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ABSTRACT

A greenhouse study was carried out to investigate the effectiveness of soil-applied

silicon (Si) with that of foliar applications for sorghum growth. Silicon sources were

soil-applied as calmasil (calcium silicate) at two rates (4 and 8t/ha) and foliar applied

Si including pure K-silicate, K-humate and K-fulvate (all three foliar treatments at

rates of 300 and 600 ppm). Another treatment included soil applied calmasil plus low

rate of foliar applied K-humate. The soils used for the greenhouse trial were Cartref,

Glenrosa, Nomanci and Fernwood. Results indicated that application of calcium

silicate to the soil before planting increased sorghum yield and Si uptake in three of

the four soils. Silicon uptake from different experimental treatments followed the

order: Calmasil 8t/ha > calmasil 4t/ha ~ calmasil + 300 ppm K-humate> K-humate =

K-fulvate = pure-K silicate = control. Foliar sprays were ineffective at increasing

yield, Si content of the plant tissues or Si uptake. The concentrations of

exchangeable Ca, Mg as well as soil pH were significantly increased by calmasil

treatments. Extractable AI concentrations were also reduced due to the Iiming effect

of calcium silicate and also possibly formation of insoluble aluminosilicates. The yield

response to applied calmasil seemed to be primarily related to its Iiming effect and

reductions in extractable AI in the Cartref, Glenrosa and Nomanci soils. The dry

matter yield was highest in Fernwood and lowest in Cartref soil. However, there was

no significant yield response to calmasil in Fernwood soil which had an initial pH of

5.8 and insignificant extractable AI concentrations. Therefore application of calcium

silicate had no significant effect on extractable AI concentration in this soil. Yield

response to calmasil may also have been partly due to direct positive effects of

applied Si on crop growth through mechanisms such as increased photosynthetic

rate and reduced transpiration rate, Addition of calmasil increased the concentrations

of Si in the plant tissues and reduced those of N, P and Kin Nomanci and Fernwood

soils respectively. This indicates that nutrient interactions were occurring in the plant.
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It was concluded that foliar-application is not an effective way of applying Si to a Si­

responsive crop such as sorghum when growing in soils low in extractable soil Si.

This is because Si is accumulated in plant tissues in similar amounts to

macronutrients. It was also concluded that in future, studies of crop response to

applied Si should include the use of non-Iiming source of Si (e.g. silicic acid) so as to

separate a liming effect of calcium silicate from effect of applied Si.

In a laboratory study, the effects of applied silicic acid, calcium silicate and calcium

hydroxide on levels of extractable P in two Si-deficient soils were investigated. Two

soils (Fernwood and Nomanci soils) were treated with two rates of P and three soil

amendments (calcium silicate, calcium hydroxide and silicic acid) and incubated for

six weeks at room temperature. Phosphorus was extracted using Truog, AMBIC and

resin methods, and levels of exchangeable and solution AI and extractable and

solution Si were also measured. Application of calcium silicate and calcium

hydroxide increased soil pH in both soils while silicic acid additions had no significant

effect compared with the control. The pH increase was much greater in the

Fernwood than Nomanci soil because of the low buffering capacity of the sandy

Fernwood soil. Exchangeable AI and concentrations of monomeric and total AI in soil

solution generally followed the order: control ~ silicic acid> calcium silicate> calcium

hydroxide. The lowering of soluble AI concentrations in the silicic acid treatments

was attributed to formation of insoluble aluminosilicate compounds while that in the

calcium silicate and calcium hydroxide treatments was attributed to their Iiming

effects causing a rise in pH.

Concentrations of Si in soil solution were lower in the calcium hydroxide than the

control treatment suggesting the solubility of Si decreased with increased pH.

Additions of both Si sources increased Si concentrations in solution and the effect

was more marked for the calcium silicate treatment. This was attributed to formation

of insoluble aluminosilicates in the silicic acid treatment. Concentrations of H2S04­

extractable Si with treatment did not closely follow the same trends as those for Si

concentrations in soil solution. That is, levels of extractable Si were very much higher

in the calcium silicate than silicic acid treatment in both soils. In addition,
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concentrations of extractable Si in the calcium hydroxide treatment were similar to

control in the Nomanci soil, while for the Fernwood soil, concentrations in the

calcium hydroxide treatment were exceptionally high. It was suggested that liming

with calcium silicate or calcium hydroxide had rendered some Si-containing

compounds in the soil acid-extractable and that the nature of acid-extractable Si

fraction need further study in future.

The quantities of P extracted from the two soils by the various extractants followed

the order: Truog> AMBle> resin. The greatest increase in extractable P induced by

additions of P was recorded for Truog P and the least for resin P. The effects of

Iiming (addition of calcium silicate or calcium hydroxide) on extractable P levels

differed depending on the soil and extractant used with increase, decrease or no

effect being recorded. Such results confirm the complexity of lime and P interactions

which occur in acid soils. Additions of silicic acid had no effect on levels of

extractable P, compared to control. It was suggested that the reason for this was that

phosphate is adsorbed to AI and Fe oxide surfaces much more strongly than silicate.

As a result, additions of Si are ineffective at increasing extractable P levels.
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CHAPTER 1

GENERAL INTRODUCTION

Agricultural activity tends to remove large quantities of nutrients like P and Si from

soils. As a result, concentrations of these nutrients in the soil tend to decrease. With

a rainfall of 400 to 1000 mm per annum in KwaZulu-Natal, nutrient leaching losses

are likely to occur leading to soil acidity and yield decline. Removal of crop residues

after harvest and excessive fertilizer applications (such as N) are some of the main

factors leading to such yield decline. The use of Si fertilizers may solve some of

these problems.

In South Africa, the use of Si as possible essential nutrient has received sporadic

attention. Silicon fertilizers are expensive and many farmers are unaware of their

importance in agricultural production. Although Si is not considered as an essential

element of growth and development, addition of this element can increase growth

and yield of Si accumulator plants, particularly sugarcane and rice (Savant et al.,

1999).

Silicon is the second most abundant element in the earth's crust after oxygen, and is

an integral part of plants (Jones and Handreck, 1967; Epstein, 1999, Savant et al.,

1999). Most soils contain considerable quantities of this element, but repeated

cropping can reduce the levels of plant-available Si to the point where supplemental

Si fertilization is required for maximum production (Datnoff et al., 2001; Savant et al.,

1999). Low-Si soils are typically highly weathered, leached, acidic and low in base

saturation (Savant et al., 1999). Highly organic soils that contain little mineral matter

may contain little Si, and soils comprised mainly of quartz sand (Si02) may also be

very low in plant-available Si (Datnoff et al., 2001). In general, Si concentration in the

solution phase of highly weathered acid OXisols soils is several times less than in

less weathered soils such as neutral to alkaline vertisols (Foy, 1992).
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Although Si is generally considered to be non-essential for plant growth, there are

numerous reports of increased plant vigour and yield with Si, particularly under biotic

and abiotic stress (Lewin and Reimann, 1969). Favourable plant response is usually

observed with monocotyledons on soils that are inherently low in plant available Si

(Ayres, 1966; Gascho and Andries, 1974; Gascho, 1976). The mechanisms involved

in this response are not fully understood (Gascho, 1977; Elewad et al., 1982a);

however, increased resistance to mineral stress, (Galvez et al., 1987; Ma et al.,

1989; Barcelo et al., 1993; Rahman et al., 1988) disease and insect pests has been

documented for several members of the family Gramineae (Jones and Handreck,

1965; Epstein, 1999).

On soils low in plant-available Si, fertilization of crops with calcium silicate slag

increases plant Si content and yield (Deren et al., 1993). However, Si fertilization is

costly. Plants which are more efficient in accumulating available Si may have an

economic advantage of requiring lower rates of Si fertilizer or less frequent

applications. Higher plants vary in their capacity to accumulate Si (Datnoff et al.,

2001). Members of the grass family (gramineae), such as sugarcane (Saccharum

officinarum L.) and rice (Oryza sativa L.), accumulate large amounts of Si in the form

of silica gel (Si02.nH20) that is localised in specific cell types compared to

dicotyledons (Le. broadleaf plants) (Savant et al., 1999; Datnoff and Rutherford,

2003). Gramineae species have been reported to contain 0.5 to 1.55 % Si, and

dicotyledons less than 0.2 % (Jones and Handreck, 1967; Datnoff and Rutherford,

2003; Savant et al., 1999). Therefore, Si can be accumulated from soil by plants in

amounts that are several fold higher than those of other essential macro- and

micronutrient elements. For example, Si accumulation may be twice that of nitrogen

in rice (Liang et al., 1994; Hammod et al., 1995).

In plant leaves, Si is deposited in the epidermis, vascular bundles plus bundle

sheath, and schlerenchyma in the form of amorphous silica gel (Si02.nH20) (Galvez

et al., 1987; Sarvant et al., 1999). The Si layer forms in epidermal cell walls beneath

the cuticle, which has been referred to as the cuticle-silica double layer (Elewad et

2



al., 1982 a,b). The cuticle-silica double layer in the epidermis has been suggested to

control transpiration as well as prevent fungal and insect invasions (Savant et al.,

1999; Elewad et al., 1982a).

Silicon can be applied to plants directly to the leaves (foliar spray) or in granular

form, which is incorporated into the soil before planting. Reported sources of plant­

available Si include irrigation water and fertilizers such as calcium silicate slag, silica

gel, fused magnesium phosphate and potassium silicate (Gascho, 2001). Although

these fertilizers contain a number of elements, it is the Si component that is usually

most beneficial to plant growth (Datnoff et al., 2001). Highly weathered soils tend to

contain low concentrations of Si that require fertilization. Fertilization with soil

amendments containing chemically activated Si has an effect on physical and

chemical soil properties, including increasing soil exchange capacity, improving

water and air regimes (Savant et al., 1999). Method of fertilizer application has

modifying effects on Si plant growth (Marshner, 1995).

High phosphate-fixing capacity and low P status are other problems that often limit

crop production on highly weathered soils (Engelstad and Terman, 1980). Though P

occurs in comparatively small amounts in soils, the chemistry of soil P, either organic

or inorganic, is exceedingly complex. Its behaviour with respect to the plant is greatly

influenced by physical and chemical components of the soil (Holford, 1989). When

fertilizer P is added to soils it becomes progressively less available due to a

combination of adsorption and precipitation reactions (Iyamuremye and Dick, 1995).

The release of adsorbed P is very slow and, on impoverished or highly weathered,

acidic soils, annual application of fertilizer P is necessary to maintain optimum

available soil P. To reduce the amount of fertilizer P applied to soils it seems

possible that Si could be incorporated into the soil before planting. For example,

Smyth and Sanchez (1980) reported that when silicate fertilizers are applied to the

soil, silicate is specifically adsorbed by soil colloids thus releasing previously

adsorbed phosphate. This could cause an increase in the concentration of

phosphate in soil solution and stimulate phosphate uptake and translocation by

plants (Silva, 1971).
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Fertilizer companies have suggested that soluble products that contain Si can be

used as fertilizers for foliar application to improve crop growth. However, there is no

experimental evidence to support such an idea. Indeed, because Si is accumulated

in plants in amounts similar to those of macronutrients it is usually soil-applied at

relatively high rates (e.g. 4 - 20 tonnes/ha).

Objectives of the study were to:

(i) Determine the response of sorghum growth to applied Si supplied either by soil

application or foliar spray and select a suitable method for applying Si to the plants.

(ii) Evaluate dry matter production and response of sorghum grown on different soils

at various rates of Si application.

(iii) Determine the effects of lime and silicate applications on P extractability using

two soils treated with different P levels.

(iv) Compare three soil test methods for available P and determine how they are

affected by lime and silicate applications.

(v) Compare the effects of applied Si and lime on levels of Si and AI in soil solution

and in extractable forms.

This information will be useful for recommending methods to maintain adequate

levels of Si in the soil.

This thesis is divided into five main sections. The introduction will be followed by a

literature review concerning the effect of Si on crop growth and its interaction with

other nutrients. Results from a greenhouse stUdy to determine the effect of different

Si sources on sorghum growth and soil chemical properties are discussed in chapter

3. In chapter 4, the effect of soil amendments and different P extractants on P

4



concentration are outlined and discussed. Conclusions and recommendations for

research are outlined in chapter 5.
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CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

Silicon is not considered as an essential element for plant growth and development,

but addition of this elementto the soil or plants can increase growth and crop yields

(Savant et al., 1999). This review covers the relationship between Si and crop

production, including how to best manage Si and methods of applying Si to soils and

plants. The interaction of Si with other elements, functions of Si in soils and plants

are also discussed.

2.2 SOURCES OF SILICON IN THE SOIL

Silicon is released by the weathering of minerals (quartz and feldspar), but only part

of this soluble Si is lost through drainage or by crop removal and subsequent harvest

(Savant et al., 1999). Soluble Si may be introduced to the soil by runoff, capillary

ascension from the water table, or by aeolian, alluvial or any other deposition of

silicate material at the soil surface (Savant et al., 1999). In places where organic and

sandy soils predominate, soils contain only small amount of soluble Si available to

plants.

Research suggests that microorganisms are involved in the Si cycle (Le. in Si

transformations) in nature (Vintikova, 1956). Certain bacteria posses an ability to

decompose siliceous rocks and minerals, and aluminium-silicates and quartz sand

(Vintikova, 1956). Webley et al. (1960), for example, found that bacteria lacking a

mucous coat were more effective than those of the mucous type in the

decomposition of amorphous synthetic silicates, crystalline wollastonite, apophyllite

and olivine.
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The monomeric form of Si (H4Si04) is recognized to be the main form in soil solution

(Savant et al., 1999). However, the overall composition of forms of Si is influenced

by several factors such as pH, temperature, degree of supersaturation, and the

presence of the other substances. Jones and Handreck (1965), for example, found

that when soil pH in the field was in the range of 5.4 to 7.2, the concentration of silica

in solution decreased from 70 to 23 ppm Si02 with increasing pH.

2.2.1 Irrigation water

Irrigation water can be a potential source of Si for sugarcane, because the following

forms of Si may occur in natural waters: ionic and molecular Si, aggregate Si (as

colloid, solid and/or gel), Si adsorbed onto sesquioxides, organic-Si complexes

(humates), metal-Si complexes and in living organisms (Mitchell, 1975).

Fox et al. (1967) found that in Hawaii, mountain water at about 300m contained 2.5

mg dm-3 Si whereas irrigation water pumped from wells near sea level contained less

than 0.2 mg dm-3 Si. Kobayashi (1960; cited by Fox et al., 1967) reported similar

observations in Japanese rivers where the average dissolved Si in those flowing

through regions of sedimentary rocks was 4.7 mg dm-3 Si whereas it was 21 mg dm-3

Si for those in the neighbourhood of volcanic rocks. The rain water contained less

than 0.2 mg dm-3 Si and was considered not enough to be of agronomic importance.

2.2.2 Fertilizers

Fertilizers containing more than 20 % soluble Si02 are recognised as silicate

fertilizers.

2.2.2.1 Calcium silicate slag

One reported source of plant-available Si is calcium silicate slag, a by-product of

electric furnace phosphate production (Ayres, 1966; Anderson, 1991). This material
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is used as a liming material in Japan, Germany and United States of America (USA).

Slag is a by-product of iron and steel manufacture. It is made by melting the ore

containing iron (Fe), manganese (Mn), nickel (Ni) and chromium (Cr) with limestone

in a blast or electric furnace, and then cooling (either by air or water) the material

floating on the surface (Ma et al., 2001). Silicon components in the ore react with

limestone, leading to separation of calcium silicate. Iron and other metals in the ore

are reduced and separated. After the metals needed are separated, slag remains as

a by-product. The main components of slag are calcium silicate, Mg, AI, Fe and trace

Mn, Si and Cr. In addition to containing Ca and Si it may contain various other

elements or contaminants, some of which may under certain conditions have

favourable and/or unfavourable effects on sugarcane growth (Ma et al., 2001).

Although slag contains a number of elements, it is the Si component that is most

beneficial to plant growth (Datnoff et al., 1991).

Applications of calcium silicate increase soil pH and can sometimes stimulate

mineralization of soil organic nitrogen (Gascho, 2001). Nonetheless, the successive

application of calcium silicate slag was found to cause neither a reduction of soil

nitrogen nor a micronutrient imbalance in fine textured soils rich in organic matter

(Gascho, 2001). By contrast, in coarse textured soils poor in organic matter,

successive applications of calcium silicate could cause a reduction of soil nitrogen

fertility and an imbalance in micronutrients, resulting in a yield decrease. Therefore,

organic matter needs to be applied to these soils (Datnoff et al., 2001).

2.2.2.2 Fused magnesium (Mg) phosphate

Fused magnesium phosphate is manufactured by melting phosphate rock with

serpentine and the product is ground after quick cooling (Gascho, 2001). It contains

P, Mg, Ca and Si (16-26 % soluble Si02). Although fused magnesium phosphate

contains a number of elements, it is the Si component that is often most beneficial to

plant growth (Datnoff et al., 1991). Significant amounts of P (up to 67 kg ha-1) could

be added to soil using commercial rates of fused magnesium phosphate (up to 6 to 7

t ha-
1
). However, Ma et al. (2001) reported that P applied through fused magnesium

8



phosphate was not biologically available to sugarcane and this was probably due to

its low solubility.

2.2.2.3 Potassium (K) silicate fertilizers

Potassium silicate fertilizer is a fly ash-based slow releasing K fertilizer that is

produced from coal power plants (Ma et al., 2001). Fly ash is mixed with K, C03 or

KOH and Mg (OHh, and heated at about 900 QC. Potassium in this fertilizer is slowly

released. The fertilizer contains trace amounts of Mg.

2.2.2.4 Porous hydrate calcium silicate

The fertilizer is produced from quick lime, quartz and cement, which are reacted

under 180 QC at 10 atm pressure (Gascho, 2001). This is carried out to produce

plaster board for the building trade. Due to strict standards for wall material, a high

percentage of non-standardized product is collected and used as a silicate fertilizer

(Ma et al., 2001).

2.2.2.5 Silica gel

Silica gel is often used as a desiccating agent and is made by neutralising water

glass, gelling and finally dehydrating. It does not dissolve in HCI and must contain 80

% Si that is soluble in 0.5 N NaOH. Application of Si gel does not increase soil pH

and it contains alkali components that tend to weaken the resistance of plants to

diseases (Ma and Takahashi, 1991).

2.3 TIMING AND RATE OF FERTILIZER APPLICATION

Silicon application rates are mainly influenced by the chemical make-up of the Si

source, Si levels in the soil, and in the plant (Savant et al., 1999). Generally all Si

fertilizers (granular) are applied to the soil before planting. Research in Florida

9



showed that if a response to the applied Si is obtained in the first year of application,

no further applications of slags are needed for at least four years (Kidder and

Gascho, 1977).

The benefits of Si fertilization are generally observed in sugarcane grown on Si­

deficient soils such as weathered tropical soils and Histosols (Ayres, 1966). Some

workers have suggested that large applications at infrequent intervals can be an

effective strategy. Ayres (1966) reported an increased tonnage of sugarcane

amounting to 18% in cane and 22% in sugar for a plant cane crop following the

application of 6.2 t ha-1 of electric furnace slag to aluminous humic ferruginous

latosols in Hawaii.

Table 2.1 shows the effect of applied Si fertilizer on the yield of rice. High levels of

fertilizer application increased rice yield. It has been observed that the effectiveness

of applied Si fertilizers declines greatly with increasing time between application and

the date in which the crop is grown (Ayres, 1966). The beneficial effect of Si fertilizer

lasted on low Si soils for 2 years. For 3 tlha Si, the yield was increased by about 60

% over the control. In the third year, 1 tlha Si was applied to all treatments and the

yield of the control plants was increased by 2-fold compared to that in the first year.

Table 2.1: Influence of Si on yield of rice cultivar Oryzica 1

Silicon (tlha)
1992
o
1
2
3

1992
2.1a
3.2ab
3.6b
3.7b

Yield (tlha)
1993
Residual 92
2.7a
3.6b
3.7b
3.8b

1993
Residual 92 + 1t1ha Si
4.0b
4.1b
3.9b
4.2b

From Correa- Victoria et al. (2001).

Economic use of fertilizers consists of choosing the right fertilizer and applying it at

the right time. Silicate slag applications prior to a sugarcane crop and prior to a rice
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crop in rotation with sugarcane showed positive agronomic response (Correa­

Victoria et al., 2001). Three timings of slag application were evaluated in the above

crop production system: before rice, before sugarcane and before a rice-sugarcane

rotation (Alvarez et al., 1988). Results of the evaluation indicated that, under the

costs and prices assumed; it was more profitable to apply slag prior to the rice crop

in the rice-sugarcane rotation.

2.4 METHOD OF FERTILIZER APPLICATION

2. 4.1 Broadcasting (Soil application)

In order to apply Si to sugarcane, calcium silicate is typically broadcast and then

incorporated into the soil before planting (Savant et al., 1999). Generally, slag

materials are incorporated into the soil as soon as possible after broadcasting to

avoid caking on the ground surface. This is usually performed with a disc harrow,

which is followed by complete land preparation (Jakeway, 1983). Broadcasting has

an advantage of increasing the surface area of soil that the fertilizer comes in contact

with (Heyler, 1998).

The particle size of the Si fertilizer is an important factor in controlling its dissolution

rate when it is applied to soil (Savant et al., 1999). Particle size is associated with

increased surface area, consequently, the distribution and dissolution of smaller Si

particles mixed in the soil is enhanced and the probability of root particle contact is

increased. Soil application of silicate fertilizers has an advantage over foliar

application because roots take up fertilizer from the soil over time.

The effectiveness of silicate material as a Si source for crops depends mainly on its

particle size and chemical reactivity. In general, a finer Si source is more effective in

supplying Si to sugarcane and rice (Savant et al., 1999). Large particles result in less

Si-soil contact, leading to reduced Si availability to the crop, although some particle

degradation could occur during soil incorporation. If very fine, Si sources create
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dusty conditions and can adversely affect material handling and application

performance in the field. This dust problem may limit the use of silicate slag for

sugarcane in developing countries where it will be mainly applied manually (Savant

et al., 1999).

2. 4.2 Foliar application

Soluble liquid fertilizers are often used when applying nutrients to leaves. This

results in rapid absorption and has the advantage of near-immediate correction of

nutrient deficiencies (Marschner, 1995). Leaf cells, like root cells, take up mineral

elements from the apoplasm. Leaf uptake is affected by external factors such as

mineral nutrient concentration and ion valency as well as by temperature, and

internal factors, such as metabolic activity (Chamel, 1988). For a given external

concentration of mineral nutrients, the rates of uptake by intact leaves are, however,

much lower than the corresponding rates of uptake by the roots, since the very small

pores in the cuticle severely restrict diffusion from the external leaf surface into the

bulk of the leaf apoplasm and hence the plasma membrane of the leaf cells

(Marschner, 1995). Foliar applications are commonly used to correct micronutrient

deficiencies.

Foliar applications of Si are unusual since normally application rates are large (e.g.

4- 20 tonnes per ha; Savant et al., 1999) and these are soil applies. However, foliar

sprays can be useful in plants that are unable to transport Si through their vascular

systems from roots to foliar parts of the plant (Menzies et al., 1992).

Foliar applications have also showed some success in reducing disease damage.

Work conducted in cucumbers showed a reduction in the severity of diseases

through applications of foliar fertilizer containing 100, 500, 1000 and 2000 ppm Si02

(applied as soluble potassium silicate) (Menzies et al., 1992). Foliar applications of

500 ppm Si or greater were found to significantly reduce the number of colonies of

powdery mildew on the host leaves (Menzies et al., 1992). The foliar application of Si
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may be acting by creating a physical barrier to hyphal penetration or by inducing the

accumulation of phenolics and/or other defense mechanisms (Menzies et al., 2001).

2.5 FORMS OF SILICON IN THE SOIL

The solid-phase of Si occurs in various discrete and associated forms in soils in well­

ordered (quartz) and disordered polymorphs (e.g. opal), and clay-mineral lattice

structures. The solubility of disordered or amorphous Si in polymorphs in soils at an

ambient temperature and neutral pH is approximately 50 to 60 mg Si L-1
, whereas

that of quartz is much lower, commonly 3 to 7 mg Si L-1 (Blatt, 1979; Hallmark et al.,

1982).

In soils, quartz is generally concentrated in sand and silt fractions, with secondary

quantities in the clay fraction (Savant et al., 1999). The parent material of the soils

generally dictates which size fraction will have the maximum quartz content. The

quartz content of clay fraction generally ranges from 0 to 250 g kg-1
, depending on

the parent material and degree of weathering, although it may be as high as 750 to

850 g kg-1 (Borchardt et al., 1968; Le Roux, 1973). The quartz content of the sand

fraction is considerably higher than that of clay. Generally, the most highly

weathered soils have the lowest content of quartz (Savant et al., 1999).

The liquid phase of Si in soil is more complex, but agronomically important (Savant

et al., 1999). It includes Si in soil solution mainly as monosilicic or orthosilicic acid

(H4Si04 or Si(OH)4) and may range from 1 to 40 mg Si L-1
, with 16 to 20 mg Si L-1

most common in soils near field capacity (Savant et al., 1999).

Silicon forms may be defined in terms of the total, extractable, and soluble fractions

(Savant et al., 1999). Total Si content comprises all forms of Si that may be present

and can be solubilized from soil by strong alkali fusion or acid digestion bomb

methods. Extractable Si represents those forms removed by less severe dissolution
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agents, such as sodium dithionite, ammonium oxalate, weak alkalis and sodium

pyrophosphate. These extractants remove Si of intermediate stability that is often

found associated with crystalline or amorphous soil components. Soluble Si

represents the most labile form in soils and consists primarily of monomeric silicic

acid (Savant et al., 1999).

Some reagents extract adsorbed Si (capacity factor) as well as water-soluble Si

(intensity factor) from soil (Fox et al., 1969). Shaking time, ratio of soil to the

extractant and temperature all affect the amount of Si extracted from soil. Most

soluble Si seems to be released within the first hour of shaking a soil with water.

Plant uptake of Si was found by Fox et al. (1969) to be most closely related to Si in

the soil where a 1:10 soil:water (m/v) ratio was used. Amounts of water-extractable

Si increase as soil pH decreases, reflecting Si solubility in soils and the pattern of Si

uptake from applied fertilizer silicates (Medina-Gonzales et al., 1988).

Other factors, such as soil sampling, storage time and extent of drying could also

affect Si status of samples (Jersak et al., 1992). The process of soil drying in the field

and/or laboratory may increase aggregate stability and resistance to dispersion and

therefore can affect the extractability of soil Si (Jersak et al., 1992). Usually various

extractions from dry soil samples are used for research into Si availability (Barsykova

and Rochiev, 1979). However, results from dry soil extractions do not necessarily

reflect actual contents of mobile Si forms. Drying of soil samples leads to essential

change in equilibrium between soluble and solid Si substances. The soluble Si

compounds (monosilicic, polysilicic acids and organo-Si substances) are adsorbed

onto soil particles, being dehydrated in the process. To restore the natural

equilibrium between various Si substances, it has been suggested that it is

necessary to rewet soil samples for about one month prior to analysis (Sadzawka

and Aomine, 1977). In addition, by using only dry soil extraction it is impossible to

determine the distribution among monosilicic acids, polysilicic acids and organo-Si

substances, which play very different roles in various soil bio-geochemical processes

(Matichenkov and Ammosova, 1996).
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2.6 FORMS AND DISTRIBUTION OF SILICON IN THE PLANT

The concentration of Si varies widely among different parts of one plant (Jones and

Handreck, 1967). Studies of the xylem sap from several species have shown that

silica enters the stems of plants as monosilicic acid. The monosilicic acid which is

carried to the tops in the transpiration stream is polymerised to form solid silica as

water is lost by transpiration (Ma et al., 2001). This suggests that transpiration aids in

the deposition of silica. Jones and Handreck (1967) also suggested that the

accumulation of silica led to its deposition in those parts of the plant associated with

conduction and transpiration.

In a study on the distribution of Si among the leaves of various plant species, Jones

and Handreck (1967) reported that the upper leaves of wheat and barley contained

higher concentrations of Si than the lower leaves. Furthermore, Jones and Handreck

(1967) found that the uppermost or f1agleaf (blade and sheath) of mature oat plants

always contained the highest concentration of Si. They concluded that this is

probably due to the light interception and rates of photosynthesis and transpiration

being higher, especially in the flag leaf, than in other leaves.

2.7 FACTORS AFFECTING THE SILICA CONTENT OF PLANTS

2. 7.1 Soil

Plants of one species contain different concentrations of silica when grown in

different soils (Jones and Handreck, 1967). Many factors contribute to these

differences. Several studies have demonstrated that sesquioxides, especially AI

oxides, are largely responsible for the capacity of soils to sorb soluble Si, with the

maximum capacity for sorption being between pH 8 and 10 (Beckwith and Reeve,

1964; Drees et al., 1989). Jones and Handreck (1967) showed that aluminium oxides

were more effective in sorbing monosilicic acid than iron oxides. The degree of

crystallinity of the iron oxides did not greatly affect their adsorptive capacities, but

that of the aluminium oxides did. The most crystalline aluminium oxide adsorbed only
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one-third as much as the least crystalline one. Therefore, the solubility of Si in soils

of the same pH is influenced by the amounts of free sesquioxides present.

The availability of Si in soils is highly pH dependent (Jones and Handreck, 1967).

Low pH results in less sorption of Si by sesquioxides and greater sorption occurs at

higher pH (Mc Keague and Cline, 1963). The solubility of Si (both crystalline and

amorphous) is essentially constant between the pH limits of 2 and 8.5, but increases

rapidly above. Below pH 8.0, Si is available as undissociated silicic acid molecule

(H4Si04)n. The rapid rise in solubility above pH 9 is due to ionisation of monosilicic

.acid. Where Si in solution is higher (soluble Si), the plant content of this element

generally is greater (Korndorfer et al., 1999). The effect of pH was shown by Ayres

(1966) who found that liming acid soil decreased the uptake of silica by various

plants including oats, ryegrass, red clover, barley, sugarcane and rice. Conversely,

the concentration of silica in the oats was increased from 1.68 to 2.77 percent Si02

by lowering the pH of the soil from 6.8 to 5.6 (Jones and Handreck, 1965).

Temperature and soil moisture dynamics also seem to play an important role in

determining the concentration of Si in soil solution. Silicon is more soluble at high

temperature. Soluble Si levels are often elevated under water-saturated and

submerged soil conditions. Under reducing conditions Fe is solubilized and Si

adsorbed to Fe oxides can be released (Mc Keague and Cline, 1963).

2.7.2 Crop species

Plants take up different amounts of silica according to their species (Jones and

Handreck, 1967). Generally gramineae contain 10 to 20 times the concentrations of

silica found in legumes and other dicotyledons (Jones and Handreck, 1967). Jones

and Handreck (1967) compared gramineous and leguminous species in a humic

sand of pH 5.2 and found that barley and ryegrass contained 1.95 and 1.58 percent

Si02 , whereas red clover and blue lupin contained only 0.12 and 0.24 percent Si02

respectively. The characteristically low concentrations of total silica in dicotyledons
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may be attributed to an exclusion of monosilicic acid from the transpiration stream,

either within the root or at its external surface (Jones and Handreck, 1967).

2.7.3 Transpiration

Various workers have found that transpiration aids in the adsorption of silica. Jones

and Handreck (1967) suggested that silica is absorbed in the transpiration stream by

a non-selective process. The effect of transpiration on the concentration of silica in

oat plants was investigated by Jones and Handreck (1965). Oats were grown in soils

that contained concentrations of monosilicic acid ranging from 7 to 67 ppm. Water

transpired, soluble soil Si02 and the amounts of silica absorbed were measured. The

concentration of monosilicic acid increased as the water was lost by transpiration.

Also, the concentration of monosilicic acid in the xylem sap has been found to be

close to that of the external solution. These results suggest a role for Si in the water

economy of plants. An increased rate of transpiration in Si-deficient plants could

explain the wilting that can occur particularly under conditions of low humidity (Lewin

and Reimann, 1969).

2.7.4 Nutrient supply

Si uptake by plants is controlled not only by the level of soluble Si but also by the

concentration of other ions. Generally, increased plant Si results in lower Nand P

concentrations in the plant. Jones and Handreck (1967) found that fertilizing with

either nitrogen (N) or phosphorus (P) caused a decrease in the concentration of Si in

barley and wheat crops. In a study on the effect of ammonium nitrate (NH4NOa) on Si

uptake, increased N fertilization increased the yield of dry matter and this was

accompanied by decreased concentration of silica in the plant (Jones and Handreck,

1967). The explanation of these relationships may be found by considering the effect

of nitrogen supply on the transpiration ratio. It has been reported that N fertilization

leads to a more efficient use of water by plants. This phenomenon was studied by

Ballard (1933; cited by Jones and Handreck , 1967), who showed that increasing the

N supply to N-deficient plants decreases the transpiration ratio by as much as 30
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percent. It may be concluded that the effect of increasing the N supply on the

concentration of silica in the plant is an indirect one because the more efficient plant

produces more dry matter for each unit of water and silica absorbed (Jones and

Handreck, 1967).

Increasing the supply of P has also been reported to produce a systematic increase

in the yield of dry matter that is accompanied by decreasing concentrations of Si in

plants (Jones and Handreck, 1965). Again, increasing the supply of P has been

found to decrease the transpiration ratios of phosphorus deficient cereals and

grasses (Jones and Handreck, 1967). Phosphorus, like N, affects the concentration

of silica in the plant indirectly by increasing the yield of dry matter.

The relationship between the supply of K and the concentration of Si in the plant is

conflicting. Ishizuka and Tanaka (1950; cited by Jones and Handreck, 1967) found

that in wheat and rice, the concentration of Si in the plant increased with increasing

concentrations of K. However, Hart (1934; cited by Jones and Handreck, 1967)

reported a slight decrease in the concentration of Si in sugarcane with increasing

amounts of applied K. These observations are difficult to interpret but the effect

seems to be small and varies with species.

2.8 FUNCTIONS OF SILICON IN PLANT GROWTH

2.8.1 Stimulation of photosynthesis

Silicon is involved in the promotion of plant growth (Epstein, 1999). Deposition of Si

in the leaf blade keeps the leaf erect and stimulates canopy photosynthesis by

improving light interception. This is important since it helps to minimize mutual

shading in dense plant stands and when nitrogen fertilizers are heavily applied. In a

study on the effect of Si on photosynthesis in rice, Takahashi et al. (1990) found that

the amount of carbon dioxide assimilated per individual plant was higher in the plants

with a high Si content than those with a low Si content. However, there was no
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difference in the amount of carbon dioxide assimilated per leaf area among plants

with a different Si content. Silicon can also increase the photosynthetic rate by

facilitating the transmission of light (Ma et al., 2001). Silica bodies in the leaf

epidermal system might act as a "window" to facilitate the transmission of light to

photosynthetic mesophyll tissue.

2.8.2 Alleviation of physical stress

2.8.2.1 Water stress

Water stress is common under field conditions and it affects crop yields (Ma et al.,

2001). Improved Si nutrition may reduce excessive leaf transpiration by reducing

stomatal opening of the leaves (Wong You Cheong et al., 1972). Excess

transpiration causes stomatal closure resulting in a decrease in the photosynthetic

rate of a plant. Transpiration from the leaves is made mainly through the stomata

and partly through the cuticle. As Si is deposited beneath the cuticle of the leaves it

forms a Si-cuticle double layer and the transpiration through the cuticle is decreased

by Si deposition (Wong You Cheong et al., 1972).

Results in Table 2.2 demonstrate the effect of Si on the transpiration rate of the

plant. Transpiration rate decreased from 200 to 154 g H20/g dry weight as the Si

percentage was increased. The rate of transpiration is presumably influenced by the

amount of silica gel associated with the cellulose in the cell wall of epidermal cells.

Hence a well-thickened layer of silica gel should help retard waterloss, while

epidermal cell walls with less Si gel will allow water to escape at an accelerated rate

(Lewin and Reimann, 1969). In a study on the effects of Si on the transpiration rate

of plants, Matoh et al. (1986) found that the photosynthetic rate was higher in +Si

plants than in -Si plants. This was due to a decrease in transpiration rate in +Si

plants.
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Table 2.2: Effect of Si application on transpiration in rice.

% Si02 content

0.02
1.59
10.3
13.2

Transpiration

(g H20/g dry wt.)
200
181
168
154

From Ma et al. (2001).

2.8.2.2 Climatic stress

Silicon application in plants is very effective in alleviating damage caused by climatic

stress such as typhoons, low temperature and insufficient sunshine during the

summer season (Ma et al., 2001). A typhoon attack usually causes lodging resulting

in the reduction of yield. Deposition of Si in the plant enhances the strength of the

stem and decreases susceptibility to lodging by increasing the thickness of the cell

(culm) wall and the size of the vascular bundle (Ma et al., 2001).

Strong winds also cause excess water loss from the spikelets of rice plants, resulting

in sterility (Ma et al., 2001). Silicon deposited in the hull is effective in preventing

excess water loss (Savant et al., 1999).

2.8.2.3 Freeze alleviation

Freeze damage during the winter in the sub-tropical areas can be one of the major

constraints to sugarcane production (Savant et al., 1999). Anderson (1991) reported

an increased tolerance to freeze damage of commercial sugarcane following

treatment with calcium silicate. Other results of strip tests with silicate suggest that

applications of silicates have ameliorated mild freeze effects on sugarcane (Savant

et al., 1999).
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2.8.3 Improvement of resistance to chemical stress

Chemical stresses include deficiency and excess of nutrients, low and high soil pH,

metal toxicity, pesticide and herbicide damage (Ma et al., 2001). Silicon has been

reported to improve plant resistance to these chemical stresses.

2.8.3.1 Nitrogen (N) stress

Application of N fertilizers is an important practice for increasing crop yields. Leaf

erectness is known to be one of the important factors that affect light conditions in a

plant population (Yoshida et al., 1969). The degree of leaf erectness is a varietal

characteristic and it is also affected by nutritional conditions. For instance, a N

deficient plant has more erect leaves than the normal plant (Yoshida et al., 1969).

In a study on the effect of N and Si on rice, Yoshida et al. (1969) observed that

increased N supply resulted in higher leaf openness values, and increased Si

decreased leaf openness markedly. Indeed, it was shown that Si application can

reverse the effect of applied N on leaf openness. Excessive application of N makes

the leaf blade droopy, resulting in mutual shading and thereby reduction in

photosynthesis. It also increases the susceptibility to diseases and lodging (Yoshida

et al., 1969).

2.8.3.2 Phosphorus

Silicate applications to soils not only supply Si, but may also produce beneficial

effects on the growth of plants especially in acid soils deficient in P (Ma and

Takahashi, 1991). Silicon has been reported to improve the availability of P in soil by

acting as a liming material, thus raising pH and increasing desorption of previously

fixed P (Ma et al., 2001). Silicon could also affect P availability by displacing fixed P

and/or reducing P fixation by masking adsorption sites on active AI and Fe oxides.
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Silicic acid has also been shown to compete against phosphate for adsorption sites

on the surfaces of hydrated sesquioxides (Ma and Takahashi, 1991). It could also

lower activity of AI ion in solution and prevent it from precipitating with phosphate

(Ma et al., 2001).

The source of Si affects the P availability in the soil. For example, a study conducted

by applying both silicic acid and sodium silicate as Si-sources to a P-deficient soil

showed that addition of silicic acid to the soil did not change the pH (Ma et al., 2001).

In terms of P availability of the soil, application of silicic acid at various

concentrations did not affect the P sorption by the soil. In addition, the P

displacement by Si was not increased by increasing Si concentrations in the soil with

or without P supplied. These results suggest that Si as silicic acid does not affect P

availability in the soil and P uptake by the roots, and that the beneficial effects of Si

on the growth resulted from improved availability of P within the plant (Ma and

Takahashi, 1991).

When sodium silicate was applied to a P-deficient soil, the pH of the soil was raised

by one unit (Ma et al., 2001). The growth of rice on the soil was increased by sodium

silicate applications under flooded and upland conditions. Application of sodium

silicate significantly decreased the Mn content, resulting in a higher P/Mn ratio in the

plant. This was due to the reduction of Mn under wet conditions that resulted in

decreased Mn uptake by the plant. Neither the P adsorption by the soil nor P

displacement by Si was affected by sodium silicate and carbonate. Similar results

were obtained by application of Si as silicic acid (Ma et al., 2001). These results also

suggest that application of Si as silicate did not affect soil P availability and P uptake

by the roots, and that the beneficial effects of Si were attributable to the improved

availability of internal P within the plant through decreased Mn uptake. It has been

demonstrated that Si improves the availability of internal P by decreasing Mn and Fe

uptake (Ma et al., 2001).
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Plants can suffer excess P stress where P fertilizers are heavily applied or in nutrient

solution culture where P is supplied at high concentrations (Yoshida et al., 1969).

Studies have shown that high concentrations of P result in leaf chlorosis, probably

due to decreased availability of essential metals such as Fe and Zn (Yoshida et al.,

1969; Ma et al., 2001). However, in the presence of Si, chlorosis did not occur at a

high P concentration. This beneficial effect of Si might be attributed to the lower P

uptake caused by Si.

2.8.4 Metal toxicity

2.8.4.1 Excess sodium (Na)

Silicon reduces the transpiration rate and there is a possibility that Si suppresses the

translocation of salt from the rhizosphere to the shoot and thereby alleviates salt

stress. In a study using nutrient solution with or without Si (100 ppm Si02) in the

presence of 100 mM NaCI, Matoh et al. (1986) found that the concentration of Na in

the shoot was decreased to about half by Si addition, suggesting that Si suppresses

the translocation of Na from the root to the shoot.

In addition, high exchangeable Na can result in degradation in soil physical

conditions. Sodium causes dispersion of soil particles resulting in poor soil structure

(Ma et al., 2001). Applied silica forms gels that bridge between soil particles on

dehydration resulting in an increase in soil strength (Ma and Takahashi, 1991). Thus

applied Si can also improve soil physical conditions where soil sodicity is a problem.

2.8.4.2 Iron (Fe) toxicity

Silicon has been reported to alleviate Fe toxicity. Okuda and Takahashi (1962)

investigated the mechanism of the reduction in Fe uptake following Si application.

Results showed that the presence of Si significantly reduced Fe uptake from ferrous

Fe and improved crop growth. Furthermore, in the absence of Si during the Fe
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uptake period, less Fe was taken up in the Si-containing plants and that Fe uptake

decreased with increasing Si content of the shoot. However, no difference in Fe

uptake was observed between the plants with Si and those without Si when shoots

were exposed to the ferrous Fe solution. These results suggest that Si enhances the

oxidising capacity of the roots probably by promoting oxygen supply from the shoot

to the root. This could result in the oxidation of ferrous Fe to ferric Fe at the root

surface, thereby suppressing excess uptake of Fe and translocation of Fe from the

root to the shoot (Ma et al., 2001).

2.8.4.3 Manganese (Mn) toxicity

Silicon has been shown to alleviate Mn toxicity by promoting the Mn oxidising

capacity of roots. In a study conducted to investigate the mechanism of Si-induced

alleviation of Mn toxicity, Iwasaki and Matsumara (1999) found that exposure of

certain plants to high Mn significantly inhibited the growth of plant roots and shoots in

the absence of Si. However, in the presence of Si, high Mn did not inhibit plant

growth but decreased the shoot dry weight.

In another study on the effect of Si on Mn toxicity, Jones and Handreck (1967)

reported that Si alleviated the symptomatic brown spots which occurred on the older

leaves as a result of Mn toxicity. The yields were also increased by threefold. The

main effect of Si appears to be that it distributes the Mn more evenly through the

leaves, thereby preventing it from collecting into localized areas which become

necrotic (Jones and Handreck, 1967).

2.8.4.4 Aluminium (AI) toxicity

Aluminium toxicity is a major factor limiting crop production in acid soils (Ma et al.,

2001). Ionic AI inhibits root growth and nutrient uptake. Silicon applied to the soil

alleviates AI toxicity (Ma and Takahashi, 1991). In a study on the effect of silicic acid

on AI, Si addition as silicic acid significantly alleviated AI-induced inhibition of root
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elongation (Ma et al., 1997). The concentration of toxic A13
+ in the soil is decreased

by the presence of silicic acid. These results suggest that interaction between Si and

AI occurs in soil solution, probably by formation of AI-Si complexes.

2.8.5 Increase resistance to biotic stress

2. 8.5.1 Diseases

Disease damage is a major problem reducing crop yields (Savant et al., 1999). Silica

has frequently been implicated as a factor influencing the degree of susceptibility of

cereals to fungal attack (Jones and Handreck, 1967). Silicon deposited in the tissue

surface acts as a physical barrier and prevents physical penetration and/or makes

the plant cell less susceptible to enzymatic degradation by fungal pathogens. Blast

and grain discoloration are major factors responsible for significant losses of grain

yield and quality in rice production (Datnoff et al., 2001). In a study on the effect of Si

fertilizers on the severity of fungal diseases, Datnoff et al. (2001) found that when

there was a significant increase in the Si content of the leaf blade, there was also a

great reduction in the severity of both leaf and ear blast. Increased amounts of N

fertilizer increased the severity of leaf blast, but application of calcium silicate

increased the ratio of Si to N in leaves and resulted in suppression of ear blast.

Figure 2.1 shows the effect of different Si sources (silica gel and solid silicate) on the

incidence of panicle blast in rice. For all sources of Si, panicle blast was reduced as

the rate of Si application was increased. Generally, at lower rates of application, solid

silicate was more effective in reducing panicle blast compared to silica gel. Silicon

has also been reported to prevent powdery mildew and stem rot diseases in

sugarcane (Savant et al., 1999). A Si content of 1.5 % or above is very effective in

suppressing powdery mildew in the leaf (Datnoff et al., 2001).
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Fig. 2.1: Effect of silica rates on panicle blast incidence (1, 5, and 10g/pot). Each pot

contains 4kg sandy soil. Black bars: heavily infected panicles; blank bars: slightly

infected panicles. Gel: silica gel; solid: solid silicate. From Ishiguro (2001).

In sugarcane, small rust-coloured or brownish spots on the leaves of cane growing

on highly weathered soils characterize a leaf disorder called freckling and leaves are

less efficient in performing photosynthesis. In severe cases, affected lower leaves

may die prematurely and can affect cane yield. This is thought to be a physiological

disorder rather than a disease. Elawad et al. (1982a) observed a significant

decrease in percent freckling in the plant crop as well as the ratoon crop with

application of 20 t ha-1 of TVA slag to the soil. The mechanism of leaf freckling in

sugarcane and its alleviation following Si application is not known but has been

attributed to the reduction of toxic levels of Fe, AI, Mn and Zn in the soil solution

(Savant et al., 1999).

2.8.5.2 Pests

Evidence suggests that Si deposition in the plant may reinforce plant insect

resistance by providing a mechanical barrier against insect pests (Laing and

Adandonon, 2005). Silicon may well also act as an activator by stimulating the

expression of natutal defensive reactions such as production of chemicals (such as

phenols).
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Eldana Saccharina Walker is one of the most serious threats to sugarcane

production in South Africa and recent studies have focussed on the association

between Si assimilation and host-plant resistance (Meyer and Keeping, 2000;

Keeping and Meyer, 2002). Keeping and Meyer (2003) conducted both large pot and

field trials to determine the effect of different Si sources (fly ash, boiler ash from the

mills, slagment and calcium silicate slag at rates of 0, 2.5 and 5t1ha) on resistance of

six sugarcane varieties (N11, N12, N16, N17, N21 and Nco 376) to Eldana.

Evidence from a large scale pot trial showed a significant response in average stalk

yield to the Si treatments, as well as significant reductions of 30 % in borer damage

and 20 % in borer mass to the 5t1ha calcium silicate treatment. An assessment of the

six varieties tested showed a positive response in Si uptake with Si treatment.

Generally, the more susceptible varieties (N11 and N16) showed the highest Si

uptake and greatest reduced stalk damage from Si treatment. In addition, results

from field trials showed reductions of 31 % in borer numbers and 23 % in length of

stalk damaged. They concluded that the Si status of the stalk is also closely related

to borer damage, and application of Si sources can improve the resistance of

sugarcane to the eldana borer and reduce the risk of damage in susceptible varieties

by as much as 40%.

Furthermore, Sasamoto, (1958; cited by Raid et al., 1992) investigated the

relationship between Si content of plants and behaviour of stem borer in rice (ChiJIo

suppressalis). He found that the stems attacked by the stem borer contained less Si.

The large jaws of the stem borer gnawing rice with a high Si content would wear out

more easily than that gnawing rice with a low Si content. He further investigated the

behaviour of the borer in a petri dish containing stem pieces with various Si contents,

which was prepared by application of silica gel. He found that most larvae moved to

the stem with low Si content. The Si content of the rice stem was negatively

correlated with the number of larvae bored into the stem. The reason is because

newly hatched larvae, when starting their attacks on rice plants, start by feeding on

epidermal tissue of the sheath, leaves and developing internodes in the immature

top of the plants. The presence of Si crystals in the plant hinders the feeding of the

insect by damaging their mandibles.

27



2.9. CONCLUSIONS

Although Si is not considered to be an essential nutrient, it can promote the growth

of many plants, especially rice and sugarcane. The effects of applied Si are more

obvious under stress conditions. Plants are exposed to various biotic and abiotic

stresses in the field during the growth period and therefore silicon in plants plays a

role in maintaining healthy growth. Furthermore in plants such as sugarcane and

rice, Si fertilization may even directly increase growth and yield in addition to

reducing transpiration rate, nutrient imbalance, metal toxicities and damage due to

pests and disease infections.
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CHAPTER 3

COMPARISON OF SOIL AND FOLlAR-APPLlED SILICON ON SOIL NUTRIENT

AVAILABILITY AND ON GROWTH AND SILICON UPTAKE BY SORGHUM CROP

3.1 Introduction

In South Africa, the use of Silicon (Si) as a foliar spray has received little attention

eventhough products are marketed for this purpose. However, it is well known that

foliar application of nutrients can, in some cases increase yields a'nd correct nutrient

deficiencies (Marschner, 1995). Silicon is the second most abundant element in the

earth's crust after oxygen, and is an integral part of plants (Jones and Handreck,

1967; Epstein, 1999, Savant et al., 1999). Most soils contain considerable quantities

of this element, but repeated cropping can reduce the levels of plant-available Si to

the point that supplemental Si fertilization is required for maximum production

(Datnoff et al., 2001). Low-Si soils are typically highly weathered, leached, acidic and

low in base saturation (Savant et al., 1999). Highly-organic soils that contain little

mineral matter may also contain little Si, and soils comprised mainly of quartz sand

(Si02) may also be very low in plant-available Si (Datnoff et al., 2001).

The role of Si in plants has been sporadically investigated and has focused on

various aspects of plant pathology, physiology and biochemistry (Hodson and

Sangster, 1989; cited by Snyder, 2001). Some studies indicate that sugarcane yield

responses to Si may be associated with induced resistance to biotic and abiotic

stress, such as disease and pest resistance, alleviation of AI, Mn and Fe toxicity,

increased P availability, reduced lodging, improved leaf and stalk erectness, freeze

resistance and improvement in plant water economy (Savant et al., 1999).

Deposition of Si in the leaf blade keeps the leaf erect and stimulates canopy

photosynthesis by improving light interception (Savant et al., 1999). Water stress

under field conditions is common and affects cane yields. However, improved Si
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nutrition tends to reduce excessive leaf transpiration (Wong You Cheong et al.,

1972).

Silicon sorption by soils is pH-dependent with low pH resulting in less sorption with

greater sorption occuring at a high pH (McKeague and Cline, 1963). The

mechanisms responsible for the different concentrations of silica in solution in soils

and for the undersaturation of soil solutions are complex. There are reports which

indicate that the adsorption of silica by soils is related to their content of Fe and AI

oxides. In addition, there is a marked effect of pH on the solubility of silica in soils.

Sesquioxides, especially AI oxides, are largely responsible for much of the capacity

of soils to adsorb soluble Si and maximum adsorption capacity is between pH 8 and

10. Jones and Handreck (1965) and Mc Keague and Cline (1963), for example found

that monosilicic acid was adsorbed by Fe and AI oxides. Adsorption depended on pH

in a manner resembling the adsorption of monosilicic acid by soils, Le. adsorption

decreased at about pH 9 and AI oxides were more effective in adsorbing monosilicic

acid than Fe oxides. They concluded that the concentration of monosilicic acid in soil

solution is controlled by adsorption reactions that are pH dependent.

Silicon in solution at pH below 9 exists as uncharged monosilicic acid, Si(OH)4

(Jones and Handreck, 1965). This is the form of silicon taken up by higher plants

(Epstein, 1999). Plants take up different amounts and proportions of Si from culture

solutions depending on their species and the concentration of dissolved silicic acid

present. The proportion of Si, for example, in gramineous species is 10 to 20 times

that found in leguminous species (Jones and Handreck, 1965). The amount of Si

present in the plants (as percentage of dry weight) increases in direct proportion to

the amount of silicic acid dissolved in the soil solution or culture medium. For

example, Grosse-Branckmann (1953; cited by Jones and Handreck, 1965)

compared gramineous and leguminous species in a humic sand of pH 5.2 and found

that barley and ryegrass contained 1.45 and 1.58 % Si respectively, whereas red

clover and blue lupin contained only 0.12 and 0.24 % Si respectively. Therefore, Si

can be accumulated from soil by plants in amounts that are several fold higher than
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those of other essential macro- and micronutrients. For example, Si accumulation

may be twice that of Nand P in rice (Datnoff et al., 2001).

In the plant, Si becomes immobilized and accumulates in the epidermal cells and cell

walls (Epstein, 1999). The uptake of undissociated monosilicic acid may be non­

selective and energetically passive, and it is transported from root to shoot in the

transpiration stream in the xylem. The assumption has sometimes been made that

the movement of Si follows that of water (Jones and Handreck, 1965). For example,

in a pot experiment, Mayland et al. (1991) found that Si uptake by oat plants (Avena

Sativa L.) increased as the transpiration stream increased. They concluded that if the

transpiration rate is known, Si uptake can be calculated.

Silicon can be applied to crops either directly to the leaves (foliar spray) or in

granular form, which is incorporated into the soil before planting. One reported

source of plant-available Si is calcium silicate (calmasil), a by-product of the cement

industry. Although it contains a number of elements, it is the Si component that is

most beneficial to plant growth (Datnoff et al., 2001). Sugarcane growers often apply

calcium silicate at the rates of 4t/ha, although higher rates, up to approximately

8t/ha, have been shown beneficial for increasing sugarcane yield (Datnoff et al.,

2001). On soils low in plant-available Si, fertilization of sugarcane with calcium

silicate has been shown to increase plant Si content and yield (Jones and Handreck,

1965). Calcium silicate applications may neutralize soil acidity through the formation

of silicic acid, and could thus reduce the solubility of such elements as Mn, Fe and AI

(Savant et al., 1999). Several studies also found that silicate fertilizers increased

sugarcane yields in pot trials (du Preez, 1970; Datnoff et al., 2001).

Plants are known to absorb nutrients through their leaves. However, very little is

known about Si absorption through leaves. Leaf cells, like root cells, take up mineral

elements from the apoplasm. Leaf uptake is affected by external factors such as

mineral nutrient concentration and ion valency as well as by temperature, and

internal factors, such as metabolic activity (Charnel, 1988). For a given external
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concentration of mineral nutrients, the rates of uptake by intact leaves are, however,

much lower than the corresponding rates of uptake by the roots, since the very small

pores in the cuticle severely restrict diffusion from the external leaf surface into the

bulk of the leaf apoplasm and hence the plasma membrane of the leaf cells

(Marschner, 1995). The foliar application of mineral nutrients by means of sprays

offers a method of supplying nutrients to higher plants more rapidly than methods

involving root application (Marschner, 1995). The supply is more temporary and low

penetration rates, rapid drying of spray solutions, washing off by rain and limited

rates of retranslocation from the sites of uptake to other plant parts are some of the

problems associated with foliar sprays (Marschner, 1995).

This study was undertaken to compare the effects and effectiveness of Si

application as granular calcium silicate with those of foliar applications. Four soils

were used that were suspected to have different Si status and the test plant used

was sorghum because it is a rapid-growing crop and it is known to respond to Si

applications. Three forms of Si were used as foliar sprays, that is, K-humate and K­

fulvate both containing 15% Si, and pure K-silicate containing 26 % Si.

3. 2 Materials and methods

3. 2.1 Greenhouse trial

A greenhouse trial was conducted to determine the effect of Si on growth and yield

of sorghum. Soils with different nutrient status were collected from different sites in

KwaZulu-Natal. Four soils used in the pot trial were:

Nomanci soil form:

Thick brown powdery humic (topsoil) clay loam to clay overlying Iithocutanic B

horizon (Soil Classification Working Group, 1991). The soil is derived from Natal

Group Sandstone and Vryheid sediments belonging to the Mistbelt. Base status is

very low with moderate to high AI toxicity. Organic matter content, Nand S
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mineralization capacity are very high. The soil is classified as a Humic (strongly)

Cambisol (USDA) or a Humic Acrisol (FAO) (South African Sugar Association

Experiment Station, 1999). The soil is highly weathered and the dominant mineral is

gibbsite (AI(OHh) (Beater, 1970). Drainage is good and erosion hazard is moderate.

A site where the soil was collected has been used for a lime trial for 10 years, and

there were excellent responses to lime.

Glenrosa soil form:

Shallow dark grey loamy sand and clay orthic topsoil overlying both lithocutanic B

horizon and saprolite (Soil Classification Working Group, 1991). The soil is formed

from Granite parent material in the coastal lowlands of KwaZulu-Natal. The soil is

dominated by 1:1 lattice type minerals (kaolinite mainly) and iIIite

(Ko.6Mgo.2!Ab.3Sb.s010(OHh).The base status, organic matter content, Nand S

mineralization capacity and K reserves are low and erosion hazard is high. The soil

is classified as an Aridisoll Inceptisol (USDA) or an Ochric Lithosoll Cambisol (FAO).

Drainage is good and erosion hazard is moderate (South African Sugar Association

Experiment Station, 1999). The bulk soil samples were collected from Kearsney

experimental farm and the site has been under commercial cane production for 12

years.

Cartref soil form:

Grey sand to sandy loam orthic topsoil clay loam overlying lithocutanic B horizon,

and bleached grey E-horizon (eluvial) in the middle of both horizons (Soil

Classification Working Group, 1991). The soil is formed from weathering of Natal

Group Sandstone and Vryheid sediments belonging to Mistbelt in KwaZulu-Natal.

Almost 20% of the cane grown in the sugar industry is harvested from this series.

Clay mineralogy is kaolinitic (AI2Si20s(OH)4). Salinity or sodicity hazard is low.

According to USDA the soil is classified as an Inceptisol and by FAO classification it

is a Gleyic Luvisol. Drainage is moderate and erosion hazard is high (South African

Sugar Association Experiment Station, 1999). The soil was collected from Eshowe.

The site has been cropped with cane for at least 30 years.
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Fernwood soil form:

Grey to dark grey sandy topsoil overlying deep light grey to white loose sandy

subsoil (with mottling and yellow staining). The soil is derived from weathering of

grey recent sands (Soil Classification Working Group, 1991). Clay mineralogy is

dominated by kaolinite (about 25% derived from feldspar decomposition with some

10% micaceous material, probably iIIite) (Beater, 1970). Drainage is excessive and

erosion hazard is very high. Base status, organic matter content, AI toxicity and P

fixation are very low. The soil is classified as an Entisol (USDA) or a Dystricl Eutric

Rhegosol (FAO) (South African Sugar Association Experiment Station, 1999). The

site is located at the South African Sugarcane Research Institute (Mount

Edgecombe) and it was left fallow for five years prior to planting sugarcane.

Bulk soils were air-dried and passed through a 5mm sieve. Each soil was weighed

(about 1kg), transferred into a pot and kept in a greenhouse for the duration of the

study. Sampling for laboratory analysis was made by collecting samples at random

from each pot before planting. Sorghum (Sorghum bicolour Moench L.) was planted

at a rate of 98 seeds (about 2g) per pot. Nutrients were added to the pots once a

week. The basal composition of nutrient solution was: 50 ppm Mg and 65 ppm S as

MgS04. 7H20, 2 ppm Nand 12 ppm S as (NH4)S04, 70 ppm P and 64 ppm N as

(NH4)2HP04, 148 ppm K and 60 ppm S as K2S04, 90 ppm Ca as CaC12.2H20 and

45 ppm K as KCI.

The trial was arranged in a randomised block design with 10 treatments and 4

replications, making a total of 160 pots. The treatments were control, two levels of

granular Si (4 and 8t/ha as calcium silicate) and two levels of liquid Si (foliar

treatments), 300 and 600 ppm as K-humate, K-fulvate and pure K-silicate. Calcium

silicate treatments were mixed with the soil before planting. Potassium-humate, and

K-fulvate contained 15 % Si and pure K-silicate contained 26 % Si as Si02 . Foliar

treatments were begun (used) 15 days after planting. "Breakthrough" was used as a

wetting agent and pH of the solutions was adjusted between 6.2 and 7.0 using acetic

acid.
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In the greenhouse trials in which the experiment was conducted, plants were grown

under ideal conditions: no moisture stress, no lack of nutrients and no attack by

pests or pathogens. The plants were harvested 5 times (Le leaves harvested and the

stalks allowed to re-grow and produce new leaves). Harvested herbage was weighed

and oven-dried at 70 QC for 48 hours. After oven-drying, the plant material was re­

weighed and moisture content determined. The herbage was ground «0. 5mm mesh

sample) and analysed.

3. 2.2 Plant and soil analysis

For plant Si, 0.5g of finely ground leaves was placed in a furnace at a temperature of

650 0C overnight. To dissolve the ashed material, 15 % NaOH was added into a

nickel crucible and heated. The contents in a nickel crucible were transferred into

100 ml of 0.6 N HCI and made to 250 ml with deionised water. Silicon in the extracts

was determined spectrophotometrically using the blue silicomolybdonous method of

Fox et al. (1969). Total N in plant samples was determined by Kjeldahl digestion

(Bremner, 1965). For analysis of K, Ca, Mg and P in plant tissues, samples were dry­

ashed, digested in H2S04 and cations in extracts were analysed by atomic

absorption spectrophotometry and P by the molybdenum blue method (Murphy and

Riley, 1962).

Soil pH was determined by shaking air-dried soil with deionised water (1: 2.5 soil to

extractant ratio). Exchangeable K, Ca and Mg were extracted from soils with 1M

ammonium acetate (1: 10 m/v ratio) for 20 minutes (Beater, 1962) and cations in the

extracts were measured by atomic absorption spectroscopy. Extractable AI was

extracted with 0.2 M ammonium chloride (1: 10 m/v ratio) for 20 minutes and AI in

the extracts was measured by atomic absorption spectroscopy. Extractable P was

determined by Truog's method (0.02N H2S04 solution using 1:50 m/v ratio for 20

minutes) (du Toit et al., 1962). Soil organic matter (organic C x 1.72) was

determined by the Walkey and Black method (Blakemore et al., 1972) and total N

was determined by Kjeldahl digestion (Bremner, 1965). Cation exchange capacity
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was determined using method by Chapman (1965). Soil Si was extracted by shaking

samples with 0.02N H2S04 (1 :10 m/v ratio for 20 minutes).The Si in soil extracts

was determined spectrophotometrically using the blue silicomolybdous method of

Fox et al. (1969).

3. 2.3 Statistical analysis

The experimental treatments were analysed statistically by an analysis of variance.

Least significant difference (LSD) was calculated at the 5 % levels.

3.3. Results

Table 3.1: Chemical and physical properties of four soils

Total Extractable
Soil series pH Org M Clay N Si CEC

% --ppm- cmolc kg-1

Cartref 5.0 5.0 14.0 3500.0 8.1 5.0
Glenrosa 5.1 4.5 17.0 4000.0 8.8 8.0
Nomanci 5.1 9.2 20.0 5000.0 18.0 10.0
Fernwood 5.8 4.0 10.0 2000.0 6.3 2.0
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Table 3.2: Effect of Si treatment on pH, phosphorus, extractable cations and extractable soil Si

concentrations in Cartref soil form

Si
Treatment pH(water) p K Ca Mg AI before Si after Soil

planting harvesting depletion
(ppm)

Control 5.24 102.91 95.00 129.85 40.58 15.25 8.08 2.58 5.50
300ppm K-humate 5.12 94.27 99.83 133.10 41.08 15.25 8.35 2.23 6.13
600 ppm K-humate 5.10 82.90 89.28 135.65 40.88 17.00 9.20 2.95 6.25
300 ppm K-fulvate 5.06 87.99 88.48 135.60 41.13 15.75 8.43 2.73 5.70
600 ppm K-fulvate 5.03 80.26 95.03 142.50 40.88 17.25 8.15 4.18 3.98
300 ppm pure-K silicate 5.02 85.86 105.50 147.73 41.30 13.75 8.83 4.20 4.63
600 ppm pure-K silicate 5.08 83.34 87.15 141.33 40.55 16.75 7.13 5.25 1.88
Calmasil 4t1ha 5.60 75.20 89.38 504.18 83.20 0.00 165.00 21.75 143.25
Calmasil 8t1ha 5.95 83.15 96.35 771.30 111.13 0.00 207.50 60.50 147.00
Calmasil 4t1ha + 300 ppm K-humate 5.66 88.15 96.25 468.20 77.53 0.00 112.75 27.00 85.75
LSD (PSO.05) 0.11 12.7 16.6 65.4 7.11 2.88 38.27 6.2 10.7
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Table 3.3: Effect of Si treatment on pH, phosphorus, extractable cations and extractable soil Si

concentrations in Glenrosa soil form

Si
Treatment pH(water) P K Ca Mg AI before Si after Soil

Planting harvesting depletion
(ppm)

Control 5.10 11.01 102.88 153.30 86.13 34.50 9.09 8.33 0.76
300ppm K-humate 5.03 10.86 108.58 106.40 77.68 41.00 9.93 8.03 1.90
600 ppm K-humate 4.92 11.12 104.23 134.03 73.78 48.00 8.78 7.80 0.98
300 ppm K-fulvate 5.10 14.78 102.10 134.80 75.68 56.50 7.98 7.25 0.73
600 ppm K-fulvate 4.96 9.63 93.08 149.28 82.95 38.25 9.48 7.38 2.10
300 ppm pure-K silicate 5.09 10.29 102.40 139.85 77.55 47.25 9.80 9.25 0.55
600 ppm pure-K silicate 5.15 10.04 109.08 141.98 77.10 45.50 9.95 7.50 2.45
Calmasil 4t/ha 5.29 9.84 101.83 505.65 128.03 8.25 170.00 19.50 150.50
Calmasil 8t/ha 5.68 9.96 101.43 1045.20 177.78 0.00 372.50 52.25 320.25
Calmasil 4t/ha + 300 ppm K-humate 5.35 10.48 103.98 609.30 136.33 13.50 262.50 21.25 241.25
LSD (PSO.05) 0.15 3.19 15.70 102.40 12.40 5.73 28.69 3.22 24.61
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Table 3.4: Effect of Si treatment on pH, phosphorus, extractable cations and extractable soil Si
concentrations in Nomanci soil form

Si
Treatment pH(water) p K Ca Mg AI before Si after Soil

planting harvesting depletion
(ppm)

Control 5.02 52.76 105.60 377.75 71.50 51.25 18.00 9.50 8.50
300ppm K-humate 4.98 49.09 101.23 350.40 66.30 53.25 17.50 12.50 5.00
600 ppm K-humate 5.01 49.57 100.08 359.03 66.75 53.00 16.50 9.75 6.75
300 ppm K-fulvate 4.99 50.91 102.85 364.28 69.85 52.75 15.00 10.50 4.50
600 ppm K-fulvate 4.99 48.16 94.70 339.23 65.05 55.75 19.50 12.00 7.50
300 ppm pure-K silicate 4.98 46.67 85.05 314.05 60.20 63.50 15.50 10.50 5.00
600 ppm pure-K silicate 5.01 48.68 90.40 349.45 66.30 44.75 20.00 8.50 11.50
Calmasil 4t1ha 5.16 45.08 84.93 714.38 116.58 18.75 156.75 16.75 140.00
Calmasil 8t1ha 5.36 49.59 83.43 1208.43 163.28 0.00 262.50 34.50 228.00
Calmasil 4t1ha + 300 ppm K-humate 5.21 52.20 103.23 650.18 108.00 16.50 144.50 15.50 129.00
LSD (PSO.05) 0.06 3.99 17.10 163.00 17.06 5.19 18.78 3.89 19.82
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Table 3.5: Effect of Si treatment on pH, phosphorus, extractable cations and

Extractable soil Si concentrations in Fernwood soil form

Si
Treatment pH(water) p K Ca Mg AI before Si after Soil

planting harvesting depletion
(ppm)

Control 6.18 15.40 52.90 112.03 29.30 0.00 6.25 4.25 2.00
300ppm K-humate 6.10 14.59 53.28 112.15 29.55 0.00 8.00 6.75 1.25
600 ppm K-humate 6.01 13.07 53.73 113.53 29.70 0.00 5.50 4.50 1.00
300 ppm K-fulvate 6.00 13.00 54.33 109.73 29.23 0.00 7.65 6.25 1.40
600 ppm K-fulvate 5.98 13.52 58.80 107.38 29.53 0.00 7.75 4.00 3.75
300 ppm pure-K silicate 6.01 13.01 44.00 113.55 29.35 0.00 7.50 4.00 3.50
600 ppm pure-K silicate 6.00 13.15 50.53 113.30 30.45 0.00 8.45 4.50 3.95
Calmasil 4t/ha 6.88 14.09 52.08 423.00 68.03 0.00 143.00 21.00 122.00
Calmasil 8t/ha 7.58 13.84 51.20 680.75 91.45 0.00 342.50 40.25 302.25
Calmasil4t/ha + 300 ppm K-humate 7.05 13.52 53.48 416.83 67.08 0.00 131.00 23.25 107.75
LSD (PSO.05) 0.15 2.25 19.30 60.90 6.29 0.00 32.75 2.16 3.25
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Table 3. 6: Effect of Si treatment on cumulative yield, plant Si uptake, Si and moisture content

in the plant tissues, amount of N, P, K, Ca and Mg in Cartref soil form

MgCaKPN
Cumulative

yieldTreatment
Si Si

content uptake Moisture
content

(g/pot) (%) (mg/pot) (%) %
Control 8.60 0.53 45.57 75.27 1.74 0.43 3.20 0.36 0.42
300ppm K-humate 9.86 0.53 52.63 74.59 1.80 0.43 3.37 0.42 0.46
600 ppm K-humate 11.27 0.56 63.44 71.61 1.67 0.37 2.92 0.33 0.38
300 ppm K-fulvate 10.78 0.64 69.49 72.21 1.93 0.43 3.13 0.42 0.42
600 ppm K-fulvate 7.65 0.61 46.61 67.36 2.19 0.49 3.18 0.42 0.48
300ppmpure-Ksilicate 7.11 0.53 37.66 71.12 1.78 0.42 3.17 0.34 0.42
600 ppm pure-K silicate 5.94 0.65 38.43 64.65 1.86 0.45 3.25 0.35 0.45
Calmasil 4t/ha 14.43 1.31 189.04 76.04 1.86 0.44 2.88 0.38 0.46
Calmasil8t/ha 15.57 1.48 230.42 76.47 1.95 0.44 3.01 0.48 0.50
Calmasil4t/ha + 300 ppm K-humate 13.61 1.39 189.66 77.69 2.06 0.44 3.07 0.46 0.49
LSD (PSO.05) 1.79 0.09 13.20 4.83 0.35 0.10 0.39 0.10 0.08
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Table 3. 7: Effect of Si treatment on cumulative yield, plant Si uptake, Si and moisture content

in the plant tissues, amount of N, P, K, Ca and Mg in Glenrosa soil form

MgCaKPN
Cumulative

yieldTreatment
Si Si

content uptake Moisture
content

(g/pot) (%) (mg/pot) (%) %
--:C;::-o-n-:-tr-ol;------------l9~.9~5~-------.:0.47 46.95 71.01 1.82 0.21 3.01 0.54 0.55
300ppm K-humate 6.71 0.55 36.65 67.34 1.95 0.24 2.82 0.47 0.55
600 ppm K-humate 11.45 0.55 62.59 72.50 1.91 0.20 3.16 0.44 0.56
300 ppm K-fulvate 8.22 0.51 41.98 69.14 1.96 0.19 3.02 0.43 0.54
600 ppm K-fulvate 10.21 0.53 54.53 74.86 1.74 0.17 2.98 0.36 0.55
300 ppm pure-K silicate 7.52 0.53 40.17 71.27 1.96 0.19 3.21 0.35 0.55
600 ppm pure-K silicate 9.73 0.56 54.61 66.79 2.30 0.23 3.24 0.32 0.54
Calmasil 4t/ha 18.60 1.43 265.48 69.12 2.06 0.21 3.06 0.41 0.48
Calmasil 8t/ha 22.14 1.68 372.47 72.65 2.30 0.20 2.78 0.43 0.51
Calmasil 4t/ha + 300 ppm K-humate 14.20 1.47 208.46 75.20 2.31 0.23 3.31 0.43 0.45
LSD (P::;0.05) 2.34 0.10 17.31 4.20 0.21 0.06 0.26 0.11 0.04

42



Table 3. 8: Effect of Si treatment on cumulative yield, plant Si uptake, Si and moisture content

in the plant tissues, amount of N, P, K, Ca and Mg in Nomanci soil form

MgCaKPN
Cumulative

yieldTreatment
Si Si

content uptake Moisture
content

(g/pot) (%) (mg/pot) (%) %
----:C;:::-o-n-:-tr~ol:------------..l.i2L1c..:.8=0 0.68 148.15 71.92 2.54 0.25 3.09 0.37 0.46
300ppm K-humate 18.07 0.72 129.99 73.09 2.76 0.24 3.08 0.47 0.48
600 ppm K-humate 21.53 0.68 147.04 71.14 2.70 0.22 3.14 0.54 0.51
300 ppm K-fulvate 18.30 0.64 117.42 68.38 2.76 0.23 3.22 0.55 0.50
600 ppm K-fulvate 21.61 0.59 127.16 67.27 2.68 0.27 3.05 0.57 0.50
300 ppm pure-K silicate 19.31 0.62 118.94 69.50 2.77 0.24 2.98 0.53 0.51
600 ppm pure-K silicate 20.27 0.68 136.85 71.14 2.53 0.22 3.10 0.53 0.48
Calmasil4t/ha 23.87 1.41 337.27 68.30 1.76 0.16 2.37 0.45 0.53
Calmasil8t/ha 26.81 1.63 436.59 69.15 1.88 0.17 2.17 0.42 0.50
Calmasil4t/ha + 300 ppm K-humate 23.70 1.46 346.09 68.20 1.88 0.19 2.29 0.36 0.49
LSD (PSO.05) 3.07 0.09 29.3 2.61 0.39 0.03 0.20 0.11 0.04
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Table 3. 9: Effect of Si treatment on cumulative yield, plant Si uptake, Si and moisture content

in the plant tissues, amount of N, P, K, Ca and Mg Fernwood soil form

MgCaKPN
Cumulative

yieldTreatment
Si Si

content uptake Moisture
content

(g/pot) (%) (mg/pot) (%) %
---:C=-o-n'"";'""tr-ol:---------------l..i3l:.J1c.:.6=-:=:2'------..l0...:...:.6:.L2- 194.48 64.95 1.66 0.36 2.86 0.51 0.49
300ppm K-humate 31.17 0.64 200.14 64.18 1.64 0.39 2.80 0.52 0.49
600 ppm K-humate 31.25 0.69 216.27 62.66 1.61 0.36 2.69 0.58 0.50
300 ppm K-fulvate 27.65 0.67 185.65 61.61 1.69 0.37 2.72 0.59 0.52
600 ppm K-fulvate 32.73 0.70 228.62 65.77 1.79 0.38 2.87 0.55 0.50
300 ppm pure-K silicate 26.72 0.69 183.43 59.96 1.89 0.35 2.80 0.55 0.50
600 ppm pure-K silicate 31.81 0.67 214.42 61.65 1.93 0.37 2.82 0.51 0.52
Calmasil 4t/ha 33.20 1.38 458.71 71.77 1.59 0.28 2.22 0.37 0.47
Calmasil8t/ha 33.30 1.54 512.21 72.96 1.70 0.28 2.26 0.39 0.49
Calmasil4t/ha + 300 ppm K-humate 27.82 1.50 416.64 73.19 1.89 0.32 2.28 0.42 0.51
LSD (P::;0.05) 4.36 0.10 28.79 3.25 0.22 0.05 0.21 0.17 0.03
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Figure 3.1: Relationship between dry matter yield and average Si uptake

meaned across the four soils. Average Si uptake and dry matter

yield were calculated from mean of five harvests. Regression

equation and line of the best fit are shown.
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FIGURE 3.2: Relationship between Si uptake and soil Si depletion meaned

across the four soils. Soil Si depletion was calculated as the

difference between initial extractable soil Si (before planting) and

final Si concentration (after fifth harvest). Regression equation

and line of the best fit are shown.
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FIGURE 3.3: Relationship between average Si content in the plant tissues and

tissue moisture content at harvest. Data meaned for the four soils.

Regression equation and line of the best fit are shown.
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3.3.1 Soil chemical properties

Extractable Si concentration, pH(water), CEC, percentage organic matter, nitrogen and

clay for the four soils are presented in Table 3. 1. The amount of N, CEC and clay

percentage were highest in Nomanci soil form and lowest in Fernwood. The amount

of organic matter in Fernwood, Cartref and Glenrosa soils was significantly lower

than that in the Nomanci soil form (Table 3.1). Concentrations of exchangeable

cations, soil Si depletion and extractable P are presented in Tables 3.2 to 3.5.

Extractable levels of P (in Glenrosa, Nomanci and Fernwood soils) and K were

unaffected by calmasil applications but levels of extractable Ca and Mg were

increased and those of extractable AI were lowered (Tables 3.2 to 3.5).

The pH values ranged from 5 to 5.8 in control soils. Extractable AI was high in the

control of the Nomanci (51 ppm) and Glenrosa (34 ppm) soils. It was much lower in

the Cartref soil (15 ppm) and below the level of detection in the Fernwood soil. With

increasing levels of calmasil fertilizer applications to the soil, pH values increased

resulting in decreased AI concentrations. The greatest increase was in 8t!ha calmasil

(Tables 3.2 to 3. 5). Initial soil pH was less than 5.3 in the Cartref, Glenrosa and

Nomanci soils and 6.2 in the Fernwood soil. Soil pH was unaffected by foliar sprays

of Si (as were some of the other measured soil properties) but pH was increased by

calmasil treatments. Highest pH values were measured at the higher rate of calmasil

(8t! ha).

Extractable soil Si was unaffected by foliar applications of Si but were increased by

soil applications of Si. As expected, extractable Si levels were greater at the higher

level of application of calmasil (8t! ha). Depletion of soil Si was calculated by

subtracting final extractable Si concentration after harvest from initial extractable Si

before planting. It is evident that in each soil, Si depletion was greater from the

calmasil treatments and it was greatest from the higher rate of application (Tables

3.2 to 3.5).
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3.3.2 Effect of Si on yield and nutrient concentrations

Cumulative yields and nutrient uptake by sorghum are presented in Tables 3. 6 to

3.9. In Glenrosa, Nomanci and Fernwood soils; dry matter yield, plant Si content and

Si uptake were unaffected by foliar applications of Si. For Cartref, Glenrosa and

Nomanci soils, applications of calmasil increased yields. For Cartref and Glenrosa

soils, the 4t1ha rate resulted in a large significant yield increase and yields were

further increased by the 8t1ha rate. For Nomanci soil, the 4t1ha rate did not result in a

significant yield increase but the 8t1ha rate did (Table 3.8). Yields were unaffected by

calmasil applications in Fernwood soil.

For all four soils, calmasil applications increased tissue Si concentrations and Si

uptake and values tended to be greater at the 8 tlha than 4 tlha rate. There were

generally no significant effects of experimental treatments on tissue N, P, K, Ca and

Mg concentrations (Tables 3. 6 to 3. 9). The exceptions were that calmasil

applications resulted in a significant decrease in tissue N, P and K concentrations in

the Nomanci soil and tissue P, K and Ca concentrations in Fernwood soil. Moisture

content of plant tissue at harvest was not affected by treatment except in the

Fernwood soil where it was significantly greater in calmasil treatments.

The relationship between various measured parameters was investigated by

regression analysis using meaned treatment data across all four soils. Results

showed that dry matter yield was linearly correlated with Si uptake and Si uptake

was linearly related to soil Si depletion (Figures 3.1 and 3.2). Tissue moisture

content was linearly (r =0.64) related to Si content in the plant tissues (Figure 3.3).
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3.4 Discussion

3.4.1 Effect of silicon on soil chemical properties

The close relationship between total N content and organic matter content (i.e.

highest for Nomanci soil; Table 3.1) occurs because about 95 % of N is in organic

form (Heden et al., 1995). Soil organic matter contributes to the cation exchange

capacity of soils, so CEC was also highest in the Nomanci soil (Currie et al., 1996).

Calmasil altered soil solution composition by increasing pH and exchangeable Ca

and Mg concentrations since it contains both Ca and Mg. The increase in pH was

expected since calcium silicate is used as a Iiming material (Datnoff et al., 1991).

When calcium silicate dissolves in acid soils, silicic acid is formed; it is weakly

dissociated so soil pH is raised.

Silicon has been reported to improve the availability of P in soil and plants by acting

as a liming material (Ma and Takahashi, 1991). Soil applied Si could also affect the P

availability by displacing fixed P and/or reducing P fixation by blocking active

adsorption on AI and Fe oxides. In addition, an increase in pH has been reported to

decrease P adsorption and increase its availability (Fox et al., 1967). However, in

this study, extractable P was unaffected by calmasil applications in Glenrosa,

Nomanci and Fernwood soils respectively. Addition of calmasil to the soil apparently

did not result in desorption of P. The reason may be that soils have a much higher

affinity for phosphate than silicate; therefore addition of Si did not increase P

extractability. The results are consistent with those found by other workers. For

example, Ma and Takahashi (1991) found that for a given soil, P had a high affinity

for adsorption sites and added Si could not decrease P adsorption nor could it

displace adsorbed P, but added P could displace adsorbed Si.

Application of calmasil to the soil decreased the concentration of AI in soil solution.

This is primarily attributable to the Iiming effect of calmasil. The increased pH

resulted in precipitation of soluble and exchangeable AI as hydroxyl-AI compounds

(Savant et al., 1999). In addition, the concentration of toxic A13+ in the soil is
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decreased by the presence of silicic acid (Savant et al., 1999). For example, in a

study on the effect of silicic acid on AI, Ma et al. (1997) found that addition of Si as

silicic acid significantly alleviated AI-induced inhibition of root elongation. The results

suggested that interaction between Si and AI occurs in soil solution, probably by

formation of AI-Si complexes.

3.4.2 Effect of Si on plant growth

Plants of one species contain different concentrations of silica when grown in

different soils (Jones and Handreck, 1967). Deposition of Si in the plant is influenced

by soil factors such as Si concentration in solution, nutrient and water content, pH

and soil type. In this trial, plants grown in soils low in extractable Si generally had

lower yields, low Si content and Si uptake. After application of calmasil, the yield

increased substantially in the Cartref, Glenrosa and Nomanci soils. The observed

increase in yield with Si application to plants would have the potential to enhance the

root's absorptive capacity and nutrient uptake in natural and agricultural ecosystems

(Korndorfer et al., 1999).

The results presented indicate that the method of fertilizer application used has very

large effects on Si uptake. Where Si in soil solution is higher (soluble Si), the plant

content of this element is generally greater (Korndorfer et al., 1999). In this study, dry

matter yield was linearly related to plant Si uptake, and Si uptake was correlated with

Si depletion from the soil (Figures 3.1 and 3.2). In addition, sorghum plants generally

removed larger quantities of Si from soils which had received Si treatments than

from untreated soils. Increased yield in soil-applied treatments is a typical

characteristic found by other workers working with Si-deficient soils. For example,

both Jones and Handreck (1967) and Ma and Takahashi (1991) emphasized that

silicate fertilizers increased sugarcane yields in pot trials.

The beneficial effect of silicate may result from both a pH effect and a Si effect. That

is, at soil pH values less than 5.5 (Le. for the Cartref, Glenrosa and Nomanci soils),

AI toxicity can limit crop growth and an increase in pH results in precipitation of
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phytotoxic soluble and exchangeable AI as hydroxy-AI polymers (Ma and Takahashi,

1991). The lack of yield response to calmasil in the Fernwood soil, even though

extractable Si levels were initially low in the control treatment, suggests that the

liming effect of calmasil was important. That is, in the Fernwood soil, pH values were

already above 6.0 and soluble AI concentrations were low. The liming effect of

calmasil was therefore of little significance and as a result there was no yield

increase. By contrast, in the other three soils where there was a significant effect of

calmasil on soil pH which was initially between 5.0 and 5.2 and the calmasil

treatment reduced soluble AI appreciably. In the Nomanci soil, the 4t1ha rate did not

result in a significant yield increase since soluble AI concentrations remained high

(i.e. 18 ppm). However, the 8t1ha rate, reduced soluble AI to insignificant levels and

there was also a measurable yield increase. The work clearly demonstrated that

application of Si in the form of calcium silicate was considerably more effective at

increasing yield of sorghum than foliar applied Si.

The uptake of Si through foliar applications was clearly very low since foliar sprays

had no effect on tissue Si content and plant yield. The ineffectiveness of foliar spray

was further demonstrated by yields, Si content and Si uptake being generally similar

between the calmasil 4t1 ha treatment and the calmasil 4t1ha plus 300 ppm K-humate

treatment. By contrast, Okamoto (1993) and Hooda and Srivastava (1996) found

that spraying of soluble Si as 0.1 to 0.2 mg L-1 solution of Na2Si03 or 1% solution of

Na2Si03 on leaves of rice plants increased plant growth and the effect was attributed

to a reduced rate of transpiration. Several factors may be contributed to ineffective

absorption of foliar-applied Si. One factor might be less efficient transport of Si from

the leaves to different parts of the plant compared with the transport of nutrients from

the roots. Ion uptake rates from foliar sprays are usually higher at night, when the

stomata are closed, than during the day when the stomata are open (Marschner,

1995). Sorghum plants were sprayed in the morning and this might have inhibited

the rate of Si uptake. Another reason may be that plants had low leaf surface area

which resulted in less fertilizer being applied to the leaf surface. Temperature and

wind might have also affected the Si uptake. Marschner (1995) reported that during

the daytime, as the ambient temperature increases, there is usually a decrease in
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relative humidity, leading to more rapid water evaporation from foliar sprays and thus

more rapid drying of the sprays at the leaf surface.

A major factor contributing to the ineffectiveness of foliar Si was, however, probably

that the rate of application was low. Clearly, much greater rates of addition can be

achieved by soil applications. This is an important consideration since Si was

accumulated into sorghum in similar quantities to those of most macronutrients

(Tables 3.6 to 3.9). Thus, in order to supply appropriate quantities of fertilizer Si,

basal soil applications are required.

The total Si in the plants was proportional to the concentrations of extractable Si in

four soils. Since the amounts of Si in solution in these four soils differed over a wide

range, it is possible to compare more critically the uptake of Si as found by analysis

with the uptake expected from measurements of the concentration of Si in the soil

solution. Throughout the period of growth, there was close agreement between the

expected uptake of Si and the amounts found in analysis. These results suggest that

these soils are capable of maintaining a steady concentration of Si in solution

despite repeated withdrawals.

Nevertheless, results clearly demonstrated that application of Si to the soil in the

form of calcium silicate was more effective at increasing tissue Si concentrations

than regular foliar applications of Si. A higher Si content in the plant can have many

beneficial effects as reviewed by Ma and Takahashi (1991). High Si content probably

resulted in increased photosynthetic rate because of more erect leaves and

improved light interception. This would have resulted in an increased yield and Si

uptake. Certainly, in this study, there was a significant correlation between plant Si

uptake and dry matter yield.

The fact that calmasil applications resulted in significant decrease in tissue N, P and

K in the Nomanci soil and P, K and Ca in the Fernwood soil indicates that nutrient
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interactions were occurring. The decrease in N content may be attributable to a

dilution effect as a result of increased biomass production, andl or to soil reactions

that resulted in reduced N uptake (Elawad et al., 1982a). A decrease in P is typical of

the results found by other workers. In one study on the uptake of P by rice, the

uptake of silicic acid was slightly depressed in the presence of phosphate. However,

Lewin and Reimann (1969) found that most of the Si absorbed by rice roots was

translocated rapidly into the shoots, while most of the P remained in the roots. They

concluded that Si seems to retard excessive uptake of P by rice plants.

When applying calcium silicate to the soil, it is important to separate a Si-effect from

a Ca effect. In a study on the effect of different Ca sources on sugarcane yield,

Ayres (1966) found that both calcium silicate and calcium carbonate treatments

increased yield of sugarcane. The calcium supply probably was not the factor

causing higher yields in the study, since calcium carbonate had been added to

control plots to maintain pH and supply adequate Ca. Similarly, in this study Ca was

added weekly in the basal nutrient solution. I addition, tissue Ca concentrations were

generally unaffected by experimental treatments. Magnesium and K were also

applied weekly to sorghum plants and this resulted in similar concentrations in plant

tissues from different treatments.

3.4.3 Moisture content and Si supply

Although there was no discernable relationship between calmasil and plant moisture

content, except in the Fernwood soil, when average treatment data across four soils

were analysed, a positive correlation was found between tissue Si content and plant

moisture content (Figure 3.3). Silicon has been reported to reduce transpiration rate

and increase moisture content of the plant (Savant et al., 1999). Certainly, results

from this greenhouse trial tend to confirm such a relationship. The effect of

transpiration on Si uptake by rice has been investigated by various workers. Datnoff

et al. (2001) found that only a 5 % increase in the total amount of silica in the tops

caused the rate of transpiration to be decreased by as much as 70 %. Baba (1956;

cited by Jones and Handreck, 1965) found that transpiration had a substantial effect
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on the distribution of silica in the rice plant. A 4.5 % reduction in the amount of water

transpired per unit area increased the silica concentration by 9.6 %. Baba (1956)

concluded that Si concentration in the stems actually increased when the

transpiration rate was reduced. These observations suggest that although the overall

uptake of Si by rice is largely independent of transpiration, the subsequent

translocation of Si towards the leaves is affected by the transpiration rate.

If silica is absorbed passively in the transpiration stream, one would expect a

change in the transpiration rate to be reflected in the amount of silica in the plant.

Furthermore, Jones and Handreck (1965) reasoned that knowing the concentration

of silicic acid in the soil solution and the moisture content of the plant, it should then

be possible to calculate the amount of silica in the plant. Thus, it seems that the

uptake of silicic acid was passive and Si content in the plant tissues depends on the

transpiration rate of the plant. The rate of transpiration is presumably influenced by

the amount of silica gel associated with the cellulose in the cell walls of epidermal

cells. Hence, a well-thickened layer of silica gel should help retard water loss, while

epidermal cell wall with less silica gel will allow water to escape at an accelerated

rate (Savant et al., 1999).

3.5 Conclusions

Foliar applications are not an effective method of applying Si to Si-responsive crops

that are growing in soils low in extractable soil Si. This is because Si is accumulated

in the plant tissues in amounts similar to that of macronutrients (e.g. K, P, Ca and

Mg). As a result, soil applied Si is the most effective method of supplying Si to the

plants. When using foliar sprays, only small quantities of Si can be applied.

Results found in this study also suggest that the yield response of sorghum to soil­

applied calcium silicate were primarily attributable to its Iiming effect. That is, its

application increased soil pH and reduced soluble soil AI to low levels thus promoting

crop growth.
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Future research on crop response to soil-applied Si should compare the effects of

calcium silicate with that of a non-timing Si source (Le silicic acid). This would

separate between a liming effect and a specific Si effect.
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CHAPTER 4

EFFECTS OF SOIL-APPLIED SILICON ON EXTRACTABLE

PHOSPHORUS USING RESIN, TRUOG AND AMBIC METHODS

4.1 Introduction

Phosphorus (P) is an essential element for plant growth and is often applied to

agricultural land to increase crop production. However, P is very reactive, immobile,

inaccessible and the least available of all nutrient elements in the soil (Holford,

1989). These characteristics reduce the solubility of added P and make it resistant to

leaching in most soils, but at the same time they make deficiency of P a common

phenomenon in agricultural production. Inorganic soil P is present in soils in several

different forms. In order of increasing stability, these are: (i) P in the soil solution

«1 % of the total); (ii) inorganic P in plant residues; (iii) inorganic P adsorbed on

surfaces of colloidal mineral particles(c1ay) and (iv) inorganic P occluded or absorbed

in P reactive minerals (Holford, 1989).

The availability of the applied P is controlled by the retention (sorption) and release

(desorption) characteristics of the soil (Owusu-Bennoah and Acquage, 1989).

Tropical soils, particularly the highly weathered types, often have a high sorption

power (Sayers et al. 1971; cited by Owusu-Bennoah and Acquage, 1989). The major

factors that influence P sorption include: type and amount of clay, amount of

hydrated oxides of Fe and AI, soil pH and organic matter (Owusu-Bennoah and

Acquage, 1989). Soils with high clay content tend to absorb more P than those soils

with low clay content. 1:1 clay minerals have a large number of exposed OH- groups

and adsorb more P than 2:1 clay minerals (Phillips and Webb, 1971). Highly

weathered soils containing substantial quantities of amorphous AI and Fe hydrous

oxides adsorb large amounts of P (Engelstad and Terman, 1980). Generally, P is

available to plants in very small amounts in acid soils, because of adsorption by Fe

or AI oxides or by its precipitation with soluble AI and Fe. By contrast, in alkaline soils

P readily reacts with Ca to form insoluble precipitates (Iyamuremye and Dick, 1995).

57



Phosphorus availability is generally greatest in the soil pH range of 6 to 7 (Engelstad

and Terman, 1980).

To increase the efficiency of P fertilizer usage, it would be useful to identify and

implement fertility management strategies that might reduce the magnitude of P

sorption. Phosphorus uptake by plants can be increased by adding lime or silicate

fertilizers to the soil. The use of lime and silicates are considered by several authors

to decrease P sorption (Obihara and Russell, 1972; Ma et al., 2001) while other

studies imply this effect is not important or even detrimental (Amarasiri and Olsen,

1973; Reeve and Sumner, 1970). Lime, which is usually added to acid soils to

eliminate AI and Mn toxicity, has a number of effects on soil properties and P

behaviour which may influence the availability of native and/or added fertilizer P

(Holford, 1989). Liming acid soils often, but not always, increases P uptake by

plants. The obvious primary effects of lime are to raise pH and Ca activity.

Nonetheless, Iiming has been reported to increase, decrease or not affect the

amount of phosphate that can be extracted from acid soils (Haynes and Ludecke,

1981; Haynes, 1984b; Naidu et al., 1987).

Increasing soil pH is believed to increase the availability of P because it inhibits the

adsorption-precipitation reactions between P and Fe or AI and also accelerates

organic matter decomposition (Adams and Odom, 1985). Increasing soil pH above

7.0 can decrease the availability of P because of precipitation Ca phosphates (Kuo

et al., 1988). Changes in soil pH brought about by liming may have profound effects

on the availability of many elements absorbed by crops. In addition, most liming

materials contain significant quantities of both Ca and Mg and often also Si. The

interpretation of lime responses, particularly in field experimentation, is complicated

by numerous possible confounding effects (Sumner and Farina, 1986). This is

particularly true of P-lime interaction studies as Ca, Mg, and silicate ions have all

been shown to interact with P and many other elements are also affected by pH

changes (Sumner and Farina, 1986).
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Silicate applications to soils not only supply Si, but may also produce beneficial

effects on the growth of plants especially in acid soils deficient in P (Ma and

Takahashi, 1991). Calcium silicates react with soil much as lime does and resultant

pH changes in highly acid soils can be expected to have similar beneficial effects on

P nutrition. There is evidence suggesting that Si, independent of any pH effect,

results in increased P availability in many soils (Silva, 1971; Obihara and Russell,

1972). Ma et al. (2001) found that Si improved the availability of P in soil by acting as

a liming material, which is known to liberate phosphate from its union with Fe and AI,

displacing fixed P and/or reducing P fixation by masking active AI and Fe. It could

also lower activity of AI ion in solution and prevent it from precipitating with

phosphate. Silicic acid has also been suggested to compete against phosphate for a

place on the surface of hydrated sesquioxides (Ma and Takahashi, 1991) thus

improving its availability in the soil.

Indices of the abilities of soils to supply P to plants can be determined by (a)

extractive tests that measure the concentration of P in solution and the amount of P

in a labile form or (b) the soils phosphate (buffering) sorption characteristics

(Kamparth, 1991). The availability of the applied P is controlled by the retention

(sorption) and release (desorption) characteristics of the soil. Limited availability of P

is often the main constraint for plant growth in highly weathered soils of the tropics

(Kamparth, 1991). A better understanding of soil P dynamics is required to improve

management practices in tropical systems.

Various tests have been developed in different countries to suit the forms of P

present in their agricultural soils so as to estimate fertilizer P requirements for

specific crop yield goals. Conventional soil test methods (Bray I, Olsen P, Truog and

Mehlich) use a wide range of chemical reagents that dissolve not only the fraction of

labile P (Le. the portion of soil P that is relatively loosely bound onto or associated

with soil minerals or amorphous materials), but also a portion of soil P that can be

mobilized and used slowly by plants (Idianti, 2000). These solutions were originally

developed to extract P from soils containing specific P components; therefore their

usefulness across a wide range of climatic variability can be somewhat limited.
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The purpose of this study was to compare the application of silicic acid, calcium

silicate (at the same rate of applied Si) and calcium hydroxide (at the same rate of

applied Ca) on the extractability of P in two Si-deficient soils. The soils were supplied

with three rates of P (0, 30 and 60 kg ha-1). To determine the effectiveness of each

soil amendment, exchangeable and soil solution AI were measured along with

extractable and soil solution Si.

4.2 Materials and methods

Two soils (Nomanci and Fernwood, from chapter 3) with differing P-fixing capacity

were selected for the study. There were five main experiments (i) control, (ii)

phosphorus (P1 and P2), (iii) silicic acid (SPa, SP1 and SP2), (iv) calcium silicate

(CSPo, CSP1 and CSP2) and (v) calcium hydroxide (CHPo, CHP1 and CHP2). The P

application rates were 0.13 (P1) and 0.26 mg g-\p2) as KH2P04 which are equivalent

to 30 and 60 kg P ha-1 respectively. Calcium silicate, silicic acid and calcium

hydroxide were applied at rates of 8.0, 5.38 and 5.08 mg g-1 respectively. These

rates apply the equivalent of 4t Si ha-1 as calcium silicate and silicic acid. Calcium

hydroxide was applied at the same rate of Ca as the calcium silicate treatment. Each

treatment had three replicates, giving a total of 36 treatments per soil. Soil

amendments were thoroughly mixed with soil samples (0.5 kg) and placed in 2 L

plastic containers (closed with lids to conserve moisture). The soil samples were

wetted to 70 % of water holding capacity and incubated at room temperature for six

weeks. Samples were arranged in a randomised block design. Containers were

opened once a week to mix soil and allow aeration. Water was added where

necessary to maintain the soil at the predetermined soil water content.

After six weeks, a subsample of soil was air-dried and used for chemical analyses.

Soil pH was measured in a 1: 2.5 soil: solution ratio (in both water and 1M KCI) using

a glass electrode. Exchangeable AI was measured by extracting soil with 1M KCI (1:

10 m/v ratio). The solution (25 ml) was then titrated with 0.01 M NaOH and

exchangeable AI calculated from the volume of 0.01 M NaOH used (Rowell, 1994).

Soil Si was extracted by shaking samples with 0.02N H2S04 (1 :10 m/v ratio). The
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Si in soil extracts was determined spectrophotometrically using the blue

silicomolybdous method of Fox et al. (1969).

Truog P was extracted with 0.02N H2S04 (1 :50 m/v ratio) for 20 minutes (du Toit et

al., 1962). AMBIC P was extracted with AMBIC extractant (0.025 M ammonium

bicarbonate, 0.01 M NH4F and 0.01 M disodium-EDTA, superfloc at pH 8.5) (Van der

Merwe et al., 1984) using a 1: 10 m/v ratio and extraction time of 15 minutes. Resin­

extractable P was extracted overnight with two resin strips (9 X 62 mm) placed in a

50 ml centrifuge tube (1: 60 m/v ratio). After shaking, the resin strips were washed

with water and shaken again for 16 hours with 20 ml of 0.5 M HCI (Tiessen and Moir,

1993). Phosphorus in the resin-extracts was determined using molybdenum method

by Murphy and Riley (1962).

Another field-moist subsample was adjusted to 100 % water holding capacity and

equilibrated for 24 hours. Soil solution was then obtained by a rapid centrifugation

method (Elkhatib et al., 1987) and analysed for Si and AI. Monomeric AI (Almono) in

solution was measured in the filtrate (0.05pM Millipore filter extract) by the

pyrocatechol violet (PCV) method (Kerven et al., 1989), and total soluble AI (AIT) was

determined by a modified PCV method using LaCb -Fe reagent after the solution

had been passed through a 0.22 pM filter (Menzies et al., 1992) It is accepted that

the PCV method for measuring Almono measures Almono plus a small amount of AI

present in soluble AI-organic matter complexes (Parfitt et al., 1995). Silicon in the soil

solution was determined as outlined in chapter 3.
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4.3 Results

Table 4.1: Extractable silicon and, AMBle, resin and Truog extractable-P in

Fernwood soil form.

Extractable Extractable P
Treatments Si AMBIC Resin Truog

mg kg-1

PO 66.00 8.00 1.80 11.67
P1 56.70 26.67 6.00 28.33
P2 50.30 46.40 14.00 55.00

SPO 70.70 8.80 1.80 11.67
SP1 66.70 25.60 6.00 31.67
SP2 72.70 46.93 12.00 55.00

CSPO 510.30 15.47 6.00 30.00
CS P1 503.00 41.60 12.00 53.33
CSP2 512.00 64.53 18.00 50.00
CH PO 766.30 19.73 6.00 16.67
CH P1 755.70 41.60 6.00 30.00
CH P2 741.30 60.80 12.00 93.33

LSD (PSO.05) 54.30 3.50 1.70 14.30

PO =without phosphorus, P1 =phosphorus (Iow rate), P2 =phosphorus (high rate),

S =silicic acid, CS =calcium silicate, CH =calcium hydroxide.
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Table 4.2: Extractable silicon and, AMBle, resin and Truog extractable-P in

Nomanci soil form.

Extractable Extractable P
Treatments Si AMBIC Resin Truog

mg kg-1

PO 148.70 38.93 6.00 63.33
P1 138.30 43.20 6.00 80.00
P2 137.70 54.40 6.00 88.33

SPO 186.00 42.93 6.00 65.00
SP1 180.00 45.87 6.00 78.33
SP2 167.00 56.00 10.00 88.33

CSPO 404.30 40.27 8.00 73.33
CS P1 400.70 45.87 6.00 80.00
CSP2 430.00 53.87 8.00 88.33
CH PO 151.30 24.27 6.00 75.00
CH P1 139.30 26.67 6.00 96.67
CH P2 116.00 33.07 8.00 98.33

LSD (PSO.05) 18.70 2.96 3.27 9.58

PO =without phosphorus, P1 =phosphorus (Iow rate), P2 =phosphorus (high rate),

S =silicic acid, CS =calcium silicate, CH =calcium hydroxide.
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4.3.1 Soil pH

Additions of P and silicic acid had no significant effect on pH, while additions of

calcium silicate and calcium hydroxide caused increases in soil pH (Figures 4.1 and

4.2). There were no significant differences in pH between the calcium silicate and the

calcium hydroxide treatments in either soil. The pH measured in water and KCI

followed the order calcium hydroxide =calcium silicate> silicic acid =control. The pH

values were greater when measured in water rather than KCI particularly for

Fernwood soil.

4.3.2 Exchangeable and soluble AI

Concentrations of soluble (Almono and Air) and exchangeable AI were reduced by soil

amendments in both soils, but the effect was more pronounced for the Nomanci than

the Fernwood soil (Figures 4.3 and 4. 4). Analyses of soils amended with calcium

hydroxide and calcium silicate showed highly significant reductions in exchangeable

and soluble AI compared with control. Concentrations of exchangeable and soluble

AI followed the order control> silicic acid> calcium silicate> calcium hydroxide in both

soils. Increased soil pH greatly reduced AI concentrations (Figures 4.1,4.2,4.3 and

4.4). Addition of P had little effect on exchangeable AI concentrations in both soils.

There was a tendancy for AIT to be reduced by increasing rates of P in the control

and silicic acid treatments in both soils. For Si- carriers (treatments), the most

effective amendment in reducing AI concentrations was calcium silicate.

4.3.3 Extractable Silicon

Si concentration in soil solution was significantly increased by Si-containing

amendments (Figure 4.5). Addition of P had no significant effect on solution Si

concentrations. Silicon concentration in solution followed the order calcium silicate>

silicic acid> control> calcium hydroxide (Figure 4.5). Thus, an increase in pH induced

by calcium hydroxide addition decreased soluble Si concentrations in solution in both

soils, but the effect was more marked for the Fernwood than Nomanci soil.
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As shown in Tables 4.1 and 4.2, extractable Si in air-dried soil followed the order

calcium hydroxide> calcium silicate> silicic acid> control in Fernwood soil, and

calcium silicate> silicic acid> calcium hydroxide> control in the Nomanci soil. In both

soils, exctractable Si was marked greater in the calcium silicate than silicic acid

treatment. While extractable Si was the greatest in the calcium hydroxide treatment

in the Fernwood soil, it was the least (along with the control) in that treatment for the

Nomanci soil.

4.3.4 Extractable P using different extractants

Extractable P followed the order Truog> AMBIC> Resin in both soils (Tables 4.1 and

4.2). Although addition of P increased extractable P using all the extractants, the

greatest increase in P with P fertilization was observed in Truog and least with resin

extractant. In the Nomamci soil, P additions had no measurable effects on resin P.

Addition of calcium hydroxide to the Nomanci soil decreased AMBIC extractable P,

but Truog P was significantly increased and resin P was not significantly affected. In

the Fernwood soil, addition of calcium hydroxide increased AMBIC P but had no

consistent effect on resin or Truog P. Addition of silicic acid had no significant effect

(compared to the control) on levels of extractable P in either soil.

4.4 Discussion

4. 4.1 Effect of amendments on pH, exchangeable and soil solution AI

Equivalent rates of calcium hydroxide and calcium silicate resulted in virtually

identical pH values in water and KCI (Figures 4. 1 and 4.2) indicating that calcium

silicate had reacted to a similar extend to calcium hydroxide. As expected, pH{Kcl)

values were lower than pH{water) . Nevertheless, although pH values of the control

treatments were higher in the Nomanci soil, the increase in soil pH following

additions of calcium silicate and calcium hydroxide was more pronounced for the
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Fernwood soil. The greater increase in pH in the Fernwood than Nomanci soil is

associated with the low buffering capacity of the sandy Fernwood soil. By contrast,

the Nomanci soil has high clay and organic matter content and therefore a high

buffering capacity (Beater, 1970).

Although the initial pH of the Nomanci soil was higher than that of Fernwood, initial

levels of exchangeable AI were considerably higher in the Nomanci soil. This can be

attributed to the differences in clay mineralogy between the two soils. The Nomanci

soil is a highly-weathered soil with a clay content of 20 % and mineralogy dominated

by gibbsite and poorly ordered hydroxyl-AI compounds. It therefore has a large

buffering reserve of AI that can supply the exchangeable fraction. By contrast, the

Fernwood is a sandy soil with low clay content (10 %) dominated by kaolinite;

therefore, there is small amount of buffering AI (Beater, 1970).

Although 4t1ha of calcium silicate is a typical rate of application for Si-deficient soils,

results presented here show that for a sandy soil with little buffering capacity such as

the Fernwood soil, a rise in pH can be very large. The pH of above 8.0 in the

Fernwood soil could have negative effects on plant growth. For example, over-Iiming

commonly results in micronutrient deficiencies (Fe, Mn, Zn, Cu, Co, and B). The use

of a Si source that does not raise pH to any great extent would be more appropriate

in such soil.

In the pot experiment (Chapter 3) very high soil pH values were not encountered.

This might have happened because of several factors. The calmasil used in the pot

experiment was a commercial product (not a laboratory calcium silicate as used in

the incubation study) with large particle size. In that experiment, soil analysis was

carried out after a one week period after calmasil had been applied to the soil and it

had probably not fully-reacted. Therefore, pH would probably have risen further

during the early stages of the pot experiment. However, a nutrient solution was

applied each week during the growing period. Nitrification of NH4+ to N03- generates
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two H+ per unit of NH/ converted to N03- (Graham et al., 2000). This would have

also reduced the liming effect of calmasil.

Acid soil infertility is a major limitation to crop production on highly-weathered acid

soils in both tropical and temperate regions of the world (Rowell, 1988). One of the

primary reasons for the positive response of plants to Iiming of such soils is the

neutralization of soluble and exchangeable AI (Haynes, 1984a). The phytotoxic

exchangeable and soluble AI are precipitated as hydroxyl-AI compounds (Haynes,

1984b). Thus, as pH was raised by addition of calcium silicate or calcium hydroxide,

there was a reduction in exchangeable AI, particularly in the Nomanci soil where AI

levels were initially high.

The silicic acid treatment had little effect on exchangeable AI concentrations

particularly in the Nomanci soil where levels were initially high. The lack of such

effect is attributable to the pH being similar in the control and silicic acid treatments.

For the Fernwood soil, where concentrations of exchangeable AI were initially low,

silicic acid additions tended to lower exchangeable AI. This is probably attributable to

the formation and precipitation of insoluble aluminosilicates (Schulthness and

Tokunda, 1996; Lumsdon and Farmer, 1995).

While exchangeable AI was slightly lower in the calcium hydroxide than calcium

silicate treatments in the Nomanci soil, this difference was more pronounced for both

total and monomeric AI in soil solution. It is possible that formation of soluble

aluminosilicate compounds in the calcium silicate treatment maintained unexpectedly

high concentrations of total AI in soil solution. Silicic acid is known to be able to react

with soluble AI to form both soluble and insoluble aluminosilicate compounds in acid

soils (Lumsdon and Farmer, 1995). The formation of such compounds would

temporarily reduce monomeric AI concentrations but by equilibrium, this would result

in greater dissolution of AI-containing minerals thus increasing monomeric AI

concentrations. A tendancy for a slightly lower pH in the calcium silicate than calcium

72



hydroxide treatment in the Nomanci soil would also have favoured higher AI

concentration in solution in the calcium silicate treatment.

The tendancy for additions of P to lower exchangeable AI in the Fernwood soil and

monomeric and total AI in both the Fernwood and Nomanci soils is attributable to the

formation and precipitation of insoluble AI phosphates (Iyamuremye and Dick, 1995).

Such a decrease in exchangeable and soluble AI following fertilizer P addition has

been noted by other workers (Haynes, 1984a; Iyamuremye and Dick, 1995; Naidu et

al., 1990).

4.4.2 Levels extractable and soil solution Si

At least three main types of mobile Si compounds exist in soil solution: monosilicic

acid, polysilicic acids and water-soluble organo-silicon compounds (Matichenkov and

Ammosova, 1989). The most dominant form of Si at normal pH values is monosilicic

acid. Silicon is slowly released by weathering of primary Si minerals (e.g. quartz) and

aluminosilicate feldspar minerals. However, part of this is lost through leaching and

drainage (Meyer and Keeping, 2000). The rate of loss of soil Si (desilication) can be

ranked with respect to Si content and Si solubility as follows: 2: 1 clays> 1: 1 clay

(e.g. kaolinite» AI and Fe oxides (e.g. gibbsite) (Fox et al., 1967). Generally, soluble

Si concentrations in highly-weathered acid soils (e.g. Nomanci) are several times

less than those of less weathered neutral and alkaline soils (e.g Vertisols) (Foy,

1992). Soils with high percentages of sand (e.g. Fernwood) also tend to show low

soluble Si contents and little capacity to supply Si to plants. Sand particles are

primarly quartz minerals containing a high Si content but they have a low Si-release

potential in the short and medium terms. Sandy soils also have good drainage which

favours leaching of soluble Si rather than its accumulation (Meyer and Keeping,

2000).

Beckwith and Reeve (1964) observed that the amount of monosilicic acid remaining

in soil solution following Si additions to a soil depends on the concentration added,

the nature of the soil and constituent minerals and the pH of the soil suspension. As
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expected, additions of silicic acid and calcium silicate increased concentrations of Si

in soil solution. In general, concentrations of Si in solution were greater in calcium

silicate treatment in both soils. This was unexpected since the availability of Si is

generally thought to decrease with increasing pH (Beckwith and Reeve, 1964) and

pH in the calcium silicate treatments was much greater than that in the silicic acid

ones. It was generally reported that alkaline soils sorb more added monosilicic acid

than acid soils, and soil in alkaline suspensions release less native Si than under

acid conditions (Beckwith and Reeve, 1964).

Beckwith and Reeve (1964) also observed that as pH is increased, sorption is

favoured and concentrations of monosilicic acid in solution decrease. Nevertheless,

several recent studies have reported that with increasing pH, soluble Si decreases in

some soils but is increased or is unaffected in others (de Camargo et al., 2005;

Zhang et al., 2005). The reason for this is unclear but is probably related to

differences in mineralogy and solubility of Si-containing minerals in different soils. In

this study, concentrations of Si in soil solution were lower in the calcium hydroxide

than control treatment in both soils suggesting that the solubility of native soil Si was

decreased with increased pH.

The lower concentrations of Si in soil solution in the silicic acid than calcium silicate

treatments are probably related to the modes of action by which the two ameliorants

affected exchangeable and soluble AI. As previously discussed, for silicic acid the

main mechanism is likely to be precipitation of insoluble aluminosilicates while for

calcium silicate the main mechanism is probably the rise in pH causing precipitation

of hydroxyl-AI compounds. The precipitation of aluminosilicates in the silicic acid

treatments would tend to lower concentrations of Si in soil solution in comparison

with the equivalent rates of Si addition as calcium silicate.

Sulphuric acid is used as an extractant for available soil Si in order to measure Si in

soil solution plus the buffering reserve of potentially available Si (Monger and Kelly,

2002). The mode of extraction is probably a combination of the ability of the acid to
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dissolve AI and Fe oxide surfaces and thus releasing adsorbed silicic acid plus the

displacing ability of the SO/- to desorb previously adsorbed silicic acid. It will also

tend to dissolve polymerised insoluble polysilicic acids and solid phase

aluminosilicate compounds (Berthelsen and Korndorfer, 2005).

Measured concentrations of H2S04 -extractable Si showed unexpected results. For

example, concentrations were higher for the calcium silicate than silicic acid

treatment even though equivalent amounts of Si were applied. Furthermore,

concentrations of extratable Si were similar in the control and calcium hydroxide

treatment for the Nomanci soil but were exceptionally high in the calcium hydroxide

treatment for the Fernwood soil. The increased extractability of Si with increased pH,

particularly in the calcium hydroxide treatment in the Fernwood soil suggests that

some Si-containing compounds have been rendered extractable. Soils were air-dried

prior to acid extraction so this effect could be the result of an interaction between the

high pH and drying rendering some Si-containing compounds extractable.

Furthermore, the much greater amounts of Si extracted from the calcium silicate than

silicic acid treatments in both soils suggests that at the much higher pH of the

calcium silicate treatments, some Si-containing compounds has been rendered acid­

extractable. In a study on the effect of different extractants on Si concentration, de

Camargo et al. (2005) found that when using acetic acid rather than sulphuric acid

as an extractant, acid was able to dissolve some Si-containing compound other than

calcium silicate particularly at high soil pH. Korndorfer et al. (2005) also noted that

when acetic acid was used as an extractant, the greater amount of Si was extracted

with increased soil pH. However, when 0.01 M CaCIz was used as an extractant in

the same soil, the solubility of Si increased in some soils while in others it decreased.

Korndorfer et al. (2005) did not offer an explanation why these effects occurred.

The increase in pH to above 8.0 in the calcium silicate and calcium hydroxide

treatments for the Fernwood soil would be expected to increase soil Si solUbility.

That is, the solubility of silicate minerals is very pH dependent, and the solubility

increases sharply above pH 8.0 because of the formation of silicate ions (Marion et
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al., 1976; Elgawhary and Lindsay, 1972). In the calcium hydroxide treatment there

was obvious indication of this since concentrations of Si in soil solution were low.

Nevertheless, such an effect might have caused some silica-containing minerals to

become much more acid-extractable thus explaining extremely high values for

H2S04-extractable Si in this treatment in the Fernwood soil.

Although addition of P had no consistent effect on H2S04-extractable Si, there was a

tendency for concentrations of Si in soil solution to be increased. This effect was

significant in the control and silicic acid treatments in the Nomanci soil. Such an

effect suggests that added phosphate may have displaced some silicic acid that was

previously adsorbed on to soil colloid surfaces (AI and Fe oxides) thus increasing

concentrations of Si in soil solution (Fox et al., 1967).

4.4.3 Levels of extractable P

The amount of P extracted from the soil followed the order: resin< AMBIC< Truog.

These particular methods were used since they are the most widely used for making

fertilizer recommendations in KwaZulu-Natal. The Truog method is used at the South

African Sugarcane Research Institute, AMBIC at the KwaZulu-Natal Department of

Agriculture and Environmental Affairs (Cedara) and resin at the Institure for

Commercial Forestry Research. Extracting solutions such as AMBle and Truog

remove P from solid phase in soils by a number of different mechanisms. Thomas

and Peaslee (1973) summarized the mechanisms of action of soil test extractants for

P as being a combination of: (1) the dissolving action of acids, (2) anion replacement

to enhance desorption, (3) complexing of polyvalent cations binding P (Le. Fe and

AI), and (4) hydrolysis of polyvalent cations binding to P. For the Truog reagent

(0.02 N H2S04), the main extraction mechanism is likely to be the dissolving action of

acid on AI and Fe oxides to which P is bound. The presence of the SO/- anion may

also have some effect on enhancing desorption of previously adsorbed P. For

AMBIC (0.025 M ammonium bicarbonate, 0.01 M NH4F and 0.01 M disodium-EDTA,

superfJoc at pH 8.5), the main extraction mechanism is likely to be hydrolysis of

cations binding to P. That is, at very high pH (Le. >8.0), AI compounds (e.g AI oxides
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and hydroxides) become solubilized as negatively charged aluminates. The

dissolution of AI oxide surfaces will release previously adsorbed P. In addition, the

presence of the carbonate anion will tend to cause desorption of adsorbed P

(Haynes, 1984b).

Anion resins are often used by soil testing laboratories because they mimick the

action of plant roots in removing phosphate from soil solution (Sissingh, 1971).

During equilibration of soil with the resin, P in solution becomes sorbed to the resin

surface. By, equilibrium, adsorbed and precipitated solid-phase P comes into

solution where it is in turn sorbed to the resin surface. It is evident from the results

found in this study that the resin technique extracted considerably less P that the

AMBIC and Truog methods. The Nomanci soil has a large P adsorption capacity

because of its high content of clay, AI and Fe oxides. Thus, the added P was

strongly adsorbed and the resin was unable to cause desorption of the added P. In

order to overcome such a problem, the use of a greater quantity of resin (Le. more

resin strips) would be desirable when soil testing for P in high P-fixing soils.

Studies of the effects of liming on the extractable P from acid soils have revealed

variable and conflicting results with increases, decreases and no effect being

reported (Haynes, 1984a). For example, in this study, addition of both calcium

hydroxide and calcium silicate increased AMBIC P in the Fernwood soil, but in the

Nomanci soil, additions of calcium silicate had no effect whilst those of calcium

hydroxide decreased AMBIC P. Levels of Truog P were increased by additions of

both calcium silicate and calcium hydroxide in the Fernwood soil but in the Nomanci

soil they were increased by calcium hydroxide addition but unaffected by calcium

silicate addition. For resin extraction, calcium silicate and calcium hydroxide

additions increased extractable P levels at PO in the Fernwood soil but in the

Nomanci soil there was no effect.
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The interaction of factors that are responsible for such variable effects are complex

and have been discussed by Haynes (1984 a, b). On one hand, increasing the pH of

an acid soil decreases adsorption of P onto metal oxide surfaces because the

charge conferred on the surfaces becomes more negative. In addition, AI and Fe in

soil solution precipitate as AI and Fe hydroxides thus reducing the possibility of

precipitation of added P as AI and Fe phosphates (Haynes and Ludecke, 1981). On

the other hand, in soils with initially high levels of exchangeable AI, liming causes

precipitation of this AI as amorphous hydroxyl-AI polymers and this forms new P

adsorption surfaces, thus increasing P adsorption (Haynes, 1984a). Increasing the

pH above 6.5 can also favour precipitation of calcium phosphates thus reducing P

availability (Naidu et al., 1990; Haynes, 1984a) the interaction of these factors along

with the different extraction mechanisms of the different soil text procedures results

in very variable results.

An important aim of this study was to determine whether addition of Si to the soil

would increase extractable P levels. This could occur by adsorption of silicate onto

Fe and AI oxide surfaces thus blocking phosphate adsorption sites and/or displacing

previously adsorbed P. However, no such effect was observed. For example,

addition of silicic acid had no effect on extractable P levels in both soils. This

suggests that P is adsorbed much more strongly than silicate so that addition of Si is

ineffective at increasing P extractability. Such results support those of others who

have concluded that additions of Si are ineffective at increasing P availability

(Hingston et al., 1968; Smyth and Sanchez, 1980; Ma and Takahashi, 1991).

4.5. Conclusions

Calcium silicate is the most commonly used form of fertilizer Si and results of this

study have confirmed that it acts as Si source and a liming material. Results also

demonstrated that on sandy soils with low buffering capacity (e.g. Fernwood), routine

application of calcium silicate can result in very high pH values which could have

negative effects on plant growth. On such soils, the use of Si sources that have little

effect on pH (e.g. silicic acid) would be more appropriate.
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Application of Si in conjuction with P has no measurable effects on extractable P

suggesting that P is more strongly adsorbed to soil colloids than silicic acid. As a

result, its application has little effect on P availability. Results found in this study also

agree with those found by other workers that levels of extractable P can be

increased, decreased or unaffected by increase in soil pH depending on the soil type

and extractant used.

The increase in extractable Si in Fernwood soil at high pH requires further study to

determine the nature of the soil components responsible for such an increase. The

very high sulphuric acid extractable Si in calcium hydroxide treatment in the

Fernwood soil suggests that Si compounds are acid extractable. Therefore, it will be

important in future to characterize the nature of the acid-extractable Si fraction in

soils because acid extratable Si is often used as an index of available soil Si.
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CHAPTER 5

GENERAL CONCLUSIONS

Yield and Si uptake data from the pot experiment do not support the theory that foliar

application of Si increases plant growth and Si uptake. Indeed, Si content in the plant

tissues, Si uptake and yield for the foliar treatments were generally not significant to

the control. As shown in this study, Si is accumulated into plants in similar quantities

to those of macronutrients such as Nand K. As a result, soil application of Si is the

most effective way to supply Si to plants. Large basal dressings can be made (e.g. 4­

20 tonnes/ha). However, when foliar sprays are used, only small quantities of Si can

be applied.

The results suggest that soil application of Si-containing fertilizers could be of value

in improving soil quality and crop yields in KwaZulu-Natal. In South Africa, water is a

scarce resource and Si might be used in dry areas of the country to improve crop

growth because as noted in the literature review, it has been reported to increase

moisture content in the plant tissues by reduced transpiration rate. Silicon can also

be useful in preventing lodging, improving photosynthesis, overcoming toxicities of AI

and Mn and conferring greater disease and pest resistance on crop plants. In this

study, the major positive effect of calcium silicate applications on sorghum growth

appeared to occur through its liming effect and the consequent reduction in

extractable soil AI concentrations. However, other direct effects of Si on plant growth

might have also occurred.

One of the aims of this study was to investigate if addition of lime as calcium silicate

rather than calcium hydroxide would increase P extractability through desorption of

adsorbed P by added silicate. No such effects was found suggesting that phosphate

is so strongly adsorbed by soil components compared with silicic acid that additions

of silicate do not significantly increase P availability. In agreement with this

conclusion, it was also found that application of silicic acid had no measurable effect
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on extractable P in comparison with the control treatment. Therefore, it seems that

addition of Si to soils is unlikely to have any considerable effect on the availability of

soil P.

The three soil test methods for P used in this study extracted different amounts of P

from soils. This was attributed to their different modes of action in extracting soil P.

Truog and AMBIC extractant removed P from solid phase (Le. P complexed by Fe

and AI), whilst for the resin phosphate was removed from soil solution by strips

mimicking the action of plant roots. It is difficult to determine the best suitable

method for extracting P from the soil, because on one hand the Truog method might

have overestimated the extractable P and this might underestimate the amount of

fertilizer P required for crop growth. On the other hand, the resin might have

underestimated extractable P and this might result in less amount of phosphate

fertilizer being applied to the soil. Levels of extractable P were increased, decreased

or unaffected by increased pH depending on the extractant used and the soil being

considered. Such results emphasise the complexity of lime and P interactions that

can occur in acid soils.

The concentration of extractable AI in soils is partially related to the clay mineralogy,

with concentrations increasing in highly weathered soils. It is evident that addition of

calcium silicate, silicic acid and calcium hydroxide used in this study reduced

exchangeable and soluble AI in the Nomanci and Fernwood soil. The major

mechanisms responsible for this decrease probably differed. In the silicic acid

treatment a decrease was due to the formation and precipitation of insoluble

silicates, whilst increased pH caused a small decrease in calcium silicate and

calcium hydroxide. Concentrations of exchangeable and soluble AI were also

decreased by application of phosphate fertilizer mainly due to the precipitation of AI

phosphates. Nevertheless, the effects of added silicic acid and P on AI solubility

were only small and the way of reducing potentially-phytotoxic levels of soluble and

exchangeable AI to low levels is to raise soil pH by adding a Iiming material (e.g.

calcium carbonate or calcium hydroxide).
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Adsorption of Si by soil components has been reported to increase with increased

pH so that its extractability decreases. However, unexpected results were found in

the calcium hydroxide treatment in the Fernwood soil since acid- extractable Si was

greatest in this treatment (extractable Si higher than in Si-containing treatments).

The Si concentration in soil solution was very low in this treatment. It was suggested

that a combination of increased pH, and perhaps drying, rendered some Si­

containing compounds acid- extractable. Such findings indicate that the use of acid­

extractable fraction of Si as an indicator of available Si does not reflect plant

available Si (Le. it overestimates plant available Si). Future research needs to

characterize the nature of acid-extractable Si fraction in soils in more detail.
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