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Abstract

The thesis is devoted to the study of flow, heat and mass transfer processes, and cross-

diffusion effects in convective boundary layer flows through porous media saturated with

nanofluids. Of particular interest is how nanofluids perform as heat transfer fluids compared

to traditional fluids such as oil and water. Flow in different geometries and subject to

various source terms is investigated.

An important aspect of the study and understanding of transport processes is the solution of

the highly non-linear coupled differential equations that model both the flow and the heat

transportation. In the literature, various analytical and numerical methods are available for

finding solutions to fluid flow equations. However, not all these methods give accurate

solutions, are stable, or are computationally efficient. For these reasons, it is important to

constantly devise numerical schemes that work more efficiently, including improving the

performance of existing schemes, to achieve accuracy with less computational effort. In this

thesis the systems of differential equations that describe the fluid flow and other transport

processes were solved numerically using both established and recent numerical schemes

such as the spectral relaxation method and the spectral quasilinearization method. These

spectral methods have been used only in a limited number of studies. There is therefore the

need to test and prove the accuracy and general application of the methods in a wider class

of boundary value problems.

The accuracy, convergence, and validity of the solutions obtained using spectral methods,

have been established by careful comparison with solutions for limiting cases in the pub-

lished literature, or by use of a different solution method.
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In terms of understanding the physically important variables that impact the flow, we have

inter alia, investigated the significance of different fluid and physical parameters, and how

changes in these parameters affect the skin friction coefficient, the heat and mass transfer

rates and the fluid properties. Some system parameters of interest in this study include the

nanoparticle volume fraction, the Hartmann number, thermal radiation, Brownian motion,

the heat generation, the Soret and Dufour effects, and the Prandtl and Schmidt number. The

dependency of the heat, mass transfer and skin friction coefficients on these parameters has

been quantified and discussed.

In this thesis, we show that nanofluids have a significant impact on heat and mass transfer

processes compared with traditional heat transfer fluids.
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Chapter 1

Introduction

1.1 Background and motivation

Fluid flow and heat transfer occur in both natural and man-made industrial situations. This

is a longstanding subject that has been studied widely using different models of fluid flow.

The transfer of heat and mass through porous media plays an important role in fluid me-

chanics and arises in many areas of natural and applied sciences. Nanofluids are recently

developed heat transfer liquids that disperse solid nanoparticles. Recent research has shown

that nanofluids enhance thermal conductivities and can improve the heat transport proper-

ties of fluids, thereby enhancing energy efficiency. There is thus significant potential for

application of nanofluids in the field of enhanced heat transfer, including such areas as geo-

physics, petroleum engineering, geosciences, mechanics and biology, as suggested by Chen

and Ewing [1]. Such flow, heat and mass transfer processes can be modelled mathemati-

cally by complex systems of partial differential equations, which are often non-linear due

to both the complexity of the problem and the number of variables in the problem. There

are several ways to solve these differential equations, such as analytical, semi-analytical

and numerical methods. Each of these methods has both advantages and disadvantages.

Analytical solutions, where they can be found, often provide the best insights into the ef-

fects of different parameters that have a bearing on the solution. This is not usually the case

1



with the other methods. Due to their complexity, most fluid flow models, including double-

diffusive convection problems do not have exact solutions. To solve such problems various

numerical methods and semi-analytical methods have been introduced and used success-

fully. The need for new methods, however, remains in order to mitigate the deficiencies of

many current techniques such as slow convergence rates, computational inefficiency, etc.

The main objective of the current study is to use two recent innovative numerical methods

that have as yet not been used extensively to solve non-linear partial differential equations

that arise in modelling fluid flows. A second objective is to investigate the influence of a

plethora of physical parameters that characterise the problems.

Flows of practical significance, such as the spread of ground pollutants, take place in a

porous medium. A porous medium is a material that consists of a solid matrix with in-

terconnected voids (Bear and Bachmat [2]). The pores are saturated by a single fluid in

single-phase flow, while the void space is often shared by a liquid and a gas in two-phase

flow (Ingham and Pop [3]). Examples of natural porous media include beach sand, sand-

stone, limestone, wood and pulmonary tissue in the lungs (Corey [4] and Vazquez [5]).

Porous media flows have been extensively studied on account of the important applications

of such flows. For example, they offer a means of separating solid materials of different

sizes (Strange and Webber [6], Nield and Bejan [7]). Porous media act as highly selective

cages or screens that allow access only to particles below a certain size. A porous medium

is generally characterized by two factors; namely, porosity and permeability, that generally

control the storage and movement of fluids (Kaviany [8]).

The first factor, porosity, is the ratio of the void space of the porous medium to the total

volume of the medium (Lethr and Lethr [9]). Mathematically, it is the ratio of the unit vol-

ume of void space denoted by ϕ and represents the total storage capacity of the medium.

This is given by the ratio

ϕ =
void volume
total volume

=
Vv

VT
, (1.1)

where 0 < ϕ < 1, Vv is the volume of void space and the total volume of the material is

VT . Porosity is a fraction between 0 and 1 so that the quantity 1−ϕ defines the fraction
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of the medium occupied by the solid (Bruschke and Advani [10]). By defining ϕ in this

way, the implicit assumption is that all the void space is connected. If some pore space is

disconnected from the remainder, then the concept of effective porosity is often introduced

(Gupta and Gupta [11]). This is defined as the ratio of connected void to total volume.

The porosity does not normally exceed 0.6 for natural porous media and can vary between

0.2595 and 0.4764 for synthetic beds of solid spheres of uniform diameter (Mondal and

Pal [12]). The second property, the permeability of porous media, gives a sense of the

ease with which a fluid can move freely through the pores. Permeability is determined as

the proportionality constant in Darcy’s law, see Darcy [13], that relates discharge and fluid

physical properties to the pressure gradient in the porous media. For an anisotropic porous

medium, Darcy’s law can be expressed as

qi = Ki j
∂h
∂xi

, (1.2)

where qi (i = 1,2,3) is the Darcy velocity, Ki j, the hydraulic conductivity of porous media

and h is the water head at a point xi which depends on the pressure P. This is a macroscopic

quantity. For an isotropic porous medium, Ki j reduces to a scalar K and Darcy’s law, given

by Eq (1.2), becomes

qi =−K
∂h
∂xi

, i = 1,2,3. (1.3)

The hydraulic conductivity κ of the porous medium depends on the properties of both the

solid and the fluid in the porous medium and is given by

κ =
kρg

µ
, (1.4)

where k is the permeability, µ is the viscosity, ρ density and g is the gravity term. In civil

engineering, this type of flow is important in geothermal energy recovery, thermal energy

storage, ground water pollution and crude oil extraction (Vafai [14]).

The significant topic investigated in this thesis is that of flow, mass and heat transfer in

a nanofluid saturated porous medium. It is a topic of engineering interest, and an impor-

tant field of study in itself. Several contributions have been made in modelling fluid flow,
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heat and mass transfer in a nanofluid through a porous medium (Benzeghiba et al. [15]).

Modelling fluid flow, heat and mass transfer in a porous medium saturated with a fluid

has been undertaken in various ways. Firstly, the concept of non-Darcy effects on trans-

port equations, for several geometrical configurations and boundary conditions has been

used. The contributions in this regard include Zheng et al. [16]. Alternatively, research

on porous media has applied the generalised Brinkman-Forcheimer extended Darcy model.

Ranganatha and Viskanta [17] used this model to investigate convection in flow past a ver-

tical flat plate, Nield and Kuznetsov [18] studied boundary layer flow in nanofluids while

Kumari and Nath [19] studied non-Darcy natural convection in a Newtonian fluid flow in a

porous medium. In this work we investigate convective transport of heat, momentum and

mass in nanofluid boundary layer flows.

In heat transfer studies, the objective is often to determine energy transfer between bodies

as a result of temperature differences, and the mechanisms of heat transfer. In the sev-

enteenth and early nineteenth centuries, researchers postulated that all bodies contained

an invisible substance called the caloric (Amin and Azarkish [20]). Heat transfer is now

recognized as the flow of thermal energy due to a non-uniform temperature field. This is

commonly measured as a heat flux, see Holman [21]. There are three types of heat transfer

processes between differentially heated bodies namely, conduction, convection and radia-

tion. Conduction is defined as the transport of energy from more energetic particles of a

substance to the adjacent less energetic ones as a consequence of interactions among the

particles. Heat conduction can occur in solids, liquids and gases (Burmeister [22]).

Convection is the transfer of energy through the adjacent liquid or gas and a solid surface

that is in motion, and involves the combined impacts of fluid motion and conduction. Ra-

diation is the transfer of energy through space in the form of electromagnetic waves or

photons (Thirumale [23]).

Mass transfer occurs either via the bulk fluid motion or through the diffusion of a chemical

species (Nield and Kuznetsov [24]). The primary focus in this thesis is on mass transfer

through diffusion as a result of concentration gradients. An often mentioned example of
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diffusive mass transfer is the humidification that occurs when a container of water is left

open, leading to a mixture of air and water vapour in the atmosphere. A concentration gra-

dient causes water to be transported from the liquid surface into the atmosphere (Welty et

al. [25]). Mass transfer has several similarities to the process of heat transfer (Jaluria [26]).

The mechanisms of heat and mass transfer may be considered in terms of conduction or

convection. In this regard, heat conduction is due to temperature gradients normal to the

interface between two materials, and mass diffusion is due to mass gradients normal to the

surface (Kays and Crawford [27]), Moreover, if the fluid is moving, then its movement, as

well as the two potential gradients, is responsible for transferring energy and mass. Hence

the transport of mass or heat is via both molecular conduction processes and gross fluid

motion (Gorla and Zinolabedini [28]).

The mechanism of heat transport, induced by buoyancy forces arising from a tempera-

ture gradient in the absence of other external sources, is called free or natural convection

(Gorla and Tornabene [29], Gebhart et al. [30]) and Rathore and Kapuno [31]. It arises

in situations such as cooling operations. In free convection, density variations in the fluid

cause the hot fluid to move in an upward direction and the cold fluid to move in a down-

ward direction. Numerous scholars have studied free convection flows, among them Jaluria

and Gebhart [32], Cheng and Minkowycz [33] and Jaluria and Himasekhar [34]. Forced

convection in a porous medium was investigated by Rudramoorthy and Mayilsamy [35].

A combination of natural and forced convection was studied by Wooding [36], Lai [37],

and Lioyd and Sparrow [38]. Mixed convection with boundary layer stability and viscous

dissipation over a horizontal surface was studied by, among others, Mureithi and Mason

[39] whose findings showed that the boundary layer is dominated by internal regions of

super velocities. They considered the simultaneous effects of inertial forces and viscous

resistance on the flow in a porous medium. Their results showed that inertia and boundary

friction effects have a significant bearing on heat transport and thus cannot be ignored.
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1.2 Double-diffusive convection

There is a large number of analytical and numerical studies of heat and mass transfer in a

porous medium. These studies assume different types of boundary conditions. Different

methods have been used to solve the model equations. In this thesis, we give attention

to processes of combined heat and mass transfer that are driven by buoyancy. Double-

diffusive convection describes convection driven by two different density gradients with

distinct diffusion rates (Siegmann and Rubenfeld [40], Hsia et al. [41]). Double-diffusive

convection appears in many engineering and physical problems such as in contaminant

transport in saturated soils, food processing, the mantle flow in the Earth’s crust as well

as in sea water (Bourich et al. [42]). Double-diffusive natural convection in fluid flow has

been an active area of research for many years. Comprehensive reviews of the literature

in this area can be found in articles by Mojtabi and Mojtabi [43], Beya and Lilia [44] and

Mamou [45].

Motivation for the study of buoyancy driven heat and mass transfer is partly due to the

natural occurance of this phenomenon in such diverse fields as the migration of moisture

in insulation systems, the storage of grain in silos, the spread of soil contaminants in-

cluding the disposal of nuclear wastes, and in crystal growth. It has also been claimed

that double-diffusive convection occurs in magma chambers and in the modelling of solar

ponds (Akbarzadeh and Manins [46], Narayana and Sibanda [47]). Nield [48] investigated

double-diffusive convection in viscoelastic fluids in a porous medium. Numerous previous

studies exist for the problem of a porous layer heated from below or the side, see among

others, Baines and Gill [49], Gershuni et al. [50] and Khan and Zebib [51].

A number of studies are of particular relevance, such as Raptis et al. [52] who found sim-

ilarity solutions for boundary layer flow about a vertical wall in a porous medium with a

solute concentration and a constant temperature. Rudraiah et al. [53] gave a non-linear

stability analysis of heat and mass transfer rates in a two-part fluid saturated porous bound-

ary layer. They determined the transport processes in double-diffusive convection flow
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for different Darcy-Rayleigh and Rayleigh numbers. Their results showed that a finite-

amplitude instability may exist at subcritical Rayleigh numbers. Nield et al. [54] studied

convection due to slanted solutal and applied thermal gradients in a shallow horizontal

layer in porous media. Amahmid et al. [55] investigated double diffusive natural convec-

tion in a horizontal Brinkman porous layer with fixed mass and energy fluxes. Alloui et

al. [56] studied the onset of heat and mass transfer rates in a rectangular porous layer be-

tween horizontal boundaries. They used the Galerkin finite element method to solve the

problem equations and to investigate oscillatory and stationary instabilities. The impact of

anisotropy on the onset of heat and mass transfer in a rotating frame in porous media was

investigated by Patil et al. [57]. Nield et al. [54] extended their work to include the ef-

fects of inclined temperature and solutal gradients. They showed that both solutal Rayleigh

numbers and inclined thermal, contribute significantly to the onset of convective instability.

Malashetty and Basavaraja [58] studied the onset of heat and mass transfer in a horizontal

fluid boundary layer subjected to thermal modulation. They observed that harmonic mod-

ulation advanced the onset of convection at low frequencies. The transition to chaos in

double-diffusive Marangoni convection was investigated by Li et al. [59]. Magnetohydro-

dynamic (MHD) double-diffusive convective flow in a porous medium was investigated by

Okedayo et al. [60].

The case of a non-Darcy porous medium saturated with a nanofluid with viscous dissipation

was studied by RamReddy et al. [61]. A review of current literature shows the importance

of combined heat and mass transfer in natural convection fluid flow. However, insufficient

work has been carried out on double-diffusive convection in the case of nanofluids, such

as enhancing thermal conductivity of the fluid to improve the heat transfer rate in vari-

ous applications by suspensions of nanoparticles in the base fluid. Consequently, in this

study we will investigate fluid flow and heat and mass transfer in nanofluids. The effect

of significant physical parameters, like thermal radiation, heat generation/absorbtion, vis-

cous dissipation, Navier slip, magnetic parameter, Soret and Dufour parameters on different

types of nanofluids is studied using two spectral methods.
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1.3 The study of nanofluids scope and motivation

Nanofluids are solid-liquid mixtures consisting of solid nanoparticles with size typically

(1− 100)nm suspended in a liquid, see Xuan and Li [62]. The nanoparticles are usually

made of metals (Al, Cu), oxides Al2O3 carbides (SiC), nitrides (AlN, SiN) or non-metals

(e.g. graphite, carbon nanotubes). Common base fluids are water, oil and ethylene-glycol

mixtures. The literature shows that the low thermal conductivity of these base fluids is a

primary limitation in the performance of many devices. When nanoparticles are added to a

base fluid, a drastic increase in thermal conductivity is observed, see Eastman et al. [63].

Hence, a nanofluid is not only of academic interest but also has industrial applications.

Nanofluids are used to improve energy efficiency and heat transfer in many thermal control

systems. A nanofluid has various advantages, for instance, smaller cooling systems, higher

cooling rates, reduced inventory of heat transfer fluids, improved wear resistance, reduced

friction coefficient, and decreased pumping-power needs (Kameswaran et al. [64]). It is

highly desirable to achieve the highest possible thermal properties with the smallest possi-

ble concentration of nanoparticles. Among other uses, it is expected that a nanofluid can

be used in cars, micro reactors and aeroplanes. The growth in the use of nanofluids is

mirrored by the exponential increase in the number of research publications, see Zeinali

Heris et al. [65]. Due to the growing importance of nanofluids, there is a large amount of

literature on convective transport and nanofluid flow linked to a stretching surface. Choi

et al. [66] showed that the addition of a small amount of copper nanoparticles, less than

1% by volume, could increase the fluid’s thermal conductivity by as much as 40%. Other

advantages include a three fold higher critical heat flux and thermal conductivity compared

to the base fluid (Vassallo et al. [67]). Cooling by nanofluids has many potential applica-

tions. In this regard, You et al. [68] studied the feasibility of using nanofluids to enhance

the cooling of nuclear reactors. Other studies indicate that nanofluids as cooling fluids have

the potential to conserve over 1-trillion Btu of energy for industries in the USA alone. In
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the literature it has been suggested that this may lead to possible emission reductions of

nearly six million tonnes of carbon dioxide, 8600-tonnes of nitrogen oxides and 21000-

tonnes of sulfur dioxide, see Routbort [69], Awad et al. [70], Kameswaran and Sibanda

[71]. Nanofluids can be used to cool pipes exposed to high temperatures in geothermal

power and energy extraction from the earth’s crust (Wong and de Leon [72]). Nanofluids

could be utilized as automatic transmission fluids, engine oils, lubricants and coolants, etc.

Elsewhere, nanofluids have been used in biomedical applications such as in cancer ther-

apeutics, nano-drug delivery systems, nano-cryosurgery and for cooling of microchips in

computers (Boungiorno et al. [73]). The parameters which influence energy transfer char-

acteristics of nanofluids are properties such as enhanced density, specific heat, viscosity

and thermal conductivity. The thermo-physical properties of nanofluids also depend on the

operating temperature of nanofluids.

The effect of a magnetic field on nanofluids has essential applications in engineering,

physics and chemistry. These include thinning of copper wire, and the process of draw-

ing, annealing and cooling of continuous filaments. Drawing such strips in an electrically

conducting fluid through a magnetic field can control the rate of stretching and cooling,

thereby improving the characteristics of the final product. Such an application for a lin-

early stretching sheet in an incompressible viscous MHD flow was investigated by Pavlov

[74]. Jafar et al. [75] discussed the impact of MHD flow and energy transfer from a stretch-

ing/shrinking sheet with joule effects and viscous dissipation. In Chapter 2, Haroun et al.

[76] investigated unsteady MHD nanofluid flow over a stretching/shrinking surface with

injection or suction. They further assumed that the nanoparticle volume fraction at the wall

could be actively controlled and that flow was subject to viscous dissipation. A model for

MHD flow due to a uniformly stretched vertical permeable surface subject to a chemical

reaction was implemented by Chamkha [77]. An analysis of the effects of chemical reac-

tions on heat and mass transfer on MHD boundary layer flow due to a wedge with viscous

dissipation and ohmic heating in a porous medium was presented by Kandasamy and Palan-

imani [78]. The effectiveness of a transverse magnetic field on fluid flow and heat transfer
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due to a stretching surface was discussed by Anjali and Thiyagarajan [79]. The effect of

a chemical reaction on heat and mass transfer from vertical surfaces in a porous medium

subject to Dufour and Soret effects was studied by Postelnicu [80]. In general, nanofluids

show great potential for enhancing heat transfer processes. The suspended nanoparticles

significantly increase the thermal properties of nanofluids. The volume fraction, shape, di-

mensions and properties of the nanoparticles affect the thermal conductivity of nanofluids.

The absence of good quality and consistent nanofluids limits the progress of future research

and applications in this and related areas. Flow of nanofluids in thermal management, solar

energy absorption, microelectronics, defense, nuclear systems (Vadasz [81]), space craft

and the need for enhanced heat transfer and high-performance cooling is a vast area of still

to be investigated research.

1.4 Numerical and empirical studies of double diffusive

convection

There have been numerous experimental studies of mass and heat transfer processes. These

include investigations by Griffiths [82], who studied convection experimentally using a

Hele-Shaw cell in a porous medium. He measured energy salt fluxes via two layer con-

vection techniques and compared the conclusions with predictions from numerical models.

Through his investigations he found that there was agreement between laboratory and the-

oretical results. Murray and Chen [83] investigated the onset of mass and energy transfer

in a porous medium. They performed experiments in a box consisting of glass beads and

having rigid upper and lower walls. These allowed for a non-linear time-dependent profile

for salinity. They showed that the beginning of convection was marked by a dramatic rise in

heat flux at the critical temperature. The convection pattern was found to be predominantly

three-dimensional.

Webb et al. [84] presented a numerical and experimental investigation of double-diffusive

convection in a cylinder. They used a narrow tank heated from the sides and bottom with
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a linearly stratified salt-water solution to form multiple mixed layers of fluid. Comparison

between the laboratory and numerical results showed acceptable agreement. Heat and mass

transfer in a multi-compound solution in a cylindrical cavity, when the bottom is cooled,

was studied by Bai et al. [85]. They showed that heat and mass transfer rates occurred

in the liquid because of the coupling of concentration and temperature gradients. Other

experimental studies include those of Barman and Dutta [86] and Mergui et al. [87].

The equations for momentum, mass conservation and heat transfer are, in general, strongly

non-linear with no analytical solutions. For this reason, numerical solutions are usually

used to solve the complex systems of equations. Below we describe recent numerical stud-

ies which have considered, among other factors, the influences of hydromagnetics, chemi-

cal reaction, heat generation, heat radiation and Soret and Dufour effects.

Gebhart and Pera [88] investigated double-diffusive natural convection resulting from com-

bined influences of mass and thermal transports. Minkowycz et al. [89] investigated the

problem of free convection with suction/injection over permeable horizontal plates in a

porous medium. The problem of modelling fluid flow has attracted many researchers, for

instance see [90–93]. In some studies the interfacial velocities have been assumed to be

small enough to be neglected. Studies have shown that the heat transfer rate at the surface

grows with the Prandtl number, the unsteadiness parameter, the solid volume fraction of

nanoparticles, and the buoyancy parameter, and that larger values of the Grashof number

have substantial impact on the momentum boundary layer. Unsteady MHD of a nanofluid

free convection boundary layer flow over a stretching sheet with viscous dissipation and

thermal radiation was studied by Khan et al. [94]. A variety of methods have been used

for these studies. Lai [91] obtained similar solutions, while implicit finite differences were

used by Yih [92], Khan et al. [94] and Mahdy [95]. Mixed convection flow due to both

inclined and vertical flat plates with combined mass and thermal diffusion was investi-

gated by Chen et al. [96]. Unsteady heat and mass transfer due to an impulsively vertical

surface with Soret, Dufour effects and chemical reaction was investigated by Chamkha
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and El-Kabeir [90] to quantify the influences of the Dufour number, Soret number, mixed

convection parameter, Hartmann number, suction/injection parameter and the chemical re-

action parameter. For the case of uniform wall concentration and temperature gradients

they showed that the heat and mass transfer rates outcomes may range from the asymptotic

free convection limit to the forced convection limit.

A numerical study of the impacts of combined buoyancy forces from mass and thermal

diffusion was examined by Hossain [97]. Yih [92] used the Keller-box method, a special

type of implicit finite difference method, to study double-diffusive mixed convection near

a wedge embedded in porous media. Mass transfer in steady two-dimensional flow of a

viscous incompressible electrically conducting fluid through a porous medium was studied

by Acharya et al. [98]. The study sought to determine the effect of physical parameters on

heat and mass transfer. Transient heat and mass transfer from a vertical plate embedded in

a power-law fluid was studied by Cheng [93]. He used a cubic spline collocation method

to solve the conservation equations. Unsteady boundary layer fluid flow and heat transfer

in nanofluids along a stretching sheet was investigated by Mahdy [95] utilizing an implicit

finite difference method.

Characteristics of different models of nanofluids and physical parameters were discussed,

and it was observed that with an increase in the buoyancy parameter, the heat transfer rate

at the surface increases. Using an implicit finite difference technique, Khan et al. [94]

found that larger values of the Grashof number had a significant impact on the momentum

boundary layer for unsteady MHD boundary layer flow of a nanofluid subject to viscous

dissipation and thermal radiation. In these and other studies it was shown that implicit finite

differences are a useful method for solving non-linear partial differential equations. In this

study we will investigate unsteady and steady MHD mixed convection in boundary layer

flow, and heat and mass transfer in nanofluid flows in a porous medium.

Stretching surfaces have attracted significant research interest. One such example is by

Ishak et al. [99] who investigated energy transfer through an unsteady stretching perme-

able surface with a prescribed wall temperature. They determined the influence of the
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Prandtl number, suction/injection and the unsteadiness parameter on the heat transfer char-

acteristics. Complementing this was a study by Joshi et al. [100] who used the fourth order

Runge-Kutta method to solve the flow equations and determine how the physical parame-

ters impact the fluid flow. Manjunatha et al. [101] used a fifth order Runge-Kutta Fehlberg

method to investigate heat transfer and thermal radiation on boundary layer flow from a

dusty fluid over unsteady stretching sheet. Bhattacharyya et al.[102] studied an unsteady

MHD boundary layer flow with first order chemical reaction and diffusion along a perme-

able stretching sheet with blowing or suction using a quasi-linearization technique and the

Keller-box method. From the literature, it can be seen that numerical methods, such as the

Keller-box method, the fifth order Runge-Kutta Fehlberg method, the spectral relaxation

and quasi-linearization methods can be useful for solving non-linear differential equations.

Recently, Kameswaran et al. [103] studied hydromagnetic nanofluid flow due to a shrink-

ing or stretching sheet with chemical reaction and viscous dissipation. They discussed two

types of nanofluids, namely Cu- and Ag- water. The equations were solved numerically

using the Matlab bvp4c solver. Hsiao and Lee [104] studied the problem of conjugate

heat and mass transfer in MHD viscoelastic fluid past a stretching sheet. Double-diffusive

convection was studied by Hayat et al. [105] who used the homotopy analysis method to

solve the unsteady equations for MHD flow along a stretching surface. Joneidi et al. [106]

studied the problem of convective heat and mass transfer due to a stretching surface using

the homotopy analysis method. They assumed first order reaction kinematics in the flow.

Cheng [107] studied double-diffusion convective through a horizontal cylinder of elliptic

cross section with uniform wall heat and mass fluxes immersed in a porous medium. His

results showed that the local surface concentration and local surface temperature on the

elliptical cylinder tended to rise as the aspect ratio increased.

Double-diffusive convection through a rotating cylindrical annulus with conical caps was

studied by Simitev [108], while Kuznetsov and Nield [109] investigated double-diffusive

convection in nanofluid over boundary layer flow past a vertical plate using a revised bound-

ary condition for the model. In the revised model, the nanofluid particle volume fraction
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at the boundary was passively rather than actively controlled. The change in the boundary

condition ensured that the model was physically more realistic than when other bound-

ary conditions were used by previous researchers. In Chapter 5 we study double-diffusive

convection in MHD nanofluid boundary layer flow past a stretching surface. The flow is

subject to a chemical reaction. The spectral relaxation method is used to solve the flow

equations. The classical model which involves the effects of thermophoresis and Brownian

motion is revised in line with Kuznetsov and Nield [109].

1.5 The cross-diffusion effect

In recent years, the characteristics and mechanisms of fluid flow, with coupled heat and

mass transfer through a porous medium saturated with nanofluids have attracted consider-

able attention, Narayana et al. [110]. The flux and driving potentials are complex with a

complicated dynamical relationship. In general, an energy flux can be produced by con-

centration and temperature gradients. Thermal-diffusion, commonly known as the Soret

effect, indicates mass flux generated by a temperature gradient, and the diffusion-thermo

or the Dufour effect is to heat flux created by a concentration gradient, see Nield and Bejan

[111]. Both processes have been comprehensively studied in gases, while the Soret effect

has been studied both experimentally and theoretically in liquids. It is commonly accepted

that Soret and Dufour effects are small when compared with phenomena described by other

factors such as Fick and Fourier laws (Mojtabi and Charrier-Mojtabi [43]). Benamo-Mellya

et al. [112] studied the effectiveness of using Soret coefficient measurement experiments

in unsteady heat and mass transfer rates in a binary fluid mixture in a rectangular porous

media. The vertical walls were set at a constant temperature whereas the horizontal walls

were adiabatic. The semi-implicit and augmented Lagrangian method based on the Uzawa

algorithm was used to solve the system equations (Vincent et al. [113]). The results demon-

strated that, based on the Soret value, multiple convection-roll patterns can develop, while
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thermal and solutal buoyancy forces oppose each other. When evaluating the optimum per-

meability for solute separation, a contradiction is observed in experimental and numerical

results (Alam and Mollah [114]). Dufour and Soret effects are therefore commonly ignored

in many heat and mass transfer processes. The effects of thermal-diffusion and diffusion-

thermo are, however, important when density differences exist in the flow regime. For in-

stance, when the density of a species does not exceed the density of the surrounding fluid,

both diffusion-thermo and thermal-diffusion effects can be influential (Anjalidevi and Devi

[115]).

Eckert and Drake [116] have also shown some cases where diffusion-thermo and thermal-

diffusion effects may not be neglected. It has further been shown that there are a number of

areas, such as in geosciences, where Soret and Dufour influences are significant. Kafous-

sias and Williams [117] examined mixed convection flow with Soret and Dufour effects,

and temperature dependent viscosity. Mortimer and Eyring [118] used a transition state

approach to derive a simple model for Dufour and Soret effects in thermodynamically ideal

mixtures of substances with molecules of nearly equal size. In their model, the flow of heat

and the diffusion-thermo effect was specified as the enthalpy change as molecules diffuse.

The model was found to fit a reciprocal relationship earlier determined by Onsager [119].

Assuming a horizontal thermal gradient, Benano-Mellya et al. [112], investigated the prob-

lem of thermal-diffusion in binary fluid mixtures. Alam et al. [120] investigated thermal-

diffusion and diffusion-thermo effects on free-forced convective flow along a semi-infinite

vertical flat plate in hydrogen-air mixtures. They used the fourth order Runge-Kutta method

to solve the conservation equations. Their investigation showed that thermal-diffusion and

diffusion-thermo effects should not be ignored. Mansour et al. [121] studied the impact

of thermal stratification and chemical reaction on heat and mass transfer, in flow past a

vertical stretching surface, embedded in porous media, subject to Dufour and Soret effects.

influences of the thermal-diffusion and diffusion-thermo parameters on free convection due

to a vertical wavy surface in a Darcy porous medium have been investigated numerically

by Narayana and Sibanda [122]. Narayana and Sibanda [47] investigated the problem of
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micropolar fluid flow in a channel using the homotopy analysis method to solve the flow

equations. Anjalidevi and Devi [115] investigated the influence of magnetic field and ther-

mal radiation on a rotating disk subject to Dufour and Soret effects. Awad et al.[123] used

the successive linearisation method in their study of Soret and Dufour influences in flow

over inverted smooth and wavy cones.

In this Chapter 2 (see also Haroun et al. [124]) we use the spectral relaxation method in the

study of heat and mass transfer in MHD nanofluid flow past an impulsively vertical stretch-

ing surface. The flow is subject to a chemical reaction and a thermophoretic force term. An

earlier study by Awad et al. [70] investigated the problem of an unsteady nanofluid flow

past a stretching sheet with couple stress effects.

1.6 Recent numerical solution techniques

Most problems in science and engineering are governed by non-linear differential equa-

tions. These equations are predominatingly strongly coupled and obtaining their exact solu-

tions is not easy. This accounts for resorting to approximate numerical solutions. Through

the years, a number of computational methods have been developed to solve non-linear cou-

pled equations (Adomian [125]). These range from established numerical schemes like the

Runge-Kutta schemes and finite difference techniques, to the finite element and finite vol-

ume methods. Many numerical methods unfortunately, converge slowly, are not sufficiently

accurate or may not be computationally efficient. In such cases one may resort to perturba-

tion methods to obtain approximate analytical solutions. Perturbation methods, however,

require the presence of either a large or a small parameter in the problem, see Williams

and Rhyne [126]. Additionally, these methods may have slow rates of convergence or may

diverge for certain parameter values. In this study, we use at least two innovative numerical

methods to solve highly non-linear systems of partial and ordinary differential equations

that emerge in the study of fluid flow problems. The methods of particular interest are;
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• the spectral relaxation method (SRM), and

• the spectral quasi-linearization method (SQLM).

These methods have been used in a limited sense by, for example, Motsa et al. [127], Motsa

et al. [128], Shateyi and Marewo [129] and Motsa [130, 131].

In this study, the application of these methods is extended to systems of non-linear coupled

partial differential equations that model complex fluid flow problems.

1.6.1 The spectral relaxation method

The spectral relaxation method is founded on simple iteration schemes formed by shrink-

ing large systems of non-linear equations into smaller systems of linear equations, Sibanda

et al. [132]. This method has been used to solve several non-linear problems and has

been found to be efficient method, see Motsa [131]. The principal idea in the SRM is

the rearrangement and decoupling of a system of non-linear differential equations in the

Gauss-Seidel manner. The decoupled system of equations is integrated numerically using

the Chebyshev spectral collocation method. In essence, any other numerical scheme, such

as finite differences, many be used. It has been noted that the SRM gives good accuracy

with only a few grid points (Motsa [131]). In Motsa and Makukula [133], the method was

used to solve the problem of steady von Karman flow of a Reiner-Rivlin fluid with viscous

dissipation and Joule heating. Accurate results were obtained and the speed of conver-

gence of the method was significantly improved by using successive relaxation techniques.

In Shateyi [134], the problem of steady MHD flow with a Maxwell fluid through a vertical

stretching sheet in a Darcian porous medium was investigated. In Shateyi and Makinde

[135], the SRM was applied to the problem of stagnation point steady flow and heat trans-

fer of an electrically conducting incompressible viscous fluid. Shateyi and Marewo [129]
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studied the magneto-dynamic and heat and mass transfer in boundary layer in incompress-

ible upper-convected Maxwell fluid flow, due to a stretching sheet with viscous dissipation

and thermal radiation. Motsa et al. [127], extended the method to a multistage technique

to obtain better accuracy and computational efficiency. We applied the spectral relaxation

method to solve the system of non-linear partial differential equations that describe double-

diffusive convection and fluid flow problems.

1.6.2 The spectral quasi-linearization method

The spectral quasi-linearization method (SQLM) was originally introduced by Motsa and

Shateyi [136]. In the SQLM, the non-linear equations are linearized using the Newton-

Raphson based quasi-linearization method QLM of Bellman and Kalaba [137]. The method

has been shown to be effective, easy to use and accurate compared to certain classical nu-

merical methods such as finite elements and finite differences for some problems. For

example, in Motsa and Shateyi [136], the SQLM scheme was used to solve the equations

for unsteady free convective mass and energy transfer along a stretching surface in a porous

medium. The method was compared with the local linearisation method and it was shown

that the SQLM loses accuracy when the number of collocation points is large. The method

has been used alongside other methods to determine its accuracy. In Dlamini et al. [138],

the SQLM is compared with the compact finite difference quasi-linearization method for

one and three dimensional systems of equations. The results showed that the SQLM had

faster computational speed than the compact finite difference quasi-linearization mathod

(CFD-QLM) but the SQLM was less accurate for the three dimensional problem. As an-

other example, Motsa and Sibanda [139] used the method to develop a sequence of tech-

niques with arbitrary higher order convergence. The techniques were used to determine

solutions of Falknen-Skan type boundary layer equations. In this thesis we use the SQLM

to solve systems of non-linear partial differential equations that describe fluid motion, and

heat and mass transfer in nanofluids.
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In the literature there is a wide range of techniques that may be described as spectral meth-

ods. In this thesis we are mostly interested in techniques that combine quasi-linearization

with collocation such as Chebyshev collocation. The methods were first introduced by

Motsa et al. [128], and Motsa and Makukula [133] for the solution of non-linear systems

of equations that arise in the study of fluid flow problems.

Over the years, a number of computational methods have been developed to solve non-

linear differential equations. Higher order systems have proven to be complicated to solve

both analytically and numerically. As was described in Section 1.6, while methods such as

the Runge-Kutta schemes, and the finite element method, are useful in terms of providing

approximate solutions for systems of non-linear differential equations, because of slow ac-

curacy, they may be inadequate for strongly non-linear systems of differential equations.

The spectral quasi-linearization method (SQLM) and the spectral relaxation method (SRM)

are accurate, and have higher rates of convergence, with only a small number of grid points,

and ease of implementation for complicated partial non-linear differential equations. Con-

sequently, although the methods have not been applied extensively, we use them here for

the following reasons:

1. Empirical evidence suggests that they are relatively easy to code in Matlab.

2. They have been used in a relatively small number of studies of different degrees

of complexity, although the suggestion is that they are applicable to all non-linear

ordinary differential and partial differential equations. We therefore seek to show,

through solving various systems of coupled non-linear equations, that the quasi-

linearization based spectral methods are accurate, robust and provide alternative so-

lutions to finite element based techniques.

The methods are described in Motsa et al. [128], Motsa and Sibanda [140] and in various

chapters, specifically in Chapter 4 in this thesis. In this chapter we give a brief review of

various fluid flow models, and studies on heat and mass transfer. We present an overview

19



of two methods that can be used in the numerical solution of highly non-linear ordinary

and partial differential equations, which arise in fluid mechanics and other engineering

applications, (see Motsa [130], Dlamini et al. [138], Motsa and Sibanda [140]). The goal is

to highlight the advantages of these methods over traditional methods of solving problems

in fluid mechanics and to construct and analyse various fluid models, including factors that

impact on heat and mass transfer processes.

1.7 Thesis objectives

The objectives of this thesis are to construct and analyse fluid flow models in different areas

configurations and subject to various source terms and boundary conditions. We investigate

how the fluid properties are influenced by changes in fluid and physical parameters and

determine the impact and significance, if any, that these parameter changes have on heat

and mass transfer processes.

A further objective is to test the accuracy, robustness and general validity of the SRM and

SQLM techniques when solving systems of highly non-linear equations that describe and

model fluid flow problems. The findings were validated against results from the literature

such as the finite element and finite difference methods and the Matlab bvp4c solver.

1.8 Structure of the thesis

The main body of this thesis consists of six chapters and the conclusion. In each chapter

a particular problem is investigated. The chapters focus firstly on the central theme and

on the effects of nanofluids and cross-diffusion on fluid flow within a porous medium, and

secondly on the application of the spectral linearization method and the spectral quasi-

linearization method to the solution of a series of non-linear differential equations. The

chapters are as follows;

In Chapter 2 we study double-diffusive convection in nanofluid flow along a stretching or
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shrinking surface, subject to suction or injection velocity, viscous dissipation, and a chem-

ical reaction.

In Chapter 3 we extend the study in Chapter 2 to consider heat and mass transfer when

the flow is subject to a homogeneous chemical reaction, and heat generation with the as-

sumption that thermal-diffusion effects are significant. The coupled non-linear equations

are solved numerically using SRM and SQLM. A significant departure from earlier studies

is the use of a recent boundary condition (Kuznetsov and Nield [109]), namely that the

nanoparticle volume fraction at the wall may not be actively controlled.

In Chapter 4 we extend the work presented in Chapter 3 to the case of a couple stress

nanofluid with vanishing nanoparticle flux at the wall. The conservation equations are

solved numerically using both the spectral relaxation and quasi-linearization methods. The

qualitative and quantitative influence of the physical parameters such as the Lewis number,

the couple stress, thermophoresis parameters and the Prandtl number on the fluid behavior

are determined.

In Chapter 5 we investigate heat and mass transfer in unsteady MHD nanofluids boundary

layer flow past a stretching surface. We seek to provide both a quantitative and qualita-

tive solutions as to how the thermophoresis and Brownian parameters influence the flow

behaviour. This problem is modelled using sets of nonlinear partial differential equations

which are solved numerically using SRM.

In Chapter 6 we study the problem of axisymmetric MHD stagnation point flow due to a

shrinking sheet, subject to Navier slip condition and temperature dependent thermal con-

ductivity. The SRM is used to solve the flow equations. Heat transfer processes are dis-

cussed for two types of wall heating, namely, a prescribed surface heat flux and a prescribed

surface temperature.

In Chapter 7 we present the main findings from this study. We also highlight some signifi-

cant points for future extension of this study, and also its limitations.
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Chapter 2

On unsteady MHD mixed convection in

a nanofluid due to a stretching/shrinking

surface with suction/injection using the spec-

tral relaxation method

In this chapter, we investigate heat and mass transfer in flow through a stretching/shrinking

sheet with suction/injection. We consider copper-water and silver-water nanofluids and as-

sume that the nanoparticle volume fraction can be actively controlled at the boundary sur-

face. For these reasons, we use copper-water and silver-water nanofluids because they have

great potential for enhancing heat transfer processes, and thermal properties of nanoflu-

ids. The flow is subject to a heat source, viscous dissipation and Soret and Dufour effects.

The coupled non-linear partial differential equations that describe the fluid flow are solved

numerically using SRM.
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Abstract
In this study we investigate heat and mass transfer in magnetohydrodynamic mixed
convection flow of a nanofluid over an unsteady stretching/shrinking sheet. The flow
is subject to a heat source, viscous dissipation and Soret and Dufour effects are
assumed to be significant. We have further assumed that the nanoparticle volume
fraction at the wall may be actively controlled. The physical problem is modeled using
systems of nonlinear differential equations which we have solved numerically using
the recent spectral relaxation method. In addition to the discussion on physical heat
and mass transfer processes, we also show that the spectral relaxation technique is an
accurate technique for solving nonlinear boundary value problems.

Keywords: nanofluids; dimensionless suction/injection; magnetohydrodynamic;
Soret and Dufour effects; heat generation parameter

1 Introduction
Nanofluids are suspensions of metallic, non-metallic or polymeric nano-sized powders in
a base liquid which are used to increase the heat transfer rate in various applications. In
recent years, the concept of nanofluid has been proposed as a route for increasing the per-
formance of heat transfer liquids. Due to the increasing importance of nanofluids, there
is a large amount of literature on convective heat transport in nanofluids and problems
linked to a stretching surface. An excellent collection of articles on this topic can be found
in [–]. The majority of the previous studies have been restricted to boundary layer flow
and heat transfer in nanofluids. Following the early work by Crane [], Khan and Pop []
were among the first researchers to study nanofluid flow due to a stretching sheet. Other
researchers studied various aspects of flow and heat transfer in a fluid of infinite extent;
see, for instance, Chen [] and Abo-Eldahab and Abd El-Aziz []. A mathematical analysis
of momentum and heat transfer characteristics of the boundary layer flow of an incom-
pressible and electrically conducting viscoelastic fluid over a linear stretching sheet was
carried out by Abd El-Aziz []. In addition, radiation effects on viscous flow of a nanofluid
and heat transfer over a nonlinearly stretching sheet were studied by Hady et al. []. Theo-
retical studies include, for example, modeling unsteady boundary layer flow of a nanofluid
over a permeable stretching/shrinking sheet by Bachok et al. []. Rohni et al. [] devel-

© 2015 Haroun et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.
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oped a numerical solution for the unsteady flow over a continuously shrinking surface
with wall mass suction using the nanofluid model proposed by Buongiorno [].

The effect of an applied magnetic field on nanofluids has substantial applications in
chemistry, physics and engineering. These include cooling of continuous filaments, in the
process of drawing, annealing and thinning of copper wire. Drawing such strips through
an electrically conducting fluid subject to a magnetic field can control the rate of cooling
and stretching, thereby furthering the desired characteristics of the final product. Such
an application of a linearly stretching sheet of incompressible viscous flow of MHD was
discussed by Pavlov []. In other work, Jafar et al. [] studied the effects of magneto-
hydrodynamic (MHD) flow and heat transfer due to a stretching/shrinking sheet with an
external magnetic field, viscous dissipation and Joule effects.

A model for magnetohydrodynamic flow over a uniformly stretched vertical permeable
surface subject to a chemical reaction was suggested by Chamkha []. An analysis of
the effects of a chemical reaction on heat and mass transfer on a magnetohydrodynamic
boundary layer flow over a wedge with ohmic heating and viscous dissipation in a porous
medium was done by Kandasamy and Palanimani []. Rashidi and Erfani [] studied
the steady MHD convective and slip flow due to a rotating disk with viscous dissipation
and ohmic heating. Rashidi et al. [] found approximate analytic solutions for an MHD
boundary-layer viscoelastic fluid flow over a continuously moving stretching surface using
the homotopy analysis method. Rashidi and Keimanesh [] used the differential trans-
form method and Padé approximants to solve the equations that model MHD flow in a
laminar liquid film from a horizontal stretching surface. The effect of a transverse mag-
netic field on the flow and heat transfer over a stretching surface were examined by Anjali-
Devi and Thiyagarajan []. The influence of a chemical reaction on heat and mass trans-
fer due to natural convection from vertical surfaces in porous media subject to Soret and
Dufour effects was also studied by Postelnicu [].

Despite all this previous work, there is still a lot that is unknown about the flow and
heat and mass transfer properties of different nanofluids. For instance, the composition
and make of the nanoparticles may have an impact on the performance of the nanofluid
as a heat transfer medium. In this paper we investigate unsteady MHD mixed convec-
tion boundary layer with suction/injection subject to a number of source terms including
Dufour and Soret effects, heat generation, an applied magnetic field and viscous dissipa-
tion. Various numerical and or semi-numerical methods can and have been used to solve
the equations that model this type of boundary layer flow. These equations are non-similar
and coupled. In this paper we use the spectral relaxation method (SRM) that was recently
proposed by Motsa []. This spectral relaxation method promises fast convergence with
good accuracy, has been successfully used in a limited number of boundary layer flow
and heat transfer problems (see [, ]). In this paper we discuss the fluid flow and heat
transfer as well as highlight the strengths of the solution method.

2 Governing equations
Consider the two-dimensional unsteady laminar MHD mixed convective flow of a
nanofluid due to a stretching sheet situated at y =  with stretching velocity u = ax, where
a is a constant. The temperature and nanoparticle volume fraction at the stretching sur-
face are Tw and Cw, respectively, and those of the ambient nanofluid are T∞ and C∞,
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respectively. The x and y directions are in the plane of and perpendicular to the sheet, re-
spectively. The continuity, momentum, energy and concentration equations of unsteady,
incompressible nanofluid boundary layer flow are as follows (see Yang []):

∂u
∂x

+
∂v
∂y

= , (.)

∂u
∂t

+ u
∂u
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= –
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where t, u and v are the time, the fluid velocity and the normal velocity components in the
x and y orientations, respectively; νnf , p, ρnf , σ , B, μnf , g are the nanofluid kinematic vis-
cosity, the pressure, nanofluid density, electrical conductivity, the uniform magnetic field
in the y direction, the effective dynamic viscosity of the nanofluid and gravitational accel-
eration, respectively; βT , βC , T , C, αnf , (ρcp)nf , Q are the volumetric thermal expansion
coefficient, the solutal expansion coefficient, the temperature of the fluid in the boundary
layer, fluid solutal concentration, the thermal diffusivity of the nanofluid, the nanofluid
heat capacitance and the volumetric rate of heat generation, respectively; ρf , Dm, KT , Cs,
(cp)nf , Tm, R are the density of the base fluid, the mass diffusivity of concentration, thermal
diffusion ratio, concentration susceptibility, specific heat of the fluid at constant pressure,
mean fluid temperature and the chemical reaction parameter, respectively.

The boundary conditions are as follows:

t ≥ : u = Uw(x) = ax, v = vw, T = Tw, C = Cw at y = ,

t ≥ : u = U∞(x) = a∞x, v = , T = T∞, C = C∞ as y → ∞,
(.)

and the initial conditions are

t < : u(x, y, t) = , v(x, y, t) = ,

T(x, y, t) = Tw, C(x, y, t) = Cw, ∀x, y,
(.)

where a∞ (> ) is the stagnation flow rate parameter, a <  for a shrinking surface and
a >  for a stretching surface. Here vw is prescribed suction velocity (vw < ) or blowing
velocity (vw > ).

In the free stream the momentum equation (.) becomes

U∞
dU∞

dx
= –


ρnf

∂p
∂x

–
σB


ρnf

U∞. (.)

Substituting (.) in (.) the momentum equation is written as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= νnf
∂u
∂y + U∞

dU∞
dx

+ (U∞ – u)
σB


ρnf

+ gβT (T – T∞) + gβC(C – C∞). (.)
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The effective dynamic viscosity of the nanofluid was given by Brinkman [] as

μnf =
μf

( – φ). , (.)

where φ is the solid volume fraction of nanoparticles, μf is the dynamic viscosity of the
base fluid. In equations (.)-(.),

(ρcp)nf = ( – φ)(ρcp)f + φ(ρcp)s,

ρnf = ( – φ)ρf + φρs, νnf =
μnf

ρnf
, (.)

αnf =
knf

(ρcp)nf
,

knf

kf
=

(ks + kf ) – φ(kf – ks)
(ks + kf ) + φ(kf – ks)

,

where knf is the thermal conductivity of the nanofluid, kf and ks are the thermal conductiv-
ities of the fluid and of solid fractions, respectively, and ρs is the density of solid fractions,
(ρcp)f and (ρcp)s are the heat capacity of the base fluid and the effective heat capacity of a
nanoparticle, respectively, knf is the thermal conductivity of the nanofluid.

The continuity equation (.) is satisfied by introducing a stream function ψ(x, y) such
that

u =
∂ψ

∂y
, v = –

∂ψ

∂x
. (.)

We introduce the following non-dimensional variables (see Liao []):

η =
[

a∞
νf ξ

] 


y, ξ =  – exp(–τ ), τ = a∞t, ψ = [a∞νf ξ ]

 xf (ξ ,η),

θ (ξ ,η) =
T – T∞
Tw – T∞

, Φ(ξ ,η) =
C – C∞

Cw – C∞
,

(.)

where f (ξ ,η) is a dimensionless stream function, θ (ξ ,η) is the dimensionless temperature
and φ(ξ ,η) is the dimensionless solute concentration. By using (.) and (.), the gov-
erning equations (.), (.) and (.) along with the boundary conditions (.) are reduced
to the following two-point boundary value problem:

f ′′′ + φ

[
η


( – ξ )f ′′ + ξ

(
ff ′′ – f ′ +  + Ha( – f ′) + Grtθ + GrcΦ

)]

= φξ ( – ξ )
∂f ′

∂ξ
, (.)

θ ′′ +
kf

knf
Prφ

[
η


( – ξ )θ ′ + ξ

(
f θ ′ + δθ

)
+

Df

φ
Φ ′′

]
=

kf

knf
Prφξ ( – ξ )

∂θ

∂ξ
, (.)

Φ ′′ + Sc
[

η


( – ξ )Φ ′ + ξ

(
f Φ ′ – γΦ

)
+ Srθ ′′

]
= Scξ ( – ξ )

∂Φ

∂ξ
. (.)

The boundary conditions are as follows:

f (ξ , ) = fw, f ′(ξ , ) = λ, θ (ξ , ) = , Φ(ξ , ) =  at η = , ξ ≥ ,

f ′(ξ ,∞) = , θ (ξ ,∞) = , Φ(ξ ,∞) =  as η → ∞, ξ ≥ ,
(.)
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where primes denote differentiation with respect to η, αf = kf /(ρcp)f and νf = μf /ρf are
the thermal diffusivity and kinetic viscosity of the base fluid, respectively. Other non-
dimensional parameters appearing in equations (.) to (.) are Ha, Grt , Grc, Grc, Pr,
δ, Df , Sc, γ and Sr, and they denote the Hartmann number, the local temperature Grashof
number, the local concentration Grashof number, the Prandtl number, the dimensionless
heat generation parameter, the Dufour number, the Schmidt number, the scaled chemi-
cal reaction parameter and the Soret number, respectively. These parameters are defined
mathematically as

Ha =
σB


a∞ρnf

, Grt =
gβT (Tw – T∞)

a∞x
,

Grc =
gβC(Cw – C∞)

a∞x
, Pr =

νf

αf
, δ =

Q
a∞(ρcp)nf

,

Df =
DmKT (Cw – C∞)

Cs(Cp)f νf (Tw – T∞)
, Sc =

νf

Dm
,

γ =
R

a∞
, Sr =

DmKT

Tm

(Tw – T∞)
νf (Cw – C∞)

.

(.)

The boundary conditions are as follows:

f (ξ , ) = fw, f ′(ξ , ) = λ, θ (ξ , ) = , Φ(ξ , ) =  at η = , ξ ≥ ,

f ′(ξ ,∞) = , θ (ξ ,∞) = , Φ(ξ ,∞) =  as η → ∞, ξ ≥ .
(.)

The nanoparticle volume fractions φ and φ are defined as

φ = ( – φ).
[

 – φ + φ

(
ρs

ρf

)]
, φ =

[
 – φ + φ

(ρc)s

(ρc)f

]
. (.)

In equations (.), fw = –vw/
√

a∞νf ξ represents suction (fw > ) or injection (fw < ) and
λ (= a/a∞) is the stretching/shrinking parameter.

3 Skin friction, heat and mass transfer coefficients
The skin friction coefficient Cf , the local Nusselt number Nux and the local Sherwood
number Shx characterize the surface drag, wall heat and mass transfer rates, respectively.

The shearing stress at the surface of the wall τw is defined as

τw = –μnf

(
∂u
∂y

)
y=

= –
U∞μf

( – φ).x

√
U∞x
νf ξ

f ′′(, ξ ), (.)

where μnf is the coefficient of viscosity.
The skin friction coefficient is obtained as

Cfx =
τw

ρf U∞
, (.)

and using equation (.) in (.) we obtain




( – φ).Cfx = –ξ– 
 Re– 


x f ′′(, ξ ). (.)
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The heat transfer rate at the surface flux at the wall is defined as

qw = –knf

(
∂T
∂y

)
y=

= –knf
(Tw – T∞)

x

√
U∞x
νf ξ

θ ′(, ξ ), (.)

where knf is the thermal conductivity of the nanofluid. The local Nusselt number is defined
as

Nux =
xqw

kf (Tw – T∞)
. (.)

Using equation (.) in equation (.), the dimensionless wall heat transfer rate is obtained
as

(
kf

knf

)
Nux = –ξ– 

 Re


x θ ′(, ξ ). (.)

The mass flux at the wall surface is defined as

qm = –D
(

∂C
∂y

)
y=

= –D
(Cw – C∞)

x

√
U∞x
νf ξ

Φ ′(, ξ ), (.)

and the local Sherwood number (mass transfer coefficient) is obtained as

Shx =
xqm

D(Cw – C∞)
. (.)

The dimensionless wall mass transfer rate is obtained as

Shx = –ξ– 
 Re



x Φ ′(, ξ ), (.)

where Rex represents the local Reynolds number and is defined as

Rex =
xu∞
νf

. (.)

4 Cases of special interest
In this section we highlight two particular cases where equations (.) to (.) reduce to
ordinary differential equations.

4.1 Initial steady flow
For steady flow and a regular fluid, if we assume that ξ → , where  < ξ ≤ , then t ≈ .
Thus f (η, ξ ) ≈ f (η), θ (η, ξ ) ≈ θ (η) and Φ(η, ξ ) ≈ Φ(η). In this case equations (.) to (.)
reduce to

f ′′′ +


φηf ′′ = , (.)

θ ′′ +



kf

knf
Prφηθ ′ +

kf

knf
PrDf Φ

′′ = , (.)

Φ ′′ +



ScηΦ ′ + ScSrθ ′′ = , (.)
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subject to the appropriately modified boundary conditions (.). The exact solutions of
these equations cannot be easily obtained. The numerical solutions were obtained using
the spectral relaxation method (SRM).

4.2 Final steady state flow
In this case, we have ξ =  when t → ∞, corresponding to f (η, ) = f (η), θ (η, ) = θ (η) and
Φ(η, ) = Φ(η). Equations (.) to (.) reduce to the following forms:

f ′′′ + ff ′′ – f ′ +  + Ha( – f ′) + GRtθ + GrcΦ = , (.)

θ ′′ +
kf

knf
Prφ

(
f θ ′ + δθ

)
+

kf

knf
PrDf Φ

′′ = , (.)

Φ ′′ + Sc
(
f Φ ′ – γΦ + Srθ ′′) = , (.)

subject to the boundary conditions (.). Equations (.) to (.) were solved using the
SRM, Motsa [].

The spectral relaxation method (SRM) is an iterative procedure that employs the Gauss-
Seidel type of relaxation approach to linearize and decouple the system of differential
equations. Further details of the rules of the SRM can be found in [, ]. The linear
terms in each equation are evaluated at the current iteration level (denoted by r + ) and
the non-linear terms are assumed to be known from the previous iteration level (denoted
by r). The linearized form of (.)-(.) is

f ′′′
r+ + a,rf ′′

r+ + a,rf ′
r+ – φξ ( – ξ )

∂f ′

∂ξ
= R,r , (.)

θ ′′
r+ + b,rθ

′
r+ + b,rθr+ –

kf

knf
Prφξ ( – ξ )

∂θ

∂ξ
= R,r , (.)

φ′′
r+ + cr,φ

′
r+ + c,rφr+ – Scξ ( – ξ )

∂φ

∂ξ
= R,r , (.)

where

a,r = φ

[
η


( – ξ ) + ξ fr

]
, a = –φξHa,

R,r = –φ
[
ξ
(
 – f ′

r
)

+ Ha + Grtθr + Grcφr
]
,

b,r =
kf

knf
Prφ

[
η


( – ξ ) + ξ fr+

]
, b,r =

kf

knf
Prφξ ,

R,r = –
kf

knf
PrDf Φr ,

c,r =
η


( – ξ )Sc + ξ fr+, c,r = –Scξγ ,

R,r = –ScSrθ ′′
r+.

Equations (.)-(.) are now linear and decoupled. The equations can be solved sequen-
tially to obtain approximate solutions for f (η, ξ ), θ (η, ξ ) and φ(η, ξ ). In this study, the
Chebyshev spectral collocation method was used to discretize in η and finite differences
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used to discretize in ξ directions. Starting from initial guesses for f , θ and φ, equations
(.)-(.) were solved iteratively until the approximate solutions converged within a cer-
tain prescribed tolerance level. The accuracy of the results was validated against results
from the literature for some special cases of the governing equations.

5 Results and discussion
The system of partial differential equations (.) to (.) subject to boundary conditions
(.) were solved numerically using the spectral relaxation method (SRM) for Cu-water
and Ag-water nanofluids. The thermophysical properties of the nanofluids used in the
numerical simulations are given in Table .

To determine the accuracy of our numerical results, the skin friction coefficient is com-
pared with the published results of Jafar et al. [], Wang [] and Suali et al. [] in Ta-
bles -. Here we have varied the stretching parameter while keeping other physical pa-
rameters fixed. Table  gives a comparison of the SRM results with those obtained by Jafar
et al. [] and Wang [] when Ha = Grt = Grc = δ = Df = Sc = Sr = γ = φ = , Pr =  and
ξ =  for different values of the stretching/shrinking parameter. It is observed that for in-
creasing λ, the present results are in good agreement with results in the literature.

Table  gives the skin friction coefficient for selected stretching λ parameter values. Here
we note that as the stretching rate decreases, the skin friction coefficient increases. These
results are in good agreement with those obtained by Suali et al. [].

The effects of the nanoparticle volume fraction on the fluid velocity, temperature, con-
centration profiles as well as skin friction, local Nusselt and Sherwood numbers are given

Table 1 Thermophysical properties of the base fluid and the nanoparticles [29] and [30]

Physical properties Base fluid (Water) Copper (Cu) Silver (Ag)

Cp (J/kgK) 4,179 385 235
ρ (Kg/m3) 997.1 8,933 10,500
k (W/mK) 0.613 401 429
α × 107 (m2/s) 1.47 1,163.1 1,738.6
β × 105 (K–1) 21 1.67 1.89

Table 2 Comparison of the SRM result with Wang [31] and Jafar et al. [15] for the skin friction
coefficient f ′′(0, 1) for different stretching rates

λ Wang [31] Jafar et al. [15] Present result (SRM)

f ′′(0, 1) f ′′(0, 1) f ′′(0, 1)

0 1.232588 1.2326 1.23258
0.1 1.14656 1.1466 1.14655
0.2 1.05113 1.0511 1.05112
0.5 0.71330 0.7133 0.71328
1 0.00000 0.00000 0.00000
2 –1.88731 –1.8873 –1.88690
5 –10.26475 –10.2648 –10.24531

Table 3 Comparison of the SRM results with Wang [31] and Jafar et al. [15] for the skin friction
coefficient f ′′(0, 1) for different stretching rates

λ –0.25 –0.5 –0.75 –1

Wang [31] 1.40224 1.49576 1.48930 1.32882
Jafar et al. [15] 1.4022 1.4957 1.4893 1.32880
SRM result 1.40224 1.49565 1.48913 1.32795
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Table 4 Comparison of the SRM result with Suali et al. [32] for the skin friction coefficient for
different stretching/shrinking sheet rates

λ Suali et al. [32] SRM result

f ′′(0, 1) f ′′(0, 1)

4 –7.086378 –7.086378
3 –4.276545 –4.276542
0.2 1.051130 1.051130
0.1 1.146561 1.146561

–0.2 1.373886 1.373886
–0.5 1.495672 1.495670

Figure 1 Effect of nanoparticle value fraction φ
on velocity for Df = 0.01, λ = 0.5, Grt = 0.01,
Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,
fw = 1, γ = 0.1 and ξ = 0.5.

Figure 2 Effect of various nanoparticle value fractions φ on (a) temperature profiles and
(b) concentration profiles when Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1,
Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

in Figures -. It is evident that the solute concentration, skin friction and the local Nusselt
number decrease with increasing nanoparticle volume fraction while the velocity, tem-
perature, and the local Sherwood number increase. This is because with an increase in
nanoparticles volume fraction, the thermal conductivity of the nanofluid increases, which
reduces the thermal boundary layer thickness and the temperature gradient at the wall.

The axial velocity in the case of an Ag-water nanofluid is comparatively higher than
that in the case of a Cu-water nanofluid. The temperature distribution in an Ag-water
nanofluid is higher than that in a Cu-water nanofluid and this is explained by the observa-
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Figure 3 Effect of various nanoparticle value
fractions φ on the skin friction coefficient for
Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Pr = 7,
Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1 and γ = 0.1.

Figure 4 Effect of nanoparticle volume fraction φ on (a) the heat transfer coefficient and (b) the mass
transfer coefficient when Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,
fw = 1 and γ = 0.1.

tion that the thermal conductivity of silver is higher than that of copper. The concentration
boundary layer thickness is higher for the case of a Cu-water than that for the case of an
Ag-water nanofluid.

Figure  shows that the skin friction coefficient decreases monotonically with increas-
ing ξ . The result is true for both types of fluids. The maximum value of the skin fric-
tion in the case of a Cu-water nanofluid is achieved at a smaller value of ξ in compari-
son with an Ag-water nanofluid. Furthermore, in this paper it is found that the Ag-water
nanofluid shows less drag as compared to the Cu-water nanofluid. The dimensionless wall
heat transfer rate and the dimensionless wall mass transfer rate are shown as functions of
ξ in Figure (a) and (b), respectively. We observe that the wall heat transfer rate decreases
while the opposite is true in case of the wall mass transfer rate. The Cu-water nanofluid
exhibits higher wall heat transfer rate as compared to the Ag-water nanofluid, while the
Cu-water nanofluid exhibits less than the Ag-water nanofluid. The presence of nanopar-
ticle tends to increase the wall heat transfer rate and to reduce the wall mass transfer rates
with increasing the values of ξ .

Figures - show the influence of the Hartmann number on the velocity, temperature,
skin friction, the local Nusselt number and the local Sherwood number. The effect of the
Hartmann number Ha is to increase the nanofluid velocity and the wall heat transfer rate,
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Figure 5 Effect of the Hartmann number Ha on velocity profiles for Df = 0.01, φ = 0.2, Grt = 0.01,
Grc = 0.01, Pr = 7, fw = 1, δ = 0.1, Sc = 1, Sr = 1, λ = –1.15, γ = 3 and ξ = 0.5.

Figure 6 Effect of the Hartmann number Ha on
the skin friction coefficient for Df = 0.01, φ = 0.2,
Grt = 0.01, Grc = 0.01, Pr = 7, fw = 1, δ = 0.1,
Sc = 1, Sr = 1, λ = –1.15 and γ = 3.

Figure 7 Effect of various values of the Hartmann number Ha on (a) the heat transfer coefficient and
(b) the mass transfer coefficient when Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, fw = 1, δ = 0.1,
Sc = 1, Sr = 1, λ = –1.15 and γ = 3.
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whereas it reduced the skin friction coefficient and the wall mass transfer rate. A simi-
lar observation was made by Jafar et al. []. The momentum boundary layer thickness
increases with increase in the Hartmann number.

Figure  shows the skin friction coefficient as a function of ξ . It is clear that for Ag-water
and Cu-water nanofluids, the skin friction reduces when ξ increases. We note that the Cu-
water nanofluid exhibits higher drag to the flow as compared to the Ag-water nanofluid.
Figure  shows the wall heat and mass transfer rates for a different Hartmann number Ha,
it is clear that the value of wall heat transfer rate increases as ξ increases, in the case of
an Ag-water nanofluid it is less than in the case of a Cu-water nanofluid. Further, the wall
mass transfer rate increases up to the value of ξ before reducing.

Figures - show the velocity, temperature, concentration of nanofluid with skin fric-
tion, the wall heat and mass transfer rates for various values of the suction/injection pa-
rameter. We observe that the velocity boundary layer thickness decreases with increasing
values of the suction parameter. This is because due to suction, the fluid is removed from
the system which reduces the momentum boundary layer thickness. Similarly, the bound-

Figure 8 Effect of suction/injection on velocity profiles when Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01,
Pr = 7, Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5, γ = 3 and ξ = 0.5.

Figure 9 Effect of suction/injection on (a) temperature profiles and (b) concentration profiles for
Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5, γ = 3 and ξ = 0.5.
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Figure 10 Effect of the suction/injection
parameter on the skin friction coefficient for
Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7,
Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5 and γ = 3.

Figure 11 Effect of the suction/injection parameter on (a) the heat transfer coefficient and (b) the
mass transfer coefficient when Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.2, Sc = 1,
Sr = 1, λ = 0.5 and γ = 3.

ary layer thickness increases with increase of the injection parameter as injection allows
the fluid to enter the system. The thermal boundary layer thickness decreases due to in-
jection, while it increases with suction. The effect of the suction/injection parameter is
to increase the concentration profile at the surface. Beyond this critical value, the con-
centration profile decreases with increasing suction/injection. The solute concentration
boundary layer thickness is larger for the case of a Cu-water nanofluid than that for the
case of an Ag-water nanofluid (see Figure ). The skin friction coefficient decreases with
increasing the values of ξ . It is obvious that the skin friction for the case of an Ag-water
nanofluid is relatively less than that for the case of a Cu-water nanofluid (see Figure ).

The axial distributions of the wall heat and mass transfer rates are shown in Figure (a)
and (b), respectively. The wall heat transfer rate increased with ξ , and we observe that the
heat transfer rate is higher for a Cu-water nanofluid than for an Ag-water nanofluid. It is
interesting to note that with suction (fw = –), the heat transfer rate is less for an Ag-water
nanofluid than for a Cu-water nanofluid up to a certain value of ξ . Beyond this point, the
heat transfer rate is higher for an Ag-water nanofluid as compared to a Cu-water nanofluid,
while the wall mass transfer rate increases monotonically with ξ to a maximum values
before reducing. It is shown that the mass transfer rate is higher for a Cu-water nanofluid
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Figure 12 Effect of stretching/shrinking parameter values λ on velocity profiles for Df = 0.01, φ = 0.2,
Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

Figure 13 Effect of various stretching/shrinking parameter values λ on (a) temperature profiles and
(b) concentration profiles for Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1,
Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

than for an Ag-water nanofluid. The opposite behavior is observed in the case of suction
when fw = –. The mass transfer rate for an Ag-water nanofluid is higher than that for
a Cu-water nanofluid up to a certain value of ξ , and beyond this critical value, the mass
transfer in an Ag-water nanofluid is less than that in a Cu-water nanofluid, Figure (b).

The influence of stretching/shrinking on velocity, temperature, solutal concentration
profiles, the skin friction coefficient, wall heat and mass transfer rates are shown in Fig-
ures -. Figure  shows that the momentum boundary layer thickness increases with
the stretching/shrinking rate. This may be attributed to the fact than an increase in the
stretching parameter enhances the velocity of the nanofluid which in turn enhances the
momentum boundary layer thickness.

Figure  shows that the thermal and concentration boundary layer thicknesses decrease
as the stretching rate increases. For the shrinking case, when λ = –, the momentum
boundary layer for an Ag-water nanofluid is greater than that for a Cu-water nanofluid,
while the opposite is observed for the stretching case when λ = . The Ag-water nanofluid
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Figure 14 Effect of stretching/shrinking
parameter values λ on the skin friction
coefficient for Df = 0.01, φ = 0.2, Grt = 0.01,
Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,
fw = 1 and γ = 0.1.

Figure 15 Effect of various stretching/shrinking parameter values λ on (a) the heat transfer
coefficient and (b) the mass transfer coefficient for Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7,
Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1 and γ = 0.1.

thermal boundary is higher than that of a Cu-water nanofluid (see Figure (a)). The solu-
tal concentration increases up to a critical η, and beyond this critical value the concentra-
tion profile decreases (see Figure (b)). We observe that solute concentration profiles are
larger for the case of a Cu-water than those for the case of an Ag-water nanofluid for the
shrinking sheet with λ = –, while the opposite is true for the stretching sheet with λ = .

Figure  shows the effect of stretching/shrinking on the shear stress, while Figure 
shows the effect of the stretching rate on the wall heat and mass transfer rates. From Fig-
ure  we note that the shear stress increases with the stretching/shrinking parameter.
The shear stress decreases with ξ . Figure (a) shows that the heat transfer rate increases
with increasing λ. The mass transfer at the wall decreases with the increase in λ. The heat
transfer rate is larger for the case of an Ag-water nanofluid compared to that of a Cu-water
nanofluid, while the opposite is true for the mass transfer rate (see Figure ).

6 Conclusions
We have investigated heat and mass transfer in unsteady MHD mixed convection in a
nanofluid due to a stretching/shrinking sheet with heat generation and viscous dissipation.
Other parameters of interest in this study included the Soret and Dufour effects. In this
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paper we considered Cu-water and Ag-water nanofluids and assumed that the nanoparti-
cle volume fraction can be actively controlled at the boundary surface. We have solved the
model equations using the spectral relaxation method, and to benchmark our solutions,
we compared our results with some limiting cases from the literature. These results were
found to be in good agreement.

The numerical simulations show, inter alia, that the skin friction factor increases with
both an increase in the nanoparticle volume fraction and the stretching rate and that an
increase in the nanoparticle volume fraction leads to a reduction in the wall mass transfer
rate.
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Chapter 3

Heat and mass transfer of nanofluid through

an impulsively vertical stretching surface

using the spectral relaxation method

In this chapter we investigate unsteady heat and mass transfer in nanofluid flow through

an impulsively vertical stretching surface. The flow is subject to a heat source, a homo-

geneous chemical reaction, Brownian motion, and thermophoresis parameters which are

assumed to be significant. The transformed non-similar partial differential equations are

solved numerically using SRM and SQLM.
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Abstract
In this paper, we investigate heat and mass transfer in a magnetohydrodynamic
nanofluid flow due to an impulsively started stretching surface. The flow is subject to
a heat source, a chemical reaction, Brownian motion and thermophoretic parameters
which are assumed to be significant. We have further assumed that the nanoparticle
volume fraction at the wall may be actively controlled. The physical problem is
modeled using systems of nonlinear differential equations which have been solved
numerically using the spectral relaxation method. Comparing with previously
published results by Khan and Pop (Int. J. Heat Mass Transf. 53:2477-2483, 2010)
shows an excellent agreement. Some of the particular findings are that the skin
friction coefficient decreases with an increase in the nanoparticle volume fraction, the
heat transfer coefficient decreases with an increase in the nanoparticle volume
fraction and that the mass transfer coefficient increases with an increase in the
nanoparticle volume fraction.

Keywords: nanofluids; impulsively stretching surface; magnetohydrodynamic;
chemical reaction parameter; spectral relaxation method

1 Introduction
The term nanofluid denotes a liquid in which nanoscale particles are suspended in a base
fluid with low thermal conductivity such as water, oils and ethylene glycol. In recent years,
the concept of nanofluid has been proposed as a route for increasing the performance
of heat transfer liquids. Due to the increasing importance of nanofluids, there is now a
large amount of literature on convective transport of nanofluids and problems linked to
a stretching surface. Choi [] initially pointed out that addition of these nanoparticles to
the base fluid appreciably enhances the effective thermal conductivity of the fluid. An ex-
cellent collection of articles on this topic can be found in [, ] and Das et al. []. A non-
homogenous equilibrium model proposed by Buongiorno [] revealed that the massive in-
crease in the thermal conductivity occurs due to the presence of two main effects; namely
the Brownian diffusion and the thermophoretic diffusion of nanoparticles. The study of
a steady boundary layer flow of a nanofluid towards a stretching sheet was reported by
Khan and Pop []. Radiation effects on the viscous flow of a nanofluid and heat transfer
over a nonlinearly stretching sheet were studied by Hady et al. []. Kuznetsov and Nield

© 2015 Haroun et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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[] carried out a numerical investigation of mixed convection in the nanofluid flow over a
vertical flat plate. In related work, Nield and Kuznetsov [] studied the Cheng-Minkowycz
problem for the natural convection in nanofluid flow over a flat plate. Yacob et al. []
studied the stagnation point flow of a nanofluid flow due to a stretching/shrinking sheet
using a shooting technique together with a fourth-fifth order Runge-Kutta method. Re-
cently, results of MHD mixed convection in unsteady nanofluid flow due to a stretch-
ing/shrinking surface with suction/injection were reported by Haroun et al. []. In this
study the model equations were solved using a spectral relaxation method. Stagnation
point flow of a nanofluid with heat generation/absorption and suction/blowing was inves-
tigated by Hamad and Ferdows []. Rashidi and Erfani [] used the modified differential
transform method to investigate boundary layer flow due to stretching surfaces. Some ex-
cellent articles on the flow of nanofluids include those by Rashidi et al. [], Anwar Bég
et al. [] and Garoosi et al. []. Some interesting results on discrete problems were pre-
sented by [, ].

Magnetohydrodynamic (MHD) flow and heat and mass transfer over a stretching sur-
face have many important technological and industrial applications such as in micro MHD
pumps, micro mixing of physiological samples, biological transportation and in drug de-
livery. An excellent collection of articles on this topic can be found in [, ]. The ap-
plication of magnetic field produces a Lorentz force which assists in mixing processes as
an active micromixing technology technique. Hence, transportation of conductive bio-
logical fluids in micro systems may greatly benefit from theoretical research in this area
(see Yazdi et al. []). Studies on magneto-hydrodynamics (MHD) free convective bound-
ary layer flow of nanofluids are very limited. More recently, Chamkha and Aly [] studied
magneto-hydrodynamics (MHD) free convective boundary layer flow of a nanofluid along
a permeable isothermal vertical plate in the presence of heat generation or absorption ef-
fects. Matin et al. [] studied magneto-hydrodynamics (MHD) mixed convective flow of
nanofluid over a stretching sheet. Magneto-hydrodynamics (MHD) forced convective flow
of nanofluid over a horizontal stretching flat plate with variable magnetic field including
the viscous dissipation was investigated by Nourazar et al. []. The effect of a transverse
magnetic field on the flow and heat transfer over a stretching surface was examined by
Anjali Devi and Thiyagarajan [].

Despite all the previous work, there is still a lot that is unknown about the flow and
heat and mass transfer properties of different nanofluids. For instance, the composition
and make of nanoparticles may have an impact on the performance of nanofluid as a heat
transfer medium. The aim of the present study is to analyze the effects of Brownian motion
parameter and thermophoresis parameter on unsteady boundary layer flow heat and mass
transfer of a nanofluid flow past an impulsively stretching surface in the presence of a
chemical reaction and an applied magnetic field. The model equations are solved using the
spectral relaxation method (SRM) that was recently proposed by Motsa []. The spectral
relaxation method promises fast convergence with good accuracy, has been successfully
used in a limited number of boundary layer flow, heat and mass transfer studies (see [,
]). A comparative study for a special case is presented, which shows good agreement
with Khan and Pop [].

2 Governing equations
Consider the two-dimensional unsteady boundary layer flow heat and mass transfer in a
nanofluid past an impulsively stretching vertical surface situated at y =  with stretching
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velocity u(x) = ax, where a is a constant. The temperature and nanoparticle concentration
at the stretching surface are Tw and Cw, respectively, and those of the ambient nanofluid
are T∞ and C∞, respectively. The x and y directions are taken along and perpendicular to
the sheet, respectively. Here we focus mainly in the region x, y ≥ . The Boussinesq ap-
proximation is applied here. The continuity, momentum, energy and concentration equa-
tions of an unsteady, incompressible nanofluid boundary layer flow are as follows (see
Kuznetsov and Nield []):

∂u
∂x

+
∂v
∂y

= , ()

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
μnf

ρnf

∂u
∂y + gβT (T – T∞) + gβC(C – C∞) –

σB


ρnf
u, ()

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αnf
∂T
∂y + τ ∗

[
DB

∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)]
, ()

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂C
∂y +

DT

T∞
∂T
∂y – K(C – C∞), ()

where u and v are the fluid velocity and normal velocity components along x- and
y-directions, respectively; μnf , ρnf , σ , B, g are the effective dynamic viscosity of the
nanofluid, nanofluid density, electrical conductivity, the uniform magnetic field in the
y-direction and gravitational acceleration; βT , βC , T , C, αnf , τ ∗ (= (ρc)p/(ρc)f ) are the vol-
umetric thermal expansion coefficient, volumetric solutal expansion coefficient, temper-
ature of fluid in the boundary layer, fluid solutal concentration, the thermal diffusivity of
the nanofluid, the ratio of effective heat capacity of the nanoparticle material to heat ca-
pacity of the fluid; DB, DT , T∞, K are the Brownian motion coefficient, the thermophoretic
diffusion coefficient, mean fluid temperature and the chemical reaction parameter.

The boundary conditions are

t ≥ : u = Uw(x) = ax, v = , T = Tw, C = Cw at y = ,

Tw(x) = T∞ + Tx, Cw(x) = C∞ + Cx, ()

t ≥ : u, v → , T → T∞, C → C∞ as y → ∞,

and the initial conditions are

t < : u(x, y, t) = , v(x, y, t) = ,

T(x, y, t) = T∞, C(x, y, t) = C∞, ∀x, y,
()

where a is the stretching/shrinking rate and stagnation flow rate parameters, with a < 
for shrinking, a >  for stretching.

The effective dynamic viscosity of the nanofluid was given by Brinkman [] as

μnf =
μf

( – φ). , ()

where φ and μf are the solid volume fraction of nanoparticles and the dynamic viscosity
of the base fluid.
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In equations () to (), the quantities (ρcp)nf , ρnf and αnf are given by

(ρcp)nf = ( – φ)(ρcp)f + φ(ρcp)s,

ρnf = ( – φ)ρf + φρs, νnf =
μnf

ρnf
, ()

αnf =
knf

(ρcp)nf
,

knf

kf
=

(ks + kf ) – φ(kf – ks)
(ks + kf ) + φ(kf – ks)

,

where νnf , ρnf , (ρcp)nf , knf , kf , ks, ρs, (ρcp)f , (ρcp)s are the nanofluid kinematic viscosity,
the electrical conductivity, the nanofluid heat capacitance, thermal conductivity of the
nanofluid, thermal conductivity of the fluid, the thermal conductivity of the solid fractions,
the density of the solid fractions, the heat capacity of the base fluid, the effective heat
capacity of nanoparticles, respectively (see Abu-Nada []).

The continuity equation () is satisfied by introducing a stream function ψ(x, y) such
that

u =
∂ψ

∂y
, v = –

∂ψ

∂x
. ()

Introducing the following non-dimensional variables (see Liao []):

ψ = [aνf ξ ]

 xf (ξ ,η), ξ =  – exp(–τ ), τ = at,η =

[
a

νf ξ

] 


y,

θ (ξ ,η) =
T – T∞
Tw – T∞

, �(ξ ,η) =
C – C∞

Cw – C∞
,

()

where η, ξ and τ are dimensionless variables and the dimensionless time, f (ξ ,η) is the
dimensionless stream function, θ (ξ ,η) is the dimensionless temperature and φ(ξ ,η) is the
dimensionless solute concentration. By using () the governing equations () to () along
with the boundary conditions () are reduced to the following two-point boundary value
problem:

f ′′′ + φ

[
( – ξ )



ηf ′′ + ξ

(
ff ′′ – f ′ – Haf ′ + Grtθ + Grcφ

)]

= φξ ( – ξ )
∂f ′

∂ξ
, ()

θ ′′ + φPr
(

kf

knf

)[
( – ξ )



ηθ ′ + ξ f θ ′ + Nbθ

′φ′ + NTθ ′
]

= φPr
(

kf

knf

)
( – ξ )

∂θ

∂ξ
, ()

φ′′ + Sc
[

( – ξ )


ηφ′ + ξ f φ′

]
+

NT

Nb
θ ′′ – γ ξScφ = Scξ ( – ξ )

∂φ

∂ξ
, ()

subject to the boundary conditions

f (ξ , ) = , f ′(ξ , ) = , θ (ξ , ) = , �(ξ , ) = , η = , ξ ≥ , ()

f ′(ξ ,∞) = , θ (ξ ,∞) = , �(ξ ,∞) = , η → ∞, ξ ≥ , ()
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where the prime denotes differentiation with respect to η, αf = kf /(ρcp)f and νf = μf /ρf

are the thermal diffusivity and kinetic viscosity of the base fluid, respectively. Other non-
dimensional parameters appearing in equations () to () Ha, Grt , Grc, Pr, Nb, NT , Sc,
and γ denote the Hartman number, the local temperature Grashof number and the lo-
cal concentration Grashof number (see Mahdy [] and Hsiao []), the Prandtl num-
ber, Brownian motion parameter and thermophoresis parameter (see Khan and Pop [],
Nadeem and Saleem []), the Schmidt number and scaled chemical reaction parameter.
These parameters are defined mathematically as

Ha =
σB


aρnf

, Grt =
gβT (Tw – T∞)

ax
,

Grc =
gβC(Cw – C∞)

ax
, Pr =

νf

αf
,

Nb =
(ρc)pDB(Cw – C∞)

νf (ρp)f
, Sc =

νf

DB
,

γ =
K
a

, NT =
(ρc)pDT (Tw – T∞)

T∞νf (ρp)f
.

()

The nanoparticle volume fraction parameters φ and φ are defined as

φ = ( – φ).
[

 – φ + φ

(
ρs

ρf

)]
, φ =

[
 – φ + φ

(ρc)s

(ρc)f

]
. ()

2.1 Skin friction, heat and mass transfer coefficients
The skin friction coefficient Cf , the local Nusselt number Nux and the local Sherwood
number Shx characterize the surface drag, wall heat and mass transfer rates, respectively.

The shearing stress at the surface of the wall τw is defined as

τw = –μnf

(
∂u
∂y

)
y=

= –
Uwμf

( – φ).x

√
Uwx
νf ξ

f ′′(, ξ ), ()

where μnf is the coefficient of viscosity.
The skin friction coefficient is obtained as

Cfx =
τw

ρf U
w

, ()

and using equation () in () we obtain




( – φ).Cfx = –ξ– 
 Re– 


x f ′′(, ξ ). ()

The heat transfer rate at the surface flux at the wall is defined as

qw = –knf

(
∂T
∂y

)
y=

= –knf
(Tw – T∞)

x

√
Uwx
νf ξ

θ ′(, ξ ), ()

where knf is the thermal conductivity of the nanofluid.
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The local Nusselt number (heat transfer coefficient) is defined as

Nux =
xqw

kf (Tw – T∞)
. ()

Using equation () in equation (), the dimensionless wall heat transfer rate is obtained
as

(
kf

knf

)
Nux = –ξ– 

 Re


x θ ′(, ξ ). ()

The mass flux at the wall surface is defined as

qm = –D
(

∂C
∂y

)
y=

= –D
(Cw – C∞)

x

√
Uwx
νf ξ

�′(, ξ ), ()

and the local Sherwood number (mass transfer coefficient) is obtained as

Shx =
xqm

D(Cw – C∞)
. ()

The dimensionless wall mass transfer rate is obtained as

Shx = –ξ– 
 Re



x �′(, ξ ), ()

where Rex represents the local Reynolds number and is defined as

Rex =
xu∞
νf

. ()

3 Cases of special interest
In this section some particular cases of equations () to () where the equations are
reduced to ordinary differential equations are considered.

Case (): initial steady-state flow. For steady flow when φ =  (regular fluid), we have
ξ =  corresponding to t = , thus f (η, ) = f (η), θ (η, ) = θ (η) and �(η, ) = �(η). In this
case equations () to () reduce to

f ′′′ +


φηf ′′ = , ()

θ ′′ +



kf

knf
Prφηθ ′ + φ

kf

knf
PrNbθ

′φ′ + φ
kf

knf
PrNTθ ′ = , ()

φ′′ +



Scηφ′ +
NT

Nb
θ ′′ = , ()

subject to the boundary conditions

f () = , f ′() = , θ () = , �() = ,

f ′(∞) = , θ (∞) = , �(∞) = ,
()
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where prime denotes differentiation with respect to η. Equation () subject to the bound-
ary conditions () admits the exact solution (see Liao [])

f (η) = η

(
 – erf

(
η



))
+

√
π

(
 – exp(–η/)), ()

where erf(v) is the error function defined as

erf(v) =
√
π

∫ v


e–z

dz. ()

Case (): final steady-state flow. In this case, we have ξ =  (t → ∞), corresponding to
f (η, ) = f (η), θ (η, ) = θ (η) and φ(η, ) = φ(η).

Equations () to () reduce to the following forms:

f ′′′ + ff ′′ – f ′ +  – Haf ′ + Grtθ + Grcφ = , ()

θ ′′ +
kf

knf
Prφ

(
f θ ′ + Nbθ

′φ′) +
kf

knf
PrNTθ ′ = , ()

φ′′ + Sc
(

f φ′ – γφ +
NT

Nb
θ ′′

)
= , ()

subject to the boundary conditions (). Equations () to () were solved using the SRM,
Motsa []. The SRM is an iterative procedure that employs the Gauss-Seidel type of re-
laxation approach to linearize and decouple the system of differential equations. Further
details of the rules of the SRM can be found in [, ]. The linear terms in each equation
are evaluated at the current iteration level (denoted by r + ) and nonlinear terms are as-
sumed to be known from the previous iteration level (denoted by r). The linearized form
of () to () is

f ′′′
r+ + a,rf ′′

r+ + a,rf ′
r+ – φξ ( – ξ )

∂f ′

∂ξ
= R,r , ()

θ ′′
r+ + b,rθ

′
r+ –

kf

knf
Prφξ ( – ξ )

∂θ

∂ξ
= R,r , ()

φ′′
r+ + cr,φ

′
r+ + c,rφr+ – Scξ ( – ξ )

∂φ

∂ξ
= R,r , ()

where

a,r = φ

[
η


( – ξ ) + ξ fr

]
, a,r = –φξHa,

R,r = –φξ
[
Grtθr + Grcφr – f ′

r
]
,

b,r =
kf

knf
Prφ

[
η


( – ξ ) + ξ fr+ + Nbφ

′
r+

]
, R,r = –

kf

knf
PrφξNTθ ′

r ,

c,r =
η


( – ξ )Sc + Scξ fr+, c,r = –Scξγ ,

R,r = –
NT

Nb
θ ′′

r+.



Haroun et al. Boundary Value Problems  (2015) 2015:161 Page 8 of 16

It must be noted that equations ()-() are now linear and, being decoupled, can be
solved sequentially to obtain approximate solutions for f (η, ξ ), θ (η, ξ ) and φ(η, ξ ). In this
study, the Chebyshev spectral collocation method was used to discretize in η and finite
differences with central differencing for derivatives was used to discretize in ξ . Starting
from initial guesses for f , θ and φ, equations ()-() were solved iteratively until the
approximate solutions converged within a certain prescribed tolerance level. The accuracy
of the results was validated against results from literature for some special cases of the
governing equations.

4 Results and discussion
The nonlinear boundary value problem () to () subject to the boundary conditions
() and () cannot be solved in closed form, so these equations are solved numerically
using the spectral relaxation method (SRM) for Cu-water and Ag-water nanofluids for  ≤
ξ ≤ . The thermophysical properties of the nanofluids used in the numerical simulations
are given in Table . Extensive calculations have been performed to obtain the velocity,
temperature, concentration profiles as well as skin friction, the local Nusselt number and
the local Sherwood number for various values of physical parameters such as φ, Ha, Grt ,
Grc, Pr, Nb, NT , Sc and γ .

To determine the accuracy of our numerical results, the heat and the mass transfer co-
efficients are compared with the published results of Khan and Pop [] in Tables  and .
Here, we have varied the NT with Nb while keeping other physical parameters fixed. Ta-

Table 1 Thermophysical properties of the base fluid and the nanoparticles [35] and [36]

Physical properties Base fluid (water) Copper (Cu) Silver (Ag)

Cp (J/kgK) 4,179 385 235
ρ (Kg/m3) 997.1 8,933 10,500
k (W/mK) 0.613 401 429
α × 107 (m2/s) 1.47 1,163.1 1,738.6
β × 105 (K–1) 21 1.67 1.89

Table 2 Comparison of values of –θ ′(0, ξ ) for various values of NT and Nb with φ = 0 (regular
fluid), Ha = Grt = Grc = γ = 0, ξ = 1, Pr = 10, Sc = 10

NT Nb = 0.1 Nb = 0.2 Nb = 0.3

[6] Present results [6] Present results [6] Present results

0.1 0.9524 0.9519 0.5056 0.5052 0.2522 0.2522
0.2 0.6932 0.6930 0.3654 0.3662 0.1816 0.1841
0.3 0.5201 0.5219 0.2731 0.2760 0.1355 0.1394
0.4 0.4026 0.4040 0.2110 0.2117 0.1046 0.1044
0.5 0.3211 0.3185 0.1681 0.1639 0.0833 0.0779

Table 3 Comparison of values of –φ′(0, ξ ) for various values of NT and Nb with φ = 0 (regular
fluid), Ha = Grt = Grc = γ = 0, ξ = 1, Pr = 10, Sc = 10

NT Nb = 0.1 Nb = 0.2 Nb = 0.3

[6] Present results [6] Present results [6] Present results

0.1 2.1294 2.1294 2.3819 2.3817 2.4100 2.4097
0.2 2.2740 2.2745 2.5152 2.5145 2.5150 2.5134
0.3 2.5286 2.5242 2.6555 2.6513 2.6088 2.6047
0.4 2.7952 2.7883 2.7818 2.7787 2.6876 2.6862
0.5 3.0351 3.0413 2.8883 2.8944 2.7519 2.7574
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Table 4 Comparison of the SRM solutions for f ′′(ξ , 0), –θ ′(ξ , 0), and –φ′(ξ , 0) against those of
the SQLM at different values of ξ , NT = 0.1, Nb = 0.1, Pr = 7, Grt = 0.1, Grc = 0.1, Sc = 1, φ = 0.2,
γ = 2, Ha = 3

ξ f ′′(ξ , 0) –θ ′(ξ , 0) –φ′(ξ , 0)

SRM SQLM SRM SQLM SRM SQLM

0.1 –1.024404 –1.024404 0.861024 0.861024 0.372386 0.372386
0.2 –1.062742 –1.062742 0.864900 0.864900 0.389380 0.389380
0.3 –1.088333 –1.088333 0.872739 0.872739 0.386305 0.386305
0.4 –1.108200 –1.108200 0.882753 0.882753 0.372517 0.372517
0.5 –1.124261 –1.124261 0.894651 0.894651 0.350129 0.350129
0.6 –1.136890 –1.136890 0.908632 0.908632 0.318838 0.318838
0.7 –1.145390 –1.145390 0.925350 0.925350 0.276272 0.276272
0.8 –1.146964 –1.146964 0.946411 0.946411 0.216141 0.216141
0.9 –1.127531 –1.127531 0.977047 0.977047 0.118365 0.118365
1.0 –4.252384 –4.252384 1.495226 1.495226 0.463421 0.463421

Figure 1 Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, Ha = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1, Sc = 1 and ξ = 0.5.

bles  and  give a comparison of the SRM results with those obtained by Khan and Pop
[] when Ha = Grt = Grc = γ = φ = , Pr = , Sc =  and ξ =  for different values of the
Brownian motion and thermophoresis parameters. It is observed that the present results
are in good agreement with results in the literature. In Table , approximate solutions of
the skin friction coefficient, surface heat transfer and surface mass transfer rates at dif-
ferent values of flow parameters are presented and compared with the SQLM solutions.
Values of the skin friction coefficient, reduced Nusselt and Sherwood numbers at different
values of ξ are presented in Table . The table also shows a comparison of the SHAM and
SQLM results. As can be seen from the table, the results match perfectly well for the set
accuracy level.

The effects of physical parameters on various fluid dynamic quantities are show in Fig-
ures -.

Figures - illustrate the effect of the nanoparticle volume fraction φ on the velocity,
temperature and concentration profiles, respectively, in the case of a Cu-water nanofluid.
It is clear that as the nanoparticle volume fraction increases, the nanofluid velocity and the
temperature profile increase while the opposite trend is observed for the concentration
profile. Increasing the volume fraction of nanoparticles increases the thermal conductiv-
ity of the nanofluid, and we observe that thickening of the thermal boundary layer and the
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Figure 2 Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, Ha = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1, Sc = 1 and ξ = 0.5.

Figure 3 Effect of various nanoparticle values
fraction φ on skin friction coefficient for Grt = 0.2,
Ha = 0.2, Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01,
γ = 1 and Sc = 1.

Figure 4 Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, Ha = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1 and Sc = 1.
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velocity in the case of an Ag-water nanofluid are relatively less than in the case of a Cu-
water. We also note that since the conductivity of silver is higher than that of copper, the
temperature distribution in the Ag-water nanofluid is higher than that in the Cu-water
nanofluid. With increase in the nanoparticle volume fraction, the concentration bound-
ary layer thickness increases for both types of nanofluids considered, and the opposite
trend is observed when the concentration profile decreases.

Figure  shows that the skin friction coefficient –f ′′(, ξ ) increases monotonically with
increasing ξ . The result is true for both types of nanofluids. The minimum value of the skin
friction in the case of the Cu-water nanofluid is achieved at a smaller value of ξ in compar-
ison with the Ag-water nanofluid. Furthermore, in this paper it is found that the Ag-water
nanofluid shows higher drag as compared to the Cu-water nanofluid. The dimensionless
wall heat transfer rate and the dimensionless wall mass transfer rate are shown as functions
of ξ in Figure (a) and (b), respectively. We observe that the wall heat transfer rate –θ ′(, ξ )
decreases, while the opposite trend is observed in the case of the wall mass transfer rate
–�′(, ξ ). The Cu-water nanofluid exhibits higher wall heat transfer rate as compared to
the Ag-water nanofluid, while the opposite trend is observed for the wall mass transfer
rate. The presence of nanoparticle tends to increase the wall heat transfer rate and to de-
crease the wall mass transfer rate with increasing the values of dimensionless variable ξ .

Figures - show the influence of the Hartman number on the velocity, temperature,
skin friction coefficient –f ′′(, ξ ), the local Nusselt number –θ ′(, ξ ) and the local Sher-
wood number –�′(, ξ ). The effect of Hartman number Ha is to decrease the nanofluid
velocity and the wall heat transfer coefficient, whereas it increases the skin friction coef-
ficient and the wall mass transfer coefficient. A similar observation was made by Haroun
et al. []. The momentum boundary layer thickness decreases with increase in the Hart-
man number. In the case of the Cu-water nanofluid it is relatively higher than that of the
Ag-water nanofluid for nanofluid velocity. Figure  shows the skin friction coefficient as a
function of ξ . It is clear that for the Cu-water nanofluid and the Ag-water nanofluid, the
skin friction coefficient increases when ξ increases. We note that the Ag-water nanofluid
exhibits higher drag to the flow as compared to the Cu-water nanofluid. Figure  shows
the wall heat and mass transfer rates for different values of the Hartman number Ha, it
is clear that the value of wall heat transfer rate decreases when ξ increases, in the case of

Figure 5 Effect of various values of the Hartman number Ha on (a) and (b) for Grt = 0.2, φ = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1, Sc = 1 and ξ = 0.5.
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Figure 6 Effect of various values of the Hartman
number Ha on skin friction coefficient for
Grt = 0.2, φ = 0.2, Grc = 0.2, NT = 0.01, Pr = 7,
Nb = 0.01, γ = 1 and Sc = 1.

Figure 7 Effect of various values of the Hartman number Ha on (a) and (b) for Grt = 0.2, φ = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1 and Sc = 1.

Figure 8 Effect of thermophoretic parameter NT
on concentration profiles for Grt = 0.2, φ = 0.2,
Grc = 0.2, Ha = 2, Pr = 7, Nb = 0.01, γ = 4, Sc = 1
and ξ = 0.5.

the Ag-water nanofluid it is less than that in the case of the Cu-water nanofluid. Further,
the wall mass transfer rate increases when ξ increases, we observe that in the case of a
Cu-water nanofluid it is less than that of an Ag-water nanofluid.

Figures  to  show the effect of the thermophoretic parameter NT on the concentration
profile, wall heat and mass transfer rates, respectively. In the case of a Cu-water nanofluid
and an Ag-water nanofluid the concentration profile increases and the wall heat and mass
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Figure 9 Effect of thermophoretic parameter NT on (a) and (b) for Grt = 0.2, φ = 0.2, Grc = 0.2, Ha = 4,
Pr = 7, Nb = 0.01, γ = 4 and Sc = 4.

Figure 10 Effect of Brownian motion parameter Nb on (a) and (b) for Grt = 0.2, φ = 0.2, Grc = 0.2,
Ha = 2, Pr = 7, NT = 0.02, γ = 3 and Sc = 4.

transfer rates decrease with an increase in the thermophoretic parameter. It is observed
that the concentration profile and the wall heat transfer rate in the case of the Ag-water
nanofluid are less than those of the Cu-water nanofluid, while the opposite trend is ob-
served in the case of the wall mass transfer rate. We found that the wall heat transfer rate
got higher value when ξ = , and then the opposite trend is observed when ξ = . The mass
transfer rate got less value when ξ = , while in the case ξ =  it got the higher value. The
fast flow from the stretching sheet carries with it nanoparticles leading to an increase in
the mass volume fraction boundary layer thickness.

Figure (a) and (b) shows the effect of the Brownian motion parameter Nb on the wall
heat and mass transfer rates. Figure (a) shows that the heat transfer rate decreases with
increasing Nb. The mass transfer at the wall increases with the increase in Nb. The heat
transfer rate for the Cu-water nanofluid is higher than that for the Ag-water nanofluid,
while the opposite is true for the mass transfer rate (see Figure ).

Figure (a) and (b) shows the impact of the Soret number on the concentration pro-
files and the mass transfer coefficient, where the concentration profiles grow less while
the mass transfer coefficient increases with an increase in the Soret number. Again, Fig-
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Figure 11 Effect of chemical reaction parameter γ on concentration profiles and the local Sherwood
number for Grt = 0.2, φ = 0.2, Grc = 0.2, Ha = 2, Pr = 7, NT = 0.01, Nb = 0.01, Sc = 0.6 and ξ = 0.5.

ure (a) and (b) shows that as the Soret number increases, the boundary layer thickness
for the solute concentration reduces. The mass transfer coefficient is increasing when the
Soret number is positive.

5 Conclusions
We have investigated the heat and mass transfer in unsteady MHD boundary layer flow in
nanofluid due to an impulsively stretching surface with chemical reaction and an applied
magnetic field. Other parameters of interest in this study included the Brownian motion
parameter and thermophoresis parameter. In this paper we considered Cu-water and Ag-
water nanofluids and assumed that the nanoparticle volume fraction can be actively con-
trolled at the boundary surface. We have solved the model equations using the spectral
relaxation method, and to benchmark our solutions we compared our results with some
limiting cases from the literature. These results were found to be in a good agreement.
From the numerical simulations, some results can be drawn as follows:

(i) The velocity profiles increase with increase in the nanoparticle volume fraction,
while the opposite trend is observed with increase in the value of the Hartman
number.

(ii) The temperature profiles increase with increasing nanoparticle volume fraction
values.

(iii) The skin friction decreases with an increase in the values of the nanoparticle
volume fraction, while the opposite trend is observed for increasing values of the
Hartman number.

(iv) The heat transfer coefficient decreases with increase in the values of the
nanoparticle volume fraction, the Hartman number, thermophoretic and Brownian
motion parameters.

(v) The mass transfer coefficient increases with an increase in the nanoparticle volume
fraction, chemical reaction parameter, Hartman number and Brownian motion
parameter, while the opposite trend is observed for increasing values of the
thermophoretic parameter.



Haroun et al. Boundary Value Problems  (2015) 2015:161 Page 15 of 16

Abbreviations
t: time; p: pressure; a: positive constant; qw : wall heat flux; qm : wall mass flux; Pr: Prandtl number; Sc: Schmidt number;
Ha: Hartman number; NT : thermophoresis parameter; Nb : Brownian motion parameter; Shx : local Sherwood number;
Rex : local Reynolds number; Nux : local Nusselt number; Grt : local temperature Grashof number; Grc : local concentration
Grashof number; knf : thermal conductivity of nanofluid; Cfx : skin friction coefficient; f (ξ ,η): dimensionless stream
function; T∞ : ambient temperature; C∞ : ambient concentration; g: acceleration due to gravity; B0 : uniform magnetic field;
u, v: velocity components along x, y directions; x: coordinate along the sheet; y: coordinate normal to the sheet; T : local
fluid temperature; Tw : temperature at the stretching surface; DB : Brownian motion coefficient; DT : thermophoretic
diffusion coefficient; C : solutal concentration; Cs : concentration susceptibility; Cw : concentration at the stretching surface;
vw : prescribed suction velocity; K : chemical reaction parameter; ks : solid volume fraction; kf : thermal conductivity of fluid.
Greek symbols: ρnf : nanofluid density; νnf : nanofluid kinematic viscosity; μnf : coefficient of viscosity; (ρcp)nf : nanofluid
heat capacitance; αnf : thermal diffusivity of nanofluid; μnf : effective dynamic viscosity nanofluid; (cp)nf : specific heat of
fluid at constant pressure; τw : shearing stress at the surface of the wall; γ : scaled chemical reaction parameter;
σ : electrical conductivity; φ : fraction of nanoparticles; φ1 , φ2 : nanoparticle volume fraction; ψ (x, y): dimensionless stream
function; (ρcp)f : heat capacity of base fluid; ρf : density of base fluid; μf : dynamic viscosity of fluid; φ : fraction of
nanoparticles; ρs : density of solid fractions; βC : volumetric solutal expansion coefficient; βT : volumetric thermal
expansion coefficient; (ρcp)s : effective heat capacity of nanoparticle. Subscripts: f : fluid; nf : nanofluid; s: solid.
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Chapter 4

On couple stress effects on unsteady nanofluid

flow over stretching surfaces with vanish-

ing nanoparticle flux at the wall

In this chapter we study flow of an unsteady nanofluid subject to couple stress effects. The

couple stress slows down fluid motion due to an increasing drag force which is equivalent

to an apparent decrease in the fluid viscosity. The highly non-linear equations are solved

numerically using a novel SRM and SQLM. Comparison of the results with previously pub-

lished work was undertaken and the validation of our new techniques is discussed.
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ABSTRACT 

In this paper the problem of unsteady nanofluid flow over a stretching sheet subject to couple stress effects is 
presented. Most previous studies have assumed that the nanoparticle volume fraction at the boundary surface 
may be actively controlled. However, a realistic boundary condition for the nanoparticle volume fraction 
model is that the nanoparticle flux at the boundary be set to zero. This paper differs from previous studies in 
that we assume there is no active control of the nanoparticle volume fraction at boundary. The spectral 
relaxation method has been used to solve the governing equations, moreover the results were further 
confirmed by using the quasi-linearization method. The qualitative and quantitative effects of the 
dimensionless parameters in the problem such as the couple stress parameter, the Prandtl number, the 
Brownian motion parameter, the thermophoresis parameter, the Lewis number on the fluid behavior are 
determined. 
 
Keywords: Nanofluid; Couple stress; Stretching surface; Vanishing nanoparticle flux; Spectral relaxation 
method. 
 

NOMENCLATURE ܾ& ܿare positive constants with dimensions timeିଵ DB   Brownian diffusion coefficient DT   thermophoresis diffusion coefficient f dimensionless velocity  g acceleration due to gravity i time index during navigation L scale 
Le Lewis number N number of grid points NB Brownian motion parameter NT thermophoresis parameter p fluid pressure 
Pr Prandtl number 
S unsteadiness parameter 
t time   T fluid temperature   T୵ temperature at the stretching surface Tஶ ambient fluid temperature T୰ୣ୤ reference temperature u & ݒ velocity components (along xand y ) Q୶ couple stress parameter 

α୫ effective thermal diffusivity η similarity variable θ Dimensionless temperature ݒ = ఓఘ kinematic viscosity of the fluid ݒ′ = చఘ couple stress viscosity ߫ couple stress viscosity coefficient ߩ fluid density v ߤ fluid viscosity (ρc)୤ effective heat capacity of the fluid (ρc)୮ effective heat capacity of the 
nanoparticle material τ parameter defined by (ρc)୤/(ρc)୮ ϕ  Dimensionless nanoparticles 
volume  ϕ෡ nanoparticle volume concentration ϕ෡ஶ ambient nanoparticle volume 
fraction ω Gauss-Lobatto points ܷ stretching velocity V = V(u, v)  fluid velocity x & ݕ          Cartesian coordinates 
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1. INTRODUCTION 

In the past few years, convective heat and mass 
transfer in nanofluids has become a topic of major 
interest. The thermal conductivity of a fluid plays 
an important role in the heat transfer between the 
fluid medium and a solid surface. Conventional heat 
transfer fluids including oil, water and ethylene 
glycol, etc., are poor heat transfer fluids due to low 
thermal conductivities. Nanofluids are engineered 
by suspending metallic nanoparticles with sizes 
below $100nm$ in traditional heat transfer fluids. 
Heat transfer enhancement using nanofluids in 
convective boundary-layer flow over a vertical 
plate, stretching sheet and moving surfaces has been 
studied by numerous authors, and are discussed in 
the review papers Buongiorno (2006), Oztop  and 
Abu-Nada (2008), Daungthongsuk and Wongwises 
(2007, Nield and Kuznetsov (2009), Kuznetsov and 
Nield (2010a), Kuznetsov and Nield (2010b), 
Ahmad and Pop (2010), Khan and Pop (2010), 
Bachok, Ishak, and Pop (2010)andRashidi et al. 
(2014). 
 
The couple stress fluid model is one of numerous 
viscoelastic models that have been proposed to 
describe the characteristics and Behavior of non-
Newtonian fluids. The constitutive equations of 
these fluids are often very complex involving a 
large number of parameters. The couple stress fluid 
model is the simplest generalization of the classical 
theory of fluids which allows for polar effects such 
as couple stresses and body couples in the fluid 
medium. The theory of couple stress fluids was 
introduced in Stokes (1966) to explain the 
rheological behaviour of various complex non-
Newtonian fluids with body stresses and body 
couples which cannot be treated by the classical 
theory of continuum mechanics. Due to the 
rotational interaction of particles, the force-stress 
tensor is not symmetric and the flow behaviour of 
such fluids is not similar to Newtonian fluids. 
Couple stress fluids have applications in 
engineering and chemical industries. The peristaltic 
transport of a couple stress fluid in an asymmetric 
channel with an induced magnetic field has been 
considered by Nadeem and Akram (2011). An 
analysis of the effects of couple stresses on the 
blood flow through a thin artery with a mild 
stenosis was carried out by Sinha and Singh (1984). 
Malashetty, Pop, Kollur, and Sidram (2012) 
investigated double diffusive convection in a couple 
stress fluid saturated porous layer with Soret 
effects. Hayat et al. (2013) observed that the 
velocity and the boundary layer thickness decrease 
with the couple stress fluid parameter in his study of 
melting heat transfer in the boundary layer flow of a 
couple stress fluid. Khan, Mahmood, and Ara 
(2013) found the approximate solution of the couple 
stress fluid between expanding and contracting 
walls. An analysis has been provided for three-
dimensional magnetohydrodynamic flow of couple 
stress fluid with Newtonian heating by Ramzan, 
Farooq, Alsaedi, and Hayat (2013). Murthy and 
Nagaraju (2009) considered the flow of a couple 
stress fluid generated by a circular cylinder 

subjected to longitudinal and torsional oscillations, 
and the time dependence of the run up flow of a 
couple stress fluid between rigid parallel plates is 
examined by Devakar and Iyengar (2010) in which 
the flow was induced by a constant pressure 
gradient which is suddenly withdrawn and the 
parallel plates  set to move instantaneously with 
different velocities in the direction of the applied 
pressure gradient.    In this work we study the 
unsteady nanofluid flow over a stretching sheet in 
the presence of couple stress effects. To the best of 
our knowledge, most published work in the field of 
nanofluid, employed boundary conditions on the 
nanoparticle volume fraction analogous to those on 
the temperature thereby assuming that the 
nanoparticle volume fraction could be actively 
controlled at the boundary. A recent series of papers 
by Kuznetsov and Nield (2014), Nield and 
Kuznetsov (2014a), Nield and Kuznetsov (2014b), 
Nield and Kuznetsov (2014c) have suggested that a 
more realistic boundary condition is that the 
nanoparticle volume fraction flux at the boundary 
be set to zero. These boundary conditions have not 
been used on previous studies on couple stress 
fluids. 

2. MATHEMATICAL 
FORMULATION  

Consider the problem of two-dimensional flow of 
unsteady incompressible nanofluid over a stretching 
sheet subject to couple stress effect see Fig. (1). 
 

Fig. 1. Schematic diagram for the 
problem. 

 
The continuous sheet isplaced at ݕ = 0 and moves 
parallel to the ݔ − ܷ ,with velocity  ݏ݅ݔܽ = 1ݔܾ − ݐܿ                                                                    (1) 

where ܾ and ܿ are constants and ݐ represents time. 
The boundary layer temperature and nanoparticle 
volume concentration areܶ and ߶෠ respectively. The 
ambient fluid temperature and nanoparticle volume 
fraction are ஶܶand ߶෠ஶrespectively. At the surface, 
both the nanofluid and the sheet arekept at a 
constant temperature ௪ܶ where ௪ܶ ൐ ஶܶis for 
aheated stretching surface and ௪ܶ ൏ ஶܶcorresponds 
to acooled surface.The boundary layer equations 
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governing the flow of an incompressible couple 
stress fluid are (see Hayat et al. (2013)) ݀݅ݒ ܸ = ߩ  (2)                                                                     ,0 ݐܦܸܦ = ݌∇− − ∇)ߤ × ∇ × V)             −߫(∇ × ∇ × ∇ × ∇ × ܸ)                         (3) 

The continuity, momentum, energy and 
nanoparticles fraction equations for the nanofluid 
can be expressed as, ப୳ப୶ + ப୴ப୷ = 0                                                                    (4) 

ப୳ப୲ + u ப୳ப୶ + v ப୳ப୶ = ν பమ୳ப୷మ  −  ν′ பర୳ப୷ర ,      (5) 

பTப୲ + u பTப୶ + v பTப୷ = α୫ பమTப୷మ  + τ ൤DB பம෡୷ பTப୷ +DTTಮ ቀபTப୷ቁଶ൨,                                                (6) ∂ϕ෡∂t + u ∂ϕ෡∂x + v ∂ϕ෡∂y = DB ∂ଶϕ෡∂yଶ + DTTஶ ∂ଶT∂yଶ , 
equations (4)-(7) are subject to the boundary 
conditions 

(7) v = 0, u = U, T = Tୱ,  DB பம෡ப୷ + DTTಮ பTப୷ = 0   on y =0                                                                             (8) u → 0, T → Tஶ, ϕ෡ → ϕ෡ஶ , as y → ∞                     (9) 

For two-dimensional flow, it is convenient to 
introduce the stream functionψ(x, y, t)and the 
following similarity transformationsψ(x, y, t) =ට ୠ୴ଵିୡ୲ xf(η), 
ߟ   = ට ௕௩(ଵି௖௧)   ,ݕ 

,ݔ)ܶ ,ݕ (ݐ = ஶܶ + ௥ܶ௘௙ ቂ௕௫మଶఔ ቃ (1 − ,ݔ)෠߶ ,(ߟ)ߠయమି(ݐܿ ,ݕ (ݐ = ߶෠ஶ + ௥௘௙ܥ ቂ௕௫మଶఔ ቃ (1 −  ,(ߟ)߶యమି(ݐܿ
Equations (5)-(7) can now be presented in the form ݂ᇱᇱᇱ − ݂ܳ(ହ) + ݂݂ᇱᇱ − ݂′ଶ − ܵ ൬݂ᇱ + 12 ൰′′݂ߟ = 0, 

ᇱᇱߠ (10) + ݎܲ ቂ݂ߠᇱ − 2݂ᇱߠ − ௌଶ ߠ3) + ᇱ)ቃߠߟ + ௕ܰ߶ᇱߠᇱ +௧ܰߠ′ଶ=0,                                                              (11) ߶ᇱᇱ + ݁ܮ ൤݂߶ᇱ − 2݂ᇱ − 2ܵ (3߶ + ൨(߶ߟ + ௧ܰ௕ܰ ′′ߠ = 0, 
(12) 

with boundary conditions  ݂ = 0, ݂ᇱ = ߠ  = 1, ௕ܰ߶ᇱ + ௧ܰ ߠ′ = 0,            (13) ݂ᇱ → 0, ߠ → 0, ߶ → ߟ ݏܽ 0 → ∞,              (14) 

where the couple stress parameterܳ, the 
dimensionless measure of unsteadiness ܵ, the 
Prandtl number ܲݎ, the Brownian motion parameter 

௕ܰ, the thermophoresis parameter ௧ܰ and the Lewis 
number  ݁ܮ are defined as ܳ௫ = ௩ᇲ௎௩మ௫ , ܵ = ௖௕ , ௧ܰ = ఛ஽೅(்ೢ ି ಮ்)ಮ்ఈ೘ ,, 

௕ܰ = ஻߶෠௥௘௙ܦ߬ ቂ௕௫మଶ௩ ቃߙ௠ (1 − ݎܲ   ,యమି(ݐܿ =  ఔఈ೘ , ݁ܮ = ఔ஽ಳ,    

3- NUMERICAL SOLUTION 

In this section, we apply the spectral relaxation 
method (SRM) to solve the nonlinear ODEs (10) - 
(12) along with boundary conditions (13)-(14). For 
the implementation of the spectral collocation 
method, it is convenient to reduce the order of 
equation (10) from five to four. To this end, we 
set݂ᇱ = ݃, so that equation (10) becomes −ܳ݃ᇱᇱᇱᇱ + ݃ᇱᇱ + ൬f + 12 ൰ߟ ݃ᇱ −  ܵ݃ = ݃ଶ,  ݃(0) = 1, g(∞) = 0,                                         (15) ݂ᇱ = ݃, f(0) = 0,                                                (16) 

The spectral relaxation method algorithm (see 
Motsa, Dlamini, and Khumalo (2012), Motsa and 
Makukula (2013), Motsa, Dlamini, and Khumalo 
(2013)) first decouples the system of equations (10) 
- (12).  From the decoupled equations an iteration 
scheme is developed by evaluating linear terms in 
the current iteration level which is denoted by the 
subscript ݎ + 1 and nonlinear terms in the previous 
iteration level denoted by the subscriptݎ. Applying 
the SRM to (11) - (12) and (15) - (16) gives the 
following linearordinary differential equations; −ܳ݃௥ାଵᇱᇱᇱᇱ + ݃௥ାଵᇱᇱ + ቀ ௥݂ + ଵଶ ቁߟ ݃௥ାଵᇱ −  ܵ݃௥ାଵ = ݃௥ଶ,  

                   (17) 

௥݂ାଵᇱ = ݃௥ାଵ, ௥݂ାଵ(0) = ௥ାଵᇱᇱߠ (18)                                  ,0 + ݎܲ ቀ ௥݂ାଵ − ଵଶ ߟܵ + ௕ܰ߶௥ᇱ ቁ ௥ାଵᇱߠ ݎܲ− ቀ2݃௥ାଵ + ଷଶ ܵቁ ௥ାଵߠ = − ௧ܰߠ′௥ଶ,                         (19) ߶௥ାଵᇱᇱ + ݁ܮ ቀ ௥݂ାଵ − ଵଶ ቁߟܵ ߶௥ାଵᇱ − ݁ܮ ቀ2݃௥ାଵ +ଷଶ ܵቁ ߶௥ାଵ = − ே೟ே್ ௥ᇱᇱ,                                            (20) ݃௥ାଵ(0)ߠ = ௥ାଵ(0)ߠ   ,1 = 1,   ௕ܰ߶௥ାଵᇱ (0) +                       ௧ܰߠ௥ାଵᇱ (0) = 0,                                (21) ݃௥ାଵ(∞) = 0, (∞)௥ାଵߠ = 0, ߶௥ାଵ(∞) = 0.    (22)  

Starting from given initial approximations ଴݂,  ݃଴,ߠ଴  ܽ݊݀ ߶଴, the iteration schemes (17) - 20) can be 
solved iteratively using a spectral collocation 
method. In applying the spectral collocation 
method, we find the unknown function at the 
collocation points by requiring that equations (17) -
(20) be satisfied exactly at these points. A 
convenient set of collocation points are the Gauss-
Lobatto points defined by 

௝߱ = cos గೕே ,      j = 0, 1, … , N                              (23) 
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For  convenience, in numerical computations, the 
semi-infinite domain is approximated by the 
truncated domain ሾ0,  ሿ and using thelinearܮ
transformation ߟ = ߱)ܮ + 1) 2⁄ , we convert ሾ0,  ሿܮ
intothe interval ሾ−1,1ሿ in which the spectral method 
can be used,where ܮ =  ஶis a finite numberߟ 
selected to be largeenough to represent the behavior 
of the flow properties when ߟis very large. The 
derivative are defined as ௗ௙ௗఎ = ∑ ௝௞݂(߱௞)ே௞ୀ଴ܦ = ,݂ܦ  ݆ = 0, 1, … , ܰ       (24) 

where ܰ + 1is the number of collocation points, ܦ = ܦ2 ⁄ ܮ ܨ  ݀݊ܽ =  ሾ݂(߱଴),݂(߱ଵ), … , ݂(߱ே)ሿ்is the vector of unknown 
functions at the collocation points. Applying the 
Chebyshevspectral collocation method to the 
system (17) - (20) we obtain the following matrix 
equations ܣଵ,௥݃௥ାଵ = ܴଵ,௥,   ݃௥ାଵ(߱ே) = 1, ݃௥ାଵ(߱଴) = ܦ 0 ௥݂ାଵ = ݃௥ାଵ,   ௥݂ାଵ(߱ே) = ௥ାଵߠଶ,௥ܣ ,0 = ܴଶ,௥,   ߠ௥ାଵ(߱ே) = ௥ାଵ(߱଴)ߠ,1 = ଷ,௥߶௥ାଵܣ ,0 = ܴଷ,௥, ௕ܰ߶௥ାଵ(߱ே) + ௧ܰ߶௥ାଵ(߱ே) ߶௥ାଵ(߱଴) = 0, 
where  ܣଵ,௥ = ସܦܳ− + ଶܦ + ݀݅ܽ݃ ቂ ௥݂ − ଵଶ ቃߟܵ ܦ ,ܫܵ− ܴଵ,௥ = ݃௥ଶ                                                       (25) ܣଶ,௥ = ଶܦ + ݃ܽ݅݀  ݎܲ ቂ ௥݂ାଵ − ଵଶ ߟܵ + ௕ܰ߶௥ᇱ ቃ ܦ −        ቂ2 ௥݂ାଵ + ଷଶ ܵቃ ,ܫ ܴଶ,௥ = − ௧ܰߠ′௥ଶ                        (26) ܣଷ,௥ = ଶܦ + ݃ܽ݅݀  ݁ܮ ቂ ௥݂ାଵ − ଵଶ ቃߟܵ ܦ − ቂ2 ௥݂ାଵ + ଷଶ ܵቃ ,ܫ ܴଷ,௥ = − ே೟ே್   ௥ᇱᇱ                        (27)ߠ

Here ܫis an (ܰ + 1) × (ܰ + 1)diagonal matrix 
and ݀݅ܽ݃ ሾሿdenotes a diagonal matrix.  Starting 
from stable initial approximations ଴݂,  ݃଴,ߠ଴  ܽ݊݀ ߶଴ whichsatisfy the boundary conditions of 
governing equations: 

଴݂ = ቀఎమ଺ − 1ቁ ݁ିఎ                                              (28) ݃଴ = ቀ1 + ఎଷ − ఎమ଺ ቁ ݁ିఎ                                       (29) ߠ଴ = ݁ିఎ,   ߶଴ =  − ே೟ே್ ݁ିఎ                                (30) 

4- RESULTS AND DISCUSSION 

To obtain clear insights into the physics of the 
problem of unsteady nanofluid flow over a 
stretching sheet with couple stresses, the set of 
ordinary differential equations (10) – (12) were 
solved using the spectral relaxation method. We 
determined through numerical experimentation 
that ߟஶ = 20with grid pointsܰ = 100, gave 
sufficient accuracy for the spectral 
relaxationmethod. The effects of the fluid 
parameters such as the thermophoresis 
parameter ௧ܰ, the Brownian motion ௕ܰ  on 
thevelocity, temperature and nanoparticle profiles 

have beendetermined. 
Table 1 Effects of ࡿ, :૙ = ࢚ࡺ  when (૙) ′′ࢌ on ࡽ ૞, ࢈ࡺ =  ૙: ૞, ࢘ࡼ =  ૚૙ and ࢋࡸ =  ૚૙. 

SRM                                QLM 
S              Q                Ord 7             Ord 8 

 
0.2  0.1   0.8310757  0.8310757  0.8310757 
0.4  0.1   0.8640531  0.8640531  0.8640532 
0.6  0.1   0.8959227  0.8959227  0.8959227 
0.8  0.1   0.9263125  0.9263125  0.9263125 
1.0  0.1   0.9551785  0.9551785  0.9551785 
1.2  0.1   0.9825941  0.9825941  0.9825941 
1.4  0.1   1.0086687  1.0086687  1.0086687 
1.6  0.1   1.0335168  1.0335168  1.0335168 
1.8  0.1   1.0572473  1.0572473  1.0572473 
2.0  0.1   1.0799590  1.0799590  1.0799590 

 
0.2  0.1   0.8310757  0.8310757  0.8310757 
0.2  0.2   0.7746540  0.7746540  0.7746540 
0.2  0.3   0.7393373  0.7393373  0.7393375 
0.2  0.4   0.7135600  0.7135600  0.7135601 
0.2  0.5   0.6932968  0.6932968  0.6932969 
0.2  0.6   0.6766463  0.6766463  0.6766463 
0.2  0.7   0.6625540  0.6625539  0.6625540 
0.2  0.8   0.6503734  0.6503734  0.6503734 
0.2  0.9   0.6396800  0.6396800  0.6396800 
0.2  1.0   0.6301808  0.6301809  0.6301809 

 
Table 2.Effects of ࡿ, ,ࡽ  (૙) ′ࣂ− on࢚ࡺ and࢈ࡺ

when࢘ࡼ =  ૚૙ and ࢋࡸ =  ૚૙. 

 
 
In order to have a sense of the accuracy and 
reliability of the spectral relaxation method, 
benchmark results were obtained. Tables (1) and (2) 
give a comparison between the results obtained 
using the spectral relaxation method and the quasi-
linearization technique.  The two sets of results are 
comparable up to six decimal places for all orders 
of the SRM from order five onwards. 

Table (1) shows the effects of the unsteadiness 
and couple stress parameters on the skin-friction 



F. Awad et al. / JAFM, Vol. 9, No. 4, pp. 1937-1944, 2016.  
 

1941  
 

coefficient. It is evident that increasing ܵleads to 
an increase in the skin frictioncoefficient. On the 
other hand, increasing ܳleads to increases in skin 
friction coefficient. Table (2) shows the effects of ܵ, ܳ, ௧ܰ ܽ݊݀ ௕ܰon the Nusselt number. Here the 
Nusselt number increases as both the 
unsteadiness parameter and the couple stress 
parameter increase. We observe that increasing 
the thermophoresis parameter ௧ܰ increases the 
heat transfer coefficients increasewhile no effect 
occurs as the Brownian motion parameter 
increases. 
 

 
Fig. 2. Effect of the couple stress parameter ࡽand the unsteadiness parameter ࡿ on (ࣁ) ࢌ for ࢚ࡺ = ૙. ૞, = ࢈ࡺ  ૙. ૞, = ࢘ࡼ  ૚૙ and ࢋࡸ =  ૚૙. 

 
Figure 2 shows the effect of the couple stress 
parameterܳ and the unsteadiness parameter ܵ on 
velocity profilesrespectively within the boundary 
layer. We observe that, asexpected, strengthening 
the couple stress slows down the fluid motion due 
to an increasing drag force which is equivalent to an 
apparent decrease in the fluid viscosity. The 
velocity decreases with increasing ܳ until we obtain 
back flow in the range 2 ൑ ߟ ൑ 8.  We also observe 
that the unsteadiness parameters lows the motion of 
the fluid within the boundary layer. It is clear that 
the boundary layer thickness reduces with 
increasingܵ. 

Figure 3 shows the effect of the couple stress 
parameter ܳ on the temperature and mass volume 
fraction profiles respectively. Increasing ܳleads to 
an increase in the thicknessof both the thermal and 
mass volume fraction boundary layers, 
henceincreasing ܳreduces both the temperature 
and the mass volumefraction within the boundary 
layer. 

 

 

 
Fig. 3. Effect of the couple stress parameter ࡽon (ࣁ)ࣂ and ࣘ(ࣁ) for ࡿ =  ૙. ૛, ࢚ࡺ = ૙. ૞, ࢈ࡺ =૙, ૞, ࢘ࡼ = ૚૙ and ࢋࡸ =  ૚૙. 
 

 

 
Fig. 4. Effect of the unsteadiness parameter ࡿon (ࣁ)ࣂ and ࣘ(ࣁ)ࡽ = ૙. ૚, ࢚ࡺ =  ૙. ૜, ࢈ࡺ =૙. ૞, = ࢘ࡼ  ૚૙andࢋࡸ =  ૚૙. 

The effect of the unsteadiness parameter ܵ on the 
temperature andmass volume fraction are shown 
in Figure 4. We observe thatas ܵincreases, the 
boundary layer velocity decreases causing 
adecrease in the heat and nanoparticle transfer 
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rates, hence the temperature and the nanoparticle 
inside boundary layer reduce. The influence of the 
thermophoresis parameter ௧ܰ on the temperature 
and nanoparticle profiles is given in Figure 5. Fast 
flowaway from the stretching surface exists due to 
the thermophoresis force generated by the 
temperature gradient. Therefore as ௧ܰincreases 
more a heated fluid travel away from the surface, 
hencethe temperature within the boundary layer 
increases. The fast flowfrom the stretching sheet 
carries with it nanoparticles leading to an increase 
in the mass volume fraction boundary layer 
thickness. 

 

 

 
Fig. 5. Effect of the thermophoresis parameter ࢚ࡺon (ࣁ)ࣂ and ࣘ(ࣁ)for ࡽ = ૙, ૚, ࡿ = ૙, ૛,࢈ࡺ = ૙. ૞, ࢘ࡼ = ૚૙ and ࢋࡸ = ૚૙. 

 

5. CONCLUSION 

In this paper we have studied the flow of an 
unsteady nanofluid subject to couple stress effects. 
Numerical solutions of the equations governing the 
flow were found using the spectral relaxation 
method (SRM). The validation of the numerical 
results was done via a careful comparison between 
the solutions obtained using 

The effect of the random motion of nanoparticles 
suspended in the fluid on the nanoparticle volume 
fraction is shown in Figure 6. It is evident that 
increasing ௕ܰ  leads to a decrease in the mass 
volume fraction. Moreover, Figure 6illustrates the 
effect of the Lewis number ݁ܮon the mass 
volumefraction within boundary layer. Increasing ݁ܮleads to a decreasein the nanoparticle volume 
fraction within the thermal boundarylayer, this, in 
turn, leads to a decrease in the mass volume 

fraction gradient at the sheet surface. 
 

 

 
Fig. 6. Effect of the Brownian motion parameter ࢈ࡺ and the Lewis ࢋࡸ ࢘ࢋ࢈࢓࢛࢔ onࣘ(ࣁ)forࡽ =૙. ૚, ࡿ = ૙. ૛, ࢚ࡺ = ૙. ૞ and ࢘ࡼ = ૚૙. 
 

 
Fig. 7. Effect of the Prandtl number ࢘ࡼ on(ࣁ)ࣂ 

andࣘ(ࣁ)forࡽ = ૙, ૚, ࡿ = ૙, ૛, ࢚ࡺ = ૙. ૞, ࢈ࡺ =૙. ૞and = ૚૙ . 
 

Figure 7 illustrates the variation of the temperature 
profile (ߟ)ߠ and mass volume fraction profile ߶(ߟ)for some values of Prandtl number ܲݎ. The 
results shows that increasing ܲݎreduces the 
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temperature profile, while the oppositeresults 
occurs when we vary the mass volume fraction with ܲݎ. 

The results in Figures 3 - 7 show that the 
nanoparticle volume fraction profiles starts from 
negative values and later become positive. This, as 
explained in Kuznetsov and Nield (2010b),is due to 
the fact the effect of thermophoresis is such that an 
elevation (above the ambient value of the surface 
temperature)results in a depression in the relative 
value of the nanoparticle fraction at the sheet. 

the spectral relaxation  and the quasi-linearization 
methods. We have presented the results graphically 
in order to illustrate the effects of various fluid 
parameters on the velocity, thermal and 
nanoparticle volume fraction profiles. The 
nanoparticle profiles are initially negative and 
become positive due to the effect of 
thermophoresis. The velocity is reduced by 
increasing the unsteadiness parameter. The 
temperature as well as the mass volume fraction 
decrease with an increase in the unsteadiness 
parameter. The stronger couple stress reduces the 
nanofluid velocity, as well as increasing the 
thickness of both the thermal and mass volume 
fraction boundary layers. The effect of the 
Brownian motion on the mass volume fraction 
within the boundary is much more significant rather 
than on the temperature. 
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Chapter 5

Unsteady natural convective boundary-layer

flow of MHD nanofluid over a stretching

surfaces with chemical reaction using the

spectral relaxation method: A revised model

In this chapter we consider two types of nanofluids, namely copper-water and silver-water

embedded with dust particles. The cross-diffusion effects arise in abroad range of fluid flow

situations in many areas of science and engineering. Here we chose the revised nanofluid

boundary condition which is more realistic than the previously discussed nanofluid mod-

els. Again, here, the cross-diffusion, the combined significance of Brownion motion and

the thermophoresis parameters in nanofluids have a significant impact on heat and mass

transfer processes. The temperature distribution on a silver-water nanofluid is higher than

on a copper-water nanofluid, and for this reason it is important to know that the thermal

conductivity of silver-water is less than that of copper-water. The concentration boundary

layer thickness is higher in copper-water than in a silver-water nanofluid. The model equa-

tions for the conservation of momentum, heat and solute concentration transfer rates are

solved using the spectral relaxation method.

66
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Abstract

We investigate heat and mass transfer in an unsteady MHD nanofluid boundary layer flow due to a stretching surface. The traditional

model which here includes the effects of Brownian motion and thermophoresis is revised, so that the nanofluid particle volume

fraction on the boundary is passively rather than actively controlled. In this respect the problem is more realistic. This problem is

modeled using systems of nonlinear partial differential equations which have been solved numerically using the spectral relaxation

method. The results are benchmarked with previously published results.
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1. Introduction

The mathematical study over stretching sheet is increasing recent years due it’s importance in science and engineer-

ing ([1]). The nanofluid represents a liquid in which nanoscale particles are suspended in a base fluid with low thermal

conductivity such as water, oils, rthylene glycol etc. In recent years, the concept of nanofluid has been proposed as

a route for increasing the performance of heat transfer in liquids. The model for a nanofluid including the effects of

Brownian motion and thermophoresis, introduced by Buongiorno [2] which was carried out by Kuznetsov and Nield

[3] to the classical problem. In their pioneering problem they employed boundary conditions on the nanoparticle

volume fraction. MHD flow, heat and mass transfer has many important technological and industrial applications

such as micro MHD pumps, micromixing of physiological samples and drug delivery. Recently, on unsteady MHD

mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using a spectral relaxation

method were reported by Haroun et al. [4]. The aim of the present study is to analyze the effects of Brownian motion

and thermophoresis parameters on a boundary condition that is more realistic physically. In a recent paper, Kuznetsov

∗ Corresponding author. Tel.: +27-620908146.

E-mail address: sabya.mondal.2007@gmail.com

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
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Fig. 1. Geometry of the physical model.

and Nield [5] suggested that the nanoparticle volume fraction flux at the boundary cannot be actively controlled. Very

recently, Haroun et al. [12] investigated heat and mass transfer in a magnetohydrodynamic nanofluid flow due to an

impulsively started stretching surface. The mathematical problem with this type of boundary conditions has not been

studied extensively on previous studies on an unsteady nanofluid in presence of chemical reaction and magnetic field.

In this study we solve this type of problem numerically by using spectral relaxation method (Motsa [6]).

2. Governing Equations

Consider the two-dimensional Unsteady natural convective boundary-layer flow of heat and mass transfer nanofluid

past a vertical platesituated at y = 0 with stretching velocity u(x) = ax where a is a positive constant as shown in

Figures 1. At the surface both the nanofluid and the sheet are kept at a constant temperature Tw where Tw > T∞ is

for a heated stretching surface and Tw < T∞ corresponds to a cooled surface. The boundary layer temperature and

nanoparticle volume concentration are T and φ̂ respectively. The ambient fluid temperature and nanoparticle volume

fraction are T∞ and φ̂∞ respectively. Using the Boussinesq and the boundary layer approximations, the governing

equations are,

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u
∂u

∂x
+ v
∂u

∂y
=
μn f

ρn f

∂2u

∂y2
+ gβT (T − T∞) −

σB2
0

ρn f

u, (2)
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∂T

∂t
+ u
∂T

∂x
+ v
∂T

∂y
= αn f

∂2T

∂y2
+ τ∗

⎡

⎢

⎢

⎢

⎢

⎢

⎣

DB

∂φ̂

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2
⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

∂φ̂

∂t
+ u
∂φ̂

∂x
+ v
∂φ̂

∂y
= DB

∂2φ̂

∂y2
+

DT

T∞

∂2T

∂y2
− K(φ̂ − φ̂∞), (4)

where u and v are the fluid velocity and normal velocity components along x− and y−directions respectively, μn f ,

ρn f , σ, B0, g are the the effective dynamic viscosity of the nanofluid, nanofluid density, electrical conductivity, the

uniform magnetic field in the y-direction and gravitational acceleration, βT , T , φ̂, αn f , τ
∗(= (ρc)p/(ρc) f ) are the vol-

umetric thermal expansion coefficient, volumetric solutal expansion coefficient, temperature of fluid in the boundary

layer, nanoparticle volume fraction, the thermal diffusivity of the nanofluid, the ratio of effective heat capacity of

the nanoparticle material to heat capacity of the fluid, DB, DT , T∞, K are the Brownian motion coefficient, the ther-

mophoretic diffusion coefficient, mean fluid temperature and the chemical reaction parameter.

The boundary conditions

t ≥ 0 : u = Uw(x) = ax, v = 0, T = Tw, DB

∂φ̂

∂y
+

DT

T∞

∂T

∂y
= 0 at y = 0,

t ≥ 0 : u, v→ 0, T → T∞, φ̂ = φ̂∞, as y→ ∞, (5)

where a is the stretching/shrinking rate and stagnation flow rate parameters, with a < 0 for shrinking, a > 0 for a

stretching. The effective dynamic viscosity of the nanofluid was given by Brinkman [7] as

μn f =
μ f

(1 − φ)2.5
, (6)

(ρcp)n f = (1 − φ)(ρcp) f + φ(ρcp)s, ρn f = (1 − φ)ρ f + φρs, νn f =
μn f

ρn f

,

αn f =
kn f

(ρcp)n f

,
kn f

k f

=
(ks + k f ) − 2φ(k f − ks)

(ks + k f ) + φ(k f − ks)
, (7)

where φ and μ f are the solid volume fraction of nanoparticles and the dynamic viscosity of the base fluid. In equa-

tions (1) to (4) and νn f , ρn f , (ρcp)n f , kn f , k f , ks, ρs, (ρcp) f , (ρcp)s are the nanofluid kinematic viscosity, the density

of nanofluid, the nanofluid heat capacitance, thermal conductivity of the nanofluid, thermal conductivity of the fluid,

the thermal conductivity of the solid fractions, the density of the solid fractions, the heat capacity of base fluid, the

effective heat capacity of nanoparticles, respectively.

The continuity equation is satisfied by introducing a stream function ψ(x, y) and the following non-dimensional vari-

ables, (see Liao [8]) such that

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (8)

ψ =
[

aν f ξ
]

1
2

x f (ξ, η), ξ = 1 − exp(−τ), τ = a t, η =

[

a

ν f ξ

]
1
2

y, (9)

θ(ξ, η) =
T − T∞

Tw − T∞
, Φ(ξ, η) =

φ̂

φ̂∞
, (10)

where η, ξ and τ are dimensionless variables and the dimensionless time, f (ξ, η) is the dimensionless stream function,

θ(ξ, η) is the dimensionless temperature and φ(ξ, η) is the dimensionless solute concentration.

We get the dimensionless governing equationa by using the dimensionless variables

f ′′′ + φ1

[

(1 − ξ)
1

2
η f ′′ + ξ

(

f f ′′ − f ′
2
− M f ′ +Grtθ

)

]

= φ1ξ(1 − ξ)
∂ f ′

∂ξ
, (11)

θ′′ + φ2Pr

(

k f

kn f

) [

(1 − ξ)
1

2
ηθ′ + ξ f θ′ + Nbθ

′Φ′ + Ntθ
′2

]

= φ2Pr

(

k f

kn f

)

ξ(1 − ξ)
∂θ

∂ξ
, (12)

Φ′′ + S c

[

(1 − ξ)
1

2
ηΦ′ + ξ fΦ′

]

+
Nt

Nb

θ′′ − γξS cΦ = S cξ(1 − ξ)
∂Φ

∂ξ
, (13)
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subject to the boundary conditions

f (ξ, 0) = 0, f ′(ξ, 0) = 1, θ(ξ, 0) = 1, NbΦ
′ + Ntθ

′ = 0, η = 0 , ξ ≥ 0,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, Φ(ξ,∞) = 0, η −→ ∞, ξ ≥ 0. (14)

Where primes denote differentiation with respect to η, α f = k f /(ρcp) f and ν f = μ f /ρ f are the thermal diffusivity and

kinetic viscosity of the base fluid, respectively. Other non-dimensional parameters appearing in equations (11) to (13)

are Ha, Grt, Pr, Nb, Nt, S c, and γ denote the Magnetic parameter, local temperature Grashof number, Prandtl num-

ber, Brownian motion parameter and thermal phoresis parameter, the Schmidt number and scaled chemical reaction

parameter. These parameters are defined mathematically as

M =
σB2

0

aρn f

,Grt =
gβT (Tw − T∞)x3

ν2
f

, Pr =
ν f

α f

,

Nb =
(ρc)pDBΦ∞

ν f (ρp) f

, S c =
ν f

DB

, γ =
K

a
, Nt =

(ρc)p DT (Tw − T∞)

T∞ν f (ρp) f

. (15)

The nanoparticle volume fraction φ1 and φ2 are defined as

φ1 = (1 − φ)2.5

[

1 − φ + φ

(

ρs

ρ f

)]

, φ2 =

[

1 − φ + φ
(ρc)s

(ρc) f

]

. (16)

The skin friction coefficient, local Nusselt number are obtained as

C f x =
2τw

ρ f U2
w

,Nux =
xqw

k f (Tw − T∞)
. (17)

The reader will note that the dimensionless mass flux represented by a Sherwood number S hx is now identically zero

due to the revised nanofluid model.

3. Results and Discussion

Table 1. Comparison of the SRM solutions for f ′′(ξ, 0) for different values of ξ when the other parameters are same as those published papers

Kechil and Hashim [10] Srinivasa and Eswara [11] Present Results

ξ

0.0 -0.5643740 -0.5643740 -0.5641896

0.1 -0.6150550 -0.6106120 -0.6104676

0.3 -0.7115696 -0.7115610 -0.7115697

0.9 -0.9633761 -0.9623398 -0.9623380

1.0 -1.0000000 -1.0000000 -1.0000019

The equations (11) to (13) are solved using the SRM (Motsa [6]). The thermophysical properties of the nanofluids

used in the numerical simulations are given in [9]. Extensive calculations have been performed to obtain the velocity,

temperature, concentration profiles as well as skin friction etc for various values of physical parameters such as φ,

M, Grt, Pr, Nb, Nt, S c and γ. To determine the accuracy of our numerical results, the skin friction coefficient is

compared with the published results of Kechil and Hashim [10], Srinivasa and Eswara [11] in Tables 1. Here we have

varied the ξ while keeping other physical parameters fixed. Table 1 gives a comparison of the SRM results with those

obtained by Kechil and Hashim [10], Srinivasa and Eswara [11] when Grt = γ = φ = 0, Pr = 7, S c = 0.4 and M = 0.0

for different values of the ξ. It is observed that the present results are in good agreement with the previously published

results.

The effects of the nanoparticle volume fraction and M on the fluid velocity, temperature, concentration profiles as well

as on skin friction are shown in Figures 2 - 4. From Figures 2 - 3, it is evident that the solute concentration decreases

with increasing nanoparticle volume fraction while the velocity and temperature skin friction increase. This is because
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Fig. 2. Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, M = 0.2, Nt = 0.01, Pr = 7, Nb = 0.01, γ = 1, S c = 1 and

ξ = 0.5.
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Fig. 3. Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, M = 0.2, Nt = 0.01, Pr = 7, Nb = 0.01, γ = 1, S c = 1 and

ξ = 0.5.
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with an increase in nanoparticles volume fraction, the thermal conductivity of the nanofluid increases, which reduces

the thermal boundary layer thickness and the temperature gradient at the wall. The axial velocity in the case of an

Ag-water nanofluid is comparatively less than that in the case of a Cu-water nanofluid. The temperature distribution

in an Ag-water nanofluid is higher than that in a Cu-water nanofluid and this is explained by the observation that the

thermal conductivity of silver is less than that of copper. The concentration boundary layer thickness is higher for the

case of a Cu-water than that for the case of an Ag-water nanofluid. Figure 4 (a) and (b) show that the skin friction

coefficients − f ′′(0, ξ) increases monotonically with increasing ξ. The result is true for both types of nanofluids. The

minimum value of the skin friction in the case of a Cu-water nanofluid is achieved at a smaller value of ξ in comparison

with a Ag-water nanofluid. Furthermore, in this paper it is found that the Ag-water nanofluid shows higher drag as

compared to the a Cu-water nanofluid. The maximum value of the skin friction in the case of a Ag-water nanofluid is

achieved at the value of ξ = 1 in comparison with an Cu-water nanofluid in two figures (a) and (b)respectively.

4. Conclusions

We have investigated the heat and mass transfer in an unsteady MHD boundary layer flow in nanofluid due to

a stretching surfaces with chemical reaction and an applied magnetic field. From the numerical simulations, some

results can be drawn as follow:

[i] The velocity profile increase with increase in the nanoparticle volume fraction while the opposite trend is observed

with increase in the value of the nanoparticle volume fraction.

[ii] The temperature and concentration profiles increase with increasing in the values of the nanoparticle volume frac-

tion and thermophoresis parameter while the opposite trend is observed for the concentration profile with increasing

in the values of Brownian motion parameter.

[iii] The values of skin friction increase with increase in the values of the nanoparticle volume fraction and magnetic

parameter M.
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Chapter 6

The effects of thermal radiation on an un-

steady MHD axisymmetric stagnation-point

flow over a shrinking sheet in presence of

temperature dependent thermal conduc-

tivity with navier slip

In this chapter we investigate unsteady MHD axisymmetric stagnation-point flow with

Navier slip conduction. The surface is assumed to be a two-dimensional plane and flow

is permeated by a uniform magnetic field normal to the surface. We discuss two different

types of heat transfer processes namely a prescribed surface temperature (PST) and a pre-

scribed surface heat flux (PHF) and evaluate how the various parameters affect the fluid

flow, heat transfer and temperature field. The temperature profiles in the two cases of PST

and PHF are shown to increase with the thermal radiation parameter, which in turn increases

the thermal boundary layer thickness. The SRM is used to solve the problem.
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Abstract
In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an

unsteady and electrically conducting incompressible viscous fluid in with temperature

dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow

is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear

velocity. The magnetic field is imposed normally to the sheet. The model equations that

describe this fluid flow are solved by using the spectral relaxation method. Here, heat trans-

fer processes are discussed for two different types of wall heating; (a) a prescribed surface

temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the vari-

ous parameters affect the fluid flow, heat transfer and the temperature field with the aid of

different graphical presentations and tabulated results.

1 Introduction
The study of an unsteady fluid flow toward a stretching/shrinking sheet has great importance
due to its various applications in science and engineering. Some often given examples in this
regard include metal rolling, drawing and pultrusion. Heat transfer in such flows with both
constant and variable wall temperature was investigated by Gupta and Gupta [1] and also
investigated by Carragher and Crane [2]. Work on unsteady MHD flow with ramped wall tem-
perature has been done by Khan et al.[3], Samiulhaq [4] and Khalid [5]. Wang [6] investigated
the steady flow through a flat surface of a viscous fluid which is stretched in its own plane in
two perpendicular directions. MHD free convection of unsteady flow in a porous medium with
Newtonian heating and constant mass diffusion was studied by Hussanan [7]. Pavlov [8] stud-
ied exact similarity solution of the steady two-dimensional boundary layer flow equations in
presence of magnetic field of an electrically conducting fluid due to the stretching of an elastic
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surface in the presence of a uniform transverse magnetic field. Mabood et al. [9] solved the dif-
ferential equations of the model flow and heat transfer in an axisymmetric channel using the
optimal homotopy asymptotic method. Homann [10] studied three dimensional axisymmetric
stagnation-point flow using a similarity transform for reducing the Navier-Stokes equations to
third order ordinary differential equations.

Chiam [11] investigated steady axisymmetric stagnation-point flow of a viscous fluid over
an axisymetrically stretched surface. Mahapatra and Gupta [12] examined axisymmetric stag-
nation-point flow of an incompressible viscous fluid towards a stretching surface. Axisymmet-
ric stagnation-point flow in presence of a uniform magnetic field towards a stretching surface
with heat generation was investigated by Attia [13].

Considerable interest has been shown on the boundary layer flow over a shrinking sheet in
recent years. Some of the applications of the shrinking sheet problem in industry relate to the
shrinking film that is can be unwrapped easily with adequate heat and used in the packaging of
bulk products. The shrinking fluid flow study, which is essentially a backward flow, can also be
applied to the study of hydraulic properties of agricultural clay soils, capillary effects in the
shrinking-swell behaviour and small pores. The related changes in mechanical and hydraulic
studies of such soils have a significant impact on the behaviour and the transport properties of
the fluid. The fluid loses the memory of the perturbation produced by the slot for this backward
flow configuration. Due this reason, the fluid flow due to a shrinking sheet has some quite dis-
tinct physical characteristics compared to the forward stretching case.

Miklavcic andWang [14] studied axisymmetric flow with uniform suction induced by a
shrinking surface. Wang [15] examined heat transfer from a shrinking sheet due to a steady two-
dimensional axisymmetric stagnation-point flow. Qasim et al. [16] examined heat transfer in the
case of a micropolar fluid through a stretching sheet with Newtonian heating. Recently, Mahapa-
tra and Nanday [17] studied heat transfer in an axisymmetric stagnation-point flow in the pres-
ence of a magnetic field. Qayyum et al. [18] presented an analysis of unsteady axisymmetric
squeezing fluid flow with slip boundary conditions through a porous channel. Some recent stud-
ies of boundary layer flow in presence of a magnetic field include those of Mabood and his group
[19–21]. For the case of a nonlinearly stretching sheet, we note the work of Khan et al. [22].

In this paper, we generalize the study of MHD fluid flow with an unsteady conditions
through a shrinking sheet including a temperature dependent thermal conductivity, radiation
and a Navier slip condition. The surface with prescribed surface temperature (PST) and surface
with prescribed wall heat flux (PHF) are considered as two examples of non-isothermal bound-
ary conditions.

Ethical Statement: This study involved only numerical simulations and the analysis of fluid
flow.

2 Formulation
Here, we consider the unsteady axisymmetric stagnation-point flow of an electrically conduct-
ing incompressible fluid from the surface which is shrunk axisymmetrically. We have used Car-
tesian axes instead of cylindrical axes due to possible non-alignment, Wang [15]. The flow
configuration is shown in Fig 1. In this frame of reference, let the velocity components are u, v
and w in the x- direction, y- direction and z-direction, respectively.

At the surface the fluid velocity components are

u ¼ ðl þ xÞc
1� lt

; v ¼ cy
1� lt

and w ¼ 0;

where −l is the location of the origin and c (< 0) denotes the shrinking rate (and if c> 0 the it

Unsteady MHD Axisymmetric Stagnation-Point Flow
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denotes stretching rate). Here the sheet shrinkage is along the negative x-axis. Note that the
stretching axis and the point flow are not always aligned (that is, l 6¼ 0).

The velocity components in the ambient region are given by

U ¼ ax
1� lt

; V ¼ ay
1� lt

and W ¼ � 2az
1� lt

;

where a (> 0) is a constant that is a measure of the strength of the stagnation-point flow and λ
quantifies the unsteadiness of the problem. For a decelerating shrinking sheet λ< 0 whereas
for an accelerating sheet λ> 0. The magnetic field B0 is imposed in the normal direction to the
surface i.e., parallel to z-axis.

Fig 1. A sketch of the physical problem.

doi:10.1371/journal.pone.0138355.g001
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The continuity and momentum equations are (Bansal [23])

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð1Þ

@u
@t

þ u
@u
@x

þ w
@u
@z

¼ � 1

r
@p
@x

þ n
@2u
@z2

� sB2
0u
r

: ð2Þ

The pressure gradient in the free stream can be obtained from Eq (2) as

1

r
@p
@x

¼ � @U
@t

� U
@U
@x

� sB2
0U
r

; ð3Þ

so that Eq (2) becomes

@u
@t

þ u
@u
@x

þ w
@u
@z

¼ @U
@t

þ U
@U
@x

þ n
@2u
@z2

þ sB2
0

r
ðU � uÞ: ð4Þ

The appropriate boundary conditions with velocity partial slip are given by (see Jat and
Rajotia [24]);

u ¼ uwðx; tÞ þ L1n
@u
@z

; v ¼ cy=ð1� ltÞ; w ¼ 0 at z ¼ 0; ð5Þ

u ! Uðx; tÞ ¼ ax=ð1� ltÞ; as z ! 1: ð6Þ

where a(> 0) is a constant. For the u-component boundary condition, we have assumed a
velocity slip. This is proportional to local shear stress with slip factor L1 = L(1 − λt)1/2 where L
is the initial velocity. Note that the essential slip factor L1 changes with time and has dimen-
sions (velocity)−1. The velocity

uwðx; tÞ ð¼ cðx þ lÞ=ð1� ltÞÞ; ð7Þ

is valid for time t< λ−1.
We introduce the following similarity transformations to transform the govering equations

u ¼ ½a x f 0ðZÞ þ c l hðZÞ�
1� lt

; v ¼ ayf 0ðZÞ
1� lt

; w ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
an

1� lt

r
f ðZÞ; ð8Þ

where

Z ¼ z
a

nð1� ltÞ
� �1=2

; ð9Þ

and differentiation is with respect to η. Eqs (8) and (1) is identically satisfied. Substituting Eqs
(8) and (9) in Eq (4) and equating the coefficients of x0 and x1, we obtain the coupled non-lin-
ear differential equations

f 000 þ 2ff 00 � f 0
2 þ 1þM2ð1� f 0Þ � b

Z
2
f 00 þ f 0 � 1

h i
¼ 0; ð10Þ

h00 þ 2fh0 � hf 0 �M2h� b
Z
2
h0 þ h

h i
¼ 0; ð11Þ

where B ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ltÞp
. In Eqs (10) and (11), β = (λ/a) andM = (σB2/aρ)1/2 are respectively
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the unsteadiness parameter and the magnetic parameter characterizing the strength of the
imposed magnetic field.

The appropriate boundary conditions are obtained from Eqs (5) and (6) as

f ð0Þ ¼ 0; f 0ð0Þ ¼ aþ df 00ð0Þ; f 0ð1Þ ¼ 1; ð12Þ

hð0Þ ¼ 1; hð1Þ ¼ 0; ð13Þ
here δ = L(aν)1/2 is the dimensionless velocity slip parameter and α = (c/a) is the velocity ratio
parameter. It is worth mentioning that the non-dimensional velocity slip parameter (δ) is
always positive.

The non-dimensional velocity components is be introduced from the Eq (8) as

u� ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ltÞ

an

r
¼ xf 0ðZÞ þ a L hðZÞ; ð14Þ

w� ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ltÞ

an

r
¼ �2f ðZÞ; ð15Þ

where

x ¼ x
a

nð1� ltÞ
� �1=2

and L ¼ l
a

nð1� ltÞ
� �1=2

: ð16Þ

The dimensionless wall shear stress τ is then given by

t ¼ xf 00ð0Þ þ a L h0ð0Þ: ð17Þ

3 Heat transfer
The unsteady heat equation for a fluid with viscous and ohmic heating and variable thermal
conductivity is given by (see Chiam [25])

@T
@t

þ rcp u
@T
@x

þ w
@T
@z

� �
¼ @

@z
kðTÞ @T

@z

� �
þ m

@u
@z

� �2

þ sB2
0ðu� UÞ2 � @qr

@z
; ð18Þ

whereκ(T), cp and qr are the temperature dependent thermal conductivity, the specific heat at
constant pressure and the radiative heat flux of the fluid, respectively. The second term on the
right hand side of Eq (18) represents the viscous dissipation in the flow; the third term stands
for the dissipation of the magnetic energy in the form of Joule heating (Shercliff [26]) while the
last term is due to the thermal radiation. Here, the temperature dependent thermal conductiv-
ity is written in the form (see Chiam [25])

kðTÞ ¼ k1 1þ �

DT

h i
; ð19Þ

where κ1 denotes the conductivity of the fluid away from the surface, ΔT = Tw − T1, T1 and
Tw are free stream temperature and the sheet temperature. � is a small parameter. Substituting
Eq (19) into Eq (18), gives

@T
@t

þ rcpu
@T
@x

þ rcpw� k1�

DT
@T
@z

� �
@T
@z

¼ kðTÞ @
2T
@z2

þ m
@u
@z

� �2

þ sB2
0ðu� UÞ2 � @qr

@z
; ð20Þ
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where the radiation heat flux qr is defined as

qr ¼ � 4s�

3k�
@T4

@z
; ð21Þ

where k� is the Rosseland mean absorption coefficient and σ� is denoted as the Stefan-Boltzmann
constant. Here, Taylor series expansion is used to expand the temperature variation T4 about T1,
and on neglecting higher order terms we obtain, T4 ffi 4T3

1T � 3T4
1. Eq (20) becomes

@T
@t

þ rcpu
@T
@x

þ rcpw� k1�

DT
@T
@z

� �
@T
@z

¼ kðTÞ þ 16s�

3k�

� �
@2T
@z2

þ m
@u
@z

� �2

þ sB2
0ðu� UÞ2:ð22Þ

The thermal boundary conditions may vary depending on the different types of heating pro-
cesses under consideration. In this study, prescribed surface temperature and prescribed wall
heat flux conditions are considered as two different examples of heating processes.

3.1 Case 1: Prescribed Surface Temperature (PST)
We assume that the prescribed wall temperature is a quadratic function in x (see Mahapatra
and Nanday [17]) given by,

Tw ¼ T1 þ Aðx=l1Þ2ð1� ltÞ�3=2 at z ¼ 0; ð23Þ

T ! T1 as z ! 1; ð24Þ
where A is a constant, Tw is the variable wall temperature and l1 is a reference length. The
dimensionless temperature θ is defined as

y ¼ T � T1
Tw � T1

: ð25Þ

Substituting Eqs (23) and (25) into Eq (22), we get

ð1þ �yþ NrÞy00 þ �y02 þ Pr½2f y0 � 2ðf 0 þ aRLhÞyþ Ecðf 00 þ aRLh0Þ2

þEcM
2ðf 0 � 1þ aRLhÞ2 � b

2
ðZy0 þ 3yÞ� ¼ 0;

ð26Þ

where Nr,Ec and Pr denote the radiation parameter, Eckert and Prandtl numbers, respectively.
We defined these physical parameters as follows:

Nr ¼
16s�T3

1
3k1k�

; Pr ¼
rcp
k1

; Ec ¼
a2l21
A0cp

; R ¼ 1

x
A ¼ A0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lt

p
; ð27Þ

with boundary conditions

yð0Þ ¼ 1; yð1Þ ¼ 0: ð28Þ

3.2 Case 2: PrescribedWall Heat Flux (PHF)
The heat flux qw at the surface is assumed to vary as the square of the distance as follows (see
Mahapatra and Nanday [17]):

�k1
@T
@z

¼ qw ¼ Dðx=l1Þ2ð1� ltÞ�3=2 at z ¼ 0; ð29Þ
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T ! T1 as z ! 1; ð30Þ
where D is a constant. Here we set

T � T1 ¼ D
k1

ffiffiffi
n
a

r
ðx=l1Þ2ð1� ltÞ�3=2gðZÞ; ð31Þ

so that Eq (22), is transformed into the equation

ð1þ �g þ NrÞg 00 þ �g 02 þ Pr½2fg 0 � 2ðf 0 þ aRLhÞg þ Ecðf 00 þ aRLh0Þ2

þEcM
2ðf 0 � 1þ aRLhÞ2 � b

2
ðZg 0 þ 3gÞ� ¼ 0;

ð32Þ

with boundary conditions

g 0ð0Þ ¼ �1; gð1Þ ¼ 0; ð33Þ

where the Eckert number Ec ¼ k1a2 l2
1

ffiffiffiffiffi
a=n

p
D0cp

and D = D0/(1 − λt)1/2. Eq (32) has exactly the same

form as Eq (26) but with a different first boundary condition.

4 Method of Solution
Eqs (10), (11) and (26) were solved using the successive relaxation method (SRM), Motsa [27].
The SRM is an iterative procedure that works in a similar fashion to the Gauss-Seidel method
for algebraic equations. In this case the technique is used to linearize and decouple a system of
differential equations. Further details of the rules of the SRM can be found in [28, 29].

The linear terms in each equation are evaluated at the current iteration level r + 1 and the
non-linear terms are known from the previous iteration level r. The linearized form of Eqs
(10), (11) and (26) are

f 000rþ1 þ a1;rf
00
rþ1 þ a2;rf

0
rþ1 ¼ R1;r; ð34Þ

h00
rþ1 þ b1;rh

0
rþ1 þ b2;rhrþ1 ¼ R2;r; ð35Þ

ð1þ �yr þ NrÞy00
rþ1 þ cr;1y

0
rþ1 þ c2;ryrþ1 ¼ R3;r; ð36Þ

where

a1;r ¼ 2fr �
b Z
2

; a2;r ¼ bþM2 � f 0r ;

R1;r ¼ �½f 02r þM2 þ 1þ b�;

b1;r ¼ 2fr �
b Z
2

; b2;r ¼ �½f 0r þM2 þ b�; R2;r ¼ 0;

c1;r ¼ 2� y0r þ 2Pr fr �
Prb Z
2

; c2;r ¼ � y00r � 2Prðf 0rþ1 þ a R L hÞ2 � 3Pr b
2

;

R3;r ¼ Pr Ec½ðf 00r þ a R L h0
rÞ2 þM2ðf 0r þ a R L hrÞ2� � � y00r yr � � y02r :

It must be noted that Eqs (34)–(36) are linear and decoupled and can thus be solved sequen-
tially to obtain the quantities f(η), h(η) and θ(η). We opted in this study to use the Chebyshev
spectral collocation method to discretize in η and finite differences with central differencing to
discretize in ξ. Starting from initial guesses f0(η), θ0(η) and ϕ0(η), Eqs (34)–(36) were solved
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iteratively until the approximate solutions converged to within a certain prescribed tolerance
level.

Similarly, for the PHF case, Eqs (10), (11) and (32) take the form

f 000rþ1 þ a1;rf
00
rþ1 þ a2;rf

0
rþ1 ¼ R1;r; ð37Þ

h00
rþ1 þ b1;rh

0
rþ1 þ b2;rhrþ1 ¼ R2;r; ð38Þ

ð1þ �gr þ NrÞg 00rþ1 þ cr;1g
0
rþ1 þ c2;rgrþ1 ¼ R3;r; ð39Þ

where

a1;r ¼ 2fr �
b Z
2

; a2;r ¼ bþM2 � f 0r ;

R1;r ¼ �½f 02r þM2 þ 1þ b�;

b1;r ¼ 2fr �
b Z
2

; b2;r ¼ �½f 0r þM2 þ b�; R2;r ¼ 0;

c1;r ¼ 2� g 0r þ 2Pr fr �
Prb Z
2

; c2;r ¼ � g 00r � 2Prðf 0rþ1 þ aR L hÞ2 � 3Pr b
2

;

R3;r ¼ Pr Ec½ðf 00r þ a R L h0
rÞ2 þM2ðf 0r þ a R L hrÞ2� � � g 00r gr � � g 02r :

5 Results and Discussion
The analysis of the results presented here relate to a decelerating shrinking sheet only (i.e., β�
0) following Fang et al.[30], Rohini et al.[31] and Nandy et al.[32]. We have compared the local
skin friction coefficients f00(0) and h0(0) for various values of the parameter α with previously
published data (Wang [15], Rahimpour et al. [33] and Mahapatra and Nandy [17]). The com-
parisons are shown in Table 1 where we observe an very good agreement to the results in the
literature thus validating the current numerical results.

The phenomena of heat transfer is studied with respect to the numerical values of the physi-
cal parameters namely, (a) the wall temperature gradient j−θ0(0)j in the PST case and (b) the

Table 1. Comparison table of the values of f0 0(0) and h0(0) whenM = 0 with recent literature.

f0 0(0) h0(0)

α Wang
[15]

Rahimpour et al.
[33]

Mahapatra and
Nanday [17]

Present
Results

Wang
[15]

Rahimpour et al.
[33]

Mahapatra and
Nanday [17]

Present
Results

−0.95 0.9469 0.946815 0.946893 0.946897 0.26845 0.268450 0.268457 0.268458

−0.75 1.35284 1.352850 1.352841 1.352854 −0.22079 −0.220789 −0.220795 -0.220785

−0.50 1.49001 1.490004 1.352841 1.352852 −0.53237 −0.532371 −0.532374 -0.532379

−0.25 1.45664 1.456599 1.456641 1.456648 −0.75639 −0.756390 −0.756380 -0.756376

0.0 1.31193 1.311938 1.311942 1.311950 −0.93873 −0.938732 −0.938731 -0.938745

0.1 1.22911 1.229113 1.229111 1.229117 −1.00400 −1.004026 −1.004031 -1.004032

0.2 1.13374 1.133743 1.133750 1.133757 −1.06590 −1.065933 −1.065951 -1.065946

0.5 0.78032 0.780323 0.780327 0.780332 −1.23550 −1.235451 −1.235460 -1.235454

1.0 0 0 0 0 −1.47930 −1.479337 −1.479341 -1.479332

2.0 −2.13107 −2.131069 −2.131068 -2.131075 −1.88000 −1.879949 −1.879956 -1.879945

5.0 −11.8022 −11.802214 −11.802202 -11.802213 −2.76170 −2.761724 −2.761702 -2.76167

doi:10.1371/journal.pone.0138355.t001
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wall temperature jg(0)j in the PHF case. Tables 2 and 3 show that the wall temperature gradient
j−θ0(0)j in the PST case and the wall temperature jg(0)j in the PHF case increases with increas-
ingM when α and � are fixed. The temperature gradient in the PST case and the wall tempera-
ture in the PHF case decrease with increases in the thermal conductivity parameter �. We also
observe that j−θ0(0)j and j g(0) j decrease as α increases in both the PST and the PHF cases.

Fig 2 depicts the variation of the skin friction coefficients f00(0) and h0(0) with α< 0 (shrink-
ing sheet) and α> 0 (stretching sheet) for different values of the magnetic parameterM. Here
solid and dashed lines represent the trajectories of f00(0) and h0(0), respectively. Our numerical
results reveal that without a magnet (i.e.,M = 0), Eqs (14) and (15) have unique solutions when
α� −1 and no similarity solution exists for α< −1. It is observed that the similarity solution
exists up to a critical value α = αc(< 0), (say) beyond which a solution based on the boundary
layer approximations does not exist as the boundary layer separates from the surface. From a
physical point of view, a steady solution is not possible unless additional fluid from the stagna-
tion-point is added to the free stream. A steady solution is possible only when ratio of the free
stream velocity and shrinking velocity is less than a certain numerical value which again
depends on the magnetic field parameter (M). The results show that whenM increases, the
range of α where similarity solutions exist gradually increases. When α = 1, we find that f00(0) =
0 because f(η) = η is the solution of Eq (14) subject to the boundary conditions Eq (16). The
results show that when f00(0)� 0, for a given value of α, f00(0) increases withM. For a shrinking
surface, the h0(0) orbits intersect the α-axis but this is not the case for flow over a stretching

Table 2. Wall temperature gradient j−θ0(0)j for the PST case taking Pr = 0.72,R = 1 β = −0.25, L = 1, Ec =
1 andNr = 2.0.

� α M = 0.0 M = 0.5 M = 1.0

0.0 -0.9 0.470476 0.515791 0.639041

-0.3 0.469680 0.497224 0.575271

-0.1 0.389930 0.402194 0.436688

0.1 -0.9 0.435015 0.477871 0.594412

-0.3 0.434487 0.460699 0.535030

-0.1 0.358828 0.370508 0.403393

0.2 -0.9 0.403350 0.443995 0.554504

-0.3 0.403116 0.428120 0.499084

-0.1 0.331167 0.342317 0.373743

doi:10.1371/journal.pone.0138355.t002

Table 3. Wall temperature gradient jg(0)j for the PHF case taking Pr = 0.72, R = 1 β = −0.25, L = 1, Ec = 1
andNr = 2.0.

� α M = 0.0 M = 0.5 M = 1.0

0.0 -0.9 0.649572 0.681891 0.764965

-0.3 0.593890 0.618274 0.686943

-0.1 0.505823 0.517244 0.549463

0.1 -0.9 0.616233 0.648325 0.731028

-0.3 0.555240 0.579129 0.646413

-0.1 0.467061 0.478199 0.509608

0.2 -0.9 0.585066 0.616894 0.699120

-0.3 0.519071 0.542448 0.608305

-0.1 0.430932 0.441781 0.472366

doi:10.1371/journal.pone.0138355.t003
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sheet. For a given value ofM, the size of h0(0) decreases with increases in jαj. Also, for any
given α, jh0(0)j increases withM.

We note that for a stretching sheet α is positive and for a shrinking sheet α is negative while
α = 0 represents Hiemenz flow. Figs 3 and 4 show the effect of α on the vertical velocity compo-
nents f0(η) and h(η). We observe that f0(η) increases with increases in α while the value of h(η)
decreases with increases in the values of α.

Fig 5 displays the effect of α on the temperature profiles θ(η) (for PST case). Here the tem-
perature profiles decrease with an increase in α. Figs 6 and 7 show the effect ofM on f0(η) and
non-alignment variable h(η) with respect to η, respectively. It is clear that f0(η) increases with
increasing values of the magnetic parameterM and h(η) decreases withM. We can conclude
from the above results is that for shrinking sheet, the effect of non-alignment becomes less pro-
nounced with increasingM.

Fig 2. Initial values F0 0(0) and h0(0) versus α andM.

doi:10.1371/journal.pone.0138355.g002
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Fig 3. Effect of α on velocity profiles f 0(η) forM = 0.1, δ = 0.2, β = −0.25, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g003

Fig 4. Effect of α on velocity profiles h(η) forM = 0.1, δ = 0.2, β = −0.25, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g004
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Fig 5. Effect of α on temperature profile forM = 0.1, δ = 0.2, β = −0.25, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g005

Fig 6. Effect of magnetic parameterM on velocity profiles f0(η) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g006
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Figs 8 and 9 show that the temperature profiles decrease monotonically with an increase in
the magnetic parameter in both the PST and the PHF cases, respectively. The extent of the
reverse circular flow above the sheet decreases with increases inM. This is a consequence of
the fact that the temperature field given by Eq (18) is influenced by the advection of the fluid
velocity above the sheet. Figs 10 and 11 exhibit the temperature profiles for different values of
thermal conductivity parameter � where the other parameters are fixed for both the PST and
PHF cases, respectively. The temperature profiles increase with an increase in the thermal con-
ductivity parameter due to increases in the thermal boundary layer thickness in both the PST
and PHF cases.

Figs 12 and 13 depict the horizontal velocity profiles f0(η) and h(η) for different values of the
unsteadiness parameter β in the presence of slip at the boundary, respectively. The velocity f0

(η) decreases with an increase in the unsteadiness parameter β and this implies an accompa-
nying reduction in the thickness of the momentum boundary layer while the opposite trend is
observed with h(η). We observe that as β increases, the axial boundary layer velocity decreases.
In the vicinity of the sheet, the axial fluid velocity decreases while the trend is reversed in the
free stream. The parameter β has the effect of reducing the momentum boundary layer thick-
ness for f0(η) while enhancing the boundary layer thickness of h(η)

Figs 14, 15 and 16 show the effect of δ on the velocity components f0(η), h(η) and tempera-
ture profile θ(η) (for PST case), respectively. It is interesting to note that the velocity profile f0

(η) increases with increase in values of δ while h(η) decreases with the increase in the values of
δ. The figure also reveals that the temperature profile θ(η) decreases with the increase in the
values of δ. This may be explained in the following way; with slip, there is a difference between
the flow velocity near the sheet and the shrinking velocity at the surface. As δ increases the slip
velocity increases leading to a decrease in the fluid velocity for h(η). But the opposite trend is
observed for f0(η) because momentum boundary layer become thinner due to increasing value
of δ. Fig 16 illustrates the fact that the temperature at any given point increases when the slip
velocity δ increases.

Figs 17 and 18 depict the effect of Nr on the temperature profile in PST and PHF cases with
keeping other parameters fixed, respectively. The temperature profile in two cases increase
with increasing in values of Nr, which in turn increases the thermal boundary layer thickness
for both PST and PHF cases. This may due to the fact that increases in the value of Nr causes
an increase in the interaction with the thermal boundary layer.

Figs 19 and 20 show the variation in the skin friction coefficient −f00(0) with respect to β. We
observe that the skin friction coefficients decrease monotonically with increasing values of β
andM in Fig 19 while the opposite is true in the Fig 20 for β and δ. The highest value of the
skin friction is reached for smaller values of β.

Figs 21 and 22 display the dimensionless wall heat transfer rates −θ0(0) as a function of β.
We observe that the wall heat transfer rate increases with increasing β,M and δ. The maximum
value of the dimensionless wall heat transfer rates is achieved for large values of β.

6 Conclusion
An unsteady MHD axisymmetric stagnation-point flow over a shrinking sheet with tempera-
ture dependent thermal conductivity and thermal radiation and a Navier slip was investigated
in this paper. The surface was assumed to shrink axisymmetrically in its own plane and the
flow was permeated by a uniform magnetic field normal to the surface. The temperature pro-
files in the two cases of prescribed wall temperature and prescribed surface heat flux was
shown to increase with the thermal radiation parameter, which in turn increases the thermal
boundary layer thickness for both PST and PHF cases. This may be due to the fact that an
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Fig 7. Effect of magnetic parameterM on velocity profiles h(η) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g007

Fig 8. Effects of magnetic parameterM on temperature profiles (PST case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g008
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Fig 9. Effects of magnetic parameterM on temperature profiles (PHF case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g009

Fig 10. Effects of � on temperature profiles (PST case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0 and L = 1.0.

doi:10.1371/journal.pone.0138355.g010
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Fig 11. Effects of � on temperature profiles (PHF case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and L = 1.0.

doi:10.1371/journal.pone.0138355.g011

Fig 12. Effect of β on velocity profiles f 0(η) forM = 0.1, δ = 0.2, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g012
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Fig 13. Effect of β on velocity profiles h(η) forM = 0.1, δ = 0.2, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g013

Fig 14. Effect of δ on velocity profiles f 0(η) forM = 0.1, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g014
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Fig 15. Effect of δ on velocity profiles h(η) forM = 0.1, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g015

Fig 16. Effect of δ on temperature profile (PST case) forM = 0.1, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g016
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Fig 17. Effects of thermal radiation parameter Nr on temperature profiles θ(η) for δ = 0.2, Pr = 0.72, β = −0.25, Ec = 1.0, α = −0.95,M = 0.1, R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g017

Fig 18. Effects of thermal radiation parameter Nr on temperature profiles g(η) for δ = 0.2, Pr = 0.72, β = −0.25, Ec = 1.0, α = −0.95,M = 0.1,R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g018
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Fig 19. Effect ofM on Skin friction coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g019

Fig 20. Effect of δ on Skin friction coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g020
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Fig 22. Effect of δ on heat transfer coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g022

Fig 21. Effect ofM on heat transfer coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g021
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increase in Nr induces a significant interaction between the fluid and the thermal boundary
layer. It is clear that f0(η) increases with increasing magnetic parameter valuesM while h(η)
decreases with the magnetic parameter. It can be concluded that for a shrinking sheet, the effect
of non-alignment becomes less pronounced with enhanced magnetic parameter values. When
slip occurs, the flow velocity near the sheet is no longer equal to the shrinking velocity at the
sheet. Then with an increase in δ such slip velocity increases and consequently fluid velocity
decreases for h(η) under the slip condition at the boundary.
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Chapter 7

Conclusions

The primary objective of this thesis was to investigate convection and cross-diffusion ef-

fects on nanofluid flow, and heat and mass transfer in boundary layer flow in different

geometries and subject to various source terms, and then to apply recent spectral methods

to solve the highly non-linear and coupled model equations. Similarity transformations

were used to convert non-linear partial differential equations into non-linear coupled ordi-

nary differential equations which were solved numerically using spectral techniques.

The accuracy, convergence and validity of the solutions obtained using the spectral methods

were established by careful comparison with solutions for some limiting cases in the pub-

lished literature, or by use of a different solution method. Graphical and tabulated results

have been presented and discussed. The physical results show the significance of different

values of parameters on the fluid properties, the skin friction, the heat and mass transfer

coefficients.

In summary, the results show that fluid properties such as the velocity, temperature, and

solute concentration are appreciably influenced by changes in the fluid and physical param-

eters for nanofluid flow in porous media. The changes in fluid properties have implications

for heat and mass transfer processes. The study has shown that Soret and Dufour effects

play a significant role in transport processes and should not be neglected. In terms of the

solution methods, the study has shown that SRM and SQLM give accurate solutions for

systems of highly non-linear differential equations. The methods have great potential for
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use in studies involving complicated non-linear problems in science and engineering.

The main findings and overall results from each chapter are summarized as follows:

Chapter 2:

In this chapter the significance of nanofluids, heat generation or absorption, viscous dissi-

pation, and Soret and Dufour effects on double-diffusive mixed convection MHD due to a

stretching/shrinking surface with suction/injection was investigated. The systems of partial

differential equations were solved numerically using SRM. The accuracy of the results was

tested by comparison with those found in the published literature.

From the numerical simulations the following conclusions could be drawn:

• The velocity profile decreases with an increase in nanoparticle volume fraction, while

the opposite is true in the case of temperature.

• The temperature profiles decrease with an increase in suction/injection parameter and

the stretching/shrinking parameter.

• The numerical simulations show, inter alia, that the skin friction factor increases with

both an increase in the nanoparticle volume fraction and the stretching rate and that

an increase in the nanoparticle volume fraction leads to a reduction in the wall mass

transfer rate. The Soret and Dufour numbers have the opposite effect on thermal and

concentration distributions.

• Regarding the stretching/shrinking and suction/injection parameters, we found that

the silver-water nanofluid has a lower skin friction coefficient than the copper-water

nanofluid.

• A small increase (less than 1% ) in the nanoparticle volume fraction leads to a de-

crease in the wall mass transfer rate. Similarly, the wall mass transfer rate decreases
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with an increase in the Hartmann number, suction/injection parameter and a stretch-

ing/shrinking parameter.

• The wall heat transfer rate rises with an increase in the Hartmann number, suc-

tion/injection parameter and stretching/shrinking parameter, but falls with an increase

in the nanoparticle volume fraction.

Chapter 3:

In this chapter we presented an investigation of the effects of thermal-diffusion and chem-

ical reaction parameter on unsteady magnetohydrodynamic nanofluid flow through an im-

pulsively stretching vertical surface. The flow was subject to a heat source, a chemical

reaction, Brownian motion and thermophoresis parameters which are assumed to be sig-

nificant. The model equations that describe the fluid flow were solved using SRM. The

findings may be summarized as follows:

• The skin friction decreased with an increase in the nanoparticle volume fraction,

while the opposite trend was observed for increasing Hartman numbers.

• The mass transfer coefficient increased with an increase in the nanoparticle volume

fraction, chemical reaction parameter, Hartmann number and Brownian motion pa-

rameter, while the opposite trend was observed for increasing values of the ther-

mophoresis parameter. The fast flow from the stretching sheet carries with it nanopar-

ticles leading to an increase in the mass volume fraction boundary layer thickness.

• The heat transfer coefficient decreased with increase in the values of the nanopar-

ticle volume fraction, the Hartmann number, thermophoresis and Brownian motion

parameters.

Chapter 4:

In this chapter we applied the spectral relaxation method to the problem of unsteady cross-

diffusion and couple stress effects with vanishing nanoparticle flux at the wall. The SRM
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was used in combination with the SQLM to solve the highly non-linear governing equa-

tions. The qualitative and quantitative effects of the dimensionless parameters in the prob-

lem such as the couple stress parameter, the Prandtl number, the Brownian motion pa-

rameter, the thermophoresis parameter, and the Lewis number on the fluid behavior were

determined. Comparison of the results obtained using SRM together with SQLM proved

the accuracy and convergence of the SRM. From the numerical investigation, the following

conclusions could be drawn:

• The velocity profile decreased with increasing values of the couple stress parameter

until back flow was obtained in the range 2 ≤ η ≤ 8.

• The unsteadiness parameter slowed the motion of fluid within the boundary layer.

• The stronger couple stress parameter reduced the nanofluid velocity, as well as in-

creasing the thickness of both the thermal and mass volume fraction boundary layers.

Chapter 5:

In this chapter we used the SRM to solve the problem of cross-diffusion, double-diffusion,

and hydromantic effects, on convection fluid flow, over a vertical surface saturated with

a nanofluid. The systems of partial differential equations subject to boundary conditions,

were solved numerically using SRM and there was a strong correlation between our results

and those found in the literature, reinforcing the accuracy of our obtained results. From the

numerical investigation, we determined the influence of the physical parameters, and found

the following:

• The values of skin friction increase with increase in the values of the nanoparticle

volume fraction and magnetic parameter.

• The temperature and concentration profiles increase with increasing values of the

nanoparticle volume fraction and thermophoresis parameter while the opposite trend
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is observed for the concentration profile with increasing the values of the Brownian

motion parameter.

• The thermal conductivity of the nanofluid increases with increasing in the nanopar-

ticle volume fraction, which reduces the thermal boundary layer thickness and the

temperature gradient at the wall. The axial velocity of a silver-water nanofluid is

comparatively less than that of a copper-water nanofluid.

Chapter 6:

Here we studied the effects of thermal radiation on unsteady MHD axisymmetric stagnation-

point flow with Navier slip conduction. We considered temperature dependent thermal

conductivity and viscous dissipation. The flow was due to a surface that is shrunk ax-

isymmetrically in its own plane with a linear velocity. The model equations that describe

the fluid flow were solved using SRM to provide numerical solutions. We discussed two

different types of surface heating, namely a prescribed surface temperature (PST) and a

prescribed surface heat flux (PHF). The results are summarized as follows:

• The temperature profiles in the two cases of prescribed wall temperature and pre-

scribed surface heat flux were shown to increase with the thermal radiation parame-

ter, which in turn increased the thermal boundary layer thickness for both prescribed

wall temperature and prescribed surface heat flux cases. This may be due to the fact

that an increase in the value of the thermal radiation parameter causes an increase in

the interaction with the thermal boundary layer.

• Near the sheet, flow reversal was observed, and the region of reverse cellular flow

decreased with an increase in the magnetic parameter.

• The skin friction coefficients decreased monotonically with increasing unsteadiness

and magnetic parameter, while the opposite was true for velocity slip parameter.
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• The temperature profiles increased with increasing thermal radiation for both the

prescribed surface temperature (PST) and the prescribed wall heat flux (PHF) cases.

Future extensions and limitations of the research work

Our understanding of the potential applications of nanofluids is as yet, incomplete. Nanofluid

research could lead to major breakthroughs in the development of the next generation of

heat transfer fluids for engineering applications.

From an experimental point of view, more work is needed to understand the fundamen-

tal physics of energy transport in nanofluids, and to determine the nature and structure of

nanoparticles that offer the most efficiency at minimum cost. Theoretical predictions using

mathematical modelling would compliment and validate the experimental findings. There

is a compelling argument in favour of nanofluids, because of their energy efficiency, but it

needs to be proved that they are ethical. We face public and safety concerns, both in the

production and in the use of nanofluids in terms of their impact on the environment. For

these reasons, there is great potential for further basic and applied research on the produc-

tions and application of nanofluids in the sciences.

Limitation

We have presented various studies on the flow of nanofluids, and have investigated heat

and mass transfer processes in porous media. Some useful insights have been gained on

the influence and significance of various fluid and physical parameters on the transport

properties. We have further shown the accuracy and reliability of certain spectral tech-

niques in determining solutions of highly non-linear and coupled equations such as those

that describe fluid flow, energy and mass transport. Nonetheless, certain limitations can

readily be identified in the work presented here. For instance the SRM becomes less accu-

rate for problems with complex geometries, and problems involving many parameters and

derivatives in the boundary conditions. According to Lele [141], the use of some spectral

methods in turbulent fluid flows is limited to flows in simple domains and simple boundary

conditions. The values of various physical parameters that we considered were chosen from
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previously published literature and in some cases, these values may not be experimentally

determined.
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