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Abstract 

The objective of this dissertation is to model the volatility of financial time series data using ARCH, 

GARCH and stochastic volatility models. It is found that the ARCH and GARCH models are easy to 

fit compared to the stochastic volatility models which present problems with respect to the 

distributional assumptions that need to be made. For this reason the ARCH and GARCH models 

remain more widely used than the stochastic volatility models. The ARCH, GARCH and stochastic 

volatility models are fitted to four data sets consisting of daily closing prices of gold mining 

companies listed on the Johannesburg stock exchange. The companies are Anglo Gold Ashanti Ltd, 

DRD Gold Ltd, Gold Fields Ltd and Harmony Gold Mining Company Ltd. The best fitting ARCH and 

GARCH models are identified along with the best error distribution and then diagnostics are 

performed to ensure adequacy of the models. It was found throughout that the student-t 

distribution was the best error distribution to use for each data set. The results from the stochastic 

volatility models were in agreement with those obtained from the ARCH and GARCH models. The 

stochastic volatility models are, however, restricted to the form of an AR(1) process due to the 

complexities involved in fitting higher order models.  
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Chapter One 

1 Introduction 

Modeling financial time series focuses on the valuation of an asset over time. This is often a 

complex and difficult problem due to the number of different series available, including stock 

prices, exchange rate data, and interest rates, just to name a few. A further complication is that 

the series can often be viewed using different frequencies of observation; this may be every 

second, every minute, every hour, every day and so on (Francq & Zakoian, 2010, p. 7). One of the 

distinguishing features of financial time series is that they bring about an element of risk or 

uncertainty (Tsay, 2005, p. 1). This risk or uncertainty can be crudely measured by the volatility of 

an asset. A major problem that is often encountered when modeling financial time series is the 

concept of nonstationarity. Nonstationarity occurs when the underlying rules that generate the 

time series change on occasion, often without any prior indication that a change is about to 

happen. This complicates the modeling process as the traditional autoregressive moving average 

(ARMA) models are based on the assumption of stationarity and, therefore, may be unreliable. 

Reliable and complementary models are the Autoregressive Conditional Heteroscedastic  (ARCH), 

Generalized Autoregressive Conditional Heteroscedastic (GARCH) and Stochastic Volatility models.  

When dealing with a nonstationary financial time series you are essentially dealing with a high 

level of uncertainty and, therefore, maximum risk to your investment (Sherry & Sherry, 2000, p. 6). 

The purpose of this study will be the modeling of the volatility of an asset over time. This will be 

done using stock price time series data with a daily observation frequency. If we use a model that 

depends on constant variance when the series is in actual fact non-constant, then one of the 

possible implications would be that our standard error estimates could be incorrect (Brooks, 2008, 

p. 386). Therefore, we require models that involve conditional heteroscedasticity. 

Heteroscedasticity refers to non-constant variance. The models that involve conditional 

heteroscedasticity, that will be used for this study, are the Autoregressive Conditional 

Heteroscedastic (ARCH) models which were first introduced by Engle (1982); the Generalized 

Autoregressive Conditional Heteroscedastic  (GARCH) models, which generalize the ARCH models 

of Engle (1982), and were first introduced by Bollerslev (1986);  and Stochastic Volatility models 
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(Kim, Shephard, & Chib, 1998). The ARCH family of models are observation driven models, 

whereas the Stochastic Volatility models are parameter driven models.  Some of the motivations, 

apart from the presence of heteroscedasticity, for the use of the ARCH family of models is that 

time series of financial asset returns often exhibit volatility clustering and fat tails or leptokurtosis. 

Volatility clustering occurs when large changes in an asset's price are typically followed by more 

large changes of either sign (positive or negative) and small changes in the price are typically 

followed by more small changes again of either sign (positive or negative). This implies that the 

current volatility is strongly related to the volatility present in the immediate past (Brooks, 2008, 

pp. 386-387; Francq & Zakoian, 2010, p. 9). Leptokurtosis occurs when the distribution of the 

return of an asset exhibits fatter tails and is more peaked at zero than that of a standard Gaussian 

distribution. Another reason for the use of the ARCH family of models is that financial time series 

often exhibit a leverage effect, which is an asymmetry of the impact that the past positive and 

negative values  have on the current volatility. It is often seen that negative returns  (a price 

decrease)  tend to increase the volatility by a larger amount than a positive return (price increase) 

of the same amount (Francq & Zakoian, 2010, pp. 9-10). The ARCH family of models have proved 

useful in accounting for the heteroscedasticity, volatility clustering, and leptokurtosis which are 

often present in financial time series.  

As already stated the alternative to the ARCH family of models, which are observation driven 

models, are the parameter driven models where the variance is modeled as an unobserved 

component that follows some underlying latent stochastic process. These models are referred to 

as Stochastic Volatility (SV) models. It should be noted that it is not the case that the GARCH family 

of models are a type of Stochastic Volatility model.  They differ in that the GARCH models are 

completely deterministic and use all the information that is available up to that of the previous 

period. This means that there is no error term in the variance equation of the GARCH model, the 

error term appears only in the mean equation. The Stochastic Volatility model includes a second 

error term, this error term enters into the conditional variance equation (Brooks, 2008, p. 427). 

The Stochastic Volatility models have not been as widely used as the ARCH family of models. One 

of the reasons for this is that the likelihood for the Stochastic Volatility models is not easy to 

evaluate, which is not the case with the ARCH models (Shimada & Tsukuda, 2005, p. 3). There are 

two reasons for the difficulty in estimating the likelihood for Stochastic Volatility models. Firstly, 
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because the variance is modeled as an unobserved component and, secondly the model is non-

Gaussian. This results in the likelihood being complicated and difficult to work with. Another 

disadvantage of using Stochastic volatility models is that the estimation process consists of two 

stages: parameter estimation and estimation of the latent volatility. Methods that work well for 

the parameter estimation may perform poorly when estimating the latent volatility (Mahieu & 

Schotman, 1998, pp. 333-334).  

The study of volatility has applications in many areas of finance: it plays an important role in 

managing risk and aids in the implementation of economic policy by government and private 

institutions. Proper risk management and a well implemented economic policy allow for the 

maximization of profits for both financial institutions and the individual investor. This leads to a 

strengthened economy that can play a significant role in global markets. 
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Chapter Two 

2 Data Description and Exploration 

2.1 Data Description 

Four data sets will be used to investigate the use of ARCH, GARCH and Stochastic Volatility models. 

The data sets that have been selected for use are for gold mining companies listed on the 

Johannesburg Stock Exchange. The companies selected are Anglo Gold Ashanti Ltd, DRD Gold Ltd, 

Gold Fields Ltd and Harmony Gold Mining Company Ltd. The data sets consist of the daily closing 

price for each company.  

Many financial studies model the return instead of the price, as the return series is often easier to 

handle than the original price series and the return also provides a summary that is free of scale 

(Tsay, 2005, p. 2). The daily closing price is used to calculate the daily return which is given by 

   
 
 
 
       
    

  

 

(2.1) 

where    and      are the closing prices at times   and    , respectively. This is known as the 

simple return (Tsay, 2005, p. 3). It is also common to use log returns for analysis. The log return is 

given by 

       
  
    

  

 

(2.2) 

(Ruppert, 2004, p. 76). While performing the exploratory analysis for the four data sets, it was 

found that the log return had a distribution that was closer to normality than the distribution for 

the simple return. For this reason, the log return will be used for the data analysis; the log return 

will simply be referred to as the return. 

2.2 Data Exploration 

2.2.1 Anglo Gold Ashanti Ltd 

The data available for AngloGold Ashanti consists of a time series of daily closing prices with 4188 

observations from 3 January 1994 to 22 January 2010. A plot of the closing price is presented in 
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Figure 1, where it can be seen that the closing price series shows periods of large price movements 

and periods of small price movements. This would suggest that there is some volatility clustering 

in the series. The return series consists of 4187 observations because one observation is lost when 

calculating the return. Figure 3 shows the plot of daily returns for the series and Figure 4 shows a 

plot of the squared returns. From the plots of the returns and squared returns, evidence of 

volatility clustering can be seen. Some preliminary results for the return series are given in Table 1. 

The results show that the return series has a high kurtosis which suggests that the series is not 

normally distributed. This is confirmed by the tests for normality which are given in Table 2 and 

from a visual inspection of the histogram of the return shown in Figure 2. 

Table 1: Anglo Gold Ashanti Preliminary Results 

Anglo Gold Ashanti Preliminary Results 

 Log Return Squared Log Return 

Mean 0.00007 0.0007 

Median 0.0000 0.0002 

Maximum 0.1756 0.0309 

Minimum -0.1233 0.0000 

Standard Deviation 0.0260 0.0015 

Skewness 0.3977 6.6147 

Kurtosis 2.8577 74.7490 

 

Table 2: Anglo Gold Ashanti Tests for Normality 

Anglo Gold Ashanti Tests for Normality 

 Log Return Squared Log Return 

Test Statistic p-value Statistic p-value 

Kolmogorov-Smirnov 0.0602 <0.010 0.3250 <0.010 

Cramer-von Mises 5.9008 <0.005 129.7418 <0.005 

Anderson-Darling 32.4484 <0.005 656.0393 <0.005 
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Figure 1: Anglo Gold Ashanti Daily Closing Price 

 

Figure 2: Histogram of the Daily Return for Anglo Gold Ashanti 
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Figure 3: Anglo Gold Ashanti Daily Return 

 

Figure 4: Anglo Gold Ashanti Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily return are 

given in Figure 5. The ACF shows that there is some minor serial correlation at lags 1 and 8 while 

the PACF has significant spikes at lags 1 and 8. 
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Figure 5: ACF and PACF for Anglo Gold Ashanti Daily Return 

  

Figure 6: ACF and PACF for Anglo Gold Ashanti Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily squared return 

are given in Figure 6. The ACF and PACF both show significant spikes which indicates the presence 

of an ARCH effect. 

2.2.2 DRD Gold Ltd 

The data available for DRD Gold consists of a time series of daily closing prices with 4186 

observations from 3 January 1994 to 22 January 2010. A plot of the daily closing price is presented 

in Figure 7. The plot reveals periods of large price movements, as well as periods of small price 

movements. This indicates that there may be some volatility clustering in the series. The return 

series consists of 4185 observations because one observation is lost when calculating the return. 

Figure 9 shows a plot of daily returns and Figure 10 shows a plot of the squared daily returns. The 

plots of returns and squared returns show evidence of volatility clustering. Preliminary results for 

the return can be found in Table 3 where it is seen that the return has a high kurtosis, along with 
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some negative skewness, which suggests that the return series is not normally distributed. This is 

confirmed by the test for normality, as shown in Table 4, and from a visual inspection of the 

histogram of the return, shown in Figure 8. 

Table 3: DRD Gold Preliminary Results 

DRD Gold Preliminary Results 

 Log Return Squared Log Return 

Mean -0.0006 0.0017 

Median 0.0000 0.0003 

Maximum 0.3316 0.2508 

Minimim -0.5008 0.0000 

Standard Deviation 0.0414 0.0062 

Skewness -0.1823 20.5158 

Kurtosis 10.9998 686.7178 

 

Table 4: DRD Gold Tests for Normality 

DRD Gold Tests for Normality 

 Log Return Squared Log Return 

Test Statistic p-value Statistic p-value 

Kolmogorov-Smirnov 0.1207 <0.010 0.3907 <0.010 

Cramer-von Mises 18.5252 <0.005 184.6000 <0.005 

Anderson-Darling 94.0927 <0.005 901.8188 <0.005 
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Figure 7: DRD Gold Daily Closing Price 

 

Figure 8: Histogram of the Daily Return for DRD Gold 
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Figure 9: DRD Gold Daily Return 

 

 

Figure 10: DRD Gold Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily return can be 

seen in Figure 11. The ACF shows some minor serial correlation at lags 1 and 17, with the PACF 

showing significant spikes at the same lags. 
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Figure 11: ACF and PACF for DRD Gold Daily Return 

  

Figure 12: ACF and PACF for DRD Gold Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily squared return 

are given Figure 12. The ACF shows some minor serial correlation at lags 2, 3, and 4 with the PACF 

showing some minor serial correlation at lags 1, 2, and 3. This indicates the presence of an ARCH 

effect. 

2.2.3 Gold Fields Ltd 

The data available for Gold Fields Ltd consists of a time series of daily closing prices with 3123 

observations from 2 February 1998 to 22 January 2010. A plot of the closing prices is presented in 

Figure 13. The plot shows some periods of low volatility and other periods of high volatility. The 

return series consists of 3122 observations because one observation is lost when calculating the 

return. Figure 15 shows a plot of the daily return series and Figure 16 shows a plot of the squared 

return series. The plots of the return series and the squared return series show some evidence of 

volatility clustering. Preliminary results for the return and squared return series can be found in 
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Table 5 where it is seen that the return series has a high kurtosis and some negative skewness 

suggesting that the series is not normally distributed. This is confirmed by the tests for normality 

which can be seen in Table 6 and from a visual inspection of the histograms of the return shown in 

Figure 14. 

Table 5: Gold Fields Preliminary Results 

Gold Fields Preliminary Results 

 Log Return Squared Log Return 

Mean 0.0003 0.0012 

Median 0.0000 0.0003 

Maximum 0.2490 0.1885 

Minimum -0.4342 0.0000 

Standard Deviation 0.0343 0.0043 

Skewness -0.1446 28.1367 

Kurtosis 11.6058 1141.722 

 

Table 6: Gold Fields Tests for Normality 

Gold Fields Tests for Normality 

 Log Return Squared Log Return 

Test Statistic p-value Statistics p-value 

Kolmogorov-Smirnov 0.0678 <0.010 0.3931 <0.010 

Cramer-von Mises 6.0041 <0.005 135.204 <0.005 

Anderson-Darling 33.3045 <0.005 664.415 <0.005 
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Figure 13: Gold Fields Daily Closing Price 

 

Figure 14: Histogram of Daily Return for Gold Fields 
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Figure 15: Gold Fields Daily Return 

 

Figure 16: Gold Fields Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily return can be 

seen in Figure 17. The ACF shows some minor serial correlations at lags 1, 4, 7, and 23, while the 

PACF has significant spikes at the same lags. 
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Figure 17: ACF and PACF for Gold Fields Daily Return 

  

Figure 18: ACF and PACF for Gold Fields Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily squared return 

are given Figure 18. The ACF shows some minor serial correlation at lags 2, 4, and 5 with the PACF 

showing some minor serial correlation at lags 1, 3, and 5. This indicates the presence of an ARCH 

effect. 

2.2.4 Harmony Gold Mining Company Ltd 

The data available for Harmony Gold Mining Company consists of a time series of closing prices 

with 4188 observations from 3 January 1994 to 22 January 2010. A plot of the closing price is 

presented in Figure 19. The first half of the series exhibits relatively low volatility whilst the second 

half of the series shows an increase in the volatility. The return series consists of 4187 

observations because one observation is lost when calculating the return. Figure 21 shows the plot 

of daily returns for the series and Figure 22 shows a plot of squared returns. The plot of returns 

and squared returns shows some evidence of volatility clustering in the series. Preliminary results 
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for the return and squared return series are given in Table 7, where it can be seen that there is a 

high kurtosis and some positive skewness for the return series, which suggests that the series is 

not normally distributed. This is confirmed by the tests for normality, where p-values are found to 

be less than 0.05, which can be found in Table 8 and from a visual inspection of the histogram of 

the return series shown in Figure 20. 

Table 7: Harmony Gold Mining Company Preliminary Results 

Harmony Gold Mining Company Preliminary Results 

 Log Return Squared Log Return 

Mean 0.00028 0.0010 

Median 0.0000 0.0002 

Maximum 0.2287 5.2296 

Minimum -0.1728 0.0000 

Standard Deviation 0.0321 0.0025 

Skewness 0.2912 7.5668 

Kurtosis 3.9907 90.9873 

 

Table 8: Harmony Gold Mining Company Tests for Normality 

Harmony Gold Mining Company Tests for Normality 

 Log Return Squared Log Return 

Test Statistic p-value Statistic p-value 

Kolmogorov-Smirnov 0.0903 <0.010 0.3415 <0.010 

Cramer-von Mises 11.1683 <0.005 142.4249 <0.005 

Anderson-Darling 56.6560 <0.005 712.7145 <0.005 
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Figure 19: Harmony Gold Mining Company Daily Closing Price 

 

Figure 20: Histogram of Daily Return for Harmony Gold Mining Company 
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Figure 21: Harmony Gold Mining Company Daily Return 

 

Figure 22: Harmony Gold Mining Company Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily return can be 

seen in Figure 23. The ACF shows some minor serial correlation at lag 1, while the PACF shows 

significant spikes at lags 1 and 15. 
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Figure 23: ACF and PACF for Harmony Gold Mining Company Daily Return 

  

Figure 24: ACF and PACF for Harmony Gold Mining Company Daily Squared Return 

The autocorrelation (ACF) and partial autocorrelation functions (PACF) for the daily squared return 

are given Figure 24. The ACF shows many significant spikes with the PACF showing some minor 

serial correlation at lags 1, 2, 3, 4, 5, 6 and 7. This indicates the presence of an ARCH effect. 
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Chapter Three 

3 ARCH and GARCH Models 

Until recently the main focus of economic time series modeling was based on the conditional first 

moments. Any dependency on higher moments was treated as nuisance (Bollerslev, Engle, & 

Nelson, ARCH Models, 1994, p. 2961). When making use of ARMA models there is an assumption 

of stationarity. This implies that we are making the assumption that the time series exhibits a 

constant variance, that is that the variance remains constant over time. This assumption is, 

however, an unrealistic one because many financial time series are often covariance 

nonstationary. There has been an increased focus on the importance of modeling risk and this has 

led to the development of models to allow for time varying variances and covariances (Bollerslev, 

Engle, & Nelson, ARCH Models, 1994, p. 2961). A class of models that allow for the presence of 

time varying variances and covariances are the ARCH family of models which were first introduced 

by Engle (1982). The ARCH models were later extended by Bollerslev (1986) to a more general 

form, known as GARCH models.  ARCH and GARCH models, which are the focus of this chapter, 

have been widely used to analyze data on exchange rates and stock prices (Berkes, Horvath, & 

Kokoszka, 2003, p. 201) and play an increasingly important role in the management of risk 

scenario.  

3.1 The ARCH Model 

The autoregressive conditional heteroscedastic (ARCH) model was first introduced by Engle (1982) 

to model changes in volatility (Shumway & Stoffer, 2006, p. 280). The ARCH model allows for the 

conditional error variance present in an ARMA process to depend on the past squared errors (Box, 

Jenkins, & Reinsel, 2008, p. 414). This is different from the ARMA process, in which errors are 

assumed to be independent. In order to understand the ARCH model it is useful to first look at the 

ARCH(1) model and some of the properties associated with it. 

3.1.1 The ARCH(1) Model 

Let    be the return of an asset at time  . The return series      should be serially uncorrelated or 

only have some minor serial correlations at lower orders when the interest is on the study of 

volatility. The series should however be dependent. The conditional mean and variance of    given 

     are 
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and 

  
                        

        

where      is the information set or history at time    . Now let 

         

where    is the in the form of an ARMA model with some explanatory variables given by 

            

 

   

        

 

   

        

 

   

 

(Tsay, 2005, pp. 99-100). 

More explanation on ARMA and related models can be found in (Tsay, 2005) and (Box, Jenkins, & 

Reinsel, 2008). 

The ARCH(1) model is then given by 

         (3.1) 

   
            

  (3.2) 

(Engle, 1982, p. 988) where      and      and          . The unconditional mean of    is 

zero because 

                                   (3.3) 

The unconditional variance of    is  

             
         

          

             
              

   (3.4) 

where      is the information set or history available at time    . Thus 

                     

Since    is a stationary process with         and                         
  , we then have  
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(3.5) 

(Tsay, 2005, p. 105; Shumway & Stoffer, 2006, pp. 281-282). 

For the variance of    to be positive, we require that       . When modeling asset returns, it 

is sometimes useful to study the tail behavior of their distribution. To study the tail behavior we 

need the fourth moment of    to be finite. 

If we assume    to be normally distributed we have 

     
              

        
             

    (3.6) 

and 

     
         

                     
         

           
    

     
    (3.7) 

If    is fourth-order stationary we have  

     
       

                 
     

     

     
     

  
    

     
     

    (3.8) 

Solving for     
   

 
    

   
   

       

            
  
  

(3.9) 

For     
   to be positive,    must satisfy the condition      

    and, therefore,      
 

  
. 

The unconditional kurtosis of    is  

     
  

         
   

   
       

            
  
 
      

 

  
  

 

 
 
      

  

     
  

    
(3.10) 

So for an ARCH(1) process, we need      
 

  
 for the     

   to exist and the kurtosis of    will 

always be greater than 3. This shows that the excess kurtosis of    is positive and we also see that 
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the tail distribution of    is heavier than that of the normal distribution (Talke, 2003, p. 9; Tsay, 

2005, p. 105; Shumway & Stoffer, 2006, p. 282).  

When using the ARCH and GARCH models it is necessary to consider modeling the squared 

residuals,   
 . The reason for this becomes apparent when forecasting using the ARCH model and 

will be discussed later in the chapter. When modeling the squared residuals using the ARCH(1) 

models, we have  

   
    

   
  (3.11) 

and since   
           

 , we have 

   
           

     (3.12) 

   

where      
    

     (Talke, 2003, pp. 9-10). 

Parameter Estimation for the ARCH(1) Model 

Under the assumption of normality we can use the method of maximum likelihood estimation to 

estimate the parameters for the ARCH(1) model. The parameters to be estimated are    and   . 

The likelihood, based on the observations         , can be written as: 

                                                        

 

 

 
  

 

     
 
     

  
 

   
  

 

   

         

 

 

(3.13) 

where          
 . The exact form of         is complicated. Therefore, it is often easier to 

condition on    and then to use the conditional likelihood, 

                                        

 
  

 

     
 
     

  
 

   
   

 

   

 
 

(3.14) 

to estimate   (Francq & Zakoian, 2010, pp. 141-142; Talke, 2003, p. 11). Maximizing the likelihood 

is the same as maximizing its logarithm. The log-likelihood is given by 
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(3.15) 

The term      does not contain any parameters to be estimated and the log-likelihood can 

therefore be simplified and written as 

 
                           

 

 
      

  
  
 

  
  

 

   

  

 

 

(3.16) 

We then maximize the log-likelihood recursively with respect to   using numerical methods, for 

example the Newton-Raphson method and the Fisher Scoring method. 

The Newton-Raphson Method 

The Newton-Raphson method is used to solve nonlinear equations. It starts with an initial guess 

for the solution. A second guess is obtained by approximating the function to be maximized in the 

neighborhood of the first guess by a second-degree polynomial and then finding the location of 

the maximum value for that polynomial. A third guess is then obtained by approximating the 

function to be maximized in the neighborhood of the second guess by another second-degree 

polynomial and then finding the location of its maximum. The Newton-Raphson method continues 

in this way to obtain a sequence of guesses that converge to the location of the maximum (Agresti, 

2002, pp. 143-144). 

To determine the value of   at which the function      is maximized we let  

 
    

     

   
 
     

   
    

(3.17) 

and let   be the Hessian matrix with entries 

 
    

      

      
  

(3.18) 

Let      be the guess for    at step   where           and let      and     be   and   evaluated 

at     . Each step approximates L    near      by terms up to second order of its Taylor series 

expansion 
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(3.19) 

The next guess is obtained by solving for   in 

      

  
                      

(3.20) 

If we assume that      is nonsingular, then the next guess can be expressed as  

                   
  
      (3.21) 

The Newton-Raphson method continues until changes in         between two successive steps in 

the iteration process are small. The maximum likelihood estimator is then the limit of      as 

    (Agresti, 2002, pp. 143-144). 

The Fisher Scoring Method 

An alternative to the Newton-Raphson method is the Fisher scoring method. The Fisher scoring 

method is similar to the Newton-Raphson method, however, instead of using the Hessian matrix 

the Fisher scoring method uses its expected value (Agresti, 2002, p. 145). 

Let      be the matrix with elements                    evaluated at     . The formula for the 

Fisher scoring method is then given by 

                   
  
      (3.22) 

(Agresti, 2002, pp. 145-146). 

Maximizing the likelihood is equivalent to maximizing its log-likelihood. So, from the Newton-

Raphson and Fisher scoring methods, we can maximize the log-likelihood (3.16) for the ARCH(1) 

model so that the analogue of (3.17) is  

 
    

     

   
 
     

   
   

(3.23) 

and the analogue of (3.18) is 
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(3.24) 

From (3.16) we have 
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For the Newton-Raphson method we have from (3.21) that 

 

             

 

 
 

         

      

         

      
         

      

         

       

 
 

  

 

 
 

        

   
        

    

 
 
  

 

(3.25) 

and for the Fisher Scoring Method we have from (3.22) that 

 

             

 

 
 
  

         

      
   

         

      
 

  
         

      
   

         

      
 
 

 
 

  

 

 
 

        

   
        

    

 
 
  

 

(3.26) 

 

Forecasting with the ARCH(1) Model 

To forecast with the ARCH(1) model, we consider the series            and then let the   step 

ahead forecast at forecast origin   be denoted by       for         Then       is the minimum 

mean square error predictor that minimizes             
 

 where      is a function of the 

observed series and is given by 

                          (3.27) 

(Talke, 2003, pp. 13-14).  For the ARCH(1) model we have 

          (3.28) 

This is not a useful forecast for the    series and it is therefore necessary to forecast the squared 

returns   
 . We therefore consider 

   
           

    
    

      
    (3.29) 

The one step ahead forecast is then given as 

   
              

   (3.30) 

This is the same as the one step ahead forecast given by 

   
           

               
  (3.31) 
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where     and     are the conditional maximum likelihood estimates for    and    respectively 

(Tsay, 2005, p. 109; Talke, 2003, p. 14). Forecasts are obtained recursively and, therefore, the two 

step ahead forecast is give by 

   
           

       

        
        

             
        

               
     

            
   

    
       (3.32) 

The   step ahead forecast is then given by 

   
           

       

            
      

       
   

    

    
      (3.33) 

(Talke, 2003, pp. 14-15; Tsay, 2005, p. 109). 

3.1.2 The ARCH(q) Model 

The ARCH(q) model is a simple extension of the ARCH(1) model. The ARCH(q) model is given by 

         

 

(3.34) 

   
           

        
          

  

 

(3.35) 

where      is the sequence of independent and identically distributed random variables with 

mean zero and variance one,      and      for    . The    must also satisfy some regularity 

conditions for the unconditional variances of    to be finite. 

Estimating the parameters for an ARCH(q) model 

Parameters for the ARCH(q) model are estimated by maximizing the likelihood function. Under the 

assumption of normality the likelihood function for an ARCH(q) model is given by 
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(3.36) 

where               
 
 and              is the joint probability density function of       . 

Often the conditional likelihood function, 

 
                        

 

     
 

 

     

     
  
 

   
    

 

(3.37) 

is used because the exact form of              is complicated. When using the conditional 

likelihood   
  can be evaluated recursively. 

The logarithm of the conditional likelihood is easier to use and maximizing the logarithm is 

equivalent to maximizing the conditional likelihood. The logarithm of the conditional likelihood is  

 
                          

 

 
       

 

 
    

  
 

 

  
 

  
  

 

     

  
 

(3.38) 

The log likelihood can be simplified to 

 
                          

 

 
    

  
 

 

  
 

  
  

 

     

 
 

(3.39) 

since the term        does not include any parameters to be estimated. We then evaluate 

  
           

          
  recursively. Evaluation of the parameters follows the same 

process as in the ARCH(1) model discussed above. 

Forecasting with the ARCH(q) Model 

To forecast with the ARCH(q) model we consider the series            and then let the   step 

ahead forecast at forecast origin   be denoted by       for         .Then       is the minimum 

mean square error predictor that minimizes             
 

 where      is a function of the 

observed series. Again we need to forecast using the squared errors   
  as the            which 

is not a useful forecast for the series    (Talke, 2003, p. 18). Forecasts are obtained recursively and 

the procedure follows that of the forecast for the ARCH(1) model. For the ARCH(q) model at the 

forecast origin  , the one step ahead forecast of     
  is given by 
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   (3.40) 

The two step ahead forecast is given by 

   
            

         
            

   (3.41) 

In general the   step ahead forecast of     
  is given by 

 
  
             

      

 

   

 
 

(3.42) 

and, if      , then   
             

  (Tsay, 2005, p. 109). 

Weaknesses of ARCH Models 

Along with some of the advantages of the ARCH model which were stated in the previous section 

there are also some disadvantages that need to be taken into consideration when using ARCH 

models. Firstly, the ARCH model does not distinguish between positive and negative shocks 

because it depends on the square of the previous shocks. This means that both positive and 

negative shocks are assumed to have the same effect. Secondly, the ARCH model is restrictive. 

This can be seen for the ARCH(1) model where      
 

  
  for the fourth moment to exist. For 

higher order ARCH models this constraint becomes more complicated. Thirdly, the ARCH model 

only provides a way of describing the behavior of the conditional variance. It does not help us in 

understanding the causes of this behavior. Finally, the ARCH model often over predicts volatility. 

This is because ARCH models respond slowly to large isolated shocks in the series (Tsay, 2005, p. 

106). 

3.2 The GARCH Model 

An extension to the ARCH model is the generalized ARCH or GARCH model developed by Bollerslev 

(1986). An advantage of the GARCH model is that it requires fewer parameters than the ARCH 

model to adequately describe the data (Tsay, 2005, pp. 114-115). The GARCH model depends on 

both the previous shocks and on the previous conditional variance (Talke, 2003, p. 20). 
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3.2.1 The GARCH(1,1) Model 

The GARCH(1,1) model is given by 

         

 

(3.43) 

   
           

        
  

 

(3.44) 

where          . For the variance   
  to be positive we need to impose some restrictions on the 

parameters. In particular, we need           and      (Talke, 2003, p. 21). From equation 

(3.44) it can be seen that a large value for     
  or     

  results in a large value for   
 . So a large 

value of     
  tends to be followed by another large   

 . This generates volatility clustering which is 

present in financial time series (Tsay, 2005, p. 114). 

The GARCH(1,1) model can be rewritten as  

   
                

            (3.45) 

where      
    

 . This form shows that the process of squared errors follows an ARMA(1,1) 

process with uncorrelated    (Box, Jenkins, & Reinsel, 2008, p. 417). This form of the model is 

useful for determining the properties of the GARCH(1,1) model. 

Now,  

      
    

   

    
   

    
    

    
    

      (3.46) 

and  

                
    

            

    
     

       

     (3.47) 

where            
       

             
   is the information set at time    . So,    is a 

martingale difference and, therefore,         and                for    . So,    is serially 

uncorrelated (Talke, 2003, p. 21). 
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Kurtosis of the GARCH(1,1) Model 

If we consider the model given in (3.43) and (3.44) we have 

         

           

    
         

where    is the excess kurtosis for   . From the above assumptions we have 

             
   

  
       

 (3.48) 

(Herwartz, 2004, p. 200) and if we assume that     
   exists, then 

     
             

    (3.49) 

Taking the square of equation (3.48) we have 

   
    

    
     

    
     

           
           

           
     

   (3.50) 

Taking the expectation and using (3.48) and (3.49), we then have 

 
    

   
  
          

              
               

  
 

 

(3.51) 

subject to           and      
               

    . Then the excess kurtosis of 

   is given by 

 
  

    
  

     
    

   

 
                

  

     
         

      
     

 

 

(3.52) 

If we assume that    is normally distributed, then      and we then have 

     
  

     
    

 
           

  

         
     

     
 

(3.53) 
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This means that for the kurtosis to exist we require      
         

    (Talke, 2003, pp. 

21-23; Tsay, 2005, pp. 145-146). This shows that like the ARCH model the GARCH model has a tail 

distribution that is heavier than that of the normal distribution (Tsay, 2005, p. 114). 

Parameter Estimation for the GARCH(1,1) Model 

Parameter estimation for the GARCH(1,1) model follows a similar procedure as that for the 

ARCH(1) model. One difference, however, is that an initial estimate for the value of the past 

conditional variance is required. Bollerslev (1986) suggests using the unconditional variance of    

as an initial value for this variance. So we can use 

   
  

  
       

 

 

(3.54) 

 

as the estimate for the initial value for the past conditional variance (Talke, 2003, p. 23). 

Under the assumption of normality we can use the method of maximum likelihood estimation to 

estimate the parameters for the GARCH(1,1) model. The parameters to be estimated are       

and   . The likelihood can be written as 

               
    

      
            

                  
               

            
     

 
  

 

     
 
     

  
 

   
          

    

 

    

  
 

(3.55) 

where             
 . The exact form of        

     is complicated and it is therefore often 

easier to condition on    and   
  and then to use the conditional likelihood,  

            
      

         
          

               
         

   

 
  

 

     
 
     

  
 

   
   

 

   

 
 

(3.56) 

 

to estimate  . Maximizing the likelihood is equivalent to maximizing its logarithm. The conditional 

log-likelihood is given by 
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(3.57) 

(Francq & Zakoian, 2010, pp. 141-142; Talke, 2003, p. 23). The two methods that can be used to 

solve for   are the Newton-Raphson and Fisher scoring methods. Once again maximizing the 

likelihood is the same as maximizing the log likelihood so then from (3.17) we have 

    
     

   
 
     

   
 
     

   
   

and from (3.18) we have 

  

 

 
 
 
 

      

      

      

      

      

      
      

      

      

      

      

      
      

      

      

      

      

       

 
 
 
 

  

 

We can rewrite equation (3.44) in the following way 

   
            

              
        

    

           
               

    
     

    

           
               

    
           

        
     

           
               

      
      

     
    

     
    

     

       
      

         
       

    
      

     
    (3.58) 

Using the initial condition given by equation (3.54), we then have 

 
  
       

   

   

   

      
       

 

   

   

 
    

   

       
  

 

 

(3.59) 

Using the log-likelihood given by (3.57) with   
  given by (3.59), we have the following 
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Using the Newton-Raphson method we have from (3.21), 

            

 

 
 
 
 

         

      

         

      

         

      
         

      

         

      

         

      
         

      

         

      

         

       

 
 
 
 

  

 

 
 
 
 

        

   
        

   
        

    

 
 
 
 

  

and using the Fisher scoring method we have from (3.22) that 
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Forecasting with the GARCH(1,1) Model 

Forecasting with the GARCH model is similar to forecasting with the ARMA model. If we consider 

the GARCH(1,1) model with forecast origin  , then the one step ahead forecast is given as 

   
            

      
   (3.60) 

Forecasts are obtained recursively and, for multistep ahead forecasts, we need to use   
    

   
  

and to rewrite the equation (3.44) as 

     
              

      
    

      (3.61) 

When      , the equation becomes 

     
                

        
      

      (3.62) 

The two step ahead forecast at the forecast origin   is then given by 

   
                 

      (3.63) 

since       
           

In general for the   step ahead forecast for     we have 

   
                 

       

 

(3.64) 

(Tsay, 2005, p. 115). 

3.2.2 The GARCH(p,q) Model 

The GARCH(p,q) model extends the GARCH(1,1) model to p and q parameters. 

The GARCH(p,q) model is give by 

         (3.65) 

 
  
            

 

 

   

        
 

 

   

  
 

(3.66) 

 

where          . For the variance to be positive we need                 and 

          
         
    and we take      for     and      for     (Bollerslev, 1986, p. 
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309; Herwartz, 2004, p. 199). Having           
         
    implies that the unconditional 

variance of    exists and that the conditional variance   
  changes over time. If     then the 

GARCH(p,q) model reduces to an ARCH(q) model. As with the GARCH(1,1) model, we can let 

     
    

  so that   
    

    . If we substitute     
      

        for             into 

equation (3.66), we can rewrite the GARCH model as 

 

  
                 

 

         

   

           

 

   

 

 

(3.67) 

and we have that        , and                for    . Equation (3.67) shows that the 

GARCH model can be written as an ARMA form for the squared series   
  (Tsay, 2005, p. 114). This 

form of the model is useful for forecasting. 

Parameter Estimation for the GARCH(p,q) Model 

Under the assumption of normality we can use the method of maximum likelihood estimation to 

estimate the parameters for the GARCH(p,q) model. The parameters to be estimated are 

                     . The likelihood can be written as 

            
      

            
                  

               
            

     

 
  

 

     
 
     

  
 

   
          

    

 

   

  
 

(3.68) 

where            
             

   is the information set at time     and 

                         
 
. The exact form of        

     is complicated and it is therefore 

often easier to condition on            and   
    

      
  and then use the conditional likelihood, 

                 
      

              
      

   

        
                   

              
      

   

 
  

 

     
 
      

  
 

   
  

 

     

  
 

(3.69) 
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to estimate  . Maximizing the likelihood is equivalent to maximizing its logarithm. We can 

therefore use the conditional log-likelihood given by 

               
      

                     
      

            
      

      

 

 
  

 

 
         

   
  
 

  
  

 

     

 
 

(3.70) 

 

where             (Talke, 2003, p. 30). 

We need to solve for   recursively in a similar manner to that of the GARCH(1,1) model. Two 

methods to solve for   are the Newton-Raphson and Fisher scoring. 

Parameter Estimation with Non-Normal Distributions 

Often when fitting GARCH models, the assumption of normality is violated for real data. If the 

assumption of normality is violated a number of problems can occur. Firstly, the parameter 

estimates could be inconsistent and, secondly, it is no longer possible to provide valid conditional 

forecasting intervals for      given    by using the quantiles of the normal distribution. For this 

reason it is useful to consider a distribution that is leptokurtic (Herwartz, 2004, p. 204). Two 

distributions to be considered are the t-distribution and the general error distribution. 

GARCH with t-distributed Innovations 

If the random variable    is t-distributed with   degrees of freedom, has a zero mean and a 

variance of   
 , then its probability density function is given by 

 

          
      

   
   

    
 
  

        
 

 

   
    

 

       
  

 
   
 

  

 

(3.71) 

 

where      is the gamma function given by 
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(3.72) 

The contribution of an observation to the log-likelihood function is  given by 

                     

 

 

 

     
 
   

   

 
          

 

 
  

       
 

 
  

   

 
     

    
 

       
   

 

(3.73) 

where   
  is of the form given by (3.66) (Herwartz, 2004, p. 205). The log-likelihood is maximized in 

the same manner as before. 

GARCH with Generalized Error Distribution (GED) 

A random variable    with shape parameter  , a mean of zero, and a variance   
  has a probability 

density function given by 

 
                 

 

 
 
  

    
 
 

   
   
   

 

 
      

  

  
(3.74) 

where   is given by 

 

   
  

 
 
 

 
 
   

 
  
 

 
 

  

 

(3.75) 

When    , the probability density function is equal to the       
   probability density function 

and, when    , the distribution becomes leptokurtic. The contribution of an observation to the 

log-likelihood is given by 

 
             

 

 
 
  

    
 
 

     
   
   

 

 
    

 

 
     

   
(3.76) 

 

(Herwartz, 2004, pp. 205-206). Again, the log-likelihood is maximized as before. 
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Forecasting with the GARCH(p,q) Model 

Forecasting with the GARCH model is similar to forecasting with an ARMA model. The forecast is 

obtained by taking the conditional expectation. For the GARCH(p,q) model at forecast origin   and 

using the ARMA form of the model given by equation (3.67) the one step ahead forecast is given 

by 

 

  
                         

     

         

   

                

 

   

  

 

(3.77) 

where   
                 

  and   
          

  are assumed to be known at time  . In general, the 

  step ahead forecast is  given by 

 

  
                        

     

         

   

                

 

   

  

 

(3.78) 

where         
      is given recursively by equation (3.78) for    ,          

            
  for 

   ,                for     and                     for     (Shumway, 1988, pp. 142-

144; Shumway & Stoffer, 2006, pp. 116-117; Talke, 2003, pp. 30-31). 

3.3 Extensions of the GARCH Model 

The Integrated GARCH Model 

The integrated GARCH (IGARCH) process was designed for the modeling of data that exhibit 

persistent changes in volatility. An IGARCH process can either be a non-stationary process or a 

stationary process with an infinite variance. A GARCH(p,q) process is stationary with a finite 

variance if  

 
   

 

   

    

 

   

    
(3.79) 

If the polynomial in equation (3.67) has a unit root then the GARCH model is an IGARCH model. 

The IGARCH model is a unit root GARCH model. The GARCH(p,q) process is called IGARCH if  

 
   

 

   

    

 

   

   
 

(3.80) 
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(Ruppert, 2004, p. 377). 

The IGARCH(1,1) model can be written as 

         (3.81) 

   
           

            
   (3.82) 

where      is defined as for the GARCH models and       . When using the IGARCH model, 

the unconditional variance no longer exists (Tsay, 2005, p. 122). 

The Exponential GARCH Model 

The exponential GARCH (EGARCH) model was first introduced by (Nelson, 1991). The model allows 

for asymmetric effects between positive and negative asset returns. The EGARCH model has some 

advantages over the GARCH model. Since the        
   has been modeled then   

  will be positive 

even if the model parameters are negative. This means that it's not necessary to impose 

constraints on the parameters to force them to be non-negative (Brooks, 2008, p. 406; Ruppert, 

2004, p. 383; Tsay, 2005, p. 124). Nelson considered the weighted innovation given by 

                            (3.83) 

where   and   are real constants and    and              are zero mean independent and 

identically distributed sequences with continuous distributions. So, we have then that          

 . We can see the symmetry of       if we rewrite it as 

 
       

                        
                        

 . 
(3.84) 

The asymmetry of the EGARCH model means that if the relationship between the volatility and the 

returns is negative then   will be negative (Brooks, 2008, p. 406). 

The EGARCH(p,q) model can be written as  

         (3.85) 

 
     

      
             

   

           
 

          
(3.86) 
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where    is a constant,   is the back-shift operator, such that               . The numerator, 

             
    and the denominator,            

  are polynomials with zeros 

outside the unit circle (Tsay, 2005, p. 124). 

Alternatively, the model can be written as 

 
     

         
             

    

 

   

           
  

 

   

  

 

 

(3.87) 

When the model is in the form of equation (3.87), we have that a positive      contributes 

               to the log volatility and a negative      contributes               , where 

              . Thus the parameter    is the leverage effect of      (Tsay, 2005, p. 125). The 

leverage effect occurs when returns become more volatile as the price decreases (Ruppert, 2004, 

p. 384).  

The GARCH-M Model 

Engle, Lilien, and Robins (1987) first suggested the use of an ARCH-M model, which lets the 

conditional variance of the return enter into the conditional mean equation. GARCH models, 

however, have become more popular than ARCH models and it is, therefore, more common to 

estimate a GARCH-M model (Brooks, 2008, p. 410). The M in GARCH-M stands for GARCH in the 

mean. The GARCH-M model is useful when the return depends on its volatility (Tsay, 2005, p. 123).  

The GARCH(1,1)-M model can be written as 

         
     (3.88) 

         (3.89) 

   
           

        
   (3.90) 

 

where   and   are constants and the parameter   is called the risk premium parameter. A positive 

  implies that the return is positively related to its volatility (Tsay, 2005, p. 123). 
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3.4 Testing for ARCH 

To test for conditional heteroscedasticity, or ARCH effect, let    be the residuals from the mean 

equation for the return series. There are two tests that are commonly used to test for ARCH effect. 

The first test makes use of the Ljung-Box statistics      which are applied to the    
   series 

where the null hypothesis is that the first   lags of the autocorrelation function of the   
  series 

are zero (Tsay, 2005, p. 101). The Ljung-Box  statistic is given by 

 
            

   
 

   

 

   

    
 

(3.91) 

where   is the sample size,   is the number of lags, and     is the estimate of the     

autocorrelation of the squared residuals.     is given by 

 
    

    
          

      
     

      
       

   

  
(3.92) 

where    is the sample mean given by 

 
   

 

 
   

 

 

   

  
 

(3.93) 

Under the null hypothesis,      is asymptotically distributed as a chi-squared distribution with   

degrees of freedom (Box, Jenkins, & Reinsel, 2008, pp. 417-418; McLeod & Li, 1983, pp. 269-271). 

The null hypothesis is rejected if        
    , where   

     is the          percentile of a 

chi-squared distribution with   degrees of freedom (Tsay, 2005, pp. 26-27). 

The second test is the Lagrange multiplier test. The Lagrange multiplier test is equivalent to the   

statistic for testing      for          in the regression 

   
           

          
     

 

(3.94) 

for         , where    is the error term,   is a specified integer, and   is the sample size 

(Engle, 1982, p. 999; Lee, 1991, p. 266). The null hypothesis is then 
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Let  

 
         

      
 

     

  
 

(3.95) 

where  

 
   

 

 
   

 

 

   

 
 

(3.96) 

is the mean of   
 , and let  

 
         

 

 

     

  
 

(3.97) 

 

where     is the least squares residual from the regression in (3.94). Under the null hypothesis we 

then have that 

 
  

             

             
 

 

(3.98) 

is asymptotically distributed as a chi-squared distribution with   degrees of freedom. We reject 

the null hypothesis if     
    , where   

     is the upper          percentile of a chi-

squared distribution with   degrees of freedom, or if the p-value of   is less than   (Tsay, 2005, 

pp. 101-102). 

3.5 Model Selection Criteria 

One of the difficulties that is often experienced when fitting models to data is that of choosing an 

appropriate model. One of the reasons for this difficulty is that there are many different classes of 

models to choose from  (some of which have been discussed in the previous sections)  and, within 

each of those classes, there are a number of choices for the order of the model - for example the 

choice of   and   for the GARCH(p,q) models. There are many different criteria that can be used to 

aid in choosing the "best" possible model. However, the two most popular are to use the Akaike 

information criteria (AIC) or the Bayesian information criteria (BIC). These criteria require the 

estimation of a number of models and then the AIC and/or BIC values compared among the 
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estimated models. The model that has the minimum AIC or BIC value is then selected from those 

models that have been estimated (Box, Jenkins, & Reinsel, 2008, pp. 211-212). The AIC and BIC are 

calculated as follows: 

 
       

         

 
 
  

 
 

(3.99) 

 
       

          

 
 
      

 
  

(3.100) 

 

where      is the maximum likelihood for the model with   parameters and   is the size of the 

sample. The disadvantage to using the AIC or BIC technique for model selection is that many 

models need to be estimated by maximum likelihood, which can be time consuming and 

computationally expensive (Box, Jenkins, & Reinsel, 2008, pp. 211-212). 

3.6 Model Diagnostics 

When the ARCH model has been properly specified then the standardized residuals, given by 

     
  
  
  (3.101) 

form a sequence for independent and identically distributed random variables. The adequacy of 

the fitted ARCH model can be checked by examining the series      . The Ljung-Box statistics of     

and    
  can be used to check the adequacy of the mean equation and to test the validity of the 

volatility equation respectively (Francq & Zakoian, 2010, p. 204). The skewness, kurtosis, and QQ-

plot of       can be used to check if the distribution assumption is valid (Tsay, 2005, p. 109). 

 

3.7 Multivariate ARCH and GARCH Models 

When analyzing time series data it may become apparent that two or more series observed jointly 

are dependent on each other. Increases or decreases in volatility in one series may result in 

increases or decreases in one or more dependent series. This dependence leads to the extension 

of the univariate ARCH and GARCH models to the multivariate case. Thus, we have MGARCH 

models (Lutkepohl, 2006, p. 559). 
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3.7.1 Multivariate ARCH 

Let                   
  be a K-dimensional zero mean, serially uncorrelated, process. The 

process might be the residual process of some dynamic model and can be written as 

 
           

 
     

 

 

(3.102) 

where    is a K-dimensional independent and identically distributed white noise,                , 

and          is the conditional covariance matrix of   , given             . The matrix,         

 

 , is 

the symmetric positive definite square root of         . The conditional distribution of the   's is of 

the form 

                       (3.103) 

where                   . We have a multivariate ARCH(q) process if 

                                  
                    

    (3.104) 

where vech is the half vectorization operator which stacks the columns of a square matrix from 

the diagonal downwards into a vector.    is a 
 

 
       dimensional vector of constants and the 

  's are  
 

 
       

 

 
        coefficient matrices (Lutkepohl, 2006, p. 563). 

The multivariate ARCH model has some technical problems that need to be addressed. One of 

these problems is that the parameters need to have restrictions imposed to ensure that the 

conditional covariance matrices          are all positive definite. A model that ensures this 

property is the BEKK model. The model is given by 

            
    

          
   

      
          

   
  (3.105) 

where the   
 's are       matrices. The          are positive definite if   

 may be written in 

product form   
    

    
  where   

  is a triangular matrix (Engle & Kroner, 1995; Lutkepohl, 2006, 

p. 564). 
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3.7.2 Multivariate GARCH 

The multivariate GARCH (MGARCH) model is a generalization of the multivariate ARCH model. The 

MGARCH(p,q) model is given by 

           

 
    

 
                                  

  

 

   

                      

 

   

  
 

(3.106) 

where the   's are fixed  
 

 
       

 

 
        matrices of coefficients (Gourieroux, 1997, p. 

106; Lutkepohl, 2006, p. 564). As with the univariate GARCH model it is possible to express the 

MGARCH model in the form of a multivariate ARMA (VARMA) form. To express the MGARCH in 

VARMA form we let             
   and                     . By substituting       for 

               the MGARCH model can be written as 

 

                  

         

   

           

 

   

 

 

(3.107) 

where      for     and      for     (Lutkepohl, 2006, p. 565). 

Parameter Estimation 

If             in equation (3.101) so that the conditional distribution of    given     , is Gaussian 

then using Bayes' theorem, the joint density function of         is  

                                      (3.108) 

Now, if the    are observed values then the log-likelihood function for the MGARCH model given 

by (3.106) is then 

 
               

 

   

 
 

(3.109) 

where                           is the vector of parameters to be estimated and 

 
         

 

 
     

 

 
             

 

 
  
         

     
(3.110) 



53 
 

for        . The initial values for          are assumed to be known. We then estimate the 

parameters by maximizing the log-likelihood using numerical methods. For the existence of a 

unique maximum likelihood estimate it is important that an identified unique parameterization is 

used. For example, the BEKK form of the model (Lutkepohl, 2006, p. 569). 

Testing for ARCH 

Before fitting an MGARCH model it is useful to check if there is a presence of ARCH effect in the 

residuals. A Lagrange multiplier test can be used and we consider the model 

          
                     

                    
           (3.111) 

where    is a 
 

 
       dimensional matrix, the   's are  

 

 
       

 

 
        coefficient 

matrices, and        . The hypothesis to be tested is then 

                 

Let        be the residual covariance estimate based on the model in (3.111) and let     be the 

corresponding matrix for    . The test statistic  

 
            

 

 
                        

    
(3.112) 

is asymptotically     
          

 
  distributed under the null hypothesis (Lutkepohl, 2006, p. 576). 

We reject the null hypothesis for p-values less than our chosen significance level. 
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Chapter Four 

4 Application of ARCH and GARCH Models 

4.1 Introduction 

This chapter will focus on the application of the ARCH and GARCH models to the data sets that 

were introduced in Chapter 2. Hence, this chapter is a demonstration of theory applied to real 

data. 

The GARCH models were fitted using the PROC MODEL procedure which is readily available in SAS 

software, Version 9.2 of the SAS System for Microsoft Windows. Copyright © 2002-2008 SAS 

Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered 

trademarks or trademarks of SAS Institute Inc., Carry, NC, USA. Other software packages that can 

be used to fit GARCH models include R, GAUSS FANPAC, and EVIEWS just to name a few. We will 

focus our attention to fitting the GARCH models using SAS software. Code for selected models is 

available in Appendix B. 

4.2 Selecting the Best Model 

The selection of the best model was based on the criteria of AIC, SBC, and    where the smallest 

AIC and/or SBC were selected as the best model and the largest    was selected as the best 

model. Other criteria for model selection were that the iteration procedure that was used to 

estimate the model parameters had to converge, the parameter estimates should be significant 

and the sum of the parameters    and    for           and           should not be larger 

than 1. 

4.3 Fitting the Model 

Before fitting the ARCH and GARCH models, the first step is to remove any autocorrelation that is 

present in the mean. This was achieved by fitting autoregressive models to the various data sets 

using the number of lags indicated by the ACF and PACF of the return. The plots of the ACF and 

PACF for the return of the four data sets used can be found in Chapter 2. Once an appropriate 

autoregressive model has been selected we then proceed to fit the ARCH and GARCH models for 

the residuals. It should be noted that the ARCH and GARCH models are fitted simultaneously with 

the autoregressive model. 
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4.4 Analysis of the Anglo Gold Ashanti Ltd Data 

The autoregressive model that was used to remove the autocorrelation present in the mean used 

the order of 8. This was the lag suggested by the ACF and PACF in Figure 5. Once an appropriate 

autoregressive model has been selected, the next step is to test for any ARCH disturbances using 

the Q and LM tests for ARCH. The results of the Q and LM tests for ARCH disturbances can be seen 

in Table 9. The Q and LM tests have highly significant p-values up to order 12 which shows that 

there is ARCH effect present in the residuals. 

Table 9: Anglo Gold Ashanti Q and LM Tests for ARCH Disturbances 

Anglo Gold Ashanti Q and LM Tests for ARCH Disturbances 

Order Q P-Value LM P-Value 

1 159.2643 <0.0001 158.1438 <0.0001 

2 264.2351 <0.0001 220.6881 <0.0001 

3 327.7895 <0.0001 243.2753 <0.0001 

4 404.7278 <0.0001 273.8361 <0.0001 

5 461.3582 <0.0001 287.6571 <0.0001 

6 522.8423 <0.0001 303.3927 <0.0001 

7 548.4602 <0.0001 304.1659 <0.0001 

8 596.5273 <0.0001 315.3790 <0.0001 

9 628.8250 <0.0001 318.5491 <0.0001 

10 650.1320 <0.0001 319.0574 <0.0001 

11 677.3369 <0.0001 322.5036 <0.0001 

12 706.6635 <0.0001 326.1557 <0.0001 

 

After confirming that there is a significant ARCH effect, the next step is to fit the ARCH and GARCH 

models to the data. To select the order for   and    we need to look at the ACF and PACF for the 

squared residuals from the autoregressive model which can be seen in Figure 25.   
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Figure 25: ACF and PACF of Squared Residuals for the Anglo Gold Ashanti AR(8) Model 

The ACF shows significant spikes at all lags and the PACF shows significant spikes from lags 1 to 8 

and then a significant spike at lag 13. The ACF and PACF suggest that a GARCH(p,q) model would 

be appropriate. To investigate this, ARCH(q) and GARCH(p,q) models were fitted where   and   

were allowed to vary from 1 to 13. The orders for   and   were also tested using the extensions to 

the ARCH and GARCH model that were discussed in Chapter 3. The best models based on the AIC, 

SBC and    criteria, and the additional requirements of having significant parameter estimates, 

are presented in Table 10. The parameter estimates for the three models were made using t-

distributed errors as this showed an improvement in the selection criteria compared to when 

normally distributed errors were used. 

Table 10: Anglo Gold Ashanti best models based on the three selection criteria 

Model AIC SBC     

GARCH(1,2) -4.6422 -4.6210 0.0064 

GARCH(1,1) -4.6410 -4.6213 0.0063 

ARCH(2) -4.5838 -4.6035 0.0069 
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The ARCH(2) Model 

The ARCH(2) model was selected based on the highest    value. This model also met the 

additional criteria for selection in that the algorithm for parameter estimation converged, the sum 

   was less than 1 and the parameters were significant. The fit statistics for the ARCH(2) model can 

be seen in Table 11 and the parameter estimates, along with their standard errors and p-values, 

can be seen in Table 12. It can be seen that the sum    is approximately 0.1934, which meets the 

criteria for selection and it can also be seen that the ARCH terms are highly significant with p-

values less than 0.0001. 

Table 11: Fit Statistics for the ARCH(2) Model 

AIC -4.5838 

SBC -4.6035 

   0.0069 

SSE 2.8178 

MSE 0.0007 

Log Likelihood 9650.4420 

MAE 0.9576 

MAPE 61.6188 
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Table 12: Parameter Estimates with Standard Errors and p-values for the ARCH(2) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0007 0.0003 0.0451 

AR(1) 0.0552 0.0165 0.0008 

AR(2) -0.0162 0.0163 0.3214 

AR(3) -0.0144 0.0145 0.3185 

AR(4) 0.0166 0.0143 0.2477 

AR(5) 0.0018 0.0140 0.8954 

AR(6) -0.0033 0.0140 0.8168 

AR(7) -0.0227 0.0140 0.1062 

AR(8) -0.0315 0.0142 0.0269 

   0.0003 0.00002 <0.0001 

   0.1089 0.0177 <0.0001 

   0.0845 0.0154 <0.0001 

Degrees of Freedom 4.4789 0.3640 <0.0001 

 

The GARCH(1,1) Model 

The GARCH(1,1) model was the one having the smallest SBC value. The additional criteria for 

selection was that the algorithm for parameter estimation should converge, the sum of    and    

should be less than 1 and the parameters should be significant. The fit statistics for the 

GARCH(1,1) model can be found in Table 13 and the parameter estimates along with their 

standard error and p-values can be seen in Table 14. It can be seen that the sum of    and    is 

approximately 0.9559 which meets the criteria for selection and it can also be seen that the ARCH 

and GARCH terms are highly significant with p-values less than 0.001. 
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Table 13: Fit Statistics for the GARCH(1,1) Model 

AIC -4.6410 

SBC -4.6213 

   0.0063 

SSE 2.8195 

MSE 0.0007 

Log Likelihood 9728.9240 

MAE 0.9211 

MAPE 61.1245 

 

Table 14: Parameter Estimates with Standard Errors and p-values for the GARCH(1,1) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0008 0.0003 0.0180 

AR(1) 0.0610 0.0155 <0.0001 

AR(2) -0.0086 0.0163 0.5996 

AR(3) -0.0264 0.0153 0.0841 

AR(4) 0.0135 0.0158 0.3927 

AR(5) 0.0005 0.0177 0.9797 

AR(6) -0.0096 0.0151 0.5264 

AR(7) -0.0291 0.0148 0.0500 

AR(8) -0.0230 0.0151 0.1289 

   0.000009 0.000003 0.0052 

   0.0440 0.0088 <0.0001 

   0.9119 0.0185 <0.0001 

Degrees of Freedom 5.4294 0.6411 <0.0001 
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The GARCH(1,2) Model 

The GARCH(1,2) Model was selected based on having the smallest AIC value. The additional 

criteria for selection were that the algorithm for parameter estimation should converge, the sum 

of    and    should be less than 1 and the parameters should be significant. The fit statistics for 

the GARCH(1,2) model can be found in Table 15 and the parameter estimates along with their 

standard errors and p-values can be found in Table 16. It can be seen that the sum of    and    is 

approximately 0.9719 which meets the criteria for selection and it can also be seen that the ARCH 

and GARCH terms are significant with    having a p-value of 0.0081,    having a p-value of 0.0004, 

   having a p-value of 0.0338 and    having a p-value less than 0.0001. 

Table 15: Fit Statistics for the GARCH(1,2) Model 

AIC -4.6422 

SBC -4.6210 

   0.0064 

SSE 2.8193 

MSE 0.0007 

Log Likelihood 9732.3780 

MAE 0.9195 

MAPE 60.5263 
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Table 16: Parameter Estimates with Standard Errors and p-values for the GARCH(1,2) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0008 0.0003 0.0169 

AR(1) 0.0585 0.0160 0.0003 

AR(2) -0.0079 0.0156 0.6101 

AR(3) -0.0231 0.0154 0.1344 

AR(4) 0.0135 0.0150 0.3674 

AR(5) -0.0005 0.0220 0.9811 

AR(6) -0.0081 0.0154 0.5989 

AR(7) -0.0294 0.0147 0.0457 

AR(8) -0.0231 0.0148 0.1191 

   0.000005 0.000002 0.0081 

   0.0750 0.0212 0.0004 

   -0.0446 0.0210 0.0338 

   0.9415 0.0133 <0.0001 

Degrees of Freedom 5.4611 0.6640 <0.0001 

 

From the three models selected, the GARCH(1,2) has the lowest mean absolute percentage error. 

The parameter estimates also have lower standard errors than the ARCH(2) model and the 

standard errors are similar to those of the GARCH(1,1) model. Therefore, the GARCH(1,2) model is 

preferred over the ARCH(2) model and the GARCH(1,1) model. The high value for    implies that 

the conditional variance shows a long persistence of volatility. This would suggest that an IGARCH 

model may be more appropriate for the series. The IGARCH(1,2) model in this case seems to have 

a slightly worse fit than the GARCH(1,2) model due to the higher AIC and SBC values. The fit 

statistics for the IGARCH(1,2) model are presented in Table 17. The IGARCH(1,2) model also 

showed that the residuals were not white noise and the ACF and PACF of the squared residuals 

suggested that the model did not adequately account for the correlation among the residuals. Due 

to the slightly poorer fit of the IGARCH(1,2), the GARCH(1,2) model is preferred for this series.  
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Table 17: Fit Statistics for the IGARCH(1,2) Model 

AIC -4.6178 

SBC -4.5982 

   0.0068 

SSE 2.8182 

MSE 0.0007 

Log Likelihood 9680.4430 

MAE 0.8086 

MAPE 54.2345 

 

Finally, to ensure that the GARCH(1,2) model is adequate we look at the ACF and PACF of the 

residuals and the squared residuals and perform the Q and LM tests for ARCH disturbances to 

determine if the ARCH effect has been accounted for. The plots of the ACF and PACF of residuals 

can be seen in Figure 26. These plots show that the model for the mean is adequate. 

 

 

 

 

Figure 26: ACF and PACF of Residuals for the GARCH(1,2) Model 

The plots of the ACF and PACF of squared residuals can be seen in Figure 27. These plots show that 

the GARCH(1,2) model adequately accounts for the serial correlation that was present in the 

residuals. 
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Figure 27: ACF and PACF of Squared Residuals for the GARCH(1,2) Model 

The results of the Q and LM test for ARCH disturbances when the GARCH(1,2) model was used can 

be found in Table 18. These results show that there is no longer any significant ARCH effect. 

Table 18: Anglo Gold Ashanti Testing for ARCH Disturbances after fitting the GARCH(1,2) Model 

Anglo Gold Ashanti Q and LM Tests for ARCH Disturbances After Fitting the GARCH(1,2) Model 

Order Q P-Value LM P-Value 

1 0.6121 0.4340 0.6670 0.4141 

2 3.1411 0.2079 3.0635 0.2162 

3 3.6954 0.2963 3.6317 0.3041 

4 5.0413 0.2831 4.8761 0.3002 

5 5.2328 0.3881 5.0965 0.4042 

6 5.2655 0.5102 5.1030 0.5307 

7 5.8483 0.5576 5.7247 0.5722 

8 5.8543 0.6636 5.7455 0.6757 

9 7.5938 0.5755 7.4335 0.5921 

10 9.0038 0.5317 8.9403 0.5378 

11 9.2260 0.6010 9.1229 0.6105 

12 9.4968 0.6600 9.3390 0.6737 
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4.5 Analysis of the DRD Gold Ltd Data 

To remove the autocorrelation that was present in the mean an autoregressive model was fitted 

with a lag of 1 which was revealed by the ACF and PACF of the return. The ACF and PACF of the 

return can be seen in Figure 11. The next step is to test for ARCH disturbances using the Q and LM 

tests. The results for the Q and LM tests can be seen in Table 19. The results of the test for ARCH 

disturbances show that there is a presence of a significant ARCH effect with p-values less than 

0.0001. 

Table 19: DRD Gold Q and LM Tests for ARCH Disturbances 

DRD Gold Q and LM Tests for ARCH Disturbances 

Order Q P-Value LM P-Value 

1 19.0408 <0.0001 19.0372 <0.0001 

2 34.7043 <0.0001 32.5279 <0.0001 

3 47.0399 <0.0001 41.6831 <0.0001 

4 51.1761 <0.0001 43.6747 <0.0001 

5 52.4679 <0.0001 43.9888 <0.0001 

6 53.6468 <0.0001 44.3963 <0.0001 

7 55.3334 <0.0001 45.2898 <0.0001 

8 59.6821 <0.0001 48.3487 <0.0001 

9 61.1163 <0.0001 48.8935 <0.0001 

10 62.6868 <0.0001 49.5154 <0.0001 

11 63.1498 <0.0001 49.5567 <0.0001 

12 64.9216 <0.0001 50.4765 <0.0001 

 

The next step is to fit ARCH and GARCH models to the series. The ACF and PACF of the squared 

residuals shown in Figure 28 indicate that the orders for   and   could range from 1 to 3. 
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Figure 28: ACF and PACF of Squared Residuals for the DRD Gold AR(1) Model 

A number of ARCH(q) and GARCH(p,q) models were fitted where both   and   were allowed to 

vary between 1 and 3. The extensions for the ARCH and GARCH models discussed in Chapter 3 

were also tested. The best models based on the AIC, SBC, and    criteria and the additional 

criteria of having significant parameter estimates are presented in Table 20. These models were 

fitted using the t-distribution for the errors as this resulted in an improved fit compared to when 

normally distributed errors were used. 

Table 20: DRD Gold best models based on the three selection criteria 

Model AIC SBC    

GARCH(3,3) -3.9007 -3.8855 0.0001 

ARCH(3) -3.8739 -3.8633 0.0002 

 

The GARCH(3,3) Model 

The GARCH(3,3) model was selected based on having the smallest AIC and the smallest SBC. The 

model also met the additional requirements for selection; these requirements being that the 

algorithm for parameter estimation should converge, the sum of    and    should be less than 1 

and the parameters should be significant. The fit statistics for the GARCH(3,3) model can be found 

in Table 21 and the parameter estimates along with their standard errors and p-values can be seen 

in Table 22. The estimates of the parameters show that the sum of the    and    terms is 
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approximately 0.7378 which meets the criteria for models selection and the p-values for the 

estimates shows significance for all the GARCH terms except for the    term, which has a p-value 

of 0.6452. Having significance for the majority of the parameters satisfies the requirements for 

model selection. 

Table 21: Fit Statistics for the GARCH(3,3) 

AIC -3.9007 

SBC -3.8855 

   0.0001 

SSE 7.1786 

MSE 0.0017 

Log Likelihood 8172.1410 

MAE 1.1591 

MAPE 45.8011 

 

Table 22: Parameter Estimates with Standard Errors and p-values for the GARCH(3,3) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0013 0.0004 0.0008 

AR(1) 0.0084 0.0142 0.5552 

   0.00003 0.00001 0.0091 

   0.0630 0.0088 <0.0001 

   0.0356 0.0069 <0.0001 

   0.0547 0.0080 <0.0001 

   -0.1311 0.0197 <0.0001 

   -0.0132 0.0286 0.6452 

   0.7288 0.0336 <0.0001 

Degrees of Freedom 2.4856 0.1397 <0.0001 
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The ARCH(3) Model 

The ARCH(3) model was selected based on having the largest    value. The algorithm for 

parameter estimation converged, the sum of the    was less than 1 and the parameters were 

significant which meets the additional criteria for model selection. The fit statistics for the ARCH(3) 

model can be seen in Table 23 and the parameter estimates, along with their standard errors and 

p-values, are given in Table 24. The estimates for the parameters shows that the sum of the    is 

approximately 0.2539, which meets the criteria for model selection. The parameters are also all 

significant with p-values <0.0001. 

Table 23: Fit Statistics for the ARCH(3) Model 

AIC -3.8739 

SBC -3.8633 

   0.0002 

SSE 7.1782 

MSE 0.0017 

Log Likelihood 8113.0450 

MAE 1.1379 

MAPE 44.5570 

  

Table 24: Parameter Estimates with Standard Errors and p-values for the ARCH(3) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0015 0.0004 0.0001 

AR(1) 0.0145 0.0151 0.3379 

   0.0003 0.00002 <0.0001 

   0.0927 0.0148 <0.0001 

   0.0597 0.0118 <0.0001 

   0.1015 0.0155 <0.0001 

Degrees of Freedom 2.5498 0.1379 <.0001 
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The GARCH(3,3) model and the ARCH(3) model both have goodness of fit statistics that are very 

similar, thereby making a choice between the two models difficult. Both models showed that they 

have adequately accounted for the presence of any ARCH effect based upon the Q and LM tests 

for ARCH effect. When performing diagnostic checks using the ACF and PACF for residuals and 

squared residuals, the GARCH(3,3) model had slightly better results than the ARCH(3) model. 

Therefore, the GARCH(3,3) model is preferred for this data. The GARCH(3,3) model shows a fairly 

high value for    which suggests that there is some persistence in the volatility. The plots of the 

ACF and PACF of residuals for the GARCH(3,3) model can be seen in Figure 29. These plots show 

that the model for the mean is adequate. 

 

 

 

 

Figure 29: ACF and PACF of Residuals for the GARCH(3,3) Model 

The plots of the ACF and PACF of squared residuals can be seen in Figure 30. These plots show that 

the GARCH(3,3) model has removed the autocorrelation that was present in the residuals. 
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Figure 30: ACF and PACF of Squared Residuals for the GARCH(3,3) Model 

Finally, the Q and LM tests for ARCH disturbances is performed to confirm that the model has 

removed the effect of ARCH. The results are shown in Table 25, where it is seen that the ARCH 

effect has been removed. 

Table 25: DRD Gold Testing for ARCH Disturbances after fitting the GARCH(3,3) Model 

DRD Gold Q and LM Tests for ARCH Disturbances After Fitting the GARCH(3,3) Model 

Order Q P-Value LM P-Value 

1 0.0967 0.7558 0.0966 0.7560 

2 0.1900 0.9094 0.1905 0.9091 

3 0.2846 0.9629 0.2865 0.9625 

4 0.3634 0.9854 0.3673 0.9851 

5 0.4072 0.9951 0.4131 0.9950 

6 0.4965 0.9979 0.5054 0.9978 

7 0.6076 0.9989 0.6206 0.9989 

8 0.6623 0.9996 0.6790 0.9996 

9 0.7628 0.9998 0.7849 0.9998 

10 0.8049 0.9999 0.8312 0.9999 

11 0.8479 1.0000 0.8793 1.0000 

12 0.8993 1.0000 0.9365 1.0000 
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4.6 Analysis of the Gold Fields Ltd Data 

To remove the autocorrelation that was present in the mean, autoregressive model of order 8 was 

fitted to the return series. The next step is to test for ARCH disturbances using the Q and LM tests. 

The results for the tests are displayed in Table 26, where it can be seen that there is a significant 

ARCH effect with p-values less than 0.0001. 

Table 26: Gold Fields Q and LM Tests for ARCH Disturbances 

Gold Fields Q and LM Tests for ARCH Disturbances 

Order Q P-Value LM P-Value 

1 26.4052 <0.0001 26.3904 <0.0001 

2 33.8876 <0.0001 31.5257 <0.0001 

3 44.7877 <0.0001 39.6443 <0.0001 

4 52.8998 <0.0001 44.4776 <0.0001 

5 73.4160 <0.0001 59.3077 <0.0001 

6 81.6116 <0.0001 62.5790 <0.0001 

7 84.5293 <0.0001 63.1511 <0.0001 

8 86.9437 <0.0001 63.5969 <0.0001 

9 97.1018 <0.0001 69.2363 <0.0001 

10 104.1206 <0.0001 71.6462 <0.0001 

11 108.2553 <0.0001 72.6694 <0.0001 

12 111.2771 <0.0001 73.2931 <0.0001 

 

We next need to select the order for   and   for the GARCH model. The ACF and PACF of the 

squared residuals shown in Figure 31 from the AR(8) model indicate that the order for   and   

could vary from 1 to 5. 
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Figure 31: ACF and PACF of Squared Residuals for the Gold Fields AR(8) Model 

ARCH(q) and GARCH(p,q) models were fitted where   and   were allowed to vary between 1 and 

5. The extensions for the GARCH model discussed in Chapter 3 were also tested. The best model 

based on the AIC, SBC, and    criteria and the additional requirements of having significant 

parameter estimates are presented in Table 27. For the Gold Fields data, the GARCH(1,2) model 

had the best AIC, SBC, and    values. The model was fitted simultaneously with the autoregressive 

model and the t-distribution was used for the errors as this provided better results than when the 

normal distribution was used. 

Table 27: Gold Fields best models based on the three selection criteria 

Model AIC SBC    

GARCH(1,2) -4.1958 -4.1687 0.0058 

 

The GARCH(1,2) Model 

The GARCH(1,2) model met the additional criteria for selection in that the sum of    and    was 

less than 1, the algorithm for parameter estimation converged and the parameter estimates were 

significant. The fit statistics for the GARCH(1,2) model can be seen in Table 28 and the parameter 

estimates with standard errors and p-values can be found in Table 29. The parameter estimates 

for the GARCH(1,2) model are all significant with p-values less than 0.05. It is also noted that the 
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sum of    and    is approximately 0.9744, which meets the criteria for selection. The high value 

for    suggests that there is persistence in the volatility for the Gold Fields data. 

Table 28: Fit Statistics for the GARCH(1,2) Model 

AIC -4.1958 

SBC -4.1687 

   0.0058 

SSE 3.6476 

MSE 0.0012 

Log Likelihood 6563.7130 

MAE 0.9113 

MAPE 45.8793 

 

Table 29: Parameter Estimates with Standard Errors and p-values for the GARCH(1,2) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0004 0.0005 0.4329 

AR(1) 0.0482 0.0188 0.0103 

AR(2) -0.0287 0.0176 0.1043 

AR(3) -0.0045 0.0221 0.8402 

AR(4) 0.0118 0.0174 0.4988 

AR(5) 0.0048 0.0188 0.7966 

AR(6) 0.0098 0.0180 0.5851 

AR(7) -0.0342 0.0175 0.0504 

AR(8) -0.0091 0.0200 0.6523 

   0.00001 0.000002 0.0056 

   0.0732 0.0192 0.0001 

   -0.0407 0.0198 0.0401 

   0.9419 0.0120 <.0001 

Degrees of Freedom 5.9644 0.9277 <.0001 
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From the parameter estimates the sum of    and    is close to 1, which suggests that an 

IGARCH(1,2) model might be more appropriate. The IGARCH(1,2) model was fitted to investigate 

this and it is seen that the model has a slightly poorer fit than the GARCH(1,2) model. This is shown 

by the AIC, SBC, and    values. Therefore, the IGARCH(1,2) model will not be considered. The 

goodness of fit statistics for the IGARCH(1,2) model can be found in Table 30. 

Table 30: Fit Statistics for the IGARCH(1,2) Model 

AIC -4.1719 

SBC -4.1467 

   0.0057 

SSE 3.6479 

MSE 0.0012 

Log Likelihood 6525.2700 

MAE 0.8010 

MAPE 41.3779 

 

Finally, to ensure that the GARCH(1,2) model is appropriate, we look at the ACF and PACF of the 

residuals and squared residuals. The plots of the ACF and PACF for the residuals can be seen in 

Figure 32. The two plots show that the model for the mean is satisfactory. 

 

 

 

 

Figure 32: ACF and PACF of Residuals for the GARCH(1,2) Model 
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The plots of the ACF and PACF of the squared residuals can be seen in Figure 33. The two plots 

show that the GARCH(1,2) model has removed the serial correlation that was present and, 

therefore, this model is adequate. This is confirmed by the Q and LM tests which show that there 

is no longer any ARCH effect. The results for the tests can be found in Table 31. 

 

 

 

 

Figure 33: ACF and PACF of Squared Residuals for the GARCH(1,2) Model 

Table 31: Gold Fields Testing for ARCH Disturbances after fitting the GARCH(1,2) Model 

Gold Fields Q and LM Tests for ARCH Disturbances After Fitting the GARCH(1,2) Model 

Order Q P-Value LM P-Value 

1 0.0006 0.9802 0.0006 0.9808 

2 0.1074 0.9477 0.1060 0.9484 

3 0.1884 0.9794 0.1845 0.9801 

4 0.2618 0.9921 0.2544 0.9926 

5 0.2763 0.9981 0.2706 0.9982 

6 0.3434 0.9993 0.3415 0.9993 

7 0.4337 0.9997 0.4337 0.9997 

8 0.7099 0.9995 0.7075 0.9995 

9 0.8317 0.9997 0.8244 0.9997 

10 0.9712 0.9998 0.9549 0.9999 

11 1.1167 0.9999 1.0909 0.9999 

12 1.2341 1.0000 1.2000 1.0000 
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4.7 Analysis of the Harmony Gold Mining Company Ltd Data 

The ACF and PACF of the return series pointed towards the fact that a lag of 2 be used for the 

autoregressive model to remove the autocorrelation present in the mean. The next step is to test 

for ARCH disturbances using the Q and LM tests. The results of the test can be seen in Table 32 

where the p-values show that there is a significant ARCH effect. 

Table 32: Harmony Gold Mining Company Q and LM Tests for ARCH Disturbances 

Harmony Gold Mining Company Q and LM Tests for ARCH Disturbances 

Order Q P-Value LM P-Value 

1 164.2102 <0.0001 163.6975 <0.0001 

2 211.4164 <0.0001 183.1611 <0.0001 

3 240.2676 <0.0001 193.9065 <0.0001 

4 259.5541 <0.0001 199.6437 <0.0001 

5 288.2871 <0.0001 212.2479 <0.0001 

6 315.9061 <0.0001 221.2664 <0.0001 

7 349.1310 <0.0001 232.7901 <0.0001 

8 371.9450 <0.0001 237.0479 <0.0001 

9 394.2524 <0.0001 241.9868 <0.0001 

10 405.9873 <0.0001 242.6749 <0.0001 

11 417.5543 <0.0001 244.1003 <0.0001 

12 443.6512 <0.0001 252.7311 <0.0001 

 

We next select the orders for   and   for the ARCH(q) and GARCH(p,q) models. The ACF and PACF 

of the squared residuals from the AR(2) model, seen in Figure 34, suggested that orders from 1 to 

7 might be useful.  



76 
 

 

 

 

 

Figure 34: ACF and PACF of Squared Residuals for the Harmony Gold Mining Company AR(2) Model 

The best models based on the AIC, SBC, and    criteria, along with the additional requirements of 

having significant parameter estimates, can be seen in Table 33. The parameter estimates for the 

two models presented were fitted using the t-distribution for the errors, as this provided better 

results than models fitted with the normal distribution. 

Table 33: Harmony Gold Mining Company best models based on the three selection criteria 

Model AIC SBC    

GARCH(2,1) -4.2889 -4.2768 0.0060 

GARCH(1,4) -4.2916 -4.2765 0.0060 

 

The GARCH(2,1) Model 

The GARCH(2,1) model was selected based on having the best SBC value. The model also met the 

additional requirements in that the sum of    and    was less than 1, the parameter estimates 

were significant and the algorithm for the estimation of the parameters converged. The fit 

statistics for the GARCH(2,1) model can be found in Table 34 and the parameter estimates, along 

with their standard errors and p-values, can be seen in Table 35. It can be seen that the sum of    

and    is approximately 0.9227, which meets the criteria for selection and, in addition the 

parameters for the GARCH model, are all significant with p-values less than 0.01. 
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Table 34: Fit Statistics for the GARCH(2,1) Model 

AIC -4.2889 

SBC -4.2768 

   0.0060 

SSE 4.2810 

MSE 0.0010 

Log Likelihood 8986.8970 

MAE 0.9842 

MAPE 52.0703 

 

Table 35: Parameter Estimates with Standard Errors and p-values for the GARCH(2,1) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0008 0.0004 0.0297 

AR(1) 0.0637 0.0152 <0.0001 

AR(2) -0.0109 0.0141 0.4406 

   0.00001 0.000004 0.0064 

   0.0692 0.0102 <0.0001 

   0.1728 0.0652 0.0081 

   0.6807 0.0669 <0.0001 

Degrees of Freedom 3.7923 0.2696 <0.0001 

 

The GARCH(1,4) Model 

The GARCH(1,4) model was selected based on having the best AIC value. The additional 

requirements of having convergence of the algorithm for parameter estimations, significant 

parameter estimates and the sum of    and    being less than 1 were also met. The fit statistics for 

the GARCH(1,4) can be seen in Table 36 and the parameter estimates, along with their standard 

errors and p-values, can be found in Table 37. The parameter estimates for    is not significant 

with a p-value of 0.0724. The remaining parameter estimates for the GARCH(1,4) model are 
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significant with p-values less than 0.05. The additional criteria for selection has also been met in 

that the sum of    and    is approximately 0.9782. 

Table 36: Fit Statistics for the GARCH(1,4) Model 

AIC -4.2916 

SBC -4.2765 

   0.0060 

SSE 4.2811 

MSE 0.0010 

Log Likelihood 8994.4650 

MAE 0.9805 

MAPE 51.8924 

 

Table 37: Parameter Estimates with Standard Errors and p-values for the GARCH(1,4) Model 

Parameter Estimate Standard Error P-Value 

Intercept -0.0008 0.0004 0.0384 

AR(1) 0.0631 0.0155 <0.0001 

AR(2) -0.0096 0.0152 0.5263 

   0.000002 0.000001 0.0724 

   0.0900 0.0176 <0.0001 

   -0.0624 0.0227 0.0060 

   0.0449 0.0204 0.0281 

   -0.0506 0.0157 0.0013 

   0.9563 0.0090 <0.0001 

Degrees of Freedom 3.8255 0.2980 <0.0001 

 

Both the GARCH(2,1) and the GARCH(1,4) model have similar MAPE and MAE values and both 

have the same    value. Therefore, in choosing the final model the more parsimonious model is 

selected. Therefore, the GARCH(2,1) model is preferred. The parameter estimate for    is 
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relatively large which shows that there is some persistence in the volatility for the Harmony data. 

To ensure that the model is adequate, we look at the ACF and PACF of the residuals and the 

squared residuals. The ACF and PACF of the residuals can be seen in Figure 35. The plots show that 

the autoregressive model has removed any correlation present in the mean. 

 

 

 

 

Figure 35: ACF and PACF of Residuals for the GARCH(2,1) Model 

The plots of the ACF and PACF of the squared residuals can be seen in Figure 36. The plots show 

that the GARCH(2,1) has been successful in removing the serial correlation present in the 

residuals. 

 

 

 

 

Figure 36: ACF and PACF of Squared Residuals for the GARCH(2,1) Model 
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As a final test the Q and LM tests for ARCH effect are performed and it is shown that there is no 

remaining ARCH effect. Therefore, the GARCH(2,1) model was useful in accounting for the 

presence of ARCH effect. The results for the Q and LM tests are displayed in Table 38.   

Table 38: Harmony Gold Mining Company Testing for ARCH Disturbances after fitting the GARCH(2,1) Model 

Harmony Gold Mining Company Q and LM Tests for ARCH Disturbances 

Order Q P-Value LM P-Value 

1 0.6834 0.4084 0.6709 0.4127 

2 1.0047 0.6051 1.0093 0.6037 

3 1.4901 0.6846 1.5110 0.6797 

4 3.2648 0.5145 3.3461 0.5017 

5 5.9307 0.3130 5.8506 0.3210 

6 5.9792 0.4255 5.8932 0.4353 

7 6.4816 0.4848 6.3827 0.4958 

8 7.2526 0.5096 7.1954 0.5157 

9 7.2671 0.6093 7.2412 0.6120 

10 9.2587 0.5077 9.2492 0.5086 

11 11.2453 0.4229 11.2817 0.4200 

12 11.2578 0.5070 11.3005 0.5034 
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Chapter Five 

5 Stochastic Volatility Models 

An alternative family of models to the ARCH/GARCH family of models for modeling the volatility of 

a financial time series are the Stochastic Volatility models. The difference between the 

ARCH/GARCH models and the Stochastic Volatility models is that the ARCH models are observation 

driven, whereas the Stochastic Volatility models are parameter driven. Stochastic volatility models 

model the conditional variance as an unobserved component that follows some underlying latent 

stochastic process (Mahieu & Schotman, 1998, p. 333). The conditional variance is modeled by 

introducing an error or innovation term to the conditional variance equation of   . The resulting 

model is called a Stochastic Volatility model. Despite having some theoretical advantages, 

Stochastic Volatility models have not been as widely used as the ARCH/GARCH models. This is 

mainly due to the fact that, unlike the ARCH/GARCH models, the likelihood is complicated and 

often difficult to evaluate (Shimada & Tsukuda, 2005, p. 3). 

5.1 The Stochastic Volatility Model 

A Stochastic Volatility model is defined as 

         

 

(5.1) 

             
       

          (5.2) 

  

where the    are           , the    are           
  ,      and      are independent,    is a 

constant, and all the zeros of the polynomial       
  

    are greater than 1 in modulus (Tsay, 

2005, p. 134). 

The addition of the innovation    increases the flexibility of the model in describing the evolution 

of the volatility but, at the same time, increases the difficulty in estimating model parameters. This 

difficulty is due to the fact that for each shock   , the model makes use of two innovations,    and 

  . Estimating Stochastic Volatility models is done using a quasi-likelihood method with results 

from a state-space model together with the use of the Kalman filter (Tsay, 2005, p. 134). Monte 
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Carlo methods can also be used to estimate Stochastic Volatility models. This dissertation will 

focus on the quasi-likelihood method.  

5.2 State-Space Models 

State-space models offer an approach to time series analysis that can simplify maximum likelihood 

estimation and the handling of missing data (Tsay, 2005, p. 490). The general form of the linear 

state-space model is given by 

             

 

(5.3) 

             

 

(5.4) 

Equation (5.3) is known as the state equation. The state equation is used to generate     from the 

previous states       , where         for         and        . It is assumed that the    

are      independent and identically distributed normal vectors with a mean of the zero vector 

and covariance matrix  , whilst   is a     transition matrix.  Equation (5.4) is known as the 

observation equation. The observation equation is needed because it is not possible to observe 

the state vector    directly. The observation equation gives a linear transformation of the state 

vector    with added noise.    is known as the observation matrix and it has dimension    ,    

is a vector of observations which has dimension    .    is assumed to be Gaussian white noise 

with a     covariance matrix  . When using state-space models it is generally assumed that the 

process starts with a vector    that is normal with mean    and     covariance matrix    

(Shumway & Stoffer, 2000, p. 306).  

We make inference about the state    from the data              and the model. Three types 

of inference that are commonly used are filtering, prediction and smoothing. Filtering means to 

update the state variable    given all the information at time  . Prediction means to forecast the 

state variable, that is, forecast      for     given all the information at time  , where   is the 

forecast origin. Smoothing means to estimate the state variable    given the information available 

at time   where     (Tsay, 2005, pp. 493-494).  

We will use the following definitions for the derivations of the Kalman Filter and Kalman 

Smoother: 
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(5.5) 

and 

       
            

          
  

 
   

 

(5.6) 

 

respectively. 

When      , then       
  will be written as   

 . The derivation of the Kalman filter and Kalman 

smoother relies on the assumption of normality. This will also mean that equation (5.6) is the 

conditional error covariance given by 

      
            

          
  

 
      

It should be noted that the covariance matrix between       
   and    is zero for any   and  . 

Due to  the assumption of normality this implies that       
   and    are independent (Shumway 

& Stoffer, 2006, p. 330). 

5.3 The Kalman Filter 

The purpose of the Kalman filter is to update the state variable recursively as new data becomes 

available. The Kalman filter is used to update the filter from     
    to   

  when a new    is observed. 

The Kalman filter is derived as follows. 

From equation (5.5) and using (5.3) we have 

   
                                     

    

 

(5.7) 

and from (5.6) 

                
            

          
       

 

 

                
                    

        
   

 

 

       
         (5.8) 
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We next define the innovations as 

                         
     

 

(5.9) 

for        . 

Now, 

         

 

(5.10) 

and 

                        
             

     
     

 

(5.11) 

We also have that       
     for          . This implies that the innovations are 

independent of the past observations because the innovations follow a Gaussian process 

(Shumway & Stoffer, 2000, pp. 313-314). The covariance between    and    conditional on      is 

                               
          

 

 

           
           

          

 

 

           
            

         

 

 

    
     

   

 

(5.12) 

The joint distribution of    and    conditional on      is normal 

 
 
  
  
            

   

 
   

  
     

     
 

    
     

    

 

(5.13) 

 

We can now rewrite   
  in the following way using Result 1 in Appendix A: 
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(5.14) 

where 

      
     

   
     

     
      

     
        

 

(5.15) 

Using Result 1 in Appendix A we can calculate   
  as 

   
                    

      
     

   
      

    

 

(5.16) 

(Shumway & Stoffer, 2006, pp. 331-332). 

For the state space model given by equations (5.3) and (5.4) using the initial conditions   
    and 

  
    , for         the Kalman filtering algorithm is given by 

   
         

     

 

(5.17) 

   
         

         

 

(5.18) 

with 

   
    

              
      

 

(5.19) 

   
            

     

 

(5.20) 

where 

      
     

      
     

        

 

(5.21) 

   is known as the Kalman gain. Equations (5.17) and (5.18) are used for prediction when     

with   
  and   

  as initial conditions (Shumway & Stoffer, 2000, p. 313). 
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5.4 The Kalman Smoother 

The purpose of smoothing is to estimate the state variable    based on all the information 

available. That is to estimate the state based on the sample        , where     (Tsay, 2005, p. 

526). To derive the Kalman smoother we first define 

                  

 

(5.22) 

and 

                         

 

(5.23) 

where    is an empty set and we let 

                       
        

 

(5.24) 

for      . 

Now, since     ,       
    , and    are mutually independent, and      and    are independent, 

we can use Result 1 in Appendix A to get 

          
              

      

 

(5.25) 

where 

                    
       

           
        

        

 

(5.26) 

We next have that 

     
                           

           
    

      

 

(5.27) 

because     ,      
   , and    lead to             . 

We then obtain the error covariance,     
 , in the following way. Using equation (5.27) we have 

          
           

           
       

     (5.28) 
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(5.29) 

          
        

           
             

     

 

(5.30) 

Next, we multiply both sides of equation (5.30) by the transpose of itself and then take the 

expectation to get 

     
          

   
       

      
               

       
           

   

 

(5.31) 

because the cross-product terms are zero. Now, 

     
   

          
     

             
         

   

 

(5.32) 

and 

       
       

                
       

     

 

(5.33) 

So, the Kalman smoother for the state-space model given by equations (5.3) and (5.4), with initial 

conditions   
  and   

  which are available from the Kalman filter is 

     
      

           
    

      

 

(5.34) 

     
      

           
    

        
   

 

(5.35) 

where 

          
        

       

 

(5.36) 

(Shumway & Stoffer, 2006, pp. 335-336). 

5.5 The Lag One Covariance Smoother 

The lag one covariance smoother is used to recursively obtain       
 , which is defined by equation 

(5.6) (Shumway & Stoffer, 2000, p. 319). We derive the lag one covariance smoother as follows: 
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We start by defining 

    
       

   

 

(5.37) 

Then, we use equations (5.19) and (5.21) to write 

       
       

      
    

 

(5.38) 

       
        

              
           

                  
        

 

(5.39) 

       
        

            
              

                
        

    

 

(5.40) 

After expanding equation (5.40), and taking the expectation, we then have 

       
        

      
     

   
     
            

           
     

      
     
   

 

(5.41) 

We also have that 

        
     

       
     

  

 

(5.42) 

and 

       
         

    

 

(5.43) 

for any        . 

We now use equation (5.34) to get 

      
        

       
             

    

 

(5.44) 

and 

      
          

       
             

     

 

(5.45) 
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Consequently, we multiply the left hand side of equation (5.44) by the transpose of the left hand 

side of equation (5.45) and multiply the right hand side of equation (5.44) by the transpose of the 

right hand side of equation (5.45). We then equate the two results and take the expectation. The 

left hand side is then 

         
          

     
       

   

 

(5.46) 

while the right hand side is 

         
                    

                         
               

       
           

   

 

(5.47) 

The     
     

    can be written as 

     
     

            
         

             
              

  

 

(5.48) 

and we can write       
       

       as 

       
       

            
       

                
           

     

 

(5.49) 

For the state space model given by equations (5.3) and (5.4), where   ,    for        , and   
  

are available from the Kalman filter and Kalman smoother. Using the initial condition 

       
               

     

 

(5.50) 

For                , from equations (5.46) and (5.47) the lag one covariance smoother is  

         
      

       
             

       
        

  

 

(5.51) 

(Shumway & Stoffer, 2000, pp. 320-321). 

5.6 Maximum Likelihood Estimation 

In order to use the Kalman filtering and smoothing equations, we need estimates of the 

parameters that are used to specify the state space model given by equations (5.3) and (5.4). The 
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parameters are the initial mean   , covariance   , the transition matrix   and the state and 

observation covariance matrices   and  , respectively. These parameters are estimated using 

maximum likelihood with the assumption that            , and the errors         and 

        are uncorrelated and jointly normal. To compute the likelihood, we use the innovations 

defined by equation (5.9) as 

           
    

 

(5.52) 

and note that the innovations are a one-to-one linear transformation of the data             . 

We also note that the innovations are independent Gaussian random vectors with a mean of zero 

and covariance defined by equation (5.11), as 

        
     

     

 

 

Therefore we can write the log-likelihood as 

 
                     

 

   

       
      

       

 

   

  

 

 

(5.53) 

where the constant has been ignored for simplicity and                .  

To maximize the log-likelihood in equation (5.53) we fix    and then obtain a set of recursions for 

the likelihood function and its first two derivatives. We can then use the Newton-Raphson 

procedure to update the parameter values until the log-likelihood has been maximized. This 

process can be summarized into the following four steps: 

1. Select initial values for the parameters,   . 

 

2. Run the Kalman filter using the initial values,   , to obtain a set of innovations and error 

covariances. 

 

3.  Run iterations of the Newton-Raphson procedure to obtain new estimates for the 

parameters. 
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4. Repeat Step 2 using the new parameter estimates obtained from Step 3 to generate a new 

set of innovations and error covariances. Run Step 3. This process continues until the 

difference between successive estimates of the parameters or the log-likelihood are small 

enough. 

5.7 The Expectation Maximization Algorithm 

An alternative method to estimate the parameters for the state space model, given by equations 

(5.3) and (5.4), is the expectation maximization (EM) algorithm. The EM algorithm consists of two 

steps, the E-step and the M-step. The E-step, or expectation step, computes the expected value of 

the complete data likelihood. The M-step, or maximization step, updates the parameter estimates 

(Durbin & Koopman, 2001, p. 147; Xu & Wilke, 2007, p. 570). The idea behind the EM algorithm is 

that along with the observations              we are able to observe the states    

            . We could then take         to be the complete data set having joint density 

 
                                  

 

   

          

 

   

  
 

(5.54) 

Under the assumption of normality, we can write the likelihood for the complete data as 

                           
   

               

            
              

 

   

      

           
             

 

   

 

 

 

 

 

 

 

(5.55) 

(Shumway & Stoffer, 2000, p. 324). 

The EM algorithm is used to obtain the maximum likelihood estimates of   based on the 

incomplete data given by   . This is achieved by maximizing the conditional expectation of the 

complete data likelihood.  So, for iteration   for          the conditional expectation to be 

maximized is 
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(5.56) 

(Shumway & Stoffer, 1982, p. 256; Shumway & Stoffer, 2000, p. 324). 

Given the parameters,       , we can use the Kalman smoother to obtain conditional 

expectations. This leads to  

                         
     

     
        

     
         

                
      

       
         

                
          

        
   

  

 

   

   

 

 

 

 

(5.57) 

where 

 
        

   
     

  

 

   

  

 

 

(5.58) 

 
        

     
         

  

 

   

  

 

 

(5.59) 

and  

 
          

     
       

  

 

   

  

 

 

(5.60) 

The present parameter values,       , are used for the calculation of the smoothers in equations 

(5.57), (5.58), (5.59) and (5.60) (Shumway & Stoffer, 1982, p. 257; Shumway & Stoffer, 2000, p. 

325). The next step is the maximization step which involves minimizing equation (5.57) with 

respect to the parameters at the     iteration. The maximization step results in the following 

updated estimates: 

            
    (5.61) 
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(5.62) 

and 

 
                  

          
        

   
  

 

   

  

 

 

(5.63) 

It is not possible to estimate the initial means and covariance simultaneously. The usual 

convention is to fix both the mean and covariance, or just the covariance matrix, and then use  

   
   

   
   

 

(5.64) 

which is the estimator that is obtained from minimizing equation (5.57) under the assumption that 

the covariance matrix has been fixed. The steps involved in the EM algorithm can be summarized 

as follows: 

1. Select the starting values for the parameters                , and fix   . 

 

2. Compute the likelihood for the incomplete data as in equation (5.53). 

 

3. Perform the E-Step of the algorithm using the Kalman filter and Kalman smoothing to 

calculate             given by equations (5.58), (5.59) and (5.60). 

 

4. Perform the M-Step to update the estimates,        and  . 

 

5. Repeat steps 2 to 4 until convergence has been achieved 

(Shumway & Stoffer, 1982, p. 258; Shumway & Stoffer, 2000, p. 325). 
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5.8 The Stochastic Volatility Model 

The stochastic volatility model is similar to the ARCH models, however, there is an added 

stochastic noise term in the equation for   . Recall from Chapter 3 that the GARCH (1,1) model is 

given by 

         

 

(5.65) 

   
           

        
   

 

(5.66) 

where          . We now define  

        
  

 

(5.67) 

and 

        
   

 

(5.68) 

Then equation (5.66) can be written as 

           
   

 

(5.69) 

Equation (5.70) is the observation equation and   , which is the stochastic variance is viewed as an 

unobserved state process. The volatility process follows an autoregressive, AR(1),  process such 

that    can be written as 

                  

 

(5.70) 

where          
  . The stochastic volatility model is then made up of equations (5.69) and 

(5.70). To fit the stochastic volatility model, we keep the ARCH assumption of normality for   . 

With this normality assumption, we have that     
  is distributed as the log of a chi-squared 

random variable with one degree of freedom. The probability density function of     
  is given by 

 
      

   
 

   
     

 

 
      

 
     

     
(5.71) 
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for       . The mean for     
  is       and the variance is  

 

  .  To fit the stochastic 

volatility model, we write the observation equation in (5.68) as 

             

 

(5.72) 

where    is white noise. The distribution for    is a mixture of two normals and we write 

                     

 

(5.73) 

where    is an independent and identically distributed Bernoulli process with 

             

 

(5.74) 

            

 

(5.75) 

with        , and               
  , and                

  . The state equation in (5.70) 

remains the same. To fit the stochastic volatility model we make use of the Kalman filter which 

needs to be modified slightly. The modifications, which are given by Shumway and Stoffer (2006), 

are as follows 

 
    
         

              

 

   

 

 

 

(5.76) 

 
    
    

   
      

         
    

 

   

 

 

 

(5.77) 
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(5.79) 

       
      

  (5.80) 
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(5.81) 

 
    

    
   

   
 

 

(5.82) 

 
    

    
   

   
  

 

(5.83) 

Equations (5.76) to (5.83) are the filtering equations for the model given by equations (5.70) and 

(5.72). The probabilities given by                     for         need to be assessed to 

use the filtering equations. Once     has been obtained, we can determine     since       

   . To find     let           be the conditional density of    given          , and      for 

     . Then using Bayes rule we have 

 
    

           

                       
  

 

(5.84) 

If there is no reason to prefer one state, then letting    
 

 
 is sufficient. The exact values for 

          are difficult to obtain and, therefore, we choose to approximate           by using 

the normal distribution with mean   
       and variance     for       and     . The model 

parameters to be estimated are given by            
       

    
    and are estimate by 

maximum likelihood using the likelihood 

 

                        

 

   

 

 

   

  

 

 

(5.85) 

where           is approximated as     
         

  . The likelihood can be maximized as a 

function of the parameters   by using a Newton method, or the EM algorithm could be used when 

considering the complete data likelihood (Shumway & Stoffer, 2006, pp. 388-390).  
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Chapter Six 

6 Application of Stochastic Volatility Models 

6.1 Introduction 

This chapter focuses on the application of the stochastic volatility model discussed in Chapter 5 to 

the data that was introduced in Chapter 2. The stochastic volatility model makes use of the 

logarithm of the squared residuals from an ARMA model instead of the residuals themselves. This 

has the potential to create a problem if any of the residuals are zero. If there are residuals that are 

zero it is possible to deal with this problem by adding a positive constant to the residuals to ensure 

that there are no zero values. The resulting transformation is      where   is a small positive 

constant. The stochastic volatility model is then applied to the data using the logarithm of the 

squared transformed residuals which is given by 

             

For all the data sets that were modeled there was no problem with having any zero values for the 

residuals and therefore no transformation was applied. The software that was used to fit the 

model was R: A Language and Environment for Statistical Computing (2010) and this software is 

freely available for download from http://cran.r-project.org/. The code for the stochastic volatility 

model can be found in Appendix B. 

The stochastic volatility model is now fitted to the Anglo Gold Ashanti Ltd, DRD Gold Ltd, Gold 

Fields Ltd and Harmony Gold Mining Company Ltd data. The value for    was fixed at 0.5. The 

estimation procedure used a Newton method to maximize the likelihood in equation (5.85). 

6.2 Stochastic Volatility Model for the  Anglo Gold Ashanti Ltd Data 

The stochastic volatility model is fitted to the residuals from the AR(8) model for the return. The 

parameter estimates for the model are presented in Table 39. The parameter estimate for    is 

high, which suggests that there is long persistence of volatility. This persistence of volatility was 

also seen in the results of the GARCH(1,2) model for the Anglo Gold Ashanti data, which can be 

seen in Chapter 4.  
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Table 39: Parameter Estimates for the Anglo Gold Ashanti Stochastic Volatility Model 

Parameter Estimate Standard Error 

   -0.0045 0.0377 

   0.9776 0.0117 

   0.1524 0.0431 

  -7.5696 1.6739 

   1.1094 0.0425 

   -2.7462 0.1304 

   2.8034 0.0739 

 

6.3 Stochastic Volatility Model for the DRD Gold Ltd Data 

The stochastic volatility model is applied to the residuals from the AR(1) model for the DRD Gold 

data. The parameter estimates for the stochastic volatility model can be seen in Table 40. It can be 

seen that the estimate for    is high, which indicates that the volatility has long persistence. The 

GARCH(3,3) model for the DRD Gold data from Chapter 4 also showed that the volatility had long 

persistence. 

Table 40: Parameter Estimates for the DRD Gold Stochastic Volatility Model 

Parameter Estimate Standard Error 

   0.2022 0.1907 

   0.9556 0.0225 

   0.2835 0.0773 

  -11.5412 2.2561 

   1.1275 0.0562 

   -4.1948 0.1563 

   3.3315 0.0909 
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6.4 Stochastic Volatility Model for the Gold Fields Ltd Data 

The stochastic volatility model is fitted to the residuals from the AR(8) Model for the return of the 

Gold Fields data. The parameter estimates for the stochastic volatility model are displayed in Table 

41. The parameter estimate for    is high, which indicates that the volatility has long persistence. 

This long persistence of volatility was also seen for the GARCH(1,2) model for the Gold Fields data, 

which can be found in Chapter 4. 

Table 41: Parameter Estimates for the Gold Fields Stochastic Volatility Model 

Parameter Estimate Standard Error 

   -0.0145 0.0209 

   0.9896 0.0056 

   0.1208 0.0282 

  -5.8841 1.8978 

   1.0525 0.0435 

   -2.8402 0.1411 

   2.6824 0.0813 

 

6.5 Stochastic Volatility Model for the Harmony Gold Mining Company Ltd Data 

The stochastic volatility model is applied to the residuals of the AR(2) model for the return. The 

parameter estimates for the stochastic volatility model can be found in Table 42. The estimate for 

   is high, which indicates that the volatility remains persistent for a long period. This volatility 

persistence was also seen for GARCH(2,1) model for the Harmony Gold data from Chapter 4. 
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Table 42: Parameter Estimates for the Harmony Gold Stochastic Volatility Model 

Parameter Estimate Standard Error 

   0.0092 0.0601 

   0.9708 0.0127 

   0.2214 0.0530 

  -7.6774 2.0463 

   1.0699 0.0485 

   -3.5393 0.1394 

   3.1758 0.0826 
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Chapter Seven 

7 Conclusion 

The aim of this work was to explore ARCH, GARCH and stochastic volatility models to model 

volatility in financial time series data. The time series of interest were for gold mining companies 

listed on the Johannesburg Stock Exchange namely Anglo Gold Ashanti Ltd, DRD Gold Ltd, Gold 

Fields Ltd and Harmony Gold Mining Company Ltd. Modeling volatility in financial time series plays 

an important role in decision making, for example: what type of investment strategy to use. These 

strategies could be related to the choice of the timing of an investment, how long to hold a 

particular share and the size of an investment etc.  This work focused on two methods, the first 

was the ARCH and GARCH models and the second was the stochastic volatility model. The key 

difference between the two methods is that the ARCH and GARCH models are observation driven 

and the stochastic volatility model is parameter driven. This has been delineated in previous 

chapters. 

The ARCH model was first introduced by Engle (1982) and was used to model changes in volatility. 

The ARCH model was extended to a more general form by Bollerslev (1986), known as the GARCH 

model. This work only focused on a few of the types of ARCH and GARCH models for modeling the 

volatility. These were the ARCH, GARCH, IGARCH, EGARCH and GARCH-M models under the 

assumption of normally distributed error terms. A problem that arises when modeling financial 

time series is that the error terms are rarely normally distributed, but often follow a heavier than 

normal distribution. This problem can be dealt with by using error terms that follow the Student-t 

distribution. The ARCH and GARCH models are easy to fit due to the fact that the conditional 

variances are easily specified. This gives the ARCH and GARCH models an advantage over the 

stochastic volatility model, which has a conditional variance that is more complex to specify. 

Another advantage of the ARCH and GARCH model is that there is no shortage of software that 

can be used to fit the models. One disadvantage that becomes apparent when using the ARCH and 

GARCH models is that parameter restrictions need to be taken into account when using higher 

order ARCH and GARCH models. 

The stochastic volatility model is the parameter driven model where the conditional variance is 

modeled as an unobserved component that follows some underlying latent stochastic process. To 
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model this conditional variance, an error or innovation term is introduced to the conditional 

variance equation. The stochastic volatility model has a disadvantage compared to the ARCH and 

GARCH models due to the fact that the likelihood is complicated and often difficult to evaluate. 

For this reason, the stochastic volatility model is not as widely used as the ARCH and GARCH 

models. The observation error for the stochastic volatility model follows a chi-squared distribution 

with one degree of freedom. The parameters for the stochastic volatility model are generally 

estimated by using an approximation to this distribution and then using results from state space 

models to estimate the parameters. This work focused on the use of a mixture model to 

approximate the distribution and then estimate the parameters for the model. Due to the 

complications involved in fitting the stochastic volatility model, only the model following an AR(1) 

process was fitted to the data and models of higher order were not considered. 

In Chapter 4, the ARCH and GARCH models were fitted to the stock price data using SAS software, 

Version 9.2 of the SAS System for Microsoft Windows. Copyright © 2002-2008 SAS Institute Inc. 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc., Carry, NC, USA.  The first step was to calculate the return for the 

price using equation (2.2) described in Chapter 2. The next step was to fit a mean equation to the 

return and then finally to fit the ARCH and GARCH models to the residuals from the mean 

equation.  

For the Anglo Gold Ashanti Ltd data, the best model for the mean was found to be an AR(8) model. 

Once the AR(8) model was fitted it was then possible to fit the ARCH and GARCH models and to 

determine the best fitting model which was the GARCH(1,2) model. The best model for the mean 

for the DRD Gold Ltd data was found to be an AR(1). After fitting the AR(1) model the ARCH and 

GARCH models were then fitted and the best model was found to be GARCH(3,3) model. The 

model for the mean for the Gold Fields Ltd data that was found to be the best fitting was the AR(8) 

model. The ARCH and GARCH models were then fitted and the best model was found to be the 

GARCH(1,2) model. For the Harmony Gold Mining Company Ltd data, the best model for the mean 

was found to be the AR(2) model. After fitting the ARCH and GARCH models it was found that the 

best model was the GARCH(2,1) model. In all cases the ARCH and GARCH models that were found 

to be the best when error terms followed the Student-t distribution. 
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In Chapter 6, the stochastic volatility model was fitted to the stock price data using the software R: 

A Language and Environment for Statistical Computing (2010). The first step was to calculate the 

return in the same manner as that was used when fitting the ARCH and GARCH models. The next 

step was to fit a model for the mean and then finally to fit the stochastic volatility model to the 

residuals from the mean equation. Before fitting the stochastic volatility model to the residuals, it 

was important to ensure that there were no residuals with a zero value. This was due to the fact 

that the stochastic volatility model uses the logarithm of the squared residuals. The problem with 

having a zero is that the logarithm would be negative infinity for that observation. In all cases this 

problem was not encounted and the stochastic volatility model was fitted without having to make 

any transformations to the residuals. 

The mean equations for the data sets were the same as those used for the ARCH and GARCH 

models. Only the stochastic volatility model that is in the form of an AR(1) model was fitted to the 

residuals for the various mean equations. This was due to the complexities involved in fitting 

higher order models. The results from the stochastic volatility models agreed with those from the 

ARCH and GARCH models in terms of the long persistence of volatility.  

Due to the difference in the way that the conditional variance is specified between the ARCH and 

GARCH models and the stochastic volatility model it was found that the ARCH and GARCH models 

presented fewer difficulties in terms of the estimation of the model parameters. The stochastic 

volatility model could benefit from some research into the use of error terms that follow the 

Student-t distribution. This is of particular importance when modeling stock price data as this data 

rarely follows a normal distribution. The ARCH and GARCH models have been well developed and 

there are a number of software packages available for fitting the models. The stochastic volatility 

models would benefit and possibly become more widely used if there was more software available 

for fitting such models.  

Further research could also include different methods for parameter estimation due to the 

complications that arise from the specification of the conditional variance of the stochastic 

volatility model. Tsay (2005) has made use of Markov chain Monte Carlo (MCMC) methods along 

with Gibbs sampling for fitting stochastic volatility models. Another approach that fits in with the 

Kalman filtering framework that is used by Tsay (2005) uses forward filtering and backward 
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sampling to improve the efficiency of Gibbs sampling. It would be useful to compare these 

methods with the method that is  discussed in Chapter 6 to assess the performance of each 

method and make comparisons on efficiency, consistency and some of the practical implications of 

using each method. 

Having a model for the volatility can give investors valuable insight into the behavior of the stock 

price and can also give insight into the overall performance of the company itself. Changes in the 

volatility of the share price could be an indication of changes in the profitability of the company. 

Higher volatility in the profitability of a company would lead to a higher volatility in the share price 

of that company and lower volatility in the profitability would lead to a lower share price volatility 

(Pratten, 1993, pp. 42-43). This is important when making investment decisions in terms of the risk 

that an investor is willing to take. Investing in a company with higher volatility in profitability 

would be seen as a higher risk than an investment in a company with lower volatility in profit. The 

ARCH, GARCH, and stochastic volatility models that have been applied to the data discussed in 

Chapter 2 can be useful to aid in an overall analysis of the profitability of the respective 

companies. The models can be used as a starting point to investigate each company's profit in 

relation to the levels of volatility that have been predicted by the models and then to make 

decisions about the performance of the company.  

The ARCH, GARCH, and stochastic volatility models provide an important tool to assist analysts 

when attempting to model the volatility in financial time series data. The ARCH and GARCH models 

are, however, easier to fit to the data as the distributional assumptions are easier to deal with 

than that of the stochastic volatility model. The ARCH and GARCH models have been well 

researched and there is an abundance of literature available thereby making the models an 

attractive choice for an analyst. It is clear from this research that the stochastic volatility models 

have many disadvantages compared to the ARCH and GARCH models and thus the ARCH and 

GARCH models are likely to remain the preferred choice when attempting to model the volatility in 

financial time series.  
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Appendix A 

Theorem 1 

Suppose that     and   are three random variables such that their joint distribution is multivariate 

normal. In addition, assume that the diagonal block covariance matrix     is nonsingular for 

         and      . Then, 

                
         

                   
      

                      
         

                          
      

(Tsay, 2005, p. 494). 

Result 1 

Let   and   be jointly multivariate normal such that 

 
 
 
      

  
  
   

      
      

   
(A. 1) 

then the distribution of   conditional on   is also multivariate normal with mean 

               
         

 

(A. 2) 

and covariance matrix 

                  
       

 

(A. 3) 

The distribution of   conditional on   is also multivariate normal with mean 

               
         

 

(A. 4) 

and covariance matrix 
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(A. 5) 

(Harvey, 1990, p. 165). 
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Appendix B 

SAS Code for ARCH and GARCH Models 

Anglo Gold Ashanti GARCH(1,2) Model 

proc model data=work.anglo;  

parms mu -0.000774 ar1 -0.0586 ar2  0.007900 ar3 0.0234 ar4 -0.0132 ar5  0.000364 ar6 0.008056 

ar7 0.0296 ar8  0.0228 arch0 8.7514E-6 arch1  0.1187 arch2 -0.0685 garch1 0.9387 df 5.47345; 

 

 

logreturn = mu + ar1 * zlag1 (logreturn - mu) + ar2 * zlag2 (logreturnmu) +  ar3 * zlag3 (logreturn - 

mu) + ar4 * zlag4 (logreturn - mu) + ar5 * zlag5 (logreturn - mu) + ar6 * zlag6 (logreturn - mu) + ar7 

* zlag7 (logreturn - mu) + ar8 * zlag8 (logreturn - mu); 

 

h.logreturn = arch0 + arch1 * xlag1 (resid.logreturn**2, mse.logreturn) + arch2 * xlag2 

(resid.logreturn**2, mse.logreturn) + garch1 * xlag1 (h.logreturn,mse.logreturn); 

 

errormodel logreturn~t(h.logreturn,df); 

 

fit logreturn/fiml method=marquardt maxiter=10000 out=result; 

run; 

quit; 

DRD Gold GARCH(3,3) Model 

proc model data=work.drd; 

parms mu ar1 arch0 arch1 arch2 arch3 garch1 garch2 garch3 df 2.59672; 

 

logreturn = mu + ar1 * zlag1(logreturn - mu); 

 

h.logreturn = arch0 + arch1 * xlag1 (resid.logreturn**2, mse.logreturn) + arch2 * 

xlag2(resid.logreturn**2, mse.logreturn) + arch3 * xlag3 (resid.logreturn**2, mse.logreturn) + 
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garch1 * xlag1 (h.logreturn, mse.logreturn) + garch2 * xlag2 (h.logreturn, mse.logreturn) + garch3 

* xlag3(h.logreturn, mse.logreturn); 

 

errormodel logreturn~t(h.logreturn,df); 

 

fit logreturn/fiml method=marquardt maxiter=10000 out=result; 

run; 

quit; 

Gold Fields GARCH(1,2) Model 

proc model data=work.gfi; 

parms mu ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 arch0 arch1 arch2 arch3 garch1 df 6.013229; 

 

logreturn = mu + ar1 * zlag1(logreturn - mu) + ar2 * zlag2 (logreturn - mu) + ar3 * zlag3 (logreturn - 

mu) + ar4 * zlag4 (logreturn - mu) + ar5 * zlag5 (logreturn - mu) + ar6 * zlag6 (logreturn - mu) + ar7 

* zlag7 (logreturn - mu) + ar8 * zlag8 (logreturn - mu); 

 

h.logreturn = arch0 + arch1 * xlag1 (resid.logreturn**2, mse.logreturn) + arch2 * xlag2 

(resid.logreturn**2, mse.logreturn) + garch1 * xlag1 (h.logreturn, mse.logreturn); 

 

errormodel logreturn~t(h.logreturn,df); 

 

fit logreturn/fiml method=marquardt maxiter=10000 out=result; 

run; 

quit; 

Harmony Gold Mining Company GARCH(2,1) Model 

proc model data=work.harmony; 

parms mu ar1 ar2 arch0 arch1 garch1 garch2 df 3.776435; 

 

logreturn = mu + ar1 * zlag1 (logreturn - mu) + ar2 * zlag2 (logreturn - mu); 
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h.logreturn = arch0 + arch1 * xlag1 (resid.logreturn**2, mse.logreturn)  

+ garch1 * xlag1 (h.logreturn, mse.logreturn) + garch2 * xlag2 (h.logreturn, mse.logreturn); 

 

errormodel logreturn~t(h.logreturn,df); 

 

fit logreturn/fiml method=marquardt maxiter=10000 out=result; 

run; 

quit; 

R Code for the Stochastic Volatility Models 

The following code follows that of Shumway and Stoffer (2006). 

y=matrix(scan("data.txt"),ncol=1) 

n=length(y) 

y=log(y^2) 

phi0=0 

phi1=0.8 

initialQ=0.5 

alpha=mean(y) 

initialSigma0=1 

mu=-1 

initialSigma1=1 

initialparameter=c(phi0,phi1,initialQ,alpha,initialSigma0,mu,initialSigma1) 

SV=function(n,y,phi0,phi1,initialQ,alpha,initialSigma0,mu,initialSigma1) 

{ 
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 y=as.matrix(y) 

 Q=initialQ^2 

 Sigma0=initialSigma0^2 

 Sigma1=initialSigma1^2 

 h0=0 

 P0=initialQ^2/(1-phi1) 

 P0[P0<0]=0 

 ht=matrix(0,n,1) 

 Pt=matrix(0,n,1) 

 pi0=0.5 

 pi1=0.5 

 newpi0=0.5 

 newpi1=0.5 

 for(i in 1:n) 

  { 

  ht[i]=phi1*h0*phi0 

  Pt[i]=phi1*P0*phi1+Q 

  s0=Pt[i]+Sigma0 

  s1=Pt[i]+Sigma1 

  kt0=Pt[i]/s0 

  kt1=Pt[i]/s1 
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  e0=y[i]-ht[i]-alpha 

  e1=y[i]-ht[i]-mu-alpha 

  f0=(1/sqrt(s0))*exp(-0.5*e0^2/s0) 

  f1=(1/sqrt(s1))*exp(-0.5*e1^2/s1) 

  newpi0=(pi0*f0)/(pi0*f0+pi1*f1) 

  newpi1=(pi1*f1)/(pi0*f0+pi1*f1) 

  h0=ht[i]+newpi0*kt0*e0+newpi1*kt1*e1 

  P0=newpi1*(1-kt1)*Pt[i]+newpi0*(1-kt0)*Pt[i] 

  like=like-0.5*log(pi0*f0+pi1*f1) 

  } 

 list(ht=ht,Pt=Pt,like=like) 

} 

Maximize=function(parameter) 

{ 

 phi0=parameter[1] 

 phi1=parameter[2] 

 initialQ=parameter[3] 

 alpha=parameter[4] 

 initialSigma0=parameter[5] 

 mu=parameter[6] 

 initialSigma1=parameter[7] 



112 
 

 svmodel=SV(n,y,phi0,phi1,initialQ,alpha,initialSigma0,mu,initialSigma1) 

 return(svmodel$like) 

} 

estimate = optim (initialparameter, Maximize, NULL, method="BFGS", hessian=TRUE, control = list 

(trace = 1, REPORT = 1, maxit = 1000 ))  

standarderror=sqrt(diag(solve(estimate$hessian))) 

cbind(estimate$par,standarderror) 
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