigated as potential agents of biological control in agricultural systems

because of their role as parasites, predators, and antagonists of plant pathogens. Fungi are used for

bioremediation of anthropogenic pollutants, including persistent pesticides, aromatic hydrocarbons,

benzene, toluene, ethylbenzene, dyes and others (Thorn, 1997).
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1.5.3 Algae

Four groups of algae are recognized in soil. These include green (chlorophyta), blue-green (cyanophyta

or cyanobacteria), yellow-green, and diatoms (bacillariophyta) (Paul and Clark, 1989). Soil algae are

photoautotrophs. They have no dependence on pre-formed organic matter in soil and, therefore, play

key role as primary colonizers on volcanic and desertic soils that are exposed to sunlight. Algae also

produce large amounts ofextracellular polysaccharldes, which can act as soil aggregating agents at the

soil surface. Some algae have an ability to carry out non-symbiotic and symbiotic nitrogen fixation using

the enzyme nitrogenase. Non-symbiotic N2-fixation by blue-green algae may be of considerable

agronomic significance as a major source ofnitrogen to the rice plants under paddy cultivation (Paul and

Clark, 1989; Killham and Foster, 1994).

1.5.4 Protozoa

Soil contains a rich variety ofprotozoa, which are largely restricted to the top 15-20 cm ofthe soil profile.

The better-known protozoa are Euglena, Amoeba, Vorlicella and Negleria. Soil protozoa are

predominantly heteroptrophs (phagototrophic nutrition). Some protozoa are involved in organic matter

decomposition (Paul and Clark, 1989; Killham and Foster, 1994).

The role ofprotozoa in soil systems has been summarized as regulation and modification of the size and

composition of the microbial community; acceleration of the turnover of microbial biomass, soil organic

matter and nutrients; and direct excretion of nutrients (Bardgett and Griffiths, 1997). Predation by

protozoa can decrease bacterial population densities both in the rhizosphere of crop plants and in the

bulk soil. For example, protozoa can consume 103 to 105 bacterial cells per division cycle (Anderson,
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1988). In temperate, arable soil protozoa could consume between 150 and 900 g bacteriarnsyear,

equivalent to between 15 and 85 times the standing crop ofbacteria (Anderson, 1988).

1.5.5 Viruses

Viruses may be present in the soil environment in dormant form. Human enteric viruses, and viruses that

infect bacteria, algae, fungi and protozoa are the better known ones. Soils will also contain viruses of

vascular plants and viruses whose natural hosts are vertebrate or invertebrate animals that exist in

terrestrial environments (Paul and Clark, 1989; Hurst, 1997).

1.5.6 Methods of quantifying microbial diversity in soil

Microbiological diversity indices have been used to describe the status ofmicrobial communities and the

effects of natural or human disturbances. These indices can function as bio-indicators by showing

community stability and describing the ecological dynamics ofacommunity and impacts ofstress on that

community (Turco et al., 1994). A number of methods have been used to describe the diversity and

structure of soil microbial populations. These include cultural methods, microscopic methods,

phospholipid fatty acid analysis and functional diversity using substrate util ization patterns (Bending,

Putland and Rayns, 2000).

1.5.6.1 Cultural methods

This method is based on the suspension and serial dilution ofa soil sample followed by incubation of the

cells on appropriate growth media. During incubation under suitable conditions, each cell develops a
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colony that can be seen, counted and characterized. This method is appropriate for studies requiring

identification or characterization of individual isolates or for population genetics studies of particular

species (Ogram and Feng, 1997). This may be the most sensitive approach available for enumeration

and characterization ofspecific groups, if a suitable selective medium is available. However, the number

of colonies detected is low relative to the true number and types of microorganisms present in the

natural undisturbed soil. The limitation of this approach is thus that many species are nonculturable on

common media, and many strains of interest may not be included in the analysis (Zak et al., 1994;

Ogram and Feng, 1997).

1.5.6.2 Microscopic methods

The number and structure of whole soil microorganisms may be studied by direct observation by light,

fluorescence or electron microscopy (Bakken, 1997). Epifluorescence microscopy is a major technique

for direct enumeration of the soil microbial population. Soil is homogenized in sterilized water and the

soil suspension is then treated with formaldehyde to fix bacterial cells and fungal hyphae. The

formaldehyde-fixed soil suspension is placed on a glass slide. After air-drying, bacteria on the slide are

stained with a fluorescent dye which binds to proteins in their cell walls and cytoplasm. The bacteria are

counted using an epifluorescence microscope. For determination of fungal populations the soil

suspension is filtered through a membrane filter. The total number of fungal hyphae and/or hyphallength

or mycelial fragments on the fi lter surface is estimated using an epifluorescence microscope (Bloem,

Bolhuis, Veninga and Weiringa, 1995).
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1.5.6.3 Phospholipid fatty acid analysis

Phospholipid fatty acids (PLFAs) are specific components of cell membranes that are only found in

viable cells. A range of various PLFAs is indicative of major microbial group. These fatty acid patterns

can be analysed to provide taxonomic information at the species level (Ogram and Feng, 1997; Yao et

al., 2000). Changes in the PLFA profiles represent changes in the total soil microbial community and

these have been used to determine how land use alters microbial community structure (Yao etal., 2000)

and to differentiate microbial communities under different tree plantations (Priha etal., 2001) .

Phospholipids are extracted and purified from soil using the Bligh and Dyer extraction procedure and

silicic acid chromatography. The ester-linked fatty acids are then transesterified to methyl esters by mild

alkaline methanolysis, and the fatty acid methyl esters are analysed by capillary gas chromatography '

(Tunlid and White, 1992; Yao etal., 2000) .

1.5.6.4 Functional diversity

The measurement of microbial diversity based on the capability of members of a mixed population to

utilize a number of carbon sources has recently been developed and is variously termed: community

level physiological profiling (CLPP) (Yao et al., 2000; Priha et aI, 2001), substrate utilization patterns

(Konopka et al., 1998), in situ catabolic potential (ISCP) (Degens, 1998a, b) and catabolic response

profiles (CRPs) (Degens and Vojvodic-Vukovic, 1999).

The CLPP approach is a characterization of the heterotrophic bacterial community based on inoculation

of samples into Biolog plates (Garland and Mills, 1991). These plates consist of multiple carbon
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substrates each contained in a separate well to which are added a minimal growth medium and

tetrazolium, a redox indicator dye (Choi and Dobbs, 1999). The original Biolog plates contained 95 C

sources including amino acids, carbohydrates, carboxylic acids, polymers, miscellaneous compounds

and a blank well (Garland and Mills, 1991). Soil extracts are inoculated into Biolog plates and the rate of

utilization of the Csources is indicated by the reduction of tetrazolium, which changes from colourless to

purple (Garland and Mills, 1991; Bending et al., 2000; Yao et al., 2000). Classification of microbial

communities is based on multivariate analysis of average well colour development, AWCD (Choi and

Dobbs, 1999). Zak et al. (1994) utilized the Biolog plates with 128 carbon compounds to study the

microbial community of soils under different vegetation. Nowadays, the Biolog Inc. Company produces

ecology plates (ECO plates), which contain a triplicate of 31 substrates. These showed their ability to

distinguish among heterotrophic microbial communities similarly to Biolog Gram Negative and Biolog

Gram Positive (Choi and Dobbs, 1999).

However, Biolog microplate systems have some limitations. They may assess the activity of only the

species that can grow in the microplate's media; therefore they may not provide an accurate indication of

changes in the diversity of the greater microbial community (Degens and Harris, 1997; Van, McBratney

and Copeland, 2000) and they are unable to determine fungal activity (Zak etal. , 1994; Van etal., 2000) .

To circumvent these problems, substrate-induced respiration method has been used to measure the

metabolic activity of soil microbial communities. Many authors have used glucose as amendment to soil.

In this approach soil is incubated with glucose, which is broken down by soil microorganisms. The

carbon dioxide end product isquantified by titration (Beare et al., 1990; Stamatiadis, 1990; Neely etal.,

1991; Alef, 1995b; Sparling, 1995; Bardgett, Hobbs and Frostegard, 1996).
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The catabolic response profiles (eRPs) approach was developed as a modification of the substrate­

induced respiration with a range of amendments. Degens and Harris (1997) used substrate-induced

respiration with a wide range of carbon sources (83 substrates) to study the metabolic activity of

microorganisms inhabiting arable, pastoral and forest soils. Their results showed a greater SIR in

pasture than in a cropped soil. They concluded that the SIR response to glucose is related to the total

microbial biomass in a wide range of soils but the patterns of SIR responses to different carbohydrate

compounds were not greatly different between soils in comparison with the patterns of SIR for other

groups of organic substrates. Degens (1998a) studied the microbial functional diversity of arable soils

using 36 substrates. Recently, the catabolic diversity ofsoil microbial communities from pasture, forests,

horticultural cropping and cereal cropping was characterized using only 25 selected substrates which

were the most responsive in the previous studies (Degens and Vojvod ic-Vukovic, 1999; Degens et aI,

2000).

1.6 EFFECTS OF MANAGEMENT ON SOIL ORGANIC MATTER AND MICROBIAL STATUS

It is difficult to separate the effects of individual agricultural management practices on soil organisms

because many factors are interdependent (Sims, 1990). Management practices affect soil organic matter

in two ways, by altering the annual inputs and by altering the rate of decay (Haynes and Beare, 1996).

The following sections discuss effects ofagricultural management on soil organic matter content and soil

microbial activity in arable, pastoral, grassland and forest soils.
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1.6.1 Arable soils

In agricultural land, cultivation is the major cause ofsoil organic matter loss (Smith , Papendick, Bezdicek

and Lynch, 1993; Beauchamp and Hume, 1997; Wander, Bidart Bouzat and Aref, 1998; Duiker and Lal,

1999; Gewin et al., 1999). For example, Sparling (1992) showed a decline in organic C and microbial

biomass C caused by continuous cultivation of maize in New Zealand soils (Table 1.2). Haynes and

Tregurtha (1999) reported similar effects with a most pronounced decline occurring during the first 10

years ofcultivation.

Table 1.2 Effect of continuous cropping with maize on organic matter levels in the 0-20 cm soil

layer (From Sparling, 1992)

Number of years Organic C Microbial biomass C

continuous maize (%) (l1g g.1)

0 4.18 941

1 3.26 522

2 3.89 721

4 2.59 378

6 3.71 559

12 3.34 463

A native sample collected in 1910 contained 3.0% soil organic matter but a cultivated sample from the

same field, collected in 1990 contained only 2.2% soil organic matter. The decline in soil organic Cwas

also associated to a decrease of enzyme activity levels. For example, the activity of dehydrogenase

dropped by 60%, that of acid phosphatase by 77.5%, and that of urease by 82% (Schnitzer, 2000).
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Decreased soil organic Cdue to intensive cultivation also results in a decrease of microbial biomass C,

arginine ammonification, FDAhydrolytic activity and basal respiration (Haynes and Tregurtha, 1999).

The decline in organic matter in cultivated soils is the results of a number of different factors. These

include a decrease of organic materials returned to soil due to tillage intensity (Grace, Ladd and

Skjemstad, 1994), a rapid release oforganic C due to an increase in the accessibility of organic matter

to microorganisms caused by the aggregates being broken up by mixing and greater aeration and

erosion oftop soil rich in organic matter (Smith etal., 1993; Beauchamp and Hume, 1997; Wander etal.,

1998; Duiker and Lal, 1999; Gewin, 1999).

(i) Tillage

Tillage method can greatly affect the amount and distribution ofsoil organic matter and microbial activity

in the soil. The main effects are summarized below.

• No tillage (zero tillage), reduced tillage (minimum tillage) and stubble retention methods reduce

the number of operations on soil and maintain plant residues on the soil surface, whereas

conventional tillage incorporates plant residues and weeds and only the desired crops are

allowed to grow (Ones, Alien and Unger, 1990).

• Plant residues maintained on the soil surface increase organic matter level and water holding­

capacity of the soil, which decreases erosion and provides a conducive habitat for microbial

growth and activity (Papendick etal., 1990, Smith etal. , 1993; Arshad, 1999)
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• Conventional tillage affects the vertical distribution ofsoil organic carbon and nitrogen by mixing

soil, by distributing crop residues throughout surface soil and by promoting good aeration of the

soil, which increases the oxidation and loss of soil organic matter (Etana et a/., 1999; Yang and

Wander, 1999). By contrast, no tillage promotes higher concentrations of organic carbon, total

nitrogen and mineralizable nitrogen in surface soil than does conventional tillage (McCallister

and Chien, 2000).

The respective numbers ofaerobic microorganisms, facultative anaerobes and denitrifiers in the surface

(0-7.5 cm) of a soil were found to be 1.14, 1.58 and 7.31 times higher in no-tilled than in tilled soil

(Doran, 1980). Phosphatase and dehydrogenase activities and organic C were also significantly higher

in the surface layers of no-till soils than in those undergoing conventional tillage. Below the 7.5 cm level,

microbial populations decreased rapidly under no tillage. At the 7.5-15 cm depth counts of aerobic

microorganisms and nitrifiers were 1.32-1.82 times higher in the conventionally tilled soil (Doran, 1980).

Schenk, Smith, Mitchell and Gallaher (1982) reported lower root colonization, spore levels, and

vesicular-arbuscular mycorrhizal fungal species diversity with conventional tillage than with minimum

tillage for sorghum (Sorghum bie%r) , soybean (G/yein max) , and maize (Zea mays). Yocom, Larsen

and Boosalis (1985) also reported a lower biomass ofvesicular-arbuscular mycorrhizal fungi in tilled than

in no-till fields under winter wheat.

Dick (1984) studied the enzyme activities in soil (0-7.5 cm) under continuous maize and found that the

activities of acid phosphatase, alkaline phosphatase, Arylsulphatase, invertase, amidase and urease

were higher under zero tillage compared to conventional tillage practices (Table 1.3). The activity of

these enzymes was positively correlated with organic Ccontent of the soil.
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Table 1.3 Enzyme activities in soil (0-7.5 cm) under zero tillage and conventional tillage practices

and continuous maize cropping systems (Dick, 1984)

Enzyme activities Zero tillage Conventional tillage

Alkaline phosphatase (~g g-lh-1) 83 69

Acid phosphatase (~g g-lh-1) 211 132

Arylsulphatase (~g g-lh-1) 77 49

Invertase (~gg- lh-1) 161 97

Amidase (~g NH3 3g·124 h-1) 18.7 7.5

Urease (~g NH3 g-l 4h-1) 201 110

Papendick et al. (1990) and Reicosky, Reeves, Prior, Runion, Rogers and Raper (1999) noted the

influence of crop residues in increasing soil organic matter level, soil fertility and productivity and in

minimizing the impact of the environment on soil. Gupta, Roper, Kirkegaard and Angus (1994) studied

the effects of long-term stubble retention and reported an increase in microbial biomass C and Nand

microbial activity in soil with increasing stubble levels. Islam and Weil (2000) also concluded that a soil

under conservation tillage had a larger and more active microbial biomass, higher assimilation, greater

accumulation of organic C, lower specific respiration and higher aggregate stability than did soil under

conventional tillage.

In arable soils, other practices may be associated to tillage. These involve application of manures,

fertilizers, herbicides and other amendments (Sims, 1990; Beauchamp and Hume, 1997; Arshad, 1999).

The following sections describe some oftheir effects.
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(ii) Effect offertilizers and manures

Fertilizers affect the soil microbial biomass by increasing crop growth and thus root biomass, root

exudates and crop residues, thus providing increased substrate for microbial growth (Kirchner et a/.,

1993). The size and activity of the microbial biomass are reduced if fertilizer applications cause a

decrease in soil pH, but if the environmental conditions remain unchanged, there is an increase in

microbial biomass (Roper and Gupta, 1995). For example, application of nitrogen can result in increases

in the numbers of nitrifying and denitrifying bacteria (Focht and Verstraete, 1977). Similarly, sulphur

application results in an increase in the number and activities of sulphur-oxidizing microorganisms

(Lawrence, Gupta and Germida, 1988).

Long-term use oforganic amendments (manures) results in an increase in microbial biomass C and N

because they not only add nutrient but also increase the amount of C in soil, which isa source ofenergy

for microorganisms (Fauci and Dick, 1994). Similarly, Kirchner et al. (1993) found incorporation of

leguminous green manure increased microbial biomass and enzyme activities compared with soil that

had been inorganically fertilized.

Fertilizers can act by either stimulating or inhibiting soil enzyme activities (Dick, 1997). For example,

application of NPKS fertilizers increased soil enzyme activities whereas phosphorus fertilization under

field conditions has been shown to depress phosphatase activity (end product repression) in agricultural

and forest systems (Dick, 1997).
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(iii) Pesticides and herbicides

Pesticides are used in agriculture because they are toxic to some organisms (Sims, 1990). The effects of

different herbicides on various microbial groups and biological processes in soils depend upon the

nature of the chemical, the dose and the method of application, soil type, temperature and moisture

regimes, crop residues and soil management practices (Camper, Moherek and Huffman, 1973;

Edwards, 1989). Nitrifying bacteria are the most sensitive to herbicide applications (Edwards, 1989; Paul

and Clark, 1989). The most common indicator of the effects of pesticides on microbial activity is a

change in respiration levels. Pesticides designed for antimicrobial action, such as fungicides, exhibit the

most pronounced effects on respiration (Sims, 1990).

1.6.2 Pastoral soils

The amount oforganic matter, microbial biomass and microbial activity is typically high under permanent

pastures. Increases in organic matter in soils under pasture arise from senescing plants, exudation of

organic compounds from roots, large turnover of microbial biomass and return of ingested plants by

grazing animals (Haynes, 2000).

For example, Sparling (1992) noted an increase of organic C in soil under pasture compared with forest

orarable soils. Organic C levels were higher in fertilized pasture than in grazed and permanent pastures,

whereas microbial biomass was greater in permanent pasture than in other types of pasture (Table 1.4).

Haynes, Swift and Stephen (1991) also found that soil microbial biomass Cincreased significantly after 4

years of pasture, while total organic carbon remained relatively unchanged. Kandeler and Murer (1993)

noted a high amount of microbial biomass C and N, dehydrogenase activity and substrate-induced

33



respiration in pasture than in arable soil. Kahn (1975) studied the density of vesicular-arbuscular

mycorrhizal spores in soil (0- 8 cm) and found spore density in pasture soils was twice that under arable

cultivation.

Table 1.4 Size oforganic matter in0-5 cm ofNew Zealand soils (Sparling, 1992)

Pasture type

Fertilized pasture

Grazed pasture

Permanent pasture

Organic C

(%)

6.8

5.2

6.13

Microbial biomass C

1055

851

1176

1.6.3 Soils under native forest and grassland

The soil organic carbon contents are generally higher in virgin soils under grass orforest vegetation than

in arable soil (Haynes and Beare, 1996). Organic matter inputs result from large amounts of litter

residues, root exudates and high turnover rate of microbial biomass (Lovell etal., 1995). Conversion of

grassland and forestland to cropland leads to losses of soil organic carbon. Grassland and forest soils

tend to loose from 20 to 50% of the original soil organic carbon content in the zone of cultivation within

40 to 50 years after conversion to arable land (Haynes and Williams, 1992; Haynes and Beare, 1996;

Bruce, Frome, Haites, Janzen, Lal and Paustian, 1999). Such a decline was also demonstrated under

long-term vegetable production by Haynes and Tregurtha (1999) . There was a decline oforganic Cfrom

65 to 159 kg-1. Microbial biomass and activities declined proportionately (Haynes and Tregurtha, 1999).
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In general, nitrogen- fixing plants support a higher microbial biomass. This is demonstrated in Table 1.5

where the nitrogen-fixing plant (U/ex europaeus) supported a higher soil microbial biomass and organic

C than other species.

Table 1.5 Organic C and microbial biomass C contents of soil (0-5 cm) under different types of

forest (Modified from Sparling, 1992)

Vegetation species

Nothofagus truncata (Native forest)

Pinus radiata (Plantation)

Ulex europaeus

Organic C

(%)

6.0

5.4

7.2

Microbial biomass C

818

649

920

Fire is commonly used as a management tool in forests and after clearing forests for cultivation of field

crops. Use of fire to reduce ground cover and the litter layer in forests can result in a significant reduction

of soil organic matter and soil water holding capacity (Phillips, Foss, Buckner, Evans and FitzPatrick,

2000). Such a decline is also associated with a decline in microbial populations immediately following a

fire (Sims, 1990).

1.7 CONCLUSIONS

This review discussed the status oforganic matter, nutrients, microbial biomass, microbial activities and

the diversity of microbial communities under pasture, cultivated, and forest soils in different parts in the

world . Annual arable production increases the oxidation of organic matter in the soil and consequently
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the size and activity of microbial communities is also decreased. Systems with large organic matter

inputs (forest, grassland and pasture) have a good soil structure, moisture holding capacity and higher

microbial biomass. In South Africa and other African countries such information is largely not available

and is surely needed. In the following chapters of this thesis the effects of various long-term

management practices on agricultural soils in the Kwazulu-Natal midlands (South Africa), particularly

with respect to their organic matter content and microbial characteristics, are investigated.
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CHAPTER 2

EFFECTS OF MANAGEMENT PRACTICES ON SOIL ORGANIC MATTER CONTENT

AND THE SIZE AND ACTIVITY OF THE MICROBIAL BIOMASS

2.1 INTRODUCTION

Soil organic matter content is important in relation to nutrient availability for soil biota and plants; energy

source for soil microorganisms, soil structure, air and water infiltration, water retention, erosion and the

.transport or immobilization of pollutants (Troeh and Thompson, 1993; Knoepp etal. , 2000; Smith et al.,

2000) and it is often indicative of soil fertility (Swift and Woomen, 1991; Scott etal., 1999). Soil nitrogen

is present mainly in organic form and it is an important nutrient for microflora and plants and often

determines crop productivity (Forster, 1995). Soil pH is important in influencing microbial activity since

concentration of H+ and AI3+ influences the ionisation and solubility of enzymes, substrates and

cofactors, and governs the activity ofsoil microorganisms (Tabatabai, 1994; Forster, 1995).

Soil microorganisms are responsible for many transformations in soil related to plant nutrition such as

organic matter decomposition, humus formation and nutrient cycling including nitrogen fixation,

nitrification, denitrification, and nitrogen mineralization (Turco et al., 1994; Beare et al. , 1995; Forster,

1995; Kennedy and Papendick, 1995). Microorganisms help to aggregate the soil, which reduces soil

erosion, increases water infiltration, and maintains adequate aeration of the soil (Ken~edy and

Papendick,1995).
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Due to the dynamic nature of microorganisms in soils, soil microbiological properties can be used as

sensitive indicators to assess changes in soil quality resulting from changing management practices.

The size and activity of the soil microbial biomass in response to changes in agricultural practices have

been studied in terms of total number and/or mass ofmicroorganisms, total respiration rate, and enzyme

activities (Anderson and Domsch, 1975; Dick, 1984; Lovell et al. , 1995; Bardgett et al. , 1996; Crovetto,

1998). Significant changes in microbial biomass and enzyme activities have been associated with

changes in tillage and stubble management (Frankenberger and Dick, 1983; Haynes and Knight, 1989;

Carter, 1991; Gupta etal., 1994; Bergstrom etal., 1998; Acosta-Martinez and Tabatabai, 2001), pastoral

managements (Sparling and West, 1988; Bristow and Jarvis, 1991; Ross et al., 1995; Haynes and

Tregurtha, 1999), forest and grassland managements (Priha and Smolander, 1997; Piao, Liu, Wu and

Xu, 2001).

In this study, effects of management practices on soil organic matter content and the size and activity of

the microbial biomass were monitored. The hypothesis was that microbial communities in South African

soils will be greatly affected by management changes. To date very little is known regarding the

microbial activity in South African soils or the effect of land use on soil fertility. Since soil microbial

characteristics may respond to changes in soil management more quickly than other soil variables,

microbiological monitoring can also help in increasing the awareness of soil degradation as a serious

problem in South Africa.
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2.2 MATERIALS AND METHODS

2.2.1 Site

The experimental soils sampled were from seven fields with long-term application ofdifferent agricultural

practices such as maize under conventional tillage (maize CT), maize under zero tillage (maize ZT),

Eucalyptus and Pinus plantations, natural grassland, annual ryegrass and permanent kikuyu (Penisetum

clandestinum) pasture. The sites were all located at the Cedara Agriculture Research Station near

Pietermaritzburg, South Africa (29°32'S, 30°17' E). At Cedara, the main annual rainfall is 874mm and

mean monthly temperatures range from a maximum of19.9°C in January (maximum =25.0°C, minimum

14.7°C) to a minimum of 11.3°C in June (maximum =19.0°C, minimum =3.6°C). Soils were classified

as Hutton form (Farmingham series) (Soil Classification Working Group, 1991) or as Rhodic Ferisols

(FAO). These soils have a clay content of 55 to 65% and the mineralogy is dominated by kaolinite plus

halloysite and there are also appreciable amounts of crystalline sesquioxides, gibbsite and interlayered

chlorite.

The maize CT and maize ZT experiments were initiated in 1982. Conventional tillage consisted ofwinter

discing to 150 mm depth followed by spring mouldboard ploughing to 250 mm depth and discing to 150

mm depth. Before annual cultivation of maize, these two systems were fertilized with 450 kg ha' NPK

(30 kg N, 45 kg Pand 60 kg Kha') and additional nitrogen was broadcast in the form ofLAN (28%) at a

rate of 350 kg ha' five weeks after planting. The herbicides and insecticides applied were paraquat,

atrazine, terbuthylazine, cyanazine, carbofuran, sodiumfluosilicate, deltamethrin and monocrotophos

(Lawrance, Prinslo and Berry, 1999). The annual ryegrass experiment was initiated 35 years ago and
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the main agricultural applications were chemical fertilization and overhead irrigation. The permanent

pasture consisted of plots of kikuyu herbage that was planted in 1940 and used for cow grazing. The

Pinus and Eucalyptus plantations are approximately 30 years old. To evaluate the effects due to the

above management practices, native grassland was sampled as a control because no agricultural

activity had ever been exerted on the soil. To eliminate the influence of soil type on microbial

characteristics, the systems chosen were all in the same geographic location.

2.2.2 Sampling

Samples were collected on 20-22 June 2001. To provide replication, 4 plots were selected in each of the

systems. These plots were approximately 120 mlong and 30 mwide. A total offorty cores was randomly

collected from each plot, twenty from 0-5 cm and twenty. from 5-10 cm soil depth. The 20 cores from

each depth were bulked to give one sample per plot per soil depth, so that a total of 4 samples per

system per depth was collected. In the laboratory, the bulked samples were sieved « 2 mm) and divided

into two sub-samples: one (1000 g) for microbiological analyses and another (500 g) for chemical

analyses. Samples for microbiological analyses were stored as moist soil in plastic bags at 2-4°C and

were brought to room temperature 24 h before each microbiological essay. Their water content was

about 32.5 %. Samples for chemical analysis were air-dried at room temperature.

2.2.3 Analyses

Organic C was determined by the Walkley and Black oxidation procedure (Nelson and Sommers, 1982).

Total soil nitrogen was determined by the modified Kjeldhal procedure with colorimetrical determination
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ofammonium concentration (Forster, 1995). Soil pH was measured in a 1:2.5 soil: water orsoil : 1MKCI

solution ratio using a glass electrode. Microbial biomass C Vias measured by the fumiqation-extraction
-"- ------ ~. -- -- - ~ . . - -. -

~gsed on the dlffeLaoGa_between -G-extracted -with -0;5 -M-K2S04-from _cbI9~rrJl~fumigated and
--.~-- -- ----- _._-.,
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n . ---------_
WinteLa.~cL§.~~~_ 2?9~; _~9.e rgensen , 1995). 'She microbial quotient was c~lculate~~r_exp!~ss!_~~----- -.- -- -- -- -- -

@i-~~~~ai 6r~Il1~.sit)s-a-per~~~t-age of total organicfC.-Sasal respiration was determined by placing 50
- - _.-.. .~_._--- --- --". .- --~--,/

9 of soil into 50 mL beakers and incubating the samples in the dark at 25°C in 1L, airtight sealed jars

along with 25 mL of 0.05 M NaOH. The C02 evolved was measured after 5 days by titration (Alef,

1995b). The Metabolic quotient (qC02) was calculated as a basal respiration rate (1l9 C02-C h-1) per

mg-1 of microbial biomass C. Dehydrogenase activity was based on calorimetric estimation of

triphenylformozan (TPF), the end product of2,3,5-triphenyltetrazolium (TTC) oxidation after incubation of

the soil samples at 30°C for 24 h (Alef, 1995a; Perucci et al., 1997). The rate of fluorescein diacetate

(FDA) hydrolysis was estimated as described by Alef (1995c) . Arginine -ammoniiLCgJJgn rate was

measured by the method described by Alef and Kleiner (1995). The activity of aryls.uJphalase was

assayed by the method outlined by Alef and Nannipieri (1995). The activities of acid and alkaline

phosphatase were determined by the method of Tabatabai (1994). Statistical analyses of data were

conducted using analysis of variance (ANOVA) and mean separations between treatments were based

on the least significant difference (LSD) at the 5% level ofprobability using Genstat 5.2. -
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2.3 RESULTS

2.3.1 Soil organic Cand N

Organic C was lowest under maize CT, followed by maize ZT and annual ryegrass. Values determined

for natural grassland, Eucalyptus and Pinus plantations were approximately double that for maize CT.

The highest values were observed under permanent kikuyu pasture (Figure 2.1 a), and were

approximately 3.3 times the amount detected under maize CT. A uniform distribution of organic Cwithin

the top 10 cm of soil was observed under maize CT and annual ryegrass pasture, whereas a decline

was noted with increasing soil depth under the other treatments (Figure 2.1 a).

In relation to native grassland, the disturbances due to cultivation or land use resulted in losses of

organic C amounting to 8.6% for Eucalyptus plantation, 23.8% for annual ryegrass, 35.8% for maize ZT

and 44.3% for maize CT. On the other hand, organic C was increased in the less disturbed systems:

6.1 %under Pinus plantation and 60% under permanent kikuyu pasture. The zero tillage system resulted

in a 15% higher organic Ccontent than under conventional tillage.

Similar trends to those observed for organic C, were observed for total soil nitrogen (Figure 2.1 b). The

table of analysis ofvariance for organic C and total Ncontents showed a very significant difference (P<

0.001) between treatments and between soil depth except for maize C'I and annual ryegrass (See

appendix A).
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2.3.2 Soil pH

Soils under annual ryegrass, Pinus and Eucalyptus plantations were highly acidic (pHKCI 4.1),

whereas soils under natural grassland, maize ZT, maize CT and permanent pasture were

moderately acid with pHKCl4.5 - 4.9 (Figure 2.2). Soil pH in water and that in KCI showed the same

trends with approximately one unit pH higher in water than in KCI solution. The analysis ofvariance

of these data showed a very large diff~rence (P < 0.001) between treatments whereas the

relationship ofpH to soil depth was much less significant (P < 0.026) [See appendix B].

'" ~ lID pHw ater'" ::J
t- ~ '" Cii
U I- 0> ::J <ll ~ pH(Ka)
Q) N Q) et Cl.
N Q) e >- Ul·iii .!:l (ij (ij ::J::;E <ll ::J U c:

::;E c: ::J c:::c: w
LSD

:I:
Cl. • KCI

[water

Figure 2.2 Effects ofmanagement practices on soil pH measured in water and 1MKCI.

LSD atP ~0.05 shown.
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2.3.3 Microbial biomass Cand microbial quotient

The size of the microbial biomass at the different sites is presented in Figure 2.3a. Microbial biomass C

ranged from 324 under maize CT to 1754 mg kg-1 in the permanent kikuyu pasture (mean values of 0-5

and 5-10 cm layers). In comparison to native grassland, maize CT, maize IT, annual ryegrass and Pinus

plantation had lower values, whereas Eucalyptus plantation and permanent kikuyu pasture had higher

values. Microbial biomass C values were higher in the surface 0-5 cm depth and decreased in the 5-10

cm (Figure 2.3a). The decrease in microbial biomass C with soil depth was not significant in maize CT,

maize IT, and annual ryegrass but was significant in the other treatments. The rate ofmicrobial biomass

decrease with increasing soil depth was estimated as: Pinus plantation 37%, Eucalyptus plantation 31%,

natural grassland 17% and permanent pasture 15%. The test of analysis of variance of these data

showed that these treatments were largely different (P < 0.001) between them and with soil depth (See

appendix C).

Values for the microbial quotient at the 0-5 and 5-10 cm soil .layers are presented in Figure 2.3b and

show that only the Eucalyptus plantation had a higher value than native grassland. All the other land

uses had substantially lower values than the natural grassland, especially the annual ryegrass, maize IT

and maize CT treatments.
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2.3.4 Basal respiration and metabolic quotient

The basal respiratory rate was greatly influenced by soil management and followed the sequence: maize

CT < annual ryegrass < maize ZT < natural grassland < Pinus plantation < Eucalyptus plantation <

permanent pasture (Figure 2.4a). For the 7 systems investigated, only Eucalyptus and Pinus forests and

Kikuyu pasture had values greater than the native grassland at the 0-5 cm soil depth. The decrease in

basal respiration between 0-5 and 5-10 cm soil layers was least significant for maize CT and annual

ryegrass, but increased appreciably in the other treatments. The analysis of variance of these data

shows avery large difference between treatments and with soil depth (P <0.001; See appendix C).

The metabolic quotients (qC02) were presented in Figure 2.4b. This ratio was highest under maize ZT

followed by annual ryegrass, maize CT, Pinus plantation, all of which were higher than that under native

grassland. Only Eucalyptus plantation and permanent pasture had lower quotients than the control. In

general low metabolic quotients were associated with the high microbial biomasses and the high

microbial quotients.
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2.3.5 Enzyme activities

Figures 2.5 and 2.6 show enzyme activity levels in the different treatments. The permanent kikuyu

pasture showed the highest enzyme activity for dehydrogenase (Figure 2.5aL FDA hydrolytic activity

(Figure 2.5b), arginine ammonification (Figure 2.6a) and arylsulphatase (Figure 2.6b). Enzyme activities

were intermediate under natural grassland, Eucalyptus and Pinus plantations. Enzyme activities were

generally lowest under maize CT, maize ZT and annual ryegrass. In general, the levels of enzyme

activity decreased from the 0-5 cm to 5-10 cm soil layers with the exception of the annual ryegrass and

maize CT treatments (Figures 2.5and 2.6).

As shown in Figure 2.5a, the treatments under study may be placed in three categories with increasing

dehydrogenase activity rates: (1) lowest rate for maize ZT and maize CT; (2) intermediate rate for annual

ryegrass, Pinus and Eucalyptus plantations; and (3) highest rate for natural grassland and permanent

pasture, approximately 8 times the rate measured in maize under zero and conventional tillage. A

decline ofdehydrogenase activity was noted with increasing soil depth in all treatments except for maize

CT (Figure 2.5a). The activity ofdehydrogenase was linearly correlated with pHwater, organic C, microbial

biomass C, basal respiration, FDA hydrolytic activity, arginine ammonification and arylsulphatase activity

(P <0.001; Table 2.1) .

From FDA hydrolytic activity levels (Figure 2.5b), the treatments may be grouped in two subgroups

based on enzyme reaction rate: (i) a lower FDA hydrolysis rate (0.1 -0.17 umoles g-1h-1) for maize CT,

maize ZT and annual ryegrass and (ii) a higher rate (0.22-0.37 urnoles g-1h-1) for Pinus and Eucalyptus

plantations, natural grassland and permanent pasture. The levels of FDA hydrolytic activity in permanent
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pasture and Pinus were approximately four times those for maize CT and maize IT. The rate of FDA .

hydrolysis showed a positive correlation with organic C, microbial biomass Cand other enzyme activities

(Table 2.1).

The rate of arginine ammonification was lowest under maize CT, and increased approximately 1.8 times

under maze IT, annual ryegrass and natural grassland and approximately 2.5 times for Pinus. Arginine

ammonification levels for Eucalyptus and permanent pasture were nearly 4 times that for maize CT

(Figure2.6a). The rate of arginine ammonification was positively correlated with other measures such as

organic C (r=0.91), microbial biomass C (r=0.85), basal respiration (r=0.81), dehydrogenase activity

(r=0.64), FDA hydrolytic activity (r=0.79) and arylsulphatase activity (r=0.96) (Table 2.1).

Arylsulphatase activity (Figure 2.6b) was lowest under maize CT (2 urnoles p-NP g-1 h') , followed by

annual ryegrass and maize IT. The level ofarylsulphatase activity was approximately 81lmoles p-NP g-1

h-1under natural grassland and Pinus. The higher arylsulphatase activities were detected in soils under

Eucalyptus plantation and permanent pasture, and were approximately 10 times the amount found under

maize CT. Arylsulphatase activity showed the highest correlation with microbial biomass C(r=0.93) and

basal respiration (r=0.86) (Table 2.1).

The activities ofalkaline and acid phosphatases are not presented because they were not comparable to

any other previous findings. The results are appended to this thesis simply to serve as a base line for a

future research , which will be needed for verification (See appendix D). Therefore, these results will not

be discussed. In addition, the data on enzyme activities were statistically largely different (P < 0.001 ;

See appendixE).
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Figure 2.6 Distribution ofarginine ammonification rate (a) and arylsulphatase activity (b) in the 0-5

and 5-10 cm soil profiles as affected by management practices. LSD at P~0.05 shown.
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Table 2.1 Correlation coefficients (r) between soil chemical and biochemical properties

0
c: en c:

0
Soil 0 en

~-e co
E

properties co 0 '0.(J
:.0 en

(J
~'c roco :.0 ro

~ e en
0 co

(J (Q

~

pH water 0.57*** 0.43* 0.45*

Organiccarbon 0.82*** 0.81 ***

Microbial biomass C
0.85***

Basal respiration

Dehydrogenase

FDA hydrolytic activity

Arginine ammonification

Statistical significance: * Significant (P s 0.05)

**=Highly significant (P ::; 0.01)

*** =Very highly significant (P ::; 0.001).

2.4 DISCUSSION

~

ID
.;;:

en ~eo coc: (JID
~0>e e"0

>- "0
.s: >-
ID x:

0 «
0
u...

0.70*** 0.52**

0.77*** 0.88***

0.69*** 0.75***

0.67*** 0.73***

0.79***

0.50** 0.53**

0.91 *** 0.91 ***

0.85*** 0.93***

0.81*** 0.86***

0.64*** 0.65***

0.79*** 0.78***

0.96***

2.4.1 Effects of management practices on soil organic Cand N

Effects of tillage and no-tillage cu ltivation methods on soil organic C have been extensively studied

(Johnston, 1986; Gupta et al., 1994; Riezebos and Loerts, 1998). Conventional tillage is generally

associated with greater reduction in soil organic C compared to no-tillage (Grace et al., 1994). For

example Haynes and Beare (1996) noted an annual rate ofdecline in soil organic Ccontent of 1.8 t ha'

under zero tillage and 2.6 t ha-' under conventional tillage when a 5-year grass/clover pasture was
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converted to arable crops. In the present study (Figure 2.1 a), differences between maize CT and maize

ZT systems may be explained by the fact that after harvesting, zero tillage leaves crop residues (lea

mays) on the soil surface whereas conventional tillage incorporates them into the ploughed layer. Under

no-tillage, residues accumulate in the topsoil, and are more exposed to desiccation, resulting in aslower

rate of decomposition (Alvarez, Alvarez, Grigera and Lavado, 1998). Such decline was also noted by

Grace et al. (1994) when grassland soils were converted to continuous cultivation . In addition, under

zero tillage organic matter accumulates close to the soil surface. Since in the present study soils were

sampled from the surface 0-5 and 5-10 cm, higher values under maize ZT are to be expected.

In general, there is an increased rate of decomposition of organic material due to ploughing and

secondary tillage (Grace et al., 1994). In fact, tillage exposes inaccessible soil organic matter to

microorganisms and leads to its decomposition (Haynes and Beare, 1996). In addition, ploughing

aerates the soil and leads to a more oxidative microbial metabolism. Ploughing also increases contact

between soil and residues and promotes decomposition of plant residues (Haynes, 1999). According to

Riezebos and Loerts (1998), these higher decomposition rates are due to the enhancement ofbiological

activity caused by soil mixing and higher temperature from increased soil exposure.

The largest soil organic C content was encountered under permanent pasture (Figure 2.1 a) suggesting

that pastoral management contributes to increased soil organic matter content. In fact, under pasture

large organic matter inputs occur from senescent plants, root exudates, return of excreta by grazing

animals in the form of dung and urine and turnover of the large microbial biomass in the pasture

rhizosphere (Lovell et al., 1995; Haynes and Beare, 1996). Results presented here confirm those of

Riezebos and Loerts (1998) who found a substantial loss of soil organic matter under arable production

compared to natural forest.
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Total N is a measure of organic matter content (Carter, 1991; Perucci et al., 1997). Since organic

nitrogen isthe predominant form ofsoil nitrogen, the increase oforganic matter content in soils results in

a relatively large increase of total nitrogen (Bristow and Jarvis, 1991). Therefore, the above-mentioned

factors that affect the variation of organic C may also explain the variation of total soil nitrogen under

different treatments.

2.4.2 Effects of management practices onsoil pH

In South Africa, soil acidity is a serious problem and is one of the greatest limiting factors to productivity.

Acid soils occur in the Western and Eastern Cape, KwaZulu-Natal, the Eastern and Northern Provinces,

where 5million ha have apHKcl< 4.5 and a further 11 million ha a pH of4.5-5.5 (Beukes, 1995).

Beukes (1995) evoked three main causes of soil acidification in South Africa: (1) that attributed to

cultivation, which enhances aeration and promotes a more rapid bacterial oxidation of soil organic

matter, resulting in the production of acids; (2) nitrification after application of ammoniacal fertilizers and

(3) forest plantations which acidify the soil by accumulation of basic cations in the forest biomass. This

was demonstrated by Du Toit (1993) who studied the effects of Pinus, Eucalyptus and Acacia

plantations on soil acidification in KwaZulu-Natal. He found that afforestation decreased the pH of soils

to pHKCI =4 in comparison with adjacent grassland ofpH 4.3.

In this study, similar results were found where pH under Pinus and Eucalyptus plantations was 4.1,

whereas under natural grassland (control) it was 4.5. The pH of the soils under natural grassland, maize

ZT and maize CT were not significantly different (Figure 2.2) . Haynes and Knight (1989) also found no

significant difference in soil pH between conventional tillage and no-tillage in New Zealand. In the
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permanent pasture treatment, the pH tended tobe high (pHKCI =4.9) and this is probably the result of

heavy lime applications that are routinely applied to such pastures.

2.4.3 Effects of management practices on soil microbial biomass C, basal respiration,

microbial quotient and metabolic quotient

Microbial biomass and basal respiration are useful measurements for estimating the rate of change in

organic matter status of the soil due to land management. The derived indices, microbial and metabolic

quotients, provide additional information relating to microbial processes in soil (Pankhurst et al., 1997).

Microbial biomass, basal respiration and metabolic quotient have all been proposed as indicators of

stress or disturbance induced by land management, and as early indicators of changes in soil organic

matter due to various management practices (Carter, 1991; Ward le, 1992; Priha and Smolander, 1997;

Dalal, 1998; Haynes, 1999). Basal respiration and metabolic quotient may provide information on the

physiological state of the microbial community (Alvarez et al. , 1998). Microbial biomass C, basal

respiration, microbial and metabolic quotients are suitable variables that characterize C availability and

soil quality (Knoepp etal., 2000) .

Similar to the findings of Haynes (1999), the greatest microbial biomass C was accumulated under

permanent pasture (1754 mg C kg-1) and this highlights the importance in pastoral management of

maintaining high soil microbial biomass and activity. The high microbial biomass C in permanent

pasture, Eucalyptus plantation and natural grassland is associated with high organic C contents. These

results are in accordance with the findings of other researchers who have observed that microbial

biomass C in soils is closely correlated with organic C content (Anderson and Domsch, 1989; Carter,
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1991; Haynes and Tregurtha, 1999). In the present study a linear relationship was also found between

organic C and microbial biomass C contents in the soils (r = 0.82; Table 2.1). In addition, these results

correspond to what was indicated by Bandick and Dick (1999), Kramer and Green (2000) that the

rhizosphere isa zone of increased microbial biomass.

Although soil organic Cwas higher in Pinus than in Eucalyptus plantations, the microbial biomass Cwas

1.7 times higher under Eucalyptus. This is probably attributable to forest litter quality, since easily

decomposable litter results in a higher microbial biomass C (Carter et al., 1999). The results obtained

are comparable to those of Priha and Smolander (1997) who studied microbial biomass in soil under

different tree species (Pinus sylvestris, Picea abies and Betula pendula). They found lower soil microbial

biomass under pines than under the other trees. The explanation may be that the high concentrations of

phenolic compounds in pine needle litter inhibit microbial activity.

The low microbial biomass in the soils under maize CT and maize ZT is attributable to low organic C

contents (Alvarez et al., 1998). In addition, it is possible that the application ofpesticides and herbicides

to these treatments for 20 years (Lawrance et al., 1999) may have exerted negative effects on the

microbial biomass C. For example, Wardle (1992) and Dalal (1998) observed a reduction in microbial

biomass and alteration ofmicrobial diversity due to the application ofsome insecticides.

Reports in the literature show a wide range of microbial quotients (0.27 to 7.0%) which are due to

differences in soils, vegetation cover, management, variation in sampling time, soil water content and the

analytical methods used (Anderson and Domsch, 1989; Carter etal., 1999). In the present investigation,

the low microbial quotient (1 to 1.2 %) under annual ryegrass, maize ZT and maize CT is indicative of

high exploitation of the available C resources (Sparling, 1997). Similar values (e .g. 1.1 %) were found in

soil under arable management in New Zealand (Haynes and Tregurtha, 1999). The higher microbial
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quotients in permanent pasture 2%, natural grass 2.1 %, and Eucalyptus plantation 2.8% are attributable

to the high organic C content in these soils. High values are indicative of environmental conditions

conducive to the establishment of large and diverse microbial populations. These stabilize soil structure

and contribute to the liberation of various nutrients for macro- and micro- organisms and plant growth

(Roper and Gupta, 1995; Haynes and Beare, 1996).

The metabolic quotient (qC02) can be used: to investigate ecosystem development and response to

ecosystem stress or disturbance (Anderson and Domsch, 1993; Sparling, 1997; Alvarez et al. , 1998); to

compare field management (Anderson and Domsch, 1990); and to evaluate the efficiency of soil

microbial populations in utilizing organic compounds (Dilly and Kutsch, 2002). Anderson and Domsch

(1989) suggested metabolic quotients in young ecosystems are usually larger than those in mature sites .

In general, greater metabolic quotients are associated with soils with low microbial biomass contents

(Sparling, 1997) because the microbial quotient isa ratio ofbasal respiration to microbial biomass.

In the present paper, high qC02values were obtained under maize ZT 4.4, annual ryegrass pasture 3.8 .

and maize CT 3.1 ~lg C02-C h-1 mg-1 Cmic (Figure 2.4b). Similarly, Haynes (1999) found higher microbial

metabolic quotients in treatments under tillage than those under undisturbed management. A high qC02

is generally an indicator of a microbial community under stress (Anderson and Domsch, 1993). Under

the above three land uses a shortage of available Cis the most likely stress factor.

The highest metabolic quotient determined (maize ZT) may be the result of an additional stress

response due to pesticide and herbicide application. Indeed it was noted by Sims (1990) that increased

microbial respiration rate is a common indicator of pesticide application. High qC02may also arise from

58



the prevalence of zymogenous organisms (r-strategists) in contrast to autochthonous species (K­

strategists), which arise in agricultural soils (Dilly and Munch, 1998).

In the Pinus plantation, qC02 was high and this may be because pine litter is difficult to decompose

since it contains phenolic compounds (Wardle and Ghani, 1995; Priha and Smolander, 1997). The

reasons for low metabolic quotients in Eucalyptus plantation (1.9), permanent pasture (2.1), and natural

grass (2.2) may be that they are undisturbed ecosystems. Under such condition competition for the

available C source favours microorganisms requiring the least amounts of energy for maintenance and

growth and also they release less C02(Sakamoto and Oba, 1994). For these sites with relatively low

qC02, less organic carbon is lost by respiration and more carbon is assimilated into the microbial

biomass. The microorganisms are expending relatively less energy for basic survival and devoting

greater resources to growth (Islam and Weil , 2000). As a result, the microbial biomass C increases.

Some workers have concluded that the functional relationship between the parameters discussed above

is not yet fully understood and that there is no universal equilibrium constant (Anderson and Domsch,

1989; Sakamoto and Oba, 1994). For example, Dilly and Kutsch (2002) noted that microbial biomass

and metabolic quotient values seem to contradict each other because high microbial biomass suggests

high-energy requirements, high organic matter degradation and thus a high metabolic quotient. The

present results and previous findings illustrate the contradiction. This may be the reason why Wardle

and Ghani (1995) failed to distinguish between.stress and disturbance and suggested that the metabolic

quotient does not decline predictably as ecosystems develop, or along successional gradients. However,

it may be concluded that intensive management practices lead to a more active microbial biomass,

increased organic matter oxidation and consequently adecline in microbial biomass C.

59



2.4.4 Effects ofmanagement practices on dehydrogenase activity

Intracellular dehydrogenases have been measured as an estimation of overall microbial activity in soils

(Alef, 1995a; Perucci et al., 1997) and have been used to compare soils under different management

systems (Beyer et al., 1993). In the present study, management changes affected the activity of

dehydrogenase (Figure 2.5a). Similar results to those shown in Figure 2.5a and Table 2.1 have been

noted in previous studies (Beyer etal., 1993; Haynes, 1999).

Although dehydrogenase is the most widely studied enzyme indicator of soil biological activity (Dick,

1997), recent literature suggests that dehydrogenase activity is an inappropriate measurement to

characterize effects of soil management on microbial activity since it has more influence on soil specific

reactions orsoil type than on microbial biomass (Beyer etai" 1993; Perucci etai" 1997). Indeed, in the

present study dehydrogenase activity was respectively similar under maize ZT and maize C'I, natural

grass and permanent pasture, while other assays showed these practices to produce significantly

different effects. Similarly, in the Haynes and Will iams's work (1999) animal camping showed no effect

on the dehydrogenase activity in the soil whereas arginine ammonification and FDA hydrolysis indicated

clear differences.

2.4.5 Effects ofmanagement practices on FDA hydrolytic activity

Hydrolysis of fluorescein diacetate (FDA) is used as an index of microbial activity in soil because it is

carried out by active cells producing a variety of enzymes including esterases, lipases and proteases

(SchnOrer and Rosswall, 1982; Alef, 1995c; Haynes and Tregurtha, 1999). In the present study, all
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treatments showed differences in the ability of the resident microbial population to utilize fiuorescein

diacetate substrate (Figure 2.5b).

The above results confirm the findings of other researchers. For example, higher FDA hydrolysis,

microbial biomass e and organic e were found in soils under pasture compared to arable and annual

grass in New Zealand (Haynes, 1999; 2000). The rate of FDA hydrolysis was also higher in maize ZT

than under annual ryegrass or maize C'I (Haynes and Tregurtha, 1999). Perucci et al. (1997) noted a

higher FDA hydrolysis rate in a field where crop residues had been incorporated than where residues

had been removed from the land. Positive correlations between FDA hydrolytic activity and other

parameters suggest that the high organic e and microbial biomass e in undisturbed treatments was

translated into high FDA hydrolysis rates.

2.4.6 Effects ofmanagement practices on the rate of arginine ammonification

The arginine ammonification assay is a relatively recent method used to study microbial activities in

soils. It was proposed by Alef and Kleiner (1986; 1987) who concluded that arginine ammonification was

carried out by living microorganisms because its rate was strongly related to respiration and the number

of microorganisms present. Recently, arginine ammonification was suggested to be a rapid and good

index of gross N mineralization in agricultural soils (Bonde, Nielsen, Miller and Sorensen, 2001). This

assay has been applied to study the microbial activity of the soils under grass and crop management

(Haynes, 1999; Haynes and Tregurtha, 1999).

In the present study, arqinine ammonification was used to monitor the effects of long-term management

practices on soil microbial activities. The results suggest that arginine ammonification rate increased as
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increased the size of the microbial population in the soil. These results are comparable to previous

findings (Alef and Kleiner, 1987; Haynes and Tregurtha, 1999) where arginine ammonification was

higher in soil under pasture than arable cultivation.

2.4.7 Effects ofmanagement practices on the activity ofarylsulphatase

Arylsulphatase is a specific enzyme involved in soil organic S mineralization and it catalyses the

hydrolysis of ester sulphate bonds (Tabatabai, 1994; Deng and Tabatabai, 1997; Bandick and Dick,

1999). Arylsulphatase activity increased proportionately with organic Ccontent and microbial biomass C

(Table 2.1). Correlations between arylsulphatase activity and microbial biomass C (r = 0.93) reveal that

microorganisms are the major producers (Bandick and Dick, 1999). The correlation between

arylsulphatase activity and organic C (r= 0.91) suggests its integral role in nutrient cycling, especially in

the Scycle, and the fact that soil organic matter stabilizes orprotects soil enzymes. Arylsulphatase was

also found to be weakly correlated with pHwater (r= 0.52). In previous studies arylsulphatase activity was

found to be positively correlated with organic C and total N (Tabatabai, 1994; Alef and Nannipieri, 1995;

Deng and Tabatabai, 1997; Haynes, 1999), microbial biomass C (Haynes, 1999) and soil pH (Deng and

Tabatabai, 1997; Kang and Freeman; 1999).

In the present investigation, management practices were found to affect arylsulphatase activity. For

example, arylsulphatase activity was lower under the more disturbed treatments (maize CT, maize ZT

and annual ryegrass) , which had low organic C and microbial biomass C contents. In previous research

arylsulphatase activities were found to be lower under conventional than under zero tillage (Dick, 1984;

Deng and Tabatabai, 1997; Bergstrom etal. , 1998) .
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On the other hand, the activity of arylsulphatase was higher in the less disturbed systems (natural

grassland, Pinus, Eucalyptus and permanent pasture). In fact, arylsulphatase activity was positively and

strongly related to organic C and microbial biomass C levels, In addition, both Bandick and Dick (1999)

and Kramer and Green (2000) suggested that the rhizosphere is a zone of increased microbial and

enzyme activities. Thus, in the presence of permanent vegetation with extensive root systems and lack

of tillage arylsulphatase activity was high.

2.4.8 Effects ofsoil pH on enzyme activities

Soil pH influences the ionisation and solubility of enzymes, substrates, and cofactors and governs the

activity of soil microorganisms (Tabatabai, 1994; Forster, 1995; Acosta-Martinez and Tabatabai, 2000).

Low soil pH may cause irreversible inactivation of enzymes or modify the activity in soils systems by

changing the interaction between enzymes and stabilizing substances, e.q. humus and clay (Kang and

Freeman, 1999). Thus pH may be one of the factors controlling enzyme activities in soils. However, in

this study although pH was strongly correlated with dehydrogenase activity, the correlation was weak

with arginine ammonification rate, arylsulphatase activity and FDA hydrolysis activity (Table 2.1) . The

effects of pH were presumably masked by the large differences in organic matter and microbial biomass

that occurred between the different land uses.
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2.5 CONCLUSIONS

Soil fertility refers to the ability of a soil to supply essential nutrients for plant growth and is a function of

two major factors. Firstly, soil organic matter, which is an important nutrient reservoir and nutrient source

for plants. Secondly, soil microbial population, which decomposes soil organic matter and make

available essential nutrients for plant growth. In addition, microbial aggregation reduces erosion,

facilitates water infiltration and maintains adequate aeration ofthe soil.

The results of the present study show that the above-mentioned factors were greatly influenced by

management practices. Annual cultivation is responsible for losses of soil organic matter due to the

increased rate ofoxidation and low organic returns and consequently, the size of the microbial biomass

and basal respiration levels are low. The loss of soil fertility under arable cropping is also observed

through the low enzyme activities, which are responsible for organic matter decomposition and release

of nutrients for plant. Conversely, permanent pasture, forestry and native grassland managements

conserve soil fertility. These practices stabilise soil organic matter and favour the establishment of a

large, active, microbial population.
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CHAPTER 3

MANAGEMENT PRACTICES AFFECT THE CATABOLIC DIVERSITY OF THE SOIL

MICROBIAL COMMUNITIES

3.1 INTRODUCTION

Studies of microbial diversity have been concerned in three interrelated areas: the genetic, functional

and taxonomic diversities (Garland and Mills, 1991 ; Zak et al., 1994). The aspect of functional diversity

seem to be the most important because it is more relevant to the understanding of the role of the

microorganisms in the functioning of the soil ecosystem than the species diversity (Degens and

Vojvodic-Vukovic, 1999). Knowledge regarding microbial diversity in soils is still scant due to a general

lack of taxonomic information, limitation in methodology and the complex way in which genetic and

taxonomic diversity may affect functional diversity (Zak etal., 1994) .

The classical approaches to the studies of microbial diversity involved the assessment of a species

richness (abundance) and evenness (number of groups) in the microbial communities (Degens and

Vojvodic-Vukovic, 1999 citing Trevors, 1998; Yan et aI" 2000) , Newly developed technologies include

the analysis of the ribosomal RNA gene sequences, the analysis of the microbiallipids (Konopka etal.,

1998) and the use of the substrate utilization patterns (Zak et al., 1994). The later consist of the

measurement of the diversity of the decomposition functions of the microbial communities based on the

community-level physiological profile (CLPP) approach that was introduced by Garland and Mills (1991).

The method succeeded to distinguish the differences among samples and to assess the functional
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diversity of the microbes in the ecosystems. Garland and Mills (1991) indicated that the CLPP method

could be a useful tool for classifying the microbial communities. This approach was developed in two

methods: (1) the short-term utilization ofa range of the substrates that have been added to soil (Degens

and Harris, 1997; Degens, 1998a, b; Degens et al., 2000) and (2) the Biolog Gram-negative and ECO

microplates, which are used to investigate the soil microbial diversity on the basis of the sole carbon

source utilization abilities by soil microorganisms (Garland and Mills, 1991 ; Zak et al., 1994; Choi and

Dobbs, 1999; Bending et al. , 2000; Liu et al., 2000; Priha et al., 2001) . These two methods aim to

measure the diversity of the decomposition functions performed by the soil heterotrophic

microorganisms, which represent a major component of the soil microbial functional diversity (Degens et

al. , 2000) .

In the previous chapter, it was shown that management practices influence the soil microbial biomass,

basal respiration rate and the enzyme activity levels. The purpose of this chapter was to determine the

effects of land management on the catabolic diversity of the inhabiting soil microbial communities. The

hypothesis was that changes in management will affect the amount, quality and diversity of substrates

entering the soil. As a result, management could influence the catabolic diversity of the soil

microorganisms by causing changes in their physiological status by eliminating or favouring a group of

the microorganisms responsible for the degradation ofone ormore substrates.

3.2 MATERIALS AND METHODS

Soil samples were collected as described in chapter two. Soil chemical characteristics were analysed by

the laboratory of soil fertility at CEDARA, Pietermaritzburg in South Africa. These were exchangeable

acidity, extractable P, and exchangeable K, Ca and Mg. Other soil properties were analysed in chapter
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2. The microbial functional diversity of the soils (0-5 cm) was determined by two different approaches.

Firstly, the carbon utilization patterns were measured by the method described by Bending et al. (2000)

using Biolog Eco plates (Biolog, Hayward CA 94545, USA). These contained three replicate wells of 31

carbon substrates and water(Choi and Dobbs, 1999). Colour development in wells was measured at 12

h intervals for 5 days using a Biotek EL 312 microplate reader at 490 nm. The number of positive wells

was also counted after every 24 h. Analysis of the data included number of positive responses, the

average well colour development (AWCD) and the principal component analysis (PCA) (Garland and

Mills, 1991; Zak et al., 1994). The PCA was performed on the transformed data of the AWCD (Garland

and Mills, 1991). The relationships among samples were obtained by plotting first two principle

component scores in two dimensions. The treatments were also separated along the PC1 and the PC2

axes by the analysis of the variance of the PC scores and on the basis of the least significant difference

at 5% level of probability. The standardised data of AWCD were also used in calculation of richness,

evenness, and diversity indices (Kennedy and Smith, 1995) using the Multi Variate Statistical Package.

The catabolic potentials of soil samples were investigated by measuring the short-term respiratory

responses after the addition of the solutions of36 organic substrates (Degens and Harris, 1997; Degens,

1998a, b; Degens et al., 2000) . These substrates were: two amines (glucosamine, glutamine), eight

amino acids (alanine, arginine, asparagine, glutamic acid, histidine, lysine, serine, tyrosine), two

aromatic chemicals (inosine, urocanic acid), four carbohydrates (galactose, glucose, lactose, mannose),

eighteen carboxylic acids (acetic acid, ascorbic acid , citric acid, Na-citrate, Na-formate, fumaric acid,

gluconic acid , a-ketobutyric acid, a-ketoglutaric acid, malic acid, malonic acid, oxalic acid, pantothenic

acid , quinic acid, succinic acid, tartaric acid, uric acid, valeric acid) and two polymers (a-cyclodextrin,

tween 80). The concentration of the solutions and the details of the method are outlined by Degens and
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Vojvodic-Vukovic (1999) and Degens et al. (2000). Principal component analysis of the data was

performed on the standardized catabolic response profiles (Degens, 1998a, b). The analysis of the

variance (ANOVA) was also conducted on the PC1 and the PC2 scores (Degens and Vojvodic-Vukovic,

1999) and the treatments were separated on the basis of the least significant difference of means at 5%

level of probability. In addition, richness, evenness, and diversity indices were calculated (Kennedy and

Smith, 1995) using the Multi Variate Statistical Package.

3.3 RESULTS

Soil chemical properties are presented in Table 3.1. Soil properties varied greatly between land uses.

Organic C ranged from 3.2% under maize CT to 10%under permanent kikuyu pasture. Soil acidification

was evident under Eucalyptus and Pinus forests and under ryegrass pasture whilst the pH under maize

and permanent pasture was greater than that under native grassland reflecting the regular lime

applications that are made to these land uses. Extractable soil P was very low (5 mg L-1) under natural

grassland and was higher under all the other land uses; it was notably high under maize ZT and

particularly permanent pasture. There was also a wide range of concentrations of exchangeable bases

with exchangeable Ca being high in the maize ZT, Pinus forest and permanent pasture and

exchangeable Mg and Kbeing notably high under permanent pasture.
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Table 3.1 Soil chemical characteristics at 0-5 cm depth under different land uses

Soil property Treatments

Natural Maize CT Maize ZT Annu al Eucalyptus Pinus Perman ent

grassland ryegrass pasture

Organ ic C (%) 5.8 3.2 3.9 4.3 6.2 7.1 10

K2SO. Extractable
126 32 45 43 154 112 180

C (J-lg g,1 soil)

pH (KCI) 4.6 4.5 4.7 4.1 4.1 4.3 4.8

pH water 5.5 5.3 5.3 4.8 5.1 5.1 5.7

Exchangeable
0.61 0.4 0.23 2.23 1.93 0.7 0.15

acidity (cmoI/L)

Extractable P
24 6 19 1245 12 42

(mg/L)

Exchangeable K
205 128 143 203 177 195 1033

(mg/L)

Exchangeable Ca
688 891 1324 635 408 1326 2018

(mg/L)

Exchangeable Mg
320 175 252 157 197 310 515

(mg/L)

Substrate richness, expressed as the number ofdifferent substrates in Eco plates that was metabolised

by the microbial population inhabiting the different soil communities and the variation of the AWCD over

time are presented in Figures 3.1 and 3.2. The evolution of the number of positive wells was highest for

permanent pasture; followed by natural grassland, Eucalyptus, maize ZT and Pinus. Numbers were

lowest for annual ryegrass and maize CT and amounted to approximately half of the number determined

under permanent pasture (Figure 3.1). Asimilar trend was observed with the variation of the AWCD over

time (Figure 3.2) except values for maize ZT was consistently greater than those for Eucalyptus and

native grassland.
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Figure 3.1 Evolution ofthe number ofpositive responses in the Biolog Eco plates after the

inoculation with soil extracts of the different agricultural management.
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Figure 3.2 Variation in average well colour development (AWeD) over time in the Eco plates

inoculated with soil extracts of the different management practices at0-5 cm soil depth.
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As the richness index has a temporal dimension that develops during the incubation (Zak et al., 1994)

the statistical analysis of the variation of the AWCD along the time, which expresses the catabolic

capacity of the different microbial communities showed a very high difference in the increased AWCD

along the time ofthe incubation (P <0.001; See appendix F).

Confirmation of the differences in functional abilities of the soil microbial populations inhabiting the

different treatments was demonstrated by their different positions in the plane of the first two principal

components (Figure 3.3). A large difference in location was observed between permanent pasture,

maize CT and annual ryegrass, whereas maize ZT, Eucalyptus, and natural grassland were closely

located. The soil samples from the Pinus plantation showed a very large difference in their location.

These differences were confirmed by the analysis of the variance of the PC scores (P < 0.001; See

appendix G).
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Figure 3.3 Plot showing the position of the different soils within PC1 and PC2 ofa principal

component analysisofthe average well colour development at 120 h.
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In addition, there were differences inthe degree of utilization of substrates by the soil microorganisms in

different managements as their first two principal component scores differed. The PC1 ranked between-

1.16 and +1.15 whereas the PC2 ranked between -1.17 and 1.08 (Figure 3.4). Substrates most utilized

by microorganisms under the different land uses are those found in the same position in the zones of the

principal component spaces in Figures 3.3 and 3.4. For example, comparing the top of the two figures, it

is evident that the microorganisms under permanent pasture utilized lactose, hydroxybutyric acid, a·

cyclodextrin, glucose 1phosphate and erythritol most effectively.
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Figure 3.4 Plot of the position of 31 substrates within the plane of PC1 and PC2. Principal

component analysis based on the transformed data ofthe average well colour

development at120 hofincubation.
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The richness, evenness, Shannon and Simpson diversity indices for the Biolog Eco plates data are

presented in Table 3.2. The greatest richness was observed under permanent pasture, whereas other

treatments had lower and similar values. The species evenness was greater in permanent pasture, and

intermediate for Eucalyptus, Pinus and natural grassland, and lower for annual ryegrass, maize CT and

maize ZT. The Shannon and Simpson diversity indices followed the order: permanent pasture> natural

grassland, Pinus, Eucalyptus and maize ZT > maize CT and annual ryegrass. The number of positive

wells (Figure 3.1), the AWCD (Figure 3.2) and Shannon and Simpson diversity indices (Table 3.2) show

the similar order.

Table 3.2 Richness, evenness and diversity indices for soil microbial populations from different

agricultural management. Indices calculated using the transformed AWCD at 120h of

incubation ofBiolog Eco plates

Treatments Richness Evenness
Diversity

Shannon Simpson

Natural grassland 29 a 0.94 b 1.37 b 0.95 b

Maize CT 29 a 0.88 a 1.29 a 0.94 a

Maize ZT 30 a 0.91 a 1.35 b 0.95 b

Annual ryegrass 29.3a 0.87 a 1.28 a 0.93 a

Eucalyptus 29.8a 0.92 b 1.35 b 0.95 b

Pinus 29 a 0.92 b 1.35 b 0.95 b

Permanent pasture 30.8 b 0.97 c 1.44 c 0.96 c

The letters following values indicate statistical differences. In each column, values followed by the same

letter are not significantly different (LSD atP =0.05).

Regression analysis (Table 3.3) suggested that the main factor separating Eco plate data in the PC1

axis was exchangeable acidity and in the PC2 axis it was unclear with organic C, extractable P and

exchangeable Mg and Kall seemingly important.
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The substrate induced respiration responses of soils under different managements with various carbon

source groups are presented in Figure 3.5. The largest SIR response was for carboxylic acids and

lowest was for the amines and aromatic chemicals. For amino acids, aromatic chemicals, carbohydrates

and polymers, the greatest C02 evolution was from permanent pasture. Conversely, for amino acids,

amines, carbohydrates and polymers, the least C02 evolution was from maize under conventional tillage.
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Figure 3.5 Average substrate induced respiration (SIR) responses of soils in different land-use

types with the different carbon source groups.

The standardised substrate induced respiration responses were submitted to principal component

analysis. The position of the different treatments within the PC1 and PC2 axes are shown in Figure 3.6

whereas the 36 substrates in the plane ofthe first two principal components, in relation to the rate at
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which they were utilized by soil microorganisms under different management practices, are shown in

Figure 3.7.

The values of the PC1 decreased from maize ZT to maize CT, annual ryegrass, natural grassland and

permanent pasture. Natural grassland and annual ryegrass and Eucalyptus and Pinus respectively were

similarly positioned on the PC1 and PC2 axes (Figure 3.6). In addition, the PC1 and PC2 scores of the

different treatments were significantly different (P< 0.001; Appendix H).
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Figure 3.6 Plot of the position of the soils in the PC1 and PC2 axes. The principal component

analysis based on the standardized substrate induced respiration responses ofsoils to

36 substrates.
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Results of regression analysis (Table 3.3) showed that none of the measured soil properties significantly

explained a substantial proportion of the separation of catabolic response profile (CRPs) data in either

the PC1 orPC2 axes.

Table 3.3: Relationship (r) between the PC1 and PC2 ofthe catabolic response profiles (CRPs)

and ECG plate method and the soil chemical characteristics

Soil property ECO CRPs
---------------------------------------------------------

PC1 PC2 PC1 PC2

Organic C -0.18 NS 0.85** -0.59 NS 0.41 NS

K2S04- extractable C -0.27 NS 0.74** -0.54 NS 0.43 NS

pH (KCI) -0.59 NS 0.54* 0.09 NS -0.50 NS

pH water -0.67 NS 0.62* -0. 16 NS -0.29

Exchangeable acidity 0.75* -0.33 NS -0.24 NS 0.26

Extractable P -0.14NS 0.81* -0.31 NS -0.07

Exchangeable K -0.12 NS 0.84** -0.56 NS 0.01

Exchangeable Ca -0.38 NS 0.69 NS -0.06 NS 0.02

Exchangeable Mg -0.36 NS 0.90** -0.43 NS 0.03

Statistical significance shown: NS: non-significant, *PsO.05, **PsO.01

In addition, the catabolic response profiles were used to calculate richness, evenness and diversity

indices (Table 3.4). The substrate richness is indicative of the number of substrates that were

metabolised by different soil microbial populations using the 36 amendments. The treatments were

grouped in two categories based on the substrate richness index. The greater richness was observed

under maize ZT and natural grassland. The other treatments had lower richness indices and these

values were not statistically different (P =0.1).
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The second component of the microbial diversity was species evenness, which indicates the distribution

of the individuals within species designation (Kennedy and Smith, 1995). Species evenness indices

followed the order: natural grassland> maize CT and maize ZT and permanent pasture> Eucalyptus>

Pinus > annual ryegrass. The Shannon diversity index was highest for natural grassland, maize CT and

maize ZT, annual ryegrass and permanent pasture, lowest for Pinus and intermediate for Eucalyptus. A

similar order was obtained for the Simpson diversity index except natural grassland was significantly

greater than the other land uses (Table 3.4).

Table 3.4 Richness, evenness and diversity indices of soils under the different agricultural

management. Indices calculated using the transformed substrate induced respiratory

responses ofsoils to 36 substrates

Treatments Richness Evenness Diversity

Shannon Simpson

Natural grassland 33.6 b 0.91 e 1.39 c 0.95 d

Maize C'I 31 a 0.89 d 1.33 c 0.93 c

Maize ZT 35 b 0.87 d 1.35 c 0.93 c

Annual ryegrass 30.3a 0.71 a 1.35 c 0.94 c

Eucalyptus 31.6 a 0.82 c 1.24 b 0.91 b

Pinus 29.6a 0.77 b 1.13 a 0.87 a

Permanent pasture 32.6 a 0.87 d 1.33 c 0.93 c

The letters following values indicate statistical differences. In each column, values followed by the same

Letters are not significantly different (LSD atP=0.05).
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3.4 DISCUSSION

The aim of this chapter was .to assess the functional differences in soil microbial communities under

different long-term management systems based on carbon source utilization patterns. Separation of

samples along the principal component axes is related to the differences in the use of particular carbon

sources (Garland and Mills, 1991). For Biolog Eco plates, the difference in the number of positive wells,

variation in AWCD over time and the differences in positions in the planes of the principal components

(Figures 3.1, 3.2 and 3.3) as well as the differences in diversity indices (Table 3.2) demonstrate that land

management practices had indeed effected the functional diversity of the heterotrophic microorganisms

in the soil.

Differences observed in Figure 3.3 may reflect differences between the grazed treatments (permanent

pasture) and the tilled systems (maize CT and annual ryegrass) . That is, they were located on the

opposite extremes of PC2. Annual cultivation with a mouldboard plough may decrease the functional

diversity of the microbial communities. Under annual cultivation there is a loss ofsoil organic matter and

particularly that of readily metabolizable compounds (Degens et al., 2000), inputs of organic residues to

the soil are small and all from one plant species (maize) . In addition, annual tillage has a disturbing and

stressing effect on the microbial community. Thus, under these land uses the amount and diversity of

organic materials present, and added to the soil is reduced and the consequence is a reduction in

microbial diversity. Table 3.1 illustrates a lower concentration of nutrients in soil under maize CT, maize

ZT and annual ryegrass compared to the amount ofsoil nutrients in permanent pasture.

Similarly, maize CT and annual ryegrass differed themselves because they were located on two

extremes of the PC1 . That difference may have occurred due to differences in irrigation practice. Annual
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pastures are characteristically irrigated heavily over the spring-summer period in order to get rapid

pasture establishment. Irrigation favours microorganisms that are resistant to anaerobic conditions in the

waterlogged soils (Kang and Freeman, 1999). The remaining treatments (Pinus, Eucalypus and native

grassland) were located in the middle of the PC2 axis, approximately equal to zero, That may be the

result ofa general lack ofdisturbance under these land uses. This is confirmed by the Shannon diversity

indices (Table 3.2).

Because the Biolog method is a relatively new method for the investigation of the microbial functional

diversity, especially for soil communities, the literature provides little comparable results. Nonetheless,

Bending etal. (2000) showed that patterns of the substrate utilization by soil microbial communities were

highly sensitive to management practice. Van et al. (2000) also noted significantly larger substrate

richness, and a higher rate and diversity of the substrate use in the uncultivated than in the cultivated

sites. Yao et al. (2000) observed that multivariate analysis of the sole carbon source utilization patterns

demonstrated that land use history and plant cover type had a significant impact on microbial community

structure. The results in this study confirm their statements.

Because the Biolog Eco plate's method (Choi and Dobbs, 1999) failed to discriminate differences

between the microbial functional diversity in some treatments such as Eucalyptus, Pinus, natural

grassland and maize ZT (Figure 3.3 and Table 3.2), another method was also used. Moreover, the

Biolog technique does not assess the functional diversity of the whole soil microbial community (Degens

and Harris, 1997). It only assesses the diversity of culturable bacteria. Konopka etal. (1998) noted that

the formation of the colour may represent the metabolism of the numerically dominant bacterial species,

or could be a consequence of the rapid growth by a minor member of the community, Therefore, the

method of catabolic response profiles (Degens, 1998a, b) was also used in order to circumvent the
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problems of unculturability of the soil microorganisms when they are submitted to the artificial

environment.

The results obtained using Degens's method (1998a, b) revealed its effectiveness in distinguishing the

functional diversity of the microbial community in soils under different land-use types. That is because

different treatments were found in separate zones of the principal component spaces in Figure 3.6.

Because the influence of soil type was eliminated by collecting soils from the same geographic location,

differences are the result of the management history.

In the previous chapter, management practices affected soil microbial characteristics in two directions:

(1) annual cultivation decreased soil organic C and microbial biomass C contents, due to the increased

oxidation of the organic residues on which the microorganisms would find their substrates; (2) the

increase of organic inputs under the permanent pasture and the other less disturbed treatments which

raised up the microbial biomass and activity. This relationship between soil organic C and soil microbial

population conducted to the assessment ofweather they may influence the microbial functional diversity

in the soils. Therefore, the linear regression test was used to determine the main sources of the variation

of the PC1 and PC2 ofcatabolic response profiles (CRPs) and substrate utilization in ECO plates within

other soil chemical characteristics. The analysis revealed the results presented in Table 3.3

The variation in the PC1 and the PC2 was correlated to the variation in the soil organic C, exchangeable

acidity, extractable P, exchangeable K, Ca, and Mg (Table 3.3). That happened because soil organic

matter is a source of nutrients for soil microorganisms. This relates to the findings of Degens et al.

(2000) in which apositive correlation (r2 =0.76) was found between catabolic diversity and soil organic C

in which pastoral soil was compared with soil under cropping and pine forestry. These authors concluded
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that land management that cause proportional decrease of organic C could also cause the same

proportional losses ofmicrobial catabolic diversity.

The richness, evenness, Shannon, and Simpson diversity indices (Table 3.4) provide more explanation

of the effects of management practice on functional diversity of soil microbial populations. Because the

native grassland was considered as a control, the richness index decreased in all treatments where

annual cultivation, tree plantation and pastoral activities were applied except the increased richness in

maize ZT. This finding suggests, for example, the impact of tillage and soil disturbance on the reduction

of the microbial diversity (Bendig etal., 2000 citing Lupwayi etal., 1998). Liu et al. (2000) and Van etal.

(2000) also noted adecrease in soil microbial diversity following soil disturbances.

The fact that the substrate richness indices in different treatments were broadly similar (Tables 3.2 and

3.4) may be partly explained by metabolic redundancy in soil microbial communities. That is, a large

change in species diversity could result a very small change in functional diversity because many

species possess the genetic potential to metabolise different substrates (Konopka etal., 1998).

Management practices also affected soil microbial diversity as measured by the Shannon and Simpson

diversity indices (Table 3.4), which decreased from the native grassland control to the other managed

systems especially the Eucalyptus and the Pinus plantations. The soils in these two treatments were

highly acidic (Table 3.1), which may favour the acid tolerant microbial groups, such as fungi (Metting,

1993; Thorn, 1997). This was demonstrated by the negative correlation (r =-0.59 and -0.67) between

PC1 in Eco plate technique and pH and between PC2 of CRPs and pH (r =-0.50) [Table 3.3]. The fact

that Shannon and Simpson indices were similar under maize CT, maize ZT, annual ryegrass and

permanent pasture may be related to the explanation ofPankhurst (1997) citing Wardle (1995) that there
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is a minimal effect of tillage on species diversity within soil microbial communities. Conversely, the

increased substrate richness in maize ZT may be explained by its highest metabolic activity (Figure

2.4b), which could be partly due to the application of pesticides and herbicides to that treatment (Wardle,

1992; Pankhurst, 1997 citing Wardle, 1995). For example, Roper and Gupta (1995) noted a negative

impact ofherbicides and pesticides on soil microbial population.

3.5 CONCLUSIONS

The objective of this chapter was to evaluate the effects of agricultural management on soil microbial

diversity. The differences in the position of the treatments on the plots of the principle component scores

(Figure 3.3 & 3.6) and the diversity indices (Table 3.2 and 3.4) demonstrate differences in functional

capacity of the different microbial populations which were a result of management history. The different

variables of cropping history that may influence the microbial diversity include the application of tillage,

fertiliser, insecticides, herbicides and irrigation. Differences in soil organic matter content and in the

amounts oforganic residues returned to the soil will also be important. This was confirmed by Degens et

al. (2000) that management practices affected the dynamics ofsoil microbial diversity principally through

adecrease in soil organic matter and microbial biomass Ccontent in cropped soils. In addition, because

each site had its own vegetation, the phytodiversity can lead to the differences in the substrate quality.

Changes in microbial functional diversity in response to land use are likely to be the resu lt of the

complex interaction of the above factors. Changes in soil cond itions may eliminate existing microbial

niches but also create new ones and dormant species will be able to take advantage of the new niches

created or the newly active populations will be able to increase and use the niche to its full capacity in a

relatively short period of time (Yan etal., 2000). For this reason, microbial diversity may not necessarily
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be associated directly with the size of the microbial biomass, basal respiration or organic C contents

(Degens and Vojvodic-Vukovic, 1999).
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CHAPTER 4

GENERAL CONCLUSIONS

In the present study the specific objective was to determine whether long-term management practices

have contributed to changes in soil organic matter content, soil microbial biomass, activity and diversity.

In the previous studies (e.g., Carter, 1991; Lovell et al., 1995; Bayer et al., 2000; Haynes, 2000) soil

organic C and microbial biomass contents were major indicators of changes due to management

practices and that was confirmed by the present results.

Management practices that involved annual cultivation (e.g . maize under conventional tillage) were

found to decrease the soil organic Cdue to a reduction in the quantity of residues returned to soil and an

increased rate oforganic matter decomposition. Zero tillage leaves organic residues on the soil surface

after harvesting and the organic Cis preserved from the rapid mineralization. As a result, organic matter

content and nutrient availability were higher under maize ZT than maize CT (Table 3.1). Therefore, zero

tillage may be preferred for the annual arable cultivation because it conserves the organic matter, which

is asource ofnutrients for soil microorganisms and which contribute to soil structure and soil fertility.

The organic C contents are maintained or increased in soils under forestry, but soil acidification can

occur. This could limit microbial growth. Organic matter content was very high under permanent pasture

and this is attributable to the return of the ingested plant material by grazing animals in the form ofdung

and the turnover of the large, ramified grass root system. The use ofpastoral systems in arable rotations
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could be promoted in order to stabilise the soil organic C, N and soil pH and consequently, promote the

size and activity of the microbial community in the soil.

The size of the soil microbial biomass is greatly influenced by soil organic C content because the soil

organic matter is the substrate and a nutrient source for heterotrophic microorganisms in the soil. The

microbial biomass C was largest in soil under permanent pasture because that environment was found

to be less oxidative (Iow metabolic quotient) and favoured the microbial proliferation. In general, soils

under permanent vegetation were rich in microbial biomass Cbecause of lack of tillage and the inputs of

substantial amounts of above - and/or below - ground litter. On the other hand, soils under annual

cultivation were associated with low microbial biomass C because microorganisms live under stress and

utilize the limited supply of organic C for their maintenance (high metabolic quotient). Under such fields

the low microbial biomass isprobably principally the result of the low rate of the microbial reproduction.

The active microbial biomass was determined through the basal respiration rate and enzyme activity

levels (dehydrogenase, FDA hydrolysis, arginine ammonification rate and arylsulphatase) . These

measurements reflected the physiological status of the microbial population under different

managements. In general, microbial activity was, as expected, strongly related to the size of the

microbial community.

In chapter 3, two approaches were used to assess the role of management on the microbial diversity in

soils. Neither method separated land uses completely but separation was generally more complete for

the substrate induced respiration method than for the Biolog Eco plate technique. The measured

functional diversity indices (PC1 and PC2) were in positive correlation with soil properties namely soil

organic C, exchangeable acidity, extractable P, exchangeable K and Mg (Table 3.3). The effects of
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management practices were more obvious when the land uses were considered as either cultivated or

uncultivated. The effects of management on soil microbial functional diversity were also demonstrated

through the richness, evenness, and diversity indices (Tables 3.2 and 3.4). These indices showed that

any agricultural management decreases the soil microbial diversity.
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APPENDICES

APPENDIX A ANOVA table ofeffects ofagricultural management on organic C and Nlevels in soils

Parameter Source of Degree of Mean square F value Probability

variation freedom

Treatment 6 2966.45 174.02 < 0.001***

Organic C Depth 1 1845.75 108.28 < 0.001***

Interaction 6 247.96 14.55 < 0.001***

Residual 42 17.05

Treatment 6 10.45 31.83 < 0.001***

Total N Depth 1 6.04 18.41 < 0.001***

Interaction 6 0.57 1.76 0.131 NS

Residual 42

NS =non-significant (P > 0.05)

*** =Very highly significant (P~ 0.001)
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APPENDIX 8 ANOVA table ofeffects ofmanagement practices on soil pH with changes ofsoil depth

Parameter Source of Degree of Mean square F value Probabil ity

variation freedom

pH (H2O) Treatment 6 0.873 18.44 < 0.001***

Depth 1 0.086 1.82 0.184 NS

Interaction 6 0.136 2.87 0.020*

Residual 42 0.047

pH (KCII Treatment 6 0.796 21.68 < 0.001***

Depth 1 0.194 5.29 0.026*

Interaction 6 0.111 3.03 0.015*

Residual 42 0.036

NS = non-signif icant (P> 0.05)

* = Significant (P ~ 0.05)

*** = Very highly significant (P ~ 0.001)
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APPENDIX C ANOVA table ofmicrobial biomass Cand basal respiration results

Parameter Source of Degree of Mean square F value Probability

variation freedom

Microbial Trea tment 6 2755768 181.4 < 0.001***

biomass C Depth 1 557782 36.7 < 0.001***

Interaction 6 58738 3.8 0.004**

Residual 42 15184

Basal Treatment 6 3631.7 42.7 < 0.001***

respiration Depth 1 9576.1 112.6 < 0.001***

Interaction 6 908.5 10.69 < 0.001**

Residual 42 85

** = Highly significant (P ~ 0.01)

*** = Very highly significant (P ~ 0.001)
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APPENDIX D Acid phosphatase (a) and alkaline phosphatase (b) activities at 0-5 "and 5-10 cm soil

depths as affected by agricultural practices. LSD at P ~0.05 shown
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APPENDIX E ANOVA table ofenzyme activities with statistical significance shown

Parameter Source of Degree of Mean F value Probability
variation freedom square

Dehydrogenase Treatment 6 0.59 37.4 < 0.001***
Depth 1 0.17 11.1 0.002**
Interaction 6 0.018 1.2 0.32 NS
Residual 42 0.015

FDA hydrolysis Treatment 6 0.083 36.8 < 0.001***
Depth 1 0.008 3.7 0.06 NS
Interaction 6 0.008 3.7 0.005**
Residual 42 0.0022

Arginine Treatment 6 0.064 111.6 < 0.001***
ammonification Depth 1 0.042 74.2 < 0.001***

Interactio n 6 0.007 12.7 < 0.001***
Residual 42 0.0005

Arylsulphatase Treatmen t 6 326.7 209.4 < 0.001***
Depth 1 47.5 30.4 < 0.001***
Interact ion 6 33.0 21.1 < 0.001***
Residual 42 1.56

Acid Treatment 6 20.4 38.0 < 0.001***
phosphatase Depth 1 0.15 0.28 0.6 NS

Interaction 6 1.14 2.12 0.07 NS
Residual 42 0.53

Alkaline Treatment 6 165.7 129.9 < 0.001***
phosphatase Depth 1 11.79 9.25 0.004**

Interaction 6 5.56 4.37 0.002**
Residual 42 1.27

NS =Non-significant (P> 0.05)
** =Highly significant (P ~ 0.01)
*** =Very highly significant ( P ~ 0.001)
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APPENDIX F ANOVA table ofthe AweD evolution from 24-120 hof incubation

Incubation Degree of Mean of square F value Probability

time freedom

24 h 6 0.0006 6.06 < 0.001***

48 h 6 0.1785 30.70 < 0.001 ***

72h 6 0.3611 19.8 1 < 0.001 ***

96 h 6 0.3959 12.50 < 0.001***

120 h 6 0.4257 13.58 < 0.001 ***
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APPENDIX G Table ofanalysis ofvariance ofthe principle component scores of the AWeD at 120 hof

the incubation ofthe Biolog Eco plates after inoculation with soil extracts ofdifferent

agricultural management

A. PC1 scores

Source of Degree of Mean of F value Probability

variation freedom square

Treatments 6 1.52 7.74 < 0.001***

Residual 21 0.19

Total 27

LSD and means of treatments

LSD 5% Maize Maize CT Annual Eucalyptus Pinus Permanent Natural

ZT ryegrass pasture grass

0.65 -0.56 -0.32 1.28 -0.24 0.23 -0.31 -0.05

A. PC2 scores

Source of Degree of Mean of F value Probability

variation freedom square

Treatments 6 1.45 9.06 < 0.001 ***

Residual 21 0.16

Totql 27

LSD and means of treatments

LSD 5% Maize Maize CT Annual Eucalyptus Pinus Permanent Natural

ZT ryegrass pasture grass

0.58
0.07 -0.94 -0.31 -0.16 0.05 1.04 0.23
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APPENDIX H Table ofanalysis of the variance of the first two principle component scores ofthe

catabolic response profiles for soils under different agricultural management

A. PC1 scores

Source of Degree of Mean of F value Probability

variation freedom square

Treatments 6 1.92 197.3 < 0.001 ***

Residual 14 0.009

Total 20

LSD and means of treatments

LSD 5% Maize Maize CT Annual Eucalyptus Pinus Permanent Natural

ZT ryegrass pasture grass

0.17
1.47 0.36 -0.57 0.12 0.09 -0.92 -0.56

A. PC2 scores

Source of Degree of Mean of F value Probability

variation freedom square

Treatments 6 1.54 24.8 < 0.001***

Residual 14 0.06

Total 20

LSD and means of treatments

LSD 5% Maize Maize CT Annual Eucalyptus Pinus Permanent Natural

ZT ryegrass pasture grass

0.43
-0.55 -0.30 -0.36 0.87 1.10 -0.01 -0.75
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