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ABSTRACT 

Research involving myoblast transplant and gene transfer therapy, both as 

possible answers for muscular dystrophy, depend on a sound knowledge of 

the mechanism of muscle regeneration. Therefore, the current study was 

undertaken to dispel the confusion that exists in the understanding of the 

origin of myoblasts during muscle regeneration. 

An EM investigation of muscle regeneration in cultured muscle explants 

made possible for the first time, a record of the early events occurring 

during regeneration. The regeneration processes, occurring within cultured 

hamster and human muscle explants for 10 consecutive days of incubation, 

were studied under the EM. Pre-incubation, uncultured specimens served 

as controls. 

The major revelations were that euchromatic myonuclei undergoing dense 

granulation and heterochromacity, denoting nuclear activation after 

incubation, herald the transformation of these myonuclei to the precursor 

cells of muscle regeneration or future myoblasts., Partial transformational 

forms of myonuclei towards a presumptive myoblast were clearly observed 

in the study. This is how the classical satellite cells are formed in adult 

muscle, with the cytoplasm around the young cells being apparently new 

cytoplasm formed by the nucleus. During regeneration, the myoblasts 

increased in number, underwent fusion and formed multinucleate myotubes. 

Myoblasts and myotubes also exhibited phagocytic behaviour during the 

course of development to a young myofibre. It is not certain, at this stage, 

how the myoblasts proliferated as mitotic figures were not observed!­

However, morphological evidence suggesting amitotic division of myonuclei 

by segmentation, perhaps explains the possible proliferation of the 

myoblasts from new myonuclei thus formed. Myotubes may also be formed 
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from mononucleated myoblasts by apparent amitotic division of their nuclei, 

and this is, possibly, the answer to the intriguing question: of how 

myonucleation occur within myotubes? 

When the myoblast resources from myonuclear derivation are depleted, the 

muscle would appear to have the potential to develop "new generation 

cytoplasm" and "new generation nuclei" in apparent association with 

sarcoplasmic organelles-, mainly mitochondria by yet unknown mechanisms. 

The new nuclei and cytoplasm, thus formed, lead to the formation of "new 

generation cells". Clusters or chains of irregular and bizarre nuclei within 

myotubes were apparently formed by fusion of mononucleated newly 

generated cells or from newly generated multi nuclei within newly generated 

cytoplasm. This is, perhaps, the way in which bizarre nuclei were derived 

in pathological muscle. Possible amitotic division was also apparent in the 

these irregular nuclei. The mitochondria, apart from being the power house 

of the cells in biochemical terms, seemed in some way associated with the 

development of structural elements of the muscle cells such as new plasma, 

new nuclei and new fibrous material. These assumptions need biochemical 

or immunocytochemical validation! 

Finally, it is hoped that information gained in this study, will help towards 

a better interpretation of the morphological changes observed in the muscle 

of experimental subjects undergoing therapeutic trials and in pathological 

muscle from patients. Furthermore, if the results of this study are confirmed 

in the future at other research stations, the researchers involved in the 

search for cure will have to re-orientate their therapeutic design and targets, 

focussing attention on the myonuclei and not the satellite cells. 

Keywords: regeneration; skeletal muscle; myoblasts; 

satellite cell; mitochondria; phagocytic myoblasts. 
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CHAPTER 1 

INTRODUCTION 

1 . 1 Background 

Neuromuscular diseases, especially muscular dystrophy, provided the 

research field for this study on muscle regeneration. Muscular dystrophy, 

an insidious muscle wasting disease due to a genetic disorder, up to the 

present day, continues to defy modern medical science. Nevertheless, 

dedicated efforts of research scientists from around the world are producing 

exciting and illuminating discoveries, bringing hope and encouragement for 

the muscular dystrophy patients and their families. 

Muscular dystrophy research has been in progress for many decades 

(Dubowitz, 1989a). Most research has been concentrated on Duchenne 

muscular dystrophy (DMD), this being the most common and debilitating of 

the dystrophies. It is anticipated that if science succeeds in unravelling the 

mysteries of DMD, then the understanding and solutions for most other 

genetic diseases would inevitably ensue (Kunkel, 1989). 

Research, only recently, established that Duchenne dystrophy is invariably, 

due to a genetic deletion on the short arm of the X chromosome (Monaco 

et aI., 1986). This gene encodes for the synthesis of a structural protein 

called dystrophin (Hoffman et aI., 1988) which is deficient in a DMD patient. 

Unfortunately, in spite of this discovery and knowledge, there is still no 

treatment or cure for muscular dystrophy (Clemens and Caskey, 1994). 
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Research scientists are presently viewing myoblast transplant (Law et aL, 

1990; Partridge et aL, 1989; Partridge 1991 a&b; Gussoni et aL, 1992; 

Huard et aL, 1992) and gene transfer (Acsadi et aL, 1991; Davis & Jasmin, 

1 993) as viable, potential therapies. Preliminary research in this aspect 

seemed successful when myoblast transfer was tried on myopathic mice 

(Partridge et aL, 1989; Karpati et aL, 1989) which exhibit a genetic muscle 

disease similar to DMD in humans. Myopathic mice were used for their 

similarity to human dystrophy because Jhey also fail to produce dystrophin. 

Research of this nature is being extended to human patients (Brooke, 1990; 

Karpati, 1990; Law et aL, 1993; Salvatori et aL, 1993; Tremblay et aL, 

1993; Mendell et aL, 1994) but the results are not very promising. The 

alternate choice of gene transfer therapy holds out greater promise (Karpati 

and Acsadi, 1993; Vincent et aL, 1993; Wolff et aL, 1994). 

Myoblast transplant, in brief, entails the injection of immature normal muscle 

cells of a donor, into diseased dystrophic muscle of the patient. It is 

assumed that transplanted normal myoblasts will fuse with regenerating 

muscle cells or satellite cells in the patient and, in time, will hopefully 

replace much of the defective muscle with healthy muscle which would be 

capable of producing dystrophin. Normal myoblasts are obtained from 

cultures of normal muscle in a controlled laboratory environment. 

Genetic engineering, on the other hand, involves gene transfer via a viral 

vector (Acsadi et aL, 1991; Fardeau, 1993) in the hope that the muscles of 

the patient may then be able to produce dystrophin which will ultimately 

lead to the growth of normal muscle cells. 
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Before these therapies can be adopted, many scientific and practical 

questions need to be answered, which include methods for growing enough 

normal cells in the laboratory, the success of gene transfer using viral 

vectors, the possibility of treating all affected muscles, the problem of 

rejection, the identification of the precise role played by dystrophin and 

dystrophin related proteins in the muscle cells and above all, a better 

understanding of the process of muscle regeneration. 

1 .2 Statement of the problem 

Whatever therapy may be found in the future for muscular dystrophy, it 

must, of necessity, depend on the regenerative ability of skeletal muscle. 

Therefore, this research project was undertaken to shed more light on the 

mechanisms involved in the process of muscle regeneration, and to clarify 

some points of conflict that exist in this area, especially the identification of 

origin of precursor cells or myoblasts during regeneration. That there is 

conflict, is shown clearly by Sloper and Partridge (1980) who concluded 

that: "The source of the mononuclear muscle cell precursors is still 

uncertain. The idea that an undifferentiated, as it were embryonic, 

satellite precursor cell can persist through adult life, lying between 

plasma and basement membranes of the muscle fibre, has gained wide 

acceptance; but it has not entirely superseded the view that myoblasts 

can arise by segregation of differentiated myonuclei. It remains 

possible too that local connective tissue cells and, again, circulating 

cells may have an accessory role in myogenesis . .. 
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Up to the present time, many scientists, (Reger and Craig, 1968; Shafiq et 

aI., 1968; Church, 1969; Allbrook et aI., 1971; Moss and Leblond, 1971; 

Snow, 1977a&b/197811979; Allbrook, 1981; Campion, 1984; Dubowitz, 

1985; Carpenter, 1990) in the field of muscle regeneration, believe that 

satellite cells found in skeletal muscle are responsible for multiplying and 

giving rise to new muscle. 

There are other researchers (Maximow and Bloom, 1944; Hay, 1959/1979; 

Lee, 1965; Mastaglia and Kakulas, 1969; Reznik, 1969/1976; Teravainen, 

1970; Walker, 1972) who suggested that even the myonuclei within the 

mature skeletal muscle fibre may give rise to new muscle during the 

regenerative process. 

In the course of becoming proficient in culture techniques, my observation 

of muscle explants maintained under culture conditions for a period of six 

weeks, led me to believe that during muscle regeneration, sources other 

than only satellite cells, must give rise to new myoblasts during 

regeneration. The belief was based on the observation of the large num~er 

of cells that continuously migrated or sprouted out from the muscle explants 

maintained in culture for six weeks. It was difficult to accept that the large 

numbers of cells arose only out of satellite cell multiplication, knowing that 

satellite cells constituted only a very small percentage, 4-7% of muscle 

nuclei (Wakayama and Schotland 1979) of the skeletal muscle. Some 

workers (Reznik 1969) suggested even lower figures of 0 to 1 % for satellite 

cells in mature muscle. 



5 

1 .3 Objectives 

Therefore, with the design of this project using muscle explants in culture, 

the hypotheses whether myoblastic precursor cells originate from satellite 

cells or myonuclei was tested, and their progression to the formation of 

multinucleate myotubes was traced. 

The method, in brief, entailed culturing of muscle explants in a controlled 

laboratory environment for 10 days. Muscle specimens, for electron 

microscopy, were removed from cultures on 10 consecutive days. The pre­

incubation muscle specimens served as controls. The progressive 

ultrastructural changes that occurred in the muscle explants, on a day to 

day basis for 10 days during regeneration, were thus ascertained. 

Earlier r in vivo regeneration studies on animals used injured or minced 

muscle implants. These experimental designs were disadvantaged by the 

presence of blood clots, poor perfusion, necrotic debris and outside 

elements such as fibroblasts and phagocytes which hindered recording of 

distinct early morphological changes in the regenerating implants. The study 

of regeneration using muscle explants, in vitro, overcame much of these 

disadvantages (Askanas, 1979). 

This regeneration study was conducted on normal hamster and human 

skeletal muscles. To the best of my knowledge, ultrastructural investigation 

of skeletal muscle regeneration in muscle explants in culture, traced on a 

daily basis for a period of 10 days of incubation, has not been performed by 

any other researcher before. 
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As anticipated, this research project revealed positive electron microscope 

evidence to clarify the main areas of conflict, i.e. : 

a) The origin of myoblasts during regeneration in hamster and human 

skeletal muscle explants. 

b) The behaviour of myonuclei during muscle regeneration. 

c) The role of phagocytes during muscle regeneration. 

At the same time, other ultrastructural changes observed in the cultured 

explants were recorded and interpreted. Some of the astounding 

observations and the provocative interpretations appear to go against the 

dictum of biological sciences, in the field of cell division and new cell 

creative ability of regenerating muscle. 

It is hoped that the information gained on muscle regeneration in explants 

wi" help towards a better interpretation of the morphological changes 

observed in the muscle of experimental subjects undergoing therapeutic 

trials and in pathological muscle from patients. Furthermore, if the results 

of this study on regeneration are confirmed in the future at other research 

stations, the researchers involved in the search for a cure wi" have to 

reorientate their therapeutic design and targets. In so doing, the results of 

the current study wi" assist in the future management and treatment 

possibilities of muscular dystrophy, where myoblast transplant or gene 

transfer methods are contemplated. 

An overview of Duchenne muscular dystrophy and the current research 

status thereon is incorporated as a prelude to the literature review on muscle 

development and regeneration. This is done intentionally for the benefit of 
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the readers who may feel inclined to join the battle against muscular 

dystrophy. Furthermore, the materials used and methods adopted in the 

current study, are presented in detail to foster the establishment of more 

muscle culture laboratories in the country. 

Ethical clearance for the study was obtained from the Ethical Committees of 

the University of Natal and the University of Durban-Westville. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.0 INTRODUCTION 

Muscular dystrophy provides the background to this thesis on muscle 

regeneration, hence, a brief overview of this disease and research status to 

date is presented as a prelude to the review on muscle regeneration. 

Although much of this overview on muscular dystrophy appears technically 

irrelevant to the current thesis, it is presented in order to highlight the 

gravity of the problems confronting those who are afflicted by the dreaded 

disease, and those researchers engaged in trying to overcome its hazards. 

Therefore, due to the deep commitment in research in the area of muscular 

dystrophy, the overview is presented regardless of the work involved in its 

preparation in the hope that future readers of this thesis may be attracted 

to research in any of the fields concerning muscular dystrophy other than 

muscle regeneration alone. 

This is followed by pertinent literature review on the development of skeletal 

muscle, muscle regeneration techniques and revelations in muscle 

regeneration research. 

2. 1 MUSCULAR DYSTROPHY 

By definition, muscular dystrophy is a generic description for a series of 

diseases characterised by progressive degeneration of skeletal muscle (Mrak, 
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1985). The muscle fibres at first attempt to regenerate, but fail to keep pace 

with the degeneration process. Over the years, muscle in some patreJlts is 

replaced increasingly by connective and adipose tissue. This often causes 

the muscle of the patient to enlarge or hypertrophy, the condition being 

referred to as pseudohypertrophic muscular dystrophy, commonly known as 

Duchenne muscular dystrophy (Walton, 1988). In other types of muscular 

dystrophy, the muscle undergoes gradual reduction in size mainly due to the 

death of the muscle cells, leading to muscle wasting. 

2.1.1 Historical background and classification 

The distinction of the disease being myopathic and not neuropathic in origin 

was first established in 1891 (cited in Adams, 1975). In those early days, 

the disease was thought to be due to poor blood supply to the muscle. The 

ischaemic condition supposedly caused a short supply of nutrients or trophic 

factors to the muscle and hence the name 'dystrophy' given to the 

condition. 

The classification of dystrophy is based on criteria such as the mode of 

inheritance of the defect, the clinical distribution of symptoms in the 

different muscle groups in the body, and the clinical severity of the disease 

(Pearson and Young, 1993). 

The major muscular dystrophies are Duchenne muscular dystrophy (DMD), 

Becker muscular dystrophy (BMD), Limb girdle muscular dystrophy (LGMD), 

Fascioscapulohumeral muscular dystrophy and myotonic muscular 

dystrophy. Of the muscular dystrophies, DMD is the most common and 

severe type of human dystrophy with the incidence of 1 in 3500 live male 



10 

births in all populations (Emery 1980; Gorospe and Hoffman, 1992; Clerk et 

aI., 1993; Smith and Schofield, 1994). 

Duchenne type dystrophy was named after Guillaume Benjamin Amand 

Duchenne who described the muscular dystrophy in question, in 1861 and 

1868 (cited in Emery, 1993). Emery also stated that there was controversy 

in that there is evidence that the disease DMD was first described by an 

English physician called Edward Meryon in 1851 . In another circle, 

(Bonduelle, 1990) it was felt that F.A. Aran in 1850 gave the first clinical 

description, synthetic presentation and appellation of 'progressive muscular 

dystrophy' . 

According to Walton and Gardner-Medwin (1988), one third of DMD cases 

were inherited from multigeneration families, one third from new mutations 

arising in the mother and the balance as new mutations in isolated males. 

2.1.2 Symptoms and diagnostic features of DMD 

A description of DMD given by Gowers in 1879 (cited in Dubowitz, 1989b) 

is as follows: "This disease is one of the most interesting, and at the 

same time most sad, of all those with which we have to deal; 

interesting on account of its peculiar features and mysterious nature; 

sad on account of our powerlessness to influence its course, except in 

very slight degree, and on account of the conditions in which it occurs. 

It is a disease of early life and early growth. Manifesting itself 

commonly in the transition from infancy to childhood, it develops with 

the child's development, grows with its growth - so that every increase 

in stature means an increase in weakness, and each step takes him a 



11 

year further on the road to helpless infirmity I and in most cases to an 

early and inevitable death . .. 

Gower's manoeuvre 

DMD like the milder form BMD is inherited as a sex-linked recessive 

condition. With rare exceptions, it affects mainly males. The onset of the 

disease usually corresponds in time when the youngster begins to walk, 

which time, in most cases, is delayed to 18 months. Between 3-5 years the 

calf muscles show signs of hypertrophy, and the heels are raised so that the 

infant walks on toes. They often trip and fall, even on flat surfaces. When 

down they have tremendous difficulty getting up. The hands are placed on 



12 

the ground for support and balance to assist with rising which has a 

characteristic pattern described as Gowers manoeuvre (see illustrations 

above: tak en from Dubowitz, 1989). 

They w alk wilh () w addling nail being unable '10 jump or climb stairs 

(AIHkrso/l "lid Kllllk<:1 1992 ) (IS shown in Ihe diauram helow (DlIl>owil/, 

1989). 

waddling gait scoliosis 

To balance while walking, they are forced to push out their chests as if they 

suffer lordosis. Before they become wheelchair-bound at about 9 years, 

they have to hold on to rails or helpers to get around. The age when 

ambulation is lost is one of the milestones in the progression of DMD 

(Nicholson et aI., 1993). In the few years while in the wheelchair, their 

muscles undergoing progressive degeneration, causes them to sit with a 
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slumped posture so much so that they soon develop scoliosis. They are 

soon lost to the world before the second or early third decade, as a result 

of respiratory or cardiac failure. 

In a study by Biller et al. (1987), it was found that 83% of the patients with 

DMD and 50% with BMD had electrocardiographic abnormalities. According 

to Saito et al. (1994), death due to respiratory failure is more common in 

DMD patients while death due to a cardiac involvement is more often 

associated with the BMD patients. 

Short stature was reported as a characteristic feature of DMD patients in a 

growth study (Eiholzer, 1988). The academic achievement of many of the 

DMD cases is impaired (Anand, 1983; Mrak, 1985; Gorospe and Hoffman, 

1992; Pearson and Young, 1993). This may possibly be attributed to a 

deficiency of the dystrophin isoform found in brain tissue (Lidov et aI., 

1993), but Rowlands (1988a) reported that there was no consistency 

between mental retardation and the diseases that were encoded at Xp21 . 

Whether poor academic achievement was due to the genetic disorder or 

simply because the patients were not motivated enough to perform in the 

face of more serious issues of psychological and physical trauma were 

questions that needed some attention! 

Most consistent findings in histological inspection of biopsies from DMD 

patients included muscle degeneration with pyknotic clumps of nuclei, 

central nucleation, fibre splitting and increased endomysial and adipose 

tissues (Dubowitz and Brooke, 1973; Thompson et aI., 1983). Recently 

D' Amore et al. (1994) suggested that basic fibroblast growth factor, which 

was found to be elevated in a number of DMD subjects, to be a possible 
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factor contributing to the increased fibrosis and muscle weakness that 

prevailed in DMD. Fibroblast growth factor supposedly stimulated 

connective tissue growth and suppressed skeletal muscle differentiation. 

2.1.3 Early research 

DMD being the most common and the severest type of dystrophy, was also 

the most researched dystrophy. The research impetus into DMD was due 

to the notion that if a solution to the problem of DMD was obtained, then 

solutions to many of the other genetic diseases would follow. 

Extensive research was and is still being promoted financially by the many 

Muscular Dystrophy Associations around the globe from funds contributed 

by the generous public. 

There were many hypotheses on the aetiology of the disease in the past 

when research was centred on: 

i) a defect in cell membranes (Lucy, 1980; Rowlands, 1980; Jones and 

Witkowski, 1981/1983; Mokri and Engel, 1975), 

ii) a primary lesion of the motor neurones (Dubowitz, 1973), 

iii) a lesion in the muscle microcirculation and basement membrane 

abnormality (Lipton, 1979; Fidzia'nska et aI., 1987; Miike et aI., 

1987) 

iv) and, an anomaly of the connective tissue, with most of the evidence 

favouring the first possibility (Yasin et aI., 1979). 

Evidence of high levels of certain serum enzymes, especially creatine kinase 

(Moosa 1982), and increased intracellular concentration of calcium ions in 
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muscular dystrophy (Lucy 1980; Emery 1 980) suggested the presence of 

'leaky' muscle membranes in DMD. Alongside all this research mentioned 

above, muscle regeneration studies discussed later in the chapter were also 

conducted. 

Structural and biochemical studies on skeletal muscle itself have been 

augmented with the advent of improved techniques to culture both normal 

and diseased skeletal muscle (Konigsberg, 1963; Bishop et aI., 1971; Yasin 

et aI., 1977/1982). Generalised membrane defect was not indicated in later 

studies using cultured skeletal muscle and skin fibroblasts from DMD 

patients (Mongini et aI., 1988). In another study using cultured cells, it was 

tentatively concluded that the activity of the enzyme acetylcholinesterase 

was impaired in myotubes of dystrophic patients. Freeze-fracture studies of 

the plasmalemma in mdx mice demonstrated ultrastructural abnormalities 

similar to those in human DMD (Shibuya and Wakayama, 1988). 

2.1.4 Recent and current research 

In the 1980's research concentrated on the genetic aspects of the disease. 

The aetiology of DMD remained elusive until recently. Two marker genes 

were isolated which were co-inherited with DMD 90% of the time. With 

linkage analysis, these were localised to be on the short arm of the X 

chromosome in the band Xp21 (Murray et aI., 1982; Davies et aI., 1983; 

Bakker et aI., 1985; Monaco et aI., 1986). This discovery was made in 

females (see diagram below) who exhibited a dystrophy similar to DMD in 

boys, the cause in these cases being translocation of the DMD gene from 

the X chromosome to autosomes. The break points in the X chromosome 

were at locus Xp21 (Burghes et aI., 1987; Dubowitz, 1989). 
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Female with DMD gene translocation abnormality assisted with callipers 

(Dubowitz, 1989). 

Initially a large protein, nebulin was thought to be the protein involved in the 

pathogenesis of DMD. Evidence in subsequent studies precluded the 

possibility that nebulin was the DMD gene product (Bonilla et aI., 1988; 

Pernelle et aI., 1 988) 

Many inroads have since been made into the fundamental understanding of 

the disease. Analysis of DMD and BMD gene deletions were published in 

1986 by Kunkel. Soon the complete cloning of the very large 14 kb DMD 

gene was achieved (Koenig et aI., 1987). By the use of polyclonal 

antibodies, the DMD gene product, a protein named dystrophin which was 

absent or deficient in DMD patients, has now been identified (Hoffman et aI., 

1987a&b). Clinical concepts about the myopathies were inevitably 

revolutionized with the advances in molecular genetics (Rowlands, 

1988a&b; Stedman and Sarkar, 1988). 
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2.1.4.1 Dystrophin 

The discovery of the DMD gene and its product, dystrophin a large protein 

molecule (427 kD), named by Kunkel and his associates in 1987, opened the 

flood gates to research in pursuit of gene identification of other genetic 

diseases (Payne and Roses, 1988). The search for therapies for muscular 

dystrophy, using the information on dystrophin, is currently being vigorously 

researched (Hoffman et aI., 1988; Chamberlain, 1991; Ohlendieck and 

Campbell, 1991; Wessels et aI., 1991; Tidball et aI., 1992; Nicholson et aI., 

1993a&b; Law and Tidball, 1993; Padberg, 1993; Lidov et aI., 1993; 

Helliwell et aI., 1994; Matsumura et aI., 1994; Sewry et aI., 1994). 

Dystrophin was initially thought to be located in triadic junctions of muscle 

(Hoffman et aI., 1987) but subsequent research showed that dystrophin was 

located on the inner cytoplasmic surface of the basement membrane 

(Watkins et aI., 1988). The presence of dystrophin was more prominent in 

the surface membranes of intrafusal muscle fibres and neuromuscular 

junctions than that found in skeletal and cardiac muscle fibres (Miyatake et 

aI., 1989). Miyatake et al. (1989) also localized dystrophin in smooth 

muscle of viscera including blood vessels. 

Dystrophin was also identified in cultures of normal human muscle, but not 

in the muscle of DMD patients (Ecob-Prince et aI., 1989). It'Myofilaments 

assembled and functioned normally in DMD muscle, but it was believed that 

dystrophin deficiency lead to the clinical weakness by causing breakdown 

of the myofibres that were once capable of generating normal force 

(Horowits et aI., 1990). Normal thin filaments associated with 

myotendinous junctions were attributed in part to normal dystrophin 

presence (Tidball and Law, 1991). 
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Some of the other revelations include that dystrophin was a relatively scarce 

protein in the cell, making up about 5 % of the total plasmalemma associated 

cytoskeletal protein (Ohlendieck and Campbell, 1991). Previously, it was 

believed that dystrophin was present all along the sarcolemma, but Porter 

et al. (1992) suggested that dystrophin was localized to the I-bands and 

M-lines only. Dystrophin was thought to anchor the contractile elements to 

the surface membrane. This was supported by Law and Tidball (1993). 

Increased intracellular calcium concentrations, as a result of membrane 

instability in muscular dystrophy, was implicated in promoting cell protein 

degradation and necrosis in muscular dystrophy (Glesby et aI., 1988; Turner 

et aI., 1988). Dystrophin deficiency and increased cellular calcium 

concentrations coupled with metabolic disturbances in the muscle of 

dystrophic patients was probably attributed to increased levels of oxidative 

stress. The effect of oxygen free radicals was suggested as the 

fundamental basis of many of the disease characteristics of muscular 

dystrophy (Baker and Austin, 1989; Murphy and Kehrer, 1989). 

Karpati (1992) reported the absence of dystrophin in most of the skeletal 

muscle fibres of DMD patients and that variable deficiencies were found in 

BMD."' On the other hand, according to Yau et al. (1993) one third of the 

DMD and BMD patients did not show gross deletions of the dystrophin gene 

and that this made prenatal diagnosis and carrier detection a problem. \L 

Dystrophin, as an anchor protein, functions in association with glycoproteins 

to link the subsarcolemmal cytoskeleton to the extracellular matrix. Four 

glycoproteins were found to be integral components of the dystrophin 

complex with one of them being greatly reduced in DMD patients, and this 
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was suggestive of the first stages of the molecular pathogenesis of muscular 

dystrophy (Ervasti et aI., 1990). The absence of dystrophin accompanied 

by decreased dystroglycans or dystrophin associated glycoproteins (DAG) 

was suggested as the reason for membrane instability and necrosis in DMD 

muscle (Helliwell et aI., 1994; Matsumura et aI., 1994). Some rare cases, 

exhibiting DMD symptoms, showed decreased DAG expression even though 

there was no deficiency of dystrophin (Sewry et aI., 1994). The DAGs 

apparently are expressed only in striated muscle and may therefore be 

important in the pathogenesis of DMD (Yamamoto et aI., 1994). 

The dystrophin-associated protein (DAP), called utrophin, were apparently 

increased in such cases. Tinsley and Davies (1993) suggested the 

possibility that utrophin may have the capability of performing the same 

cellular functions as dystrophin. They went on to state that if that was the 

case, it might be possible to regulate utrophin production as an alternate 

route to dystrophin gene therapy as an answer for DMD and BMD. 

Even though the underlying biochemical defect in DMD was a deficiency in 

dystrophin, there was no obvious temporal correlation between dystrophin 

deficiency with the progressive histopathological, as well as with the clinical 

features of the disorder. The defect in DMD is present from fetal life and yet 

the clinical picture presented itself much later, progressing rapidly thereafter 

(Gorospe and Hoffman, 1992). Nerve-muscle co-cultures performed on 

muscle biopsies from DMD patients showed some dystrophin positive fibres. 

This positive showing of dystrophin was thought to be due either to clonal 

selection of dystrophin positive fibres observed in one of the biopsies or due 

to a "frame restoring" mutation that might have occurred under culture 

conditions (Fanin et aI., 1993). 
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2.1.4.2 Myoblast transplant and gene transfer therapy 

Now that dystrophin and DAG deficiency in DMD has been confirmed, the 

problem that faced researchers was to find a way of conveying these 

muscle proteins into the muscle of patients (Blau, 1993; Cullen et aI., 1994). 

Unfortunately these proteins, being structural elements of the sarcolemma 

and not found in the blood, can not be administered or conveyed to the 

muscle therapeutically by means of simple injections into the patient. The 

two avenues presently researched to convey these proteins into dystrophin 

deficient muscle are myoblast transplant or gene transfer methods 

(Chamberlain, 1991). 

2.1.4.2.1 Myoblast transplant 

Myoblast transplant involved the injection of normal mononucleated muscle 

precursor cells, harvested in clonal cell cultures in the laboratory, into 

dystrophic muscle in the hope that these normal cells will fuse with the sick 

host cells. In this way, the dystrophic genome may be admitted into the 

host cells to start producing dystrophin to overcome the deficiency 

(Partridge, 1991 a; Fardeau, 1993). Experiments were initially performed 

with some success in animal models using the mdx mice. These mice also 

exhibit the dystrophic gene defect and deficiency in dystrophin like the 

human DMD. In these transplant experiments some mdx myofibres were 

converted from dystrophin negative to dystrophin positive fibres 

(Chamberlain et aI., 1989; Karpati et aI., 1989; Partridge et aI., 1989). 

Karpati (1990) suggested that for transplant therapy to be applied to the 

human situation, it must satisfy conditions of feasibility, safety and that it 
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must be efficacious. These transplant techniques were then extended to 

human trials but without resounding success (Brooke, 1990; Law et aI., 

1990a&b/1991/1993; Huard et aI., 1992; Karpati et aI., 1993; Morgan, 

1994). Many obstacles were identified with the therapeutic application of 

the myoblast transplant to the human disease (Partridge, 1991 a; Roy et aI., 

1993). 

There was dissent among the research fraternity (Thompson, 1992). It was 

felt that it was unethical to continue myoblast transplant tests on human 

patients until the success of such therapeutic applications were problem 

free. These tests must first be tried with unquestionable success in animal 

models that closely resemble the human DMD situation. Presently, the best 

models would be the canine ones (Cooper et aI., 1988; Sharp et aI., 1993). 

The golden retriever dogs suffer from a dystrophy similar to human. The 

difference between the canine and the mice models was that the canines, 

like the human, lose ambulation with the progression of the disease. The 

mdx mice on the other hand do not lose ambulation nor do they display 

gross muscle weakness, and this perhaps is due to the fact that these 

animals, for some unknown reason, exhibit continued regeneration of muscle 

even in the adult stage. 

The harmful effects of immunosuppressive drugs and general anaesthesia 

on the patient, compared to the dismal result obtained in the transplant 

method, did not justify the risk to the patients. Very little functional 

capabilities were improved or achieved with no change in the ambulatory 

status of the patient (Mendell et aI., 1994). Even if consent was obtained 

for such trials, it was felt that the young boys and their parents, with all the 

emotional implications of having DMD, were in no position to give true 



22 

informed consent. However, these criticisms did not deter the researchers 

involved as they felt 'The initial lack of success in an experimental work is 

no justification to advocate its cessation' (Karpati cited in Thompson, 1992). 

Even if preliminary results on myoblast transplant showed promise, it was 

bound, ultimately, to prove to be an impractical method of treatment of 

dystrophy. The transplanted myoblasts will be localized and will benefit only 

the muscle that is injected with the donor cells. The donor myoblasts do not 

migrate from muscle to muscle. For success with this method, it will require 

that every skeletal muscle in the body be injected with these normal or 

genetically normalised cells. This was virtually impossible! Satoh et al. 

(1993) clearly demonstrated in their work using mdx mice that the injected 

donor myoblasts remained near the injected site and that there was a poor 

dystrophin positive response in the muscle fibres. The editorial caption, 

"Myoblast transfer in muscular dystrophy: panacea or pie in the sky" says 

it all (Dubowitz, 1992). 

2.1.4.2.2 Gene transfer therapy 

The more promising method of treatment in the future for muscular 

dystrophy was offered by the gene transfer method (Ascadi, 1994; Karpati, 

1994). The gene to be transferred can be introduced to target cells, in 

vivo, or the gene may be introduced to target cells, in vitro, and then 

reintroduced to the tissues (Karpati and Ascadi, 1 993). Direct transfer of 

gene into the extracellular space of the muscle was conveyed by viral 

vectors such as retrovirus and adenovirus. But the administration of viral 

vectors needed to address the problems of toxicity, immunoreaction and, in 

vivo, recombination of the gene constructs (Davis and Jasmin, 1993; 
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Karpati and Ascadi, 1993; Ascadi, 1994). On the other hand, Vincent et al. 

(1993)' having used the adenovirus mediated transfer method of a human 

dystrophin minigene in their work with mdx mouse, reported long term 

correction of dystrophic degeneration of mutant mouse deficient in 

dystrophin. 

Transduced normal human satellite cells with retrovirus, injected into 

regenerating muscle of immunodeficient mice, formed new fibres which 

revealed the product of the reporter gene for two months after injection. 

From these findings Salvatori et al. (1993) concluded that the human-mouse 

model allowed in vivo testing of similar gene therapy approaches. 

Transgenic techniques used by Lee et al. (1993) achieved regional 

restoration of recombinant dystrophin to the muscle of the mdx mouse and 

regional restoration of normal muscle morphology. Their study indicated a 

correlation between the level of muscle fibers expressing recombinant 

dystrophin and the level of muscle fibers with peripheral nuclei. In another 

study it was shown that transgenic induction of dystrophin in mdx mice 

overcame the morphological and immunohistological symptoms of muscular 

dystrophy, providing functional evidence for the feasibility of gene therapy 

(Cox et aI., 1993). Research in this area of gene transfer is ongoing with 

the use of animal models. When success is achieved, it is hoped that this 

method of therapy will work for the neuromuscular diseases in human. 

2.1.5 Interim treatment and support therapy 

The ultimate requirement from research would be that it provides answers 

to prevent the progression of the neuromuscular disease or help to cure the 

disease altogether. In the absence of such treatment to date, prevention of 
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the disease relies on the identification of carriers and on prenatal diagnosis 

using amniocytes (Simard et aI., 1991) and/or fetal cells (Evans et aI., 

1993). Diagnostic methods are available for such early detections of the 

disease (Goldblatt et aI., 1987; Payne and Roses, 1988; Simard et aI., 

1 991 ). The only problem with the diagnostic methods is that they become 

limited by the high incidence of spontaneous mutation rate of the DMD 

gene. The occurrence of the disease by spontaneous mutation in such 

individuals is unpredictable and, therefore, requires new strategies for 

detection and treatment (Anderson and Kunkel, 1992). 

2.1.5.1 Treatment with chemical agents 

Some of the chemical gents used to alleviate the DMD patients included 

calcium antagonists such as diltiazem. The results from manual muscle tests 

and functional activity using diltiazem as a chronic treatment suggested a 

beneficial effect to DMD patients (Bertoni et aI., 1988). Johnson and 

Bhattacharya (1993) supported this with their findings on dystrophic 

hamsters. In their work they examined the effect of diltiazem and other 

calcium channel blockers on the regulation of excessive intracellular calcium 

accumulation. It is well documented that the intracellular calcium 

concentration is elevated in DMD muscle (Palmieri, 1993). Calcium 

concentration was also found to be elevated in platelets, erythrocytes and 

fibroblasts (Moses et aI., 1990). 

Prednisone treatment of dystrophy was reported to improve muscle strength 

and function, but the mechanism is not known (Burrow et aI., 1991). Kissel 

et al. (1991), from their investigations, suggested that immunosuppressive 

effects assisted in mediating this improved muscle strength in DMD patients. 
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However, in a recent study, Kissel et al. (1993) concluded that 

immunosuppressive actions were not the primary mechanism of 

prednisone-induced clinical improvement. Prednisone tried on mdx mouse 

also supported its beneficial effects on improving strength and endurance in 

DMD mouse (Hudecki et aI., 1993). A dramatic case was recorded recently 

in a boy of 4 years who exhibited most of the clinical symptoms 

characterising DMD. When treated with prednisone, he started running and 

climbing stairs, all that he could not do before, just 24 hours after treatment. 

He had normal dystrophin and the aetiology of this condition was unknown. 

With this experience, a case was made for the treatment with prednisone for 

all undiagnosed progressive myopathies (Bradley et aI., 1994). Angelini et 

al. (1994) tried deflazocort in DMD patients as a long term treatment and 

reported improved motor capabilities in the patients and prolonged 

ambulation for a little over a year. The side effects recorded were mild, 

which included weight gain and behavioural changes. 

2.1.5.2 Surgery, exercise and support equipment. 

Apart from the very important psychological support necessary for the 

dystrophic patients, there were many ways in which some measure of 

comfort could be given to the patient. Surgical intervention was sometimes 

advised to reduce early contractu res or shortening by tenotomy (Dubowitz, 

1988). Freeing the Achilles tendon helped keep the patients on their feet for 

a little while longer (Fenichel and Robison, 1988). In order to avoid 

scoliosis, which became progressively worse when the patients stopped 

walking, routine spinal arthrodesis was to be given consideration (Brooke et 

aI., 1989; Smith et aI., 1989). 
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Leg braces, walking aids and night splints may be used to keep the patients 

ambulant for as long as possible and out of the dreaded confines of a 

wheelchair. Support jackets may be worn to afford comfort while 

wheelchair bound. 

Walking and breathing exercises were advocated. Disuse of the muscles 

only helped to debilitate the patient further by promoting muscle weakness, 

decreased cardiovascular performance and promoting contractu res (Fenichel 

and Robison, 1988). 

Low frequency electrical treatment, having shown some benefit in improving 

muscle contraction in young ambulant children with DMD, was also 

suggested as possible therapy (Dubowitz, 1988; Milner-Brown and Miller, 

1 988; Scott et aI., 1 990). 

2 . 1.6 Diagnostic methods. 

The need for proper and early diagnosis cannot be over-emphasised as 

shown in the diagram on the following page. 

Procedures helpful in diagnosing muscle dystrophy include: 

(i) familial history 

(ii) clinical examination 

iii) biochemical tests on blood and muscle biopsy tissue 

iv) electromyography 

v) histological and ultrastructural investigation of biopsies 

vi) nuclear magnetic resonance and 

vii) computerised tomography and ultrasound (Pearson and Young, 1993). 
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Mother on left with eight children - six of her sons III 2 to III 7 afflicted with 

muscular dystrophy - could have been avoided with early diagnosis (Moosa, 

1982). 

Estimation of serum enzyme concentration of creatine kinase were of value 

as initial laboratory diagnosis especially in the very young patients, as the 

enzyme concentrations declined with age. Young female carriers frequently 

exhibited elevated creatine kinase. 

Muscle biopsies, obtained as open or needle biopsies (Maunder-Sewry and 

Dubowitz, 1 981 ), were helpful in making histological and electron 

microscopic diagnosis. Ultrasound scanning was useful in muscle selection 
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Imaging of muscle by ultrasound was also 

recommended as a noninvasive and pleasant out-patient procedure, valuable 

as a screening test in the investigation of neuromuscular diseases (Heckmatt 

et aI., 1988; lamminen et aI., 1988). 

2.1.6.1 Precise diagnosis 

Today, with the identification of the defective gene assembly on the 

chromosome, and the identification of the DMD gene product, dystrophin, 

together with the dystroglycans, correct identification and classification of 

a number of the neuromuscular diseases are possible. Clinical symptoms 

and blood chemistry results together with histological diagnosis were not 

always efficient for the proper diagnosis and classification of the dystrophies 

as shown for the case of a 4 year old boy (Bradley et aI., 1994). Tests for 

dystrophin, in a number of cases has proved earlier diagnosis to be 

incorrect. r Anomalies in clinical pictures were sometimes presented as in the 

case of two brothers who had the identical gene defect for BMD (Medori et 

aI., 1989). yThey were shown to present different clinical courses, one 

having normal muscle strength at 26 yrs while the other had severe 

disability at the same age limits. The possible reasons forwarded were that 

this discrepancy was due to intrinsic muscle factors, to modified genes or 

internal environmental influences, as the stronger brother was treated with 

antiepileptic drugs. 

In another case, Wilton et aL (1994) highlighted the diagnostic power of 

precise identification by showing that two boys in a family had DMD, but 

the mother and their sisters did not carry the mutation. That counselling in 

this family by conventional belief would have been erroneous. The mutation 



29 

in this case was due to gonadal mosaicism. In gonadal mosaicism, gene 

mutations in the females were said to occur in oogenesis and point 

mutations in spermatogenesis (Grimm et at, 1994). 

2.1.6.2 Prenatal diagnosis 

Prenatal diagnosis by DNA analysis of genetic abnormalities using 

amniocytes and cells of the chorionic villus is today possible using the 

polymerase chain reaction (PCR) test, but, unfortunately this technique is 

not informative in all patients. Furthermore, the detection of dystrophin by 

immunocytochemistry was not possible as these cells do not produce the 

protein. To overcome this hurdle, myogenesis may be induced in 

amniocytes and chorionic villus cells in culture, with the use of MyoD, a 

gene regulating myogenesis in cells. This MyoD was transfected with the 

retrovirus as vectors. Dystrophin expression could then be identified in 

these cells by immunocytochemistry (Sancho et aI., 1993). Fetal muscle 

biopsy testing was also recommended for the diagnosis of DMD (Evans et 

aI., 1993). In this way, prenatal diagnosis of DMD could be made with 

some measure of precision. 

2.1.6.3 Carrier and dystrophinopathy 

Carriers are now identified with a greater measure of reliability. The 

efficiency of the tests available at the present time also identifies the many 

sporadic cases due to spontaneous gene mutation. 

The condition in females who were deficient in dystrophin and had 

dystrophic symptoms was referred to as dystrophinopathy. 
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Dystrophinopathy was believed to be due to X chromosome inactivation or 

due to paternal transmission of dystrophin gene mutation for yet unknown 

reasons (Pegoraro et aI., 1 994). Yoshioka et al. (1990) reported the 

incidence of female Duchenne muscular dystrophy, showing deletion of the 

DMD cDNA within Xp21. 

2.1.6.4 Identification of young DMD patients 

For the young DMD patient with no family history, a number of laboratory 

diagnostic tests are available. The use of blood cells is less traumatic than 

the use of muscle biopsies. The polymerase chain reaction (peR) requiring 

blood samples for test, was a cost effective method for routine laboratory 

diagnosis. The drawback in this diagnostic method as it stands today, is 

that the prediction level was up to 85%. 

The most accurate diagnostic method is the Western blotting technique used 

on muscle biopsies, the only disadvantages being that it is time consuming 

and most expensive. The cheaper technique using immunocytochemistry on 

muscle biopsies was quicker and as effective as the blotting technique for 

DMD diagnosis. Immunocytochemistry is also useful in identifying between 

limb-girdle dystrophy and a non-deleted manifesting carrier of DMD or BMD 

in women. Genetic analysis by peR and immunocytochemistry is 

recommended to diagnose between DMD and the autosomal recessive 

muscular dystrophy. Identification between BMD and the autosomal 

muscular dystrophy was better served by the peR and the immunoblotting 

tests (Nicholson et aI., 1 993b; Tachi et aI., 1993; Richards and Iannaccone, 

1994). 
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2.1.7 Conclusion 

It must be emphasized that only the salient points have been mentioned in 

this review on dystrophy with greater emphasis laid on DMD. With the 

discovery of dystrophin and dystroglycans together with the availability of 

the diagnostic tests, some relief is obtained in the way of prevention by 

being able to make prenatal diagnosis. 

Volumes of research is currently ongoing for the whole spectrum of 

neuromuscular diseases. Some of the topics of current research are 

published in the first Supplement of the journal Muscle & Nerve, 1994, 

which contains all the abstracts of work presented at the VIII International 

Congress on Neuromuscular Diseases held in Japan, July 1994. 

Gene transfer therapy appeared to hold out the greatest promise of a 

solution to muscular dystrophy. Researchers hope to overcome the 

preliminary technical hitches and prove the efficacy of this therapeutic 

method, using animal models of DMD, in the near future. Until such time, 

those afflicted with the disease together with their parents and close ones 

must keep their chin up and pray research finally succeeds. 
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2.2 DEVELOPMENT OF SKELETAL MUSCLE 

In this section, a brief account of the development of mature skeletal muscle 

from embryonic precursor cells will be discussed. 

2.2.1 Embryonic myogenesis of skeletal muscle fibres 

In vertebrates, striated or skeletal muscle is derived from the mesoderm in 

the segment called myotome. Precursor cells of muscle or myoblasts in this 

segment are initially round forms which subsequently become spindle 

shaped. These spindle shaped cells, as they increase in number mitotically, 

align themselves alongside each other as described by Speidel (1938) for the 

regeneration of skeletal muscle in the tail of living tadpoles. Contact 

between these spindle shaped cells resulted in cytoplasmic fusion of the 

cells forming myotubes which are syncytial and multinucleate. A similar 

process of myotube formation took place when mononucleated myoblastic 

cells were cultured. The dissociated mononucleated cells were initially 

round when placed into the culture flasks, and on incubation they formed 

spindle cells. These spindle cells proliferated, fused with each other and 

finally formed multinucleate myotubes (see Figs. 1 and 2 C-F). 

According to Fischman (1972), cells ready to fuse were considered to be 

postmitotic. These postmitotic cells, which sometimes displayed early 

myofibrillar development, were characterised as myoblasts. Mononucleated 

cells which underwent active mitotic division, and in which myofibrillar 

development was not present at any stage, were referred to as presumptive 

myoblasts (Carlson, 1973). In the developing myotubes myofibrils soon 

made their appearance. Z lines became quite distinct and were evenly 

spaced at intervals along thickened strands of developing myofibrils. During 
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development the nuclei were centrally located, but became peripherally 

placed as the myotube matured to a fully grown myofibre (Carlson, 1973). 

This displacement of the nuclei to the periphery under the sarcolemma may 

be attributed to the filling up of the growing myotube with longitudinal 

arrays of myofibrils. 

It is well documented that the mononucleated myoblasts have all the usual 

organelles as any other generalized animal cell (Bloom and Fawcett, 1968). 

The organelles, such as the endoplasmic reticulum and the mitochondria 

become distributed to specific areas as the myotube proceeds to maturity. 

The Golgi complex becomes indistinguishable from the endoplasmic 

reticulum in the myofibre. The nuclei of the mononucleated cells are dense 

granular often revealing clear nucleoli, usually two in number. Nuclei 

become euchromatic in the mature myofibre (Dubowitz, 1985). 

The myofibres developed in this way were believed to split longitudinally 

(Schmalbruch, 1976) to increase the number of myofibres making up the 

skeletal muscle of the developing embryo until approximately 1 70 mm long 

(Maximow and Bloom, 1944; Bloom and Fawcett, 1968). Thereafter, future 

growth occurs to increase only the size of the fibres already present. On the 

other hand, other researchers believed that the splitting of fibers and 

formation of new fibers from undifferentiated cells continues in the newborn 

mammalian muscle (Schultz, 1976; Campion, 1984). 

2.2.2 Morphology of mature skeletal muscle 

Mature skeletal muscle as an organ is covered by connective tissue sheath, 

the epimysium. This epimysium, with dense regular collagen fibres, merges 
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Diagrammatic structures of the skeletal muscle (Moffet et aI., 1993). 

at either end of the muscle belly with tendons, aponeurosis or the 

periosteum of bone. Extensions of the perimysium into the muscle belly 

subdivides the muscle organ into many muscle bundles or fasciculi each 

covered by thinner connective tissue sheath, the perimysium. Each 

fasciculus is made up of many myofibres each of which is separated from 

the adjacent fibre by connective tissue referred to as the endomysium which 

is continuous with the perimysium. Skeletal muscle fibres are 

characteristically long (up to 10 cm) and cylindrical fibres with an even 

diameter (20-50 urn) covered by a sarcolemma that separates it from the 
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external environment. The myofibres are characteristically unbranched. 

Electron micrograph of skeletal muscle fibre showing A and I bands, terminal 

triads T d (T tubule & terminal cisternae TC), sarcoplasmic reticulum SR, 

mitochondria M (Burkitt et aI., 1993). 
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2.2.2.1 Sarcolemma, basement membrane and plasmalemma 

The sarcolemma is made up of the basement membrane on the outside and 

the plasmalemma on the inner surface. These two layers are closely 

applied. The basement membrane is secreted by the muscle fibre itself and 

is said to be composed of laminin, collagen, glycoproteins, proteoglycans 

and fibronectin. The plasmalemma being the true limiting cytoplasmic 

membrane of the muscle fibre is the electrically excitable envelope 

composed of lipid bilayer and structural, receptor and metabolically active 

proteins (Dubowitz, 1985). 

2.2.2.2 Myonucleus 

The myofibres are multinucleate with elliptical shaped nuclei in longitudinal 

sections (Dubowitz, 1985). The multinucleation was generally attributed to 

many mononucleated cells fusing to ultimately form mature myofibres 

(Bloom and Fawcett, 1968). The myonuclei are characteristically located at 

the periphery under the sarcolemma. The normal myonuclei sometimes 

revealed a prominent nucleolus and finely stippled nucleoplasm usually being 

described as euchromatic with a thin peripheral rim of dense chromatin 

(Dubowitz, 1985). 

2.2.2.3 Myofibrils, actin and myosin filaments 

The myofibres have clear and prominent striations due to the presence of 

actin and myosin filaments of the myofibrils. The thin actin filaments with 

the Z line in the centre, scattering light evenly make up the I (isotropic) band 

and the thicker and darker myosin filaments make up the A (anisotropic) 
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band. Hundreds to thousands of myofibrils compose the main body or 

volume (85-90%) of the myofibre sarcoplasm. Each myofibril is separated 

from the next by intermyofibrillar space which houses the subcellular 

constituents such as mitochondria and sarcoplasmic reticulum. 

2.2.2.4 Mitochondria and sarcoplasmic reticulum 

The mitochondria are found in the subsarcolemmal region usually in 

proximity to myonuclei, and are generally round to ovoid. Those found in 

the intermyofibrillar space, sandwiched in between the myofibrils, often 

appear longitudinal. Regions in between the membranous cristae contain 

amorphous material. Mitochondria in the intermyofibrillar space, viewed in 

EM sections of muscle, are usually prominent in the regions adjacent to the 

I bands. 

The sarcoplasmic reticulum in muscle fibres is derived by invagination of the 

sarcolemma (Ezerman and Ishikawa, 1967) forming a central tubule. The 

central tubule enters the myofibre more or less at right angles at the points 

where the Z discs are in register and branches to move around the Z disc 

giving the so called T -tubule formation as seen in frog skeletal muscle (Ham, 

1965). With the EM, in longitudinal sections of human muscle, the pale 

centrotubule is identified in the region of the All band interface accompanied 

on either side by dense terminal sacs of the sarcoplasmic reticulum forming 

the cytoplasmic 'triad' (Dubowitz, 1985). 

2.2.2.5 Ribosomes, lipid droplets and glycogen 

The sarcoplasm also contains the ribosomes, lipid droplets, and glycogen 



38 

granules. The ribosomes are smaller and more electron dense than the 

glycogen granules (Mair and Tome, 1972). 

2.2.2.6 Intermediate filaments and microtubules 

Intermediate filaments occur mainly in the subsarcolemmal regions of 

sarcoplasm. The proteins of these filaments are immunologically distinct 

from other filament proteins in the fibre. These are desmin and vimentin 

(cited in Dubowitz, 1985). Desmin is localized at the periphery of the Z line 

providing an interconnecting network linking myofibrils with each other and 

with the sarcolemma, as well as the Z line with the nuclear membrane 

(Tokuyasu et aI., 1983). Vimentin was shown to be associated with the 

nuclear membrane and with the sarcolemma. Dubowitz (1985) suggested 

that vimentin probably provides the nucleus with mechanical support. 

Tubulin is the major protein of the microtubules. 

2.2.2.7 Muscle fibre types 

On the basis of colour, on macroscopical examination, muscle fibres were 

classified as red and white fibres as early as 1678 by Stefano Lorenzini 

(cited in Dubowitz, 1985). The red fibres are smaller fibres found in postural 

muscles like the back and neck muscles. They were supposed to be slow 

twitch and weaker muscle fibres, but could act for prolonged periods 

without tiring. On the other hand white fibres are large and powerful, but 

tire quickly like the muscle of the limbs used for carrying, walking and 

jumping. 
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Modern histochemistry, enabling the identification of enzyme systems and 

other cell constituents, now made possible the correlation of the functional 

activity of individual fibres with their morphology. The standard ATPase 

reaction test at pH 9,4 initially led to the adoption of the two fibre system, 

with the type 1 fibres being weak and the type 2 fibres strong in reaction. 

The adoption of the 2 fibre system was practical and useful for the 

assessment of both normal and diseased muscle. Later, type 2 fibres were 

further classified into subgroups as 2A, 28 & 2C on the basis of the 

standard ATPase reaction at pH 4,3 or 4,6. This further classification was 

useful in demonstrating selective physiological and mo'rphological changes 

in muscle. It helped explain the process of development and maturation of 

fetal muscle. 

Ultrastructural correlation with histochemical and physiological features of 

muscle were much easier in the animal models because examination of 

muscles, composed of a single type of fibre without mixing, was possible. 

In the human this was made difficult as the human muscles were of a mixed 

type and was easier to relate the predominance of a fibre type. The many 

histochemical techniques to identify the physiological characteristics of 

muscle were well documented (Dubowitz, 1985). 

2.2.2.8 Blood vessels and nerve supply 

The vascular and nerve supply to the myofibres is conveyed in the 

endomysia I tissue. Type 1 fibres have more capillaries than type 2. The 

nerve fibres from the perimysium enter the endomysium to terminate on 

individual myofibres at points known as neuromuscular junctions. 
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2.2.2.9 Muscle spindles 

Specialised striated muscle fibres (4-1 6) enclosed within a sheath or capsule 

forming muscle spindles are located in the perimysial tissue adjacent to 

blood vessels and nerves. These specialised fibres are of two types, one 

being called a nuclear bag fibre, having a collection of nuclei in the central 

area of the fibre, and the other, the thinner chain fibre with chains of nuclei 

for much of the length of the fibre. The fibres of the spindle known as 

intrafusal fibres are supplied by their own motor and sensory nerve fibres. 

The muscle spindle, a proprioceptive sensory organ, is a comparator of 

static and dynamic stretch occurring in the skeletal muscle and is also 

responsible for the maintenance of muscle tone. 

2.2.2.10 Satellite cells 

Rarely occurring in mature adult muscle are satellite cells which were first 

identified by Mauro (1961). Satellite cells, presumed to be embryonic 

remna~ts of myogenesis, are characteristically located between the 

basement membrane and the plasmalemma of the muscle fibre. These cells 

are thought to be reserve cells which become activated in the muscle in 

times of stress, proliferate by mitotic division, fuse to form myotubes and 

finally form new myofibres (Campion, 1984). Research findings on satellite 

cells after their discovery by Mauro (1961) are discussed in greater detail 

later on in this chapter. 
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2.3 MUSCLE REGENERATION STUDY TECHNIQUES 

According to Lipton (1 979) regenerating cells were commonly found in 

biopsies from young dystrophic patients, but the frequency of such cells 

declined steadily in patients older than 5 years. However, there was some 

degree of regeneration in advanced cases of up to 10 years or longer after 

the onset of clinical symptoms. It is well documented in structural studies 

(Lipton, 1979) that regenerative activity in DMD progressively declined, and 

that formation of functional myofibres after the onset of clinical symptoms 

was not possible. In the older dystrophic patients, 50 to 90% of the muscle 

fibres were replaced by connective tissue. In the young DMD patients, 

normal, atrophic, hypertrophic and regenerating fibres were a common 

feature (Lipton, 1979). 

To identify the mechanisms involved and leading up to the muscle 

regeneration defects above, many techniques were tried and tested to 

induce regeneration in living animals and under culture conditions in the 

laboratory. Speidel as early as 1938 used living frog tadpoles to study 

regeneration. He provided morphological evidence for the progressive 

changes which took place from mononucleated spindle shaped myoblast up 

to the formation of myofibres. These findings held true for the animal and 

human muscle regeneration in subsequent studies that followed and were 

similar to those obtained in the current study (Figs. 1 & 2). Some of the 

techniques that are now obsolete and those that are currently used in 

regeneration studies are discussed. 
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2.3.1 Animal models used in regeneration studies 

A variety of animal models from the animal kingdom were used in skeletal 

muscle regeneration research. Some of these included :- insects like the 

blowfly (Gregory et aL, 1968); anuran species and tadpoles (Hsu, 1974; 

Trupin, 1976; Mazanet et aL, 1982; Takahama, 1983); amphibia and reptiles 

(Thornton, 1938; Lentz, 1969; Carlson, 1979, Hay 1959/1979); birds -

chick (Bischoff and Holtzer, 1969; Wright, 1985;) and quails (Konigsberg et 

aL, 1975; Lipton, 1977a&b); fish (Sandset and Korneliussen, 1978); rats 

(Mong, 1977; Kelly, 1978a&b) and mice (Shafiq and Gorycki, 1965; 

hamsters (Tautu and Jasmin, 1982; Karpati et aL, 1983; Jasmin and 

Bokdawala, 1970); guinea pigs (Hess and Rosner, 1970); rabbits (Yarom et 

aL, 1976); foetal pigs (Campion et aL, 1978); monkeys (Allbrook et aL, 

1966); fruit bats (Church et aL, 1966; Church, 1969); cats and dogs 

(Ishikawa, 1966) and human muscle (Yasin et aL, 1977; Thompson et aL, 

1981; Minguetti and Mair, 1981; Delaporte et aI., 1984; Jasmin et aI., 

1984a&b). 

2.3.2 Grafted muscle and implants 

Some of the studies following the development of muscle (Ishikawa, 1966; 

Shafiq et aL, 1967) used fixed and stained muscle preparations for 

microscopical study taken directly from foetuses, young and adult animals 

and from humans. Other studies involved the grafting or interchanging of 

muscle segments between animals (Jasmin and Bokdawala, 1970; 

SChmalbruch, 1977), and autografting of muscle mince (Snow, 1979). 
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Jasmin and Bokdawala (1 970) reported success with normal hamster 

littermates, but the grafts became scar tissue when placed into dystrophic 

hamster. Failure in such grafts were attributed to the pathogenicity of the 

disease. Muscle grafts were also performed on the same animal with 

muscle being transferred from one limb to the other (Schmalbruch, 1977). 

The graft technique of study was over protracted periods and, even though 

the muscle grafts were placed within the animals they suffered poor 

innervation. Mong (1977) used rats, mincing their muscle and leaving them 

inside the animals as implants. In some of the rats, the muscle carrying the 

regenerates were denervated. He suggested that innervation was important 

for the late phase in regeneration and for the differentiation of the fibre 

types. 

Regenerative and degenerative responses in minced and autografted muscle 

were also investigated (Snow, 1977a). Snow (1977b/1978/1979) 

performed autoradiographic studies on minced radioactive hind limb muscles 

of young rats. [3H ]thymidine was injected into young rats to achieve 

labelling of satellite cells. Snow then transplanted the muscle to untreated 

littermates. New regenerated myotubes with labelled nuclei confirmed that 

satellite cells in young rat muscle were capable of differentiating into 

myotubes after muscle injury. Other investigations on muscle grafts 

included free muscle grafts (Carlson et aI., 1979), grafts between normal 

animals and dystrophic animals (Cosmos et aI., 1979) and autogenous 

muscle transplants (Hall-Craggs, 1979). Labelled satellite cells obtained 

from clonal cultures were also implanted into the original donors, namely 

rats and quails (Lipton and Schultz, 1979). 
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2.3.3 Denervation and muscle injury 

Apart from minced muscle implants, animal muscle injured, in situ, in 

various ways, was also used in muscle regeneration research. In some 

cases the nerve supply to the muscle under investigation was removed to 

study the influence of denervation of muscle during the regeneration process 

(Mong, 1977; Kelly, 1978b). Kelly (1978b) denervated the soleus and 

extensor digitorum longus muscle of developing and mature rats to study 

growth patterns in the two different types of muscle using [3H]thymidine 

labelling. Campion et aI., (1978) destroyed the cervical spinal cord of fetal 

pigs by cauterization at 45 days of gestation to investigate muscle 

development. Crush injury and [3H ]thymidine labelling of mdx mice muscle 

were also employed (Grounds and McGeachie, 1992). 

During muscle regeneration in rats and rabbits, after injury by ischaemia, 

freezing or autografting, the early stages of presumptive myoblast 

proliferation, myoblast fusion and the development of multinucleated 

myotubes occurred within the basal laminar tube. The basal laminar tube 

(Vracko and Benditt, 1972; Schmalbruch, 1976) was said to provide a 

scaffolding for orderly cell replacement. Regeneration of muscle was also 

shown to take place almost exclusively within the sarcolemmal tubes 

obtained from the surviving basement membrane of dry ice injured muscle 

of 2 week and 1 year old chicken pectoral muscles. Focal continuities 

between satellite cells and old myofibre were observed, and these focal 

continuities were regarded as possible evidence of fusion between satellite 

cells and the necrotic fibre. Activated satellite cells characteristically 

demonstrated numerous cell processes, which made them resemble 

macrophages (Nichols an,d Shafiq, 1979). 
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In one study, the frog muscle was injured by pinching through the skin, and 

other muscles of the frog was crushed, in vitro, and examined at different 

intervals for the effects of such injury (Mazanet et aL, 1982). Colchicine 

effects on regeneration of transected tibialis muscle of mice (Pietsch, 1961), 

cold effects on rat muscle (Price et aL, 1964), the use of hot brass tips 

inserted into the muscle (Shafiq and Gorycki, 1965), damage to soft tissue 

and fracture to limbs of anaesthetized monkeys with a strike force (Allbrook 

et aL, 1966), freezing and ischaemia (Vracko and Benditt, 1972), segmental 

squeezing of the soleus muscle with a surgical clamp and use of hot Ringer's 

solution in rats (Schmalbruch, 1976), denervation and tenotomy (McGeachie 

and Allbrook, 1978), and micropuncture injury with a tungsten wire causing 

necrosis to all fibres pierced (Carpenter, 1990) were some of the methods 

of injury used in muscle regeneration research. 

Studies on epimorphic regeneration exhibited by amphibia and reptiles were 

conducted on amputated limbs of these animals (Thornton, 1938; Carlson, 

1979; Hay 1979). 

Yarom et aL (1976) injected soluble gold and inflicted extreme cold injury to 

the extraoccular muscles of rabbits. Myoblasts and myotubes were shown 

capable of taking up the gold tracer, thus giving credibility to the opinion 

that myoblasts and myotubes performed as phagocytes during the stages 

of muscle regeneration. 

2.3.4 In vitro cultured muscle 

Geiger and Garvin (1957) were the first to culture human muscle to identify 

inherent peculiarities of muscle cells of progressive muscular dystrophy 
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patients. It was felt that if muscular dystrophy was due to changes intrinsic 

to the muscle fibre, these pathological changes ought to be identified in 

muscle cultures (Witkowski and Dubowitz, 1975; Witkowski, 1977). 

In recent times, muscle culture techniques in a controlled laboratory 

environment were the choice in the study of muscle regeneration. The 

techniques used either enzymatically dissociated mononucleated muscle 

cells or minced explants. 

r 
I The culture media, even though varying slightly in different laboratories, 
I 

I 
I usually comprised of base medium containing synthetic ingredients in 
I 

! optimal concentrations to promote growth. To the base medium, made up 

of synthetic organic and inorganic nutrients in physiological buffers, was 

added foetal bovine serum, chicken embryo extracts and antibiotic/ 

'\ 
\ 
\ 

~ 

antimycotic solutions (Yasin et aI., 1977; Jasmin et aI., 1984a). Foetal 

bovine serum was replaced by horse serum when fusion of cells was the 

requirement (Hauschka, 1974). 

Askanas (1979) considered regeneration of diseased human muscle in 

cultures a valuable tool to study the pathogenesis of neuromuscular 

diseases, and that it presented a new frontier in the study of neuromuscular 

disorders. According to Askanas the aim in using cultured diseased human 

muscle was to attempt to reincarnate in cultures the structural changes and 

biochemical defects that were observed in biopsied muscle. Furthermore, it 

was felt that cultures might reveal unknown morphological and biochemical 

defects and enable attempts at treatment of the identified abnormalities, in 

vitro. 
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2.3.4.' Myofibres and muscle explants 

In earlier research, explants prepared from muscle biopsies obtained from 

normal and dystrophic patients were cultured in plasma clots using Carrel 

flasks. Tissue culture medium called TC. 199 containing human AB serum 

was used as the feeding solution (Geiger and Garvin, 1957; Skeate et at, 

1969; Bishop et at, 1971 ; Bischoff, 1972; Dubowitz, 1973). Mendell et at 

(1972) reported shrunken and pyknotic nuclei within the first two days after 

incubation of human muscle explants cultured in Maximow double coverslip 

chambers on collagen-coated plastic coverslips. These explants were fed 

1 drop of growth medium 3 times a week. In this study an attempt was 

made to investigate the ultrastructural characteristics of human muscle in 

culture. 

The above methods were beset with problems of necrosis, invading cells 

and perfusion or proper nutrient supply of the explants under investigations. 

Migration of sprouting cells away from the explant in a clot was restricted. 

In addition, the preparation of muscle cell line clones were not possible with 

this method (Yasin et at, 1977). 

The muscle explant technique, nowadays, has come a long way since the 

early clot culture technique. Minced muscle grown as free floating explants 

in aqueous unclotted culture media provided better migration and growth of 

presumptive myoblasts (Askanas and Engel, 1975; Tautu and Jasmin, 1982; 

Delaporte et at, 1984; Jasmin et at, 1984a). Some of the disadvantages 

of the explant technique were that it encouraged prolific growth of 

fibroblasts together with other connective tissue cells which became a 

nuisance as the cultures got older to the extent that the fib'~blasts outgrew 

and restricted the growth of myoblastic cells. To overcome this, Askanas 
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and Engel (1975) cultured explants for two weeks, and then transferred the 

explants to a new flask thus achieving less contamination by fibroblast 

growth. 

Jasmin et al. (1984a) advocated gentle agitation of the culture flasks every 

day to overcome the adherence of the explants to the culture flask coated 

with gelatin. Ecob-Prince and Brown (1988) cultured human muscle 

explants together with mouse spinal cord. The growth medium used in this 

study included 25% human placental cord serum, 10% chick embryo extract 

and 6% glucose. 

Single myofibres from rats (Bischoff, 1972/1975/1979) and from Japanese 

quail (Konigsberg et aI., 1975; Konigsberg, 1979) were also cultured to 

investigate myoblastic response. Single whole fibre cultures which were 

performed from teased muscle seemed an inefficient way of producing 

mononucleated cells. Rubin et al. (1979) cultured single fibres released from 

rat muscle by collagenase digestion. These fibres maintained their striations 

and young myotubes were seen only in the vjcinity of adult degenerate 

myofibres. 

Culture media and the explant method of muscle culture in use at the 

present time is discussed in greater detail under methods and material in the 

following chapter. 

2.3.4.2 Dissociated mononucleated myoblasts 

The dissociation technique of muscle cultures, using single mononucleated 

cells isolated by proteolytic enzyme digestion of muscle fragments, was born 
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and gained impetus with the discovery of the satellite cell by Mauro (1961). 

Proteolytic enzymes namely, trypsin, pronase, collagenase, papain and ficin 

were tried for their ability to free mononucleated cells from rat muscle 

(Bischoff, 1974). The school of researchers (Yasin et aI., 1977; Thompson, 

1980) advocating the use of the dissociation technique of muscle culture, 

were of the opinion that this technique was better than the explant 

technique which, they felt, had many limitations. Some of the limitations 

enumerated were:- that the explants were relatively opaque such that the 

occluded myofibres in the centre of the explants could not be examined; 

that cell survival could not be quantitated; that the metabolic environment 

of the central fibres was different from those on the surface and that cells 

on the surface would be the first to suffer any toxic elements present in the 

media. 

Cossu et al. (1980) isolated mononucleated cells from normal and dystrophic 

mice as well as from dystrophic human muscle using collagenase and 

hyaluronidase together with trypsin. Most dissociation methods found the 

use of trypsin alone or the combination of trypsin and collagenase efficient 

enough to liberate mononucleate cells containing presumptive myoblasts 

(Hauschka, 1974; Yasin et aI., 1977; Thompson, 1980; Ecob-Johnston and 

Brown, 1981; Delaporte et aI., 1990). 

Both fresh muscle and muscle stored for up to 96 h at 4 0 C were cultured 

successfully (Yasin et aI., 1977). The dissociation method of culture 

essentially required the enzymatic digestion of small pieces of muscle which 

were first cleaned by the removal of visible connective and adipose tissues. 

The teased muscle was incubated for 15 minutes while being agitated in a 

waterbath at 37
0 

C. A trypsin-collagenase enzyme mixture was the usual 
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choice at the Institute of Neurology and Neurochemistry, London, where I 

was taught the technique by Rose Yasin. After 15 minutes the supernatant 

was treated with an enzyme neutralising serum-rich medium. The cell 

suspension obtained was centrifuged and the pellet formed was 

resuspended in growth medium. Pellets were obtained by further digestion 

of the remaining muscle for at least three sessions. The pellets resuspended 

in growth medium were pooled at the end and filtered through a fine mesh 

to discard muscle debris. Approximately 200 cells per 25 cm3 glass Petri 

dishes, precoated with gelatin, was incubated at 37
0 

C in a humidified 

atmosphere containing 5% CO2 • The number of cells that adhered to the 

flask the next day gave an indication of the plating efficiency of ' the 

technique. The dissociation technique was laborious and time consuming. 

Furthermore, a mixture of fibroblasts and myoblasts grew in dissociated cell 

cultures, and it was not possible to differentiate between them (Yasin et aL, 

1977). Cluster formation was often observed in these cultures (Walsh et aL, 

1 981; Thompson et aL, 1983). There was also a greater chance of 

contamination of cultures with this technique. The same end result of 

obtaining single cells could be achieved using the explant technique which 

is less time consuming, a simple technique, easier to handle and with less 

chances of contamination. 

2.4 REVELATIONS IN MUSCLE REGENERATION STUDIES 

Records showed that muscle regeneration studies began over 135 years ago 

(Bottcher, 1858; Waldeyer, 1865 - cited in Campion, 1984). Muscle 

regeneration studies may be grouped into two major experimental situations. 

The first group entailed the study of regeneration by microscopical 

comparisons of muscle from foetuses, in the young and in adult human, and 
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many animal species mentioned in previous sections of this chapter with 

some references. Muscle autografts, muscle transplants, minced muscle 

implants, denervated muscle and muscle injured in a variety of ways were 

employed to pursue the development and regeneration of muscle. 

The other group employed tissue culture techniques. Some of the findings, 

using the early clot culture technique, revealed that normal and diseased 

DMD muscle were capable of forming striations in culture similar to normal 

muscle. Explant cultures performed in this way together with foetal spinal 

cord implants of animals suggested a neurogenic cause to the pathogenesis 

of muscular dystrophy (Dubowitz, 1973). 

The explant and the dissociation techniques in current use, were used 

successfully to grow primary cells and promote fusion of myoblasts in . 

cultures leading to the development of multinucleated myotubes. The 

myotubes continued development leading to young striated muscle fibres 

which were observed to undergo contraction in cultures, thus proving the 

efficacy of the culture techniques to promote differentiation of muscle cells, 

in vitro. This method of culture, unlike the clot method, did not restrict, but 

promoted the free migration and proliferation of mononucleated cells. 

Preparation of muscle cell clones were possible with either method. 

On the other hand, Konigsberg (1 963) expressed caution in the analysis of 

results from culture which might be completely an atypical response, 

unrelated to the processes occurring, in vivo. Identification of ubiquitous 

tissue cells were difficult in cell cultures. Also the progeny of differentiated 

tissue may undergo modulation in response to exposure to the artificial 

environment. Konigsberg went on to state that it was also difficult to 
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assess cellular damage by enzymes and other mechanical manipulations 

resorted to in the preparation of cultures. 

In general it may be summarised that the growth characteristics of diseased 

and normal muscle did not indicate any appreciable growth and 

morphological differences in culture (Dubowitz, 1973). 

All earlier work, irrespective of the investigative technique used, had one 

thing in common, and that was to test the various hypotheses that existed 

on the pathogenesis of muscular dystrophy. These being mentioned earlier 

were:- a defect in cell membranes, a primary lesion of the motor neurones, 

a lesion in the muscle microcirculation and an anomaly of the connective 

tissue, with most of the evidence favouring the first possibility (Yasin et aI., 

1979; Cullen and Jaros, 1988). 

In investigating a number of these hypotheses, the mdx mouse was and is 

still used widely in DMD research. However, the mdx mouse which served 

as an animal model posed a difficulty in that the muscle of the mouse had 

the ability to regenerate after initial degeneration, but this was not the case 

with human DMD. This difference was attributed to plasma membrane 

lesions in the human muscle which were not seen in the mdx mouse (Cullen 

and Jaros, 1988). The membrane theory or the basic abnormality in the 

plasma membrane of DMD muscle fibres (Mokri and Engel, 1975) was 

further supported by the elevated creatine kinase enzymes found in the 

serum of Duchenne dystrophic patients together with elevated intracellular 

calcium levels (Dubowitz, 1989a). Changes in intramembranous particles, 

revealed in freeze fractures as well as focal lesions (Mokri and Engel, 1975) 

lent further support for the membrane defect in DMD patients. 
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With the identification of the gene defect and the gene product, dystrophin, 

many of the conflicting findings as cluster formation in cultures of DMD and 

a neurogenic or ischaemic cause of the defect in muscular dystrophy have 

become redundant and hold only historic and academic merit. 

Nevertheless, the culture techniques used are not without merit and will be 

in continuous use in the future. In recent times the techniques have been 

perfected to isolate and harvest massive numbers of muscle cell clones 

(Konigsberg, 1963; Hauschka, 1974; Yasin et aI., 1982). The proposed 

myoblast transplant and gene transfer therapies together with the 

identification of the different dystrophic types, including proper prenatal 

diagnosis and carrier status in patients will make use of these cultured cells 

for many years to come. 

On account of the vast amount of literature available on muscle development 

and r:egeneration, subsequent review on the findings in a number of muscle 

regeneration studies will be compartmentalized into specific subheadings to 

facilitate collating the information. 

2.4.1 Origin of myoblasts during muscle regeneration 

The origin of myoblasts is still a debatable issue. The origin of the myogenic 

cell has not been proven beyond doubt in any of the muscle regeneration 

models used (Carlson, 1973; Sloper and Partridge, 1980). There are two 

schools of thought on this issue. One school supports the hypothesis that 

satellite cells are the precursor cells involved in muscle regeneration and this 

is the current consensus (Church et aI., 1966; Moss and Leblond, 

1970/1971; Ontell, 1975; Schmalbruch, 1976; Snow, 1977a&b/1979; 

Bischoff, 1979). The other school believes that myonuclei in muscle were 
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also capable of undergoing dedifferentiation to form new cells if and when 

muscle regeneration was required (Hay, 1959/1979; Lee, 1965; Reznik, 

1969/1976; Hess and Rosner, 1970; Teravainen, 1970). There were 

suggestions that connective tissue cells such as fibroblasts and 

macrophages may also be involved in the contribution of new cells during 

regeneration (Sloper and Partridge, 1980). 

2.4.1.1 Satellite cells as presumptive myoblasts 

2.4.1.1.1 Satellite cells 

Satellite cells named by Mauro (1 961) were first identified in the tibialis 

anticus muscle of the frog, using an electron microscope. According to 

Mauro, the cells characteristically had little cytoplasm and lay between the 

basement membrane and the plasmalemma of the myofibre. The 

plasmalemma of the satellite cell was distinctly separate from the basement 

membrane on the outer region and the plasmalemma of the myofibre on the 

inner surface. The plasmalemma of the myofibre was depressed at the 

position occupied by the satellite cell , pushing the myofibrils inward so that 

the contour of the basement membrane did not show alteration. The nuclei 

of these cells had electron dense peripheral heterochromatin, and due to the 

paucity of cytoplasm they could easily be mistaken for myonuclei. 

Identification of the satellite cell was virtually impossible with the light 

microscope. 

Mauro (1961) speculated three possible mechanisms of their derivation in 

the peripheral region of the myofibre. The first one was that surviving 

myonuclei in the degenerating muscle fibre gave rise to single cells by 
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"gathering up" cytoplasm from the myofibre by the dedifferentiation method 

(Hay, 1959), and that in the normal state, there was a slow rate of 

production of these cells. In the event of any muscle stress, the satellite cell 

production was increased. Secondly, a more acceptable hypothesis by most 

biologists was that these cells were embryonic remnants of early 

myogenesis. During the course of fusion of myoblastic cells to form 

myotubes and finally myofibres, some cells remained in the sub laminar 

position as dormant cells which had the potential to recapitulate when 

muscle damage occurred. Mauro also suggested that both mechanisms may 

be operating as the source of satellite cells. "Wandering" cells, penetrating 

the basement membrane and lying in the sub laminar position until called into 

activity was the last possibility. 

A volley of research followed on this satellite cell path. Enough evidence 

was presented to demonstrate that satellite cells were independent of the 

adjacent myofibres (satellite cells review - Campion 1984). Freeze-fracture 

studies did not reveal any membrane specializations between satellite cells 

and myofibre plasmalemma (Schmalbruch, 1978). Some workers suggested 

that there was a uniform distribution of satellite cells along the length of the 

myofibre (Campion, 1978; Schultz, 1978; Snow, 1981). Others reported 

increased numbers of satellite cells near myoneural junctions (Kelly, 1978b; 

Cardasis, 1979). Satellite cells were present also in the intrafusal fibres of 

the muscle spindle (Snow, 1977a). Apparently, satellite cell population was 

closely tied to that of the myonuclei within the myofibre (Kelly, 1979) and 

satellite cells were considered to behave as stem cells (Moore, 1979). 

Despite increased satellite cells in denervated muscle, ultimate failure in 

regeneration was attributed to the possible inability in satellite cell 
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production to outrun degeneration, to cytotoxic effect produced by 

degenerating fibres and to the absence of the trophic effects of the nerve 

(Ontell, 1975). The ability of satellite cells from dystrophic human and 

murine muscles to differentiate in cultures was not found to be different 

from that of normal muscles (Cossu et aI., 1980) even though others 

reported differently, example, cluster formation in diseased muscle cells in 

culture (Yasin et aI., 1979; Thompson et aI., 1981). 

Carlson (1979) enumerated a number of points on the characteristics of 

muscle regeneration at that time. Some of these included:- that satellite 

cells were probably the major source of myoblasts; that phagocytosis played 

a major role in the removal of damaged muscle; that most regeneration ) 

occurred within the confines of the basal laminar tube; that nerves were not 

required for the early differentiation and morphogenesis, but only for 

functional differentiation and maintenance; that there was a fairly direct 

relationship between the amount of damaged and regenerating muscle; that 

the morphology of the regenerate was usually imperfect and that the gross 

morphogenesis, internal architecture and quality of the regenerate depended 

on physical factors and the functional environment. According to Carlson 

(1979)' the progression from myoblast to mature myofibre at the cellular 

level was same as that described for the embryonic development of muscle. 

At the supracellular level, the reorganization of an isolated regenerating 

muscle was different from that in the embryo. 

2.4. '.'.2 Morphology of satellite cells 

The morphology of satellite cells observed since first described by Mauro 

(1961) varied as most sublaminar cells observed in subsequent studies, 
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irrespective of their morphology, were labelled as satellite cells. Satellite 

cells of young animals were shown to have abundant cytoplasm rich in 

organelles and that organelles were increased in both quality and quantity 

(Schultz, 1976). The morphology of satellite cells was said to change during 

mobilization of these cells for regenerative purposes (Mazanet et aI., 1982). 

Sublaminar cells which were fusiform, having short or long cytoplasmic tails 

originating from either end of the bulging cell body, with the tails extending 

for considerable distances below the sarcolemma were also considered as 

satellite cells (Mazanet et aI., 1 982). Some of the satellite cells were 

described as having lateral cytoplasmic projections residing in grooves over 

the surface of myofibres, and these were observed in freeze-fracture studies 

(Schmalbruch, 1978). 

The physiological state of the satellite cells whether being active or inactive 

depended on the organelle and the fine structural picture of its cytoplasm 

(Campion, 1984). In the frog sartorius muscle the organelle content of 

different satellite cells were variable such that the morphology of satellite 

cells were not in keeping with that first described by Mauro in 1961 

(Franzini-Armstrong, 1979). 

2.4.1.1.3 Satellite cell distribution and numbers 

The proportion of satellite cells of muscle nuclei was 4% in the anterior 

tibialis and 8% in both the soleus and the diaphragm of adult rats giving 

satellite numbers of 900, 4900 and 5300 per mm3 muscle (Schmalbruch and 

Hellhammer (1977) . On the other hand, according to Allbrook (1981) the 

satellite cell count in normal muscle varied between 1 to 5%. However, 

according to Campion (1984) the physiological state of the muscle was 
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reflected in the state of activity of the satellite cells with increased numbers 

being present in young and growing animals as compared with the old in 

which case satellite cells showed a decline with an increase in age. Satellite 

cells were seen in the muscle of a 73 yr old man (0,6%) with human adult 

average being 4% (Schmalbruch and Hellhammer, 1976). 

The differences, if any, between the postnatal satellite cell and the 

sublaminar mono nucleated cell of embryonic origin in adult were not known 

(Campion, 1984). The differences in distribution of satellite cells in different 

muscles in the same animal, as shown for the soleus and the extensor 

digitorum longus muscles of the rat, was attributed to a distinction laid 

down in early myogenesis (Kelly 1978b). Frog sartorius muscle showed the 

highest content of satellite cells of all other muscles studied, the figure being 

12-13% (Franzini-Armstrong, 1979). Wakayama and Schotland (1979) 

reported that the greatest numerical increase in satellite cells occurred in 

DMD patients when the clinical manifestations worsened rapidly. 

Satellite cells were not observed in pairs, but it was not uncommon to find 

satellite cells near myonuclei (Ontell, 1974). Satellite cells were reported to 

be found more frequently in red fibres than in white fibres of tadpole muscle 

(Takahama, 1983). 

Satellite cells were found in skeletal muscle of most species of vertebrates. 

Even though satellite cells were reported in cardiac muscle of decapods they 

were not observed in cardiac muscle of vertebrates (Midsukami, 1981). 

According to Midsukami, cardiac satellite cells in the crustaceans usually 

occurred in the area overlying the intercalated discs. 
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2.4.1.1.4 Satellite cell migration 

Migration of satellites from damaged to undamaged areas of muscle was 

also suggested (Mastaglia and Walton, 1971; Schultz et aL, 1985; Hughes 

and Blau, 1990). Migration of myoblasts in injured muscle was thought to 

be due to chemotactic influence exerted by the injured myofibre (Watt et aL, 

1994) . However, poor migration of injected donor myoblasts was said to 

be the cause of poor positive dystrophin response in myofibres of recipients 

(Satoh et aL, 1 993). This somewhat negates the migration story of 

myoblasts. 

2.4.1.1.5 Satellite cells as myogenic precursors of regeneration in 

dissociated and single myofibre studies 

The source of myogenic cells during skeletal muscle regeneration was 

attributed to satellite cells by many studies on muscle regeneration 

(Campion, 1984). Satellite cells supposedly behaved as stem cells when the 

adequate stimulus to promote muscle regeneration was made available 

(Moore, 1979). 

Bischoff (1979) performed a myogenic cell suspension study with muscle 

treated with enzymes that digested the basal lamina and with those that did 

not. Cells, isolated by digestion of the basal lamina with trypsin, when 

cultured formed myotubes and cross striated myofibres. Those enzymes 

that did not digest the basal lamina released non-myogenic cells which in 

cultures produced fibroblasts; fat cells and macrophages. The deduction 

from this experiment was that the myogenic cells released from the 

sublaminar position were myogenic stem cells or satellites. 
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In experiments with single fibres cultured in a fibrin clot, Bischoff (1979) 

reported that clot retraction of the fibres left clear zones between the clots. 

Cells with myogenic potential proliferated within these clear zones, and 

Bischoff proposed that these myogenic cells were derived from satellite 

cells. Furthermore, electron micrographs of single fibres from clot cultures, 

taken at zero time in culture, revealed gross degenerative features. The 

interpretation/differentiation between interstitial and satellite cell as well as 

between the basal membrane and plasmalemma presented in that work was 

debatable. The cell referred to as satellite cell at zero time, in one instance 

appears to be an active macrophage. Furthermore, in some of the pictures, 

the plasmalemma ,is more intact and conspicuous than the basement 

membrane, while the opposite is more often the case in degenerate fibres. 

It would have been interesting had he studied the clot itself with the EM to 

observe if there were any myonuclei trapped within the clots inside the 

myofibre. 

According to Konigsberg et aI., (1975) the solution to both the hypotheses 

on satellite cell versus the myonuclear derivation of precursor cells of 

regeneration was complicated by two difficulties. The one was that muscles 

of animals experimentally injured were observed at progressively longer 

intervals after the time of injury. The other was that, the identification of 

both the fragments budding and the definitive identification of satellite cells, 

required resolution afforded by the EM. 

Konigsberg et al. attempted to circumvent the first difficulty by continual 

monitoring of teased single muscle fibres of quail cultured with a phase 

contrast photomicroscope. All myonuclei from the cultured myofibres were 

reported to have disappeared. Furthermore, from 505 fibres cultured, only 
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110 gave rise to some cells and only two colonies were formed. At the 

outset of the cultures, many of the surviving single cells were reported 

having a tangential orientation rather than parallel to the fibre axis. From 

the results obtained, Konigsberg et al. suggested satellite cells as the 

precursor cells although the possibility of budding was not entirely excluded. 

The culture technique of single fibres, in present day terms, was obviously 

inefficient as can be interpreted from some of the results obtained in the 

above study. 

2.4.1.1.6 Satellite cells as myogenic precursors of regeneration in 

labelled muscle in in vivo and explant studies 

Moss and Leblond (197011971) using radioactive thymidine labelling in 

young rats concluded that satellite cells contributed to the increase in the 

number of nuclei during muscle regeneration. The results obtained in their 

study are shown in the tables a and b below. 

Table a: Nuclear labelling in tibialis anterior muscle of 20-30g male rats 
at various times after a single injection of thymidine-3H as seen 
in electron microscope autoradiographs (Moss and Leblond, 
1970). 

Time elapsing between Number of nuclei labelled 
thymidine-3H injection 
and sacrifice - hr Satellite cell nuclei True muscle nuclei 

1 20 0 

6 11 0 

10 24 0 

24 8 2 

48 12 1 1 

72 4 24 
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Labelled satellite cell nuclei and true muscle nuclei as a 
percentage of the total labelled nuclei in the tibialis anterior 
muscle of 30g rats at various intervals after a single injection 
of 3H-thymidine (Moss and Leblond, 1971). 

Time elapsing Total labelled Percent of labelled nuclei 
between nuclei classified 
3H-thymidine (5 rats at each 
injection and time) Satellite True Standard 

sacrifice - h cell nuclei muscle error 
nuclei 

1 321 100,0 0 1 

18 616 95,1 4,9 0,8 

24 377 84,9 15,1 3,0 

48 559 51,0 49,0 1,4 

72 296 34,8 65,2 2,4 

Between 1 and 10 h after injection, 100% of the labelled nuclei belonged to 

satellite cells. The satellite number of those animals were given as 10 to 

15% of the total myofibre nuclei (Moss and Leblond, 1970). 

According to Moss and Leblond (1970), only 3% of the nuclei under the 

basement membrane were labelled 1 h after injection of the labels and that 

they belonged to satellites. In the second instance (Moss and Leblond, 

1971) the table shows a larger number of satellites was labelled at 18 h 

compared to 1 h after injection of the labels, but dropped drastically at 24 h. 

The number of satellites cells labelled after 24 h were conflicting in the two 

tables above. Even if one considers the doubling time of satellite cells, the 

labelling of satellite cells and myonuclei in figures and not as a percentage 

are quite puzzling. The number of myonuclei taking up the labels do not 

add up! After 48 hours, satellite cell counts comprised 51 % and myonuclei 

49% of the labelled nuclei (Moss and Leblond, 1971). The labelled 
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myonuclei were regarded as nuclei belonging to satellite cells that had 

already fused with the myofibre. However the study did not attempt to 

prove the derivation of the satellite cells. 

Muscle from neonatal rats were labelled with [3H]thymidine and explants 

were cultured to identify the role of satellite cells during myogenesis (Hsu 

et aI., 1979). Unfortunately, the explants were not examined to identify the 

derivation of new cells. Instead labelling was inspected in the myotubes 

that formed from the young cells that sprouted from the explants. The 

labelling protocol rested on the labelled neonatal satellite cells fusing with 

adjacent myofibers to produce increased number of myonuclei. Only 

satellite cells had taken up labels 10 h after injection. By 24 h, 15% of the 

myonuclei were labelled. Cultures of explants, taken 8 h after injection of 

labels, produced myotubes from the young cells that spread on the culture 

surface. These myotubes showed labelled satellite cells and myonuclei. 

Labelled myonuclei prevailed in explants taken between 4 to 6 days, and 

satellite cells revealed a dilution of the labels at this time. Exact figures of 

counts were not given in the study. Moreover, because the animals were 

still very young and in the growth phase, no useful interpretation can be 

made from this study. However, the conclusion in this work was that 

satellite cells were the myogenic elements in their, in vitro, study (Hsu et 

aI., 1979). 

In another study, the soleus and extensor digitorum longus muscles with 

compensatory hypertrophy which showed no apparent ultrastructural 

damage revealed satellite cells to have taken up [3H ]thymidine labels. This 

implied that injured or regenerating muscle were not the only muscle that 

were capable of forming new fibres (Schiaffino et aI., 1 979). 
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2.4. ,. '.7 Satellite cells as myogenic precursors in labelled muscle 

autografts and transplants. 

Snow (1978/1979) attempted differential labelling of myonuclei and satellite 

cell nuclei with three experimental groups of young rats to gain clarity on 

the origin of myoblasts during regeneration . The results of the study (Snow, 

1979) are shown in the tables below. 

Summary of control and experimental quantitative data for myonuclear 

labelling in series I and satellite cell labelling in series II (Snow, 1979). 

Nuclear classification Total labelled Percentage Percentage of 

Series 1 (5-6 wk old nuclei nuclei of labelled mononucleated 
rats) observed observed nuclei cells beneath 

the external 
lamina 

Control Myonuclei 1 191 246 20 
muscle 

Satellite cell 156 none 0 11,6 
nuclei 

Regen- Pyknotic 1 018 202 19,6 
erating nuclei 
muscle 

Viable 69 none 0 6,3 
nuclei 

Nuclear classification Total Labelled Percentage Percentage of 
Series 2 (15-17 wk nuclei nuclei of labelled mononucleated 

old rats) observed observed nuclei cells beneath 
the external 
lamina 

Control Myonuclei 2061 none 0 
muscle 

Satellite cell 377 86 22,8 15,4 
nuclei 

Regen- Pycnotic 1 528 22 1,4 
erating nuclei 
muscle 

Viable 117 27 23,1 7,1 
nuclei 
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In the first group, [3H]thymidine was initially injected into pregnant rats with 

subsequent injections administered to the new born to effect labelling of 

myonuclei that would have occurred during the fusion and maturation of the 

fibres in the young. After 5-6 weeks maturation, muscle was injured by 

mincing and autografted. After 8-24 hours, inspection of thick and thin 

sections of the regenerates revealed labels in 20% of the pyknotic nuclei but 

not in the viable mononucleated cells which made up 6% of the total 

sublaminar nuclei. The same percentage of myonuclei were labelled in the 

uninjured controls. It is questionable that no satellite cells were labelled 

even if one had to take the dilution factor into account, especially if one 

considered the fact that satellite cells were considered reserve myoblasts. 

Furthermore, the cause of death of all the myonuclei in the auto grafts also 

need an explanation. 

In the second group, labelling of satellite cells was effected in uninjured 

muscle of 15-1 7 day old rats which had relatively high counts of satellite 

cells of about 15%. One hour after a high pulse dose, muscle was minced 

and autografted as before. Results in regenerates, 8-24 hour after injury, 

showed 23% of sublaminar mononucleated cells labelled, tallying with the 

satellite cell counts before injury. Again a question arises as to why only 

23% of satellite cells took up the labels before injury if these were young 

animals with active satellite cells. In this group, a number of pyknotic nuclei 

were also labelled and the reason for this was not adequately explained. 

The third group of rats was used to test the survival and differentiation of 

the satellite cells. Labelled muscle mince was implanted into nonradiated 

littermates and examined 4-6 days later. Approximately 7 % of the nuclei of 

the myotubes were labelled even though control muscle had a count of 31 % 
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labelled satellite cells. The dilution of labels during mitotic division as well 

as the possible death of some of the satellite cells was forwarded as the 

reason for the discrepancy in the labelling indices. Snow (1979) concluded 

that satellite cells were capable of surviving injury to promote regeneration, 

but that the role of satellite cells in adult muscle remained uncertain. 

2.4.1.2 Myonuclear derivation of presumptive myoblasts 

2.4.1.2.1 Dedifferentiation of myonuclei 

The dedifferentiation of myonuclei segregating some cytoplasm around it 

and budding of new cells was thought to be similar to ttie mechanism of 

regeneration demonstrated in some amphibians and reptiles after amputation 

of their limbs (Thornton, 1938; Carlson, 1979; Hay, 195911979). According 

to Hay (1979), after amputation of the newt limb, the distal epithelium 

covered the wound. A blastema then formed from cells which dissociated 

UNOPERATEO 

Electron micrograph drawings illustrating possible myonuclear derivation 

of myoblasts by dedifferentiation in the adult newt (Hay, 1979). 
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from the connective tissue, muscle and the skeleton at the distal portion of 

the stump. These blastema cells thereafter redifferentiated to form a new 

limb for the newt. The main point of this work was that during the 

formation of the blastema, the contribution made by muscle of 

mononucleated cells was by means of myonuclei dedifferentiating. This 

work strongly supported the theory that syncytial nuclei segregated 

cytoplasm of the myofibre and sequestered as mononucleated cells during 

newt regeneration as shown in the diagram above (Hay, 1979). 

Furthermore it was reported that the adult newt had no preexisting satellite 

cells in the muscle. Hay (1979) concluded that muscle formation in the 

embryo by myoblast fusion was reversible in the adult newt when the need 

for myoblast proliferation was imposed on a muscle. Also, that there was 

enough reason to research for this myonuclear derivation of cells in avian 

and mammalian muscle. Hay (1979) felt that an important message from 

the newt ought not to be ignored by concluding that satellite cell was a 

reserve cell without which muscle regeneration was not possible. 

2.4.1.2.2 Myonuclear derivation of myoblasts in injured muscle 

The overall picture of muscle degeneration and regeneration was complex 

and this was attributed to the varying rates of morphological changes that 

occurred in the different parts of the injured muscle and to the different cells 

that prevailed in the area of the injury (Allbrook, 1962). Allbrook (1962) in 

his study reported bizarre multinuclei in myofibres of the injured muscle and 

this was attributed to infoldings of the nuclear membranes. Observation of 

'sarcoplasmic phagocytosis' led to the strong presumptive evidence that the 

phagocytes were derived from muscle nuclei with a cytoplasmic envelope. 
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Allbrook, in the same study, also described mononucleated cells having 

varying degrees of basophilia and nuclear density. He went on to conclude 

that mammalian striated muscle fibres regenerated from pre-existing muscle 

nuclei which gained a cytoplasmic envelope and that these cells also 

engaged in phagocytosis. 

Another study (Teravainen, 1970), using muscle after slight compression 

injury to avoid degeneration, further supported the myonuclear derivation 

of cells during regeneration. In this study, electron micrographs revealed 

areas of protoplasmic contact between satellite cells and the myofibre 

sarcoplasm. The conclusion in the above study was that satellite cells 

originated from myonuclei by pinching off from the sarcoplasm. According 

to Teravainen, these satellite cells had a pale nucleus with a prominent 

nucleolus and few organelles in the pale cytoplasm which also contained a 

number of pinocytic vesicles on the peripheral margins. 

2.4.1.2.3 Myonuclear derivation of myoblasts in denervated muscle 

Hess and Rosner (1970), working with denervated muscle of adult guinea 

pigs, were of the opinion that satellite cells increased in number by the 

dedifferentiation or budding mechanism described by Hay (1959/1979) for 

regeneration in the muscle of the newt. These workers described nuclei of 

myofibres being surrounded by a small amount of cytoplasm which 

separated from the experimentally denervated muscle fibre. They went on 

to state that the budding mechanism in the guinea pig muscle fibres seemed 

to appear without any specific distribution. Furthermore, they did not 

observe any mitotic division in the myofibres. 
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2.4.1.2.4 Myonuclear derivation of myoblasts in ischaemic muscle 

Investigations on experimentally induced ischaemia in mice and rabbit 

muscles by ligatures, supported the concept that mononucleated cells that 

formed myoblasts during muscle regeneration are formed from pre-existing 

myonuclei (Reznik, 1969). Reznik (1969) also described myonuclei around 

which parent sarcoplasm was partitioned such that a new cell formed, being 

pinched off from the parent myofibre. According to Reznik, the surrounding 

cytoplasm of the myonuclei had different ultrastructural features from that 

of the undamaged region of the same muscle. He went on to suggest that 

the presence of satellite cells in adult myofibres represented transient 

morphological and functional stages during the development of new 

myogenic cells. Because many of the subsar~olemmal cells which were 

presumptive myoblasts were all called satellite cells led to a lot of confusion 

(Reznik, 1976). Reznik (1976), having compared research results in his 

review, was of the opinion that myoblasts could be derived from pre-existing 

satellite cells. But he found it difficult to accept that, in vivo, so many 

myoblasts resulted from so few satellite cells in such a short time after local 

injury. Therefore, Reznik (1976) concluded that myoblasts were probably 

produced from other sources in the myofibre. '" 

2.4.1.2.5 Myonuclear derivation of myoblasts in radioactive 

thymidine labelled muscle 

Whilst other radioactive labelling studies promoted the hypothesis that . 
satellite cells gave rise to new myoblasts during muscle regeneration, Walker 

(1972) using the same labelling techniques on rats was of the opinion that 

myotube nuclei were derived mainly from myonuclei. In the above study, 
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one group of rats was subjected to a single injury followed by radioactive 

thymidine injection. The second ~roup was subjected to a double injury, 

after the initial injection of labels. The absence of labels in the myotube 

nuclei in the single injury group, together with the incidence of labelling of 

the myotube nuclei and centrally located nuclei of maturing fibres in the 

second group led to Walker's conclusion that myonuclei were the precursor 

cells. 

2.4.1.2.6 Myonuclear derivation of myoblasts by "Potocytosis" 

Lee (1965) investigated regeneration in denervated muscle where the sciatic 

nerve in the thigh of rabbits and rats were sectioned. Apart from observing 

the usual mononucleated cells reported by others in a sublaminar position, 

cells at various depths within the myofibres were observed in the 

gastrocnemius muscle, denervated for longer than three months. According 

to Lee, EM evidence suggested that the cells in the periphery were formed 

by invagination of the plasma membrane at the two poles of the myonucleus 

with the membranes from either side meeting and fusing, cordoning off the 

new cell thus formed. Lee went on to state that the cells at the deeper 

levels of the myofibre were supposedly formed by invaginations of the 

plasmalemma which encircled a portion of sarcoplasm and its organelles, 

with or without a nucleus leading to new cells. Lee went on to suggest that 

cells may be formed by compressed sarcoplasmic reticulum enclosing and 

ejecting some intracellular structures. This mechanism of cell formation was 

said to occur in other tissue cells, and in cells of other members of the 

animal kingdom (Lee, 1965). This mechanism was called potocytosis by 

Meltzer, 1904 (cited in Lee, 1965). 
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Presumptive myoblasts from connective tissue and 

phagocytosis during regeneration 

2.4.1.3.1 Myoblasts from connective tissue elements 

Sloper and Partridge (1980) expressed the possibility of connective tissue 

cells contributing precursor cells for muscle regeneration. On the other 

hand, earlier workers (Adams et aI., 1962) believed that muscle restoration 

was always the result of proliferation of sarcolemmal nuclei and that 

connective tissue elements did not participate in the process of regeneration. 

According to Witkowski (1977), identification between fibroblasts and 

myoblasts in culture was not possible. On other hand, it was said that 

fibroblasts could be differentiated from myoblasts by the presence of 

extensive elaboration of endoplasmic reticulum and multiple Golgi complexes 

(Lipton, 1977b). Furthermore, Lipton (1977b) also expressed the possibility, 

that in less than optimal environment, myoblast morphological differentiation 

may be modulated or reversibly altered. Ontell (1977) reported the presence 

of mast cells and satellite cells in the sublaminar area in neonatal rat muscle. 

The part played by these mast cells in muscle regeneration was not known. 

2.4.1.3.2 Phagocytic myoblasts 

There was other evidence that myoblasts may engage in phagocytic activity 

(Carlson, 1973). Mastaglia and Walton (1971) stated that the 
... . 

characteristics of some of the cells seen in polymyositis having cytoplasmic 

inclusions and autophagic vacuoles made differentiation between myoblasts 

and macrophages extremely difficult. 
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Gilbert and Hazard (1965), inspecting biopsies of muscular dystrophy 

patients, suggested that myoblasts assisted in the dissolution of necrotic 

material during muscle degeneration and regeneration. 

2.4.1.3.3 Phagocytosis 

According to Reznik (1969), the only mononucleated cells that contained 

myofibrils were clearly macrophages that had phagocytized necrotic muscle 

fibre fragments, but went on to state that some macrophagic cells were 

derived from necrotic myofibres. Active degeneration and phagocytosis of 

muscle fibres and regeneration activity were shown to be wide spread in the 

clinical stages of muscular dystrophy (Hudgson et aI., 1967) and in all forms 

~f dystrophies (Pearce and Walton, 1962). 

Phagocytes were reported to infiltrate bupivacaine-treated rat muscle within 

2 days of injection and satellite cells also became prominent at about the 

same time (Bradley, 1979). Bradley also showed, in the bupivacaine-treated 

rat muscle, that regeneration in myofibres occurred side by side with 

necrosis and phagocytosis after 4 days, followed by extensive muscle fibre 

regeneration by the 6th day. 

The cytoplasm of the invasive cells with long finger-like projections were 

more abundant and less dense than that of satellites (Maruenda and Franzini­

Armstrong, 1978). These invasive cells were thought to be monocytes 

which slowly differentiated to macrophages (Franzini-Armstrong, 1979). 

Trupin et al.(1979) considered morphological criteria of shape and position 

of cells in regenerating muscle unreliable in diagnosing the status of 
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sublaminar cells, i.e., whether they were myoblasts or phagocytes. 

According to Trupin et al. (1979), many of the forms identified as satellite 

cells by other researchers were early invading macrophages which were yet 

to be active phagocytes. Many viable fusiform cells, apart from pyknotic 

nuclear fragments, were seen by them to lie adjacent to injured myofibres 

in minced muscle regenerates of frog~ and young rats. Some of these cells 

appeared to lie within the fibres. Furthermore, they were not able to 

distinguish between the early satellite cells and the macrophages. In 

addition, the fusiform cells below the basal lamina often showed extensive 

phagocytic activity, with phagosomes, lysosome-like dense bodies and large 

masses of fibrillar material. Minced muscle explants were treated with 

colloidal carbon by Trupin et al. (1979) to identify macrophages which in the 

experiment were found both outside and inside the basal lamina. They 

concluded from this study that undifferentiated invading macrophages were 

able to mimic the appearance of the early endogenous myogenic cells. 

2.4.2 Myonuclei during regeneration 

The discussion on myonuclei will include all nuclei in a sublaminar position 

in the muscle fibre. 

2.4.2.1 Myonuclei of myofibres 

Myonuclei varied in its chromatin content, morphology, arrangement and 

location within myofibres. 
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2.4.2.1.1 Euchromatic and heterochromatic 

Myonuclei of myofibres in normal muscle were described as euchromatic, 

but heterochromatic myonuclei were not uncommon and these, when 

observed, were regarded as nuclei of satellite cells that had recently fused 

with the myofibre (Moss and Leblond, 1971). In the newt limb muscle, 

euchromatic myonuclei became heterochromatic during the process of 

dedifferentiation (Hay, 1979). In dystrophic muscle (DMD and polymyositis) 

euchromatin content of myonuclei were increased (lshimoto et aI., 1983). 

2.4.2.1.2 Myonuclei in rows 

Lash et al. (1957) demonstrated myonuclei, away from the immediate site 

of injury after about 3 days, in adult mice undergoing marked swelling. 

Furthermore, they observed short rows of nuclei with large nucleoli 

appearing close to the injury. The perinuclear cytoplasm was also shown 

to become basophilic. In addition, they described nuclei having conspicuous 

infoldings which they thought were due to a condition of functional activity 

or the result of contraction and compression. Lash et al. (1957) also failed 

to see any mitotic figures within the sarcolemmal tube. 

A plethora of plump nuclei sometimes occurring in rows, having one or more 

nucleoli in basophilic myofibres were observed in the preclinical stages of 

muscular dystrophy (Pearson, 1962). 
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2.4.2.1.3 Myonuclei of irregular shapes 

Irregular shaped and tightly packed nuclei were observed together with the 

absence of mitotic figures in myofibres regenerating after injury, and 

evidence of how the nuclei originated were not found (Lash et aI., 1957). 

Allbrook (1962) also reported seeing these irregular multinuclei and 

suggested that they were due to infoldings of the nuclear membranes. 

Similar bizarre forms of nuclei were reported for mitochondrial myopathy 

with clinical characteristics of progressive muscular dystrophy in a Japanese 

female infant (Nagaura et aL, 1990). 

2.4.2.1.4 Central myonuclei 

Centrally placed nuclei typically observed in dystrophic muscle were 

suggestive of various stages of regeneration (Walker, 1962). Pyknotic 

central nuclei were observed in muscle in the preclinical stages of dystrophy 

(Hudgson et aL, 1967). Central myonuclei, commonly found in DMD 

muscle, signalled the presence of young regenerated myofibres 

(Schmalbruch, 1979). 

2.4.2.1.5 Pyknotic myonuclei 

Myonuclei of injured muscle of rats and rabbits became pyknotic and 

disappeared from the degenerating tissue (Reznik, 1969). Mendell et aL 

(1972) reported shrunken and pyknotic nuclei within the first two days after 

incubation of human muscle explants in clot cultures. Appearance of 

pyknotic nuclei was the most striking and first change observed in explanted 

fibres (Witkowski, 1977). 
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2.4.2. '.6 Myonuclear number and location 

Myonuclei were often observed in close proximity to satellite cells (Sandset 

and Korneliussen, 1978; Schmalbruch and Hellhammer, 1977). According 

to Fischmann (1979) the nuclear number in myofibres was generally, 

roughly proportional to the length and width of the fibre. 

2.4.2.2 Nuclei of sublaminar mononucleated cells 

Schmalbruch and Hellhammer (1977) showed that a relationship existed 

between satellite cell number versus myonuclei number for a given volume 

of muscle such that if myonuclear number increased, the satellite cells 

would show a proportional increase. Nuclei of satellite cells were 10-15p 

long and 2-5p wide (Campion, 1984). With few exceptions, nuclei of 

satellite cells characteristically exhibited dense peripheral heterochromatin 

(Dubowitz, 1985). Nuclear membrane indentations and infoldings were 

sometimes observed (Takahama, 1983) but the general shape of the satellite 

cell nucleus was regarded as being oval to elliptical with prominent nucleoli 

which are usually observed in active satellite cells (Campion, 1984). 

Ontell (197711979) observed some satellite cells with less heterochromatic 

nuclei and with nucleoli in muscle clusters of 2 day old rats. 

Undifferentiated cells with heterochromatic nuclei were also observed deep 

within the myofibre in rat muscle showing compensatory hypertrophy 

(Schiaffino et aI., 1979). Nuclear euchromatin content of satellite cells in 

regenerating muscle was found to be higher than normal controls, and this 

indicated activation of the nuclear DNA (Wakayama and Schotland, 1979). 

Smaller nuclei of satellite cells were attributed to the quiescent nature of 

resting satellite cells and that the larger nuclei of myopathic satellite cells 
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was due to cells becoming activated (Watkins and Cullen, 1988). 

2.4.2.3 Nuclei of myotubes and young myofibres 

Mitotic division of nuclei in myotubes or myoblasts were not observed 

either T in vivo or in vitro (Gilbert and Hazard, 1965; Mendell et aI., 1972; 

Carlson, 1973; Reznik, 1976). The nuclei and nucleoli were reported to be 

larger in young regenerative myofibres compared with those in the mature 

form in human muscle (Engel, 1979). Rumyantsev (1979) showed labelled 

nuclei within differentiating myotubes by 72 hours after rHJthymidine 

injection and this suggested myoblast fusion. Nuclei of more differentiated 

myotubes in regenerating frog muscle displayed deep infoldings of the 

membranes and polymorphism (Allbrook, 1962; Rumyantsev, 1979). 

2.4.2.4 Myonucleation 

During embryogenesis, myonucleation or multinucleation of muscle fibres 

were reported to take place by myoblastic cell fusion (Speidel, 1938; 

Fischman, 1979). Myonucleation or the increase in number of nuclei in the 

myofibres was attributed to mitotic activity of satellite cells (McConnachie 

et aI., 1964). Moss and Leblond (1970) suggested that cells proliferating 

mitotically, subsequently fused with the myofibres promoting myonucleation. 

This was interpreted from experiments using [3Hlthymidine labelling (Moss 

and Leblond, 1970; Allbrook et aI., 1971 ; Snow, 1977/1979). Mitotic 

studies revealed that divisions, in this way, occurred in free undifferentiated 

myoblasts but not in formed myofibres (Gilbert and Hazard, 1965; Shafiq et 

aI., 1968). Cells found fusing at the end regions of young myofibres of 

skeletal muscle in mice indicated a possible way in which nuclei were added 

to growing fibres (Williams and Goldspink, 1971). 
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Proliferation of cells sprouting from cultured myofibres (Bischoff, 1975), 

from explants (Jasmin et aI., 1984a) and from dissociated mono nucleated 

cells supplied ample proof that satellite cells underwent mitotic activity. On 

the other hand, Carlson (1973) and Reznik (1976) in their reviews, reported 

the absence of mitotic division in sarcoblasts or multinucleated myotubes. 

Godman (1957) in his study on regeneration and differentiation of rabbit 

striated muscle, suggested that amitotic nuclear division was responsible for 

myonucleation. According to Cooper and Konigsberg (1961) the 

assumption, that nuclei with dumbbell shapes and those with clefts were 

signs of amitotic division, would be erroneous. Nuclei, in their view, 

assumed these shapes as they moved through, perhaps, restricted areas in 

the cytoplasm. 

2.4.3 Myoblast fusion and myotubes 

Early work suggested that the young myotubes and myofibres grew by 

terminal expansions (Clark and Wajda, 1947). It is now well documented 

that myotube growth takes place by myoblast fusion (Carlson, 1973). 

Closely applied junctions or areas of membrane association called 

attachment plaques, which were fusion points between muscle cells, were 

described in chicken embryos (Trelstad et aI., 1967). Myoblasts adjacent 

to each other were said to develop 'outpouchings' which were signs of 

fusion (Mendell et aI., 1972). Sometimes cytoplasmic projections were 

observed being engulfed one by the other (Shimada, 1971). 

Apparent fusion between mononucleated cells and basophilic syncytial 

mass, containing many vesicular nuclei, with parts of muscle fibres in DMD 

was demonstrated with the light microscope (Mastaglia and Kakulas, 1969). 
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Even though myoblast fusion was cell specific, records of heterotypic fusion 

of myoblasts between different animals and different cells within the same 

animal existed (Wakela,m, 1985). According to Wakelam, the molecular 

factors guiding alignment of cells was unknown and there was suggestion 

that fibronectin played a part in this. At a physical level, vesicles and 

tubules increase in number between opposed pre-fusion myoblast 

membranes which come close together (Wakelam, 1985). According to 

Schmalbruch (1979), strings of mitochondria in myofibres were thought to 

mark the line of fusion between myofibres or, alternatively, they marked the 

site of splitting of myofibres. Fusion between satellite cells and possible 

necrotic fibre was also suggested (Nichols and Shafiq, 1979; Snow, 1979). 

Fusion between myoblasts in cultures were apparently controlled by the 

position of the cell in the division cycle (Bischoff and Holtzer, 1969). 

According to Konigsberg (1971) the number of cells in culture, and not 

merely the proximity of cells was necessary for fusion, and that this implied 

some diffusion mediated control of the fusion process. 

Delaporte et al. (1984) demonstrated that the time of myoblast fusion was 

delayed, and that the myotubes were smaller in DMD cultures when 

compared to normals. Acetylcholinesterase was thought to playa role in 

the fusion of myotubes (Tennyson et aI., 1973). Increase in new myotube 

number by myofibre branching and myofibre splitting was suggested for 

regenerating rat muscle, injured with hot Ringer's solution (Schmalbruch, 

1976). 
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2.4.4 Cytoplasmic and nuclear inclusions 

Cytoplasmic and nuclear inclusions of the myofibre and satellite cells 

had variable morphology and seemed to depend on the metabolic status of 

the fibre or sub laminar cells (Dubowitz, 1985). 

2.4.4.1 Nuclear inclusions 

Banker (1975) observed nuclear bodies that were oval and others that were 

rod-shaped bundles of closely packed parallel fibres varying in size in 

dermatomyositis of childhood. Deep invaginations of the nuclear membrane 

trapping cytoplasmic contents within the nucleus was also reported in 

polymyositis (Mastaglia and Walton, 1971). Intranuclear membranous 

structures were observed in peri necrotic myofibres in frog sartorius muscle 

(Rumyantsev, 1979). Tubular (Tome and Fardeau, 1980; Bouchard et aI., 

1989) and filamentous inclusions (Coquet et aI. , 1983; Coquet et aI., 1990) 

were observed in occulopharyngeal muscle dystrophy. Cultured muscle 

from occulopharyngeal dystrophy patients also revealed nuclear inclusions 

(Tome et aI., 1989). Complex patterns of invaginated nuclei containing 

many thin actin-like filaments, aligned in parallel groups together with 

smooth vesicles, were observed in young mdx mice (Anderson et aI., 1987). 

2.4.4.2 Cytoplasmic inclusions 

An array of cytoplasmic inclusions were identified in most muscle disorders 

(Papadimitriou and Mastaglia, 1982), with Iysosomes and lipofuscin bodies 

being the most common. Some cytoplasmic inclusion bodies were regarded 

as secondary Iysosomes (Witkowski, 1986). Lipofuscin and Iysosomes were 
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observed in the sublaminar cells in a variety of animal species: mice, (Shultz, 

1976); frog, (Trupin, 1976) and hagfish, (Sandset and Korneliussen, 1978). 

The purpose of and the relationship between lipofuscin and Iysomes were 

unknown, although an increase in the number of Iysosomes in cells 

suggested that they were likely to be invasive cells (Campion, 1984). 

Numerous large lysosome-like dense bodies were demonstrated in the 

preclinical stages of dystrophy (Hudgeson et aI., 1967) and in regenerating 

myotubes in dystrophic foci (Lipton, 1979). Dense bodies in close proximity 

to the nucleus of young fibres were identified as lipofuscin bodies (Mastaglia 

and Walton, 1971). These dense bodies, also observed in mdx muscle, 

were referred to as residual bodies (Anderson et aI., 1987). 

Large autophagic rimmed vacuoles (Dubowitz, 1985) with dense concentric 

lamellar structures, vacuolar spaces and bodies of various shapes and sizes 

were observed in occulopharyngeal dystrophy (Bouchard et aI., 1989). 

Rimmed vacuoles were thought to be Iysosomes (Villanova et aI., 1993). 

Clusters of myelin figures and filamentous inclusions were reported in distal 

myopathy (Nonaka et aI., 1981; Matsubara and Tanabe, 1982; Isaacs et aI., 

1988). An abundance of concentric laminated bodies observed in children 

with weakness and hypotonia were supposedly attributed to organized 

aggregation of excessive actin filaments produced during fibre hypertrophy 

(Payne and Curless, 1976). 

In some rare cases of exertional myalgia, especially of the gastrocnemius 

muscle, internalised capillaries in myofibres were identified, perhaps due to 

ischaemic conditions of the muscle on exertion (Isaacs and Badenhorst, 
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1992). These internalised capillaries may also be construed as cytoplasmic 

inclusions. 

2.4.5 Mitochondria 

Redifferentiating cells in the blastema of newts had numerous mitochondria 

(Hay, 1959/79), but small and few mitochondria with decreased quantity of 

cristae development were observed in satellite cells (Campion, 1984). 

Shear (1979), causing subtle injury to the extraoccular muscle of albino rats 

by exposure to incandescent and fluorescent light energy, showed increased 

number of mitochondria in degenerating myofibres with Z line 

disappearance. The mitochondria had dense osmiophillic bodies, and 

longitudinal paracrystalline inclusions in the intracrystal space as well as 

between the outer and inner membranes (Shear, 1979). 

Pleomorphic forms of mitochondria with crystal vesiculation, myelin figure 

formation, dense osmiophillic bodies and paracrystalline substances in bar 

formation were seen in a variety of disorders (Price et aI., 1964; 

Papadimitriou and Mastaglia, 1982; Isaacs and Badenhorst, 1992). The 

mitochondria 'were sometimes decreased in number (Mastaglia and Kakulas, 

1969) and swollen and degenerate in DMD (Atkin et aI., 1991). 

Mitochondrial elongation in distal myopathy (Isaacs et aI., 1 988) and 

accumulation in degenerating diaphragm muscle fibres (Kimura et aI., 1990) 

were also reported. Numerous, large and bizarre mitochondria were seen in 

occulopharyngeal muscular dystrophy (Pauzner et aI., 1991) and in 

mitochondrial myopathy with clinical characteristics of progressive muscular 

dystrophy (Nagura et aI., 1990). Similar mitochondrial abnormalities 
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prevailed in cardiac muscle of DMD patients (Wakai et aI., 1988). 

Gregory et al. (1968) demonstrated fusion of mitochondria in the flight 

muscle of the blow fly. Flight muscle of insects were considered suitable 

for muscle development studies as the sequence of development and 

senescence was completed in a matter of days (Gregory et aI., 1968). 

Mendell et al. (1972) reported the presence of numerous degenerate­

appearing mitochondria which seemed to fill the cytoplasm of explants in 

culture. 

2.4.6 Z Line 

Z line distortions with streaming of Z line material was pronounced in the 

diaphragm muscle of Fukuyama type congenital muscular dystrophy (Kimura 

et aI., 1990). Z line streaming and disorganisation were also observed in the 

muscle of patients complaining of exertional myalgia (Isaacs and 8adenhorst, 

1992). In some cases of dystrophy, Z line twisting was observed (Lichtig 

et aI., 1993). 

2.4.7 Golgi complex 

The regenerating myofibre did not often reveal obvious evidence of Golgi 

complex (Allbrook, 1962). Numerous Golgi complexes were observed in 

satellite cells supposedly originating from myonuclei (Teravainen, 1970). 

The cisternae and tubule system of the Golgi complex were not always well 

developed in satellite cells and the prominence of these organelles also 

depended on the state of activity of the cell (Campion, 1984). On the other 
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hand, Hay (1979) reported well developed Golgi elements in redifferentiating 

cells in blastema of newts. Large amounts of Golgi apparatus were reported 

in multinucleated myotubes in cultured human muscle (Mendell et aI., 1972). 

2 .4.8 T -tubules, Endoplasmic and sarcoplasmic reticulum 

A tubular membranous network of hexagonal pattern observed in chick 

embryo breast muscle were regarded as special morphological elaboration 

of the T-tubule system (Ishikawa, 1968). According to Ishikawa (1968), 

many of the 'inpocketings' of the sarcolemma commonly described as 

caveolae or pinocytic vesicles were assumed to give rise to these networks. 

Elaborate and swollen granular endoplasmic reticulum (GER) were common 

in the cytoplasm of satellite cells (Nichols and Shafiq, 1979; Campion, 

1984). 

Granular endoplasmic reticulum (GER) are not common in the sarcoplasm of 

the myofibre. Instead, variable numbers of sarcoplasmic reticulum and 

T -tubules were present in the intermyofibrillar and subsarcolemmal spaces 

(Dubowitz, 1985). Terminal cisternae and T-tubules appeared swollen and 

disorganized in extraoccular muscle of albino rats exposed to incandescent 

and fluorescent light (Shear, 1979). Satellite cells with less heterochromatic 

nuclei, found in muscle clusters of young rats, had well developed 

endoplasmic reticulum and vesicles (Ontell, 1979). Dilated profiles of 

sarcotubular system were observed in the muscle of young mdx mice 

(Anderson et aI., 1987) 

Regenerating human muscle fibres were shown to have more smooth 

endoplasmic reticulum and ~oorly developed T -tubule system than mature 
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fibres (Engel, 1979). Wakayama et al. (1979) observed lamellar bodies 

within the cisternae of sarcoplasmic reticulum and the nuclear envelope of 

satellite cells. When cited, they commonly appeared in the sub-satellite 

areas in the myofibre (Wakayama et aI., 1979). 

2.4.9 Ribosomes 

According to Larson et al. (1969) there was a consistent and orderly 

relationship between polyribosomes and myosin development. An helical 

chain of ribosomal arrangement was reported in human myoblasts in culture 

(Mendell et aI., 1972). The number of free ribosomes, found in the 

cytoplasm of satellite cells, varied and depended on the physiological state 

of the cell (Campion, 1984), and ribosomal clusters may become prominent 

during the activated state of the cells (Schultz, 1976; Nichols and Shafiq, 

1979; Wakayama and Schotland, 1979; Campion et aI., 1978). Engel 

(1979) reported greater number of free and membrane attached ribosomes 

in young myofibres than in mature myofibres of human muscle. 

2 .4.10 Developing myofibrillar elements 

The presence of developing myofibrils in myoblasts and myotubes was well 

documented (Carlson, 1973; Mastaglia and Walton, 1971 ; Tautu and Jasmin, 

1982; Jasmin et aI., 1984a&b). Developing myofibrillar elements were not 

present in satellite cells (Campion, 1984). In 2 day old neonatal rats some 

myotubes did not have myofilaments, and this made the distinction between 

satellite cells and myotubes difficult (Dntell, 1977). Myofibrils in DMD 

patients were distinctly thinner compared to the normal, due to loss of 

peripheral filaments, and this was most noticeable in the Z line region 

(Hudgson et aI., 1967). 
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2.4.11 Microfilaments and microtubules 

Microfilaments and microtubules were not uncommon in mononucleated 

sublaminar cells (Nichols & Shafiq, 1979; Campion, 1984). 

2.4.12 Pinocytic vesicles 

Satellite cells were commonly observed to have few to many pinocytic 

vesicles along their plasmalemma facing the basement membrane and the 

plasmalemma of the myofibre (Teravainen, 1970; Campion, 1984). 

Pinocytic vesicles were also observed in active satellite cells of DMD 

patients (Wakayama and Schotland, 1979). 

2.4.13 Sarcolemma 

The sarcolemma is comprised of the basement membrane and the plasma 

membrane or plasmalemma of the myofibre (Dubowitz, 1985). The 

basement membrane or the basal lamina, during early development of 

myofibre, was thought to envelope free myoblasts associated with the 

myofibre and that in this way satellite cells obtained their sub laminar 

position (Kelly and Zacks, 1969; Church, 1969; Ontell, 1974). During the 

early degenerative reaction of the injured muscle, the basement membrane 

remained intact but the plasmalemma was often disrupted (Reznik, 1969; 

Carlson, 1973). 

2.4.14 Miscellaneous 

With the incorporation of fibroblast growth factor in growth media, Smith 
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and Schofield (1994) claimed to have successfully cultured dystrophic and 

normal myoblastic cells continuously for 18 months. According to Smith 

and Schofield (1994), there was minimal loss of phenotype in the cells 

cultured with fibroblast growth factor (FGF), and that the cells ability to fuse 

at high serum concentrations of FGF was minimal. The mdx satellite cells, 

which were found sensitive to fibroblast growth factor, may explain the 

successful regeneration of new fibres, in vivo, in the mdx mice (DiMario and 

Strohman, 1988; DiMario et aI., 1989). 

Studies on muscle cells from foetuses and adult human muscle suggested 

a potential involvement of low-affinity nerve growth factor receptor in 

muscle development and regeneration (Baron et aI., 1994). According to Oh 

and Markelonis (1979), neurotrophic effects of a protein fraction isolated 

from adult sciatic nerves were thought to promote further differentiation and 

maturation of aneural muscle cells. Non-innervated muscle fibres were 

maintained for a longer period with the incorporation of nerve growth factor 

in the culture medium (Oh and Markelonis, 1979). A platelet-derived growth 

factor was also suggested to playa potentially important role in regulating 

proliferation of myoblast and muscle differentiation (Tidball et aI., 1992). 

Ashby et al. (1993), in their study on mice with peroneal muscular 

dystrophy and muscular dysgenesis, concluded that development of 

secondary myotubes depended on neurally evoked electrical activity of 

primary myotube to promote formation of secondary myoblasts. 

Nathanson et al. (1978) demonstrated skeletal muscle metaplasia where 

skeletal muscle consistently formed cartilage when explanted onto bone 

matrix. 
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2 .4.15 Conclusion 

Although the origin of muscle precursor cells have not been conclusively 

identified to date, the current consensus that satellite cells, embryonic 

remnants, were responsible for regeneration of adult muscle stemmed from 

the studies performed before the 1980's. Research work dealing with the 

identification of the precursor cells has since been neglected. Therefore, 

whether precursor cells of muscle regeneration are derived from resident 

sublaminar satellite cells or from the myonuclei remain an issue of conflict 

and need clarification. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.0 Introduction 

This chapter is divided into Part I - Materials and Part II - Methods. Part I 

outlines in detail all the necessary requirements for successful skeletal 

muscle culture and EM work. Part II deals with all the experimental 

procedures adopted in this study for the culturing of hamster and human 

muscle explants, and for the subsequent EM investigation. 

Previous methods used in earlier muscle regeneration studies have been 

discussed under literature review in chapter 2. 

Part I: MATERIALS 

3. 1 THE CULTURE LABORATORY 

The culture laboratory was a separate room with entry from an adjacent 

room and not from the main passage so that entry was restricted only to 

authorised persons. The ceiling was fitted with two 1,2 metre UV lamps for 

sterilization of the room by radiation for two hours, the morning before 

culture work. A red hazard light on the outside of the door indicated 

whenever irradiation was in progress to protect one against the harmful UV 

rays inside the laboratory. 
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To chemically control microbial flora in the laboratory, the work benches 

were cleaned with 70% alcohol before being used. The floors were 

vacuumed and then mop-washed with a non-toxic detergent solution of 

calcium hypochlorite (swimming pool chlorine). 

The windows in the laboratory were permanently closed to keep out dust. 

The airconditioner was adjusted to maintain a slight positive pressure in the 

room so that opening and closing of the door minimised the entry of 

unconditioned air into the room. 

All the essential requirements for the tissue culture work were kept inside 

the laboratory to avoid frequent opening of the laboratory door while work 

was in progress. The equipment housed in the laboratory included the 

laminar flow cabinet, CO2 incubator together with gas supply, centrifuge, 

weighing balance, inverted microscope, cultureware and the reagents. 

Sterile rubber gloves, face mask and a clean laboratory coat were worn 

during all the experimental procedures. Smoking and the consumption of 

food was not permitted in the laboratory. 

3.2 REQUIREMENTS FOR STERILIZATION PROCEDURES 

Sterilization was conducted according to the under mentioned procedures 

to achieve, as used in a microbiological sense (Pelczar and Reid, 1965; 

Pelczar et aI., 1993), an environment free of living microorganisms or a so­

called sterile environment. 
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3.2.1 Chemical sterilization 

Chemical antimicrobial agents, used in the culture laboratory, were alcohol 

and calcium hypochlorite. 

3.2.1.1 70% alcohol (ethanol) 

This was made up in distilled water (see reagent preparation) in the dilution 

commonly chosen as bactericidal. Sterilization of all exposed surfaces of the 

work benches in the laboratory, including the stainless steel work surface 

of the laminar flow cabinet was effected by swabbing the surfaces with 

alcohol. The 70% alcohol was also used for sterilizing the decapitated 

hamsters used in the experiment as this agent is nontoxic. Absolute or 

strong solutions of alcohol are not recommended as antimicrobial agents as 

these only have a bacteriostatic effect (Pelczar et aI., 1993). 

3.2.1.2 Calcium hypochlorite 

This was made up as a solution in distilled water by dissolving 1 gram 

granules per 25 litre of water. This dilution gives twice the strength used 

in the shock treatment of swimming pools. It is antibacterial and antifungal, 

and at the same time it is convenient and safe to use. After washing and 

mopping the floor with this solution, any excess that was left on the floor 

was conveniently removed by UV exposure provided by UV lamps in the 

room. 
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3.2.2 Autoclaving 

Sterilization of glassware, stainless steel dissecting equipment and some 

culture fluids that are thermostable, was effected by steam under pressure. 

This is used as a practical and dependable method of sterilization over the 

years in most laboratories to date. The autoclave was operated at 15 Ib of 

pressure per square inch, and for 20 minutes. With this setting of the 

autoclave, sterilization is effected at 121 0 c. 

3.2.3 Dry heat 

Hot air oven was used to sterilize cleanly washed glass pipettes enclosed in 

copper canisters. A temperature setting of 160
0 

C for 2 hours was used. 

Watch glasses and glass petri dishes, washed and wrapped in tin foil, were 

sterilized in this manner. 

3.2.4 Filtration 

3.2.4.1 Membrane filtration 

The membrane filters (manufactured by Schleicher & Schull) supplied with 

holders were sterile, non-pyrogenic and disposable. For small volumes, 

membrane filters in holders were used with a syringe. This technique of 

pushing fluid under pressure through a membrane of pore size 0,2pm was 

used mainly to sterilize solutions that were thermolabile such as culture 

media. 
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3.2.4.2 Millipore filter unit 

For large volumes of aqueous media sterilization, sterile, non-pyrogenic and 

disposable Q,22pm filter units (Sterivex-GS) were used in line with a 

peristaltic pump. 

3.2.5 UV-Rays 

Two UV lamps emitting wavelengths around 265 nm were installed in the 

laboratory ceiling to effect sterilization of the laboratory. This wavelength 

has the highest bactericidal effect. UV lights were switched on for 2 hours 

to effect sterilization. 

UV radiation was also provided under the hood of the laminar flow cabinet 

to sterilize its walls and the work surface. 

3.3 LABORATORY EQUIPMENT 

All the larger equipment used in our laboratory for tissue culture work will 

be detailed in this section. 

3.3.1 Laminar flow cabinet 

Bino Instrumentation - Laminaire : Bio-Hazard 4BH manufactured in South 

Africa: This is a vertical flow safety cabinet fitted with two high efficiency 

particulate air (H.E.P.A.) filters, one to clean the air moving onto the work 
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surface and the other to clean the final air released to the atmosphere. A 

pre-filter of 5J11ll pore size came fitted, to protect the H.E.P.A. filters which 

restricted particle size above 0,3pm giving 99,997% efficiency. The 

velocity of air flow was adjusted to 0,5- 0,6 m/sec. The cabinet was 

provided with a fluorescent light, and a UV lamp for sterilization. Also fitted 

inside the cabinet was a gas supply tap with an automatic cut out switch in 

case of power failure. 

The laminar flow cabinet used was also designed to give the operator 

protection against hazardous biological material that may be used within the 

cabinet. The efficiency of the cabinet was checked before use by exposing 

nutrient and blood agar plates to the internal atmosphere of the cabinet and 

subsequently incubating them at 37
0 

C for 5 days to check for internal 

atmospheric microbial contamination. The cabinet occupied a place in the 

laboratory away from air currents. Maintenance checks were performed 3-

monthly by a service technician. 

3.3.2 CO2 Incubator 

Bino Instrumentation - Laminaire Model-160 L manufactured in South Africa: 

This incubator control ranges were as follows: 

CO2 0-20% 

Temperature Ambient - 60
0 

C 

Humidity Relative - 95 % 

The temperature was set to 37
0 

C and the CO2 to 5 %. To prevent 

desiccation of incubated cultures, humidity was adjusted to 80%. The 
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water bottle of the incubator was always kept full with distilled water. All 

adjustment procedures were performed according to manufactures 

specifications. 

The inside of the incubator was regularly swabbed clean with alcohol when 

not in use. Once a month, the inside of the incubator was decontaminated 

by means of a built in facility as a further precaution against the 

accumulation of microbial flora. The procedure was detailed by the 
o 

manufacturers. The temperature was maintained at 83 C for 1 hour during 

this decontamination procedure. 

Once in 3 months, incubator efficiency tests were conducted by a qualified 

service technician. 

3.3.3 CO2 and low pressure valve 

Industrial grade liquid CO2 without residue was supplied in a large tubular 

industrial gas tank. The gas was conveyed via a rubber tubing. The rubber 

tubing was connected to the incubator valve inlet and the tank via a two 

stage regulator and flow meter. A CO2 low pressure valve adjustable to 5 

psi at 4 litres/min. was used to regulate the supply of gas. A second tank 

of gas was always kept in reserve. 

3.3.4 Sterilization oven 

A general stainless steel oven capable of 300
0 

C was used for dry heat 

sterilization of glass pipettes, beakers, watch glasses, flasks and measuring 

cylinders. 
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3.3.5 Weighing balance 

Mettler PE 360 : This sensitive balance was capable of weighing material of 

360 grams and functioned up to 3 decimal places. It was used to weigh out 

the powders used in the different media preparation. 

3.3.6 Inverted microscope 

The microscope (ELIZA-Tokyo) had a quadruple nose piece with 4X, 10X, 

20X and 40X objectives. Coarse and fine co-axial controls were present. 

The inverted microscope was essential to view the cultured material within 

the culture flasks, which otherwise is not possible with the standard 

microscope. A low-positioned camera port was provided for holding a 

35mm camera for photography. 

3.3.7 Dissecting microscope 

This dissecting microscope (manufactured by Carl Zeiss) was used to view 

the explants to expedite either cross sectional or longitudinal cuts of muscle 

explants to the required size for EM processing. 

3.3.8 Peristaltic pump assembly 

The peristaltic pump (Millipore, Cat. No. XX8020230) was designed to 

provide a constant flow rate of 85 ml/min. It was used to filter-sterilize 

aqueous solutions, such as culture media and buffer solutions, under 

pressure. 
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3.3.9 Handigas tank 

A 7 kg Cadac cylinder was used to supply handigas for the Bunsen burner 

housed inside the laminar flow cabinet via a gas tap with an automatic cut 

out. 

3.3.10 liquid nitrogen tank 

A 35 litre liquid nitrogen dewar (manufactured by Taylor-Wharton) was used 

for storage of live cultured cells at _196
0 

C for future use. At this 

temperature, the cells may be preserved for indefinite periods. In the 

handling of liquid nitrogen, care was taken to protect against personal injury. 

The dewar was housed in a cold room to minimise loss of nitrogen by 

vaporization. 

3.3.11 Centrifuge 

. Hettich-Universal 11 : This was a bench centrifuge capable of 10,000 rpm, 

and of holding 4 X 20 ml Sterilin centrifuge bottles. All bottles were 

balanced with equal weight on opposite sides before centrifugation to avoid 

vibration due to imbalance. The vibration may result in ineffectual 

sedimentation of the centrifuged material. 

3.3.12 Filing cabinet 

A filing cabinet was necessary for keeping proper records of EM negatives, 

prints, embedded specimens and EM grids. 
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3.3.13 Semi-Automatic pipette 

TEC NO MARA - Pipetboy : This is an electrically controlled blow and 

suction apparatus used in conjunction with a pipette. The Pipetboy was 

used to suck and dispense all liquid media inside the laminar flow cabinet. 

The apparatus was designed to hold variable size pipettes. It made pipetting 

inside the laminar flow cabinet convenient, and it minimised chances of 

contamination. 

3.3.14 Waste bottle. 

A large waste bottle, with a rubber stopper having an inlet and outlet tube, 

was used to collect liquid waste during the culture procedure inside the 

cabinet. The inlet and outlet tubes of the rubber stopper were connected 

in line, with polythene tubing, to a pasteur pipette on one end and the 

laboratory suction tap at the other. In this way, the collection of waste and 

residue produced during the experimental procedure was facilitated, 

minimizing the frequent use of pipettes in and out of the culture flasks. 

3.3. 15 Refrigerator 

A double door refrigerator with a separate freezer compartment (Leonard -

Double Door) was used for the storage of culture media that required 

refrigeration at either 4
0 

C or _20
0 

C. 

3.3.16 Guillotine 

A stainless steel guillotine (Ealing-USA) designed for the decapitation of 
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small animals, like the hamster, was used to bring about rapid death of the 

hamsters. The guillotine caused minimal recognizable stress and pain to the 

animal. Furthermore, the guillotine, instead of anaesthesia, was used in 

order to avoid the influence of the anaesthetic that might interfere with the 

early regenerative processes in the muscle. 

3.3.17 Waterbath 

A stainless steel waterbath (Labotec with Thermomix 1441 Regulator) set 
o 

to 37 C was required to warm the culture media before use, and also to 

thaw frozen culture reagents and frozen subcultures. 

3.3.18 pH meter 

The pH meter (Orion Research Digital pH meter 611 ) was used to adjust pH 

of the culture media and the buffers. The electrode was sterilized with 

alcohol and rinsed with sterile buffer before use. 

3.4 CUlTUREWARE 

a. Sterile 25 cm3 culture flasks (Sterilin Products). 

b. Sterile disposable pipettes - 1, 2, 5 and 10 ml (Sterilin Products). 

c. Sterile inert, 5 and 20 ml plastic bottles. The 20 ml bottles have a 

conical bottom so that they may be centrifuged (Sterilin Products). 

d. Sterile 3 ml screw top vials or cryotubes (Nunc product) for storage 

of cells in liquid nitrogen. 

e. Sterile soda glass storage bottles designed for culture work and to 

be able to withstand autoclaving. 
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f. General dissecting equipment - stainless steel scissors, forceps, 

scalpel blade holders, scalpel blades and dissecting needles. 

g. General laboratory pyrex heat resistant glassware - petri dishes, 

conical flasks (smaller ones with screw caps), beakers, measuring 

cylinders, slides, coverslips, large watch glasses and large 25 and 

50 ml volumetric pipettes. 

h. Disposable sterile pyrogen-free membrane filters, 0,2pm (Schleicher 

& Schull) 

i. Small, plastic, square dishes with lids for storage of small bottles to 

avoid tipping over in the refrigerator. 

3.5 HAMSTER MUSCLE SAMPLES 

5 Normal Syrian hamsters of variable weight, age and one of them being a 

female, were used in this project (see Table 1). The animals were obtained 

from the Bio-Medical Resources Centre of the University of Durban­

Westville. 

Table 1. Hamster Data 

Hamster No. Weight I grams Age Iweeks Sex Colour 

1 156 24 F Brown 

2 72 6 M Brown 

3 85 6 M Brown 

4 130 18 M Brown 

5 75 6 M Brown 

The hamsters were chosen for this research project because the two centres 

(Institute of Neurology and Neurochemistry, London and The Department of 

Pathology, University of Montreal) where the culture techniques were learnt, 

T950058 
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made use of hamsters in their research. The reason was that hamster 

muscle apparently demonstrated similar growth characteristics to that of the 

human under culture conditions. The guidelines for animal care and 

experimentation, as laid down by the Medical Research Council of South 

Africa, were observed. 

3.6 HUMAN MUSCLE SAMPLES 

The ideal would have been to obtain muscle biopsies from normal subjects, 

but this was not possible for obvious ethical reasons. Therefore; debrided 

but clean muscle samples were obtained from 5 patients undergoing 

surgery for conditions other than muscle diseases. Gluteal, tibialis, flexor 

digitorum, sternohyoid and rectus muscle samples, from different subjects 

of both sexes ranging between the ages 23 and 65 years, were used in the 

study (see Table 2). 

Table 2. Patient data 

Patient Age- Sex Disease Condition Muscle 
No. years 

1 23 F Pilonidal sinus Gluteal 

2 65 M Vascular disease Tibialis anterior 

3 42 F Hyper-pararthyroidism Sternohyoid 

4 37 M Abdominal stab wound Rectus . 
5 26 F Cut left wrist Flexor digitorum 

3. 7 CULTURE REAGENTS 

In this section the source of the reagents, the preparation and use of each 

of them in the experiment will be given. All bottles containing reagent and 

media were adequately labelled to avoid confusion and accidents. 
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3.7.1 Sterile deionised double-distilled water (DH20). 

3.7. 1.1 Source: H20 

Ordinary piped water from the tap was used. 

3.7. 1.2 Preparation: DH20 

Not all water is the same. Its composition with regards to dissolved solids 

and endotoxins changes from place to place and from time to time. 

Therefore to obtain pure water for culture purposes, tap water was 

double-distilled, deionized and millipore filtered. Water obtained in this way 

was sterilized in the autoclave in 1 litre quantities in glass storage bottles. 

3.7.1.3 Purpose: DH20 

Distilled water was used in the preparation of the culture media, gelatin 

solution, salt buffer solutions and in the preparation of 70% alcohol. 

3.7.2 70% Alcohol (ethanol) 

3.7.2.1 Source: Alcohol 

The 70% alcohol was made in the laboratory from absolute ethyl alcohol 

purchased from BDH Chemicals. 

3.7.2.2 Preparation: 70% Alcohol 

700ml of absolute ethyl alcohol was diluted with 300 ml of sterile deionised 

double-distilled water in a sterile measuring cylinder and dispensed into 

sterile 500 ml storage bottles. 

3.7.2.3 Purpose: Alcohol 

70% alcohol was used as an antiseptic to clean the work surfaces of the 
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laminar flow cabinet and the glass worktops of the bench. The decapitated 

hamsters were decontaminated by being immersed in alcohol before 

dissection. All sterile dissecting equipment were placed in a beaker 

containing alcohol before use and in between interchange of equipment 

during dissection and explant preparation of the muscle. Eggs used in the 

preparation of chicken embryo extract were also washed with alcohol which 

were then flamed to effect sterilization. Hands and gloves were washed 

with alcohol before working under the hood. It is safe, non-poisonous and 

non-pyrogenic to use, having minimal effect on the explant cultures. 

3.7.3 Hank's balanced salt solution (HBSS). 

3.7.3.l Source: HBSS 

HBSS was prepared in the laboratory. 

3.7.3.2 Preparation: HBSS 

HBSS without calcium and magnesium was the general choice in most 

culture laboratories. 

To 1 litre of sterile deionized distilled water in a sterile conical flask, the 

following chemical compounds were added: 

KCI 400mg 

KH2P04 60mg 

NaCI 8g 

NaHC03 350 mg 

Na2HP04 90mg 

Glucose 1 g 

Phenol Red 20mg 
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The chemical ingredients were dissolved with the assistance of a magnetic 

stirrer. Thereafter, the solution was sterilized by membrane filtration using 

an in line peristaltic pump, and dispensed into 250 ml sterile storage bottles. 

3.7.3.3 Purpose: HBSS 

HBSS was used as a transient nutrient medium to hold the muscle 

specimens immediately after their isolation from the animal. The buffer was 

also used to wash the explants free of debris which formed in the course of 

their preparation. Whenever the explants were transferred from one flask 

to a new one, to harvest the mononucleated cells grown in the original flask, 

buffer was required to wash the mononucleated cells before treatment with 

trypsin/versene solution. This was done to ensure that all serum and other 

protein residue of the previous nutrient medium was removed from the flask. 

In doing this, HBSS serves to irrigate the muscle tissue and the young cells 

supplying them with the basic inorganic ions, glucose and water to maintain 

their normal metabolism. 

At the same time the physiological pH range of 7.2 - 7.4 is maintained. In 

order to prevent contraction of muscle cells, calcium and magnesium ions 

were not included in this buffer. Phenol red was added as an indicator. 

When the pH becomes alkaline, the solution turns pink-purple and orange­

yellow when acidic. 

3.7.4 Earle's balanced salt solution (EBSS) 

3.7.4.1 Source: EBSS 

EBSS was made up in the laboratory. 
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3.7.4.2 Preparation: EBSS 

To 1 litre of sterile, deionized, distilled water held in a sterile conical flask 

the following chemical compounds were added: 

KCI 400 mg 

CaCI2 ·2H2O 265 mg 

NaCL 680mg 

NaHC03 2,2 9 

MgS04 .7H2O 200 mg 

Glucose 1 9 

NaH2P04 .H2O 140 mg 

After stirring to dissolve the powders, the solution was sterilized by 

membrane filtration using an in line peristaltic pump, and dispensed into 250 

ml sterile storage bottles. 

3.7.4.3 Purpose: EBSS 

This was the buffer of choice used to make chicken embryo extract because 

of its high sodium bicarbonate concentration which compensates for the loss 

of CO2 during the blending process of the chicken embryos. Thus pH 

changes were kept minimal. 

3.7.5 Normal saline (0,85% NaCI) 

3.7.5.1 Source: Saline 

Saline was prepared in the laboratory. 
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3.7.5.2 Preparation: Saline 

85 g of NaCI was dissolved in 1 litre of sterile, deionized, distilled water in 

an Erlenmyer flask. The saline was then sterilized by membrane filtration 

and dispensed into 250 ml storage bottles. 

3.7.5.3 Purpose: Saline 

Saline was used in the preparation of L-glutamine solution. 

3.7.6 Dulbecco's modification of Eagle's medium (DMEM). 

3.7.6.1 Source: DMEM 

This OM EM with L-glutamine but without sodium bicarbonate was made by 

Flow Laboratories (Cat. No.1033120). The Powder medium was supplied 

in sachets to make up 1 litre of base medium. 

3.7.6.2 Preparation: DMEM 

Care was taken to make sure that the sachet with the powder was intact as 

powder media are hygroscopic, and on exposure to air may cake up 

resulting in loss of quality. 

All the powder medium was added to 950 ml sterile, deionized, distilled 

water contained in a 1 litre sterile volumetric flask. This was performed at 

room temperature with gentle stirring. To this was added 3,7g of NaHC03 

which is the most commonly used buffer in cell culture media because this 

is the main physiological buffer in vitro. Water was again added to bring up 

to final volume followed by gentle stirring. 

Its pH was then adjusted, using a pH meter, to 7,2 with either 1 N NaOH or 

1 N HCI with gentle stirring. 
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The medium was then immediately sterilized by membrane filtration using a 

peristaltic pump under pressure to avoid the loss of CO2 , The medium was 

filtered into 500 ml storage bottles, adequately labelled and stored at 4
0 

C. 

3.7.6.3 Purpose: DMEM 

This is a chemically defined base medium which is supplemented with other 

additives to provide the optimal conditions for muscle cell cultures. The 

powdered media are formulated without NaHCOa to increase their stability 

and shelf life. 

Phenol red in the medium provides an indicator to the pH status. If the pH 

becomes alkaline, the solution turns pink-purple. When acidic the colour will 

be orange-yellow. 

3.7_ 7 Chick embryo extract (CEE) 

3.7.7.1 Source: CEE 

CEE - 50% in Earle's balanced salt solution without phenol red (Flow 

Laboratories -Cat. No. 2850146) was used in the preliminary culture work. 

Due to the high cost of the CEE, for subsequent experimental work, it was 

made in the laboratory according to the method provided by Prof. OA 

Hawtrey, former head of the Department of Biochemistry of the University 

of Durban-Westville. 

3.7.7.2 Preparation :CEE 

Bacterial and virus free Eggs of 9 days of incubation were obtained with the 

courtesy of Rainbow Chickens of SA. 

The procedure for preparation of CEE was as follows: 
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a) The eggs were placed in egg holders with the big end up. 

Sterilization of the eggs was carried out by washing with alcohol 

and flaming. 

b) The shell around the airsac was carefully removed with a pair of 

forceps and the membrane punctured, exposing the young embryo. 

c) Sufficient embryos to weigh approximately 50 g were removed and 

placed in a sterile beaker (with predetermined weight) ,containing 

Earle's balanced salt solution without phenol red (EBSS). 

d) After rinsing the embryos with gentle stirring, the salt solution was 

removed. 

e) The embryos were then homogenised in a sterile blender for 30 

seconds. 

f) 1 ml of EBSS was then added for each gram of embryo and the 

mixture was homogenised again for another 30 seconds. 

g) The mixture was then placed into Sterilin centrifuge bottles and 

incubated at 37
0 

C for 30 minutes after which the bottles were 

centrifuged at 5000 rpm for 20 minutes. 

h) The supernatant fluid was pipetted off and pooled in a sterile bottle 

to which 1 ml antibiotic/antimycotic mixture per 100 ml CEE was 

added. 

i) Sterility tests were carried to check for contamination. 

j) The CEE after labelling was stored at _20
0 

C. 

3.7.7.3 Purpose: CEE 

CEE is added as an enrichment media to provide accessory growth factors 

or mitogens. Perhaps the CEE also provides a neural factor required to 

stimulate muscle cell proliferation, in vitro, in the absence of the nervous 

system. 
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3.7.8 Foetal bovine serum (FBS) 

3.7.8.1 Source: FBS 

Sterile FBS, virus and mycoplasma tested, was supplied by Whittaker M A 

Bioproducts (Cat. No. 14901 B), and delivered frozen on ice in 500 ml bottle. 

3.7.8.2 Preparation: FBS 
o 

FBS was placed immediately into the freezer at -20 C to avoid the serum 

thawing because frequent thawing renders sera less potent as a biological 

growth promoter. 

When first required for use, the bottle containing the FBS was placed in a 

37
0 

C waterbath. After thawing, the serum was aseptically dispensed into 

25 ml sterile bottles which were subsequently stored at _20
0 

C, with the 

exception of 25 ml which was held behind for use. In this way, the FBS was 

not all thawed at each use but only a fresh 25 ml quantity thawed each time 

as required. 

The thawed FBS sometimes necessitates centrifugation at 3000 rpm, before 

use, to remove the froth and precipitates that may develop with storage. 

Before using the FBS for the experiment proper, its viability as a growth 

promoter in muscle cultures was tested on a preliminary hamster skeletal 

muscle culture. If proliferation of myoblast was not promoted by the FBS, 

the FBS would have to be discarded and a fresh lot ordered. The shelf life 

of most sera are known to be limited as advised by the suppliers. 
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3.7.8.3 Purpose: FBS 

FBS is used in cultures as a biological growth promoter enhancing 

proliferation of cells, or myoblasts in this case. As such it must contain 

unknown accessory growth factors or mitogens. Therefore FBS, together 

with CEE, is used as a supplement to the base medium. 

3.7.9 Horse serum (HS) 

3.7.9.1 ' Source: HS 

Sterile HS, mycoplasma tested, was supplied by Whittaker M A Bioproducts 

(Cat. No. 14403A), and delivered frozen on ice in a 100 ml bottle. 

3.7.9.2 Preparation: tis 

See preparation of FBS 

3.7.9.3 Purpose: HS 

In muscle cultures FBS is used for proliferation of cells while HS replaces it 

when prolonged maintenance of cultures is the requirement, as well as for 

the promotion of fusion of myoblasts to finally form multinucleate myofibres 

(Hauschka, 1974). It is thought that HS also promotes development of 

myofibrillar protein (personal communication - Dr. Tautu, University of 

Montreal). 

3.7.10 Antibiotic-Antimycotic mixture (AA) 

3.7.10.1 Source: AA 

AA (1 OOX concentration) was supplied by Gibco Laboratories (Cat. No. 

0615245), in a lyophilized form. 
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3.7.10.2 Preparation: AA 

The lyophilized AA (1 OOX) mixture was reconstituted with 20 ml sterile 

distilled water to give final concentrations of 10,000 units Penicillin, 10,000 

mcg Streptomycin and 25 pg Fungizone per ml. After gentle mixing to 

dissolve the powder, the AA mixture was dispensed in 2 ml quantities into 

5 ml sterilin bottles and stored immediately at _20
0 

C. This was done to 

avoid repeated thawing to prevent loss in activity of the AA mixture. 

3.7.10.3 Purpose : AA 

To control microbial activity in muscle cultures especially when cultures are 

maintained for protracted periods, sometimes for several weeks. The 

chances of contamination become increased because of the highly enriched 

nature of the final culture medium containing FBS and CEE. 

The AA mixture was used in the proportion of 1 ml per 100 ml base 

medium. This gave concentrations in the final medium that provided broad 

spectrum activity, that is, a bacteriostatic and bactericidal effect against the 

growth of Gram negative or Gram positive bacteria and fungal elements. 

However, the concentrations are designed not to inhibit the growth of the 

cultured cells. 

3.7. 11 l-Glutamine (200 mmol) 

3.7.11.1 Source: l-Glutamine 

In the preliminary work, ready prepared L-glutamine (200 mmol) was 

supplied by Gibco Laboratories (Cat. No. 0435030) as 100X concentrate. 

For subsequent use 200 mmol L-glutamine was made up from stock 

glutamine, purchased from Gibco (Cat. No. 0661051H). 
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3.7.11.2 Preparation: l -Glutamine 

2,923g L-glutamine was dissolved in 100 ml of normal saline to give a 

solution of 200 mmol L-glutamine (100X concentration). 

This was sterilized by membrane filtration and stored in 10 ml quantities in 

sterilin bottles at _20
0 

C. When required, 2 ml L-glutamine solution was 

added to 100 ml base medium (DMEM). 

3.7.11.3 Purpose: l-Glutamine 

L-glutamine, a requirement for growth of cells, is omitted from liquid media 

because of its instability in solution at temperatures above -1 0
0 

C. Therefore 

it must be added to the culture media prior to use. 

Even though powdered media had L-glutamine, base medium prepared from 

such powders necessitate the further addition of glutamine especially if the 

base medium was allowed to stand for some time. 

3.7. 1 2 Gelatin 

3.7.12.1 Source: Gelatin 

Gelatin in powder form was obtained from SOH Chemicals. 

3.7.12.2 Preparation: 0,05% Gelatin 

50 mg of gelatin powder was placed in a 500ml sterile conical flask 

containing 100 ml of sterile deionized distilled water. 

The flask was closed with tin foil and autoclaved for 15 min. A large flask 

was used to avoid boiling over of the contents which froth on boiling. 
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The freshly prepared gelatin was cooled to approximately 50
0 

C before use. 

The gelatin is used while warm or else it will gel when placed into the flasks, 

which are relatively cold, and therefore not spread evenly over the flask 

surface. 

3.7.12.3 Purpose: Gelatin 

The gelatin was used to gelatinise the culture flask. This gelatinisation 

promotes the adherence of young cells sprouting from the explant and it 

also promotes fusion of these cells to form myotubes. Otherwise many of 

the young cells will be found floating in the medium. Gelatin provides a 

form of matrix on which the cells grow. 

3.7.13 Trypsin-Versene solution 

3.7. 13. 1 Source: Trypsin-Versene 

Trypsin-Versene was supplied by Whittaker M A Bioproducts (Cat. No. 

171 61), delivered frozen on ice in 100 ml bottle. 

3.7.13.2 Preparation: Trypsin-Versene 

The formulation of trypsin-Versene was as follows: 

All items used are in mg per litre DH20 

Dextrose 1000 

KCI 400 

NaCI 8000 

NaHC03 580 

Phenol Red 20 

Trypsin 500 

Versene(EDTA.2Na 200 
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3.7.13.3 Purpose: Trypsin-Versene 

Versene, a chelating agent, was used to remove calcium and magnesium 

ions from the culture medium while trypsin, by its digestive properties, 

served to dissociate or free the cells adhered to the gelatinised flask. 

3.7. 14 Dimethyl sulphoxide (DMSO) 

3.7. 14. 1 Source: DMSO 

This was purchased from Unilab - SaARchem. 

3.7. 14.2 Preparation: DMSO 

A 10% solution was made in growth medium. 

3.7.14.3 Purpose: DMSO 

DMSO was used as a cryoprotective agency. This minimized water 

retraction from cells during freezing to low temperatures and protected 

against cell fracture on reconstitution for subcultures. 

3.7. 15 Complete growth medium (GM) 

3.7.15.1 Source:GM 

The GM was made up fresh for each batch of cultures. 

3.7.15.2 Preparation: GM 

The formulation of the culture medium was that adopted by Jasmin et at. 

(1984), the only difference being that an increased quantity of FBS of 20 ml 

instead of 15 ml was used to boost growth and proliferation of young cells 

in the explants. FBS, CEE, AA and L-glutamine were all thawed in a 37 0 C 
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waterbath before being added to the base medium at room temperature. 

The formulation of GM was as follows: 

DMEM 100 ml 

FBS 20ml 

CEE 5 ml 

L -glutamine 1 ml 

AA 1 ml 

The medium was made up in special culture bottles designed for the purpose 

and stored at 4 0 C. 

The medium, before being used for the experiment, was tested for growth 

promoting quality by culturing myoblasts obtained from previous primary 

cultures that were stored in small vials in liquid nitrogen. GM was warmed 

to 37
0 

C in a waterbath before use. 

3.7.15.3 Purpose: GM 

GM was needed for initial hamster skeletal muscle cultures from which 

proliferating myoblasts were harvested and stored in liquid nitrogen for 

future use in testing new batches of growth media and viability of new 

batches of sera purchased. 

The same GM, freshly prepared when required, was used to maintain the 

explant cultures in the experiment. 

3.7. 1 6 Maintenance medium (MM) 

3.7.16.1 Source: MM 

MM was made up fresh in the laboratory before use. 
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3.7. 16.2 Preparation: MM 

The formulation was the same as for GM except that it did not contain CEE, 

and FBS was replaced by 8 ml HS. 

3.7.16.3 Purpose: MM 

The medium was designed to slow down proliferation of cells and at the 

same time provide the necessary nutrients. The MM containing HS is used 

to promote fusion of myoblasts and increase myofibrillar development in 

myotubes. 

3.7. 17 Diff-Quick Stain Set 

3.7. 17. 1 Source: Diff-Quick Stain 

This was purchased ready prepared from American Scientific Products. 

3.7.17.2 Preparation: Diff-Quick Stain 

The stain set comprised the following: 

Fixative - 0,18% triarylmethane dye in 100% methanol. 

Solution I - 0,1% Xanthene dye in buffer and 0,01 % azide 

Solution II - 0,125% thiazine dye mixture, 0,062% azure A and 

0,062% methylene blue in buffer. 

3.7.17.3 Purpose: Diff-Quick Stain 

This is a versatile rapid staining method which was used to stain the live 

cultures in the flask. This is a modification of the Wright method of staining. 

The 3 step staining method was completed in 15 seconds. The cells in the 

flasks or on slides were stained with each solution for 5 seconds only. It 

makes clear differentiation between nucleus, cytoplasm and granules. 
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3.8 EM REAGENTS FOR PREPARATION OF EXPlANTS 

3.8.1 Source: EM reagents 

The reagents for EM work were prepared by the EM Unit of the faculty of 

Medicine, University of Natal. 

3.8.2 Prepared EM reagents 

Standard reagents used routinely in the EM Unit were: 

a) 5% Karnovsky's fixative (glutaraldehyde/paraformaldehyde mixture), 

(Karnovsky, 1965); 

b) Na-Cacodylate buffer (0,2M) with an osmolarity of 340-350 mOsm; 

c) Osmium tetroxide 1 % in cacodylate buffer; 

d) Ethyl alcohol 70%, 90%, 100% (dilutions in DH20); 

e) Propylene oxide; 

f) Propylene oxide and araldyte mixture, 1: 1 ; 

g) Araldyte (resin; hardener; plasticiser and accelerator); 

h) Uranyl acetate in 50% alcohol; 

i) Lead citrate, (Reynolds, 1963); 

j) 1 % toluidine blue. 

3.8.3 Purpose: EM reagents 

Karnovsky's fixative was chosen for the immersion fixation of tissue 

because it incorporates the rapidity of penetration of paraformaldehyde and 

the desired fixation properties of glutaraldehyde such that the structural 

integrity of the cells are maintained as near as normal as possible without 

distortion of cell size and destruction or leakage of components especially 

proteins out of the cells. 
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Na-cacodylate buffer was used to wash of fixative from the tissue, .causing 

minimal shock to the cells. The buffer operates within the physiological pH 

range 7.2 - 7.4 at a calculated osmolarity of the buffer. 

Glutaraldehyde as a fixative has the disadvantage in that it does not 

preserve lipids which are an important and integral part of membranes and 

cytoplasmic contents. To overcome this loss of lipids osmium tetroxide, 

which fixes lipids, was used as a secondary fixative to give the tissue extra 

stability and contrast. 

Increasing concentrations of alcohol were used to wash and gently 

dehydrate the tissue for subsequent penetration by the embedding medium 

which is not miscible with water. 

Propylene oxide, a highly volatile fluid with low viscosity, was used as a 

miscible intermediary between the alcohol and the embedding resin araldyte. 

Araldyte as an embedding medium, was the choice at the EM Unit because 

it is not too brittle. It also gives good contrast between the tissue and the 

resin with subsequent staining. After clearing the tissue of alcohol with 

propylene oxide, pre-infiltration of the tissue with the viscous araldyte was 

achieved with a 1: 1 mixture with the low viscosity propylene. This was 

followed by infiltration of the tissue with 100% araldyte. 

Uranyl acetate and lead citrate are generally used as stains for the sections 

on grids. These heavy metal stains give good contrasts so that subsequent 

photography reveals clear morphological structures of the tissue under 

study. 
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Part II: METHODS 

3.9 CULTURE PROCEDURE 

Strict aseptic techniques were adhered to for all procedures involved in the 

culture work. Dissections and culture preparations were performed in the 

laminar flow cabinet which provided a sterile environment. All culture media 

and cultureware used were sterile. They were properly labelled to maintain 

precise records. 

3.9.1 Gelatinisation of culture flasks 

All culture flasks were gelatinised before use. 3 ml of 0,05% gelatin 

solution was pipetted into each flask and wetting of the total base area of 

the flask was ensured by gentle tilting, to and fro. 

The flasks were then placed in the refrigerator at 4 0 C for 2 hours, for gel to 

settle. Thereafter the excess gelatin solution was removed from the flask 

with a suction pipette to the waste bottle. 

One flask was placed overnight in the incubator at 37
0 

C to check for 

sterility of the flasks. The other gelatinised flasks were placed in the fridge 

for use on the following day. 

3.9.2 Testing of FBS 

All sera were first tested for their viability to promote growth in cultures. 

If the serum used did not promote growth, as it happens with some batches 

that stay stored for long periods on the shelf of the supplier, new serum will 

need to be obtained. 
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Initially, a hamster had to be sacrificed and the test was carried out using 

its skeletal muscle. Adult hamster muscle was routinely used for these tests 

as it was found that muscle from this species responded, in vitro, in a 

manner similar to that observed for human muscle (Rose Yasin, Institute of 

Neurology and Neurochemistry, University of London - Personal 

Communication). Subsequent testing of sera for viability as a growth 

promoter was conducted on mononucleated cells that were cryopreserved 

in liquid nitrogen (see 3.9.6 and 3.9.7). 

3.9.2.1 First primary hamster muscle explant culture 

The above was performed as follows: 

a) The hamster was rapidly decapitated with a guillotine, care being 

taken to cause as minimal stress as possible to the hamster before 

death. 

b) After decapitation, the hamster was immersed in a beaker of 70% 

alcohol to ensure surface sterilization. 

c) The excess alcohol was removed from the animal by swabbing with 

sterile paper towel. 

d) The skin around the thigh was surgically removed and the thigh 

muscle was carefully dissected avoiding unnecessary adipose 

tissue. 

e) Approximately 500 mg of thigh muscle removed, was placed in cold 

HBSS containing 2% AA in a sterile petri dish. 

f) The muscle was sliced into smaller pieces with a sterile scalpel 

blade. 

g) All visible fat and connective tissue were teased out with a pair of 

sterile needles. 
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h) These muscle pieces were then transferred to a sterile watch glass 

balanced on an open petri dish. 

i) The muscle pieces were washed twice, each time with 5 ml HBSS 

+ AA which was subsequently removed by suction. 

j) After adding 3 ml GM, the muscle was then minced with a blade 

into approximately 1 mm3 pieces. 

k) More connective and adipose tissue that became visible after the 

mincing process were removed. 

I) The GM was removed by suction with care being taken not to lose 

any of the minced muscle to the suction pipette. 

m) The minced muscle was washed once again with GM to remove all 

remaining blood cells and debris. 

n) After dispersion of the muscle mince in 3 ml GM, approximately 

150-200 mg of muscle pieces or explants were then transferred 

with a large bore sterile pipette into each of two gelatinised culture 

flasks. 
o 

0) The explants were fed with 7 ml GM warmed to 37 C. Care was 

taken to ensure that the flask was not over filled with medium to 

the level of the neck of the flask. 

p) Gentle agitation of the flasks ensured even dispersion of the 

explants before they were incubated in air containing 5% CO2 and 

80% humidity at 37
0 

C. 

q) Each culture flask was gently agitated once a day to prevent 

adhesion of the explants to the gelatinised surface of the flask. 

r) Cultures were inspected every morning with the inverted 

microscope and observations were made for morphological changes, 

and to certify the absence of microbial contamination. 

s) Old GM was replaced by new GM (warmed to 37
0 

C) on the 5th day 

of incubation. 
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t) After 7 days, when large colonies of young cells accumulated, 

adhered to the gelatinised surface of the flask, the explants were 

transferred together with the GM to 2 new flasks. 

The young cells in the original flask were the first batch of primary cells 

obtained. 

3.9.2.2 Fusion test to confirm presence of myoblasts 

The above was performed as follows: 

a) The original flasks with the first lot of primary young cells or 

presumptive myoblasts were fed with 7 ml MM after removing the 

all the old GM by suction. 

b) These flasks were incubated for another 3 days by which time 

fusion of cells occurred, forming multinucleate myotubes. 

This proved that a large number of the cells that sprouted from the first 

primary explant cultures were young muscle cells or myoblasts. This test 

confirmed that the FBS incorporated in the GM was viable for muscle 

cultures. 

3.9.3 Second and third primary cultures 

The above was preformed as follows: 

a) The explants from the first primary (1 0) culture that were 

transferred to the 2 new flasks were fed with fresh GM and 

incubated again, but this time for only 4 days. 

Fewer days were now sufficient time for a confluent growth of young cells 



123 

as growth of cells was already generated during the first 7 days of 
o 

incubation. These constituted a second lot of 1 cultures. 

b) The explants from the second 1 0 cultures were transferred once 

more to 2 new flasks, fed again with fresh GM and incubated for 
o 

another 4 days, these now being the third 1 cultures. 

3.9.4 Harvesting of primary cell cultures 

The above was performed as follows: 

a) After removing the GM, the cells remaining in the second and third 

lot of flasks were washed with HBSS to remove protein from the 

environment. 

b) Each flask was then treated with 3 ml trypsin-versene to dissociate 

the cells from the flask. This was controlled under the microscope, 

care being taken not to expose the cells for more than 10 minutes, 

because prolonged exposure to trypsin may cause damage to the 

cell membranes. 

c) The trypsin-versene with the cells from each flask was then pipetted 

into 6 ml of MM contained in 20 ml Sterilin bottles to neutralise the 

trypsin. 

d) These bottles with conical centres were centrifuged at 2000 rpm for 

5 minutes. 

e) The supernatant was removed and the pellets of cells were gently 

resuspended in 3 ml GM. 

f) This suspension of cells was either immediately subcultured to 

produce secondary cell cultures or prepared for storage for future 

use. 
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3.9.5 Storage of primary cell cultures in liquid nitrogen 

The above was performed as follows: 

a) The primary cell suspension in GM was pipetted (0,5 ml) into each 

of 6 screw top cryotubes placed on ice. 

b) To each vial, an equal volume of 10% DMSO was added as a 

preservative to prevent damage when frozen. 

c) The vials were first placed in the freezer at _20
0 

C for 30 minutes, 

to avoid temperature shock to the cells. 

d) They were then suspended above the level of liquid nitrogen in the 

dewar for 1 hour to achieve a temperature of approximately _70
0 

C. 

e) After this, the vials were lowered into the liquid nitrogen to be 

stored indefinitely at -1 96
0 

C until required. These cells in storage 

were used for subculturing and testing new batches of media. 

3.9.6 Testing new batches of growth media (GM) 

Muscle cultures were performed at different intervals as it was not possible 

to work with more than 2 hamsters a day. This was on account of the time 

taken to prepare for the culture procedure and due to other time constraints. 

In the case of human muscle cultures, they were done whenever the 

specimens were available. This resulted in the preparation of new batches 

of GM at prolonged intervals. Therefore, the GM had to be tested for 

viability by subculturing the cryopreserved cells before use in the experiment 

proper. This is an essential procedure or else the life of a hamster or the 

precious muscle sample from the patient, together with all the hard work 

involved in the culture procedure for the experiment proper, would have 

gone to waste if at the end it was discovered that the GM failed to support 

growth. 
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3.9.7 Subculture of cells stored in liquid nitrogen 

The above was performed as follows: 

a) Two cryovials with viable muscle cells, removed from liquid 

nitrogen, were thawed rapidly in a 37
0 

C waterbath. 

b) The contents of the vials were pipetted into 5 ml GM contained in 

2 centrifuge bottles. The GM served to revitalize the cells and to 

dilute and remove effects of the DMSO. 

c) The bottles were then centrifuged at 2000 rpm for 5 minutes. 

d) After centrifugation, the supernatant was removed and the pellet 

was resuspended in 2 ml GM. 

e) The resuspended cells in the 2 bottles were transferred to 2 flasks, 

fed with GM and incubated overnight. 

f) The proliferation of these subcultured cells indicated the viability of 

the newly prepared GM. 

3.9.8 Hamster muscle explant cultures for the regeneration study 

The procedure for the above was as follows: 

a) Skeletal muscle, from each of the 5 hamsters used for the 

regeneration study, was obtained and prepared for culture in the 

same way as that described for the first primary hamster muscle 

explant culture (see 3.9.2.1) . 

b) For the regeneration study, the 2 culture flasks of muscle explants 

from each hamster was incubated for a period of 10 days. 

c) Four muscle explants with apparent intact structure were removed 

from each set of cultures, every day, from day one to day 10 after 

incubation. The chosen explants were placed into fixative for EM 

study. 
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d) Pre-incubated or uncultured muscle explants, placed into fixative for 

EM study, served as controls. 

e) The progression of growth and morphological changes of the 

explants in culture was monitored daily with the inverted 

microscope. 

f) Photomicrographs were obtained of all pertinent changes. 

The explant method of culture was obtained personally from the University 

of Montreal, Canada, and was the same as that used by Tautu and Jasmin 

(1982) and Jasmin et al. (1984a). The only difference was that the GM had 

20 ml FBS replacing the horse serum used at University of Montreal. Foetal 

bovine serum was chosen for this study on regeneration because of the 

advice of Dr. Yasin of the Institute of Neurology and Neurochemistry, 

University of London, that FBS was more potent as a promoter of 

proliferation of cells than HS. 

3.9.9 Human muscle explant cultures for the regeneration study 

Debrided, but clean skeletal muscle, obtained from 5 patients from the 

surgical theatre at King Edward the VIII Hospital, was transported in 20 ml 

Sterilin bottles containing cold 10 ml GM. The Sterilin bottles were 

immersed in crushed ice contained in a polystyrene bag. 

A delay of 2 - 4 hours was incurred before the human muscles were 

subjected to the culture procedure. 

Human muscle was subjected to the same techniques described previously 

for hamster muscle explant cultures (see 3.9.2.1 and 3.9.8). 
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In the case of the human muscle, the control specimens were placed into 

fixative for EM study without delay at the theatre. 

3.10 PHOTOMICROSCOPY AND ELECTRON MICROSCOPY 

In this section the procedures used in the preparation of thick and thin 

specimens sections, for light microscopy and EM investigation respectively, 

will be discussed. Care was taken to ensure correct numbering of 

specimens, negatives and prints. 

3. 1 O. 1 Preparation of muscle for EM 

All control muscle and incubated muscle explants, from both hamster and 

human, were subjected to a similar procedure. 

The control muscle pieces and the experimental muscle explants were fixed 

using Karnovsky's fixative (pH 7,4) for 1 -2 h. The fixative was supplied by 

the EM Unit of the Medical School, University of Natal. After fixation, the 

muscle specimens were orientated and cut to appropriate size under the 

dissecting microscope. The specimens were then conveyed to the EM Unit 

for the rest of the procedure shown in the schedule on the following page. 

Four resin blocks were prepared from each hamster and human muscle 

explant specimens from controls and, for 10 consecutive days, from the 

incubated cultures. 
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Schedule of procedures, adopted for EM preparation of the fixed 

muscle explants, showing hydration, fixation, hydration, dehydration 

and embedding. 

Step Solution Temperature Time 
·C 

1 Buffer rinse - 0.2M Na Cacodylate 24 10 min 

2 Buffer rinse - 0.2M Na Cacodylate 24 10 min 

3 Post fixation in 1 % osmium tetroxide in 4 1 h 
0.2M Na Cacodylate 

4 Buffer rinse - 0.2M Na Cacodylate 24 10 min 

5 Buffer rinse - 0.2M Na Cacodylate 24 10 min 

6 Dehydration - 70% ethanol 24 30 min 

7 Dehydration - 90% ethanol 24 30 min 

8 Dehydration - absolute ethanol 24 30 min 

9 Dehydration - absolute ethanol 24 30 min 

10 Propylene oxide 24 30 min 

11 Infiltration - propylene oxide:Araldite( 1: 1) 24 30 min 

12 Araldite 60 1 h 

13 Araldite 60 1 h 

14 Araldite 60 1 h 

15 Araldite in capsules 60 24-48 h 

3. 1 0.2 Ultramicrotomy 

After polymerisation of the resin blocks, 1 micron semi-thin sections for 

photomicroscopy were cut from each block with a Nova Ultratome using 

glass knives. The sections from each block were removed to a drop of 

water on a glass slide. This was heat fixed and stained with 1 % toluidine 

blue. General areas of interest of the sections were identified using a Nikon 

FX-3 photomicroscope and photographs were taken. 
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The field of interest being identified, the block was trimmed removing 

expendable areas. Ultrathin, approximately 70 nm sections, cut and 

dropped onto water moats, were picked up onto 200 mesh copper grids. 

3.10.3 Heavy metal stains - Uranyl acetate and lead citrate 

The copper grids with the sections were stained with heavy metal stains to 

increase electron contrast. This was achieved with uranyl acetate followed 

by lead citrate for 2 minutes in each solution. 

3.10.4 Electron micrographs 

A grid prepared from each block was studied using a Zeiss EM1 OB Electron 

Microscope at 60 kV. Morphological structures of interest were captured 

on IIford fine grain plate film at required magnifications. The negatives were 

developed and prints were made as permanent records for future reference. 

3.10.5 Conclusion 

The progressive ultrastructural changes occurring in the regenerating muscle 

explants in culture, on a day to day basis, were thus investigated. The 

findings from this investigation and the interpretations thereon are presented 

in the following chapters. 
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CHAPTER 4 

RESULTS 

4.0 Introduction 

During the preliminary experimental work in muscle culture, cells from 

primary cell cultures were formed into pellets which were resin embedded 

for electron microscopy. Cells grown in the flask were also resin embedded 

in situ, for electron microscopy. Although this work does not constitute 

part of the project for the thesis, the results are presented out of interest. 

Some of the electron micrographs of this preliminary work are presented in 

Figs. lA to 1 C. The electron micrographs of the cells which were 

embedded, in situ, in culture flasks exhibited fusiform or spindle shaped 

morphology with long tails of cytoplasm. The cytoplasm contained well 

differentiated organelles such as endoplasmic reticulum, mitochondria, 

numerous electron dense lysosomal bodies and vacuoles. The nucleus of 

the fusiform cells were elongated with dense granular nucleoplasm (Fig. 1 A). 

High magnification micrographs (Fig. 1 C) revealed the presence of primordial 

myofibrils and chains of ribosomes which apparently marked the 

development of ribosomes. Fusion between a number of the fusiform cells 

was also observed. The presence of the developing myofibrils and fusion 

between the adjacent cells confirmed that these cells were myoblasts. The 

pellets prepared from dissociated mononucleated cells revealed cells that 

were morphologically round with fine cytoplasmic projections. The nuclei 

of most cells (Fig. 1 B) demonstrated one or two prominent nucleoli. The 

cytoplasm was similar in structure to the fusiform cells, but the electron 

dense lysosomal bodies, for some unknown reason, were not observed in 

• many of these round cell forms. 

---
-' 

I 



Figure 1 . Electron micrographs of presumptive myoblasts of hamster muscle 
from mononucleated cell cultures. A : Fusiform, prefusion 'stage from 
dissociated mononucleated cells, embedded in, and sectioned direct from the 
culture flask . Cells contain vacuoles (v), cytoplasmic bodIes (X ,endoplasmic' 
reticulum (thin arrows), mitochondria (thick arrows) and elongated nucleus 
(N). P, flask plastic. B: A typical presumptive myoblast from s ctlons 
obtained from pellets of dissociated cells in culture. C: Part of a myobla t 
during the fusion stage from cultures as in A . Chains of ribosomes mark the 
development of endoplasmic reticulum (thin arrow) . Developin myofibril 
(arrow head) and fusion points (F) confirm the myoblastic status of these 
cells. Bar in A and B = 1 pm and 0,25 pm in C. 
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The morphological characteristics, observed in the pre-incubated control and 

the incubated expl~nts in the experiment proper, are discussed under four 

major headings i.e. light microscopy of the hamster and human cultures with 

the inverted microscope, light microscopy of semi-thin sections of all resin 

embedded explants, electron microscopy of hamster explants and electron 

microscopy of human explants. The electron micrographs are presented in 

both chapters 4 and 5, in many instances to coincide with the discussion 

and to accomodate the thicker pages of the plates. 

4. 1 LIGHT MICROSCOPY OF CULTURED EXPlANTS UNDER THE 

INVERTED MICROSCOPE 

4.1.1 Hamster explant cultures 

Initially the explants were semi-transparent (Fig. 2A), floating in debris-free 

culture medium with the only contaminant being a few blood cells especially 

erythrocytes. The explants gradually became opaque from the 2nd day of 

incubation. The myofibres in some of the explants also appeared 

convoluted. The convolutions were due, perhaps, to the retraction of fibres 

which occur as a result of the mechanical manipulations during the 

processing of the explants. Myogenic cells' or presumptive myoblasts (PM) 

migrating or sprouting from the muscle explants (Fig. 28) were evident 3 to 

4 days after incubation. Outlines of round forms appeared along the free 

margins of muscle fibres of most of the explants from the 4th day onwards, 

appearing as though cells were trying to push out from beneath the 

basement membranes of the myofibres. Some round cells were seen 

attached to the free margins of the explants. Many of these round cells 



Figure 2. PhotomIcrographs of hamster muscle explant cultures. A: Part of 
single explant in culture flask, free of tIssue debris and blood cells. B: 
Opaque explant, 5th day incubation, showing young mononucleated cells 
sprouting along the periphery. C: Prefusion, mono nucleated, spindle shaped 
cells migrated from the explants onto the surface of the flask (6th day)., 0: 
Myoblasts fusing to form early myotubes which progressively become longer 
an.d multinucleated as in E. The nuclei are not visible as the above pictures 
were of unstained cultures . F: Multinucleate, branched myotubes and single 
presumptive myoblasts stained with Diff-Quick Stain Set. Cell fusion and 
multinucleation in myotubes are proof that many of the mononucleated cells 
or presumptive myoblasts were myogenic. Sa = 100 jJffi. 
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were also floating free in the medium. Cells that adhered to the gelatinised 

flask were spindle shaped and formed colonies (Fig. 2C). The spindle 

shaped cells in muscle cultures were possible myoblasts (Yasin et aI., 1977). 

Some cells were pleomorphic with irregular cytoplasmic outlines. These, 

most probably, represented fibroblasts and perhaps also phagocytes freed 

from the blood capillaries. Even though the nutrient medium with FBS and 

CEE was chosen to promote proliferation, cell fusion (Fig. 2D) between cells 

aligned alongside each other due to the confluent growth, was observed. 

Fusion of the cells led to the formation of mutinucleate myotubes (Figs. 2E, 

2F) from the 7th day of incubation. Nuclei were not clearly visible in 

unstained cultures but were identified within young cells only after staining 

(Fig. 2F). Fusion between the aligned cells and the formation of 

multinucleate myotubes confirmed the presence of myoblastic cells in the 

culture. 

4.1.2 Human explant cultures 

Light microscopy of cultures revealed that human explants behaved similar 

to hamster muscle, except that the human muscle fibres seemed more 

susceptible to retraction in the first few days of culture, and stabilised 

thereafter. Seeing that these specimens were obtained from patients 

prepared for surgery, it is possible that anaesthetics and other drug 

therapies, that the patients might have been subjected to, may have 

accounted, in part, for the fragile condition of the human muscle explants 

in culture. The migration of young cells from the explants were delayed 

when compared with hamster explants where the appearance of cells 

occurred as early as 3 to 4 days of incubation. 
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After 5 days of incubation only a few single cells were attached to the flask. 

Appreciable numbers of myogenic cells or presumptive myoblasts sprouting 

from the muscle explants, together with colony formation were evident 

between 6 and 7 days of incubation, indicating slower growth for human 

muscle in culture, as also reported by other workers (Jasmin et aI., 1984). 

The fusion of cells to form myotubes was also delayed, being observed on 

the 10th day of incubation as compared to 7 days in the hamster. In 

addition, the growth of cells in the flasks in general was not as prolific as 

that found in the case of hamster muscle. Whether this was due to the 

effects of drugs and anaesthetics is not known. The myogenic potential of 

the cells was confirmed by the fusion of the cells to form myotubes. In 

general, the progression of growth observed in the cultures of human 

muscle explants was similar to that observed for hamster explants as shown 

in Figure 2. 

4.2 LIGHT MICROSCOPY OF SEMI-THIN SECTIONS OF RESIN 

EMBEDDED MUSCLE EXPLANTS STAINED WITH TOLUIDINE 

BLUE 

4.2.1 Semi-thin sections of hamster muscle 

Semi-thin sections (Figs. 3A to 3F) revealed a steady increase in the number 

of nuclei with increase in incubation time. Uninucleate cell forms increased 

markedly after the 1 st day of incubation. It was difficult to precisely 

distinguish between myonuclei and early uninucleate cells (Fig. 3C) at the 

light microscope level because the young uninucleate cells with scanty 

basophilic cytoplasm appeared morphologically similar to myonuclei. 



Figure 3. Photomicrographs of semi-thin sections of hamster explants, heat 
stained with toluidine blue. A: Pre-incubated control explant with few 
myofibre associated nuclei. B: 1 st day incubation. Relative increase in 
pyknotic looking nuclei. C: 3rd day. Marked increase in myofibre associated 
nuclei some belonging to obvious cell forms . 0 : 5th day. Cell forms increased 
along the periphery of the myofibres. E: 7th day. More cell forms along the 
fibre and clusters of nuclei at the ends of some of the myofibres . F : 10th 
day. More clusters of nuclei and greater density of regenerative figures along 
the myofibres. At the light microscopic level it was not possible to precisely 
differentiate between myonuclei, mononucleated single cells or fused 
myotubes. Bar = 50 Jim. 
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It was also difficult to deduce the characteristics of the intensely stained or 

seemingly pyknotic nuclei. 

Multi-cells in chains or multinucleate cells developing along the myofibre 

(Fig. 3C) appeared from the 3rd day after incubation. Apparent cell forms 

together with clusters of nuclei, especially at the terminals of some 

myofibres, increased in number after 4 days of incubation (Figs. 3D to 3F). 

Again, it was not possible to differentiate whether each nucleus was present 

in independent cells or whether they belonged to the same syncytium. 

4.2.2 Semi-thin sections of human muscle 

Semi-thin sections (Fig. 4A to 4F) revealed a slow increase in the number 

of sub laminar nuclei with increase in incubation time. After the 1 st day of 

incubation pyknotic looking nuclei showed an apparent increase in numbers 

(Fig. 48). These probably were the heterochromatic myonuclei identified 

with the EM. An increase in the number of myofibre-associated nuclei were 

observed from the 3rd day of incubation. Some of the nuclei were centrally 

located and beaded in appearance (Fig. 4C). 

Apparent sublaminar uninucleate cell forms increased steadily after the 4th 

day of incubation. Multi-cells in chains or multinucleate cells developing 

along the periphery of the myofibres appeared from the 5th day of 

incubation (Fig. 4D). More cell forms increased in number, with some cell 

forms showing large cytoplasmic content as incubation continued (Fig. 4E). 

Multinucleated cell forms and clusters of nuclei at terminals of some 

myofibres showed up much later in the human muscle cultures as compared 

with the hamster muscle (Fig. 4F). 



Figure 4. Photomicrographs of semi thin s CtlO s of human explants, heat 
stained with tolUIdine blue. A: Pre incubatl n control explant with myofibre 
associated nucleI. B: 1 st day incubation. Relative Increase In pyknotic looking 
nuclei. C: 3rd day. Marked increase In numbers of myofibre associated 
nuclei, some centrally located and appearing beaded. 0: 5th day Cell forms 
Increased along the periphery t the myofibres. E: 7th day. More cell forms 
along the myoflbre prevailed . F: 10th day Similar to 7th day except that few 
clusters of nuclei appeared along the myofibres nd at ends of some 
myofibres. It was not pOSSible with the light microscopic to precisely 
differentiate between myonuclei, mono nucleated single cells or fused 
myotubes. Bar = 50 Jim 
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Once again, it was not possible to differentiate with ~he light microscope, 

whether each nucleus was present in independent cells or whether they 

belonged to the same syncytium. 

4.3 ELECTRON MICROSCOPY OF HAMSTER MUSCLE EXPLANTS 

The electron micrographs recording the morphological changes occurring in 

the hamster muscle explants, during the experiment proper, are given below. 

4.3.1 Controls: pre-incubation hamster explants 

Ultrastructure of pre-incubation specimens which served as controls 

appeared normal with myofibre structural integrity remaining intact, keeping 

in mind the mechanical injury incurred during preparation of the explants. 

Myofibrillar disorganisation and the disruption of a few myonuclei were 

observed only in the ruptured fibres on the periphery of the explants which 

was obviously due to the mincing of the muscle. 

Most of the myonuclei were typically euchromatic (Fig. 5A) as found in 

normal myofibres (Dubowitz, 1985). There were also myonuclei (Fig. 58) 

with dense peripheral heterochromatin resembling the nucleus of satellite 

cells. The dense heterochromatic myonucleus shown in Figure 58 can quite 

easily be mistaken for a satellite cell. Perhaps the lapse of about 2 to 4 

hours from the time the muscle was dissected from the animal to the time 

muscle explants were prepared was sufficient time to initiate changes in the 

myonuclei. 
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Typical satellite cells described by Mauro (1961) were observed in the 

control specimens (Fig. 9A). Some of the cells apparently appearing as 

satellite cells in the sublaminal region were not true satellite cells as they 

were attached at points to the parent sarcoplasm (Fig. 98). Satellite cell 

counts, obtained by the number of cells below the basement membrane per 

100 myofibre nuclei counted, ranged between 4% and 10% with the 

average being 7% (Table 3). 

Table 3: Details of hamsters and the percentage of satellite cells in the 

control muscle. 

Hamster Number Age/Weeks Sex Satellite cells % 

1 24 F 5 

2 6 M 8 

3 6 M 8 

4 18 M 4 

5 6 M 10 

4.3.2 Day 1 after incubation - hamster explants 

The structural integrity of the myofibres of the explants deteriorated with 

incubation time becoming oedematous with disorganised and degenerate 

myofibrillar elements. Much of the disorganisation of the myofibres could 

be attributed to the mechanical manipulation of the explant in the course of 

the experimental procedures. Nevertheless, myofibrillar and other 

cytoplasmic elements were always present in the myofibres for the full 

duration of the culture. Very few typical euchromatic myonuclei were 

observed. A consistent finding was that a number of myonuclei, after 

incubation, appeared more heterochromatic than euchromatic. Myonuclei 
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with a homogeneous distribution of dense granular nucleoplasm were also 

a common feature on day 1 of incubation (Fig. 50) . Often these electron 

dense nuclei were seen in the company of many mitochondria perhaps 

indicating their energy requirement (see appendix I and 11). Approximately 

3 % of the myonuclei were obviously degenerate. While some of these 

myonuclei exhibited the disruption of the nuclear membranes with scattering 

of the nuclear contents to the outside of the myonucleus, others had 

shrunken nuclear envelopes with condensed chromatin which bore no 

semblance to either heterochromatin or euchromatin. This would represent 

the typical pyknotic nucleus described in some works (Snow, 1979). 

Typical satellite cells were not observed in any of the incubated explants. 

The sublaminar mononucleated cells, observed in the explants after 

incubation, did not have the characteristic nucleus of satellite cells described 

by Mauro (1961). Many of the nuclei of these cells had diffuse, speckled 

and scattered chromatin (Fig. 9C and 90). Some of the nuclei had 

nucleoplasm that was dense granular with a prominent nucleolus (Fig. 98). 

After day one of incubation, all of these sub laminar cells had scanty 

cytoplasm. Some had cytoplasm at only one pole of the nucleus (Fig. 90). 

There was no evidence of complete separation between the sarcoplasm and 

the cytoplasm of many of the young cells (Fig. 98 and 90) (see Appendix 

I for more examples). The line up of vesicles often observed in the region 

between the young cells and the sarcoplasm, perhaps, served to form future 

membranes to separate the presumptive myoblast from the parent 

sarcoplasm as suggested by Hay (195911979). These sublaminar cells in 

their apparent formative stage with scanty cytoplasm associated with the 

nucleus reveal possible early stages of development of a presumptive 

myoblast from a myonucleus. 
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Even though the incubated myofibres appeared oedematous and showed 

degenerative changes similar to that described by other workers (Allbrook, 

1962; Reznik, 1969; Baker and Poindextor, 1991), they still supported 

regeneration of presumptive myoblasts or young cells. 

4.3.3 Day 2 after incubation - hamster explants 

Typical euchromatic myonuclei were no longer observed. Myonuclei 

displaying invaginations of the nuclear membrane (Figs. 5C and 5D) were 

a common occurrence. Electron dense material was concentrated in the 

nucleoplasm proximal to the invaginations of these nuclei (Fig. 5C). Most 

of the other myonuclei were either heterochromatic or they contained 

electron dense granular nucleoplasm. The number of degenerate myonuclei 

did not show any apparent increase from that seen on day 1 of incubation. 

The only change was that the nuclear contents, within disrupted membranes 

of the myonuclei seemed to display disintegration and dissolution with 

ghosts of nucleoli visible in some of them. 

There was a marked increase in the number of presumptive myoblasts within 

the myofibres. In some explants there were more myoblasts than 

myonuclei. From microscopical observations, it appeared as though there 

were greater number of myoblasts in the younger 6 week old than in the 18 

to 24 week old hamsters. The presumptive myoblasts observed at this time 

fitted the morphological description of the so called activated satellite cells. 

They had greater amounts of cytoplasm than the characteristic satellite cells 

first described (Mauro, 1961). The cytoplasm showed greater differentiation 

with more organelle development. The presence of well developed 

endoplasmic reticulum, mitochondria, Golgi complex, microfilaments and 
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microtubules were clearly evident as differentiation progressed apparently 

with the decrease in the nucleus/cytoplasmic ratio of these presumptive 

myoblasts (Fig. 12C and 138). 

4.3.4 Day 3 after incubation - hamster explants 

Myonuclei which were few in number were similar to those in Figs. 58 to 

50. The majority of sublaminal nuclei at this stage belonged to 

mononucleated cells or presumptive myoblasts. 

Peripherally located uninucleate presumptive myoblasts with scanty 

cytoplasm, distinctly lying within the parent myofibre, were still present in 

the explants (Figs. 12A to 1 2C) . Sarcoplasmic elements of the parent 

myofibre were clearly observed between the basement membrane and the 

myoblast cytoplasmic membrane (Figs. 1 2A and 1 28), lending evidence that 

the myoblasts must be within the myofibre syncytium. The poor organelle 

development in these myoblasts with scanty cytoplasm reflects their 

immaturity. 

The observation of remnants of sarcolemma in some of the parent 

myofibres, between the basement membrane and the myoblast cytoplasmic 

membrane (Figs. 1 28 and 12C), provides the evidence that the myoblast 

must have its origin from a myonucleus within the myofibre. Only parts of 

the sarcolemma of the parent myofibre were observed because of the 

obvious disruptive and degenerative changes the myofibre was subjected to 

during culture. 
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Myoblasts in chains and at different stages of development were present 

below the basement membrane along the length of many myofibres (Fig. 

16A). Different stages of myoblast development were indicated by varying 

densities of cytoplasm and organelle development. 

Cells in clusters were found at the distal ends of some fibres forming a cap 

(Fig. 168). Binucleate and multinucleate myotubes also appeared in some 

explants. Mitochondrial aggregations (Fig. 1 68) also made their appearance 

at this time, pointing to the energy requirement for the regenerative activity 

within the apparently degenerate myofibre. 

Many of the cells, as they increased in number within the basal lamina, were 

aligned adjacent to each other promoting fusion of the cytoplasmic 

membranes between them to form mutinucleate myotubes (Fig. 1 6e). 

The mitochondrial morphology of the parent myofibres showed changes 

even in some control specimens. There was evidence of some of the 

mitochondria undergoing obvious degeneration, showing crystal membrane 

damage and dissolution, leaving behind mitochondrial ghosts. In other 

instances, mitochondria revealed structural changes which were often 

reported for pathological tissue. Some of the mitochondria contained 

longitudinal bars of paracrystalline substance in the intercrystal space as 

well as between the outer and inner mitochondrial membranes (Fig. 14A). 

The presence of dense osmiophillic bodies in the mitochondria was a 

common occurrence. In other cases, mitochondria were large and swollen 

containing numerous vesicles inside them (Fig. 148). Longitudinal and 

pleomorphic mitochondria were also observed in some explants. 
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Mitochondria in the intermyofibrillar space often appeared somewhat 

longitudinal, perhaps due to the compression on account of competition for 

space with the myofibrils. 

Z line disorganisation and streaming were also observed in some intact 

myofibres (Fig. 14D). Many small smooth surfaced vesicles were often 

observed in the area of the Z line disorganisation. 

4.3.5 Day 4 after incubation - hamster explants 

Chains of myoblasts along the myofibres and clusters of cells at the distal 

ends still prevailed. Fewer single cells, isolated from other cells, were also 

present. Microfilaments, microtubules, endoplasmic reticulum, mitochondria 

and cytoplasmic ribosomes were now clearly evident in most of the 

mononucleated cells within the myofibre as well as in the myotubes. 

An increased incident of fusion between mononucleate myoblasts occurred. 

Fusion between mononucleated myoblasts and myotubes with more than 

one nucleus was also observed. Multinucleate cells or myotubes were 

present in greater number along the myofibres (Fig. 18B). Early developing 

myofibrils were observed in the cytoplasm of these myotubes. Z lines were 

identified in some of the myofibrils which usually began to develop in the 

peripheral region of the myotubes. 

Some of the cells were fusiform and others had cytoplasmic projections or 

pseudopodia resembling that of phagocytes (Fig. 18B). Some cells had 

phagosomal-like bodies with degenerate fibrils of the parent myofibre, and 

autophagic vacuoles in their cytoplasm (Fig.18A), while others displayed 
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phagocytosis and or pinocytosis. Many of these cells (Figs. 18A and 188) 

with phagosomes and those displaying phagocytosis had young, developing 

myofibrillar elements in their cytoplasm denoting their myogenic status. 

More aggregations of mitochondria were observed at the distal ends, as 

shown for the human explant (Fig. 1 5B), of the myofibre and in the 

subsarcolemmal regions (Fig. 23B). Intermyofibrillar mitochondria also 

increased in numbers, but not to the same extent as in the other areas 

mentioned. 

4.3.6 Day 5 after incubation - hamster explants 

Single cells of different morphological stages of development still prevailed 

in chains, in a sub laminar position within the parent myofibres (Fig. 16A). 

Proliferation of mitochondria was clearly apparent in most of the myofibres 

of the explants. Aggregations or clusters of mitochondria along the periphery 

and at the distal ends of some of the myofibres were evident (Fig. 1 6B). 

In a number of cases where possible amitotic nuclear division was 

suggested, the cells involved were clearly identified as myoblasts or early 

myotubes because developing myofibrils were present in their cytoplasm. 

Multinucleate myotubes with myofibrillar development were more apparent 

(Fig. 18B). Many of the multinucleate myotubes had well developed 

myofibrils. However, these young myofibrils did not fill up the cytoplasmic 

area of myotubes. Fully fledged young myofibres were not observed in any 

of the cultured explants. After multinucleation of the myotubes and the 

development of myofibrils, the myotubes at this stage failed to proceed to 

full maturity. The cytoplasmic organelles of these semi-developed young 
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fibres showed signs of degeneration. The presence of vacuolated ghosts of 

mitochondria and autophagic vacuoles increased in number in the cytoplasm 

of these partially formed mutinucleated myofibres. 

4.3.7 Days 6 to 10 after incubation - hamster explants 

The EM observations of morphological changes in the explants between 6 

and 10 days incubation are presented together because the regenerative 

features were asynchronous. Leading on from the 5th day of incubation, 

similar changes were observed in the explants on different days of 

incubation. There was no precise cut off point in the various phases of 

development to state categorically that anyone change occurred only on a 

particular day. This was probably due to different rates of developmental 

growth in different explants, attributable to age of the animals and perhaps 

the size of the cultured explants. 

Many myoblasts which lay below or above myotubes (Fig. 16C), in some 

cases seen fusing with myotubes were still present within some parent 

myofibres. A large number of these myotubes showed degenerative 

features with degenerate mitochondria and autophagic vacuoles. 

Dense mitochondrial clusters (Fig. 238) appeared in a peripheral position 

along the subsarcolemmal regions of many of the parent myofibres. The 

basement membrane was convoluted with clusters of mitochondria packed 

below them, such that waves of mitochondrial clusters (Fig. 23A) lay along 

many of the parent myofibres. 
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Giant mitochondria were observed in some of the presumptive myoblasts 

that prevailed during this time of incubation (Figs. 33A and 338). These 

giant mitochondria appeared to be a fused product of several mitochondria. 

Apparent fusion of a smaller mitochondrion with the giant mitochondrion is 

shown in Fig. 33A. The crystal membrane pattern was disorganised and the 

giant mitochondria appeared degenerate. Even if they were degenerate, a 

question that needs to be answered is the reason for the mitochondria 

undergoing fusion. 

4.3.7.1 "New generation cytoplasm, nuclei and cells" 

Observations from the incubated explants, from anyone animal series, 

indicated that waves of mitochondria along the fibres seemed somehow to 

be replaced by cells with incubation time. Instead of seeing waves of 

mitochondria along the fibres, young cells were seen instead. These cells 

invariably had dense granular cytoplasm without much organelle 

development. Their nuclei varied in structure, appearing faintly granular to 

having clumps of electron dense material. 

Electron dense mitochondria, with electron dense osmiophillic bodies, lying 

in the central regions of the myofibres were associated with undifferentiated 

plasmic forms (Fig. 24A) . It appeared as though the plasmic material was 

leaking out of the mitochondria. 

Also found in the central regions of some myofibres were strands of 

differentiated cytoplasmic forms (Fig. 248). In the region where all these 

cytoplasmic strands were observed, there were no associated nuclei to 

suggest that these strands were pieces of cytoplasm belonging to a cell 
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below or above the plane of sectioning. Although, serial sections were not 

performed, one would have expected to see just a part of an established 

nucleus associated in at least one of the large number of cytoplasmic forms 

encountered in the study. Clusters of mitochondria together with some 

vesicular structures, partially bordered by cytoplasmic strands, were also 

observed (Fig. 25A). The vesicular structures were probably sarcoplasmic 

reticulum. 

Differentiated cytoplasmic formations without nuclei were identified in the 

subsarcolemmal and central regions of the myofibres (Fig. 258). These 

cytoplasmic formations had autophagic vacuoles, electron dense bodies 

similar to the electron dense mitochondria found outside them, and dilated 

endoplasmic reticulum. Nuclei were not seen associated with all these 

cytoplasmic masses identified. These cytoplasmic formations found 

associated with sarcoplasmic organelles mainly the mitochondria probably 

represent "new generation cytoplasm". 

Some of the differentiated cytoplasmic formations contained fragments of 

membrane structures (Fig. 26A) . These cytoplasmic formations were still 

attached to or intimately associated with mitochondrial and other 

sarcoplasmic organelles. Higher magnification of these membrane fragments 

revealed that these might be parts of a doubled nuclear membrane (Fig. 

268). These membranes were randomly distributed in the cytoplasmic 

masses and, therefore, it was unlikely that they belonged to degenerate 

nuclei. In extensions of some of the cytoplasmic masses (Fig. 26C) 

membranes were observed to partially cordon off material similar to granular 

nucleoplasm with many inclusions. 
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At the terminal parts of many myofibres, mitochondrial aggregations seemed 

to have been replaced by clusters of cells. At some terminals, large 

vacuoles were formed by cells lying above and below them (Fig. 27A) . 

These vacuolated areas in between the cells contained sarcoplasmic 

organelles, mainly mitochondria. Amidst this mass of sarcoplasmic 

organelles, membranous forms drew incomplete patterns of irregular nuclei. 

Higher magnification of similar membranes in another explant from a 

different animal (Fig. 278) showed the membrane structures to be similar to 

that of nuclear membranes. The appearance of chromatin-like patches 

within the partially enclosed membranes is suggestive of the formation of 

"new generation nuclei". 

The "new generation cytoplasm" with the "new generation nuclei" probably 

gave rise to the many cells observed in the later incubation period. The 

areas previously occupied by mitochondrial aggregations and clusters 

seemed later to be replaced by cells which may be "new generation ce"s". 

Some of these cells were found lying above remains of the mitochondrial 

clusters (Fig. 28A). The terminal parts of fibres which had greater 

aggregations of mitochondria and other organelles would appear to give rise 
• 

to numerous cells (Fig. 28B). The larger aggregations would appear to give 

rise to clusters of cells. These new generation cells had some morphological 

features in common, and this perhaps depended on their state of 

physiological maturity. The nucleoplasm was diffuse and granular with 

nuclear inclusions. The cytoplasm of these cells was dense granular with 

very little differentiation. Cytoplasmic inclusions were not uncommon. 

Clusters of irregular nuclei were observed within a myotube at the terminal 

parts of some fibres (Fig. 29) . The cytoplasm of these myotubes had 
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autophagic vacuoles and degenerate mitochondria. Large vacuolated areas 

adjacent to some of the nuclei appeared to be extended outer nuclear 

membranes or perhaps empty spaces left by nuclei that may have been lost 

during the EM processing. Multinucleated myotubes showing similar 

irregular nuclei were a common feature. Some of these myotubes with the 

irregular nuclei formed a cap over the terminal part of some myofibres (Fig. 

30)' and often extended down the length of the myofibres (Fig. 31). The 

nuclear morphology of many of these irregular nuclei gave the impression 

that they were either segmenting or budding off more nuclei. These 

myotubes with the irregular nuclei were below the basement membrane of 

the parent myofibre. Although the myotubes had many nuclei, the 

myofibrillar content of these myotubes were scanty. 

4.3.7.2 "Generation workshops" 

Some of the myotubes growing in a cone formation at the distal ends of 

myofibres (Fig. 34A) exhibited what ' appeared to be "generation 

workshops". A number of areas showing the possible derivation of 

structural elements identified in pathological muscle is marked as areas 1 to 

4 in Fig. 34B. These areas are shown magnified in Fig. 35. 

In Area 1, an electron dense cytoplasmic or lysosomal-like body is 

associated with a structure containing fine fibrous elements. Another 

structure adjacent to this contains a dense mitochondrion and a lysosomal 

body looking much like a degenerate mitochondrion at the opposite end of 

the structure. In between are found vacuoles with glycogen. The structure, 

wrapped around by what appears to be formative membranes, perhaps 

signals the beginnings of a new nucleus (Fig. 35A). 
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In Area 2, structures resembling partial formations of nuclei are shown. 

Incomplete membranes seem to border electron dense chromatin-like 

material (Fig. 358). In Area 3, fibrous myelin-like bodies are associated with 

mitochondrial remnants in which the crystal formation is apparent. This 

appears similar to myelin or fibrous structures observed in pathological 

muscle (Fig. 35C). 

In Area 4, again a degenerate looking mitochondrion seems to be involved 

with fibrous structures. Elongated electron dense structures showing some 

semblance to mitochondria are also present in this area (Fig. 35D). 

4.3.8 Myonucleation - possible amitotic division 

Nuclear morphology showing signs of amitotic division were observed 3 and 

8 days of incubation. It is on this account that it is being presented 

separately. 

Some of the nuclei, observed within the sublaminar presumptive myoblasts 

with well developed cytoplasmic organelles, showed signs of budding, 

splitting or segmentation (Fig. 20). Chromatin accumulation at the possible 

future segmentation zones seemed to herald the nuclear division (Figs. 20A 

and 208). Bilobed nuclei were observed in some cells (Fig. 20C). The 

nuclear lobes were linked by an apparent thin strand of nuclear material, 

suggesting a possible future break between the lobes. Outer membranes of 

nuclear compartments of some myotubes appeared extended with 

multinuclei within. Many of these nuclei appeared as if they were budding. 

In some cells, the nucleus exhibited multilobes (Fig. 20D). The 

multi lobulation seemed to occur within the expanded or vacuolated outer 
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nuclear membrane. The lobes of this nucleus (Fig. 200) are linked by thin 

strands of nuclear material. Furthermore, it appears as if the smaller lobes 

at either poles of the nucleus were 'nuclear buds'. 

4.4 ELECTRON MICROSCOPY OF HUMAN MUSCLE EXPLANTS 

4.4. 1 Controls: pre-incubated human explants 

The control specimens or uncultured explants, showed some signs of early 

regeneration. This was probably due to the fact that these muscle samples 

came from sick patients and from sites of injury. The possible influence of 

anaesthetics and drugs on initiating some regeneration features in the 

muscle of these patients must be born in mind. The muscle specimens, 

taken direct into fixative for EM at the hospital theatre, were essentially 

intact with hardly any damage to the components of the myofibres. But the 

myofibres on the outer border of the muscle showed some retraction. 

Some of the myonuclear morphology observed before the specimens 

underwent incubation are presented in Figs. 6 and 7. Apart from normal 

euchromatic myonuclei (Fig. 6A), many myonuclei (Fig. 68) with dense 

peripheral heterochromatin, similar to those found in satellite cells, were 

observed. The electron dense heterochromatin indicated activation of the 

myonuclei. Some of the electron dense myonuclei were associated with 

large amounts of glycogen (Fig. 68). Many of the myonuclei which showed 

signs of activation seemed to often have electron dense bodies in the near 

vicinity (Figs. 68 and 60). In Fig. 68, the electron dense body is closely 

applied to the nucleus so that it gave the appearance that the nucleus was 
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giving off a nuclear bud. These electron dense bodies often appeared 

vacuolated. Some activated myonuclei with diffuse granular nucleoplasm 

contained prominent nucleoli (Fig. 60). 

Indented and beaded forms of myonuclei in the explants of some of the 

patients were common (Fig. 6C). Centronucleation of some of the 

myonuclei indicates that they were probably young fibres going to maturity, 

indicating again that regenerative changes were already present in these so 

called 'normal' muscle. Many of the beaded appearing myonuclei (Fig. 7A) 

were apparently independent nuclei with a prominent nucleolus in each 

segment. Some myonuclei with deep indentations, on magnification, 

revealed lines of possible segmentation (Fig. 78) suggesting the derivation 

of beaded myonuclei. 

Myonuclei in control specimens were also observed imbibing myofibrillar 

elements (Fig. 7C). Typical double nuclear membrane, adjacent to the area 

of imbibition, were not present. These areas of the myonuclei were 

commonly electron dense. In areas of activity the Z lines disappear or 

become disorganized with obvious disruption of the myofibrillar 

arrangement. Many small vesicles were often present in the areas of 

imbibition. Electron dense bodies (Fig. 80), referred to as residual bodies, 

associated with numerous small vesicles were seen in control and incubated 

specimens. They were also identified in hamster muscle explants. These 

electron dense bodies had no visible limiting membranes. They were usually 

found opposed to and involving the Z line material. . 

The satellite cell counts ranged between 0 and 7% with the average being 

2.6% (Table 4). Many of the cells counted, strictly speaking, did not 



155 

conform to the characteristic requirements for classification as satellite cells. 

Typical satellite cells (Fig. lOA) were rare. Many of these cells were 

presumptive myoblasts in a subsarcolemmal position within the parent 

myofibre. 

Table 4: Details of patients and the percentage of satellite cell counts in 

control muscle. 

Patient No. Age (yr) Sex Muscle Satellite cell % 

1 23 F gluteal 3 

2 65 M ant. tibialis 1 

3 42 F sternohyoid 0 

4 37 M abd. rectus 2 

5 26 F flex. digitorum 7 

Early transformational changes of myonuclei to presumptive myoblasts were 

already evident in control specimens (Fig. 1 DB). In the specimen shown, 

cytoplasmic morphology immediately around one pole of the myonucleus is 

electron dense and distinctly different from the parent sarcoplasm. There 

was no clear separation between this young cytoplasm and the parent 

cytoplasm. An electron dense body is also found in the vicinity of this 

transforming myonucleus. Microfilaments were apparent within the young 

cytoplasm. 

4.4.2 Days 1, 2 and 3 after incubation - human explants 

The development process seemed slow in the human explants when 

compared with the very rapid morphological changes observed during 

incubation for the hamster explants. Apart from different levels of 
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degeneration, there were no gross differences in the regeneration pictures 

of the explants between the 1 st and the 3rd day of incubation. Therefore 

the regenerative events for these days are given as a group. 

In comparison with incubated hamster muscle explants, the human explants 

showed greater signs of fragility and more instances of retraction. Most of 

the myonuclei observed had dense peripheral and central heterochromatin. 

Myonuclei of the human muscle seemed to exhibit a more elongated 

morphology with a greater incidence of membrane indentations. The 

number of degenerate myonuclei varied between 2 to 5 % for the different 

muscle types. The degenerate myonuclei in the human muscle exhibited 

similar morphology to those seen in hamster muscle since in some, the 

nuclear membranes were disrupted whilst others displayed a shrunken 

nuclear envelope with electron dense condensed chromatin material. 

Invaginated myonuclei were a common feature of the incubated explants 

(Figs. 8A to 8C). The walls of the invaginations were electron dense similar 

to that seen in hamster explants. Active imbibition of cytoplasmic elements 

by these invaginated myonuclei were clearly evident (Figs. 88 and 8C). 

Microvesicles were again apparent in the area of imbibition (Fig. 88). 

As incubation progressed, the number of myonuclei declined whilst the 

number of presumptive myoblasts increased. Characteristic satellite cells 

were not observed after incubation. Myonuclear transformation to 

presumptive myoblasts were still evident (Fig. 11A). In the early 

transformations of myonuclei to presumptive myoblasts, the new 

cytoplasmic formations were always observed at one pole of the 

myonucleus. Incomplete membrane separations between the cytoplasm of 

the developing cell (Fig. 11A) and the sarcoplasm of the parent myofibre 
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provide evidence of the derivation of presumptive myoblasts from 

myonuclei. Again, an electron dense body is found close to the 

transforming myonucleus. Some of the presumptive myoblasts observed, 

have scanty cytoplasm with little or no developed organelles (Fig. 118). 

These cells with little cytoplasm can easily be mistaken for myonuclei even 

under the electron microscope. 

The mitochondria of the myofibres showed similar morphological changes 

to those observed in hamster muscle. Fusing mitochondrial aggregations 

with paracrystalline bars and dense osmiophillic bodies were often observed 

close to young presumptive myoblasts which were still attached to the 

parent sarcoplasm (Fig. 15A). Pleomorphic mitochondria, some being 

observed even before incubation (Fig. 1 5C), were present in some of the 

explants after incubation. 

4.4.3 Days 4, 5 and 6 after incubation - human explants 

There was no apparent variation observed in the explants for each of these 

days except that there was a steady increase in the number of cell forms 

from day to day with myotubes making their appearance on the later days. 

There were fewer myonuclei at this time. Degenerate ghosts of myonuclei 

with very little nuclear material within shrunken nuclear membrane outlines 

were still evident in the myofibres. Incidently, most of the degenerate 

myonuclei observed in both the hamster and human myofibres were located 

mainly in the periphery of the muscle explants. The damage and death of 

these myonuclei can be attributed to physical shock sustained during the 

preparation of the explants. 
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Evidence of transformational changes of myonuclei still prevailed during this 

period. The presence of plasmalemma I fragments between the cytoplasmic 

membrane of the myoblast and the basement membrane of the parent 

myofibre (Figs 1 3A and 13C) was further evidence of the origin of the 

presumptive myoblasts from within the parent myofibre. 

Presumptive myoblasts showed greater cytoplasmic content. The cytoplasm 

of these cells were more differentiated with greater number of mitochondria 

and endoplasmic reticulum. Microtubules and microfilaments were 

commonly seen in the cytoplasm. Microvesicles which may be the 

forerunners of sarcoplasmic tubules were often observed on the peripheral 

margins of some myoblast especially on the side adjacent to the basement 

membrane (Figs. 138 and 15A). 

The nuclei of these sublaminar cells displayed variable morphology. Some 

of the nuclei had dense peripheral heterochromatin, some had dense 

scattered or speckled chromatin while others had dense granular nuclei. 

Sublaminal myoblasts adjacent to each other began showing signs of fusion 

(Fig. 13C). This lead to the increase in the number of mutinucleate 

myotubes. The myotubes also had microfilaments and microtubules in their 

cytoplasm. Early myofibrillar development was also observed in many of 

these multinucleate myotubes. 

There was a gradual mitochondrial proliferation. Some early aggregations 

of mitochondria were observed in the subsarcolemmal regions (Fig. 158). 

Electron dense bodies, similar to those found in the vicinity of activated 

myonuclei, were observed amidst the mitochondria found in clusters. The 
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incidence of mitochondrial clusters were not as prolific as that found in the 

hamster muscle at the same time of incubation. 

A number of presumptive myoblasts, myoblasts and young myotubes 

displayed phagocytic morphology. Some of the mononucleated cells with 

Iysosomes, extensive endoplasmic reticulum, autophagic vacuoles or 

phagosomes and the presence of cytoplasmic projections made identification 

of these cells difficult although they lay below the basement membrane (Fig. 

19A). Myotubes which displayed some of these morphological 

characteristics were easier to identify by the presence of developing 

myofibrils in their cytoplasm. The presence of developing myofibrils are 

clearly shown in longitudinal section (Fig. 1 98) and in cross section (Fig. 

19C) of myotubes displaying some of the phagocytic characteristics. 

4.4.4 Days 7 to 10 after incubation - human explants 

For these days, the cell number increased with many lining up as chains in 

a sublaminar position (Fig. 17A). Cross sections of myofibres showed cells 

encircling the perimeter of the myofibre (Fig. 178). Many clusters of cells 

were found capping the ends of the parent myofibres. Fusion between 

these cells also occurred (Fig. 17C) . 

Mitochondrial aggregations or clusters, found under convoluted basement 

membranes of myofibres, were observed with greater frequency. 

Mitochondrial aggregations also appeared at the distal ends of some 

myofibres. Some nuclei of presumptive myoblasts and myotubes appeared 

to have originated in the midst of mitochondrial aggregations, as was 

observed for the hamster muscle, but this was not frequent. Multinucleate 
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myotubes with bizarre forms of nuclei as observed in the case of hamster 

myotubes were not seen. Perhaps the culture duration of 10 days for the 

human specimens was too short in order to reveal these features. 

Many myotubes showed morphological characteristics of phagocytes. The 

presence of young developing myofibrils in the cytoplasm of many of these 

myotubes confirmed their myogenic status. 

4.4.4.1 "New generation cytoplasm, nuclei and cells" 

Although the regenerative processes were much slower in the human 

explants when compared to the hamster explants, it was apparent that 

regeneration had already prevailed in the human muscle. Therefore, in some 

explants, cluster of mitochondria were observed as early as 4 days of 

incubation. Basement membranes of some fibres were convoluted similar 

to that observed in hamster explants. Organelle replacement by cytoplasmic 

forms were evident under these convolutions in some of the fibres (Fig. 

32A) which had marked degenerate morphology. In this same electron 

micrograph, partial nuclear membrane coverage of material which may 

represent future nucleoplasm is evident and, perhaps, herald, the "new 

generation nucleus" as seen in the case of the hamster explants. 

Another partially formed nucleus amidst sarcoplasmic organelles (Fig. 328), 

taken at higher magnification, shows clearly the double membrane structure 

of a nucleus. Many inclusions are present within the future nucleoplasmic 

area. Late in the incubation period, myotubes with irregular nuclear 

formation (Fig. 32C) were observed at the distal ends of some fibres. 
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The cytoplasm contained numerous vacuoles and degenerate looking 

cytoplasmic organelles, suggesting possible derivation of this myotube as a 

"new generation cell". 

Young cells with electron dense nuclei and dense granular cytoplasm were 

observed at the end of the incubation period. The cytoplasm of these cells 

did not contain any organelles (Fig. 32D). Furthermore, the nucleus of these 

"new generation cells" contained large electron dense nuclear inclusions. 

Close inspection of the nucleus in Fig. 32D reveals that the nuclear 

membrane is incomplete and terminates, at the break point, attached to 

small vesicles. 

Mutinucleate myotubes with bizarre formations of nuclei forming caps 

around the distal end of myofibres and along the side of the myofibre were 

not observed. 

4.4.5 Myonucleation - possible amitotic division 

Nuclear morphology indicating possible amitotic division were observed in 

the controls and the incubated specimens. Therefore this issue is presented 

separately. 

Some myoblast with developing myofibrils in their cytoplasm were seen in 

control specimens suggesting that the muscle used in the experiment 

already had regeneration features. In one such myoblast, the nucleus 

presents electron dense chromatin material leading from a cleft in the 

nucleus and branching into two columns in different directions (Fig. 21A). 

Similar pictures were observed in hamster explants. These columns perhaps 
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mark zones of future breaks in the nucleus. Bilobed nuclei with thin strands 

of nuclear material linking the lobes were often observed. 

An apparently bilobed nucleus (Fig. 218) linked by nuclear material, on 

careful examination reveals a break between the lobe and the nuclear band 

linking it. The morphological outline presented by this nucleus predicts 3 

possible nuclei in the cell, in the future. Nuclei of other myoblasts (Fig. 

22A) showed close invaginations which run deep into the nucleus marking 

lines of breaks in the nucleus. 

Binucleate myotubes were also seen (Fig. 21C). The 2 nuclei within the 

myoblast have 2 little nuclear projections in each of them, on opposed sides. 

These little nuclear projections provide morphological evidence that these 

nuclei were previously linked to each other. Although it may be argued that 

the nuclear lobes may be linked at another level from the plane of 

sectioning, it is hardly likely on account of the nuclear projections displaying 

distinct nuclear membrane which, invariably, would be absent in tangential 

sections. 

In Fig. 228, a myotube with arrays of developing myofibrils in cross section 

are seen. The myotube has a bilobed nucleus linked by a ribbon of nuclear 

material and another nucleus that is unattached. Higher magnification of the 

same myoblast (Fig. 22C) reveals a nuclear tailor projection standing free 

in the cytoplasm. This nuclear projection perhaps presents the possible 

evidence that the other nucleus was attached at this point. 

An electron micrograph of a multinucleate myotube, formed in the interstitial 

space in between the myofibres, is presented (Fig. 21D). The structure of 
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this myotube is similar to those produced by fusion of myoblasts in single 

mononucleated cell cultures. Close examination of the multinuclei reveals 

two nuclei attached to each other, leading evidence of amitotic division 

within myotubes. 

Mitotic figures were not observed in the sublaminar cells. 

4.5 CONCLUSION 

The electron micrograph records reveal similar progression of regenerative 

events in both the hamster and human muscle explants. The main 

difference was that the regeneration process appeared to be much slower 

in the human explants. This seems the obvious reason for not being able to 

observe the prolific presentation of multinucleate myotubes with bizarre 

nuclei in the human muscle explants. 
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CHAPTER 5 

DISCUSSION 

5.1 INTRODUCTION 

Since the discovery of the satellite cell (Mauro, 1961), most regeneration 

research on skeletal muscle focused on this cell with a certain amount of 

bias. The current consensus is that the satellite cells, remnants of 

embryonic myogenesis, are the precursor or myoblastic cells responsible for 

the initiation of regeneration in muscle whenever the need arises. Although 

it has not been conclusively proven that satellite cells were the precursor 

cells of muscle regeneration, research on regeneration has declined in recent 

times (Okada, 1994). 

According to Okada (1994), "There is little doubt that regeneration is one 

of the key, and basic mechanisms, for maintaining life, as has been clearly 

stated by the American biologist J . Goss. 'If there was no regeneration, 

there would be no life. If everything is regenerated, there would be no 

death'. Thus, studies on regeneration are part of the essential scientific 

basis to discussion of that most important philosophical problem of 'life and 

death'''. 

The importance and the need for regeneration studies on skeletal muscle can 

not be over emphasized, especially in view of the fact that whatever therapy 

becomes available in the future for muscular dystrophy, it will, out of 

necessity, depend on the muscle's ability to regenerate. There is, therefore, 

a genuine need to continue research to precisely understand the mechanism 
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of regeneration. Most importantly, the derivation of precursor cells that are 

involved in muscle regeneration must be conclusively identified because, 

these precursor cells are the ones that may be the targets of future 

therapies. 

5.2 PREVAILING HYPOTHESES ON THE DERIVATION OF 

PRESUMPTIVE MYOBLASTS DURING MUSCLE REGENERATION 
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Schematic representation of the different hypotheses on the derivation of 
muscle precursor cells by Sloper and Partridge (1 980). 
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The origin of the mono nucleated myogenic cell has not been proven beyond 

doubt in any of the muscle regeneration models used (Carlson, 1973; 

Bischoff, 1979; Sloper and Partridge, 1980) and therefore remains a 

debatable issue. The different hypotheses on the derivation of precursor 

cells during muscle regeneration are illustrated in the diagram above by 

Sloper and Partridge (1 980). 

There are two main schools of thought existing on this issue as mentioned 

in Chapter 2. The one school supports the hypothesis that satellite cells are 

the precursor cells involved in muscle regeneration (Church et aI., 1966; 

Moss and Leblond, 1971; Ontell, 1974/1975; Schmalbruch, 1976; Snow, 

1977a&b/1979; Campion 1984), and this is the current consensus. The 

other school believes that mononucleated precursor cells of muscle 

regeneration are derived from myonuclei (Hay, 1959/1979; Lee, 1965; 

Reznik, 1969/1976; Teravainen, 1970; Hess and Rosner, 1970). According 

to this school, myonuclei were capable of undergoing dedifferentiation to 

form new cells if and when muscle regeneration was required. 

There were also some suggestions that connective tissue cells, such as 

fibroblasts and macrophages, could also be involved in the contribution of 

new cells during regeneration (Sloper and Partridge, 1980). 

5.3 EARLIER METHODS OF REGENERATION STUDY 

Muscle regeneration studies began over 135 years ago (Bottcher, 1858; 

Waldeyer, 1865 - cited in Campion, 1984). Since then, studies in 

regeneration were performed in many different experimental situations. 
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These are itemised with references under literature review. Just to reiterate 

briefly, various techniques were tried and tested to induce regeneration in 

living animals and under culture conditions in the laboratory. Speidel as 

early as 1938 used tadpoles to study regeneration. He provided clues for 

the progressive changes which took place from single spindle shaped 

myoblast up to the formation of myofibres. These findings held true for 

regeneration in both the animal and human muscle in subsequent studies 

that followed, and this also applies to the current study (Figs. 1 & 2). 

The study methods may be classified into two major groups. Group one 

comprised the study of regeneration by microscopical comparisons of 

muscle from foetuses, the young and the adult human, as well as from many 

animal species (Ishikawa, 1966; Shafiq et aL, 1967). Muscle autografts 

(Schmalbruch, 1977; Carlson et aL, 1979; Lipton and Schultz, 1979), 

muscle transplants (Jasmin and Bokdawala, 1 970; Cosmos et aL, 1979), 

minced muscle implants (Mong, 1977; Snow, 1977a&bI1978/1979), 

denervated muscle (Campion, 1978; Kelly, 1979) and muscle injured in a 

variety of ways (Allbrook et aL, 1965; Shafiq and Gorycki, 1965; Mazanet 

et aL, 1982) were employed to pursue the development and regeneration of 

muscle. 

Group two employed tissue culture. Essentially, there were two culture 

techniques used. One of which employed single explants in clot cultures 

(Geiger and Garvin, 1957; Skeate et aL, 1969; Bishop et aL, 1971; 

Dubowitz, 1973; Witkowski and Dubowitz, 1975), or free-floating multi­

explants (Askanas, 1979; Askanas and Engel, 1982; Tautu and Jasmin, 

1982; Jasmin et aL, 1984a&b; Delaporte et aL, 1984; Ecob-Prince and 

Brown, 1988), or single myofibres in culture (Bischoff, 1972/1975/ 1979; 
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Konigsberg, 1975; Konigsberg, 1979; Rubin et aI., 1979). The other culture 

technique employed enzymatically dissociated mononucleated cells 

(Hauschka, 1974; Yasin et aI., 1977; Thompson, 1980). 

The clot culture technique has now become obsolete. Most of the culture 

methods, unfortunately, were not used to identify the precursor cells of 

regeneration. Instead, they concentrated on the growth and developmental 

characteristics of the cells that sprouted from the explants or those grown 

from mononucleated cells liberated by enzymic dissociation of muscle. 

Cultures of diseased muscle were used in the hope that the structural 

changes and biochemical defects, observed in biopsies, would be 

reincarnated, in vitro, and this would then enable attempts at treatment. 

Apart from observing the growth characteristics during regeneration of 

muscle, all the earlier work, engaging any of the techniques mentioned, had 

one thing in common, and that was to test the various hypotheses that 

existed on the pathogenesis of muscular dystrophy. In general, it may be 

summarised that the growth characteristics of diseased and normal muscle 

did not indicate any appreciable growth and morphological differences in 

culture (Dubowitz, 1973). 

With the identification of the gene defect and the gene product, dystrophin, 

many of the conflicting findings, such as cluster formation in cultures of 

DMD muscle (Walsh et aI., 1981; Thompson et aI., 1983) and a neurogenic 

(Dubowitz, 1973) or ischaemic (Vracko and Benditt, 1972; Lipton, 1979) 

cause of the defect in muscular dystrophy, have become redundant and held 

only historic and academic merit. 
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Nevertheless, the culture techniques used are not without merit and will be 

in continuous use in the future. In recent times, the techniques have been 

perfected to isolate and harvest massive numbers of muscle cell clones 

(Konigsberg, 1963; Hauschka, 1974; Yasin et aI., 1982). The cell clones 

are used in myoblast transplant and gene transfer therapy research. The 

cultured cells are also useful for the identification of the different 

dystrophies, including proper prenatal diagnosis and establishing carrier 

status in patients. 

5.4 ADVANTAGES OF THE EXPLANT CULTURES IN THE USE OF 

MUSCLE REGENERATION STUDY 

It is well documented (Askanas, 1979; Tautu and Jasmin, 1982; Jasmin et 

aI., 1984a) that skeletal muscle explants in culture sprout young myoblasts 

and, therefore, must exhibit regenerative changes. Askanas (1 979) 

considered regeneration of diseased human muscle in culture a valuable tool 

to study the pathogenesis of neuromuscular diseases, and that it presented 

a new frontier in the study of the disorders. The explant technique, 

nowadays, have come a long way since the early clot culture technique. 

Minced muscle grown as free floating explants in aqueous unclotted culture 

media provided better migration and growth of presumptive myoblasts 

(Askanas and Engel, 1975; Tautu and Jasmin, 1982; Jasmin et aI., 1984). 

Whilst most of the previous studies used cultured explants and single 

myofibres to evaluate the growth and development of the young cells 

sprouting (Fig. 28) out from them, cultured explants were used in the 

current study to monitor the regenerative changes that occurred within them 
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for 10 consecutive days after incubation. Muscle explants in culture provide 

an ideal model and afford an excellent opportunity to study early 

regenerative changes on a day to day basis, on account of the easy 

accessibility and availability of the explants from animals or biopsies from 

patients. Such study, otherwise, is difficult in an intact animal that would 

have to be subjected to repeated surgical procedures that would be painful, 

both for the animals and the researcher. 

Regeneration studies, performed on injured muscle by autografts, transplants 

and minced muscle implants, were not successful in establishing 

conclusively the origin of precursor cells. This was largely due to the 

formation of blood clots, poor perfusion, necrotic debris and migrating 

connective tissue cells such as phagocytes and fibroblasts in the 

experimental muscle inr in vivo regeneration studies (Allbrook, 1 962; Snow, 

1979; Baker and Poindextor, 1991). All these conditions made the 

detection of early changes of regeneration within the experimental muscle 

difficult. Ultrastructural investigations in incubated human muscle explants 

in Maximow double coverslip chambers on collagen-coated plastic coverslips 

with explants fed 1 drop of growth medium 3 times a week were beset with 

similar problems (Mendell et aI., 1972). Single myofibres grown in culture 

resulted in all the myonuclei disappearing (Bischoff, 1979). 

On the other hand, the muscle explants, being grown in a controlled 

laboratory environment, were free of other" outside-muscle" influences 

(Askanas, 1979). The explant cultures (Fig. 2) were clean without debris, 

had good perfusion of nutrients, were free of blood clots and suffered 

minimal migrating or invading cells. Thus, in the present study, the early 

tracing and recording of events involved in muscle regeneration were made 

possible and more meaningful. 
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5.5 MORPHOLOGICAL CHANGES OBSERVED IN BOTH HAMSTER 

AND HUMAN EXPLANTS FOR 10 CONSECUTIVE DAYS OF 

INCUBATION 

Hamster muscle explants were prepared from the thigh muscle of apparently 

healthy adult male and female hamsters. Human muscle, on the other hand, 

was obtained from patients undergoing surgery for conditions other than 

muscle diseases. There was no alternative but to use whatever muscle was 

available at the hospital surgical theatre. Therefore, human muscle obtained 

from different sites in the body were used in this study. However, the 

advantage of having obtained muscle from different sites was that it helped 

to observe that the regenerative changes held true for the all of them. 

Furthermore, regenerative changes were similar in the muscle from either 

sex, both in the hamster and in the human. 

The present study focused attention on the behaviour of myonuclei, origin 

of myoblasts and the role of phagocytes during regeneration in hamster and 

human skeletal muscle explants. Other morphological changes observed are 

also discussed. 

5.5.1 The status of myofibres of the cultured explants 

A problem encountered in the use of explants was that after incubation they 

were extremely delicate and fragile and, therefore, easily susceptible to 

disruption of the structural integrity if not handled with care. Unlike most 

other regeneration studies (Bischoff, 1979; Reznik, 1969) viable myonuclei 

prevailed for several days of incubation, although there were a small 

percentage of degenerate myonuclei. The degeneration of these myonuclei 
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were apparently due to mechanical damage and were observed mainly in the 

peripheral myofibres of the explants. The ultrastructural integrity of the 

muscle fibres in the control pre-incubation or uncultured explants appeared 

normal, taking into consideration the mechanical injury sustained by the 

explants during their preparation for culture. 

On incubation, the human muscle seemed more susceptible to retraction 

than hamster muscle in the first few days, and normalised thereafter. As 

incubation proceeded, myofibres in the explants began to exhibit oedema, 

fibrillar disorganisation and mitochondrial degeneration and regeneration. All 

of these changes were also reported in other studies concerning muscle 

regeneration (Allbrook, 1962; Reznik, 1969; Lipton, 1979; Anderson et aI., 

1 987; Baker and Poindextor, 1991). In the midst of these seemingly 

degenerate myofibres, the regenerative processes were set in motion. The 

sarcoplasmic morphology of the explants will be discussed in more detail 

later on in this chapter. 

5.5.2 EM identification of the origin of myoblasts 

It is appropriate at this stage to again define satellite cells, myoblasts and 

myotubes. Satellite cells, considered to be a remnant of embryonic 

myogenesis, first observed in frog skeletal muscle (Mauro, 1961), were 

uninucleate cells having dense peripheral heterochromatin and scanty 

cytoplasm with few organelles. They must be located between the 

basement membrane and the plasmalemma (sarcolemma) of the muscle 

fibre. Definitions for myoblasts varied (Allbrook, 1962; Carlson, 1973)' but 

they were generally accepted as precursors of muscle fibres. Those cells 

whose destiny was presumed to be future myoblasts were commonly 
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referred to as presumptive myoblasts. Myotubes were either mono nucleate 

cells or" multinucleate syncytia, with immature myofibrils, which go on to 

develop into young myofibres. 

In a preliminary work, EM study of cultured mononucleated cells embedded, 

in situ, in the culture flasks, showed characteristic myoblasts with well 

developed organelles (Fig 1) . The nuclei of the cells were dense granular, 

elongated without deep indentations of peripheral heterochromatin and not 

similar to that of the satellite cell first described by Mauro (1961). Some of 

these cells revealed early developing myofibrillar elements in the peripheral 

regions of the cytoplasm. These cells, with developing myofibrils, also 

exhibited fusion between neighbouring cells. Electron dense lysosomal-like 

cytoplasmic bodies were numerous in the cytoplasm of the spindle shaped 

cells. In the current study, similar structures were also observed proximal 

to transforming myonuclei and young presumptive myoblasts as though they 

signalled regenerative events (Figs. 68, 6D, 108 and 11A) . Pellets of 

mononucleated cells, harvested from the muscle cultures, exhibited 

morphologically round cells with fine cytoplasmic projections. The important 

aspect of the morphology of these cells was that the nuclei did not show 

any irregular or bizarre outlines, and they seemed to have either one or two 

prominent nucleoli (Fig. 1). 

Light microscopy of live cell cultures revealed that the cultures were free of 

debris and that many of the cells that sprouted out of the explants were 

confirmed myoblasts because they fused and formed multinucleate 

myotubes (Fig. 2). This implied that the culture environment was adequate 

and promoted growth in the muscle explants. Visual comparison of light 

micrographs between uncultured control explants and cultured explants, 
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revealed an obvious increase in the number of myofibre nuclei (Figs. 3 and 

4) as the incubation time increased. Whilst some of the nuclei clearly 

belonged to cell forms, it would be erroneous to regard the balance of nuclei 

as myonuclei, because the limited resolution of the light microscope made 

it difficult to precisely delineate a myonucleus from a mononucleate cell 

which had scanty basophilic cytoplasm. 

Definite signs of regeneration were evident in light micrographs of cultured 

explants 3 days after incubation from hamster (Figs. 3C to 3A and 5 days 

after incubation from human muscles (Figs. 4D to 4A, by the appearance 

of seemingly multinucleate, basophilic cell forms resembling myotubes. 

Similar findings were recorded by others (Lash et aI., 1957; Reznik, 1969; 

Carpenter, 1990; Baker and Poindextor, 1991). Again, it was difficult with 

the light microscope to positively identify whether the nuclei were a part of 

the myotubes, or whether they were mononucleate cells adjacent to each 

other, and therefore appearing as though they were multinucleate myotubes. 

5.5.2.1 Derivation of presumptive myoblasts from myonuclei 

An intense electron microscopic investigation of the muscle explants in the 

present study helped to clarify and identify the ultrastructural changes which 

occurred early in the regenerative process. However, some early 

regenerative features such as myonuclear transformations were already 

present in the control muscle samples obtained from the patients. This 

could be attributed to the fact that some of the samples came from sites of 

injury. In addition, the effects of drugs and anaesthetics used on the 

patients could also have contributed to the regenerative features. 

Nevertheless, this did not affect the aims of the study. 



Figure 5. Electron micrographs A, B, C & D represent some of the 
myonuclear morphology observed in hamster explants up to 5 days of 
incubation including controls. A: Typical euchromatic myonucleus mainly of 
controls. B: Dense peripheral heterochromatin in myonuclei, in controls and 
day 1 incubation, resembling satellite cell nucleus. C & D: Myonuclei display 
invaginations. C, with electron dense material adjacent to invaginations was 
probably a stage in the transformation to D with dense homogeneous granular 
material. N, myonucleus; MF, myofibre; arrows, basement membrane; 
Bar = 1 pm. 



176 

5.5.2.2 Morphological transformations of myonuclei 

Typical euchromatic myonuclei (Dubowitz, 1985) were observed mainly in 

the control specimens (Figs. 5A and 6A) but were rare in the incubated 

samples. Most of the myonuclei of the human control and incubated 

explants displayed variable morphology. There were myonuclei with dense 

peripheral chromatin (Fig. 68 and see appendix I & 11), typical of nuclei of 

satellite cells (Mauro, 1961). When seen in longitudinal sections (Fig. 58) 

of intact myofibres, these myonuclei could easily be mistaken for satellite 

cells. 

Dense granular myonuclei, some of them with invaginations of their 

membranes (Fig. 5D), were a common feature only in the incubated hamster 

explants. Similar dense granular myonuclei, some with a prominent 

nucleolus (Fig. 6D), were also found in control and incubated explants of 

human muscle. The presence of these dense granular myonuclei in the 

control human muscle samples was a clear sign that the human muscle had 

regenerative features even before incubation. 

The dense granular myonuclei observed in the explants closely resembled 

the nuclei seen in the mononucleated myoblasts from the culture flasks. 

These dense granular myonuclei were also observed in other regeneration 

studies (Lash et aI., 1957; Allbrook, 1962)' and these were possibly 

identified as pyknotic nuclei (Reznik, 1969; Witkowski, 1977; Snow, 1979). 

Furthermore, in the newt limb muscle, the euchromatic myonuclei become 

heterochromatic during the process of dedifferentiation (Hay, 1979). 



Figure 6. Electron micrographs of myonuclei observed in human control 
muscle explants before culture. A: Normal myonucleus, slightly 
heterochromatic. B: Heterochromatic myonuclei, one having what appears 
like a nuclear bud, is surrounded by glycogen. C: Centrally located beaded 
nuclei commonly seen in the human explants. D: An activated myonucleus 
with granular nucleoplasm an a prominent nucleolus. There is speculation 
that the slightly electron dense cytoplasm (thick arrow) probably is young 
cytoplasm marking the beginning of a presumptive myoblast from the 
myonucleus. The electron dense bodies with vacuolations (thin arrows) near 
the myonucleus in Band D were commonly seen in proximity to myonuclei 
that showed signs of transformation to a cell. Bar = 1 Jim . 
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Myonuclei with deep indentations (Fig. 78) and beaded myonuclei, some 

centrally located in the myofibre (Fig. 6C), were often seen in the human 

muscle explants. These myonuclei with indentations and bead formations 

were also shown in dystrophic muscle and DMD carriers (Sewry et aI., 

1985). High magnification of some of the indented myonuclei (Fig. 78) 

revealed constrictions and double lines which appeared to mark possible 

lines of segmentation of the myonucleus giving a clue perhaps to possible 

amitotic division of the myonucleus. Myonuclei appearing close to each 

other in bead formation with each segment having a prominent nucleolus 

(Fig. 7A) were probably formed by such segmentation. It may be argued 

that these myonuclei in bead formation were parts of a single myonucleus 

with indentations, and being sectioned along the indentations, gave the 

appearance that they were independent nuclei. That argument may be true, 

but the fact that 3 clear nucleoli are present along the segments, one in 

each, gives an indication that they were independent nuclei. Nuclei of 

myoblasts in cultures commonly revealed either one or two nucleoli. If 

myonuclei were derived by the fusion of myoblasts during myogenesis, then 

it would be rare for a myonucleus to have 3 nucleoli. The segmentation 

lines seen in the highly indented myonuclei also indicated the possibility that 

these separate segments may have arisen by amitotic division. 

Deep invaginations of membranes in semi euchromatic myonuclei were a 

common observation in incubated explants of both hamster and human 

muscle explants. The electron dense material was invariably present in the 

nucleoplasm adjacent to the walls of the invaginations (Figs. 5C, 8A and 

8C). These myonuclei seemed as though they were imbibing cytoplasmic 

elements in the area of the invaginated troughs. This would explain the 

electron dense material in the region of the invaginations, and would 

perhaps also explain the origin of the many dense granular myonuclei. 



Figure 7. Electron micrographs of nuclei observed in human control 
explants. A: Beaded nuclei with a prominent nucleolus in some. B: Part of 
a myonucleus observed with constrictions (thick arrow) in an area dense with 
chromatin. This constriction and a faint double line (thin arrow) perhaps give 
a clue to the manner in which beaded nuclei are formed. C: Myonucleus 
apparently imbibing myofibrillar material (arrow) with no apparent nuclear 
membrane in this area of activity. The status of this myonucleus, whether it 
is a formed nucleus actively imbibing cytoplasmic material or a myonucleus 
in its formative stages from cytoplasmic material, remains a question. 
Bar = 1 pm in A and 0,5 jJm in Band C. 
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Deep invaginations of the nuclear membranes trapping cytoplasmic contents 

within the nucleus were also observed in other studies (Mastaglia and 

Walton, 1971; Anderson et aI., 1987). Imbibition of cytoplasmic elements 

was clearly seen in the higher magnifications (Figs. 88 and 8C). The 

nuclear membranes in the area of interaction with the cytoplasmic elements 

were disrupted, as clearly seen in the figures presented. Figure 7C shows 

a myonucleus from a control human explant, apparently imbibing myofibrillar 

material with no apparent nuclear membrane along this area of activity. It 

is difficult to decide on the status of this myonucleus, whether it is a fully 

fledged myonucleus actively imbibing cytoplasmic material or whether it is 

a myonucleus in its formative stage from cytoplasmic material (see "new 

generation nuclei" discussed later in this chapter). 

Previous work (Lash et aI., 1957; Witkowski, 1977) also suggested that the 

early stages of muscle regeneration were denoted by myonuclear activity. 

Therefore, the dense heterochromatic and granular myonuclei observed by 

them and in this study, were probably euchromatic myonuclei that were 

transformed to a stage preceding the formation of presumptive myoblasts 

of myonuclear origin. It is important to note here that myoblasts in other 

studies were also described as having dense granular nuclei (Allbrook, 

1 962). The nuclei observed in the above studies closely resembled the 

granular myonuclei described in this study and, therefore, one might deduce 

that the dense granular myonuclei develop into presumptive myoblast. 

The centrally placed nuclei, observed in the human control muscle, were 

typical of centronuclei observed in dystrophic muscle and, their presence 

was suggestive of various stages of regeneration (Walker, 1962; 

Schmalbruch, 1979), and often the central nuclei were observed to be 

pyknotic (Hudgeson et aI., 1967). 



Figure 8. Electron micrographs of invaginated myonuclei and electron dense 
cytoplasmic bodies in human explants. A and C: Parts of invaginated 
myonuclei (N) commonly seen aftet incubation. Nuclei actively imbibing 
cytoplasmic elements which explain the dense heterochromatic appearance 
of regions adjacent to the invaginations. A: Imbibition of myofibrillar 
elements (arrow). B: higher magnification clearly demonstrating imbibition in 
A . D: Dense nuclei like bodies without apparent limiting membrane, 
commonly seen in controls and incubated explants. They were also observed 
in hamster muscle. Dense bodies, associated with microvesicles (arrow) , 
were found opposed to and involving the Z band material. 
Bar = 2 pm in A & D and 0 ,25 pm in B & C. 
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5.5.2.3 Myonuclear derivation of myoblasts 

Although it is agreed that satellite cells observed in mature muscle serves 

the function of precursors of myoblasts, but there is no conclusive evidence, 

as yet, to accept that these cells were embryological remnants of 

myogenesis, lying in reserve. On the contrary, the present study supports 

the view that development of new presumptive myoblasts from myonuclei 

occurs whenever the need arose for regeneration of muscle. The 

presumptive myoblasts segregate from the sarcoplasm of the parent 

myofibre by newly formed membranes separating them from the parent 

myofibre, and therefore become placed between the plasmalemma and the 

basement membrane. In this manner, new 'satellite cells' are formed. There 

must be a continuous, slow turnover of these cells in normal muscle, which 

is why they are always reported to be present (Allbrook, 1971; Wakayama 

and Schotland, 1979; Watkins and Cullen, 1988), but in very small 

numbers, counts varying according to age and the physical condition of t 

muscle. On the other hand, if the satellite cells were true remnants of ' 

embryonic myogenesis, then there should be no decline in their number once 

mature muscle is established. From the literature, it becomes obvious that 

the numbers of satellites are closely linked to the physiological state of the 

muscle (Campion, 1984). 

Some presumptive myoblasts (Figs. 9D and 12A and see appendix I) closely 

resembled satellite cells (Figs. 9A and 10A). The only difference between 

the satellite cells and these presumptive myoblasts was that the latter were 

within the myofibre, and in many cases (Figs. 9A and 9D), were still 

attached to the parent sarcoplasm. 



Figure 9. Electron micrographs of different morphological forms of 
sublaminar cells in hamster explants. A: Satellite cell with dense 
heterochromatic nucleus and scanty cytoplasm lying between the basement 
membrane and plasmalemma of the myofibre, in controls. B: Presumptive 
myoblasts in controls and up to 4 days incubation. Cell below basement 
membrane appears attached at points to the myofibre. C: Presumptive 
myoblast with scanty cytoplasm after incubation. A nuclear break is visible 
at one pole, this perhaps being an early myotube. D: Early transformation of 
the myonucleus to a myoblast with scanty cytoplasm at one pole of the 
nucleus. N, nucleus of cell forms; MN, myonucleus; PM, presumptive 
myoblast; short arrows, basement membrane; long arrows, plasmalemma of 
myofibre; arrowhead, cytoplasm of young cell forms . Bar = 1 pm. 
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The attachment of the presumptive myoblasts to the parent sarcoplasm 

implied that these cells must have their origin from within the myofibre. The 

morphological similarity between these two cells lends support for the view 

that the presumptive myoblast must be a stage in the development of 

satellite cells. If this is contested with the assumption that the satellite cell 

was undergoing fusion with the myofibre and therefore the attachment, then 

one would expect, at least in some cases, to see another satellite cell nearby 

because argument in literature is that satellite cells divide mitotically and 

contribute one of the cells to the myofibre (Snow, 1 979). 

Evidence of partial transformation of a number of myonuclei to presumptive 

myoblasts further confirms the derivation of muscle precursor cells from 

myonuclei. Figure 108 distinctly shows new cytoplasm formation of 

different electron density from that of the parent sarcoplasm around one 

pole of the myonucleus with no distinct membrane separating the new 

cytoplasm from the parent sarcoplasm. Other myonuclear transformations 

to a cell, where the beginning of membrane separation between the new 

cytoplasm formed at one pole of the nucleus and the parent sarcoplasm was 

observed, provide more evidence (Fig. l1A). 

Many of the presumptive myoblasts that were attached to the parent 

sarcoplasm (Figs. 98, 9D, 11A, 118 and 12A) had very scanty cytoplasm 

with little or no developed organelles, revealing their immaturity. If the 

argument was to be presented that these were satellite cells fused with the 

myofibre, then as activated satellite cells they ought to have more cytoplasm 

and well developed organelles. 



Figure 10. Electron micrographs of satellite cell and presumptive myoblast 
in control human explants. A: Typical satellite cell lying between the 
basement membrane (thick arrow) and plasmalemma of myofibre (thin arrow). 
B: Developing presumptive myoblast below the sarcolemma with development 
of dense new cytoplasm (NC) around part of the nucleus with no distinct 
membrane separating it from sarcoplasm (PC) of the parent myofibre. At 
point X there is no clear separation of the young cell and parent myofibre. 
DB, dense body is again near the nucleus. Microfilaments (small arrow) are 
apparent within the new cytoplasmic zone suggesting the myoblastic status. 
The cell lies under the basement membrane (large arrow) and the 
plasmalemma (curved arrow) of the parent myofibre. N, nucleus. Bar = 1 pm. 
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Electron dense cytoplasmic bodies with vacuolations were frequently 

observed proximal to activated myonuclei (Figs. 68 and 6D), in the 

cytoplasm of myonuclei showing partial transformations (Fig. 108) and in 

the vicinity of other transforming myonuclei (Fig. 118). 

Similar electron dense structures were described as lipofuscin observed in 

DMD carrier muscle (Sewry, 1985) and as residual body (Anderson et aI., 

1987) in mdx mouse muscle. These lysosome-like dense bodies were also 

demonstrated in the preclinical stages of dystrophy (Hudgeson, 1967), in 

regenerating myotubes in dystrophic foci (Lipton, 1979) and in proximity to 

the nuclei of young fibres (Mastaglia and Walton, 1971). Such electron 

dense bodies were numerous in cultured mononucleated myoblasts (Fig. 1) 

appearing as dense Iysosomes. Whatever they may be, they seemed to 

signal regeneration or growth. 

Some presumptive myoblasts had nuclei with scattered dense chromatin 

(Figs. 9C and 9D) and others had nuclei with diffuse granular nucleoplasm 

(Figs. 98 and 11 B), usually with a prominent nucleolus. The variable 

morphology of the nuclei of presumptive myoblasts with scattered or 

speckled electron dense chromatin perhaps denote transitional stages 

between the presumptive myoblast with dense granular nucleus and the 

satellite cell with nucleus having dense peripheral heterochromatin. 

After the separation of the presumptive myoblast from the parent myofibre, 

by the formation of new cytoplasmic membranes between them, the 

presumptive myoblast will then be a new satellite cell, ready to promote 

muscle regeneration. 



Figure 11. Electron micrographs of presumptive myoblasts in human 
explants up to 6 days incubation. A: Young cell developing from the 
myonucleus (N) below the basement membrane (thick arrow), with new 
electron dense cytoplasm development at one end of the nucleus. Distinct 
double membranes (thin arrows) reveal separation of the young presumptive 
myoblast cytoplasm from the sarcoplasm of the parent myofibre. There is no 
continuity of the membrane in the region marked X, showing attachment of 
the developing cell to the parent myofibre. Again a dense body (DB), opposed 
to the Z line which is disorganised, is found close to the transforming 
myonucleus. B: Full nucleus of a presumptive myoblast with little cytoplasm 
mainly at one pole of the nucleus. Bar = 1 Jim . 
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During the incubation period, the myofibres, as explained before, underwent 

degenerative changes which included the disruption of the plasmalemma 

that remained as remnants along the basement membrane of the myofibre. 

Remnants of this plasmalemma remaining intact in segments of the 

myofibre, provide strong evidence for the derivation of a presumptive 

myoblast from a myonucleus, because the plasmalemma remnants 

positioned between the basement membrane and the presumptive myoblast 

in a number of instances, both in the hamster and the human explants 

suggested this (Figs. 128, 12C, 13A and 13C). 

That presumptive myoblasts are derived from myonuclei and from within the 

myofibre is further consolidated by the location of sarcoplasmic elements 

between the basement membrane and the cytoplasmic membrane of many 

of the presumptive myoblasts (Figs. 1 2A and 1 28). 

The supposition by many researchers that satellite cells fused with the 

subjacent myofibre was true for the process of myonucleation of muscle 

fibres in the normal course of myogenesis in the embryo, in the foetus and 

in the young. The above concept applied here in the case of regeneration, 

observed in muscle that has been experimentally injured and with the 

myofibres degenerating, would imply that these myoblasts from satellite cell 

origin, were trying to resuscitate the degenerate fibre. This was unlikely 

with the overwhelming evidence presented in regeneration studies which 

clearly indicated that restoration of damaged muscle was by the way of 

developing new myotubes (Vracko and Benditt, 1972; Carlson, 1973). 



Figure 12. Electron micrographs of sub laminar cells in hamster explants up 
to 5 days incubation. A: Presumptive myoblast (PM) lying distinctly below the 
basement membrane, (Bm) . Cytoplasmic elements (e) of the myofibre (MF) , 
lying between the Bm and myoblast cytoplasmic membrane (mm) , lends 
evidence that the myoblast originates within the myofibre syncytium. These 
presumptive myoblasts have scanty cytoplasm and orga:1E!lIe development 
B,C: Showing remnants of plasmalemma (arrowhead) positioned in between 
the basement membrane (short arrow) and the cytoplasmic membrane of the 
presumptive myoblasts, lend further evidence that these cells originate from 
a myonucleus within the myofibre. IC, interstitial cell; IS, interstitial space. 
Bar == 0,5 Jim in A & 8, 1 Jim in C. 
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The satellite cells, in the present study, were not observed in pairs. If 

satellite cells divided mitotically to give rise to new myoblasts then it would 

not be unreasonable to expect them to be found in pairs in at least some of 

the large number of myofibres inspected. On the other hand, myonuclei and 

sublaminar cells were often observed proximal to each other in the current 

study and by others (Schmallbruch and Hellhammer, 1977; Sandset and 

Korneliussen, 1978). Their proximity implies a possible derivation of 

sublaminar cells from the myonuclei. Furthermore, mitotic division of cells 

found in the sublaminar regions of the myofibres was not observed in the 

present study. 

According to Konigsberg (1979) the solution to both the hypotheses of 

satellite cell versus the myonuclear derivation of precursor cells of 

regeneration were complicated by two difficulties. One was that muscle of 

animals experimentally injured were not observed soon after injury, but at 

progressively longer intervals after the time of injury. The other was that, 

the identification of fragments budding and the definitive identification of 

satellite cells, both required resolution afforded by the EM. Both these 

difficulties mentioned by Konigsberg were circumvented in the current study 

by tracing the early regenerative processes in cultured muscle explants with 

the EM. 

The results of the current study strongly indicates that sublaminar 

mononucleated cells of mature muscle, which often are referred to as 

satellite cells were in fact myoblasts which were previously presumptive 

myoblasts derived from the myonuclei. Possible mechanisms of cleavage or 

segregation for myoblast development from myonuclei were already 

described (Lee, 1965; Hess and Rosner, 1970; Reznik, 1976; Hay, 1979). 



Figure 13. Electron micrographs demonstrating plasmalemma remnants and 
fusion of myoblasts in human explants from 3 to 10 days incubation. A & C: 
Parts of myoblasts with presence of remnants of the plasmalemma (short 
arrow) between the myoblasts and the basement membrane (long arrows) 
confirming the origin of these cells from within the sarcoplasm of the parent 
myofibre. B: Part of myoblast having pinocytic vesicles (P) I microtubules (T), 

microfilaments (X), developing endoplasmic reticulum bordered by ribosomes 
(R) and developing mitochondria (M). C: Parts of 2 myoblasts coming 
together and fusing at points F where the membranes meet. N, nucleus. 
Bar = 0,5 Jim. 
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But, the ultrastructural characteristics of the scanty cytoplasm of the 

presumptive myoblast, with little or no organelle development, as observed 

in this study, suggests that the cytoplasm may in fact be secreted by the 

active myonucleus in the initial stages of development of the myoblast. 

Light micrographs revealed mononucleated cells in regenerating myofibres 

to have intensely basophilic cytoplasm which was distinctly different from 

the subjacent cytoplasm of the myofibre. If myoblasts were formed by the 

cleavage mechanism (Hay, 1959; Hess and Rosner, 1970; Reznik, 1976) 

where the myonucleus with some cytoplasm separates from the myofibre by 

membrane formation between them, then the cytoplasm of both the new 

myoblast and the parent myofibre should have similar staining and structural 

features. Reznik (1969) also observing this difference, stated that "Many 

of the myonuclei and their surrounding cytoplasm, however, have a different 

ultrastructural aspect from that observed in the undamaged region of the 

same muscle." Lash et al. (1957) also commented on the perinuclear 

cytoplasm of the young cells being basophilic. 

5.5.2.4 Support for myonuclear derivation of myoblasts from other 

studies 

There are other researchers (Hay, 1959/1979; Lee, 1965; Reznik, 

1969/1976; Teravainen, 1970; Hess and Rosner, 1970; Walker, 1972) who 

believed that myonuclei had the potential to be activated in times of muscle 

stress. At these times of stress, myonuclei were said to surround 

themselves with sarcoplasm, and finally segregate as a new cell from the 

parent myofibre by a process called dedifferentiation (Hay, 1959/1979). 
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In vivo, regeneration studies (Allbrook, 1962; Lee, 1965; Reznik, 1969; 

Hess and Rosner, 1 970) on rabbits, mice and guinea pigs, strongly support 

the findings of the present study. Allbrook (1962) described "a type of cell 

commonly found in the position of a subsarcolemmal nucleus in a muscle 

fibre". He went on to state that this cell had dense granular nucleus and it 

was "otherwise similar to a subsarcolemmal muscle nucleus". It was 

unfortunate that EM study was reported on, only after 90 hours of having 

caused injury to the muscle. It was likely that these subsarcolemmal cells 

would have been observed sooner had Allbrook resorted to electron 

microscopy earlier. However, in his review of 1981, he suggested satellite 

cells were the possible reserve myoblasts responsible for regeneration. 

Lee (1965), investigating regeneration in gastrocnemius muscle of rat and 

rabbits, denervated for longer than three months, also supported the theory 

of the myonuclear derivation of muscle precursor cells. Lee, from his EM 

investigation, suggested that the cells in the periphery of myofibres were 

formed by invagination of the plasma membrane at the two poles of the 

myonucleus, with the membranes meeting and fusing, cordoning off the 

new cell thus formed. 

Reznik (1 969) in his study of muscle regeneration in adult rabbits and mice, 

also observed similar cells after 68 hours of injury. According to Reznik 

(1969)' the myoblasts in the partially damaged part of myofibres appeared 

"to be pinched off the muscle sarcoplasm as mononucleated cells that pass 

through a satellite cell stage". In that study, it was stated that the majority 

of myonuclei in the degenerative phase of the fibres became pyknotic and 

disappeared. These pyknotic nuclei might be the dense granular nuclei 

referred to in this study, and perhaps their disappearance could be explained 



194 

by the fact that they transformed into cells. Reznik (1969) suggested that 

"one of the visible aspects of the production of myoblasts is the formation 

of plasma membranes that isolate a previously normal myonucleus and its 

surrounding envelope of cytoplasm. This process of membrane formation 

seems to occur by the progressive coalescence of vesicles and clefts, 

probably in connection with the extracellular space and presumably initiated 

in contact with the transverse tubular system". He went on to state that 

after these mononucleated cells were isolated from the myofibre, they 

proliferated by mitotic division. In his paper (Reznik 1969), electron 

micrographs of presumptive myoblasts with scanty cytoplasm still partially 

attached to the parent sarcoplasm were presented. Cells with a thin rim of 

cytoplasm enclosing an elongated nucleus were also observed in between 

necrotic myofibrils without other interstitial cells being present in the same 

area. Reznik further stated that satellite cells were not observed in the 

mouse and rabbit muscle before injury, "despite an extensive search." This 

study by Reznik did not concentrate on the very early regenerative changes 

that occurred in the injured muscle otherwise it is certain that the very early 

transformational changes of the myonuclei would also have been identified. 

Reger and Craig (1 968) observed apparent fusion between myoblasts and 

underlying myofibres in hypertrophic human deltoid muscle and they 

suggested the possibility that satellite cells were fusing with the myofibres 

and thus causing enlargement. The alternate interpretation could also be 

that these cells were young presumptive myoblasts formed from myonuclear 

transformation with subsequent segregation of its new cytoplasm from the 

sarcoplasm. However, they did suggest that their speculation deserved 

continued study. 
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Teravainen (1970)' to avoid degeneration and at the same time stimulate 

regeneration, caused slight compression injury to the musculi bulbi rectus 

superior of adult rats. The results of this study further supported the 

myonuclear derivation of cells during regeneration. Electron micrographs, 

revealed areas of protoplasmic contact between the so called satellite cells 

and the myofibre sarcoplasm which led Teravainen (1970) to conclude that 

the satellite cells originated from myonuclei by pinching off from the 

sarcoplasm. The satellite cells, with a pale nucleus having a prominent 

nucleolus and with few organelles in the pale cytoplasm were similar to 

many of the cells observed in the current study. Teravainen also made the 

point that satellite cells were never observed in close proximity to each 

other, but instead, "the nucleolus of the satellite cell was usually observed 

close to the nucleus of the myofibre, suggesting that new satellite cells 

could be derived from the muscle cell nuclei." Furthermore, Teravainen 

reported that satellite cells increased in number during the first 10 to 12 

hours after slight injury to the muscle. In culture conditions, the doubling 

time for cells was shown to be 22 hours. This fact then implies that the 

increase in the number of satellite cells so early after injury can not be 

attributed to satellite cell proliferation by mitotic division, unless the situation 

is different, in vivo, from that seen in cultures for doubling time of 

myoblasts. 

Hess and Rosner (1970), working on denervated gastrocnemius muscle of 

adult guinea pigs, were of the opinion that satellite cells increased in number 

by the dedifferentiation or budding mechanism described by Hay 

(1959/1979) for newt regeneration of muscle. They identified many cells 

that were "fused, joined, attached or part of the peripheral sarcoplasm of 

the muscle fibre. Several of the satellite cells can be seen for one short 
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stretch to be free and for another short stretch to be part of the muscle 

fibre, as if they were caught in the act of being pinched off from the muscle 

fibre". They proposed that clefts appeared between the myonucleus and the 

rest of the muscle fibre, or else invaginations from the plasmalemma around 

the myonucleus finally meeting and forming a separation channel, was the 

means by which a new cell was formed from the myonucleus. Again the 

morphological descriptions of the partially formed cells was the same for the 

cells presented in this study on hamster and human muscle. Hess and 

Rosner (1970) also did not see any mitotic division of cells in the myofibres. 

The dedifferentiation of myonuclei, segregating some cytoplasm around it 

and budding of new cells was thought to be similar to the mechanism of 

regeneration demonstrated in some amphibians and reptiles after amputation 

of their limbs (Thornton, 1938; Carlson, 1979; Hay, 195911979). According 

to Hay (1979), during the formation of the blastema, the contribution of 

mononucleated cells made by muscle, was by means of myonuclei 

dissociating or segregating with cytoplasm from the muscle. This 

mechanism where myonuclei segregated from the muscle fibre with 

sarcoplasm was termed dedifferentiation (Hay, 1959/1979). Furthermore, 

according to Hay, the adult newt had no pre-existing satellite cells in the 

muscle. Hay concluded that the muscle formation in the embryo by 

myoblast fusion was reversible in the adult newt when need for myoblast 

proliferation was imposed on a muscle. Also, that there was enough reason 

to research for this myonuclear derivation of cells in avian and mammalian 

muscle. Hay (1979) felt that an important message from the newt ought 

not to be ignored by concluding that satellite cell was a reserve cell without 

which muscle regeneration was not possible. 
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Walker (1972), using young rats subjected to radioactive isotopes in a 

double injury experiment where labelling was effected after injury, obtained 

results which led him to conclude that myonuclei were responsible for the 

development of myotubes during muscle regeneration. This was contrary 

to most of the other radioactive labelling studies which promoted the 

hypothesis that satellite cells gave rise to new myoblasts during muscle 

regeneration. Walker used the same labelling technique of injecting 

[3H]thymidine into rats. In Walker's research, one group of rats was 

subjected to a single injury. In this group the muscle was injured 12 days 

after multiple injections of radioactive thymidine given over 3 days. The 

second group was subjected to a double injury, where [3H]thymidine was 

injected into the rats 2 days after injury of muscle which was subjected to 

re-injury 1 2 days later. In both the experiments the rats were sacrificed 4 

days after the last injury to the muscle. The absence of labels in the 

myotube nuclei in the single injury group implied that satellite cells were not 

involved in the formation of the myotubes. The incidence of labelling of the 

myotube nuclei and centrally located nuclei of maturing fibres in the second 

group led to the conclusion that myonuclei contributed the precursor cells 

which fused and formed the labelled myotubes after the second injury. 

Recently, Ono et al. (1994), conducted a study to clarify proliferating cells, 

static cells and proliferative activity of myogenic cells in neuromuscular 

diseases. Muscle biopsies, from a number of dystrophic conditions, were 

subjected to monoclonal anti-K-67 (MIB-1) antibody as a specific marker. 

Mononucleated cells including myoblasts and macrophages showed positive 

reaction to MIB-1. Apart from this, Ono et al. (1994) observed that "a small 

number of sarcolemmal nuclei, both of non-necrotic myofibres in myogenic 

diseases and non-atrophic (hypertrophic) myofibres in neurogenic diseases, 
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were also positive for MIB-l" . According to them, "This finding suggests 

that sarcolemmal nuclei (possibly satellite cells) of myofibres without 

necrosis could go into the cell cycle under some unknown signals". In a 

personal communication with Ono at the Neuromuscular Diseases Congress 

(1994), it was suggested that the MIB-1 positive sarcolemmal nuclei could 

have been the transforming nuclei referred to in the current study, and that 

they assumed that the labelled nuclei belonged to satellite cells because of 

the current belief in research circles that only satellite cells were able to 

synthesize new DNA and take up the markers. 

5.5.3 The satellite theory on the derivation of myoblasts 

It was suggested in numerous studies on regeneration that satellite cells, 

first described by Mauro (1961 ), were the muscle precursor cells responsible 

for promoting muscle regeneration (Church, 1969; Mastaglia and Kakulas, 

1969; Moss and Leblond, 1971; Schmalbruch, 1976; Bischoff, 1979; Hsu 

et aI., 1979; Konigsberg, 1979; Nichols and Shafiq, 1979; Ontell, 1979; 

Snow, 1979; Allbrook, 1981; Schultz et aI., 1985; Carpenter, 1990). The 

satellite cells were thought to be formed by the basement membrane or 

basal laminar enveloping free myoblasts that were associated with the 

myofibre during the early development of muscle (Kelly and Zacks, 1969; 

Church, 1969; Ontell, 1974). However, it has not been proven conclusively 

that the satellite cells are the precursor cells of muscle regeneration (Sloper 

and Partridge, 1980). The acceptance by the many research stations that 

satellite cells were the precursor cells dampened research into regeneration 

in recent times. 
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Satellite cells, supposedly being remnants of embryonic myogenesis, lying 

between the basement membrane and the plasmalemma of the myofibre, 

were said to behave as stem cells when the adequate stimulus to promote 

muscle regeneration was made available (Moore, 1979). Characteristically, 

these satellite cells ought to have dense peripheral heterochromatin with 

scanty cytoplasm. However, most of the regeneration studies seemed to 

consider most sub laminar mononucleated cells, irrespective of their 

morphological characteristics, as satellite cells leading to much controversy 

in literature (Reznik, 1976). 

Some of the conclusions drawn from the results obtained from the many 

regeneration studies supporting the satellite hypothesis are debatable and 

far from being conclusive! A few of the pertinent studies advocating the 

hypothesis that the satellite cells are the precursor cells of muscle 

regeneration are discussed below. 

Bischoff, in his research (1979), performing a myogenic cell suspension 

study with muscle treated with enzymes that digest the basal lamina and 

with those that do not, did not in any way identify precursor cells of 

regeneration. Cells isolated by trypsin digestion of muscle when cultured 

formed myotubes and cross striated myofibres. Those enzymes that did not 

digest the basal lamina released non-myogenic cells which in cultures 

produced fibroblasts, fat cells and macrophages. The deduction from this 

experiment was that the myogenic cells released from the sub laminar 

position were myogenic stem cells or satellite cells. There was no proof of 

the origin of the myogenic cells mentioned by Bischoff (1979), except that 

they were cells obtained from the sublaminar regions of the myofibre. To 

have referred to those myogenic cells as stem cells or satellite cells would 
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be erroneous because an alternate deduction could also be that precursor 

cells formed by transformation of myonuclei may have been the myogenic 

cells cultured. 

In another experiment with single fibres cultured in a fibrin clot, Bischoff 

(1979) reported clot retraction of the fibres with clear zones between the 

clots, containing myogenic cells which he proposed as derivatives of satellite 

cells that had proliferated. Furthermore, electron micrographs presented by 

Bischoff, taken at zero time in culture, revealed gross degenerative features 

and myonuclei were said to have disappeared supposedly due to 

degeneration. The interpretation or identification between interstitial and 

satellite cells as well as between the basal membrane and plasmalemma of 

the myofibre presented in that work was debatable. It would have been 

interesting had he examined the clot itself with the EM because it was 

possible that the myonuclei were lodged in them during retraction. Again, 

the pre-existing cells found within the clear zones between the clots were 

assumed to be satellite cells. 

Konigsberg (1979) continually monitored cultured single muscle fibres of 

quails with a phase contrast photomicroscope. The culture technique of 

single fibres, in present day terms, was obviously inefficient as can be 

interpreted from some of the results obtained in that study. He reported 

that all the myonuclei from the cultured myofibres had disappeared. 

Furthermore, from 505 fibres cultured, only 110 gave rise to some cells and 

only two colonies of mononucleated cells were formed. At the outset in the 

cultures, many of the surviving single cells were reported having a tangential 

orientation rather than parallel to the fibre axis. The results of the above 

study did not prove anything conclusively as Konigsberg (1979) suggested 
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satellite cells were the precursor cells, and at the same time, he did not 

exclude the possibility of budding of new cells from myonuclear origin. 

Again, Konigsberg also did not trace the origin of the cells. The assumption 

was made on the basis that spindle shaped cells that emanated from the 

ends of cultured myofibres must be satellites without any concrete evidence. 

The main body of support for satellite cells being myogenic precursors came 

from [3Hlthymidine studies (Moss and Leblond, 1970/1971; Hsu et aI., 

1979; Snow, 1979). 

Only satellite cells were considered responsible for the contribution of new 

nuclei to growing muscles of young rats injected with radioactive thymidine 

(Moss and Leblond, 197011971). In the latter study, from the results shown 

in the table below, 

Time elapsing between No of nuclei labelled 

thymidine-3H injection 
True muscle nuclei and sacrifice - h Satellite cell nuclei 

1 20 0 

6 11 0 

10 24 0 

24 8 2 

48 12 11 

72 4 24 

Over 300 nuclei examined/animal - Moss and Leblond (1970) 

no myonuclei were labelled 1, 6 and 10 h after injection of the 

[3Hlthymidine, but 20, 11 and 24 satellite cells respectively, were labelled. 

It is from these results that Moss and Leblond (1970) have drawn their 

conclusion. They did not explain why at 6 h after injection the satellite 

count dropped to 11 and then again rose to 24 after 10 h. If satellite cells, 
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in time, were taking up the labels then there ought to be a consistent rise. 

On the other hand, if one takes the dilution factor of labels into account then 

there would be a consistent decline in the number of satellite cells labelled 

as the time increased. 

At 24,48 and 72 h after injection, there was a consistent rise in the number 

of myonuclei that were labelled. According to Moss and Leblond (1970), 

the explanation for the rise in the number of labelled myonuclei was that 

these myonuclei probably belonged to satellite cells that had already fused 

with the fibre. If rapid fusion process between the satellite cells and the 

myofibre was suggested, then how could they account for no myonuclei 

taking up the labels before 10 h after injection - certainly some cells must 

have been undergoing fusion with the myofibre at this time. It seemed 

remote that all these labelled satellite cells would have lost all their 

cytoplasm in such short time to assume the identity of true myonuclei. An 

alternate explanation may be that these labelled myonuclei were the 

activated dense granular myonuclei which underwent transformation 

towards becoming a new presumptive myoblast which perhaps assist with 

regeneration of the muscle subjected to the toxic effects of the isotope 

itself. The myonuclei must have taken the labels because their must be new 

DNA formed during their activation or transformation. 

Hsu et al. (1979) observing the presence of labels in myotube nuclei derived 

from cultured explants of neonatal rat muscle labelled with [3H]thymidine 

concluded that satellite cells were the myogenic elements inr in vitro, 

myogenesis and not myonuclei. Unfortunately, the explants were not 

examined to identify the derivation of new cells. Instead labelling was 

inspected in the myotubes that formed from the young cells which sprouted 
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from the explants. The labelling protocol rested on the labelled neonatal 

satellite cells fusing with adjacent myofibres to produce increased number 

of myonuclei. Only satellite cells (no figures given) were said to be labelled 

after 10 h injection. By 24 h, 15% of the myonuclei were labelled in the 

neonatal rat muscle. Actual figures of satellite cells and myonuclei labelled 

were not given to make any useful interpretation or further comment on this 

aspect of their study. Moreover, the animals being neonatal rats, were still 

very young and in the growth phase where almost all the satellite cells in 

this active state ought to be labelled. 

Hsu et al. (1979) went on to state that the labelled nuclei of myotubes from 

the explant cultures were obtained from labelled satellite cells. According 

to them, 25 to 30% of the myotubes contained labelled myonuclei. A 

question that immediately comes to mind is: where did the nuclei of the 

other 70 to 75 % of myotubes come from? If the explants were taken from 

neonatal rat muscle 8 h after injection of the labels, most, if not all, of the 

satellite cells ought to be labelled. Therefore, if the argument is that pre­

existing satellite cells contributed nuclei to the myotubes, then most of the 

myotubes ought to have revealed labelled nuclei. 

Snow (1978/1979) attempted differential labelling of myonuclei and satellite 

cell nuclei with three experimental groups of young rats to gain clarity on 

the origin of myoblasts during regeneration. Both the results and the 

conclusions drawn from these experiments are debatable. In the first group, 

[3HJthymidine was initially injected into pregnant rats with subsequent 

injections administered to the new born to effect labelling of myonuclei that 

would have occurred during the fusion and maturation of the myofibres in 
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the young. After 5-6 weeks maturation, muscle was injured by mincing and 

autografted. After 8-24 h, thick and thin section inspection of the 

regenerates revealed labels in 20% of the pyknotic nuclei but not in the 

viable mononucleated cells which made up 6% of the total sublaminar 

nuclei. The same percentage of myonuclei were labelled in the uninjured 

controls but the satellite cell nuclei were over 11 %. 

If one considers the fact that satellite cells were supposed to be reserve 

myoblasts lying under the basement membrane, then at least a few of them 

ought to have been labelled, even if one had to take the dilution factor into 

account. The death of all the myonuclei in the autografts also need an 

explanation. Perhaps the pyknotic myonuclei described by Snow 

(1978/1979) are the dense heterochromatic myonuclei which show signs of 

activation and transformation in the current study. Furthermore, the reason 

for the decreased number of mononucleated cells in the regenerates was not 

clear. If anything, the satellite cell number ought to have increased in the 

regenerates. Unfortunately the animals were subjected to the isotopes for 

several days preceding the regeneration of muscle resulting from injury. 

Perhaps, labelling at the time of regeneration, after injury, would have 

produced a different picture. 

In the second group, labelling of satellite cells was effected in uninjured 

muscle of 15-17 day old rats which had a relatively high satellite cell count 

of about 15%. One hour after a high pulse dose, muscle was minced and 

autografted as before. Results in regenerates, 8-24 h after injury, showed 

23% of sublaminar mononucleated cells labelled, tallying with the labelled 

satellite cell counts before injury. Again, a question arises as to why only 

23% of satellite cells took on the labels before injury if these were young 
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animals with active satellite cells, and after injury one would expect the so 

called reserve satellite cells to be activated and would therefore expect a 

higher number of satellite cells labelled and not the same number as the 

uninjured muscle. It is well documented that the number of sub laminar cells 

increases in regenerates. In this group, a number of pyknotic nuclei were 

also labelled and the reason for this was not adequately answered. 

For want of better interpretation, Snow presumed that these labelled 

pyknotic nuclei belonged to satellite cells that degenerated after undergoing 

fusion with the myofibre. Furthermore, it was difficult to accept that 

satellite cells fused with degenerate myofibres as suggested in the above 

studies. This interpretation meant that satellite cells make a suicidal attempt 

to resuscitate degenerate myofibres. However, an alternate interpretation 

of the results of Snow (1979) will point to transforming myonuclei taking up 

the labels indicating they were the precursors of myoblasts. The labelled 

nucleus shown by Snow (1979) was most likely an activated dense granular 

myonucleus on its way to become a myoblast, and the many large 

mitochondria in close association with it denoted its energy requirement for 

such a transformation. 

The third group of rats was used to test the survival and differentiation of 

the satellite cells. Labelled muscle mince was implanted into nonradioactive 

littermates and examined 4 to 6 days later. Approximately 7% of the nuclei 

of myotubes were labelled even though control muscle had a count of 31 % 

labelled satellite cells. The dilution of labels during mitotic division as well 

as possible death of some of the satellite cells were forwarded as the reason 

for the discrepancy in the labelling indices. Snow (1979) concluded that 

satellite cells were capable of surviving injury to promote regeneration, but 
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that "the role of satellites in adult skeletal muscle regeneration remains 

uncertain" . 

As explained earlier, Konigsberg (1979) mentioned the fact that 

interpretation of the results of these regeneration studies were made difficult 

by animals being experimentally injured and then being observed at 

progressively longer intervals after the time of injury. Another difficulty 

would appear to be that many of these studies seemed to have been 

performed with a foregone conclusion that only satellite cells synthesize new 

DNA and that it was not possible for myonuclei to become activated and 

also synthesize new DNA. If the latter was accepted as a possibility, then 

much of the results obtained by autoradiographic studies could be explained 

without incurring confusion. At this point, it is worth remembering that in 

another labelling study (Walker, 1972), it was concluded that myonuclei 

were responsible for the development of new myotubes during regeneration. 

In another study (Anderson et aI., 1987) using radioisotopes on mdx mice 

of different ages it was shown that there was an increase in the number of 

sublaminal nuclei in the 32 wk old mdx muscle than in the normal 4 wk age 

group. The results of that study did not indicate whether the labels were 

taken up by satellite cells or by myonuclei. The reason for this was that the 

researchers in the above study presumed that only satellite cells take up 

labels. Their results also showed that in 4 wk old mdx mouse muscle the 

labelled nuclei number increased at 48 h after injection of the labels by 

nearly 6 times the number counted for 2 h after injection. In the 32 wk old 

mdx mouse muscle, the number of labelled nuclei counted after 48 h was 

more than twice the number counted at 2 h after injection of the labels. 

Anderson et al. (1987) were aware that the counts indicated values more 
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than that which could be explained by the doubling time for cells by mitotic 

division. However, they were unable to supply a suitable reason for this 

discrepancy in counts nor could they explain why the older mdx mouse 

muscle had more labels than the younger normal control animals. From the 

findings of the current morphological study, on the regenerative events in 

muscle, the result obtained by Anderson et al. (1987) point in the direction 

that new cells from myonuclear derivation and activated myonuclei were 

responsible for the discrepancy in the results obtained by them. It was 

unfortunate that Anderson et al. were of the notion that only satellite cells 

of embryonic origin prevailed in the muscle and that was the only source of 

new DNA in muscle that can take up the labels. 

A question that needs to be asked is - which of the labelling results and 

conclusions in the different studies mentioned are correct? 

Satellite cells were shown to increase dramatically at local sites of injury 

(Schultz et aI., 1985). Seeing that the number of satellite cells at these sites 

can not be explained mathematically by satellite cells proliferating by mitotic 

division alone, i.e., when taking into account the doubling time of the cells, 

migration of satellite cells was proposed as the reason for the large number 

of cells at the sites of injury. Reznik (1976), having compared research 

results in a review on the origin of the myogenic cell, was of the opinion 

that myoblasts could be derived from pre-existing satellite cells. On the 

other hand, Reznik (1976) felt that it was difficult to accept that, in vivo, 

so many myoblasts resulted from so few satellite cells in such a short time 

after local injury and therefore, myoblasts were probably produced from 

other sources in the myofibre. 
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Sufficient evidence in the present study, to strongly support and accept the 

theory that precursor cells or presumptive myoblasts, which lead on to 

myoblasts, arises from myonuclei during muscle regeneration, is as follows: 

a. The transformation of euchromatic myonuclei to electron dense 

granular myonuclei in regenerating myofibres. Many of the other 

research studies found nuclei to have become pyknotic or 

disappeared altogether. The presence of myonuclei for much of the 

incubation period in the current study shows the advantage of this 

method of studying regeneration compared to the others. 

b. A decline in the number of myonuclei with a definite increase in the 

number of presumptive myoblasts as regeneration proceeds would 

intimate that myonuclei were being transformed into cells. Almost all 

myofibre nuclei observed between 3 to 6 days of incubation belonged 

to either mononucleate or multinucleate cells. 

c . The presence of dense granular nucleus in the presumptive myoblasts 

resembling the dense granular myonucleus. 

d. The observation of cytoplasm of different electron density around one 

pole of a myonucleus from that of the sarcoplasm without any visible 

membrane separation between the two plasmic regions denote the 

early formative stage of a presumptive myoblast. 
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e. The observation of scanty cytoplasm with little or no organelle 

development, occurring adjacent to one pole of the myonuclei, 

beginning to develop membranes which reveal separation lines 

between the presumptive myoblast and the sarcoplasm of the parent 

myofibre. These early stages of myonuclear transformations were not 

observed or mentioned in any of the articles reviewed. 

f. The location of the presumptive myoblast with scanty cytoplasm 

within the myofibre without visible complete separation between the 

two by a plasmalemma of the parent myofibre. Some presumptive 

myoblasts had a nucleus that was identical to a satellite cell nucleus 

denoting that the presumptive myoblast was a stage preceding the 

development of the satellite cell. 

g. The observation of the plasmalemma of the parent myofibre between 

the outer basement membrane and myoblast cytoplasmic membrane 

clearly points to the location and derivation of the presumptive 

myoblast being within the myofibre. This also was not recorded in 

any of the articles reviewed. 

h. The presence of cytoplasmic elements of the parent myofibre 

occurring between the basement membrane and the myoblast 

cytoplasmic membrane also points to the derivation of the 

presumptive myoblasts "from within the myofibre. 

i. The line up of vesicles, which probably assist in membrane formation 

between the myoblast and the myofibre elements, seen in regions 

showing partial separation between the two. 
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j. The presumptive myoblasts occurred singly and were never observed 

in pairs in the early stages to indicate that they arose by mitotic 

division of the satellite cell. No previous studies have seen 

sublaminar cells occurring in pairs to validate that these cells arose by 

mitotic division. 

k. Mitotic division was not observed in the sublaminar cells in the 

current study and, even by several other workers. 

I. In most of the control muscle, classical satellite cells were rare. 

5.5.5 

Another worker in an intense EM study searching for satellite cells in 

normal muscle did not find any (Reznik, 1969). 

Sarcoplasmic morphology of explants 

Whilst the incubated specimens showed signs of degeneration of the 

sarcoplasmic contents, the myofibrillar material was present in the myofibres 

through out the experimental period. As incubation time progressed, Z lines 

began to disappear (Shear, 1979). Z line distortions with Z line streaming 

were not uncommon in the myofibrils (Figs. 11A and 14D). The Z line 

streaming shown in Figure 14D closely resembles tubular aggregates 

sometimes seen in myotubular myopathy (Sewry, 1985). Streaming (Kimura 

et aI., 1990) and twisting (Lichtig et aI., 1993) of the Z line were common 

in pathological tissue. Z line streaming and disorganisation were also 

observed in the muscle of patients complaining of exertional myalgia (Isaacs 

and Badenhorst, 1992) 
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Cytoplasmic bodies (Figs. 8D, 11A) were commonly observed in both 

hamster and human muscle explants after incubation. They were also 

observed in human control specimens. These electron dense cytoplasmic 

bodies appeared very much like a nucleus sectioned tangentially at the 

electron dense region, demonstrating pore like structures. They did not 

seem to have any limiting membranes and they were usually found opposed 

to and involving the Z line material. The cytoplasmic bodies were invariably 

associated with smooth microvesicles which perhaps were the finer parts of 

the sarcoplasmic reticulum. Sewry (1985) refers to these microvesicle like­

structures as nuclear pores in a somewhat similar electron micrograph of a 

section through the nuclear envelope. But in that same micrograph, similar 

structures referred to as nuclear pores are also seen out of the nuclear 

envelope in the adjacent sarcoplasm. It would therefore be incorrect for 

Sewry to refer to these structures as nuclear pores. Incidentally, the part 

of a nuclear structure shown by Sewry is also apparently associated with 

the Z line. 

The mitochondrial morphology of the myofibres in the explants showed 

great variation in both the hamster and human muscle, before and after 

incubation. As incubation progressed, the mitochondrial number increased. 

Increase in mitochondrial number was also observed in muscle of albino rats 

subjected to subtle injury by exposure to incandescent and fluorescent light 

energy (Shear, 1979). Degenerate mitochondria, with crystal membrane 

disappearance leaving mitochondrial ghosts behind, were commonplace in 

muscle explants (Mendell et aI., 1972). Many of the mitochondria were 

swollen (Figs. 14A and 15A) containing dense osmiophillic bodies and 

longitudinal paracrystalline inclusions in the intracrystal space as well as 

between the outer and inner membranes. Swollen mitochondria (Fig. 148) 



Figure 14. Electron micrographs of mitochondria in hamster explants. A : 
Mitochondrial changes with bars of paracrystalline substance in the 

. intercrystal space and in between the outer and inner membranes (arrows) in 
control and incubated specimens. B: From 3 days incubation, some large 
mitochondria with vesicles (v) , and organisation of membranes (arrow) with 
paracrystalline substance, on the periphery of the mitochondria. Dense 
osmiophilic bodies were a common finding in the mitochondria of the 
degenerating myofibres. C: Intermyofibrillar, longitudinal mitochondria (M) 
showing disruption, and a subsarcolemmal pleomorphic mitochondria with a 
myelin-like body. Arrow, basement membrane. D: Z line disorganisation or 
streaming in some intact myofibres in culture. Bar = 0,5 Jim. 
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filled with vesicles with apparent reorganisation of the crystal membranes 

were seen after incubation. Cluster of vesicles were often seen in the 

neighbourhood of vesicular mitochondria denoting that they may have been 

derived from mitochondria. Mitochondria found in the intermyofibrillar space 

usually appeared compressed and longitudinal (Fig. 14C) when there was an 

obvious competition for space. Unusual shapes or pleomorphic and long 

mitochondria (Figs. 14C and 15C) were not uncommon in the muscle 

explants. 

Concentric membrane formations within the mitochondria (Fig. 14C) similar 

in appearance to some myelin bodies described in pathological tissue 

(Nonaka et aI., 1981; Matsubara and Tanabe, 1982; Isaacs et aI., 1988) 

were sometimes seen in the incubated explants. It would appear that some 

of the pleomorphism in mitochondria was due to fusion of the mitochondria 

(Fig. 14C). Fusion of mitochondria was also demonstrated in the flight 

muscle of the blow fly, and incidently, the flight muscle of insects were 

considered suitable for muscle development studies as the sequence of 

development and senescence was completed in a matter of days (Gregory 

et aI., 1 968). As incubation time increased, there was a progressive 

proliferation of mitochondria in the sarcoplasm mainly in the subsarcolemmal 

regions, appearing in clusters (Fig. 158). More will be said about these 

proliferating mitochondria later in the discussion. 

Pleomorphic forms of mitochondria with crystal vesiculation, myelin figure 

formation, dense osmiophillic bodies and paracrystalline substances in bar 

formation were seen in a variety of disorders (Price et aI., 1964; 

Papadimitriou and Mastaglia, 1982; Isaacs and Badenhorst, 1992). 



Figure 15. Electron micrographs of mitochondria in human explants. A .· 
Fusing mitochondrial aggregations, with paracrystalline bars and dens! 
osmiophilic bodies adjacent to a presumptive myoblast still attached to the 
sarcoplasm of a parent myofibre (long arrow) (3rd day) . Many vesicles (V) are 
seen along parts of the cytoplasmic membrane of the young cell. 8 : 
Mitochondrial cluster with lipid bodies in a sublaminal region of a degenerate 
myofibre seen on the 4th day. A dense vacuolated cytoplasmic body (arrow). 
similar to those often observed near transforming myonuclei and young 
presumptive myoblas s, is present amongst the mitochondna C ' Elongated 
and pleomorphic mltochondna observed in some ex plan s befo'l' 111( ub.:Hlon 
Bar = 1 pm . 
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Mitochondria were sometimes decreased in numbers (Mastaglia and Kakulas, 

1969) and swollen and degenerate in DMD (Atkin et aL , 1991). 

Mitochondrial elongation in distal myopathy (Isaacs et aI., 1988) and 

accumulation in degenerating diaphragm muscle fibres (Kimura et aL, 1990) 

were also reported . Numerous, large and bizarre mitochondria were seen in 

oculopharyngeal muscular dystrophy (Pauzner et aL, 1991) and in 

mitochondrial myopathy with clinical characteristics of progressive muscular 

dystrophy (Nagaura et aL, 1990). Similar mitochondrial abnormalities 

prevailed in cardiac muscle of DMD patients (Wakai et aL, 1988). 

Although structural variation of mitochondria have been demonstrated in 

many instances, no specific biochemical defect has been associated with the 

different structures in the several biochemical studies (Morgan-Hughes, 

1982 - cited in Dubowitz, 1985). 

Typical Golgi complexes were not observed in the sarcoplasm in the current 

study, and if they were there, it was difficult to distinguish between them 

and the dilated sarcoplasmic reticulum often observed proximal to the 

myonuclear regions of the .myofibres. Allbrook (1962) also stated that the 

regenerating myofibre did not reveal any obvious evidence of Golgi complex. 

Granular endoplasmic reticulum were not observed in the sarcoplasm of the 

myofibres. Sarcoplasmic reticulum of various diameters were present in the 

subsarcolemmal regions as well as in the intermyofibrillar space. The 

sarcoplasmic reticulum seemed to become dilated as incubation time 

progressed. In the intermyofibrillar space, sarcoplasmic reticulum with the 

pale-appearing T -tubules in between them, were observed mainly in the 

control samples. During the early incubation period where the myofibrillar 

morphology was reasonably intact, the terminal cisternae together with the 
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T -tubule appeared dilated. The triad pattern became disrupted as incubation 

proceeded due to the myofibrillar degeneration and disorganisation. Dilated 

profiles of sarcotubular system were also observed in the ocular muscle of 

albino rats exposed to incandescent and fluorescent light (Shear, 1979)' and 

in the muscle of young mdx mice (Anderson et aI., 1987). 

Most of the muscle explants used in this study were apparently normal, 

especially those taken from the hamsters. Yet, many of the structural 

changes in the sarcoplasm, namely, that of the mitochondria, the dense 

nuclear-like bodies, the dilated sarcoplasmic reticulum and the Z line 

distortions and streaming, observed in this study on regeneration, are 

changes often seen in pathological muscle. Therefore, their presence in 

pathological muscle perhaps signals regeneration. 

5.5.6 EM morphology of sublaminar cells in cultured explant 

myofibres 

The sublaminar cells observed in the incubated explants included the satellite 

cells, the cells that were still partially formed from myonuclei, the 

mononucleated cells or presumptive myoblasts that did not have the 

classical characteristics of satellite cells and the cells that were binucleate 

or multinucleate myotubes. The cells that were still in the formative stages 

have already been discussed. This section does not include the "new 

generation cells" which are discussed as a separate issue. 

The satellite cell counts in the hamster thigh muscle ranged between 4 to 

10% with an average of 7% (Table 3). This count compared favourably 

with the findings of other workers (Allbrook et aI., 1971 ; Snow, 1979; 
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Wakayama and Schotland, 1979; Ishimoto et aI., 1983) using different 

animals. In the human explants satellite counts ranged between 0 to 7% 

with an average of 2.6% (Table 4). Many of the cells counted, strictly 

speaking, did not conform to the characteristic requirements for 

classification as satellite cells. Regenerative features showing cells still 

attached to the sarcoplasm were observed in the hamster and the human 

muscle, but more so in the human muscle specimens. The possible reasons 

for regenerative features prevailing in the human muscle have been 

mentioned earlier. The time delay of between 2 to 4 h before the control 

explants were prepared from the hamster muscle perhaps was sufficient 

time to initiate regenerative changes in the muscle. If one had to disregard 

all the cells that did not have a nuclear morphology of the classical satellite 

cell described by Mauro (1961) and those that were still attached to the 

sarcoplasm, the counts in the human samples would have been much lower. 

Unfortunately, satellite cell counts to compare for the different days of 

incubation were unreliable. This was on account of the fact that different 

explants from the same culture for any given day of incubation did not 

reveal the same level of differentiation, with some explants showing more 

regenerative features than others, clearly indicating that the regenerative 

process was asynchronous from explant to explant. This variation can 

possibly be accounted for by the different sizes of each explant and the 

varied levels of mechanical injury sustained during their preparation for 

culture. However, it was quite safe to estimate the sublaminal cells (satellite 

cells) to range between 10 to 60% for the hamster muscle between 1 and 

3 days of incubation. The rate of increase in the number of sublaminal cells 

in the human muscle after incubation was much slower and showed greater 

variation in numbers for the different types of muscle used. Nevertheless, 
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sublaminar cells in the human explants also increased in number during 

incubation. As the number of sub laminar cells increased, the number of 

myonuclei in the muscle explants decreased. 

Schmalbruch and Hellhammer (1977) showed that a relationship existed 

between satellite cell number versus myonuclei for a given volume of muscle 

such that if myonuclear number increased, the satellite cells would show a 

proportional increase. Because of the great difference between the satellite 

cells and myonuclear numbers, this relationship between satellite cell 

number versus myonuclei number suggested by Schmalbruch and 

Hellhammer, would imply that satellite cells arose from myonuclei. 

Apparently, the population of satellite cell was closely tied to that of the 

myonuclei within the myofibre (Kelly, 1979) and were considered by many 

to behave as stem cells (Moore, 1979). However, satellite cells were not 

observed in pairs in the current study, but it was not uncommon to find 

satellite cells near myonuclei, and this was also observed in other studies 

(Ontell, 1974). Hansen-Smith et al. (1979) researching satellite cells in 

malnourished and clinically treated children also observed satellite cells and 

myonuclei proximal to each other. According to the findings in the above 

study, the myonucleus and the satellite nucleus had similar morphology 

whenever seen together I.e. both were either euchromatic or 

heterochromatic, and furthermore, satellite cells were also observed partially 

joined to the parent myofibre in the latter study. The number of satellite 

cells present in a given muscle depends on the physiological state of the 

muscle, with greater number being present in young and growing animals 

as compared with the old, in which case satellite cells are scarce (Campion, 

1984). If satellite cells were considered embryonic remnants, then they 
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ought not increase or decrease in number after cessation of muscle growth 

in the adult. Nevertheless, satellite cells were seen in muscle of a 73 yr old 

man (0,6%) with human adult average being 4% (Schmalbruch and 

Hellhammer, 1976). In the current study, although the human muscle 

revealed early regenerative changes, the satellite cell count was much lower 

than that indicated by Schmalbruch and Hellhammer. This, perhaps, was 

due to the fact that different muscle samples were used in the current 

study. In the current study, a 65 year old man also had satellite cells. The 

differences in distribution of satellite cells in different muscles in the same 

animal, as shown for the soleus and the extensor digitorum longus muscles 

of the rat, were attributed to a distinction laid down in early myogenesis 

(Kelly 1978b). 

The different stages of presumptive myoblasts with variable nuclear 

morphology having different euchromatic and heterochromatic pattern and 

distribution, observed in this study, were also seen in other works (Ontell 

1977/1979; Schiaffino et aI., 1979; Wakayama and Schotland, 1979; 

Dubowitz, 1985). As mentioned previously, the nuclear morphology of the 

sublaminar cells, invariably, resembled the morphology of the myonuclei that 

were earlier described as transforming or activated myonuclei. This perhaps 

was one of the indications of the derivation of the sublaminar cells. 

The nuclei of some of the sublaminar cells displayed nuclear inclusions that 

were similar to small vesicles and fibrillar material, similar to that described 

by Anderson et al. (1987). Perhaps these were obtained by the nuclei from 

imbibition of cytoplasmic elements discussed earlier in this chapter. Deep 

invaginations of the nuclear membranes trapping cytoplasmic contents 

within the nucleus was also observed in other studies (Mastaglia and 
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Walton, 1971). Cultured muscle from oculopharyngeal dystrophy patients 

also revealed nuclear inclusions (Tome et aI. , 1989). Various other types of 

nuclear inclusions have been identified in different studies: oval and rod 

shaped, closely packed fibres in dermatomyositis (Banker, 1975); 

membranous structures in peri necrotic myofibres in frog sartorius muscle 

(Rumyantsev, 1979); tubular inclusions (Tome and Fardeau, 1980; Bouchard 

et aI., 1989) and filamentous inclusions (Coquet et aI., 1983; Anderson et 

aI., 1987; Coquet et aI., 1990) in oculopharyngeal muscle dystrophy. The 

imbibition of degenerate myofibrillar material by the invaginated nuclei 

shown in the current study perhaps explains the number of filamentous 

structures observed by others mentioned above. 

The nuclei- of many of the more mature monucleated cells exhibited 

morphology that apparently signified possible amitotic division. This will be 

discussed later. 

The cytoplasmic content of the sublaminar cells observed in the current 

study was variable and many of the sublaminar cells cannot be classed as 

satellite cells described by Mauro (1961). Instead, these mononucleated 

cells fitted the description of presumptive myoblasts, although many 

workers refer to all cells seen in the sublaminar position as satellite cells 

(Schmalbruch, 1978; Franzini-Armstrong, 1979; Hansen-Smith et aI., 1979; 

Mazanet et aI., 1982). The presumptive myoblasts were fusiform having 

short or long cytoplasmic tails which extended for considerable distances 

below the sarcolemma originating from either end of the elongated nucleus. 

Cytoplasmic projections like pseudopodia commonly crept in between the 

degenerate myofibrillar material. These cells with cytoplasmic projections 

often appeared to resemble phagocytic cells. 
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The cytoplasmic organelle development and the content of the presumptive 

myoblast apparently varied with the amount of cytoplasm in the cell. As 

discussed earlier, the very young cells which apparently transformed from 

myonuclei had very little cytoplasm, usually at one pole of the nucleus, with 

very scanty organelle structures, and at times none that were recognizable. 

As the cytoplasmic content increased, so did the identifiable organelles. 

Well developed mitochondria, endoplasmic reticulum, Golgi complexes and 

ribosomes were commonly seen in the more developed presumptive 

myoblasts (Figs. 12C and 138). Ribosomal chains were sometimes 

observed in the young cells which seemed to herald the development of the 

granular endoplasmic reticulum. Ribosomal clusters, similar to that observed 

in other studies (Schultz, 1976; Campion, 1978; Nichols and Shafiq, 1979) 

were also a common feature in the more developed presumptive myoblasts. 

According to Larson et al. (1 969), there was a consistent and orderly 

relationship between polyribosomes and myosin development. 

Some of the developed myoblasts had microfilament and microtubules (Fig. 

138) which apparently seemed to announce the development of the 

presumptive myoblast (which are commonly referred to as activated satellite 

cells) to a true myoblast which showed signs of developing myofibrils as the 

next stage in the development. Microfilaments and microtubules were 

observed in mononucleated sublaminar cells by others as well (Nichols and 

Shafiq, 1979; Campion, 1984). Cytoplasmic inclusions such as autophagic 

vacuoles, electron dense cytoplasmic bodies, phagosomes and lipid bodies 

were observed in some of the cells, especially those that displayed 

phagocytic morphology. In fact some researchers considered cells with this 

morphology to be phagocytes (Trupin et aI., 1979). The cytoplasmic 

borders, opposed to the basal laminar in a number of cells displayed 
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Figure 16. Electron micrographs of hamster explants, 3 to 5 days incubation 
showing increasing numbers of sublaminar cells and fusion. A: chains of 
sublaminar cells at various stages of development along a myofibre. B: a 
cluster of presumptive myoblasts at the end of a myofibre. Mitochondria 
increased in numbers in many myofibres. C: shows alignment of 3 cells, and 
fusion of myoblasts 1 and 2. MF, parent myofibre; mi, mitochondria; 
arrowhead, basement membrane; long arrows, presumptive myoblasts; short 
arrows, fusion between myoblasts; X, area between cells 1 and 2 where 
fusion appears complete. Bar = 2 Jim. 
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microvesicles (Fig. 15A) which presumably were the forerunners of 

developing sarcoplasmic reticulum (Ishikawa, 1 968). Some of these 

microvesicles were also considered to be pinocytic vesicles by others 

(Teravainen, 1970; Wakayama and Schotland, 1979; Campion, 1984). 

As incubation progressed, the number of presumptive myoblasts within the 

myofibres increased. The increase in the number of cells was more rapid in 

the hamster than in the human explants. However, the large number of cells 

produced in both the muscles formed chains (Figs. 16A and 17A) of cells 

along the subsarcolemmal regions of the myofibres. In cross sections, the 

cells formed rings around the myofibres (Fig. 178). Clusters of cells forming 

a cap or cone formation were common at the distal ends of many of the 

myofibres (Figs. 1 68 and 1 7 C). These cells, lying adjacent to each other 

invariably displayed closely applied junctions (Figs 13C, 16C and 17C) or 

areas of membrane associations called fusion plaques (Trelstad et aI., 1967). 

Apart from seeing fusion plaques between adjacent membranes, areas 

where fusion between the two cells was complete were also seen. 

However, at times, the different cytoplasm belonging to each of the cells 

undergoing fusion were recognized by the mosaic appearance of the fused 

cytoplasm. The mosaic appearance was due to varying electron densities 

of the cytoplasm of the different cells. Fusion was also said to take place 

by developing 'outpouching's (Mendell et aI., 1972) and by cytoplasmic 

projections of different cells being engulfed one by the other (Shimada, 

1 971 ). The fusion between the cells led to the formation of multinucleate 

myotubes. In a number of myoblasts (Figs. 18A and 21A) and multinucleate 

myotubes (Figs. 188, 198, 19C and 228), developing myofibrils with clear 

Z line development signalled the myogenic status of these cells. In cross 

sections of these myotubes, arrays of developing myofilaments with the 
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Figure 17. Electron micrographs of chains and clusters of young cells in 
human explants after 7 days incubation. A : Chain of sublaminar cells along 
the length of degenerate parent myofibre. B: Cross sectional view of young 
cells around the parent myofibre. C: An aggregation of cells at the end of a 
parent myofibre. Fusion (F) has begun between some of the cells to form 
myotubes. The 'cell capping the end of the myofibre has morphological 
appearance of cells, probably derived from cytoplasmic organelles, as 
described for the hamster. Mitochondrial aggregation is seen in the 
neighbouring myofibre in the top corner. Bar = 2 pm. 
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thick and thin filament arrangements were distinct. The presence of 

developing myofibrils in myoblasts and myotubes was well documented 

(Carlson, 1973; Mastaglia and Walton, 1971; Tautu and Jasmin, 1982; 

Jasmin et aI., 1 984a). 

In the current study, the myotubes developed myofibrils up to a point and 

then began to exhibit degenerative features. Fully formed young myofibres 

with a full complement of myofibrils were not observed. In hamster muscle, 

the cut off point of further development of myotubes was between 5 and 7 

days of incubation. It was difficult to deduce this in the human muscle 

because the general development was slow and perhaps the 10 days of 

incubation was too short. 

The possible reason for the myotube not achieving full maturity to the status 

of myofibres was most likely due to the fact that the, in vivo, situation was 

different from the, in vitro, conditions in that nerve growth factors and 

other necessary humoral factors such as hormones were not present in the 

culture conditions. According to Carlson (1979)' the morphology of the 

regenerates was usually imperfect and that the gross morphogenesis, 

internal architecture and quality of the regenerate depended on physical 

factors and the functional environment. Cytotoxic effect produced by 

degenerating fibres and the absence of trophic effects of the nerve (Ontell, 

1975) as well as the absence of neurally evoked electrical activity (Ashby 

et aI., 1 993) were also suggested as possible reasons for failure to achieve 

complete regeneration. 

During the later incubation period many new cell forms appeared in the 

myofibres and the possible derivation of these cells will be discussed later 

in this chapter. 
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5.5.7 Myoblasts from connective tissue elements 

Although earlier workers (Adams et aI., 1 962) believed that muscle 

restoration was always the result of proliferation of subsarcolemmal nuclei 

and that connective tissue elements did not participate in the process of 

regeneration, Sloper and Partridge (1980) expressed the possibility of 

connective tissue cells contributing precursor cells for muscle regeneration. 

Whilst identification between fibroblasts and myoblasts in culture were 

considered not possible by Witkowski (1977), it was suggested by Lipton 

(1977) that fibroblasts could be differentiated from myoblasts by the 

presence of extensive elaboration of endoplasmic reticulum and multiple 

Golgi complexes. It was also expressed by Lipton (1977) that in less than 

optimal environment, myoblast morphological differentiation may be 

modulated or reversibly altered. 

Ontell (1977) reported the presence of mast cells in the sublaminar area 

together with satellite cells of neonatal rat muscle, and the part played by 

the mast cells was unknown. Cells with long finger-like cytoplasmic 

projections observed in frog muscle were regarded as invasive cells 

(Maruenda and Franzini- Armstrong, 1978) which were assumed to be 

monocytes which slowly differentiated to macrophages (Franzini-Armstrong, 

1979). 

There were other suggestions made that myoblasts were capable of 

behaving as phagocytes (Gilbert and Hazard, 1965; Carlson, 1973; Garfield 

et aI., 1975; Yarom et aI., 1976). Gilbert and Hazard (1965)' from 

observations in dystrophic muscle biopsies, suggested that myoblasts 
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assisted in the dissolution of necrotic material during muscle degeneration 

and regeneration. In a gold tracer study (Yarom et at., 1976), myoblasts 

and even myotubes in regenerating extraoccular muscles of rabbits were 

shown to take up the gold particles, and were, therefore, said to behave as 

phagocytes. Mastaglia and Walton (1971) stated that the characteristics of 

some of the cells seen in polymyositis having cytoplasmic inclusions and 

autophagic vacuoles made differentiation between myoblasts and 

macrophages extremely difficult. 

Reznik (1969) emphasized that the only mononucleated cells that contained 

myofibrils were clearly macrophages which phagocytized necrotic muscle 

fibre fragments, but went on to state that some macrophagic cells were 

derived from necrotic myofibres (Reznik, 1969). Trupin et at. (1979) made 

a strong case that many of the sub lamina I fusiform cells considered by other 

researchers as myoblasts were erroneous and that most of these fusiform 

cells observed were phagocytes. Their study involved implants of frogs and 

rats. Some implants were treated with carbon ink particles and others were 

lyophilized before being placed inside the experimental animals. Although 

they felt that the distinction between the early satellite cells and the 

macrophages was not well defined, their experimental results led to the 

conclusion that the traditional criteria of cell shape and location used to 

identify cells during muscle regeneration were unreliable, and that the 

undifferentiated invading macrophages were able to mimic the appearance 

of the early endogenous myogenic cells. 

Active degeneration and phagocytosis of muscle fibres and regeneration 

activity were shown to be wide spread in the clinical stages of muscular 

dystrophy (Hudgson et at., 1967) and in all forms of dystrophies (Pearce 



Figure 18. Electron micrographs of phagocytic myogenic cells in hamster 
explants, incubation day 4. A: part of myoblast mimicking a phagocyte 
having phagosomallike bodies containing degenerate fibrillar elements of the 
parent myofibre (short arrow), and autophagic vacuoles (thin arrows) . B: 
Part of a multinuleate myotube with cytoplasmic projections (curved arrow) 
like that of phagocytes . Distinct developing myofibrils (long arrow) in the 
cytoplasm of the cells confirm their myogenic status . Arrowhead, basement 
membrane; N, nucleus. Bar = 1 pm. 
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and Walton, 1962). Studies on bupivacaine treated rat muscle (Bradley, 

1979) showed that regeneration in myofibres occurred side by side with 

necrosis and phagocytosis after 4 days followed by extensive muscle fibre 

regeneration by the 6th day. 

In the light of the above mentioned findings in literature on the question of 

phagocytic cells and myoblasts behaving as phagocytes in-I;agenerating and 

pathological muscle, observations regarding the above issue were made in 

the current study. The hamster and human muscle explants showed that 

the early stages of regeneration were marked by an increase in the number 

of sublaminar cells which were invariably fusiform cells. As incubation time 

increased, these cells increased in girth and developed long tails of 

cytoplasm. Some sublaminar cells (Fig, 19A and appendix III) developed 

cytoplasmic projections or pseudopodia and the number of these cells 

showed an obvious increase with incubation time. There was no evidence 

to suggest that these cells entered the fibre from interstitial areas. 

It was shown in other studies (Bischoff, 1979) that the basement membrane 

was tough and remained intact in single fibre cultures so much so that the 

cells that proliferated within the myofibre tube were contained inside and did 

not migrate to the outside. It is expected that it would be just as difficult 

for macrophages or phagocytes from outside to enter the myofibre. Seeing 

that the outside elements were also minimized by the explant technique, it 

is reasonable to suggest that the many sublaminar cells with pseudopodia 

are a stage in the development of myoblasts, and not invading monocytes 

which later developed into macrophages as suggested by Franzini-Armstrong 

(1979). Mastaglia and Walton (1971), in their study of pathological tissue, 

stated that elongated mononucleated cells were the earliest findings of 

regeneration, prior to the arrival of macrophages. Perhaps the macrophages 



Fi9ure 19. Electron micrographs of human explants showing cells 
phagocytic in appearance, 3 to 6 days of incubation. A: Sub laminar cell with 
Iysosomes (L), extensive endoplasmic reticulum and autophagic vacuoles or 
phagosomes (arrow), and is of unknown identity. B & C: Myogenic cells or 
myotubes with morphological feature of phagocytes. V, vacuoles; G, 
glycogen body; M, myofibre; small arrows, developing myofibrils; large 
arrow, autophagic vacuoles; arrowhead, basement membrane; All of them 
have cytoplasmic projections similar to phagocytes. Bar = 1 pm. 
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which appear after the elongated mononucleated cells, as described by 

Mastaglia and Walton, are another stage in the development of myoblasts, 

and is complimentary to the findings of the present study. 

Also, the sublaminar cells (Trupin et aI., 1979; Mastaglia and Walton, 

1971), containing Iysosomes, autophagic vacuoles and phagosomes in their 

cytoplasm, are not necessarily phagocytes or macrophages according to the 

findings of the current study. Figures 18 and 19 show cells with 

morphological characteristics of phagocytes. Some of the phagocytic 

characteristics are attributed to the presence of degenerate myofibrils of the 

parent myofibre in phagosomes, autophagic vacuoles, large glycogen bodies, 

dilated endoplasmic reticulum, cytoplasmic inclusions and cytoplasmic 

projections. At the same time, the cytoplasm of some of these cells (Figs. 

18A, 188, 198 and 19C) contains developing or primitive myofibrils. The 

presence of the developing myofibrils indicated clearly that these cells are 

myogenic and that they were myotubes which could easily be mistaken for 

a phagocyte without careful scrutiny. 

Most binucleate and multinucleate myotubes (Fig. 188, 198 and 228) with 

developing myofibrils may well be mistaken for polymorphic leucocytes. 

Furthermore, the early myofibrillar assemblies seen in the cytoplasm (Figs. 

188, 19C and 22C) were unmistakeable. Many of these phagocytic­

appearing myotubes had developing myofibrils which revealed electron 

dense zones, characteristic of Z line material and similar to those described 

by Mastaglia and Walton (1971). 

In the current study, it is shown that the cells with myogenic potential, 

found in a sublaminar position during regeneration of muscle, may have 
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variable morphology appearing as fusiform cells or as phagocytes. The 

morphological configuration of these sub laminar cells depended on the 

availability of space within the myofibre. A logical explanation for the early 

cells being fusiform would be that the myofibres at this stage still had intact 

myofibrillar material so that myoblasts could only develop sandwiched 

between the basement membrane and the myofibrils. As degeneration and 

fragmentation of myofibrils occurred, space became available within the 

myofibre, allowing the myoblasts to develop cytoplasmic projections or 

pseudopodia. During the course of their development to myotubes, it 

appears as if the myoblasts engulf or phagocytize cytoplasmic elements 

from the degenerating parent myofibre, not so much to remove debris, but 

to use them as a source of nutrients for their growth. Therefore, in doing 

this, their morphology resembles that of true phagocytes, but they are 

myogenic cells. Mastaglia and Walton (1971) also support this by having 

suggested that regenerating cells may" actually reutilise breakdown products 

of necrotic sarcoplasm". Perhaps the observation of similar cells in early 

regeneration studies led to the assumption that phagocytes and other 

connective tissue cells may contribute new cells during muscle regeneration 

(Sloper and Partridge, 1 980). 

Earlier regeneration studies (Snow, 1979; Allbrook, 1962; Baker and 

Poindextor, 1991) were performed mainly on minced or injured muscle 

which was left inside the experimental animals. These, in vivo, studies 

constituted a problem in that the injured myofibres rapidly underwent 

necrosis as a result of poor circulation due to blood clots. "Outside-muscle" 

influences (Askanas, 1979) such as migrating phagocytes and fibroblasts 

also made clear identification between myoblasts and other sublaminar cells 

in the, in vivo, studies difficult. Therefore the sublaminar cells reported in 

earlier work could well be myogenic cells or phagocytes. 



Figure 20. Electron micrographs of hamster myoblast nuclei 3 to 8 days of 
incubation revealing possible amitotic division. A: Arrow points to membrane 
invagination leading internally to the nucleus, electron dense with vesicles at 
this point. A mitochondrion is at this point. B: Nucleus with electron dense 
zones, D with slight constriction at these points. C: A bilobed nucleus linked 
by a thin band of nuclear material. Developing myofibrils (arrows) are present 
in the cytoplasm. D: Multilobed nucleus linked by thin bands of nuclear 
material. Two smaller lobes at either poles appear as 'nuclear buds' , all this 
appearing within a vacuole caused by the separation of the outer nuclear 
membrane (small arrow). Bar = 1 pm. 
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Myonucleation: possible morphological representations of 

amitotic division of nuclei in myoblastic cells 

During embryonic myogenesis, myonucleation or multinucleation or the 

increase in the number of myonuclei of muscle fibres was achieved by 

fusion of myoblasts (Speidel, 1938; Fischman, 1979). During post natal life, 

myonucleation was attributed to satellite cells proliferating mitotically and 

subsequently fusing with the myofibre (McConnachie et aI., 1964; Moss and 

Leblond, 1970; Allbrook et aI., 1971; Snow, 1977a/1979). Mitotic studies 

revealed that divisions in this way occurred in free undifferentiated 

myoblasts and not in formed myofibres (Gilbert and Hazard, 1965; Shafiq et 

aI., 1968). Cells found fusing at the end regions of young myofibres of 

skeletal muscle in mice indicated a possible way in which nuclei were added 

to growing fibres (Williams and Goldspink, 1971). 

Proliferation of cells sprouting from cultured myofibres (Bischoff, 1975), 

explants (Jasmin et aI., 1984a&b) and from dissociated mononucleated cells 

(Yasin et aI., 1977) supplied ample proof that myoblastic mononucleated 

cells (commonly referred to as satellite cells) underwent mitotic activity. On 

the other hand, Carlson (1973) and Reznik (1976) in their review, reported 

the absence of mitotic division in sarcoblasts (myoblasts) or multinucleated 

myotubes. Mitotic division of sublaminar cells were not seen in the current 

study as well. Furthermore, if mitotic division of cells were not recognized 

during the EM study, with the large number of myofibres inspected, at least 

some of the sublaminar cells ought to be found in pairs. This was not seen 

either in the current study. There is no doubt that the myoblastic cells, 

sprouting from explants or those cultured as enzymatically dissociated 

mononucleated cells, were capable of mitotic division. But why they are not 



Figure 21. Electron micrographs of myogenic cells, from human explants, 
presenting morphological evidence for amitotic division. A: Myoblast nucleus 
on day 1 of incubation, with electron dense chromatin material leading from 
a cleft in the nucleus and branching into 2 different columns which perhaps 
mark the zone of future breaks in the nucleus. B: A seemingly bilobed, 
myoblast nucleus (7th day) . The band of nuclear material between the lobes 
shows constriction (long arrow) and apparent separation (small arrows) from 
the larger lobes. C: Myotube with 2 nuclei seen on the 5th day. Both nuclei 
have 2 membrane bound projections (arrow) on opposed sides providing 
possible evidence that these nuclei were linked together. D: Part of 
multinucleate myotube located in interstitial space on 7th day. Nucleus 
labelled N is linked to another nucleus by a thin nuclear band {arrow) showing 
possible mechanism of myonucleation within myotubes. Bar = 1 Jim. 
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observed in the myofibres of regenerates is unknown. A possible answer 

is that environmental factors may have a modulating influence on the 

nuclear activity. 

Migration of satellite cells was another suggestion forwarded by some 

researchers for the increase in the number of cells. Satellite cells were 

assumed to migrate from damaged to undamaged areas of muscle (Mastaglia 

and Walton, 1971; Schultz et aI., 19~5; Hughes and Blau, 1990). Migration 

of myoblasts in injured muscle was thought to be due to chemotactic 

influence exerted by the injured myofibre (Watt et aI., 1994). However, 

poor migration of injected donor myoblasts was said to be the cause of poor 

positive dystrophin response in myofibres of recipients undergoing myoblast 

transplant trials (Satoh et aI., 1993). This somewhat negates the migration 

story of myoblasts. Tremblay et al. (1993) transplanted cultured myoblasts 

obtained from an asymptomatic monozygotic twin to the other who was a 

symptomatic carrier of DMD. Even though there were no immune problems, 

with the donor and the recipient being monozygotic twins, there was a small 

beneficial effect of the transplant with only slight increase in dystrophin 

positive fibres, and the poor result was attributed to possible low level 

spontaneous muscle regeneration. On the other hand, the failure of the 

above transplant could also be attributed to the fact that the myoblasts did 

not migrate into the neighbouring myofibres at the injection sites and the 

slight increase in dystrophin positive fibres could be due to the new fibres 

formed from only the myoblasts transplanted. Furthermore, Bischoff (1979) 

emphasized in his study of cultured fibres that the basal laminar tube was 

resilient so much so that the many cells that stacked the inside of the 

myofibre were not able to get out of the myotube. If they were not able to 

get out, it was not unreasonable to assume that other cells would be unable 



Figure 22. Electron micrographs of myogenic cells from human explants 
revealing evidence for possible amitotic nuclear division. A: a myoblastic cell 
within a degenerate myofibre on the 5th day. A deep, membrane bound 
invagination at the lower end (arrow) mark lines of possible segmentation of 
the nucleus (N) . B & C: parts of the same myotube containing arrays of 
developing myofibrils (arrows) in cross section, a bilobed nucleus linked by a 
ribbon of nuclear material, and another nucleus. Incubation day 8. C: large 
arrow shows an extended nuclear tail that was possibly linked to the 
independent nucleus. Bar = 1 pm. 
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to get into the myofibre unless there was a lesion in the basement 

membrane. In the current study, most of the basement membranes of 

myofibres were intact, except at portions that were cut during the 

preparation of the explants. 

In the present EM study, nuclei of sub lamina I cells in both the hamster and 

human muscle explants revealed morphological outlines of possible amitotic 

division. In the human explants, some of these possible amitotic divisions 

were observed even in the control specimens that were not cultured. As 

explained before, regenerative features prevailing in the control specimens 

were perhaps due to drug and anaesthetic influences on the muscle of the 

patients. However, similar patterns of possible amitotic division were 

observed in both the hamster and the human muscle explants for most part 

of the incubation period. These division patterns of budding, splitting or 

segmentation, were generally observed in the more developed sublaminar 

cells with developing myofibrillar elements in their cytoplasm. 

Early signs of segmentation were apparently denoted by electron dense 

zones of chromatin either stretching across the nucleus (Fig. 208) or 

beginning at clefts in the nucleus (Figs. 20A and 21A) and diverging in two 

directions to perhaps break the nucleus into three parts. The two latter 

figures, showing more or less identical patterns, co-incidently came from 

hamster and human muscle, respectively. A deep membrane invagination 

(Fig. 20A), which probably represents the early sarcoplasmic reticulum, 

leads from the surface of the plasmalemma to the electron dense zone at the 

cleft. A longitudinal mitochondrion meeting at this point perhaps serves the 

energy requirement at this point. Microvesicles similar to those seen 

associated with the electron dense bodies opposed to Z lines were seen in 
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the electron dense zone of this nucleus. They are, perhaps, contributions 

from the fine sarcoplasmic reticulum to provide for future membranes. 

In some myoblasts, two large lobes of the nucleus were linked by a very thin 

band of nuclear material (Figs. 20C and 218). The band of nuclear material 

is constricted at one lobe and is apparently separated from the other lobe in 

Figure 218. The morphological outline presented by this bilobed nucleus 

predicts 3 possible nuclei in the cell, in the future. The binucleate 

morphology shown in another myotube (Fig. 228) probably was derived by 

separation of the smaller unattached nucleus from the larger bilobed nucleus 

held together by thin band of nuclear material. A small extended tail of 

nuclear material shown on higher magnification (Fig. 22C) probably 

represents the previous attachment point of the bilobed nucleus with the 

unattached nucleus. The electron dense area, seen in the unattached 

nucleus and being opposed to the nuclear band, perhaps represents its 

previous point of attachment. In another instance (Fig. 21 C), 2 nuclei reveal 

2 membrane lined projections on opposed sides providing possible evidence 

that this was a bilobed nucleus attached at these membrane projections. 

The presence of sarcoplasmic reticulum-like membranes and mitochondria 

between these 2 nuclei denote activity in this area. 

Multilobed nuclei in myoblasts of hamsters were commonly observed during 

the latter part of the incubation period (Fig. 20D). These multilobes were 

often observed within vacuolations caused by the extended or distended 

outer membranes of the nucleus. The lobes again were attached by thin 

bands of nuclear material. The lobes at either poles of the nucleus appeared 

as though they were nuclear buds. The large number of mitochondria, 

observed below the cell, are there, perhaps, to provide the energy 

requirements for the activity within the cell. 
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Possible segmentation or splitting of nuclei of myoblasts were also observed. 

Deep membrane bound invaginations observed in some nuclei of myoblasts 

(Fig. 22A) possibly signalled segmentation or splitting of the nucleus. These 

nuclei were often electron dense with scattered heterochromatin resembling 

the morphology of satellite cells. Mutlinucleate myotubes were seen to 

develop in the interstitial spaces between the myofibres in the explants 

during the late incubation period. In one such myotube (Fig. 21D), two of 

the many nuclei within it were attached to each other. This observation 

probably answers how myonucleation takes place in myotubes once the 

nucleus becomes post mitotic. To date, it is not known how myonucleation 

takes place within the myotubes. 

Godman (1957) in his study on regeneration and differentiation of 

mammalian striated muscle using rabbits, suggested that amitotic nuclear 

division was responsible for myonucleation. According to Cooper and 

Konigsberg (1961), the assumption that nuclei with dumbbell shapes and 

those with clefts were signs of amitotic division, was erroneous. Nuclei, in 

their view, assumed these shapes as they supposedly moved through, 

perhaps, restricted areas in the cytoplasm. However, the problem with the 

above two studies was that the conclusion was arrived at with the light 

microscope, with which it was difficult to observe such fine detailed events. 

Assuming Cooper and Konigsberg (1961) were correct in their assumption, 

that assumption would not apply here as the nuclei were not restricted in 

their movement. If the cells had to move through restricted areas in the 

myofibre, then the cytoplasm of the cells would also assume similar shapes. 



Figure 23. Electron micrographs of mitochondria l aggregations in hamst er 
explants after 6 days incubation. A.' Convoluted membranes of myofibres 
with clusters of mitochondria between it and the myofibrils, forming waves 
on the periphery of many myofibres in specimens from all animals. B: Single 
cluster of mitochondria with paracrystalline bars, dense osmiophilic bodies 
and some with vesicles . Mitochondria at deeper levels of the myofibre 
showed similar morphological changes. Bar = 1 pm. 
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However, viewing the electron micrographs presented, their is no sign that 

the cells or the nuclei in question suffered restrictions for space in the 

degenerating myofibres. Furthermore, in all the dissociated mononucleated 

cells viewed, as those shown in Figure 1, the nuclei did not exhibit any 

polymorphism at that early stage. 

The conclusion from the polymorphic structures of nuclei described above 

was that these morphological patterns signified amitotic division of the 

nuclei of the myoblasts within the myofibre. This would explain why no 

mitotic figures were seen by many of the researchers. It was unfortunate 

that one can not do a time study on these myoblasts within the myofibres 

with cinephotography to capture the divisions of the nuclei "on the act." 

5.5.9 An hypothesis for the generation of new cytoplasm, nuclei 

and cells 

Most of the discussion that follows would seem to go against the dictum of 

biological science. Nevertheless, it is regarded as a duty of a research 

scientist to place on record whatever is observed during the course of 

research work undertaken and forward a possible explanations for such 

observations, however implausible they may sound. This is said because 

the following deliberations pivot on the generation of new cytoplasm and 

new nuclei apparently leading to the formation of "new generation cells." 

The evidence for all of this is presented by the apparent sequence of 

morphological structures, prevailing in the incubated muscle explants, 

captured in the electron micrographs. 

However, the burden of making such announcements is lightened by the 

fact that another EM study (Lee, 1965), performed on rabbits and rat after 

prolonged denervation of muscle, describes cells which "appeared to form 



Figure 24. Electron micrographs of plasmic forms in hamster explants after 
6 days incubation. A: Undifferentiated plasmic forms (arrows) associated 
with mitochondria in central regions of the degenerating myofibres in a 
number of explants. B: Strands of differentiated cytoplasmic forms (arrows) 
in the central regions of a degenerate myofibre. In all these cytoplasmic 
forms viewed, there was no evidence of any nuclear presence. One can only 
speculate that these cytoplasmic forms were derived from the plasmic forms 
described in A, perhaps by internal 'potocytosis'_ 
Bar = 0,5 pm in A and 1 pm in 8. 
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by the compressed sarcoplasmic reticulum that encompassed a portion of 

sarcoplasm with a nucleus" in the central areas of atrophic and degenerating 

myofibres. Lee went on to say that the mechanism of formation of the cells, 

"by enclosing and ejecting some intracellular structures" also occurred in 

other tissue cells and that this mechanism was called "potocytosis" by 

Meltzer in 1904. 

5.5.9.1 Mitochondrial proliferation and aggregation 

It was already mentioned that in anyone animal or human series of 

explants, mitochondrial numbers increased with the incubation period. 

Although it was stated in literature (Sewry, 1985) that increased number of 

mitochondria and mitochondrial aggregations were sometimes observed in 

normal muscle, proliferation of the mitochondria forming waves of 

mitochondrial cluster under convolutions of the sarcolemma along the fibres 

in the muscle explants was phenomenal (Fig. 23) . Clusters of mitochondria 

were also positioned at the terminals and in the intermyofibrillar spaces of 

many of the myofibres. This proliferation was more pronounced in the 

hamster than in the human muscle because regenerative changes were 

much slower in the human explants, as explained earlier in the discussion. 

However, proliferation of such clusters were seemed somehow to be 

replaced by cells as incubation time increased. Instead of seeing waves of 

mitochondria along the fibres, waves of cells seemed to have taken their 

place. Often many mitochondria were still associated with these cells (Fig. 

28A). At this point it must be mentioned that sarcoplasmic elements were 

also amongst the mitochondrial aggregations, but their presence was 

overshadowed by the large number of mitochondria. 



\ 

Figure 25. Electron micrographs of precursors of new cell generation in 
hamster explants, incubation day 6. A: Sublaminal cluster of mitochondria 
under the basement membrane (thin arrow) partially bordered by cytoplasmic 
strand in the lower aspect (thick arrow). B: A differentiated cytoplasmic 
formation in between the degenerate myofibrills containing dense cytoplasmic 
bodies, some similar to the electron dense mitochondria outside it, and dilated 
endoplasmic reticulum (arrows) . Nuclei were not seen associated with these 
cytoplasmic forms. Bar = 1 pm. 
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An attempt will be made to explain how these cells are derived in the 

cultured explants from the many electron micrographs which captured 

events that provide a sequence of morphological changes. 

5.5.9.2 n New generation cytoplasm n 

In the central regions of many degenerate myofibres of hamster explants, 

electron dense mitochondria, with electron dense osmiophillic bodies were 

seen associated with undifferentiated hyaloplasmic forms (Fig. 24A). It 

appeared as though the plasmic material was exuding out of the 

mitochondria. Many of these mitochondria exhibited disruption and 

vacuolation in the intercrystal spaces. In the central regions of many other 

fibres, strands of slightly more differentiated cytoplasmic forms (Fig. 248) 

with vacuoles and granular cytoplasm, without much other organelle 

structures were seen. Coincidentally, the electron micrographs of the 

undifferentiated plasmic and the differentiated cytoplasmic strands presented 

came from the same animal on two different days of incubation, one 

following the other. First impressions would be that these cytoplasmic 

strands belonged to cells whose nuclei were either above or below the plane 

of sectioning. Although serial sectioning was not carried out, it can be 

safely said that in the many cytoplasmic strands observed in the different 

degenerate myofibres, nuclei were not associated with them, nor were there 

many developed organelle structures in them, and the latter perhaps 

signified their immaturity. 

In other instances cytoplasmic organelles, mainly mitochondria together with 

some vesicular structures, partially bordered by cytoplasmic strands (Fig. 

25A), were observed in the subsarcolemmal regions of the myofibres. It 



Figure 26. Electron micrographs of precursors of new cell generation in 
hamster explant after 6 days incubation. A .- Differentiated cytoplasmic form 
In the sub lamina I region, containing membrane structures (arrows) randomly 
distributed within. B & C: Sections of A clearly showing the double 
llembrane structure of nuclear membranes. The granular plasmic formation 
within the partially formed membranes in C contain numerous inclusions. The 
)icture presented leads one to speculate that these membranes mark the early 
formation of nucleus within cytoplasmic forms derived from cytoplasmic 
)rganelles, mainly ' the mitochondria and the sarcoplasmic retIculum, 
;omewhat similar to the phenomenon, potocytosls . They perhaps also give a 
:Iue as to how inclusions find themselves inside nuclei in diseased ti sue. 
3ar = 1 Jim . 



Figure 27 . Electron micrographs showing generation of new nuclei in 
hamster explants after 6 days incubation. A : Terminal part of a degenerate 
myofibre with presumptive myoblasts (X) at different levels with dense 
granular cytoplasm. The vacuole between the cells contains dense 
aggregation of cytoplasmic organelles amidst which double membranes 
previously described are visible. B: Another explant revealing the same 
evidence of double membranes similar to nuclear membranes. The appearance 
of chromatin-like patches within the partially enclosed membranes testifies to 
the formation of "new generation nuclei" of future cells. Bar = 1 pm. • 
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would appear that this cytoplasmic formation around the organelles lecL!o 

the formation of the differentiated cytoplasmic masses without nuclei, 

identified in sub sarcolemmal and central regions of the myofibres (Fig·. 258). 

These cytoplasmic bodies had autophagic vacuoles, electron dense bodies 

similar to the electron dense mitochondria found outside them and dilated 

endoplasmic reticulum. Similar structures were described by Lee (1965) in 

a study on denervated muscle. Characteristic nuclei were not seen 

associated with all these cytoplasmic masses identified. It is suggested that 

these cytoplasmic masses, apparently formed in association with the 

sarcoplasmic organelles mainly the mitochondria by yet unknown 

mechanisms, represent "new generation cytoplasm". 

5.5.9.3 nNew generation nuclein 

In some of the differentiated cytoplasmic masses, doubled membrane 

structures were observed to be randomly distributed in the cytoplasm. Their 

random distribution and the distances separating them suggested that it was 

unlikely that they belonged to degenerate nuclei (Fig. 26A). These 

cytoplasmic structures were still attached or intimately associated with 

mitochondrial and other sarcoplasmic organelles. Higher magnification of 

these membrane fragments revealed a doubled nuclear membrane structure 

(Fig. 268). In extensions of some of the cytoplasmic masses (Fig. 26C) 

membranes were observed to partially cordon off material similar to granular 

nucleoplasm with many inclusions. The same phenomenon of nuclear 

membrane forming around nucleoplasm like material was also observed in 

human muscle explants (Fig. 328). 



Figure 28. Electron micrographs of newly generated cells in hamst er 
explants after 6 days incubation. A: Mononucleated cell found in areas of 
myofibres previously occupied by clusters of mitochondria and other 
organelles, the evidence prevailing below the new young cell. B: It is 
suggested that cells " 2, 3, 4 and 5 including those in the neighbouring 
myofibres were derived in the same way. Bar = , Jim. 
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At the terminal parts of many myofibres, mitochondrial aggregations seemed 

to have been replaced by clusters of cells. At some terminals, large 

vacuoles (spaces), containing jagged cytoplasmic fo~ms with dense 

aggregation of sarcoplasmic organelles, were formed by cells lying above 

and below them (Fig. 27A). 

Again, large number of mitochondria were apparently the greater proportion 

of the sarcoplasmic organelles. Amidst this mass of sarcoplasmic organelles 

and jagged cytoplasm, membranous forms drew incomplete patterns of 

irregular nuclei. Higher magnification of similar membranes in another 

explant (Fig. 278) showed the membrane structures to be similar to that of 

nuclear membranes. The appearance of chromatin-like patches within the 

partially enclosed membranes is suggestive of the formation of "new 

generation nuclei. " 

At first sight of these incomplete nuclei like structures, one may come to the 

conclusion that these were pictures of degenerate nuclei. That may be a 

correct assumption if there were multinucleate forms in the incubated 

explants preceding the observation of these incomplete nuclear structures. 

Therefore, in the absence of such aggregation of nuclei in earlier incubated 

explants it is reasonable to state that the incomplete nuclear forms herald 

the formation of multinuclei found at the terminals of many of the myofibres 

(Figs. 29). Furthermore, the irregular morphology of the multi nuclei found 

in myotubes at the terminals show a similar irregular morphology as that of 

the incomplete forms of nuclei. 

The original size of the aggregations of the sarcoplasmic organelles, which 

visibly comprised mainly of mitochondria, would seem to indicate the 



Figure 29. Electron micrograph of hamster explant after 6 days incubation 
showing a cluster of nuclei in a myotube commonly found at the ends of 
myofibres. Large membrane bound vacuoles present, perhaps they provide the 
scaffolding for the nuclear formation. The nuclear morphology is highly 
irregular and does not suggest mitotic derivation of the nuclei. Bar = 2 Jim . 
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size of the new cytoplasmic bodies formed. The large cytoplasmic bodies 

apparently gave rise to numerous irregular nuclei (Figs. 26A, 268 and 27). 

The smaller aggregations of sarcoplasmic organelles seemed to be 

associated with the development of a single nucleus which occupied most 

of the area of the "new generation cytoplasm" (Figs. 26C and 328). 

5.5.9.4 "New generation cells" 

The "new generation cytoplasm" together with the "new generation nuclei" 

are suggested as the source of the many cells observed in the later 

incubation period. The areas previously occupied by mitochondrial 

aggregations and clusters seemed later to be replaced by cells appearing as 

the "new generation cells". Some of these cells were often found lying 

above remains of the mitochondrial clusters (Fig. 28A). The terminal parts 

of myofibres which had greater aggregations of mitochondria and other 

organelles would appear to be involved with numerous cells (Fig. 288). The 

cells derived in this way had morphological features in common, and this 

perhaps depended on their state of physiological maturity. The nucleoplasm 

was diffuse and granular with nuclear inclusions. The nuclear inclusions are 

understandable if one takes into account the manner in which the nuclei are 

derived. The cytoplasm of these cells was dense granular in appearance 

with very little differentiation. Cytoplasmic inclusions were not uncommon. 

Their morphology was quite different from the morphology of the sublaminar 

cells observed during the earlier incubation period. 



Figure 30. Electron micrograph montage of a multinucleate myotube cap in 
hamster explant after 6 days incubation. The bizarre shaped multinuclei have 
what appear to be nuclear buds. The myotube's association with the 
degenerate myofibre is an attempt at continuous regeneration . Bar = 2 JIm . 



255 

Some explants of the human muscle exhibited similar derivation of "new 

generation cells" associated with cytoplasmic organelles (Fig. 32). However 

the frequency of these new generation structures were not as high as that 

observed in the hamster explants. Perhaps more would have been seen in 

the human muscle explants had they been incubated for a longer period. 

Even the multinucleated forms of irregular nuclei were not observed in the 

human muscle explants at 10 days of incubation. 

Young "new generation cells" with electron dense nuclei and dense granular 

cytoplasm had similar morphology to those seen in hamster muscle explants. 

The cytoplasm of the "new generation cell" shown in the human electron 

micrograph did not contain any visible organelles (Fig. 32D). Furthermore, 

the nucleus of this "new generation cell" contained large electron dense 

nuclear inclusions which closely resembled residue of organelles. 

Close inspection of the nucleus in this cell reveals that the nucleus was not 

yet completely formed. The nuclear membrane is clearly incomplete and 

terminates, at the break points, attached to small vesicles. The morphology 

of this cell alone provides sufficient evidence to dispel doubts that new cells 

may be generated in association with sarcoplasmic elements of degenerating 

myofibres by unknown mechanisms. 

Schiaffino et al. (1 979) observed undifferentiated cells with heterochromatic 

nuclei deep within the myofibre in rat muscle showing compensatory 

hypertrophy. Perhaps, these cells observed by them were derived in a 

similar manner. 
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Figure 31. Electron micrograph of hamster explant, after 6 days, showing 
part ()f a myotube with bizarre multinuclei below the basement membrane 
(long arrow) .along the lateral surface of the degenerate myofibre. The small 
arrows point to possible nuclear budding. Bar = 2 pm. 
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5.5.9.5 Multinucleate myotubes with irregular and bizarre nuclei 

During the late incubation period, multinucleate myotubes with an array of 

irregular and bizarre nuclei were a common feature, being present in the 

sublaminar position along the length of the myofibre as well as over the 

terminal parts of the myofibres. The multinucleate myotubes seem to be 

formed by two mechanisms. The first is that the myotubes at the terminal 

ends of the myofibres, especially those having a conical appearance, with 

clusters of irregular nuclei (Fig. 29) and those with chains of nuclei 

extending along the myofibre (Fig. 31), were perhaps formed from new 

cytoplasm together with new irregular nuclei which were derived from the 

clusters of partially formed irregular "new generation nuclei" . The 

cytoplasm of these myotubes had autophagic vacuoles, degenerate 

mitochondria and large vacuolated areas adjacent to some of the nuclei. 

These vacuoles appeared to be extended outer nuclear membranes or 

perhaps empty spaces left by nuclei that may have been lost during the EM 

processing. The morphological features of the irregular nuclei and the 

cytoplasm of the myotube closely resembles that of the new cytoplasmic 

forms with irregular and incomplete nuclei that they were apparently derived 

from (Figs. 26B and 27). 

In the second mechanism, multinucleate myotubes with cytoplasm not 

exhibiting much of the degenerate features described in the first case, were 

probably formed by the fusion of the mononucleated cells (Figs. 28 and 

320) derived from other "new generation nuclei" (Figs. 26C and 32B). 

These multinucleate myotubes (Fig. 30) also had similar irregular nuclei and 

also formed a cap over the terminal part of other myofibres (Fig. 30), and 

often extended down the length of the myofibres. The nuclear morphology 
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Figure 32. Electron micrographs of "new generation nuclei" and cells in 
incubated human explants. A: New cytoplasmic forms (small arrows) , some 
with a formative nucleus (big arrow) under convolutions of basement 
membrane of a degenerate myofibre (MF) (4th day). B: Another formatIve 
nucleus at higher magnification, with clear partially formed double membranes 
(arrow) (4th day). C: Myoblast at the end of a degenerate myofibre, 
presumed to originate from cytoplasmic organelles of the parent myofibre (9th 
day). D: Young cell with dense granular cytoplasm without any differentiated 
organelles, within a degenerate myofibre on the 10th day. Nuclear 
membranes are incomplete at POints (arrowheads). , 

Bar = 1 pm. 
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of many of these irregular nuclei gave the impression that they were either 

segmenting or budding of more nuclei (Fig. 31) . This again provides 

evidence for possible amitotic nuclear division occurring in muscle cells. If 

these multinuclei were formed by conventional mitotic divisions, then an 

explanation would be required for their irregular and bizarre outlines. 

Although these sublaminar myotubes had so many irregular nuclei, the 

myofibrillar content of these myotubes were scanty when compared to the 

amount of myofibrillar material found in multinucleate myotubes formed 

during the initial phase of regeneration where myotubes were formed by 

fusion of "regular" myoblasts. Perhaps the incubation time was insufficient 

to have observed more developing myofibrils seeing that many of these 

multinucleate myotubes were formed in the latter part of the incubation 

period. 

Lash et al. (1957) described similar irregular shaped and tightly packed 

nuclei in muscle regenerating after injury. They did not see any mitotic 

figures in the regenerating muscle, nor did they find any evidence of how 

the irregular nuclei originated. Allbrook (1962) also reported seeing these 

irregular multinuclei and suggested that they were due to infoldings of the 

nuclear membranes. Similar bizarre forms of nuclei were reported for 

mitochondrial myopathy with clinical characteristics of progressive muscular 

dystrophy in a Japanese female infant, and in the same study numerous, 

large and bizarre mitochondria were observed (Nagaura et aI., 1990). These 

irregular myonuclei appearing in pathological tissue was evidence that "new 

generation nuclei and new generation cells" were also possible in the, in 

vivo, situation. 



Figure 33. Electron micrographs of hamster explants after 7 days incubation 
showing 'giant' mitochondria in A & B. These mitochondrial bodies, In the 
cytoplasm of presumptive myoblasts, appear to be the fused product of a 
number of mitochondria. Fusion between mitochondria (arrow) is revealed in 
A . Bar = 0,5 Jim. 
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Perhaps when normal myoblast resources are depleted in pathological tissue, 

other mechanisms, as described above, are put into action in an attempt to 

complement the dwindling myofibre population of diseased muscle. 

5.5.10 Giant mitochondria 

Giant mitochondrial bodies were observed in the cytoplasm of some of the 

myoblasts (Fig. 33). These giant mitochondria were apparently the product 

of fusion of smaller mitochondria, and this is said because morphological 

representations of apparent fusion between mitochondria were observed 

(Fig. 33A). The crystal membrane structures, even though they were 

disorganised, were clearly visible in the giant mitochondrial bodies. There 

was no sequential evidence observed to suggest any possible function of 

these bodies. 

Apparent fusion of mitochondria were commonly observed in the 

sarcoplasmic compartment of the regenerating muscle in the current study. 

Fusion of mitochondria was also demonstrated in the flight muscle of the 

blow fly by Gregory et al. (1968) who considered insects suitable for muscle 

development studies because the sequence of development and senescence 

in insects was completed in a matter of days. 

5.5.11 Some morphological features in regenerating cells similar 

to those described in pathological muscle 

Some of the myotubes growing in a cone formation at the distal ends of 

myofibres (Fig. 34A) exhibited what appeared to be "generation 

workshops". A number of areas in the electron micrographs showing the 



Figure 34. Electron micrographs of 'generation workshops' in a young 
multinucleate hamster myotube on 7 days incubation. A : Montage of a 
conical multinucleate myotube at the end of a degenerate myofibre Som£> 
structural cytoplasmic features of the myotube show in B dense cytoplasmic 
bodies 11), membrane forms partially around electron dense chromatm likp 
material (2) , myelin figures (3) and dense elongated mitochondria . These an 
shown in more detail in Fig. 23. Bar = 2 Jim in A and 1 Jim in B. 
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possible derivation of structural elements, identified in pathological muscle, 

is revealed in the electron micrographs presented (Figs. 34 and 35). 

Fibrous myelin like structures associated with electron dense cytoplasmic or 

lysosomal-like body and another neighbouring structure, wrapped around by 

apparent formative membranes containing mitochondrial and lysosomal 

bodies associated with vacuoles filled with glycogen perhaps signalling the 

beginnings of a new nucleus (Fig. 35A), were apparent regenerative features 

and not degenerative features. 

Generation of new nuclei, shown by partial membrane formations around 

electron dense chromatin-like material, by mechanisms already discussed, 

were also apparent in the cytoplasm of the conical myotube (Fig. 358). It 

appeared as though the generation of new nuclei was being continued in 

this myotube which appeared to be a "new generation cell". 

Mitochondrial remnants, in which the crystal formation was apparent, 

seemed to be associated with myelin-like or fibrous structures observed in 

pathological muscle (Fig. 35C and 35D). Many of these structures, 

observed in dystrophic tissue, were evidence that the muscle cells were 

attempting to regenerate and therefore it would be erroneous to regard them 

as features of degeneration. 



Figure 35 . Magnification of some of the 'generation workshops' observed 
in areas 1 to 4 of Fig. 22. A: area 1 - a dense lysosomal like body (l) 
adjacent to a fibrous structure. Near this, is another structure (open arrows) 
containing a dense mitochondrion (arrow) and vacuoles with glycogen (G). 
There is also a Iysomal body much like a degenerated mitochondrion. This 
structure, wrapped around by formative membranes, perhaps signals the 
beginning of a new nucleus as in 8, area 2 - where membranes surround 
nuclear chromatin like material (NC) . The myelin like figures in C, area 3 - are 
associated with mitochondrial remnants (arrow). D: area 4 - Origin of 
filaments from a degenerate looking mitochondrion (OM) . Dense elongated 
bodies (M) appear to be new mitochondrial formations. short arrow, 
microtubules; long arrow, microfilaments. Bar = 0 ,5 pm. 
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5.6 GENERAL COMMENT 

Konigsberg (1963) expressed caution in the analysis of results from culture 

which might be completely an atypical response unrelated to the processes 

occurring in vivo, and that the progeny of differentiated tissue may undergo 

modulation in response to exposure to the artificial environment . . One has 

to be mindful also of the absence of various growth factors, such as 

fibroblast growth factor (DiMario and Strohman, 1988; DiMario et aI., 1989; 

Smith and Schofield, 1994), nerve growth factor (Oh and Markelonis, 1979; 

Baron et aI., 1994), platelet-derived growth factor (Tidball et aI., 1 992) and 

other obvious humoral factors such as hormones, in the culture 

environment. Furthermore, the development of secondary myotubes (young 

myofibres) from primary myotubes were shown to be dependant on neurally 

evoked electrical stimulus (Ashby et aI., 1993) which was absent in the 

culture environment of the current study. This perhaps was one of the 

reasons why the multinucleate myotubes, formed during the earlier 

incubation period from conventional myoblasts in the muscle explants" did 

not achieve full maturity to myofibres. 

Nevertheless, since the time of caution expressed in 1963 by Konigsberg, 

the explant techniques were used successfully to grow primary cells and 

promote fusion of myoblasts in cultures leading to the development of 

multinucleated myotubes. These myotubes continued development leading 

to young striated muscle fibres which were observed to undergo contraction 

in cultures, thus proving the efficacy of the culture techniques to promote 

differentiation of muscle cells, in vitro, (Tautu and Jasmin, 1982; Delaporte 

et aI., 1984; Jasmin et aI., 1984) although they did not go to full maturity 

with a full complement of myofibrils. Therefore, if primary cells from the 
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explants can undergo fusion and differentiation in culture conditions, it was 

expected that conditions within the explants, although not ideal, were 

suitable to demonstrate the early regenerative changes. Nerves were not 

considered as a requirement for the early differentiation and morphogenesis, 

but only for the functional differentiation and maintenance of cells in the 

muscle (Carlson, 1979). 

However, the human muscle specimens which served as the normal control 

samples, were placed into fixative for EM study, immediately after being 

removed from the patients. Therefore, the human muscle control specimens 

were not subjected to any of the deficiencies such as growth factors or 

artificial environmental influences of the laboratories. Many of the 

transformational changes of the myonuclei leading to the development of 

primordial myoblasts were observed in these uncultured human muscle. 

Therefore, technically speaking, the derivation of myoblasts from myonuclei 

being observed in the in vivo situation leaves little room for doubt. 

In the final analysis, the main difficulty of any of the techniques tracing the 

regenerative changes, is presented by the inability to perform a sequential 

study of the same myofibres. Although the interpretations of the 

morphological changes observed in the electron micrographs during muscle 

regeneration appeared obvious or logically conclusive, the findings need to 

be validated by ongoing research in the future by histochemical or 

immunocytochemical methods. Confirmation of the "new generation cell" 

is eagerly anticipated from other research centres once these findings are 

published. Furthermore, the genetic composition of these cells need to be 

established by those qualified to do so. To embark on new work in search 

of solutions for the above, the local laboratory facilities will have to be 

updated and finance will have to be raised to meet this requirement. 
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CHAPTER 6 

CONCLUSION 

An intense EM study of the regenerative changes occurring in cultured and 

uncultured hamster and human muscle explants lead to the following 

conclusions: 

a. During muscle regeneration, euchromatic myonuclei become electron 

dense and granular or heterochromatic. 

b. The morphological change of the myonuclei heralds the 

transformation of these myonuclei to the precursor cells of muscle 

regeneration or future myoblasts. As the number of myoblasts 

increased with incubation time the number of myonuclei declined. 

c. In the initial stages of development, many of the myoblast were still 

partially attached to the parent sarcoplasm. In their later stages there 

was complete membrane separation between the myoblast and the 

parent sarcoplasm. Therefore, many of these cells may be found 

located between the basement membrane and the plasma membrane. 

This is how the classical satellite cell is formed and obtains its 

location below the basement membrane in adult muscle. The 

cytoplasm around the young cells are apparently new cytoplasm 

which perhaps is secreted by the transforming myonuclei. 
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d. During regeneration, the myoblasts increase in number, undergo 

fusion and form multinucleate myotubes. 

e. It is not certain at this stage how the myoblasts proliferate as mitotic 

figures were not observed. However, there was visible evidence 

suggesting that myonuclei may be undergoing amitotic division by 

segmentation of the nucleus. This would explain many of the beaded 

nuclei, observed in muscle, having a prominent nucleolus in each 

segment. If myonuclei were to increase in number by amitotic 

division, then the proliferation of the myoblasts could be explained. 

f. Myotubes may also be formed from mononucleated myoblasts. The 

nuclei of many myoblasts provide morphological evidence of apparent 

amitotic division. This answers the intriguing question on the issue 

of how myonucleation occurs in myotubes. 

g. Under culture conditions, the myotubes, although they formed young 

myofibrils, failed to achieve full maturity to myofibres. Midway 

through their development, they exhibited degenerative features. 

h. Myoblasts also behave as phagocytes. Phagocytic-appearing cells 

were shown to have distinct developing myofibrils in their cytoplasm 

denoting their myogenic status. The phagocytic behaviour was 

attributed to the cells apparently reutilising sarcoplasmic elements as, 

perhaps, nutrients rather than performing the function as scavengers 

like the macrophages. The phagocytic myoblastic character was just 

another stage in the development of myoblasts. 
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i. From morphological features observed in the cultured muscle it 

appears as though, that when the myoblast resources from 

myonuclear derivation are depleted, the muscle has the potential to 

develop "new generation cytoplasm and new generation nuclei" both 

of which lead to the formation of "new generation cells" from yet 

unknown mechanisms. 

J. Many of the sub lamina I myotubes containing clusters or chains of 

irregular and bizarre nuclei are formed by fusion of mononucleated 

newly generated cells or from newly generated multinuclei within 

newly generated cytoplasm. This is perhaps the way in which bizarre 

nuclei were derived in pathological muscle. 

k. The irregular or bizarre myonuclei thus formed were capable of 

amitotic division either by nuclear segmentation or budding. 

I. Many of the structures such as nuclear inclusions, the electron dense 

cytoplasmic bodies, myelin figures and Z line streaming were seen in 

the regenerating muscle. Their presence in pathological tissue 

therefore signified that regeneration was in progress in that muscle. 

m. There was evidence of the association of myelin figures with 

mitochondria. 

It is worth remembering, that in embryological development, the skeletal 

muscle precursor cells or myoblasts initially occurred singly. These 

myoblasts proliferated mitotically and finally fused with each other giving 
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rise to mature multinucleate muscle fibres (Fischman 1972). It was 

therefore not unreasonable to accept that the skeletal muscle had the 

potential to undergo a somewhat reverse process in times of stress, 

whereby the myonuclei became activated, gathered cytoplasm and 

developed into new myoblasts which again multiplied, fused and formed 

new multinucleate muscle fibres, if and when required. The myonuclei of 

mature muscle must not be regarded as inert structures, but as vital 

instruments for dynamic homeostatic control of the myofibre. The 

mitochondria also seem to play a role more than we understand at the 

present time. 

Although satellite cells have not been irrefutably proven to be the precursor 

cells of muscle regeneration, all current research, especially the myoblast 

transplant therapy, engaged in therapeutic trials in search of a cure for 

muscular dystrophy, focus on the satellite cells. Researchers involved in the 

above trials assume that satellite cells with the normal genetic complement 

will migrate into the recipient's myofibres and fuse with them to form a new 

population of cells to overcome the genetic defect. The capability of 

satellite cells to migrate between myofibres is contradicted in many of the 

research papers (Bischoff, 1979; Shultz et aI., 1985; Satoh et aI., 1993). 

Those who believed in satellite cell migration did so because they could not 

explain the large number of cells at sites of injury by satellite cell 

proliferation alone. These researchers did not consider the possibility of new 

cells being derived from myonuclei. However, poor migration of injected 

donor myoblasts was said to be the cause of poor positive dystrophin 

response in myofibres of recipients undergoing myoblast transplant trials 

(Satoh et aI., 1993). The poor preliminary results on myoblast transplant 

therapy can be attributed to this wrong focus on satellite cells. If the 
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satellite cells are not the precursor cells of muscle regeneration, as is shown 

by the current study, then researchers working on future therapies for 

muscular dystrophy need to rethink their strategy and focus on the 

myonuclei. 

Finally, it is hoped that the information gained in this study, documenting for 

the first time the early regenerative events in cultured human and hamster 

muscle explants with the methods described, will help towards a better 

electron microscopic interpretation of the morphological changes observed 

in the muscle of experimental subjects undergoing therapeutic trials, as well 

as in pathological muscle from patients. Furthermore, if the results of this 

study on regeneration are confirmed in the future at other research stations, 

the researchers involved in the search for a cure will have to re-orientate 

their therapeutic design and targets. It is hoped that the results of the 

current study will assist in the future management and treatment possibilities 

of muscular dystrophy. 
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Errata 

Page 154, line 13: Myonuclei in control specimens appeared as though they were 
imbibing myofibrillar elements (Fig. 7q. 

Page 156, line 16: Figures 8B and 8C seem to show imbibition of cytoplasmic 
material. 

Page 180, line 3: Imbibition of cytoplasmic elements seemed to occur in Figures 
8B and 8C. 

Page 232, line 14: Mastaglia and Walton (1971) also suggested that regenerating 
cells may "actually reutilise breakdown products of necrotic 
sarcoplasm" . 

Page 263, line 10: "by mechanisms already discussed" to be replaced with "as 
discussed in 5.5.9.3" 
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This study attempted to dispel the confusion that exists 
in the understanding of the origin of myoblasts during 
muscle regeneration. Regenerating hamster muscle ex­
plants from cultures were studied under the EM on 4 
consecutive days, after incubation. Preincubation speci­
mens served as controls. Revelations were that euchro­
matic myonuclei underwent dense granulation and acti­
vation after incubation. Presumptive myoblasts (PM) ly­
ing clearly within the myofibre increased in numbers 
with incubation time. Some myonuclei showed partial 
transformation towards a PM. This study concluded that 
myonuclei transformed into myoblasts during the process 
of muscle regeneration and that the PM, produced from a 
myonucleus, was a stage in the development of the satel­
lite cell (SC) in regenerating muscle. These SC, myo­
blasts from myonuclear origin, proliferated, fused, and 
formed multinucleate myotubes that matured into myo­
fibres which replaced damaged muscle. Findings of this 
study may have new implications for the proposed myo­
blast transplant or gene transfer therapy, both of which, 
whilst being .possible answers for muscular dystrophy, 
depend on a sound knowledge of muscle regeneration 
mechanisms. © 1992 Academic Press, Inc. 

INTRODUCTION 

Muscular dystrophy, an insidious muscle wasting 
disease, to the ' present day defies modern medical 
science. Myoblast transfer/muscle cell transylant 
(Partridge et al., 1989, 1991; Brooke, 1990; Karpati, 
1990; Law et al. , 1990) and genetic engineering (Ac­
sadi et al., 1991) are currently viewed as possible 
future treatments. 

Keeping in mind the objectives of these therapies 
which depend heavily on the regenerative ability of 
skeletal muscle, this project, using hamster muscle 
explants in culture, was undertaken to investigate 
the origins of myoblasts during muscle regenera­
tion. The need for this work was clearly shown by 
Sloper and Partridge (1980) who concluded: "The 
source of the mononuclear muscle cell precursors is 
still uncertain. The idea that an undifferentiated, as 
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it were embryonic, satellite precursor cell can per­
sist through adult life, lying between plasma and 
basement membranes of the muscle fibre, has 
gained wide acceptance; but it has not entirely su­
perseded the view that myoblasts can arise by seg­
regation of differentiated myonuclei. It remains pos­
sible too that local connective tissue cells and, again, 
circulating cells may have an accessory role in myo­
genesis." 

MATERIALS AND METHODS 

Reagents. The following reagents were used: (1) Dulbecco's 
modification of Eagle's medium without glutamine with 4.5 g 
dextrose/liter (DMEM) (Flow Laboratories). (2) Chick embryo ex­
tract (CEE)-50% in Earle's balanced salt solution without phe­
nol red (Flow Laboratories). (3) Fetal bovine serum (FBS) (virus 
and mycoplasma tested-Whittaker M A Bioproducts). (4) Anti­
biotic-antimycotic mixture (100x ) (AA) (GIBCO Laboratories). 
(5) L-Glutamine (200 mM) (GIBCO Laboratories). (6) Gelatin 
(BDH Chemicals). (7) Hanks' balanced salt solution without cal­
cium and magnesium (HBSS). (8) Alcohol (70%) made with sterile 
deionised double-distilled water. (9) Sterile deionised double­
distilled water. (10) Complete nutrient medium (CNM) was made 
up of 100 ml DMEM, 15 ml FBS, 5 ml CEE, 2 ml L-glutamine, and 
1 ml AA. (11) Standard reagents for preparation of specimens for 
electron microscopy- glutaraldehyde, cacodylate buffer, osmium 
tetroxide, alcohol, lead citrate and uranyl acetate and araldite. 

Animals. Five Normal Syrian hamsters were used (see Table 
1). The guidelines for animal care and experimentation, as laid 
down by the Medical Research Council of South Africa, were ob­
served. 

Culture procedure. Strict aseptic techniques were adhered to. 
Dissections and culture preparations were performed in a culture 
cabinet (Laminaire Bio-Hazard 4BH, Bino Instrumentation). 
Each hamster was rapidly decapitated with a guillotine (Ealing, 
U.S.A.). Each decapitated hamster was immersed in a beaker of 
70% alcohol to ensure surface sterilisation before dissection. 

Approximately 500 mg of thigh muscle was surgically removed 
and placed in cold HBSS containing 2% AA in a sterile petri dish. 
The muscle was sectioned into smaller pieces with a sterile blade 
and all visible fat and connective tissue were teased out with a 
pair of sterile needles. The muscle fragments were washed twice 
in HBSS + AA which was then replaced by CNM. The muscle 
was then minced with a blade into approximately 1 mm3 pieces 
and washed twice again in CNM to remove remaining blood cells 
and debris. Approximately 150-200 mg of muscle pieces or ex­
plants were then transferred with a large bore pipette into each of 
two culture flasks (25 cm3), which were pretreated with 0.5% 
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TABLE 1 
Hamster Data and Myonucleus/Satellite Counts in C 

Hno Wt/g Sex Myonucleus % Satellites % 

1 156 F 95 5 

2 72 M 92 8 

3 85 M 92 8 
4 130 M 96 4 

5 75 M 90 10 

Note. C, control. 

gelatin. Explants were fed with 8 ml CNM warmed to 37°C. Gen­
tle agitation of flasks ensured even dispersion of the explants 
before they were incubated (Lamina ire incubator, Bino Instru­
mentation) in air containing 5% C02 and 80% humidity at 37°C. 

Hamster skeletal muscle explants were maintained in culture 
under this controlled laboratory environment (Jasmin et al. , 
1984) for a period of 10 days. Each culture flask was gently agi­
tated once a day to prevent adhesion of the explants to the gela­
tinised surface of the flask. Old CNM was changed for new after 
the fifth day. Cultures were inspected daily using an inverted 
microscope (ELIZA Tokyo). 

Electron microscopy. A few muscle explants with apparent in­
tact structure were removed from the cultures, every day from 
Day 1 after incubation, for electron microscopy. Preincubation 
muscle specimens served as controls. The specimens were fixed 
using 2.5% glutaraldehyde in nutrient medium (pH 7.4) over 1 hr 
at room temperature. Nutrient medium was used to minimize 
shock and retraction of fibres. The specimens were then subjected 
to the standard procedure of washing with buffer, postfixing with 
1 % aqueous osmium teroxide, washing with water, dehydration 
with alcohol, and embedding in araldite. Four resin blocks were 
prepared from each hamster specimen every day. Semi-thin sec­
tions for light microscopy and ultrathin sections for EM were 
prepared using glass knives on a ultramicrotome (Reichert Ul­
tracut). Semi-thin sections stained with toluidine blue were 
viewed using a research light microscope (Nikon Optiphot) with a 
camera attachment for photomicrographs. Sections on grids were 
stained with uranyl acetate and lead citrate. A grid prepared 
from each block was studied using a Zeiss EM10B electron mi­
croscope. 

RESULTS 

Light Microscopy 

Cultures. Initially the explants were semi­
transparent, but they began to become opaque from 
the second day of incubation. The myofibres in some 
of the explants were convoluted, due to retraction. 
Myogenic cells or presumptive myoblasts (PM) mi­
grating or sprouting from the muscie explants were 
evident 3 to 4 days after incubation. Many of these 
migrating cells adhered to the gelatinised flask, be­
came spindle shaped, and formed typical myoblast 
colonies (Yasin et al., 1977). Some cells were pleo­
morphic with irregular cytoplasmic outlines, and 
these most probably represented fibroblasts. 

Semi-thin sections. Uninucleate cell forms in­
creased markedly after the first day of incubation. It 
was difficult to precisely distinguish between myo­
nuclei and early uninucleate cells at the light mi­
croscope level because the young uninucleate cells 
with scanty basophilic cytoplasm appeared morpho-

logically similar to myonuclei. It was also difficult to 
deduce the characteristics of the intensely staining 
or seemingly pyknotic nuclei. 

Multicells in chains or multinucleate cells devel­
oping along the myofibre appeared from the third 
day after incubation. Again, it was not possible to 
differentiate whether each nucleus was present in 
independent cells or if they belonged to the same 
syncytium. 

Electron Microscopy 

Controls. Ultrastructure of preincubation speci­
mens which served as controls appeared normal 
with myofibre structural integrity remaining intact, 
keeping in mind the mechanical injury incurred 
during preparation of the explants. Satellite cell 
counts, obtained by the number of cells below the 
basement membrane per 100 myofibre nuclei 
counted, ranged between 4 and 10% with the aver­
age being 7% (Table 1). The SC counts compared 
favorable with other work (Allbrook et al., 1971; 
Snow, 1979; Wakayama and Schotland, 1979; Ishi­
moto et al. , 1983) using different experimental ani­
mals. The true SC described by Mauro (1961) must 
lie between the basement membrane and the sarco­
lemma of the myofibre and be an independent cell. 

Most of the myonuclei were typically euchromatic 
(Fig. 1A) as found in normal myofibres (Dubowitz, 
1985), but there were also a few myonuclei (Figs. 1B 
and 1C) with dense peripheral heterochromatin re­
sembling the nucleus of SC denoting activity. 

Day 1 after incubation. Most of the myonuclei 
(Fig. IE) appeared dense and granular with a homo­
geneous distribution of nuclear material. Often 
these electron-dense nuclei were seen in the com­
pany of many mitochondria indicating perhaps their 
energy requirement. Very few typical euchromatic 
myonuclei were observed. Typical SC were rare. 
More PM with scanty cytoplasm (Figs. 2C and 2D) 
were present within the myofibre below the base­
ment membrane. Vesicles to help form future mem­
branes of the myoblast to separate it from the parent 
myofibre (Hay, 1959) were often seen (Fig. 2C). The 
scanty cytoplasm in Fig. 2D reveals an early stage of 
development of a PM from a myonucleus. The pres­
ence of myofibrils between the basement membrane 
and this early myoblast indicates its location within 
the myofibre. 

Day 2 after incubation. No typical euchromatic 
myonuclei were observed. Some myonuclei dis­
played invaginations of the nuclear membrane 
(Figs. 1D and IE). Electron-dense material was con­
centrated i~e nucleoplasm proximal to the invagi­
nations of some of the nuclei (Fig. 1D). All of the 
other myonuclei observed were dense and granular. 
The number of PM found lying within myofibres in­
creased markedly. 
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FIG. 1. Electron micrographs (A-E) represent some of the myonuclear morphology observed in explants during 4 days of incubation. 
Typical euchromatic myonucleus (A) was present mainly in the control. Myonuclei (B, C) with dense peripheral heterochromatin, 
resembling the satellite cell nucleus, were observed in controls and 1 day after incubation. (D and E) After incubation, invaginations are 
displayed (thick arrows). (D) This micrograph has electron·dense material in regions of the invaginations and is probably a stage in the 
transformation to (E) with dense homogeneous granular material. N, myonucleus; m, mitochondria; f, myofibrils; thin arrows, basement 
membrane. Bar = 1 ~m. 

Day 3 after incubation. Myonuclei which were 
few in number were similar to those in Figs. 1C-1E. 
Peripherally located uninucleate PM with scanty cy­
toplasm, distinctly lying within the parent myofibre, 
were still present in the explants (Fig. 3A). Cyto­
plasmic elements of the parent myofibre were 
clearly observed between the basement membrane 
and the myoblast cytoplasmic membrane (Fig. 3A 
and 3B), lending evidence that the myoblasts must 
be within the myofibre syncytium. The poor or­
ganelle development in these myoblasts with scanty 
cytoplasm reflects their immaturity. 

The observation of remnants of sarcolemma in 
some of the parent myofibre between the basement 

membrane and the myoblast cytoplasmic membrane 
(Fig. 3B) provides the evidence that the myoblast 
must have its origin from a myonucleus within the 
myofibre. Only parts of the sarcolemma of the par­
ent myofibre were observed because of the obvious 
disruptive and degenerative changes the myofibre is 
subjected to during culture. 

Myoblasts in chains and at different stages of de­
velopment were present below the basement mem­
brane along the length of many myofibres. Different 
stages of myoblast development were indicated by 
varying densities of cytoplasm and organelle devel­
opment. Cells in clusters were found at the distal 
ends of some fibres forming a cap (Fig. 4A). Binucle-
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FIG. 2. Electron micrographs. (A) A typical satellite cell (sc), having a nucleus with dense heterochromatin and scanty cytoplasm, 
lying between the basement membrane (thin arrow) and sarcolemma (thick arrow) of the myofibre (m), observed in controls. The 
presumptive myoblast (pm) in (B), observed in controls and after incubation, resembles a satellite and lies below the basement membrane 
(thin arrow) but is within the myofibre. Clear separation is visible at one end between the sarcolemma (thick arrow) of the myofibre and 
the cytoplasmic membrane of the presumptive myoblast, but no distinct separation is seen in the region of o. Presumptive myoblasts (C, 
D) were observed after incubation. Cytoplasm (thick arrow) in (C) is visible only at one end of the nucleus, indicating the early 
transformation of the myonucleus to a myoblast. Note the presence of vesicles (thin arrows) between the myofibrils of the myofibre and 
the presumptive myoblast with no distinct separation between the two in this region. (D) A presumptive myoblast in an early stage of 
development having scanty cytoplasm (long arrows). Note the presence ofmyofibrils between the basement membrane (short arrows) and 
the presumptive myoblast, indicating that the presumptive myoblast is within the myofibre. Bar = 1 IJ.m. 

ate and multinucleate myotubes (Fig. 4B) also ap­
peared in some explants. Mitochondrial aggrega­
tions (Fig. 4A) clearly point to the regenerative ac­
tivity within the myofibres. 

Day 4 after incubation. Day 4 was similar to Day 
3, except that regenerative cells increased. Early 
myofibrils were observed in the cytoplasm of some 
myotubes (Fig. 4B). Z lines were identified in some 
of the myofibrils which usually began to develop in 
the peripheral region of the myotubes. 

EM observations and discussion of the regenera­
tion process in the explants from the fifth day after 
incubation will be presented in a future communi­
cation. 

DISCUSSION 

Muscle explants in culture afford an excellent op­
portunity to study early regenerative changes, on ac­
count of the easy accessibility and availability ofthe 
explants for study on a day to day basis. Such study, 
otherwise, is difficult in an intact animal that would 
have to be subjected to repeated surgical procedures 
that would be painful, both for the animals and the 
researcher. Also the muscle explants were free of 
other "outside-muscle" influences (Askanas, 1979), 
being grown in a controlled laboratory environment. 
The problems of blood clots and phagocytes encoun­
tered as a result of experimental injury caused in 

the animals, in previous in vivo experiments on re­
generation (Allbrook, 1962; Baker and Poindextor, 
1991), were absent, making the early tracing of 
events involved in regeneration more meaningful. 
The disadvantage encountered in the use of explants 
was that after incubation they were extremely del­
icate and fragile and therefore easily susceptible to 
disruption of the structural integrity if not handled 
with care. 

It has now come to be accepted by many (Church, 
1969; Mastaglia and Kakulas, 1969; Moss and Leb­
lond, 1971; Schmalbruch, 1976; Bischoff, 1979; 
Nichols and Shafiq, 1979; Ontell, 1979; Snow, 1979; 
Allbrook, 1981; Schultz et al., 1985; Carpenter, 
1990) that satellite cells, embryonic remnants of 
myogenesis, were reserve, undifferentiated cells, ca­
pable of differentiating into myoblasts promoting 
muscle regeneration in mature muscle. 

There are others (Lee, 1965; Reznik, 1969; Hess 
and Rosner, 1970; Teravainen, 1970; Walker, 1972) 
who believed that myonuclei had the potential to be 
activated in times of muscle stress, to surround 
themselves with cytoplasm, and finally to segregate 
as a new cell from the parent myofibre by a process 
called dedifferentiation (Hay, 1959). 

An intense electron microscope investigation of 
the muscle explants in the present study helped to 
clarify and identify the ultrastructural changes 
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FIG. 3. Electron micrographs. (A) Presumptive myoblasts (pm) distinctly shown below the basement membrane (b) and as part of the 
myofibres (m). Cytoplasmic elements (e) of the myofibre lying between the basement and the myoblast cytoplasmic membrane (mm) lend 
further evidence that the myoblast must be within the myofibre syncytium. These presumptive myoblasts observed after incubation, have 
little cytoplasm without complex organelle development. (B) Remnants of sarcolemma (s) in some of the parent myofibres were observed 
clearly at places between the basement and the myoblast cytoplasmic membrane, indicating that the presumptive myoblast must have 
its origin from a myonucleus within the myofibre. IC , interstitial cell. Bar = 1 fJ.m in (A) and 0.1 fJ.m in (B). 

which occurred early in the regenerative process. 
The ultrastructural integrity of the muscle fibres in 
the control explants appeared normal taking into 
consideration the mechanical injury sustained by 
the explants during their preparation for culture. As 
incubation proceeded, myofibres in the explants be­
gan to exhibit oedema, fibrillar disorganisation, mi­
tochondrial degeneration, and regeneration, all of 
these changes being reported in other work concern­
ing muscle regeneration (All brook, 1962; Reznik, 

1969; Lipton, 1979; Baker and Poindextor, 1991). In 
the midst of these seemingly degenerate myofibres, 
the regenerative processes were set in motion. 

The present study focused attention on satellite 
cells, myonuclear changes, and especially the origin 
of myoblasts in muscle explants maintained in cul­
ture up to 4 days. 

Apart from the typical euchromatic myonuclei, 
there were myonuclei indicating transformation, 
with dense peripheral chromatin which was typical 

FIG. 4. Electron mic~ographs-3 and 4 days of incubation. (A) Cluster of presumptive myoblasts (arrows) forming a cap at the end of 
a myofibre (m). (B) Multmucleate myotube lying beneath the basement within the myofibre. Developing myofibrils (arrow) are present. 
n, nucleus. Bar = 2 fJ.m in (A) and 1 fJ.m in (B). 
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of nuclei of se. When seen in longitudinal sections 
of intact myofibres, these myonuclei could easily be 
mistaken for se. Dense granular myonuclei, some of 
them with invaginations of their membranes, were a 
common feature only in the incubated explants. 
These dense myonuclei were also observed in other 
regeneration studies (Lash et al., 1957; Allbrook, 
1962), and these were possibly identified as pyknotic 
nuclei (Witkowski, 1977; Snow, 1979). 

Invaginations of membranes also occurred in 
some euchromatic myonuclei with electron-dense 
material in the nucleoplasm adjacent to the walls of 
the invaginations. These myonuclei seemed as 
though they were imbibing cytoplasmic elements in 
the area of the invaginated troughs. This would ex­
plain the electron-dense material in the region of 
the invaginations, and would perhaps also explain 
the origin of many dense granular myonuclei. The 
active nature of these myonuclei may also explain 
the presence of the many mitochondria found close 
to them, probably there to meet the energy require­
ment. 

Previous work (Lash et al. , 1957; Witkowski , 
1977) suggested that the early stages of muscle re­
generation were denoted by myonuclear activity. 
Therefore, the dense myonuclei observed by them 
and in this study were probably euchromatic myo­
nuclei that were transformed to a stage preceding 
the formation of PM of myonuclear origin. 

It is agreed that the se in mature muscle served 
the function of precursors of myoblasts, but there 
was no conclusive evidence that these cells were em­
bryological remnants of myogenesis, lying in re­
serve. On the contrary, the present study supports 
the view that there was a development of new se 
from myonuclei whenever the need arose for regen­
eration. There must be continuous, slow turnover of 
these cells in normal muscle, which is why they 
were always reported to be present (Allbrook et al. , 
1971; Wakayama and Schotland, 1979; Watkins and 
Cullen, 1988), but in very small numbers, counts 
varying according to age and the physical condition 
of the muscle. 

Some PM (Fig. 2B) closely resembled se, the only 
difference being that these PM were within the 
myofibre. Morphological similarity between these 
two cells lent support for the view that the PM must 
be a stage in the development of se. After the sep­
aration of the PM from the parent myofibre, by the 
formation of new cytoplasmic membranes between 
them, the PM will then be a new se ready to pro­
mote regeneration. This view was strongly sup­
ported by Hess and Rosner (1970). 

A number of PM also had nuclear morphology 
with variable scattered chromatin perhaps denoting 
transitional stages between PM with dense granular 
nucleus and the se with nucleus having dense pe­
ripheral heterochromatin. 

The strongest evidence for the derivation of a PM 
from a myonucleus of the myofibre comes from the 
observation of remnants myofibre sarcolemma be­
tween the basement membrane and the presumptive 
myoblast, and also from the location of myofibre cy­
toplasmic elements between the basement mem­
brane and the cytoplasmic membrane of the PM. 

The supposition, by many researchers, that se 
gave rise to the myoblasts that were found fused 
with the subjacent myofibre was true for the process 
of myonucleation of muscle fibres in the normal 
course of myogenesis in the young. That concept, 
applied here in regeneration of mature muscle, 
would imply that these myoblasts from se origin 
were trying to resuscitate the degenerate fibre . This 
was unlikely, with the overwhelming evidence pre­
sented in regeneration studies which indicated that 
restoration of damaged muscle was by the way of 
developing new myotubes. 

The se of mature muscle, therefore, was a myo­
blast which was previously a PM. Possible mecha­
nisms of cleavage or segregation for myoblast devel­
opment from myonuclei were already described 
(Lee, 1965; Hess and Rosner, 1970; Reznik, 1976). 
But, the ultrastructural characteristics of the scanty 
cytoplasm of the PM, with little or no organelle de­
velopment, as observed in this study suggested that 
the cytoplasm may in fact be secreted by the active 
myonucleus in the initial stages of development of 
the myoblast. Light micrographs revealed uninucle­
ated cells in regenerating myofibre to have intensely 
basophilic cytoplasm which was distinctly different 
from the subjacent cytoplasm of the myofibre. If 
myoblasts were formed by the cleavage mechanism 
(Hay, 1959; Hess and Rosner, 1970; Reznik, 1976) 
where the myonucleus with some cytoplasm sepa­
rates from the myofibre by membrane formation be­
tween them, then the cytoplasms of both the new 
myoblast and the parent myofibre should have sim­
ilar staining and structural features. This needed 
further research. 

In vivo regeneration studies (Allbrook, 1962; 
Reznik, 1969; Hess and Rosner, 1970) on rabbits, 
mice, and guinea pigs strongly supported the find­
ings of the present study. Allbrook (1962) described 
"a type of cell commonly found in the position of a 
sub sarcolemmal nucleus in a muscle fibre." He went 
on to say that this cell had a dense granular nucleus 
and it was "otherwise similar to a subsarcolemmal 
muscle nucleus." It was unfortunate that EM study 
was reported only after 90 hr of injury to the muscle. 
It was likely that these sub sarcolemmal cells would 
have been observed sooner had Allbrook resorted to 
electron microscopy earlier. Reznik (1969) also 
showed similar cells after 68 hr. In that study, it was 
stated that the majority of myonuclei in the degen­
erative phase of the fibres became pyknotic and dis­
appeared. These pyknotic nuclei might be the dense 
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granular nuclei referred to in this study, and per­
haps their disappearance could be explained by the 
fact that they transformed into cells. 

The main body of support for satellite cells being 
myogenic precursors came from [3H]thymidine stud­
ies (Moss and Leblond, 1971; Snow, 1979). Snow 
(1979) shows a pyknotic nucleus (Fig. 7 p. 97) which 
was labelled with [3H]thymidine and for want of bet­
ter interpretation, the nucleus was regarded as part 
of a degenerate satellite. This labelled nucleus was 
most likely an activated dense granular myonucleus 
on its way to becoming a myoblast, and the many 
large mitochondria in close association with it de­
noted its energy requirement for such a transforma­
tion. Moss and Leblond (1971) also demonstrated la­
belled myonuclei, but only after 24 hr onwards and 
concluded that these myonuclei must have come 
from se which were incorporated into the myofibre. 
It seemed remote that these labelled satellite cells 
would have lost their cytoplasm in such short time 
to assume the identity of true myonuclei. The more 
plausible explanation might be that these labelled 
myonuclei were the activated dense granular myo­
nuclei which underwent transformation. The trans­
formation process must incur an increase in the 
DNA content in these dense nuclei and therefore 
their positive labelling. 

On the other hand, Walker (1972) using the same 
isotope labelling concluded that myonuclei were re­
sponsible for the development of myotubes during 
muscle regeneration. Schultz et al. (1985) suggested 
that the large increase in se at the site of injury was 
due, in part, to migration of satellites from unin­
jured areas. They interpreted their result on the as­
sumption that all labelled nuclei they counted must 
belong to se, which of course is not necessarily true. 

The chains of myoblasts under the basement 
membrane and the myoblast clusters at ends of some 
myofibres, which at this stage reveal definite or­
ganelles, undergo fusion to form multinucleate myo­
tubes with a progressively increasing quantity of 
early myofibrils some of which revealed Z line de­
velopment. At this stage in the study, how prolifer­
ation of myoblasts took place cannot be accounted 
for as no mitotic changes were observed in the many 
myofibre-associated cells or nuclei in this study. 

CONCLUSION 

It is worth remembering, that in embryological 
development, the skeletal muscle precursor cells or 
myoblasts initially occurred singly. These myoblasts 
proliferated mitotically and finally fused with each 
other giving rise to mature multinucleate muscle 
fibres (Fischman, 1972). It was therefore not unrea­
sonable that the skeletal muscle had the potential to 
undergo a somewhat reverse process in times of 
stress, whereby the myonuclei became activated, 

gathered cytoplasm, and developed into new myo­
blasts which again multiplied, fused, and formed 
new multinucleate muscle fibres, if and when re­
quired. Such is the conclusion of the present study. 
The myonuclei of mature muscle must not be re­
garded as inert structures, but as vital instruments 
for dynamic homeostatic control of the myofibre. 

It is hoped that the information gained on the or­
igin of myoblasts during muscle regeneration in ex­
plants will help towards the future management 
and treatment possibilities of muscular dystrophy, 
where myoblast transplant or gene transfer methods 
are contemplated. 

An investigation of the myoblast origin in regen­
erating human skeletal muscle explants in culture, 
using the same methods described for the present 
study on hamster skeletal muscle, is presently in 
progress in our laboratory. 
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ABSTRACT 

EM study of cultured human skeletal muscle explants on 10 consecutive days after incubation made 
possible a record for the first time, the early events occurring during regeneration, After incubation, 
normal myonuclei underwent activation and dense granulation, Some myonuclei showed early 
transformation to presumptive myoblasts, The conclusion was that myonuclei transformed into 
myoblasts which developed into satellite cells (SC), These SC of myonuclear origin, proliferated, 
and fused forming myotubes that matured into myofibres, replacing damaged muscle, The findings 
have new implications for the current myoblast I cell transplant and gene transfer therapy research 
which may provide possible answers for muscular dystrophy in the future, 

INTRODUCTION 

Medical science continues its battle against 
muscular dystrophy, a debilitating disease, 
Myoblast transplant (Partridge et ai., 1989; 
Karpati, 1990; Law et ai., 1990; Gussoni et al" 
1992; Huard et al" 1992 ) and gene transfer 
(Acsadi et al" 1991) methods are currently 
being investigated as possible future therapies, 
Because these therapies depend on muscle 
regeneration, this study attempted to clarify the 
position of the precursor cells or presumptive 
myoblasts (PM) during regeneration in human 
skeletal muscle 
and to ascertain if the findings are similar to that 
found in the earlier work on hamster muscle 
(Naidoo, 1992), The need for this work was 
clearly shown by Sloper and Partridge (1980) 
who concluded: "The source of the mononuclear 
muscle cell precursors is still uncertain," 

MATERIALS AND METHODS 

Gluteal, tibialis, flexor digitorum, sternohyoid 
and rectus muscle samples, from five different 

1065- 6995/ 93/090825- 07/$08.00/0 

subjects of both sexes ranging between the ages 
23 and 65 years were used in the study, Even 
though the ideal would have been to obtain 
muscle from normal subjects, muscle samples 
were obtained from patients undergoing surgery 
for conditions other than muscle diseases. 
Because these muscle samples came from sites 
of injury, the control specimens, uncultured 
showed some signs of early regeneration. 

Human muscle was subjected to the same 
techniques described previously (Naidoo, 1992), 
except that incubation was prolonged for 10 
days as human muscle in vitro studies take 
longer to show regenerative changes. In brief, 
the culture technique involved the mincing of 
cleaned muscle and growing them in flasks 
containing DMEM base medium with chicken 
embryo extract, foetal bovine serum and 
antibiotic / antimycotic mixture. Incubation was 
at 37°C in humid air containing 5% CO2, Four 
muscle explants (ME) from each culture, 
removed on 10 consecutive days after 
incubation, were prepared for EM study. 
Preincubation ME served as controls , Ethical 
clearance was obtained for this work. 

© 1993 Academic Press Ltd 
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RESULTS AND DISCUSSION 

Light microscopy of cultures revealed that the 
ex.plants under incubation behaved similar to 

Cell Biology International, Vol. 17, No. 9, 1993 

hamster muscle (Naidoo, 1992), except that the 
human muscle seemed more susceptible to 

FIGURE 1. Electron micrographs (a-d) represent some myonuclear morphology in explants during 
culture. Typical euchromatic myonucleus (a) was present in controls. Myonuclei (b) with dense 
heterochromatin, resembling satellite cell nucleus were observed in controls and for 4 days after 
incubation. Invaginated nucleus (c), showing a magnified part of the same in (d), was a common 
feature after incubation. They seemed to imbibe cytoplasmic elements (arrow) and this explains the 
electron dense material in regions of the invaginations. This nucleus is probably a stage in the 
transformation to (b) with electron dense material. Bar = 1 urn in (a-c) and 0.5 urn in (d). 
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retraction in the first few days of culture and 
stabilising thereafter. Myogenic cells or PM 
sprouting from the ME were evident between 6 
and 7 days after incubation. Identification of 
nuclear and cell forms was clear only with the 
EM. 

Typical euchromatic myonuclei (Dubowitz, 
1985) were present in myofibres of controls 
(Fig.1a). Myonuclei (Fig. Ib) indicating 

'. 
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transformation, with dense peripheral and 
scattered central heterochromatin were seen in 
some controls, but mainly in myofibres during 
the first few days after incubation. Dense 
heterochromatic myonuclei present in controls, 
indicating signs of regeneration, may be 
attributed to muscle samples being obtained 
from sites of injury and the muscles exposure to 
drugs. When seen in longitudinal sections, these 
myonuclei could easily be mistaken for Sc. 

FIGURE 2 . Electron micrographs (a-c) represent presumptive myoblasts, PM in different stages 
of development. (a) Reveals early development of dense cytoplasm X around part of the nucleus 
with no distinct membrane separating it from cytoplasm, M of the parent myofibre. (b) also shows, 
at one end of the nucleus, new cytoplasm X, with different density from the cytoplasm of the parent 
myofibre, M. The markings of early cytoplasmic membranes beginning to separate the PM from 
parent myofibre are present only between the zones of cytoplasm. (c) A full nucleus of a PM with 
little cytoplasm (arrow), lying within the parent myofibre, M. In all the above PM, the cytoplasm 
is scanty and its immaturity is denoted by little or no organelle development. Bar = 1 urn. 
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Myonuclei (Fig. lc) with deep invaginations, 
which seemed to imbibe cytoplasmic elements in 
the area of invaginations (Fig. Id) were a 
surprisingly common feature of regenerating 
muscle, as reported in earlier work (Naidoo, 
1992). This imbibition would explain the 
electron dense material adjacent to invaginations, 
and would perhaps also explain the origin of the 
many electron dense or heterochromatic 
myonuclei. The active nature of these myonuclei 
also explain the presence of the many 
mitochondria (Naidoo, 1992) found close to 
them, probably there to meet the energy 
requirement. Previous research (Lash et ai., 
1957; Witkowski, 1977) suggested that the early 
stages of muscle regeneration were denoted by 

r 

a 
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myonuclear activity. 

As incubation progressed, the numbers of 
myonuclei declined whilst the number of cell 
forms (Fig. 2c) increased. Earlier research on 
animals (Reznik, 1969) reported the 
disappearance of myonuclei due to degeneration. 
The present study attributes this disappearance 
of myonuclei to their transformation to cells. 
Partial transformation of myonuclei to (PM), 
(Fig. 2a-b) were seen for 6 days after 
incubation. The PM were positioned within the 
parent myofibre with no complete and 
continuous membrane separating them from the 
parent myofibre. Early markings of the 
cytoplasmic membrane (Fig. 2b) beginning to 

~~\l~~m.y . 
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FIGURE 3. (a) Shows part of cytoplasm of a PM with well developed organelles. The presence of 
remnants of the sarcolemma (thin arrow) of the parent myofibre between the basement membrane 
~thick arrow) ~d the PM indicates clearly that the PM has its origin from within the myofibre. (b) 
IS a cro~s sectlO~ o~ part ?f a myotube, with the cytoplasm around the nucleus N showing distinct 
developmg myofIbnls (thIck arrows). Basement membrane, (thin arrows). Bar = 0.25 urn in (a) and 
0.5 urn in (b). 
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initiate separation were often observed only in 
the regions where new cytoplasm of the PM was 
observed. Morphological similarity between 
some PM (Fig. 2c) and the typical SC lent 
support for the view (Naidoo, 1992) that the PM 
must be a stage in the development of Sc. Some 
PM, having nuclei with scattered dense 
chromatin perhaps denote transitional stages 
between PM with dense granular nucleus and 
the SC with nucleus having dense peripheral 
heterochromatin (Dubowitz 1985). 

The observation of remnants of myofibre 
sarcolemma (Fig. 3a) between the basement 
membrane and the presumptive myoblast 
provides stronger evidence for the derivation of 
PM from a myonucleus. Only parts of the 
sarcolemma of the parent myofibre were 
observed because of the obvious disruptive and 
degenerative changes the myofibre is subjected 
to during culture. 

Ultrastructural characteristics of the scanty 
cytoplasm of the PM, with little or no organelle 
development suggested that the cytoplasm may 
in fact be secreted by the active myonucleus in 
the initial stages of development of the myoblast 
and not by cleavage mechanisms (Lee, 1965; 
Hess and Rosner, 1970; Reznik, 1976) or by 
dedifferentiation (Hay, 1959). Light micrographs 
of regenerating myofibres revealed uninucleated 
cells with intensely basophilic cytoplasm, 
distinctly different from the subjacent cytoplasm 
of the myofibre. If myoblasts formed by 
cleavage mechanisms, then the cytoplasms of the 
myoblast and the parent myofibre should have 
similar staining and structural features. 

Between 8 and 10 days after incubation 
myoblasts in chains (Naidoo, 1992), at different 
stages with varying densities of cytoplasm and 
organelle development appeared below the 
basement membrane along the length of many 
myofibres. Binucleate and multinucleate 
myotubes (Naidoo, 1992) with distinct 
myofibrils (Fig. 3b) also appeared at this time. 

829 

Mitochondrial aggregations (Naidoo, 1992) 
observed in the explants after 6 days of 
incubation clearly pointed to regenerative 
activity within the myofibres. 

The current consensus (Sloper and Partridge, 
1980) is that satellite cells (SC), considered 
remnants of embryogenesis (Mauro, 1960), lying 
between the basement membrane and the 
myofibre sarcolemma are reserve myoblasts 
which persist through life. During muscle stress 
these SC proliferate and fuse forming myotubes 
which mature into myofibres replacing damaged 
muscle. 

Many researchers assumed that SC gave rise to 
the myoblasts found fused with the subjacent 
myofibre. That assumption applied here in 
regenerating muscle explants, implied that these 
myoblasts from SC origin, were trying to 
resuscitate the degenerate myofibres. This was 
unlikely, as evidence in regeneration studies 
indicated that restoration of damaged muscle 
was due to development of new myotubes. Also, 
the PM occurred singly and were not observed 
in pairs in the early stages to indicate derivation 
by mitotic division of the Sc. 

Main support for SC, embryonic remnants, being 
myogenic precursors came from eH]thymidine 
studies (Moss and Leblond, 1971; Snow, 1979). 
These researchers also showed nuclei, within the 
myofibre, which were labelled with 
eH]thymidine. For want of better interpretation, 
the labelled nucleus was regarded by Snow as 
part of a degenerate satellite and by Moss and 
Leblond as a nucleus of a SC already 
incorporated into the myofibre. These labelled 
nuclei were most likely activated dense granular 
myonuclei undergoing transformation. 

Few researchers (Reznik, 1969; Hess and 
Rosner, 1970; Walker, 1972) believed myonuclei 
also had the potential to transform into 
myoblasts to a~sist in regenera3ion. Walker 
(1972) also usmg the same [H]thymidine 
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labelling contradicted the findings of the other 
labelling studies in concluding that myonuclei 
were responsible for myoblasts in regeneration. 
The new method (Naidoo, 1992) of EM study 
using human muscle explants in culture from the 
time of incubation revealed that myonuclei do 
have the potential to transform into myoblasts. 

Earlier research techniques, involving the 
mincing and smashing of muscle and leaving 
them as implants within the animals used, 
resulted in blood clots, poor circulation, necrotic 
debris and migration of phagocytes at the site of 
injury. This made difficult early EM study 
(Allbrook, 1962; Baker and Poindextor, 1991) 
which was done only after 4 days. The use of 
cultured muscle explants overcame the problem 
of blood clots, poor perfusion, necrotic debris 
and migrating phagocytes or "outside-muscle" 
influences (Askanas, 1979) thus making possible 
EM investigation of the early processes of 
regeneration from the 1 st day after incubation. 
Mendell et al. (1972) attempted an EM study on 
cultured human muscle, but did not observe the 
transformation of the myonuclei perhaps due to 
the now outdated method of culture technique 
used by them. 

On account of the easy accessibility and 
availability, muscle explants in culture afford an 
excellent opportunity to study early regenerative 
changes on a day to day basis. Such study, 
otherwise, is difficult in an intact animal that 
would have to be subjected to repeated surgical 
procedures. The disadvantage encountered in the 
use of explants was that after incubation they 
were extremely delicate and fragile, and 
therefore easily susceptible to disruption of the 
structural integrity if not handled with care. 

The results of this study propose that myonuclei 
of mature human skeletal muscle have the 
potential to transform to myoblasts during the 
process of muscle regeneration. This evidence of 
the origin of myoblasts during muscle 
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regeneration will assist the current research on 
the treatment possibilities of muscular dystrophy 
where myoblast transplant or gene transfer 
therapies are contemplated. 
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would bring was not reflected by a cor­
responding commitment from all the par­
ties involved. 

Third, the husbandry of riverine rab­
bits in captivity poses several problems. 
This is an easily stressed species, of 
which individuals are easily injured while 
being handled. They have shown an ab­
normally high mortality rate and several 
of the captive individuals are not breed­
ing successfully. Preliminary observa­
tions on the sperm of captive males 
suggest that at least some ot them are not 
highly fertile. Such an unplanned, unco­
ordinated breeding programme with an 
animal species subject to serious breed­
ing limitations is doomed to failure. 

The wild riverine rabbit population is 
so small that it is unlikely to survive 
without human intervention. However, 
despite these initial setbacks, the number 
of remaining wild rabbits, and the avail­
able technology and financial resources 
are more than sufficient for implementing 
a well-planned, scientifically based 
breeding programme, provided that the 
following conditions are observed. 

I) A single institution needs to take 
full responsibility for the implementation 
of a properly planned breeding pro­
gramme. The De Wildt Centre is ideally 
placed to take this responsibility. The 
management of this facility is aided by a 
private advisory council, including prom-

Correspondence 

inent individuals III academia and con­
servation. 

2) It is vital to have a sciel\tific under­
standing of the husbandry and other 
problems related to breeding these 
rabbits. Studies on the reproduction and 
social behaviour of the animals in captiv­
ity would greatly contribute to the suc­
cess of the breeding programme. 

3) Wild-captured founders for the 
breeding programme need to be used. 
Dippenaar and Ferguson4 suggest that a 
founder stock of 16 rabbits be used, 
in order to ensure sufficient genetic 
variation. 

4) It is essential to attempt an experi­
mental release of a few individuals into 
proven habitats for the rabbits. As cap­
tive rabbits are fed on pellets and lucerne 
and live in unnatural conditions, it is im­
portant to know whether these animals 
can be successfully reintroduced into the 
wild. Intensive long-term monitoring of 
the released rabbits would be needed. As 
the Karoo National Park does not contain 
habitats in which riverine rabbits have 
been encountered in the past, certain 
farms in the vicinity of Victoria West 
seem to be more suitable sites for such an 
experimental release. In addition, this 
would have the beneficial effect of in­
volving local farmers in the exercise. 

5) Given the slow rate of increase ex-

Macrophagic morphology of myoblasts in 
hamster skeletal muscle explants 
Sir,- I have investigated the macropha­
gic or myogenic status of fusiform cells 
found below the basement membrane in 
regenerating myofibres, using cultured 
muscle explants (ME). This electron mic­
roscope study revealed that many of the 
sublaminar cells, whilst morphologically 
appearing as macrophages, were possibly 
myogenic cells or myoblasts. Their myo­
genic status was indicated by the pres­
ence of morphological structures charac­
teristic of developing myofibrils in their 
cytoplasm. 

Many early in vivo regeneration studies 
on skeletal muscle of animals 1-3 regarded 
the fusiform cells, occupying a position 
below the basement membrane of the 
muscle fibres, to be myogenic or satellite 
cells.4 Other research5

,6 suggested that 
many of these fusiform cells may be 
macrophages or phagocytes. Yet other 
work 7,8 indicated that myogenic cells did 
have the capacity to behave like phago­
cytes. My study used regenerating skele­
tal muscle explants from culture to clari-

fy the nature of these fusiform cells. 
Six healthy hamsters (Mesocricetus 

auratus) ranging between 72 and 156 g 
in mass, were used. In brief, approxi­
mately 200 mg of ME, obtained from the 
thigh muscle of each decapitated hamster, 
was prepared for culture. The culture 
medium was made up of Dulbecco's 
modification of Eagle's medium, chicken 
embryo extract, foetal bovine serum and 
antibiotic/antimycotic mixture. Cultures 
were incubated at 37°C, in humid air 
containing 5% COz. Four muscle ex­
plants from each culture, removed on 10 
consecutive days after incubation, were 
prepared for EM study. Pre-incubation 
specimens served as controls. A detailed 
experimental protocol is published else­
where.9 

In the first few days of culture, myo­
nuclei underwent activation, became het­
erochromatic and formed into cells.9 By 
the fourth day the numbers of myonuclei 
decreased whereas the number of cell 
forms within the myofibres increased. 

perienced with captive animals, the pos­
sibility of using embryo transplantation 
as a means of the rapid breeding of these 
animals needs to be investigated. The ex­
tensive knowledge base applicable to 
domestic rabbits in this regard should 
prove to be relevant 

Three factors are vital for the conser­
vation of these animals: scientific re­
search, management in captivity as well 
as in the wild, and extension to the own­
ers of private farms. It would be deplor­
able if the riverine rabbit became extinct 
because of our inability to plan and exe­
cute an integrated conservation pro­
gramme involving captive breeding and 
release. It would also do little for the 
credibility of those academics who pay 
so much lip service to developing a 
theory of conservation biology but ignore 
the practicalities. 

1. Thomas O. (1903). On a remarkable new hare 
from the Cape Colony. A. Mag. Nll. Hist. 11, 

78-79. 
2. Duthie A.G. (1989). The ecology of the riverine 

rabbit Bunolagus monticularus. M.Sc. thesis, 
Pretoria University. 

3. Dippenaar S.M. and Ferguson J.W.H. (1994). 

Use of DNA fingerprinting in planning a breed­
ing programme for the riverine rabbit (BUIlola­
gus monticuiaris). Zoo Bioi. 13, 231-243. 

4. Dippenaar S.M. and Ferguson J.W.H. (1994). 
Towards a captive breeding programme for the 
riverine rabbit Bunolagus mOllticu/aris. S. Afr. J. 
Sci. 90, 381-385. 

Some of the cells were fusiform and 
others had cytoplasmic projections or 
pseudopodia resembling those of macro­
phages (Fig. IA). Some cells had phago­
somes with degenerate fibrils of the 
parent myofibre (Fig, IB). Other cells 
(Fig. IC) displayed phagocytosis and/or 
pinocytosis, Many of these cells (Fig. lB 
and C) with phagosomes and those dis­
playing phagocytosis had young, devel­
oping myofibrillar elements in their cyto­
plasm. Electron-dense areas outlining de­
velopment of Z-line material lO were ob­
served along many of the young myofi­
brils. These cells probably represented 
early myogenic cells or mononucleate 
myotubes. Many multinucleate myotubes 
with phagosomes, pinocytic vesicles and 
pseudopodia (Fig. ID) were also present. 
All these myogenic cells were evident in 
cultured muscle explants after only 4 
days of incubation. Sub laminar cells ob­
served in the controls9 morphologically 
represented typical satellite cells with 
scanty cytoplasm. 

Earlier regeneration studies3,l1,12 per­
formed in vivo were a problem, in that 
the injured myofibres rapidly underwent 
necrosis as a result of poor circulation 
due to blood clots. 'Outside-muscle' in­
fluences 13 such as migrating phagocytes 
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Fig. l. Electron micrographs represent parts of sublaminar cells observed in myofibres of cultured explants. A, Cell, 3 days after incubation, 
with cytoplasmic projections/pseudopodia similar to that of a phagocyte. B, Part of myogenic cell mimicking a phagocyte having phagosomes 
(thick arrow) with degenerate fibrillar elements of the parent myofibre. Distinct developing myofibrils (thin arrow) are present in the cytoplasm. 
C, Part of another cell indicating clear signs of phagocytosis and pinocytosis together with pseudopodia Early myofibrils (arrow) with Z-band 
development are present in the cytoplasm. D, Part of a multinucleate myogenic cell with pseudopodia intimately associated with the degenerate 
cytoplasmic elements of the parent myofibre. The cytoplasm of this cell has distinct developing myofibrils (arrow). All the above cells with 
developing myofibrils were observed in the explants from 4 days after incubation. Arrow head, basement membrane. Bar = 1 f.Lm in A, B and D 
and 0.25 f.Lm in C. 

and fibroblasts made clear identification 
between myoblasts and other sub laminar 
cells difficult. The present in vitro tech­
nique using ME in culture overcame 
much of this problem. The cultures were 
without clots, ensuring adequate perfu­
sion of the ME with nutrient medium. 
Outside elements, such as migratory or 
invading cells of fibroblasts and phago­
cytes, were minimized. This technique 
therefore made possible the observation 
of the different stages of muscle regener­
ation. 

This study implies that cells with myo­
genic potential, found in a sublaminar 
position during regeneration of muscle, 
may have variable morphology, appear­
ing as fusiform cells or as macrophages. 
The configuration of these sublarninar 
cells depends on the availability of space 
within the myofibre. A logical explana­
tion for the early cells being fusiform is 
that the myofibres at this stage still have 
intact myofibrillar material such that the 
myoblasts could only develop sand­
wiched between the basement membrane 
and the myofibrils. As degeneration and 
fragmentation of myofibrils of the parent 
myofibre occur, space becomes available 
within the myofibre, allowing the myo­
blasts to develop cytoplasmic projections 
or pseudopodia. During the course of 
their development to myotubes, it appears 
as if the myoblasts engulf or phagocytose 
cytoplasmic elements from the degenera­
ting parent myofibre, not so much to re­
move debris, but to use it as a source of 

nutrients for their growth. In doing this, 
their morphology resembles that of mac­
rophages. Mastaglia and Walton lO sup­
port this by suggesting that regenerating 
cells may 'actually reutilise breakdown 
products of necrotic sarcoplasm.' There­
fore, the siting of similar myogenic cells, 
morphologically similar to macrophages 
in early regeneration studies, perhaps led 
to the suggestion14 of the possibility of 
phagocytes and other connective tissue 
cells playing a role in muscle regenera­
tion. Those laboratories that are set up 
for histochemistry and immunocytochem­
istry would be able to validate these 
findings. 
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Faculty of Medicine, University of Natal, for 
her technolOgical expertise, and the Medical 
Research Council, University of Durban­
Westville and Natal Univ\!rsity Muscular 
Dystrophy Research Fund for the financial 
assistance. This research is dedicated to the 
memory of my son Suriapregasen, a victim of 
Duchenne muscle dystrophy. 
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