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ABSTRACT 

Droughts can be categorized in four types namely, meteorological, agricultural, hydrological and 

socio-economic drought. Droughts have the potential to occur either as an isolated event, mutually 

exclusive event or through the progression from one form to another. The use of drought indices 

were recognized as an approach capable evaluating and monitoring the characteristics of the 

different drought types. The aim of this study is to evaluate and quantify drought characteristics 

as it evolves and propagates form meteorological to agricultural drought, within two climatically 

different regions within South Africa, namely the uMngeni Catchment and the Breede-Overberg 

Catchment. These areas generally have insufficient networks of ground-based observations to 

provide continuous and long-term data. Therefore, Satellite Earth Observation (SEO) data and 

Google Earth Engine (GEE) were utilized. The Standardized Precipitation Index (SPI) was 

selected to quantify meteorological drought, whilst the Standardized Precipitation 

Evapotranspiration Index (SPEI) and Vegetation Health Index (VHI) was chosen to assess 

agricultural drought at both of the selected sites. The methodology undertaken firstly involved 

validating the SEO data against in-situ data. Thereafter, historical droughts were calculated by the 

SPI and SPEI indices at various timescales. Assessments were then conducted to determine the 

applicability of satellite based drought index VHI on quantifying agricultural drought conditions. 

The final assessment involved conducting propagation analysis between the drought indices. The 

findings of this study indicated that SEO have the potential to be utilized in the collection and 

monitoring of drought conditions. VHI was recognized to be scale dependent index, especially 

when considering averaging values. The findings of this study further suggested that the uMngeni 

region was more susceptible to the impacts associated with meteorological droughts characteristics 

whilst the Breede-Overberg region was more susceptible to the impacts associated with 

agricultural drought characteristics. Understanding the impacts and characteristics associated with 

the drought propagation process may further provide theoretical knowledge that can be used to 

facilitate more informed disaster, water and agricultural management and mitigation strategies to 

be implemented. If decision makers were to only consider drought using meteorological 

assessments for management decisions, the resulting strategies produced may be misleading as the 

impacts of an agricultural drought event may still be persistent. 
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1. INTRODUCTION 

Over the years, it has been recognized that environmental disasters such as droughts have gained 

increasing attention amongst various disciplines, including hydrology, meteorology, agricultural, 

and environmental science, particularly as the frequency and severity of these extreme climatic 

events has increased (Mishra and Singh, 2010; Bai et al., 2020). Droughts are a common and 

significant form of natural disaster that affects the agricultural, socio-economic and environmental 

sectors, often occurring at various spatio-temporal scales (Van Loon and Laaha, 2015; Huang et 

al., 2017; Shin et al., 2018; Gevaert et al., 2018; West et al., 2019). Droughts are slowly developing 

events consisting of complex interrelationships between several meteorological and climatological 

indicators (Muthumanickam et al., 2011; Bayissa et al., 2017; Bai et al., 2020).  

There is no single universal definition of droughts, as this extreme event tends to vary depending 

on the type of hydrological variable  (e.g., precipitation, soil moisture, streamflow) used to describe 

the drought (Sherval et al., 2014). Despite this, drought can be defined broadly into either a 

conceptual or operational definition. The conceptual definition refers to the general descriptions 

of the physical processes (i.e. shortages of precipitation, soil moisture, evaporation, streamflow) 

and basic drought concepts whilst, the operational definition relates to identifying the onset, 

duration, intensity, severity, and termination of the drought (Mukherjee et al., 2018).  

However, in its simplest form, a drought event may be expressed as the deficit of water relative to 

average conditions over a prolonged period (Huang et al., 2017; Shin et al., 2018; Van Loon et al., 

2019; West et al., 2019). Based on the aforementioned definition, droughts can be classified into 

the following categories: (a) Meteorological drought, which is associated with a deficit in 

precipitation below its average level and conditions; (b) Agricultural drought, which is related to 

periods of declining soil moisture supply falling below the level appropriate for the production of 

crops; (c) Hydrological drought, which results when there are conditions of persisting periods of 

inadequate water resource levels and storage supply at the surface and subsurface; and (d) Socio-

economic drought, which is related with water resource systems failing to meet the demands of 

society, with the available supplies (Mishra and Singh, 2010; Sherval et al., 2014). 
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Drought often manifests itself in different ways and can progress from one form to another over 

time. For example, a meteorological drought may lead to a decrease in soil moisture levels and 

may lead to the development of agricultural drought. This transition of drought event from one 

form to another is known as drought propagation (Van Loon, 2013; Shin et al., 2018). The impacts 

of droughts are recognized to change as it evolves into its various types (Gevaert et al., 2018). This 

may be owing to the complex mechanisms associated with the drought propagation process. This 

process is further characterized and influenced by several factors, such as catchment and climate 

conditions (Van Loon, 2013). It was also acknowledged that drought impacts may not always be 

proportional to the severity of the climatic event. For example, relatively mild drought events may 

have significantly large ecological and socio-economic effects, especially in areas with high levels 

of vulnerability and areas sensitivity to change (Vetter, 2009).   

In South Africa, drought occurrence is relatively frequent, causing severe consequences to the 

country's economy, agriculture, ecology, and livelihood (Vetter, 2009, Meza et al., 2021; 

Orimoloye et al., 2022). According to Van Loon (2013), arid to semi-arid areas may be more 

susceptible to the impacts of drought events however, this being said, it does not indicate that 

drought in non-arid regions are less frequent (Cretat et al., 2012). South Africa has many diverse 

climatic regions, which are typically affected by different types of drought, often varying in its 

characteristics, i.e. intensity, frequency, duration, and spatio-temporal extent (Rouault and 

Richard, 2005).  

Historically, in South Africa, some of the most severe droughts experienced occur during the 

mature phase of El Nino. This phenomenon is often associated with drier conditions (dry spells), 

in the summer rainfall region (Baudoin et al., 2017), and may also result in significant changes in 

precipitation patterns and modifications to the hydrological cycle (Fauchereau et al., 2003; Bai et 

al., 2020). Furthermore, the county's oceanic-atmospheric interactions, geographic location and 

spatio-temporal climate variability may account for the rise in the conditions of extreme weather 

and variability of the precipitation, thus contributing to the occurrence of drought (Fauchereau et 

al., 2003). Therefore, there is a crucial need to understand these events in order to assist in the 

mitigation and management of these events to reduce their likely impacts (Mishra and Singh, 

2010). 
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According to Shin et al. (2018), droughts are seen to have a more direct impact typically, with 

regards to the agricultural sector and hydrological systems. Recently, severe drought events in 

South Africa have resulted in impacts faced by the nation's agro-economic system. For example, 

over the past few years, South Africa has experienced high levels of decline in the yield and 

harvesting of agricultural products, increasing the country's vulnerability to food insecurity and 

causing numerous socio-economic problems (Baudoin et al., 2017). South Africa's agricultural 

sector plays a crucial role in contributing to the country's economic wealth through the exporting 

of goods, creation of job opportunities, and sustaining the livelihood of communities (Baudin et 

al., 2017). The pressures experienced in this area by changing climate characteristics and the rise 

in demand for water and agricultural resources may place additional stress on already limited water 

resources (Van Loon, 2013). These impacts are further likely to be exasperated by the occurrence 

of droughts (Ahmadalipour et al., 2017). 

The effect of droughts evolve as it progresses, therefore, its impact should be considered across 

several variables rather than trying to classify it into a single category. From a management 

perspective, if one was only to consider the effects of one form of drought and plan accordingly, 

this plan may not provide adequate relief as a significant part of the problem may still be prevalent. 

Therefore, it is essential to understand drought propagation. Furthermore, understanding droughts 

from numerous perspectives are critical due to the complex interactions and links found between 

the different types of drought (Zhang et al., 2017). By gaining this holistic understanding, it will 

enable a comprehensive overview of the onset and offset times and characteristics of each drought 

to be assessed and observed in its respective stage, thus, providing valuable information that can 

be utilized in management, planning, and mitigation decisions. 

Adequate monitoring and evaluating the drought propagation process may assist in informing 

management decisions. However, in order for this to take place there needs to be an approach that 

can provide reasonably accurate spatio-temporal information. The monitoring and understanding 

of droughts can be accomplished with the use of drought indices. According to Mukherjee et al. 

(2018), drought indices and indicators play a crucial role in tracking the hydrological cycle 

components, as they can be used to assess the effects of droughts and provide information on the 

different drought characteristics. Quantifying the times taken for a drought to propagate to its 
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various stages, requires the use of drought indices to provide information that can then be utilized 

in drought management (Gevaert et al., 2018). The use of drought indices, typically require records 

of detailed and continuous inputs for several hydrological and climatological variables (WMO, 

2016). This information can be acquired from numerous sources such as in-situ observations, 

model simulations, data assimilation, and Satellite Earth Observations (SEO) (Wang et al., 2016). 

In order to obtain information on the characteristics of drought several hydrological and 

climatological variables, such as, precipitation, relative humidity, temperature etc., are required 

(West et al., 2019). The gathering of this data can then be further used within the calculations of 

drought indices to provide an indication of the severity and occurrences of drought events. Drought 

monitoring has been accomplished historically with the use of in-situ based measurements 

(Ahmadalipour et al., 2017; West et al., 2019). However, many regions typically do not have 

adequate networks of in-situ data to obtain the required input data for the accurate assessment of 

drought (Ahmadalipour et al., 2017). Areas such as South Africa are recognized to be a relatively 

data-poor region due to declining of operational observation stations over the past few decades 

(Lynch, 2003; Kroese et al., 2006; Suleman et al., 2020). However, in order to overcome these 

challenges, the technological advancements provided by SEO have the potential to provide 

information on the earth's processes and variables over various spatial and temporal scales. Thus, 

providing adequate information which can be utilized to explore drought assessments further.   

It should be noted that often the process of collecting and analyzing of SEO information may 

contain large amounts of pre- and post-processing data, involve time consuming methods and may 

require technical expertise in its application. Cloud-based platforms such as Google Earth Engine 

(GEE), were acknowledged to be advantageous by providing a planetary-scale petabyte-data on a 

wide range of geospatial satellite information (Gorelick et al., 2017). The application of the GEE 

platform facilitates large-scale environmental monitoring and analysis, without the need for large 

storage spaces, supercomputers or (Tamiminia et al., 2020). Further advantages of this platform 

include its application of machine learning algorithms, Application Programming Interfaces (API) 

and it high-speed global parallel processing for the collection, visualization and analysis of 

geospatial data (Tamiminia et al., 2020; Khan and Gilani, 2021).Therefore, GEE is a platform that 

has the potential to enhance the opportunities available for undertaking SEO studies, especially in 
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developing countries and areas which are recognized to have limiting ground-based observation 

data available (Kumar and Mutanga, 2018). 

Numerous studies have been undertaken worldwide on drought; however, most of these types look 

at individual components of drought. Over Southern Africa, it is recognized that there have been 

few assessments done on quantitatively analyzing the characteristics of drought and its propagation 

to the various types (e.g., from meteorological droughts to agricultural droughts). Therefore, this 

study seeks to contribute to the theoretical knowledge of drought by better understanding the 

impacts and characteristic of the drought propagation process. An understanding of this will thus, 

assist in contributing not only to drought management but also towards water and agricultural 

management decisions in South Africa. This study will, therefore, take a comprehensive approach 

in order to quantify the propagation of drought into some of its various stages, as well as highlight 

the influencing factors that contribute to the development and amplification of theses drought 

events. 

1.1 Aim and Objectives 

The aim of this study is to evaluate and demonstrate how the use of Satellite Earth Observations 

products and drought indices can be used to quantify and evaluate drought as it evolves and 

propagates to its different forms, which in turn can facilitate improved drought management in the 

future. For this purpose, there are several specific objectives that will be tackled in the study to 

achieve this aim, which is listed below: 

➢ To conduct an in-depth review of literature on the various types of droughts and their 

associated propagation process. 

➢ To identify and assess satellite-based products available to provide information on the input 

hydrological and climatological variables used in drought assessments. 

➢ To validate and assess the applicability of satellite-derived drought variables against 

ground-based data.  

➢ To determine the applicability of satellite derived drought indices in characterizing 

droughts 
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➢ To evaluate and quantify the spatial and temporal patterns and trends associated with the 

transition of drought from meteorological drought to agricultural drought using commonly 

applied drought indices. 

➢ To evaluate the characteristics of the drought propagation process in two different climatic 

regions. 

1.2 Research Questions 

1. What are the most suitable satellite-based products, to provide adequate data for monitoring 

the transition between drought types? 

2. Is the use of satellite-derived variables effective in calculating drought indices? 

3. Do commonly applied drought indices aid in quantifying drought at multiple spatial and 

temporal scales? 

4. Can the use of satellite drought indices provide adequate information on the characteristics 

of drought? 

5. What are the common trends that occur as droughts evolve from meteorological drought to 

agricultural drought to another? 

6. Which climatic region experiences more severe droughts and why? 

1.3 Organization of Dissertation 

This dissertation is broken down into five Chapters. Whereby, Chapter One provides an 

introductory overview on the research project undertaken for this dissertation. This chapter will 

also highlight the aims, objectives and research questions set out for this research study. Following 

this section Chapter Two provides a literature review analysis on the concept of drought and its 

associated propagation process, several case studies are also reviewed within this section in order 

to develop a comprehensive understanding of drought characteristics and how they are quantified. 

Further literature evaluations were conducted in this chapter on the application of drought indices 

and Satellite Earth Observations. At the end of the Chapter Two, a synthesis of literature is 

presented. This synthesis forms a critical component of the dissertation as it highlights the current 

gaps in knowledge and areas that require further attention. It also will serve to sets the scene for 
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the investigations that are to be undertaken and justify why certain techniques will be used in the 

methodology.  

Chapter Three of the dissertation describes the selected study sites of two climatically different 

regions and details the methodology undertaken for the validation of the Satellite Earth 

Observation data against ground-based observations. The methodology undertaken to quantify the 

droughts characteristics using selected simple drought indices is also discussed within this Chapter. 

The results of the spatio-temporal drought characteristics and propagation analysis at two 

climatically different regions are then presented in Chapter Four. Thereafter, a detailed discussions 

on the results acquired was conducted and highlighted in Chapter Five. The concluding remarks, 

limitations and recommendations of the findings from this research study are discussed in the final 

chapter of this dissertation
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2. LITERATURE REVIEW 

This chapter provides a review of literature on drought and its associated propagation process. 

Firstly, this chapter highlights the factors contributing to the development and impacts of droughts.  

Information is then provided on the properties and characteristics associated with the various types 

of droughts. Following this, the drought propagation process is highlighted. The next part of this 

chapter looks at the different methods available to monitor droughts, including the use of satellite-

based products and drought. Finally, a review of the Standardized Precipitation Index (SPI) 

Standardized Precipitation Evapotranspiration Index (SPEI) and Vegetation Health Index (VHI) is 

undertaken. 

2.1 Factors Influencing Droughts 

Modifications to the hydrological cycle and its processes, as a result of changing climate 

characteristics, catchment characteristics and anthropogenic interventions may ultimately affect 

the development and impacts of droughts (Van Loon et al., 2016). This may further lead to changes 

in hydrological responses and feedbacks and cause a rise in the risks and vulnerabilities of society, 

the environment, economy and agricultural sectors (Mishra and Singh, 2010; Ahmadalipour et al., 

2017; Nkhonjera, 2017; Mukherjee et al., 2018).  

One of the primary factors that play a crucial role in influencing the hydrological cycle and the 

characteristics of drought is the alterations in climate conditions (e.g. changes in rainfall patterns). 

Climate change is entering an unprecedented period, which may result in changes to weather 

patterns and the occurrence of more frequent extreme events such as droughts (Vetter, 2009; 

Mishra and Singh, 2010). Since droughts are typically regional with regards to their spatial extent, 

it is also important to note that each region has different and specific climate characteristics 

(WMO, 2016). Areas that experience high levels of climate variability are often susceptible to 

conditions of extreme dryness and wetness (Umiati et al., 2019). According to Mishra and Singh 

(2010), some of the climatic factors that play a significant role in the occurrence and development 

of drought are prolonged periods of decreased rainfall or increased temperature, low relative 

humidity levels and high wind speeds. Therefore, it can be deduced that by modifying the 

hydrological cycle (e.g., through climate change), drought events are likely to become more 
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frequent, especially under the conditions of a continuously changing environment (Bai et al., 2020; 

Huang et al., 2017). In South Africa, it has been observed that there were significant rises in inter-

annual fluctuations of hydro-climatic processes and associated droughts events (Cretat et al., 

2012). This can be attributed to weather systems and phenomena such as anticyclones, El Nino 

Southern Oscillation (ENSO), Tropical Temperate Troughs (TTT) and Sea Surface Temperatures 

(SST) which are commonly associated with influencing droughts in this region (Dube and Jury, 

2000; Cretat et al., 2012; Nicholson et al., 2018; Mukherjee et al., 2018). These phenomena may 

be further exacerbated by the influence of climate change.  

According to Mukherjee et al., (2018) there are multiple interrelated characteristics that 

significantly influence the impacts of drought events, especially in different regions. Therefore, a 

secondary factor that has the potential to influence drought characteristics and impacts are 

catchment characteristics (e.g., topography, geology, altitude, vegetation cover, soil properties and 

land-use activities). Catchment characteristics are typically heterogeneous in nature and variable 

across different regions (West et al., 2019). South Africa is a country that has a diverse range of 

climatic regions and ecosystems. These catchment characteristics may form guiding factors which 

influence the movement of water in the hydrological system (e.g., evapotranspiration, soil moisture 

recharge rate, surface and groundwater discharge), affect the response of drought propagation 

characteristics (i.e. duration, frequency, severity) and influencing catchment response times (i.e. 

onset time, lagging response, attenuation and pooling) of the drought (Van Loon, 2013).  

Besides climate variability, the mismanagement of human activities also have the potential to 

control the onset, propagation and impacts of droughts (Mukherjee et al., 2018). Van Loon et al., 

(2016) stated that in human dominated environments the occurrence of drought may not be solely 

perceived as a natural hazard. The Anthropocene is considered to be a human-modified era, which 

typically results in the direct or indirect impacts on the hydrological system and the occurrence of 

droughts (Van Loon et al., 2019). Whereby, indirect impacts may be recognized as the role that 

humans play regarding their contribution towards accelerated climate change, e.g. rapid 

urbanization, contributing to the increased emissions greenhouse gasses (Bai et al, 2020). Whilst, 

the direct effect humans may have on droughts, can be seen with the impacts from activities and 

intervention methods put in place for the provision and use of water resources for example, the 

construction of dams, land-use activities or the abstraction of surface and groundwater supply 
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which may cause changes to the hydrological patterns of the surrounding landscapes (Van Loon, 

2013; Van Loon et al., 2016; Wang et al., 2016).  

It is important to note that the continued mismanagement of human activities on land (e.g. poor 

agricultural practices, deforestation etc.,) and the impacts of prolonged drought events may further 

lead to conditions of degradation occurring and thus the occurrence of desertification. 

Furthermore, as a result of the increasing demands for water resources and the pressures presented 

by global change issues such as population growth, it is becoming highly important to study the 

different type of droughts in terms of ensuring that there is adequate management and mitigation 

methods being put into place, especially for the water and agricultural sectors (Motlagh et al., 

2017). 

2.2 Types of Drought 

Droughts are classified into four categories, this may be identified as meteorological, agricultural, 

hydrological and socio-economic droughts. It is noted that even though droughts are classified into 

separate categories, in most cases these types different drought types overlap and their impacts 

maybe felt concurrently. This section briefly describes and highlights the features and mechanisms 

associated with each of the different drought types.  

2.2.1 Meteorological Drought 

A meteorological drought can be defined based on the duration of dry period and degree of dryness 

that occurs due to a lack of precipitation, of which is greater than that of the normal precipitation 

experienced over a region (Mishra and Singh, 2010; Bayissa et al., 2017; Shin et al, 2018). It is a 

type of drought that generally occurs over relatively short time-scales and will likely have few 

direct impacts, however, despite this it is often an early indicator to more impactful and significant 

dry events (West et al., 2019). Precipitation deficiency may therefore, be considered as the 

originator of all types of droughts and potentially be the starting point for the development of 

agricultural and hydrological drought, especially in areas that are more dependent on precipitation 

than that of catchment/river flow (Van Loon, 2013; Shin et al, 2018).  
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Meteorological droughts may further play a role in providing an early indication of drought events 

before it affects the components of agriculture and hydrological water systems (Bayissa et al., 

2017). It should also be noted that other climatic conditions such as higher temperatures, increased 

wind speed, or lower humidity, in conjunction with precipitation may play a role in influencing 

the occurrence and impacts associated with drought events. However, Itsukushima, (2019), 

suggested that a lack of precipitation may not be the only contributing factor towards the 

development of meteorological droughts, for example, in a mountainous region the catchment 

characteristic such as topography may play a role in influencing the distribution and amount of 

rainfall received in an area, and thus influence the meteorological drought persisting in this region.  

2.2.2 Agricultural Drought 

Agricultural drought occurs when the moisture supply of a region experiences a consistent 

reduction below the climatically appropriate moisture level for the production of crops (Sherval et 

al., 2014). This type of drought typically occurs over a medium- to long-term scale, causing 

impacts such as reductions in crop yields, thus eventually resulting in imbalances between the 

demand and supply of food resources (West et al., 2019). In rainfall driven regions, there is greater 

potential for agricultural droughts to be driven by deficits in precipitation (West et al., 2019), as 

the sustained presence of meteorological drought over a region, impacts the local hydrology. 

According to Ahmadalipour et al (2017), there is a significant relationship found between rainfall, 

vegetation health and yield abundance. It is recognized that the transition of drought from 

meteorological to agricultural is greatly dependent on seasonal conditions experienced in an area 

(Kwon et al., 2019). These can thus, be identified as important factors that should be taken into 

account when conducting agricultural drought assessments.  

. It is also recognized that the impacts and effects drought pose on the agricultural sector may also 

be seen through the hindering and impeding of crop growth and reductions in crop yield (Yao et 

al., 2020). According to Keyantasha and Dracup (2002), cultivated agriculture typically require 

continuous supplies of water in order to optimize their growth and yields of production, therefore 

the occurrence of agricultural drought may lead to further impacts and vulnerabilities faced on the 

agro-economic sector of a region. However this being said it should also be noted that natural 

vegetation may also be equally affected by the impacts of agricultural drought events. Further 
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impacts faced in conjunction with the occurrence of agricultural drought, is imbalances in food 

demand and supply, this is especially the case of areas that rely on rain-dependent agriculture 

(Gidey et al., 2018).  

2.2.3 Hydrological Drought 

A hydrological drought refers to a period of insufficient surface and subsurface water resources 

(Mishra and Singh, 2010). Groundwater may therefore, be identified as a sub-component of 

hydrological droughts (Van Loon, 2013). Typically hydrological droughts are related principally 

to the response of the catchment to meteorological droughts, of which may further be depends on 

factors such as the catchment water storage properties, influencing rainfall patterns, conditions 

associated with the water partitioning process in catchments or be dependent on the soil and rock 

water storage properties of a region.  

Hydrological droughts may be identified as a natural phenomenon, however, it is also an event 

that can be significantly affected by the direct and indirect interventions of anthropocentric 

activities such as, land use change, over abstraction, irrigation and engineering projects (Sherval 

et al., 2014; Mukherjee et al., 2018). For example, poor land management practices, increased 

abstraction of water resources (which far exceeds rates of recharge) or overexploitation of 

resources may result in changes to the characteristics of soil and cause reductions in the through 

flow and percolation of water to recharge the groundwater and streamflow (Han et al., 2019; West 

et al., 2019).  

Hydrological droughts can be considered to be one of the major drought forms that impact the 

economy and society, however it may be the slowest to develop (Keyantasha and Dracup, 2002). 

Furthermore, the occurrence of hydrological drought tends to have a later onset period than 

meteorological drought, with the corresponding propagation time being dependent on local 

landscape and climate conditions (Huang et al., 2017). Therefore, the monitoring of this type of 

drought plays a vital role in managing of the availability or water usage of water resource 

management systems. 
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2.2.4 Socio-Economic Drought 

A socio-economic drought develops when the demands for economic goods exceeds the available 

supply due to shortfalls in water supply, as a result of weather-related events (Shin et al, 2018; 

Mishra and Singh, 2010). This is a type of drought also tends to focus on the impacts associated 

with the availability of commodities (e.g. food and water resources) and their relationship with 

meteorological, hydrological, and agricultural drought (Shin et al, 2018). Socio-economic drought 

is not a propagation type that is based on hydrological variables alone, due to this type of drought 

occurring when water availability is lower than the demand (Gevaert et al., 2018).  

When looking at a socio-economic context of drought Dube and Jury (2000), states that the 

increasing rate of the growing population of southern Africa play a significant role in contributing 

to the drought problem experienced in this area, as this rise has led to increasing pressures and 

stress placed on the regions already limited water resources (i.e. water for domestic and agricultural 

use). Furthermore, Botai et al (2016), suggests that there are links that which connect droughts to 

other global epidemics such as famine, diseases, and increased vulnerabilities. This type of drought 

tends to pay particular interest in the social aspects and its related impacts. For example, typically 

the wealthy communities may be capable of coping with the impacts and occurrence associated 

with drought events better the poorer communities. Therefore by having a better understanding 

this type of drought we are able to make more informed decisions with regards to managing our 

resources and designing mitigation strategies to lessen the burden of the impacts faced by drought 

events. 

2.3 Drought Process and its Impacts 

2.3.1 Drought Propagation Process 

The occurrence of drought events is a complex process with varying characteristics experienced 

among different regions (Sherval et al., 2014), as it is an event that involves both atmospheric and 

hydrological processes (Mishra and Singh, 2010). According to Shin et al. (2018), drought 

propagation can be described as the evolution of the type of drought over time, with each type of 

drought being characterized by unique spatial and temporal characteristics (Wang et al., 2016). 

Since drought occurrences may have significant implications on other hydrological components it 
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is possible that droughts can transition from one form to another especially under conditions of 

prolonged occurrences (Tirivarombo et al., 2018). For example a drought may start off occurring 

through a deficit in precipitation over a prolonged period of time, this a can then potentially result 

in the water deficit propagating to the surface and sub-surface parts of the hydrological cycle 

bringing rise for the development of the other types of drought classes. Whereby the persisting low 

conditions of precipitation might cause soil moisture and evapotranspiration deficits, leading to 

the development of agricultural droughts occurring. Subsequently this deficit, if prolonged may 

subsequently result in surface water resources (streamflow) and groundwater recharge being 

reduces and thus the occurrence of a hydrological drought may occur. 

According to Wang et al. (2016), in order to reduce the vulnerabilities experienced by drought 

there is an important need to distinguish between the different drought types and understand how 

droughts propagate from one type to another. Furthermore, understanding the process of drought 

propagation necessitates improving the way in which communities and vulnerable areas are able 

to prepare for future drought through the adoption of strategies to mitigate and plan for the 

likelihood of future drought events, especially at regional and national scales (Yao et al., 2020). 

The degree to which drought propagation occurs, may vary, depending of factors such as the 

climatic conditions (i.e. temperature and precipitation anomalies), catchment characteristics, as 

well as the vulnerability, stability and coping capabilities of the system to change (Gevaert et al., 

2018; Van Loon and Laaha, 2015). According to Gevaert et al (2018), there is a significant 

relationship acknowledged between the different climate regions and the occurrence of the drought 

propagation process. For example, drier continental climate experience a relatively slower 

propagation development of droughts and tropical climate areas may experience a relatively faster 

onset of drought propagation.  

It is acknowledged that there is a highly non-linear pattern observed in the physical processes and 

mechanisms involved in the propagation of droughts (Shi et al., 2022). This may be accounted for 

by the feedbacks experienced and the unequal development of impacts through multiple levels of 

society and the environment (Mukherjee et al., 2018). Figure 2.1, depicts a general understanding 

of these mechanisms and feedbacks associated with the drought propagation process. 
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Figure 2.1:  A conceptual representation of drought propagation, its associated impacts and 

interactions (Van Loon 2015; West et al., 2019). 

Rainfall may be considered to be the major driver of variability especially in the water balance and 

plays a crucial role in drought propagation, as the amount and distribution of rainfall typically 

influences other features such as soil moisture levels and vegetation growth (Muthumanickam et 

al., 2011). Large scale atmospheric circulation systems such as ENSO are also recognized to have 

the ability to impact on the propagation times of drought events, as these are phenomena that 

influence evaporation and rainfall patterns (Huang et al., 2017; Han et al., 2019). Modifications to 

the hydrological cycle may further contribute to the response times of the onsets, lagging, 

attenuation and the occurrence drought event between the different propagation stages (Gevaert et 

al., 2018). With regards to temperature anomalies, this is recognized as a variable that plays 

significant role in hydrological cycle, as is may be seen as a controlling factor affecting processes 

such as the formation of clouds, evaporation and transpiration.  

However, it was also acknowledged that not all droughts are induced by climatic events, but 

possibly through human induced activities (Dube and Jury 2000). Van Loon et al (2016), 
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acknowledged that people tend to not only have a passive role at the end of the drought propagation 

process, but also an active role in influencing the process of propagation. For example, 

anthropogenic influence and global change issues such as population density are seen to play a 

significant role in impacting and propagating drought events (Mukherjee et al., 2018). It is 

apparent that without significant modifications to the water cycle by human interventions and 

activities, agricultural and hydrological droughts may be caused by meteorological anomalies and 

modified by the properties of the catchment such as, soils, geology, and land cover (Van Loon et 

al., 2016).  

According to Li et al., (2022), it was acknowledged that there is a threshold for propagation to 

occur between two types of drought. This threshold period refers to the cumulative time required 

for the triggering of the of a drought event (i.e. the propagation time). For example a small-scale 

or light meteorological drought event may not trigger the occurrence of an agricultural or 

hydrological drought event as there may still be soil moisture or streamflow discharge present from 

the events earlier stage. However, a transition of drought may develop from a meteorological 

drought to agricultural or hydrological drought, if the drought event maintains its intensity (e.g. 

severe drought conditions) and persist for a long enough duration to trigger the onset of another 

drought type (Van Loon and Laaha, 2015; Hao et al, 2018; Li et al., 2022; Shi et al., 2022)   

The close interconnected processes and mechanisms between the atmosphere, surface and 

subsurface within the hydrological cycle indicates that there is thus a relationship between 

meteorological, agricultural, and hydrological droughts (Shin et al., 2018). The continuation of the 

drought propagation process from meteorological to agricultural to hydrological drought is 

dependent on numerous processes including the occurrence, development, persistence and lag 

times of the drought event (Yao et al., 2020). However, it is important to note that the different 

drought forms may occur as a mutually exclusive events, for example an agricultural drought may 

occur whilst a meteorological drought is still persistent. However, some drought events may also 

occur as an isolated event, for example, a hydrological drought may occur earlier than the onset of 

a meteorological drought. Whereby, rather than a deficit in precipitation, over-abstraction of water 

resources or poor land management practices by humans cause changes to soil profiles and water 

holding capacity thus, influencing a deficit in water storage levels (Van Loon and Laaha, 2015; 

Van Loon et al., 2016).  
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2.3.2 Drought Impacts a South African Perspective 

Drought is a complex phenomenon, which often has a rippling effect of impacts faced across all 

sectors of the environment, economy and society (Meza et al., 2021; Meque and Abiodun, 2015). 

South Africa is a region, which has a high water reliance for its agro-economic sector, and may 

therefore be highly susceptible to the impacts associated with droughts (Meza et al., 2021). It was 

noted that the severe droughts in South Africa, particularly in the early 1980s, 1990s and the period 

of 2014-2016, have resulted in significant impacts on many different regions across south Africa, 

and places extra stress on the country’s agro-economic and water supply systems (Meza et al., 

2021) for example there has been significant declines in the harvesing of agricultural products, 

especially over recent drought years (Baudoin et al., 2017). 

Typically, rain-dependent crops at both a subsistence and commercial scale are likely to be affected 

by the projected increase of drought events. Rain-dependent Subsistence farming is likely to more 

susceptible to the impacts of drought, as they are highly dependent of climate resources for their 

growth (Meque and Abiodun, 2015). However this being said it should also be noted that for areas 

like South Africa commercial farming underpins the country’s food security for majority of the 

population and can be significantly affected by the projected rise in drought conditions (Meza et 

al., 2021).  

In South Africa the agricultural sector plays a large contribution to the GDP, and plays a significant 

role in ensuring food security, it facilitates job creation for low skilled people economic growth 

and development and provides raw materials for secondary sector activities (such as manufacturing 

and retail) which may in turn reduce a countries dependency on international exporting (Sifiso et 

al., 2017; Meza et al., 2021). Over the past years several areas in South Africa have had a 

significant decline in agricultural production, this decline in yields were likely to further lead to 

ecological as well as economic vulnerabilities faced, for example the country may need to invest 

more money in importing agricultural products, which may lead to increased food prices and may 

also potentially contribute to food insecurity in affected regions (Mdungela et al., 2017). The 

uncertain and erratic nature of droughts is known to have an uneven distribution of impacts, 

whereby, it is noted that the most vulnerable people to the shocks of drought (from a farming 

perspective), are those who engage in subsistence and small scale farming (Mdungela et al., 2017).  
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During the 2015/2016 drought period several provinces within south Africa were declared as 

disaster areas, due to the suffering of not only a lack of water resources but also severe declines 

on the agricultural sector (production and yields of agricultural products), and a resultant effect on 

the GDP of the country (Sifiso et al., 2017). It was noted by Bureau for Food and Agricultural 

Policy that due to the frequent reoccurrences of drought in recent years, there will likely be medium 

to long-term adverse effects faced on the perennial crops in several regions of the country (such as 

in the Western Cape Province) (Pienaar and Boonzaaier, 2018). Some of these effects may be 

especially impactful to agricultural businesses. Whereby in many cases across the country farmers 

have abandoned engaging in vegetable production or have decided to preserve their long-term 

crops by not harvesting during certain seasons. 

It can be noted from an agricultural perspective that even though the impacts of rainfall shortages 

may result in reductions to crop yield production, the scope of its impacts may be further. The way 

in which a region is able to cope with these impacts may be further dependent of a host of other 

factors such as the degree of exposure and vulnerability that a socio-ecological system of an area 

would have, the ability of a system to cope with change, the level of development in an area, the 

socio-economic status of an area, etc., in the same way it is acknowledged that some regions may 

me prone to higher risks associated with total crop production loss due to droughts (Kamali et al., 

2018; Meza et al., 2021).  

In South Africa there is a constant evolution in legislature with regards to how the country manages 

disaster risks, this is increasingly important, especially with regards to the increasing frequency of 

disasters like droughts occurring, with drought governance providing the framework to provide 

relief and emergency support. However the root of the problem may lie in the implementation of 

proactive measures. The provision of information from past experiences and impacts provide 

learning opportunities on the way in which mitigation and adaption methods would be most 

effective with regards to reducing the impacts of future drought events (Baudoin et al., 2021). 

Therefore, a comprehensive understanding of the evolution from meteorological drought to 

agricultural drought may pave the way forward in improving the way in which we manage and 

mitigate our agricultural systems to reduce the impacts of drought, It is therefore acknowledged 

that the government should considered prioritizing the implementation of appropriate drought 

management measures to respond to areas of particular vulnerabilities, and areas less resilient to 
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the impacts of droughts (Mdungela et al., 2017). One of the ways forward is to understand the 

impacts of droughts in an integrated manner and not the use of just one type of drought. Droughts 

types typically tend to overlap each other, thus understanding a single drought type alone may not 

provide adequate data to effectively understand the characteristics of drought (frequency, duration, 

severity) of a system, thus leading to misjudgments on the extent of how to cope with the drought. 

2.4 Drought Monitoring Methods 

In order to conduct a drought assessment, measurements or estimates of key hydrological variables 

(e.g. precipitation, soil moisture, streamflow) need to be acquired to characterize and quantify the 

different drought types and their intensity (Bai et al, 2020; Misha and Singh, 2010; Ahmadalipour 

et al., 2017). Historically, the use of ground-based observation networks and in-situ 

instrumentation have been used to acquire measurements on the various hydro-climatic variables 

required for drought assessments (Ahmadalipour et al., 2017; West et al., 2019). Ground-based 

observations provide invaluable information on the various hydrological processes and facilitate a 

robust means of better understanding the mechanisms behind their processes and their impacts. 

The use of these instruments are advantageous, with regards to providing relatively accurate 

estimations and measurements of hydrological processes as they occur on the earth’s surface. 

However, a limitation that may be experienced with the ground-based observations are that in 

numerous regions majority of the information provided by in-situ instrumentation are point-

measurements, making it difficult to obtain a representation of accurate spatio-temporal patterns 

of the variable’s distribution over large geographic extents (Lynch, 2003; Ahmadalipour et al., 

2017; Vather et al., 2018).  

The traditional methods used for drought assessments and monitoring typically relied on the use 

of in-situ data. However, one of the main challenges experienced, especially in developing 

countries such as South Africa, is the poor availability of dense networks of ground-based 

instrumentation (Muthumanickam et al., 2011; Bayissa et al., 2017; Abdulrazzaq et al., 2019). 

Owing to the sparse and unevenly distributed nature of most of these ground-based networks, it is 

often difficult to estimate variables in a continuous and adequate manner, especially in areas prone 

to having few or no in-situ instruments available. If this information is utilized in drought 
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assessments it may further result in the insufficient capturing of spatial variability of drought 

events over larger areas (Bai et al, 2020, Muthumanickam et al., 2011).  

Satellite Earth Observations (SEO) are widely recognized as a way to enable the collection of 

information on the various processes and variables on the Earth’s surface, without being in direct 

contact with the object of interest or area (Jong et al., 2004). It assists in facilitating a greater 

understanding of the different earth systems and processes (Jong et al., 2004; Ahmadalipour et al., 

2017). SEO products may also further complement the information gathered by traditional 

methods that rely on ground-based meteorological and climatological observations through the use 

of data assimilating products (Gidey et al., 2018). Therefore, the use of SEO is viewed as a suitable 

alternative source able to overcome many of limitations associated with in-situ observations 

(Bayissa et al., 2017; Ahmadlipour et al., 2017).  

For drought assessments continuous long-term data are required in order to have statistically sound 

results, SEO enable the effective collection of information in a continuous, cost-effective manner 

over various spatial and temporal resolutions (Bai et al., 2020; Muthumanickam et al., 2011). Due 

to the complex heterogeneous nature of droughts as well as their various influencing factors, the 

use of SEO has been proved to be a widely used application utilized in the retrieval of 

climatological, atmospheric and surface variables and opens avenues towards monitoring drought, 

for example the development and application of satellite-derived drought indices (AghaKouchak 

et al., 2015; Bento et al., 2018; West et al., 2019). The development of satellite-derived drought 

indices have become promising tools available for effectively monitor drought characteristics and 

assist in the development of early warning systems (Gidey et al., 2018) (Ahmadalipour et al., 

2017). It is a technique that can be utilized to provide valuable information and represent almost 

all aspects of the different types of drought, thus enhancing our understanding of this phenomena 

(West et al., 2019).  

However, despite the advantages that are associated with SEO products, one of the most commonly 

presented shortfall found in several satellite-based products is that the presence of clouds, which 

influences the spatio-temporal results making it difficult to achieve global cloud-free data 

(Fensholt et al., 2011). This is especially problematic in areas prone to the presence of tropical 

clouds. Cloud cover may influence the forward scattering observations, thus introducing bias in 
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measurements and poor capturing of events (e.g. droughts and floods) in a timely manner (Fensholt 

et al., 2011). It is further acknowledged that the influence of atmospheric drag, orbital debris and 

the Earths gravitational field may result in slight movement or changes to the satellites inclination 

of orbit and may influence the accuracy of the data acquired (Riebeek, 2009).   

There are numerous satellite products available to provide information on hydrological and 

climatological drought-related variables, each ranging with different spatial and temporal scales 

and resolution, some examples of these SEO products and their specifications are presented in 

Table 2.1. However it, should be noted that often the process of collecting and analyzing satellite 

information may contain large amounts of pre- and post-processing data and may require technical 

expertise. Therefore, the use of cloud-based platforms such as Google Earth Engine which are 

capable of providing planetary-scale geospatial information from a variety of available satellite 

products have become quite popular in recent times (Gorelick et al., 2017). GEE was established 

in 2010 and hosts a wide range of satellite products and information on numerous earth processes 

with over 40 years’ worth of data records. GEE facilitates the acquisition, analysis and assessment 

of SEO data, from a freely accessible portal. The information provided by this platform may be 

especially useful to monitoring and assessing earth processes in developing countries and areas 

which are recognized to be data-poor (Kumar and Mutanga, 2018). Therefore, the use of SEO and 

Google Earth Engine provides an effective means of collecting, assessing and monitoring of 

drought-related variables (AghaKouchak et al., 2015). 
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Table 2.1: A select few examples of the various Satellite Earth Observation Products with their associated features and specifications 

available in GEE that are commonly used for drought monitoring applications 

SATELITE 

PRODUCT 
VARIABLE 

SPATIAL 

RESOLUTION 

TEMPORAL 

RESOLUTION 

RECORD 

LENGTH 

CHIRPS Precipitation 0.05° Daily 1981 to Present 

TRMM Precipitation 0.25° 3-Hourly, Monthly 1998 to 2019 

PERSIANN - CDR Precipitation 0.25° Hourly, Daily 1983 to Present 

 FEWS NET Land 

Data Assimilation 

ET, base flow, Rainfall, soil 

moisture, heat fluxes,  
0.1° Monthly 1982 to present 

MODIS Terra Net 

Evapotranspiration  
ET, Latent Heat flux 500 m  8 – Days 2000 - Present 

MODIS Terra 

Vegetation Indices  

Normalized Difference 

Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI) 

500 m , 250 m  16 –Day 2000 to Present 

MODIS Terra Land 

Surface Temperature 

and Emissivity  

Land Surface Temperature (LST) 1 km Daily, 8-Day 2000 to Present 

ERA5 
Air temperature, wind speed, 

surface pressure, precipitation  
28 km Daily 1979 to 2020 
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GLADS 

ET, evaporation, base flow, 

groundwater, soil moisture, soil 

temperature, air temperature, 

precipitation 

0.25° 3-Hourly 2000 to Present 

 

AMSR-E 

 

Precipitation, Soil Moisture, 

Ocean Water Vapor, Near-Surface 

Wind Speed 

25 km Daily 2002 to 2011 

SMOS 
Soil Moisture,   Temperature, 

Vegetation Surfaces 
35 km - 50 km  2 - 3 Days 2009 to Present 

SMAP Soil Moisture, Plant water stress 3 km , 9 km, 36 km 2 - 3 Days 2015 to Present 

Landsat 
Temperature, surface Reflectance, 

Atmosphere Reflectance, NDVI 
30 m Once every 2 weeks, 8 –Days 1972 to Present 

NOAA Climate Data 

Records (CDR) of 

AVHRR NDVI 

Normalized Difference 

Vegetation Index 
0.05° Daily 1981 to Present 

 GRACE 

Surface Water Storage, 

Groundwater Storage, Soil 

Moisture, Runoff 

~330 km Monthly 20022017 
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2.5. Drought Monitoring using Drought indices 

Drought indices play an essential role in formulating efficient drought monitoring and prediction 

systems (Mendicino et al., 2008). They are able to account quantitatively for the aspects of drought 

characteristics (i.e. severity, duration, frequency and spatial extent) in a consistent manner 

(Keyantasha and Dracup, 2002; Bloomfield and Marchant, 2013). Several indices have been 

derived over the recent decades and have become a useful tool in providing a framework to 

evaluate the different types of drought types over various spatio-temporal scales (Mishra and 

Singh, 2010). 

It is important to distinguish between drought indicators and drought indices, whereby, drought 

indicators are identified in a broader sense, as parameters such as precipitation, evaporation, 

temperature streamflow, etc. which are aggregated (WMO, 2016). Whilst, drought indices are 

considered to be quantitative measures used to characterize drought levels, this can be 

accomplished through the assimilation of data into a single numerical value from the use of one or 

more hydro-climatic variables or indicators (Mukherjee et al., 2018). For drought monitoring, the 

indicator/s are typically converted into or utilized within drought indices to determine drought 

characteristics (Tirivarombo et al., 2018). 

The selection of indices is often made based on factors such as local conditions experienced, the 

nature of the indicator, and the availability of data in the selected area and the validity of the data 

(Botai et al., 2016). It should be noted that typically the various types of drought indices are likely 

to experience different degrees of sensitivity when applied in different climatic zones (Mishra and 

Singh, 2010; Mukherjee et al., 2018). Drought indices have become recognized as a primary tool 

for communicating drought levels and simplifying complex relationships, through quantifying 

drought characteristics (WMO, 2016). Owing to these properties of indices it thus, allows and 

enables informed decisions to be made on water management, agricultural management and early 

warning detection of drought events (Zargar et al., 2011) 
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Most indices derived typically require information on meteorological variables either singularly 

or through a combination of several indicators (Mukherjee, et al., 2018). The use of satellite-

derived products and drought indices have facilitated the possibility of using long-term data series 

in the monitoring of drought-derived indicators and drought events over larger areas (Mendicino 

et al., 2008). Satellite-derived drought indices have been recognized to be a method which has 

revolutionized the way in which drought can be monitored and assessed as they are diverse in 

nature and new indices are frequently being proposed (Zargar et al., 2011). Due to improvements 

and technological advancements, there are constantly new techniques, sensors and algorithms 

being developed or improved to characterize drought (Zargar et al., 2011).  

There are numerous drought indicators and indices developed around the world that assist in 

monitoring, quantifying and predicting drought characteristics. These indices can range from 

simple to complex, from common standardized-based to remote sensing based or from single-

variable use to multi-variable use. Some examples of the most extensively used meteorological 

agricultural and hydrological drought indices as well as their advantages and limitations are shown 

in Table 2.2.  
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Table 2.2:  Examples on some of the different drought indices available with their associated advantages and disadvantages 

DROUGHT 

INDEX 

DROUGHT 

TYPE 
ADVANTAGES 

DISADVANTAGES/ 

LIMITATIONS 
REFERENCE 

China Z Index Meteorological 

It enables for the monitoring of both wet and 

dry events over multiple time steps. 

Calculations involves are relatively simple. 

This type of index allows for missing data.  

Shorter timescales tend to be less well 

represented as compared to methods 

such as SPI. 

WMO, 2016; 

Bayissa et al, 

2017 

Precipitation 

deciles 
Meteorological 

This index is flexible with regard to 

timescales. The methodology is relatively 

simple for numerous situations. It is 

applicable in both wet and dry regions. 

Due to it only requiring precipitation 

as an input, the impacts of other 

variables such as temperature are not 

considered in the drought assessment. 

Zargar et al., 

2011 

Palmer 

Drought 

Severity index 

(PDSI) 

Meteorological 

Input variables are monthly temperature and 

precipitation. It is a satellite-based drought 

index. It accounts for temperatures and soil 

characteristics of different climatic zones. It 

is applicable worldwide. 

It is sensitive to seasonal changes. It is 

based on the simplification of the soil 

moisture component. It is associated 

with fixed timescales, poor spatial 

comparability and weak portability. 

Keyantash and 

Dracup, 2002; 

Botai et al., 

2016; Bai et al., 

2020 

 Standardized 

Precipitation 

Index (SPI) 

Meteorological 

Low-cost calculations, widely available on 

multiple timescales.  It is able to facilitate 

comparisons of extreme conditions in 

different locations. It is a time-scale versatile 

index that allows for the monitoring of short-

and long-term water supply. 

It requires long-term continuous 

records of data for periods no less than 

30 years. Requires knowledge of the 

local climatology. 

Ahmadalipour et 

al., 2017; 

Gevaert et al., 

2018; Botai et 

al., 2016; Zargar 

et al., 2011 

Standardized 

Precipitation 

Evapotranspira

tion Index 

(SPEI) 

Meteorological, 

Agricultural 

Requires monthly/weekly precipitation and 

temperature records. It is able to detect 

droughts at various timescales. It was 

developed as a modification to the SPI index 

to address water supply-demand issues. 

The input data needs to be continuous 

and complete, with no missing months. 

Due to its monthly application rapid 

developing droughts may not be 

quickly identified.  

Botai et al., 

2016; WMO, 

2016 
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Crop Moisture 

Index (CMI) 
Agricultural 

 It involves the computation of a simple 

water budget. It consists of relatively simple 

calculations. It provides information on soil 

moisture estimates at a short-term weekly 

basis.  

This index is seen to be unable to 

provide long-term information in 

drought monitoring. This index may be 

sensitive to an increase in potential 

evapotranspiration. 

WMO, 2016; 

Mishra and 

Singh, 2010 

Soil Moisture 

Deficit Index 

(SMDI) 

Agricultural 

It allows for the detection of soil moisture 

deficit irrespective of the type of climatic 

conditions of an area. It takes into account 

the whole soil profile at different depths. It is 

adaptable to the different crop types. 

This is a complex index regarding 

calculations and input variable.  

Concerns of this index regarding the 

auto-correlation with the soil depths 

used. 

WMO, 2016; 

Mishra and 

Singh, 2010 

Enhanced 

Vegetation 

Index (EVI)  

Agricultural 

This is a satellite based index. It is used to 

detect and indicate vegetation healthy, green 

biomass, patterns of plant productivity and 

density. It provides good spatial coverage at 

high resolution over all types of terrains. 

The period of available records is 

relatively short. It is not able to 

distinguish if the stress experienced by 

plant canopies are caused by impacts 

other than drought. 

Ahmadalipour et 

al., 2017; 

Muthumanickam 

et al., 2011; 

Zargar et al., 

2011 

Temperature 

Condition 

Index (TCI) 

Agricultural 

This index is a satellite based index. It is 

determined with the use of Land surface 

temperature. It provides good spatial and 

temporal resolution and coverage. 

It is a relatively new index and has a 

relatively short record length. This 

product is also susceptible to potential 

cloud contamination. 

WMO, 2016 

Vegetation 

Condition 

Index (VCI) 

Agricultural 

This is a satellite-based drought index.  It 

was developed as an indicator for vegetation 

cover status. It indicates the deterioration or 

acceleration of a vegetation under changing 

weather conditions. 

Due to this index being based mainly 

on detecting vegetation it is primarily 

useful during the growing seasons of 

vegetation. It has a relatively short 

period of record length. There is 

potential for errors due to clouds. 

Mishra and 

Singh, 2010; 

West et al., 2019 
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Vegetation 

Health Index 

(VHI) 

Agricultural 

This is a satellite-based index. It covers the 

whole globe at a high resolution. It is 

calculated by coupling the data from 

Vegetation Condition Index and Temperature 

Condition Index. It is able to detect drought 

in any season. 

A limitation is the record length for 

this satellite data is relatively short. 

The limitations of VCI and TCI are 

also applicable with this index. 

Ahmadalipour et 

al., 2017; WMO, 

2016 

Palmer 

Hydrological 

Drought Index 

(PHDI) 

Hydrological, 

Groundwater 

Modified version of the PDSI to account for 

long-term droughts affecting streamflow, 

stored water and groundwater. Able to 

calculate the ending of a drought based on 

the precipitation needed with the use of soil 

moisture ratios. It’s based on the water 

balance approach. 

Requires a series of complete monthly 

records of input parameters. The 

impact of human activities and 

influences are not considered in the 

calculations. Calculations involved are 

relatively complex. 

WMO, 2016; 

Botai et al., 2016 

Surface Water 

Supply Index 

(SWSI) 

Hydrological 

It is used to detect anomalies that may be 

found in surface water supply resources. This 

can allow for all seasons to be represented.  

Input data used is streamflow and 

precipitation. This index is suitable for use in 

mountainous regions. 

This index may be limited due to the 

variability of the spatial and temporal 

scale represented by the different 

hydro-climatic variables. The 

computation process may be seen as 

relatively difficult. 

Mishra and 

Singh, 2010; 

Botai et al., 

2016; Keyantash 

and Dracup, 

2002 

Standardized 

Streamflow 

Index (SSFI)  

Hydrological 

Input parameter is monthly or daily 

streamflow data. Relatively easy to calculate. 

Can be used with the SPI program. Allows 

for missing data due to single variable input. 

May be limited due to the use of only 

streamflow data being required. It is a 

relatively new index. 

WMO, 2016 

Standardized 

Runoff Index 

(SRI)  

Hydrological 

This index determines the loss in streamflow 

seasonally as a result of climate. It 

incorporates various hydrological processes 

that influence the reduction in streamflow. It 

has a calculation procedure similar to that of 

SPI. 

The length of data record is seen to 

influence the SRI values. It requires 

complete recodes of data. It is also 

seen to have limitations when it comes 

to the fitting of probability 

distributions in its calculation. 

Van Loon, 2013; 

Mishra and 

Singh, 2010 
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2.5.1 Case Studies: Drought propagation monitoring using various drought indices 

A study by Zhang et al (2017), assessed the various stages of drought propagation, in India with 

use of indices such as the SPI, SRI, SSMI, and VCI.  The methodology undertaken used both 

remotely sensed and in-situ data. It was noted from linear regressions between the drought indices 

that when comparing the indices for a propagation analysis the lag time of transformation was 

identified (using a cross-correlation analysis of linear regressions) to be approximately one month 

between the meteorological, agricultural and hydrological drought. However some cases were 

reported where all three types of droughts typically simultaneously. This further indicates that in 

this region there is a rapid transition of drought types, especially when precipitation deficits are 

continuous. Findings from this study also depicted that soil moisture and hydrological conditions 

exhibited lower variability as compared to the relative precipitation experienced in the area  

Huang et al., (2015), assessed the response of meteorological to agricultural droughts in the Wei 

River Basin (WRB), China. The drought indices utilized were the PDSI and SPI index. The results 

from this study indicated that there was a seasonal scale influencing the lagging period of 

agricultural droughts in this area. Whereby, the lag period for this study was determined using 

correlation relationships between the selected indices. There was a faster response time found 

during summer (approximately 3 months) and a slower response time found in the autumn months 

in this region. During the summer months the shorter lag time was assumed to be due to the high-

frequency of rainfall experienced. It was also acknowledged that a potential reasoning behind the 

slower response in lag time was due to the buffering effect the soil and/or variations of Arctic 

Oscillations in this region.  

A study by Gou et al., (2017), analyzed meteorological drought in the Lower Mekong Basin with 

the use of satellite products. The ground-based observational networks in this region are limited, 

thus CHIRPS satellite products were utilized in this study along with the drought index SPI. 

Results from this study indicated that CHIRPS was able to provide data that properly captured the 

drought characteristics at various timescales with the best performance achieved by the 3-month 

SPI time scale. This study also assessed the impacts of meteorological drought on vegetation with 

the use of the Vegetation Health Index (VHI). Results from this study suggests that CHIRPS 
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performed well with regards to determining SPI, there was also a good consistency in intensity 

and frequency with the gauge derived SPI. However, SPI derived from CHIRPS tended to 

overestimate the severity of both flood and drought periods. However at the 6- and 12-month scale 

there was an underestimation of drought severity. Through correlation analysis’s it was deduced 

that VHI and SPI3 have a relatively agreeable evolution, whereby, the variations of VHI generally 

correspond well to the wet and dry period of drought conditions. It further indicated that 

meteorological droughts have significant impact on vegetation health (Gou et al., 2017). 

Li et al., (2022), assessed the propagation from meteorological droughts to agricultural drought at 

a high resolution and over several spatio-temporal scales. This assessment was conducted in the 

Loess Plateau, China. Precipitation data was acquired from the satellite GLADS product and the 

indices utilized in this study was the SPI and SSMI drought index. The propagation time for this 

assessment was identified using a copular function and conditional probability. Results indicated 

that the propagation time taken for an agricultural drought to develop is relatively short during the 

summer and longer in the winter, this indicating that there is a seasonal scale occurring in the 

propagation of droughts in this area. It was further noted that the study area is in a region prone to 

temperate continental monsoon climatic conditions. The conditions associated with this 

phenomena (e.g. rainfall and temperature variability and potential evapotranspiration) was 

considered to be the main driving factors for the most of the propagation from meteorological to 

agricultural drought in this area. 

Gevaert et al., (2018), looked at assessing the effects of climate conditions on drought propagation 

timescales. Assessments were done by cross-correlating standardized indices (SSMI, SRI and 

SSFI) from global hydrological models and SPI. The results from this study indicated that there 

was longer accumulation periods detected during the winter drought events as compared to the 

summer drought events. Land surface and global hydrological models were cross-correlated in 

order to evaluate the drought propagation times. The results from this evaluation, indicated that 

for the transition of meteorological drought to agricultural drought the land surface models showed 

a slower propagation time than the global hydrological model. However the land surface models 

tended to have faster propagation times when there is a transition to a hydrological drought. Results 

further indicated that from this study, there was a close relationship found between climate type 
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and drought propagation times. Whereby it was identified that in dry and continental climates the 

propagation times were slower than in tropical climates. 

A drought propagation study was conducted by Ding et al., (2021), assessing three drought types 

in different climatic regions in China. The drought index assessed was SPEI, SRI and PDSI. In 

order to analyze the relationship between the different drought types, Pearson correlation 

coefficients were used. The seasons significantly sensitive to the drought propagation process was 

also assessed in this study. Results indicated that at an annual scale the propagation from 

meteorological drought to agricultural drought was the most prominent in many of the selected 

regions. It was recognized from this study that in the arid to semi-arid regions there was a stronger 

propagation relationship between agricultural to hydrological drought especially during the 

summer months rather than the winter months. Overall the conclusions further indicated that for 

hydrological drought propagation in different climatic regions there were several driving factors 

experienced (e.g. soil moisture content, evapotranspiration and irrigation levels). 

2.6 Selected Drought Indices for assessment 

From the review of drought indices and propagation study, it is apparent that there are numerous 

different indices available to quantify the various types of droughts and their associated 

characteristics. However, for the purpose of this research study the Standardized Precipitation 

Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI) and the Vegetation 

Health Index were selected for further evaluation to determine and quantify meteorological 

droughts and agricultural droughts. The selection of these indices were based on factors such as 

(1) The ease of the index’s implementation and application, (2) The type and availability of input 

data required by the index, (3) The scope of area the index is applicable in, (4) The sensitivity of 

the index to changing climate conditions and (5) The timescales available by the index’s 

application for the monitoring of drought characteristics. This section of Chapter Two provides 

insight on the features of the selected indices and their application 

2.6.1 Standardized Precipitation Index (SPI) 

Standardized Precipitation Index (SPI) proposed by McKee et al., (1993), is recognized as one of 

the most used index for monitoring, quantifying and characterizing meteorological drought 



32 

(WMO, 2012; Ahmadlipour et al., 2017; Cruz-Roa et al., 2017; Gou et al., 2017; Gevaert et al., 

2018;  Zhong et al., 2019; Umiati et al., 2019; Bouaziz et al., 2021). SPI is an index established to 

detect and track drought events with the use of monthly rainfall data records over a given area for 

investigation (Bouaziz et al., 2021). This is a drought index that is a based on the standardization 

of precipitation anomalies (Zhong et al., 2019). It is further able to determine drought 

characteristics such as duration and intensity at a variety of time steps (WMO, 2012; Bouaziz et 

al., 2021). The World Meteorological Organization (WMO) has adopted and recommended that 

SPI should be referenced as the standard meteorological drought monitoring technique used 

around the world (WMO, 2016; Abdulrazzaq et al., 2019; Gou et al., 2017). 

SPI is a statistical approach based on a probability distribution method to analyze droughts (Botai 

et al., 2016; Gou et al., 2017; Zhong et al., 2019; Bouaziz et al., 2021). This index is able to 

provide relatively good statistical consistency and predictability on the effects of drought at short- 

and long-term scales (Umiati et al., 2019). The calculations involved in quantifying meteorological 

drought characteristics are seen as a simplistic and effective approach (Keyantash and Dracup, 

2002; Zagar et al, 2011). It is a versatile index capable of quantifying drought characteristics at 

numerous timescales (e.g. from 1 month to 48-month timescales) and allows for the monitoring of 

water supply availability (Mishra and Singh, 2010; WMO, 2016; Cruz-Roa et al., 2017; Gou et 

al., 2017; Abdulrazzaq et al., 2019; Tirivarombo et al., 2018). It is considered as a method that is 

spatially invariant, thus, allowing for droughts to be assessed and monitored in a number of 

different regions (Gevaert et al., 2018; Tirivarombo et al., 2018).  

Due to SPI being a normalized index, it is able to represent wet and dry condition, allowing not 

only drought events but also wet periods to be monitored (WMO, 2012; Ahmadalipour et al., 2017; 

Gevaert et al., 2018). The probability-based nature of SPI makes this index well suited to providing 

information for risk management and decision making (WMO, 2012).  SPI has a wide range of 

applications including drought and flood monitoring, drought forecasting, frequency analysis, 

spatial-temporal drought analysis and characterization (Gou et al., 2017). These calculated 

timescales are typically estimated through the accumulation of precipitation records before the 

standardized procedure in order to represent the short- and long-term drought events experienced 

over an area (Zhong et al., 2019).  
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The method used to calculate SPI uses only continuous, long-term historical monthly precipitation 

records as its input variable to assess droughts (Keyantash and Dracup, 2002; Mishra and Singh, 

2010; Abdulrazzaq et al., 2019). Ideally for statistically sound results of SPI there needs to be 

long-term records of at least 30 years’ worth of precipitation data (WMO, 2016; Gou et al., 2017; 

Tirivarombo et al., 2018). Despite all the advantages proposed for this index, there are also 

associated disadvantages with SPI e.g., due to its univariate variable as an input parameter this 

index may not provide an integrated view of the different drought types (Kwon et al., 2019). 

Furthermore, since SPI only uses a single input in its calculations it may only able to quantify 

precipitation deficit, and thus, may not be representative of the overall water balance and surface 

conditions (Gevaert et al., 2018; WMO, 2012). 

The Standardized Precipitation Index is calculated by determining the amount of standard 

deviation whereby, the value assigned by a given precipitation event is either more or less than 

that of the historical mean (Equation 2.1) (Tirivarombo et al., 2018; Bouaziz et al., 2021). 

Generally for SPI, the precipitation series utilized has a monthly resolution, whereby, the fitting 

of the probability distribution is calculated for each month separately (Gevaert et al., 2018). Owing 

to the standardized procedure undertaken to calculate SPI, it is recognized that this index is able 

to facilitate comparisons of precipitation with its multi-year average (Zagar et al, 2011). 

𝑆𝑃𝐼 =  
𝑋𝑖−𝑥

𝜎
           (2.1) 

Whereby Xi is the annual rainfall at a given time i, x is the mean annual rainfall and σ is the 

standard deviation 

The classification system developed by McKee et al., (1993), was established to define the 

resulting intensities and criteria for drought events at any given timescale from SPI. The SPI values 

are classified into 7 conditions of drought (Table 2.4), of which every month in the designated 

record length is assigned a SPI value based on their average conditions of wetness or dryness (Gou 

et al., 2017; Umiati et al., 2019).  

Table 2.3: Classification for the Standardized Precipitation Index values (McKee et al.,  

  1993) 
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Where, ETo is the Reference Evapotranspiration, Rn is the Net radiation flux (MJ/m2day), G is 

the Sensible heat flux in soil (MJ/m2day), γ is a psychometric constant, (kPa/°C), es is the Mean 

saturation vapor pressure (kPa), ea is the Mean ambient vapor pressure (kPa), ∆ is the Slope of 

saturation vapor pressure curve, T is the Mean temperature (°C) and U2 is the Wind Speed at 2 m 

height (m/s-1) 

𝐸𝑇𝑜 = 0.0023(𝑅𝑎)(𝑇𝑚 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5
        (2.3a) 

𝑅𝑎 =
24(60)

𝜋
𝐺𝑠𝑐𝑑𝑟[(𝑤𝑠𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛿)+(𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛿𝑠𝑖𝑛𝑤𝑠)]

2.45
           (2.3b) 

Whereby, ETo is the Reference Evapotranspiration, Ra is the Extraterrestrial Radiation, (MJ/m2day), Tm 

is the Mean temperature (°C), Tmax is the Maximum temperature (°C), Tmin is the Minimum temperature 

(°C), Gsc is the Solar constant (0.0820 MJ/m2), dr is the Inverse relative distance of the Earth and the Sun, 

ws is the Sunset hour angle (radius) and 𝜑 is the Latitude, 𝛿 is the Solar declination. 

𝑃𝐸𝑇 = 1.6 [
10𝑇𝑎𝑖

𝐼
]

𝑎
     𝐼 =  ∑ [

𝑇𝑎𝑖

5
]

1.5
12
𝑖=1        (2.4) 

Whereby, PET is the Potential Evapotranspiration, Tai is the Mean monthly air temperature (°C) for 

month i, I is the annual heat index and α is a calculated constant value (0.49 + 0.0179𝐼 −

(7.711𝑥10−5)𝐼2 + (6.751𝑥10−7)𝐼3)  

The calculations used to derive this index is based on the probability of non-exceedance of the 

climatic water balance (Tirivarombo et al., 2018). The climatic water balance facilitates the 

comparison of available water with the atmospheric evaporative demand (Begueria et al., 2014). 

Therefore, the climatic water balance of this index is expresses though the difference between the 

precipitation and PET/ETo data (Stagge et al., 2015; Pei et al., 2020). Following the calculation 

of the climatic water balance procedures can be undertaken to transform the original values into 

standardized unit. This is accomplished by fitting the climatic water balance values to a log-logistic 

probability distribution (Begueria et al., 2014). After this transformation the probabilities are then 

converted into a standard normal distribution in order to acquire the final SPEI values (Stagge et 

al., 2015).  
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It is highly acknowledged that the process of evapotranspiration plays a role to some degree in 

determining soil moisture variability and subsequently vegetation water content, which is known 

to directly affect agricultural droughts (Vincent-Serrano, et al., 2010). According to Moorhead et 

al., (2015), it was further noted that two of the major components of the water balance is 

precipitation and evapotranspiration, whereby evapotranspiration can be representative of loss of 

water through soil evaporation and plant transpiration, whilst precipitation is representative of 

water being added to a system. Therefore it can be deduced that there is potential for SPEI, which 

incorporates both precipitation and evapotranspiration in its calculation to monitor agricultural 

drought conditions.  

It was also noted by Vincent-Serrano et al., 2010, that drought indices which consider only 

evapotranspiration data have the potential to monitor agricultural drought conditions, it was further 

noted by this study that SPEI tends to perform better than that SPI and PDSI, with regards to 

identifying drought impacts on agriculture. This is further supported by the study conducted by 

Tian et al., (2018), which looked at evaluating several different indices for the monitoring of 

agricultural droughts. These indices included PDSI, Palmer Z-index, SPI and SPEI. The aim of his 

study was to determine which index would be most appropriate for monitoring droughts. The 

results indicated that SPEI demonstrated the best potential from all indices, with regards to 

capturing the impact of agricultural droughts.  

Studies by Vincent-Serrano, et al., 2010; Wang et al, 2015; Ahmadalipour et al., 2017, Kamali et 

al., 2018; Potopova et al., 2014; Labudova et al., 2017 and Gou et al., 2019, have further indicated 

that SPEI is an index capable of potentially monitoring the characteristics of agricultural drought. 

It is understood that in its entirety SPEI is more often considered to be a meteorological drought, 

however within this study SPEI is taken in the context of evaluating agricultural drought conditions 

owing to its relation to vegetation and water use. SPEI’s limitations however are recognized and 

considered. 

2.6.3 Case Studies: Application of SPI and SPEI 

Tirivarombo et al., (2018), assessed SPEI and SPI in the Kafue basin within northern Zambia. 

From this case study it was identified that under the extreme category of drought SPI performed 
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better with regards to identifying more droughts than SPEI. Comparative assessment were 

conducted in order to establish and analyses whether potential evapotranspiration has an effect on 

the drought index. However, SPEI was able to identify more drought in the moderate to severe 

category. Both of these indices were able to pick up temporal variations of drought. The results 

from this study also suggested that a factor that provided a significant role in characterizing 

droughts was temperature variability. From a correlation analysis between the two indices it was 

found that the precipitation was the major driver of drought, with a positive relationship (R > 0.5). 

Potopova et al., (2015), assessed the performance of SPEI and Standard Yield Residuals on the 

influence of drought on crop productivity at various lags. The results from this study indicated that 

there was a relatively strong relationship found between the crop yields residuals and SPEI, 

especially during the critical growth stages of the crops. It was also apparent from this study that 

over the past 12 years in the months of April to June, there was a significant increase in the drought 

risk and yield variability. It was further noted from the assessment that winter crops in this area 

are more likely to cope with drought conditions than spring crops. It was also acknowledged that 

during the germination and early stages of the crop production there was a lagging period of SPEI 

(at a 1-, 3- and 6-month timescale).  

A study by Abdulrazzaq et al., (2019), evaluated and spatially mapped meteorological drought at 

11 stations in Iraq for selected years between the periods of 2000 to 2017. The rainfall data was 

obtained from TRMM in order to calculate SPI. Further analysis such as the use of the ordinary 

Kriging geostatistical interpolation technique in ArcMap was conducted. The results from this 

study indicated that the integration of satellite data from TRMM and SPI calculations was an 

effective tool to conduct drought assessments and map the spatial distribution of droughts.  

A comparative assessment of SPI and SPEI's applicability for drought impact on crop production 

was undertaken by Labudova et al., (2017) in the East Slovakian Lowland. 1-, 2- and 3-month 

timescale was utilized for both SPI and SPEI. A correlation relationship was determined using the 

Standardized Yield Residual Series, which is a method that determines agricultural drought risk. 

The results from temporal evolution of drought in this study, indicated that most crops depicted a 

greater correlation with SPEI rather than SPI. Results further indicated that the spring and winter 

crop yields had significantly declined when drought conditions persisted over these seasons. It was 



39 

concluded by this study that the use of SPI and SPEI had a significant relationship with the yield 

of crops, and can be considered a suitable method for drought impact assessments. However, a 

recommendation made was that for future drought studies other topographic and climatic 

conditions should be considered. 

A study by Umiati et al., (2019), aimed to assess precipitation based drought indices in East Java. 

Evaluations and assessments were conducted at a provincial scale and was based on the SPI 

method with rainfall data acquired from the TRMM satellite. 25 districts were assessed in this 

areas study site, from further analysis it was determined that there are 13 districts with a low 

drought hazard index. The areas that experienced moderate drought hazard index had its greatest 

value being 0.523 and lowest being 0.33 (Umiati et al., 2019). 

2.6.4 Vegetation Health Index (VHI) 

Typically, the characteristics of agricultural droughts are variable across space and time (Bhuiyan 

et al., 2017). The Vegetation Health Index (VHI) is identified as a suitable index capable of 

identifying and facilitating good representation of the impacts and characteristics of agricultural 

drought, as it provides information on the vegetative stress, health and the influence of temperature 

conditions on drought (Ekundayo et al., 2020). 

VHI is a widely recognized and used agricultural drought index developed by Kogan (1995), it is 

based on the use of remote sensing information and takes into account surrounding ecosystem 

features (Bento et al., 2018; Masitoh and Rusydi, 2019). VHI was recognized to be one of the first 

attempts to identify and monitor drought related agricultural impacts through the use of remotely 

sensed data (WMO, 2016). According to the World Meteorological Organization 2016, this index 

may be preferred by potential users due to its ease of application. (Ahmadalipour et al., 2017). 

VHI is an index derived using a linear arithmetic and weighted average, of two sub-components, 

namely the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI) 

(Kogan, 2000; Bento et al., 2018; Masitoh and Rusydi, 2019; Ekundayo et al., 2020). Both the 

VCI and TCI are based on satellite data which is able to reflect both vegetation cover and 

temperature anomalies respectively (Gou et al., 2017). These two components are further able to 

facilitate for the delineating of seasonal and/or inter-annual drought events (Gidey et al., 2018). 
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However, it should also be noted that due to this being a satellite-based approach for monitoring 

droughts the data utilized in its calculation may potentially be susceptible to cloud contamination 

affecting the results (WMO, 2016). 

The VCI component is typically calculated using the satellite-derived Normalized Difference 

Vegetation Index (NDVI) values. By incorporating NDVI information, the VCI component is able 

to account for vegetation state, stress, cover and the spatial-temporal estimations of weather 

impacts on vegetation (Bento et al., 2018). This component incorporates information from the near 

infrared (NIR) and visible (VIS) portions of the electromagnetic spectrum (Bhuiyan et al., 2017). 

VCI is able to determine and quantify the advancement and deterioration of a vegetation in 

response to weather conditions and thus, portray the dynamic features of precipitation as compared 

to NDVI (Gidey et al., 2018). It is further capable of detecting and identifying vegetation canopy 

stress experienced over an area (Masitoh and Rusydi, 2019). Typically with regards to VCI, a low 

values indicates that there is presence of unhealthy vegetation cover and typically portrays 

conditions of barren, rocky, and sandy land cover. Whilst a high VCI value depicts a healthy 

vegetation cover with dense vegetation (Patil et al., 2021).  

The TCI component of VHI is capable of quantifying the vegetation health under thermal 

conditions, this is typically based on the top-of-atmosphere brightness temperature or based on 

Land Surface Temperature (LST) (Bento et al., 2018). TCI acquires its LST information from the 

thermal infrared (TIR) portion of the electromagnetic spectrum (Bhuiyan et al., 2017; Bento et al., 

2018; Gidey et al., 2018). Understanding LST can provide vital information for drought 

assessments as it provides insight on the impacts of heat-related stress experienced by vegetation 

and crops (Masitoh and Rusydi, 2019). This is a crucial component that needs to be considered 

when accounting for agricultural drought as it gives an indication of plant stress due to conditions 

of high temperature and low humidity. 

VHI is considered to be a robust agricultural drought index with various applications including 

drought prediction, and providing efficient methods to monitor the spatial extent on characteristics 

of agricultural drought (i.e. magnitude, duration and severity) (Gidey et al., 2018). It is an index 

dependent on vegetation, weather, environmental factors and ecological conditions experienced 

over an area of interest (Patil et al., 2021). Furthermore, the vegetation health of an area, is an 
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0 – 10 Extreme Drought 

 The impacts of drought on vegetation stress is noted to vary in areas under irrigation and non-

irrigated areas. Ambika and Mishra (2019) indicated that there is usually a reduction in vegetation 

stress in areas that are irrigated than in rain-fed regions. This may be due to irrigation playing a 

role in increasing soil moisture availability of an area, which in turn may lead to an increase in the 

growth, density, yield and productivity of vegetation and crop growth. VHI is recognized as an 

index which produces efficient empirical probability of the occurrences for agricultural drought 

(Bhuiyan et al., 2017). Furthermore, VHI has the potential to predicting crop yields and assist in 

making informed agricultural decisions (Patil et al., 2021). Furthermore, VHI provides the 

potential for the monitoring of vegetation health and land surface temperature at resolution’s that 

can assist in identifying the roll irrigation may play on vegetation growth during drought events, 

and can further provide information that can be used to facilitate the adequate monitoring and 

management of crops in both rain-fed regions and irrigated regions 

 2.6.5 Case Studies: Application of VHI 

A study undertaken by Ma'rufah et al., (2017), analyzed the relationship between meteorological 

drought and agricultural droughts over Indonesia. This was achieved by using monthly data from 

satellite-based products such as CHIRPS and MODIS to better understand the characteristic of 

these droughts especially during El Nino years. Correlation analysis was conducted between SPI 

(at multiple timescales) and VHI to spatially determine the time lag between the two drought types 

in this region. It is recognized that both meteorological and agricultural drought tend to be variable 

in its characteristics. Both of these drought types are seen to experience greater severity and a 

wider extent of drought experienced in this region, during a strong El Nino as compared to a 

weaker one. Results showed that the correlation relationship between VHI and SPI-3 were 

significant. They also indicated that the propagation time of agricultural droughts tends to be 

lagged about 3 months behind the occurrence of meteorological drought in this area. Therefore, 

this implies that during three months may have significant impacts on the development of 

agricultural droughts. 

A study by Bento et al., (2018), was conducted in order to do a climatological assessment of 

drought impacts with the use of VHI, in the Mediterranean. The aim of this study was to assess the 
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contribution NDVI and LST have with regards to characterizing VHI. Assessments are done by 

estimating VCI, TCI and VHI, thereafter the results were correlated with the standardized approach 

of SPEI. Results indicate that VHI is highly influenced by vegetation cover. The correlation 

analysis showed that in semi-arid climatic conditions VCI had a greater effect of contributing to 

the drought. Whilst TCI had a greater influence effecting drought in moister climate classes. It was 

concluded by this study that in different climate regions it is possible to evaluate the roles of VCI 

and TCI to VHI by maximizing the correlations found between VHI and SPEI. 

A study by Ekundayo et al., (2020), assessed drought events over Nigeria for the period of 2003 

to 2010. Assessments were done with the use of VHI and SPI-12. Results indicated that both the 

indices were able to detect the occurrence of mild, moderate and severe drought. It was also 

indicated VHI provided better consistent and wider spatial extent values of drought characteristics 

than compared to SPI-12. It was also acknowledged that there was a pattern of mild drought 

development followed by moderate and then severe droughts across the area. It was also noted that 

in this area, the moderate drought were the most dominant drought event experienced an area 

coverage ranged by 10% to 56%. 

A study by Masitoh and Rusydi (2019), analyzed drought in an East Java watershed with the use 

of the remote sensing index VHI. This study conducted assessments in the dry season in order to 

determine the influence of NDVI and LST to VHI. Further analysis was conducted with methods 

of correlation and regression analysis. Results indicated that there was a negative correlation 

between NDVI and LST. However the correlation analyzed determined that relationship between 

LST and VHI was 0.35, whilst the relationship between NDVI and VHI was 0.63. These results 

indicated that VHI in this area was more likely influenced by internal vegetation conditions as 

compared to land surface temperatures. 

A study by Gidey et al (2018), assessed the long-term agricultural droughts characteristics at Raya 

using VHI. Assessments were conducted to assess how agricultural drought responds to variable 

rainfall in this area with the use of a linear regression model. The results indicated that average 

cover of NDVI in the rainy seasons experienced a decrease of about 3% to 4%, whilst the coverage 

of LST was seen to have gained a significant increase by approximately 0.52 to 1.08 0C. When 

analyzing the relationship between rainfall seasonality and agricultural drought that there was a 
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positive relationship of R2 = 0.357 to R2 = 0.651, this further indicated that in the rainy seasons 

the potential for the occurrence of agricultural drought is diminished in this area.  Conclusions 

were drawn from this study that agricultural drought can be better monitored with the use of remote 

sensing and GIS-based drought indices such as VHI. 

A study by Bhuiyan et al., (2017), analyzed thermal stress impacts on vegetation health and 

agricultural drought in India. This area is prone to heat waves during the monsoon periods which 

may result in thermal stress and a degradation of vegetation health being. This study was GIS-

based with the use of VCI, TCI and VHI being assessed. Results indicated that there was a strong 

correlation between TCI, LST and VHI and that thermal stress has a significant contribution to 

influencing vegetation health and crop yield productivity. In this study normal SPI algorithm 

months could not be used as a monsoon period in this area has a 4-month duration, therefore the 

procedure undertaken to calculate SPI was normalized with a MathWave Technology software to 

reflect precipitation anomalies for the monsoon seasons only. Results indicated that there was a 

very poor correlation between SPI and VHI, possibly due to SPI not taking into account the impact 

of temperature,  

2.7 Synthesis of Literature  

Typically droughts are considered to have significant effects on all sectors of society, the economy 

and the environment. It was acknowledged from the literature that the impacts and characteristics 

of droughts tend to evolve and change as drought transitions from one type to another. Therefore, 

there is a need to understand the mechanisms and characteristics of these drought types in a holistic 

and integrated manner, in order to facilitate effective management and mitigation strategies. 

Drought characteristics have a wide and variable spatio-temporal scale, which may be difficult to 

adequately represent based on point measurements from traditional methods of acquiring hydro-

climatic variables (i.e. from Ground-based observation networks). Further limitations 

acknowledged about in-situ data especially in developing countries like South Africa, is the lack 

of density in ground-based networks. 

Most drought indices require serially complete records of long-term data in order to facilitate a 

better understanding of the conditions associated with the various types of drought. This is often 
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difficult with the use of traditional methods of ground-based observations. The information 

acquired from this source of data may be patchy with long records of missing data (e.g., from 

instrument malfunction). This may further lead to uncertainty in results if these records are adopted 

in drought studies. The use of Satellite Earth Observation data was seen as a viable option to 

explore for conducting drought assessments as it is generally able to provide long-term records of 

data over large spatial and temporal scales. 

However it was also identified that the collecting of SEO information from the satellite product 

source may be a gap in itself. As some of these sources are not freely available to the public 

directly, they require large amounts of storage space for the collection of the necessary raster 

outputs, and the pre- and post-processing methods involved may be complex. Therefore as a way 

forward to bridge the gaps associated with collecting satellite data the use of a cloud-based 

platform, known as Google Earth Ending was utilized to acquire the necessary satellite-derived 

data from several sources of satellite products. This platform is capable of providing geospatial 

data which can assist in monitoring and analyzing large-scale environmental and Earth conditions. 

South Africa is an area recognized to be prone to be affected by the occurrence of drought, 

especially with regards to its agro-economic sector. It is an area with has a high dependency on 

agriculture at both a subsistence and commercial level. Majority of South Africa’s agricultural 

sector is rain-dependent and plays a crucial role with regards to providing economic value to the 

country. Agricultural production yield is typically dependent on weather conditions and rainfall 

availability. Due to the rapid changes in climate and catchment conditions (e.g. land-use change) 

agricultural drought risks may be further aggravated (Ahmadalipour et al., 2017).  

It is apparent that the agricultural sector plays a vital role in ensuring food security, employment 

opportunities and the sustenance of economic development for the country. Droughts and their 

impacts pose a threat to the agro-economic sector of the country. Therefore understanding droughts 

through and agriculture perspective will provide further insight on how we can manage out systems 

better. However, it is apparent that there tends to be overlapping of the drought types. Owing to 

this drought management decisions need to take into account the integrated and transitioning effect 

of drought types in order to gain a better perspective ensuring coping and mitigation measures can 

be put in place 
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It is acknowledged from literature that there is an interconnected relationship found between the 

different drought types. Since rainfall deficit may be seen as a precursor to the deficit of other 

hydrological variables (e.g., soil moisture). It is important to understand the mechanisms and 

patters associated when drought events transform from one type to another. Owing to the 

importance of the agricultural sector in South Africa, the propagation of meteorological droughts 

to agricultural drought were considered for this research project. Understanding droughts in an 

integrated and holistic manner can provide valuable information that can be beneficial to facilitate 

the development and improvement of policies and strategies regarding managing and responding 

to drought hazards. 

Numerous drought indices available to quantify the characteristics of drought. However, it was 

determined that there were three drought indices which would be appropriate for further 

investigation in this research project. The first index is the Standardized Precipitation Index (SPI), 

which is recommended by the World Meteorological Organizations (WMO) as the standard 

method to calculate meteorological drought index.  The second drought index selected was the 

Standardized Precipitation Evapotranspiration Index (SPEI), this is an index capable of depicting 

condition of both meteorological and agricultural drought. A further advantage for the selection of 

SPI and SPEI are the indices ability to facilitate the quantification of droughts for both long-term 

and short-term timescales. The final drought index for assessment was the Vegetation Health Index 

(VHI), which utilizes satellite-based imagery to estimate and provide an adequate means of 

spatially and temporally representing agricultural drought. VHI is also capable of detecting 

drought in any season, it is also able to cover a relatively long duration of data and is applicable at 

a worldwide scale. Furthermore, the information from the SPEI has the potential to assess the 

applicability of the satellite-based drought index VHI.   

Generally if from a management decisions were made based solely on the assessment of one type 

of drought or drought index, the impacts associated with the entire drought event may not be fully 

understood, and these decisions made may be highly misleading. For example, if a rainfall event 

occurs following a drought period, it may indicate the recovery of a meteorological drought. 

However, just because a meteorological drought recovered does not mean that the entire drought 

event has ended. It could potentially indicate that the meteorological drought may have manifested 

itself into another type such as agricultural drought, whereby, the soil moisture levels may still be 
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too low to potentially recharge enough to support the growth of crops.  By evaluating droughts 

with both the a meteorological and agricultural drought perspective, the conditions associated with 

both drought types over the same period may provide information that can potentially assist in the 

development of better management, mitigation and adaptation strategies associated with drought 

events.  

From the evaluation of literature it was apparent that there were several gaps identified. This 

research project looked to address the issues associated with these shortfalls. Some on these 

research gaps included the following: 

a) There have been few studies that utilized the use of Google Earth Engine to facilitate the 

collection and analyzing of Satellite Earth Observation data both spatially and temporarily in 

a comprehensive. 

b) With the changing climate projections over recent year there have been more significant 

impacts faced, especially in developing countries. Therefore there is a greater need to better 

understand the mechanisms and patterns behind these events in order so that better and more 

informed disaster, water and agricultural management decisions can be made. 

c) Majority of the drought assessments done especially in South Africa analyzes droughts through 

its single drought type or drought index, and does not take into consideration quantifying the 

drought propagation process. From a management perspective, if there is a propagation of 

meteorological to agricultural drought occurring and management decision only took in to 

account one type of drought type, the strategies undertaken to cope with the effect of the 

propagated event may not be as effective. 

d) Different regions are likely to be impacted differently by drought events and characteristics. 

Therefore, the management decisions undertaken would need be suited for the particulate 

climatic region. There has been a lack of research done with regards to comparing the impacts 

and conditions associated drought propagation at different regions within South Africa. 
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3. METHODOLOGY 

Following the review of literature in the previous chapter, it is apparent that there are numerous 

drought indices and Satellite Earth Observation products that can be utilized to quantify the 

different drought characteristics. In order to address the aims and objectives set out by this project, 

this chapter will consist of a general methodology, a detail description for the project’s study sites, 

and highlight the procedures that were undertaken for the acquisition, calculations and analysis of 

the selected drought monitoring techniques and drought indices utilized, namely the Standardized 

Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and the 

Vegetation Health Index (VHI)  

3.1 General Methodology 

The methodology undertaken in this research project, was guided from approaches evaluated 

within Chapter Two. The methodology adopted intended to further achieve the objectives set out 

in Chapter One, which include the following: 

➢ To validate and assess the applicability of satellite-derived drought variables against ground-

based data.  

➢ To determine the applicability of satellite derived drought indices in characterizing droughts 

➢ To evaluate and quantify the spatial and temporal patterns and trends associated with the 

transition of drought from meteorological drought to agricultural drought using commonly 

applied drought indices. 

➢ To evaluate the characteristics of the drought propagation process in two different climatic 

regions. 

The methodology undertaken utilized four steps, whereby the first step involved the collection, 

sorting and analysis of several hydro-climatological variables (e.g., rainfall, air temperature, 

NDVI, and LST data), through the use of both ground-based observations and Satellite Earth 

observations (SEO). The ground-based observation data (i.e. rainfall and temperature) was 

acquired from several Automatic Weather Stations (AWS) and Automatic Rainfall Stations (ARS). 

Whilst the SEO data was acquired from various available satellite products each with their own 

features. In order to process the large amounts of data needed the planetary-web-based platform 
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of Google Earth Engine (GEE) and JavaScript writing was utilized as a major method in collecting 

analyzing and displaying the satellite information.  

The second step involved conducting a validation study between the SEO information and ground-

based in-situ data. This step was applied in order to assess the applicability of the SEO information. 

Two sites were assessed for the validation study, whereby these sites were selected based on factors 

such as the availability, record lengths of data and the density of in-situ ground-based rainfall and 

temperature stations. Each of the selected sites assesses a different hydro-climatic variable i.e. 

rainfall and air temperature data 

Following the validation study, the third step adopted involved monitoring, identifying and 

quantifying the characteristics (e.g. duration, extent, severity) and impacts of historical 

meteorological and agricultural droughts. This assessment was conducted at two different climatic 

regions within South Africa. The procedure of this step, involved utilizing the appropriate SEO 

long-term data in calculating the SPI and SPEI. The calculation of these standardized drought 

indices was achieved through the use of RStudio packages and python script writing. In order to 

determine the satellite-derived drought index VHI, Land Surface Temperature (LST) and 

Normalized Difference Vegetation Index (NDVI) imagery and data were acquired through the use 

of GEE script writing. The information acquired was then applied into ArcGIS for the calculation 

of the components of VHI, namely, Temperature Condition Index (TCI) and Vegetation Condition 

Index (VCI). 

The final step undertaken, involved assessing and evaluating the drought propagation process 

within the two climatically different regions. Drought propagation refers to the transition of 

drought from one form to the other. Therefore, in order to assess this, the information acquired by 

calculating SPI, SPEI and VHI, were further compared in an integrated manner. The results from 

this comparison would further be used to identify patterns and trends on the propagation from 

meteorological drought to agricultural drought. The information gathered from this study would 

then be evaluated in order to facilitate added knowledge for better management and mitigation 

decisions in the agricultural and water resource sectors. 
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Figure 3.1: Generalized procedure undertaken to evaluate and quantify the drought propagation 

  process using selected drought indices 

3.2 Study Site Description 

South Africa is geographically located at -29,046° N, 25,063° E, between the tropics and mid-

latitudes. It is an area characterized with arid to semi-arid conditions and seasonal variability of 

hydrological and climatological variables, such as rainfall and temperature (Nkhonjera, 2017). 

South Africa typically has an average annual rainfall of ~500 mm (Cretat et al., 2012). The 

variability in rainfall may be accounted for by regional processes and dynamic atmospheric-ocean 

features such as, El Nino Southern Oscillation (ENSO) and sea surface temperature. South Africa 

is a country with a range of diverse climate types and land regimes. 

For the purpose of this research project, two climatically diverse regions will be assessed to better 

understand the impacts, effects and characteristics of the drought propagation process. The first 

area for assessment includes the uMngeni catchment, located in the KwaZulu-Natal Province. 

Whilst the second study site is the Breede-Overberg catchments located in the Western Cape 

Province. Both these areas are heterogeneous in their own right with different climatic conditions, 

land use activities and anthropogenic influence. This section of the methodology chapter highlights 

in detail the study sites evaluated and assessed for this research project.  
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3.2.1 uMngeni Catchment 

The province of KwaZulu-Natal is situated on the south-eastern part of South Africa bordering the 

South Indian Ocean and is characterized with sub-tropical climate conditions, summer rainfall and 

cold dry winters (Ndlovu and Demlie, 2020; Mengistu et al., 2021). Generally, the eastern most 

part of the province is recognized to experience wetter conditions. The rainfall patterns 

experienced in this area may be accounted for by the presence of the warm Mozambique current, 

ocean-atmospheric interaction, the province’s topography and physiographic features.  

Within KwaZulu-Natal, the area chosen for further assessment was the uMngeni Catchment 

(Figure 3.2). The mean annual precipitation received in this catchment is highly variable occurring 

mainly in the summer months (October to March) ranging between approximately 600 and 1500 

mm per annum. On average temperature ranges between 14 and 22°C (Hughes et al., 2018). The 

uMngeni catchment is recognized to have a surface area of approximately 4349 km2. Furthermore, 

it is noted that the Department of Water and Sanitation (DWS) sub-divided the uMngeni 

Catchment at secondary, tertiary and quaternary catchments. For the purpose of this study, 

assessments will be done at the fourth catchment level scale. Therefore, 12 quaternary catchments 

within the uMngeni catchment were considered for further the drought assessment (Namugize et 

al., 2018).  

 

Figure 3.2: The uMngeni Catchment study site located within the KwaZulu-Natal Province 
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The uMngeni catchment is a highly important socio-economic area, as it consists of at least half 

of KwaZulu-Natal's population (Namugize et al., 2018). The natural vegetation found in the 

uMngeni catchment, is highly heterogeneous due to land use activities and land cover (Figure 3.4), 

for example forestry, agriculture, mining and urbanization catchment accounts for the major water 

supply for industrial water use, agricultural water use and domestic water use for both 

Pietermaritzburg and Durban, as well as surrounding informal settlements within the catchment 

(Namugize et al., 2018). 

3.2.2 Breede-Overberg Catchments 

The Western Cape Province is located within the south-western part of South Africa bordering the 

Atlantic and Indian Ocean. The climate conditions experienced over this region are Mediterranean 

and Temperate with warm dry summers and majority of the rainfall occurring during the winter 

months (June to August) (Naik and Abiodum, 2020). According to Omar and Abiodun (2020), this 

area experiences different types of rainfall regimes due to their locations, topography, altitude and 

the atmospheric-land-ocean interactions (i.e. El Nina, mid-latitude and tropical systems). 

Furthermore, it is an area influenced by two currents namely, the cold Benguella Ocean current to 

the west of the province and the warm Agulhus Ocean current to the south of the province.  

Located in the Western Cape Province, the Breede-Overberg catchments will be considered as the 

second study site to be assessed in this research project (Figure 3.3). This selected area consists of 

the entire Breede catchment and the lower Berg sub-catchment known as the Overberg region. 

This study site has an area of approximately 19 786 km2 and comprises of important water resource 

systems (e.g. Breede River, large estuaries, coastal rivers and tributaries) that supply water for 

domestic, agricultural and ecological use (Gcanga et al., 2018; Naik and Abiodum, 2019). 

Typically, due to the mountainous terrain and climatic conditions found in this region the average 

annual rainfall can range from as high as 1000 mm/year to as low as 250 mm/year (DEAP, 2011). 
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Figure 3.3: The Breede-Overberg Catchment study site area within the Western Cape Province 

The Breede-Overberg catchment is characterized with a range of land use activities from 

commercial and subsistence agriculture, and urban to peri-urban land-use (Figure 3.4) (Cullis et 

al., 2018). Within the Breede-Overberg catchment numerous agricultural activities occur from 

irrigated agriculture, production of high-value crops, the growth of other fruits and vegetables, and 

dry land agriculture such as, wheat cultivation (Rensburg et al., 2011). Agriculture is identified as 

one of the largest water-use sectors and economic driver in these catchments with it accounting 

for approximately 87% of the annual water demand (DEAF, 2018; Cullis et al., 2018).  

The population growth in this area has resulted in a significant rise in demands for the already 

declining supply of available water (Cullis et al., 2018). The Breede River and its surrounding 

estuaries provide a major contribution of water supply to the local agriculture and supports the 

local economy (Gcanga et al., 2018). Another issue that typically plagues this area is the chronic 

water shortages that occurs due to its climatic rainfall patterns especially in summer (Rensburg et 

al., 2011). The water supply in this region may be further stressed due to the occurrence and 

impacts of drought events. 
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Figure 3.4: Land cover and land-use within the uMngeni Catchment and the Breede-Overberg 

  Catchment (South African National Land Cover, 2018) 

3.2.3 Validation Study Sites  

A validation study was adopted in this research project to assess the applicability of the selected 

Satellite Earth Observation products as compared to ground-based observations. It is noted that 

the selection of the validation sites were based on factors such as the density of in-situ observation 

stations, location of the in-situ stations, type of data available at the stations and the record lengths 

of data at these stations. From the criteria set out two potential validation sites were considered for 

further assessment, namely the U20J sub-catchment and the Lower Overberg (G40-G50) sub-

catchments. Whereby, each of the selected validation sites were chosen to assess different hydro-

climatic variables.  

U20J sub-catchment within the uMngeni Catchment (Figure 3.5), was selected as the first 

validation site, and facilitated the collection and assessment of rainfall data. It is an area with an 

approximate area of 0.063 km2 and is characterized with an elevation of approximately 600 m to 

890 m above sea level and variable rainfall patterns (Strydom et al., 2020). The land cover and 

land use activities for this validation site varies from built-up and urban land use to forestry 

plantations, cultivated commercial and subsistence agriculture.  
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The second validation site was identified as lower Overberg (i.e. G40 and G50 sub-catchments), 

found within the Breede-Overberg Catchment (Figure 3.5). This site was considered to facilitate 

the collection and assessment of air temperature data (minimum and maximum). The G40 and G50 

sub-catchments are identified to have an approximate area of 0.71 km2. The topography of this 

area is significantly mountainous even along the costal planes. According to the Overberg District 

Municipality Climate Change Report (2018), it was stated that the mean temperatures were 

expected to increase, thus resulting in changes to the water balance, crop productions yields and 

impacts faced on the food security in the area. 

 

Figure 3.5: Two selected validation study sites i.e. the U20J sub-catchment within the uMngeni 

  catchment and the lower Overberg (G40 and G50 sub-catchment) located within  

  the Breede Overberg catchment  

3.3 Data Acquisition     

In order for assessments to be made on drought propagation, information on several hydro-

climatological variables need to be acquired. It is recognized that these variables are typically 

heterogeneous in nature, space and time. The acquisition of this information can be done through 

a variety of sources. For the purpose of this research study, the sources used to collect the necessary 

information are Ground-Based Observations and Satellite Earth Observations. This section will 

highlight the different types of data collected and utilized in the research project and its associated 

features. 



56 

3.3.1 Ground-Based Observation Data 

Ground-based observation networks provide valuable real-time information on the various 

hydrological and climate parameters (e.g. rainfall, air temperature), and an indications as to what 

is happening on the earth’s surface. Therefore, the ground-based observations acquired were 

utilized in the validation assessment of this research project. The rainfall, minimum air temperature 

(Tmin) and maximum air temperature (Tmax) data were acquired from several in-situ Automatic 

Rainfall Stations (ARS) and/or Automatic Weather Station (AWS) networks (Table 3.1), within 

the two selected validation study sites.  

Table 3.1: List of selected rainfall and temperature in-situ stations 

The in-situ rainfall and air temperature (Tmin and Tmax) data was acquired from the South African 

Weather Service (SAWS). The procedure for obtaining this data involved firstly logging into the 

SAWS website (https://www.weathersa.co.za/home/aboutclimateatsaws). From this website a list 

of available weather and rainfall stations were downloaded in a KMZ format and the stations were 

viewed using Google Earth Pro. Thereafter, selected AWS and ARS were identified based on the 

availability, station density, station type and record lengths of the rainfall and temperature data. It 

should be noted that the choosing of these stations (AWS and ARS) further guided the selection 

of validation study sites. The final step undertaken involved submitting requests to collect the 

necessary variable information. 

With regards to the collection of in-situ rainfall information, daily data from five rainfall stations 

within the U20J sub-catchment were collected for the period of 1996 to 2020. Whilst for the 
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collection of air temperature information, the daily Tmax and Tmin at five selected stations within 

the G40 and G50 sub-catchments were collected for a period of 2000 to 2020. It should be noted 

that the ground-based in-situ data acquired contained numerous patches and large amounts of 

missing data over the collected record period. Therefore before the collected information could be 

utilized in the validation study, the data from the in-situ networks underwent procedures to be 

appropriately sorted and infilled to acquire a period of most complete records, for the hydro-

climatic data across all the selected stations. 

3.3.2 Satellite Earth Observation (SEO) Data 

The Satellite Earth Observation (SEO) products assessed and utilized in this research project were 

recognized to have datasets with open access and available in various formats for download. 

Google Earth Engine (GEE) platform was utilized as the main approach to acquire, visualize and 

download the necessary data of drought-related variables, from different SEO products for the 

selected study sites.  

GEE is a planetary scale platform capable of providing and analyzing satellite imagery and 

geospatial Earth science data. In order to use this platform firstly an account needed to be created 

to access GEE, this was done using the following site https://signup.earthengine.google.com. Once 

registered, access to the platform and all the available SEO information and datasets are freely 

available for assessing, collecting and evaluating by logging on the GEE website 

https://earthengine.google.com.  Within this platform information on the availability, 

specification, tools, documentation and features of the datasets from various satellite products are 

available through an assessable dataset catalog. Also available on this site are tutorials on the Java 

scripting language utilized by the platform to perform functions that analyze, visualize and 

download the required satellite imagery and dataset information. Procedures were conducted to 

familiarize and better understand the script writing language before utilizing the GEE platform. 

For the purpose of this project, the code editor tool (https://code.earthengine.google.com), along 

with java script writing within GEE platform facilitated the accessing, configuring, acquiring and 

analyzing hydrological and climatological geospatial data from various satellite products. The 

SEO products that were utilized for this research project include: 
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The Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) dataset, which is 

able to provide daily rainfall values at a quasi-global spatial extent (50° S- 50° S) over a spatial 

resolution of 0.05°. CHIRPS was selected as a potential product for further assessment as it 

provides relatively accurate long term data (available from 1981 to present). Studies done by 

Bayissa et al (2017), Zhong et al., (2019), Bijaber et al., (2018) have indicated that the use of the 

SEO product CHIRPS has the potential to be further applied in drought assessments. 

The Precipitation Estimation from Remotely Sensed Information Using Artificial Neutral Network 

Climate Data Records (PERSIANN-CDR) which provides long-term records of gridded 

precipitation at a spatial resolution of 0.25°. Furthermore, it is recognized to have long record 

lengths from 1983 to present. It has a global spatial coverage of 60° S to 60° N. The precipitation 

data from this satellite is generated from Gridsat-B1 infrared data through the PERSIANN-CDR 

algorithm (Zhong et al., 2019). Due to its long record of over 30 years this product has the potential 

to be used in further drought assessments. 

ERA5 Daily Aggregates product, which is considered as the fifth generation and latest global 

climate reanalysis product which consists of a combination of modelled and observation data. The 

ERA5 product capable of providing information of several variables including air temperature, sea 

level pressure, wind, etc., further information on its available parameters may be found at 

https://cds.climate.copernicus.eu/.  This product has a spatial resolution of approximately 27830m. 

For the purpose of this research study, the variables utilized by the ERA5 product was the 

minimum and maximum 2m air temperature bands. Furthermore, the availability of long-term 

records from this dataset (for a period of 1979 to 2020), makes it a potential product that can be 

utilized in drought index calculation.  

The Moderate Resolution Image Spectradiometer (MODIS) Terra Vegetation Indices 

(MOD13A1.006) product, provided information on two vegetative layers, namely satellite derived 

Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). For 

the purpose of this research project global 16-day smoothed values of NDVI were utilized to 

calculate the VCI component of the Vegetation Health Index. This SEO product has a spatial 

resolution of 500 m and a record length from 2000 to present with corrected atmospheric surface 

reflectance that have been masked for the presence of clouds, aerosols and water.  
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The MODIS Terra Land Surface Temperature (LST) and Emissivity product (MOD11A1) was 

also utilized in calculating the agricultural drought component of TCI. This product provides 

information on daily LST and emissivity values at a global spatial extent, with a resolution of 

gridded 1 km and a record length from 2000 to present. The MODIS product is recognized to have 

an up-to-date algorithm, quality flag, zenith satellite view and higher quality of spatial-temporal 

variations (Gidey et al., 2018). The LST values from this product are represented by the MODIS 

bands 31 and 32 for both day-time and night-time respectively.  

3.4 Data Analysis 

Following the collection of the necessary drought related-variables this section of Chapter Three, 

will highlight the procedures undertaken to validate the SEO data. This section will also discuss 

the techniques and methods utilized to calculate, and analyze the selected meteorological and 

agricultural drought index (i.e. The Standardized Precipitation Index, The Standardized 

Precipitation Evapotranspiration Index and the Vegetation Health Index). 

3.4.1 Validation Study 

The validation study was undertaken at two sites namely, the U20J sub-catchment and the Lower 

Overberg sub-catchment (G40 and G50). This study was conducted in order to assess the 

applicability of the data from satellite products as compared to ground-based in-situ data. 

Typically, the data obtained from ground-based observation stations provide point measurements 

of the rainfall and air temperature, and thus may not be as representative over the conditions of 

larger spatial scales. However the information provided gives an indication of real-time 

estimations of several variables. For the purpose of this research study rainfall data was assessed 

within the U20J sub-catchment and air temperature (Tmin and Tmax) data was assessed within the 

Lower Overberg sub-catchments. 

During the data collection process of ground-based observations, it was acknowledged that there 

were numerous patches of missing data amongst the in-situ data records obtained for both rainfall 

and air temperature. Owing to the amount of missing data present, procedures were firstly 

conducted to infill (using the nearest neighbor regression method) and determine a period of most 

completed records for each type of variable (i.e. rainfall and air temperature). Following this 
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procedure it was acknowledged that the period of most completed rainfall records was an eight-

year period from 2001 to 2009. Whilst the most complete record length of in-situ Tmin and Tmax 

data, was identified as a six year period from 2014 to 2020.  

The second step of the validation assessment involved the collection of Satellite Earth Observation 

data. This data was acquired through Google Earth Engine and Java Script writing. Whereby 

CHIRPS and PERSIAAN-CDR were the products used to acquire the rainfall data and the ERA5 

Reanalysis satellite product was used to obtained Tmin and Tmax records. For the validation 

assessment the SEO data was acquired for the same point location and record length as the selected 

ground-based data.   

The final procedure for this assessment looked at comparing and validating the SEO data to the 

ground-based in-situ data (rainfall, Tmin and Tmax). This assessment included the use of several 

regression and statistical evaluations (Table 3.2) such as, determining the Mean (μ), Standard 

Deviations (SD), Pearson correlation (r), Coefficient of Determination (R2), Root Mean Square 

Error (RMSE), Standard Error (SE) and Paired T-test. Furthermore time series graphs were also 

created in order to evaluate, compare and validate the rainfall, Tmin and Tmax. With regard to the 

evaluation of the results from the rainfall products, the best performing SEO rainfall product will 

be further used as input variables within the selected drought indices at both the study sites. 

 

 

 

 

Table 3.2: List of statistical and regression formulas utilized in the validation study 

Name Formula Symbols 

Mean μ =  
∑ 𝑥

𝑁
 

μ = Mean  

∑x = Sum of all data values 

N = number of x values 
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Standard 

Deviation 
𝑆𝐷 =  √

∑ (𝑥𝑖 −  𝜇)2𝑁
𝑖=1

𝑁
 

SD = Standard Deviation 

N = Number of observations  

xi = Observed values of a sample 

μ = Mean value of the observation 

Pearson 

Correlation 
𝑟 =  

∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 −  𝜇𝑦)

√∑(𝑥𝑖 −  𝜇𝑥)2  ∑(𝑦𝑖 − 𝜇𝑦)2
 

r = Pearson correlation 

xi = Value of x-variable in the sample 

μx = Mean of the x-variables 

yi = Value of y-variable in the sample 

μy = Mean of the y-variables 

Coefficient of 

Determination 
R2= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
  

TSS = Total sum of squares 

RSS = Sum of squares of residuals 

Root Mean 

Square Error 
𝑅𝑀𝑆𝐸 =  √

∑(𝑃𝑖 − 𝑂𝑖)2

𝑛
 

Pi = Predicted value of the ith 

observation in the dataset 

Oi = Observed value of the ith 

observation in the dataset 

n = Sample size 

Standard Error 𝑆𝐸 =  
𝑆𝐷

√𝑛
 

SD = Standard Deviation of the sample 

n = Number of samples 

 

3.4.2 Application of RStudio to Calculate SPI and SPEI 

One of the main requirements needed in order to calculate SPI (McKee et al., 1993) and SPEI 

(Vicente-Serrano et al., 2010) are historical monthly records of data as its input variables. 

However, this monthly input data needs to contain completely continuous long-term records for a 

period of at least 30 years. Satellite Earth Observation produces were determined as an adequate 

source of providing this continuous long-term data. It was noted that the rainfall input data used 

would be acquired from best performing SEO product (CHIRPS and PERSIANN-CDR) from the 

validation study.  
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Typically, SPI only requires monthly rainfall data. However, since SPEI considers the water 

balance in its determination, the input variables required for SPEI’s calculation are monthly 

rainfall, minimum air temperature (Tmin), maximum air temperature (Tmax) and the latitude of 

the selected study sites. It should be noted that for the SPEI calculation the latitude of the uMngeni 

catchment was set at a value of -29.6 degrees, whilst the latitude for the Breede-Overberg 

catchment was set at -34.1 degrees. The input rainfall, Tmin and Tmax data were collected as 

catchment averages for a 31 year period from 1988 to 2020, from SEO products (i.e. CHIRPS, 

PERSIANN-CDR, ERA5 Reanalysis Product), for both of the selected study sites (i.e. uMngeni 

catchment and Breede-Overberg Catchment).  

As mentioned, in the literature review several studies have indicated that SPEI is an index capable 

of potentially monitoring the characteristics of agricultural drought. It is understood that in its 

entirety SPEI is more often considered to be a meteorological drought, however within this study 

SPEI is taken in the context of evaluating agricultural drought conditions owing to its relation to 

vegetation and water use. SPEI’s limitations however are recognized and considered. 

For the purpose of this research project SPI and SPEI will be derived using RStudio Programming. 

The RStudio software package is a highly recognized software environment for analyzing data, 

statistical computing and displaying statistical graphics. This was identified as a platform capable 

of calculating the drought indices SPI and SPEI. The first step undertaken involved the 

downloading of the software program from the following website (https://cran.r-

project.org/bin/windows/base/). Thereafter, procedures were undertaken to better understand the 

coding language utilized within RStudio. Further information on the CRAN-library repository, 

software, documentation and programming packages available on the RStudio platform can be 

found at https://cran.r-project.org. For the purpose of this project the SPEI-Package (Version 7.1) 

was selected to calculate and graph both SPI and SPEI at several different time scales (3- month 

and 6-months). This SPEI-Package was acquired from the freely available CRAN-repository, 

whereby, further information on the specifics of this package may be found at https://cran.r-

project.org/package=SPEI.  

Literature by Vicente-Serrano et al (2010), (2012a), (2012b), (2014), (2015), as well as Begueria 

et al (2010) and (2014), detail the calculations of SPI and SPEI and the implementation of the 
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SPEI-package in the R-computing envionments (e.g. RStudio). From the initiation of this index’s 

package it is noted that the SPEI-Program package has since been revised and updated several 

times, with the latest Version 1.7, of which was used in this research study. It is noted from the 

user manual for the SPEI package (found on https://cran.r-

project.org/web/packages/SPEI/SPEI.pdf) that the Potential Evapotranspiration (PET) is the 

amount of evaporation and transpiration that would occur if a sufficient water source were 

available, whilst Reference (ETo) is the amount of evaporation and transpiration from a reference 

vegetation of grass. Both PET and ETo calculations within the RStudio SPEI-Package were 

considered to be equivalent. Therefore, the RStudio package has functions within its algorithm to 

calculate PET using the Thornwaite Equation or ETo using the Hargreaves or Penman-Montieth 

Equations.  

Once the SPEI package was downloaded it was then unzipped and installed within the RStudio 

program. Thereafter procedures were undertaken to calculate SPI and SPEI for a 31 year period of 

1988 to 2020. For the purpose of this research project calculations for SPI and SPEI was conducted 

to measure and characterize drought occurrence and impacts in the uMngeni and selected Breede-

Overberg catchment, over the timescales of 3-month and 6-months. The procedure for the SPI 

calculation in RStudio firstly involved sorting the 31 year record of monthly rainfall into the text 

file format as required by the SPEI -Package.  Following this, the input data was imported into the 

RStudio Program. Code scripting was then done within the RStudio platform to calculate SPI over 

various timescales for both of the selected study sites. 

The procedure undertaken to calculate SPEI in RStudio involved firstly sorting the monthly 

rainfall, Tmin and Tmax data into a text format. This input data was then imported into the RStudio 

program. Before SPEI can be computed the Reference Evapotranspiration (ETo) is required to be 

calculated. There are numerous methods available within the SPEI-Package to calculate PET 

and/or ETo including the Penman-Monteith, Thornthwaite and Hargreaves methods. However, 

due to the fact that long-term monthly Tmin and Tmax data and the latitude data for the study sites 

are available, the Hargreaves equation could be used to calculate ETo. Studies by Beguerıa et al., 

(2014), Ogunrinde et al., (2020) and Nejadrekabi et al., (2022) suggested that in areas where data 

is poor or not available the use of the Hargreaves Equation for determining ETo (Equation 3.1) is 

an adequate method that may be adopted.  
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ETo = 0.0023 x (Ra) x (Tm+17.8) x (Tmax-Tmin) 0.5          (3.1) 

Whereby, ETo represents the Reference evapotranspiration, Ra is the extraterrestrial radiation 

(MJ/m2day), Tm is the mean temperature (°C), Tmax is the maximum temperature (°C) and Tmin 

is the minimum temperature (°C) 

Following the calculation of this ETo variable, procedures could then be carried out to determine 

the climatic water balance within the RStudio program. The climatic water balance was derived 

through the subtraction of the ETo values from the Rainfall values. The final step undertaken 

involved codes being scripted within RStudio to calculate the resulting SPEI values at its various 

timescales (i.e. 3-month and 6-month). The results produced for both SPI and SPEI were then 

graphically displayed for further analysis. 

3.4.3 Calculation of the Vegetation Health Index (VHI) 

In order to quantify and evaluate agricultural drought characteristics the Vegetation Health Index 

was selected for further assessment. Studies by Bento et al., (2018), Gidey et al (2018) and 

Ekundayo et al., (2020) further indicate that VHI is an appropriate SEO drought index which has 

the potential to identify agricultural drought characteristics, especially over larger spatial regions.  

The Vegetation Health Index developed by Kogan (1996), can be calculated by firstly determining 

its two components of Vegetation Condition Index (VCI) and Temperature Condition Index (TCI). 

In order to derive these components satellite-derived variables needed to be acquired namely, the 

Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data 

respectively. This information was provided by the datasets of the selected MODIS satellite 

products. These satellite-derived variables were analyzed, visualized and downloaded using 

Google Earth Engine (GEE) scripting. It was established that the data would be collected as 

average variables for a 20 year period (2000 to 2020) over both study sites. Furthermore, with this 

index both a temporal and spatial analysis of agricultural droughts would be conducted.  

During the process of data retrieval from the satellite products it was noted that several adjustments 

were needed to be made to both the NDVI and LST datasets, within GEE before it could be 

downloaded in the necessary formats required. In order to adequately represent the values of NDVI 
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(MOD13A1.006 product) adjustments were made to re-scale the NDVI values/pixel (by a value of 

0.0001). The second adjustment made was for the LST data (provided by the MOD11A1 product), 

whereby it was recognized that initially this product provides values represented by the unit 

Kelvin, therefore, procedures were undertaken to convert the values/pixels to represent Degree 

Celsius before the data was acquired. 

For the temporal assessment of agricultural drought NDVI and LST values were acquired as 

average daily values over the entire selected study sites. The information on these variables were 

then downloaded into a CSV format for further analysis and assessment. Following, the collection 

of the satellite-derived data, procedures were conducted in excel to sort the data into its monthly 

aggregate. Thereafter the absolute minimum and maximum values of NDVI and LST were 

obtained using GEE coding for a 20 year period of 2000 to 2020. Once these absolute values were 

obtained the data could then be applied to the formulas to calculate the components VCI (Equation 

3.2), TCI (Equation 3.3) and the VHI (Equation 3.4). Time-series graphs were then compiled with 

the results for further evaluation of agricultural droughts experienced at both of the selected study 

sites. 

Where the equation to calculate VCI is derived as follows: 

VCI =  
NDVI−NDVImin

NDVImax− NDVImin
 × 100        (3.2) 

Whereby, NDVI is derived as the value for the pixel and month. NDVImax and NDVImin are the 

absolute maximum and minimum values of NDVI respectively, for the considered pixel and 

month. Similarly to the computation of VCI, the Temperature Condition Index can be derived with 

the following equation: 

TCI =  
LSTmax−LST

LSTmax− LSTmin
 × 100        (3.3) 

Whereby LST is the value given for the pixel and month. LSTmax and LSTmin are the absolute 

maximum and minimum values of a given LST pixel and month. Once the values of VCI and TCI 

are estimated, calculations for VHI can be conducted with the following equation: 

VHI = α VCI + (1 – α) TCI         (3.4) 
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Where α is a weight parameter that is usually set as a standard value of 0.5 (Kogan, 1996), VCI is 

the Vegetative Condition Index per pixel/month and TCI is the Temperature Condition Index per 

pixel/month. 

For the spatial assessment of agricultural drought it is noted that a three-step procedures was 

undertaken. This spatial assessment involved the use of both GEE and GIS-based methods. The 

first step taken involved acquiring the necessary satellite-derived NDVI and LST data. This 

information was obtained with the use of GEE scripting whereby, the dataset imagery of NDVI 

and LST was acquired and downloaded in a GeoTiff format for each month of the selected 20 year 

period. The GeoTiff data is recognized as a format which enables geo-referencing information to 

be embedded within an image file. The information stored in these GeoTiff files could then be 

further visualized and analyzed using the ArcGIS programs.  

Following this, the second step undertaken involved using the Spatial Analyst Tools within 

ArcGIS to calculate and visualize the maximum and minimum values NDVI and LST with the 

GeoTiff imagery obtained. The cell statistic tool, was utilized in order to determine the maximum 

and minimum NDVI and LST values for each pixel on the GeoTiff images for each month and 

year (of the 20 year period). Thereafter, using the cell statistic tool the absolute minimum and 

maximum values per pixel of the NDVI and LST were calculated for the entire record length of 

2000 to 2020.  

The final step of the spatial analysis involved deriving and visualizing the components VCI, TCI 

and VHI. This was accomplished by using the Spatial Analyst Tool of Raster Calculation within 

ArcMap. The Raster Calculation tool, facilitates the executing of Map Algebra equations on each 

pixel of a GeoTiff imagery, in order to create an output raster image. This function of ArcGIS was 

thus applied with the use of Equation (3.1), (3.2) and (3.3) in order to derive VCI, TCI and VHI 

respectively. 

3.5. Drought Propagation Assessment 

Following the quantification and analysis of the meteorological drought and agricultural drought 

a comparative analysis is carried out between the results produced by the SPI, SPEI and VHI 

indices at both the selected study sites. This comparative assessment is done in order to establish 



67 

the trends and patterns associated with the characteristics of the drought propagation process (i.e. 

the transition from a meteorological drought to agricultural drought). In order to calculate the 

period in which drought propagation occur, that lag time for the onset of the drought was 

determined. The drought propagation lagging period within this study was noted to be the period 

of time (months) between the start of one drought type (at a specific time scale) to the start of the 

next drought type. This assessment will be carried out for a 20 year period from 2000 to 2020 for 

all three indices across both of the selected study site regions.  
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4. RESULTS 

This chapter will address the results produced from the meteorological and agricultural drought 

assessment. This chapter will also highlight the evaluation of the drought propagation process 

within two climatically different study sites namely, the uMngeni Catchment and the Breede-

Overberg Catchment. The following aspects of this research will be presented in this Chapter: 

➢ Results from the validation study assessing the applicability of two satellite-derived rainfall 

products, namely CHIRPS and PERSIANN-CDR and the satellite air temperature product 

ERA5 Reanalysis against ground-based observations.  

➢ Results from the average temporal quantification of historical meteorological droughts 

using SPI at both selected research study sites. 

➢ Results on the average temporal quantification of historical agricultural drought using 

SPEI, averaged VHI and its associated components (VCI and TCI), at both the selected 

study sites. 

➢ The applicability of SPI-6 in estimating agricultural drought characteristics in different 

climate regions in comparison to VHI. 

➢ Results on the applicability of satellite-derived drought indices (VHI) through its validation 

against standardized approaches (SPEI).  

➢ Results and illustrations on the spatial distribution of historical agricultural drought using 

VHI.  

➢ Results on the comparative assessment between SPI, SPEI and VHI to determine tends and 

patterns for the drought propagation process at each climatic region. 

 

 

 

 

4.1 Validation of Rainfall Data 

The results from the statistical and cross-correlation analysis of rainfall data between the satellite 

products (CHIRPS and PERSIANN-CDR) and the ground-based measurements can be seen in 
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Table 4.1, and illustrated with regression scatter plots in Figure 4.1. The results for this analysis 

indicated that the Pearson Correlation (r) relationship between CHIRPS and the ground-based 

observations were relatively high with values no less than 0.85 in value. The highest recorded ‘r’ 

value was experienced at the Oribi and Pietermaritzburg (PMB) stations with a values of 0.90 and 

0.89 respectively. Whilst the ‘r’ results from the PERSIANN-CDR satellite indicated that overall, 

the correlation relationship was reasonably good with three of the locations having an ‘r’ value of 

0.82 (i.e. Allerton, Botanical Garden, and the PMB stations). The highest value recorded from this 

SEO product was recorded at 0.83 for the Darville station, whilst the lowest “r” value was recorded 

at 0.79 for the Oribi Airport station.  

The results of R2 further indicate that CHIRPS compares most favorably against the Oribi Airport 

and PMB Station with these stations having R2 values of 0.80 and 0.79 respectively. It is also noted 

that the other stations namely, Allerton, Botanical Garden and Darville performed relatively well 

with R2 values of 0.73, 0.72 and 0.77 respectively. For the regression analysis on the PERSIANN-

CDR Satellite product the results indicate that, from all five locations the best performing station 

was Darville with an R2 of 0.69 in value. Whilst the Botanical garden and PMB stations had R2 

values of 0.67 and the Alerton station had a value of 0.66. The lowest performing station with the 

PERSIANN-CDR satellite data was recognized to be at the Oribi Airport Station with a R2 value 

of 0.63. 

From the comparison of regression and cross correlation analysis it is recognized that there is a 

relatively strong positive correlation relationship between SEO rainfall datasets and the ground-

based data. However it is noted that even though the PERSIANN-CDR satellite product did 

perform relatively well, the CHIRPS product was seen to perform more favorably in comparison. 

Whereby, typically across all five of the selected stations, the CHIRP product typically produced 

results with both the R2 and Pearson correlation values closer to the value of 1 than that of the 

PERSIAN-CDR product. 

 

The Root Mean Square Error (RMSE) was conducted in order to determine the measure of 

deviation errors between estimated and observed data. Typically the results from this statistical 
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assessment (Table 4.1) showed that at four stations (Botanical Garden, Oribi Airport, 

Pietermaritzburg and Dareville) the overall comparison on the CHIRPS dataset had a relatively 

lower RMSE values ranging from 0.15 to 3.69 as compared to the comparison on the PERSIANN-

CDR data which ranged from 4.04 to 8.27 in value. However, at the Allerton Station it was noted 

that the RMSE had a result of 5.39 from the CHIRPS comparison and 0.29 at the PERSIANN-

CDR comparison. 

Table 4.1: Regression and cross-correlation results for the CHIRPS and PERSIANN-CDR 

satellite rainfall products, within the U20J sub-catchment 

Satellite Earth Observation Rainfall Products 

  CHIRPS Rainfall Product PERSIANN-CDR Rainfall Product 

Stations Allerton  
Botanical 

Garden  
Oribi 

Airport  
PMB  Dareville  Allerton  

Botanical 

Garden  
Oribi 

Airport  
PMB  Dareville  

Pearson 

Correlation 
0.86 0.85 0.90 0.89 0.88 0.82 0.82 0.79 0.82 0.83 

R Square 0.73 0.72 0.80 0.79 0.77 0.66 0.67 0.63 0.67 0.69 

Adjusted R 

Square 
0.73 0.72 0.80 0.79 0.77 0.67 0.67 0.63 0.67 0.69 

Standard 

Error 
36.22 28.61 22.55 22.76 23.84 40.29 38.66 41.00 38.61 37.38 

RMSQ 5.39 0.15 3.69 1.23 2.01 0.29 4.04 8.27 6.52 7.30 
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Figure 4.1: Regression graphs comparing ground-based rainfall (mm) data against the   

  CHIRPS and PERSIANN-CDR satellite products, at five stations within the U20J 

  sub-catchment 
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A paired T-test of sampled means was performed between the ground-based data and the SEO 

rainfall products (Table 4.2). Results from the CHIRPS dataset indicated that for the evaluations 

at the Allerton, Botanical Garden, PMB and Dareville stations there was negative t-test values of 

3.99, -3.35, -2.18 and -0.55 respectively. This is indicative that the significant difference between 

the two datasets was small. However, the Mean values of the CHIRPS were lower, relative to the 

ground-based observations data, this potentially indicates that there is an under-estimation of 

CHIRPS values experienced. However, it is noticed that at Oribi Airport location there is a slightly 

greater Mean but a lower value of variance experience by the CHIRPS dataset, which may be a 

contributor to the positive t-test value of 1.98.  

The T-test results performed between the PERSIANN-CDR product and the ground-based 

observation records indicated that all results were positive with the highest being 9.03, 8.52 and 

6.87 at the Oribi Airport, Dareville and Pietermaritzburg stations respectively. Whilst at Allerton 

had a value of 3.91 and Botanical Garden was 3.49. These results were indicative that the 

significant difference between the datasets may be relatively small. The Mean value of 

PERSIANN-CDR data were further noted to be higher than that of the ground-based observation 

values. It can thus be deduced that the use of the rainfall estimations provided by the PERSIANN-

CDR satellite product overestimates its values when compared to the ground-based records of 

rainfall. However it was also noted that the results produced by the PERSIAAN-CDR datasets had 

Mean and Standard Deviations values similar across all five selected stations (Table 4.2). 

Whereby, the Mean values were recorded at 93.01 and the standard deviation of the datasets had 

a value of 67.06. These similar values may have been accounted for by the course resolution of 

the satellite product.  

The results produced by the statistical values are further supported by the time series graphs at all 

five stations shown in Figure 4.2, which depicts the monthly rainfall values and further shows the 

relationship between the ground-based observations, CHIRPS and PERSIANN-CDR datasets. The 

results from this indicate that overall at all five stations the PRESIANN-CDR values tend to be 

significantly overestimated as compared ground-based observation values. Whilst generally, on 

average across the five stations the CHIRPS rainfall product tends to have a slight underestimation 

of results in relation to the ground-based data. However, the CHIRPS results produced is seen to 
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have a relatively stronger relationship with the ground-based observations than the PERSIANN-

CDR dataset.  

The results from the validation study points toward the CHIRPS datasets having a closer 

relationship of correlation with the ground-based data. Therefore, the CHIRPS product is 

recognized as a Satellite Earth Observation dataset that is able to provide adequate records of long-

term rainfall estimations. Thus, following this section the use of the CHIRPS satellite-rainfall 

product will be the selected for further use in the calculations of the meteorological drought index 

Standardized Precipitation Index (SPI) and the agricultural drought index of the Standardized 

Precipitation Evapotranspiration Index (SPEI). 

Table 4.2: Statistical and T-test results for the Ground-based observations, CHIRPS dataset 

and PERSIAAN-CDR dataset 
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Figure 4.2: Time series graphs depicting the monthly ground-based observations, CHIRPS and 

  PERSIANN-CDR rainfall results at the five selected rainfall validation stations, for 

  an 8-year period from 2001 to 2009 
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4.2 Validation of Temperature Data 

The second variable assessed for the validation component of the study was air temperature (Tmin 

and Tmax) data. The satellite product under assessment for this variable is the ERA5 Reanalysis 

product. The results of this variables statistical and cross-correlation is found in Table 4.3. The 

overall Pearson correlation (r) results from this product indicate that there is a very strong positive 

relationship between the observed and estimated Tmin and Tmax values. Whereby, both the Tmin 

and Tmax have ‘r’ values ranging between a minimum of 0.86 and a maximum of 0.97.  

Results on the regression analysis between the ERA5 product and the ground-based observations 

are shown in Figure 4.3 and Table 4.3. The results on R2 for this SEO product further supports the 

fact that there is a strong relationship between the observed and estimated Tmin and Tmax data as 

on average the R2 range between 0.75 and 0.93 in value. It is further noted that the lowest ‘r’ and 

R2 values were established to be from the Tmax results at the Hermanus station. Whilst, the other 

stations (Tmin and Tmax) have R2 no less than 0.81 in value. 

Results from the Root Mean Square Error (RMSE) in Table 4.3, showed that all five stations (Cape 

Agulhas, Struisbaai, Hermanus, Overberg and Grabouw) had a significantly low values of RMSE.  

Whereby the values ranged from a high of 0.12 (for the Tmin at the Overberg Station) to a low of 

0.01 (for the Tmin at the Cape Agulhas Station). These low values of RMSE provide an indication 

that typically, there is a significantly small deviation found between the observed data and the 

predicted date of the ERA5 Reanalysis product. The results produced by the regression and cross-

correlation analysis further support that the use of the ERA5 Reanalysis product is an adequate 

source in obtaining valid Tmin and Tmax data for a continuous long term records, and has the 

potential to be utilized as an input variable. 
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Figure 4.3: Regression graphs between the ground-based maximum and minimum air   

  temperature (°C) observations and the ERA5 Reannalysis satellite product, from  

  five stations within the G40 and G50 validation site 
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Table 4.3: Regression and cross-correlation results of the Tmin and Tmax data between the 

ERA5 Reanalysis Satellite product and the ground-based observations at five 

stations within the G40 and G50 sub-catchment 

 

The results for the T-test between the ERA5 Reanalysis product and the ground-based air 

temperature observation records are depicted by Table 4.4. The minimum air temperature results 

indicate that at four stations namely the Stuibaai, Hermanus, Overberg and Grabouw there were 

positive t-test values (13.49,  1.52, 25.66, and 10.38 respectively). These values of the t-test 

indicate that on average the significant difference between the two datasets was relatively small. 

The Mean values from the ground-based data were seen to be on average lower than that of the 

ERA5 data. This may further indicate that there is a slight overestimation of the minimum air 

temperature data from the ERA5 product. However, it was also noted that at the Cape Aguhlas 

station the Tmin values had a negative T-test of -4.99 in value. 

For the maximum air temperature t-test analysis, results show that there is a positive relationship 

at the Cape Aguhlas (value of 16.41) and Stuibaai (value of 10.12) stations. Whilst, at the other 

stations namely, Hermanus, Overberg and Grabouw there was negative t-test values (-13.04, -4.71 

and -5.48 respectively). The overall results from this indicates that there is a relatively small 

significant difference between the ground-based observations and the ERA5 datasets. However, 

from the Mean values at the ground-based observations there was on average greater values from 

the ground-based observations as compared to the ERA5 Reanalysis product. This is further 
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indicative that there is a slight underestimation of the ERA5’s Tmax results. Further supporting 

the results produces by the statistical analysis are the time series graphs of the five stations depicted 

by Figure 4.4 and Figure 4.5. 

Overall from the regression and statistical analysis performed it can be deduced that the ERA5 

Reanalysis Product is an adequate SEO product that can be utilized as input data for further drought 

calculations 

Table 4.4:  Statistical results and T-test result for the minimum and maximum air temperature 

data from ground-based observations and the ERA5 Reanalysis Product 
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Figure 4.4: Time series graphs of the daily minimum air temperature data at the selected sites 

(G40 and G50 sub-catchments) for a 5 year period of 2015 to 2020 
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Figure 4.5: Time series graphs of the daily maximum air temperature data at the selected sites 

  (G40 and G50 sub-catchments) for a 5 year period of 2015 to 2020 
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indicated that there was a moderate event that occurs over a period of 2 months which then 

developed into a severe drought lasting for one month before the event recovered slightly back to 

a moderate drought in the following two months. The results SPI-3 also indicated that the most 

extreme drought events occurred in 2015-2016 and 2019, with the SPI-3 values from these years 

reaching values lower than -2. These extreme events in this catchment were seen to last for a period 

of approximately one to two months before the drought event slightly recovers to a moderate 

and/or severe drought event.  

Further supporting the results of SPI were, studies conducted by Blamey et al., (2018), Ndlovu 

and Demlie, (2020), whereby these studies were able to adequately detect the occurrence of 

meteorological drought conditions similar to the results produced in this study. It was further noted 

that in both studies the 2015-2016 drought event (during the austral summer months) was 

identified as a significant drought event in the Kwa Zulu-Natal province region.  Therefore, from 

the results produces in this research project, it can be deduced that the SPI is an effective index to 

quantify meteorological drought characteristics, especially at a 3-month timescale. This index 

further indicates that it is able to provide a representation of the average rainfall distribution and 

variability experienced in the catchment. 

 

Figure 4.6: Standard Precipitation Index (SPI) results across the uMngeni Catchment at a 3-

month timescale (SPI-3), for a 20-year period (2000 to 2020)  

The results from Figure 4.7, shows that the typically at a slightly longer timescale (i.e. 6-months) 

the severity and duration of droughts had slightly increased to depict more moderate to severe 

drought events, especially for the years 2012, 2014 and 2016. However, it was also noted that at 
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2019 there were slightly lower values of SPI-6 as compared to the initial assessment of SPI-3. The 

duration of the 2012 and 2019-2020 drought period it was apparent at the SPI-6 timescale was also 

seen to have a lagging period of two months as compared to SPI-3 timescales. 

 

Figure 4.7: Standard Precipitation Index (SPI) results across the uMngeni Catchment at a 6-

month timescale (SPI-6), for a 20-year period (2000 to 2020)  

The Standard Precipitation Evapotranspiration Index (SPEI) was selected the second drought index 

for evaluation. This is an index similar to SPI in the sense that it is able to detect drought through 

a multi-scalar standardized approach. However, SPEI takes into account the climatic water balance 

and is thus, able to evaluate both meteorological drought, agricultural drought (Begueria et al., 

2014). Similarly to SPI, the analyses of SPEI was performed on a 3-month (SPEI-3) and 6-month 

(SPEI-6) timescale across the uMngeni Catchment, as shown in Figure 4.8 and Figure 4.9 

respectively.  

The results from the SPEI-3 timescale (Figure 4.8), indicates that the agricultural drought events 

at a 3-month timescale typically occur for a period of 1 to 7 months. The most extreme drought 

event was seen to have taken place in 2015 for the month of December (-2.09), and in 2019 for the 

months of August (-2.12) and October (-2.41). The longest duration of agricultural drought took 

place in 2011-2012 which lasted for a period of 6 months, and in 2019-2020 which lasted for a 

period of 7 months. One of the apparent trends found from this analysis was that moderate drought 

events takes place for approximately one to three months, if the precipitation deficit persist 

conditions can potentially increase to a severe drought event, which lasts for approximately one 
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month before the drought event can begin to recover back to a moderate drought event. However, 

in the case of the extreme drought events, such as for the 2015-2016 and 2019-2020 drought event, 

the trend observed indicated that if water deficits and anomalies persist during the occurrence of 

severe droughts event, there is potential for the onset of extreme drought event to occur. Typically 

these extreme drought events last for a period of one to two months. 

 

Figure 4.8: Standard Precipitation Evapotranspiration Index (SPEI) results across the uMngeni 

Catchment at a 3-month time scale, for a 20-year period (2000 to 2020) 

From the SPEI-6 analysis as shown in Figure 4.9, it was noted that the moderate and severe 

agricultural droughts events typically become slightly more intensive and occur at an increased 

duration as compared to the results produced by SPEI-3 (Figure 4.8). Whereby the longest drought 

event at a SPEI-6 interval occur in 2015-2016 (for 10 months), 2012 (for 7 months), and 2014 (for 

6 months). The most extreme event is recognized to occur in 2019 for the month of October with 

a SPEI value of -2.12. It is noted that there was a slight decrease in the intensity of the SPEI-6 

extreme drought event as compared to SPEI-3. The results presented also indicate that in 2010, 

2012 and 2019-2020 there is a lagging period of 2 to 3 months.  

Whilst in 2014 and 2015-2016 results indicated that no lagging period was experienced, however, 

it was recognized that there was an increase in the duration of the drought event by approximately 

one to two months. Similar results of agricultural drought conditions in this region was found in 

the conducted by Adisa et al., (2021). Furthermore, articles by The Witness (2015), further 
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describing the impacts agricultural drought had on the livestock and crop yield production during 

2015-2016. 

 

Figure 4.9: Standard Precipitation Evapotranspiration Index (SPEI) results across the uMngeni 

Catchment at a 6-month time scale, for a 20-year period (2000 to 2020) 

A comparative assessment was conducted, for a 10 year period (2010 to 2020), in order to 

determine the applicability of SPI and SPEI in determining agricultural drought characteristics 

(Figure 4.10). Results indicate that in 2010, 2012 and 2019 typically the SPI-6 results were able to 

detect the agricultural drought conditions however, during these drought years there was a lagged 

response time in the events onset for a period of approximately two to three months as compared 

to the SPEI-3 results at these years. Overall the results produced from this assessment indicates 

that on average the SPI-6 results tend to have a better relationship with the SPEI-6 values as 

compared to the SPEI-3 values. With the SPI-6 values only slightly overestimating its values in 

comparison with the SPEI-6 values throughout the entire selected record period. This 

overestimation may be accounted for by the fact that SPI only incorporates rainfall data and does 

not take into consideration other processes such as the climatic water balance. Overall the 

comparison indicates that SPEI-3 timescales may be more sensitive to changes in drought as the 

onset period is shown to be detected earlier than that of the SPI-6 and SPEI-6 timescales. 
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seasons. Owing to this, the summer months in this region may have more favorable climatic 

conditions to facilitate the growth of vegetation in the area.  

With regards to the TCI experienced in the uMngeni catchment, it is apparent that during the 

summer months there are lower average values of TCI experienced and higher average TCI during 

winter. Typically in this area temperature conditions tend to be much cooler and dryer in winter, 

with lower temperatures being experienced, it may thus be deduces that owing to the lower 

temperatures the likelihood for evapotranspiration may not be as high, as it would be during the 

summer months  

Results of the averaged VHI from Figure 4.11, further indicate that on average the catchment does 

not experience any severe drought event for the entire 20 year record period. The VHI values are 

typically lower during the winter months in this catchment, with the lowest being recorded at a 

value of 31. Even though most of the averaged VHI values do not fall below the threshold drought 

line, the years seen to have experienced light drought events are identified as 2000, 2010, 2014, 

2015 and 2019. These results of the averaged VHI calculation further indicate that the drought 

events last for a period of 1 to 3 months.  

 

Figure 4.11: Agricultural drought assessment results on the averaged components VCI, TC and 

  VHI across the uMngeni Catchment 
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From the comparative analysis between the SPEI-3, SPEI-6 and VHI (Figure 4.12), the findings 

indicate that on average the VHI results tends to be highly underestimated as compared to the 

results from SPEI-6. In the cases of the drought events that occurred in 2012, 2015-2016 and in 

2019 the results of the SPEI-6 indicated that during these drought years, there were moderate-to-

extreme agricultural drought events that occurred and lasted for a duration of 6 to 10 months. 

Whilst for SPEI-3 it was notes that the duration of the drought had a relatively shorter duration, 

greater intensity, and an earlier onset of the drought. For the same drought years the results from 

the averaged VHI assessment indicated that there was light agricultural drought events taking 

place, with VHI ranging between 31.75 and 38.76 in value. The averaged VHI assessment during 

these years further indicated that the drought events only lasted for a period of one to two months 

in length.  

Supporting the agricultural drought finding for the 2019 drought event identified in this study, was 

a media release statement by The South African Weather Services. This statement reported on the 

state of drought for the summer of 2019, whereby it was acknowledged that during this period 

there was already low levels of soil moisture available to support the production of crops, the 

persistence of these water deficits have further led to the development and impacts of agricultural 

droughts. 

For the drought event that occurred in 2010, the averaged VHI assessment identified a light drought 

event which occurred for two months in August (at a value of 37.54) and September (at a value of 

31.75). However, for the same 2010 drought event the SPEI-6 results indicated that a moderate- 

drought event took place over a period of four months from July to October. And SPEI-3 identified 

the drought even as a severe drought event. 
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Figure 4.12: Comparative temporal assessment between SPEI-3, SPEI-6 and the averaged VHI, 

across the uMngeni Catchment for a 10-year period 

Overall from the agricultural drought assessment it should be noted that the VHI results were 

calculated based on catchment averages and may not be a true representation of the conditions 

occurring at a more localized level. Therefore, a spatial assessment of VHI was conducted in order 

to better represent the conditions of agricultural drought occurring in this region. 

 

4.5 Spatial Assessment of Agricultural Drought in the uMngeni Catchment 

A spatial assessment was conducted at the uMngeni Catchment study site using the satellite-

derived drought index VHI. This analysis was done in order to assess the spatial extent of 

agricultural drought as it appears across the catchment. It is important to note that the results 

indicated by this spatial assessment showed the average VHI values per pixel/month, across the 

entire study site. 

This assessment was carried out for a wet year of 2012-2013 (Figure 4.13) and a dry year of 2015-

2016 (Figure 4.14). The selection of the wet and dry periods was made based on the results of the 

SPI and SPEI from this study.  Further supporting the selection of the dry periods was the study 

by Blamey et al., (2018). Whilst a study by Olanrewaju and Reddy (2022), identified the year 2012 

as one of the wettest periods experienced in this region.  
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For the spatial assessment of the wet year (Figure 4.13), trends were observed whereby, during the 

months September, October and November of 2012 the results indicate that the eastern-most part 

of the catchment experienced VHI values above 40 (as indicated by the yellow-to green color on 

the Figure 4.13). Thus, indicating that there are wetter conditions experienced on the eastern 

portion of the catchment as compared to that of the central and western part of the catchment. The 

results from Figure 4.13 further indicates that even though the selected period was for a wet-year, 

the occurrence of drought events was still evident, especially on the western part of the catchment. 

During September to November 2012 the western and central part of the catchment is recognized 

to experience light-to moderate drought events.  

However, from December 2012 to April 2013 the results show that at certain sections of western 

part of the catchment there is a slight recovery period of the drought events, as its intensity is seen 

to have been reduced and more yellow to green patches are seen on this portion of the catchment. 

However, this recovery period is not the case for the entire catchment, as it is apparent that the 

occurrence of drought events becomes more intensified along to central parts of the catchment 

with moderate to severe conditions experienced (as indicated by the orange to red patches) during 

these months. There are also patterns that indicate that the drought events spread along to the 

eastern part of the catchment during this period. With the conditions at the eastern part of the 

catchment ranging from a moderate to severe drought event. 

During the months of May and June 2013 it is recognizes that the drought events at the eastern 

most part of the catchment had recovered from the drought events from the previous months (as 

indicated by the green to yellow color on Figure 4.13). However it is noted that light to severe 

drought events conditions are experienced at a wider spatial extent along the western part of the 

catchment. 

For the spatial assessment of the selected dry year 2015-2016 (Figure 4.14), it is apparent that, in 

the months of September, October and November and December 2015, there is a greater extent 

and severity of the drought conditions experienced along the central portion of the catchment, with 

moderate to extreme events occurring. Further supporting the results that an extreme event 

occurred in December 2015, was the SPEI-3 values obtained within this study (refer to Figure 4.8). 
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during this period it is also recognized that light to moderate drought events occur along the 

western and eastern most parts of the catchment (as indicated by the light orange color). 

For the selected dry period, it is noted that during the months of January to April 2016 (Figure 

4.14) moderate to extreme droughts occur especially along the central and lower portions of the 

catchment. Similar to the trends experienced in the wet year, it is acknowledged that during these 

months the eastern most tip of the catchment experiences a significantly greater intensity of 

drought conditions, with this section of the catchment experiencing severe-to-extreme drought 

conditions. During the months of May and June 2016, the spatial assessment of agricultural 

drought indicate that the intensity of droughts have recovered slightly. However, during these two 

months it is apparent that in the uMngeni catchment there is light conditions of drought 

experienced along the central and eastern part of the catchment, whilst the western part of the 

catchment experiences moderate drought conditions. 
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Figure 4.13: Spatial assessment of agricultural drought using the Vegetation Health Index (VHI) across the uMngeni Catchment, for 

the selected wet year (2012-2013) 
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Figure 4.14: Spatial assessment of agricultural drought using the Vegetation Health Index (VHI) across the uMngeni Catchment, for 

the selected dry year (2015 – 2016) 



94 

4.6 Temporal Assessment of Drought Characteristics using Standardized Approaches in 

the Breede-Overberg Catchment  

For the meteorological drought assessment within the Breede-Overberg Catchment, similar to 

Section 4.3, SPI was determined for a 3-month (SPI-3) and 6-month (SPI-6) timescale. The 

Breede-Overberg area is recognized as a region which experienced significant variability with 

regards to rainfall distribution and occurrence. Therefore, it is assumed that the occurrence of 

drought and its impacts are also variable.  

From the results of SPI-3 calculations (Figure 4.15) it is apparent that the most extreme event of 

drought took place in 2003, with its value reaching below -3. It is also noted that other extreme 

events of drought took place in 2016 for the month of December (at a value of -2.01) and in 2017 

for the months of May (at a value of -2.43) and July (with a value of -2.00). Typically, these 

extreme drought events had a duration lasting for around one month. Other noticeable drought 

event that occurred at a SPI-3 timescale, in this catchment was during 2000, 2003, 2010, 2011, 

2017-2018.  

The results from this timescale identified that the longest duration of drought occurred in 2017-

2018, which lasted for a period of 12 months. This 2017-2018 drought event was recognized to 

have a mixed intensity level with moderate, severe and extreme values. In 2000 results indicated 

that there was a drought event that lasted for a period of 5 months (April to August), which had an 

intensity starting as a moderate drought of two months and further developed into an extreme event 

(lasting one month) before the drought recovered into a severe event (lasting two months).  

From the results on the assessment of SPI-6 in the Breede-Overberg Catchment (Figure 4.16) one 

of the noticeable difference seen was that the 2003 drought event experienced a significant 

reduction in intensity, whereby, it was identified to be a moderate drought event. In 2000, 2010, 

2011-2012 and 2015 the drought events were recognized to have an increased duration of 

approximately one to four months. However, this was not the case for the 2017 drought event, 

whereby the SPI-6 values indicate that an extreme drought event had an estimated duration that 

did not increase but rather remained at 12 months, however its intensity of event had significantly 

increased, with the values ranging from approximately -2.27 to -2.86. It was noted that typically 
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there was a lagging period of one to two months between the SPI-6 and SPI-3 results. Overall from 

the analysis of SPI it is apparent that at a 3-month timescale there is a greater sensitivity of the 

index to determining the magnitude of meteorological drought events as compared to the SPI at a 

6-month timescale.  

 

Figure 4.15: Standard Precipitation Index (SPI) results across the Breede-Overberg Catchment 

at a 3-month timescale, for a 20-year period (2000 to 2020) 

 

Figure 4.16: Standard Precipitation Index (SPI) results across the Breede-Overberg Catchment 

at a 6-month timescale, for a 20-year period (2000 to 2020) 

Results of the SPEI assessment at a 3-month timescale (SPEI-3) is shown in Figure 4.17. The 

results indicate that the most significant agricultural drought occurs in the years 2016-2017 with 

the duration of this event lasting for a period of 13 months. This drought period consisted of 
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extreme drought conditions, ranging from SPEI values of -2.34 and -3.10, it is also noted that the 

extreme drought event persisted for a period of 6 months (January to June) before it recovers to a 

severe drought state. Other identified agricultural drought years were 2000, 2003, 2015-2016 and 

2018, the results from these years had drought periods that occurred for a period of 1 to 3 months 

and ranged from severe to moderate drought conditions. 

 

Figure 4.17: Standard Precipitation Evapotranspiration Index (SPEI) results across the Breede-

Overberg Catchment at a 3-month time scale, for a 20-year period (2000 to 2020) 

For the SPEI-6 assessment (as shown in Figure 4.18), the results produced indicated that there 

were several moderate drought events that occurred within the Breede-Overberg catchment, of 

which were for the years 2014-2015, 2016, 2018-2019 and lasted for a duration of three to six 

months. The results from the SPEI-6 analysis also indicated that there were two significant 

agricultural drought events that occurred in this catchment namely, for the years 2000-2001 and 

for 2017. The 2000-2001 drought event at a SPEI-6 timescale was recognized to last for a duration 

of 8 months. The results further indicate that for this event the conditions experienced were 

moderate and occurred for a period of one to two months, whilst the severe drought conditions for 

a period occurred for a period of five months. The SPEI-6 results in 2000-2001 were also seen to 

have a longer duration of occurrence by approximately three months, as compared to the SPEI-3 

results produced. 

With regards to the 2017-2018 drought event, the results indicated that this was one of the most 

extreme agricultural drought event to occur in the Breede-Overberg Catchment. At the SPEI-6 

timescale, the 2017-2018 drought event was recognized to last for a duration of 12 months. The 
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extreme drought months were persistent for a 13 month period with its extreme conditions ranging 

from -2.03 to -3.05 in value. Following the extreme months, the results produced showed that the 

2017 drought event slowly began to recover to a moderate drought event in December. It should 

be noted that for this drought event there was a lagging period of 3 months in the SPEI-6 results 

as compared to the SPEI-3 results. 

 

Figure 4.18: Standard Precipitation Evapotranspiration Index (SPEI) results across the Breede-

Overberg Catchment at a 6-month time scale, for a 20-year period (2000 to 2020) 

The 6-month timescale of SPI, is typically representative of short term conditions associated with 

rainfall deficits, however it is able to detect the conditions of agricultural drought to some degree. 

This is further supported by the comparative assessment was conducted between standardized 

indices SPI-6, SPEI-3 and SPEI-6 (Figure 4.19). The results of the comparison between SPI-6 and 

SPEI-6, indicates that on average there is a relatively good relationship found between the two 

indices. The results further showed that for the 2011-2012, and 2017-2018 drought events the SPI-

6 values were slightly overestimated as compared to the results of the SPEI-3 index. However this 

trend is not always the case, for example, in 2013, 2018-2019 and 2020 it was apparent that the 

SPI-6 values were underestimated as compared to the SPEI-3 values.  

One of the most significant drought events that occurred in this catchment was in 2017-2018, the 

comparative results during this period indicated that SPI-6 had a lagging period of approximately 

four months and a lower severity as compared to SPEI-3. From the comparison between SPI-6 and 

SPEI-6 it was apparent that for the 2017 agricultural drought event, there was a greater intensity 

experienced at the SPEI-6 timescale with extreme drought conditions persisting. It should also be 
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noted that in 2015, 2016, 2018 and 2019, the agricultural drought events were acknowledged to 

have a greater duration and intensity experienced at the SPEI-6 timescale as compared to SPEI-3.  

 

Figure 4.19: Temporal assessment of selected agricultural drought indices, namely the SPEI-3 

and SPI-6, across the Breede-Overberg Catchment 

4.7 Temporal Assessment of Agricultural Drought Indices in the Breede-Overberg 

Catchment 

Figure 4.20, shows the average temporal extent of VCI, TCI and VHI within the Breede-Overberg 

catchment. The results from this region indicates that there is a directly proportional relationship 

found between the VCI and TCI average values. Furthermore, from the information provided by 

Figure 4.20, it is acknowledged that typically during the summer months the both the VCI and TCI 

values are typically low. This proportional relationship between the VHI components may be 

accounted for by the regions temperate climatic conditions. Whereby, in this area during winter 

months there is likely to be greater rainfall conditions and have more favorable conditions to 

promote the growth of vegetation in this region. During the summer when temperatures are high 

there is greater potential for processes such as evapotranspiration to take place, this couples with 

the low rainfall during this season may influence the potential for agricultural droughts to occur. 

Figure 4.20, also depicts a time-series analysis for the average Vegetation Health Index (VHI) 

values experienced within the Breede-Overberg Catchment. Results from this graph indicate that 

on average the catchment is prone to experiencing agricultural drought especially during the 



99 

summer months (November to March). The results further indicate that the duration of averaged 

VHI drought events last for a period of three to five months. During summer in this climatic 

conditions are already recognized as hot and dry, with little to no rain occurring during this period. 

The results from this assessment further indicate that on average an agricultural drought occurs 

periodically for each year and has severity levels ranging from light events to extreme events. 

Some of the identified extreme drought event by the averaged VHI indices was for the years 2000, 

2016, 2010, 2011 and 2012. 

 

Figure 4.20: Agricultural drought assessment results on the averaged VCI, TCI and VHI across 

the Breede-Overberg Catchment.  

Agricultural drought comparisons were conducted between the averaged VHI, SPEI-3 and SPEI-

6 values (Figure 4.21), it is noted that the averaged VHI results typically depict periodic drought 

conditions for the summer months. Moderate droughts by SPEI is typically indicated by values 

between -1.0 to -1.45, whilst for VHI moderate drought are indicated by values ranging from 20 

to 30. For the 2010 drought events, it was observed that there was a lagging period of VHI values 

of approximately 2 to 3 months, when compared to the SPEI-3 and SPEI-6 timescales. Typically 

the averaged VHI results indicate that drought occurs annually and during the months of November 
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to March. However, it was noted that in the 2010 drought event there was an underestimation of 

drought by the averaged VHI. Whereby, the VHI values indicated that a moderate drought occurred 

during this period and persisted for 5 months, however at the SPEI-3 and SPEI-6 timescales the 

results depicted that a 2 month drought event took place with a severe drought conditions.  

It was indicated by this study that one of the most extreme agricultural drought event that took 

place in this catchment occurred for the period of 2016-2017. The comparative assessment at this 

dry period indicated that VHI was able to detect the intensity of the drought event. Whereby, the 

results of averaged VHI during the 2016-2017 agricultural drought event was recorded to 

experience severe-to-extreme conditions lasting for a period of 4 months. At the SPEI-3 timescale 

it was noted that severe-to-extreme drought conditions persisted with this event lasting for a period 

of 13 months. Whilst at the SPEI-6 timescale the 2017 agricultural drought event had persistent 

conditions of extreme-to-severe, which lasted for a period of 12 months. It should also be noted 

that for this drought event there was had a lagging period of the SPEI-6 timescale approximately 

3 months in relation to the SPEI-3 timescale. For the 2018-2019 agricultural drought the results 

showed that the averaged VHI identified the occurrence of light-to-severe conditions at a duration 

of 5 months, whilst the SPEI-3 indicated that there was severe conditions lasting for 3 months, and 

the SPEI-6 timescale indicated that moderate conditions persisted for a period of 6 months. 

Supporting the results achieved was a study by Theron et al., (2021), looked at wheat production 

during 2015-2018 agricultural drought within the Western Cape. The results produced by this 

study indicated that there was multi-year severe drought conditions experienced between the years 

2015-2018. Further supporting the results produces in this research project, was a media statement 

(released in January 2018) by the South African Weather Service (SAWS), which stated that in 

the Western Cape province 2017 was recorded as the 1st driest year (since 1921), 2015 was the 2nd 

driest year (since 1921) and 2016 was the 14th driest year (since 1921). The results therefore, show 

that the VHI has the potential to identify the severity of the drought event in this region however, 

the averaged values of VHI may not adequately estimate the duration of the event as well as the 

SPEI-3, and SPEI-6 results. It can further be deduced from the results produced that typically 

SPEI-6 is capable of detecting agricultural droughts relatively better than SPEI-3. 
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Figure 4.21: Time series graphs depicting the results of the temporal assessment of selected 

agricultural drought indices, namely the SPEI-3, SPEI-6 the averaged VHI, across 

the Breede-Overberg Catchment 

Similarly to the VHI results produces in Section 4.4, it is noted that the VHI results were calculated 

based on catchment averages and may not be a true representation of the conditions occurring at a 

more localized level. Therefore, a spatial assessment of VHI within the Breede-Overberg 

catchment was conducted in order to better represent the conditions of agricultural drought 

occurring. 

 

 

4.8 Spatial Agricultural Drought Assessment in the Breede-Overberg Catchment 

A spatial assessment was conducted at using the Vegetation Health Index (VHI) within the Breede-

Overberg catchment, in order to identify trends and patterns associated with agricultural drought. 

From the temporal assessment of agricultural drought in this region it was identified that that the 

drought months in this area is typically during the summer months. A wet year of 2013-2014 

(Figure 4.22) and a dry year of 2016-2017 (Figure 4.23) was selected for the spatial assessment.  

Results on the spatial assessment from Figure 4.22 indicated that despite the fact that 2013-2014 

was identified as the wet year, the occurrence of drought conditions was still persisted in certain 

parts of the catchment. For example during September and October 2013, the upper Breede portion 
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of the catchment experienced dry conditions (ranging from light to severe conditions), whilst the 

lower Overberg part of the catchment experiences wetter conditions (as indicated by the green 

color).  However, in November and December of 2013 it is apparent that the drought event spread 

out more towards the central portion of the catchment, with light to moderate drought conditions 

occurring (indicated by the yellow to light orange color).  

In the month of January 2014, it appears that the severity of the drought has marginally decreased 

across the catchment, which indicates that there is a recovery period of the drought event 

experienced. However, this does not last for long as in March to May 2014, it is apparent that the 

intensity of drought events have significantly increased (to moderate and severe conditions) 

especially in the central part of the Breede-Overberg Catchment. On average the Upper Breede 

and lower Overberg areas during these months are seen to experience either no drought, light 

drought or moderate drought events (as indicative by the green and yellow color). The trend 

acknowledged across the months of June to August 2014 (winter months), was that the central part 

of the catchment is seen to have recovered from the previously intense drought events, this may 

be owing to the fact that this is a winter rainfall region. It is also acknowledged from Figure 4.20 

that during these months there is an increase in the severity of droughts in certain portions of the 

Upper Breede. 

For the spatial assessment of the selected dry year of 2016-2017 (Figure 4.23), it was 

acknowledged that in September 2016, mainly the Upper Breede portion of the catchment 

experiences the occurrence of drought events, whilst the Lower Overberg portion is seen to have 

mostly green patches which are indicative of no drought conditions occurring. However, from 

October 2016 to January 2017 it is apparent that the severity and duration of drought events is 

persistent especially over the central portion of the catchment, with the drought conditions being 

severe to extreme.  

Supporting the results from this are the SPEI-3 values in which November to January was 

determined to be a month that experiences extreme drought conditions. For the months of February 

to May 2017, it is apparent from the VHI assessment that there was a slight reduction in the severity 

of drought across the central part of the catchment with moderate to severe droughts occurring. 

However, it should be noted that the SPEI-3 values indicated that extreme drought occurred for 
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the months of February to April. For the months of June to August 2017 it is recognized that across 

the Lower Overberg part of the catchment light to no drought conditions are experienced. Whilst 

there were patches of moderate to severe drought events that occurred in the Upper Breede portion 

of the catchment. Overall the results produce by the VHI index, indicates that VHI is capable of 

detecting agricultural drought events better when conducted at a spatial assessment (based on 

averages values per pixel per month) as compared to VHI assessments based on monthly 

catchment averages.  
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Figure 4.22: Spatial assessment of agricultural drought using the Vegetation Health Index (VHI) across the Breede-Overberg 

Catchment, for the selected wet year (2013 - 2014) 
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Figure 4.23: Spatial assessment of agricultural drought using the Vegetation Health Index (VHI) across the Breede-Overberg 

Catchment, for the selected dry year (2016 - 2017) 
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4.9 Drought Propagation Study in the uMngeni Catchment 

Drought propagation refers to the transition of drought from one form to another. This section of 

Chapter Four seeks to address two of the objectives set out by this research study, where the first 

objective was to evaluate and quantify the spatial and temporal patterns and trends associated with 

the transition of drought from meteorological drought to agricultural drought using commonly 

applied drought indices. The second objective set out was to evaluate the characteristics of the 

drought propagation process between two different climatic regions.  

In order to assess the characteristics of the drought propagation process comparisons are made 

between the meteorological drought index SPI and the agricultural drought index VHI. Both these 

results were plotted on a time-series graph (Figure 4.24). The results from this graph indicate that 

the occurrence and severity of meteorological droughts are greater especially in the years 2010, 

2015-2016 and 2019, with these events being recorded to have moderate to extreme conditions of 

drought experienced. The occurrence of agricultural drought in this area on average is depicted as 

a light drought event, as its VHI values are between 30 and 40.  

The patterns associated with the onsets of agricultural drought in this area is seen to have a lag 

period of about 1 to 5 months. The lag period in 2010, 2015-2016 and 2019 had a value of 1-

month, while the drought event in 2014 had a lag period of 5 months. It was noted that for the 

results of this projects assessment the 2011-2012 drought event had averaged VHI values indicated 

that there was potentially no drought that occurred during this period. From the results presented 

in this temporal assessment it is acknowledged that in this catchment, when an agricultural drought 

(accounted for by VHI) is persistent, the meteorological drought is also persistent at the same time.  

The 2015-2016 was recognized as one of the most severe droughts to have occurred in KwaZulu-

Natal. Whilst the results of the temporal assessment of averaged VHI for the 2015-2016 drought 

event was identified as a light drought events. However, it should be noted that the results from 

Section 4.6 indicated that the temporal assessment of averaged VHI may not provide relatively 

accurate depictions on agricultural drought happening across the catchment. The spatial 

assessment indicated that potentially during the drought year of 2015-2016, the occurrence of 
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agricultural drought was variable across different parts of the catchment, with the areas most 

affected experienced drought severity of moderate to extreme conditions. 

 

Figure 4.24: Temporal results on the propagation of meteorological droughts to agricultural 

droughts using SPI and VHI, across the uMngeni catchment 

Figure 4.25, depicts the drought propagation process between two standardized approaches namely 

SPI-3 and SPEI-3 and SPEI-6. SPI at a 3-month timescale had shown capabilities of adequately 

quantifying meteorological drought conditions. From the results it was apparent that SPEI-6 

compared very closely to SPI-3 in this region. Therefore, indicating that at a 3-month timescale of 

SPEI may not be able to adequately detect changes in agricultural drought conditions as compared 

to SPEI-6. Therefore, SPEI-6 was be set as the baseline timescale to represent agricultural drought 

conditions for this region.   

The findings from this propagation study indicated that in the years 2010, 2012-2013, 2014 and 

2019 the onset of the agricultural drought occurs with a lagging period of 2 months after the 

occurrence of the meteorological drought. The results from SPEI-6 further indicate that in 2012, 

2014, 2015-2016 and 2017 the duration of the agricultural drought was longer than the 

meteorological drought by a period of 1 to 3 months. It was noted that when the meteorological 

drought period ends the agricultural drought is still persistent in this region for a period of 

approximately 2 to 3 months before the drought event can begin to recover to normal conditions. 

It should also be noted that in 2017 the results of this study indicated that an agricultural drought 

event of 2 months occurred as an isolated event and not through the propagation from a 

meteorological drought.  
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Figure 4.25: Temporal results on the propagation of meteorological droughts to agricultural 

droughts using SPI-3, SPEI-3 and SPEI-6, across the uMngeni catchment, for a 10 

year period of 2010 to 2020 

4.10 Drought Propagation Study in the Breede-Overberg Catchment 

The second region assessed in this section of the results was the Breede-Overberg Catchment 

located in a winter rainfall region. Similar to section 4.9, time series graphs were created to 

compare and identify trends and patterns for the temporal drought propagation process. From these 

graphs it should be noted that the drought threshold line for SPI and SPEI was set at a value of -1, 

whilst VHI was set at a value of 40.  

Results from the drought propagation study between meteorological drought index SPI-3 and 

agricultural drought from VHI within the Breede-Overberg catchment (Figure 4.26), indicates that 

VHI typically depict agricultural drought events to occur for a period of 3 to 5 months during the 

summer season. Within the selected 10 year period some of the significant meteorological drought 

events identified by this study were in the years 2010, 2011 and 2017-2018. During the 2010 

drought event the meteorological drought had a duration of 3 months and had an intensity of 

moderate-to-severe conditions, whilst the averaged VHI values indicated that once the 

meteorological drought in this year ended the agricultural drought started and lasted for a period 

of 5 months with light-to-severe conditions.  In the year 2011-2012, the meteorological drought 

lasted for a period of 3 months (moderate conditions), it was noted that there was a lagging period 
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of 2 months before the VHI drought event started and persisted for a 5 month period with light-to-

severe conditions.  

One of the most extreme drought event to occur in this catchment was identified for 2017. The 

meteorological drought was seen to last for a period of 10 months with moderate, severe and 

extreme conditions occurring. The results from VHI indicate that the agricultural drought only 

lasted for the summer months with light-to-extreme conditions occurring. It was noted that at the 

end of the meteorological drought in 2017, the averaged VHI results indicated that an agricultural 

droughts began and lasted for a period of 4 months. 

 

Figure 4.26: Time-series comparing the drought propagation process between SPI-3and 

averaged VHI in the Breede-Overberg catchment 

For the drought propagation assessment using standardized indices SPI-3 and SPEI-3 (Figure 

4.27), it was apparent from the results that, for the 2010 and 2011 drought event, the onset of 

agricultural drought for the SPEI-3 timescale had a lagging period of 1 month. The meteorological 

drought during this period was seen to last for 3 months. It was also indicated that during 2010 and 

2011, the agricultural drought event ended simultaneously with the meteorological drought event. 

Results produced by these drought years indicated that there was a greater intensity experienced 

by the meteorological drought event during this period.  

2016-2017, was considered to have one of the most significant and extreme drought events within 

this region. The propagation results during this period indicated that typically there was a 

simultaneous onset of both meteorological and agricultural drought. The intensity of this 2016-
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2017 drought event was seen to be more severe in the agricultural drought conditions with extreme 

events having a high of -3.10 in value. It was further evident from the results of this study that 

when the meteorological drought event recovered agricultural drought was still persistent for 1 

month. From the SPEI-3 results it was also apparent that isolated agricultural drought events were 

persistent especially in the years 2016 and in 2018-2019. 

The drought propagation assessment between SPI-3 and SPEI-6 was depicted by Figure 4.27. The 

results from this assessment indicated that on average agricultural drought experience a lagging 

period in their onset of drought in relation to meteorological droughts. Whereby, for the 2010 there 

was a lagging period of 1 month. Whilst for the 2017-2018 drought event there was a 3 month 

lagging experienced. The 2017-2018 was recognized to be one of the worst drought event 

experienced in this region. It was noted that when the meteorological drought recovered to normal 

conditions the agricultural drought was still persistent for a further 4 months. 

It should also be noted that at the SPEI-6 timescale in 2011 no agricultural drought was recorded 

however there was presence of a 3 month moderate drought event. From 2015 to 2019 it was 

apparent that there was an increase in duration and intensity of agricultural drought conditions 

within this region. In 2015, the results indicated that a meteorological drought occurred 1 month 

after the occurrence of an agricultural drought event. It was further recognized that for the 2015 

drought event, the agricultural drought persisted for a period of 1 month after the meteorological 

drought ended. There were several agricultural drought events that occur as isolated events rather 

than through the propagation process especially in the years 2016 and 2018-2019. 
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Figure 4.27: Time-series graph of the drought propagation process between SPI-3 SPEI-3 and 

SPEI- within the Breede-Overberg catchment, over a 10 year period 
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5. DISCUSSION 

5.1 Validation Study Discussion 

From the validation assessment it was acknowledged that Satellite Earth Observation products 

provided an adequate means of acquiring drought related variables such as rainfall and air 

temperature data. The validation indicated that the overall best performing satellite rainfall product 

in relation to the ground based observations was the CHIRPS product. Whilst the PERSIANN-

CDR was able to perform relatively well in the cross-correlation assessment, it was noted that at 

several of the selected stations recorded the same resulting SEO values of rainfall. These similar 

records may be accounted for by the course spatial resolution provided by the PERSIANN-CDR 

satellite product, whereby, if the stations were close enough they may have been detected by the 

same pixel coverage of satellite data. The overall results from the validation study indicated that 

there was a very strong relationship found between the ground-based observations and the selected 

SEO data. Thus further indicating that SEO products have the potential to provide long-term data 

which can be utilized in drought studies. However the scaling factor, resolution and specifications 

of the type of satellite used needs to be carefully considered during the selection process. 

5.2 Drought Analysis of Standardized Indices  

In general within both the uMngeni and Breede-Overberg Catchments, SPI and SPEI showed a 

good capability, with regards to successfully detecting several drought conditions persisting in 

these catchments. The temporal assessment from these standardized indices were acquired at 

different timescales (i.e. 3-month and 6-month), and the overall, results indicated that at both the 

study sites the variability of drought events at each timescale were relatively consistent, however 

the duration and magnitude of the drought events differed for the various timescales. 

Overall, looking at the results produced from the temporal evaluation of meteorological drought 

assessment it can be deduced that in both the uMngeni and Breede-Overberg catchments SPI was 

able to adequately detect the presence of historic drought events. It was further noted that at a 3-

month timescale SPI tended to be more sensitive to detecting the change in severity of drought 

events (such as extreme conditions), as compared to the 6-month timescale. 
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In the uMngeni Catchment, it was acknowledged from the results produced that the most severe 

drought event that occurred in this region was for the years 2015-2016. The occurrence and impacts 

of this extreme drought events may due to factors like the contributions of changes to climatic 

characteristics, which may affect rainfall patterns or changes in the dynamics of ocean-atmospheric 

interaction such as, the El Nino Southern Oscillation.  Further supporting the finding of this study, 

were assessments by Ndlovu, and Demlie, (2020) and Blamey et al., (2018) whereby, they 

acknowledged that in 2015/2016 there was a significant influence of ENSO on the occurrence of 

drought. Furthermore, media statements were made by News24 (2015), stating that during 2015-

2016, there was a crippling drought which affected KwaZulu-Natal. Typically the conditions 

associated with ENSO, may lead to the early onset weakening of mechanisms that drive moisture 

convergence and the development of precipitation cloud formation, thus resulting in the occurrence 

of precipitation deficits and drought events. It should be noted however that not all El Nino events 

lead to the occurrence of drought. 

However in the Breede-Overberg Catchment, it was established that one of the most significant 

and extreme drought event to occur in this area was in 2017. SPI was able to detect the occurrence 

of meteorological drought in this area relatively well. Further supporting the findings of the 

temporal assessment were the widespread acknowledgement of drought occurrence during this 

period by the media as well as through studies by Theron et al., (2021). The variable nature of 

rainfall in the Breede-Overberg catchment may be accounted for by the presence of the cold 

Benguella and Agullus current flowing along the Oceans bordering the Western Cape. These 

currents generally flow from the poles, and bring cool water along with it. Due to its cold nature 

ocean-atmospheric interactions and circulations may not have enough energy and potential to 

allow for condensation to occur, clouds to form or rainfall to take place as often as those regions 

on the eastern side of the country.  

It was acknowledged from the literature review that SPI, when assessed at a short-term timescale 

(i.e. 1 to 6 months) it may be capable of predicting agricultural drought conditions. It was assumed 

that agricultural droughts are likely to occur after prolonged dry spells, therefore a 3-month period 

may not be able to adequately represent the prolonged drought of agricultural drought. Owing to 

this it was deduced that a 6-month timescale of SPI would likely provide the potential to detect 

agricultural drought. Assessments were thus, conducted to assess the potential of SPI-6 in terms 
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of depicting agricultural drought. This was done by comparing SPI-6 with SPEI at both study sites. 

The overall results from this assessment indicated that in both the catchments SPI-6 had a closer 

relationship with SPEI-6 rather than SPEI-3. The results further suggested that SPI-6 may has the 

potential to detect agricultural drought. It is also important to note that since SPI only uses 

precipitation data as in input parameter it cannot take into account other agricultural drought 

features such as temperature anomalies, evapotranspiration, vegetation stress or streamflow 

discharge.  

5.3 Agricultural Drought with VHI 

With regard to the VCI and TCI results produced in this study it was apparent that in the summer 

rainfall region (uMngeni Catchment), that these components had an inversely proportional 

relationship. Whilst the winter rainfall region (Breede-Overberg Catchment) experienced a directly 

proportional relationship between VCI and TCI. Under normal conditions one would expect to 

have an inversely proportional relationship between these two components whereby, when 

vegetation conditions depicted healthy, thick, dense vegetation cover one would also expect for 

the land surface temperatures to be relatively low, due to the shading effect associated with crop 

and vegetation growth.  

However, this is not the case in the Breede-Overberg Catchment. It is important to firstly note that 

VHI takes into account the density, growth and health of the vegetation in terms of temperature 

conditions (as accounted for by the input variables NDVI and LST), in order to estimate the 

potential for agricultural drought to occur. This being said it was acknowledged that for TCI, in 

the summer months for this region the land surface temperatures may have been high due to the 

influence of the climatic conditions experienced in this region. Furthermore, the patterns of TCI 

experienced is indicative that temperature stress on vegetation plays a significant role in this 

region. During summer, the conditions which influence ET rates are favorable and one would 

expect greater ET during this period and a greater likelihood for agricultural drought to occur. 

There is further potential for this area to experience limited soil moisture recharge, resulting in soil 

moisture stores being more readily depleted, thus providing the potential for the occurrence of 

agricultural droughts to take place. The vegetation growth in this catchment, was seen to be 

greatest during the winter months, this growth and vegetation density may be owing to the winter 
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rainfall conditions experienced in this region providing greater potential for growth during this 

season. 

Overall the VHI results presented by this study suggested that there is a scale influence within the 

results. Whereby, the averaging of VHI across the both the uMngeni and Breede-Overberg 

Catchments, were not able to provide an adequate temporal representation of agricultural drought 

experienced over the area as compared to SPEI. By using the coarse spatial resolution data at an 

averaged temporal catchment scale the results may have led to small- or medium-scale (light-to-

moderate conditions) drought events not being adequately captured and represented. Furthermore, 

the results presented herein may not have adequately accounted for the spatial heterogeneity in 

climatic and land use conditions within the catchment and therefore it should not be assumed that 

these results are applicable at all scales throughout the catchment.  

However from this spatial assessment of VHI it was apparent that in both the uMngeni and Breede-

Overberg catchment, there was a better and more comprehensive understanding of agricultural 

drought and it spatial variability and distribution within the different parts of the catchment. This 

may be due to the scaling of values used whereby, the spatial assessment considered drought 

conditions based on averages per pixel per month, whilst the temporal assessment was based on 

monthly averaged values across the catchment study site area. Conclusions can further be made 

that from the spatial scale assessment of VHI, that there is a seasonal variability associated with 

the occurrence of agricultural droughts, as certain areas across both catchments were found to be 

more susceptible to the occurrence of droughts during certain months and seasons. The spatial 

assessment of VHI was able to further assist in identifying the trends, and patterns of the areas 

most likely to be susceptible to the occurrence of agricultural drought especially as the month’s 

progress in the year. It was further acknowledged from the spatial assessment of VHI, in both study 

sites that due to the heterogeneous nature of variability experienced in a catchment certain areas 

in both study sites were likely to experience some degree of dryness conditions experienced even 

during a considered wet year period. 
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5.4 Drought Propagation Discussion 

For the propagation assessment it was apparent at both catchment sites, that the SPEI-3 timescale 

did not adequately represent the conditions favorable for the occurrence of agricultural drought as 

the results produced were very closely correlated to the values of SPI, whilst the VHI results 

produces in its averaged temporal assessment may have been misleading due to it accounting for 

catchment averages. However, at a 6 month timescale SPEI was able to be detect the characteristics 

and occurrence of agricultural drought relatively well. Therefore the simultaneous comparison of 

results between SPEI-6 and SPI-3 were seen as the most appropriate indices capable of evaluating 

and quantifying the drought propagation characteristics across both of the selected study sites 

In the uMngeni Catchment, for the severe-to-extreme meteorological events the trend identified 

was that typically, there is a lagging period of 1 to 2 months before the onset of the agricultural 

drought. Typically in this region the severity of the agricultural drought events were identified to 

have lower intensities as compared to the meteorological drought events. Whereby, on average the 

magnitude of the agricultural drought event in this case tends to have moderate-to-severe 

conditions experienced. A general trend observed for the propagation process in this region, was 

that despite the magnitude of the drought event in this catchment it was apparent that when the 

meteorological drought recovers to normal conditions the agricultural drought is still persistent. A 

key finding in this catchment was in 2017 whereby the results indicated that an agricultural drought 

event of 2 months occurred as an isolated event before the meteorological drought occurred. 

Possible reasons for this may be due to human interventions and actions (such as over-abstraction 

of water during this period) occurring prior to the deficit in rainfall. During this period it was also 

noted that the agricultural drought ended whilst the meteorological drought was still persistent. 

Possible reasons for this type of event may likely be due to water mitigation strategies being 

applied, such as inter-basin transfers or water use restrictions may have been implemented to 

ensure water was provided to the agricultural sectors.  

The drought propagation study in the Breede-Overberg Catchment indicated that the trends of 

propagation are highly variable in this catchment whereby, there were cases in which agricultural 

droughts persisted even after the meteorological drought event ends. However, there was also a 

cases where an agricultural drought were persistent as isolated events. A possible reason for this 
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event occurring may be owing to anthropogenic interference such as over abstraction of water 

leading to reduced water available to recharge the soil water that facilitate the growth of crops. 

Furthermore, results also suggested that on average the meteorological droughts tend to recover 

faster, however in this region the agricultural drought still persisted for a few more months. On 

average the Breede-Overberg catchment is more significantly impacted by the occurrence and 

characteristics of agricultural drought rather than meteorological drought. A contributing factor 

towards this may be the climatic conditions experienced in this area. The occurrence of isolated 

agricultural drought events may further indicate that the deficits in the evapotranspiration and 

declining soil moisture may be highly significant in this region.  

It should further be noted that typically the impacts and characteristics of meteorological drought 

tend to be more severe in the uMngeni catchment. Whilst the Breede-Overberg catchment tends to 

experience more severe and frequent agricultural drought conditions. The severity of drought 

events in the Breede-Overberg catchment may be due to this region experiencing Winter Rainfall. 

The absence of rainfall in this region may not be an issue during the winter period however, the 

effect in summer when temperatures are hotter may result in dry spells being amplified. This may 

further be owing to the lack of recharge occurring in the system. Therefore, the severity of drought 

events may differ to that of the conditions experienced in the uMngeni catchment which is a 

summer rainfall region.  

Overall the results obtained from this comparative assessment of drought propagation, in both the 

selected climatic regions, further iterated that the use of a single index during drought assessments 

may not be suitable to identify the propagation of drought and how it manifests itself within a 

catchment. Therefore a comprehensive and integrated assessment of quantifying the drought 

propagation process is important. From a management perspective the use of information from 

more than one type of drought and/or index may assist in forming a more robust understanding of 

the impacts associated with the propagation process and thus, facilitate the adaption of more 

applicable strategies than one would make if only a single drought type was assessed. 
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6. CONCLUSION AND RECOMMENDATIONS 

Drought is highly recognized as a phenomena that has the potential to impact on numerous sectors, 

namely, the environmental, agricultural and socio-economic sectors. They can be categorized into 

4 different types namely, meteorological, agricultural, hydrological and socio-economic droughts. 

These drought events can occur as isolated events, a mutually exclusive event or through the 

progression from one form to another. The transition of drought from one type to another is known 

as drought propagation. Typically the impacts faced by drought events are recognized to change 

as it evolves into its various types.  

The findings from this study further emphasize the variable nature of droughts and indicate that 

drought management decisions should be take into account as a holistic approach, especially for 

disaster, water and agricultural management. This research study was conducted to add to the 

theoretical knowledge of the drought propagation process and its associated characteristics. By 

understanding the drought propagation process, the management and mitigation strategies applied 

may be more effective in coping with the impacts of droughts. Typically if areas are well informed 

about the potential of a drought event occurring, it would allow for people to be more prepared for 

the consequences of the likely impacts they will be faced with. For example people would be aware 

to stock up on resources such as water and food supplies, or make arrangements to ensure crop 

productivity does not severely decline. Furthermore being better informed about the occurrence of 

droughts may reduce the vulnerabilities faced across all sectors of society.  

Understanding droughts and their propagation, through a historical perspective may aid in the 

forecasting of future drought events, thus allowing for people to be more aware and prepared for 

the impacts of drought events before or during the early stages of the droughts occurrence. 

Evaluating droughts from multiple perspectives may provide further insight on drought 

characteristics, spatial extent, potential impacts and its propagation process (e.g., from 

meteorological to agricultural drought). Thus, facilitation the better informed knowledge on 

drought conditions that can be utilized in disaster, agricultural and water resource management. 

A key finding observed, was that understanding the patterns and trends associated with the drought 

propagation process can contribute imperative knowledge to the disaster, water and agricultural 
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decision making process. It was acknowledged that droughts are a complex phenomenon. It was 

identified by this study that in both catchments, despite the different climatic conditions, there 

were trends observed where the propagation from a meteorological drought to agricultural drought 

had periods where these two droughts occurred simultaneously before either of the drought types 

could recover. This finding further emphasizes that typically even though a meteorological drought 

event may have ended, the effects and impacts of the agricultural drought may still be persistent. 

It can thus be concluded that there is a close interrelationship found between the conditions and 

impacts of the different drought types. Therefore, if the use of only one type of drought or index 

was considered in the indication for the decision making process, there might be a false perception 

of the conditions happening on the ground. 

It was further acknowledged from this study that the use of Satellite Earth Observation Products 

is able to address the limitations presented by traditional methods of acquiring data on the various 

hydro-climatic variables for drought assessments. However this being said, ground based 

information provides invaluable insight on what is happening on the ground. Therefore future 

studies on drought propagation should consider the use of Ground-based information as far as 

possible 

Furthermore, it was noted that the adoption of satellite derived-drought indices have the potential 

to evaluate droughts, especially through a spatial scale context. Whereby it was noted that for the 

temporal drought assessment conducted with the VHI, one of the main limitations acknowledged 

was that by assessing this drought index using catchment averages, the results produced were 

possibly misleading in their calculation. This may be owing to the fact that the recommended 

constant may not have been applicable in the region of study. However when assessing VHI in a 

spatial context it was apparent that localized drought events were detected throughout both of the 

catchment. The results from this further suggested that the averaging of results over large areas 

may lead to the miss-capturing of localized drought events.  

Owing to this, a recommendation proposed for future studies, would be to look at understanding a 

more localized context of drought propagation. Insights on this type of study may further allow for 

the vulnerability of drought on the different socio-economic classes to be better evaluated. For 

example, if a moderate drought were to occur over an area, the poorer community’s which rely 
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heavily on subsistence farming for their livelihood may feel the impacts of drought at a greater 

extent than people living in more urbanized communities. Identifying the localized areas more 

vulnerable to drought, may assist with these areas being prioritized in the drought management 

and mitigation decisions. 

The assessment conducted within the scope of this study looked at three selected drought indices 

(SPI, SPEI, and VHI). This was done in order to demonstrate the importance of understanding 

drought and how it may transitions from one type of drought to another. However, it is noted that 

there are a wide range of other indices available that could potentially be considered for future 

studies on drought propagation. It was noted that another potential limitation of the study was from 

the calculation of SPEI, whereby it was acknowledged from SPEI package manual that was known 

both PET and ETo calculations were considered to be equivalent, when deriving SPEI. Further to 

this another potential limitation to the study may have been through assuming SPEI to be 

considered as an agricultural drought index within the context of this study. This assumption was 

based owing to literature which indicates the potential that at various timescales SPEI is able to 

monitor the likely conditions associated with agricultural droughts 

In this study the transition of meteorological drought to agricultural droughts were assessed. 

However it should be noted that studying the drought propagation process in terms of all the 

different drought types (i.e. meteorological, agricultural and hydrological), can provide a greater, 

and more integrated perspective on the impacts of drought faced in an area. Therefore, future 

studies on drought propagation should consider approaches and indices to assess all three drought 

types.   
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