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ABSTRACT

Current mining methods used to extract coal from underground mine workings disturb

the natural environment and the existing stable geological structures. As a result, the

ingress of water into the mines increases and the quality of the water passing through

the mine workings deteriorates, irrespective of the operational status of the mines.

Water ingress is generated by regional aquifers, local aquifers, recharge from the

surface through rainfall, natural drainage paths on the surface, and surface water bodies.

The quality of water in the mines deteriorates as a result of contact with the remaining

coal in the mine workings. Mining can therefore cause an increased influx of water into

a mine and the degradation of this water. The solution to reducing the impact of mines

on the environment is to prevent, or at least reduce, the amount of water entering the

mines, and to manage this water to prevent further degradation in water quality.

This study focused on afforestation with Eucalyptus viminalis trees to manage or

inhibit ingress of water into underground mine workings. The hypothesis of this study

was that a change in vegetation, from grassland to fast-growing and potentially high

water-using trees like Eucalyptus. could possibly reduce the drainage of water below the

root-zone and into the mine workings. The hypothesis was tested by estimating the

components of the soil water balance for a grassland site and a Eucalyptus tree site. The

research site was situated in Mpumalanga, (260 36' Sand 290 08' E, 1650 m a.m.s.l.),

one of South Africa's major coal bearing areas. Although the Secunda area is a treeless

environment and conditions are not optimal for forestry, some Eucalyptus species are

suited for conditions (frost and periodic droughts) encountered in this area.

The soil water balance of grassland and E. viminalis trees were studied through a

field experiment and a long-term (30 years) modelling exercise. Total evaporation of

the grassland site was estimated using the Bowen ratio energy balance technique. The

transpiration of six representative E. viminalis trees were estimated using the heat pulse

velocity technique. The soil water storage changes at both sites were determined from

the soil water content, estimated using water content reflectometers. Measurements

were performed in a smectic clay soil which resulted in measurements difficulties.

Vertical cracks were formed under soil drying. To establish the importance of climate

and plant growth on the drainage beyond the root-zone, the soil water balance of a

grassland and an E. viminalis site were simulated over a 30-year period with the Soil

Water Atmosphere Plant (SWAP) model.

It was concluded from the comparative field experiment and modelling, that a change

in vegetation from grassland to E. viminalis will reduce the drainage of water below the

root-zone, especially under above-average rainfall conditions. The reduction in

drainage beyond the root-zone at the E. viminalis sites, compared to the grassland site,
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was demonstrated in the modelling exercise and can be deduced from the total

evaporation and soil water storage estimated at both sites. The results from the field

experiment confirmed the modelling results and showed that usually there were higher

transpiration rates for the E. viminalis tree site, compared to the grassland site. The

higher transpiration rates for E. viminalis trees resulted in lower relative saturation of

soil layers and lower profile soil water contents at the E. viminalis site, and higher daily

soil water storage changes at the E. viminalis site compared to the grassland site. These

differences were more pronounced during winter when the grassland was dormant.

The results from the modelling exercise showed that an E. viminalis tree stand, with a

closed canopy, reduced drainage below the root-zone compared to a grassland. The

drainage at the grassland site contributed to up to 54 % of the rainfall, compared to the

43 % at the E. viminalis site. However, under below-average rainfall conditions the

annual drainage at both sites, were similar. Further, the absolute magnitude of the

drainage was similar to the total evaporation at the grassland site under certain

conditions. The results not only suggest that a change in vegetation, from grassland to

E. viminalis trees, would reduce the drainage beyond the root-zone, but that it may

delay the onset of drainage. Under above-average rainfall conditions, the modelled

drainage at the E. viminalis site only exceeded 20 mm, a month later than at the

grassland site. The simulation results also showed that under conditions of above­

average rainfall, drainage occurs whenever the rainfall exceeds the long-term average

rainfall, irrespective of the existing vegetation. However, when the rainfall is below­

average drainage at both sites are limited to large rainfall events. This simulation

showed that over a period of eight years, E. viminalis trees could potentially reduce the

drainage by 1235 mm more than grassland, which is equivalent to 1540 m3 ha-I a-I, or

1.54 Me ha-I a-I. The annual average reduction in drainage below the root-zone caused

by E. viminalis trees (1.79 Mf ha-1 a-\ is a small reduction when compared to the

influx of water into mineworkings. E.g. the influx of water into a bord-and-pillar mine

range between 0.5 and 4 M t d-I per area mined and up to 17000 M t d-I per area mined

under high extraction mining (Hodgson and Krantz, 1998; Hodgson et aI., 2001).

This work gave a comprehensive account of the differences in the soil water relations

of grassland and E. viminalis trees overlying coal mine working. Few other studies in

South Africa compared the total evaporation and soil water relations of grassland and

E. viminalis trees in so much detail. State of the art monitoring techniques were used

and produced valuable comparison of their use in expansive clay profiles. The work

should contribute to management decisions focussed on limiting ingress of water into

mine workings.
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RELEVANCE TO MINE MANAGERS

A number of solutions address the problem of ingress of water into mine workings.

Some like Evaporators and Crystallisers are extremely expensive (e.g. a 9 Mf d-l end­

of-pipe treatment plant at a cost of R360 000 000) (Kotze, 2000), and not economically

viable in the long run. Environmentally related solutions, like afforestation with

potentially high water using trees, provide an alternative way to prevent or reduce water

movement below the root-zone. The hypothesis is that the replacement of natural

grassland overlaying mine working with e.g. E. viminalis trees, should cause an increase

in total evaporation and a decrease in the soil water storage. This in turn will reduce

soil water movement below the root-zone and into mine workings.

This hypothesis was tested in a generally treeless environment: the Mpumalanga

mining area. The conditions in this area are less favourable for forestry than in other

forestry areas in South Africa. Hostile conditions experienced at the research site in

Secunda included severe frost and possible root pruning by the movement of smectic

clay soils during winter. Despite these conditions, the results from the study comparing

the soil water relations of grassland and E. viminalis trees, showed that E. viminalis

trees have the potential to decrease the soil water movement below the root-zone, when

compared to grassland.

The results from the study showed that under above-average rainfall conditions,

afforestation with E. viminalis trees cause a decrease in the soil water movement below

the root-zone, when compared to grassland. The differences in the soil water relations

were most pronounced during autumn and winter when the grassland was dormant.

However, although the E. viminalis trees caused a larger reduction in water movement

below the root-zone, compared to grassland, drainage will occur whenever the rainfall

exceeds the long-term average rainfall, irrespective of the overlaying vegetation type.

Under below-average rainfall conditions, the impact of grassland and E. viminalis trees
in reducing ingress of water into the mine working, were similar.

Under hostile conditions as experienced at Secunda, however, the potential impact of

E. viminalis trees could be optimised through successful tree establishment and by

ensuring maximum leaf area (growth). This will require near ideal conditions for tree

growth throughout the growing season, especially through soil water availability.

Although this study does not provide exact predictive knowledge in terms of water

movement below the root-zone and into mine workings, it does increase our knowledge

on the potential impact of afforestation with Eucalyptus species in reducing the ingress

of water into mine workings.
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CHAPTER 1

INTRODUCTION

1.1 General problem statement

Current mining methods used to extract coal from underground mine 'workings disturb

the natural environment and the existing stable geological structures. As a result, the

influx of water into mines increases and the quality of water passing through mine

workings deteriorates, irrespective of the operational status of the mines.

The influx of water is generated by regional aquifers, local aquifers, recharge from

the surface through rainfall, natural drainage paths on the surface, and surface water

bodies. The quality of water in the mines deteriorates as a result of contact with the

remaining coal in the mines. Mining can therefore cause an increased influx of water

into a mine and the degradation of this water. The solution to reducing the impact of

mines on the environment is to prevent, or at least reduce, the amount of water entering

the mines, and to manage this water to prevent further degradation in water quality.

1.2 Background to the mine water problem

1.2.1 Effect of different mining methods on the water in mines

Intensive mining in South Africa started over 100 years ago (1870s), after the discovery

of the richness of minerals in some parts of South Africa. These minerals occur mainly

underground. Various mining methods are used to extract the minerals that are

economical to mine. All of the mining methods impact the environment to some degree

and therefore have the potential to pollute the surface and/or groundwater. The coal

miningjndustry has an extensive impact on the environment and has a high potential

impact on the landscape. However, this impact is less visible after mine rehabilitation

(Hodgson and Krantz, 1998; Hodgson et al., 2001).



Chapter 1 2

Coal mining is done opencast or below ground. Underground mining methods

include longwall mining, shortwall mining, bord-and-pillar mining, and stooping or

pillar extraction. During underground coal mining, coal seams are removed. The

removal of these strata results in or could potentially result in the subsidence or collapse

of the soil surface overlaying the strata. The extent of the subsidence depends on the

mining method and the associated depth of mining (Hodgson and Krantz, 1998;

Hodgson et ai., 2001).

Longwall coal mining takes place at 50 to 200 m below the soil surface, and is seen

as the most destructive underground coal mining method. It has the greatest impact of

all mining methods on the surface and groundwater resources. Longwall mining is a

very rigid method and results in severe collapse of material above the coal seam. It can

affect the aquifers above and below the mine workings, and has the highest risk of

dewatering the overlaying aquifer. After the soil has collapsed, the longwall mining

method leaves many cracks (fractures) that may extend to the soil surface. These cracks

allow oxygen-rich water to flow into and fill the mine, and subsequently react with the

pyrite in the remaining coal-bearing material to form sulphuric acid (Hodgson and

Krantz, 1998).

Shortwall mining is very similar to longwall mining, but is slightly less destructive as

a smaller area is mined at a time. However, this mining method also impacts water

quality and quantity (Hodgson and Krantz, 1998).

Bord-and-pillar mining is seen as the most environmentally-friendly mining method,

and generally does not result in subsidence of the surf~ce. ~ord-and-pillar mining

occurs at least 100 m below the soil surface. Stooping or pillar extraction normally

follows bord-and-pillar mining, and is less destructive than longwall mining (Hodgson

and Krantz, 1998). Pillar crushing or pillar punching may result in gentle and gradual

subsidence. Stooping potentially leave pathways for direct ingress of water into mines

and the associated oxidization of pyrite.

When cracks or fractures are formed during or following mining, rainfall follows the

paths into the mines and accumulates within the underground mine workings. The

water that reacts with the pyrite through oxidization, forms sulphuric acid and this in
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turn creates the water quality problem. This results in a change in the pH and chemical

composition of the water, and causes some toxic metals to go into solution. The

resulting polluted water resources are very difficult to manage because of their extent

and their underground location. The impacted (polluted) mine water can also

potentially contaminate adjacent aquifers (groundwater) or nearby streams directly.

Therefore, mining methods create or could create a water quality that is unacceptable

when the water is released into rivers with the result that the water needs to be contained

or utilized in a different manner (Hodgson et al., 2001). This water quality/quantity

problem is sometimes extensive, and could to some extent affect mining operations or

productivity.

1.2.2 Extent of the mine water problem

Coal is an important energy source in South Africa, and coal mining is therefore

important to the South African economy. The coal reserves underlie 2.7 million ha of

land of which I million ha could potentially be mined. This I million ha area contains

49 % of the total coal reserve and through high extraction mining methods, could

potentially disturb 410000 ha of the Highveld (Versfeld et al., 1998). Further,

extensive areas are earmarked for mining in the future, with 40000 ha allocated for high

extraction coal mining over the next 30 years (Hodgson et al., 2001). Due to this

planned increased mining activity, significant amounts of water can potentially

accumulate within mines, be contaminated and potentially impact on surface and

groundwater quality.

Hodgson et al. (2001) found that a large colliery which produces up to 10 x 109 kg of

coal per annum could create 6.25 x 106 m3 ofunderground space. If three quarters of

this space collapsed, then 10 Me dol of mine water could be accumulated. Then, over

40 years, a mine area of 12000 ha, could create 120 x 106 m3 of space. The potential

influx (cumulative influx of 100 x 106 m3
) would equal the volume of the Witbank Dam

(Hodgson et aI., 2001). Hodgson and Krantz (1998) also found differences in the influx

of water in different coal mines. Water influx into a bord-and-pillar mine is often

difficult to predict because of the irregularity of the cracks into the mines. In general a

flux of O. 5 to 1 Me d'l during the first 2 to 4 years can be expected, escalating to 2 to
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4 M f dol for larger established mines. However, the influxes into high extraction mines

are initially comparatively high (4000 to 13000 m3 dol) due to the dewatering of strata

overlaying the mine. Water influx into high extraction mines will continue indefinitely

while drainage out of the mine will occur at the same time (Hodgson and Krantz, 1998).

Hodgson et al. (2001) found the influx into high extraction mines ranged between 1000

and 17000 M f d- I per area mined. However, Hodgson et al. (2001) suggested that

through proper planning, mines would be able to cope with large volumes of water.

1.2.3 Importance of solutions to the mine water problem

The water resources of South Africa are scarce, and are insufficient for the growing

industrial, human and agricultural water demand. Already in the 1970s, research

predicted that by the turn of the century, South Africa would not meet its water

requirements (Van der Riet, 1975; Merensky and Hopkins, 1979; Department of Water

Affairs and Forestry, 1980; Res Nova, 1984; Tylcoat and Forster, 1987 all cited by

Hodgson et al., 2001). However, these authors explained that measures such as

catchment water transfer schemes, indigenous water supplies and water restrictions in

urban areas were put into place to delay the associated problems. These measures

prevented water shortages and assured a sufficient supply of water to the most important

sectors.

During the 1970s, a stronger focus was also placed on the importance of groundwater

in order to meet the country's water needs as these resources were often close to the

demand. At that stage, the groundwater contributed to only 3 % of the country's water

requirement, compared to 13 % during the 1980s (Department of Water Affairs and

Forestry, 1980 cited by Hodgson et al., 2001). For many years, groundwater was seen

as a cheap source of water that needed little management (Braune, 2000) and little

attention was paid to the potential impact of different sectors, mining included, on the

surface and groundwater resources. Unfortunately in some instances, groundwater was

exploited and polluted.
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Today, however, both surface and groundwater management is very important in

South Africa and is managed through the National Water Act (NWA) (no. 36,1998).

While the previous focus was on finding additional water resources, the focus of the

NWA is now on water resource management through demand management, and

involves all of the available resources (Braune, 2000). Water management in South

Africa is the result of many years (20 years) of research. Water-management-related

research included catchment runoff field experiments and modelling exercises, and

groundwater studies (geohydrological and water quality) (Hughes, 1985; Brown and

Van Niekerk, 1991; Jakubczyz, 1991; Pitman and Kakabeeke, 1991 cited by Hodgson

et al., 2001). The NWA places the responsibility of water management of both surface

and groundwater on the landowner or the responsible industry.

As mining and other industries are seen as important contributors to water quality and

quantity problems (Van Niekerk, 1990 cited by Versfeld et al., 1998), these industries

have to comply with regulations relating to water management and mine rehabilitation

(Environmental Conservation Act, 1989; Minerals Act, 1991; National Water Act,

1998). For example, mines have to submit closure plans to the Government Mining

Engineer and obtain a closure certificate according to the Minerals Act (1991) (Sections

12, 39 and 54). These closure plans help identify and evaluate possible pollution risks

and/or problems. The mines have to illustrate the long-term effect of a closed mine on

the environment (in terms of water quality and quantity), within acceptable criteria

(Hodgson et al., 2001).

1.2.4 Solutions to the mine water problem

In order to reduce mine water ingress, a clear understanding of the impact of mining on

water quality and quantity and the environment is necessary. This knowledge can assist

mine management in managing the water from the design stage of the mine through to

its closure.

Historically, insufficient attention was devoted to water management planning in

advance, for mines applying high extraction underground and other mining methods.

This was not done mainly because management did not foresee water shortages, and did
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not anticipate the negative impact of mining on the environment, and specifically not on

the water resources. Today, however, mine management is under much more pressure

to improve water resources management. Management is also aware of the potential

impacts and associated problems resulting from different mining methods. Salmon

(2000) suggests that mine water management strategies for coal mines need to include

preventative measures for water pollution, separation of clean and dirty water,

maximum water reclamation, re-use of water, holistic mine planning, and treatment of

water.

Over the past 20 years, South African mining houses have invested millions of Rands

to investigate and gain a more complete understanding of the effect of different mining

methods on the environment, including surface and groundwater resources. This

research is ongoing. The research results are used to prevent current and potential

future problems, and reduce the impact of these problems. Preconditions to these

solutions or strategies are that they be environmentally friendly, cost-effective, and that

they do not introduce new problems.

Strategies to control the influx of water into mines and utilize polluted water can be

divided into three classes. Strategies include:

o Current and/or future water uses

• underground water storage during mining (Hodgson et al., 2001),

• utilization of mine water after closure (e.g. for irrigation) (Barnard et al.,

1998),

• utilization of best quality water,

• dilution and mixing of disposed mine water (Hodgson et al., 2001), .

• disposal into sea (Dumsday et al., 1989; Hodgson et al., 2001),

• flood release of poor quality water into streams (Hodgson et al., 2001),

• pumping (Dumsday et al., 1989) and desalinisation of water (Hodgson et

al.,2001; Kotze, 2001),

• lime dosing (Maree et al., 1996; Hodgson et al., 200 I), and

• separation of clean and dirty water (Salmon, 2000).
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o Mining technology or engineering changes

• redesign of extraction panels so as to not collapse and fracture strata

(Hodgson et aI., 2001),

• re-evaluation of longwall high extraction mining as a mining method

(Hodgson et aI., 2001),

• limiting the size of the mines (Hodgson et aI., 2001),

• use of vertical intrusions as barriers to water movement (Hodgson et al.,

2001),

• minimization of water influx by not undermining high transmissive

aquifers (Hodgson et aI., 2001),

• changes in mining events (sequence) (bottom to top mining) (Hodgson et

al., 2001),

• holistic mine planning (Salmon, 2000), and

• installation ofanoxic limestone drains (Hodgson et al., 2001),

o Environmentally related solutions

• rehabilitation of the surface (Hodgson et al., 2001), and

• reforestation, agroforestry or agronomic measures (Dumsday et aI.,

1989; Versfeld et al., 1998; Hodgson et al., 2001; Jarmain et al., 2001).

Rehabilitation of the surface includes the rehabilitation of the areas above high

extraction mining activities, the sealing of cracks/fractures where little vegetative cover

exists, deep ploughing over high extraction areas to destroy cracks and drainage paths

forming in subsiding areas and frequently (annually) inspecting the areas (Hodgson et

al.,2001). Reforestation, agroforestry or agronomic measures again include planting of

Eucalyptus or other high water-using trees or vegetation upstream or downstream to

decanting areas, or above high extraction panels (Dumsday et aI., 1989; Versfeld et al.,

1998; Hodgson et al., 2001; Jarmain et aI., 2001). The use of deep-rooted, perennial

crops, e.g. lucerne, instead of seasonal shallow-rooted crops are suggested as well as

intensive;- continuous cropping with a decreased fallow period, minimum tillage, and an

increased number of cultivations (Dumsday et al., 1989).



Chapter 1

1.3 Solution developed for and tested in this research project

8

A number of possible solutions to deal with water quality and quantity problems

experienced by mines are mentioned above and address both the symptoms of the

problem and the causes. This study focuses on afforestation with Eucalyptus species to

manage or inhibit drainage of soil water into underground mine workings. This

management option suggests a longer-term solution at a local and/or a catchment level.

The research site to investigate this possible solution was situated in Mpumalanga,

one of South Africa's major coal bearing areas. Although the Secunda area is a treeless

environment, it has the potential to grow high water users e.g. Eucalyptus species,

suited for conditions (frost and periodic droughts) encountered in this area. Mining

houses in this area (e.g. Sasol Collieries) have recognized the potential of trees to

minimize the negative effect introduced by mining on the hydrological system. Sasol

Collieries has already planted a variety of Eucalyptus species suited to this area, and

other mines are also planning to do so.

Since 1990 Sasol Coal has undertaken various projects to investigate afforestation as

a potential solution to their problem of increased influx of water into mines (Button et

ai., 1993). Projects include:

• investigations on the survival and growth of the existing afforestation areas (Du

Toit and Basson, 1993),

• field trials to identify tree species suited to different site types, and to identify

site-specific soil preparation guidelines (Du Toit, 1993; Du Toit and Mostert,

1993; Cunningham, 1995, 1996), and

• quantification of the water use by trees at various espacements (Olbrich and

Poulter, 1992; Olbrich et ai., 1994; Versfeld et ai., 1998).

A site-based management plan was also devised in 1992 for Brandspruit Collieries,

but with the option to include the greater Sasol Mines. In 2000, Sasol Collieries

structured an intensive research plan to "refine the understanding offactors and

parameters involved in the prediction ofwater and salt balances at mine compartment

lever' in order to develop a set of"tools or rules for optimal water management

orientated design ofnew mining operations" (Kotze, 2001).
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Fast-growing and potentially high water-using trees like Eucalyptus can potentially

modify site and catchment soil water balances and address the water quality and

quantity problems experienced by mines. The components of the soil water balance

mostly affected by a change in vegetation include soil water storage and total

evaporation. However, fast growing, high water-using Eucalyptus species, if planted at

a large scale (catchment scale), could have a negative effect on the water availability in

those areas (Le Maitre et al., 2000). Nambiar (2000) and Sikka et al. (2003) also

expressed concern that the planting of trees on a large scale, in some instances, will

reduce the available water of downstream users, and that it is therefore important to

understand the full hydrological impact ofEucalyptus trees or other high water-users.

1.4 Potential of solution proposed in this research project

Examples exist that illustrate the effect of a change in vegetation (afforestation or

deforestation) at a catchment level on the water balance through streamflow

modification (Le Maitre and Scott, 1997; AlIen and Chapman, 2000; Gush et al.,

2002). In South Africa, the catchment water yield decreased by up to 100 % following

afforestation with Eucalyptus species (Van Lill et al., 1980; Van Wyk, 1987; Bosch

and Smith, 1989; Lesch and Scott, 1993 cited by Versfe1d et al., 1998). Other South

African examples showed that the water use (transpiration) of Eucalyptus could exceed

rainfall by 1200 mm a-I, where the trees have direct access to groundwater (and soil

water stored) (Dye, 1987). However, these high decreases in catchment water yield

were estimated under ideal (optimal) forestry conditions.

International examples, like one in Western Australia, also show the effect of

Eucalyptus trees on the soil water balance. Trees in the Mediterranean parts of

Australia are referred to as "biological wicks", drawing water from the water table

throughout the year. After the removal of indigenous deep-rooted Eucalyptus species

for agricultural and mining purposes, groundwater tables rose, flushing salts through the

soil profile to the soil surface, and increasing the salinity levels in the streams. This

resulted in less arable land (Peck, 1983; Dumsday et al., 1989; Bell et aI., 1990;

Leuning et al., 1991; Morris, 1991; Schofield, 1991; Ward, 1991 cited by Versfeld et

al., 1998; Raper, 2000). Legislative and other measures are now in place to restrict

land clearing. The re-establishment of vegetation in Western Australia is also a
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precondition to e.g. extensive bauxite mining. The clearing ofEucalyptus forests for

bauxite strip mining is only allowed if the new trees or vegetation prove to have the

ability to use equivalent or higher amounts of water than the original vegetation. In

Western Australia, reforestation of areas with risen groundwater tables, where pasture

previously existed, showed relationships between groundwater table reduction and the

area reforested.

Other international examples illustrate the impact ofEucalyptus species on the water

resources (Lima, 1984; Raper,2000; Sikka et al., 2003). These include India, where

three Eucalyptus species were used to drain marshes (Shiva and Bandyopadhyay, 1983),

to reclaim water logged areas in Punjab and Haryana (Gupta, 1979), and dried up

burrow pits on the road sides (Gupta, 1979). Sikka et al. (2003) suggested that caution

needs to be exercised when large scale conversions of natural grassland into E. globulus

plantations, are planned. Sikka et al. (2003) showed how a conversion from grassland

to E. globulus decreases the low flow and peak flow, and increases soil moisture losses

in South India. These changes were more pronounced during the second rotation.

However, at the proposed research site in the Mpumalanga mining area (South

Africa), conditions are less favourable for forestry than other forestry areas in South

Africa. Unfavourable conditions include an average annual rainfall of 680 mm a-I,

frost, shallow soil depths ,in some areas (less than 500 mm), and the swelling and

shrinking characteristics of some soil forms. The effectiveness ofEucalyptus species on

the soil water balance under these conditions will therefore depend largely on the tree

species selected, effectiveness of tree establishment, climatic conditions, position in the

landscape, planting density, topography, underground mining method, soil properties,

depth of groundwater table and water quality. Raper (2000) found that despite hostile

environments in which trees like Eucalyptus are sometimes planted, the trees can still

lower the water table significantly. Raper (2000) also pointed out that the impact of

trees will depend on plantation design, and the species selected. Therefore, it is

believed that Eucalyptus species still have the potential to decrease the drainage of

water into mine workings.
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1.5 Hypothesis of this research project

11

The hypothesis of this study is that a change in vegetation, from grassland to

E. viminalis, will increase the total evaporation and decreases the soil water storage. It

is hypothesised that a change in vegetation from grassland to E. viminalis trees will

reduce the drainage of water beyond the root-zone and into the mine workings, over the

short- and long-term.

1.6 Aims of this research project

This project compared the soil water balance of a grassland site to that ofE. viminalis

trees. Through this it is possible to infer the impact of a change in vegetation from

grassland to E. viminalis trees on the drainage beyond the root-zone. In order to achieve

these aims, the total evaporation and soil water storage at a grassland and an

E. viminalis site were estimated during a field experiment over a period of two years.

The plant soil water relations at a grassland and a Eucalyptus site were modelled on a

field scale over an extended period. The results from the modelling were used to

illustrate the accumulated differences in the soil water balance components between a

grassland and an E. viminalis site over a period of 30 years.

1.7 Outline of document

The underlying theory of the techniques~used in the measurements are discussed in

Chapter 2 (total evaporation and transpiration) and Chapter 3 (soil water content and

soil water potential). Chapter 4 includes a brief discussion ofthe Soil Water

Atmosphere Plant (SWAP) model used in the simulations.

The layout of the experiment (field measurements and modelling) is discussed in

Chapter 5.

The soil water balance results are subsequently discussed in Chapters 6 to 8. The

seasonal changes in the soil water and total evaporation estimated from measurements at

the grassland and E. viminalis sites are discussed in Chapter 6. The soil water balances

estimated from measurements at the grassland and E. viminalis sites are discussed in
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Chapter 7. The results of the long-term simulations of the soil water balances at the

grassland and E. viminalis sites are presented in Chapter 8.

The document is concluded in Chapter 9, and includes recommendations relating to

future research.
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CHAPTER 2

TECHNIQUES FOR ESTIMATING TOTAL EVAPORATION AND

TRANSPIRATION

2.1 Introduction

Total evaporation and crop water use (transpiration) can be determined by different

techniques. Each technique applies to a specific spatial and temporal scale, and some

are therefore more suitable than others under specific conditions. No single technique is

ideal, and it is sometimes best to use a combination of techniques to complement each

other. Some techniques measure total evaporation whereas others only measure a

component of total evaporation and include:

• energy balance and micrometeorological (Rosenberg et al., 1983; Kite and

Droogers, 2000),

• climatological (Rosenberg et aI., 1983),

• plant physiological (Rana and Katerji, 2000; Wilson et aI., 2001),

• water balance, hydrological or agro-hydrological (AlIen et aI., 1989; Kite and

Droogers,2000; Wilson et al., 2001), and

• remote sensing techniques (Kite and Droomers, 2000), and

• the use oflysimeters (Allen et aI., 1998; Wilson et aI., 2001).

Energy balance and micrometeorologica1 techniques include the mass transport,

aerodynamic, Bowen ratio energy balance, resistance, eddy covariance and infra-red

thermometry techniques and large aperture and laser scintillometry (Rosenberg et al.,

1983 and Kite and Droogers, 2000).

Climato1ogical techniques include air temperature basedformulas (the Thomthwaite,

Blaney-Criddle, Hargreaves and Linacre techniques), solar radiation formulas

(regression techniques and the Makkink, Jensen-Haise and solar thermal unit

techniques), solar and thermal radiation techniques and combination formulas (the

Penman, Penman-Monteith, Slatyer and McIlroy and Priestley-Taylor model

techniques) (Rosenberg et al., 1983).
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Plant physiological techniques include sapflow methods and plant chambers (Rana

and Katerji, 2000; Wilson et al., 2001).

14

In this study, the total evaporation of a grassland was measured using the Bowen ratio

energy balance (BREB) technique. However, as the E. viminalis research plot was

small and the canopy fetch to height ratio at this site insufficient for the application of

the Bowen ratio energy balance technique, the transpiration of E. viminalis trees was

measured with a plant physiological method, namely the heat pulse velocity (HPV)

technique. The theory underlying these two techniques will be discussed below.

2.2 Definitions

2.2.1 Evaporation

Evaporation is the ''physical process by which a liquid or solid is transferred to the

gaseous state" (Huschke, 1959).

2.2.2 Transpiration

Transpiration can be defmed as evaporation of water that has passed through the plant.

Transpiration therefore consists of vaporization of liquid water contained in the plant

tissues and vapour removal to the atmosphere (AlIen et aI., 1998).

2.2.3 Total evaporation

Total evaporation (E1) can be defined as the total process of water movement into the

atmosphere. Soil evaporation (E) and transpiration (1) occur simultaneously and are

determined by the atmospheric evaporative demand (available energy and water vapour

pressure deficit), soil (soil water availability) and canopy characteristics (canopy

resistances) (Rosenberg et aI., 1983). Others (Kite and Droogers, 2000) refer to total

evaporation as evapotranspiration.
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In this experiment total evaporation refers to the sum of:

• evaporation from the soil surface,

• transpiration by vegetation, and

• evaporation of water intercepted by vegetation.

2.2.4 Evaporation of intercepted water

15

Plants intercept precipitation (rainfall, dew, irrigation) and therefore prevent a fraction

of the precipitation from reaching the soil surface. A fraction of the precipitation that

remains intercepted by the canopy is removed by evaporation. This involves the

physical change of water from liquid to gas.

2.2.5 Reference evaporation

Allen et al. (1998) defines reference evaporation (ETa) as "The evaporationfrom a

reference surface, not short ofwater ... The reference surface is a hypothetical grass

reference crop with specific characteristics... The only factors affecting ETa are climatic

parameters. Consequently, ETa is a climatic parameter and can be computedfrom

weather data. ETa expresses the evaporating power ofthe atmosphere at a specific

location and time ofthe year and does not consider the crop characteristics and soil

factors. " Other definitions specify that the reference surface should fully cover the soil

surface.

2.3 A description of the Bowen ratio energy balance technique

2.3.1 Theory

The shortened canopy surface energy balance equation,

Rn -G-AE-H =0 2.1
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consists of the net irradiance (Rn) (incoming irradiance minus outgoing irradiance of all

wave lengths), the soil heat flux density (G), the latent heat flux density (A£) and the

sensible heat flux density (H) (Oke, 1978; Rosenberg et aI., 1983; Monteith and

Unsworth, 1990). The sign convention used is Rn positive when directed towards the

surface and G, AE and H positive when directed away from the surface. This shortened

form of the energy balance ignores stored heat in the canopy and the influence of

advection.

Finite water vapour pressure and air temperature profile differences are measured

over a vertical distance in the atmosphere and an effective eddy diffusivity assumed to

calculate the latent (A£) and sensible heat flux densities (H):

2.2

2.3

with the diffusivity coefficient for latent (Kv) and sensible heat transfer (Kh), the density

of the air (P), the ratio of the molecular mass of water (Mw) to that of dry air (Md)

(E =Mw / Md)' atmospheric pressure (P), the specific heat capacity of dry air at

constant pressure (cp ) and the water vapour pressure (;; -eJ/(zl - Z2) and air

temperature gradients VI -T2)/(Zj - Z2).

Assuming that the diffusivity coefficients (Kv and Kh) are equal, the Bowen ratio (/J)

is given by:

f3 =H/AE

f3 =(Pcp / AE) 1; - T2

e, -e2

2.4

2.5
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where y(kPa oC-l) is the psychrometric constant (Campbell Scientific, Inc., 1998).

17

Using the shortened surface energy balance (Eq. 2.1) and the computed Bowen ratio

(Eq. 2.4), Bowen (1926) showed the sensible (Eq. 2.6) and latent heat flux densities

(Eq. 2.7) to be:

H=fJ(Rn-G) 2.6
/3+ 1

and

AE= Rn-G 2.7
/3 +1

respectively, where /3 :;r -1 (Sinclair et al., 1975; Spittlehouse and Black, 1980;

Ohmura, 1982).

The total evaporation (ETB) as estimated with the Bowen ratio energy balance

technique is solved as:

ET = Rn -G
B A.(f3 + I)

where A. is the latent heat of vaporization (Angus and Watts, 1984).

2.3.2 A description of the Bowen ratio energy balance equipment

2.3.2.1 Introduction

2.8

The Bowen ratio energy balance method requires measurements of net irradiance (Rn),

soil heat flux density (G) and the mean air temperature and water vapour pressure

profile differences over 20 minute intervals. The net irradiance and soil heat flux

density are used to establish the available energy flux density (Rn - G). The available

energy flux density is partitioned between the sensible (H) and latent heat flux densities

(A.£) (Monteith and Unsworth, 1990; Malek and Bingham, 1993).
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2.3.2.2 Net irradiance

The net irradiance (the difference between the total incoming and outgoing irradiance

fluxes at all wavelengths) is measured every 10 seconds with a net radiometer and

averaged over 20 minute periods.

2.3.2.3 Soil heat flux density

Two soil heat flux plates, together with four averaging thermocouples are generally

used to calculate the soil heat flux density (G) at the soil surface:

18

G=F+S 2.9

where F is the soil heat flux density at 80 mm and S the heat stored above the soil heat

flux plates. These sensors are installed to represent the average soil conditions

(Campbell Scientific, Inc., 1998).

The buried soil heat flux plates sense the soil heat flux density at 80 mm (F). This

depth is chosen to exclude errors due to water vapour transport of heat if the plates are

placed near the surface.

The two pairs of averaging thermocouples, buried at 20 and 60 mm, are used to

calculate the heat stored above the soil heat flux plates (S):

S =Psoil & dT,oil Csoil

dt
2.10

where Psoil is the bulk density of the soil, .dz the soil depth (0.08 m), dTsoil the change in

soil temperature between the 20 and 60 mm soil depths (QC), Csoil the specific heat

capacity of the soil (J kg-
l 0C-I) and dt the time interval between datalogger output

intervals (20 minutes) (Savage et aI., 1997). The specific heat capacity of the soil (Csoi/)

(J kg- l Qel
) is calculated as:
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where Cdsoil is the specific heat capacity of a dry soil (J kg-) cC-I), Ow the soil water

content on a mass basis (kg kg"l) and Cw the specific heat capacity of water

(4190 J kg-I cC-I) (Savage et al., 1997).

2.3.2.4 Air temperature profile differences

19

2.11

Lower (T,) and upper air temperatures (T2) are measured at heights z, and Z2 repectively

utilising chromel-constantan (type-E) thermocouples with diameter of 75 /lm. The air

temperatures are used in the sensible heat flux density (Eq. 2.3) and Bowen ratio

(Eq. 2.5) calculations. A differential voltage (mV) is measured due to a temperature

difference between T, and T2 and converted into a temperature difference by

multiplying by a conversion factor (0.06 mV CC-I for type-E thermocouples). The

resolution of the datalogger is 0.006 cC with a O.I/lV root mean square noise

(Campbell Scientific, Inc., 1998).

Differences in the radiative heating of the two thermocouples may cause errors in the

gradient measurements, but since only the air temperature difference is required, the

errors are minimized. The Bowen ratio system uses two sets of thermocouples on each

Bowen ratio system: one set of 25 /lm (less prone to solar radiant heating) and one set

of76/lm diameter (less prone to breakage). The use of two parallel junctions at each

height acts as a back up against breakage (Beringer and Tapper, 1996; Campbell

Scientific, Inc., 1998).

2.3.2.5 Water vapour pressure profIle differences

The Campbell Scientific Inc. Bowen ratio system utilizes a single cooled-mirror dew

point hygrometer to measure the water vapour pressure difference. Air samples are

drawn into the system at two heights (z, and Z2) through 25 mm diameter filter

containers attached to the arms. The attached containers are fitted with teflon filters

with a 1 /lm pore size to prevent the entry of dust and liquid water. Air samples drawn
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into the system are routed through mixing bottles (2 e) to the cooled mirror. The flow

is switched between the two levels every two minutes, using a solenoid valve. Forty

seconds are allowed for the system to stabilise and 80 seconds for measurements during

a two minute cycle. The water vapour pressure is averaged every 20 minutes for each

height and is calculated from the measured dew point temperature. The dew point

hygrometer yields a water vapour pressure resolution of ±0.01 kPa (Cellier and Olioso,

1993; Campbell Scientific, Inc., 1998).

2.3.3 Assumptions of the Bowen ratio energy balance technique

The Bowen ratio energy balance technique assumes a shortened energy balance, finite

air temperature and water vapour pressure differences and similarity of the diffusivity

coefficients.

2.3.3.1 Assumption of a shortened energy balance

The Bowen ratio energy balance technique utilizes a shortened energy balance equation

(Eq. 2.1), which neglects advection and physically and photosynthetically stored energy

in the canopy, as they are considered negligible (Thorn, 1975; Savage et al., 1997).

2.3.3.2 Assumption of finite differences to measure the air temperature and water

vapour pressure gradients

The Bowen ratio energy balance technique assumes finite differences as being an

adequate indication of gradients in air temperature If/& and vapour pressure 0;/&

[o~/&]~ ~~
oe/& ~e

with L1z for small values of & (& ~ 1 to 3 m) (Savage et aI., 1997).
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The Bowen ratio energy balance technique further assumes that the two levels, at

which the air temperature and water vapour pressure measurements are made, are within

the boundary layer of air flow (Angus and Watts, 1984; Nie et aI., 1992; Beringer and

Tapper, 1996).

2.3.3.3 Assumption of similarity of the diffusivity coefficients

Under conditions of neutral stability, the diffusivity coefficients for momentum (Km),

sensible heat (Kh) and water vapour (K,,) are assumed to be the same (Km = Kh = K,,)

(Metelerkamp, 1993; Savage et aI., 1997).

The processes involved occur across the same interface and concerns the same set of

vapours in the same atmospheric layer moving in the same direction. This however, is

not always the case (Pieri and Fuchs, 1990; Metelerkamp, 1993; Savage et al., 1997).

2.3.3.3.1 Stability aspects ofthe similarity assumption

During unstable conditions Kh exceeds K" because of the preferential upward transport

of heat (Monteith, 1963; Metelerkamp, 1993). Therefore, under conditions of high

evaporative flux levels (/3 small) and an assumption of Kh = K" (where Kh and K" are

not markedly different), no serious errors in the AB estimates may result. During dry

conditions when AE is small (/3 large) andKh :#K", conditions can lead to errors of the

same magnitude of AE (Denmead and McIllroy, 1970; Metelerkamp, 1993; Savage et

aI., 1997).

2.3.3.3.2 The effects ofadvection on the similarity assumption

The application of the Bowen ratio energy balance technique in semi-arid conditions,

leads to the inadequate performance of this technique (Angus and Watts, 1984;

Metelerkamp, 1993; Unland et al., 1998). Blad and Rosenberg (1974) questioned the

use of the assumption of similarity under these advective conditions. The erroneous
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assumption of similarity can lead to an underestimation of AE under advective

conditions (Blad and Rosenberg, 1974; Metelerkamp, 1993).

2.3.4 Limitations of the Bowen ratio energy balance (BREB) technique

22

The application of the BREB technique is limited by theoretical, practical and boundary

layer limitations. These limitations can invalidate the Bowen ratio energy balance

technique (Barr et aI., 1994).

2.3.4.1 Theoretical limitations

Examining the denominator (1+[J) in the calculation of the latent heat flux density

(Eq. 2.7) (which may not become zero), the calculation of AE tends to infinity or minus

infinity as the Bowen ratio approaches -1. The Bowen ratio often tends to -1 during

early morning and late afternoon periods when the available energy (Rn - G) approaches

zero. Rainfall events also cause fJ to approach -1 (Savage et aI., 1997). The latent heat

flux density during these periods is low and can therefore be ignored. For Bowen ratio

values ranging between -1.25 and -0.75, the latent heat flux densities are assumed to be

negligible and are not calculated or included in evaporative totals (Ohmura, 1982;

Savage, et al., 1997; Campbell Scientific, Inc., 1998).

2.3.4.2 Practical limitations

2.3.4.2.1 Measurement limitations

Sustained operation of the Bowen ratio instrumentation for long periods is technically

diffIcult (Pieri and Fuchs, 1990). Continuous and accurate measurement of water

vapour pressure at two levels is a particular limitation (Lukangu, 1998). Accurate net

irradiance and soil heat flux density measurements could also be a major measurement

limitation (Savage et al., 1997).
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2.3.4.2.2 Resolution limitations

A major difficulty associated with the Bowen ratio energy balance technique is the

instrumentation. Instrumentation must detect air temperature and water vapour pressure

differences of the same magnitude as the bias of the sensors (Pieri and Fuchs, 1990).

The measured air temperature and water vapour pressure differences across a vertical

distance must therefore be larger than the resolution of the individual sensors for

meaningful results to be obtained (Savage et al., 1997). If the air temperature and water

vapour pressure differences approach the resolution limits of the different sensors, the

measured differences tend to zero.

When resolution limits are approached, the sensor separation should be increased so

as to increase the air temperature and water vapour pressure differences (Cellier and

Olioso, 1993; Savage et aI., 1997). This approach assumes that there is a constant

water vapour pressure and air temperature gradient in the equilibrium layer

2.3.4.2.3 Condensation limitations

Dew condensation on thermocouples, air intakes and net radiometer domes precludes

any meaningful measurement of flux densities. Dew condensation occurs during

periods when the Bowen ratio approaches -1 (early morning and late afternoon) and the

evaporation rates are low. Data recorded under these conditions need to be rejected

(Cellier and Olioso, 1993; Savage et al., 1997) since, for example, dew often occurs on

the top net radiometer dome only. Mainly, this would alter the exchange of long wave

radiation between the sky and the upper net radiometer sensor.

2.3.4.3 Boundary layer/fetch limitations

The BREB technique is theoretically restricted to ideal sites which require an infinite,

homogenous canopy and flat terrain (Businger, 1986). Only when there is horizontal

uniformity can the vertical fluxes be considered to be similar in form (Angus and Watts,

1984). In order to overcome the lack of heterogeneity of the canopy caused by the

¥\
(
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horizontal distribution of foliage, the measurements must be made sufficiently high

above the canopy layer (Brutsaert, 1982).

24

Fetch requirements relate to the boundary layer requirements (Heilman and Brittin,

1989). Ideally measurements should be made within the equilibrium sub-layer (Savage

et al., 1996). The internal equilibrium layer (8) is the lower portion of the boundary

layer, which has reached water vapour pressure, air temperature and momentum

equilibrium with the surface. Brutsaert (1982) defined this layer as the region where the

momentum flux density is within 10 % of the value at the surface. The thickness of the

internal equilibrium layer is calculated using the Munro and Oke (1975) equation for

stable conditions:

2.12

with x equal to the fetch and roughness length (m) for momentum transfer (zom)

(Heilman and Brittin, 1989).

Practically, fetch is often limited. The necessary fetch required to establish

equilibrium conditions has often been assumed to be 100 times the maximum

measurement height above the ground (Blad and Rosenberg, 1974; Angus and Watts,

1984). If the fetch is very large, the location of the sensors within the equilibrium sub­

layer (while still maintaining detectable air temperature and water vapour pressure

differences between the two levels) is relatively easy (Stannard, 1997). Fetch-to-height

ratios ranging from 10: 1 to 200: I have been recommended with 100: I considered

adequate for most measurements (Heilman and Brittin, 1989; Nie et al., 1992).

Practical limitations result in measured aT and & values affected by an upwind surface

and some measurements made above the equilibrium layer (Stannard, 1997).

Heilfuan and Brittin (1989) evaluated the effect of fetch and measurement height, on

the Bowen ratio estimation of sensible and latent heat flux densities (Heilman and

Brittin, 1989). The variability of the Bowen ratio tends to increase with measurement

height because of the departure from the ideal site with uniform fetch (Heilman and

Brittin, 1989).
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Yeh and Brutsaert (1971) indicated that the Bowen ratio method may be less sensitive

to imperfect fetch conditions when f3 is small (Heilman and Brittin, 1989) and can be

successfully used at fetch-to-height ratios as low as 20: 1 (Heilman and Brittin, 1989).

Hanks et al. (1971) found that under advective conditions changes in air temperature

and water vapour pressure were still evident at fetch-to-height ratios of 105: 1 (Hanks et

aI., 1971). The Bowen ratio energy balance fetch requirements can be reduced

significantly by lowering the lower as well as the upper sensor (Stannard, 1997).

2.3.5 Accuracy of the Bowen ratio energy balance technique and

-rejection criteria used

2.3.5.1 Accuracy of the Bowen ratio energy balance technique

The BREB technique has been thoroughly tested in the past and its validity as a

standard for evaporation measurement has been well established (Fritschen, 1966;

Fuchs and Tanner, 1970; Sinclair et aI., 1975).

The BREB technique has proved to be most appropriate on extensive homogenous

surfaces (Malek, 1993). The majority of the studies utilizing the BREB method have

been concerned with irrigated pastures and crops or other types of vegetation (e.g.

forests) (Angus and Watts, 1984). Malek (1993) indicated that the BREB technique

provided accurate estimates of evaporation over any agricultural and non-agricultural

ecosystems. Spittlehouse and Black (1980) indicated that the application of the BREB

technique over forests is more difficult but still suitable.

Ohmura (1982) stresses the importance of checking the Bowen ratio flux calculation

to see whether it is close to reality or in error due to measurement error or

instrumentation resolution limits.

The BREB estimate of latent heat flux density (AE) is directly proportional to the

available energy flux density Rn - G and inversely proportional to I + f3. If Rn or G is

underestimated, AE will be underestimated. Accurate estimates of net irradiance are

therefore critical for reliable AE estimates. Soil heat flux density measurements are, less
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critical since for complete cover situations G is very small in comparison to Rn (Blad

and Rosenberg, 1974). The accuracy of the calibration of net radiometers is stated to be

5 % and 5 % for the soil heat flux plates. If sampling problems and spatial variability of

soils are included, a combined error of up to 20 % for soil heat flux is possible (Angus

and Watts, 1984). Errors in the latent and soil heat flux densities depend on the sign of

the Bowen ratio. When fJ is positive and large, a large relative error in the latent heat

flux density exists (after Fuchs and Tanner, 1970). For -0.6 < fJ < 2, the error in the

available energy flux density Rn - G is a major contributor to the error in the latent heat

flux density. For conditions where fJ exceeds 2, the accuracy to which the water vapour

pressure differences are measured, is important (Spittlehouse and Black, 1980).

From a modelling point of view, however, the absolute error in the latent heat flux

density is usually more important than the relative error (Angus and Watts, 1984). The

accuracy of the computed latent heat flux density is strongly dependent on the accuracy

of fJ (Angus and Watts, 1984). When evaporation is close to potential rates

(-0.2 < fJ < 0.2), relative errors of approximately 30 % in fJ produce errors of less than

5 % in the latent heat flux density. If the errors in Rn and G are included, the error in AE

increases to 9 %. During periods of high evaporation rates, the relative accuracy of the

computed latent heat flux density is increased even if the Bowen ratio is poorly

measured (Angus and Watts, 1984). For fJ~ -1 (such as at sunrise and sunset), the

relative error in AE becomes infinite (or approaches 0 and Rn - G z 0) as it occurs over

short periods and the error introduced into the daily evaporation totals is insignificant.

The relative error in the latent heat flux density is increased, due to the errors in f3

when water becomes less available and the Bowen ratio increases (Angus and Watts,

1984).

2.3.5.2 Rejection criteria

A rejection scheme is important to prevent the acceptance of physically inconsistent or

inaccurate flux values (Ohmura, 1982). Ohmura (1982) stresses the importance of

judging whether the results are close to reality or not.

v
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Various data rejection criteria exist which need to be used with discretion so as not to

exclude data unnecessarily. Five rejection criteria were adopted in this study. It was

decided to reject all Bowen ratio data for periods when any of conditions 1 to 5 were

met.

2.3.5.2.1 Condition 1

Following Ohmura (1982), the Bowen ratio rejection criteria, for p ~ -1 are derived.

Savage et al. (1997) shows a much more elegant method of obtaining the rej ection

criteria in terms of the equivalent temperature or the resolution limits of the air

temperature and water vapour pressure sensors.

If

fJ = I dT / de = -1

then

d6 =0.

Within experimental limits then,

IdOI<2E(O)

or

-2£(6)< &11 +lJT < 2£(6)

or

-&11 -2£(6)< lJT <-&11 +2£(6)

(Ohmura, 1982; Savage et al., 1997).

2.13

2.14
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2.3.5.2.2 Condition 2
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Where f3 approaches -1 (at sunrise and sunset), numerically meaningless fluxes are

calculated and the data points should be excluded from further data analysis (Cellier and

Olioso, 1993; Metelerkamp, 1993; Ortega-Farias, 1996). Frequently the equation

has been employed to reject data.

2.3.5.2.3 Condition 3

-1.25 < p < -0.75 2.15

Data suggesting periods where the mean water vapour pressure (el or e2, in kPa)

exceeds the saturation water vapour pressure (es ), must be excluded from further data

analysis (Metelerkamp, 1993; Savage et aI., 1997), using the criterion:

2.16

2.3.5.2.4 Condition 4

If the absolute profile air temperature difference lorl decreases below the thermocouple

sensor resolution Err) (0.006 QC), the data should be rejected and considered unsuitable

for processing (Savage et al., 1997), using the criterion:

lorl < resolution limit of temperature sensor, or

lorl < 0.006 QC.
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2.3.5.2.5 Condition 5

When the absolute profile water vapour pressure difference 1&1 decreases below the

dewpoint hygrometer sensor resolution E(e) (0.01 kPa), the data for that period are

inconclusive and should be rejected (Savage et aI., 1997), using the criterion:

[&1 < resolution limits of vapour pressure sensor, or

1&1 < 0.01 kPa.

2.4 A description of the heat pulse velocity technique

2.4.1 Theory of the heat pulse velocity technique

29

The heat pulse velocity (HPV) technique measures the velocity of a heat pulse

propagating through a tree using the compensation technique (Huber and Schmidt,

1937; Swanson, 1974 cited by Dye et al., 1992). The temperature rise in the thermistor

probe as a result of the application of a heat pulse is measured at a distance Xu upstream

and Xd downstream from the heater probe. According to Swanson (1983) (cited by

Olbrich, 1994), the velocity of the heat pulse (u in m S-I) is calculated as:

2.17

where t (in second) is the time it takes for the temperature at Xu and Xd to become equal

(Dye et al., 1992) or for the Wheatstone bridge voltage to return to the initial balance

point after the heater is pulsed (Olbrich, 1994), where (XII + X d)/2 refers to the probe

separation (Olbrich, 1994). Both Xu and Xd are regarded as positive quantities.

The heat pulse velocity is corrected for wound size or width according to Swanson

and Whitfield (1981):

u'= p+qu+ru 2
2.18
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where p, q and r are correction coefficients derived for the wound size, diameter of

Teflon probes (thermistor probes) and probe separation distance.

Finally, the sap flow (v), is calculated from the corrected heat pulse velocity (u)

(Marshall, 1958):

30

2.19

where Pb is the dry wood density (kg m-3
), me the fractional water content of the

sapwood on a dry weight basis (unitless), and Cd", the specific heat capacity of dry wood

(0.33 J kg-I QCI) (Dunlap, 1912 cited by Dye et al., 1992).

The various sap fluxes (v) measured at different depths below the bark of a tree, are

regarded as representative of a ring of sapwood centred at the probe depth. The total

sap flux per tree is therefore calculated as the sum of the partial areas (a concentric ring

area with limits mid-way between successive thermistors) multiplied by their associated

sap fluxes. The sap flux per tree can be converted into sap flux per unit area, using the

tree espacement.

The wound size for each set of probes is measured at the end of the experiment. The

sections of the tree trunk containing the probe implantation holes are cut out. Then each

block containing the probe implant holes is cut longitudinally at the depth at which the

thermistors were implanted. The area is then shaved smoothly with a microtome after

which the wound width is identified by discolourization, and measured to the nearest

0.1 mm. Measurements are taken midway between the position of the heater probe and

the two thermistor probes. From these measurements, the average wound width is

calculated for each tree. The assumption is generally that the same wound size existed

for the duration of the experiment. The wood density is also calculated at the end of the

experiment, using a fresh sample of sapwood.
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2.4.2 A description of the heat pulse velocity equipment
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The heat pulse velocity system consists of a datalogger (a custom made heat pulse

velocity recorder) and sets of probes. A set of probes consist of two thermistor probes

and one heater probe.

Teflon probes, each with a thermistor imbedded, are connected in a Wheatstone

bridge configuration by using the datalogger. A heat pulse is generated when a current

is supplied for 0.5 to 1 s to the heater probes. The data recorder then estimates the time

it takes-for the bridge to return to the initial balance point, following the heat pulse.

2.4.3 Advantages and disadvantages of the heat pulse velocity technique

Advantages of the heat pulse velocity technique include:

• suitability of the technique for transpiration measurements in even-aged forests

(Dye et al., 1992),

• reliability and inexpensiveness of technique,

• automation of the data collection and storage,

• sequential and simultaneous measurement of the sapflow of numerous trees,

• estimation of tree transpiration for a complete stand,

• higher accuracy in sapflow rates than with the heat balance technique (Cohen et

al., 1981), and

• minimal tree destruction.

Disadvantages include:

• sensitivity of sapflux estimates to wound width where the sapflow is interrupted

i.e. where the probes were implanted (Swanson and Whitfie1d, 1981),

• sensitivity of technique to errors in the measurement of probe separation and the

sapwood water content,

• reduced accuracy for low to moderate sap fluxes compared to the heat balance

method (Cohen et al., 1981),
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• violation of the idealized heat transport and interference with sapflux by probes

implanted into sapwood (Swanson and Whitfield, 1981),

• difficulty in scaling measurements up for uneven stands,

• invasion of probes and typically bulkiness (Bauerle et al., 2002),

• poor temperature control by probes,

• lengthy response times, and the inability to measure short-term transients, and

• the assumption of the same wound size for the duration of the experiment.

2.4.4 Accuracy of the heat pulse velocity technique

Swanson and Whitfield (1981) noted that the heat pulse velocity technique is an

accurate technique to estimate transpiration, when the correction factor for wound size

measured at the completion of an experiment, is used. Olbrich (1994) also found good

agreement between the transpiration estimates obtained from the heat pulse velocity

method and that obtained in a cut tree experiment. Olbrich (1994) also found that the

accuracy of the transpiration is sensitive to the wound size correction. Dye et al. (1992)

further noted that the heat pulse velocity technique is a reliable method to estimate the

water use, especially for stands of even-aged trees.

2.4.5 Patching of heat pulse velocity data

Tree transpiration data loss during a field experiment can result from low battery

voltages, corrosion of heater probes, and cracks around heater and thermistor probes and

subsequent large wound widths.

Dye et al. (2001) found good agreement between daily sapflow (total transpiration)

measured with the HPV technique and the product of the average daily water vapour

pressure deficits es - e and the daylight hours, for a number of tree species. This

relationship has been used by Dye et al. (2001) to accurately patch missing sap flow

data.
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2.5 A description of the Penman-Monteith equation

33

Penman (1948) derived a fonnula to account for the energy required to sustain

evaporation and a mechanism to remove water vapour. The original Penman equation

for reference evaporation (Eo) over a open water surface is given as:

2.20

where Rn is the net irradiance, L1 (kPa Qel
) is the slope of the saturation water vapour

pressure vs temperature curve at the surface temperature (To), ris the psychrometric

constant (kPa Qel
) and

2.21

where es - ea is the daily averaged water vapour pressure deficit (kPa) and the wind

function, f(u), given by:

f(u)= 0.27 (1 +u/l00)

where u is the daily averaged windspeed (m S-I) (Rosenberg, et aI., 1983).

2.22

The Penman equation was later modified by Monteith (1963, 1964) to give the

Penman-Monteith combination equation. The Penman-Monteith equation combines a

"radiative" and "aerodynamic" component to calculate the Penman-Monteith reference

evaporation (ETa):

ET = Ll (R IIS -GJ+ I *Mw (e, -eJ
o A (Ll + r) R (Ta + 273.15) rv (Ll + r)

2.23

ETo="radiative" component + "aerodynamic" component

where Rns is the calculated daily radiant density, Gs the calculated daily soil heat flux

density, i is the apparent psychrometric constant, Mw the molar mass of water, R the
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universal gas constant, Ta the daily average air temperature and rv the combined

aerodynamic and canopy resistance to water vapour:

34

2.24

where ra is the aerodynamic resistance for heat transfer and re the canopy resistance

(Campbell; undated; Oke, 1978; AlIen et aI., 1998; Monteith and Unsworth, 1990;

Metelerkamp, 1993).

The net radiant density (Rns) is estimated from the solar radiant density (Rs)

2.25

where the net radiant density, Rn, is the sum of the net radiant density and the net long­

wave radiant density, where as is the reflection coefficient of the crop and Lni the

atmospheric radiant emittance minus the crop emittance at daily average air

temperature. Under clear skies, Lni (kW m-2
) is given by:

Lnic =0.0003 Ta -0.107 2.26

with Ta as the daily average air temperature (DC). Under cloudy skies L ni approaches

zero. Cloudiness is estimated from the ratio of measured to potential daily total solar

radiant density during daylight hours (R/Ro). A cloudiness function, f(R/Ro) is

computed:

f(Rs1R )=1- [ 1 ] 2.27I Ra 1+0.034 exp (7.9 RsIRa)

The daily net isothermal long-wave radiant density (Lni) is then calculated as:

2.28
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The cloudiness function (Eq. 2.27) requires the computation of the potential solar

radiant density on a horizontal surface outside the earth's atmosphere, Ro:

35

Ro =1.36sin cp

where 1.36 kW m-2 is the solar constant, and tpthe solar elevation:

sin cp =sin d sin I +cos d cos I cos [15 (t -to)]

2.29

2.30

where d is the solar declination angle, I the latitude at the site, t the local time and to the

time of solar noon. A polynomial is used for sin d:

sind = -0.37726-0.105564} + 1.2458/ -0.75478/ +0.13627/-0.00572/ 2.31

where} is the day of the year (DOY) divided by 100 (DOY/IOO) and d is the

declination. The cosine of d is computed from the trigonometric identity:

cos d = (1- sin2 d) 05 2.32

The time t is the datalogger local time less half the time increment from the last ETo

computation. The time of solar noon, to, is given by:

2.33

with Le the longitude correction and te the "equation of time". The longitude correction

is calculated by determining the difference between the longitude of the site and the

longitude of the standard meridian. The longitude correction is given as:

Le =(Ls - L)/15 2.34
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The "equation of time" is an additional correction to the time of solar noon that

depends on the day of year. Two equations are used to calculate te: one for the fIrst half

of the year (for Day ~ 180, where) = DaY/lOO):

te =-0.04056-0.74503}+0.08823/ +2.0515/ -1.8111/ +0.42832/ 2.35

and one for the second half of the year (for Day> 180, where) = (DOY-180)/100):

t e = -0.05039-0.33954} +0.04084/ + 1.8928/ -1.7619/+0.4224/ 2.36

Evaporation occurs mainly during daylight hours when the net irradiance is the main

driving force of the evaporation and is positive. The soil heat flux density can be

estimated as a fraction of the net irradiance. For a complete canopy cover, Gs is

assumed to be approximately 10 % of the net radiant density.

During the night Rs = 0 and Gs is assumed to be 50 % of the net irradiance.

Gs = 0.5Rn

2.37

2.38

The Penman-Monteith equation has been applied successfully over different surfaces

(crops and forests) of optimal or limited water supply where the resistance required, is

known (Campbell, undated; Rosenberg et al., 1983).



37

CHAPTER 3

IN SITU SOIL WATER CONTENT AND SOIL WATER POTENTIAL

MEASUREMENT TECHNIQUES

3.1 Introduction

Several techniques exist to measure in situ soil water content and soil water potential.

These techniques include gravimetric, nuclear, electromagnetic, tensiometric,

hygrometric and remote sensing techniques (Zazueta and Xin, undated). Some sensors

allow long-term monitoring of soil water content or soil water potential through the

availability of dataloggers and electronic equipment. These sensors and microprocessor

systems can be left unattended to do numerous measurements per day, and collect data

automatically. These sensing techniques have a distinct advantage over the widely used

neutron probe technique (Herkelrath and Delin, undated) which requires the presence of

an operator. However, of all these techniques, none is completely satisfactory.

Most of the techniques relate more easily measured soil properties to the water

content or the water potential of the soil. For example, the water content reflectometer

technique relates the dielectric constant of the soil to the soil water content, whereas the

heat dissipation technique relates the thermal conductivity and heat capacity

(temperature change) to the soil water potential, and the thermocouple psychrometric

technique relates the soil humidity to the soil water potential. The three techniques

mentioned here will be discussed in more detail below.

3.2 Definitions

3.2.1 Gravimetric and VOlumetric soil water content

Gravimetric soil water content (8m) is the water content of the soil expressed relative to

the mass of oven dry soil (kg kg-I or other mass unit):

8 =mass of wet soil - mass of oven dry soil = mass of water

m mass of oven dry soil mass of dry soil
3.1
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The gravimetric soil water content can be converted to volumetric water content (Bv)

using the dry bulk density of soil (Psoil):

3.2

where Pwis the density of water (1000 kg m-3 at 20 QC) (Sumner, 2000).

The volumetric soil water content (Bv) is defmed as the water content on a volume

basis, the volume of water per volume of soil, or the depth of water per unit depth of

soil (Sumner, 2000):

() =mass of water / density of water = volume ofwater 3.3

v sample volume bulk volume of soil

3.2.2 Soil water potential

Soil water potential can be defmed as the difference between the free energy per unit of

volume of soil water and that of pure water in a reference state. Free energy

characterises the energy status of water and involves all other forms of energy available

to move the water and is therefore a measure of the tendency of that substance to move.

The reference state is pure free water at atmospheric pressure and at the same

temperature as the soil. The soil water potential consists of gravitational potential,

matric potential and osmotic potential. These potentials act simultaneously but result

from different forces. The combined effect caused by the different potentials influence

soil water movement and behaviour (Brady, 1990).

Soil water potential can be expressed in different units: energy/mass (j.1 in J kg-I),

energy/volume (If/in Pa) or energy/weight (h in m) (Sumner, 2000). The relationships

between these units are given in Table 3.1.
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Table 3.1 Relationship between the different units providing an estimate of soil water

potential
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Energy/mass (;1) Energy/volume (rf) Energy/weight (h)

1 J kg-' 1 kPa = 0.001 MPa = 10 cm = 0.1 m

10 mbar = 0.01 bar =

0.0099 atm = 0.145 psi

3.2.3 Matric potential

Soil matric potential (If/m) results from water adsorption and capillary water. Water

adsorption and the capillary water reduce the free energy of the soil water compared to

that of un-adsorbed pure water. Consequently, matric potentiaIs are always negative.

The matric potential exerts its effect on soil water retention and soil water movement

(Brady, 1990).

3.2.4 Residual soil water content

The residual soil water content (OR) is can be defined as the minimum (Vertessy and

Elsenbeer, 1999) or irreducible water content of a soil.

3.2.5 Saturated soil water content

The saturated soil water content (Os) can be defined as the maximum amount of water in

the soil when all the pores are filled with water. It is therefore the ratio of the mass of

water to the dry mass of the soil, for a soil completely saturated with water (Van der

Watt and Van Rooyen, 1990).
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3.2.6 Water retention characteristics

An inverse relationship exists between the volumetric soil water content (Bv) and the

soil water potential or soil water pressure head (Brady, 1990). This relationship is

influenced mainly by soil texture, soil structure and organic matter (Surnner, 2000).

40

Soil water pressure heads can be related to volumetric soil water content (Bv) through

the Van Genuchten (1980) relationship:

3.4

where 8R is the residual soil water content (m3m'3), 8s the saturated soil water content

(m3m'\ h the soil water pressure head (m), and a(m,l) and n are shape factors for the

relationship between the soil water content and soil water potential (Van Dam, 2000).

3.2.7 Profile soil water content

The profile soil water content (8projile, m) is calculated as:

n

8profile = L8; !1Z;
;=1

3.5

where 8; is the soil water content (m3m,3) of layer i with thickness !1Z; (m) for n soil

layers.
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3.2.8 Soil water storage change

The change in the soil water storage (.JS) at a specific point is calculated as:

!!S =SInitial - SFinal

or within a layer i, as:

!!Si = (6 final - 6initial ) • tJZi

3.6

3.7

41

where Sinilial and Sjinal are the initial and final stored soil water, L1Si the change in the soil

water content in layer i over time, Bjinal and Binitial the final and initial volumetric soil

water contents and L1Zi the thickness of the soil layer i (Surnner, 2000).

3.2.9 Relative saturation

The relative saturation (Se) of a soil is an indication of the wetness of the soil. The

relative saturation is a function of the volumetric soil water content (Bv), residual soil

water content (BR) and saturated soil water content (Bs):

S = volume of water filled pore space = 6v = 6v - 6R

e total volme of soil pore space B vs Bs - BR
3.8

where (}.'S is the soil water content under completely water-saturated conditions (Van

Dam et al., 1997; Surnner, 2000).
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3.3 Water content reflectometer technique

42

The Campbell Scientific model CS615 water content reflectometer provides a measure

of the volumetric soil water content. When this sensor is used under standard

conditions (electrical conductivity EC less than 0.1 S m-I and clay content less than

30 %), the volumetric soil water content can be calculated directly using the calibration

polynomials provided by the manufacturer (Campbell Scientific, Inc., 1996). However,

if used under non-standard conditions, e.g. in soils with a clay content greater than

30 %, these sensors need to be calibrated individually for specific field conditions.

Herkelrath and Delin (undated) found that laboratory calibrations differed significantly

from that specified by the manufacturer. This was mainly because of the application of

this technique under non-standard conditions.

3.3.1 A description of the technique used by the water content

reflectometer

The technique used by the CS615 water content reflectometer sensor relies on the fact

that each material has a unique dielectric constant. Different dielectric constants result

in different propagation times of an electromagnetic wave from a sensing rod, or

different oscillation frequencies of a sensor. For example, a wave will move slowly

through a medium with a high dielectric constant like water (Campbell Scientific, Inc.,

1996).

The dielectric constant of soil is the weighted sum of the dielectric constants of the

soil constituents. The propagation time of a wave through a dry soil (low dielectric

constant) will be higher than that of a wet soil (high dielectric constant). The water

content reflectometer therefore relates the dielectric constant to the volumetric soil

water content (Campbell Scientific, Inc., 1996).
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3.3.2 A description of the CS615 water content reflectometer
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The CS615 water content reflectometer consists of two stainless steel rods of fixed

length (300 mm), a built-in circuit board and a coaxial four core insulated cable. The

circuit board consists of high-speed electronic components. This circuit board controls

the power supply, enables the measurements, and outputs the measuring period

(propagation time). The circuit board is configured as a multi-vibrator and the outputs

of this multi-vibrator are connected to the sensing rods and acts as a wave-guide. This

multi-vibrator oscillates at a frequency dependent on the dielectric constant of the soil.

TherefOre, any change in the volumetric soil water content or the associated dielectric

constant, will translate into a change or shift in the oscillation frequency. The CS615

water content reflectometer outputs a square wave with a specific amplitude and shape.

The voltage amplitude ranges between 0 and 2.5 V and the output period (propagation

time) between 0.7 and 1.6 ms (Campbell Scientific, Inc., 1996).

3.3.3 Accuracy of the CS615 water content reflectometer

The accuracy of the volumetric soil water content measured with the CS615 water

content reflectometer depends on the conditions under which the sensor is applied.

Where site-specific calibration functions are used, errors of only approximately 2 %

were found in the soil water content estimates (Campbell Scientific, Inc., 1996).

However, where the manufacturers' polynomials are applied but the sensor is used

under non-standard conditions, the accuracy of the volumetric soil water content will

depend on the air temperature, electrical conductivityimineral composition) of the soil,

and clay and organic matter contents (texture) (Campbell Scientific, Inc., 1996).

Herkelrath and Delin (undated) found significant differences between the soil water

content calculated with the polynomials supplied by the manufacturer and polynomials

derived from laboratory calibrations under non-standard conditions.
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3.3.3.1 Electrical conductivity influence
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The electrical conductivity (EC) of the soil water affects the accuracy and the quality of

the volumetric soil water content measurement. The propagation time of the

electromagnetic wave along the sensing rods, is a function of the dielectric constant.

However, the propagation time is also a function of the electrical conductivity. If the

electrical conductivity exceeds 0.1 Srn-I, the slope of the standard calibration function

changes (Campbell Scientific, Inc., 1996). The slope will decrease with increased

electrical conductivity. For an EC between 0.1 and 0.5 Srn-I, the sensor detects

changes in the dielectric constant under stable conditions. But, for EC greater than

0.5 Srn-I, the sensor output is unstable and the technique or measurements are no longer

reliable (Campbell Scientific, Inc., 1996).

3.3.3.2 Clay and organic matter content influence

Both the clay and organic matter contents in the soil have strong polarities and affect the

dielectric constant. The electromagnetic energy from the wave propagating through soil

may polarize the polar water molecules. If other forces act on these water molecules,

the electromagnetic energy may not polarize the water molecules. Then the propagation

time or oscillation frequency is not representative of the real soil water content

(Campbell Scientific, Inc., 1996).

3.3.3.3 Air temperature influence

The water content reflectometer is sensitive to changes in air temperature. A correction

function, based on the volumetric soil water content, slightly improves the accuracy of

the soil water content measurements (Campbell Scientific, Inc., 1996). After applying

the correction function, the maximum difference between the corrected and uncorrected

soil water contents is 1.6 % (Campbell Scientific, Inc., 1996).
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3.3.4 Advantages and disadvantages of the CS615 water content

reflectometer

Advantages of the water content reflectometer include:

• CS615 provides estimates of volumetric soil water content,

• unattended, reliable and accurate measurements over long time periods

(Herkelrath and Delin, undated), and

• soil water content representative of a larger soil volume compared to other

sensors such as the thermocouple psychrometer and heat dissipation sensor.

Disadvantages include:

• high temperature dependency,

• sensitivity to electrical surges and lightning,

• sensitivity of manufacturers calibration polynomials to clay content,

• required individual calibrations for non-standard conditions (EC less than

0.1 S m-I and clay content less than 30%), and

• necessity for soil-sensor contact.

3.4 Heat dissipation technique

The heat dissipation technique relies on the relationship between the matric potential

( 'Pm) of the soil and its thermal conductivity and heat capacity. The heat dissipation

sensor does not measure the matric potential directly, but requires an empirical

relationship to convert a change in temperature, before and after an imposed pulse of

heat, to matric potential (Jovanovic and Annandale, 1997).

3.4.1 A description of the heat dissipation technique

45

The porous ceramic material of the heat dissipation sensor equilibrates hydraulically

with the surrounding porous media (soil) after the sensor is installed. Under conditions

of a water potential gradient between the ceramic and soil, water will move to or from

the sensor to equilibrate the soil water potential gradient. The time to reach equilibrium

depends on the magnitude of the water potential gradient and the hydraulic
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conductivity. For equilibration to take place and to be representative of the soil

conditions, and real time changes in the soil water content/potential, good contact

between the sensor and the soil is required.

When power or a heat pulse is applied to the heat dissipation sensor the temperature

around the heating element will increase. The increase in temperature (.,11) following

the heat pulse is estimated as the difference between the temperature within the sensor

just before heating or 1 s after heating, and 16 to 30 s after heating. The rate of heat

dissipation away from the heater and the associated temperature rise (.,11) within the soil

sensor is dependent on sensor thermal diffusivity, which in turn depends on the amount

of soil water present (Phene et al., 1971; Campbell Scientific, Inc., 1995; Reece,

1996). The sensor thermal diffusivity (K, m2 s-I) is a function of the thermal

conductivity (K, J S-I m-I K I), specific heat capacity (C. J kg-I K 1
) and density of the

sensor material (P, kg m-3
) through:

3.9

The thermal conductivity of the porous material depends on the thermal conductivity

of the matrix, the proportion of pore spaces filled with water, and the proportion of the

material that is pore space (Phene et al., 1971). The thermal conductivity increases

exponentially with increase in soil water content and the specific heat capacity increases

almost linearly with increase in soil water content (Phene et aI., 1971).

Air is a better thermal insulator than water. As the soil dries, water is replaced with

air in the soil (and sensor) and thinner water films cover the soil particles. This creates

an increased path length for heat conduction and requires an increased temperature

gradient to dissipate a given amount of water.

The relationship between the change in temperature, T - To, (0C) and the thermal

conductivity, k, is given by the equation for time dependence, t - to, of temperature in a

line heat source (Campbell et al., undated):
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3.10

where T is the sensor temperature related to time (t), To the initial temperature, q the

heat input per unit length of heater (W m-'), and to is the offset or correction time (s)

(Reece, 1996). This relationship is used to calculate the matric potential ('l/m) (Reece,

1996) and only holds if to and q, do not vary from measurement to measurement

(Campbell et aI., undated and Shiozawa and Campbell, 1990 cited by Campbell et al.,

undated; Reece, 1996):

3.11

where bI is the slope parameter of the relationship between the thermal conductivity and

the matric potential (Reece, 1996).

Since the sensor and soil need to be in thermal equilibrium before a measurement, the

interval between subsequent heat dissipation measurements of a block should be

sufficient so as to permit the previously applied heat pulse to dissipate without affecting

the next measurement. Bristow et al. (1993) suggest a maximum of 20 minutes for re­

equilibrium for a coarse loamy soil.

3.4.2 A description of the heat dissipation sensor

The heat dissipation sensor consists of a porous ceramic cylinder with a fine wire

heating element centred in the block and a copper-constantan thermocouple (type-T)

located next to this heating element (Campbell Scientific, Inc., undated; Reece, 1996).

3.4.3 Accuracy of the heat dissipation sensor

Scanlon et al. (1999) noted that the accurate operating range for the heat dissipation

sensor is -500 to -10 J kg" I . Scanlon et al. (1999) further noted that outside this range,

the sensor become increasingly insensitive to decreasing matric potentials and predict
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matric potentials greater than the actual potentials. Reece (1996) also found that the

accuracy of matric potential, measured with the heat dissipation sensor, decreases

beyond -1200 J kg'l. Within the range -1200 to -10 J kg'I, Reece (1996) showed that

the matric potentials estimated with the heat dissipation sensors were within 20 % of

independently measured matric potentials. Reece (1996) further showed that the heat

dissipation sensor slightly over-predicts the matric potential for the range -1200 to ­

400 J kg'l, when compared to thermocouple psychrometers. Jovanovic and Annandale

(1997) found that the accuracy of the matric potential measurements beyond -100 to

oJ kg'l decreases, especially when an exponential calibration function between matric

potential (If/m) and the soil temperature change (LiD was used.

3.4.4 Empirical relationships between matric potential and temperature

change

Good results can be obtained with heat dissipation sensors. However, calibrations are

required to establish the relationship between matric potential and the corresponding

temperature change (Campbell Scientific, Inc., 1995).

The relationship between the matric potential ( If'm) and the change in temperature

following heating (LiD can be used for probe calibration. This relationship however, is

an empirical calibration relationship and can take different forms.

Calibration functions for the heat dissipation sensors vary with soil type.

Additionally, the variation in the hydraulic and thermal conductivity properties between

probes is great enough to reduce the measurement accuracy if the same calibration

function is applied to more than one probe. However, the required matric potential

resolution (or accuracy) will determine whether individual sensor calibration is

necessary (Campbell Scientific, Inc., 1995).

The matric potential is related to the thermal conductivity of the soil water solution,

equilibrated in the ceramic block. The matric potential (If/m, J kg"l) can be related to the

change in temperature using a power function:



Chapter 3 49

3.12

where a and b are soil specific parameters (Campbell Scientific, Inc., 1995). For

example, lovanovic and Annandale (1997) found a and b to be -2.55 °Cl and 10.53

respectively, within the optimal range of -100 to 0 J kil.

3.4.5 Advantages and disadvantages of the heat dissipation sensor

The advantages of the heat dissipation sensor outweigh the disadvantages.

Advantages include:

• a matric potential range of -10000 to -10 J kg-I (Campbell et aI., undated), and

an accurate operating range of -500 to -10 J kg- 1 according to Scan10n et al.

(1999), -1200 to -10 J kg-I according to Reece (1996) and -1500 to 0 J kg-I

according to Phene et al. (1971),

• long-term use of the sensor (Phene et al., 1971),

• reliability in sensor outputs (Phene et aI., 1971),

• independency of sensor to salinity (Phene et al., 1971; Jovanovic and

Annanda1e, 1997),

• estimated temperature and matric potential (Phene et aI., 1971)

• ease of construction of sensor (Phene et al., 1971),

• moderate cost of sensor (Phene et aI., 1971),

• simplicity of sensor (Phene et aI., 1971),

• possible linear relationship between Pm and T_- To for the Pm range -1500 to

oJ kg-1 (Phene et al., 1971), and

• a single calibration curve for sensors through normalising for thermal

conductivity (Reece, 1996).

Disadvantages of the sensor include:

• a decrease in the accuracy ofmatric potential beyond the -100 to 0 J kg-I range,

especially when applying an exponential function (Jovanovic and Annandale,

1997),
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• a smaller sensitivity to decreasing matric potentials less than -500 to -10 J kg-·

resulting in predicted soil water potentials greater than actual potentials (Scanlon

et al., 1999) as suggested by Reece (1996) and Jovanovic and Annandale (1997)

for soil water potentials below -1200 J kg-1 and

• a slight over-prediction of matric potential for range -1200 to -400 J kg-\ when

compared to soil water potentials measured with thermocouple psychrometers

(Reece, 1996),

• large power requirements for frequent measurements (SOWACS, undated),

• required initial equilibrium time in soil before measurements,

• required measurement separation time, to allow heat from previous pulse to

dissipate before next measurement,

• cracking of the sensor ceramic installed in swelling and shrinking soils, and

• required contact between soil and sensor.

3.5 Thermocouple psychrometric technique

The free energy difference between soil water and pure water per unit volume of water

determines the soil water potential. Water moves from higher to lower potential areas

and requires energy. The larger the difference in the water potential between two

points, the more energy will be exchanged whilst moving the water. Thermocouple

psychrometers measure the total soil water potential based on the energy exchange that

result from the water potential differences. The thermocouple psychrometric technique

is a highly specialised technique and requires instruments of extreme accuracy (Brown

and Oosterhuis, 1992; Jovanovic and Annandale, 1997; Wescor Inc., 1998).

3.5.1 A description of the thermocouple psychrometry technique

Soil psychrometers or hygrometers measure the total water potential of a soil. This

measurement is based on energy exchange to move water reversibly and isothermally

from the soil under consideration to a reference state. The soil psychrometer or

hygrometer measures the relative humidity of a soil air sample that has equilibrated with

the soil. The water potential (If/, in Pa) of a soil is related to the relative humidity

through the Kelvin equation:
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RT ~1fI=-ln e
~\' eo

3.13

where R is the universal gas constant (8.3123 J mOrl K-\ T the absolute temperature in

K, e/eo the fractional relative humidity, and Vw the partial molar volume of water

(18 x 10-6 m3 mOrl) (Savage et al., 1981; Wescor Inc., 1998).

Soil psychrometers or hygrometers employ one of two methods (SOWACS, undated;

Wescor Inc., 1998):

• psychrometry through the wet bulb technique, or

• hygrometry through the dewpoint technique.

Of these, Baughn (1974) (cited by Savage et al., 1981) noted that psychrometry (wet

bulb) is more popular than hygrometry (dewpoint). The dewpoint hygrometer is less

sensitive to temperature changes and gradients than wet bulb psychrometer (Savage et

at., 1981). The hygrometer is also much more sensitive to voltage changes than the

psychrometer (-7.0 x 1O-31J.V kPa-1 vs 3.7 x 10-3 IJ.V kPa- 1 at 25 QC). However, the

accuracy of the hygrometer is highly dependent on the correct dewpoint cooling

coefficient, especially at temperatures of less than about 15 QC (Savage et at., 1981).

In the psychrometric method, the total soil water potential is related to the wet bulb

depression temperature of the thermocouple junction minus the ambient temperature.

Peltier cooling (with a current of between about 5 and 8 mA) is used to cool the

thermocouple below the dewpoint. Different cooling times can be used ranging

between 60 s under dry conditions and 15 s under wet conditions. During this process

very small droplets of water are condensed on the thermocouple junction surface. These

small droplets are allowed to evaporate, and this evaporation process (cooling or release

of latent heat) causes the temperature of the thermocouple junction to be reduced below

the ambient temperature. The wet bulb depression continues until all the small water

droplets have been evaporated. After this, the thermocouple junction temperature

returns to ambient or the block temperature (Wescor Inc., 1998). Any temperature

difference (-11), between the ambient temperature (Tb) and the thermocouple junction
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surface temperature (1)), results in a voltage (V) as given by the Seebeck effect (Savage

et aI., 1981)

3.14

where S is Seebeck coefficient in IlV °el (S = 58.62 + 0.09 T for psychrometer

Itemperatures T between 0 and 50 0C).

When evaporation eases, the voltage corresponding to the wet bulb temperature (or

endpoint) is measured. After evaporation, the voltages decrease rapidly, or slow or stop

at a plateau, and then decrease further to a reference voltage level. For high water

potentials or long Peltier cooling times, the plateau is horizontal. However, for low

water potentials (dry samples) or short cooling periods, the endpoint is less clear and

can be quite subjective (Savage and Wiebe, 1987).

However, in the hygrometric method the total soil water potential is related to the

dewpoint depression. In this method too, the thermocouple is cooled below the

dewpoint. Here the thermocouple temperature is controlled by the heat of the

condensing water. The thermocouple temperature converges to the dewpoint and

remains there with a static amount of water (Wescor Inc., 1998). Therefore, if a wet

thermocouple junction is held at dewpoint temperature, water will not be lost (through

evaporation) or gained (by condensation) (Savage et al., 1981). This technique is found

to be relatively unrelated to the wetting characteristics of the thermocouple junction and

the size and shape of the water droplets formed on the junction (Neumann and Thurtell,

1972 cited by Savage and Cass, 1984).

3.5.2 A description of the thermocouple psychrometer

The thermocouple psychrometer and dewpoint hygrometer sensors use identical

sensors, but with different voltmeter circuitry (Savage et al., 1981).

I 1 IlV is equivalent to approximately -250 kPa at 25 cc.
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The thermocouple psychrometer sensing head has a lead wire running through it and

consists of two copper wires, and one constantan wire. The electrical circuit has a

chromel-constantan thermocouple junction. This sensing wire pair is attached to the

copper lead wires to form two reference junctions, a copper-chromel and a copper­

constantan junction. The reference junctions are normally at the end of the two copper

wires (lead-wire) and extend from the sensing body to the datalogger measuring the

micro-voltage output. The additional copper wire provides a measure of temperature at

the copper constantan junction. The protective cover covers the sensing head up to the

lead wire (Brown and Oosterhuis, 1992).

The material of which the thermocouple psychrometer sensing head is made should

not absorb large quantities of water. The porous material (screen cage), covering the

sensing head should protect the sensor from contamination with soil particles, and

provide for an effective path for equilibration between the sensor and the soil. The

diffusion resistance of the mesh covering the sensor will affect the response time of the

hygrometer. This resistance can be increased where poor contact exists between the soil

and the psychrometer (Merrill and Rawlings, 1972 cited by SOWACS, undated).

3.5.3 Accuracy of the thermocouple psychrometer

Thermocouple psychrometers are generally regarded as very accurate and consistent

instruments. These sensors are, however, temperature sensitive and require great care to

ensure accurate and routine measurements (Brown and Oosterhuis, 1992; Jovanovic

and Annandale, 1997).

The accuracy of the water potentials measured with the thermocouple psychrometric

technique depends on the extent to which the operational theory is understood and the

sensors are calibrated and cleaned (Brown and Oosterhuis, 1992). In addition to this,

the accuracy of the technique is also dependent on water vapour pressure equilibrium

between the sensor and soil prior to the measurement, data interpretation, and detection

and correction for temperature gradients (Brown and Oosterhuis, 1992).
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3.5.3.1 Accuracy of in situ measurements of soil water potential with thermocouple

psychrometer

The accuracy of in situ soil water potential measurements with the thermocouple

psychrometer can be improved by the correct or optimal measurement times, field

installation, choice of construction material and thermocouple junction, and hygrometer

shape and size (SOWACS, undated).

Firstly, the soil water potential should be measured at the time of day when the soil

heat flux density is close to zero or the net irradiance flux density is very small, e.g. at

sunrise or sunset (Wiebe and Brown, 1979 cited by SOWACS, undated). At these

times, the zero offsets will be comparatively small.

Secondly, the psychrometer or hygrometer should be installed horizontally into the

soil as this will reduce the effect of the temperature gradients. Care should be taken to

disturb the soil as little as possible. The lead wire should also be buried close to the

sensor (Merrill and Rawlins, 1972 cited by SOWACS, undated).

Thirdly, a hygrometer should be constructed of low-conductivity material for the

body, with a cylindrical stainless steel mesh to detect quick changes in the soil water

potential (Campbell, 1972 cited by SOWACS, undated and Wiebe et al., 1977). The

hygrometer should ha~e a single thermocouple junction to allow temperature

measurement along the sensor, and should be constructed of [me wire. The hygrometer

should be small (Wiebe and Brown, 1979 cited on SOWACS, undated) and the shape of

the hygrometers should be concentric with the thermocouple sensor placed centrally in

the chamber (Rawlins and Dalton, 1967; Campbell, 1972 and Wiebe et aI., 1977).

Lastly, following the installation of the sensor, it is advisable to wait a day or more

before-performing soil water potential measurements. This will allow the soil to return

to thermal and water potential equilibrium, and to reach equilibrium with the sensor

(Lawrence Berkeley National Laboratory, 2000).
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3.5.3.2 Sensitivity of soil water potential measurements to temperature
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The measured voltage-soil water potential relationship, through either the dewpoint

(hygrometric) or wet bulb (psychrometric) methods is sensitive to temperature.

However, if used correctly, the dewpoint hygrometer needs no temperature correction

(Savage et al., 1981; Savage and Cass, 1984). The wet bulb method (psychrometers) is

highly dependent on temperature and all measurements (calibration or in situ) need to

be corrected for the temperature according to Wiebe et al. (1977):

3.15

where V is the output voltage in 11V, and V25 the voltage output (11V) after correcting for

25°C, T is psychrometer block temperature (0C) at which the reading was made, and a

and b empirical constants determined during sensor calibration (P55 series

psychrometers notes, undated; Savage et aI., 1981). For example, Brown (1970) (cited

by Savage et al., 1981) determined a and b to be 0.325 and 0.027 °C l respectively.

Savage and Cass (1984) reviewed psychrometer and hygrometer calibration data and the

calculated a and b values for a number of leaf and soil psychrometers. From the

differing a and b values found by different authors, it is clear that each sensor possesses

a unique set of a and b values. Any of these sets (a and b) will therefore not directly

apply to all psychrometers.

3.5.3.3 Sensitivity of soil water potential measurements to temperature gradients

The derivation of the Kelvin equation (Eq. 3.13) assumes iso-thermality (Rawlins and

Dalton, 1967 cited by Savage and Cass, 1984). The test for this is the measurement of

the zero offset. This measurement involves measuring the thermojunction voltage when

the psychrometer lead wires are shorted, corresponding to a base-line and then

measuring the voltage with the lead wires not shorted just prior to cooling (Savage et

aI., 1983). The difference between this voltage relative to the base-line, is a measure of

the iso-thermality of the system.
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3.5.4 Advantages and disadvantages of the thermocouple psychrometer

One major disadvantage of the soil psychrometer is the possibility of condensation or

the drying of soil water in the area surrounding the sensor, or where temperature

gradients exist. This will lead to either over- or under-estimations of water potentials

(Savage and Cass, 1984).

Advantages of the thermocouple psychrometer include:

• measurements over a wide range of matric potentials (Zazueta and Xin,

undated),

• low maintenance (Zazueta and Xin, undated),

• suitability for automatic measurements,

• soil water potential measurements obtained rather than soil water content

measurement (SOWACS, undated),

• independency of calibration to soil type or particle sizes (SOWACS, undated),

• accuracy of measurements of soil water potential within the range -500 to

-90 J kg-I (Reece, 1996).

Disadvantages of the thermocouple psychrometer include:

• high contact resistance and measurement error in swelling and shrinking soils if

the soil draws away from the hygrometer (Merrill and Rawlins, 1972 cited by

SOWACS, undated), where direct contact is not necessary but will accelerate

the equilibration process (Lawrence Berkeley National Laboratory, 2000)

• inability of in situ calibration of soil psychrometers (SOWACS, undated) if

individual psychrometers calibration is required (Zazueta and Xin, undated;

Savage et al., 1981),

• sensitivity to large and continual temperature gradients, especially in the wet

bulb mode (SOWACS, undated; Zazueta and Xin, undated),

• dependency of the measurement accuracy to the similarity between the

calibration and field conditions; therefore field measurements are only as

accurate as their calibration demonstrates (Savage and Cass, 1984),

• the small soil volume sensed (SOWACS, undated),

• same cooling times required for both field measurements and calibration

(Savage and Cass, 1984),
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• time consuming data analysis, and

• required specialised equipment for excitation and measurements (SOWACS,

undated).

3.6 Summary

Chapter 3 concludes the discussion of the techniques used in the short-term, site­

specific field experiment. The following chapter (Chapter 4) describes the theory

behind the Soil Water Atmosphere Plant model applied in the long-term soil water

balance modelling.

57
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CHAPTER 4

THE SOIL WATER ATMOSPHERE PLANT (SWAP) MODEL

4.1 Introduction

SWAP, the Soil Water Atmosphere Plant model, simulates the hydrological processes at

a field scale (Fig. 4.1). The water flow and solute transport processes in the vadoze

zone are influenced by plant growth during the season. Van Dam et al. (1997) and Van

Dam (2000) describe the processes applied in SWAP in detail. These processes

include: soil water flow, solute transport, soil heat flow, daily evapotranspiration, crop

growth, field irrigation and drainage, surface water and multilevel drainage at a sub­

regional scale and discharge in a regional system.

The processes used in our simulations (soil water flow; daily evapotranspiration and

crop growth) will be described briefly.

-
} \~ .

Transpiration I

Pereola'on J j
i

Precipitation

Fig. 4.1 Hydrological processes used in the simulations with the Soil Water

Atmosphere Plant (SWAP) model (SWAP, undated)
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4.2 A description of the most important processes applied in SWAP

4.2.1 Soil water flow

59

Soil water flows as a result of differences in pressure heads (h) within the soil. The one

dimensional flow of soil water in the vertical direction can be described by Darcy's

equation:

q=_K(h)a(h+z)
az 4.1

where q is the soil water flux density (mm d-I)2, K(h) the hydraulic conductivity

(mm d- I
) which is dependent on soil water pressure head h (mm), and z the vertical

coordinate (mm).

Darcy's equation is subsequently combined with the continuity equation for soil

water:

a6v =_ aq -S (z)
at az a

4.2

where Ov is the volumetric soil water content (mm3 mm-3
), t is the time (d) and Sa is the

actual soil water extraction rate by plant roots (mm3 mm-3 d- I
). Invoking the chain rule

of calculus we have:

a6v a6v ah
--=---at ah at

and combining equations 4.1 and 4.2, yields:

arK(h) ah +111
aev =C(h)ah= az ~-s zat at az a ( )

2 The outputs by the SWAP model in cm d-I were converted to mm d- I•

4.3
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where C is the differential soil water capacity (dB/dh) (mm-I). Eq. 4.3 is Richards'

equation, which simulates vertical soil water movement in the soil profile using soil

hydraulic functions.

4.2.2 Daily evapotranspiration

4.2.2.1 Introduction

SWAP uses a two-step approach to estimate potential evapotranspiraiton. Firstly, the

potential evapotranspiration3 is estimated with the Penman-Monteith equation for a

daily time step:

4.4

= ETrad + ETaero

where ETrad and ETarea refer to the radiation and aerodynamic terms of the Penman­

Monteith equation and is also described in Section 2.5.

Secondly, the actual evapotranspiration is calculated and includes the reduction of the

rootwater uptake due to water and salt stress.

4.2.2.2 Potential transpiration of a fully covered soil and the potential evaporation

of a bare soil

SWAP uses the Penman-Monteith equation to calculate the:

• _p~tential evapotranspiration of a wet canopy completely covering the soil

(ET",o),

• potential evapotranspiration of a dry canopy completely covering the soil (ETpo),

and

3The Penman-Monteith evapotranspiration refers to the evapotranspiration from a dry, extensive, uniform
canopy, optimally supplied by water as defined by Alien et at. (1998) and in section 2.2.5.
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• potential evaporation of a wet bare soil (Epo).
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SWAP also allows for the calculation of reference potential evapotranspiration (ETref)

using methods other than the Penman-Monteith method. This reference

evapotranspira:tion is converted into potential evapotranspiration of a dry canopy using a

canopy factor (kc):

4.5

Her~_however, SWAP equates the potential evapotranspiration for a dry crop, wet

crop or wet soil. SWAP assumes that the potential evapotranspiration of a wet (ETwo)

and a dry (ETpo) canopy completely covering the soil is equal, and that the potential

evaporation of a wet, bare soil (Epo) is equal to the potential evapotranspiration of a dry

canopy completely covering the soil.

4.2.2.3 Potential transpiration and evaporation of a partially covered soil

SWAP separates potential evapotranspiration into evaporation and transpiration, and

uses a physically-based approach to estimate the reduction in the potential transpiration

and the potential evaporation. The potential evapotranspiration is partitioned into

evaporation and transpiration using either the leaf area index or the soil cover fraction as

a function of the crop development stage.

The potential soil evaporation under a crop is calculated using the Penman-Monteith

equation, neglecting the aerodynamic term (Eq. 4.4). Neglecting the soil heat flux

density, and assuming an exponential decrease in net irradiance below the crop, this

potential evaporation (Ep ) is given as a function of the leaf area index (LAJ) as used by

Ritchie (1972):

E = ET e -ICg,UI
p P 4.6
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where - Kgr is the product of the extinction coefficient of diffuse and direct visible

irradiance, or alternatively Ep is given as a function of the soil cover fraction (SC):

The potential transpiration rate (Tp) is given by:

T =ET (l-~l_E
P P ET I P

PO)

where Pi is the rainfall interception by a canopy.

4.2.2.4 Actual soil evaporation

4.7

4.8

The soil evaporation of a wet soil equals the potential soil evaporation (Ep) and is

determined by the atmospheric demand. For a drying soil, with a decreasing hydraulic

conductivity, the potential soil evaporation is reduced to actual soil evaporation.

The actual soil evaporation is determined as the minimum of the potential soil

evaporation (Ep ), the maximum evaporation according to Darcy's equation (Ema.lj, or the

actual soil evaporation calculated using an empirical function (Ea) of Black (1969) or

Boesten and Stroosnijder (1986) (cited by Van Dam et al., 1997).

4.2.2.5 Actual plant transpiration

The maximum root water extraction rate over the rooting depth is equal to the potential

transpiration rate (Tp). The potential root water extraction rate Sp (d- I
) at a certain soil

depth z is:
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S (z) = llrool (z) T
P IO P

Jrrool (z) dz
-Drool
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4.9

where Jr,.OOI is the root length density (m m-\ Droot (mm) is the rooting depth, and

where the potential transpiration rate Tp is reduced through stresses (water or salinity) to

the actual root water flux density Sa (z)(d- I
):

4.10

where~ is the reduction factor due to water stresses, and 0;.5 is the reduction factor

due to salinity stresses.

4.2.3 Crop growth

SWAP contains three crop growth routines: a detailed crop growth model (WOFOST),

a detailed grass growth model (modified WOFOST) and a simple crop growth model.

The simple crop growth model is applied when crop growth simulations are not

required, or when insufficient data exists. The simple model is based on a big leaf

(green canopy), that intercepts rainfall, transpires·and covers the ground. Inputs to this

model include leaf area index or soil cover fraction, crop height, and rooting depth as a

function of development stage. The development stage can be linear or a function of the

air temperature sum.

This simple crop growth model can simulate up to three crops per year, and does not

calculate the crop potential or actual yield.

4.2.4 Rainfall interception

SWAP utilizes a general formula for canopy interception proposed by Von Hoyningen­

Hiine (1983) and Braden (1985) (cited by Van Dam et al., 1997 and Van Dam, 2000).
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This equation relates the intercepted precipitation Pi (mm), the leaf area index LA!

(m2 m-2
), the gross precipitation Pgross (mm), an empirical coefficient a (mm) and the

soil cover fraction Se:
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P; = a LA! 1- se P
1+ gross

aLA!

4.2.5 Bottom boundary condition

4.11

Whilst in the unsaturated zone, water flow occurs mainly in the vertical direction.

However, in the saturated zone, water moves in a three-dimensional pattern, according

to the hydraulic head gradients. The bottom boundary of the one-dimensional SWAP

model is either the bottom of the unsaturated zone or the upper part of the saturated

zone, and can be described by the:

• groundwater level or soil water pressure head as a function of time,

• specific bottom flux as a function of time, or

• bottom flux as a function of groundwater level (Van Dam et al., 1997).

4.3 Sensitivity of soil water balances modelled with SWAP to different

input parameters

Wesseling et al. (1998) quantified the sensitivity of the SWAP model outputs to the

changes in the process parameters for different scenarios. The results of the sensitivity

analysis showed that 95 % of the variance of all the outputs could be explained by

variance of the bottom flux. In general the influence of the crop factors used in the

simulations and the preferential flow on the outputs were surprisingly low, whereas the

upper and lower boundary layers were very important. The leaf area indices strongly

determined the soil evaporation and crop transpiration whereas the lateral drainage was

sensitive to the surface water levels. The effect of the secondary channels in the

drainage systems is negligible compared with the influence of the primary channels. In

terms of the soil water, the CPU time requirement for SWAP execution is insufficient to
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complete simulations with low saturated hydraulic conductivities. The maximum

groundwater level is strongly related to the surface water level, the minimum

groundwater levels to the leaf area indices, soil physical properties and surface water

levels, whereas the average groundwater level is strongly dependent on the primary

drainage system.
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Van Dam (2000) also performed a sensitivity analysis with SWAP but focussed on

the relative transpiration4 and relative salt storage changes5
• Van Dam (2000) found

that the relative transpiration and relative salt storage changes were less sensitive to a

change in the rooting depth, than the crop factor. A 50 % reduction in the rooting depth

caused the relative transpiration to change from 0.93 to 0.89 and relative salt storage to

change form 0.14 to 0.10. However, a change in the crop factor of only 25 % increased

the relative transpiration by 0.06, and changed the relative salt storage from 0.14 to ­

0.48. The effect ofa 33 % and a 16 % decrease in the Boesten and Stroosnijder soil

parameter and saturated soil water content respectively, lead to an increase of 0.02 and

decrease of 0.02 in the relative transpiration respectively. Some of the conclusions by

Van Dam (2000) were that accurate data on crop factors and soil hydraulic functions are

needed for reliable water and salt balances, and that the stress due to water shortage is

affecting plant growth more than stress due to high salinity. However, the results

suggested that for the specific research area no accurate rooting depth data were

required.

4.4 Advantages and disadvantages of the SWAP model

SWAP can be used for investigating a range of different conditions, from alternative

flow and transport concepts, laboratory and field experimental analysis and evaluation

of management options with respect to field scale water and solute movement (Van

Dam, 2000). Applications of SWAP includes the fields of ecology, desalinisation,

design of drainage systems, irrigation scheduling, hydrological base for nutrient and

pesticide transport, estimation of crop yield, analysis of surface water management to

~ The relative transpiration can be defined as the ratio of the cumulative actual crop transpiration to the
cumulative potential crop transpiration.
S The relative salt storage change can be defined as the ratio of the change in salt storage of the soil
profile over a certain time span to the initial salt storage of the soil profile.
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detennine soil water flow, evaporation, crop growth, drainage, heat transport and/or

solute transport and more (Wesseling et aI., 1998; Van Dam, 2000).
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Disadvantages of SWAP identified during this modelling exerCise included the

inability to model overlapping growing seasons, and simulate understorey evaporation.

The model further requires the use of high speed computers and even then cannot

perform simulations for soils with low saturated hydraulic conductivities.

4.5 Application of techniques

This chapter concludes the description of the theory on the techniques (Chapters 2

and 3) and model (Chapter 4) applied in the research to determine the impact of

different vegetation types on the soil water balance. The following chapter describes

the research sites and the application of the techniques and model discussed in

Chapters 2 to 4, to the research sites. That is followed (Chapters 6 to 8) by a

presentation of the results on the application of these techniques and model to a

grassland and an E. viminalis site.



67

CHAPTER 5

MATERIALS AND METHODS

5.1 Introduction

The soil water balance approach was used to test the hypothesis of the study: whether a

change in vegetation, from grassland to E. viminalis, will increase the total evaporation

and decreases the soil water storage. It is hypothesised that a change in vegetation from

grasshmd to E. viminalis trees will reduce the drainage of water beyond the root-zone

and into the mine workings, over the short- and long-term.

5.2 Simplified soil water balance

The simplified soil water balance at a field scale is given by:

P = ET ±t::.S + Q+ D

where P is the precipitation, ET the evaporation (the sum of soil evaporation,

transpiration and interception), L1S the change in the soil water storage, Q the runoff and

D6 the drainage beyond the root-zone, all components having the unit mm.

The soil water balance equation (Eq. 5.1) can be re-arranged to solve for the drainage

term:

D =P - ET ± t::.S - Q

Assuming the precipitation7 at two sites with different vegetation types is the same,

the difference in the soil water movement below the root-zone (D) at the two sites can

be attributed to the differences in the total evaporation (or the components therefore),

soil water storage and runoff. Therefore, on a suface with a gentle slope and negligible

6 The drainage below the root-zone refers mainly to soil water movement below the root-zone due to

ravity. .. . '. ,,,
The precipitatIOn IS assumed to be equal to the ramfall for the grassland and E. viminalis sites.

5.1

5.2
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runoff, differences in the drainage beyond the root-zones of grassland and E. viminalis

trees are assumed to be due to differences in the plant soil water relations (total

evaporation, soil water storage).

5.3 Conditions of site

5.3.1 General

D = -ET ± t::.S 5.3

The site soil water balances of a grassland and ofE. viminalis trees were studied within

the Brandspruit Management Unit, Sasol Collieries, Secunda, South Africa (260 36' S

and 290 08' E, 1650 m above mean sea level)(Fig. 5.1) for the period 1 July 1998 to

30 June 2000. The natural grassland and E. viminalis sites selected for the soil water

balance field experiment were adjacent and in close proximity to exclude differences in

local climate and soils.

5.3.2 Climate

5.3.2.1 Rainfall

Rainfall recorded during the field experiment (1110 mm and 1218 mm during

1998/1999 and 1999/2000 respectively) exceeded the long-term average rainfall

(680.2 mm a-I) by 430 and 538 mm a-I respectively (Fig. 5.2). The rainfall during the

years immediately prior to the study period (1995 to 1998) also exceeded the long-term

rainfall by about 30 % (or 202 mm a-I). The study period (1998 to 2000) therefore falls

within a wet period, and the soil water balance results should be seen in this context.
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5.3.2.2 Reference evaporation
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Daily total reference evaporation (ETo)8 was calculated with the Penrnan-Monteith

equation. During 1998/1999 ETo was 1134 mm and exceeded the reference evaporation

during 1999/2000 (1060 mm a-I) by 74 mm (6.5 %). The lower reference evaporation

during 1999/2000 compared to 1998/1999, resulted from a higher rainfall (1218 vs

1110 mm a-I), lower average daily air temperature (10.9 vs 12.2 cC), and lower average

daily solar radiant density (16.4 to 18.5 MJ m-2
) during 1999/2000 (Fig. 5.3).

Monthly average daily reference evaporation ranged between 4.2 mm d-I during

summer (e.g. November 1999) and 1.6 mm d-I during winter (e.g. June 2000) (Fig. 5.3).

However, maximum daily reference evaporation of up to 6 mm d-I was estimated for

summer, and a minimum reference evaporation of 1.4 mm d-I during winter.

5.3.3 Soil conditions

The soil forms identified at the research sites include the Arcadia (Vertic A-horizon

overlaying Sandstone) and Rensburg (Vertic A-horizon overlying G-horizon overlaying

weathering dolorite) soil forms (Soil Classification Working Group, 1991). A number

of other soil forms also occur in the area. Du Toit (1993) studied the soil forms within

the Brandspruit Management Unit and found ten different soil forms including the

Rensburg and Arcadia forms.

The Rensburg and Arcadia soil forms consist of material with an expansive nature,

which could potentially hamper root development, especially under extremely dry

conditions when root pruning can occur. These soils exhibit shallow soil depths of

600 mm and 1500 mm for the Arcadia and Rensburg soil forms respectively. Due to

high clay contents (up to 56 %) in some of the soils layers, these soils are generally

prone to water logging during summer. Appendix A provides a detailed description of

the Rensburg and Arcadia soil forms.

8 Reference evaporation can be defined as the evaporation above a short, well watered grass surface that
fully covers the soil, is not limited by water or nutrients, and is equivalent to class A-pan evaporation
(Alien et al., 1998).
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5.3.4 Vegetation
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The tree site consisted of E. viminalis trees with a grassland understorey. Blocks (area

of 50 m2
) ofE. viminalis and other Eucalyptus species were planted in 1990 at

Brandspruit Collieries, and were successfully established over some areas. The

E. viminalis trees at the research site were planted at an espacement of 2 m x 3 m, but

tree deaths have left some gaps. The Eucalyptus species planted and ideal soil

preparation and espacement used was the result of extensive research on survival of

different trees under non-ideal conditions (droughts, frost, swelling and shrinking soils)

(Du Toit and Basson, 1993), and research of the optimum water use of different tree

species under different espacements (Olbrich and Poulter, 1992; Versfeld etal., 1998)

and ideal soil preparations (Cunningham, 1995, 1996). The height and diameters (at

breast height) of the trees at the start of the experiment ranged between 8 and 10 m and

between 90 and 150 mm respectively.

The natural grassland site was generally dominated by Cymbopogon and Eragrostis

species. However, towards the end of summer and during autumn 1999 and 2000,

Cosmos weeds growing in-between these species were dominating. The site is not

formally managed, but is frequently burnt by veld fires, as was the case during

August 1999. The grassland canopy is uniform, with a fetch distance of 80 to 100 m in

all directions. The canopy reached a height of at least 1000 mm during summer.

5.3.5 General

The field experiment was conducted over a period of two years (1 July 1998 until

30 June 2000). This period was divided into two 12-month periods: (i) 1 July 1998 to

30 June 1999 and (ii) 1 July 1999 to 30 June 2000, and are hereafter referred to as

1998/1999 and 1999/2000.

The components of the simplified soil water balance (Eq. 5.1) were estimated from in

situ measurements (Table 5.1, Figs 5.4 to 5.8). These soil water balances will illustrate

the potential impact of grassland and E. viminalis trees on the total evaporation and soil

water storage relationship of a site.
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Table 5.1 A summary of the measurements made and methods and equipment used to

estimate different parameters required during the field experiment
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Parameter Method Measurements Equipment Manufacturer
Total Bowen ratio Net irradiance Net radiometer Q*6, REBS,
evaporation energy balance Seattle, USA
(Fig. 5.4) Air Chromel- N/a

temperature contantan
thermocouples

Water vapour Dew-lO N/a
pressure hygrometer
Soil Copper- N/a
temperature constantan

--
thermocouple

Soil heat flux Soil heat flux N/a
plates

Output period Water content Campbell
reflectometer Scientific

CS615 probe
Transpiration Heat pulse Velocity of a Thermistors, Custom made
(Figs 5.5 and 5.6) velocity heat pules Heaters
Soil water Water content Output period Water content Campbell
content reflectometer reflectometer Scientific
(Figs 5.4 and 5.5) model CS615
Soil water Heat Change in Heat Campbell
potential dissipation temperature dissipation Scientific
(Figs 5.4 and 5.5) sensor model

229-L
Soil Relative Soil Wescor
psychrometry humidity psychrometer

model PCT-55
Rainfall Automatic Rainfall Tipping bucket OSKOgawa
(Fig. 5.8) weather station Seiki Co. Ltd.
Other climatic Automatic Air Vaisala air Campbell
(Fig. 5.8) weather station temperature temperature Scientific

Relative and humidity
humidity probe model

CS500
Solar Pyranometer Li-Cor
irradiance model LI-200
Wind speed Three cup RM Young
Wind direction anemometer

model 03001
Barometric Barometric Campbell
pressure pressure sensor Scientific

model CS105
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Fig. 5.4 (a) Images ofthe E. viminalis experimental site and instrumentation used
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Fig. 5.4 (b) Images of the E. viminalis experimental site and instrumentation used
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Fig. 5.5 (a) Images of the grassland experimental site and instrumentation used
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Fig. 5.5 (b) Images of the grassland experimental site and instrumentation used
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5.3.6 Methods for estimating total evaporation and transpiration

5.3.6.1 Method for estimating total evaporation9
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The Bowen ratio energy balance technique (Campbell Scientific, Inc., Logan, USA) was

used to estimate the total evaporation of grassland (Fig. 5.4). The Bowen ratio energy

balance method requires measurements of net irradiance, air temperature and water

vapour pressure vertical profile differences, soil heat flux density, soil temperature and

soil water content. A Campbell Scientific CR23X datalogger was used to record the

measurements. Measurement intervals were 1 s for the air temperature and water

vapour pressure profile differences, and 10 s for the net irradiance, soil heat flux

density, soil temperature and soil water content. Measurements were averaged at

20 minute intervals.

The Bowen ratio sampling arms and net radiometer (Q*6, REBS, Seattle, USA) were

mounted on a tripod and pole respectively. The sampling arms of the Bowen ratio

energy balance system were orientated due north to avoid partial shading of the

thermocouples on the arms, while the net radiometer was positioned north to prevent

sensor shading. The air sensed by sensors mounted on these arms should be

representative of the surface studied (Campbell Scientific, Inc., 1998). The lower arm

should be installed low enough for the bulk crop surface environment not to be sensed,

whereas the upper arm should be installed low enough in order to not sense a different

environment upwind. The measurement of the air temperature and water vapour profile

differences should be within the resolution of the sensors. A separation distance

between the Bowen ratio sampling arms of 0.5 to 3 m is suggested in the Bowen ratio

users' manual (Campbell Scientific Inc., 1998). With an increased distance between the

arms, the water vapour pressure and air temperature differences are increased. A

separation distance of at least 0.5 to 1 m between the sampling arms was therefore

maintained throughout the experiment, with the height of the lower Bowen ratio arms at

approximately 1 m above the vegetation (Fig. 5.5).

9 Total evaporation (ET) can be defined as the total process of water movement into the atmosphere. In
this experiment total evaporation refers to the sum of evaporation from the soil surface, transpiration by
vegetation, and evaporation of water intercepted by vegetation (Rosenberg et aI., 1983).
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The soil heat flux density at the surface was estimated using measurements of soil

heat flux density, soil temperature and soil water content for the upper 80 mm soil

depth. As the grassland surface was uniform, only two heat flux plates and four

averaging thermocouples were used. As the groundcover did not vary considerably, it

was not considered necessary to include additional sensors. The soil heat flux plates

were installed at 80 mm below the soil surface, the averaging thermocouples were

installed at 20 mm and 60 mm below the surface, and the soil water content

reflectometer was installed at an angle over the upper 80 mm of the soil. Initially, the

soil water content was estimated gravimetrically. Later, a water content reflectometer

(Campbell Scientific CS6l5 probe) was used to estimate volumetric soil water content

at 20 minute intervals.

5.3.6.2 Method for determining transpiration10

The heat pulse velocity technique (Huber and Schmidt, 1937; Swanson, 1974 cited by

Dye et al., 1992) was used to calculate the transpiration (sapflux) of six representative

trees within an E. viminalis tree stand. Four l2-channel heat pulse dataloggers (custom

made) were used to measure the velocity at which a heat pulse moves through a tree

stem at different depths below the cambium. Measurements were made at hourly

intervals. Swanson (1983) found that radial differences in the sapflux occur, and

suggested that sets of probes be implanted to different depths within the sapwood

(e.g. dl to d4) (Fig. 5.6) (cited by Olbrich, 1994). Four sets of probes (a set consisting

of a heater probe and two thermistor probes) were therefore installed at different depths

(9,14,21,28 mm) below the cambium ofeachE. viminalis tree studied. This ensured

that the variation in sapflux over the sapwood was covered and reflected in the tree

transpiration estimated.

10 Transpiration can be defined as evaporation of water that has passed through the plant. Transpiration
therefore consists of vaporization of liquid water contained in the plant tissues and vapour removal to the
atmosphere (Alien et al., 1998).
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Cambium

Hardwood

Sapwood

Fig. 5.6 Schematic of the implantation of sets of probes at different depths below the

cambium (d1 to d4), into the stem of an E. viminalis tree
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As the accuracy of the sapflux measurements and heat pulse velocity depends on the

distance between the probes, a drill jig with three aligned holes was used to install the

probes accurately and parallel to each other. The heater probe was installed in the

centre hole, and the two thermistor probes were installed at 5 mm below and 10 mm

above the heater probe (Fig. 5.4).

5.3.7 Methods for determining soil water content11 and soil water

potential12

Soil water content and soil water potential were estimated at different depths below the

soil surface at both the grassland and the E. viminalis sites (Figs 5.4 and 5.5). The soil

water content was estimated with Campbell Scientific model 615 water content

reflectometers. The soil water potential was estimated with Campbell Scientific 229-L

heat dissipation sensors and Wescor PCT-55 thermocouple psychrometers.

11 Volumetric soil water content can be defined as the water content on a volume basis (Sumner, 2000).
12 Soil water potential can be defined as the differences hetween the free energy per unit of volume of soil
water and that of pure water in a reference state (Brady, 1990).
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300 mm

500 mm

700 mm

CRI OX
Datalogger

CS 615

229-L

TCP

CR7X
Datalogger

Fig. 5.7 Installation of soil water content reflectometers (CS615), heat dissipation

sensors (229-L) and thermocouple psychrometers (TCP) into the soil at a

grassland and an E. viminalis site, at 200-mm depth intervals

During May 1998, trenches were opened at the grassland and E. viminalis sites to a

depth of between 0.5 and 1.2 m. Sets of sensors (a set of sensors consist of a water

content reflectometer, a heat dissipation sensor and a thermocouple psychrometer) were

subsequently installed at 200-mm depth intervals and up to 900 mm below the soil

surface at each site (Fig. 5.7), with the first set installed at a soil depth of 100 mm. The

sensors were installed horizontally into the soil and adjaeent to each other, but

approximately 150 mm apart. The trenches were then filled with the excavated soil.

The addItional lead wire was buried close to the sensors at a depth of approximately

500 mm, to prevent large temperature variations.



Chapter 5 82

Five water content reflectometers per site were connected to a CR10X Campbell

Scientific datalogger, and five thermocouple psychrometers and five heat dissipation

sensors of each site were connected to a Campbell Scientific CR7X datalogger. Two

different dataloggers were used as the sensors had different datalogging requirements.

Measurements were made at four-hourly intervals. Measurements with the heat

dissipation sensor involved a 20-s excitation with a constant current interface providing

a consistent heating input whilst the temperature was collected at I s intervals during

the heating. The temperature difference was calculated as the difference between the

temperatures I s and 20 s after heating. During thermocouple psychrometer

measurements, a cooling current of 5 mA at the thermocouple junction was maintained,

using a cooling interface for 30 s under wet conditions and 60 s under dry conditions.

Twenty nine wet bulb measurements were made over this period in addition to the

measurement of the zero offset voltage and psychrometer block temperature (Savage et

al., 1981).

5.3.8 Estimating climatic conditions

Rainfall, solar irradiance, air temperature, relative humidity, wind speed, wind direction,

and atmospheric pressure were measured from October 1998 to June 2000 above a short

grass surface (Fig. 5.8). This site was situated approximately 5 km from the grassland

and E. viminalis sites.

Rainfall was measured using a tipping bucket raingauge (Ota Keiki Seisakusho, aSK

Ogawa Seiki Co. Ltd.) with a 0.2-mm resolution. The raingauge was installed at a

height of 0.5 m above the soil surface. Solar irradiance was measured using a Li-Cor

LI-200 pyranometer and the air temperature and relative humidity with a Vaisala CS500

temperature and humidity probe (Campbell Scientific, Inc., Logan, USA). The wind

speed and the wind direction were measured with a three cup anemometer and a

windvane (RM Young model 0300 I) and the atmospheric pressure with a barometric

pressure sensor model CS 105 (Campbell Scientific, Inc., Logan, USA). These sensors

were installed at a height of 2 m above the grass surface.
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Fig. 5.8 Images of the automatic weather station installed above a short, well watered

grass surface approximately 5 km from the grassland and E. viminalis sites

5.4 Long-term soil water balance modelling

5.4.1 General

During the field experiment, components of the soil water balances of a grassland and

ofE. viminalis trees were measured. The two years studied represented above-average

rainfall years. The results of this experiment are therefore very specific to the

conditions encountered during these two years, and reflect the above-average rainfall

conditions. The soil water balance simulations were therefore extended for another

30 years, through the simulation of the soil water balances to reflect the changes in

climatic conditions and plant growth on the soil water balances.

5.4.2 Simulation of the soil water balances with the Soil Water

Atmosphere Plant (SWAP) model

The Soil Water Atmosphere Plant (SWAP) model (Van Dam et al., 1997), a site soil

water balance model was parameterised for a grassland and an E. viminalis site. The

soil water balances were simulated from 1 July 1964 to 30 June 1994.
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The soil water balance simulations for both the grassland and E. viminalis sites

utilized the same long-term climatic information, and the same soil parameters. The

required climatic information was obtained from long-term climatic data sets for the

Bethal region, and by data generated with CLIMGEN (undated)13. The soil parameters

required within SWAP for both sites were obtained from an analysis of the Rensburg

soil form at the grassland site, and up to a depth of 1 m. The simple crop growth model

was used because of limited crop growth information available for both the grassland

and E. viminalis sites. The growth model within SWAP was parameterised for the

grassland site so as to represent the growth conditions generally experienced within that

area. The growth model for the E. viminalis site was however parameterised to

represent an idealised, closed canopy for tree rotation years three to ten.

5.5 Summary

The design of the soil water balance experiment was presented in Chapter 5. The

theory of the techniques used in the field experiment and mentioned in Section 5.4,

were discussed in detail in Chapters 2 and 3. The underlying theory of the soil water

balance model (Section 5.5) was discussed in Chapter 4.

The results of the application of the different techniques and the soil water balance

model to the grassland and E. viminalis sites are presented in Chapters 6 to 8.

13 CLIMGEN is a weather generator. CLIMGEN uses site specific infonnation and different climatic
data combinations to generate climatic data over a specified period. CLIMGEN also perfonn statistical
analysis on the data generated to detennine the significance of this data set (CLIMGEN, undated).
Available from: http://\V\V\\'.bsvse.wsu.edu/climgen.
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CHAPTER 6

SOIL WATER CONTENT AND TOTAL EVAPORATION ESTIMATED AT A

GRASSLAND AND AN E. VIMIHALlS SITE

6.1 Introduction

The hypothesis of this study is that a change in vegetation, from grassland to

E. viminalis trees, will potentially reduce the drainage of water beyond the root-zone

over the short- and long-term. This reduction in drainage is achieved through an

increase in the total evaporation and the associated decrease in the soil water storage.

Therefore, from the differences in the plant soil water relationships for a grassland and

an E. viminalis site, it should be possible to infer the potential impact of a change in

vegetation on the drainage beyond the root-zone.

Calder (1986) lists factors determining transpiration ofEucalyptus spp. and most

other vegetation types as: climatic demand, physiological mechanisms, canopy

structure and the soil water availability to root water uptake. Under the same climatic

and soil conditions, differences in the total evaporation (and drainage beyond the root­

zone) of grassland (and other short vegetation types) and Eucalyptus spp. can therefore

be attributed to differences in the leaf area index (Greenwood et al., 1985; Dunin,

2002), tree height (Greenwood et aI., 1985; Le Maitre and Scott, 1997; Dunin,2002),

the length of the growing season or seasonality (Greenwood et aI., 1985; Dunin, 2002),

soil water availability (Sharma, 1984; Olbrich et aI., 1994; Calder, 1998; Silberstein et

aI., 2001; Dunin, 2002), rooting depth and the depth of soil water extraction

(Greenwood et al., 1985; Dunin, 2002).

A number of studies have showed that the water use of Eucalyptus species exceeds

that of grassland and other short crops (e.g. Sharma, 1984; Greenwood et aI., 1985; Le

Maitre and Scott, 1997; Versfeld et aI., 1998; Dunin,2002; Sikka et al., 2003). Other

studies showed that soil water storage is depleted more by Eucalyptus and other trees

compared to grassland and crops (e.g. Holmes and Wronski, 1971 cited by Lima, 1984;

Sharma, 1984). These studies all suggest that the proposed hypothesis, that a change in
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vegetation from grassland to E. viminalis trees will cause a reduction in the drainage

below the root-zone, is possibly true.

6.2 General information

6.2.1 Technique used for soil water content comparison

86

Three different types of soil sensors, water content reflectometers, heat dissipation

sensors and soil psychrometers, were used to cover the possible range of soil water

contents and soil water potentials expected within the soils, ranging from periodically

saturated conditions to very dry soils. Details on the calibration of the soil sensors and a

comparison of soil water potentials calculated from each method, are given in

Appendices Band C.

Of the three techniques applied in the field experiment, only the water content

reflectometers estimated the soil water content, and were calibrated in the laboratory

following the field experiment (Appendix B). Second-order polynomials derived for

the different soil depths (and the associated clay contents) during the calibration process

were used to convert water content reflectometer period output to soil water content

(Appendix B, Table B.5). The soil water content results for the water content

reflectometer will therefore be used in the discussion below. The soil water content for

different soil depths was integrated to provide a single estimate of the profile soil water

content at a particular time.

General equations provided by lovanovic and Annandale (1997), and Wiebe et al.

(1977) and Brown (1970) respectively were used to convert the output of heat

dissipation sensors and thermocouple psychrometers, into soil water potential. The soil

water potential results for these sensors are compared in Appendix C.

6.2.2 Patching of missing soil water content data

At the grassland site, the water content reflectometers installed at the 300- and 500-mm

soil depths were malfunctioning from the end of December 1998 until the end of the

field experiment. As this was only detected towards the end of the field experiment,
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these sensors were not replaced during the field experiment. This malfunction of the

sensors followed a large rainfall event (71.8 mm) and possible lightning damage to the

sensors on 27 December 1998. Linear relationships (data not shown) existed between

the soil water contents estimated for the 300- and 700-mm soil depths and the 500- and

700-mm soil depths, during the period preceding the malfunctioning (1 July to

26 December 1998). These linear relationships were used to estimate the soil water

content for the 300- and 500-mm soil depths for the period 27 December 1998 to 30

June 2000.

At the E. viminalis site, soil water content and soil water potential data for all soil

depths were missing from 20 April to 13 September 1999 and from 19 May to

30 June 2000. This was the result of lightning damage to the dataloggers and sensors,

and theft of the dataloggers respectively. Since a small change in profile soil water

storage was expected during this period, due to low transpiration rates (1 to 3 mm dol),

the soil water contents were estimated as a linear function of time. The soil water

contents at the 100-, 700- and 900-mm soil depths decreased over time but increased

slightly at the 300- and 500-mm soil depths.

6.2.3 Seasonal changes in the total evaporation of grassland and

transpiration of E. viminalis trees

The seasonal changes in the total evaporation component of a grassland and E. viminalis

trees observed during the field experiment, and the climatic conditions experienced

during the field experiment, are presented in Appendix D. These seasonal changes in

the total evaporation and transpiration are related to changes in climatic conditions (and

atmospheric demand), plant growth (leaf area index, root density distribution) and soil

water availability experienced during the field experiment. The energy flux densities

determining the total evaporation at the grassland site are also presented in Appendix E.
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6.3 Relative saturation14 for grassland and E. virninalis sites

6.3.1 Introduction

88

The water retention characteristics (Eq. 3.4) for different soil layers of the grassland and

E. viminalis tree sites were different (Table A.6, Fig. A.l). Therefore, to compare the

effect of grassland and E. viminalis trees on the soil wetness throughout the season, the

relative saturation (Eq. 3.8) of the soil depths, were used for comparison rather than the

actual soil water contents. Relative saturation is expressed as a percentage.

ThereIative saturation for different soil depths at both sites changed over the season

and differences existed between the grassland and the E. viminalis sites (Fig. 6.1). In

general, the relative saturation for the grassland site soil depths below was greater than

those of the E. viminalis tree site throughout the field experiment (Fig. 6.1).

The exceptions were periods during spring 1998 (September to November 1998),

where the 100-, 300- and SOO-mm soil depths at the grassland site were periodically

drier than that at the E. viminalis site. The drier 100- to SOO-mm soil depths at the

grassland site during this period were the result of the higher grassland total evaporation

(3 to 6 mm dol) (Fig. 0.1), compared to the tree transpiration (Fig. 0.5). At this time,

most of the E. viminalis trees were in a poor condition due to frost and a pathogen

infestation (Roux, 1998) and transpired at low rates (less than 1 to 3 mm dol) (Fig. 0.5).

Throughout the experiment, the deeper depths (700 and 900 mm) at the E. viminalis

site were drier (lower relative saturation) than at the grassland site. At the grassland

site, these depths were saturated for extended periods during summer (Fig. 6.1,

Table 6.1). By comparison with the deeper soil depths, the soil surface depths

(100 mm) at both sites showed large variations in the relative saturations due to

responses to changes in the climatic conditions.

14 The relative saturation of a soil is an indication ofthe wetness of the soil, and is expressed as a function
of volumetric soil water content, residual soil water content and saturated soil water content (Sumner;
2000).
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Table 6.1 Relative saturation (expressed as a percentage) for different soil depths at a grassland (Grass) and E. viminalis (Trees) site from

1 July 1998 to 30 June 2000, and the rainfall between different time period

Relative saturation (%)

Date Soil depths (mm) Rainfall between

100 300 500 700 900 measurements (mm)

Grass Trees Grass Trees Grass Trees Grass Trees Grass Trees

1: 1 Jul 1998 21 16 57 49 56 45 58 41 62 47 0

2: 23 Oct 1998 49 43 59 74 58 50 60 41 64 48 29

3: 1 Dec 1998 60 49 100 97 100 100 100 88 100 88 357

4: 15 Mar 1999 33 32 98 62 92 82 94 67 100 81 602

5: 20 Sep 1999 25 16 82 62 78 72 80 52 88 43 123

6: 9 Dec 1999 63 44 100 97 100 100 100 96 100 85 276

7: 7 Feb 2000 35 34 100 89 100 100 100 94 100 84 360

8: 22 Apr 2000 64 49 100 97 100 100 100 84 100 77 477

9: 30 Jun 2000 58 41 100 90 94 100 96 86 98 78 104
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6.3.2 Seasonal differences in relative saturation at different soil depths

91

At the start of the research (1 July 1998), the soil surface depths (100 mm) at both sites

were dry (21 and 16 % relative saturation respectively) and the relative saturations

differed by only 5 % (Fig. 6.1). All the other depths (300, 500, 700 and 900 mm) at

both sites had higher relative saturations ranging from 57 to 62 % (grassland) and 41 to

49 % (E. viminalis) (Fig. 6.1, Table 6.1).

After the first rainfall of the season (29 mm) (23 October 1998), the relative

saturations of the surface depths (100 mm) of both sites, increased by similar amounts

(28 and 27 % respectively) (Fig. 6.1, Table 6.1). However, large differences existed in

the increases in relative saturations for the 300-mm soil depths. At the grassland site,

the relative saturation for this depth increased by only 2 % whereas that at the

E. viminalis site increased by 25 %. The lower relative soil saturation increase at this

depth at the grassland site suggested water extraction by the grass roots and higher total

evaporation rates compared to that at the E. viminalis site (Figs 0.1 and 0.5).

According to Versfeld et al. (1998), 80 % of the grass roots of a site similar to the one

studied, occurred in the upper 400 mm of the soil profile with 1000 mm depth.

In contrast, sixty percent of the roots of the E. viminalis trees occur within the upper

400 mm of soil, with the remainder up to a depth of 3000 mm (Versfeld et al., 1998).

The higher relative saturation at the 300-mm soil depth of the E. viminalis site

compared to the grassland site further suggest that little water is extracted from this

depth by the E. viminalis tree roots. The rest of the soil depths (500 to 900 mm) at both

sites remained at similar relative saturations on 23 October 1998 when compared to

1 July 1998. This suggests that the wetting front following the 29 mm of rainfall did

not reach the soil depths below 300 mm.

After 357 mm of rainfall (1 December 1998), the relative saturation at all depths for

both sites increased (Fig. 6.1). At the grassland site, all soil depths except those near

the soil surface (100 mm) reached saturation. The 300- to 900-mm soil depths at the

E. viminalis site were as much as 12 % drier than at the grassland site (Fig. 6.1,

Table 6.1). The drier greater depths (700 and 900 mm) at the E. viminalis site,
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compared to the grassland site (Fig. 6.1, Table 6.1), suggest that the E. viminalis trees

were extracting water from these depths and/or that the wetting front did not reach these

soil depths. The high relative saturations for both sites shows that there was water

available within the soil profiles to sustain high transpiration and total evaporation rates

exceeding 6 mm dol (Figs 0.1 and 0.5).

Over the next three and a half months (1 December 1998 to 15 March 1999) with

602 mm of rainfall, all the soil depths at the grassland site, with the exception of the

lOO-mm depth near the surface, remained within 8 % of soil saturation (Fig. 6.1,

Table 6.1). The high relative saturations within the 300- to 900-mm soil depths suggest

that the grass was unable to utilize the available soil water within these soil depths. The

high soil water potentials associated with the high relative saturations further suggest a

downward flux of water through and below the soil profile (Fig. 6.2). Since water flow

from soil depths with a high soil water potential (wet soil) to those with a lower soil

water potential (drier soil depths), the water will move downward from the 100-,300­

and 500-mm soil depths to the 700-mm soil depth. Although, only a few soil water

potential data points are available for the 900-mm soil depth, it is expected that the

downward flux further extends from the 700-mm soil depth to the 900-mm soil depth at

the grassland site.

During the same period (15 March 1999), the 300- to 700-mm soil depths below the

E. viminalis canopy were up to 35 % drier than on 1 December 1998. The 300- and

700-mm soil depths were also 15 to 20 % drier than the 500- and 900-mm soil depths

(Fig. 6.1, Table 6.1). The drier 300-mm soil depth at the E. viminalis site is to some

extent the result of the effect of the atmospheric conditions on the shallower soil depths,

but also due to the movement of soil water out of this soil layer and to some extent

transpiration from grass in the understorey layer. The soil water therefore moves from

the wetter 500-mm soil depth to the drier 700-mm soil depth. This downward

movement of soil water will continue towards the 900-mm depth where the water will

either be utilized by tree roots or move beyond the root-zone.



Chapter 6 93

Oi -600
~
~
o
a.

01-Mar 21-Mar

1:
- - -t- --- ----- .- ---

~

10-Feb21-Jan

\r'il;/ l "V.-- -----~lf- --- .\~~--

_._---_._- ----- ~.¥

01-Jan

I
-400-;--------t---------

I
.L _
:I:

01-NoY 21-NoY 11-Dec

o
: °A x ~A

*." A ;~J x
'.' I ~

-200 --'--60------------
. I.

I -800

-1000 --,- ----. ---.-.--------_._-_.----

-1200 ..~---------~----_..__.-. ~-- ----------_.---- ------~-.-_.---_.- -. -----. -~---------------

i. -100 mm -<3-300 mm - ... - 500 mm -x-700 mm --'-900 mm
-1400 L ...J

Date (1998/1999)

Fig. 6.2 Soil water potentials as estimated with in situ soil thermocouple psychrometers

installed at various soil depths (100 to 900 mm) below a grassland for the

period I November 1998 to 10 April 1999

6.3.3 Cumulative effect of grassland and E. viminalis trees on the relative

saturation at different soil depths under above-average rainfall

conditions

During spring of the second year of measurements (20 September 1999) and just before

the onset of the new rainy season, all soil depths at both sites with the exception of the

300-mm soil depth at the E. viminalis site were drier than on 15 March 1999 (Fig. 6.1,

Table 6.1). The constant relative saturation at the 300-mm soil depth at this site

suggests that little or no soil water extraction or movement from this depth took place

during this period. At the start of the 1999/2000 season (20 September 1999), all soil

depths at the grassland site were also wetter (higher relative saturation) than at the start

of the previous year (1998/1999). The grassland was therefore unable to utilize all of

the rainfall (1110 mm) during the previous year, which resulted in an increase in soil

water storage. This was also the case at the E. virninalis site. The 300-mm to 700-mm

soil depths ofthe E. virninalis site were II to 27 % wetter at the start of the 1999/2000

season (20 September 1999) than at the start of the 1998/1999 season (I July 1998).
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Only the lOO-mm and the 900-mm soil depths had similar relative saturation values at

the start of the 1998/1999 season (16 and 47 in the 100- and 900-mm soil depths

respectively) and the start of the 1999/2000 season (16 and 43 % in the 100- and 900­

mm soil depths respectively).

After 276 mm of rainfall during 1999/2000 (9 December 1999), all the soil depths at

the grassland site, with the exception of the depth near the surface (100 mm) were

saturated (Fig. 6.1, Table 6.1). The rapid saturation of these soil depths following only

276 mm of rainfall during 1999/2000 was the result of a build-up of soil water over

time. At the E. viminalis site the 300- to 900-mm depths were 85 to 100 % saturated.

The wettest depths at this site were the 300- and 500-mm soil depths, where little soil

water extraction occurred. It is assumed that none or few of the E. viminalis tree roots

exist at these depths. The increased relative saturation for the 700- and 900-mm soil

depths also suggest that tree roots were unable to utilize all of the available soil water at

these depths and that the soil wetting front has reached these soil depths. This is

illustrated by the higher soil water potentials at the 300-mm soil depth, compared to that

of the 500- and 900-mm soil depths (Fig. 6.3). Water will therefore move from the 300­

mm soil depth downward.

Towards the end of summer (7 February 2000), after a further 360 mm of rainfall,

there was little change in the relative saturation at the 300- to 900-mm soil depths for

the grassland site. These depths remained saturated. It is therefore predicted that the

water will move downwards, through and below the grassland soil profile. Only the

depth near the surface (100 mm) was 28 % drier than on 1 December 1999. The lower

relative saturation of the soil depth near the surface at the grassland site was the result of

water extraction by the grass roots to maintain transpiration, and soil evaporation.

The relative saturation of all the soil depths at the E. viminalis site also remained

similar during this period (1 December 1999 to 7 February 2000). At the E. viminalis

site, the relative saturations of the soil depths were less than 10 % drier than on

1 December 1999. The soil water potentiaIs estimated with the in situ soil

psychrometers also indicated very low soil water potentials. It is expected that the soil

water within this profile too will also move downwards and possibly below the soil

profile (Fig. 6.3).
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Finally, after more rainfall during autumn (581 mm) (7 February 2000 to 30 June

2000), the relative saturations of the 300- to 900-mm soil depths at the grassland site

remained similar whilst the depth closest to the surface showed a further increase in the

saturation until the end of the experiment (Fig. 6.1, Table 6.1). However, between

7 February 2000 and 30 June 2000, the relative saturations of the 100- and 300-mm soil

depths at the E. viminalis site increased slightly (7 and 1 % respectively), the relative

saturation of the 500-mm depth remained the same at saturation. The relative

saturations of only the 700- and 900-mm soil depths, decreased (by 8 and 6 %

respectively). This suggests that the E. viminalis trees were utilizing some of the

available soil water from the 700- to 900-mm soil depths during this period, and/or that

a downward flux of soil water below the profile occur.
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Fig. 6.3 Soil water potential as estimated with in situ soil thermocouple psychrometers

installed at various soil depths (100 to 900 mm) below E. viminalis trees for the

period 28 October 1999 to 22 March 2000
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6.4 Profile soil water contents for a grass/and and an E. viminalis site

6.4.1 Introduction

96

The profile soil water contents at both sites were calculated over a depth of 1000 mm

using Eq. 3.5. The profile soil water content illustrates the cumulative effect of the soil

water content within the soil layers.

In general, the profile soil water content at the grassland site exceeded that at the

E. viminalis site (Fig. 6.4). The exceptions were from 3 to 18 November 1998. The

lower profile soil water content at the grassland site during this period was the result of

the high total evaporation rates (up to 7.8 mm d- I
) (Fig. DJ) at the grassland site at the

start of the new growing season. During this period, the E. viminalis trees were in a

poor condition due to a pathogen infestation and severe frost during the previous winter,

and transpired at low rates (1 to 3 mm d- I
) (Fig. D.5).
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Fig. 6.4 Total profile soil water content at the grassland (grass) and E. viminalis (trees)

sites over a 1000 mm soil profile for the period May 1998 to June 2000. grass

(saturated) and trees (saturated) indicate the saturated pr.ofi.le-soil water content

for the grassland and E. viminalis sites.
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6.4.2 Seasonal changes in the profile soil water contents
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The largest differences (up to 98 mm d-I) in the profile soil water contents between the

two sites occurred during autumn, winter and early spring (Fig. 6.4). These differences

existed after the occurrence of frost during autumn and winter, and the senescence of

the grass during autumn. These large differences lasted until after the onset of the new

rain season and the associated new growth of the grass. During this period (autumn to

early spring), the total evaporation at the grassland site was possibly less than

0.5 mm d-I (Fig. 0.1), similar to the minimum total evaporation suggested by Everson

et al. (1998) and Versfeld et al. (1998) for grassland. The profile soil water content

remained fairly constant (Fig. 6.4). Since little rainfall occurred during this period, any

change in the profile soil water content was the result of soil evaporation. However,

during the corresponding period at the E. viminalis site, the E. viminalis trees

maintained transpiration rates of 1 to 3 mm d-I (Fig. 0.5). The continued transpiration

during autumn, winter and spring by E. viminalis trees, resulted in a steady decrease in

the profile soil water content at the E. viminalis site until the beginning of the new rain

season (Fig. 6.4). The continued transpiration of E. viminalis trees resulted in an

increased difference between the profile soil water content at the sites (Fig. 6.4).

In contrast, during summer (December to February), a much smaller difference

existed between the profile soil water contents at the two sites (l to 38 mm d-I)

(Fig. 6.4). Both the grassland and E. viminalis soil profiles responded to rainfall events

through increased profile soil water content. However, the profile soil water content

decreased more at the E. viminalis site following a rainfall event than at the grassland

site (Fig. 6.4). This suggests that when soil water is available the transpiration rates of

E. viminalis trees exceed the total evaporation rates of the grassland when soil water is

available.
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6.4.3 Cumulative profile soil water contents
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The effect of different vegetation on profile soil water contents over a period of two

years (1 July 1998 to 30 June 2000) with above-average rainfall, is the gradual increase

in the profile soil water contents (175 and 181 mm at the grassland and E. viminalis

sites respectively) from 1 July 1998 to 30 June 2000 (Fig. 6.4). These increases suggest

that both vegetation types, grassland and E. viminalis trees, were unable to utilize the

available soil water. The E. viminalis trees were, however, slightly more effective in

utilizing the available soil water during the first year (1998/1999) compared to the

grass. -During 1998/1999, the profile soil water content (soil water storage) for E.

viminalis trees increased by 32 mm less than at the grassland site (56 mm and 88 mm at

the E. viminalis and grassland sites respectively) (Fig. 6.4). However, during the

second year, the profile soil water content at the E. viminalis site increased by 126 mm

whereas that at the grassland site increased by 88 mm (Fig. 6.4).

6.5 Total evaporation and soil water content relationships

6.5.1 Introduction

The total evaporation of grassland and transpiration of E. viminalis trees are discussed

in Appendix D. From this dataset it is clear that maximum total evaporation of

grassland and transpiration ofE. viminalis trees were reached during summer when the

leaf area indices,reference evaporation and profile soil water content were at a

maximum. However, the potential total evaporation of grassland and transpiration rates

of trees (during both summer and winter), were affected by occasional unfavourable

conditions which affected both grassland and E. viminalis trees: frost, fire and

pathogens. Minimum total evaporation and transpiration were reached during winter,

following frost (senescence of grassland) and a veld fire, and when the leaf area indices

and reference evaporation were a minimum. The maximum and minimum total

evaporation (and transpiration) rates estimated during the field experiment were further

dependent on the soil water content (or relative saturation) of individual soil depths.
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6.5.2 Plant and soil water relationships during spring and summer
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Following the onset of rainfall, for example on 14 October 1998 (18 mm), the total

evaporation of grassland increased from winter minimum to summer maximum rates

ranging between 6.0 and 7.8 mm d-I (Fig. 6.5). Maximum total evaporation rates were

maintained from November 1998 until February 1999. However, the transpiration of

three E. viminalis trees increased from less than 1.0 mm dol (prior to or directly

following rainfall), to 3.0 mm d'l (August and September 1998) and 1.8 mm dol

respectively (August and September 1999) (Fig. 6.5). Maximum transpiration rates for

E. viminalis trees (6.0 and 9.0 mm d'I), similar to or higher than the grassland total

evaporation rates, were only reached from December to February (Fig. 6.5).

Everson (1993) also found similar and high total evaporation of grassland and

Eucalyptus plantations during dry summers (5.0 mm d· I
). These maximum rates of total

evaporation for grassland and transpiration of E. viminalis trees coincided with

maximum leaf area indices (3.5 to 6.0 and 1.8 to 4.0 at the grassland and E. viminalis

sites respectively) (Fig. 6.6), daily reference evaporation (as high as 6.0 mm d'l)

(Fig. 6.7) and monthly rainfall ranging between 12.8 and 178.0 mm (Fig. 5.3).

The maximum total evaporation estimated in this study was higher than that recorded

for other grassland sites. Versfeld et al. (1998) measured total evaporation for grassland

in the Secunda area over a short period in summer of 1 and 3 mm d'l. Wever et al.

(2002) found the total evaporation of a northern temperate grassland to reach a

maximum of 4.5 mm d'l, whereas Everson et al. (1998) found total evaporation for

moist upland grassland during summer to be between 3 and 7 mm d-I. The high total

grassland evaporation estimated in this study can be attributed to the high leaf area

index'S (up to 6) and the consistently high soil profile saturation during summer.

However, the maximum transpiration rates of up to 9 mm d'l calculated for

E. viminalis trees were in accordance with transpiration of E. viminalis and other

Eucalyptus tree species within the study area and other areas.

15 The leaf area indices represent the total leaf area of the vegetation as measured with a LI-COR canopy
analyzer.
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Olbrich et al. (1994) found maximum summer transpiration by E. virrzinalis trees in the

Secunda area of 6 mm d- I
. Versfeld et al. (1998) reported maximum transpiration rates

by Eucalyptus species in the Secunda area to be as high as 12 mm d'l. Other examples

of high maximum total evaporation and transpiration rates by Eucalyptus species are

given by Lima (1984) (6 mm d'I), Honeysett et al. (1992) (5 to 6 mm d'l) (cited by Hunt

and Beadle, 1998) and Zohar and Schiller (1998) (5.1 mm d'l) and Jarmain and Everson

(2002) (9 mm d'l).

The maximum grassland total evaporation rates occurred at profile saturations of 55

to 60 %, and at profile saturation exceeding 90 % (Fig. 6.8). The lower grassland total

evaporation rates estimated at soil profile saturations of 60 to 90 % suggest lower

atmospheric demand, or the occurrence of cloud cover. However, maximum

transpiration rates of E. viminalis trees only occurred at profile saturations exceeding

85 % (Fig. 6.8). E. viminalis trees therefore required higher profile soil saturations to

reach transpiration rates exceeding 5.0 mm d'l. Differences in the relationship between

the total evaporation (and transpiration) and the soil profile saturation of the two sites

(Figs 6.8 to 6.12) suggest differences in root distribution between the grassland and

E. viminalis trees, and subsequent differences in the depth of soil water extraction.

Figs 6.9 and 6.10 suggest soil water extraction by E. viminalis roots at greater depths

compared to grassland.

According to Versfeld et al. (1998) approximately 60 % of the roots of an

E. viminalis tree in a vertisol occur within the upper 400 mm of a soil (maximum

rooting depth 3 m). Knight (1999) suggested that 84 % of the Eucalyptus species roots

occur in the upper 40 % of a soil profile. For a grassland, however, Versfeld et al.

(1998) found that 80 % of grass roots occurred in the upper 400 mm of a 1000 mm soil

profile. These rooting differences possibly suggest that the E. viminalis trees required a

more saturated soil profile, and movement of the soil water to greater depths (700 to

900 mm) before transpiration rates exceeding 5.0 mm d'l could occur (Figs 6.8

and 6.10). By contrast, high total evaporation of grassland (greater than 5.0 mm d'l)

will occur when only the upper layers (100 to 300 mm) are wet, and therefore under low

or higher profile saturations (Fig 6.9 and 6.11).
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High total evaporation rates by grassl~nd under high or low profile saturation are

therefore possible as the grass roots are concentrated close to the surface and would be

able to extract soil water under both conditions (Figs 6.8, 6.9 and 6.11).

The higher grassland total evaporation during spring and early summer and the rapid

increase in the total evaporation to maximum rates compared to the transpiration by

E. viminalis trees, was therefore partially the result of the earlier availability of soil

water to the shallow grassland roots and partially due to differences in physiological

responses (leaf area indices) and the poor quality of the E. viminalis trees. The

grassland responded to the increased soil water availability within the 100- to

300-mm soil depths, through increased growth. Maximum leaf area indices of up to 6

were reached (Fig. 6.6). Here, the relative saturation at the lOO-mm soil depth increased

from 20 to 30 % (during winter), to 40 to 50 % (following the first rainfall) (Fig. 6.9).

6.5.3 Plant and soil water relationships during autumn and winter

During autumn, total evaporation of grassland and transpiration of E. viminalis trees

were similar (Fig. 6.5), while soil water was available from the previous rain season and

before the first frost. Autumn transpiration for E. viminalis trees ranged between

0.4 mm dol (rainy days) and 4.5 mm d-I (sunny days), while the total grass evaporation

ranged between 2.4 mm d-I and 4.8 mm d-I (sunny days).

Following the first light frost of autumn (minimum air temperature, Tmin , of -0.0 1 and

-0.9 cC during 1998/1999 and 1999/2000 respectively), the transpiration of all three

E. viminalis trees decreased to less than 1.0 mm dol (e.g. Figs. 6.5). But, following light

frost and e.g. 30.4 mm of rainfall on 16 March 1999 and the subsequent increase in soil

profile saturation (66 to 71 %) (Fig. 6.12), the transpiration of E. viminalis trees again

increased to between 2.1 to 3.2 mm d-I. However, following more severe frost (Tmin of

-1.1 and -1.3 cC during 1998/1999 and 1999/2000 respectively), the E. viminalis

transpiration decreased from 3.2 mm d-I to about 1.0 mm dol. Although no autumn total

evaporation data were available for the grassland site following the more severe frost, it

is expected that the total evaporation of grassland would decrease to values similar to

that quoted by other authors (about 0.5 mm d-I). Examples of minimum total
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evaporation of grassland include that by Wever et cl. (2002) (less than 0.5 mm dol),

Versfeld et al. (1998) (0.5 mm d-I) and Everson et al. (1998) (less than 1 mm d-I). Lima

(1984) found the minimum transpiration of Eucalyptus spp. to be 1.5 mm d- I
, slightly

higher than that calculated here, whereas Olbrich et al. (1994) and Versfeld et al. (1998)

found transpiration of E. viminalis trees within the same range of that calculated in this

experiment: 0.42 mm d-I and 0.5 mm d-I respectively.

During autumn and winter, the minimum total evaporation of grassland and

transpiration by E. viminalis trees coincided with the minimum reference evaporation

(about 2.0 mm d-I) (Fig. 6.7), minimum leaf area indices (0.1 and 0.9 for grassland and

E. viminalis respectively) following frost and fire (Fig. 6.6), and minimum profile soil

water contents (324 and 415 mm for grassland, and 235 and 372 mm for E. viminalis

during winter 1999 and winter 2000 respectively) (Fig. 6.13). The grassland and

E. viminalis soil profiles were saturated to 71 and 91 % and 50 and 80 % during

winter 1999 and winter 2000 respectively. However, the upper 300-mm soil depth at

the grassland site was saturated to 55 (winter 1999) and 80 % (winter 2000), while the

700- to 900-mm soil depth at the E. viminalis site was saturated to 47 (winter 1999) and

80 % (winter 2000). Therefore, soil water was available for continued transpiration by

E. viminalis trees during winter. However, as the grass reached senescence following

the first frost in autumn, no water was extracted by the grass roots within the upper

300-mm soil depth during winter and the total evaporation of grassland is expected to

consist mainly of soil evaporation. Only the E. viminalis tree roots will continue to

utilize the available soil water, specifically within the 700- to 900-mm soil depths.

6.6 Summary and conclusions

The hypothesis of this study is that a change in vegetation, from grassland to

E. viminalis trees, will potentially increase the total evaporation and decrease the

associated soil water storage. In this chapter, the results from the field experiment, to

test this hypothesis, are presented. This chapter showed the effect of grassland and

E. viminalis trees on the profile soil water content (Section 6.4) and relative saturation

for the different soil layers (Section 6.3). It further combined the results of the field

experiment (total evaporation, transpiration and soil water content) and compared the

plant and soil water relationships for a grassland and E. viminalis trees (Section 6.5).
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Differences in the total evaporation and profile soil water content between the

grassland and E. viminalis trees are evident. These differences were mainly the result of

depth of soil water extraction (and root distribution), and the seasonality of grassland

(senescence). It can be concluded that the E. viminalis trees impact more on the soil

water content (relative saturation and profile soil water content) than the grassland.

From the differences in the relative saturations of the soil layers at the grassland and

E. viminalis sites, it can be concluded that differences exist in the depth of soil water

extraction by roots and suggested differences in the root distribution. During summer,

major changes in relative saturations of the different soil layers at the grassland site

were only visible in the upper 300-mm soil depth, whereas the most important relative

saturation changes at the E. viminalis site occurred at the 700- and 900-mm soil depths.

This suggests that most of the soil water extracting roots are situated within these soil

layers and it can be concluded that the relative saturation changes within the associated

layers can be translated into soil water extraction by the roots. It can further be

concluded that the largest differences in the profile soil water content of the grassland

and E. viminalis sites occur during autumn and winter when the grassland has reached

senescence.

At the start of the growing season in spring, the total evaporation of grassland

exceeded the transpiration of E. viminalis trees becauseof physiological differences, the

availability of soil water to the shallow grass roots and a pathogen infection at the tree

site. However, maximum transpiration rates of E. viminalis trees (up to 9 mm d'l) were

reached towards the end of spring and during summer, and exceeded the maximum total

evaporation of grassland (6 to 8 mm d,I). It can be concluded that since the E. viminalis

tree transpiration excludes evaporation of intercepted water or transpiration of the

understorey, it is expected that the total evaporation of E. viminalis trees will exceed

that at the grassland site even more. This higher maximum transpiration of E. viminalis

trees could be attributed to the recovery of the E. viminalis trees and the availability of

soil water to the greater depth within the soil profile. It can therefore be concluded that

frost, fire and pathogens affect the state of the E. viminalis trees, the transpiration of

E. viminalis trees and the possible impact of a change in vegetation on the soil water

balance.
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From the relationship between the soil saturation (profile and individual soil layers)

and the transpiration, it can be concluded that the maximum transpiration rates by

E. viminalis trees were dependent on the availability of soil water. High transpiration

rates (greater than 5 mm dol) only occurred at high profile soil saturations (greater than

85 %). By contrast, maximum total evaporation of grassland (more than 5 mm d-I) were

only dependent on the saturation of the 0- to 300-mm soil layers containing the

grassland roots.

From the differences in the plant soil water relationships for a grassland and an

E. viminalis site, it should be possible to infer the potential impact of a change in

vegetation on the drainage beyond the root-zone. Chapter 7 infers the potential impact

of a change in vegetation on the drainage beyond the root-zone.
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CHAPTER 7

SOIL WATER BALANCES FOR THE GRASSLAND AND E. VIMINALlS

SITES ESTIMATED FROM THE FIELD EXPERIMENT RESULTS

7.1 Introduction

In the soil water balance field experiment, the total evaporation (and transpiration) and

soil water storage changes were calculated, but not the drainage beyond the root-zone.

However, an estimate of drainage beyond the root-zone is important in terms of mine

water management.

According to the simplified soil water balance equation (Eq. 5.1), if the precipitation

and runoff is 0, then Eq. 5.1 is reduced to:

ET=D±M 7.1

Then, if the total evaporation is equal to the soil water storage change, can it be

hypothesised that the drainage beyond the root-zone is O? Further, if the total

evaporation exceeds the soil water storage change, can one assume that this difference is

equal to the drainage beyond the root-zone?

Therefore, if this is possible, a comparison can be made of the soil water storage

change (reductionl7
) and the total evaporation on a daily basis, in relation to the amount

by which the measured rainfall exceeds the long-term average rainfall on a monthly

basis. This comparison could potentially illustrate whether drainage beyond the root­

zone occurs. This could further illustrate how effective the grassland and E. viminalis

trees are in removing soil water from the profile in the absence of precipitation and

runoff, and subsequently reducing or preventing drainage beyond the root-zone.

17 A reduction in the soil water storage change over a period of time refers to the removal of water from
the soil profile in consideration. This could be through drainage out of the profile, soil water extraction
by roots (transpiration) or soil evaporation.
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The relationships between the soil water storage reduction, and the total evaporation

(and transpiration) of a grassland and of E. viminalis trees will therefore be discussed

further (Figs 7.1 and 7.2). The soil water storage reductions at the grassland and

E. viminalis sites are also compared (Figs 7.3 and 7.4).

7.2 Relationship between the soil water storage reduction and total

evaporation at a grassland site, and transpiration at an E. viminalis

site

From the available data sets there are only a few days where the absolute profile soil

water storage reduction at the grassland site and the total evaporation of grassland are

similar (Fig. 7.1). Most of the corresponding data points occur at rates of less than

4.0 mm d- I
, and mainly during autumn 1998 (Fig. 7.1). For the remaining period the

total evaporation of the grassland exceeds the absolute profile soil water storage

reduction by between 1 and 6 mm d-I. However, the absolute profile soil water storage

reduction for the E. viminalis site and transpiration by the E. viminalis trees are more

often similar, compared to that at the grassland site (Fig. 7.2). Corresponding absolute

soil water storage reduction and transpiration values occur during spring, autumn and

summer and range between less than 1 mm d-I and 8 mm d-I (Fig. 7.2). Therefore, for

both sites where the absolute profile soil water storage reduction and the total

evaporation (or transpiration) were different (mainly during summer), on days with

rainfall not exceeding 10 mm d- I
, or where the rainfall on the preceding day did not

exceed 10 mm d,l, it could be that drainage beyond the root-zone occurred. Under these

conditions, it could be argued that the higher total evaporation of grassland (Fig. 7.1)

and transpiration of E. viminalis trees (Fig. 7.2) when compared to the absolute profile

soil water storage reduction (e.g. during the summers of 1998/1999 and 1999/2000),

suggests the occurrence of drainage beyond the root-zone I8
.

The more improved relationship (more similarities) between the transpiration and soil

water storage reduction at the E. viminalis site (Fig. 7.2), compared to that at the

grassland site (Fig. 7.1) can possibly be attributed to differences in the soil volume

utilized for soil water extraction. The grassland utilizes a small soil volume compared

18 This assumption can only be made if it is assumed that the total evaporation, transpiration and soil
water storage estimates are correct.
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to the E. viminalis trees, as a result of root distribution differences. Further, the soil

water storage reduction at the grassland site is compared to the total evaporation of

grassland, which not only consists of soil water extraction (transpiration) but also

includes soil evaporation and evaporation of water intercepted by the grass canopy.
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7.3 Comparison of soil water storage reduction at a grassland and an

E. viminalis site

The profile soil water storage reductions at the grassland and the E. viminalis sites

reflect the soil water extraction by grass roots and E. viminalis tree roots, and possibly

the drainage below the root-zones. These profile soil water content reductions between

the sites were different (Figs 7.3 and 7.4).
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Fig. 7.2 Top: Differences between monthly total rainfall and monthly total long-term

average rainfall at the research sites from July 1998 to June 2000.

Bottom: Profile soil water storage reduction (trees_dS) over a 1000 mm soil

depth, and daily total transpiration of three trees (Treel_t, Tree2_t and

Tree3_t). This dataset exclude days with rainfall exceeding 10 mm d'l or

rainfall on the preceding day exceeding 10 mm d- I
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The largest differences in the profile soil water storage reductions between the two sites

occurred during periods of summer when no significant rainfall (> 10 mm dOl) events

occurred, and during autumn (Figs 7.3 and 7.4). With the exceptions of short periods

during spring (1998/1999 and 1999/2000), the profile soil water storage reductions at

the E. viminalis site always exceeded that at the grassland site (Figs 7.3 and 7.4).

During spring, the soil water storage reduction at the grassland site exceeded that at

the E. viminalis site generally by less than 1.0 mm dol and coincided with periods of

higher total evaporation at the grassland site compared to the E. viminalis site (Fig. 7.1).

During summer, the soil water storage reduction at the grassland site was between

approximately 0.5 and 10.0 mm dol less than at the E. viminalis site. However, during

autumn, this reduction at the grassland site was approximately 1.0 to 6.0 mm dol less

than at the E. viminalis site.

During periods in summer, and especially during autumn and winter, the profile soil

water storage reduction possibly indicates root water extraction or transpiration. From

summer to autumn (1998/1999 and 1999/2000) it is clear that the daily profile soil water

reduction at the E. viminalis site decreased over time from more than 8.0 mm dol

(1998/1999 and 1999/2000) during summer to 2.0 mm dol (1998/1999) and 4.0 mm dol .

(1999/2000) during winter and autumn (Figs 7.3 and 7.4). However, the profile soil

storage reduction over this period at the grassland site was less and decreased from

approximately 6.0 mm d-I (summer) to less than 1.0 mm d-I (winter) (Figs 7.3 and 7.4).

The trends in the profile soil water storage reductions towards the end of summer and

during autumn compares well with the total evaporation (and transpiration) during these

periods (Figs 7.1 and 7.2).

However, although some relationship existed between the trends in the reduction in

the soil water storage at both the grassland and E. viminalis sites and the total

evaporation, no linear relationships were found between the daily profile soil water

storage reductions and total evaporation (and transpiration) for these sites (Fig. 7.5).

This was mainly because of a lag in the soil water movement and the differences in the

grassland and E. viminalis trees response to changes in soil water availability.



Chapter 7 115

Date (1998-1999)

27-Apr28-Mar27-Feb28-Jan

grass Ctrees

28-Dec28-Nov29-0ct

I
I

1

I-14 L- ._-----!

'0
l/l

'* -10oa.
2:-

~ -12

29-Sep

0

E -2

E-
l:
0
U -4
~

"0
~
Q)
Ol -6e
B
l/l

Q;
m -8
3:

Fig. 7.3 Daily profile soil water storage reduction for a grassland (grass) and an

E. viminalis site (trees) over a soil depth of 1000 mm for the period

8 September 1998 to 22 April 1999

29-Sep

0

~ -1
E
.§.

-2
l:
0

U
-3~

"0
~
Q) -4Ol
~
0
lii -5
~
ro

-6"'0
l/l

-7Q)

~
c- -8
2:-
'ffi
0 -9

-10

29-0ct 28-Nov

Date (1999-2000)

28-Dec 28-Jan

.! grass C trees

27-Feb 28-Mar 27-Apr

Fig. 7.4 Daily profile soil water storage reduction for a grassland (grass) and an .

E. viminalis site (trees) over a soil depth of 1000 mm for the period

17 September 1999 to 20 May 2000



Chapter 7 116

10 - ------x------------------:-;ass x Tree1--:-~-ree2 x Tree3 IE
.S- 9 x x

I

c x Xx x x0
:;:J

8
xX

~ <I ". ~x-0. I x x
Vl JI ~ X X
c 7 x x
g ~ .fJl x• !t x ix I
ro \1:1 x \'I x I11 X
§ 6 III

X "x Ix I~
!Ill ...

-iij 1I I5 it xx, x x

I
0 ,,<I X X XX X XC a !J I ~ x-g 4 IIX'l"ltXx x x x
~ 'H x~ x ..~ X X I0 IQ. 3 !I<1~x.~ >l<-x XX
ell !> wc ~ x _ )( )( x

IQl >I<ll lI x 'I!:. 'I x '\ .,x x .. •ro 2 'Ie)( :1.x ~xx'i! Xx" XX' x l! i.x x x

I
§ x x ~~ x ~ X ~)(xX '" x

x .x ~ x x x )O(X Xx

~ xX x x Xlfl x-iij
0

-10-9-8-7-6-5-4-3-2-1

0~-__r--___r_--r_-___.--_r_--..,.._-___r--_,_--.-----1

o
Daily profile soil water storage reduction (mm)

Fig. 7.5 Daily total evaporation for a grassland (grass) and daily total transpiration for

three E. viminalis trees (Tree 1, Tree2, Tree3) vs the daily profile soil water
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7.4 Summary and conclusions

The relationships between the soil water storage reduction, and the total evaporation

(and transpiration) of a grassland and of E. viminalis trees were discussed in Chapter 7.

The similar transpiration rates and soil water storage change rates at the E. viminalis site

during periods of no significant rainfall, suggest no or little drainage beyond the root­

zone. It was concluded that the reduction in the soil water storage at this site can be

translated into the transpiration by the E. viminalis trees. It was also concluded that the

differences between the soil water storage reduction and the total evaporation of the

grassland, will translate into the occurrence of drainage beyond the root-zone_

The results from the field experiment presented in Chapters 6 and 7 are very specific

to the conditions experienced during the field experiment (climatic, soil and plant) as

described in Chapter 5. It gives a window period (1998-2000) of potential differences

in the total evaporation and soil water storage of grassland and E. viminalis trees over

the short-term. Because of this time limitation, the soil water balances of the grassland
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and E. viminalis trees were simulated over the long-term to test the hypothesis of this

study under different climatic and plant growth conditions. The results of these

simulations are presented in Chapter 8.
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CHAPTER 8

SOIL WATER BALANCES OF GRASSLAND AND E. VIMIHALlS TREES

MODELLED WITH THE SOIL WATER ATMOSPHERE PLANT (SWAP)

MODEL

8.1 Introduction

Chapters 6 and 7 investigated the effect of different vegetation types (grassland and

E. viminalis trees) on the total evaporation and soil water storage relationships, through

in situ measurements. From these results it is possible to test the hypothesis of the study

(Section 1.5), and therefore to deduce the effect of grassland and E. viminalis trees on

the drainage beyond the root-zone under the conditions experienced at this research site.

SWAP, the Soil Water Atmosphere Plant model (Van Dam et af., 1997), was

parameterised for the gt:assland and E. viminalis sites (Appendix F), and the soil water

balances simulated over 30 years19 (1 July 1964 to 30 June 1994). The results from

these simulations allowed a comparison of the effect of different vegetation types

(grassland vs E. viminalis trees) or the potential effect of a change in vegetation, on the

soil water balances over the long-term. These simulations also enabled a comparison of

the annual, seasonal and cumulative differences in the various components of the soil

water balances for the two sites.

8.2 Parameterisation of SWAP

8.2.1 General

The soil water balances of a grassland and an E. viminalis site were separately simulated

over a 30-year period (1 July 1964 to 30 June 1994) using SWAP. Long-term climatic

data (rainfall, minimum and maximum air temperature) for a daily time step were

available for the Secunda region from the South African Weather Bureau (undated) and

Blaauw (2000). These data, together with climatic data (daily) collected during the field

experiment (solar radiant density, minimum and maximum air temperature, relative

19 A year refers to a 12 month period starting on I July and ending on 30 June the following year.
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humidity, rainfall, wind speed, wind direction) (Chapter 5) were used with CLIMGEN

(undatediO, a climatic generator programme to obtain the daily data required in SWAP.

The required climatic data set consisted of daily total solar radiant density, relative

humidity, minimum and maximum air temperature and wind speed. SWAP

subsequently used the Penrnan-Monteith equation and the climatic input data to

calculate the daily total reference evaporation.

8.2.2 Crop growth

The simple crop growth model, one of the three crop growth models within SWAP, was

used in the soil water balance simulations at both the grassland and E. viminalis sites.

The simple crop growth model represents a big leaf that intercepts water, transpires and

shades the ground. The model requires leaf area index (or soil cover fraction), crop

height (or crop factor) and rooting depth as a function of development stage, and is

either controlled by air temperature or is linear in time.

8.2.2.1 Grassland growth

At the grassland site, the leaf area index (Fig. D. 3) and canopy height data collected

during the field experiment (1 July 1998 to 30 June 2000) were used in the simulations

(Table F.6). A third order polynomial, as a function oftime, was fitted through the

available leaf area index measurements (Fig. F.1). This provided leaf area indices that

included both mowing and burning before the start of the new growing season. The

rooting depth vs root density relationship used for the grassland site is that of Versfeld

et al. (1998) (Tables F.5 and F.6). These root density data were obtained from a

grassland site within the Secunda region with the same grassland species and on the

same soil form (Rensburg as classified by the Soils Classification Working Group,

1991) used in these sirnulations (Versfeld et aI., 1998).

20 CLIMGEN is a weather generator. CLIMGEN uses site specific information and different climatic
data combinations to generate climatic data over a specified period. CLIMGEN also perform statistical
analysis on the data generated to determine the significance of this data set. CLIMGEN programme
available from: hrtp:/lwww.bsvse.wsll.edu/clill1gen.
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8.2.2.2 E. viminalis tree growth
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It was assumed that the largest differences in the soil water balances between the two

sites would occur after the E. viminalis trees reached complete canopy cover, or

behaved like a big leaf. Therefore, simulations at this site were for years three to ten of

the suggested 10-year tree rotation (Smith, 2003). For these simulations (years three to

ten) at the E. viminalis site a constant leaf area index of 2.6 (Dye, 2003), reflecting a

complete canopy cover, was used. The canopy height data used in the simulations were

based on E. viminalis trial data collected by the Institute of Commercial Forestry,

Pietermaritzburg, South Africa (Smith, 2003). A second order polynomial (tree height

as a function of time) was fitted to the tree height data (Fig. F.2). A combination of the

rooting depth and density relationships (Tables F.5 and F.7) as estimated by Versfeld et

al. (1998) for E. viminalis in the Secunda area, on a Rensburg soil form (Soil

Classification Working Group, 1991), and that suggested by Knight (1999) for

Eucalyptus were used at this site.

8.2.3 Soils information

The soil parameters used in the simulations at the grassland and E. viminalis sites were

identical. The soil parameters determined in situ and in the laboratory for the grassland

site (Tables Aland A6), were used (Table F.9). These included the saturated hydraulic

conductivity, particle size distribution and water retention characteristics (Table F.9).

However, due to some limitations in the SWAP model execution, the low saturated

hydraulic conductivity for the sites (Tables F.9) had to be adjusted to the lower end of

the range (0.1 mm d,l) accepted in SWAP. The observed maximum soil profile depth at

the experimental site (1200 mm), were used in the parameterisation21 . The bottom

boundary condition of SWAP was set to allow free vertical drainage from the soil

profile.

21 Parameters for the 700-mm soil depth were used up to a depth of 1200 mm.
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8.3 Annual differences in the soil water balances simulated for

grassland and for E. viminalis trees

8.3.1 Rainfall and total evaporation

121

During the 30-year simulation period, the annual rainfall ranged between 347 mm

(1988/1989) and 1024 mm (1966/1967) representing a wide range of climatic

conditions. During this period, the annual total evaporation22 at the E. viminalis site

(362 to 645 mm a-I) consistently exceeded that at the grassland site (283 to 467 mm a-I)

by 26 to 223 mm a-I (Fig. 8.1, Table 8.1). The lowest annual total evaporation at both

sites and the smallest differences in the total evaporation between the two sites (79, 32

and 26 mm a-I during 1988/1989, 1991/1992 and 1992/1992 respectively) was

simulated during low rainfall years (e.g. 1988/1989 and 1991/1992), or, following a

year with low rainfall (e.g. 1992/1993).

The differences in the total evaporation of the grassland and transpiration of

E. viminalis trees were attributed to differences in the leaf area index, plant canopy

height and rooting depth, length of growing season, soil water 'availability, soil water

movement and depth of soil water extraction. Greenwood et al. (1985) and Dunin

(2002) also attributed total evaporation differences between grassland (and pastures)

and E. viminalis trees to differences in the depth of soil water uptake (or rooting),

seasonality, leaf area index and canopy height. Silberstein et al. (2001) noted the

importance of a deep soil profile at a Eucalyptus forest in retaining soil water from the

preceding rainfall season, in order to supply adequate soil water to maintain high

evaporation rates during long dry summers. Dunin (2002) also noted that the relative

soil water content at which the soil water limits the potential total evaporation varies

with the leaf area index. Calder (1998), using a limits concept, suggests that soil water

and physiological controls are the principle limits to evaporation of both tall and short

crops grown under dry temperate climates.

22 Total evaporation includes transpiration, soil evaporation and evaporation of intercepted water.
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Fig. 8.1 Annual total rainfall (top) and simulations of annual total evaporation, annual

drainage23 and annual soil water storage for the grassland (grass) and

E. viminalis (trees) sites from 1 July 1964 to 30 June 1994, and the differences

in annual total evaporation, annual total drainage and annual soil water storages

between the grassland and E. viminalis sites (grass minus trees)

23 The drainage presented in Chapter 9 is the bottom fluxes simulated with SWAP.
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Table 8.1 Total and annual average (ave), maximum (max) and minimum (min) rainfall,

total evaporation, soil water storage and drainage simulated at a grassland

(Grass) and E. viminalis (Trees) site over a 30-year period (1 July 1964 to

30 June 1994). G-T represents the difference in total evaporation, soil water

storage and drainage between the grassland and E. viminalis sites

Date Rainfall Total evaporation Soil water storage Drainage (mm)

(mm) (mm) (mm)

Grass Trees G-T Grass Trees G-T Grass Trees G-T

Total 20961 12353 16814 -4461 141 90 51 -8330 -4045 -4285

Ave 699 412 561 -149 5 3 2 -278 -135 -143

Max 1024 467 645 -178 141 110 31 -15 -4 -11

Min 347 283 362 -79 -69 -92 23 -553 -432 -121

Everson et al. (1998) found the total evaporation of grassland to range between 651

and 752 mm a-I, whereas Greenwood et al. (1985) found the total evaporation of grazed

pasture to be approximately 400 mm a'l. By contrast with the lower total evaporation

for grassland, Greenwood et al. (1985) estimated total evaporation by Eucalyptus

plantations, with phreatophytic root systems to be between 1600 and 2700 mm a,l.

Kallarackal and Somen (1997) found that the transpiration of E. terticornis was 853 and

1563 mm a'l for the rain-free days of two sites, whereas Soares and Almeida (2001)

found the total evaporation of a Eucalyptus plantation to be 1345 mm a'l. Shiva and

Banyopadhyay (1983) found annual total evaporation for Eucalyptus to be 1200 mm a-I,

whereas Raper (2000) quoted values between 182 mm a'l (Hookey et al., 1987) and

2690 mm a'l (Greenwood et al., 1985). Differences in the annual total evaporation

therefore exist between the various Eucalyptus species grown under different

conditions.
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8.3.2 Drainage
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The consistently greater total evaporation at the E. viminalis site throughout the

simulation period, resulted in consistently lower (11 to 121 mm a-I lower) drainage
24

at

the E. viminalis site, compared to the grassland site (Fig. 8.1, Table 8.1). The drainage

at the grassland site ranged between 15 and 553 mm a-I and between 4 and 432 mm a-I

at the E. viminalis site. During a number of years, the drainage at the E. viminalis site

was less than 50 mm a-I (1965/1966,1972/1973, 1978/1979, 1981 to 1985, 1988/1989

and 1991 to 1993). During these years the annual rainfall was close to or less than the

long-term average rainfall (Fig. 8.2). However, the simulation for the grassland site

showed that drainage less than 50 mm a-I occurred only during 1982/1983, 1988/1989

and 1991 to 1993.

Jenkin and Irwin(1975) (cited by Dumsday et al., 1989) found that in catchments

under complete forest cover, recharge (and therefore drainage) was negligible. Raper

(2000) also found that groundwater levels of pasture areas continued to increase

whereas that under tree plantations declined.
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Fig. 8.2 Annual total drainage at the grassland (grass) and E. viminalis (trees) sites, and

annual total rainfall exceeding the annual long-term average rainfall (Rain­

Rainlong) from 1 July 1964 to 30 June 1994

24 The bottom flux refers to the vertical flux of water out of the soil profile, and is generally drainage
beyond the rooting zone.
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Le Maitre and Scott (1997), AlIen and Chapman (2000) and Gush et al. (2002) also

illustrated how afforestation or deforestation at a catchment level changed the

streamflow. Van Lill et al. (1980), Van Wyk (1987), Bosch and Smith (1989), Lesch

and Scott (1993) (cited by Versfeld et al., 1998) found that the catchment water yield

decreased by up to 100 % following afforestation with Eucalyptus species. Dunin

(2002) found that the recharge to the groundwater of three communities studied

(Eucalyptus trees, lucerne, and annual crop and pasture), was approximately equal to the

difference between annual rainfall and total evaporation.

In Western Australia, the effect of Eucalyptus trees on the soil water balance was also

shown. Trees in the Mediterranean Australia are referred to as "biological wicks",

drawing water from the water table throughout the year. After the removal of the

indigenous deep-rooted Eucalyptus species for agricultural and mining purposes, the

level of the groundwater tables increased, flushing salts to the surface, increasing the

salinity levels in the streams. The result is less arable land (Peck, 1983; Dumsdayet

al., 1989; Bell et al., 1990; Leuning et al., 1991; Morris, 1991; Schofield, 1991;

Ward, 1991 cited by Versfeld et al., 1998; Raper,2000; Dunin, 2002). In Western

Australia, reforestation of areas with higher groundwater levels, where pasture

previously existed, showed relationships between groundwater table reduction and the

area reforested. Sikka et al. (2003) illustrated how a conversion from grassland to

E. globulus decreases the low flow, peak flow and soil moisture losses in South India.

These changes were more pronounced during the second rotation.

For above-average rainfall conditions, the drainage at both sites was directly related

to the rainfall and the amount by which the rainfall exceeded the long-tenn average

rainfall (Fig. 8.2). Where the rainfall exceeded the long-term average by more than

300 mm a-I, the drainage reached maximum values exceeding 400 mm a-I and

500 mm a-I at the E. viminalis and grassland sites respectively. Hodgson et al. (2001) .

also suggested that during a single high rainfall year, up to three times more recharge is

likely than during a normal year.
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8.3.3 Soil water storage change
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The changes in the soil water storage simulated for grassland and E. viminalis trees,

were small at both sites. In the simulations, the bottom boundary conditions at both

sites were set to be free drainage out of the soil profile. This resulted in a small increase

in profile soil water content or soil water storage from year-to-year and over the 30-year

simulation period. Under those conditions nearly all the excess rainfall (i.e. not

evaporated) exited the soil profile as drainage. Therefore, the soil water storage at both

the grassland and E. viminalis sites remained fairly constant over the

30-year simulation period (Fig. 8.1). Differences in the vegetation type did therefore

not affect the soil water storage in the long-term, and the long-term average soil water

storage at the grassland and E. viminalis sites were only 5 mm a· 1 and 3 mm a· 1

respectively. Therefore, there were only a few years during which the soil water storage

changed by more than 50 mm a·1 (Fig. 8.1). In general, nearly all of the soil water as a

result of rainfall was utilized or removed from the soil profile by either total evaporation

or drainage. The maximum annual increase in soil water storage at the grassland

(141 mm a· l
) and E. viminalis sites (110 mm a· l

) occurred during 1964/1965 and

1983/1984 respectively with respective annual rainfalls of 730 and 800 mm. The

maximum annual soil water depletion (69 and 92 mm a· 1 at the grassland and

E. viminalis sites respectively) occurred during 1991/1992 for which the rainfall was

403 mm a· 1 (Fig. 8.1).

Holmes and Wronski (1981) (quoted by Lima, 1984) found much larger differences

in the soil water storage between a Eucalyptus forest (up to 250 mm a· l
) and annual

crops (180 mm a'I). Lima (1984) also quoted Nicolls et al. (1982) who found an

increase in the soil water depletion over time, after planting. During the first year, the

soil water was not depleted, but during the second year, the soil water depletions were

80 mm over a 2-m soil depth, compared to 230 mm for mature trees. Sharma (1984)

found under soil conditions without the effect of a water table, the soil water deficit

under Eucalyptus forest was about three times larger than that under pasture. Sharma

(1984), in a study on the total evaporation of E. marginata and E. calophylla, found that

water was extracted from depths up to 6 m, creating a soil water deficit of up to

450 mm, compared to less than 150 mm under annual pastures.
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8.4 Importance of the different soil water balance components in

relation to rainfall
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The magnitude (and therefore the importance) of total evaporation, soil water storage

and drainage25
, in relation to rainfall is shown (Fig. 8.3). Over the 30-year simulation

period, the largest soil water balance component next to rainfall was total evaporation

(Fig. 8.3). At the grassland and E. viminalis sites the total evaporation as a percentage

of rainfall (total evaporation/rainfall) ranged between 43 and 86 %, and 55 and 121 % at

the grassland and E. viminalis sites respectively. The exception at the grassland site

was during 1991/1992 where the total evaporation exceeded the annual rainfall

(403 mm a-I) by 14 %. Sharma (1984) and Dunin (2002) found that the total

evaporation of a Eucalyptus catchment was more than 70 % and 80 % of the annual

rainfall respectively. Soares and Almeida (2001) found that the total evaporation of

Eucalyptus was 96 % of the rainfall.

The drainage was also a significant proportion of the rainfall, especially at the

grassland site. In some instances the absolute magnitude of the drainage and total

evaporation was similar (e.g. 1979 to 1981). At this site the magnitude of the drainage

ranged between lO and 54 % of the rainfall, but was lower at the E. viminalis site and

ranged between 1 and 43 % (Fig. 8.3). Therefore, up to 54 and 43 % of the rainfall can

potentially result in drainage at the grassland and E. viminalis sites respectively.

The soil water storage was a small proportion of the water balance and the annual

rainfall (Fig. 8.3). The fractional soil water storages (soil water storage/rainfall) were

similar for both sites, and ranged between 0 and 20 % for the grassland site and 0 and

22 % for the E. viminalis site (Fig. 8.3). The highest soil water storage fraction at the

E. viminalis site was simulated during a dry year, when the soil water storage was

depleted by 22 %. However, the highest value (soil water storage/rainfall) for the

grassland was during a wet year, when the soil profile was recharged by 20 % through

rainfall.

25 The bottom fluxes discussed here refer to an absolute bottom flux.



Chapter 8 128

1986 1988 1990 1992 1994

Grassland

•
• • •• • • •• • •• x x • • ~• • • •x • • x x xx x

x x xx I
II ~ ~ I

o .J--':;-"--...2.0--"i-----"--¥--e:;'---i;>---'=."'---'i~'__'nJ_..__.;-;___'.~'---'.~;>___l~T__:L.-:;:..o -~~+-.--"---'i---"----,.:-~---"'--"'--__1l

1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984

140

120

100
]I

80c
"i§ •'0 60 • • • •• x •~

40 • x xx x x x

20 ~

-+- ET/Rain ---<;-- dS/Rain __ D/Rain

•

1988 1990 1992 1994

E. viminalis trees

1974 1976 1978 1980 1982 1984 1986

x

•
x

I
• • • • • • • •• •••• • • • • I

,:::, :: · ,::,1
o -l-_-lf-J;i.n--"i-~----"~--;:~---"~--'i_,,--,'---;O~o.......:~O"--'XT__·:J,,-O"--'"--TX--,,-0--,--5(_'~---,'X-'-'~--T--",n'---rc---,-~,--1l_
1964 1966 1968 1970 1972

140

120

100 •
]I

80c •.~
'0 60
~

40

20
IS

-+- ET/Rain ~ dS/Rain __ D/Rain

Fig. 8.3 Simulated annual total evaporation (ET/rain), annual total drainage (BF/rain)

and annual total soil water storage (dS/rain) as a percentage of the annual total

rainfall, for the period 1 July 1964 to 30 June 1994 for the grassland (top) and

E. viminalis (bottom) sites

The results from the measurements confirm the simulations. The soil water balance

results presented above are therefore likely to represent what happens in the long-term if

the vegetation is changed from grassland to E. viminalis. The results from both the

measurements and soil water balance simulations showed that the total evaporation is

increased when grassland is replaced by E. viminalis trees.

8.5 Seasonal differences in the soil water balances simulated for

grassland and E. viminalis trees

The lower annual drainage for the E. viminalis site, compared to that for the grassland

site (Fig. 8.1), was mainly the result of the greater annual total evaporation for the

E. viminalis site. The differences in the annual drainage for the two sites were the result

of the seasonal differences in the drainage caused by seasonal differences in total

evaporation. The daily (Figs 8.4 and 8.5) and accumulated (Fig. 8.6) total evaporation



Chapter 8 129

and soil water storage illustrate the effect of different vegetation types on the drainage

under different climatic conditions.
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Fig. 8.4 Simulated daily total evaporation (top), daily soil water storage (middle) and

daily total drainage for the grassland (grass) and E. viminalis (trees) sites

(bottom) during an above-average rainfall year (1966/1967). Bars represent

daily total rainfall.
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daily total drainage for the grassland (grass) and E. viminalis (trees) sites

(bottom) during a below-average rainfall year (1988/1989). Bars represent

daily total rainfall.

Drainage occurs at both sites during the rainy season and normally follow large

rainfall events (Figs 8.4 and 8.5)_ But, for below-average rainfall conditions (e.g.

1988/1989), drainage are limited to large rainfall events (Fig. 8.5). Also, drainage at

both sites is smaller in magnitude for below-average rainfall years (0 to 4.8 mm dol)

than during above-average rainfall years (0 to 35.3 mm dol) (Fig. 8.5). During an

above-average rainfall year (e.g. 1966/1967), the daily drainage at the grassland site (up

to 35.3 mm dol) exceeded that at the E. viminalis site (up to 23.4 mm dol) (Fig. 8.4),

whereas fluxes for a below-average rainfall year are similar (4.6 and 4.8 mm dol in

magnitude at the grassland and E. viminalis sites respectively) (Fig. 8.5).
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grassland (grass_dS) and E. viminals tree sites (trees_dS) over the same period
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Although the daily drainage shows an immediate response to individual rainfall

events (Figs 8.4 and 8.5), the accumulative rainfall, soil water storage and total

evaporation show the net effect of both immediate and lagged changes in the soil water

balance components for both grassland and E. viminalis sites, on the drainage over the

season (Fig. 8.6).

For example, following the start of the rainy season of an above-average rainfall year,

drainage at the grassland site occurred earlier than that at the E. viminalis site (Fig. 8.6).

At the grassland site, the accumulated drainage exceeded 20 mm after 185 mm of

rainfall (26 November 1966), whereas the drainage at the E. viminalis site only

exceeded 20 mm in magnitude a month later on 25 December 1966, after 352 mm of

rainfall. The lower and lagged drainage at the E. viminalis site was the result of greater

accumulated total evaporation (103 mm vs 232 mm at the grassland and E. viminalis

sites respectively) and soil water storage (61 mm vs 99 mm at the grassland and

E. viminalis sites respectively) (Fig. 8.6).

Very little drainage occurred during below-average rainfall years (e.g. 1988/1989)

and depended on large rainfall events (Figs 8.5 and 8.6). Under these conditions, the

accumulated rainfall was less than the total evaporation at both grassland and

E. viminalis sites from July 1988 until January 1989; no drainage occurred whilst the

soil water storage was slowly depleted at both sites. Furthermore, during this period,

the accumulated total evaporation at both sites was very similar (Fig. 8.6).

The greater annual and accumulated total evaporation at the E. viminalis site

especially during above-average rainfall years, and the associated lower soil water

storage and drainage compared to the grassland site, was the result of the lower total

evaporation and the lag in the start of the total evaporation (specifically transpiration) at

the grassland site (Figs 8.4 to 8.6). These transpiration differences simulated are the

result of differences in the seasonality of the grass and E. viminalis trees. The E.

viminalis trees grow for the entire year, and therefore the total evaporation (and

specifically the transpiration) will be maintained throughout this period, but will depend

on the soil water availability (and rainfall) and the energy available to drive evaporation.

However, the grass grows for only a limited number of months of the year'and total
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evaporation and the start of total evaporation (and transpiration) is dependent on

physiological factors as well as climatic conditions.
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The trends in the daily total evaporation at both sites were similar under both above

and below-average rainfall years (e.g. 1966/1967 and 1988/1989). During above­

average rainfall years, maximum total evaporation was reached during summer (6.3 and

5.2 mm d-I at the E. viminalis and grassland sites respectively), and minimum total

evaporation during winter (less than 0.5 mm d-I at both sites) (Fig. 8.4). The largest

differences in total evaporation between the two sites occurred at the start of summer,

and during autumn and winter following rainfall events. During these periods, the total

evaporation at the E. viminalis site exceeded that at the grassland site by as much as

2 mm d-I (Fig. 8.4). The greater total evaporation at the E. viminalis site during these

periods is therefore dependent on rainfall events and soil water availability26. The

increase in soil water storage at the E. viminalis site following a rainfall event was

quickly depleted by the increased total evaporation by the E. viminalis trees (Fig. 8.4).

However, under below-average rainfall conditions, the period with total evaporation

exceeding 0.5 mm d-I was much shorter than that of an above-average rainfall year

(Fig. 8.5). Here, significant total evaporation occurred only following rainfall events

(Fig. 8.5), but reached maximum values of up to 5.6 and 6.4 mm d-I at the E. viminalis

and grassland sites respectively. The periodically greater total evaporation at the

grassland site compared to the E. viminalis site suggests soil water stress experienced by

the trees resulting in lower total evaporation. As the soil water storage was more

depleted at the E. viminalis site than that at the grassland site, less soil water was

available to drive total evaporation at the E. viminalis site (Fig. 8.5).

26 SWAP, used for the soil water balance simulation, is a supply demand limited model, and the total
evaporation is therefore directly related to the soil water availability_
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8.6 Accumulated differences in the soil water balances simulated for

grassland and E. viminalis trees for a tree rotation

The effect of the different vegetation types, grassland vs E. viminalis, on the drainage

beyond the root-zone and the other soil water balance components over an extended

period, is clearly illustrated through the accumulated differences in the drainage for

years three to ten of a tree rotation (Fig. 8.7, Table 8.2). The grassland and E. viminalis

tree site soil water balances (Fig. 8.7) are for the period 1 July 1972 to 30 June 1980,

from the time the trees reached complete canopy cover (year three of the tree rotation)

until maturity (year ten of the tree rotation).

During years three to ten of a tree rotation (e.g. 1 July 1972 to 30 June 1980), the

rainfall differed by 400 mm a'l, with five out of the eight years being above-average

rainfall years, and exceeding the long-term average rainfall by up to 289 mm a'l

(Fig. 8.7, Table 8.2). The rainfall increased from 578 mm a'l during the first year

(1972/1973) to a maximum of 969 mm a'l during the 3rd year, where after it decreased

again over the next four years to reach 569 mm a'l. The last year (1979/1980) was

again an above-average rainfall year (933 mm a,I). The rainfall over this eight year

period accumulated to 5995 mm.

From the start of this simulation period (1972/1973), the total evaporation at the

grassland was less than that at the E. viminalis site (Fig. 8.7). The difference in total

evaporation increased over the eight years to a total of 1268 mm. The greatest

difference in the total evaporation between the two sites, and the highest total

evaporation at the E. viminalis site occurred during the lowest rainfall years (1972/1973

and 1978/1979). The trees depleted the soil water storage by 42 and 102 nun a'l

respectively during these two years. During 1972/1973 and 1978/1979 the drainage at

both sites were also the lowest (-18 and -19 mm a'l at the E. viminalis site and -164 and

-146 mm a'l at the grassland site) of all eight years (Fig. 8.7). During the other years,

the total evaporation at the grassland site was consistently lower (by 121 to

157 mm a'I), than that at the E. viminalis site (Fig. 8.7, Table 8.2).
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Chapter 8 136

Table 8.2 Total and annual average (ave), maximum (max) and minimum (min) rainfall,

total evaporation, soil water storage and drainage simulated at a grassland

(Grass) and E. viminalis (Trees) site over years three to ten of a tree rotation

(e.g. 1 July 1972 to 30 June 1980). G-T represents the difference in total

evaporation, soil water storage and drainage between the grassland and

E. viminalis sites

Date Rainfall Total evaporation Soil water storage Drainage (mm)

(mm) (mm) (mm)

Grass Trees G-T Grass Trees G-T Grass Trees G-T

Total 5995 3303 4571 -1268 -13 -17 4 -2667 -1432 -1235

Max 969 458 632 - -22 -82 - -526 -419 -
Min 569 378 514 - -4 84 - -146 -18 -

The total evaporation difference of 1268 mm between the two sites over the eight

year period (or average 0.43 mm d,I), was directly translated into a difference of

1235 mm in the drainage (or average of 0.42 mm d,l) with the lower drainage occurring

at the E. viminalis site (Fig. 8.7). The similar total evaporation and drainage differences

were the result of the small changes in and similar soil water storages at the grassland

(-13 mm) and E. viminalis (-17 mm) sites over the eight year period (Fig. 8.7,

Table 8.2).

Therefore, for this site with a rainfall of 5995 mm over eight years, a rotation of trees

instead of grassland, could increase the total evaporation by 1268 mm (or average

159 mm a,I). This increase in total evaporation could subsequently reduce the drainage

beyond the root-zone by 1235 mm more than a grassland over eight years (or average

154 mm a'I). This decrease is equivalent to 1540 m3 ha,l a,l or 1.54 Me ha,l a,l.
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8.7 Summary and conclusions
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The results from the modelling exercise illustrated the effect of different vegetation

types (grassland and E. viminalis trees) on all the soil water balance components (total

evaporation, soil water storage, runoff and drainage) in the short- and long-term, and not

only on the total evaporation (and transpiration) and the profile soil water storage in the

short-term as described in Chapters 6 to 7.

The results from the long-term simulations showed a higher total evaporation at the

E. viminalis site, compared to the grassland site as suggested by other authors. It

confirmed the hypothesis that afforestation with E. viminalis trees will cause a reduction

in the drainage beyond the root-zone. From the results it can be concluded that a stand

of E. viminalis trees with a closed canopy not only reduce the drainage below the root­

zone, but also delay the occurrence of the drainage, especially under above-average

rainfall conditions. The results further showed that a stand of E. viminalis trees has the

potential to reduce the drainage by 1235 mm more than grassland over a period of eight

years (or average 154 mm a-]). This decrease is equivalent to 1540 m3 ha-] a-I or

1.~4 MR ha-I a-I. The annual average reduction in drainage below the root-zone caused

by E. viminalis trees (1.79 MR ha-] a-I), is a small reduction when compared to the

influx of water into mineworkings. E.g. the influx of water into a bord-and-pillar mine

range between 0.5 and 4 M f d- I per area mined and up to 17000 M f d-I per area mined

under high extraction mining (Hodgson and Krantz, 1998; Hodgson et a!., 2001). It

can also be concluded that under conditions of above-average rainfall, drainage will

occur when the rainfall exceeds the long-term average rainfall, irrespective of the

existing vegetation. Hodgson et a!. (2001) also suggested that during a single high

rainfall year, up to three times more recharge is likely than during a normal year.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

This study focused on afforestation with Eucalyptus viminalis trees to limit the inhibit

ingress of water into mine workings. The hypothesis of this study was that a change in

vegetation, from grassland to fast-growing and potentially high water-using trees like

Eucalyptus, could potentially reduce the drainage of water below the root-zone and into

the mine workings.

The results from this study showed the differences in the soil water balance of a

grassland and an E. viminalis site. The results from both the field measurements and the

modelling show the lower profile soil water content at the E. viminalis site, compared to

the grassland site, and the associated higher total evaporation at the E. viminalis site,

compared to the grassland site. These results are in accordance with that found by other

authors (e.g. Greenwood et al., 1985). From the higher total evaporation and lower

profile soil water content calculated at the E. viminalis site, it is possible to conclude

that the drainage beyond the E. viminalis site would be lower than at the grassland site.

The results from the 30-year soil water balance modelling, supported the assumption

that E. viminalis trees could potentially reduce the drainage below the root-zone. The

modelling results further showed that the onset of drainage is delayed at the E. viminalis

site, compared to the grassland site.

The total evaporation and associated profile soil water content differences calculated

between the grassland and E. viminalis sites during the season were mainly the result of

differences in the depth of soil water extraction, associated root distribution and plant

physiological differences (including senescence). At the start of the growing season in

spring, the total evaporation of grassland exceeded the transpiration of E. viminalis trees

because of physiological differences, the availability of soil water to roots and a

pathogen infection at the tree site. However, maximum transpiration rates of

E. viminalis trees (up to 9 mm dol) were reached towards the end of spring and during
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summer, and exceeded the maximum total evaporation of grassland (6 to 8 mm d-I).

However, since the E. viminalis tree transpiration excludes evaporation of intercepted

water or transpiration of the understorey, it is expected that the total evaporation of E.

viminalis trees will exceed that at the grassland site even more. This higher

transpiration of E. viminalis trees could be attributed to the recovery of the E. viminalis

trees and the availability of soil water to the greater depth within the soil profile. It was

concluded that frost, fire and pathogens affect the state of E. viminalis trees, their

transpiration and their possible impact of a change in vegetation on the soil water

balance. However, minimum total evaporation of grassland occurs from autumn to

spring. During the winter period, the total evaporation of the grassland was expected to

be less than 0.5 mm dol , whereas the E. viminalis trees maintained transpiration rates of

1 to 3 mm d-I.

The relationship between the soil saturation (profile and individual soil layers) and

the transpiration, showed the dependence of E. viminalis trees on the availability of soil

water for maximum transpiration rates to be achieved. High transpiration rates

(> 5 mm dol) only occurred at high profile soil saturations (> 85 %). By contrast,

maximum total evaporation of grassland (> 5 mm d-I) was reachedunder low (55 to

60 %) and higher (> 90 %) profile saturation. However, the soil layers (0 to 300 mm)

containing the grassland roots had high saturations.

From the differences in the relative saturations of the soil layers at the grassland and

E. viminalis sites, it can be concluded that differences exist in the depth of soil water

extraction by roots and the associated root distribution. At the grassland site, major

changes in soil layer relative saturations during summer were only visible in the upper

300-mm soil depth. This is the result of water extraction by grassland roots during

summer. In contrast, no major changes in the relative saturations were observed within

the 500- to 900-mm soil depths, as no grassroots are generally situated at these dpehts.

However, at the E. viminalis site, the most important relative saturation changes

occurred at the 700- and 900-mm soil depths, where it is assumed that most of the tree

roots occur.
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The impact of E. viminalis trees on the site soil water balance, compared to the

grassland site, was illustrated in the differences in the profile soil water content and the

soil water storage changes. It can be concluded that the E. viminalis trees impact more

on the profile soil water content and the soil water storage changes than the grassland.

Throughout the experiment, the profile soil water content at the grassland site exceeded

that at the E. viminalis site. The largest differences occurred following frost (autumn)

and the senescence of the grassland, until the new growing season (spring). The

reduction in the soil water storage (1000 mm soil depth) at the grassland site was also

less than that at the E. viminalis site, throughout the season. The similar transpiration

rates and soil water storage change rates at the E. viminalis site, during periods of no

significant rainfall, suggest no or little drainage beyond the root-zone. It was concluded

that this reduction in the soil water storage can be translated into the transpiration by the

E. viminalis trees. However, it was concluded that the differences between the soil

water storage reduction at the grassland site and the total evaporation of the grassland,

will translate into the occurrence of drainage beyond the root-zone.

The results from the long-term simulations showed the higher total evaporation of

E. viminalis trees, compared to grassland and support the observations by other authors.

It confirmed the hypothesis that afforestation with E. viminalis trees will result in a

reduction in the drainage beyond the root-zone, compared at the grassland site. The

results showed how the E. viminalis trees with a closed canopy not only reduce the

drainage beyond the root-zone, but also delay the occurrence of the drainage, especially

. under above-average rainfall conditions. Over a period of eight years, a stand of

E. viminalis trees with a closed canopy has the potential to reduce the drainage by

1432 mm (or average 179 mm a-I). This decrease is equivalent to 1790 m3 ha-] a-I or

1.79 M e ha-I a-I. This is a small reduction when compared to e.g. the influx of water

into a bord~and-pillar mine where the influx of water range between 0.5 and 4 Mf dol

per area mined and up to 17000 Mf dol per area mined under high extraction mining

(Hodgson and Krantz, 1998; Hodgson et aI., 200 I). However, the simulation results

illustrated that under conditions of above-average rainfall, drainage will occur when the

rainfall exceeds the long-term average rainfall, irrespective of the existing vegetation.

Hodgson et al. (2001) also suggested that during a single high rainfall year, up to three

times more recharge is likely than during a normal year.
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A change in vegetation from grassland to E. viminalis (or from a vegetation type with

a short growing season, and a lower annual total evaporation, to a vegetation type with

an all year growing season and therefore a higher annual total evaporation), will reduce

and delay the drainage of water below the soil profile and therefore possibly into the

mine workings, especially under above-average rainfall years. However, where the

rainfall exceeds the long-term average rainfall, the type of vegetation will possibly not

influence the occurrence of drainage.

This work gave a comprehensive account of the differences in the soil water relations

of grassland and E. viminalis trees overlying coal mine working. Few other studies in

South Africa compared the total evaporation and soil water relations of grassland and

E. viminalis trees in so much detail. State of the art monitoring techniques were used

and produced valuable comparison of their use in expansive clay profiles. The work

should contribute to management decisions focussed on limiting ingress of water into

mine workings.

9.2 Recommendations relating to further research

9.2.1 General

Section 1.2.4 provides possible solutions to reduce the ingress of water into the mine

workings, and to manage the quality of this water. These include environmentally

related solutions, of which this study focussed on the effect of afforestation with

E. viminalis trees to prevent or manage drainage into mine workings. This study

showed the differences in the impact of grassland and E. viminalis trees on the site soil

water balance. The environmentally related solutions also include agroforestry or

agronomic measures. Afforestation (or reforestation), agroforestry or agronomic

measures therefore involve the planting of Eucalyptus or other high water-using trees or

vegetation upstream or downstream to decanting areas, or above high extraction panels

(Dumsday et aI., 1989; Versfeld et al., 1998; Hodgson et al., 2001; Jarmain et a!.,

2001). The use of deep-rooted, perennial crops, e.g. lucerne, instead of seasonal

shallow-rooted crops are suggested as well as intensive, continuous cropping with a
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decreased fallow period, minimum tillage, and an increased number of cultivations

(Dumsday et al., 1989).
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The effectiveness of afforestation with Eucalyptus species or re-vegetation with other

high water using vegetation in reducing drainage, compared to grassland in the

Highveld area of South Africa, will depend on the success of the establishment of the

vegetation (trees and other), and the cover (leaf area) reached (e.g. Versfeld et aI.,

1998), as conditions in the Mpumalanga mining area are less favorable for forestry than

other forestry areas in South Africa. Unfavourable conditions include an average

annual rainfall of 680 mm a-I, frost, shallow soil depths in some areas (less than

500 mm), and the swelling and shrinking characteristics of some soil forms. Other

factors that will influence the effectiveness of these trees include tree species selected,

position in the landscape, planting density, topography, underground mining method,

soil properties, depth of groundwater table and water quality.

As in the study by Versfeld et al. (1998) on the water use of different vegetation

types in the mining environments, this study does not provide "exact predictive

knowledge" (Versfeld et aI., 1998) in terms of water use or drainage into mine

workings. However, the current study does increase our knowledge on the possible

impacts of a change in vegetation on the soil water balance. Therefore, additional

research is required, to provide predictive tools in terms of water management and

vegetation changes. Versfeld et al. (1998) discuss research requirements in terms of

hydrology and silviculture and relating to afforestation, in detail. Hydrological

requirements include:

•

•

•

•

•

•
•

site water use,

species water use,

relationships between age class and water use,

grassland water use vs grassland management,

effectiveness of afforestation,

extrapolation of results to quartenary and primary catchment scale, and

effect of afforestation to manage water quality, on the water supply (Versfeld et

aI., 1998).



Chapter 9

Important silvicultural and site research requirements include:

• genetic selection and clonal propagation,

• root studies,

• forest management practices including species selection, method of

establishment, espacement, fertilization, length of rotation cycle and

regeneration methods,

• agroforestry,

• irrigation with waste water, and

• sustainability (Versfeld et al., 1998).

Recommendations relating to regional water resources, the use of alternative

vegetation types, and the increase of total evaporation to potential rates, will be

discussed below.

9.2.2 Impact of trees on the regional water resources
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Although advocating the growing of trees may be a solution for helping to prevent the

ingress of excess water into mines, the extensive planting of trees could have negative

impacts on the regional water resources of the Vaalriver catchment. This may conflict

with the allocatable water rights within the catchment. Since commercial forestry has

been declared a streamflow reduction activity in terms of the new National Water Act

(Act No. 36, 1998), licensing for afforestation would need to be considered. This would

have to be seen in the context of the total amount of afforestation planned and its impact

on reducing the catchment water resources.

However, in the context of the Mpumalanga coal mining area and other mining areas,

the issues of water quality may far outweigh those of water quantity, and some form of

trade-off may be necessary. The economic implications of these issues would also need

to be studied. Thus, the impact of increasing the area planted with potentially high

water-using trees such as Eucalyptus species on the Vaalriver catchment needs to be

investigated.
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9.2.3 Research into the effectiveness of tree species other than

Eucalyptus, other agricultural crops and agroforestry, in preventing

and/or reducing drainage beyond the root-zone

A number of research projects have been concerned with the water use of grasslands

and Eucalyptus trees within the Highveld mining environment (Versfeld et a!., 1998;

Jarmain et al., 2001). Recommendations have been made on potentially high water

using Eucalyptus species suited to the Mpumalanga area (Versfeld et al., 1998). These

include E. viminalis, E. macarthurri, E. camaldulensis, E. smitthi and E. nitens. Local

and international research on catchment hydrology has also been concerned with the

effect of afforestation with Eucalyptus trees on the water balance.

Versfeld et a!. (1998) also suggested the use of Acacia mearnsii, mulberries

(Morus spp.) and willows (Salix spp.). However, in South Africa, little is known about

the water use of these species, other potentially high water using indigenous trees and

agroforestry combinations. Weiersbye (2002) is involved in trials testing the potential

impact of woody, semi-woody vegetation (indigenous and exotic/invading) and other

vegetation (e.g. reeds) in containing pollution. These options need to be investigated

further.

Other important options that need to be investigated, include agroforestry systems

(Versfeld et al., 1998; Dumsday et a!., 1989), deep rooted perennial grasses (Versfeld

et al., 1998) and legumes (Dunin, 2002), mUlti-cropping systems (Dunin, 2002), and

strip planting (White et al., 2002).

Although, Eucalyptus has been used to drain marshes, and manage waterlogging and

salinity, White (2000) and Dunin (2002) suggested that mixed plantings (Eucalyptus

species, perennial, woody, herbaceous species, lucerne), may result in a significant

change in the drainage as the soil water of a larger portion of the profile will be utilized.

Dunin (2002) found that a combination of 12 % mixed tree cover, 30 % lucerne and 58

% agricultural crops or pasture, will also control the drainage to within 5 mm a-I. White

et al. (2002) confirmed that where groundwater is accessible, contour-planted belts

comprising four Eucalyptus species are effective in reducing groundwater recharge,

with minimum tree-crop competition for water.
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9.2.4 Research into the increase of evaporation of trees (or high water

use agricultural crops) to potential evaporation rates, through

irrigation
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If trees or grasses were transpiring at potential rates, a larger fraction of the rainfall

would be evaporated back into the atmosphere and even less water would be available

to drain beyond the root-zone. Evaporation rates equal to or exceeding potential rates,

occur when enough energy is available to drive evaporation and when enough soil water

is available to avoid any possible drought (soil water) stress conditions. For trees,

drought stress generally occurs during winter and parts of autumn and spring. Irrigating

trees during these periods could therefore result in maximum evaporation being

maintained for a longer time period. It may also present a way of reducing excess water

in storage dams. Research into ways of increasing transpiration by trees, deep-rooted

perennial crops and agroforestry combinations to potential levels, through irrigation

could therefore be valuable. Bamard et al. (1998) has been involved in screening crops,

pastures and wetland species for tolerance of polluted water originating in coal mines.
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APPENDIX A

SOIL DESCRIPTION FOR THE GRASSLAND AND E. VIMINALlS SITES

A.1 Introduction

The soil physical (particle size distribution, bulk density), chemical (electrical

conductivity, soil pH, saturation extract) and water retention data for the different soil

layers at the E. viminalis and grassland sites, and for the soil calibration samples taken

at the grassland site were different. Definitions of the characteristics included in the

descriptions of the soil layers, are given below.

A.2 Definitions

A.2.1 Particle size distribution

The particle size distribution defines the soil texture. It gives the percentage of each

size fraction (or effective diameter) into which a dispersed soil sample has been

separated (Soil Classification Working Group, 1991; Surnner, 2000).

A.2.2 Bulk density

The bulk density of a soil is defined as the mass of dry soil per unit bulk volume (Psoil).

It provides an estimate of the state of compaction and the amount of pare space in a soil

(Soil Classification Working Group, 1991; Sumner, 2000).

A.2.3 Van-Genuchten parameters

The Van-Genuchten parameters are defined in Section 3.2.6.
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A.2.4 Porosity
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The porosity of a soil can be defined as the volume of pores in a soil sample (non-solid

volume) as a fraction of the bulk volume of the sample (Soil Science Society of

America, 2001).

A.2.5 Electrical conductivity

Salinity or total salt concentration can be expressed in terms of the specific electrical

conductance (EC) (Soil Classification Working Group, 1991; Surnner, 2000).

A.2.6 Soil pH

The Soil Classification Working Group (1991) defines the soil pH as "The degree of

acidity (the negative logarithm to the base 10 ofthe hydrogen ion actiivty) ofa soil at a

specified soil to suspension medium (e.g. 1 to 2.5 soil:water) ratio". The suspension

medium can be either KCl or H20, and must be specified when reporting the pH (Soil

Classification WOl'king Group, 1991).

A.2.7 Saturation extract

Soil Classification Working Group (1991) defines the saturation extract as "The solution

which is extracted under suction from a saturated soil paste". These solutions can

include sodium (Na), calcium (Ca), magnesium (Mg) and potassium (K).

A.2.8 Sodium adsorption ratio

The sodium adsorption ratio (SAR) provides a measure of the quality of a solution in

terms of the sodium content and is approximately equal to the exchangeable sodium of

the soil. The sodium adsorption ratio is given as:
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Na
SAR=--====

~Ca~Mg
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A.l

where Na, Ca and Mg refers to the concentration sodium, calcium and magnesium in

mmol dm-3 (Soil Classification Working Group, 1991).

A.2.9 Colour

Soil colour is described in terms of the Munsell notation and varies with soil water

content. Soil water content status (wet or dry) therefore needs to be specified. The soil

colour is described in terms of the verbal colour and a notation. The notation refers to

hue, value and chroma. Hue refers to the dominant spectral colour, values to the

relative lightness of colour, and chroma to the relative purity of the spectral colour and

strength of the increase with decreasing greyness (Soil Classification Working Group,

1991 ).

A.2.10 Structure

The structure of a soil refers to "a natural aggregation ofprimary soil particles into

compound units or peds which are separatedfrom one another by planes or surfaces of

weakness". The structure of a soil is described in terms of the type, size and

distinctness of visible peds (Soil Classification Working Group, 1991).

A.2.11 Consistence

The consistency of a soil refers to the "degree ofcohesion or adhesion within the soil

mass, or its resistance to deformation or rupture" (Soil Classification Working Group,

1991). The consistency can be described when dry or wet.
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A.2.12 Nodules
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Nodules can be defined as bodies of a range of shapes, sizes and colour. These bodies

have been hardened to a greater or lesser extent by chemical compounds. These

compounds include lime, seszuioxides, animal excreta and silica. Nodules are described

in terms of kind, abundance, hardness and size (Soil Classification Working Group,

1991 ).

A.3 Properties ofsoil layers at field research sites, and that of

calibration soil samples

The 100-, 300-, 500-, 700- and 900-mm soil layers at the grassland and E. viminalis

sites studied, and the soil samples used in the sensor calibration, are described in terms

of their particle size distribution, bulk density, electrical conductivity, soil pH,

saturation extract, Van-Genuchten parameters and porosity (Tables Al to A 7). The

water retention characteristics (pressure head vs volumetric soil water content) of these

soil layers are given in Figure Al. The water retention characteristics up to 1 bar was

determined using a controlled outflow cell technique (Lorentz, 1993) and over 1 bar

using the standard pressure plate technique (Dane and Hopmans, 2002). The Van­

Genuchten parameters were determined with RETC, using the data from the water

retention curves (Table A6).

The diagnostic soil horizons at the grassland and E. viminalis sites are described in

tenns of their colour, structure, consistency, and occurrence of fragments and nodules

(Tables A 8 to Al 0).
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Table A.1 Particle size distribution, expressed as a percentage, for different soil depths

at the grassland and E. viminalis sites studied, and for the soil samples used

in the sensor calibration

Soil information Particle size distribution

Site Soil form Soil depth Clay Silt Sand

(mm) (%) (%) (%)
Grassland Rensburg 100 24 24 49

300 46 16 34
500 56 14 30
700 50 17 31

E. viminalis Rensburg 100 36 17 43
300 41 16 38
500 50 13 34
700 36 16 47
900 37 15 46

E. viminalis Arcadia 100 26 20 52
300 44 15 38
500 48 11 39

Calibration Rensburg 100 21. 23 56
300 36 33 32
500 33 27 40
700 19 21 59

Table A.2 Bulk densities for different soil depths at the grassland and E. viminalis sites

studied, and for the soil samples used in the sensor calibration

Soil depth (mm) Bulk density (kg m"j)

Site Grassland E. viminalis Calibration
Soil form Rensburg Rensburg Rensburg

100 1.603 1.556 1.402
300 1.526 1.383 1.401
500 1.363 1.385 1.273
700 Not available 1.360 1.519



Appendices

Table A.3 Electrical conductivity for different soil depths at the grassland and

E. viminalis sites, for the Rensburg and Arcadia soil forms

Depth (mm) Electrical conductivity (mS mol)

Site Grassland E. viminalis E. viminalis

Soil form Rensburg Rensburg Arcadia

100 44.20 27.90 34.10

300 41.60 32.90 25.00

500 86.50 56.00 80.30

700 94.70 35.10 Not available

900 Not available 41.20 Not available

Table AA Soil pH (H20) for different soil depths at the grassland and E. viminalis sites,

for both the Rensburg and Arcadia soil forms

Depth (mm) Soil pH

Site Grassland E. viminalis E. viminalis

Soil form Rensburg Rensburg Arcadia

100 4.96 6.53 5.05

300 7.02 6.68 6042

500 7.87 8.25 8.12

700 8.04 8.15 Not available

900 Not available 8.13 Not available
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Table A.5 Na, Ca, Mg and K saturation extracts and sodium adsorption ratio (SAR) for

different soil depths at the grassland and E. viminalis sites for both the

Rensburg and Arcadia soil fonns

Saturation extract (me L-1
)

Site Soil form Depth Na Z7 Ca Mg K SAR

(mm)

Grass Rensburg 100 0.71 1.56 1.12 0.23 0.61

300 2.18 0.93 0.88 0.02 2.29

500 4.49 2.07 2.15 0.04 3.09

700 5.28 2.20 2.29 0.06 3.52

E. Arcadia 100 0.48 1.17 0.89 0.18 0.47

viminalis 300 0.99 0.67 0.56 0.03 1.26

500 4.36 1.85 1.58 0.02 3.33

E. Rensburg 100 1.51 0.55 0.49 0.03 2.09
viminalis 300 1.90 0.54 0.49 0.02 2.65

500 3.35 1.15 1.13 0.03 3.14

700 1.88 0.87 0.85 0.03 2.03

900 2.91 0.58 0.57 0.05 3.84

27 J cmol (+ or - charge) kg'l = 10 mmol (+ or - charge) kg'l = 1 me 100 g'l = 10 me kg'l
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Table A.6 Van-Genuchten parameters estimated with RETe (Van Genuchten et al.,

1991) for different soil layers at the E. viminalis and grassland sites, and for

the soil samples used in the sensor calibration

Site Soil Depth Van-Genuchten parameters

form (mm) Bs BR a It m

(m3 m-3
) (m3 m-3

) (mm-I)

Grassland Rensburg 100 0.395 0 0.0088 1.0956 0.0872

300 0.427 0 0.0132 1.0813 0.0752

500 0.49 0 0.0086 1.114 0.1023

700

Fitted No No Yes

E. viminalis Rensburg 100 0.394 0 0.0276 1.0816 0.0754

300 0.478 0 0.029 1.0834 0.0769

500 0.482 0 0.0165 1.0346 0.0335

700 0.495 0 0.0032 1.0547 0.0519

Fitted No No Yes

Calibration Rensburg 100 0.35 0 0.0008 1.2075 0.1718

300 0.57 0 0.007 1.1028 0.0932

500 0.52 0 0.0002 1.3267 0.2462

700 0.44 0 0.0009 1.1632 0.1403

Fitted No No Yes

Table A.7 Porosity for different soil depths at the grassland and E. viminalis sites, and

for the soil samples used in the sensor calibration

Soil depth (mm) Porosity (m3 m-3
)

Site Grassland E. viminalis Calibration
Soil form Rensburg Rensburg Rensburg

100 0.395 0.413 0.471
300 0.424 0.478 0.471
500 0.486 0.477 0.520
700 Not available 0.487 0.427
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Fig. A.I Top to bottom: Water retention functions (pressure head vs volumetric soil

water content) for different soil depths at the grassland and E. viminalis sites,

and for the soil samples used in the sensor calibration
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AA Description of soil profiles and diagnostic soil horizons at

grassland and E. viminalis sites
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Soils at the grassland and E. viminalis sites were classified according to the Taxonomic

Soil Classification System for South Africa (Soil Classification Working Group, 1991).

Two soil forms were identified in the vicinity of the grassland and E. viminalis sites,

namely the Rensburg and Arcadia soil forms. The Rensburg soil form was found at

both the grassland and E. viminalis sites, whereas the Arcadia soil form was only found

at the E. viminalis site. Du Toit (1993) noted that a broad range of soil forms (from

Rensburg to Swartland) occurred within the Brandspruit Management Unit area, and

included the Rensburg and Arcadia soil forms. Both the Rensburg and Arcadia soil

forms consist of clays with an expansive nature. This could possibly hamper root

development and would result in shallow effective soil depths. The subsoil of both the

Rensburg and Arcadia soil forms are also generally prone to waterlogging during

summer.

The Rensburg and Arcadia soil forms are described in terms of colour, structure and

consistence (Tables A.8 to A.l 0) according to the Taxonomic Soil Classification

System for South Africa (Soil Classification Working Group, 1991).

A.4.1 Description of the Rensburg soil profile at the grassland and E.

viminalis sites

The Rensburg soil form consists of a Vertic A-horizon (0 to 0.50 m) overlaying a G­

horizon (deeper than 0.50 m). The Vertic A-horizon has a high clay content. The

smectic clay minerals possess the capacity to swell and shrink markedly in response to

soil water changes. The swell-shrink potential is manifested typically by the formation

of vertical cracks in the dry state and the presence, at some depth, of slicken sides (Soil

Classification Working Group, 1009). The Vertic A-horizons have a characteristic

appearance with a strongly developed structure, ranging from moderate blocky to

strong, medium angular blocky. The Vertic A-horizon had a very dark colour, ranging

from black to very dark black clay. The dark colour develops under semi-arid to sub­

humid climates. The parent material is either rocks that are basic or intermediate with
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regards to the base reserve, or sediments in landscape positions which receive additions

of bases via lateral drainage of water (Soil Classification Working Group, 1990). The

A-horizon has a firm consistency when moist and has a moderate to strong medium

angular blocky structure. The A-horizon at the grassland site had a strong medium

angular structure, with a firm consistency (Table A.8). The A-horizon of the Rensburg

soil form at the E. viminalis site had a moderate medium angular blocky to a weak fine

blocky structure when dry (Table A.9).

Table A.8 Soil profile description of the Rensburg form at the grassland site

Form: Rensburg

Locality: Secunda

Site: Grassland

Family: Rietkuil

Vegetation: Grassland

Soil Description Diagnostic

depth horizons

(mm)

100 Colour - Black (7.5YR/2.5/1) (moist) Vertic A

Structure - Moderate blocky

Consistence - Firm

300 Colour - Very dark clay (7.5 YR/3/l) (moist)

Structure - Strong medium angular blocky

Consistence - Firm

500 Colour - Olive grey (5y/5/2) (moist) G

Structure - Strong medium angular blocky

Fragments - Few (20 %) angular gravel fragments

(less than 10 mm)

Consistence - firm

700 Colour - Olive grey (5 YR/5/2) (moist)

Fragments - Common angular gravel fragments

Nodules - Few fme soft lime and manganese nodules

Consistence - Firm
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Table A.9 Soil profile description of the Rensburg fonn at the E. viminalis site
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Form: Rensburg

Locality: Secunda

Site: Rensburg site

Family: Rietkuil

Vegetation: E. viminalis

Depth Description Diagnostic

(mm) Horizons

100 Colour - Black clay (5 YR/2.5/l) (moist) Vertic A

Structure - Moderate medium angular blocky

(dry)

Consistence - Finn

300 Colour - Black clay (7.5YR/2.5/l) (slightly moist)

Structure - Moderate medium angular (dry)

Consistence - Finn

500 Colour - Dark grey (10 YR/4/l) (slightly moist)

Structure - Moderate medium angular blocky

(dry)

Consistence - Finn

Fragments - Few fine lime

700 Colour - Dark greyish brown (2.5Y/4/2) (slightly

moist)

Fragments - Few manganese and lime fragments

Structure - Weak fine blocky (dry)

Consistence - Slightly finn

Fragments - Few fine manganese and lime

fragments

900 Colour - Dark brown (IOYR/3/3) Weathering

Weathering dolorite dolorite
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The G-horizon (gleyed) is generally saturated with water for long periods, unless

drained. The G-horizon has an olive grey colour (grass) or a colour ranging from dark

grey through to dark greyish brown. Gleying, with the reduction of ferric oxides and

hydrated oxides, is the essential process to which the G-horizon is subjected. Grey, blue

and green colours predominate, but stains of ferric and manganese oxides and hydrates

(yellow, brown, red and black) may be present and indicate localized areas of better

aeration. Grey colours are due to an absence of iron compounds, and blue and green are

due to the presence of ferrous compounds.

The G-horizon at the grassland site had a slightly firm to firm consistency when wet.

The structure of the G-horizon ranged from strong medium angular (500 mm) to weak

fine blocky (700 mm). Angular fragments occurred, becoming common with depth. A

few fine soft lime and (iron-) manganese nodules also occurred. A few fine manganese

and lime fragments occurred. Lime and manganese fragments suggest higher levels of

alkalinity as a result of reduced leaching in the G-horizon in this horizon compared to

the Vertic A-horizon. (Usually, but not always, marked clay illuviation takes place

especially in the upper part of the G-horizon) (Table A.8).

A.4.2 Description of the Arcadia soil profile at the E. viminalis site

The Arcadia soil form (Table A.lO) consists of a Vertic A-horizon (0 to 700 mm),

overlaying parent material (e.g. sandstone). The Vertic A-horizon has a black to black

clay colour close to the soil surface. A very dark greyish brown layer overlies the

weathering sand stone. The structure of this horizon varies between weak medium

crumb (100 mm) and strong medium blocky when dry and the consistency ranged

between slightly firm (300 mm) to firm when moist. Very hard, fine lime nodules

occurred at depths exceeding 500 mm (Table A.lO).
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Table A.l 0 Soil profile description ofthe Arcadia fonn at the tree site
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Form: Arcadia

Locality: Secunda

Site: Arcadia site

Family: Rustenburg

Vegetation: E. viminalis

Soil Description Diagnostic

depth Horizons

(mm)

100 Colour - Black (7.5YRJ2.5/1) (slightly moist) Vertic A

Structure - Weak medium crumb (dry)

Consistence - Slightly finn (moist)

300 Colour - Black clay (7.5YRJ2.5/l) (slightly moist)

Structure - Strong medium blocky (dry)

Consistence - Finn (moist)

500 Colour - Very dark greyish brown (2.5YRJ3/2)

Lime nodules (high pH) - Very hard fine lime

nodules

Structure - Moderate fine blocky (dry)

Consistence - Finn (moist)

700 Sandstone Sandstone
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APPENDIX B

LABORATORY CALIBRATION OF SOIL SENSORS FOR SITE-SPECIFIC

CONDITIONS

B.1 Introduction

As part of the field experiment, soil water content and soil water potential was estimated

at different depths. These sensors were not calibrated prior to or during the field

experiment. However, relationships between sensor output and soil water content and

soil water potential is required to convert sensor output to soil water content (water

content reflectometer) or to soil water potential (heat dissipation sensor and

thermocouple psychrometer). Some sensors and their calibration relationships are

sensitive to site specific conditions and application of these calibration equations to

non-standard conditions could lead to inaccurate estimations of soil water content or

soil water potential. For example a water content reflectometer is sensitive to the

electrical conductivity, clay and organic matter content and to air temperature.

Therefore, when this sensor is used under non-standard conditions (e.g. clay content

greater than 30 %), the standard calibration polynomials may no longer apply

(Campbell Scientific Inc., 1996). Therefore for use ofthe soil reflectometer sensor

under non-standard conditions, individual calibration is required.

Therefore, soil water content (water content reflectometer) and soil water potential

sensors (heat dissipation) used in the field experiment, were calibrated for field specific

conditions. The thermocouple psychrometers were not calibrated in the laboratory since

the heat dissipation calibration function was to be used to obtain a calibration function

for the thermocouple psychrometer that relates sensor output to the field matric

potential.

In addition to the water content reflectomers and the heat dissipation sensors, time

domain reflectometers were included in the calibration. The reason for this was that

these sensors are often used in research, and the question arose as to whether the

equation suggested by Topp et al. (1980) and Ledieu et al. (1986) (cited by Campbell
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Scientific Inc., 1992), for the calculation of the soil water content, would apply to soils

with higher clay contents (greater than 30 %).

B.2 Materials and methods

Block soil samples of dimensions 500 mm x 300 mm x 200 mm were removed from the

grassland site at the end of the field experiment. Block samples were only taken at the

grassland site, as the soil properties at the grassland and E. viminalis sites were similar

and the clay contents within each layer were within 5 to 14 % of each other

(Appendix A).

The sides of an already opened trench at the grassland site, with a depth of

approximately I m, were shaven back. A V-shaped metal frame was subsequently

carefully hammered vertically into the soil (Fig. B.I). Once the complete height

(200 mm) ofthe frame was in the soil, the block soil sample was cut loose from the rest

ofthe soil. A thick metal plate was hammered into the soil horizontally, below the V­

shaped metal frame. Care was taken so as not to disturb the block sample and

surrounding soil too much whilst removing the sample. Once the sample was cut loose

from the bulk soil and removed from the trench, lids were used to cover the front,

bottom and top of the soil sample. These covers kept the soil sample intact during

transportation. Soil samples were taken at soil depths of 0 to 200 mm, 200 to 400 mm,

400 to 600 mm and 600 to 800 mm.

Fig. B.I An example of one of the V-shaped metal frames used in the sampling of block

soil samples at the grassland site, for the water content reflectomer calibration
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The four soil samples were then transported from the research site in Secunda to a

laboratory in Pietermaritzburg, approximately 500 km from the research site. In the

laboratory, the front, top and bottom lids were removed, and each sample was carefully

and fairly tightly wrapped first in mesh wire and then in canvas. The mesh wire and

canvas kept the block soil sample intact, whilst wetting and prevented extensive

swelling or expansion of the sample. The block samples were placed in a large

container (about 50 t) half-filled with water, and allowed to saturate over a period of 14

days. The samples were not submerged in the water. The block samples were then

removed and allowed to drain naturally.

Sets of soil sensors consisting of a water content reflectometer, heat dissipation

sensor and a time domain reflectometer were then installed horizontally through the

front of each block sample (Fig. B.2). A 300-mm long drill bit together with an

installation guide was used to install the water content reflectometers and time domain

reflectometers. A shorter drill bit was used to drill holes to install the heat dissipation

sensors. Care was taken to ensure that the reflectometer rods were installed parallel to

each other, and that all the sensors made good contact with the surrounding soil.

The soil sensors were subsequently connected to dataloggers. The water content

reflectometers were connected to a Campbell CR23X logger, the time domain

reflectometers to a CRI OX datalogger, and the heat dissipation sensors to a CR7X

datalogger (Fig. B.2). The water content reflectometers and heat dissipation sensors

were connected to the loggers exactly as was done during the field experiment. The

same datalogger programmes that were used during the field experiment were also used

during the calibrations. All sensor outputs (output period, propagation velocity and

temperature and change in temperature for the water content reflectometer, time domain

reflectometer and heat dissipation sensors respectively) were measured every four

hours.
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Fig. B.2 Horizontal installation of water content reflectometers, time domain

reflectometers and heat dissipation sensors (top) in the block soil samples used

in the sensor calibration, and the connections of the sensors to CROlX, CR23X

and CR7 dataloggers (bottom)

The continuous four-hourly measurements of the sensors outputs were combined with

frequent measurements of the block sample weights. The block sample weights were

measured using a digital scale with a resolution of 109. Measurements were obtained

at similar times of day, and preferably in the morning. The calibration process lasted

for approximately 170 days, until signs of cracks on the outer surfaces of the block

samples were visible.

At the end of this calibration period, sub-soil samples were taken from each block

sample. These sub-samples were analysed in terms of the water retention characteristics

and physical properties. Sub-soil samples were also used to determine the final soil

water content and oven dry weight of the sub-sample. The final soil water content of

each sub-sample was assumed to be the same as that of the block samples, and was used

to determine the gravimetric and volumetric soil water contents of each block sample

throughout the calibration process.
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B.3 Results and discussion
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The relationship between the sensor output for each block sample and the volumetric

soil water content estimated for the block sample was obtained. Second-order

polynomials, as used in the factory calibrations, were fitted between the water content

reflectometer period (ms) and the measured volumetric soil water content of the block

sample. However, linear relationships were fitted between the inverse of the

propagation velocity for the time domain reflectometer and the measured soil water

content. Only the results of the water content reflectometer calibration functions will be

discussed in this section. The results of the time domain reflectometer calibrations are

not discussed, as it does not apply directly to the field experiment.

The actual volumetric soil water measured during the calibration process (Fig. B.3)

shows the range of water contents under which the soil sensors were calibrated. The

soil water content of the block samples at the beginning of the calibration period (26,

46, 52 and 39 % respectively at the 100-,300-,500- and 700-mm soil depths) was

within 9 % of the saturated soil water contents (Table B.l) (based on the sub-soil

samples). This indicates that all four block samples were close to saturation at the start

of the calibration.

According to the relative saturation (Eq. 3.8), (using saturated and residual soil water

contents derived for sub-soil samples) and the block sample soil water contents, the

water content reflectometers were calibrated over a wide range of soil wetness

(Fig. BA). The soil wetness ranged between 14 and 73 %,26 and 81 %,42 and 100 %

and 33 and 75 % at the 100 mm28
, 300 mm, 500 mm and 700 mm soil samples

respectively. The relationship between the sensor output and measured soil water

content would therefore apply to both wet and dry soil conditions encountered during

the field experiment.

28
The depths 100 mm, 300 mm, 500 mm and 700 mm refer to the depth at which the block soil samples

were taken, and represents the soil layers: 0 to 200 mm, 200 to 400 mm, 400 to 600 mm and 600 to
800 mm respectively.
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Fig. B.3 Daily measured volumetric soil water content (mass based) for four soil

samples used in the sensor calibration, over a period of 170 days. 100, 300,

500 and 700 mm represent the depths at which the calibration soil samples

were taken.

Table B.l Van Genuchten water retention parameters (Eq. 3.4) for the calibration soil

samples taken from different depths below the soil surface (100 to 700 mm)

Calibration data

Van Genuchten water retention parameters estimated with RETC29

Depth (mm) Bs BR a n m

100 0.35 0 0.00076 1.20745 0.17181

300 0.57 0 0.00701 1.10275 0.09318

500 0.52 0 0.00017 1.32669 0.24624

700 0.44 0 0.00087 1.16324 0.14033

29 RETC is a programme for quantifying the hydraulic functions of a unsaturated soil. RETC was
developed by Van Genuchten et al. (199 J).
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Fig. BA Fractional relative saturation of the four soil samples used in the sensor

calibration, over a period of 170 days. 100, 300, 500 and 700 mm represent the

depths at which the calibration soil samples were taken.

For the soil water content reflectometers, applying the manufacturers' calibration

polynomials (Campbell Scientific Inc., 1996) to the sensor output data collected during

the calibration periods, results in a consistent overestimation in the soil water contents

of all four block samples (Fig. B.530
). The calculated soil water contents overestimate

the soil water contents by between 2 and 71 %, irrespective of the clay content of the

sample (Appendix A). The overestimation is greater at higher soil water contents (19 to

71 %) than at lower soil water contents (2 to 10 %). Site or soil specific calibration

polynomials are therefore important for accurate soil water content estimations with

water content reflectometers.

Statistically significant relationships (R2 > 0.97)31 were found between the water

content reflectometer period outputs (ms) and the measured soil water content of all

sensors and all soil block samples (Fig. B.6). The newly calculated water contents

30 Statistical information on the relationship between the measured volumetric soil water content and the
calculated soil water content (based on manufacturer's polynomials) for different soil depths, are giv'~;i in
Table B,2.
31 More detailed statistical information on the relationship between the CS6 I5 sensor output and the
measured volumetric soil water content, for different soil depths, are given in Table B.3,
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(using the second-order calibration polynomials), were within 3 % of the measured soil

water contents (R2 > 0.97, slope"" 1) (Fig. B.7)32. The second-order polynomials

derived during the calibration process, therefore predict the soil water contents

measured by the individual sensors accurately.

BA Application of calibration results to field measurements

The water content reflectometers were calibrated for four different soil layers each with

a different percentage of clay ranging from 19 to 36 % (Appendix A). The clay

percentage of the sub-soil samples taken from the 100- and 700-mm soil layers were

less than 30 %, whereas that of the 300- and SOO-mm soil layers were more than 30 %.

Since the block soil samples used in the calibration were excavated in close proximity

to the grassland site, the assumption was made that the calibration functions derived for

each soil layer (block sample), would also apply to the corresponding soil layer at both

the grassland and tree experimental sites. However, the differences in percentage clay

content of the sub-soil samples of each soil layer, and that of the grassland and

E. viminalis field sites, suggested that the calibration polynomials for each soil depth

would not necessarily apply to the field experimental data.

Therefore, the question arose as to how to apply the site specific calibration functions

derived for each block sample representing a different soil depth, to the field

experimental data. Three different approaches were tested. Firstly, the calibration data

for the soil layers with clay contents less than 30 % Cl 00- and 700-mm) were combined,

and a new calibration polynomial derived. Secondly, the same was done for soil layers

with clay contents exceeding 30 % (300- and SOO-mm). Lastly, all the data collected

during the calibration were combined to obtain a general calibration function.

32 More detailed statistical infonnation on the relationship between the measured and the calculated
volumetric soil water content (based on new polynomials), for different soil depths are given in
Table BA.
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Fig. B.5 Relationship between the measured volumetric soil water content (x) and the

soil water content calculated using the manufacturers' polynomials (y) for

different soil samples (lOO, 300, 500 and 700 mm)

Table B.2 Statistical information on the relationship between the measured soil water

content and the soil water contents estimated from CSI polynomials, presented

in Fig. B.5

Statistical information Soil depth (mm)

loo '"
100 300 500 700... -

- ellell .- Multiple R 0.9897 0.9863 0.9901 0.9870
~ e
- = R Square 0.9794 0.9728 0.9803 0.9742.- C

.~ .~S;~

~ &. "''<;; Adjusted R 0.9788 0.9714 0.9795 0.9731-- ....-
CV) 6il~ Square
~U ... - Standard Error
§ e ~V) 0.0129 0.0512 0.0386 0.0370

"" = Observations 33 21 26 26
~~
-"Cl Coefficients 0.0211 -0.4792 -0.3790 -0.2080Cll ... Q.
~ - ..._ Cll

"" Standard Error'c- e
loo _

0.0065 0.0382 0.0323 0.0305...rl'}e..= -"Cl '" C P-value 0.0027 1.21208E-10 J.92939E-II 4.8014IE-07... ... -loo -:= C Coefficients 1.9544 4.0232 3.3190 3.3744'" ... ...
Cll -... C :c

:it e ;< .~ - Standard Error 0.0509 0.1543 0.0961 0.1121
loo
Cll

P-value 1.01821 E-27 2.44266E-16 5.61614E-22;;.- J.41214E-20
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Table B.3 Statistical information on the relationship between the CS615 output (ms) and

the measured volumetric soil water content, presented in Fig. B.6

Statistical information Soil depth (mm)

'S 100 300 500 700
'"Col Multiple R 0.9914 0.9919 0.9833 0.9844.;:-Cl/

§ '" R Square 0.9828 0.9839 0.9670 0.96905
= er;; .~

"C "'-;; Adjusted R Square 0.9822 0.9830 0.9656 0.9677Cl/ .~.. - lo. -
"0 = elI~

Standard Error 0.0060 0.0097 0.0149 0.0119Cl/ -Cl/ Cl/
1:l::"J

lo. -= ='" 0 Observations 33 21 26 26~ Col
Cl/ lo.

5 ~ Cl. Coefficients -0.2984 -0.0747 -0. 1554 -0.2077
'" ~ Cl/
;;0. :; Col Standard Error 0.0100 0.0094 0.0184 0.0174- ~ -= -Cl. = P-value 1.9851E-24 1.82967E-07 1.19314E-08 1.38543E-11-; ....
0

lI'l
:E

Coefficients 0.3839 0.2365 0.3094 0.3056-\Q
~ 'C • Standard Error 0.0091 0.0070 0.0117 0.0112"J

U ~

;> P-va1ue 6.51658E-29 1.72125E-18 2.75328E-19 1.27411E-19

Table BA Statistical information on the relationship between the measured soil water

content and the volumetric soil water content calculated from the new

polynomials, presented in Fig. B.7

Statistical information Soil depth (mm)
'S
'" 100 300 500 700"0
Cl/---- Multiple R 0.9917 0.9939 0.9944 0.9871~ '"
=~t.J -;:: § '" R Square 0.9835 0.9878 0.9889 0.9744- =~ 0 .~ Col'" .~
Col = "'-;; Adjusted R Square 0.9829 0.9871 0.9885 0.9734~~ Cl/::;_ 0

5i>~ Standard Error 0.0058 0.0084C Cl. ~('-l 0.0086 0.0106
~ :;= Cl/ Observations 33 21 26 26o C
Col '-'

lo. - Coefficients 0.0020 0.0029 0.0036 0.0068Cl/ C Cl.

- Cl/
Cl/

~ - Col Standard Error:; = ~ - 0.0029 0.0062 0.0072 0.0088
== 8 -o lo. = P-value 0.5036 0.6478 0.6190 0.4483
'" Cl/

....
"0-

Cl/ ~ Coefficients 0.9835 0.9878 0.9889 0.9744lo. :; :E='" ~ 'C ~ Standard Error 0.0229 0.0252 0.0214 0.0322~
Cl/

::; ~

;> P-value 3.50309E-29 1.2418E-19 5.51491E-25 1.27236E-20
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Good relationships (R2 > 0.977) were found between the sensor period outputs (ms)

and the soil water contents for the new polynomials combining the 100- and the

700-mm depth data, and the 300- and the 500-mm data (R2
= 0.9773 and R2

= 0.99 for

the 300- and 500-mm and 100- and 700-mm combined data sets respectively)

(Table B.5). The application of new second-order polynomials showed accurate

predictions the soil water content of soils with different clay contents (R2 =0.988 and

R2 = 0.955 for soil depths 100- to 700-mm, and 300- and 500-mm respectivell3
).

These polynomials slightly underestimated (I to 4 %) the soil water contents with these

clay contents (Fig. B.8). However, applying a single polynomial, derived from all the

calibration data, underestimated the soil water contents by approximately 9 %

(Fig. B.8).

8.5 Conclusions

Therefore, it is clear that soil samples with clay contents of more than 30 % need to be

calibrated separately from the soil samples with clay contents less than 30 % as this will

result in more accurate estimates of the soil water contents. Therefore, the polynomial

derived from the lOO-mm calibration data was used to convert the sensor outputs

collected at lOO-mm soil depth to soil water content at both the grassland and

E. viminalis field experimental sites. The rest of the sensors outputs (300,500, 700 and

900 mm) collected during the field experiment at both the grassland and E. viminalis

sites were converted into soil water contents, using the 300- and 500-mm combination

second-order polynomial.

33 Table B.6 presents more detailed statistical information on the relationship between measured and the
calculated volumetric soil water content (based on new polynomials), for different soil depths. These
polynomials were derived from different combinations of measured data.
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Table B.5 Infonnation on second-order polynomials derived from different soil depths.

The polynomial are based on the measured volumetric soil water content and

CS615 sensor output period for different soil depths or soil depth

combinations

Quadratic Fit (y = a + bx + cx~)

Period (ms) vs measured volumetric soil water content (m3 m·3)

Manufacturers Sample depth (mm)

, (EC<
100 300 500 700 100 and 300 and 100,300,

1 dS m,l)
700 500 500 and

700

a -0.1870 -0.4346 -0.2314 0.4366 0.0695 -0.3267 0.0467 -0.2507

b 0.0370 0.6377 0.4734 -0.4941 -0.0646 0.4680 0.0313 0.3777

c 0.3350 -0.1169 -0.0850 0.2649 0.1213 -0.0537 0.0886 -0.0177
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Fig. B.8 Relationship between combinations ofnewly calculated volumetric soil water

content and measured soil water content. The newly estimated volumetric soil

water content is based on polynomials derived for the data combinations

collected during the calibration periods, and is indicated in the legend
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Table B.6 Statistical information on the relationship between the measured soil water

content and the soil water content calculated from combined polynomials,

presented in Fig. B.8

Statistical information Soil depth (mm)
·0 100 and 700 300 and 500 100,300,500'"-=~ and 700Q,j-- ~~ .- Multiple R 0.9941 0.9773 0.9552- E= c
~ c § '" R Square 0.9883 0.9552 0.9125~ >.
'" - -{;; .~

~ &. "'~ Adjusted R Square 0.9881 0.9542 0.9117Q,j~.... -= 5iJ.sC Q,j Standard Error 0.0099 0.0186 0.0294Q,j C ~~=:E
8 E Observations 59 47 106
~ c
Q,j '" Coefficients 0.0021 0.0128 0.0200-'-" I:l.
~ - Q,j

~ ~ '" Standard Error 0.0029 0.0092 0.0070~ -- - Q,j
.- C ....
C C C P-value 0.4645 0.1718 0.0048'" '" ...-= ~Q,j Q,j

Coefficients 0.9883 0.9552 0.9125~ - :c= ~
~ ~ ~ .~ . Standard Error 0.0142 0.0308 0.0277Q,j

::; ~

;;;. P-value 9.137E-57 5.45637E-32 7.90339E-57
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APPENDIX C

RELATIONSHIP BETWEEN THE SOIL WATER CONTENT AND THE SOIL

WATER POTENTIAL

C.1 Introduction

To illustrate the effect of different vegetation types on the profile soil water contents

and the water movement within the soil profiles, three different types of soil sensors

were used. Water content reflectometers, heat dissipation sensors and soil

psychrometers were used to cover the possible range of soil water contents and soil

water potentials within the soils, ranging from periodically saturated to very dry soils.

In order to compare soil water content estimated using water content reflectometers

with soil water potential estimated using heat dissipation sensors and soil

psychrometers, soil water content was converted to soil water potential using the Van

Genuchten (1980) relationship (Eq. 3.4). As the soil depths of the grassland site were

near saturation for extended periods during the field experiment (Fig. 6.1), the soil

water potentials calculated at the E. viminalis site were compared. The response of

different soil sensors, at the E. viminalis site to wetting and drying periods following

rainfall periods, will be compared.

C.2 Comparison of the soil water potentials estimated d with water

content reflectometers, heat dissipation sensors and thermocouple

psychrometers

Water content reflectometers, heat dissipation sensors and thermocouple psychrometers

all responded to changes in soil water potential due to rainfall and soil water movement.

The sensors responded differently at different soil depths. Differences in soil water

potential estimated using the different sensors were clear when comparing the:

• responses of the sensors to changes in soil water potential using the surface and

sub-surface soil depths,
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• soil water potential during a wetting period,

• soil water potential following a rainfall event, and

• soil water potential during a drying period.

As differences in the soil water potential estimated using different sensors existed,

trends are discussed rather than quantitative values.

186

When comparing the soil water potential estimated with the different sensors, it is

clear that more negative (lower) soil water potentials were in general estimated at the

soil depth closest to the surface, than at greater depths (Fig. Cl). Although the full

scale of m'easurements are not shown in Fig. Cl, it is clear that the soil water potentials

estimated with the water content reflectometer close to the surface (lOO mm) were less

than -500 MPa, whilst that estimated with the heat dissipation sensors were an order of

magnitude greater, and that estimated with the thermocouple psychrometers, much

larger (about 103 times) and of the order of -1200 kPa under fairly wet conditions.

The very low soil water potentials estimated with the water content reflectometers

and heat dissipation sensors at this soil depth (100 mm) compared to that estimated with

the thermocouple psychrometer, illustrates the sensitivity of these sensors and

techniques to surface contact between soil and sensor. At depths close to the surface,

where the climatic conditions play an important role in drying the soil, the soil water

potentials change quickly following rainfall events. Therefore, as soon as small cracks

are formed around the sensors or the soil moves away from the sensor during a

shrinking action of the soil, the sensor looses contact with the soil and low soil water

potentiaIs are estimated. The very low soil water potentials estimated at greater soil

depths (300 mm, 500 mm, 700 mm and 900 mm) with especially the heat dissipation

sensors, are probably also the result of loss of surface contact between sensor and soil

(Fig. Cl).

The soil sensors at the soil depths close to the surface also responded to less

significant rainfall events than the sensors installed at greater depths. The changes in

soil water potential for the shallower depths (lOO mm) were also more rapid prior to and

following the rainfall event compared to that at greater depths. For example, only the

soil water potential sensors at lOO-mm depth responded to rainfall events

(2 to 56 mm d'l) from 1 January to 19 February 1999.
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Fig. C.l Daily soil water potentials for the lOO-mm, 300-mm, 500-mm, 700-mm and

900-mm soil depths (top to bottom) at the E. viminalis site. Soil water

potentials estimated with water content reflectometers measurements (tdr), heat

dissipation sensors (229-L) and thermocouple psychrometers (tcp). Bars

represent the daily rainfall
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On 29 January 1999, with a rainfall event of 49 mm, the soil water potential at this

depth estimated with a water content reflectometer and a heat dissipation sensor

respectively, increased from -60680 kPa and -530 kPa respectively to close to 0 kPa.

The soil water potentials at all of the other depths were close to O· kPa, following

831 mm accumulated rainfall from the start of the season.

However, following a rainfall event of 69 mm towards the end of summer

(21 February 1999), the soil water potential at the lOO-mm soil depth, estimated with

water content reflectometers and heat dissipation sensors, increased close to 0 kPa

(Fig. C.1). Within the layers of greater depth, the soil water potentials also increased

close to 0 kPa. This increase in the soil water potentials was especially noticeable for

the heat dissipation sensor data. The water content reflectometer soil water potentials,

did not show a significant change. Prior to this increase and rainfall event

(approximately 20 days) the soil water potentials, estiamted using water content

reflectometers and heat dissipation sensors, decreased continually.

From the end of February 1999 until mid-April, the soil water potential at all soil

depths and as estimated with different sensors, decreased from 0 kPa (Fig. C.1). Higher

soil water potentiaIs were maintained for longer with the water content reflectometers

and heat dissipation sensors at 300-mm and 900-mm soil depths. However, from the

end of March until mid-April, during the soil drying period, the soil water potential

estimated using thermocouple psychrometers exceeded that estimated using water

content reflectometers and heat dissipation sensors. The exceptions were the soil water

potential estimated at the 300-mm soil depth and periodically at the 900-mm soil depth.

The higher soil water potentials estimated with the thermocouple psychrometers suggest

a slower response by these sensors to changes in soil water potential, as a result of

saturation of the soil. Alternatively, the lower soil water potentials estimated with the

heat dissipation sensors and thermocouple psychrometers mean that these sensors lost

contact with the soil.
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C.3 Possible reasons for discrepancies between soil water potentials

estimated with different soil water sensors

Although similar trends in the soil water potentials estimated with different sensors

were found, the actual soil water potentials were different. The relationships between

the soil water potentials estimated with the different techniques at each soil depth were

also different. There may be many reasons for the discrepancies between the soil water

potentials estimated within a specific soil layer.

C.3.1 Conversion of soil water content into soil water potential

The water content reflectometers provide an estimate of soil water content, whereas the

heat dissipation sensors and the thermocouple psychrometers estimate soil water

potential. The soil water content estimated with water content reflectometers was

converted into soil water potential using water retention relationships. The accuracy of

the conversion of soil water content into soil water potential will therefore be dependent

on the accuracy of the parameters of this retentivity relationship. The accuracy of these

parameters will in turn depend on whether they were determined from representative

sub-soil samples, taken from the particular soil depth in question.

C.3.2 Conversion equations (sensor output vs soil water potential)

The outputs of the heat dissipation sensors (temperature differences) as well as the

thermocouple psychrometers (voltage differences) were converted into soil water

potentials using generalised equations as suggested by 10vanovic and Annandale (1997)

and Brown (1970) respectively and not using site or sensor specific equations. Site or

sensor specific calibration equations might have yielded more accurate estimates of soil

water potential and better relationships between the soil water potentiaIs estimated for

the different types of sensors.
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The soil water content estimated from the water content reflectometer period output

was calculated using second-order polynomial functions determined in the laboratory.

However, as the clay contents of the calibration samples (taken at the grassland site) and

the field samples (taken at the grassland and E. viminalis sites) were different, the

calibration results were extrapolated. Generalized calibration equations were derived

for clay contents exceeding 30 % and for clay contents less than 30 %, combining the

calibration results. Individual field calibrations of the water content reflectometers

installed at the different soil depths at each site may have yielded more accurate soil

water content and soil water potential estimates. This may have resulted in an improved

comparison between soil water potentials estimated using the different sensors.

Therefore, in order to compare results from different sensors, field or laboratory

calibrations are imperative. More accurate calibrations however would not have solved

the problem of the soil occasionally loosing contact with the sensor through soil

shrinking under drying conditions, irrespective of the type of.sensor.

C.3.3 Soil water potential vs soil matric potential

Differences between soil water potential estimated using different sensors could also be

attributed to the fact that the heat dissipation and water content reflectometer

conversions provide estimates of matric potential whereas the thermocouple

psychrometer provided estimates of the total soil water potentiae4
. If for example

osmotic potential, a component of total soil water potential, played an important role at

the research sites, the exclusion of this term in the comparison would have caused

differences between the results of the water content reflectometer and heat dissipation

sensor, and the soil psychrometer. However, as the electrical conductivity for the

different soil depths at the grassland and E. viminalis sites only ranged between 0.025

and 0.095 S m'l, this was not expected.

34 Total soil water potential includes matric potential, osmotic potential and gravitational potential.
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C.3.4 Disadvantages and limitations of, and damage to soil sensors
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Insufficient surface contact between a water content reflectometer or a heat dissipation

sensor and the soil, may cause different soil water potential estimates, especially during

dry periods. This is especially the case with the water content reflectometers, where

surface contact should be maintained over the whole length (300 mm) of each ofthe

two rods.

Intensive drying periods during winter at both the grassland and E. viminalis sites

have resulted in cracking of the ceramic of all the heat dissipation sensors installed at

both sites. The soil water potential estimates using these sensors, following the

formation of the cracks, were therefore variable and the data discarded.

CA Summary

This section compared the soil water potentials estimated with different sensors: water

content reflectometers, heat dissipation sensors and soil psychrometers. The results

suggest that when applying these sensors to non-standard conditions, site-specific

calibrations are required. More accurate calibrations however would not have solved

the problem of the soil occasionally loosing contact with the sensor through soil

shrinking under drying conditions, irrespective of the type of sensor. This section also

provided possible reasons for discrepancies between the soil water potentials estimated

with the different techniques. The psychrometer should, in theory, be less sensitive to

non-contact problems since the technique involves water vapour pressure equilibration

between the pore space of the soil and the cavity of the psychrometer. All of the other

techniques are critically dependent on good contact between soil and sensor.
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APPENDIX D

SEASONAL CHANGES IN THE TOTAL EVAPORATION OF GRASSLAND

AND TRANSPIRATION OF E. VIMINALlS TREES

D.1 Introduction

The hypothesis of this study is that a change in vegetation, from grassland to

E. viminalis trees, will reduce the drainage of water beyond the root-zone and into the

underground mine workings. The potential reduction in drainage following

afforestation with E. viminalis trees is the result of the modification of the other soil

water balance components and their relationships (increased total evaporation and

decreased soil water storage), over the short- and long-term.

The seasonal changes in the total evaporation component of a grassland and

E. viminalis trees observed during the field experiment, and the climatic conditions

experienced during the field experiment, are presented below. These seasonal changes

in the total evaporation and transpiration are related to changes in climatic conditions

(and atmospheric demand), plant growth (leaf area index, root density distribution) and

soil water availability experienced during the field experiment. From these it is possible

to deduce the possible effect of a change in vegetation, from grassland to E. viminalis

trees, on the total evaporation.

D.2 Total evaporation for the grassland site

D.2.1 Introduction

The total evaporation of a grassland estimated with the Bowen ratio energy balance

technique, includes (a) evaporation from the soil surface, (b) transpiration by the grass

and (c) evaporation of water intercepted by the grass canopy. The Bowen ratio energy

balance technique requires measurement of net irradiance and soil heat flux densities,

and the estimation of the sensible and latent heat flux densities (Eq. 2.1). The latent

heat flux density is subsequently converted into total evaporation (Eq. 2.8). Seasonal

changes in the total evaporation of a grassland is therefore directly related to the

seasonal changes in the energy balance components. These seasonal changes in the
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grassland energy balance are discussed in Appendix E. The focus here is on the latent

heat component (evaporation) of the energy balance.

0.2.2 Seasonal variation in total evaporation of a grassland

Due to an incomplete total evaporation data sees, seasonal trends rather than

quantitative values are explored in this section.

After the onset of rainfall (9 September 1998), the Bowen ratio energy balance total

evaporation increased from 1.5 mm d- I during early spring (3 October 1998) to

7.9 mm d- I towards the end of spring (14 November 1998) (Fig. D.l). The increase in

the total evaporation over this period was the result of the increased soil water

availability following 217.7 mm of rainfall, an increase in air temperature and solar

radiant density of 6.3 °C and 6.1 MJ m-2 respectively (Fig. D.2), and increased growth

through an increased leaf area index of up to 6 (Fig. D.3). During this period in spring,

the total evaporation (Fig. DA) varied and responded to daily changes in the climatic

conditions. For example, the total evaporation decreased from 5.6 to 3.7 mm d- I (19 to

20 October 1998 respectively), following the decrease in the radiant density (27 to

26 MJ m-2
) (Fig. DA).

Maximum daily total evaporation of6 to 8 mm d- I (Fig. D.l) was reached at the end

of spring (November 1998) and during summer (December 1998, January 1999) and

coincided with maximum average daily air temperatures (19.7 0C), solar radiant density

(31.1 MJ m-2
) (Fig. D.2), and maximum leaf area index of 6 (Fig. D.3).

The maximum total evaporation estimated in this study was higher than that recorded

for other grassland sites. Versfeld et al. (1998) measured total evaporation for grassland

in the Secunda area over a short period in summer of 1 and 3 mm d- I
. Wever et al.

(2002) found the total evaporation of a northern temperate grassland to reach a

maximum of 4.5 mm d- I
, whereas Everson et at. (1998) found total evaporation for

moist upland grassland during summer to be between 3 and 7 mm d- I
.

35 Due to rejected data, broken eensors for example damaged fine wire thermocouples and unfavourable
weather conditions, the Bowen ratio energy balance evaporation data were incomplete.
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The high total grassland evaporation estimated in this study can be attributed to the high

. leaf area index (up to 6) (Fig. D.3) and the consistently high soil profile saturation

during summer (also discussed in Chapter 6).

The maximum total evaporation during summer was followed by a decrease in total

evaporation from about 7.8 to 3.0 mm d'l (January 1999 to May 1999). The decrease in

the total evaporation (Fig. D.1) over this period was the result of decreases in: air

temperature (16.7 to 7.2 0c), solar radiant density (27.2 to 10.4 MJ m'2), rainfall (142 to

21.4 mm month'l) (Fig. D.2) and leaf area index (6 to 2.4) (Fig. D.3).

The air temperature, solar radiant density, rainfall and leaf area indices decreased

further to reach seasonal minimum values during June 1999 (Fig. D.2). No evaporation

data is available for this winter period, but total evaporation is expected to decrease

below the 3 mm d'l estimated during autumn, to less than 1 mm d'l during winter

(June 1999), following the onset of frost on 10 May 1999 and the subsequent

senescence of the grass. Examples of minimum total evaporation of grassland include

that by Wever et al. (2002) (less than 0.5 mm d'I), Versfeld et al. (1998) (0.5 mm d'l)

and Everson et al. (1998) (less than 1 mm d,I).

D.3 Transpiration by E. viminalis trees

0.3.1 Introduction

The transpiration rates of six E. viminalis trees were monitored during 1998/1999 and

1999/2000 using the heat pulse velocity technique. The discussion on the seasonal

changes in transpiration and variation in transpiration between individual trees and is

limited to three of the six trees studied. The data for the other trees are not as complete.

The trees are referred to as Tree 1, Tree2 and Tree3 in the discussion below. At the end

of the study the tree diameters (at breast height) and heights were 115 mm, 145 mm and

107 mm respectively and 11.3 m, 11.1 m and 11.4 m respectively.
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0.3.2 Seasonal variation in the transpiration of three E. viminalis trees
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The transpiration during autumn (for example autumn 1999) decreased from between

2.5 and 4 mm d'l, to less than 1 mm d'l during winter (Fig. D.5). This decreasing trend

in transpiration corresponded to decreases in: air temperature (8.8 to 6.2 0c), solar

radiant density (15.5 to 11.5 MJ m'2), rainfall (35.8 to 0 mm month'l) (Figs 5.3 and D.5)

and leaf area index (2.6 to 0.9) (Fig. D.6). Minimum transpiration rates (0.4 to

0.6 mm d'l) were only reached at the end of winter (August 1999) and the beginning of

spring (September 1999), just before the onset of the new rainy season.

Minimum transpiration rates of less than 1 mm d'l for all three trees were reached just

before the onset of rainfall in spring. The transpiration by Tree1 was the lowest at

0.4 mm d'l, followed by 0.5 mm d-l by Tree2 and 0.6 mm d-I by Tree3 (Fig. D.7).

Therefore, the minimum transpiration rates were very similar, within 0.13 mm d-I of

each other, but Tree3, the tree with the smallest diameter had the highest minimum

transpiration rate during winter. Therefore, all three trees were probably experiencing

similar amounts of water stress at that time which resulted in winter transpiration rates

ofless than 1 mm d'l.

Lima (1984) found the minimum transpiration of Eucalyptus spp. to be 1.5 mmd,l,

slightly higher than that estimated here, whereas 01brich et al. (1994) and Versfe1d et

al. (1998) found transpiration of E. viminalis trees within the same range of that

estimated in this experiment: 0.42 mm d-I and 0.5 mm d-I respectively.

After the first rains of 1999/2000 (mid September 1999), the transpiration of Tree2

and Tree3 increased by about 1 mm d- I and that of Tree 1 by about 0.3 mm d-I

(Fig. D.5). The transpiration of all three trees decreased again to about 1 mm d- l due to

the lack of rainfall until mid October 1999. Following a number of rainfall events

exceeding 20 mm d-
I

each from October to December 1999, the transpiration rates of all

three trees continued to increase and reached maximum rates of up to 9 mm d-l (Tree3)

during January 2000 (Fig. D.5). The transpiration of Tree2 increased to a maximum of

3.66 mm d-I. By comparison, the transpiration of Tree! increased from 2.52 mm d'l at

the start of December 1999 to similar transpiration of Tree3 (about 9 mm d-I) towards

the end of December 1999 and January 2000 (Fig. D.7).
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The increasing trend in the transpiration was the result of increases in air temperature,

solar radiant density, leaf area index and rainfall. The maximum transpiration rates

coincided with the maximum solar radiant density, rainfall and growth (20.99 MJ m-2
,

124.8 mm month- l and LAI of2.8 respectively) (Figs 5.3 and D.6) reached during

January 2000. The increases in transpiration throughout this period seem very sensitive

to rainfall. The transpiration rates during this period often increased by about 2 mm d-I

following a rainfall event, but decreased when rainfall stopped (for example

November 1999) (Fig. D.S). Olbrich et al. (1994) also found that the transpiration rates

of E. viminalis trees were sensitive to soil water deficits.

These maximum transpiration rates of up to 9 mm dol estimated for E. viminalis trees

were in accordance with transpiration of E. viminalis and other Eucalyptus tree species

within the study area and other areas. Olbrich et af. (1994) found maximum summer

transpiration E. viminalis trees in the Secunda area of 6 mm d-I. Versfeld et af. (1998)

reported maximum transpiration rates by Eucalyptus species in the Secunda area to be

as high as 12 mm d- l
. Other examples of high maximum total evaporation and

transpiration rates by Eucalyptus species are given by Lima (1984) (6 mm d-I),
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Honeysett et al. (1992) (5 to 6 mm d-I) (cited by Hunt and Beadle, 1998) and Zohar and

Schiller (1998) (5.1 mm d-I) and Jarmain and Everson (2002) (9 mm dol).

Following the maximum transpiration rates reached in summer, the transpiration

decreased again, responding to decreases in air temperature (3.2 0c), solar radiant

density (8.84 MJ m-2
), rainfall (55.4 mm month-I) (Figs 5.2 and 5.3) and leaf area index

(1.5) (Fig. D.6), to reach transpiration rates of 2 to 4 mm dol during autumn. The

autumn transpiration was 2 to 5 mm dol less than that estimated during summer. During

April 2000, the transpiration of Tree1 during April 2000 was about 1 mm dol higher

than that of Tree2 and Tree3, which had similar transpiration rates (Fig. D.?). The high

transpiration of Tree 1 during autumn 2000, suggested that although this tree possibly

experienced water stress during winter 1999, and was in a poor condition at the start of

1999/2000, it recovered well following the rainfall of 1999/2000. Tree 1 was able to

maintain high transpiration rates of 2 to 4 mm dol during autumn, which was higher than

that of Tree2 and Tree3 during 1999/2000 (1 to 2 mm d-\ however similar to that

during autumn 1998/1999.

D.4 Summary

This section showed how the total evaporation of grassland and transpiration of three

E. viminalis trees change over the season in response to changes in rainfall, air

temperature, solar radiant density and leaf area index. It showed the sensitivity of total

evaporation and transpiration of grassland and different E. viminalis trees respectively

to rainfall and minimum air temperature, especially during the drier months (autumn,

winter and spring).
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APPENDIX E

SEASONALCHANGESINTHEENERGYBALANCECOMPONENTS

OF AGRASSLAND

E. 1 Introduction

An analysis of the Bowen ratio energy balance data, consisting of net irradiance flux

densities (Rn), soil heat flux densities (G) and sensible (H) and latent heat flux densities

(AE), highlighted important seasonal differences and helped to explain the effect of

climatic and soil conditions on the total evaporation. The energy balance components

are related through Eq. 2.1.

E.2 Estimation of the net irradiance as a function of solar irradiance

E.2.1 Introduction

The net irradiance (Rn) is required in the estimation of the latent heat flux density (and

subsequently total evaporation) with the Bowen ratio energy balance technique through

Eq. 2.7 and 2.8. However, hourly midday net irradiance was not measured during the

period 25 August 1998 to 16 April 1999. Solar irradiance available from a nearby

automatic weather station was used to estimate the net irradiance for the missing periods

using Eq. 2.25, and as a linear function of the solar irradiance. The relationship

between the hourly measured and estimated (simulated) net irradiance revealed the

accuracy of the estimation, and where Eq. 2.25 was used, the most suitable reflection

coefficient to be used.

E.2.2 Estimation of net irradiance using Eq. 2.25

Statistically significant relationships were found between net irradiance measured and

that estimated as a function of the solar irradiance (Eq. 2.25) (Table E.l, Fig. E.l).
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Table E.l Statistical information on the relationship between the measured (x) and the

estimated (y) net irradiance for a grassland, using different reflection

coefficients, where y = mx + c where m it the slope of the relationship and c

is the offset

Measured vs estimated net irradiance

Month 1998 and 1999

Surface reflection slope m offset c R1

coefficient (unitless)

Aug 0.01 0.9969 20.89 0.9721

Sep 0.05 0.9946 27.25 0.9655

Oct 0.01 0.9622 14.48 0.9700

Nay 0.01 0.9647 6.203 0.9506

Dee 0.01 0.9758 16.29 0.9557

Jan 0.11 0.9953 14.42 0.9197

Feb 0.01 0.9213 10.11 0.9743

Mar 0.01 0.9165 11.25 0.9733

Apr 0.01 0.9218 8.706 0.9859
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Fig. E.l Hourly measured (x) vs estimated (Y, simulated) net irradiance for grassland

during January 1999. Note: The dotted line indicates the 1: 1 relationship

between the measured and estimated net irradiance, and the solid line the linear

relationship between x and y. Each data point represents a 20-minute average
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The slopes (m) of these relationships were close to 1 and the coefficients of

determination (R2
) exceeded 0.9 (Table E.l). These relationships indicated that the net

irradiance can be estimated accurately using the measured solar irradiance and a

seasonal, canopy specific reflection coefficient using Eq. 2.25.

E.2.3 Estimation of net irradiance as a site-specific linear function of only

solar irradiance

Although statistically significant relationships were found between the measured and

estimated net irradiance in Section E.2.2, the surface reflection coefficients (albedo's)

used in the estimation of the net irradiance (Table E.l) was much lower than values

quoted in the literature (Table E.2). The relationship between the measured net

irradiance and solar irradiance were therefore studied (Table E.3). This was done to

determine whether the linear relationship between the hourly values of net irradiance

and solar irradiance could be used to estimate missing net irradiance values, with

accuracies close to that obtained with Eq. 2.25 (Table E.l).

Statistically significant relationships (R2 > 0.9) were found between the measured

solar irradiance (x) and measured net irradiance (y) (Table E.3). These linear

relationships were subsequently used to calculate the net irradiance. The calculated net

irradiance was compared to the measured net irradiance (Table E.3). Statistically

significant relationships were found between the measured net irradiance and the net

irradiance calculated as a linear function of the solar irradiance, (m > 0.93, R2 > 0.95).

For August 1998 to December 1998 the net irradiance estimated from the solar

irradiance (linear function) underestimated the net irradiance by between 3 % (August

1998) and 7 % (December 1998). The linear relationships between the net irradiance

and solar irradiance can therefore be used to calculate the net irradiance to within 7 %

accuracy (Table E.3).
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Table E.2 Published surface reflection (unitless) coefficients for grassland
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Surface Surface reflection Source

coefficient

Mixed grass 0.22 Kalma and Badham (1972)

Moist upland 0.14 (following Everson et al. (1998)

grassland burning),

0.42 (summel)

Grass 0.24 Jones (1992) (cited by Sumner,

2002)

Green grass 0.16 and 0.27 Van Wijk and Scholte Ubing (1963)

(cited by Sumner, 2002)

Dried grass 0.16 to 0.19 Van Wijk and Scholte Ubing (1963)

(cited by Sumner, 2002)

Short grass 0.26 Oke (1978) (cited by Sumner, 2002)

(0.02 m)

Long grass (1 m) 0.16 Oke (1978) (cited by Sumner, 2002)

Table E.3 Statistical information on the relationship between solar irradiance (x) and the

net irradiance (y) where y = mx + c, m is the slope of the relationship, c is the

offset of the relationship and R2 is the coefficient of determination, and the

relationship between the measured net irradiance (x) and the net irradiance

calculated as a function of the solar irradiance (y)

Month Statistical infromation on the Statistical infromation on the

(1998) relationship behveen the Solar relationship between the

and net irradiance measured net irradiance and net

irradiance calculated as a linear

function ofthe solar irradiance

111 c R" 111 C R'
August 0.8210 0.9714 0.9714 0.9714 -39.642 0.9713

September 0.7999 0.9664 0.9664 0.9664 -42.080 0.9664

October 0.8515 0.9408 0.9408 0.9408 -27.285 0.9723

November 0.8546 0.9688 0.9688 0.9688 -18.190 0.9615
r----

December 0.8100 0.9345 0.9345 0.9345 -21.764 0.9147
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E.2.4 Use of the estimated net irradiance
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The net irradiance estimated using Eq. 2.25 and as a linear function of the solar

irradiance, yielded statistically significant relationships when compared to the measured

net irradiance (Tables E.l and E.3). The linear relationship underestimated the net

irradiance more than Eq. 2.25 (3 to 7 % vs 1 to 4 % respectively) during the period

August to December 1998. Therefore, the measured net irradiance was subsequently

combined with the net irradiance estimated with Eq. 2.25, and used in the calculation of

the Bowen ratio energy balance total evaporation (Eq. 2.8). However, it is suggested

that the surface reflection coefficients used in these estimations of net irradiance in

Eq. 2.25 (Table E.l) are not used for the estimation of net irradiance above other

grassland surfaces.

E.3 Changes in the partitioning of the available energy (Rn-G) into

sensible and latent heat flux density at a grassland site

During spring and early summer (Fig. E.2 W), the net irradiance (Rn) reached

maximum values of about 780 W m
o2

• The net irradiance increased a further 13 % to

reach midday maximums of about 900 W m·2 (Fig. E.2 middle) during mid-summer.

These net irradiance values corresponded with midday maximum solar irradiances of

1000 W m
o2

. These maximum irradiance values (net and solar) decreased steadily

towards winter (Figs E.2 and 5.3). During autumn, maximum net and solar irradiance

values of 650 W m·
2

and 700 W m·2 respectively, were reached during the day (Fig. E.2

bottom).

For the period 1998 to 2000, the soil heat flux densities (G) (Table EA) were only a

small fraction of the net irradiance: G:Rn < 14 % (Fig. E.2). Most modelling studies

apply a G:Rn of 10 % during the day, and G:Rn of 50 % during the night (Campbell,

1992). Approximately 11 % of the net irradiance was partitioned into the soil heat flux

density during winter and only 3 % during summer (Table EA) for the grassland site.

The small G:Rn ratios during summer coincided with the maximum seasonal leaf area

indices (LAJ) of up to 6 measured at the grassland site during summer (Fig. E.3).
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Fig. E.2 Energy flux densities (Rn, G, LE and H) for a grassland site during different

times of the year (1998 to 1999). Rn represents net irradiance flux density, G

soil heat flux density, LE latent heat flux density and H sensible heat flux

density. From top to bottom: 3 October and 3 November 1998 (top);

13 January and 13 February 1999 (middle); 16 April and 3 May 1999 (bottom).
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Table EA Relationship between the soil heat flux density and the net irradiance (G:Rn)

measured at the grassland site, where the soil heat flux density is a

percentage of the net irradiance for each month of measurement from July

1998 to June 2000

Month Jut Aug Sep Oet Nov Dee Jan Feb Mar Apr May Jun

1998/ n/a 11 11 4 3 3 3 4 4 5 7 10

1999

1999/ 10 11 11 13 12 13 8 5 3 7 10 10

2000

The high leaf area indices (LAI = 6 during December 98) during summer, decreased to

3.30 during autumn (May 1999) and to 0.10 during winter following mowing and a veld

fire. The decrease in the leaf area from 6 to 0.10, corresponded to the increase in the

G:Rn fractions from 3 to 13 % (Table EA).

Applying the simplified energy balance (Eq. 2.1), the difference between the net

irradiance and soil heat flux density (Rn - G), provides an estimate of the energy flux

density partitioned between the sensible and latent heat flux densities. The available

energy flux densities (Rn - G) were partitioned into different ratios of sensible (H) to

latent heat flux densities (A£) during 1998/1999 and 1999/2000 (Fig. E.2).

During spring (Fig. E.2 1QQ), most of the available energy flux density (85.5 % or

14 MJ m
o2

) was partitioned into the sensible heat flux density. The remaining energy

flux density (2.36 MJ m
o2

) was partitioned into the latent heat flux density. The

differences in the sensible and latent heat flux densities were the result of the large

profile air temperature differences (-0.3 to 3.5 cC) and small water vapour pressure

(-0.03 to 0.09 kPa) differences, that existed during spring (Fig. EA). This shows that

before the onset of rainfall and the start of the grass growing season, most of the

available energy was used to heat up the air, and very little (14.5 %) used to drive

evaporation.
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However, during summer (Fig. E.2 middle), 42.5 to 61.5 % more available energy

flux density was partitioned into latent heat flux density (57 % and 76 % or

9.5 MJ m,2d-l and 16.5 MJ m,2 respectively) when compared to spring (Fig. E.2 !QJ2).

During summer only 43 to 24 % (7.2 to SA MJ m
o2

) of the available energy flux density

was partitioned into sensible heat flux density. This was the result of proportionally

lower air temperature differences (-0.16 to -0.59 QC) and proportionally higher water

vapour pressure differences during summer (Fig. E.5) compared to spring (Fig. EA).

Therefore, during summer with higher available soil water (rainfall) (Fig. 5.3), high

atmospheric demands (ETo) (Fig. 5.3), and high LAJ's through an actively growing crop,

up to three quarters of the available energy flux density is used to drive evaporation.

Towards the end of summer and the end of the growing season the available energy

flux density (Fig. E.2 middle) was partitioned into almost equal amounts of latent to

sensible heat flux densities (51 and 49 % respectively). Thereafter, during autumn, the

daily latent and sensible heat flux densities remained similar (45 to 54 % for the latent

and the sensible heat flux densities respectively) (Fig. E.2 bottom). These similar flux

densities show that evaporation is still taking place, but is not sustained throughout the

day. From the diurnal changes in the sensible and latent heat flux densities, it is clear

that more available energy flux density is partitioned into the latent heat flux density

during early morning and late afternoon, whereas more available energy flux density is

partitioned into sensible heat flux density during midday (Fig. E.2 bottom). The higher

latent heat flux densities during the morning suggests low canopy resistances, which

increases during the afternoon as water becomes less available and this results in a

decrease in the latent heat flux densities.

EA Summary

The components of the shortened energy balance of a grassland changed over the

season. The changes in the energy balance components are related to the climatic

conditions and the grassland plant characteristics. Changes in the energy partitioning

affect the latent heat flux density and subsequently the total evaporation.
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APPENDIX F

SWAP MODEL INPUT PARAMETERS FOR THE

E. VIMIHALlS AND GRASSLAND SITES

F.1 Introduction

SWAP has a number of inputs and outputs (Tables F.l and F.2). The inputs of the

model are utilized to calculate the components of the soil water balance at a daily time

step. Model inputs for this study include data from the field experiment, data from

experiments conducted under similar circumstances, data generated, and data obtained

from the literature and through personal communication (Tables F.3 to F.9). The model

inputs can be divided in general inputs, and inputs concerning the atmosphere, plants,

soil and water.

F.2 General data inputs

General information required by SWAP for the E. viminalis and grassland sites are

given in Table F.3.

Table F.l A summary of the SWAP model inputs

Component Examples of model inputs

Atmosphere General meteorological data

Plant Growth period, leaf area index, soil cover fraction, canopy height,

root density and distribution over time

Soil Ponding depth, water retention characteristics, hydraulic function,

physical properties

Water Water management, irrigation, drainage
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Table F.2 A summary of the SWAP model outputs36 in cm a-I

Initial soil water content

Final soil water content

Change in the soil water content

Into the profile Out of the profile

Rainfall Runoff

Irrigation Interception

Deep percolation (Bottom flux) Soil evaporation

Transpiration

Drainage

Crack flux

Table F.3 General information relating to the simulations for both the grassland and

E. viminalis sites

Parameter

Start ofsimulation run 01/07/1964

End ofsimulation run 30/06/1994

First month ofagricultural year 7

Latitude 26.0° South

Altitude (m) 1600

Use ETRel 1 from meteorological files Yes

Simulation ofdrainage No

36 The components of the soil water balance simulated with SWAP are output in cm
37 ETRef refers to the reference total evaporation estimated from the automatic weather station data.

212
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F.3 Atmospheric data inputs
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Meteorological data for the period 1964 to 1994 were used in the long-term simulations.

Long-term daily rainfall and minimum and maximum air temperature data for the region

were used in a climatic generator programme (CLIMGEN, undated), to generate the

required climatic inputs over this 30 year period. These climatic inputs included: daily

total solar radiant density (kJ m-2
), minimum and maximum air temperature (0C),

average relative humidity (kPa), windspeed (m S-I), rainfall (mm d- I
) and reference

evapotranspiration (mm d- I
). The reference evapotranspiration was calculated using the

Penman-Monteith equation.

FA Plant data inputs

The E. viminalis site consists of E. viminalis trees with an understorey of Cymbopogon

grass and other weeds, whereas the grassland site consists of Cymbopogon grass and

cosmos and other weeds. Both sites have more than one species, and the E. viminalis

site requires understorey growth modelling whereas the grassland site requires a model

that allows for more than one overlapping growing season. However, SWAP does not

allow the simulation of growth of an understorey canopy separate from the main

canopy, and it also does not make provision for overlap between more than one growing

season. Therefore, in the modelling exercises, the inputs for the E. viminalis

simulations combine the E. viminalis tree and grassland information to represent a

complete canopy. The inputs for the grassland simulations, combines the Cymbopogon

and the cosmos and other weed information. The E. viminalis and grassland root

information was according to Knight (1999), and Versfeld (1998) respectively. The

E. viminalis height information was supplied by ICFR and was obtained over a trial

rotation, where as the E. viminalis LAI for a closed canopy was supplied by Dye (2003).

The rest of the parameters were obtained from the field experiment data, literature, or

through personal communication.



Appendices

F.4.1 Growth calendar

General information on the growth simulations are given in Table FA.

Table FA Information regarding the growth simulations used for both sites

Parameter

Number ofcrops per season 1
Type ofcrop model Simple

Emergence ofcrop 01107

Forced end ofcrop growth 30106

F.4.2 Simple growth model data inputs

214

SWAP has three crop growth model options with varying degrees of complexity and

detail required. Due to data limitations at both research sites, the simple crop growth

model was selected for simulations at both sites. Key par~meters are given in

Tables F.5 to F.7.
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Table F.5 Growth information38 required in the simple model parameterisation
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Parameter E. viminalis Grassland

Length ofcrop cycle (d) 365 or 366 365 or 366

Extinction coefficient:

Diffuse visible radiation 0.5 0.4

Direct visible radiation 0.5 0.4

Yield response as a function ofdevelopment stage 1.0 1.0

Water and salt stress [unctions:

No water extraction at higher pressure heads (cm) -10 -10

H39 below which water extraction starts for top layer (cm) -25 -25

H below which water extraction starts for sub layers (cm) -25 -25

H at which water uptake reduction starts at high Tpot (cm) -500 -300

H at which water uptake reduction starts at low Tpot (cm) -1500 -1000

No water extraction at lower pressure heads cm -15000 -15000

Level ofhigh atmospheric demand (cm ([1) 1.1 1.1

Level ofhigh atmospheric demand (cm ([1) 0.1 0.1

Minimum canopy resistance (s m'l) 70 70

ECsat40 at which salt stress starts (dS m'I) 0.6 2.0

Decline ofrootwater uptake above % (dS m'l) 0.1 0.1

Interception coefficient Von Hoyningen-Hune and Braden 0.35 0.25
(cm)

Relative root depth vs density Depth Depth

Density Density

0.08 0.54 0.38 0.80

0.17 0.19 0.75 0.15

0.25 0.06 1.00 0.05

0.33 0.03

0.42 0.02

0.50 0.01

0.58 0.01

0.67 0.01

0.83 0.01

0.92 0.005

1.00 0.005

Table F.6 Growth information required in the simple model parameterisation at the

grassland site as a function of development stage

38 These parameters were chosen in discussions with Savage (2003).
39 H refers to the pressure head of a soil layer and this value i3 negative.
40 ECsat refers to the electrical conductivity level of salt stress.
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Development stage Leafarea index Crop height Rooting depth

(cm) (cm)

0.00 0.90 1 0

0.17 0.90 1 0

0.33 0.53 1 30

0.50 0.49 1 30

0.67 0.88 5 50

0.83 1.79 80 50

1.00 3.32 100 80

1.17 4.59 120 80

1.33 4.29 120 80

1.50 3.73 100 0

1.67 3.01 80 0

1.83 2.23 80 0

2.00 1.50 80 0

Table F.7 Growth infonnation required in the simple model parameterisation for the

E. viminalis site as a function of development stage for a fixed maximum

rooting depth of 1200 mm (observed at the site) and a leaf area index of2.6

DVS Crop height (cm) per year o/rotatioll Rooting

depth (cm)

Year 3 4 5 6 7 8 9 10

0.00 526 892 12Jl 1482 1706 1884 2015 2100 120

0.17 526 892 12Jl 1482 1706 1884 2015 2100 120

0.33 558 921 1236 1503 1723 1897 2024 2105 120

0.50 590 949 1260 1523 1739 1909 2032 2JlO 120

0.67 622 977 1283 1543 1755 1921 2041 2Jl4 120

0.83 653 1004 1307 1562 1771 1933 2048 2119 120

1.00 684 1031 1330 1581 1786 1944 2056 2122 120

117 715 1058 1353 1600 1801 1955 2063 2126 120

1.33 746 1084 1375 1619 1816 1966 2070 2129 120

1.50 776 1110 1397 1637 1830 1976 2077 2132 120

167 805 Jl36 1419 1655 1844 1986 2083 2134 120

183 835 Jl6/ 1440 /672 1857 /996 2089 2/37 /20

2.00 864 Jl86 1462 1690 187/ 2006 2095 2139 120

LAJ 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 -
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the height data, as a function of time



Appendices

F.5 Soil data inputs

The SWAP model was parameterised for both the grassland and E. viminalis sites using

the Rensburg soil information/parameters collected at the E. viminalis site (Tables F.8

and F.9). This ensures that any difference in the soil water balance components-

E. viminalis vs grassland site - is the result of differences in the canopy/plant types and

not in the soils.

F.5.1 Profile description

Table F.8 Profile description used for both the E. viminalis and grassland sites

Parameter

Ponding thickness (cm) 5

Reduction in soil evaporation to: Maximum Darcy flux

Richards equation time

discretazation:

Minimum time step (d) 1.00E-05

Maximum time step (d) 0.16

Type ofscheme Richards equation solved

until convergence

Number ofsoil layers 5
Number ofsoil compartments 40

Hysteresis No

Similar media scaling No

Preferential flow simulation:

Due to immobile water No
Due to soil cracks No

Vertical distribution ofdrainage No

Initial moisture conditions: pressure -8000
head at each compartment (cm)

Maximum rooting depth (cm) 120
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F.5.2 Layer property inputs

Table F.9 Soil layer properties at the E. viminalis and grassland sites

219

Parameter Soil layer depth below soil surface (mml l

100 300 500 700 900

Sand 0.43 0.38 0.34 0.47 0.46

Silt 0.17 0.16 0.13 0.16 0.15

Clay 0.36 0.41 0.5 0.36 0.37

Organic matter 0.04 0.04 0.03 0.02 0.02

Residual soil water 0.0000 0.0000 0.0000 0.0000 0.0000

(; 3 .3)content m m

Saturated soil water 0.3940 0.4780 0.4820 0.4950 0.4950
(; 3 .3)content m m

Saturated hydraulic 7.255 0.06 0.06 1.51089 1.51089

conductivity (cm al
)

Alpha main drying curve 0.2763 0.2897 0.1653 0.0323 0.0323
(cm ,I)

Exponent in hydraulic 0.7540 0.0770 0.0335 0.0519 0.0519

conductivity function

Parameter n 1.0816 1.0834 1.0346 1.0547 1.0547

Alpha main wetting 0.2763 0.2897 0.1653 0.0323 0.0323

curve (cm· l
)

F.6 Water data inputs

The bottom boundary conditions at both the E. viminalis and grassland sites were set to

simulate free drainage of the bottom of the soil profile.

41 The parameters were used within different depths. The parameters specified for the 100-, 300-, 500-,
700- and 900-mm soil depth were applied to the 0 to 299 mm, 300 to 499 mm, 500 to 699 mm, 700 to
1200 mm soil layers.
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