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ABSTRACT 

 

South Africa has approximately 1.27 million hectares of plantation forests, with the forestry 

industry contributing 1% to the state’s Gross Domestic Product (GDP). A major threat to the 

industry is an escalating number of tree-damaging insect pests and pathogens. Uromycladium 

acaciae is a pathogen which causes wattle rust in black wattle (Acacia mearnsii) plantation 

forests; after its first appearance in 2013 in KwaZulu-Natal, it has since spread to most areas 

in South Africa where suitable hosts are present, causing severe economic losses to the 

industry. Traditional field-based methods of assessing forest damage can be labour intensive 

and time consuming. The effective management of these biotic threats requires quick and 

efficient methods of assessing forest health. Remote sensing has the potential to assess vast 

areas of forest plantations in a timely and efficient manner. Therefore, the primary aim of this 

research is to assess U. acaciae canopy damage using freely available Landsat 8 multispectral 

satellite imagery and the partial least squares discriminant analysis algorithm (PLS-DA). The 

study was done on two plantation farms near Richmond, KwaZulu-Natal which are managed 

by NCT Forestry. The model detected forest canopy damage with an accuracy of 88.24% 

utilising seven bands and the PLS-DA algorithm. The Variable Importance in Projection (VIP) 

method was used to optimise the variables to be included in the model by selecting the most 

influential bands. These were identified as coastal aerosol band (430 nm - 450 nm), red band 

(640 nm - 670 nm), near infrared (850 nm - 880 nm) and NDVI. The model was run with only 

the VIP selected bands and an accuracy of 82.35% was produced. The study highlighted the 

potential of remote sensing to (1) detect canopy damage caused by U. acaciae and (2) provide 

a monitoring framework for analysing forest health using freely available Landsat 8 imagery. 

The secondary aim of this study is to use the maximum entropy species distribution model 

(SDM) to determine potential forestry areas that may be at risk of U. acaciae infection. Species 

distribution modelling using bioclimatic predictors can define the climatic range associated 

with the disease caused by this pathogen. The climatic range will help identify high risk areas 

and forecast potential outbreaks. This study assessed the capacity of the MaxEnt species 

distribution model (SDM) and bioclimatic variables to estimate forestry areas that have a 

suitable climate for U. acaciae development.  The model was developed using 19 bioclimatic 

variables sourced from WorldClim. The variables are used as predictors of risk for U. acaciae 

infection and are applied to the landscape occupied by black wattle plantations. The results 
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produced an area under the curve (AUC) value of = 0.97 suggesting strong discriminatory 

power of the model. The potential distribution of U. acaciae under future climate conditions 

was also assessed by applying the model to the bioclimatic variables developed from future 

climate surfaces acquired from WorldClim. The results emphasized (1) the usefulness of 

species distribution models for forest management and (2) highlighted how climate change can 

influence the distribution of U. acaciae due to the expansion and contraction of suitable 

climatic ranges.   

Overall, the results from the study indicate (1) Landsat 8 multispectral imagery can be used to 

detect forest canopy damage caused by U. acaciae, (2) PLS-DA variable importance in the 

projection can successfully select the subset of multispectral bands that are most important in 

detecting damage caused by U. acaciae, (3) the MaxEnt species distribution model and 

bioclimatic variables can be used to identify geographic locations at risk of U. acaciae infection 

and (4) the variable permutation metric successfully identified the most important bioclimatic 

variables for U. acaciae development and highlighted the climatic patterns associated with the 

occurrence of the disease caused by this pathogen. 
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Chapter One 

Introduction 

 

1.1. Background 

Forests are home to much of the earth’s biodiversity and can help mitigate climate change by 

acting as net carbon sinks (Sturrock et al., 2011). Economically, the commercial forestry 

industry contributes 1% to South Africa’s GDP and employs over 165 000 people (DAFF, 

2020). Additionally, planted forests play an important role in preserving natural forests, as they 

provide an alternative source of timber. In the last three decades, global forest area decreased 

by 40%. This is predominately due to the conversion of forested land to agricultural practice 

(Shvidenko et al., 2005). Disturbance agents such as insect pests, pathogens and fire escalate 

strain on forest resources (Sturrock et al., 2011). Therefore, acute forest management strategies 

are needed to help conserve forest resources and sustain the forestry industry.  

Black Wattle (Acacia mearnsii) is one of the most common species commercially grown in 

South Africa. A recent threat to black wattle plantations is the occurrence of a wattle rust 

disease caused by the fungus known as Uromycladium acaciae. In an effort to manage wattle 

rust outbreaks, remote sensing technologies and species distribution modelling were 

investigated to garner more knowledge about the distribution and environmental conditions 

associated with the presence of U. acaciae and the expression of the disease it causes. 

Monitoring and risk assessment of pests and pathogens are essential to an integrated pest 

management strategy. There is a pressing need for monitoring and risk assessment in 

commercial forests due to larger social, environmental and economic impacts. Disease and pest 

management strategies vary among damage-causing agents, hence the need to develop species-

specific systematic monitoring and risk assessment tools.  Broader understanding of pests and 

pathogens will encourage more precise management interventions and limit the social, 

environmental and economic impacts (Talgo et al., 2020).  

Traditional methods of assessing forest damage require field visits and, in some cases, 

destructive sampling of trees to determine the level of damage. This is not a practical solution 

when large areas of forest plantations are exposed to diseases and pests. Remote sensing has 

been used extensively to monitor forest stress caused by pests and diseases (Hall et al., 2016; 
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Kaiser et al., 2016; Heim et al., 2019). Multispectral remote sensing products are cost effective 

and easily accessible. The sensors collect data in three to six spectral bands within the visible 

and mid-infrared bands (Oumar, 2016) which have been used to map tree health with varying 

levels of accuracy. For example, Xiao and McPherson (2005) used Landsat 8 multispectral data 

to map tree health in the University of California, Davis with accuracies ranging between 86% 

and 88%. Wang et al. (2015) used the Landsat 8 OLI to map health levels of Black locust 

(Robinia pseudoacacia) in the Yellow River Delta in China using a maximum likelihood 

classifier and produced an accuracy of 74%.  

The application of remote sensing for mapping tree health relies on advanced statistical 

methods to help interpret the data and improve classification accuracy. Partial Least Squares-

Discriminant Analysis (PLS-DA) is a multivariate statistical technique that allows for the 

comparison between multiple response variables as well as multiple explanatory variables 

(Peerbhay et al., 2013). It is based on binary coding and uses sample characteristics and the 

variable of interest. This method generates fewer components and improves classification 

accuracy (Peerbhay et al., 2013). Several studies have used multispectral and hyperspectral 

imagery together with PLS-DA to map biotic and abiotic stresses in commercial crops and 

forest plantations, most of which achieved satisfactory classification accuracies. For example, 

Zovko et al. (2019) assessed grapevine drought stress in Croatia by using hyperspectral images 

taken by two spectral-radiance calibrated cameras covering wavelengths from 409 nm to 988 

nm and 950 nm to 2509 nm. Using the PLS-DA algorithm, the study produced an accuracy of 

97%. Dos Santos et al. (2017) used multispectral Landsat 8 imagery and PLS-DA to map 

Thaumastocoris peregrinus damage on Eucalyptus forests in Brazil and achieved an accuracy 

of 76.7%.  

A key component within an integrated management approach and which forms part of the risk 

assessment is predicting the distribution of pest species. Species distribution modelling (SDM) 

is a popular technique for estimating the potential distribution of species based on presence 

data and environmental predictors at the relevant site (McCune, 2016). The maximum entropy 

species distribution model (Philips et al., 2006) has been used extensively to estimate species 

distributions and to predict current and future distributions; it has also been used for large-scale 

biodiversity mapping by government and non-government organisations (Elith et al., 2011). 

One of the key advantages of MaxEnt is that it requires presence data only, overcoming the 

problem of unreliable absence data (Elith et al., 2010).  Several studies have shown the 

usefulness of SDMs to predict species distribution based on presence-only data and bioclimatic 
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variables (Evangelista et al., 2011; Barredo et al., 2015; Germishuizen et al., 2017) and to 

evaluate the potential impact of climate change on the distribution of economically important 

species or species that are of conservation interest (Qin et al., 2017; Li et al., 2020; Çoban et 

al., 2020). Yang et al. (2013) used the MaxEnt model and bioclimatic variables to estimate the 

distribution of the Malabar nut (Justicia adhatoda L) in the lesser Himalayan foothills and 

produced an AUC value of 92.3 which indicates strong predictive power of the model. Remya 

et al. (2015) used bioclimatic variables and the MaxEnt model to predict the habitat suitability 

for the Myristica dactyloides (Gaertn.) tree. Current and future climate scenarios were 

evaluated and using the Jackknife test, the study found the most important variables to be 

annual temperature, annual precipitation and precipitation of wettest month. Elith et al. (2013) 

utilized bioclimatic variables and the MaxEnt model to highlight the differences in geographic 

distribution of myrtle rust (Uredo rangelii) and guava rust (Puccinia psidii). The study noted 

the importance of correct disease classification as taxonomic differences in rust species can 

influence the results of modelled distributions. Moreover, the study emphasized the robustness 

of the MaxEnt technique by differentiating the predicted distributions of two rust species. 

Ikegami and Jenkins (2018) evaluated the global distribution of Pine Wilt Disease which is 

caused by the pine wood nematode (Bursaphelenchus xylophilus). The study used bioclimatic 

variables and the MaxEnt model to assess the climatic conditions which are suitable for Pine 

Wilt Disease occurrence and found the environmental variables which most likely correlate 

with the current distribution of Pine Wilt Disease are the warmest three months and aridity. 

Additionally, the study modelled the future climate using the WorldClim dataset and found the 

suitable geographic area for Pine Wilt Disease will increase based on current climate change 

projections.  

Based on the success of the above-mentioned studies, the present study investigated wattle rust 

using a twofold approach. The first was to assess wattle rust damage using Landsat 8 

multispectral imagery and PLS-DA. The second was to use the bioclimatic variables and the 

MaxEnt model to better understand the climatic niche of U. acaciae. 

1.2. Aims and objectives 

The aim of this research was to assess the utility of Landsat 8 multispectral imagery and 

machine learning techniques to monitor the occurrence of the wattle rust disease caused by the 

fungus U. acacia in black wattle plantation forests. Specifically, the objectives are: 
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• To assess the capability of Landsat 8 multispectral satellite imagery to detect wattle rust 

damage on black wattle using the PLS-DA algorithm.  

• To test the effectiveness of PLS variable importance in the projection (VIP) to select 

the most influential wavebands to detect wattle rust damage. 

• To identify the potential occurrence of wattle rust within the black wattle plantations 

landscape based on bioclimatic variables and the MaxEnt model. 

• To use the variable permutation metric to identify the most important climatic variables 

for U. acaciae development. 

• To create a wattle rust risk map based on the current and future climate. 

The first paper in this thesis assessed the efficacy of the Landsat 8 multispectral sensor and the 

PLS-DA technique to detect damage caused by the wattle rust. The VIP method was then used 

to identify the bands that are most important for verifying damage on black wattle. The second 

paper focuses on species distribution modelling. The MaxEnt model and bioclimatic variables 

were used to identify areas that may be at risk of U. acaciae infection. A risk map was created 

to highlight areas that may potentially have outbreaks of wattle rust based on the location and 

surrounding climate. Finally, the results from the two studies are summarised and applied to 

develop a framework to monitor wattle rust outbreaks and screen new areas for possible U. 

acaciae infection. 

1.3. Thesis outline 

This thesis is compiled in to four chapters. It is mainly structured around two core chapters 

(Chapters Two and Three). These chapters have been written specifically for publication. 

Chapter Two has been published and Chapter Three is currently in review.  Both these chapters 

have detailed sections covering the study area, literature review and methodology. Therefore, 

these sections will not be covered in the introduction of the thesis to avoid repetition.  

Chapter Two assesses the capabilities of the Landsat 8 multispectral sensor to detect wattle rust 

damage using partial least squares discriminant analysis (PLS-DA). The variable importance 

in the projection (VIP) method was used to identify the wavebands that are most likely to detect 

wattle rust damage. The model detected forest canopy damage with an accuracy of 88.24% 

utilising seven bands and the PLS-DA algorithm. The model was run with only the VIP selected 

bands and an accuracy of 82.35% was produced. 
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Chapter Three utilizes the bioclimatic variables and MaxEnt algorithm to model the 

distribution of U. acaciae in the current and predicted future climate. The variable permutation 

metric was used to determine which environmental variables are most suitable for the 

development of U. acaciae. The variable permutation metric identified the minimum 

temperature of coldest month (Bio6), precipitation of wettest month (Bio13), annual mean 

temperature (Bio1) and precipitation seasonality (Bio15) as the climatic variables which have 

the highest correlation with U. acaciae occurrence. 

Chapter Four is a synopsis of the study. The aims and objectives of the study are further 

discussed together with the findings and results. The chapter also discusses how the 

methodology used in this study can be used to develop a wattle rust monitoring system. Lastly, 

limitations of this study are examined and recommendations for future research are presented.  

The next chapter in this thesis addresses the first two objectives of this study. These are i) to 

assess Landsat 8 multispectral satellite imagery to detect wattle rust damage on black wattle 

using the PLS-DA algorithm and ii) to test the effectiveness of PLS variable importance in the 

projection (VIP) to select the most influential wavebands to detect wattle rust damage. This 

forms the first research paper which has been published.  

Oumar, M.S., Peerbhay, K., Germishuizen, I., Mutanga, O. and Oumar, Z., 2019. Detecting 

canopy damage caused by Uromycladium acaciae on South African Black Wattle forest 

compartments using moderate resolution satellite imagery. South African Journal of 

Geomatics, 8 (1), 69-83. 
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Chapter Two 

Detecting canopy damage caused by Uromycladium acaciae on South 

African Black Wattle forest compartments using moderate resolution 

satellite imagery 

 

2.1 Abstract 

Uromycladium acaciae, also known as wattle rust, is a rust fungus that has adversely impacted 

black wattle (Acacia mearnsii) in South Africa. This study assessed the potential of the Landsat 

8 multispectral sensor to detect canopy damage caused by wattle rust on two plantation farms 

near Richmond, KwaZulu-Natal. The Landsat 8 bands and vegetation indices detected forest 

canopy damage caused by Uromycladium acaciae with an accuracy of 88.24% utilising seven 

bands and the Partial Least Squares Discriminate Analysis (PLS-DA) algorithm. Additionally, 

the model was optimised using the Variable Importance in Projection (VIP) method which only 

selected the most influential bands in the model. The coastal aerosol band (430 nm - 450 nm), 

red band (640 nm - 670 nm), near infrared (850 nm - 880 nm) and the normalized difference 

vegetation index (NDVI) were exclusively used in the optimised model and an accuracy of 

82.35% was produced. The study highlighted the potential of remote sensing to detect canopy 

damage caused by a rust fungus and contributes towards a monitoring framework for analysing 

trends using freely available Landsat 8 imagery.  

2.2 Introduction 

Plantation forestry covers about 1.27 million hectares and predominantly occupies the 

Mpumalanga and KwaZulu-Natal provinces located in the eastern seaboard of the country. 

Softwood tree species include Pinus species while hard wood species are dominated by 

Eucalyptus and Acacia species (FSA, 2017). One of the most common species grown by wattle 

growers in South Africa is Acacia mearnsii, which is also known as Black Wattle. 

Approximately 112 029 ha of land is planted with Acacia mearnsii which contributes 7.4% to 

the market for timber and pulp production (Meyers et al., 2001). The bark of Black Wattle is 

considered to contain one of the richest sources of tannins which has various industrial uses, 

including that of leather tanning (Sherry, 1971). Apart from its characteristic in the bark, wattle 

trees are also utilised in soil reclamation, as wind breaks, fire fuel, mining timber and paper 
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pulp (Sherry, 1971; Rusk et al., 1990). In South Africa, Black Wattle is mostly grown for chip 

export and the production of charcoal (Crickmay and Associates, 2010). Furthermore, there are 

large areas of unmanaged wattle stands and woodlots predominantly located in KwaZulu-Natal 

which contributes towards the livelihoods of rural communities. Black Wattle is therefore an 

economically important tree species for plantations and is also socially important to the rural 

communities of South Africa. Nonetheless, with the constant increase in demand for timber 

products, forest production is under pressure and the future sustainability of the industry is at 

risk. One of the major threats identified by the South African National Forest Protection 

Strategy and adopted by the Department of Agriculture, Forestry and Fisheries (DAFF) is the 

escalating impact of insect pests and pathogens (Dyer et al., 2010). 

During 2013, an outbreak of a new disease had been observed in Black Wattle around the 

KwaZulu-Natal Midlands area, caused by a rust fungus. The pathogen had spread fast to all 

wattle growing areas in the country, becoming a major concern for wattle growers in the region. 

A concerted research effort had been undertaken by the Tree Protection Co-operative 

Programme (TPCP) together with the Institute for Commercial Forestry Research (ICFR) and 

industry partners to develop an effective management strategy to reduce the impact of the rust. 

Recent DNA sequencing techniques have been used to identify the rust as Uromycladium 

acaciae (McTaggart et al., 2015). Some of the symptoms of the affected trees include leaf 

spots, petiole and rachis deformation, defoliation, gummosis, stunting and dieback of seedlings 

(Figure 1). Fungicides are currently being tested for the control of U. acaciae. However, more 

research is needed to understand the seasonal cycle of the rust and environmental triggers of 

outbreaks to optimise the timing of interventions.  
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Figure 1. Uromycladium acaciae impacts on Acacia mearnsii trees. 

Image Picture Symptom 

 

Images A  

 

The slime as seen on black wattle 

in Enon an Etterby plantations. 

Image B 

 

Leaf curl seen on a few trees. 

Image C  

 

Telia present on the leaves. 

Image D  

 

 

Uredinia present on leaves and 

stem. 
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To effectively respond to the impact and spread of the rust, forest managers and researchers 

require up-to-date information related to the current spatial extent, variability and severity of 

such infestation.  Monitoring and surveillance are key components of an effective pest and 

disease management strategy, however, there is currently no system in place locally to respond 

to this need. More generally, the need for a forest health surveillance system has been identified 

as a priority for the South African forestry sector (Dyer et al., 2010). Current capabilities are 

inadequate with conventional field-based methods being prohibitively expensive, labour 

intensive and time consuming. According to Oumar and Mutanga (2010) field-based 

assessments are the most accurate in determining forest health, however, this is not a feasible 

option when larger areas of forest health estimates are needed. Earth observation technologies 

such as satellites provide local to global coverage on larger areas where field measurements 

are unfeasible on a regular basis. Remote sensing technologies as an alternative, offer the 

potential to enhance forest management strategies by providing a synopsis of forest health 

rapidly and over vast geographic extents (Wanger et al., 2010).  

This study seeks to develop an impact detection methodology that can be used for mapping and 

monitoring the presence of wattle rust using remote sensing technologies. The development of 

such methodology will not only play a key role for the management of the wattle rust to ensure 

the sustainability of wattle resources into the future but will also contribute towards the 

development of a broad national forest health monitoring system.  

New generation, moderate resolution space-borne imagery such as Landsat 8 can be an 

inexpensive, effective technology for the mapping, monitoring and risk assessment of new 

canopy pests and pathogens (Wang et al. 2010; Asner et al. 2011). Remote sensing has been 

widely adopted for the monitoring of forest health and in support of integrated pest 

management strategies (Kennedy et al., 2010; Verbesselt et al., 2010; Meigs et al., 2011; 

Wulder et al., 2012). For example, the Landsat sensor is particularly sensitive to changes in 

forest structure in the near infrared and short-wave infrared channels (Wulder et al., 2006). 

Image transformations in the near infrared and short-wave infrared regions have shown an 86% 

success rate in mapping subtle changes in canopy due to Mountain pine beetle red-attack 

damage. This result was achieved utilising a logistic regression approach (Wulder et al., 2006). 

Ismail and Mutanga (2006) visually assessed damage to pine compartments triggered by Sirex 

noctilio attacks in southern KwaZulu-Natal. The visual inspections were classed in a severity 

scale of damage. Using high resolution digital multispectral imagery (0.5 m x 0.5 m) they 

showed significant differences in the vegetation indices derived from the imagery between 
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healthy and visually damaged pine compartments. Oumar and Mutanga (2013) used the 

WorldView-2 sensor to detect Thaumastocoris peregrinus (Bronze Bug) damage in Eucalyptus 

plantations. Vegetation indices and environmental variables were entered separately into a 

Partial Least Squares (PLS) regression model and then combined in one model to test the 

collective strength of predicting Thaumastocoris peregrinus damage. An accuracy of 71% was 

achieved with bands in the red-edge and near infrared being the most important in the 

prediction of damage (Oumar and Mutanga, 2013). Lottering and Mutanga (2015) successfully 

mapped levels of Gonipterus scutellatus damage in commercial Eucalyptus stands utilising a 

pan-sharpened WorldView-2 image. The NDVI, Simple Ratio and Enhanced Vegetation Index 

were used as variables to detect damage. As with previous studies (e.g. Oumar and Mutanga, 

2013) it was observed that NDVI values were most significant in detecting defoliation in forest 

plantations.  

In summary, the sudden outbreak of U. acaciae has caused serious concerns towards the 

sustainability of the South African wattle industry. Black wattle is one of the most profitable 

tree species per hectare due to its bark and wood properties and requires urgent mitigation 

against the rust fungus. It is within this context, that this study aims to detect damage and map 

the current spatial extent of damaged plantations using medium resolution and cost-effective 

Landsat 8 operational land imager (OLI). The Landsat 8 sensor has seven spectral bands with 

a spatial resolution of 30 meters and would be advantageous for site interventions if successful 

in detecting disease defoliation in plantation forestry. A Partial Least Squares Discriminant 

Analysis (PLS-DA) framework is adopted in this study owing to the recent success in forest 

type applications (Peerbhay et al., 2013, Peerbhay et al., 2014, Peerbhay et al., 2016) and to 

the best of our knowledge the method has not being used for forest defoliation mapping using 

remotely sensed data.  

2.3 Methods and materials  

2.3.1 Study area 

Enon and Etterby farms which are managed by NCT Forestry were chosen as the study area. 

The study area was chosen due to intense outbreaks of wattle rust and the noticable decline in 

tree health and productivity. The farms are located near Richmond (29.8667°S, 30.2667°E) in 

the KwaZulu-Natal province of South Africa and covers an area of 875 ha. The farms are 

situated at an altitude range between 900 m and 1400 m above sea level. The area receives 

annual rainfall ranging from 800 mm to 1280 mm and has an average annual temperature of 
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17°C. The area has deep well drained soils where timber and sugar cane farming are the primary 

activities across the arable land. Acacia mearnsii and Eucalyptus smithii are the dominant tree 

species planted (Mucina and Rutherford, 2006).                                                                                         

   

     

Figure 2. Location of the study area with the boundary of Enon and Etterby forest plantations. 

2.3.2 Landsat 8 

One scene of Landsat 8 multispectral data was acquired from the United States Geological 

Survey website (www.usgs.com) on 29th March 2015. Landsat 8 has narrower spectral bands 

compared to its immediate predecessor, Landsat 7. The near infrared in Landsat 8 (850 nm - 

880 nm) and red (640 nm - 670 nm) improves on Landsat 7 near infrared (1550 nm - 1750 nm) 

and red (770 nm - 900 nm). The narrower bands will be better at distinguishing subtle changes 

in surface reflectance. Landsat 8 imagery has a scene size of 170 km north-south by 180 km 

east-west. The imagery consists of seven spectral bands at 30 meters resolution (Table 1) and 

is atmospherically and geometrically corrected by the data providers.  Among the seven bands, 

the red and near-infrared were used to calculate the NDVI values owing to its success in 
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previous studies to detect forest defoliation (Oumar and Mutanga, 2013). The image was 

atmospherically converted to radiance and then surface reflectance using the dark image 

subtraction method (Chavez, 1988). Using the field survey plots, image spectra were extracted 

using ENVI 4.8 software to develop an input dataset into the PLS-DA model for discrimination 

(Congalton and Green, 1999). 

Table 1. Landsat 8 Operational Land Imager (OLI) bands and wavelength 

Bands Wavelength (nanometres) Resolution (meters) 

Band 1 - Coastal aerosol 430 - 450 30 

Band 2 - Blue 450 - 510 30 

Band 3 - Green 530 - 590 30 

Band 4 - Red 640 - 670 30 

Band 5 - Near Infrared (NIR) 850 - 880 30 

Band 6 - SWIR 1 1570 - 1650 30 

Band 7 - SWIR 2 2110 - 2290 30 

 

2.3.3 Data collection  

Following the industry protocol developed in conjunction with the TPCP and Forest 

Agricultural Biotechnology Institute (FABI), 79 field plots were set in wattle compartments 

between the ages of 7 and 9 years and which were greater than 7 ha (approximately 9 pixels) 

to avoid spectral noise from adjacent land cover. The field work was done between 19th March 

and 25th March 2015. Each field plot was surveyed to determine the presence, level of 

infestation and impact of the rust, Uromycladium acaciae, on the forest canopy.  Each field 

plot had a rectangular plot of 30 m x 30 m consisting of 100 trees planted at a spacing of 3 m 

x 3 m. A differentially corrected handheld GPS 60 was used and recordings were taken at each 

plot centre. Since the presence of the rust was surveyed to be widespread with no clear 

identification of a non-infected wattle stand, 31 plots showing no symptoms of the wattle rust 

were used as control plots and were located in the Mpumalanga region. 

2.4. Statistical Analysis 

2.4.1 Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS-DA is a regression-based prediction model that identifies a correlation between the 

predictor variable (X = spectral bands) and the response variable (Y = wattle rust) (Wold et al., 
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2001). The goal of using PLS is to provide dimension reduction in the dataset. In this study, 

the response variable was the wattle rust which is binary and classed into presence of damage 

and absence of damage. The PLS-DA model creates a few eigenvectors which explain the 

variance of the spectral reflectance as well as the correlation with the response variable 

(Peerbhay et al., 2013). 

Due to the large number of correlated variables in a PLS-DA model, a cross validation analysis 

was performed to test the significance of each component using Tanagra statistical software 

(Rakotomalala et al., 2005). Components were added numerically until the lowest coefficient 

of variation (CV) error rate was obtained. The purpose of cross-validation is to avoid using too 

many low order components which may reduce the model accuracy (Peerbhay et al., 2013).  

The Variable Importance in the Projection (VIP) method was used to select bands that have the 

highest importance in a PLS-DA model:  

                                        [1]        

Where VIPk is the importance of the kth waveband based on a model with α components. Wαk 

is the corresponding loading weight of the kth waveband in the αth PLS-DA component. Ta, 

Wak and Qa are the ath column vectors, and K is the total number of wavebands of X (Gomez 

et al., 2008).  

This method scores each waveband in the dataset and ranks them in order of importance. Bands 

that score higher than one have the highest influence in the model. The model was then re-run 

using the VIP bands to test if the classification accuracy improved or regressed (Peerbhay et 

al., 2013). 

2.4.2 Accuracy assessment 

Approximately 70% of the data was used for model training and 30% for model testing. A 

confusion matrix was used to validate the accuracy. The overall accuracy was tested using the 

KHAT statistic. This is calculated by adding the number of correctly classified values and 

dividing it by the total number of values in the confusion matrix. KHAT values range from -1 

to +1, where +1 represents highest accuracy between training and test datasets. The user and 

producer accuracy was also calculated in the confusion matrix. The user accuracy is calculated 

by taking the number of correct classifications in each class and dividing it by the row total. 





15 
 

 

Figure 4. Testing PLS-DA components to determine the lowest CV error with 7 bands and 

NDVI using tenfold cross-validation. 

2.5.3 PLS-DA classification 

The confusion matrix in Table 2 indicates the performance of PLS-DA in classifying the 

presence and absence of Uromycladium acaciae damage on Acacia mearnsii. The PLS-DA 

model classified the presence of damage and absence of damage with an overall accuracy of 

88.24% with a KHAT value of 0.76. The producer accuracy for absence of damage is 75 and 

for presence of damage is 100. The user accuracy for absence of damage is 100 and for presence 

of damage is 82.  

Table 2. Confusion matrix using 7 Landsat 8 bands. 

 Absence of damage Presence of 

damage 

Row Total 

Absence of damage 60 0 60 

Presence of 

damage 

20 90 110 

Column Total 80 90 170 

17.89%

14.32%

12.10%

10.75%

8.23%

4.09%
4.86%

4.19%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 2 3 4 5 6 7 8

C
ro

ss
-v

a
li

d
a
te

d
 e

rr
o
r 

(%
)

Number of components

KHAT 0.76 

Overall 

Accuracy 

88.24% 

 

Error rate 

11.76% 

 

 

Absence of 

damage 

Presence of 

damage 

Producer 

Accuracy 

75 100 

User Accuracy 100 82 



16 
 

2.5.4 PLS-DA model optimization using VIP bands 

The next step was to determine the VIP scores for the 7 bands including the NDVI variable. 

PLS-DA provides a hierarchical scoring system which lists wavebands which are most relevant 

in the model. Band 5 near infrared (1.23) had the highest significance followed by coastal 

aerosol (1.05) and red (1.03). The NDVI had a value of (1.14) which represents greater 

significance than any of the bands and illustrates the significance of this variable in determining 

vegetation health.  

 

Figure 5. Waveband importance as determined by the VIP method. The important wavebands 

are those with VIP values greater than one. 

The model was then run again using only the VIP bands as depicted in Figure 6. When 

optimising the model, four components yielded the lowest CV error rate of 6.88% as seen 

below in Figure 6. 
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Figure 6. Testing PLS-DA components to determine the lowest CV error using the four VIP 

bands and NDVI. 

The confusion matrix in Table 3 below indicates the performance of PLS-DA in classifying the 

presence and absence of Uromycladium acaciae damage with only the four VIP bands. The 

PLS-DA model classified the presence of damage and absence of damage with an overall 

accuracy of 82.35% and with a KHAT value of 0.66. The producer accuracy for absence of 

damage is 100 and for presence of damage is 70. The user accuracy for absence of damage is 

70 and for presence of damage is 100.  

Table 3. Confusion Matrix based on PLS-DA algorithm and variables selected by the VIP. 

 Absence of damage Presence of 

damage 

Row Total 

Absence of damage 70 30 100 

Presence of 

damage 

0 70 70 

Column Total 70 100 170 
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2.6. Discussion 

This chapter has shown the potential of the freely available multispectral Landsat 8 satellite to 

detect the impact on trees infected with Uromycladium acaciae, in South African wattle 

plantations. The results show the success of the PLS-DA technique combined with remote 

sensed variables for disease damage detection in plantation forestry and contributes towards 

developing a routine monitoring system for repeated Uromycladium acaciae monitoring. 

Moreover, this study has shown that in addition to recent remote sensing techniques, utilizing 

PLS for pest detection (Oumar and Mutanga, 2010) and species classification (Peerbhay et al., 

2013), the algorithm can also be successfully utilized for disease damage detection.  

2.6.1 Mapping Uromycladium acaciae damage using Landsat 8 and PLS-DA 

The ability to detect Uromycladium acaciae damage remotely provides a practical tool for 

identifying outbreaks thus contributing to mapping trends and the continuous monitoring of the 

disease. The freely available imagery of Landsat 8 and revisit time of 16 days make it a cost-

effective solution for monitoring Uromycladium acaciae damage (Oumar, 2016). Using the 

Landsat 8 bands, PLS-DA successfully used 6 components to detect defoliation caused by 

Uromycladium acaciae and produced an accuracy of 88.24% and kappa value of 0.76. The 

accuracy obtained in this study is comparable to that of other studies which have identified 

other forest pathogens in South Africa using remotely sensed information (Poona and Ismail, 

2013). For example, Poona and Ismail (2013) used Quickbird imagery and artificial neural 

networks to detect pitch canker disease in Pinus radiata forests. Several vegetation indices 

were used to discriminate healthy tree crowns from infected tree crowns. The neural network 

model managed to produce an overall accuracy of 82.15%. Similarly, Poona and Ismail (2014) 

used a handheld field spectrometer to detect asymptomatic Fusarium circinatum stress in 3 

months old Pinus radiata seedlings. The random forest algorithm and the Boruta algorithm 

were used for classification and dimension reduction respectively. The Boruta algorithm 

highlighted the most important bands as well as the least important to discriminate between 

infected and healthy seedlings. Between the various classes of seedlings sampled in the study, 

the KHAT values ranged from 0.79 to 0.84. Additionally, by utilising only the most significant 

wavebands, the classification accuracy is improved.  

2.6.2 Mapping Uromycladium acaciae using VIP variables and PLS-DA  

PLS-DA provides valuable information on important variables based on the VIP method. The 

analysis of important variables selected by VIP has shown that the highest scores in the PLS-
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DA model were the coastal aerosol (430 nm - 450 nm), red (640 nm – 670 nm) and NIR (850 

nm – 880 nm) bands. The results obtained by the VIP model produced a slightly reduced overall 

classification accuracy of 82.35%. This is a reduction of 5.89% when compared to using all 

seven bands. However, this process shows the capability of using fewer important bands to 

produce a high classification accuracy greater than 80%. 

The results of this study were in contrast to the study conducted by Peerbhay and Mutanga 

(2013), whereby the VIP analysis improved the classification of forest species. Peerbhay et al. 

(2013) found the accuracy improved to 88.78% utilising VIP bands (n = 78) compared to 

utilising all AISA Eagle bands (n = 230) which produced an overall accuracy of 80.61%. A 

possible reason for the different results between the two studies is the number of bands utilised. 

Landsat 8 has 7 bands whereas AISA Eagle has a total of 230. The many bands of AISA Eagle 

may have caused over-fitting of the model and therefore reduced the overall accuracy. Landsat 

8 has a fewer number of bands thus reducing the number of bands from 7 to 4 (VIP) lowers the 

sensors ability to detect spectral variation. Future work should consider the utility of employing 

higher spectral resolution sensors such as Sentinel-2, with 13 bands or WoldView-3 with 16 

bands, to improve on detection results.  

The near infrared and NDVI indices calculated from Landsat 8 were classified as the most 

important variables for detecting Uromycladium acaciae damage. Vegetation indices 

calculated from red and near infrared are sensitive to plant phenology and thus provide a good 

measure of forest health (Oumar, 2016). This highlights the potential to detect forest damage 

using the visible wavebands. Furthermore, this study illustrates the usefulness of PLS-DA in 

managing spatial data as well as successfully classifying areas that have been damaged by 

Uromycladium acaciae.  

2.7. Summary 

The aim of this study was to assess the potential of Landsat 8 multispectral imagery in 

conjunction with PLS-DA to detect damaged caused by Uromycladium acaciae at farm level 

in two KwaZulu-Natal forest plantations. The results revealed that the Landsat 8 multispectral 

sensor successfully detected the trees which were under stress by Uromycladium acaciae and 

that the methodology developed in this study may be adopted to implement a monitoring 

system for the wattle rust at a landscape level. Additionally, the VIP PLS-DA method was 

successful in determining the subset of bands which are most useful to detect Uromycladium 

acaciae canopy damage. The near infrared (1.23) coastal aerosol (1.05) and red (1.03) were 
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ranked as the most significant.  The NDVI had a value of (1.14) which represents greater 

significance than any of the bands and illustrates the significance of this variable in determining 

vegetation health. This opens up the possibility to investigate Uromycladium acaciae under a 

higher resolution sensor to bolster monitoring efforts as well assess the pathogen at different 

lifecycles, where smaller symptoms of the pest are not detectable using multispectral imagery.  

The next chapter in this study investigates estimating areas at risk of Uromycladium acaciae 

occurrence using the maximum entropy species distribution model and bioclimatic variables.  
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Chapter 3 

Assessing the geographic suitability of wattle rust occurrence in South 

African black wattle timber forestry areas using indirect mapping 

approaches 

 

3.1 Abstract 

Wattle rust (Uromycladium acaciae) is a fast spreading rust fungus that has infected planted 

black wattle (Acacia mearnsii) forests in South Africa. This study illustrates the effectiveness 

of the maximum entropy species distribution model and bioclimatic variables sourced from 

WorldClim for assessing the potential geographic vulnerability of black wattle to U. acaciae 

under current and future climate conditions. Presence data was collected at various forest 

plantation farms in KwaZulu-Natal and Mpumalanga provinces of South Africa. The MaxEnt 

model produced an area under the curve (AUC) value of 0.97. The variable permutation metric 

identified the minimum temperature of coldest month (Bio6), precipitation of wettest month 

(Bio13), annual mean temperature (Bio1) and precipitation seasonality (Bio15) as the climatic 

variables which have the highest correlation with Uromycladium acaciae occurrence. The 

results emphasized the usefulness of species distribution models for forest management and 

highlights how climate change can influence the distribution of the pathogen due to the 

expansion and contraction of suitable climatic ranges.   

3.2. Introduction 

Industrial plantations in South Africa occupy an area of approximately 1.27 million hectares, 

of which 80% is found in the provinces of Mpumalanga and KwaZulu-Natal (DAFF, 2020). 

These plantations are dominated by three exotic genera: Pinus (50%), Eucalyptus (43%) and 

Wattle (7%) (FSA, 2020). Wattle constitutes a relatively smaller portion of the commercial 

plantations; however, it makes up for 66% of South African hardwood chip export and it is the 

preferred species by medium and small growers due to the diversified end products for local 

and export markets (Chan et al., 2015). Nearly all these forest plantations consist of highly 

managed planted blocks of even-aged, single species trees that are commercially profitable. 

Commercial forest products contribute approximately 1% to the gross domestic product (GDP) 

of the country and the forestry sector provides employment to over 165000 individuals mostly 

in rural areas were opportunities for employment are limited (DAFF, 2020). 
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Wattle plantations are most commonly grown in KwaZulu-Natal (71 166 ha) and Mpumalanga 

(11 964 ha) (FSA, 2020). The uses of wattle extend to pulp and paper, wood chips, tannins, 

adhesives and charcoal (Chan et al., 2015). Due to the variety of products derived from wattle 

trees, wattle plantations are one of the most profitable tree species per hectare.  

The increasing number of pests and pathogens poses the most serious threats to plantation 

forests in South Africa (Wingfield et al., 2008).  In 2013, a severe outbreak of a rust fungus 

appeared on black wattle trees (Acacia mearnsii) in the KwaZulu-Natal Midlands. The fungus, 

then identified as Uromycladium acaciae, was first observed in South Africa in 1988 

(McTaggart et al., 2015). Symptoms of the fungus include gummosis of the bark, leaf curling, 

stunted growth of young trees and the appearance of brown slime on leaves and stems 

(McTaggart et al., 2015). In severe instances, the rust fungus causes leaf defoliation and leaf 

drop with dark coloured pustules appearing on the underside of the leaf. Since the initial 

outbreak in KwaZulu-Natal, the rust has spread to most wattle plantations and woodlots in 

South Africa. All A. mearnsii plantations are at risk with no tolerant genotypes available to 

date.   

In an effort to reduce the impact of the rust, an industry-wide working group was formed in 

partnership with research and academic institutions to support research projects in the 

development of a wattle rust integrated management strategy. Insect pests and pathogens often 

spread quickly across the landscape where suitable hosts are available; hence, monitoring is a 

key component of an effective strategy to manage these pests and pathogens, by providing the 

data required to evaluate the extent and intensity of the damage that they cause (Ismail et al. 

2007; Oumar et al. 2016; Lottering et al. 2016). Our previous study on detecting canopy 

damage caused directly by wattle rust on commercial wattle in KwaZulu-Natal utilizing 

Landsat 8 imagery (430 nm - 2290 nm) achieved an accuracy of 88.24% using seven Landsat 

8 bands and the partial least squares discriminant analysis algorithm (Oumar et al., 2019). This 

work was limited to the detection of damage caused by the wattle rust and did not explore the 

environmental factors associated with the presence and severity of the disease. Understanding 

the relationship between environmental factors, particularly climate variability and rust 

occurrence is needed to evaluate the susceptibility of wattle plantations to the rust in different 

climatic areas of South Africa and to evaluate the potential distribution of the rust under future 

climate scenarios. 
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The life cycle of U. acaciae and the manifestation of the disease it causes are strongly climate 

driven. Fraser et al. 2017 investigated the optimal climatic conditions associated with key 

phases of the life cycle of U. acaciae in a climate-controlled environment. The development of 

teliospores, basidiospores and urediniospores was assessed at various temperatures and leaf 

wetness duration periods. It was found that the phases of the life cycle of the rust fungus and 

spore germination are strongly climate driven. The optimal conditions for U. acaciae infection 

on A. mearnsii is a 48-hour period of leaf wetness at an ambient temperature between 15°C and 

20°C (Fraser et al., 2017). 

Guava rust (Puccinia psidii) is another rust species recently detected in South Africa and 

potentially affecting productive eucalypt plantations (Roux et al., 2015). This rust was first 

observed in 2013 in KwaZulu-Natal and has since spread to most areas in South Africa where 

climatic conditions are favourable and susceptible hosts are present. Many species belonging 

to the Myrtaceae family, including commercially important Eucalyptus tree species as well as 

some indigenous species, are susceptible to infection by P. psidii. Risk maps based on climatic 

thresholds were developed to identify areas in South Africa that are climatically suitable for 

the establishment of a viable P. psidii population. Areas that experience seasonally a relative 

humidity greater than 80%, together with average temperatures between 18°C and 22°C were 

highlighted as potentially suitable for P. psidii. Most of the areas meeting these climatic 

requirements are located on the eastern seaboard of the country in areas that are currently 

utilised for commercial wood production (Roux et al., 2015). 

In this regard, plantation forests are strongly affected by changes in temperature and the 

resulting increase in biotic and abiotic risk. In South Africa, average temperatures have 

increased by at least 1°C over the past five decades, which is 1.5 times the observed global 

average, and rainfall patterns are becoming less predictable, with extreme rainfall events 

occurring more frequently (Ziervogel et al., 2014).  Such climatic changes can trigger existing 

and new rust occurrences (Berg et al. 2006; Jepsen et al. 2008) and could lead to the expansion 

of their geographic range. Climate-induced physiological stress has been associated with higher 

vulnerability of trees to pests and pathogens (Anderegg et al., 2015) by lowering a tree’s natural 

defence mechanism (Madden, 1968). The impact of climate change on forestry can be grouped 

into abiotic stressors such as temperature and moisture and biotic stressors such as diseases and 

pathogens (Boland et al., 2004). Abiotic stressors have an influence on forests susceptibility to 

infections and additionally also influence the growth and reproduction of biotic diseases and 
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pathogens. Interactions between abiotic and biotic stressors are likely to be the key factors in 

forest disease outbreaks (Sturrock et al., 2011).  

For instance, Desprez-Loustau et al. (2007) investigated the influence of climate on two 

common Poplar leaf rusts Melampsora medusae and Melampsora allii-populina. Using 

simulated climatic environments, the research found that the highest occurrence of rusts was 

in summer months with higher than average mean temperature and with lower than average 

mean precipitation. This could possibly indicate that drought-stressed trees and warmer 

environments are two important variables for M. medusae and M. allii-populina outbreaks 

(Desprez-Loustau et al., 2007). 

In another study conducted in Wisconsin, United States, the occurrence of White Pine blister 

rust (Cronartium ribicola), a fungus which causes rusts in Pinus species, was evaluated to 

determine the ideal environmental conditions for the pathogen to spread (Van Arsdel et al., 

1956). The study found that the optimal conditions for rust infection were ambient temperatures 

between 0°C and 20°C and moisture saturated air for a period of 48 hours (Van Arsdel et al., 

1956). 

Venier et al. (1998) assessed the historical distribution of Scleroderris canker in Ontario, 

Canada. This disease is caused by the Gremmeniella abietina fungus and affects Pinus species. 

Using a logistic regression model and the mean temperature and mean precipitation of the 

coldest quarter as predictors, a probability of occurrence map was produced with an accuracy 

of 84%. The most important climatic variables for Scleroderris outbreaks were cool, moist 

conditions (Venier et al., 1998). 

Recent studies have also used bioclimatic variables to model species distribution as tools for 

forest management. Barredo et al. (2015) utilized bioclimatic variables to model the present 

and future geographic distribution of large pine weevil (Hylobius abietis L) and horse-chestnut 

leaf miner (Cameraria ohridella) in Europe and showed the potential of applying species 

distribution models in forest management. Evangelista et al.  (2011) assessed forests 

vulnerability and the potential distribution of three pine beetle species under the current and 

future climate in the interior west of the United States using bioclimatic variables as predictors 

of pine beetle presence. Climate models for 2020 and 2050 were created using data from 

WorldClim. The results revealed that suitable habitats for pine beetle will shift considerably. 

Host tree species will become more vulnerable in future in some areas whilst other areas will 

experience reduced risk of pine beetle attack.  
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Climate-based risk models (CBRM) therefore can be applied to predict current and future 

geographic distribution of pests and pathogens (Bosso et al., 2017). With regard to the wattle 

rust and its management in South African black wattle commercial plantations, a risk map 

highlighting the projected geographic areas susceptible to U. acaciae infection is critical for an 

effective forest integrated management protection strategy (Germishuizen et al., 2017). 

Moreover, U. acaciae threatens several endemic plant species that contribute to the rich and 

unique biodiversity of the southern African region, and a bioclimatic niche model may be 

applied also to evaluate the risk of severe infestation to these species for conservation purposes 

(Roux et al., 2015). This present study seeks to find a relationship between climate and the 

occurrence and spread of U. acaciae by identifying the climatic niche associated with this 

fungus. The study aims to assist foresters to effectively manage this disease by proactively 

anticipating rust outbreaks and intervening accordingly. The work builds on previous research 

by Fraser et al. (2017) and Oumar et al. (2019) to develop a spatially relevant risk map based 

on the climatic niche of U. acaciae. 

3.3. Methods and materials 

3.3.1 Study area 

The study was carried out in the KwaZulu-Natal and Mpumalanga provinces of South Africa. 

Enon and Etterby farms in KwaZulu-Natal are managed by NCT Forestry and were chosen as 

the study area due to intense outbreaks of wattle rust and the noticable decline in tree health 

and productivity. Healthy black wattle data was collected from several privately owned farms 

in Mpumalanga which showed no symtoms of wattle rust. KwaZulu-Natal is characterized by 

a temperate to subtropical climate. Mean annual precipitation (MAP) ranges between 846 mm 

and 857 mm and the mean annual temperature (MAT) is 20°C in areas where A. mearnsii is 

grown. Timber and sugar cane farming are the primary activities planted across KwaZulu-

Natal. Mpumalanga has a warm temperate in the north and a cool temperate in the south. Mean 

annual precipitation (MAP) ranges between 846 mm and 857 mm and the mean annual 

temperature (MAT) is 10.5°C in areas where A. mearnsii is grown. Agriculture in Mpumalanga 

largely consists of field crops such as maize, grain sorghum, wheat barley and soybeans with 

A. mearnsii, mainly planted in the south. Acacia mearnsii, Eucalyptus dunnii and Eucalyptus 

grandis and its hybrids are the dominant commercially planted tree species in both provinces. 

Commercial plantations are planted as single species and even age units (compartments) 

ranging in size from 1 ha to 100 ha and managed mainly for pulp, poles and sawtimber 
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ages of 7 and 9 years and which were greater than 7 ha (approximately 9 pixels) to avoid 

spectral noise from adjacent land cover. The data was collected between 19th and 25th March 

2015. Each field plot was laid in the middle of the compartment and consisted of a rectangular 

plot of 30 m x 30 m consisting of approximately 100 trees planted at a spacing of 3 m x 3 m 

where presence, level of infestation and impact of the rust on the forest canopy were assessed. 

Plot coordinates were recorded at the centre of each plot using a differentially corrected Garmin 

GPS 60 handheld Global Positioning System (GPS). 

3.4 Environmental variables 

Bioclimatic variables obtained from the WorldClim dataset (Hijmans et al., 2011) at 30 arc-

second (1 km x 1 km) grid cell resolution was used as environmental predictors of wattle rust 

occurrence. The dataset consists of 19 bioclimatic surfaces derived from historical rainfall and 

temperature records from weather stations, and it is available at http://www.worldclim.org 

(accessed 01 November 2018). Bioclimatic variables are particularly suited for species niche 

modelling; they are ecologically meaningful, taking into account seasonality and extreme 

climatic events in addition to rainfall and temperature averages. The ecological niche model 

developed under current climate conditions was then applied to long-term future climate 

scenarios. Monthly rainfall, minimum temperature (tmin) and maximum temperature (tmax) 

surfaces were developed based on the medians of five global circulation models (GCMs) for 

long-term climate scenario (2080 - 2100) obtained from the WorldClim website (Table 5). The 

Representative Concentration Pathway (RCP) selected was the 4.5 emission scenario, which is 

based on moderate population and economic growth and emissions reduction from mid-

century. From these surfaces, “future” bioclimatic variables were developed using the package 

Dismo (Hijmans et al., 2011) in the R environment.  
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Table 4. Description of the 19 Bioclimatic variables (Hijmans et al., 2011) used as predictors 

of the presence of the wattle rust  

Bioclimatic Variables 

BIO1: annual mean temperature 

BIO2: mean diurnal range 

BIO3: isothermally 

BIO4: temperature seasonality 

BIO5: maximum temperature of warmest month 

BIO6: minimum temperature of coldest month 

BIO7: temperature annual range 

BIO8: mean temperature of wettest quarter 

BIO9: mean temperature of driest quarter 

BIO10: mean temperature of warmest quarter 

BIO11: mean temperature of coldest quarter 

BIO12: annual precipitation 

BIO13: precipitation of wettest month 

BIO14: precipitation of driest month 

BIO15: precipitation seasonality 

BIO16: precipitation of wettest quarter 

BIO17: precipitation of driest quarter 

BIO18: precipitation of warmest quarter 

BIO19: precipitation of coldest quarter 
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Where Pr (y-1|z) is the probability of presence of the species,  𝑓(𝑧) is the probability density 

of the environmental covariates (z) across the landscape of interest (𝑓) and 𝑓1(𝑧) is the 

probability density of the environmental covariates (z) across locations within 𝑓 where the 

species is present (Elith et al., 2011). Two criteria were used to evaluate the performance i.e. 

goodness-of-fit and predictive power of the model; the area under the receiver operating 

characteristic curve (AUC) and the true skill statistic (TSS) (Allouche et al., 2006; Elith et al., 

2011). The AUC represents the probability that a randomly chosen presence point of the species 

will be ranked as more suitable than a randomly chosen absence point (Elith et al., 2011). A 

model is considered as having a good fit when its AUC is close to one (AUC ≥ 0.75) (Elith et 

al., 2011). The TSS represents the capacity of the model to accurately detect true presences 

(sensitivity) and true absences (specificity). A model with TSS ≤ 0 indicates a random 

prediction; while a model with a TSS close to 1 (TSS > 0.5) has a good predictive power 

(Allouche et al., 2006).  

The probability values provided by MaxEnt for present and future climate were converted to 

presence and absence information by applying the 0.5 Maximum Test Sensitivity and 

Specificity (MTS) threshold (Liu et al., 2005). 

3.5.1 Variable importance 

One of the key aspects in this study is to understand which environmental variables are most 

important for the development of the wattle rust. To this end, both the variable importance and 

permutation metrics were calculated. Variable importance is calculated based on the gains of 

the model obtained when modifying the coefficient of a single feature; the gains are then 

assigned to the variables upon which the feature depends. It is a continuous process affected 

by the particular path used by MaxEnt to arrive to the optimal model; hence, variable rankings 

may vary in subsequent runs. Permutation importance is calculated based on the effect of 

random change of value of a given variable on the final model. This method of assessing 

variable contribution is independent from the path used by MaxEnt to develop the final model 

and it is not affected by correlativity of the environmental predictors, making it a preferred and 

more stable metric (Phillips., 2017).   
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3.6. Results 

3.6.1 Current climate 

MaxEnt identified 24703 ha within KwaZulu-Natal and Mpumalanga at high risk of wattle rust 

in the present climate. This represents 30% of the total wattle area in KwaZulu-Natal and 

Mpumalanga. The most suitable areas are southern KwaZulu-Natal and extend to southern 

Mpumalanga (Figure 8). This result coincides with wattle rust trends observed over the last 

five years. The AUC value was 0.97, suggesting excellent discriminatory power of the model. 

 

Figure 8. The distribution of wattle rust based on current climatic data 
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3.6.2 Future climate  

When the model was applied to the future bioclimatic variables (2080 and 2100) the potential 

geographic distribution of the rust changed substantially. The climatically suitable area 

decreased in extent under the future climate scenario, with the total high-risk area shrinking to 

7316 ha as opposed to the 24703 ha identified under the current climate. This represents 8.9% 

of the total wattle area in KwaZulu-Natal and Mpumalanga. The suitable area moved further 

south of KwaZulu-Natal (Figure 9). Overall, climatic conditions appeared to be less favourable 

for the occurrence of wattle rust with the climate tending to be generally drier and warmer.  

 

Figure 9. The distribution of wattle rust based on future climatic data 
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3.6.3 Variable importance results 

The bioclimatic variables that contributed at least 5% to the model’s accuracy were considered 

important determinants of the occurrence of the wattle rust (Figure 10). Minimum temperature 

of coldest month (Bio6) and precipitation of wettest month (Bio13) were overall the most 

important variables, accounting together for 70% of the model accuracy. Annual mean 

temperature (Bio1), precipitation seasonality (Bio15) and precipitation for the driest month 

(Bio14) were also important determinants of the probability of occurrence of the wattle rust.  

Minimum temperature of coldest month (Bio6) was scored as the most important variable in 

both the permutation and percentage importance methods. These results are consistent with the 

findings of Fraser et al. (2017) which identified wet conditions and mean temperature between 

15ºC and 20ºC as optimal for the development of rust.  

  

 

Figure 10. Percentage contribution of bioclimatic variables to the wattle rust distribution 

model determined using the variable permutation metric. 



34 
 

Response plots were created for the most important variables to determine the climatic ranges 

associated with the highest predicted likelihood of wattle rust occurrence (Figure 11). 

Minimum temperature of the coldest month below 5ºC, precipitation in the wettest month 

above 150 mm and above 20 mm in the driest month characterize the climate more conducive 

to wattle rust infestation. Precipitation seasonality saw a reduction in wattle rust occurrence 

when the coefficient of variation was greater than 75%. Therefore, extreme variances in 

seasonal rainfall reduce the likelihood of wattle rust. 

 

Figure 11. Response plots of the most important variables in the model. 

3.7 Discussion  

This study has developed a method of estimating the suitable geographic distribution of U. 

acaciae based on the climatic conditions conducive to the development of the wattle rust 

disease in commercial wattle plantations, South Africa. The results illustrate the potential 
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effects of climate change on the distribution of the disease and highlights the expansion and 

contraction of suitable climatic ranges. The MaxEnt algorithm combined with the bioclimatic 

variables successfully identified areas at higher risk of wattle rust outbreaks. The development 

of a niche model for U. acaciae contributes towards developing a routine monitoring system 

for the management of this pathogen. Moreover, this study builds on the remote sensing work 

done to detect damage caused by U. acaciae on black wattle (Oumar et al., 2019) and now 

provides a successful working framework for assessing the potential risk of wattle rust 

outbreaks across a wide geographical extent using indirect mapping approaches. 

3.7.1 Mapping the potential extent of U. acaciae across South African wattle plantations 

The ability to estimate the risk of U. acaciae infection in prevailing climates enables a proactive 

approach to disease management and prevention based on risk assessment and monitoring. The 

U. acaciae distribution model can help with defining the climatic niche within which the 

pathogen is more likely to cause severe wattle rust infection. The study has shown that 

Mpumalanga and northern KwaZulu-Natal provinces are favourable locations for rust 

development in the current climate but become less favourable locations under the future 

climate scenario. Conversely, the Eastern Cape is at higher risk for rust outbreaks in the future 

than it is under current climate conditions. The results in this paper coincide with other research 

that predict changes in the geographic distribution of species as a result of climate change. For 

example, Barredo et al. (2015) observed a shift in geographic location of pine weevils under 

future climate conditions, whilst Evangelista et al. (2011) had similar results with Pine beetle 

in the interior West of the United States. The study also demonstrates the success of the MaxEnt 

algorithm combined with the bioclimatic variables to produce a species distribution model for 

U. acaciae, which can be used towards the development of a monitoring system for this 

pathogen as part of the integrated management strategy to curb the impact of wattle rust 

outbreaks based on economically and environmentally sound principles. 

 The MaxEnt model has the advantage of requiring presence-only data to predict species 

distribution. This makes sampling easier and mitigates the potential errors of pseudo-absence. 

The model produced an AUC value of 0.97. The accuracy obtained in this study is comparable 

to other studies using bioclimatic variables and the MaxEnt model (Bradie and Leung, 2017; 

Bosso et al., 2017). For example, Bradie and Leung assessed a total of 1900 MaxEnt species 

distribution models. The study found precipitation and temperature to be the most important 

variables in species distribution modelling. The average discriminatory power of the MaxEnt 
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model was AUC = 0.92. Similarly, Bosso et al. (2017) used MaxEnt and climatic variables to 

predict the future disease outbreaks of Diplodia sapinea shoot blight in Italy. The most 

important contributors to the model were identified as land cover, mean temperature of wettest 

quarter, altitude and precipitation of wettest quarter. The overall predicted accuracy of the 

model was AUC = 0.87. 

3.7.2 Variable permutation metric to determine the main climatic variables for U. 

acaciae appearance.  

The variable permutation metric is a valuable tool to identify which climatic variables 

contributed most to the MaxEnt model. Five variables accounted for 94% of the model 

accuracy with minimum temperature of coldest month (Bio6) and precipitation of wettest 

month (Bio13) accounting for 71%. Annual mean temperature (Bio1), precipitation seasonality 

(Bio15) and precipitation of driest month (Bio14) also contributed to the predictive power of 

the model. The response plots of these variables highlight that optimum conditions for wattle 

rust outbreaks are associated with cool and moist climate in areas where seasonal variation is 

not extreme. The results in this study are comparable to the findings of Fraser et al. 2017 where 

the study found the optimal conditions for U. acaciae infection on A. mearnsii is a 48-hour 

period of leaf wetness at an ambient temperature between 15°C and 20°C.  Van Arsdel et al. 

1956 also observed a similar climatic range for White Pine Blister in the United States, where 

the optimal conditions for rust infection were ambient temperatures between 0°C and 20°C and 

moisture saturated air for a period of 48 hours.  

3.7.3 Summary 

The aim of this study was to define the climatic niche of U. acaciae and identify areas at risk 

of infection based on the prevailing climate. Using the current presence points of U. acaciae 

and the bioclimatic variables obtained from the WorldClim dataset, the MaxEnt model 

successfully determined areas which are vulnerable to U. acaciae infection under current and 

future climates. Cool, wet conditions were determined to be the key predictors of wattle rust 

outbreaks. The methodology developed in this study can be used to implement a monitoring 

system for wattle rust at landscape level to support the management of this important disease. 

This encourages assessing U. acaciae seasonally and at different lifecycles where smaller 

symptoms of the pathogen can be managed prior to the advent of cooler, wetter conditions.  
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Chapter 4 

Conclusion 

 

4.1 Introduction 

The mapping of forest pests and diseases is an important aspect of forest management. 

Monitoring and surveillance are key to understanding the nature and distribution of pests and 

pathogens (Dyer et al., 2010). Field surveys are accurate in determining forest health; however, 

the process of sampling trees manually is not always feasible when sampling of large 

geographic areas is required (Ismail et al., 2007; Oumar et al., 2016; Lottering et al., 2016). 

Earth observation technologies such as remote sensing provide global coverage at regular 

intervals which can offer researchers a real-time synopsis of forest health. Additionally, 

climate-based risk models can help researchers identify trends and patterns in the distribution 

of pests and pathogens (Bosso et al., 2017; Germishuizen et al., 2017). The aim of this research 

was to assess the utility of GIS and Remote Sensing to monitor the wattle rust causing pathogen 

U. acaciae. The main objectives were (1) to assess the capability of multispectral satellite 

imagery to detect wattle rust damage using PLS-DA, (2) to test the effectiveness of partial least 

squares variable importance in the projection (VIP) to select the most influential wavebands to 

detect wattle rust damage, (3) to use bioclimatic variables and the MaxEnt model to identify 

geographic locations that may be susceptible to U. acaciae, (4) to use the variable permutation 

metric to identify the most important climatic variables for U. acaciae development, (5) to 

create a wattle rust  risk map based on the current and future climate. The section below 

discusses each of these objectives. 

4.2 Assessing the capability of Landsat 8 multispectral satellite imagery to detect wattle 

rust damage using PLS-DA 

Results from the study showed that the PLS-DA model using all seven Landsat 8 wavebands 

produced a classification accuracy of 88.24% and a kappa value of 0.76. Overall, the Landsat 

8 image data combined with PLS-DA successfully detected damage caused by the wattle rust 

on A. mearnsii. This is possible due to the sensors ability to discern between healthy and 

damaged tree canopies.  
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4.3 Testing the effectiveness of PLS-DA variable importance in the projection (VIP) to 

select the most influential wavebands to detect wattle rust damage 

The VIP method is useful for determining the wavebands that are optimal for damage detection. 

The highest VIP scores were coastal aerosol (430 nm - 450 nm), red (640 nm - 670 nm) and 

near infrared (850 nm - 880 nm). The near infrared and calculated NDVI values were the most 

significant variables to detect wattle rust damage. The results correspond with other studies 

which have found the visible region of the electromagnetic spectrum to provide a good 

indication of forest health (Oumar, 2016; dos Santos et al., 2017). The overall accuracy of the 

model using only the VIP selected variables was 82.35% and the kappa value was 0.66. This 

is a reduction in classification accuracy of 5.89%. The VIP results contrasted with the study by 

Peerbhay et al. (2013) which found the VIP analysis to improve classification accuracy. 

However, it can be concluded that the VIP method when used with the PLS-DA model can 

identify the most significant wavebands for classification.  

4.4 Using bioclimatic variables and the MaxEnt model to identify geographic locations 

that may be susceptible to U. acaciae 

The results from this study confirm the effectiveness of species distribution modelling to 

predict the potential spread of U. acaciae and the occurrence of the disease it causes. The 

MaxEnt model used the presence data of wattle rust disease and the WorldClim bioclimatic 

variables to produce an AUC value of 0.97. The results emphasised the model’s ability to 

discern between suitable and unsuitable climates for U. acaciae development.  

4.5 Using the variable permutation metric to identify the most important climatic 

variables for U. acaciae development 

The variable permutation metric provides a useful framework to identify the climatic variables 

that most likely correlate with the occurrence of wattle rust. The highest scores were minimum 

temperature of coldest month (Bio6), precipitation of wettest month (Bio13), annual mean 

temperature (Bio1) and precipitation seasonality (Bio15). The results in this study are 

comparable to the findings of Fraser et al. (2017) which found cool and wet conditions ideal 

for U. acaciae development. It can be concluded that the variable permutation metric when 

used in conjunction with the MaxEnt model can provide insight into which climatic variables 

are needed for U. acaciae development.  
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4.6 Creating a wattle rust risk map based on the current and future climate 

Two wattle rust risk maps were created using ArcMap 10.4. The bioclimatic values obtained 

from the MaxEnt model were overlayed onto the forestry areas in South Africa. The results 

from the current climate showed an area of 24703 ha as susceptible to rust infection, with the 

most high-risk areas being in KwaZulu-Natal and southern Mpumalanga. When applied to 

future bioclimatic surfaces, the MaxEnt model identified an area of 7316 ha as suitable for the 

growth and development of U. acaciae. The most high-risk areas under future climate 

conditions were southern KwaZulu-Natal and northern Eastern Cape. The maps illustrate two 

key observations 1) a dramatic reduction in suitable climatic area for U. acaciae development 

and 2) the suitable climatic area for U. acaciae will move further south. A possible reason for 

these observations is the projected climate obtained from the WorldClim dataset which 

estimates the future climate in South Africa to be warmer and drier. The northern part of the 

country will bear the brunt of warmer and drier conditions and therefore the rust will more 

likely appear further south where conditions will be more suitable for U. acaciae development.  

4.7.1 Recommendations for future research in detecting wattle rust with satellite 

imagery 

One of the disadvantages of broad band sensors is the discreet changes in spectral reflectance 

by stressed vegetation can be hidden by field geometry, lighting and the density of the canopy 

(Ismail et al., 2007). Hence, the results of this study may be influenced by such factors and 

thus opens up the possibility of analysing the impacts of U. acaciae under a hyperspectral 

sensor and using a finer spatial resolution to investigate the changes in reflectance throughout 

the entire electromagnetic spectrum. The narrow bands may reduce the aforementioned 

limiting effects of multispectral sensors and may be capable of distinguishing stages of the 

impacts evident in the life cycle of the rust such as the leaf curl or the occurrence and intensity 

of the teliospores which hold infected spores for dispersal. Such information may be valuable 

in detecting risk before an outbreak occurs and plan for precautionary interventions. 

Nonetheless, the opportunity also exists to investigate the Sentinel-2 sensor combined with 

ancillary information related to the surrounding environment of the pathogen. These may 

include bioclimatic, topographic and edaphic factors in the landscape for an in-depth spatial 

mapping framework.  
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4.7.2 Recommendations for future research in modelling U. acaciae with species 

distribution models  

One of the limitations of this study was the limited availability of current South African weather 

data from available weather stations. Long term climate surfaces were used instead, with the 

model being developed by associating sites where the disease was present to long-term climate 

averages rather than current weather records. The widespread nature of U. acaciae also makes 

collecting absence data difficult in forest plantations. Hence, the results of this study may be 

influenced by such factors and opens up the possibility of analysing U. acaciae using locally 

derived climate data together with topographic data and real-time high-resolution satellite 

imagery. Moreover, management interventions may alter the presence or severity of infestation 

in some areas, limiting opportunities for comprehensive surveys. Future studies could also 

explore opportunities to assess U. acaciae infection using more advanced techniques such as 

alternate one-class mapping approaches, such as one-class support vector machines (OCSVM), 

to classify presence-only datasets. 

4.8 Conclusion 

The aim of this research was to assess the utility of Landsat 8 imagery and the PLS-DA 

algorithm to monitor the infection caused by U. acaciae on black wattle. The research 

undertaken in this study showed it is possible to detect U. acaciae infection using remote 

sensing information. Additionally, risk maps were created which highlighted areas which may 

be susceptible to U. acaciae and where the risk of wattle rust is hence more prominent. The 

final conclusion is based on the following observations made in this dissertation: 

1. Landsat 8 remotely sensed data is capable of detecting damage caused by wattle rust. The 

study produced an overall accuracy of 88.24% and a kappa value of 0.76 using all Landsat 8 

bands (n = 7). However, using only the VIP selected wavebands coastal aerosol (430 nm - 450 

nm), red (640 nm - 670 nm), near infrared (850 nm - 880 nm) and the NDVI resulted in a 

reduced accuracy of 82.35% and a kappa value of 0.66. However, the model still produced high 

accuracy results for excellent classification results.  

2. The MaxEnt model is capable of estimating geographic areas that are susceptible to U. 

acaciae occurrence. Using the WorldClim bioclimatic variables and MaxEnt model, the study 

produced an AUC value of 0.97. The variable permutation metric identified minimum 

temperature of coldest month (Bio6), precipitation of wettest month (Bio13), annual mean 
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temperature (Bio1) and precipitation seasonality (Bio15) as the most significant climatic 

variables for U. acaciae appearance. U. acaciae appears to thrive in cool and wet conditions.  

3. It is possible to create wattle rust risk maps in ArcMap using remote sensing imagery and 

the classification tools. The current climatic variables in the map highlighted KwaZulu-Natal 

and southern Mpumalanga as the most likely areas to display symptoms of U. acaciae. Using 

the simulated future climatic variables, the map highlighted a significant change in the 

distribution of U. acaciae and identified southern KwaZulu-Natal and northern Eastern Cape 

as the most likely hosts for U. acaciae. 
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