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ABSTRACT

Chapter 1. In classical algebra there arise structures of the form A =
(A; EB, 0; ::::;) consisting of a monoid (A; EB, 0) and a EB-compatible partial order
::::; with least element 0, that are residuated in the sense that there exists a
binary operation --'-- on A characterized by the rule

x ::::; y EB z iff x --'-- z ::::; y.

The structure A satisfies

x ::::; y iff x --'-- y ~ 0

and is therefore first-order definitionally equivalent to an algebra (A; EB, --'--,0),
which we call a polrim. The examples of ordinal addition and ideal multipli­
cation in rings are discussed. A ( --'-- ,O)-subreduct of a polrim is called a left
residuation algebra. The class of all polrims [resp. left residuation algebras] is a
quasivariety which we denote by .eM [resp. .eR]. We investigate (and axiom­
atize, where necessary) these classes. We also characterize the ( --'-- ,O)-reducts
of polrims.

Chapter 2. The classes .eM and .eR arise naturally in logic. In [OK85], Ono
and Komori defined a Gentzen-style logic L BK that is obtained from Gentzen's
formulation LJ of intuitionistic propositionallogic by dropping the (structural)
rules of exchange and contraction and adding a new 'weak' conjunction &.
They also define a Hilbert-style logic HBK

I that is 'logically equivalent' to
LBK . We axiomatize HBK in such a way that its proof theory has a 'separation
theorem'. Assume {---t} ~ C ~ {&,---t, V,A,l.}. We show that C-HBK , the
C-fragment of HBK , is algebraizable in the sense of Blok and Pigozzi [BP89].
We denote its equivalent quasivariety semantics by Hc ., where C* is a set
of operation symbols in {EB, --'-- , n, u, I} corresponding to C. Then H{ffi,"':"'}

[resp. H{...:...}] is definitionally equivalent to .eM [resp . .eR]. (The constant 0
is x --'-- x.) We axiomatize each H c • and show that H{...:..., n} and H{...:..., n ,I} are
not finitely axiomatizable. The results answer a question posed in [OK85].

1In [OK85], LBK and HBK are denoted LBCC and HBCC, respectively.
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Chapter 3. We prove that {-+ }-HBK has the finite model property with
respect to £R and also with respect to a class of Kripke-type structures.
We deduce that the variety generated by £R is generated by the finite left
residuation algebras. These results answer a further question in [OK85].

Chapter 4. We present a proof of Idziak's unpublished result that the qua­
sivariety 'Hc- (where we assume that -'-- E CO) is a variety if and only if C*
contains EB and at least one of n, U. We characterize the subvarieties of £R
syntactically. For other values of C*, we infer some sufficient conditions for
subclasses of 'Hc- to generate subvarieties of 'Hc-. We prove a result imply­
ing that locally finite varieties generated by polrims consist of polrims; the
corresponding assertion for left residuation algebras is false. When 'Hc- is a
variety, we investigate its degree of congruence permutability, proving, e.g.,
that 'H{ffJ, --'--, n } is congruence permutable. When EB E C*, we show that a lo­
cally finite subvariety of 'Hc- is congruence 3-permutable. We show that each
of the classes 'Hc- is relatively congruence distributive, relatively O-regular
and lacks the relative congruence extension property (RCEP). An ideal of an
algebra A in 'Hc- is just the O-class of a relative congruence of A. We describe
ideal generation and deduce a syntactic characterization of the relative subva­
rieties of 'Hc - that have the RCEP. Ordinals a less than w W

, considered as well
ordered monoids with left residuation, illustrate a number of our results. In
particular, we show that they generate subvarieties of 'Hc - which fail to have
the congruence extension property when 1 tJ. C* and a > w + 1.

Chapter 5. We characterize syntactically the relative subvarieties of 'Hc ­
that have equationally definable principal [relative] congruences (EDP[R]C).
We investigate relative subvarieties 'He- (n E w) of 'Hc- defined by the identity

x -'-- (x -'-- y) -'-- ny ~ 0;

these arise naturally as the relative subvarieties in which ideals and a weaker
notion 'preideals' coincide. The quasivariety of all BCK-algebras is precisely
'H{ --'--}, while ordinals less than W

W with right residuation are natural examples

of algebras in 'Hb-. When EB, 1 tJ. C*, we characterize the relative subvarieties
of 'He- among those of 'Hc- by their possession of the RCEP and a very weak
'finiteness' condition. We deduce that the locally finite relative subvarieties of
'Hc- that have the RCEP are just those satisfying the above identity, for some
n; they also have EDPRC. We characterize the finitely subdirectly irreducible
members of 'He- and axiomatize the quasivariety generated by 'He- 's linearly
ordered members, showing that this is a relative subvariety of 'He-. When
n E C*, we show that 'He- has equationally definable principal relative meets
(EDPRM). We also show that the subquasivariety of 'He- generated by its
linearly ordered algebras has EDPRM (regardless of the availability of n).
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Chapter 6. We investigate the lattice pV (.en) of subvarieties of .en. This·
lattice has a unique atom - the variety of Tarski algebras. We show that this
atom has exactly three finitely generated covers in pv (.en). We show that the
only variety of left residuation algebras that covers the atom, has EDPC and
is not semisimple is V(H3 ), where H 3 is (dually) isomorphic to the implication
reduct of the three-element linearly ordered Heyting algebra. We construct a
countably infinite sequence AI, A 2 , A 3 , ... of infinite left residuation algebras
that generate distinct varieties of left residuation algebras that have EDPC,
are semisimple and cover the atom. We show that the variety generated by
all the Ai'S is a variety of left residuation algebras that has 2l'{o subvarieties,
none of which is generated by its finite members, except the variety of Tarski
algebras and the trivial variety. We prove a finite axiomatization of the variety
generated by Al and show that the variety generated by A 2 is also finitely
axiomatized. Our results extend and contrast with Kowalski's recent solution
of an open problem about covers of the atom in the lattice of varieties of
BCK-algebras.

Chapter 7. We show that if A E 1t{..:.., n} is a 'distributive residuation
nearlattice' then its canonical distributive lattice extension has a well defined
operation -'-- A0 (extending -'-- A) enriched with which it is an algebra A 0 E
1t{ ..:.. , n ,U} and the unique extensions from A to A 0 of significant morphisms
preserve ..:.. also. Indeed, A /-t A 0 induces a simple mono-preserving reflection
of categories. We show that the lattices of relative congruences of A and A 0

(with respect to 1t{...:.., n} and 1t{..:.., n, U}) are isomorphic. Moreover, we show
that if A is an algebra in 1t"{..:.., n} that satisfies

(x ..:.. y) n (y -'-- x) ~ 0

then A and the ( -'-- , n , O)-reduct of A 0 belong to the same varieties.

Appendix. Lattices of topologizing filters of unital rings are interesting exam­
ples of (lattice ordered) polrims which are not right residuated. An expository
appendix discussing these algebras has been included.

Much of the above mentioned material has already been written up in the
form of research papers. The papers [RvA97] and [vARl] contain most of the
results of Chapters 1, 2, 4 and 5. The results of Chapters 3 and 7 have been
accepted for publication in the form of [vAR2] and [vAI], respectively.
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1

INTRODUCTION

This thesis takes an algebraic approach to the study of ordered monoids
that are 'residuated' in the sense that they have a binary operation that acts
like a subtraction or division operation. The existence of such an operation
permits the calculation of residuals a - b or ab-1 in the absence of a unary
inverse operation. Such structures arise in areas of classical mathematics such
as the ideal theory of rings (the notion of residuation can be traced back to
Dedekind's work on modules), algebraic logic and the study of ordinals.

An integral pomonoid is a structure (A; Ee, 0; :s;) where (A; Ee, 0) is a monoid
and :s; is a Ee-compatible partial order with least element O. Such an integral
pomonoid is called left residuated if there exists a binary operation -'- on A

such that, for any a, bE A,

a -'- b = min{c EA: a :s; c EB b}.

We call -'- the left residuation operation of (A; EB, 0; :s;). A left residuated
integral pomonoid A = (A; Ee, 0; :s;) satisfies

x :s; y if and only if x -'- y ~ 0,

so that the partial order :s; is obtainable from the operations -'- and 0, hence
A is first-order definitionally equivalent to an algebra (A; EB, -'- ,0), which we
call a polrim. Analogously, one may define a porrim as an integral pomonoid
with a right residuation operation. A residuation-subreduct (i.e., a subalgebra
of the ( -'- , O)-reduct) of a polrim is called a left residuation algebra. The class
of all polrims [resp. left residuation algebras] is a quasivariety which we denote
by'cM [resp. 'cR].

The lattice of ideals of a unital ring R, with ideal multiplication as its
monoid operation and ordered by reversed set inclusion, is a polrim whose left
residuation operation is given by I : J = {r ER: rJ ~ I} (1, J ideals of
R). In algebraic structures arising from logic, there usually exists a monoid
operation corresponding to a logical conjunction or 'fusion of premisses' and
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a partial order that reflects deducibility. Typically, such structures are pol­
rims whose left residuation operation corresponds to the logical implication.
Ordinals, considered as well ordered sets either closed under ordinal addition
or with an additively absorptive top element are integral pomonoids. These
integral pomonoids are both left and right residuated and, as such, may be
considered as polrims or porrims (which are not elementarily equivalent in
cases greater than w + 1). A recently developed tool for the study of rings is
the 'lattice of topologizing filters' of a ring, considered as a polrim (using a
suitable monoid operation and set inclusion). In general, these polrims pro­
vide more information about the underlying ring than the polrim on the ideal
lattice. Significantly, such structures need not be right residuated.

Abstract studies of some subclasses of .eM and .en have appeared in the
literature. Bosbach [Bos69] considers left complemented monoids, namely, pol­
rims (A; EEl, 0; :S;) that are (left) complemented in the sense that, for a, b E A,

a :s; b implies there exists c E A such that c EEl a = b.

A polrim whose monoid operation is commutative is called a pocrim. Pocrims
have been studied, e.g., in [Hig84] and [BR97]; their residuation-reduets were
studied earlier under the name 'BCK-algebras with condition (S)' [Ise79].
Pocrims that are complemented are known as hoops and have been studied
in [BP94b), [BF93] and [Fer92]. A residuation-subreduct of a pocrim is known
as a BCK-algebra, that is, an algebra (A; --=- ,0) of type (2,0) that satisfies the
following identities and quasi-identity:

((x--=-y)--=-(x--=-z))--=-(z--=-y) ~O,
X --=-0 ~ x,

o--=-x ~ 0,

x--=- y ~ 0 and y --=- X ~ 0 implies x ~ y.

These algebras were introduced by Iseki (based on the logic BCK of Meredith)
and have been extensively studied. Survey articles include [IT78], [Cor82] and,
to some extent, the more recent paper [BR95]. That every BCK-algebra is a
residuation-subreduct of a pocrim was proved independently by Palasinski
[Pa182], Ono and Komori [OK85] and Fleischer [Fle88]. In [Kom83] and
[Kom84] Komori considered the class of algebras obtained by replacing the
first identity in the above axiomatization of BCK-algebras with

((x--=-y)--=-(z--=-y))--=-(x--=-z) ~o.

It was proved by Ono and Komori in [OK85] that every such algebra is
a residuation-subreduct of a polrim, i.e., a left residuation algebra. The
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residuation-subreducts of left complemented monoids are among Bosbach's
residuation groupoids [Bos82].

The study of polrims and left residuation algebras may be considered a uni­
fication and extension of the commutative and complemented cases. Ordinal
polrims are right but, generally, not left complemented monoids. The only
ordinal polrims that are pocrims are those less than w + 2. The polrim on
the lattice of ideals of a noncommutative ring is a pocrim under the arguably
artificial demand that ideals commute under multiplication.

Another route to £M and £R is via Gentzen's formulation LJ of intuition­
istic logic [Gen35]. In [OK85], Ono and Komori present a Gentzen system
LJ* that is essentially the propositional fragment of LJ, but differs in that
the conjunction connective 1\ of LJ is duplicated by a further connective & (to
be thought of as a 'fusion of premisses') which has a weaker set of inference
rules. The logic L BK is obtained from LJ* by removing the 'structural' rules
of contraction and exchange, viz.

f,CY,CY,Ll =} '( .) f,CY,(3,Ll =} '( h )
A contractIOn f' (3 A exc ange .

f,CY,Ll =}, , ,CY,Ll =},

Thus L BK falls into the class of 'substructurallogics' (see [SD93]). Because of
the choice of inference rules for LJ*, the connective 1\ takes on the character
of a lattice operation, while & is like a monoid operation. Ono and Komori
also define a Hilbert system H BK , which they prove to be 'logically equivalent'
to L BK . As expected, H BK lacks Hilbert style exchange and contraction rules,
I.e. ,

(p -+ (q -+ r)) -+ (q -+ (p -+ r)) and (p -+ (p -+ q)) -+ (p -+ q)

are not theorems of HBK . Each C-fragment C-H of HBK (where {-+} ~

C ~ {&,-+, V,I\,~}) turns out to be algebraizable in the sense of Blok and
Pigozzi [BP89]; we denote its equivalent quasivariety semantics by He-, where
C* is a set of operation symbols in {EB, -'- , n , U , 1} corresponding to C. The
quasivariety H{ffi,":"'} [resp. H{..:...}] is definitionally equivalent to £M [resp.
£R]. Thus, in particular, left residuation algebras are the natural algebraic
semantics of the implicational fragment of Intuitionistic Propositional Calculus
without exchange and contraction (as formulated by Ono and Komori).

The members of the equivalent quasivariety semantics of the full logic HBK ,

denoted H for brevity, also have operations nand u, which turn out to be
lattice operations, and the constant 1, which turns out to be the maximum
element of the associated partial order. Natural axioms describing the inter­
action between EB, -'- and these new operations are inherited from HBK . £M
and £R are both subreduct classes of H; the approach taken in this thesis is to
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consider all the subreduct classes of 1{ (that contain the residuation connective
~ ).

One may take the view that it is natural to consider noncommutative ordered
monoids having both a left and a right residuation operation (as in [Bos69], for
example). Every polrim (and porrim) may be embedded into such a structure,
so the study of polrims is a part of such a larger study. The paper [OK85]
does not take such a "two-sided" approach. This paper was, to some extent,
a starting point for our investigations and we have adopted its approach. In
fact, a number of the problems solved in this thesis are posed in that paper.
The lattice of topologizing filters of a ring, considered as a polrim, need not be
right residuated (an example is given in the appendix). Thus, such structures
are natural models of the theory of "one-sided" residuation, undertaken here.
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CHAPTER 0

PRELIMINARIES

Ordered Sets. Let S = (5;~) be a partially ordered set. For X ~ 5 and
a E 5, we define

(X] = {b E 5: b ~ a for some a EX},

[X)={bE5:a~b for some aEX},

(a] = ({a}],
[a) = [{a}).

A subset T of 5 is called downward closed, or hereditary, in S if T = (T]. A
subset T of 5 is called upward closed if T = [T). We shall use the symbols
nand u for lattice meet and join operations, respectively, and n, U for
infinitary meet and join operations, respectively.

By ordinals we mean Von Neumann ordinals, i.e., each ordinal is identified
with its set of predecessors. We use lower case Greek letters as variables for
ordinals. The least infinite ordinal is denoted w; its elements are called the
natural numbers. The elementhood relation E between ordinals is also denoted
<. The relation ~ obtained from < in the usual way therefore coincides with
set inclusion ~ in every ordinal. For ordinals a, j3, we denote the ordinal
sum [resp. ordinal product] of a and j3 by a + j3 [resp. aj3]. We use a(3 to
denote ordinal exponentiation. In the context of cardinals we shall use Na
instead of w. Recall that each nonzero ordinal less than W

W has the form of
a unique 'polynomial' in w, i.e., wnan + wn-lan_l + ... + wal + aa, where
n,aa,al,··· ,an E wand an =I- O.

If A is a set, we use ato denote a finite sequence aa, al, . .. , an of elements
of A, where nEw is arbitrary, understood or unimportant. We sometimes
write aE A in this case.

Languages. The countably infinite set X = {xa, Xl, X2, ... } of variables
will be fixed throughout this thesis. Lower case Roman letters, possibly with
integer subscripts, will be used as metavariables ranging over X. In an algebraic
context, we usually use the letters x,y,z for metavariables, and in a logical
context, we usually use the letters p, q, r.
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Where languages are concerned, we confine ourselves to algebraic ones.
Thus, by a language (or type) we mean a pair I:, = (£, ar) consisting of a
set £ of operation symbols and an arity function ar that assigns a natural
number to each element of £. In a logical context, we shall refer to the ele­
ments of £ as connectives and to the arity function as the rank function. The
type I:, is called finite if 1£1 is finite.

Given a language 1:" the set of I:,-terms is constructed in the usual recursive
way from the variables in X and the operation symbols in £ (see, e.g., [BS81,
Definition 11.10.1, p62]). We generally use the letters s, t, U, v to denote 1:,­

terms. In a logical context, we shall refer to I:,-terms as I:,-formulas and denote
them by lower case Greek letters. The set of all £-terms is the universe of the
absolutely free algebra of type £ over X, which we call the term (or formula)
algebra over 1:,. We often drop the prefix 1:,- from' I:,-term' or 'I:,-formula'
when the I:, is understood. Moreover, we shall often simply write £ for 1:,. We
shall often write t( Xo, ... ,xn ) for a term t if the variables occurring in tare
among Xo, ... , Xn·

Hilbert Systems. Let £ be a language. An £-substitution (or substitution, if
£ is understood) is an endomorphism of the formula algebra over £. Note that,
by the universal mapping property, a substitution CJ may be identified with·
its restriction to X. By an inference rule (over £), we mean any pair (f, c.p),
where f is a finite set of formulas and c.p is a formula. An axiom is an inference
rule of the form (0, c.p); we usually identify an axiom (0, c.p) with the formula
cp. Let I be a set of axioms and inference rules over £. Let .6. U {<p} be a set
of formulas. A derivation of <p from .6. (with respect to 1) is a nonempty finite
sequence of formulas 'l/Jl, 'l/J2' ... ,'l/Jn such that 'l/Jn = <p and for i = 1,2, ... , n,
one of the following conditions holds:

(i) 'l/Ji E .6. or 'l/Ji = CJ( 8) for some axiom 8 in I and some substitution CJ;
(ii) there exists an inference rule (f,8) in I and a substitution CJ

such that 'l/Ji = CJ(8) and CJ(t) E {'l/Jl, ... ,'l/Ji-d for each ,E f.

A Hilbert system 5 (over £) is determined by a set I of axioms and inference
rules; it consists of a pair (£, rs), where rs is the relation between sets of
formulas and single formulas that is defined by the following condition:

f f- s <p iff <p is derivable from f with respect to I.

The relation f- s is called the consequence relation of 5. The set I is called
an axiomatization of 5 and the axioms and inference rules in I are called the
axioms and inference rules of5, respectively. Of course, a Hilbert system may
have more than one axiomatization. A Hilbert system for which there exists
a finite axiomatization is said to be finitely axiomatizable. An inference rule
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(f, 'P) of S is usually denoted f ~ S 'P. We write ~ S 'P for 0 ~ S 'P. A formula
'P for which ~ S 'P is called a theorem of S. We shall also use the following
abbreviations for sets of formulas f, .6. and formulas a1,··· ,an, /3:

aI, ... ,an ~ S /3 abbreviates

f, a ~ S /3 abbreviates

r ~ s.6. abbreviates

r -j~ s.6. abbreviates

{ a1, ... , an} ~S /3;

rU{a}~s/3;

'r ~s 6 for all 6 E .6.';

'both r ~S .6. and .6. ~S r'.

The consequence relation ~ s of a Hilbert system S over a language £ is easily
seen to satisfy the following three conditions for all sets of formulas r,.6. and
all formulas 'P, 'l/J:

(i) 'PErimpliesr~s'P;

(ii) r ~ s 'P and r ~ .6. implies .6. ~ s 'P;

(iii) r ~ s 'P and .6. ~s 'l/J for each 'l/J E r implies .6. ~ s 'P.

In addition, S is finitary in the sense that

(iv) r ~ s 'P implies r' ~ S 'P for some finite r' ~ r,

and is structural in the sense that

(v) r ~ S 'P implies O"[f] ~ S 0"( 'P) for every substitution 0".

Conversely, every relation between sets of £-formulas and £-formulas satis­
fying conditions (i )-(v) is the consequence r1ation for some Hilbert system
S over £ [L858]. Consequently, a Hilbert system may be defined as a pair
(£, ~s), where ~s is a relation between sets Jf formulas and single formulas
that satisfies (i)-(v); defining axioms and inferrnce rules need not be assumed.

Gentzen systems. Let £ be a language. BYI an £-sequent (or sequent, if £
is understood) we mean an expression of the form aI, a2,···, an =:} /3, where
aI, a2, . .. , an, /3 are formulas. We shall use u~per case Greek letters for finite
(possibly empty) sequences of formulas, separated by commas. We shall use 0
to denote the empty sequence. (Note that in thf context of Hilbert systems, we
use upper case Greek letters to denote sets of formulas.) If.6.1 =:} /31, ... ,.6.n =}
/3n' r =:} a are sequents, then

.6.1 =} /31 .6.n /3n

f=}a ~
is an inference figure (over £). We identify thIS figure with

.6.(7(1) =} /3(7(1) . . . .6.(7(l) =} /3(7(n)
r=}a
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whenever a is a permutation of {1, ... , n}. Formally, therefore, an inference
figure is any pair (A; r =} a) where A is a finite multiset (rather than a finite
sequence) of £-sequents, and r =} a is an £-sequent. In the above example,
the ~i =} {3i's are called the upper sequents and r =} a the lower sequent of
the figure. A Gentzen system G (over £) is determined by a set of inference
figures, which we call the rules of inference of G, and a set of sequents, which
we call the initial sequents of G.

A tree is a partially ordered set (P; :S) with a (unique) least element po E P
(called the root of (P; :S)) such that for each pEP, the set (p] is well ordered
by :S. The tree (P; :S) is called finite if P is a finite set.

A triple (P; :S; I) is called an £-derivation if

(i) (P;:S) is a finite tree (with root Po, say); and

(ii) f is a function from P to the set of all £-sequents.

In this case, f(po) is called the endsequent of (P; :S; I) and, for each maximal
element p of (P; :S), f(p) is called an initial sequent of (P;:s; I). If pEP is
not maximal and PI, ... ,pn are precisely the covers of p in (P; :S) then

f(PI) ... f(Pn)

f(p)

is called an inference figure of (P; :S; I).

An £-sequent 1,; -=} I is said to be derivable in G if it is the endsequent of
some £-derivation (P;:S; I) all of whose inibal sequents are initial sequents
of G and all of whose inference figures are rules of inference of G. In this case,
(P; :S; I) is called a derivation of 1,; =} I in G.

Algebraic Preliminaries. For general universal algebraic background we
refer the reader to [BS81], [MMT87] or [Gra79]. We usually denote algebras
by boldface capitals A, B, C, ... and their respective universes by A, E,
C, .... An algebra A is called trivial if IAI = 1. We use the letters I,
H, S, P, Ps and Pu to denote the class operators used to obtain isomorphic
images, homomorphic images, subalgebras, direct products,2 subdirect products
and ultraproduets, respectively. If K is a class of similar algebras (i.e., algebras
of the same type), we use V(K) to denote the variety generated by K, i.e.,
V(K) = H S P(K). We also use KNT to denote the class of all nontrivial
algebras in K. For an algebra A and a subset X of A, we use SgA(X) to
denote the subalgebra of A generated by X.

2The trivial algebra that is the direct product of the empty subfamily of a class K of
algebras of the same type is included in P(K).
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The set of congruences of an algebra A is denoted Con A and the congruence
lattice of A is denoted Con A. For X ~ A2

, we use 8 A (X) to denote the
congruence of A generated by X. For a,b E A, we abbreviate 8 A ({(a,b)})
by 0 A (a, b). If Y is any set, we use idy to denote the set {(b, b) : bEY}.
Thus idA is the least congruence of an algebra A. If idA is meet irreducible in
Con A, we call A a finitely subdireetly irreducible algebra.

The class of all subdirectly irreducible [resp. simple] algebras in a class
K of similar algebras is denoted KSI [resp. Ks]. These classes exclude trivial
algebras, by definition. The class of all finitely subdirectly irreducible algebras
in K is denoted KFS1 . Thus, Ks ~ KS1 ~ (KFS1)NT for every class K of similar
algebras.

A variety V with an equationally definable constant term 0 is said to be 0­
regular if, whenever A E V and el, e2 E Con A with OA lel = OA le2 , we have
el = e2 . We call a variety V congruence distributive if Con A is a distributive
lattice for every A E V.

If Ai, i E I, is a family of algebras of the same type and U is an ultrafilter
over I, we use DiE! A;jU to denote the ultraproduct of {Ai : i E I} with
respect to U. When Ai = A for all i E I, this ultrapower of A is denoted by
A! IU. We shall use the following results:

Lemma 0.1. [BS81, Lemma IV.6.5] If {Ai: i E I} is a finite set of finite
algebras, say {B I , ... ,Bd, and U is an ultrafilter over I then DiE! A;jU is
isomorphic to one of the algebras B I , ... , B k , namely to that B j such that

{i E I : Ai = B j} E U.

Theorem 0.2. (J6nsson's Theorem) [BS81, Theorem IV.6.8] Let V = V(K)
be a congruence distributive variety. Then VS1 ~ VFSI ~ H S Pu(K). Thus, if
K is a finite set of finite algebras then VSI ~ VFSI ~ HS(K).

We shall also use the following well known corollary to J6nsson's Theorem:

Corollary 0.3. Let VI) V 2 be subvarieties of a congruence distributive variety.
Then (VI U V2 )SI = (VI)sI U (V2 )sI, where the join is taken in the lattice of all
varieties of the type of VI and V2 •

Corollary 0.4. [J6n67, Corollary 4.2] The lattice of subvarieties of a variety
V is distributive if V is congruence distributive.

Theorem 0.5. [BS81, Theorem V.2.14] Every algebra can be embedded into
an ultraproduet of its finitely generated subalgebras.
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Model Theoretic Preliminaries. Consider the first order language £~

with equality, determined by an algebraic language £. Since £ has operation
symbols only, the atomic (first order) formulas of £~ (over X) are just all
£-equations (over X), i.e., all expressions of the form s ~ t, where s, tare
£-terms. The first order formulas of£~ (over X) are defined in the standard
recursive way: any atomic formula of £~ is a first order formula of £~; if x E
X and <I> , <I> I , <I>2 are first order formulas of £~ then so are

(<I>l) and (<I>2)' (<I>l) or (<I>2)' -,( <I»,

(<I>l) implies (<I>2), (<I>l) iff (<I>2)'

(Vx)(<I», (3X)(<I».3

We adopt standard bracket omission conventions. For first order formulas
<I>l, <I>2, ... , <I>n of £~, we sometimes abbreviate the formula (<I>l) and (<I>2) and
... and (<I>n) by 1\7=I (<I>i)'

The bound and free variables of a first order formula <I> of £~ are defined
in the usual way (see, e.g., [BS8l, Chapter V, p194]); <I> is called a (first
order) sentence of £~ if it has no free variables. On the other hand, if the
free variables of <I> (in order of their first occurrence, from left to right, in <I»
are Xl, ... , Xn E X then the sentence (VXI)(VX2)'" (Vxn)(<I», denoted <I>, shall
be called the closure of <I>. The closure of an £-equation shall be called an
£-identity.

If the free variables of a first order formula <I> of £~ are among the distinct
variables XI, ... ,Xn E X, we often write <I>(XI""'Xn) for <I>. In this case, if
h, ... , tn are £-terms, we may denote by <I>[t l , ... , tn] the result of simultane­
ously replacing each free occurrence of Xi by ti in <I>, for i = 1, ... , n.

If A is an algebra of type £, we let £A denote the type obtained by adding
(distinct, new) operation symbols a' of arity 0 to £ for each a E A. Thus,
for each first order formula <I>(XI, ... ,Xn) of £ and any al, ... ,an E A, the
language £~ includes the sentence <I>[a~, ... , a~], which we usually denote by
<I>[al" .. , an]'

Let K U{A} be a class of algebras of type £ and l: U{<I>} a set of sentences of
£~. The notion that A satisfies <I> (or '<I> is true in A'), denoted A p <I>, is de­
fined in the usual recursive way (e.g., [BS8l, Definition V.1.l0, p195]). In par­
ticular, if <I> is an atomic sentence of £~ then <I> is s[al" .. , an] ~ t[al,' .. , an]
for some £-terms s, t and some al, ... , an E A. In this case, A p <I> if and

3We avoid using &,1\, -t, etc. as logical symbols of the first order language .c-;:::. because
these symbols shall correspond extensively in the sequel to (nonlogical) operation symbols
of particular (algebraic) languages. We avoid::::} here also, as it shall continue to denote the
derivability relation of a Gentzen system.
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only if sA(a1, ... ,an) = t A (at, ... ,an) (where sA, t A : An ~ A are the n-ary
term functions on A corresponding to s, t, respectively). The notation A 1= 2::
abbreviates 'A 1= <I>' for all of the sentences <I>' E 2::', and K 1= <I> [resp. K 1= 2::]
means that B 1= <I> [resp. B 1= 2::] for all B E K.

Theorem 0.6. (Los' Theorem) [BS81, Theorem V.2.9] Given a family of al­
gebras Ai, i E I, of type £, an ultrafilter U over I and any first order sentence
<I> of £,;::;;, we have

IT Ai/U 1= <I> if and only if {i El: Ai 1= <I>} E U.
iE!

Thus, if a first order sentence of £,;::;; is satisfied by all members of a class K
of algebras of type £, then it holds in any ultraproduet of members of K.

Let 2:: U {<I>} be a set of sentences of £,;::;;. We write 2:: 1= <I> if, whenever A
is an algebra of type £ such that A 1= 2::, we have A 1= <I>. The following
consequence of the Compactness Theorem of first order logic will be needed:

Theorem 0.7. [BS81, Corollary V.2.13] If 2:: U {<I>} is a set of (first order)
sentences of £,;::;; and 2:: 1= <I> then, for some finite subset 2:: 0 of 2::, we have

2:: 0 1= <I>.

A class K of algebras of type £ is axiomatized by a set 2:: of first order
sentences if, for all algebras A of type £, we have A E K if and only if A 1= 2::.
Thus, for example, K is a variety if and only if it is axiomatized by a set of £­
identities. (This is Birkhoff's Theorem: see, e.g., [BS81, Theorem II.l1.9].) A
class K of algebras is called an elementary [resp. strictly elementary] class if it
is axiomatized by a set [resp. a finite set] of first order sentences. A first order
sentence of the form (\7'X1)(\7'X2)'" (\7'x n ) (<I», where the variables Xl, ... , Xn are
distinct and <I> contains no occurrence of \7' or 3, is called a universal sentence.
A class K of algebras is called a universal class if it is axiomatized by a set of
universal sentences.

Theorem 0.8. [BS81, Theorem V.2.20] A class K of algebras of type £ lS a
universal class if and only if K is closed under I) Sand Pu .

An (£-) quasi-equation is an (£-) equation or a first order formula of £,;::;; of
the form

((Sl ~ t 1) and ... and (sn ~ tn)) implies (s ~ t),

where si,ti,s,t are £-terms for i = 1, ... ,n. The closure <I> of an (£-) quasi­
equation <I> is called an (£-) quasi-identity.
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Quasivarieties. A class le of algebras of type £ is called a quasivariety if it
is closed under I, S, P and Pu. Equivalently ([BS81, Theorem V.2.25]), le is a
quasivariety if and only if it is axiomatized by a set of quasi-identities. If W is
a class of similar algebras, we use Q(W) to denote the quasivariety generated
by W, i.e., Q(W) = IS P Pu(W).

For a first order formula <I> of £';:J that is not a sentence, and an algebra A
of type £, we define A 1= <I> to mean that A 1= <I>, in which case we say that
<I> is valid in A (or that A satisfies <I». Thus, A satisfies a quasi-equation <I>
if and only if it satisfies the quasi-identity <I>. For this reason, particularly in
the context ofaxiomatization, we often abuse terminology by confusing a first
order formula <I> with the sentence <I> that is its closure, and by referring to
(quasi-) equations as (quasi-) identities.

Now let K U {A} be a class of algebras of type £ and I; U I;' U {<I>} a set
of first order formulas of £';:J (over X) that are not necessarily sentences. For
each function a : w -+ A, with a( i) = ai E A for each i E w, and each
\If E I; U {<I>}, let \If [a] (or \IfA (a) ) denote the result of simultaneously replacing
each (if any) free occurence of Xi in \If by ai, for each i E w. Note that \If [a]
is a sentence of £~. We define I; 1=A <I> to mean that for each a : w -+ A, if
A 1= {\If [a] : \If E I;} then A 1= <I>[a]. We also define I; I=IC <I> to mean that
I; FB <I> for all B E le. We use I; FIC I;' to abbreviate I; FIC \If for all \If E I;'.

I; =IFIC I;' abbreviates 'both I; FIC I;' and I;' FIC I;'. Note that 0 FIC I;' has
the same meaning as K F I;'. On the other hand, if I; = {\If : \If E I;} and
K is the class of an algebras of type £, then I; FIC <I> does not have the same
meaning as I; 1= <I> (unless I; U {<I>} consists of sentences).

For a quasivariety le and an algebra A of the same type, the K-congruences
(or relative congruences, if K is understood) of A are the congruences e of A
for which A/e E K. We use ConIC A to denote the set of all K-congruences
of A. When ordered by set inclusion, these form an algebraic lattice ConIC A.
We call A K-subdirectly irreducible (or relatively subdirectly irreducible) if A
has a smallest nonidentity K-congruence. We call A K-simple (or relatively
simple) if IConlCAI = 2. We call A finitely K-subdirectly irreducible (or rel­
atively finitely subdirectly irreducible) if the least K-congruence of A is meet
irreducible in ConICA. The classes of all relatively subdirectly irreducible, all
relatively finitely subdirectly irreducible and all relatively simple algebras in
K are denoted KRS1 , KRFS1 and KRS , respectively. Note that KRS1 and KRS
exclude trivial algebras. We always have Ks ~ KRS ~ KRS1 ~ (KRFSdNT and
KS1 ~ KRS1 and KFS1 ~ KRFS1 .

For X ~ A 2
, the K-congruence of A generated by X, denoted et(X), is

the smallest le-congruence of A containing X. For a, b E A, we abbreviate
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et( Ha, b)}) by et(a, b). If 0 E ConKA and 0 = et(a, b) for some a, b E A,
we call 0 a principal K-congruence (or relative congruence).

A quasivariety K with an equationally definable constant term a is said
to be relatively a-regular if, whenever A E K and 01 , ()2 E ConK A with
aA /o1 = aA /()2, we have ()1 = ()2' We call a quasivariety K relatively con­
gruence distributive if ConKA is a distributive lattice for every A E K.

We shall use the following quasivarietal analogue of Birkhoff's Subdirect
Decomposition Theorem (see, e.g., [BS81, Theorem 11.8.6]), which follows as
a special case of [BP92, Theorem 9.2], but can be proved by generalizing the
proof strategy of the standard Birkhoff Subdirect Decomposition Theorem in
a straightforward manner.

Theorem 0.9. Let K be a quasivariety. Then every member A of K is iso­
morphic to a subdirect product ofK~subdirectlyirreducible algebras in K (which
are homomorphic images of A). Thus) K = 1Ps(KRsr).

The original Birkhoff Theorem A E 1Ps((H(A))sr) may be considered to be
the special case where K = V(A). Its corollary that V = I Ps(Vsr) for every
variety V also follows.

By a finitely generated quasivariety [resp. a finitely generated variety] we
mean a class of the form K = Q(K') [resp. K = V(K')] for some finite set
K' of finite algebras. A quasivariety K is called locally finite if every finitely
generated algebra in K is finite. It follows easily from [BS81, Theorem II.la.16]
that every finitely generated quasivariety or variety is locally finite. A variety
[resp. quasivariety] K is said to be generated as a variety [resp. quasivariety]
by its finite members if K = V(Kfin ) [resp. K = Q(Kfm )], where K fin is the class
of all finite algebras in K. This is true whenever K is locally finite.

Finite Axiomatizability. A quasivariety K of type £ is said to be finitely
based (or finitely axiomatizable) if K is axiomatized by some finite set L; con­
sisting of £-quasi-identities. When K is actually a variety, it follows that K
is finitely based if and only if it is axiomatized by a finite set of £-identities.
This is a consequence of the Compactness Theorem (see Theorem 0.7). We
shall need the following "finite basis theorems".

Theorem 0.10. [Pi88] Every finitely generated relatively congruence distribu­
tive quasivariety of finite type is finitely based.

The specialization to varieties of the above result was proved earlier by
K. Baker [Bak77]. Baker's theorem also admits the following generalization,
which was proved by J6nsson:
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Theorem 0.11. [J6n79], [BS81, Theorem V.4.17] If V is a congruence dis­
tributive variety of finite type and VFS1 is a strictly elementary class then V is
finitely based.

AIgebraizable Hilbert Systems. In [BP89] a Hilbert system S over a
language [, is defined to be algebmizable if there exist a finite family ~ =
{~1' ,~m} of binary formulas and finite families 8 = {01, ... , Or} and € =
{Cl, , Cr} of unary formulas such that for any connective a (of rank n, say)
and formulas rpl, ... , rpn, 'l/Jl, ... ,'l/Jn, rp, 'l/J, (, the following five conditions hold
for j = 1, ... , m:

(i) I-s~j(rp,rp)

(ii) {~i(rp,'l/J): i = 1, ,m} I-s ~j('l/J,rp)

(iii) {~i( rp, 'l/J) : i = 1, , m} U {~i( 'l/J, 0 : i = 1, ... , m} I-s ~j( rp, 0
(iv) {~i(rpk,'l/Jk): i = 1, ,m; k = 1, ... ,n} I-s

~j(a(rpl,"" rpn), a('l/Jl, ... , 'l/Jn))

(v) (-il- s {~i(Ot(O, Ct(O) : i = 1, ... , m; t = 1, ... , r}

'In this case, there is a unique quasivariety IC of algebras of type [, in which
for any set f U {rp, 'l/J} of formulas and for I = 1, ... ,r, we have

(1) fl-srp iff {Ot(O~et(O:(Ef; t=l, ... ,r} FK:OI(rp)~el(rp),

(2) rp ~ 'l/J =IFK: {Ot(~i(rp,'l/J)) ~ et(~i(rp,'l/J)): i = 1, ... ,m; t = 1, ... ,r}.

Given any axiomatization Ax U Ir of S, where Ax is a set of axioms and Ir
a set of inference rules with nonempty sets of premisses, the aforementioned
quasivariety IC is axiomatized by the identities

(vi) Ot(rp) ~ et(rp), t = 1, ... , r ; rp E Ax, and

Ot(~i(X,X)) ~ Ct(~i(X,X)), i = 1, ... ,m; t = 1, ... ,r

together with the quasi-identities

(vii) (A~=l A;=1 Ot((u) ~ et((u)) implies o/(rp) ~ e/(rp),

1= 1, ... ,r, ({(l'''',(n},rp) E Ir, and

(A~l A;=10t(~i(X,y))~ et(~i(x,y))) implies x ~ y

[BP89, Theorems 2.17 and 4.7]. Following [BP89], we call IC the equivalent
quasivariety semantics of S. The formulas in ~ and the equations Ot ~ et, t =
1, ... , r, are called equivalence formulas and defining equations for Sand IC.
They are unique up to interderivability over Sand IC, respectively. If, in
addition, p, q I-s ~j(p, q) for j = 1, ... , m, we say that S has the Codel Rule.



15

The next lemma extends [BP89, Corollary 5.4]; a full proof appears, e.g., in
[vAl95, Theorem 3.2.4, p182].

Lemma 0.12. Let 5 be an algebmizable Hilbed system with equivalent qua­
sivariety semantics K} equivalence formulas Clj} j = 1, ... , m} and defining
equations 6t ~ Et} t = 1, ... ,r} such that 5 has the Godel Rule. Then K satis­
fies Cli(x,x) ~ Clj(Y,Y) for all i,j} hence there is a constant term T = Cli(X,x)
definable over K and} moreover, K is relatively T -regular.

If 5 is an algebraizable Hilbert system whose equivalent quasivariety se­
mantics K is a variety, we say that 5 is strongly algebmizable with equivalent
variety semantics K. A quasivariety K satisfying (1) (but not necessarily (2))
above, for some 6, e, is called an algebmic semantics for 5.

Let 5 be a Hilbert system with axiomatization I'. A Hilbert system 5' over
the same language as 5 that is axiomatized by l' together with some additional
axioms is called an axiomatic extension of 5. If 5 is an algebraizable Hilbert
system then every axiomatic extension of 5 is also algebraizable with the same
defining equations and equivalence formulas as 5 [BP89, Corollary 4.9].
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CHAPTER 1

RESIDUATED ORDERED MONOIDS

In this chapter we define the class .cM of 'polrims' and the class eR of all
'residuation-subreducts' of polrims, which we call 'left residuation algebras'.
Some properties of these classes of algebras are given in Proposition 1.1. In
Proposition 1.4(i) we present an axiomatization of the class .cR. This result
is implicit in [OK85] and made precise in [Wro85]; we present a sketch of the
proof here for the sake of completeness. In part (ii) of Proposition 1.4 we
present an axiomatization of the class .cM. Some natural examples of polrims
and left residuation algebras are given. Lastly, we investigate and characterize
the class of residuation-reducts of polrims, or 'left residuation algebras with
condition (S')'; these are unpublished results of J.G. Raftery and the author.

A pomonoid is a structure (A; EEl, 0;:::;) where (A;:::;) is a partially ordered
set, (A; EEl, 0) is a monoid and:::; is compatible with the monoid operation in
the sense that for all a, b, c E A,

a S; b implies a EEl c :::; b EEl c and c EEl a :::; c EEl b.

Such a pomonoid is called integral if 0 is the least element of (A;:::;); it is
called left residuated if for any a, b E A, there is a least element c E A such
that a :::; c EEl b. We denote this element by a -'-- b and call -'-- the left residuation
operation of (A; EEl, 0; :::;). In this case, therefore,

(3) a :::; (a -'-- b) EEl b.

Given a left residuated pomonoid (A; EEl, 0; S;) and any a, b, d E A, we have

(4) a -'-- b :::; d if and only if a:::; d EEl b.

Thus d EEl b is the greatest element of {e EA: e -'-- b S; d}, and

a -'-- b :::; 0 if and only if a:::; b.
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When (A; EEl, 0; :S) is also integral, we have

(5) a -'- b = 0 if and only if a:S b,

so that the partial order :S is determined by the operations -'- and 0, making
such integral structures amenable to purely algebraic investigation. An algebra
(A; EEl A, -'- A, OA) of type (2,2,0) will be called a polrim4 if the binary relation
on A defined by a :sA b if and only if a -'- Ab = OA is such that (A; EElA, OA; :SA)
is a left residuated integral pomonoid whose left residuation operation is -'- A.
We drop the superscripts when there is no danger of confusion. The class of
all polrims will be denoted .eM.

Analogously, we call a pomonoid (A; EEl, 0; :S) right residuated if for any a, b E

A, there is a least element c E A such that a :S b EEl c. We denote this element
by a -;- b and call -;- the right residuation operation of (A; EEl, 0; :s). As above,
we will call an algebra (A; EElA, -;-A, OA) a porrim if the binary relation on A
defined by a :sA b if and only if a -;-Ab = OA is such that (A; EEl A, OA; :SA)
is a right residuated integral pomonoid whose right residuation operation is
-;-A. Again, we drop the superscripts when there is no danger of confusion.
Clearly, every porrim A = (A; EEl, -;-,0) is termwise equivalent to its 'opposite'
'polrim (A; +, -'-,0), in which a + b = b EB a for any a, b E A. In this sense, it
suffices to investigate polrims only. On the other hand, infinite ordinals provide
examples to show that when an integral pomonoid is left and right residuated,
the associated polrim and porrim need not be even termwise equivalent: see
Examples 1.8 and 1.10 below.

By a left residuation algebra we mean a ( -'- ,O)-subreduct (i.e., a subalgebra
of the ( -'- , O)-reduct) of a polrim. The class of all left residuation algebras will
be denoted .eR. Note that a left residuation algebra A = (A; -'-,0) is partially
ordered by the relation :S defined by a :S b if and only if a -'- b = 0 (a, b EA).
We similarly define a right residuation algebra to be a (-;-, O)-subreduct of a
pornm.

We adopt the convention for -'- (and for -;-) that omitted parentheses are
associated to the left, e.g., x -'- y -'- z -'- w abbreviates ((x -'- y) -'- z) -'- w. The
following proposition presents some properties of .eM and .eR.

Proposition 1.1. The class .eM satisfies (A1)-(A8) below. Thus the class
.eR satisfies (A1)-(A4).

(AI) x -'- y -'- (z -'- y) -'- (x -'- z) ~ 0 (i.e. x -'- y -'- (z -'- y) :S x -'- z),
(A2) x-'-O~x,

(A3) 0 -'- x ~ 0 (i.e. 0 :S x),

4acronym for partially ordered left residuated integral monoid.
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(A4) x ~ y ~ 0 and y ~ x ~ 0 implies x ~ y,

(A5) x~(YEBz)~x~z~y,

(A6) (xEBY)~Y::;x,

(A7) ((xEBy)~Y)EBy~xEBY,

(AS) ((x ~ y) EB y) ~ y ~ x ~ y.

Proof. By (3), .cM satisfies z ::; (z ~ y) EB y. Thus, by (3) again, the compat­
ibility of ::; with EB and the associativity of EB, .cM satisfies

and hence also x ~ y ::; (x ~ z) EB (z ~ y), by (4). By (4) again, .cM satisfies
x ~ y ~ (z ~ y) ::; x ~ z, proving (AI). (A2) and (A3) follow easily from the
definition of ~ and the fact that 0 is the least element of ::;, and (A4) follows
easily from (5).

By (3), the compatibility of ::; with EB and the associativity of EB, we have
that .cM satisfies

and hence also x ~ (y EB z) ::; x ~ z ~ y, by (4). We similarly have that .cM
satisfies

x ::; (x ~ (y EB z)) EB (y EB z) ~ (( x ~ (y EB z)) EB y) EB z.

By (4), therefore, .cM satisfies x ~ z ::; (x ~ (y EB z)) EB y and hence also
x ~ z ~ y ::; x ~ (y EB z). Thus (A5) follows immediately by (A4).

(A6) follows from the fact noted after (4). (A7) and (AS) follow from (3),
(A6) and (A4). 0

In Proposition 1.4 we shall present an axiomatization for each of the classes
.cM and .cR. We shall need the following results there.

Lemma 1.2. Let A = (A; ~,O) be an algebra of type (2,0) that satisfies (AI),
(A2) and (A3). Let::; be the binary relation defined on A by a ::; b if and only
if a ~ b = 0 (a, b E A). Then A satisfies the following:

(A9) x ~ x ~ 0,
(AlO) x ::; y implies x ~ z ::; y ~ z,

(All) x ::; y implies z ~ y ::; z ~ x,

(A12) x ~ y ::; x.
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In particular, every polrim or left residuation algebra satisfies (A9), (A10),
(All) and (A12). If A also satisfies (A4), then (A;::;) is a partially ordered
set whose least element is O.

Proof. Suppose A satisfies (A1), (A2) and (A3). (A9) is derivable from (A1)
and (A2) in the following way:

x --C.. x ~ X --C.. 0 --C.. (x --C.. 0) ~ X --C.. 0 --C.. (0 --C.. 0) --C.. (x --C.. 0) ~ O.

(A10) and (All) are easily derivable from (A1) and (A2). By (A3), A satisfies
o ::; y, hence (A12) follows from (All) and (A9). By Proposition 1.1, every
polrim and left residuation algebra satisfies (A9)~(A12).

Now suppose that A also satisfies (A4). By (A9), ::; is reflexive. Symmetry
of ::; follows from (A4). Let a, b, c E A such that a ::; band b ::; c. By (A2)
and (A1),

a --C.. c = ((a --C.. c) --C.. 0) --C.. 0 = ((a --C.. c) --C.. (b --C.. c)) --C.. (a --C.. b) = 0,

i.e., a ::; c. Thus (A; ::;) is a partially ordered set whose least element, in view
of (A3), is O. 0

The following construction for producing polrims and left residuation al­
gebras is due to Ono and Komori. Let M = (M; +,0;::;) be an integral
pomonoid. Let C(M) denote the set of all upward closed subsets of (M; ::;).
For X, Y E C(M), define

(6)

(7)

where

X EB Y = [{a + b : a E X and bEY}),

X -"- Y = {c EM: c +Y S;;; X},

c+Y={c+b:bEY}.

Lemma 1.3. [OK85] Let M = (M; +,0;::;) be an integral pomonoid and let EB
and --C.. be the binary operations on C(M) defined in (6) and (7), respectively.
Then (C(M);EB, -"-,M) is a polrim whose associated partial order is;;2. In
particular, (C (M); -"-, M) is a left residuation algebra.

Proposition 1.4. (i) [OK851, [Wro85] An algebra (A; -"-,0) of type (2,0) is
a left residuation algebra if and only if it satisfies (A1), (A2), (A3) and (A4).
Consequently, .eR is a quasivariety.
(ii) An algebra (A; EB, -"-,0) of type (2,2,0) is a polrim if and only if it satisfies
(A1), (A2), (A3), (A4) and (A5). Consequently, .eM is a quasivariety.
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Proof. (i) By Proposition 1.1, we know that a left residuation algebra satisfies
(Al)-(A4). We sketch here a proof of the converse, for the sake of complete­
ness. Let A = (A; ~ ,0) be an algebra of type (2,0) that satisfies (AI)-(A4).
Let S; be the relation defined on A by a S; b if and only if a":- b = 0 (a, bE A).
By Lemma 1.2, (A; S;) is a partially ordered set whose least element is 0 and
A satisfies (A9)-(AI2).

Let M be the set of all finite nonempty sequences of elements of A. If
a= al, .. . , an E M and c E A then we shall abbreviate c ~ al ~ ... ~ an by
c ..:- a. Define a relation j' on 111 by

aj' b if and only if, for all c E A and all J E M,

c~a..:-J=O implies c~b..:-J=O.

Then j' is a quasiorder on M, so j' n(j't l is an equivalence relation on M.
We shall abbreviate ::::.' n(::::.')-l by == and use [a] to denote the equivalence
class of awi th respect to =. The relation ::::. on M j == defined by

[a] ::::. [b] if and only if, for all c E A and all J E M,

c ~ a~ J = 0 implies c ..:- b~ J = 0

is therefore a well-defined partial ordering of M j ==. Define a binary operation
+ on Mj== by

[a] + [b] = [b, a].

It follows easily from the definitions that ::::. is compatible with + and hence
that (Mj -; +, [0];::::') is an integral pomonoid. By Lemma 1.3, therefore,
(C(Mj =); EB, ..:-, Mj ==1, where EB and ~ are defined as in (6) and (7), is a
polrim.

For a, bE A, we have [a] j [a ..:- b] + [b] = [b, a..:- b]. For, if c E A and J E M
such that c..:- a":- J = 0, then by (AI) and repeated applications of (AIO),

c ~ b~ (a ~ b) ..:- J S; c ~ a ~ J = 0,

hence c~b..:-(a":-b)..:-J= O. Moreover, [a~b] is the least [eJ E Mj == for
which [a] j [eJ + [b]. For suppose that

(8) [a] j [eJ + [b] = [b, eJ

and that for some c E A and J E M,

(9)
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From a -'-- a = 0 and (8), we get a -'-- b -'-- e= 0, hence

c-'--e-'--d - c-'--e-'--(a-'--b-'--e)-'--d

< c-'--(a-'--b)-'--d

(by repeated applications of (AI) and (AIO))

o (by (9)).

Thus [a-'--b]:::; [e].
Define a map f : A -t C(M/::::) by f(a) = [[a]). For a, bE A we have, by

(7), that

f(a) -'-- f(b) = [[a]) -'-- [[b]) = [{re] E M/ =: [e] + [[b]) ~ [[a])}).

By the above observations, we know that [a -'-- b] is the least [e] E M/:::: that
satisfies [a] :::; [e1 + [b], i.e. [e] + [[b]) ~ [[a]), hence f(a) -'-- f(b) = [[a -'-- b]) =
f(a -'-- b). That f is a one-to-one map follows from the definition of:::; and (A9)
and (A4). We therefore have that f embeds A into (C(M/ ::::); -'--, M/ =),
which is the ( -'--, M/ -)-reduet of the polrim (C(M/ _); EB, -'--, M/ =), which
completes the proof of (i).

(ii) By Proposition 1.1 we know that a polrim satisfies (AI)-(A5). Con­
versely, suppose A = (A; EB, -'-- ,0) is an algebra of type (2,2,0) satisfying
(A1)-(A5). Let::; be the relation defined on A by a ::; b if and only if a -'-- b = 0
(a, bE A). By Lemma 1.2, (A;::;) is a partially ordered set whose least element
is 0 and A satisfies (A9)-(AI2). If d = a EB (bEB c) and e = (a EB b) EB c then,
by (A5),

d -'-- e = d -'-- c -'-- (a EB b) = d -'-- c -'-- b -'-- a = d -'-- (b ffi c) -'-- a = d -'-- (a EB (b EB c)) = 0,

e -'-- d = e -'-- (b ffi c) -'-- a = e -'-- c -'-- b -'-- a = e -'-- c -'-- (a ffi b) = e -'-- (( a EB b) EB c) = 0,

so by (A4), EB is associative. Using (A2), (A3) and (A5), we have

a -'-- (a EB 0) = a -'-- 0 -'-- a = a -'-- a = 0,

(a EB 0) -'-- a = (a EB 0) -'-- 0 -'-- a = (a EB 0) -'-- (a EB 0) = 0,
a -'-- (0 EB a) = a -'-- a -'-- 0 = 0,

and (0 EB a) -'-- a = (0 EB a) -'-- a -'-- 0 = (0 EB a) -'-- (0 EB a) = 0,

so by (A4), a = a EB 0 = 0 EB a and (A; EB, 0) is a monoid. Suppose a ::; b. By
(A5), (A2) and (AI),

(aEBc)-'--(bEBc) (aEBc)-'--c-'--b-'--O-'--O

= (a EB c) -'-- c -'-- b -'-- (a -'-- b) -'-- ((a EB c) -'-- c -'-- a) = 0;
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(c EO a) -=- (c EO b) (c EO a) -=- b -=- °-=- c-=-o -=- °
(c EO a) -=- b -=- (a -=- b) -=- c -=- ((c EO a) -=- a -=- c)

-=- ((c EO a) -=- b -=- (a -=- b) -=- ((c EO a) -=- a)) = 0,

so :S is compatible with EO. Finally, from the fact that a :S c EO b if and only if°= a-=-( c EO b) = a -=- b -=- c, if and only if a -=- b :S c, it follows that -=- is a left
residuation operation for the integral pomonoid (A; EEl, 0; :S), and hence that
(A; EO, -=- ,0) is a polrim. 0

(This proof also shows that a finite algebra in in is embeddable into the
( -=- ,O)-reduct of a finite polrim.)

In [Kom83], Komori introduced the term 'BCC-algebra' for an algebra of
type (2,0) that satisfies (AI)-(A4). It follows that left residuation algebras
coincide with 'BCC-algebras'. For reasons concerning deductive systems to
be discussed later, we prefer, in this thesis, to avoid the term BCC-algebra.
The quasivarieties iM and in are not varieties: see Section 4.1.

We present some examples of polrims and left residuation algebras.

Example 1.5. A polrim (A; EO, -=- ,0) whose monoid operation is commutative
is called a pocrim. Pocrims have been studied in [Hig84], [Fle88] and [BR97];
their residuation- (i.e., ( -=- ,0)-) reducts were studied earlier under the name
'BCK-algebras with condition (S)' [Ise79]. The class of all pocrims, denoted
M, was shown in [Ise80] to be axiomatized by (A2), (A3), (A4), (A5) and

(AI3) x-=- y -=- (x -=- z) -=- (z -=- y) ~ 0.

Thus M is a quasivariety; it is not a variety [Hig84]. An algebra (A; -=- ,0)
of type (2,0) is called a ECK-algebra if it satisfies (A2), (A3), (A4) and
(Al3). The class of all BCK-algebras, denoted BCK, is precisely the class of
all residuation-subreducts of pocrims [Pa182]' [OK85], [Fle88], [Wr085]. The
class BCK is also a quasivariety that is not a variety [Wr083]. The following
are important examples of identities that hold in BCK but not in in:

(AI4)

(AI5)

x-=-y-=-z ~ x-=-z-=-y,

x -=- (x -=- y) -=- y ~ 0, (i.e., x -=- (x -=- y) :S y).

In fact, it is well known that BCK is axiomatized by (AI)-(A4) and (AI4).
We also have the following result:

Lemma 1.6. The quasivariety BCK is axiomatized by (AI )-(A4) and (AI5).

Proof. Let K be the class of algebras of type (2,0) over the language ( -=- ,0)
axiomatized by (AI)-(A4) and (AI5). Then K is a quasivariety of left residu-
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ation algebras. By (AI), K satisfies x ~ y ~ (z ~ y) ::; x ~ z hence, K satisfies

x~y~(x~z) < x~y~(x~y~(z~y)) (by (All))

< z ~ y (by (AI5)),

so K satisfies (AI3), which completes the proof. 0

A wealth of literature on BCK-algebras exists and includes survey articles
[IT78], [Cor82]; the more recent paper [BR95] also serves partially as a survey.

Example 1.7. Let R = (R;+,',-,O,I) be a ring with identity and let IdR
denote the lattice of (two-sided) ideals of R. For I, J E Id R, define I . J to
be the ideal of R generated by {i . j : i E I;j E J} and I : J to be the
ideal {r ER: r . J ~ I}. Then (Id R; " :, R) is a polrim whose partial order
is that of reversed set inclusion. A recent development in ring theory is the
study of the lattices of topologizing filters of rings, considered as polrims; these
extend the ideal lattices in respect of all interesting operations [GoI87]' [vdB 1],
[vdB2]. The definition of a topologizing filter on a ring R and a discussion
of the lattice of all such filters on R appear in the Appendix. These lattices
provide natural examples of integral pomonoids that are residuated on the left
but not on the right.

Example 1.8. Let a be a nonzero ordinal. Recall that for 13" E a, we write
13 + , for the usual sum of the ordinals 13 and,. If a is closed under + then
(a; EB, 0; ~), where EB is +, is an integral pomonoid residuated on both sides.
Thus a gives rise to a polrim (a; EB, ~,O) and a porrim (a; EB, --,-,0). If a
is a successor ordinal, say a = K + 1, then the structure (a; EB, O;~) is also
an integral pomonoid residuated on both sides if we define 13 EB , to be the
minimum of K and 13 +, (13" Ea). Clearly only ordinals not exceeding w + 1
give rise, in this sense, to pocrims. For example, in w + 2 we have

lEBw=l+w=w#w+l=wEBl.

Any other ordinals have different left and right residuation operations. For
example, in w + 2 again,

(w+l)~I=w, while (w+l)--,-I=w+l.

Note that ordinals that are not successor ordinals and are not closed under
+, such as w + w, do not give rise, in this way, to polrims (or porrims). For
each nonzero ordinal a however, there does exist a left [resp. right] residuation
algebra, whose universe is a, that is a left [resp. right] residuation-subreduct
of some ordinal polrim.
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Example 1.9. A polrim A = (A; EB, ...:... ,0) is called a left [resp. right] comple­
mented monoid if, whenever a, b E A with a ~ b, there exists c E A such that
c EB a = b [resp. a EB c = b]. Left (and right) complemented monoids were inves­
tigated by Bosbach in a series of papers (e.g., [Bos69], [Bos70], [Bos82]). The
residuation-subreducts of left complemented monoids belong to a class of alge­
bras that Bosbach called residuation groupoids. (More precisely, a residuation
groupoid satisfying x ...:... X ~ 0 and x ...:... y ...:... X ~ 0 is such a subreduct.) Commu­
tative complemented monoids (considered as pocrims) are called hoops; they
were first investigated in an unpublished work of Biichi and Owens (c1975) and
their structure is now well understood [BP94a], [BF93], [Fer92]. The identity

(10) (x...:... y) EB y ~ (y ...:... x) EB x

distinguishes left complemented monoids [resp. hoops] among polrims [resp.
pocrims] and may be used to account for the (well known) fact that these
subclasses are varieties. The variety of left complemented monoids has a de­
finable join operation: if A is a left complemented monoid and a, b E A, then
(a...:... b) EB b (= (b...:... a) EB a) is the join a u b of a and b in (A;~) [BP94b]. The
identity

z ...:... x...:... (y ...:... x) ~ Z ...:... y ...:... (x...:... y)

similarly distinguishes residuation groupoids and the residuation-subreducts
of hoops among left residuation algebras and BCK-algebras, respectively.
Whereas the residuation-subreducts of hoops form a variety [Fer92, Theo­
rem 3.15, p96], the residuation groupoids in £R do not (see the final example
in [Wro85]).

Example 1.10. A polrim is left cancellative if it satisfies the quasi-identity

zEBx~zEBy implies x~y.

Analogously, a polrim is right cancellative if it satisfies the quasi-identity

x EB z ~ y EB z implies x ~ y,

which is equivalent (by an easy application of (A7)) to the identity

(xEBy)...:...y~x.

Evidently, in pocrims, left and right cancellativity coincide. The quasivariety
generated by the pocrim on the ordinal w coincides with the variety of can­
cellative hoops [BF93] and is axiomatized, relative to pocrims, by the previous
identity together with

x...:... (x...:... y) ~ y...:... (y ...:... x)

((10) is redundant: see [BR97, Proposition 8.7]). For example, the ideals of
a Dedekind domain (considered as in Example 1. 7) form a cancellative hoop.
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The positive cone of a lattice ordered abelian group may be viewed, in a natural
way, as a cancellative hoop, and every cancellative hoop arises from a lattice
ordered abelian group in this way (see, e.g., [Bos82], [BF93], [Fer92]). The
ordinal polrims mentioned in Example 1.8 are right complemented monoids,
the unbounded ones being left cancellative. Thus the [unbounded] ordinal por­
rims are [right cancellative] left complemented monoids. (As polrims, however,
ordinals exceeding w +1 are neither right cancellative nor left complemented.)

Definition 1.11. Let A = (A; ...0...,0) E £R. For each a, bE A, define

Sa,b = {c EA: c ...0... b Sa}.

We say A has condition (S) if max Sa,b exists for all a, b E A. In this case, we
denote max Sa,b by a + b. We say that A has condition (S') if A also satisfies
the following condi tion:

(Va,b,c E A) (3d EA) (c...o... b...o... a = c...o...d and d...o...b Sa).

Suppose that A has condition (S) and set A' = (A; +, ...0... ,0). By definition,
(y + z) ...0... Z S y, hence

x ...0... z ...0... Y ~ x...o... Z ...0... Y ...0... ((y + z) ...0... Z ...0... y) (by (A2))

< x...o...z...o...((y+z)...o...z) (by (AI))

< x...o... (y + z) (by (AI)),

l.e. ,

(11 ) A' F x...o... z...o... y S x...o... (y + z).

For all a, b E A, set Da,b = {c EA: a S c + b}. Then a...o... b = min Da,b.

For if c E Da,b then as c+ b, so by (11), a...o...b...o...c S a...o...(c+ b) = 0, i.e.,
a...o... b S c. Also, (a...o... b) + b is max Sa -'-b,b and a E Sa -'-b,b, so a S (a...o... b) + b.
Thus a ...0... b E Da,b' so a ...0... b = min Da,b'

Calculating over A' and using (11), we have

(x + (y + z))...o... z...o... y...o... X S (x + (y + z))...o... (y + z)...o... X ~ 0,

hence (x + (y + z))...o... Z...:... y S x, hence (x + (y + z))...o... z S X + y, so

(12) A' F x + (y + z) S (x + y) + z.

The proofs of the following are straightforward:

A' F x + 0 ~ x ~ 0 + x,

A' F x S y implies (z + x S z + y and x + z S y + z).
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Suppose that A has condition (S'). Then

(13) A' F x ~ z ~ y ~ x ~ (y + z).

For, if a, b, c E A such that c ~ b~ a = c ~ d and d ~ b :s: a, then d E Sa,b so
d :s: max Sa,b = a + b. Then c ~ (a + b) :s: c ~ d = c ~ b~ a, so by (11), we
conclude (13).

By (13), therefore, A' is a polrim. Note that the reduct of a polrim satisfies
condition (S') (set d = a E9 b). Thus we have the following:

Proposition 1.12. The ( ~ ,0) -reduets of polrims are just the left residuation
algebras with condition (S').

A BCK-algebra A with condition (S) has condition (S'): for a, b, c, d E A
we have, by (A14) and (A15),

c ~ (c ~ b~ a) ~ b = c ~ b~ (c ~ b~ a) :s: a.

Thus c ~ (c ~ b~ a) E Sa,b, so C ~ (c ~ b~ a) :s: max Sa,b = a + b. By (All)
and (A15),

c ~ (a + b) :s: c ~ (c ~ (c ~ b~ a)) :s: c ~ b~ a,

hence, by (11), c ~ (a + b) = c ~ b~ a, and we may take d = a + b in (S'). We
therefore obtain the known result that the ( ~ ,O)-reduets of pocrims are just
the BCK-algebras with condition (S) [Ise79].

Example 1.13. As a final observation, we present an example to show that
in £R, condition (S) does not imply condition (S'). Let A be a disjoint union
{ai : i E w} U {O}, where {ai : i E w} is a one- to-one sequence. Define a binary
operation ~ on A by setting 0 ~ 0 = 0, ai ~ 0 = ai and 0 ~ ai = 0 for all
i E w, and for i, j E w,

{

0 if j :s: i,
ai ~ aj = ai+2 if j = i + 1,

ai+l if j ~ i + 2.

One routinely checks that A = (A; ~,O) is a left residuation algebra; the
associated partial order corresponds to the Hasse diagram in Figure 1.

• 0
Figure 1.
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A satisfies condition (8) where, for i,j E w, we have

{

ao if i = 0 or j = 0
. . _ ai-l if i, j 2 1 and i S j

at + a J - of . > 2 d· . 1ai-2 I Z _ an Z = J +
aj if i > j + 1.

Note, however, that A violates condition (8'): ao -'-- al -'-- a3 = a2 -'-- a3 = a4 and
there does not exist a d E A such that ao -'-- d = a40 In general, therefore, when
A E £R has condition (8), A' need not be a polrimo
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CHAPTER 2

THE LOGIC IPC WITHOUT

EXCHANGE AND CONTRACTION

In [OK85], Ono and Komori present a Gentzen system LJ* that is a formu­
lation of Intuitionistic Propositional Calculus (IPC). In a sense to be made
clear below, LJ* is essentially the 'propositional fragment' of Gentzen's system
LJ [Gen35]. Strictly speaking, the two systems differ in that the conjunction
connective 1\ of LJ is duplicated by a further connective & in LJ*. The
connectives 1\ and & are interchangeable in any derivable sequent of LJ* and
their identification in all such sequents yields just the derivable (propositional)
sequents of LJ. The (explicit) inference rules of LJ* include only two infer­
ence figures dealing with the connective &, however. The system LJ* has
four 'structural rules', i.e., rules of inference in which no connectives occur
explicitly; they are 'cut', 'exchange', 'contraction' and 'weakening'. The paper
[OK85] is devoted to the study of systems L BK and L BCK that are obtained
from LJ* by removing, respectively, the rules of exchange and contraction,
and the rule of contraction alone. Thus L BK and L BCK fall into the class of
'substructural logics' (see [SD93]). Because of the choice of inference rules for
LJ*, the connectives 1\ and & are no longer interchangeable in the derivable
(propositional) sequents of L BK , nor in those of LBCK ' Roughly speaking, 1\
takes on the character of a lattice operation, while & is like a monoid opera­
tion. Ono and Komori also define two Hilbert systems HBK 5 and HBcK, which
they prove to be 'logically equivalent' to L BK and L BCK , respectively. In this
chapter, we shall consider the logics L BK and HBK , which we shall call Land
H, and their fragments.

In Section 1 we summarize some results from [OK85], namely that the 'cut
elimination theorem' holds for L and that for a subset C of its connectives that
contains ---+ and either does not contain V or does contain 1\, the C-fragments

5In [OK85], LBK and HBK are denoted LBCC and HBCC, respectively.
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of Land H are logically equivalent. The Hilbert system H is defined by a finite
set I of (axioms and) inference rules for which the 'separation theorem' does
not hold. We present a set J of inference rules which we prove to axiomatize H.
The remainder of Section 1 is devoted to showing that the C-fragments of L
and H are logically equivalent for all sets C of connectives that contain ~ (we
call these the 'superimplicational fragments'), and hence that the separation
theorem holds for the axiomatization J of H. This answers a question posed
in [OK85].

In Section 2 we show that H (and each of its superimplicational fragments)
is 'algebraizable' in the sense of Blok and Pigozzi [BP89]. The 'equivalent
quasivariety semantics' of the {~}- and {&, ~ }-fragments of H turn out
to be £R and £M, respectively. We axiomatize the equivalent quasivariety
semantics of each of the superimplicational fragments of H. To conclude, we
show that the {~, V}- and {~, v, -.l}-fragments of H (and their equivalent
quasivariety semantics) are not finitely axiomatizable.

In Section 3 we show that the '(C, I)-subsystem' of H, namely the Hilbert
system defined by those axioms and inference rules of I that contain only the
connectives in C (where ~E C), is algebraizable only when C does not contain
V or does contain 1\.

2.1. The Separation Theorem. The Gentzen system L has a language
consisting of the binary connectives &, ~, V and 1\ and the constant L
Initial sequents of L are either of the form -.l =? a for any formula a, or of the
form p =? P for any variable p. Rules of inference of L are as follows: for all
finite sequences f, 6, l: of formulas and all formulas a, (3, "

f,6 =? 1 . f =? a 6,0',l: =? 1
f A (weakemng) (cut)

,O',U =? 1 6,f,l: =? 1

f,O'=?(3 (=?~) f=?a 6,(3,l:=?1(~=?)
f =? 0' ~ (3 6,a ~ (3,f,l: =? 1

f=:;.O' f=:;.(3
---(=? V 1) (=:;. V 2)
f=:;.aV(3 f=?aV(3

f,a,6=?1 f,(3,6=?1
f,a V (3,6 =? 1 (V =?)

f,a,6=?1 (1\=?1) f,(3,6=?1 (1\ =? 2)
f,O' 1\ (3,6 =? 1 f, a 1\ (3,6 =? 1

f=?a f=?(3
f=?al\(3 (=? 1\)
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r=>O' 6=>(3(=> &) r,O',(3,6=>/ (& =».
r,6=>O'&(3 r,O'&(3,6=>/

Note that L is not equipped with the structural rules

r,O',O',6 => /( .) r,O',(3,6 => '( h )------ contractIOn exc ange .
r,O',6 => / r,(3,O',~ => /

One obtains LBCK by adding the exchange rule to L and one obtains LJ*
(essentially IPC) by adding the contraction rule to LBCK ' In the derivable
sequents of LJ*, the connectives & and 1\ are interchangable. As the following
derivation shows, the exchange rule is 'derivable' in the extension of L by the
contraction rule. This fact is noted without proof in [OK85]. For any formula
a, the sequent a => a is easily seen, by induction on the complexity of a, to
be derivable in L.

r,O',(3,~ => / ( k' )wea enmg
r,(3,O',(3,O',~=> / (& =»

(3 => (3 a => a (&) r, (3 & a, (3 & a, ~ => / ( .)
~ contractIOn

(3, a ~ (3 & a r, (3 & a, ~ ~ / ( )
cut

r,(3,O',~ ~ /

Let C be a Gentzen system whose rules of inference include the cut rule. If,
for every sequent r ~ / derivable in C, there exists a derivation of r ~ / that
does not invoke the. cut rule, we say that the cut elimination theorem holds for
C.

Theorem 2.1. [OK85, Theorem 2.3] The cut elimination theorem holds for
L.

(W"e remark, however, that the extension of L by the contraction rule does
not have the cut elimination theorem [OK85].)

Let C be a subset of {&,~, v, 1\, 1..} containing at least~. A formula
0' is called a C-formula if any connective appearing in 0' belongs to C. A
sequent consisting of only C-formulas is called a C-sequent. Let C-L denote
the Gentzen system whose language consists of the connectives in C, whose
initial sequents are p => p for any propositional variable p and, when 1.. E C,
also 1.. => 0' for any C-formula 0', and whose rules of inference are those of
L that use only connectives from C. Theorem 2.1 has the following corollary
(see, for example, [Tak75, Theorem 6.3]):

Corollary 2.2. If a sequent r ~ 0' is derivable in L then it is derivable in
C- L J whenever C contains ~ and all the connectives occurring in r u {O'}.



p-tq-tp

-.l -t P

(p -t q) -t (1' -t p) -t l' -t q

((p -t 1') 1\ (q -t 1')) -t (p V q) -t l'

P -t (p V q)
q -t (p V q)

(p 1\ q) -t p

(p 1\ q) -t q
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Proof. In each rule of inference other than the cut rule, the set of connectives
occurring in the upper sequents is a subset of the set of connectives occurring
in the lower sequent. Thus the result follows by Theorem 2.1. 0

We therefore call C-L the C-fragment of L.

The Hilbert system H = HBK has a language consisting of the binary con­
nectives &, -t, V, 1\ and the constant 1... We reserve the symbol f- for the
consequence relation of H. We adopt the convention for -t that omitted paren­
theses are associated to the right, e.g., a -t (3 -t { abbreviates a -t ((3 -t I)'

The system H is defined by the axioms

(HI)

(H2)

(H3)

(H4)
(H5)
(H6)
(H7)
(H8)
(H9) ((1' -t p) 1\ (1' -t q)) -t l' -t (p 1\ q)
(HIO) p -t q -t (p 1\ q)

(HH) (p -t q -t 1')' -t (p & q) -t l'

(HI2) p -t q -t (p & q).

and the following two variants of modus ponens as additional inference rules:

(m.p.l) p, p -t q f- q and (m.p.2) q, p -t q -t l' f- p -t r.

Let I be the above axiomatization of H, i.e., the set consisting of (HI)­
(HI2), (m.p.l) and (m.p.2). The Hilbert system HBCK has the same language
as H and is axiomatized by I together with the axiom

(HI3) (p -t q -t 1') -t q -t P -t l'

(essentially the exchange rule), which makes the inference rule (m.p.2) redun­
dant. The axioms (H3), (HI3) and (HI) are usually called (B), (C) and (K),
respectively. For this reason, the Hilbert system with language {-t} that is
axiomatized by these three axioms and (m.p.l) is usually called BCK.

Let C be a subset of {&, -t, V, 1\, -.l} that contains -t. The C-fragment
of H, denoted C-H, is the Hilbert system whose language consists of the
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connectives of C and whose consequence relation, denoted f- c , is defined by:

r f- c <.p if and only if r f- <.p and r u {<.p} is a set of C-formulas.

Here our nomenclature differs from that of [OK85]. What Ono and Komori re­
fer to there as the 'C-fragment' of H will be called here the '(C, I)-subsystem'.
This notion, unlike the one just defined, depends not only on Hand C but also
on the axiomatization I. In particular, for C as above, the (C, I)-subsystem
of H, denoted (C, I)-H, is a Hilbert system whose language consists of the
connectives of C; it is axiomatized by the formulas among (HI )-(HI2) that
use only connectives from C, and (m.p.l) and (m.p.2). We denote its conse­
quence relation by f- C,I. (Our usage of 'fragment' is consistent, for example,
with [BP89]. No corresponding notational distinction need be drawn for L, in
view of Corollary 2.2.)

A superimplicational fragment shall mean a C-fragment, for some C con­
taining -t.

Let G and 5 be a Gentzen and a Hilbert system, respectively, with a common
language that includes a specified binary connective -t. Suppose that for all
formulas al, ... ,an, I, the sequent al,· .. ,an::::} I is derivable in G exactly
when the formula al -t a2 -t ... -t an -t I is a theorem of S. Then we say
that G and 5 are logically equivalent.

The following lemma appears without proof in [OK85]. We include a sketch
of a proof for the sake of completeness.

Lemma 2.3. [OK85, Lemma 2.1] Let C be a subset of {&, -t, V, 1\, ..l} that
contains -t and let aI, ,an, I be C -formulas. The following are equivalent:

(i) the sequent aI, , an ::::} I is derivable in C-L!

(ii) the sequent 0 ::::} al -t a2 -t ... -t an -t I is derivable in C -L.

Proof. That (i) implies (ii) follows from repeated applications of (::::} -t). Con­
versely, suppose there exists a (cut-free) derivation of 0 ::::} al -t a2 -t ... -t

an -t I in C-L. The only (non-cut) rule with 0 ::::} al -t a2 -t ... -t an -t I
as lower sequent is (::::} -t). Thus there must exist a derivation of the sequent
al ::::} a2 -t a3 -t ... -t an -t I in C- L. Continuing in this way, we obtain
(i). []

Theorem 2.4. [OK85, Corollary 2.8.2] Land H are logically equivalent.
Moreover) for any subset C of {&, -t, V, 1\, ..l} which contains -t and either
does not contain V or does contain 1\) the systems C-L and (C, I)-H are
logically equivalent.
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We say that the separation theorem holds for an axiomatization I' of a
Hilbert system 5 over a language £ that includes a binary connective ~ pro­
vided that for any theorem a of 5, there exists a derivation of a (with respect
to 1') in which all occurring connectives other than ~ are among the connec­
tives occurring in a. In this case, it is evident that each (superimplicational)
C-fragment of 5 is axiomatized by the axioms and inference rules of I' that
contain only the connectives in C. In [OK85, §9, Remark 1], Ono and Komori
ask whether there exists an axiomatization of H for which the separation the­
orem holds. (H does not have the separation theorem for I: see Section 3.)
We shall present such an axiomatization here.

Let J be the set obtained by removing from I the axiom (H4) and adding
the axioms

(Xo) (q~s)~(r~s)~(qVr)~s,

(Xn) (PI ~ ~ Pn ~ q ~ s) ~ (PI ~ ... ~ Pn ~ r ~ s) ~

PI ~ ~ Pn ~ (q V r) ~ s,

for each natural number n 2: 1. In [OK85, Theorem 2.9] it is proved that HBCK

has the separation theorem for the axiomatization obtained from I by exclud­
ing (H4) and including (HI3) and (Xo). Thus, the {~}-fragmentof HBCK is
BCK and all superimplicational fragments of HBCK are finitely axiomatizable.

Let H' = HSK be the Hilbert system with the same language as H that is
axiomatized by J and let f-' denote its consequence relation. For a subset C
of {&,~, V, 1\, -L} which contains ~, we define the C-fragment and (C, J)­
subsystem of H' just as for H and I. We denote them by C-H' and (C, J)-H',
and their consequence relations by f-~ and f-~,J' respectively.

Lemma 2.5. ({~, V, I\},I)-H and ({~, V, I\}, J)-H' coincide. Thus) Hand
H' are the same Hilbert system.

Proof. First we show that each (Xn ) is a theorem of ({~, V, I\}, I)-H. We
begin with the following observation:

(14)

For, by (H3),

and

f-{---->},I (((3 ~ () ~ ((3 ~ 1])) ~ (a ~ (3 ~ () ~ a ~ (3 ~ 1],

so (14) follows by (m.p.l). By (H4),

I-{---->,V,I\},J ((q ~ s) 1\ (r ~ s)) ~ (q V r) ~ s,
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and by (HID),

I-{_,V,II},I (q -t s) -t (r -t s) -t ((q -t s) 1\ (r -t s)).

Thus (Xo) is a theorem of ({-t, V,I\},I)-H by (14). Using (H9), (14) and
induction, we obtain

I- { -.,V,II},I ((PI -t . . . -t Pn -t q -t s) 1\ (PI -t . . . -t Pn -t r -t s)) -t

PI -t . . . -t pn -t ((q -t s) 1\ (r -t s)).

Using (H4), (H3) and induction, we have

I-{_,V,II},I (PI -t ... -t pn -t ((q -t s) 1\ (r -t s))) -t PI -t ... -t pn -t

(q Vr) -t s,

hence, by (H3) and (m.p.l),

I-{_,V,II},I ((PI -t ... -t pn -t q -t s) 1\ (PI -t ... -t Pn -t r -t S))-t

PI -t . . . -t pn -t (q Vr) -t S.

Now, by (HID),

I- { _,V,II} ,I (PI -t ... -t pn -t q -t S) -t (PI -t ... -t pn -t r -t S) -t

((PI -t . . . -t pn -t q -t S) 1\ (PI -t . . . -t Pn -t r -t S)),

so, using (14), we obtain (Xn ) as a theorem of ({-t, V,I\},I)-H.

Next, we derive (H4) in ({ -t, V, I\}, J)-HI
• By substituting (q -t s) 1\ (r -t

s) for P in (Xl), we get

I-{_,V,II},J (((q -t s) 1\ (r -t s)) -t (q -t s)) -t (((q -t s) 1\ (r -t s))-t

(r -t s)) -t ((q -t s) 1\ (r -t s)) -t (q V r) -t s,

so, using (H7), (H8) and (m.p.l), we may prove (H4).

This establishes the first assertion of the lemma, from which the second
follows immediately since the axioms by which H and HI differ contain only
the connectives -t, V and 1\. 0

Henceforth, therefore, we shall drop the I from HI, 1-1
, etc. Note that in the

derivation of (H4) in the above lemma, we used only (Xl)' (H7), (H8) and
(m.p.l). Thus, H is also axiomatized by the finite set JI obtained from J by
replacing the (Xn),n E w, by the single formula (Xl)' while ({-t, V,I\},I)­
H is axiomatized by the corresponding subset of J I . As we shall see in the
next section, however, H does not have the separation theorem for JI , nor for
any axiomatizating subset of J in which only finitely many of the (Xn ) 's are
present.
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Evidently, if C contains ----> and either does not contain V or does contain 1\

then (C, I)-H and (C, J)-H coincide. In this case Theorem 2.4 implies that
C-L and (C, J)-H are logically equivalent. We show that the same is true in
the other cases.

Lemma 2.6. {---->, V}-L and ({ ---->, V}, J)-H are logically equivalent. More­
over) if C is a subset of {&, ---->, V, 1\, l.} that contains ----> and V but not 1\)
then C-L and (C, J) -H are logically equivalent.

Proof. We first show that the sequent

PI ----> • . . ----> pn ----> q ----> S, PI ----> . . . ----> Pn ----> r ----> S, PI , ... ,pn, q V r =} S,

which corresponds to the axiom (Xn ), is derivable in {---->, V}-L. Consider
the following derivation in {---->, V}-L. Each step is an application of the rule
( ----> =} ).

Pn =} Pn

q=}q s=}s

q ----> s,q =} s

Pn-1 =} Pn-1

PI ----> . . . ----> Pn ----> q ----> S, PI , ... ,Pn, q =} s

Similarly we can derive

PI ----> . . . ----> Pn ----> r ----> S, PI , ... , Pn, r =} s.

Set

f = PI ----> . . . ----> Pn ----> q ----> S, PI ----> . . . ----> Pn ----> r ----> S, PI,···, Pn .

By (weakening), we derive f, q =} sand f, r =} s, and hence, by (V =}), also
f,qVr=}s.

The sequents corresponding to the other axioms of ({ ---->, V}, J)-H are easily
derivable in {---->, V}-L. Suppose 01 ----> ..• ----> On ----> / is a theorem of ({---->,

V}, J)-H. We use cp to denote 02 ----> ... ----> On ----> /. Then there exists a
derivation of 01 ----> cp from 0 in ({---->, V},J)-H. Suppose that the last step of
a derivation of 01 ----> cp uses the inference rule (m.p.2). Then there exists a
{---->, V}-formula (3 such that f- {-+,v},J (3 and f- {-+,v},J 01 ----> (3 ----> cp. Proceeding
inductively, we assume that the sequent 01, (3, 02, ... ,On =} / is derivable in
{---->, V}-L and, using Lemma 2.3, that the sequent 0 =} (3 derivable in {---->, v}­
L. We have the following derivation:

o=} (3 01, (3, 02, ... ,On =} / ( )-------------:... cut.
01,02,·· ., On =} /
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Thus the sequent a1, . .. ,an =? , is derivable in {-t, V}-L. One deals similarly
with the (m.p.l) case, thereby completing the inductive proof.

Conversely, suppose that aI, ... ,an =? , is derivable in {-t, V}-L. To show
that a1 -t ... -t an -t , is a theorem of ({ -t, V}, J)-H, we proceed by
induction on the length of the derivation of aI, . .. ,an =? ,. Suppose that
there exists a derivation in which aI, ... ,an =? , occurs as the lower sequent
of the inference rule (V =?). Then we have

aI, ... ,an = 131, ... , 13m, ( V TJ, 81 , ... , 8r ,

where m + r + 1 = n, and

13I, ... , 13m, (, 81 , ,8r =? , 131, , 13m, TJ, 81 , ... ,Or =? I (V =?)

131, , 13m, ( V TJ, 01, ,8r =? ,

occurs in the derivation. By the induction hypothesis,

r{-+,v},J 131 -t ... -t 13m -t (-t 81 -t ... -t 8r -t,

and

r{-+,v},J 131 -t ... -t 13m -t TJ -t 81 -t ... -t Or -t ,.

Thus, using the axiom (Xm ) of ({ -t, V}, J)-H and (m.p.l), we obtain

r {-+,v},J 131 -t ... -t 13m -t (( V TJ) -t 81 -t ... -t 8r -t ,.

If there exists a dedvation in which aI, ... ,an =? , occurs as the lower sequent
of any of the other inference rules (other than the cut rule), the same result
follows easily, so the first assertion of the lemma follows by Theorem 2.1. The
rest of the lemma is proved similarly. 0

The above lemma, in conjunction with Lemma 2.5, gives us the following:

Corollary 2.7. For each subset C of {&, -t, V, 1\, -l} containing -t) C -Land
(C, J) -Hare logically equivalent.

Corollary 2.8. The separation theorem holds for the axiomatization J of H.

Proof. Let C be a subset of {&, -t, V, 1\, -l} containing -t and suppose that
a C-formula a is a theorem of H. By Corollary 2.7, the sequent 0 =? a is
derivable in L. In view of Corollary 2.2, this derivation can be assumed to
belong to C-L. By Corollary 2.7 again, a is a theorem of (C, J)-H. 0

Note that as a consequence of the separation theorem for J, the C-fragment
C-H of H (where -tE C) is axiomatized by those axioms and inference rules
in J that contain only the connectives in C. Thus, the systems C-H and
(C, J)-H coincide for each C containing -t.
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Remark. The {-t}-fragment of H has been given the rather misleading
name BCC in the literature. By Corollary 2.8, this system is axiomatized by
(HI), (H3), (m.p.1), (m.p.2), so we have used the more natural name BK in
[RvA97], [vAR1] and in subsequent chapters of this thesis.

2.2. Algebraizability and Axiomatization of Fragments of H. In this
section we use notions that are defined under the heading 'Algebraizable
Hilbert Systems' in Chapter O. Algebraic semantics for superimplicational
fragments of H are given implicitly in [OK85, Theorem 8.1]. The next propo­
sition sharpens this result.

Proposition 2.9. 6 Let C be a subset of {&, -t, v, 1\, -L} containing -to Then
the Hilbert system C -H is algebraizable with the Godel Rule) having defining
equation p ~ p -t P and equivalence formulas ~(p,q) = {p -t q,q -t p}.

Proof. Let'lj; be any theorem of C-H. Then re 'lj; and, by (HI), re tp -t 'lj; -t

tp, so (m.p.2) yields

(15) re tp -t tp.

Thus property (i) in the definition of algebraizability holds. Property (ii) is
satisfied by symmetry. By (H3) and (m.p.1),

q -t r, p -t q re p -t r

and by symmetry of the variables, we obtain (iii). By (H3), we have

re (p -t r) -t (q -t p) -t q -t r,

so by (m.p.2),
q -t p re (p -t r) -t q -t r.

By (H3) and (m.p.1), we also have

r -t s re (q -t r) -t q -t sand

(q -t r) -t q -t S re ((p -t r) -t q -t r) -t (p -t r) -t q -t s,

hence, by repeated applications of (m.p.1),

q -t p, r -t S re (p -t r) -t q -t s,

and (iv) follows for the connective -t by symmetry of the variables.

Suppose that C contains &. By (H3), we have

re (s -t (q & s)) -t (r -t s) -t r -t (q & s),

6Proposition 2.9 combines results from our papers [RvA97] and [vARl]. After the pub­
~icati~n of [RvA97] ~nd ~~e submission of [vARl], we obtained a copy of the preprint [Agl]
m whIch the algebraIzabIhty of the full system H is also remarked upon.
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so by (m.p.2),
r -+ S f- c (s -+ (q&s)) -+ r -+ (q&s).

Also by (H3) and (m.p.I),

(s -+ (q & s)) -+ r -+ (q & s) f- c (p -+ (s -+ (q & s))) -+ p -+ r -+ (q & s),

while (Hll) and (m.p.I) entail

p -+ r -+ (q & s) f- c (p & r) -+ (q & s).

Applying (mop.I) to the previous three inferences, we obtain

(16) r -+ s, P -+ s -+ (q & s) f- c (p & r) -+ (q & s).

Furthermore, (H3) yields

f-c (q -+ s -+ (q & s)) -+ (p -+ q) -+ p -+ s -+ (q & s),

the first premiss of which is an instance of (HI2), so by two applications of
(m.p.I),

p -+ q f- c p -+ s -+ (q & s),

hence by (16),
r -+ s, P -+ q f-c (p & r) -+ (q & s).

By symmetry of the variables, we infer property (iv) for the connective &.

Suppose that C contains 1\. By (H3),

f- c (p -+ q) -+ ((p 1\ r) -+ p) -+ (p 1\ r) -+ q,

hence, by (H7) and (m,poI),

p -+ q f- c (p 1\ r) -+ q.

Similarly, by (H3), (H8) and (m.p.I),

r -+ s f-c (p 1\ r) -+ s.

By (HID) and (mop.I), p, q f-c p 1\ q, so by structurality and the above,

p -+ q, r -+ s f-c ((p 1\ r) -+ q) 1\ ((p 1\ r) -+ s).

By (H9),

f- c (( (p 1\ r) -+ q) 1\ ((p 1\ r) -+ s)) -+ (p 1\ r) -+ (q 1\ s),

hence, by (m.p.I),

p -+ q, r -+ s f-c (p 1\ r) -+ (q 1\ s).

By symmetry of the variables, we infer property (iv) for the connective 1\.
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Suppose that C contains V. By (H3),

f- c (q ~ (q Vs)) ~ (p ~ q) ~ p ~ (q Vs),

so by (H5) and (m.p.I),

p~qt-cp~(qVs).

Similarly, using (H3), (H6) and (m.p.I), we have

r~st-cr~(qVs).

By (Xo),

t- c (p ~ (q Vs)) ~ (r ~ (q Vs)) ~ (p V r) ~ (q Vs),

hence, by (m.p.I),

p ~ q, r ~ s t- c (p V r) ~ (q Vs),

By symmetry of the variables, we infer property (iv) for the connective V. The
case of 1.. is an immediate consequence of (i).

For (v), we note that by (HI) and (m.p.I),

p t-c (p ~ p) ~ p and p t-c p ~ p ~ p,

while (15) and (m.p.l) yield (p ~ p) ~ p t-c p, so

p --1t-c (p ~ p) ~ p, p ~ p ~ p.

To see that the Godel rule holds, observe that from (HI) and (m.p.l) we
obtain p t-c q ~ p and hence also q t-c p ~ q, so

p, q f- c q ~ p, p ~ q,

as required. D

When discussing the equivalent quasivariety semantics of Hand C-H, we
shall use the more natural algebraic symbols EB, ~ , n, u, I for the connectives
&,~, V, I\,..l, respectively. Let C be a subset of {&,~, V, 1\, 1..}. By C* we
mean the subset of {EB, ~ , n, U , I} obtained by replacing each connective in
C by its corresponding algebraic symbol. For each C-formula 0' we define a
C*-term 0'* inductively as follows: first replace 1.. by 1. If 0' is a variable, let
0'* be 0'. Suppose that 13* and 'Y* have been defined. If 0' is 13 & 'Y, let 0'*
be 13* EB 'Y*; if 0' is 13 ~ 'Y, let 0'* be 'Y* ~ 13*; if 0' is 13 V " let 0'* be 'Y* n 13*;
if 0' is 13 1\ 'Y, let 0'* be 'Y* U 13*. Note that our convention for ~ of omitting
parentheses by association to the right is consistent with our convention for
~ of omitting parentheses by association to the left.

Using the above notation, the equivalent quasivariety semantics of H, de­
noted 'H, is a class of algebras of type (2,2,2,2,0), with fundamental operation
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symbols EB, ~, n, U ,1. Similarly, for a subset C of the connectives containing
-t, the equivalent quasivariety semantics of C- H, denoted Hc-, is a class of
algebras whose set offundamental operation symbols is Co. By Proposition 2.9
and Lemma a.12, a constant is defined over Hc- by a = x ~ x and each Hc­
is relatively a-regular. For convenience, we shall now assume that a is in the
language of each Hc-. By (1) (see page 14), we have that for all sets r of
C-formulas and all C-formulas 0:,

(17) r f- c 0: if and only if tB* ~ a : (3 E r} FH c - 0:* ~ a.

In view of Corollary 2.7, H [resp. Hc-] coincides with the class of full­
BCC-algebras [resp. 'C*-BCC-algebras'] defined in [OK85]. Several embed­
ding theorems for these algebras appear in [OK85], exemplifying a general
correspondence between fragments of an algebraizable Hilbert system Sand
subreduct classes of the equivalent quasivariety semantics of S [BP89, Corol­
lary 2.12]. In particular, when ~ E Co, the class of all C*-subreducts of
members of H is precisely Hc-. Thus, any algebra in Hc- is embeddable into
an algebra in H.

Let C contain -to As observed after Corollary 2.8, C-H is axiomatized
by those axioms and inference rules in J that contain only the connectives
in C. An explicit axiomatization of each Hc - therefore follows from the al­
gebraizability of Hc - (Proposition 2.9) and properties (vi) and (vii) after the
definition of algebraizability (see page 14). In particular, H{ -'--} is axiomatized
by the following identities and quasi-identities:

(Bl) x~y~x~a,

(B2) x~y~(z~y)~(x~z)~a,

(B3) x ~ x ~ a,
(B4) x ~ a and y ~ x ~ a implies y ~ a,

(B5) y ~ a and z ~ y ~ x ~ a implies z ~ x ~ a,

(B6) x ~ y ~ a and y ~ x ~ a implies x ~ y.

H{ffi,-'--} is axiomatized by (Bl)-(B6) and

(B7) (x EB y) ~ y ~ x ~ a,
(B8) z ~ (x EB y) ~ (z ~ y ~ x) ~ a.
Proposition 2.10. The quasivarieties H{ -'--} [resp. H{ffi, -'--}} and £R [resp.
£M} are the same.

Proof. We shall first show that H{ -'--} ~ fR. Since (AI) and (A4) are precisely
(B2) and (B6), respectively, we need only show that (A2) and (A3) hold in
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H{~}. By (B1), H{~} 1= O~z~O ~ 0, so by (B4), we infer that H{~} 1=
O~z ~ O. By (B1) again, H{~} 1= z~O~z ~ O. By (B3), H{~} 1=
z~O~(z~O) ~ 0, hence by (B5), H{~} 1= z~(z~O) ~ O. Thus by (B6),
H{ ~} 1= z ~ 0 ~ z. That £R ~ H{ ~} follows from Proposition 1.4 and
properties of left residuation algebras that are either obvious or have been
noted.

To show that H{ 61, ~} ~ £M, it now suffices to show that H{61, ~} sat­
isfies (A5). In view of (B8) and (B6), we need only show that H{61, ~} 1=
z ~ x ~ y ~ (z ~ (y EB x)) ~ O. Using (A2), (B2) and (B7), we calculate (over

H{61, ~})

z ~ x ~ y -"- (z ~ (y EB x))

~ z-"-x~y~O-"-(z~(YEBx))

~ z-"-x~y~((YEBx)~x~y)~(z-"-(YEBx))

~ z -"- x ~ y ~ ((y EB x) ~ x ~ y) ~ (z ~ (y EEl x)) ~ 0 ~ 0

~ z -"- x -"- y ~ ((y EB x) ~ x ~ y) -"- (z ~ (y EB x))

~ (z ~ x ~ ((y EB x) ~ x) ~ (z -"- (y EB x)))

~ (z -"- x ~ y ~ ((y EB x) ~ x -"- y) ~ (z ~ x -"- ((y EB x) ~ x)))

~ o.
Conversely, by (A5), £M satisfies (B8) and hence also (B7):

£M 1= (x EB y) ~ y ~ x ~ (x EB y) ~ (x EB y) ~ o.
o

This proposition confirms that it would have been consistent to call a left
residuation algebra a 'BK-algebra' (rather than a 'BCC~algebra'), but we
prefer the more descriptive term that we have adopted. It follows from this
proposition that the Hilbert system BCK is algebraizable with equivalent
quasivariety semantics ECK (also see [BP89, Section 5.2.3]' for example) and
the {&, ----+ }-fragment of H BCK is algebraizable with equivalent quasivariety
semantics the class of all pocrims (see Example 1.5).

We noted after Lemma 2.5 that H is axiomatized by the set J l , namely
(Hl)-(H3), (H5)-(H12), (Xl)' (m.p.l) and (m.p.2). By Proposition 2.10, an
axiomatization of H is therefore given by (AI )-(A5) and the following:

(Cl) x~l~O

(C2) (xny)~y~O

(C3) (xny)~x~O

(C4) x ~ (y n z) ~ w ~ (x ~ y ~ w) -"- (x ~ z ~ w) ~ 0
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(C5) x-=-( x U y) ~ 0

(C6) y -=- (x U y) ~ 0

(C7) (x u y) -=- z -=- ((X -=- z) U (y -=- z)) ~ 0

(C8) (x U y) -=- y -=- x ~ O.

We similarly obtain from the axiomatization of {---+, V}-H that H{ -'-, n} is
axiomatized by (AI )-(A4), (C2), (C3) and the identities

(Yo) x-=-(ynz)-=-(x..:-y)-=-(x..:-z)~O,

(Yn ) x-=- (y n z)..:- WI ..:- ... ..:- Wn ..:- (x..:- y..:- WI ..:- ., . ..:- wn )

-=- (x ..:- Z ..:- WI -=- . . . -=- w n ) ~ 0

(corresponding to (Xn )) for each natural number n 2 1. Note that we can
derive (Yn ) from (Yn + l ) and (A2) in general by setting Wn+l = O. As we
shall demonstrate later, however, the converse is false. The class H{ -'-, n ,I} is
axiomatized by the axioms of H{ -'- , n} together with (C1).

If C* contains both EB and n, then for each n 2 2, (Yn ) may be derived
from (A5) and (Yi) (i.e. (C4)) in the following way:

x ..:- (y n z) -'-- WI -=- -'-- W n ..:- (x -'-- y -'-- WI ..:- . " -'-- w n )

-=-(X":-Z":-WI":- -'--wn )

~ x -'-- (y n z) -'-- (wn EB EB wd -'-- (x -'-- y -'-- (wn EB ... EB WI))

-'-- '( X ..:- Z ..:- (wn EB EB wd)

~ O.

When C* contains both nand u (i.e., C contains V and /\), the proof of
Lemma 2.5 shows that the formulas (Xn ), n 2 2, are redundant in our axiom­
atization of C-H. We may summarize the above results as follows:

Corollary 2.11. For each C* ~ {EB, -'--, n, u ,I} that contains ..:- , other than
{ -'-- , n } and { -'-- , n, I}, He- is axiomatized by (AI) -(A4) and those identities
among (A5), (C I) -(C8) that use only the operation symbols in C*. H{ -'- , n }
is axiomatized by (AI)-(A4) and (Yn ), nEw, while H{ -'-, n ,I} is axiomatized
by (Cl) and the identities and quasi-identity axiomatizing H{ -'- , n }.

Corollary 2.12. {&, ---+, V}-H is axiomatized by (HI), (H3), (H5), (H6), (Hl1),
(HI2), (Xl), (m.p.I) and (m.p.2).

For each C* containing -'--, the ( ..:- ,O)-reduct of each A E He- is a left
residuation algebra. Thus each such A is partially ordered by the relation :S
defined by a :S b if and only if a -'-- b = 0 (a, bE A).
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Proposition 2.13. Let A E 'Hc -} where --'- E C*} and let ::s: be the partial
order on A defined by a ::s: b iff a --'- b = 0 (a, b E A).

(i) If n E C* then ::s: is a meet semilattice order and the meet operation

is n.

(ii) If U E C* then ::s: is a join semilattice order and the join operation

is u.

(iii) If { n , U } ~ C* then ::s: is a lattice order with nand U as its

meet and join operations} respectively.

(iv) If I E C* then I is the greatest element with respect to ::S:.

Proof. (i) Suppose A E 'Hc - and a, bE A. Then, by (C2) and (C3), an b ::s: b
and an b ::s: a. Moreover, if C E A such that c::S: a and c::S: b then, by (11),

c--'-(anb)--'-O--'-O

c--'-(anb)--'-(c--'-a)--'-(c--'-b)

0,

hence C ::s: an b. Thus, an b is the meet of a and b.

(ii) Suppose A E 'Hc- and a, bE A. Note first that A satisfies (0 U 0) --'- 0 =
(0 U 0) --'- 0 --'- 0 =0 by (CS), hence 0 U 0 = 0 by (A3) and (A5). By (C5) and
(C6), a::S: aub and b::S: aub. Moreover, if C E A such that a::S: c and b::S: c
then, by (C7),

(aub)--'-c--'-O

(aub)--'-c--'-(OuO)

(aub)--'-c--'-((a--'-c)u(b--'-c))

0,

hence a u b ::s: c. Thus, a u b is the join of a and b.

That (iii) holds is an immediate consequence of (i) and (ii), and (iv) follows
immediately from (C I ). 0

Lemma 2.14. When { --'-, u} ~ C*} 'Hc - satisfies

(C9) (x u y) --'- z >:::; (x --'- z) U (y --'- z)}
(CIa) (xuY)--'-y>:::;x--'-y.

When { --'- , n } ~ C*} 'Hc- satisfies

(Cll) x--'-(xny)>:::;x--'-y.

When { -'-- , n , u } ~ C*} 'Hc- satisfies
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(C12) x--'-(ynz) ~ (x--'-y)u(x--'-z).

When {81, --'-, n} ~ C*, 'Hc • satisfies

(C13) x 81 (y n z) ~ (x 81 y) n (x 81 z) and

(C14) (y n z) 81 x ~ (y 81 x) n (z 81 x).

Proof. Suppose { --'-, u } ~ C*. By (C7), 'Hc. satisfies

(x U y) --'- z :::; (x --'- z) U (y --'- z)

and, by (AlO) (see page 18) and Proposition 2.l3(ii), also (x--'-z)u(Y--'-z):::;
(x u y) --'- z, hence (C9) follows by (A4). By (C9), 'Hc. satisfies

(xuy)--'-Y ~ (x--'-y)u(y--'-y) ~ (x--'---y)uO.

By Proposition 2.l3(ii), 'Hc• satisfies (x --'- y) u 0 ~ x --'- y, and (ClO) follows.

Suppose { --'-, n} ~ C*. By (All)' 'Hc. satisfies x --'- y :::; x --'--- (x n y) and, by
(Yo), also

x --'- (x n y) --'--- (x --'- x) --'- (x --'- y) ~ 0,

so (Cll) follows by (A4).

Suppose { --'-, n, u} ~ C*. That 'Hc• satisfies x --'- (y n z) :::; (x --'- y) U (x --'- z)
follows immediately if one sets w = (x --'- y) u (x --'--- z) in (C4) and, by (All)
and Proposition 2.l3(iii), 'Hc • satisfies (x --'- y) U (x --'- z) :::; x --'- (y n z), so (C12)
follows by (A4).

Suppose {81, --'- , n} ~ C*. Let A E 'Hc. and a, b, c E A. To see that (C13)
holds, note that since bn c :::; band bn c :::; c, we have a 81 (b n c) :::; a EB band
a 81 (bnc) :::; a 81 c so that a 81 (bnc) :::; (a EB b) n (a EB c). If dE A such that
d:::; a 81 band d:::; a 81 c then, by (A5) and (11),

d--'-(a81(bnc)) = d--'-(a81(bnc))--'-O--'---O

= d--'-(a81(bnc))--'-(d--'---(a81b))--'-(d--'-(a81c))

= d--'-(bnc)--'---a--'-(d--'-b--'-a)--'---(d--'-c--'-a)

0,

hence a 81 (bnc) = (aEBb)n(a81c). For (C14), note that (bnc) EBa:::;
(bEB a) n (c81 a). If dE A such that d:::; bEB a and d:::; cEB a then, by (A5) and
(YO),

d--'-((bnc) 81 a) = d--'-((bnc)EBa)--'-O--'---O

- d--'-((bnc)EBa)--'-(d--'---(bEBa))--'-(d--'---(cEBa))

d--'-a--'-(bnc)--'-(d--'-a--'-b)--'---(d--'-a--'-c)

- 0,
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hence (b ne) EEl a = (b EEl a) n (c EEl a). 0

Corollary 2.15. When { ..;..., u} ~ C*, the identity (C7) may be replaced by
the identity (C9) in the axiomatization ofHc. given in Corollary 2.11. More­
over) when { ..;..., n, u} ~ C*) the identity (C4) (i.e. (Yi)) may be replaced by
the identity (C12) in the axiomatization ofHc. given in Corollary 2.11.

Proof. That (C7) is derivable from (C9) is obvious. When { ..;..., n, u} ~ C*,
one may derive (C4) from (C12) and (C9) in the following way:

x";'" (y n z) ..;... W ..;... (x..;... y ..;... w) ..;... (x..;... z ..;... w)

~ ((x..;...y)u(x..;...z))..;...w..;...(x..;...y..;...w)..;...(x..;...z..;...w)

~ ((x..;...y..;...w)..;...(x..;...y..;...w)..;...(x..;...z..;...w))u

((x..;...z..;...w)..;...(x..;...y..;...w)..;...(x..;...z..;...w))

~ 0 uO.

Using Proposition 2.13(ii) (whose proof does not invoke (C4)), one may derive
oU 0 ~ 0 and the result follows. 0

We present some examples of algebras in Hand Hc·.

Example 2.16. Let R = (R; +,', -,0,1) be a ring with identity. The polrim
(Id R;·,:, R) defined in Example 1.7 has an underlying lattice order "2 whose
meet and join operations are U and n, respectively, where I U J = {i + j :
i E I; j E J} (1, J E Id R). One may easily check that the algebra (Id R;·,
:, u,n,R,{O}) satisfies the identities (C1)-(C8), and therefore is a member
of H. It can be shown that this remains true for the algebras of topologizing
filters on R mentioned in Example 1. 7 and studied in the Appendix.

Example 2.17. Let ex be a nonzero ordinal that is closed under ordinal addi­
tion. Then the algebra (ex; Ee, ..;... ,0) [resp. (ex; Ee, ....,...,0)] defined in Example 1.8
is a polrim [resp. porrim]. Let nand u be the meet and join (i.e., min­
imum and maximum) operations associated with the order ~ on ex. Then
(ex;Ee,";"', n, u,O) and (ex;Ee,....,..., n, u,O) are members of H{ffi,~,n,u}. In­
deed, checking that each of the identities (C2)-(C8) holds is straightforward
since ~ is a linear order. Thus, for each C* not containing 1, we may define
the algebra ac. [resp. a~.] to be the C*-reduct of (ex; EEl, ..;... , n, u, 0) [resp.
(ex; EEl, ....,..., n, u,O)]. Evidently, ac., a~. E Hc"

When ex is a successor ordinal, say ,8+1, then ex has a largest element ,8, hence
the algebras (ex; EEl, ..;... , n, U ,0,,8) and (ex; Ee, ....,..., n, U ,0, (3) are members of H
(where EEl is defined as in Example 1.8). In this case, for each C*, we may define
the algebra ac. [resp. a~.] to be the C*-reduct of (ex; Ee, ..;... , n, U ,0,,8) [resp.
(ex; Ee, ....,..., n, U ,0,,8)]. Evidently, ac·, a~. E Hc•.
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We have seen that each of the quasivarieties 7-le• (where -=-- E C*) except
possibly 7-l{ -=-- , n} and 7-l{ -=-- , n ,I} is finitely axiomatizable (Corollary 2.11).
We show now that this is the best possible result, i.e. 7-l{ -=--, n } and 7-l{ -=--, n ,I}

are not finitely axiomatizable, from which it follows that {-+, V}-H and {-+,
V, ..l}-H are not finitely axiomatizable.

Theorem 2.18. The quasivarieties 7-l{ -=--, n} and 7-l{ -=--, n,l} are not finitely
axiomatizable.

Proof. Recall that 7-l{ -=--, n} is axiomatized by the set ~ consisting of (A1)­
(A4), (C2), (C3) and (Yn ), nEw. We shall show that no finite subset of ~
axiomatizes 7-l{ -=-- , n }.

First we define an algebra A = (A; -=--, n ,0) of type (2,2,0) that satisfies
(A1)-(A4), (C2), (C3) and (Yo) but does not satisfy (11). Let (A;~) be the
partially ordered set defined by the Hasse diagram in Figure 2. Let n be the
meet operation on A determined by ~ and let -=-- be defined on A as follows:
for x, yEA, x-=-- y = 0 if x ~ y, x-=--O = x; 1 -=-- a = d, 1 -=-- b = a-=-- b = c -=-- b =
c -=-- d = c, 1 -=-- c = a -=-- c = b -=-- c = b -=-- d = b, 1 -=-- d = 1 and a -=-- d = a.

b c

Figure 2.

One checks routinely that A satisfies (A1)-(A4), (C2), (C3) and (Yo), but
A does not satisfy (11), since

1 -=-- (b n c) -=-- a -=-- (1 -=-- b -=-- a) -=-- (1 -=-- c -=-- a) l-=--a-=--(c-=--a)-=--(b-=--a)

d-=--O-=--O

d =1= o.

Next, for each n ~ 1, we define an algebra A = (A; -=--, n, 0) that satisfies
(A1)-(A4), (C2), (C3) and (Yn ) (and hence (Ym ) for each m ~ n) but does
not satisfy (Yn +1 ). First consider the structure (B; -=--', d; ~') where ~' is the
partial order on the four-element set B = {a, b, c, d} defined by the Hasse
diagram in Figure 3 and -=--' is a binary operation on B defined in the following
way: for x, y E B, x-=--' y = d if X ~' y, x-=--' d = x; a-=--' b = c -=--' b = c and
a-=--' c = b -=--' c = b. One easily checks that (B; -=--', d) E 7-l{ -=--}.
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Figure 3.

Next we define the algebra A = (A; ...:...., n, 0). Let N be the set of positive
natural numbers and A the following union of five mutually disjoint sets:

A = {ai: i E N} U {b i : i E N} U {Ci: i E N} U {di : i E N} U {e,j,O}.

Let:::; be the partial order on A depicted in Figure 4 and n the meet semilattice
operation on A induced by:::;. For all u, v E A, let u...:.... 0 = u and if u :::; v,
define u...:....v = O. For all i,j E N and all x,y E {a,b,c,d}, define

if i < j
if i ;:::: j and x i' y
if i ;:::: j and x :::;' y,

a2n ...:.... j = e and Xi"':"" j = Xi+l for Xi =J a2n,

e"':"" u = a2n+l ...:.... U for u =J a2n+l, and

U ...:.... e = U ...:.... a2n+l for u =J e.

One checks routinely that A satisfies (Al)-(A4), (C2), (C3) and (Yn ), but
A does not satisfy (Yn+1 ) because

(al ...:.... (b2 n C2)"':"" nj...:.... a2n+l)"':"" (al ...:.... b2 ...:.... nj...:.... a2n+l)"':"" (al ...:.... C2"':"" nj...:.... a2n+l)

(an+l"':"" nj...:.... a2n+l)"':"" (Cn+l ...:.... nj...:.... a2n+l)"':"" (bn+ 1 ...:.... nj...:.... a2n+l)

(e ...:.... a2n+l) ...:.... (C2n+l ...:.... a2n+l) ...:.... (b2n+ 1 ...:.... a2n+l)

d2n(n+l) ...:.... 0...:.... 0

d2n(n+l) =J O.
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,/
,/

~I
Figure 4.

Suppose that there exists a finite set ~' of quasi-identities that axiomatizes
H{ -'-- , n }. Let <I> E ~/. Obviously, H{ -'-- , n} F <I> , hence ~ F <I>. By Theo­
rem 0.7, therefore, there exists a finite subset ~<I> of ~ such that ~q, F <I>. Let
n( <I» be the largest mEw such that (Ym ) E ~q,. Since ~' is finite, the set
{n( <I» : <I> E ~/} must have a largest element, say k. So, the set ~o consist-
ing of (Al)-(A4), (C2), (C3) and (Yn ) for each n ::::; k satisfies ~o F <I> for
each <I> E ~/. Thus, ~o axiomatizes H{ -'--, n}, which contradicts our earlier
observations, hence H{ -'--, n} is not finitely axiomatizable.

Since each of the algebras constructed in this proof has a top element, we
may similarly conclude that H{ -'-- , n ,I} is not finitely axiomatizable. 0

By algebraizability (Proposition 2.9), we immediately obtain:

Corollary 2.19. The {--+, V}- and {--+, V, i-}-fragments of H are not finitely
axiomatizable.

This contrasts with the fact (noted before Lemma 2.5) that all superimpli­
cational fragments of HBCK are finitely axiomatizable.

2.3. Some Non-algebraizability Results. For a Hilbert system S over a
language .c, the condition that S be algebraizable was defined in Chapter O.
and shown to apply to all superimplicational fragments of H. In the context
of this chapter it is natural to ask whether the (C,I)-subsystems of H (with
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respect to Ono and Komori's axiomatization I of H: see page 31) are also
algebraizable. If C contains -. and either does not contain V or does contain
1\, then (C, I)-H coincides with (C, J)-H (as remarked prior to Lemma 2.6)
which coincides with C-H (as remarked after Corollary 2.8). Thus we need
only consider the cases when C contains -. and V but not 1\. We show that
(C, I)-H is not algebraizable in each of these cases.

For a Hilbert system S with language 1:, the S-filters of an algebra A of
type I: are defined to be those subsets F of A for which the following is true:
for any set r u {rp} of I:-formulas for which r r-s rp, and for any function
a: w -. A,

if ,A(a) E F for all , E r, then rpA(a) E F.

It clearly suffices to verify this closure property for the (axioms and) inference
rules r r-s rp in some given axiomatization of S. The set Fis A of all S­
filters of A becomes an algebraic lattice Fis A when ordered by inclusion. A
congruence eof an algebra A of type I: is said to be compatible with F ~ A
provided that b E F whenever both a E F and (a, b) E e. Let OAF denote
the largest congruence of A that is compatible with F. The map OA : Fi s A
;-t Con A thus defined is called the Leibniz operator of A. If OA is order
preserving from Fis A into Con A for all algebras A of type 1:, we call S
protoalgebraic.

Theorem 2.20. [BP89, Theorem 5.1] A Hilbert system S is algebraizable with
equivalent quasivariety semantics JC if and only if for each algebra A of type
1:, the map OA : Fis A -. Con A is a (lattice) isomorphism from Fi s A onto
ConKA. In this case, in particular, each OA is injective and S is protoalge­
braic.

Proposition 2.21. Let C be a subset of {&, -., V, 1\, ~} that contains -. and
V but not 1\. Then (C, 1) -H is not algebraizable.

Proof. Consider ({ -., V}, I)-H. Define an algebra A = (A; -'- , n, 0) of type
(2,2,0) as follows. Let A be a four-element set {a, a, b, 1} and:::; the partial
order on A defined by the Hasse diagram in Figure 5. For x, YEA, set
x -'- y = 0 if x :::; y and x -'- 0 = Xi 1 -'- a = b -'- a = band 1 -'- b = a. Also set
1 n 1 = 1 and x n y = 0 otherwise. One easily checks that {a}, {a, a} and A
are ({ -., V}, I)-H-filters of A.

Note that (a,O) = (a-'-O,a-'-l) E 8 A (O,1) and, similarly, (b,O) E 8 A (O,1),
so 8 A (0,1) = A2

. Since (0,1) = (bn1,ln1) E 8 A (b,1), we have 8 A (b,1) =
A 2

. Since (b,l) = (1-'- a, 1-'- 0) E 8 A (O, a), we have 8 A (O, a) = A 2 . Since
(O,a) = (a-'-b,a-'-O) E 8 A (b,0), we have 8 A (b,0) = A 2 . Since (b,O)
(b-'-a,b-'-b) E 8 A (a,b), we have 8 A (a,b) = A 2. Lastly, since (b,O) =
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(b--'-a,b--'-l) E eA(a,l), we have eA(a,l) = A2
. Thus, there are only two

congruences of A, namely idA and A2, so the Leibniz operator {lA is not in­
jective. Thus, ({ --+, V}, I)-H is not algebraizable. The same example shows
that ({ --+, V, 1..}, 1)-H is not algebraizable.

1

b

a

o

a b

Figure 5. Figure 6.

Consider ({ &, --+, V} ,I)-H. Define A = (A; EB, --'-, n ,0) as follows. Let A
be a five-element set {O, a, b, c, I} and::; the partial order on A defined by the
Hasse diagram in Figure 6. For x, yEA, set 0 EB x = x = x EB 0, c EB c = c,
a EB c = a, b EB c = b and x EB y = 1 otherwise. Also, set x --'- y = 0 if x ::; y;
x --'- °= x, 1 --'- a = 1 --'- b = a --'- b = b --'- a = c, 1 --'- c = 1, a --'- c = a and
b --'- c = b. Let n be the meet operation on A determined by ::;. One easily
checks that {a}, {O,c} and A are ({&,--+, V},I)-H-filters of A.

Note that (a,l) = (OEBa,cEBa) E eA(O,c) and (b,l) = (OEBb,cEBb) E
eA(O,c), so (c,l) = (anb,lnl) E eA(O,c). Thus (0,1) E eA(O,c) and it
follows that eA(O,c) = A 2

. Next, since (c,O) = (a--'-b,c--'-b) E eA(a,c) and
(c,O) = (b--'-a,c--'-a) E eA(b,c), we have eA(a,e) = eA(b,c) = A 2 . Since
(b,e) = (lnb,anb) E eA(l,a) and (a,e) = (lna,bna) E eA(l,b), we have
e A(l, a) = e A(l, b) = A 2

. It follows that the only congruences of A are idA

and A 2 , so {lA is not injective. Thus, ({&,--+, V},I)-H is not algebraizable,
and neither is ({&,--+, V,1..},I)-H. 0

This confirms, for example, that the deductive systems ({ --+, V},I)-H and
{--+, V}-H are not the same (the latter being a proper extension of the for­
mer) and that ({ --+, V},I)-H is not logically equivalent to {--+, V}-L. It also
confirms that H does not have the separation theorem for the axiomatization
I. Let K be the class of algebras A = (A; --'-, n ,0) of type (2,2,0) such that
(A; --'- ,0) E eR, the partial order on A defined by a ::; b if and only if a --'- b = °
(a,b E A) is a meet semilattice order, and A satisfies (C2) and (C3). (Thus,
K models the algebraic analogues of all axioms of ({ --+, V} ,1)-H.) The first
example of the previous proof shows that even in members of K, the operation
n and the meet operation induced by the definable partial order need not
coincide. (This contrasts with Proposition 2.l3(i).)
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CHAPTER 3

A FINITE MODEL PROPERTY

In [OK85, §9, Question 3], Ono and Komori asked whether various fragments
of L (= LSK ) and of L SCK have the finite model property (with respect to
suitable semantics). In Section 1 ofthis chapter we show that BK (i.e. {-t }-H)
has the finite model property with respect to the quasivariety of left residuation
algebras. It follows that the variety generated by all left residuation algebras
is generated by the finite left residuation algebras. In Section 2 we establish
that BK has the finite model property with respect to a class of structures
that constitute a Kripke-style relational semantics for it.

By Theorem 2.4, BK and {-t }-L are logically equivalent. Establishing a
finite model property for BK therefore proves the same for {-t }-L, so our
results settle a parOt of [OK85, §9, Question 3]; they are to be published in
[vAR2].

Recently, Meyer and Ono settled a related question by showing that the
{-t}-fragment of HSCK (i.e. BCK) and the {-t,!\}-fragment of HSCK have
a finite model property. Their paper [M094] stimulated our interest in the
problem solved here. We conclude by noting that our solution may be adapted
to give an alternative proof of their result for BCK. We have not been able to
adapt our strategy (nor that of Meyer and Ono) to proving the finite model
property for {-t,!\}-H, nor for any other fragment. 7

3.1. The Finite Model Property for BK with respect to .cR. We shall
prove:

7Added in proof: in a personal communication, Professor H. Ono has drawn our attention
to the currently unpublished manuscripts [OT1], [OT2], in which Okada and Terui recently
proved a finite model property for H (and other logics) with respect to a class of 'intuition­
istic phase spaces'. These models are not algebras, and the results do not appear to imply
our Corollary 3.6.
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Theorem 3.1. An {--t }-formula cp is a theorem of BK if and only if the
identity cp* ~ 0 holds in every finite left residuation algebra.

(The definition of cp* is on page 39.) The implication from left to right
(validity) follows immediately from the fact that £R is an algebraic semantics
for BK.

Let ep be an {--t }-formula that is not a theorem of BK, i.e. Ii{ -+} cp. We shall
construct a finite left residuation algebra which does not satisfy the identity
cp* ~ 0, thereby proving Theorem 3.l.

Let 5ub(cp) be the set of all subformulas of cp. Let M be the set of all
finite sequences of elements of 5ub(cp). Throughout this chapter we shall
denote the empty sequence 0 by 0 and use the capital letters 5, T, U (possibly
with integer subscripts) as variables for elements of M. For ('ljJl' 'ljJ2,' .. , 'ljJn),
(~1,~2,'" ,~m) E M, set

That is, + denotes concatenation of sequences of subformulas of cp. Clearly,
+is an associative operation and 0 is its identity element. For 5, T E M, set

5 :s; T if and only if 5 is a subsequence of T.

One easily sees that :s; is a partial order that is compatible with + and has
oas its least element, hence (M; +, 0;:S;) is an integral pomonoid. As usual,
5 < T shall mean 5 :s; T and 5 i- T. Note that for each 5 E M there are
only finitely many T E M such that T :s; 5.

If 5 = (~l, ... , ~n) E M and ( is any {--t }-formula, we shall use 5 --t ( to
abbreviate the formula ~l --t ~2 --t ... --t ~n --t (. We also identify 0 --t (

with (. Let 'IjJ E 5ub(cp). An element 5 of M is called 'IjJ-critical if

(i) f-{-+} 5 --t 'IjJ and

(ii) for every T E M such that T < 5, Ii{-+} T --t 'IjJ.

Note that if U E M and f- {-+} U --t 'IjJ, then there exists a 'IjJ-critical element
5 such that 5 :s; U. Denote by R('IjJ) the set of all 'IjJ-critical elements. Note
that any two distinct elements 5, T of R('IjJ) are incomparable, i.e., 5 1: T and
T 1: 5.

Meyer and Ono's proof [M094] of the finite model property for BCK made
crucial use of 'Kripke's Lemma'. The applicability of this lemma in [M094]
depends strongly on the presence of the exchange rule, whose unavailability
in our context amounts, roughly speaking, to the noncommutativity of the
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operation + on M. Instead, we shall use the following result, generalizations
of which are proved, e.g., in [Kru60] and [Nas63]8.

Theorem 3.2. (Finite Sequence Theorem) Let X ~ M be such that for dis­
tinct 5, T E X J 5 1: T and T 1: 5. Then X is a finite set.

Set
R = U{R(~) : ~ E 5ub(ep)}.

Let R' be the downward closure of R in M, i.e.,

R' = {5 EM: 5 ::::; T for some T E R}.

Let D(R') denote the set of all nonempty downward closed subsets of R'. The
Finite Sequence Theorem implies that R(~) is finite for each ~ E 5ub(ep).
Thus R, R' and D(R') are all finite. For X, Y E D(R'), set

X EB Y = {5 : 5 E R' and (3T E X)(3U E Y) such that 5::::; T + U}.

Evidently, X EB Y is a downward closed subset of R', hence EB is a binary
operation on D( R').

Lemma 3.3. Let X, Y E D(R'). If 5 E X EEl Y! then there exist 51 E X and
52 E Y such that 5 = 51 + 52.

Proof. Let 5 = (~1"'" ~n) E X EEl Y and let T = (a1"'" am) E X and
U = ((1, ... , (k) E Y such that 5 ::::; T + U. So (~1, ... , ~n) is a subsequence
of (a1"'" am, (1, ... , (k)' Thus there exists j ::::; n such that (~1"'" ~j) is a
subsequence of (a1'" ., am) and (~j+1" .. , ~n) is a subsequence of ((1,' .. , (k)'
Let 51 = (~l, ... ,~j) and 52 = (~j+1"",~n)' Then 51::::; T and 52::::; U, so
51 E X and 52 E Y and 5 = 51 + 52. 0

Lemma 3.4. D(R') = (D(R'); EB, {0};~) is an integral pomonoid.

Proof. Let X, Y, Z E D(R'). Let 5 E (XEBY)EBZ. By Lemma 3.3,5 = 51 +52,
where 51 E X EB Y and 52 E Z. Again by Lemma 3.3, 51 = T1 + T2 , where
T1 E X and T2 E Y. Thus 5 = (T1+ T2)+ 52 = T1+ (T2+ 52), by associativity
of +, and therefore 5 E X EB (Y EB Z). Thus (X EB Y) EB Z ~ X EB (Y EB Z).
The converse inclusion is similarly proved, hence EEl is associative. One easily
checks that X EB {0} = {0} EB X = X. Moreover, ~ is a partial order with
least element {0}.

Suppose X ~ Y and 5 E X EB Z. By Lemma 3.3, 5 = 51 + 52, for some
51 E X and 52 E Z. Thus 51 E Y as well, so 5 E Y EB Z. Therefore

8We thank Professor W.J. Blok for assistance in locating the work [Nas63], and thereby,
[Kru60].
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X EB Z S;;; Y EB Z. One similarly shows that Z EEl X S;;; Z EB Y, hence S;;; is
compatible with EB, which proves the lemma. D

Denote by C(D(R')) the set of all upward closed subsets of D(R'). By the
above lemma and Lemma 1.3, C(D(R')) = (C(D(R')); ~,D(R')) is a left
residuation algebra, where ~ is defined, for X, YE C(D(R')), by

X ~ Y = {X E D( R') : X EEl Y S;;; X},

where

X EB Y = {X EEl Y : Y E Y}.
Moreover, C(D(R')) is a finite algebra since D(R') is finite. We shall show
that the identity r.p* ~ 0 fails in C(D(R')).

For each variable p occurring in r.p*, set

f(p) = {X E D(R') : X contains at least one p-critical element}.

Note that f(p) is upward closed. Thus f(p) E C(D(R')), so f assigns elements
of C(D(R')) to the variables of r.p*. For each subterm 'I/J* of r.p*, we use f('I/J*)
to denote the evaluation of 'I/J* in C(D(R')) under this assignment. Suppose
that 0"* ~ 'I/J* is a subterm of r.p* and that f( 'I/J*) and f( 0"*) have been evaluated.
Then

f( 0"* ~ 'I/J*) = f( 0"*) ~ f( 'I/J*)

= {X E D(R') : X EEl f ('I/J *) S;;; f (0" *)} .

Lemma 3.5. For each subterm (* of r.p*)

f(C) = {X E D(R') : X contains at least one (~critical element}.

Proof. The proof is by induction on the complexity of (*. If (* is a variable,
then the result holds by definition of f. Assume, inductively, that (* is 0"* ~ 'I/J*
(i.e., (is 'I/J --+ 0") and that

f('I/J*) = {X E D(R') : X contains at least one 'I/J-critical element },

j(O"*) = {X E D(R') : X contains at least one O"-critical element }.

Let X E f((*) = f(O"*) ~ f('I/J*) , i.e.,

X EB f('I/J*) S;;; f(O"*).

Now either 0 or ('I/J) is a 'I/J-critical element, so either {0} or {('I/J) , 0} is a
downward closed subset of R' hence, by our assumption, {0} E f('I/J*) or
{('I/J),0} E f('I/J*)· Thus,

X EB {0} E f(O"*) or X EB {('I/J), 0} E f(O"*).



55

By assumption, therefore, X EEl {( 'IjJ), 0} contains a o--critical element, say S
(since X EEl {0} ~ X EEl {('IjJ), 0}). So S E R' and, by Lemma 3.3, there exist
T E X and U E {('IjJ), 0} such that S = T + U. Thus, for some T E X, we
have S = TorS = T + ('IjJ). Since S is o--critical, f-{-+} S --t 0-. We claim
f-{-+} T + ('lj;) --t 0-. This is immediate if S = T + ('IjJ). Suppose S = T and let
S = ("11," ., "1n). By (17) (see page 40), we have that

£R F 0-* --'- "1~ --'- ... --'- "1; ~ 0,

hence, by (A12) and (A10) (see page 18),

£R F 0-* --'- 'IjJ* --'- "1~ --'- ... --'- "1; ~ O.

Thus, by (17), f-{-+} S --t 'IjJ --t 0-. We now have f-{-+} T+'IjJ --t 0-, i.e.,
f-{-+} T --t (. Thus there must exist a (-critical element, U say, such that
U :S T. Since T E X and X is downward closed, we have U E X as well, so
X contains a (-critical element.

Conversely, suppose that X E D(R') contains a (-critical (i.e., a ('IjJ --t 0-)­
critical) element, say S. Let Y be any element of f( 'IjJ*). Then Y contains a
'IjJ-critical element, say T. Thus,

f- {-+} S --t 'IjJ --t 0- and f- {-+} T --t 'IjJ.

We claim that f-{-+} S --t T --t 0-. Suppose S = ("1I, ... ,"1n) and T
(PI, ... , Pm). By (17), we have that £R, and hence also £M, satisfies

*.1*. * .. *"""""'00- - 'lfJ - "1n - ... - "11 rv

and
0(.*. *. . * ""' 0'f/ - Pm - ... - PI ""' .

Thus, by (A5), £M satisfies

0-* :S "1; EEl EEl "1~ EEl 'IjJ* and 'IjJ*:S p~ EEl ... EEl P:n,

hence £M F 0-* :S "1; EEl E9 "1~ E9 p~ E9 ... P':n· We therefore have that

£R F 0-* --'- p':n --'- ... --'- p~ --'- "1~ --'- ... --'- "1; ~ 0,

so f- {-+} S --t T --t 0-, i.e., f- {-+} S + T --t 0-. Thus there must exist a o--critical
element, say U, such that U :S S +T. Since SEX and T E Y and U ER',
we have U E X E9 Y. Since U is o--critical, X E9 Y E f( 0-*) by our assumption.
It follows that X E9 f('IjJ*) ~ f(o-*), hence X E f(o-*) --'- f('IjJ*) = f(C), as
required. 0

By the above lemma,

f(lp*) = {X E D(R') : X contains at least one lp-critical element}.
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Since {0} E D(R') and If{-+} ry (i.e., If{-+} 0 ~ ry), we have that {0} rf- f(ry*)·
Thus f( ry*) =I- D(R') and therefore the finite algebra C(D(R')) does not
satisfy c.p* ~ 0, proving Theorem 3.1.9

Recall that £Rtm denotes the class of all finite left residuation algebras.

Corollary 3.6. The variety generated by £R (i.e.! the class H(£R)) is gen­
erated by the class £Rfin . Briefly! H(£R) = HSP(£Rfin ).

Proof. Let ~l [resp. ~2] be the set of all identities satisfied by H(£R) [resp.
HSP(£Rfin )]. Since £Rfm is a subclass of H(£R) we have ~l ~ ~2' Conversely,
suppose the identity u ~ v is not a member of ~l, i.e., H(£R) ~ u ~ v, hence
also £R ~ u ~ v. Then, by (A4), either £R ~ u -'- v ~ 0 or £R ~ v -'- u ~ O.
Assume, without loss of generality, that the former holds. Let c.p and 'ljJ be
{~}-formulas such that ry* is u and 'ljJ* is v. By (17), If{-+} 'ljJ ~ ry, hence,
by Theorem 3.1, there exists a finite left residuation algebra A such that A
~ u -'- v ~ O. Thus A ~ u ~ v, implying that ~2 ~ ~l' Thus ~l = ~2 and
the result follows. 0

The variety H(£R) is finitely axiomatized (by (AI), (A2) and (A3)) [Kom83],
as is the logic BK. It is well known that a finitely axiomatized Hilbert sys­
tem over a finite language, having the finite model property with respect to
an equivalent quasivariety semantics, is 'decidable' (i.e., has a decidable set
of theorems) [Har58]. We therefore have an alternative proof of the following
known result:

Corollary 3.7. [Kom84] BK (hence also the equational theory of £R! i. e. of
H(£R)) is decidable.

3.2. Kripke Semantics for BK. Next, we shall establish the finite model
property for BK with respect to a class of Kripke-type structures. We refer
the reader to [OK85], [Dos88] and [Dos89] for more information on the use of
relational semantics of this kind (but the account to follow is self-contained).
A BK-structure is a structure (A; +,0; ::S), where (A; +, 0) is a monoid and
::s is a binary relation on A that is compatible with + and satisfies 0 ::s a for
all a E A. For all a, b E A, we therefore have b ::s a + band b ::s b + a. From
o::s 0 we obtain a ::s a, so ::s is reflexive. (::s is not necessarily a partial order,
however.)

9A direct (syntactic) proof of Lemma 3.5 is also possible (see [vAR2]), as is a Gentzen­
style argument using Theorem 2.4.
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A valuation 1= on a BK~structure (A; +,0; ::;) is a relation between elements
of A and variables satisfying (for any a, bE A):

a 1= p and a ::; b implies b 1= p.

(One reads b 1= p as "p is true at b".) A valuation 1= can be extended to a
relation between elements of A and {~}-formulasby setting

(18) a 1= 'l/J ~ 0" iff for any bE A, b 1= 'l/J implies a + b 1= 0".

One easily obtains, by induction on the complexity of formulas, that for all
formulas 'P, and a, b E A,

(19) a 1= 'P and a ::; b implies b 1= 'P.

By a straightforward inductive proof, one can show that for all {~ }~formulas

0", 'l/JI, ... , 'l/Jn, and all a E A,

(20) a 1= 'l/JI ~ ... ~ 'l/Jn ~ 0" iff for any bl, ,bn E A,

bi 1= 'l/Ji for i = 1, ... ,n implies a +bl + + bn 1= 0".

An {~}~formula 'P is valid in a BK-structure if 0 1= 'P for any valuation 1=
on the BK~structure.

Lemma 3.8. If ~ {--->} 'P then 'P is valid in every BK -structure.

Proof. Let A = (A;+, 0;::;) be a BK-structure and let 1= be any valuation on
A. First consider substitution instances of the axioms (HI) and (H3) of BK
(see page 31). By (20), we have

01= 'P ~ 'l/J ~ 'P iff for any bl ,b2 E A,

bl 1= 'P and b2 1= 'l/J implies bl + b2 1= 'P.

So, suppose bl , b2 E A such that bl 1= 'P and b2 1= 'l/J. Since bl ::; bl + b2 we
have, by (19), that bl + b2 1= 'P, hence 0 1= 'P ~ 'l/J ~ 'P.

By (20) again, we have

o 1= ('P ~ 'l/J) ~ (0" ~ 'P) ~ 0" ~ 'l/J iff for any bI, b2 , b3 E A,

bl 1= 'P ~ 'l/J, b2 1= 0" ~ 'P, and b3 1= 0" implies bl + b2 + b3 1= 'l/J.

Suppose bl , b2 , b3 E A such that bl 1= 'P ~ 'l/J, b2 1= 0" ~ 'P and b3 1= 0".

By (18), we obtain that b2 + b3 1= 'P and hence that bl + b2 + b3 1= 'l/J, so
o 1= ('P ~ 'l/J) ~ (0" ~ 'P) ~ 0" ~ 'l/J.

Suppose there exists a derivation of 'P in BK whose last step is an application
of the inference rule (m.p.l). Then there exists an {~}-formula 'l/J such that
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r-{-+} 'lj; and r-{-+} 'lj; -t 'P. Assume, inductively, that 0 p'lj; and 0 p'lj; -t 'P.
Then, for any b E A,

b P 'lj; implies 0 + b P 'P.

Since 0 p 'lj; we obtain that 0 p 'P as well.

Suppose there exists a derivation of 'P -t 'lj; in BK whose last step is an
application of the inference rule (m.p.2). Then there exists an {-t}-formula
0' such that r-{-+} 0' and f-{-+} 'P -t 0' -t 'lj;. Assume, inductively, that 0 p 0'

and 0 1= 'P -t 0' -t 'lj;. Then, by (20), we have that for any bI , b2 E A,

bI P 'P and b2 p 0' implies 0 + bI + b2 1= 'lj;.

Since 0 1= 0', we have, for any bI E A,

bI 1= 'P implies 0 +bI 1= 'lj;,

i.e., 0 1= 'P -t 'lj;, which completes the proof. 0

We claim BK is complete with respect to the class of BK-structures. In
fact, this will be established by showing that BK has the finite model property
with respect to the class of BK-structures.

Suppose that If{-+} 'P. Then we can define D(R') = (D(R'); EB, {0};~) as in
Lemma 3.4. As noted, D(R') is a finite integral pomonoid. In particular, this
means that D(R') is a finite BK-structure. Define a valuation 1= on D(R')
as follows: for X E D(R'), set

X 1= p if and only if X contains at least one p-critical element.

In the manner of Lemma 3.5 we can show that for all 'lj; E Sub( 'P) and all
X E D(R'),

X 1= 'lj; if and only if X contains at least one 'lj;-critical element.

Thus, {0} ~ 'P, so 'P is not valid in D(R'), proving the following:

Theorem 3.9. An {-t } -formula is a theorem of BK if and only if it is valid
in every finite BK -structure.

Remark. Factoring the integral pomonoid (M; +, O;~) of Section 1 by the
equivalence relation which identifies two sequences if they are identical apart
from the order of the subformulas produces, in a natural way, a commutative
integral pomonoid, say M'. If BCK and M' are used in place of BK and
(M; +, O;~) in the arguments of Section 1 [resp. Section 2] we obtain an al­
ternative proof to that in [M094] of the finite model property for BCK with
respect to the class of BCK-algebras [resp. the appropriate class of Kripke
structures] .
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CHAPTER 4

ALGEBRAIC PROPERTIES OF THE

QUASIVARIETY SEMANTICS

We have seen that each superimplicational fragment C- H of the logic H
(= HBK ) has an equivalent quasivariety semantics 'Hc-. In this chapter, we
investigate various algebraic properties of the classes 'Hc- and, where possible,
interpret the results in the context of the logics C-H. Throughout this chapter,
C* will therefore denote an arbitrary subset of {EEl, ...:.. , n, u, I} that contains

In Section 1 we show that the quasivariety 'Hc- is a variety if and only if C*
contains EB and at least one of n, u. This is an unpublished result of P.M.
Idziak; earlier, Komori had proved that 'H{...:...} is not a variety [Kom84]. We
characterize the subvarieties of £R syntactically. For other values of C*, we
infer some sufficient conditions for subclasses of 'Hc- to generate subvarieties
of 'Hc- and illustrate these results in the case of ordinals less than W

W
• We

prove a result implying that locally finite varieties generated by algebras in
'Hc-, where EB E C*, are subvarieties of 'Hc-.

In Section 2 we show that every subvariety of £R is congruence 3-permutable,
while the variety 'H{ffi,"':"', n} [resp. 'H{ffi,"':"', U}] is congruence permutable [resp.
4-permutable]. We give a (syntactic) sufficient condition for congruence per­
mutability for subvarieties of 'Hc-, where EB E C*, and interpret it for left
complemented monoids.

In Section 3 we investigate the notion of an 'ideal' of an algebra A in 'Hc-.
An ideal of A is just a C-H-filter of A. The ideals of A therefore form a
lattice isomorphic to the lattice of all 'Hc--congruences of A and, as such,
play a central role in our study of second order properties of 'Hc-. We show
that in 'Hc-, our notion of ideal coincides with one defined for more general
classes of algebras by Ursini [GU84]. We also consider the weaker notion of a
'preideal' and prove a characterization of ideal generation. Using the theory
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of ideals, we show that all relatively [finitely] subdirectly irreducible algebras
of Hc' are [finitely] subdirectly irreducible, and hence (using a criterion of
Nurakunov) that the lattice ConHc ' A is distributive for each C* and all A
E Hc·.

The classes Hc' turn out not to have the 'relative congruence extension
property' (RCEP), which corresponds to the failure of a 'local deduction de~

tachment theorem' (LDDT) for C-H. This is shown in Section 4, where we
also provide a characterization of the relative subvarieties of Hc. that do have
the RCEP. These correspond to the axiomatic extensions of C-H with the
LDDT. Using the results of this section, we show that the relative subvarieties
of Hc. generated by ordinals greater than w +1 (with left residuation) do not
have the RCEP (provided that 1 ~ C*).

4.1. Varieties and Quasivarieties. In [OK85, §9, Remark 7], Ono and
Komori asked which of the classes Hc. are varieties. In other words, which
superimplicational fragments of H are strongly algebraizable? The next propo­
sition answers this question. Professor Ono has pointed out to us that this
proposition is an unpublished result of P.M. Idziak. We include a proof for
the sake of completeness and for future reference.

Proposition 4.1. (Idziak) H c ' is a variety if and only if C* contains EB and
at least one of n , U .

Proof. Consider the algebra D = (w + 2; -'--, n , U ,0, w + 1) that is the
(-'--' n, U, 0, w + l)-reduct of the algebra (w + 2)fEB, -'--, n, U ,a,l} defined in
Example 2.17. Since (w + 1)-,--1 = w + 1; (w + l)-,--w = 1 and w-,--l = w,
the set A = {O, 1,w,w + I} is the universe of a subalgebra A of D. Thus A
E H{ -'-- , n , U ,l}' (We stress that -'- A is the restriction to A of w + 2's right

residuation operation -,-- and lA is w+1.) The relation 8 = {(O, 1), (1, O)}UidA
is a congruence of A, but A/8 violates (A4), since

(w + 1)/8 -,--w/8 = 1/8 = 0/8

and w/8-,--(w + 1)/8 = 0/8, but (w + 1)/8 #- w/8.

Thus H{ -'-- , n , U ,I} is not a variety. Considering reducts of the same algebra,
we infer that Hc. is not a variety whenever { -'- } ~ C* ~ { -'- , n , U ,I}. (This
last result for { -'- } was proved by a syntactic argument in [Kom84].)

Recall from Example 1.5 that the quasivariety of pocrims is the class of
all members of H{EB, -'--} whose monoid operation EB is commutative. Higgs
exhibited in [Hig84] a pocrim that has a homomorphic image in which (A4)
fails, whence H{EB, -'--} is not a variety.
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Suppose that C* contains EB and n. Since the axiomatization of 'Hc- given
in Corollary 2.11 consists of identities and the single quasi-identity (A4), it
suffices to check that any homomorphic image B of an algebra in 'Hc- satisfies
(A4). By (3) (see page 16) and Proposition 2.13(i), 'Hc- (and hence also B)
satisfies the identity

(21)

hence

xn((x~Y)EBY)~x,

B 1= x ~ Y ~ a implies x n Y pj x

and (exchanging variables)

B 1= Y ~x ~ a implies ynx pj y.

Since n is commutative in B, we infer that

B 1= x ~ y ~ 0 and y ~ x ~ a implies x ~ y,

hence 'Hc- is a variety. More precisely, (21) may replace (A4) in the axioma­
tization of 'Hc-. If C* contains u and EB, the result follows similarly from a
consideration of the identity

x u ((x ~ y) EB y) ~ (x ~ y) EB y,

which may be deduced from (3) and Proposition 2.13(ii). D

The above result contrasts with findings of Idziak [Idz84] (also see [Wro83],
[Hig84]) essentially concerning the Hilbert system HBCK : all superimplica­
tional C-fragments of HBCK are algebraizable; the strongly algebrai~able ones
are just those where C contains at least one of V, 1\.

The following lemma summarizes some facts about ( ~ ,a)-terms; we omit
the proofs which are by straightforward induction on the complexity of terms.
For nEw and C*-terms Ul, ... , Un in the variables X, we shall use the abbre­
viation x ~ L;~lUi(X) for x ~ Ul(X) ~ ... ~ un(x).

Lemma 4.2. Let K be any class of algebras of type (2, a) with language ( ~,a)
that satisfies (AI), (A2) and (A3). Let t(xo, ... , xn) be a ( ~,a)-term, nEw.

(i) There exists a ( ...0... )-term s(xo, . .. , xn) such that K F S ~ t.

(If t is 0 we may take s = x ~ x for any variable x.)

(ii) There exists i E {O, ... , n} and ( ...0... )-terms Ul, ... , Urn, mEw, in the

variables Xo, ... ,Xn such that

K 1= t(xo, ... , Xn) ~ Xi ...0... L;~l Uj(XO, , Xn).

(iii) If y E {xo, . .. , xn} and Yi E {a, y} for i = 1, , n, then
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Recall from Lemma 1.2 that if A = (A; -'-,0) is an algebra of type (2,0)
that satisfies (AI), (A2) and (A3), then A satisfies (A9) and (AI2) as well.

Lemma 4.3. Let A = (A; -'-,0) be an algebra of type (2,0) that satisfies (AI),
(A2) and (A3). Ifu(x,y) is any binary (-'-,a)-term for which £R satisfies
u(x,x)~a, then

(22) A F x -'-y ~ 0 and y -'-x ~ 0 implies u(x,y) ~ a.

Proof. This is proved by induction on the complexity of the term u. If u
contains no occurrence of -'- then u must be the term 0 and (22) holds, trivially.
Suppose that -'- occurs in u and that for any binary (-,- ,a)-term v(x,y) for
which £R satisfies v(x,x) ~ 0 and which contains fewer occurrences of -'­
than u, (22) holds with v replacing u.

By Lemma 4.2(ii), we may assume that u(x,y) = Z-'-~~lVi(X,y), where
Z E {x, y} and nEw. By assumption,

(23) £R F u(x,x) ~ X-'-~7=lVi(X,X)~ a.
For each i E {l, ... ,n} we have, by Lemma 4.2(iii), that £R satisfies either
Vi(X,X) ~ 0 or Vi(X,X) ~ x. It follows from (23) that there must exist
k E {I, ... ,n} such that £R satisfies Vk(X,X) ~ x. Using Lemma 4.2(ii)
again, we may assume that Vk(X, y) = w -'- ~'J'=l Sj(x, y), where w E {x, y} and
mEw. Since £R satisfies Vk(X,X) ~ x -'- ~'J'=lSj(X,X) ~ x, it follows that £R
satisfies Sj(x, x) ~ 0 for each j. By our induction assumption, therefore,

A F x -'- y ~ 0 and y -'- x ~ 0 implies Sj(x, y) ~ 0,

for each j, hence

(24) A FX-'-y~a and y-'-x~a implies Vk(X,y)~w.

Note that z-'-w E {x-'-x,y-'-y,x-'-y,y-'-x}, so, by (A9),

(25) A F x -'- y ~ 0 and y -'- x ~ 0 implies Z -'- w ~ a.
Now, by (AI2),

A F Z -'- ~7~}Vi(X, y) -'- Z ~ 0,

hence, by (AI) and (A2),

A F Z -'- ~7::}Vi(X, y) -'- w -'- (z -'- w) ~ 0,

so
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By (A3), therefore,

(26) A F Z -=- W~ 0 implies z -=- ~7==-lvi(X, y) -=- w -=- ~7=k+I Vi(X, y) ~ O.

The result now follows from (25), (26) and (24). 0

Let C 2 = ({O, I}; -=-,0) be the unique two-element left residuation algebra;
that is, -=- is defined by 0 -=- 0 = 0 -=- 1 = 1 -=- 1 = 0 and 1 -'- 0 = 1. Note
that, with meet and join operations n, u corresponding to the partial order
defined by 0 :::; 1, ({O, I}; -'-, n, u, 0,1) is a member of H{...:..., n, U ,l}' Note
also that C 2 is a BCK-algebra. Every non-trivial left residuation algebra
contains C 2 as a subalgebra (since 0 together with any other element form
a subalgebra isomorphic to C 2 ). The variety generated by C 2 is termwise
equivalent to the variety of Tarski (alias implication) algebras; it is the smallest
nontrivial subquasivariety of .eR and consists just of the ( -=- ,O)-subreducts of
Boolean algebras, where x-=- y = x n (y'). This variety is axiomatized, relative
to BCK-algebras, by the equation x -'- (y -'- x) ~ x (sometimes called Peirce's
Law). Also, note that C 2 is the .eR-free algebra on one free generator: this
is essentially the content of Lemma 4.2(iii).

, Part (i) of the following proposition characterizes (equationally) those sub­
classes of .eR that generate subvarieties of .eR. A less precise version of the
'necessity' assertion of (i) is stated without proof in [Kom84] and, for BCK­
algebras, in [Idz83]. (For related results for BCK-algebras, see [BR95PO and
[Nag94].)

Proposition 4.4. (i) Let K be a variety of algebras of type (2,0) with language
(-=- ,0). K is a subvariety of £R if and only if K satisfies (AI)) (A2)) (A3)
and there exist n, mEw and binary ( -=- )-terms UI, ... ,Un, VI, ... ,Vm such
that £R satisfies Ui(X,X) ~ 0 ~ Vj(x,x) for each i,j) and K satisfies

(27) x -'- UI(X, y) -=- ... -=- un(x, y) ~ y -=- VI(X, y) -=- ... -'- vm(x, y).

(ii) Suppose that C* contains EEl but neither of n , U or that C* does not contain
EEl (i. e.) H c - is not a variety). Let K be a class of algebras with language C*
satisfying the identities in the axiomatization of Hc- given in Corollary 2.11
and an identity of the form (27)) where £R satisfies Ui(X,X) ~ 0 ~ Vj(x,x)
for each i, j. Then HSP(K) is a subvariety of H c -.
(iii) For any C*) let K be a subvariety of Hc-. The quasivariety of ( -=- ,0)­
subreduets of members of K is a subvariety of £R if and only if K satisfies
an identity of the form (27) for which .eR satisfies Ui (x, x) ~ 0 ~ Vj (x, x) for
each i, j.

laThe proof of necessity in (i) given here is modelled on a corresponding argument for
BCK-algebras from [BR95] but avoids using a lemma from [BR95] that does not transfer
to the generality of £1l.
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Proof. (i) (=?) Assume, without loss of generality, that K is nontrivial (so
C 2 E K). Let B = (B; -=--,0) be the algebra of type (2,0) with B the three­
element set {O, a, b}, a-=--O = a, b -=-- 0 = b and x-=-- y = 0 in all other cases.
Note that B 1:. £1<- since B does not satisfy (A4) (a -=-- b = 0 and b -=-- a = 0,
but a # b). Also note that C2 may be considered a subalgebra of B with
universe C2 = {O, a}. Let E: : B -> C2 be the homomorphism defined by
E:(a) = E:(b) = a.

Let T = (T(x, y); -=--,0) be the term algebra of type (2,0) over distinct
variables x, y and let F be the K-free algebra on two free generators X, '[j.

Define the homomorphisms f-l : T -> B by f-l( x) = a, f-l(y) = b and A : T -> F
by A(X) = x, A(Y) = '[j.

Now ker A g; ker f-l, otherwise B ~ Tjker f-l E H(Tjker A) = H(F) ~ K, so
B E K ~ £1<-, a contradiction. So there exist s, t E T such that K satisfies
s ~ t and f-l(s) # f-l(t). If {f-l(s),f-l(t)} E {{O,a}, {O,b}} then

{sCZ(a,a),tCZ(a,a)} = {E:f-l(s),E:f-l(t)} = {O,a},

so C 2 does not satisfy s ~ t and C 2 E K, so K does not satisfy s ~ t, a
contradiction. Thus {f-l(s),f-l(t)} = {a,b}, so sCz(a,a) = a = tCz(a,a).

By Lemma 4.2(ii), we may assume that

where z, w E {x, y} and n, mEw. From

a = E:f-l(s) = E:f-l(t) = a-=--~i=lu?Z(a,a) = a-=--~j=lv?Z(a,a),

we infer that, for each i,j, u?Z(a, a) = 0 = vfZ(a, a), hence £1<- F= Ui(X, x) ~
o~ Vj(x,x) (because C 2 is the £1<--free algebra on one free generator). Now,
for each i,j, we have E:f-l(Ui) = OCz = E:f-l(Vj) , hence f-l(ud = OB = f-l(Vj), so
{f-l(w),f-l(z)} = {a,b}, so {w,z} = {x,y}, completing the proof.

(~) To prove this implication, we need only show that K satisfies (A4). By
Lemma 4.3, K satisfies

x -=--y ~ 0 and y-=--x ~ 0 implies Ui(X,y) ~ 0 ~ Vj(x,y),

for each i,j. By (27), therefore, K satisfies (A4), as required.

(ii) and (iii) follow easily from (i). 0

We illustrate part (ii) of the above proposition in the case of ordinals not
exceeding W

W
•



65

Proposition 4.5. Let W W {~} = (WW
; ~,O) be the left residuation algebra de­

fined in Example 1.8. Set

t(x, y) = x -"- (x -"- y) -"- (y -"- x).

Then W
W

{ ~} satisfies the identity

(28) t(x,y) -"- (t(x,y) -"-t(y,x)) ~ t(y,x) -"- (t(y,x) -"-t(x,y)),

which is of the form of (27).

Proof. Let 0:', (3 E W
W

• If 0:' = 0 or (3 = 0 or 0:' = (3, then (28) holds in W
W {~}

when we interpret x as 0:' and y as (3. By the symmetry of (28), we may assume
that 0:' > (3 > O. Thus (3 -"- 0:' = 0, so

t(O:', (3) = 0:' -"- (0:' -"- (3) and t((3, 0:') = (3 -"- (0:' -"- (3).

The ordinals 0:' and (3 take the following forms:

where n, m, aa, ... ,-an, ba, ... ,bm E w, an =I- 0 and bm =I- O.

Case (i) Suppose n > m. Then

hence (3 -"- (0:' -"- (3) = 0, so t((3, 0:') = 0 and (28) holds in W W
{ ~} when we

interpret x as 0:' and y as (3.

Case (ii) Suppose n = m. Note that if an = bn, then we must have wn-1an_l +
... + aa > wn-1bn_1 + ... + ba (since 0:' > (3). Now,

wn(an - bn) if an > bn and
wn-1an_l + ... + aa ::; wn-1bn_1+ ... + ba

0:' -"- (3 = wn(an - bn + 1) if an > bn and
wn- 1an-l +... + aa > wn- 1bn- 1+ ... + ba

wn if an = bn.

Thus 0:' -"- (3 is a nonzero multiple of wn
, so t( 0:', (3) = 0:' -"- (0:' -"- (3) = wn k for

some k E wand t((3, 0:') = (3 -"- (0:' -"- (3) = wnl for some I E w. Without loss of
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generality, suppose k ;::: l; so k = l + p for some pEw. Then

t(a, (3) -"- (t(a, (3) -"- t((3, a)) wn(l + p) -"- (wn(l +p) -"-wnl)

wn(l + p) -"- (wnp)

wnl-"- (wnl-'-wn(l + p))

t((3, a) -"- (t((3, a) -"- t(a, (3)),

as required. 0

The above proposition and Proposition 4.4(ii) imply the following:

Corollary 4.6. For each C* and for each ordinal a :::; W
W for which Qc- (as

defined in Example 2.17) exists, the variety generated by Qc- is a subvariety
of Hc- .

It is well known, and easily checked, that for any C*, any finite algebra in
Hc - that satisfies x -"- y -"- z ~ x -"- z -"- y (i.e., that has a BCK-algebra reduct)
generates a subvariety of Hc -. In general, however, as the algebras defined in
the first paragraph of the proof of Proposition 4.1 show, when { -"- } ~ C* ~

{ -"-, n , U , 1}, the variety generated by a finite algebra in Hc - need not be a
subvariety of H c -. The following proposition shows that, when EEl E C*, any
finite algebra in Ho- will generate a subvariety of He-. Since the ( -'- )-reduct
of the algebra A in the proof of Proposition 4.1 is also the ( -"- )-reduct of
a (finite) polrim (with ordinal addition, except that 1 EB 1 = 1 and w + 1 is
absorptive under EEl), it follows from Propositions 4.7 and 4.4(i) that a variety
of polrims need not satisfy an identity of the form of (27). Thus the converse
of Proposition 4.4(ii) is false (whereas its analogue in the 'commutative' case,
with C* = {EEl, -"- }, is an open problem [BR97, §9, Problem 4]).

Proposition 4.7. Let lC be a variety generated by a class of algebras in He-,
where EEl E C*. Let F be the lC-free algebra on two free generators and suppose
that (F; ::;) satisfies the ascending chain condition. Then lC is a subvariety of
He-· Thus, every finite algebra in He- generates a subvariety of He-.

Proof. First observe that F E He- since F EIS P(Z) for some subclass Z of
He- with lC = H S P(Z), so the reference to (F;:::;) makes sense. Define binary
terms t n (x, y), nEw, over (EEl, -'-) in the following manner:

to(x,y)=x, t2k+l(X,y) = (t 2k(X,y)-"-y)EBy,

t2k+2(X, y) = (t 2k+1 (X, y) -"- x) EB x, k E w.
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By (3) (see page 16), .eM satisfies t n ( x, y) :::; t n +1 (x, y) for all nEw. If x, yare
the free generators of F then the ascending chain condition forces the existence
of an nEw such that t~(x, y) = t~+l (x, y). Thus,

(29) K F= tn(x, y) ~ tn+1 (x, y).

Let A E K, 0 E ConA and a,b E A such that (a-=-b,OA), (b-=-a,OA) E (). It
follows easily by induction that (t~(a,b),a) E () and (t~+l(a,b),b) E 0 for all
k E w hence, by (29), (a, b) E (). This shows that K satisfies the quasi-identity
(A4), which implies the first assertion of the proposition. The second assertion
follows from the first and the fact that finitely generated varieties are locally
finite (see, e.g., [BS81, Theorem 10.16]); in particular, their 2-generated free
algebras are finite. D

4.2. Congruence Permutability. In this section we investigate congruence
n-permutability in subvarieties of He -. Let A be an algebra, ()1, O2 E Con A
and nEw. By 01 On ()2 we mean the relational product ()1 0 O2 0 ()1 0 ... of n
factors (alternating between ()1 and ()2)' If, for all ()1, ()2 E Con A,

()1 on ()2 = ()2 on ()1,

then A is said to be congruence n-permutable. A variety is said to be con­
gruence n-permutable if every algebra in it is congruence n-permutable. We
shall use the term congruence permutable for congruence 2-permutable. The
standard criterion for congruence n-permutability of a variety is stated in the
following theorem..

Theorem 4.8. [HM73] For any variety V and 2 :::; nEw) the following con­
ditions are equivalent:

(i) V is congruence n-permutable;

(ii) there exist ternary terms t 1 (x, y, z), ... , tn- 1 (x, y, z) such that V satisfies

t 1(x, y, y) ~ x,

t i- 1(X, x, y) ~ ti(x, y, y) for i = 2, ... , n - 1,
tn - 1 (x, x, y) ~ y

The last claim of the following proposition is a generalization of Idziak's cor­
responding result for BCK-algebras [Idz83]. Modulo Proposition 4.4, Idziak's
proof works without modification.

Proposition 4.9. Let K be a subvariety of He- . If the quasivariety of ( -=- ,0)­
subreducts of K is a subvariety of .en then Kis congruence 3-permutable. In
particular) every subvariety of .en is congruence 3-permutable.
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Proof. Let K be a subvariety of Hc- that satisfies the conditions of this
proposition. By Proposition 4.4(iii), there exist n, mEw and binary ( ...:... )­
terms Ul, ... ,Un,VI, ... ,Vm such that £R satisfies Ui(X,X) ~ 0 ~ Vj(x,x) for
each i, j, and K satisfies

X ...:... UI (x, y)...:... .. . ...:... Un (x, y) ~ y ...:... VI ( X, y)...:... . .. ...:... Vm(X, y).

If we define

tl(x,y,z) = X...:...UI(y,Z)...:... ...:...un(y,z)

and t2(x, Y, z) = Z ...:... VI (X, y) ...:... ...:... Vm (X, y),

then K satisfies

tl(X,y,y)~X,

tl(x,x,y) ~ t 2(x,y,y)

and t2(X,X,y)~y,

and the result follows by Theorem 4.8. 0

Since the two-element BCK-algebra C 2 embeds into every nontrivial left
residuation algebra and generates a variety termwise equivalent to the (non­
congruence permutable) variety of Tarski algebras, no nontrivial subvariety of
£R is congruence permutable. The same argument is valid if we enrich the
language of C 2 with its meet operation n, so we may also conclude that no
nontrivial subvariety of H{ -=-- , n} is congruence permutable.

The following proposition provides a sufficient condition for a subvariety of
Hc- (when EB E Co) to be congruence permutable. The corollary that follows
shows that this condition is not artificial. (Among natural syntactic conditions
on subvarieties of H{tfJ, -=--} implying congruence permutability, it is the most
general condition known to us.)

Proposition 4.10. Let C* contain EB and let K be a subvariety of Hc- which
satisfies an identity of the form

(30)
(y...:... (x...:... (UI(X, y) EB ... Et! un(x, y)))) EB (x...:... (VI(X, y) EB··· EB vm(x, y))) ~ y

where n, mEw and Ui and Vj are ( ...:... )-terms such that £R satisfies Ui( x, x) ~
o~ Vj(x,x) for each i,j. Then K is congruence permutable.

Proof. Set

t( x, y, z) = [z...:... (VI (y, x) Et! ... Et! Vm(y, X)) ...:... (X ...:... (UI (y, Z) EB ...

Et! Un(y, Z)))] EB (X"':'" (VI(Y, Z) EB ... EB Vm(y, Z))).
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By (30), JC satisfies x -'- (VI (x, y) E9 ... E9 Vm(x, y)) :S y. Thus we calculate, over
JC, that

t( x, y, y) ~ [y -'- (VI (y, x) E9 ... E9 Vm(y, x)) -'- (x -'- (0 E9 ... E9 0))] E9

(x -'- (0 E9 ... E9 0)) ~ 0 E9 x ~ x and

t(x, x, y) ~ [y -'- (0 E9 ... E9 0) -'- (x -'- (UI(X, y) E9 ... EB un(x, y)))] E9

(x -'- (VI(X,y) E9 ... E9 vm(x,y))) ~ y (by (30)).

This shows that JC is congruence permutable. 0

Recall the definition of a left complemented monoid from Example 1.9.

Corollary 4.11. Let JC be a variety of left complemented monoids. If JC sat­
isfies an identity of the form x -'- (UI (x, y) E9 ... E9 Un (x, y)) :S y for suitable
( -'- )-terms Ui} where £R satisfies Ui (x, x) ~ 0 for each i} then JC is congru­
ence permutable. In particular, if the quasivariety of residuation subreduets of
JC is a variety then JC is congruence permutable.

Proof. Recall that JC has a definable join operation u defined by x u y =
(x -'- y) E9 y, hence JC satisfies

(y -'- (x -'- (UI (x, y) E9 E9 Un (x, y)))) EB (x -'- (UI (x, y) EB ... E9 Un (x, y)))

~ y u (x -'- (UI (x, y) E9 E9 Un (x, y)))

~ y

so the first assertion follows from Proposition 4.10. If the ( -'-, O)-subreducts of
JC form a variety, it follows from Proposition 4.4(iii) that JC satisfies an identity
of the form x -'- (UI (x, y) E9 ... E9 Un (x, y)) :S y for suitable Ui as described in
the statement of the present corollary. The second assertion therefore follows
from the first. 0

Since the class of hoops (see Example 1.9) is a variety of left complemented
monoids satisfying x -'- (x -'- y) :S y, Corollary 4.11 generalizes the fact that
hoops are congruence permutable [BP94b, Theorem 1.10]. (In fact, the ( -'-,0)­
subreducts of hoops also form a variety: see [Fer92, Theorem 3.15, p96].)

Proposition 4.12. If E9 E C*} then a locally finite subvariety of H c - is con­
gruence 3-permutable.

Proof. Let JC be a locally finite subvariety of Hc-, where E9 E C*. Then
JC is a variety satisfying the conditions of Proposition 4.7, hence JC satisfies
tn(x,y) ~ tn+l(x,y), where nEw and tn, tn+1 are the terms defined in the
proof of Proposition 4.7. Note that H{EfJ,":"} (hence also JC) satisfies ti(X, x) ~ x
for each i E w.
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Case 1. Suppose n is even. If n = 0 then K satisfies x ,::::: (x --'- y) EB y ~ y,
so K is trivial. So assume n > O. Then tn(x,y) = (tn-l(X,y) -'-x) EB x and
we set SI(X,y,Z) = (tn-l(y,Z) -'-y) EB x. Since tn+l (x,y) = (tn(x,y) -'-y) EB y,
we may set S2(X,y,Z) = (tn(x,y)-'-y)EBz. Then K satisfies SI(X,y,y),::::: x,
S2(X,X,y)~ y and

SI(X,X,y) ~ (tn-l(X,y)--'-x)EBx
~ tn(x,y)

~ tn +l (x,y)
~ (tn(x,y) -'-y) EB y,::::: S2(X,y,y).

Case 2. Suppose n is odd. Then tn(x,y) = (tn- l (x,y) -'-y) EB y and
tn+l (x,y) = (tn(x,y)-'-x) EB x. Set SI(X,y,Z) = (tn-l(Z,y)-'-y) EB x and
S2(X, y, z) = (tn(y, x) -'- y) EB z. Then K satisfies SI(X, y, y) ~ x, S2(X, x, y) ,::::: y
and

SI(X, x, y) ~ (tn-l(y, x) -'- x) EB x

~ tn(y,x)

~ t n +l (y,x)

~ (tn(y,X)--'-Y)EBY~S2(X,y,y).

In both cases, therefore, SI, S2 satisfy condition (ii) of Theorem 4.8. Thus, K
is congruence 3-permutable. D

Proposition 4.13. If C* contains {EB, --'-, n} then the variety H c • is congru­
ence permutable. If C* contains {EB, --'-, u} then the variety Hc. is congruence
4-permutable.

Proof. Let C* contain {EB, -'-, n}. For the term

u(x, y, z) = ((z --'- y) EB x) n ((x -'- y) EB z),

the variety Hc- satisfies the identities u(x,y,y) ~ x ~ u(y,y,x) (using (3),
page 16), and is therefore congruence permutable. Let C* contain {EB, -'-, u}.
If we define

t l (x,y,z) = (z--'-y)EBx,

t2(x, y, z) = ((y -'- z) EB z) u ((y --'- x) EB x),

t3(x,y,z) = (x-'-y)EBz,
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then H c - satisfies

x ~ i1(x, y, y),

ii(X,x,y) ~ ii+l(X,y,y) (i = 1,2),

i 3 (x, x, y) ~ y,

and the result follows by Theorem 4.8. 0

If a variety K satisfies the hypotheses of anyone of the Propositions 4.9,
4.10,4.12, Corollary 4.11 or the first assertion of Proposition 4.13, and A E K
and e E Con A and h : A f-+ B is a surjective homomorphism, then h[e] :=

{(h(al),h(a2)): (al,a2) E e} E ConB, since this is a general consequence of
congruence 3-permutability (see [MMT87, Theorem 4.68]).

4.3. Relative Congruences and Ideals. Let S be a Hilbert system with
language £, and A an algebra of type £'. Recall the definition of an S-filter
of A from Section 2.3. For X ~ A, we define the S-filter of A generated by
X, denoted (X)A, as the intersection of all S-filters of A containing X. In
the case where X consists of a single element, say a, we write (a)A instead of
({ a} )A. An S-filter F of A for which there exists an a E A such that F = (a) A
is called a principal S -filter of A.

Recall from Theorem 2.20 that when S is an algebraizable Hilbert system
with equivalent quasivariety semantics K there is an isomorphism nA from
the lattice Fis A to the lattice Conx:: A of relative congruences of A. More
explicitly, the bijections are defined (for F E Fis A and eE Conx:: A) by

(31) F f-+ DAF = {(a, b) E A 2
: 6.t(a, b) E F for j = 1, ... , m},

(32) e f-+ {a EA: (8f-(a),c~(a)) E efor i = 1, ... ,n},

where the 6.j and 8i ~ Ci are equivalence formulas and defining equations for
Sand K [BP89, Theorem 5.1].

Since our notational conventions for Hc- dualize those of C- H, we shall use
term 'Hc--ideal in place of 'C-H-filter'.

By Corollary 2.8, each C-H (where -+E C) is axiomatized by a set of axioms
and the two rules of inference (m.p.l) and (m.p.2). Let A E 'Hc-. For each
axiom tp(p) of C-H and all a E A, it follows from (17) (see page 40) that
tp*A(a) = O. Thus an 'Hc--ideal of A E 'Hc- is just a subset I of A such that
o E I and conditions (Il) and (I2) (corresponding to (m.p.l) and (m.p.2))
hold:

(Il) for all a, b E A, if b, a ~ bEl then a El,
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(12) for all a, b, c E A, if b, a --'-- b --'-- c E I then a --'-- c E I.

Evidently, if one sets c equal to 0 in (12), then one obtains (Il), so (Il) is
redundant. Note that I is an Hc.-ideal of A E Hc' if and only if I is an
H{ --'-- }-ideal of the ( --'-- ,O)-reduct of A. Thus, when the ( --'-- ,O)-reduct of A
is in H{ -"- }, the definition of an Hc.-ideal of A does not depend on C*, so in
the absence of any possible confusion, we shall refer to an Hc.-ideal simply
as an ideal. Consequently, we may use Id A instead of Fi'Hc • A to denote the
lattice of ideals (i.e., C-H-filters) of A E Hc -. The smallest ideal of A E Hc.
is {OA}, which we refer to as the trivial (or zero) ideal. The largest ideal of A
is A; any ideal of A different from A is called a proper ideal.

In view of Proposition 2.9, (31) and (32), we have the following:

Proposition 4.14. Let A E H c " For I E Id A and fJ E Con'Hc' A J the maps

I f--+ f!AI = {(a, b) E A 2
: a --'-- b, b --'-- a E I},

fJ f--+ {a EA: (a,O) E fJ} = O/fJ,

are mutually inverse isomorphisms between the ideal and relative congruence
lattices of A.

Thus the ideals of an algebra in Hc. are precisely the O-classes of its relative
congruences. The isomorphisms between ConJCA and Id A show that K is
relatively O-regular. This result was deduced earlier using the fact that each
superimplicational C-H has the Godel rule (see page 40) and Lemma 0.12.

It is clear from the definition of a C-H-filter and (17) (see page 40) that the
ideals of an algebra A in Hc. are characterized by the property that whenever
Hc- satisfies a quasi-identity of the form

m

1\ Ui(fJ) ~ 0 implies v(x, y) ~ 0
i=l

and a, bE A with ut(b) E I for each i, then vA(a, b) E I. As a special case,
ideals I of an algebra A in Hc' have the following (algebraically simpler)
closure property: whenever Hc ' satisfies a quasi-identity of the form

m

1\ Yi ~ 0 implies t(x, y) ~ 0
i=l

(i.e. t(x, 0) ~ 0) and a E A and bEl, then tA(a, b) E I.

Let K be a class of algebras of type £ that contains a constant term 0 and
let A be an algebra of type £. A nonempty subset I of A will be called an
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Ursini-idealof A if it satisfies the following closure property: whenever t( X, if)
is an £-term for which

(33)

and a E A and bEl, then tA(Ci, b) E I. This definition was introduced
by Ursini (see, e.g., [GU84]). The Ursini-ideals of an algebra A depend, in
general, on the choice of K but they are independent of K in the event that
A belongs to a 'subtractive' variety: a variety is called subtractive if, for a
suitable binary term s, it satisfies the identities s(x,x) ~ 0 and s(x,O) ~ x.
For each C*, the variety H(He.) is evidently subtractive with respect to the
term s(x, y) = x-=-- y. It is easy to see that for any reflexive compatible binary
relation Ton A, the class oA IT is an Ursini-ideal of A. The Ursini-ideals of A
form an algebraic lattice under inclusion.

The requirement that the maps () t--+ OAI () (() E Con A) be isomorphisms
from the congruence lattices onto the Ursini-ideallattices of each A in a va­
riety K (with 0) is equivalent to the requirement that K be both O-regular
and subtractive [GU84]. This result does not extend to relatively O-regular
subtractive quasivarieties K. (Consider, e.g., the group Z of integers as a
member of the relatively O-regular quasivariety of torsion-free abelian groups.
The Ursini-ideals of Z are just its subgroups but Z has no nontrivial relative
congruences.) In general, it is a nontrivial question whether S-filters in the
equivalent quasi variety semantics of an algebraizable deductive system S with
the Godel rule coincide with Ursini-ideals (even if subtractivity of the seman­
tics is given), but it is desirable for the sake of algebraic simplicity that they
should do so. We show that this is indeed the case in our present context:

Proposition 4.15. Let A E He. and I ~ A. Then I is an ideal of A if and
only if it is an Ursini-ideal of A.

Proof. As noted above, the variety H(He.) is subtractive for each C*, so the
proposition's reference to Ursini-ideals needs no varietal qualification. Neces­
sity is immediate, in view of the previous discussion. Conversely, suppose I
is an Ursini-ideal of A. By interpreting t (in (33)) as the constant term 0,
we obtain 0 E I. Suppose that a, b, c E A and that b, a-=-- b -=-- eEl. Set
t(x, z, Yl, Y2) = x-=-- z -=-- (x -=-- z -=-- Yl -=-- (x -=-- (x -=-- Y2))) and observe that He. sat­
isfies

t(x, z, 0, 0) ~ X -=-- Z -=-- (x -=-- z -=-- (x -=-- x)) ~ x-=-- z -=-- (x -=-- z -=-- 0) ~ 0
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and so t A ( a, c, a -'- b -'- c, b) E I by the definition of Ursini-ideal. But

tA (a, c, a -'- b -'- c, b) a -'- C -'- (a -'- C -'- ( a -'- b -'- c) -'- (a -'- (a -'- b)))

a -'- c -'- 0 (by (AI))

a -'- C,

so I is an ideal of A. D

The theory of 'ideal determined' varieties developed in [GU84] and subse­
quent papers is therefore applicable in a natural way to the subvarieties of

Hc··

Let A E Hc" A subset I of A will be called a preideal of A if 0 E I and
I satisfies (Il) (see page 71). Obviously an ideal of A is a preideal of A. In
Section 5.2, we shall see that the converse is false and we shall characterize the
'relative subvarieties' of Hc. in whose members the sets of ideals and preideals
coincide. One easily sees that the set of all preideals of A is the universe of an
algebraic lattice when ordered by set inclusion. For X <;;;; A, we may therefore
define the preideal of A generated by X, denoted preA (X), as the intersection
of all preideals of A containing X.

Lemma 4.16. Let A E Hc•.

(i) A preideal I of A is a hereditary subset of (A; ~).

(ii) If I is a preideal of A, a E A and bl , ... , bn E I such that

a-'-bl -'- ... -'-bn = 0, then a E I.

(iii) When EB E C*, the preideals of A are precisely the subuniverses of the

monoid (A; EB, 0) that are hereditary subsets of (Ai ~).

(iv) Let X <;;;; A. Then preA(X) =
{a EA: (3n E W)(3Cl, ... ,Cn E X) such thata-'-cl-'-'" -'-cn = O}.

Proof. (i) If b E I and a ~ b, then b,a-'-b = 0 E I, so a E I by (Il).

(ii) Since 0 E I, the result follows by repeated application of (Il).

(iii) By (A5), Hc• satisfies (x EB y) ...:- y ...:- X ~ 0, hence it follows by (ii) that
a preideal of A is closed under EB. Conversely, suppose I is a subuniverse of
(Ai EB, 0) that is a hereditary subset of (Ai ~). Evidently, 0 E I. If a, b E A
with b, a -'- b E I, then, by (3),

a~(a...:-b)EBbEI,

hence a E I. Thus I satisfies (Il).

(iv) Set Y = {a EA: (3n E w)(3cl,"" Cn E X) such that a -'- Cl ...:- ... ...:- Cn =
O}. By (ii), Y <;;;; preA(X). Also, X <;;;; Y, so we need only establish that Y is
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a preideal of A. Let a E A and b, a -'- bEY, say

a -'- b -'- Cl -'- . .. -'- Cn = 0 = b -'- dl -'- ... -'- dm ,

where the Ci, dj are in X. Then

a -'- dl -'- . . . -'- dm -'- Cl -'- . .. -'- Cn

a -'- dl -'- • • . -'- dm -'- 0 -'- Cl -'- . .. -'- Cn

a -'- dl -'- ... -'- dm -'- (b -'- dl -'- .. . -'- dm ) -'- Cl -'- ... -'- Cn

< a-'-b-'-CI-'-". -'-Cn (by (AI) and (AlO)) = 0,

so a E Y, as required. 0

The next lemma provides us with a number of characterizations of ideals.
As noted earlier, an ideal is a preideal, so parts (i) and (ii) of the above lemma
hold for ideals as well. The characterization that will prove most important is
(iii) below.

Lemma 4.17. Let A E He. and let I ~ A. The following conditions are
equivalent:

(i) I is an ideal of A;

(ii) I is a preideal of A and, for all a, bE A, if bEl then a -'- (a -'- b) E I;

(iii) 0 E I and, for all a, b, C E A, if a, bEl then C -'- (c -'- a -'- b) E I;

(iv) 0 E I and, for all a,b,c EA, ifb,a-'-bE I then c-'-(c-'-a) E I.

If EEl E C* then these conditions are also equivalent to each of:

(v) I is a subuniverse of the monoid (A; EB, 0) and, for all a, bE A,

ifb E I then a-'-(a-'-b) E I;

(vi) I is a subuniverse of (A; EB, 0) and a hereditary subset of (A;:S) and,

for all a, bE A, if bEl then (a EB b) -'- a E I.

Moreover, for any ideal I of A and n ~ 1, if aI, ... ,an E I and C E A then
C -'- ( C -'- aI -'- . .. -'- an) El.

Proof. Let a, b, C E A. (i) ~ (ii) If bEl, then a -'- (a -'- b) E I by (12) and the
fact that a -'- b -'- (a -'- b) = 0 El.

(ii) ~ (iii) Suppose that a, bEl. Then C -'- (c -'- a) E I and C -'- a -'- (c -'- a -'- b) E
I. By (AI),

C -'- (c -'- a -'- b) -'- (c -'- a -'- (c -'- a -'- b)) -'- (c -'- (c -'- a)) = O.

Since 0 El, it follows that C -'- (c -'- a -'- b) El, as required.
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(iii) =} (iv) Suppose that b, a ~ bE f. Then a = a ~ 0 = a ~ (a ~ b~ (a ~ b)) E
f. Thus, since 0 E f, we have c ~ (c ~ a) = c~ (c ~ a ~ 0) E f, as required.

(iv) =} (i) Suppose that b,a~b~c E f. Then O,b~O E f so a~(a~b) E f.
Also, f is a preideal of A, since if e, d ~ e E f then d = d ~ (d ~ d) E f. By
(AI),

a ~ c ~ (a ~ b~ c) ~ (a ~ (a ~ b)) = 0 E f,

from which we may conclude by (11) that a ~ c E f, so (I2) holds.

Suppose now that EB E C*.

[(i)-(iv)] =} (v) Since f is a preideal of A, f is a subuniverse of (A; EB, 0) (by
Lemma 4.I6(iii)), hence (v) holds.

(v) =} (vi) Suppose a:::; bE f. Then a = a ~O = a ~ (a ~b), so a E f by (v).
This shows that f is hereditary in (A; :::;). By Lemma 4.I6(iii), f is a preideal
of A, so 0 E f. From the fact that (ii) implies (i), we infer that f is an ideal
of A. If b E f then from (a EB b) ~ b~ a = 0 E f we conclude, by (I2), that
(aEBb)~aEf.

(vi) =} (ii) By Lemma 4.I6(iii), f is a preideal of A. If b E f then, by (3) and
(AI 0), a ~ (a ~ b) :::; ((a ~ b) EB b) ~ (a ~ b) E f, hence a ~ (a ~ b) E f.

The remaining statement of the lemma is true for n E {I, 2}, by (ii) and (iii).
Assume, inductively, that it holds for some n ~ 2 and that al, . .. ,an+l E f.
By assumption, c ~ (c ~ al ~ ... ~ an) E f; by (ii),

and, by (AI),

c ~ (c ~ al ~ ... ~ an+l) ~ (c ~ al ~ ~ an ~ (c ~ al ~ ... ~ an ~ an+l))

~(c~(c~al~ ~an))=O,

hence c~ (c ~ al ~ ... ~ an+l) E f by (11), which completes the inductive
proof. 0

The following corollary is an immediate consequence of part (iii) of the above
lemma.

Corollary 4.18. Let A E He- and let X be a nonempty subset of A. Then
the ideal of A generated by X is (X) A = {a EA: there exist nEw and
aa, ... ,an E A such that an = a and for each i E {O, ... ,n}, ai E X U {O} or
ai = c ~ (c ~ aj ~ ak) for some c E A and some nonnegative integers j, k < i}.

Let {xa, Xl, X2, ... } be a fixed, countably infinite set of variables. We define
the sets of terms Ti inductively as follows: set Ta = {D, xa} and for each nEw,
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set
Tn+l = {Xi"':"" (Xi"':"" U"':"" v) : i ~ n + 1 and u, v E Tn }.

Now set T = U{Tn : nEw}.

Lemma 4.19. For A E He- and a E A) the ideal of A generated by a is

(a) A = {tA(a, al, .. ·, an) : t(xo, Xl,·.·, Xn) E T and al,.·· an EA}.

Proof. Set B = {tA(a,al, ... ,an): t(XO,XI, ... ,Xn) ET and al,···an EA}.
By induction on n and condition (iii) of Lemma 4.17 (or Corollary 4.18), it
follows that tA(a, aI, ... ,an) E (a) A for all nEw, all t(xo, Xl, ... ,Xn) E Tn and
all ab" ., an E A, hence B ~ (a)A' For the converse inclusion, it is evident
that B satisfies condition (iii) of Lemma 4.17, hence B is an ideal of A. Since
a E B, we have that (a)A ~ B. 0

By considering the ideal of an algebra A E He- generated by OA in the
above lemma, one sees that

(34)

for each t(xo, Xl, . .. , Xn) E T.

Recall that a quasivariety K is called relatively congruence distributive if
the lattice Conx:A is distributive for every A E K. Also recall that K[R]FS1

denoted the class of all algebras in a quasivariety K that are [relatively] finitely
subdirectly irreducible.

Lemma 4.20. If A E Hc- and T is a reflexive compatible binary relation
on the universe of A then the relative congruence () of A generated by T zs
{(a,b) E A 2 : a...:....b,b...:....a E OA/T }. Consequently) OA/() = OA/ T .

Proof. Let I = OA/ T and TJ = {(a,b) E A 2
: a...:....b,b...:....a E OA/ T }. By

Proposition 4.15, I is an ideal of A (since it is an Ursini-ideal). Thus, by
Proposition 4.14, r; E ConHc _ A and OA/r; = I. That T ~ r; follows from the
identity (A9). That any relative congruence of A containing T must contain
r; is an immediate consequence of the quasi-identity (A4). 0

Proposition 4.21. (He- )RS1 = (He- )S1 and (He- )RFS1 = (He- )FS1. Thus)
A E Hc- is finitely subdirectly irreducible [resp. subdirectly irreducible} if and
only if {OA} is meet irreducible [resp. completely meet irreducible} in Id A.

Proof. Let A E (He- )RS1 and, for idA "# () E Con A, let I(()) = OA /() and
let TJ(()) be the relative congruence of A generated by (). We have n{r;(()) :
idA "# () E Con A} "# idA , by relative subdirect irreducibility. By Lemma 4.20,
each I(()) is OA/ TJ (()), so n{I(O) : idA "# 0 E ConA} "# {OA}, by relative 0­
regularity. But n{I(O) : idA "# 0 E ConA} = OA/(n{O: idA "# 0 E ConA}),
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so n{0 : idA -# 0 E Con A} -# idA . This shows that A E (Hc - )S1. The reverse
inclusion is trivial.

Let A E (HC-)RFS1 and idA -# 01 ,02 E ConA. Let 1j = OA/Oj and let TU
be the relative congruence of A generated by OJ for j = 1,2. Just as in the
above argument, we infer from 'T/l n'T/2 -# idA that 11n 12 -# {OA} and then that
01 n O2 -# idA , so A E (Hc- )FS1. The reverse inclusion is trivial.

The remaining statement of the lemma is implicit in the above proofs but
also follows from the fact that, for each A E Hc-, the lattices Conx::A and
Id A are isomorphic (see Proposition 4.14). 0

By the same argument, an algebra A E Hc- is relatively simple (meaning
ICon7-{c_ A I = 2) if and only if A is simple (i.e., I Con A I = 2), if and only if
IIdA 1= 2.

Proposition 4.22. Each of the quasivarieties Hc- is relatively congruence
distributive. Thus, every subvariety of Hc- is congruence distributive. In
particular, when C* contains EEl and at least one of nand u, then the variety
H c - is congruence distributive.

Proof. We use a criterion of Nurakunov [Nur90a]1l: a quasivariety K is rela­
tively congruence distributive if K RFS1 ~ KFS1 and there exist nonempty finite
sets 2::1 and 2:: 2 of pairs (u, v) of ternary terms u(x, y, z), v( x, y, z) such that K
satisfies the identities

u(x,y,x) ~ v(x,y,x), (u,v) E 2:: 1 U 2:: 2 ,

u(x,x,y) ~ v(x,x,y), (u,v) E 2:: 1 ,

u(x,y,y) ~ v(x,y,y), (u,v) E 2:: 2 ,

and the quasi-identity

!\{u(x,y,z) ~ v(x,y,z): (u,v) E 2::1 U 2:: 2 } implies x ~ z.

The requirement (Hc-)RFS1 ~ (Hc- )FS1 was proved in Proposition 4.21.
Define t(x, y, z) = 0,

Ul (x, y, z) = X ...:.... Z ...:.... (x ...:.... Z ...:.... (y ...:.... z)), VI (x, y, z) = X ...:.... z,
U2(X,y,Z) = z...:....x...:.... (z...:....x...:.... (z ...:....y)), V2(X,y,Z) = z...:....x

and set 2::1 = {(Ul,Vl),(U2,V2)} and 2:: 2 = {(Ul,t),(U2,t)}. It is a straight­
forward consequence of (A2), (A9) and (A4) that He- satisfies Nurakunov's

lIThe proof of one implication of Nurakunov's result requires a correction that appears
in [BR96, Lemma 4.2]; only the converse implication is used here, however, and it is correct.
See [KM92] for an alternative characterization of relative distributivity.
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identities and quasi-identity, with respect to this choice of ~1 and ~2, so the
proof is complete. 0

For each A E Hc" Id A and Con7-(c' A are isomorphic, hence the lattice
Id A is distributive; we say that A is ideal distributive. Noting that for each A
E Hc" Id A and the lattice of ideals of the ( ...:..- , O)-reduct of A are isomorphic,
we see that A is [finitely] subdirectly irreducible if and only if the ( ...:..- ,0)­
reduct of A is [finitely] subdireetly irreducible.

Pigozzi's finite basis theorem (Theorem 0.10, which says that any finitely
generated relatively congruence distributive quasivariety of finite type is finitely
axiomatizable) clearly applies to the finitely generated subquasivarieties of the
Hc • 'so A subtler consequence of Proposition 4.22 is:

Corollary 4.23. If EEl E C*} then the variety generated by a finite algebra in
H c ' is finitely axiomatized.

Proof. By Propositions 4.7 and 4.22, such a variety is congruence distribu­
tive and the result follows from Baker's Finite Basis Theorem (see the note
following Theorem 0.10). 0

A variety that is both congruence distributive and congruence permutable
is called arithmetical; such varieties are characterized by a variant of the Chi­
nese Remainder Theorem (see [Gra79, Chapter 5, §35, Exercise 68, p.221]).
Proposition 4.22 and Proposition 4.13 therefore imply:

Corollary 4.24. For each C' which contains {EB, ...:..- , n }} the variety He. is
arithmetical.

4.4. Relative Congruence Extensibility and Local Deduction The­
orems. A quasivariety K has the relative congruence extension property
(RCEP) if for every A E K, every subalgebra B of A and every relative con­
gruence 0 of B, there is a relative congruence 0' of A such that

0' n (B x B) = o.
(We drop the qualification 'relative' and speak of the 'CEP' if K is a variety.)
Suppose K is the equivalent quasivariety semantics of an algebraizable Hilbert
system S. In the second paragraph of Section 3, we remarked that for any
A E K, the lattices ConK A and Fis A are isomorphic with respect to the
mutually inverse isomorphisms given in (31) and (32). It follows immediately
that the RCEP for K is equivalent to the property that for every A E K,
every subalgebra B of A and every S-filter F of B, there is an S-filter F'
of A such that F' n B = F. This property is known as the filter extension
property (FEP). By [BP88, Theorem 3.2]' K has the FEP if and only if it
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has the principal filter extension property (PFEP), by which we mean that for
every A E K, every subalgebra B of A and every a E A,

(a)A n B = (a)B'

A Hilbert system 5 is said to possess a local deduction detachment theorem
(LDDT) if there is a family E = {Ei(p, q) : i E Y} of finite sets Ei(p, q) =
{(l (p, q) : j = 1, ... , ni} of binary formulas (J of 5 such that for any set
f U {a,,B} of formulas of 5,

f,a f-s,B if and only if f f- s Ei(a,,B) for some i E Y.

In this case, E is called a local deduction detachment system for 5.

Theorem 4.25. [BP88, Corollary 5.3] Let 5 be an algebraizable Hilbert system
and K its equivalent quasivariety semantics. Then 5 has a LDDT if and only
if K has the RCEP.

A subquasivariety K' of a quasivariety K is called a relative subvariety of K
if K' is axiomatized by a set El U E 2 of first order formulas, where El consists
of identities, E2 consists of quasi-identities and K F= E2 . (Equivalently, a rela­
tive subvariety of K is a class of the form Kn HSP(K l ) for some K l ~ K.) For
example, suppose 5 is an algebraizable Hilbert system with equivalent quasi­
variety semantics K and let 5' be an axiomatic extension of 5. As noted after
the definition of algebraizability (see page 14), 5' is algebraizable as well, with
equivalent quasivariety semantics K', say. By (vi) and (vii) in the discussion
of algebraizability, it follows that K' is a relative subvariety of K. Moreover,
it follows from (2), (vi) and (vii) that if K" is any relative subvariety of K,
then there exists an axiomatic extension 5" of 5 whose equivalent quasivariety
semantics is K".

Clearly, for a relative subvariety K of Hc" we may read 'ideal' for '5-filter',
and refer to the [P]FEP as the [principa~ ideal extension property ([P]IEP).

Proposition 4.26. Let B be any algebra in Hc' that has a nontrivial proper
ideal 1 (e.g. B = DxD for nontrivial D E Hc-). Then there is an algebra
A E H c - such that B is a subalgebra of A and for every ideal J of A with
1 ~ J, we have 1 =I J n B. Thus, H c • lacks the lEP (hence also the RCEP).

Proof. Suppose first that 1 ~ C*. Define A = B U {c, d, e}, where c, d, e
are three distinct non-elements of B, and define ~ to be the partial order
on A extending the given partial order of B, such that b < c < d < e for all
b E B. When n E C*, we may define an operation n A as the meet-semilattice
operation on A corresponding to ~. Evidently, n A extends the operation n B.

When U E C* we may similarly define an operation U A on A extending u B.



81

When EB E C*, define an operation EBA on A by setting EBAI(BxB) = EBB,

b EB A c = C EBA b = c, d EBA b = e, b EBA d = d for all b E Band

x EBAy = e for all x,y E A such that c:S; x,y.

Then EBA is an associative operation with which :s; is compatible. The integral
pomonoid (A; EBA , O;:s;) is left residuated and its left residuation operation
..:.... A extends that of B as follows:

d..:.... A c = c":"" Ab = e ..:.... Ad = e ..:.... A c = c for all b E B,

e..:....Ab=d..:....Ab=d for all bEB\{O},

x..:....AO=x and x..:....Ay=O for all x,yEA with x:S;y.

When EB 1:. C*, we may define the operation ..:.... A as above.

In all cases, one easily checks that A satisfies each of the axiomatizing
identities and quasi-identity of H c-, (see Corollary 2.11) hence A E Hc*.
Clearly, B is a subalgebra of A. Choose b' E 1\ {O} and a E B \ I. If J is an
ideal of A with I ~ J then c = e..:.... d = e...:.. (e ..:.... b') E J. But a :s; c, so this
forces a E J. Consequently, I i:- J n B. This clearly disproves the IEP for
Hc- when 1 1:- C*.

Suppose next that C* contains 1 and let D denote the (C* \ {1} )-reduct of
some E E Hc-. There is, up to isomorphism, a unique extension of D by a new
top element f satisfying f ..:.... x = f whenever x E D. Enriching this extension
by the designated constant f, we have an algebra D I E Hc- whose proper
ideals coincide with the ideals of D (or of E). Applying the above construction
to B, A and I of the previous paragraph, which witnessed failure of the IEP
for H C -\{1}, we infer that B I , I and Al witness failure of the IEP in Hc*. D

In view of Theorem 4.25, we may conclude the following:

Corollary 4.27. No superimplicational fragment of H possesses a local de­
duction detachment theorem.

In contrast with this corollary, every superimplicational fragment of HSCK

(see page 31) does have a LDDT. (This follows easily from [BP88, Example
2.1] and will be generalized in Corollary 5.9.) By Theorem 4.25, an axiomatic
extension of C-H that has a LDDT has as its equivalent quasivariety seman­
tics a relative subvariety of Hc- with the IEP (equivalently, the RCEP). The
following theorem characterizes such relative subvarieties syntactically. We
shall make reference to the set T defined on page 77.

Theorem 4.28. Let K be a relative subvariety of H c *. The following are
equivalent.
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(i) lC has the IEP.
(ii) For every t( x) = t( Xo, ,xn) E T there exists a term

ut(x, y) = vt(x, si(x, y), , s~(t)(x, y))) where vt(xo, ... , Xm(t)) E T

and si(x,y), ... ,s~(t)(x,y) are C*-terms) such that

lC F t(x) ~ ut(xo, t(x)).
(iii) For every t( x) = t( Xo, ... , xn) E T there exist a positive integer kt and)

for i = 1, ... , kt ) terms vJ(xo, ... , Xmi(t)) E T and binary

C* -terms s~ I' ... , S~ m(t) such that if
, , I

uJ(x, y) = vJ(x, S~,l (x, y), , s~,mi(t)(x, y)) for i = 1, ... , kt ) then

lC F t(x) -"- ui (xo, t(x)) -"- -"- Uit(xo, t(x)) ~ o.

Proof. (i) :::} (ii) Let t(x) = t(xo, , xn) E T. Let F denote the lC-free algebra
on the n + 1 free generators xo, ,xn- We use i to denote t(xo, ... ,xn). Let
A be the subalgebra of F generated by {xo, I}. By Lemma 4.19, i E (XO)F.
Since lC has the rEP,

(xoh n A = (XO)A,

hence i E (XO)A. Thus, by Lemma 4.19, there exists a term vt(xo, .. . , Xm(t)) E

T and si (xo, i), .. . , s~(t)(xo, i) E A such that

i = vt(xo, si (xo, i), ... , s~(t)(xo,t)).

Set ut(x, y) = vt(x, si (x, y), ... ,s~(t)(x, y)). By properties of free algebras it
follows that lC F t(x) ~ ut(xo, t(x)), as required.

(ii) :::} (iii) It follows trivially from the assumptions in (ii) that

(iii) :::} (i) To show that lC has the rEP it suffices to show that for A E lC, B a
subalgebra of A and a E B, (a) A n B = (a)B (see page 80). Trivially, (a)B ~

(a)AnB. Let b E (a)AnB. Since bE (a) A there exists a term t(xo, ... , xn) E T
and al, ... , an E A such that b = tA(a, aI, ... ,an) (by Lemma 4.19). By
assumption there exist kt E wand uJ(x,y) = vJ(X,S~,I(X,y), ... ,s~,mi(t)(x,y))

for i = 1, ... , kt, such that

b -"- uiA(a, b) -"- '" -"- ut~(a, b) = O.

Now a,b E B, so s~1(a,b) E B for each i,j, hence u~A(a,b) E (a)B for i =
1, ... ,kt and so bE (a)B' Thus (a) A n B = (a)B' so lC has the rEP. 0
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Corollary 4.29. Let le be a relative subvariety of H c' that has the IEP and
for each t(x) = t(xo, ... , Xn) E T} let ut(x, y) be as in Theorem 4.28 (ii). Then}
for all A E le and a, b E A}

bE (a) A if and only if b = utA(a, b) for some t E T

if and only if b~ utA(a, b) = D for some t E T.

Proof. If b E (a)A then, by Lemma 4.19, there exist t(xo, . .. , Xn) E T and
aI, ... ,an E A with b = tA(a, aI, ... ,an). Thus, by Theorem 4.28(ii),

b = tA(a, al, ... , an) = utA(a, tA(a, al, ... , an)) = utA(a, b),

whence b~utA(a,b) = D. Conversely, if b~utA(a,b) = D for some t E T then
bE (a) A because, by Lemma 4.19, utA(a, b) E (a)A. 0

Let S be a Hilbert system over language [. An S-matrix is an ordered
pair (A, F), where A is an algebra of type [ and F is an S-filter of A. The
class of all S-matrices is denoted Mat S. Recall the definition of DA from
page 49. An S-matrix (A, F) is reduced if DAF = idA . The class of all
reduced S-matrices is denoted Mat* S. If S is an algebraizable Hilbert system
with equivalent quasivariety semantics K, then the class of all algebra reduets
of reduced S-matrices is precisely le [BP89, Corollary 5.3]' i.e.,

(35) le = {A: (A,F) E Mat*S for some S-filter F of A}.

Let S be an axiomatic extension of C-H with equivalent quasivariety se­
mantics K, a relative subvariety of Hc•. If A E K and I is any ideal of A,
then (A, I) is an S-matrix. By (35), a reduced S-matrix (A, I) consists of an
algebra A E K and an ideal I of A. By Proposition 4.14, DA is an isomorphism
from Id A (i.e. FiBA) to ConICA, hence an S-matrix (A, I) is reduced if and
only if A E le and 1= {D}.

Let S be a Hilbert system over language [ and let M be a class of S­
matrices. Let J be any index set and for each j E J, let ~j = ~j(x,y) be a
finite set of binary [-formulas. Following [BP88], we say that M has locally
formula definable principalS-filters (LFDPF) with defining system

[, = {~j : j E J}

if for all (A, F) E M and a, bE A,

bE (F u {a})A iff {(A(a,b) : (E ~j} ~ F for some j E J.

Let S be an axiomatic extension of C-H with equivalent algebraic semantics
K and suppose that Mat* S has LFDPF with defining system [, = {~j : j E J}.



84

Then, for all A E K and a, bE A,

bE (a)A if and only if {(A(a,b): (E I:j } = {O} for some j E J.

Corollary 4.30. Let K be a relative subvariety of H c • and let S be the ax­
iomatic extension of C -H with equivalent quasivariety semantics K. Then

(i) S has a LDDT if and only if K has the IEP.

Suppose K has the IEP and for each t(x) = t(xo, ... ,xn ) E T} let ut(x,y)
be as in Theorem 4.28 (ii). For each t E T} let (t(x, y) be a C-formula such
that (t(x,y)* = ut(x,y). Set E = {{(t(x,y) ~ y} : t E T} and set E* =
{{y -'- ut(x, y)} : t ET}. Then

(ii) Mat* S has LFDPF with defining system E*;

(iii) Mat S has LFDPF with defining system E*;

(iv) E is a local deduction detachment system for S.

Proof. (i) follows from Theorem 4.25; (ii) reformulates Corollary 4.29 and (iii)
and (iv) follow directly from (ii) and [BP88, Theorem 2.4]. D

An alternative local deduction detachment system for S can be given in
terms of the terms u~ whose existence is asserted by Theorem 4.28 (iii).

We give an application of Theorem 4.28 in a very natural setting. Let er be
a nonzero ordinal and let ac. be the algebra defined in Example 2.17 (when
it exists). We shall consider the relative subvariety HSP (ac. ) n Hc. of Hc•
generated by ac•. Recall from Corollary 4.6 that when er :::; wW

, ac. generates
a subvariety of Hc., i.e., HSP(ac.) n Hc. = HSP(ac.). If er :::; w + 1 then
HSP(ac. ) is a variety of (possibly enriched) BCK-algebras and, as such, has
the rEP (i.e., the CEP). From a direct consideration of algebras, it is difficult
to see whether the relative subvariety of Hc. generated by ac. has the rEP
when er 2:: w +2, but the next proposition settles this question (when 1 1:. C*).

Proposition 4.31. Suppose C* does not contain 1 and let er be an ordinal
greater than or equal to w+2 for which ac. exists. Then the relative subvariety
HSP(ac. ) n Hc. of Hc· generated by ac. does not have the IEP (i. e.) the
RCEP). In particular} when er :::; w W

} the variety HSP(ac.) does not have the
CEP.

Proof. We show that there exists t(x) = t(xo, Xl,"" x n ) E T such that for all
v(Xo, xl,··., x m) E T and all binary C*-terms SI(X, y), ... , sm(x, y),

ac· ~ t(x) ~ v(xo, SI(XO, t(x)), . .. , sm(xo, t(x))).
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Set t(xo, xI, X2) = X2 --=- (X2 --=- (Xl --=- (Xl --=- xo))). Then for any a E w,

(36) taC" (1, W+ 1, a) = a--=-( a--=-( (w + 1) --=- ((w + 1) --=- 1))) = a--=-( a--=- w) = a.

Claim: For every v(xo, Xl, ... , Xm) E T there exists PEw such that for all
al,a2, ... ,am EW, vac"(1,al,a2, ... ,am):::; k V

•

This is proved by induction on the complexity of v: If v( xo) is Xo or 0, then
vaC" (1) :::; 1. Suppose that v(xo, ... , xm) = XI --=- (XI --=- VI --=- V2), where l :::; m
and, for i = 1,2, Vi(XO, Xl, . .. , Xm) E T and vfC" (1, al, .. . , am) :::; kVi E w for
all al, . .. , am E w. Then

al --=- (al --=- v~C" (1, al, ... , am) --=- v~C" (1, al, ... , am))

< al --=- (al --=- kV1 --=- kV2
)

< kV1 + kV2 (since ai, kV
\ p2 E w).

Thus the Claim holds.

Let v(xo, ... , xm) E T and let Sl(X, y), ... , sm(x, y) be binary C*-terms. Set
a = P + 1. By (36), sfC"(1,tac"(l,w + 1,a)) = sfC"(l,a) for i = 1, . .. ,m.
Moreover, 1, a E wand w is a subuniverse of QC" (since 1 ~ C*), so sfC" (1, a) E
w. Thus, by the Claim and (36),

vaC" (1, s~C" (1, taC" (1, w + 1, a)), ... , s~C" (1, taC" (1, w + 1, a)))

= vaC" (1, s~C" (1, a), ... , s~C" (1, a))
<p

< P + 1 = a = tac"(l,w + 1,a).

Thus
QC" ~ t(x) ~ v(xo, Sl(XO, t(x)), ... , sm(Xo, t(x))),

so Theorem 4.28 (ii) implies that Hc" n HSP(Qc") does not have the rEP. 0



86

CHAPTER 5

EQUATIONAL DEFINABILITY OF PRINCIPAL

RELATIVE CONGRUENCES AND THEIR

INTERSECTIONS

As in Chapter 4, throughout this chapter, C* will denote an arbitrary subset
of {EEl, --'--, n, u, I} that contains --'--.

In Section 1 of this chapter, we discuss a property of quasivarieties that
is generally stronger than the RCEP, namely the property of having 'equa­
tionally definable principal relative congruences' (EDPRC). We characterize
the relative subvarieties of 'He* that have EDPRC; this condition corresponds
to the existence of a 'deduction detachment theorem' for the corresponding
extension of C- H.

In Section 2, we investigate a natural sequence 'Hc*, nEw, of relative
subvarieties of 'He* defined by the identity

x --'-- (x --'-- y) --'-- ny :::::: O.

In these classes, ideals coincide with preideals. These quasivarieties turn out
to have the RCEP. In fact, we characterize the relative subvarieties of the
'Hc* 's (when EEl, 1 rt C*) as precisely the relative subvarieties of 'He* that have
the RCEP and satisfy a certain very weak 'finiteness condition'. It follows
that each locally finite relative subvariety of 'He* with the RCEP lies in some
'Hc*. We characterize the finitely subdirectly irreducible algebras in 'Hc*, and
we provide a (relative) equational base for the subquasivariety of 'Hc* gener­
ated by its linearly ordered members, i.e., the quasivariety of 'representable'
algebras in 'Hc*'

In Section 3 we investigate subquasivarieties of 'He* with 'equationally de­
finable principal relative meets' (EDPRM). In particular, we show that the
quasivariety of representable members of 'Hc* and each of the classes 'Hc*,
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where n E C*, have EDPRM, and we exhibit a system of 'principal intersec­
tion terms' for each of these classes.

5.1. EDPRC and Deduction Theorems. A quasivariety K has equation­
ally definable principal relative congruences (EDPRC) if there exists a finite
set {Ui(XO, Xl, X2, X3) ~ Vi(Xo, Xl, X2, X3) : i = 1, ... , k} of equations in four
variables such that for every A E K and all a, b, c, d E A,

(c, d) E e~(a, b) if and only if ut(a, b, c, d) = vt-(a, b, c, d) for i = 1, ... , k.

If in addition, K is a variety, we drop the qualification 'relative' and speak of
'EDPC'.

The following lemma collects some facts about quasivarieties with EDPRC.

Lemma 5.1. For any quasivariety K, the following are equivalent [BP, The­
orem IV.4.1]:

(i) K has EDPRC;

(ii) for each A E K) the finitely generated relative congruences of A
form a Brouwerian semilattice.

Moreover, if K has EDPRC, then

(iii) K is relatively congruence distributive [BP, Theorem IV.4.2];

(iv) the classes K SI and K s are both closed under ultraproduets

[BP, Theorem IV.2.1];

(v) K has the RCEP [BP, Theorem IV.3.1].

A Hilbert system 5 is said to possess a deduction detachment theorem (DDT)
if there exists a finite set L:; = L:;(x, y) = {(i( X, y) : i = 1, ... , k} of formulas of
5 such that for any set f U {a,,B} of formulas of 5,

(37) f,a ~s,B if and only if f ~s L:;(a,,B).

In this case, L:; is called a deduction detachment set for 5.

Theorem 5.2. [BP, Theorem VI. 1.3] Let 5 be an algebraizable Hilbert system
and K its equivalent quasivariety semantics. Then S has a DDT if and only
if K has EDPRC.

Let 5 be a Hilbert system and let M be a class of 5-matrices (see page 83).
For a finite set L:; = L:;(x, y) = {(i(X, y) : i = 1, ... , k} of binary formulas, we
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say that M has formula definable principal S -filters (FDPF) with defining set
~ if, for all (A,F) E M and a,b EA,

bE (F U {a})A if and only if (t(a, b) E F for i = 1, ... , k.

Consider a relative subvariety K of He-. Let S be the axiomatic extension of
C-H whose equivalent algebraic semantics is K. As observed in the previous
section, the reduced S-matrices are the matrices (A, {O}), where A E K.
Thus, Mat*S has FDPF with defining set ~ = {Ui(X, y) : i = 1, ... , k} if and
only if the following condition holds: for all A E K and a, b E A,

bE (a) A if and only if ut'-(a, b) = 0 for i = 1, ... , k.

We find it more natural here to say that K has term definable principal ideals
(TDPI) with defining set ~ if the above condition holds. By [BP88, Theorem
4.6]' we know that S has a DDT if and only if Mat* S has FDPF, hence
Theorem 5.2 implies the following:

Corollary 5.3. Let K be a relative subvariety of He-. Then K has EDPRC
if and only if K has TDPI.

A more concrete syntactic characterization of relative subvarieties of He­
that have TDPI (equivalently, EDPRC) follows. (T is the set of terms defined
on page 77.)

Theorem 5.4. Let K be a relative subvariety ofHe*. The following conditions
are equivalent:

(i) K has TDPI (equivalently) EDPRC).

(ii) There exists a term u(x,y) = V(X,Sl(X,y), ... ,sm(x,y))) where

V(XO,Xl""'Xm) E T and Sl(X,y), ... ,sm(x,y) are CO-terms)

such that for every t(x) = t(xo, ... , xn ) E T)

K 1= t (x) ~ u (x 0, t (x) ).
(iii) There exist k E wand terms

Ui(X,y) = Vi(X,Si,1(X,y), ... ,Si,m;(X,y))) i = 1, ... ,k) where each

Vi(XO,Xl, ... ,XmJ ET and each Si,j(X,y) is a CO-term)

such that for every t(x) = t(xo, ... , x n ) E T)

K 1= t(x) ~ Ul(XO, t(x)) ~ ... ~ Uk(XO, t(x)) ~ O.

Proof. (i):::} (ii) (and (iii)) Since K has TDPI, it also has the IEP (by
Lemma 5.1(v) and Corollary 5.3), so Corollary 4.29 implies that for A E K
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and a, bE A,

(38) bE (a)A if and only if b = ut(a, b) for some t E T,

where ut(x, y) is as in Theorem4.28(ii).

Let P(T) denote the set of all subsets of T and let Pw(T) be the set of all
finite subsets of T.

Claim: There exists J E Pw(T) such that for all A E K and a, bE A,

(39) bE (a)A if and only if b = ut(a, b) for some t E J.

Suppose the Claim is false. Then for each J E Pw(T), there exist A J E K and
aJ, bJ E A J such that

(40)

but

(41)

For each J E Pw(T), set

QJ = {K E Pw(T) : J ~ K} and

F = {X ~ Pw(T) : 3J E Pw(T) such that QJ ~ X}.

Noting that QJ n QK = QJUK E F for all J,K E Pw(T), we see that F is
a filter of the Boolean algebra on the set of all subsets of Pw(T), i.e., a filter
over Pw(T). Let U be an ultrafilter (necessarily nonprincipal) over Pw(T) with
F ~ U, and let A = I1JEPw (T) A J and D = AjU. Since K is a quasivariety,
D EK.

Define 0:, bE A by o:(J) = aJ, b(J) = bJ (J E Pw(T)). By TDPI, there is a
finite set {Vi( x, y) : i = 1, ... , k} of binary C*-terms such that for any B E K
and c, dE E, we have

(42)
k

dE (C)B if and only if B F 1\ Vi[C, d] ~ 0. 12
;=1

By (40) and (42), 1\7=1 vi[al, bJ ] ~ 0 is true in A J for each J E Pw(T), hence
1\7=1 Vi [o:jU, bjU] ~ 0 is true in D by Los' Theorem. By (42), bjU E (o:jU)n,

12This notation may be interpreted either as vp(c, d) = 0 for i = 1, ... , k, or, equivalently,
as an assertion of the truth of the (first order) sentence 1\7=1 vilc', d'] ~ 0 in the structure
(B; (b : bEE)) for the first order language with equality determined by the expansion
C* U {b' : bEE} of C* by (distinct) constant symbols b' corresponding to the elements of
E.
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so by (38), there exists t f E T such that bjU = ut' (ajU, bjU), i.e.,

t' }(43) U={JEPw(T):bJ=u (aJ,bJ) EU.

Let J1 {tf} and note that QJ1 = {I< E Pw(T) : t
f

E I<} E U, so 0 =I-
Un QJ1 E U. Let I< E Un QJ1. By (43), since I< E U,

bK = ut'(aK,bK),

but, since I< E QJ1 we have t f E I< hence, by (41),

bK -I- ut'(aK,bK),

a contradiction. So the Claim is true.

Let the set J whose existence is asserted by the Claim be {t 1 , . .. ,td ~ T.
It follows from the Claim that if A E K and a, bE A then

(44) bE (a) A if and only if b-"---u t1 (a,b)-"--- ... -"---utk(a,b) =0.

The implication from right to left follows from Lemma 4.16(ii) and the fact
that uti(a, b) E (a) A for i = 1, ... , k (Lemma 4.19). Let t(x) = t(xa, ... , xn ) E
T, let F be the K-free algebra freely generated by xa, . .. ,xn and let t =
t F (xa, ... ,xn ). Since t E (xah (Lemma 4.19), (44) implies that

-t· t1 (- -t) . . tk (- -t) - OF- u xa, - ... - u xa, - ,

whence we deduce

(45) KFt(X)-"---U t1 (xa,t(x))-"--- ... -"---utk(xa,t(x))~O

(proving (iii)).

Define
u(X,y) = y-"---(y-"---ut1 (x,y)-"--- ... -"---utk(x,y)).

In F(x, V), the K-free algebra generated by x, y, we have uF(x,y) (x, y) E (X)F(x,y)

(by the last assertion of Lemma 4.17) so, by Lemma 4.19,

F(x,y) (- -) _ F(x,y) (- (- -) (- _))u x,y - V X,Sl x,y , ... ,Sm x,y

for some v(xa, ... ,xm) ET and C*-terms Sl(X,y)"",sm(x,y), hence

K F u(x, y) ~ v(x, Sl(X, y), ... , sm(x, y)).

By (45),

K F v(xa, Sl(Xa, t(x)), ... , sm(xa, t(x))) ~ u(xa, t(x)) ~ t(x) -"--- 0 ~ t(x),

which proves (ii).

That (ii) implies (iii) is trivial.
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(iii) ~ (i) We shall show that x: has TDPI with respect to the set {y ..:- Ul (x, y)
..:.... ... ..:- Uk(X, y)}. Let A E x: and a, bE A. If b..:.... ul(a, b)..:- ... ..:.... uk(a, b) = 0
then, since each ui(a, b) E (a)A (Lemma 4.19), it follows that b E (a)A'
Conversely, if b E (a)A' then there exists a term t(xo, ... , xn) E T and
aI, ... ,an E A such that b = t (a, aI, ... , an)' It follows immediately from
our assumptions that b..:- ul(a, b)..:- ... ..:- uk(a, b) = O. D

Corollary 5.5. Let x: be a relative subvariety of Hc> that has TDPI and let
u(x, y) be as in Theorem 5.4(ii). Then} for all A E x: and a, bE A}

bE (a) A if and only if b = uA(a, b)

if and only if b..:-uA(a,b) = O.

The proof is analogous to that of Corollary 4.29.

Corollary 5.6. Let x: be a relative subvariety of Hc>} and let S be the ax­
iomatic extension of C-H whose equivalent quasivariety semantics is X:. Then

(i) x: has TDPI if and only if S has a DDT.

Suppose x: has TDPI and let u(x,y) be as in Theorem 5.4 (ii). Let ((x,y) be a
C-formula such that ((x,y)* = u(x,y)} set ~ = ~(x,y) = {((x,y) -t y} and
set ~* = {y ..:.... u(x, y)}. Then

(ii) Mat* S has FDPF with defining set ~*;

(iii) Mat S has FDPF with defining set ~*;

(iv) x: has TDPI with defining set ~*;

(v) ~ is a deduction detachment set for s.

Proof. (i) follows from Theorem 5.2 and Corollary 5.3; (ii) is proved in Corol­
lary 5.5 and (iii), (iv) and (v) follow from (ii) and [BP88, Theorem 4.6].
o

Another deduction detachment set can be provided in the style of Theo­
rem 5.4(iii), just as in the case of the LDDT.

5.2. The Quasivarieties H'C>. For each nEw, we shall write x ..:- ny for
x ..:- y ..:- ... ..:.... y when there are n y's in the latter expression. Note that if
EB E C*, this abbreviation is an identity of H e -, but its use shall not imply
that EB E C*.

Proposition 5.7. Let x: be a relative subvariety of H c -. The following con­
ditions are equivalent:
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(i) for every A EX:) every preideal of A is an ideal of A;

(ii) for some nEw) x: F x ..:.- (x ..:.- y) ..:.- ny ~ O.

In this case) x: has the IEP (and hence also the RCEP) and for A E x: and
a E A)

(a)A = preA({a}) = {b EA::Jm E w such that b..:.-ma = O}.

Proof. (i) :::} (ii) Let F be the X:-free algebra on two free generators X, y. The
ideal of F generated by {V} coincides with the preideal of F generated by {V},
and contains x..:.- (x..:.- y), by Lemma 4.17(ii). By Lemma 4.16(iv), there exists
nEw such that x..:.- (x..:.- y) ..:.- ny = OF, hence x: satisfies x ..:.- (x ..:.- y) ..:.- ny ~ O.

(ii) :::} (i) Let I be a preideal of A, a E A and bEl. By (ii), we have
a..:.- (a..:.- b) ..:.- nb = 0 E I, so a..:.- (a..:.- b) E I. By Lemma 4.17(ii), I is an ideal
of A.

Suppose these equivalent conditions hold, and that A E X:, B is a subalgebra
of A and I E IdB. Let J = preA(I) = (I)A. Then I ~ J n B. Conversely,
suppose a E J n B. By Lemma 4.16(iv), there exist nEw and Cl, ... ,Cn E I
such that a ..:.... Cl ..:.- ... ..:.- en = oA = OB. Since a E B, we infer from Lemma 4.16
that a El. Thus J n B = I and x: has the IEP. The last assertion of this
proposition is a consequence of Lemma 4.16(iv). 0

Proposition 5.7 provides us with some interesting relative subvarieties of
Hc>. For each nEw, we define Hc> as the class of all algebras in Hc> that
satisfy the identity

The classes Hc-are also of natural interest. In particular, in view of Lemma 1.6
and the fact that (Zl) coincides with (A15), Ht..:..} is the class BCX: of all BCK­
algebras. Thus, Proposition 5.7 generalizes the fact that BCX: has the RCEP.
We also have that Hh- is the class of all algebras in Hc - with BCK-algebra
reducts, e.g. H{EB, --,--} is just the class of all pocrims. The following proposi-

tion shows that for each ordinal 0: :s; W
W and each C*, the algebra a~_ (see

Example 2.17), when it exists, is a member of Hb- (and not of Hh- unless
0::S;w+1).

Proposition 5.8. The left residuation algebra (wW)f..:..} = (WW; --,--,0) defined
in Example 2.17 satisfies

(46)
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and does not satisfy

(47) x--;-(x--;-y)--;-y ~ O.

Proof. We first show that (wW)f-'-} fails to satisfy (47):

(w + l)--;-((w + l)--;-w)--;-w (w + l)--;-l--;-w

= (w+l)--;-w=l#O.

Let ex,f3 E wW
• If ex ~ 13 or ex = 0 or 13 = 0 then (46) holds if we interpret x

as 0' and y as 13. Suppose 0' > 13 > 0 and that

0' = wnan +wn-1an_l +... +wal + aa,

13 = wmbm +wm-1bm_1 + ... +wb1+ ba,

where n, m, aa, ... , an, ba, .. . , bm E w, an # 0 and bm # O.

Case (i) Suppose n > m. Then ex --;- 13 = ex hence ex --;- (ex --;- (3) --;- 13 --;- 13 = o.
Case (ii) Suppose n = m and an > bn. Then

0'--;-13 = wn(an - bn) +wn-1an_l + +wal + aa,

O'--;-(ex--;-f3) = wnbn +wn-1an_l + +wal + aa,

ex --;- (0' --;- (3) --;- 13 < wn
,

ex --;- (0' --;- (3) --;- 13 --;- 13 = O.

Case (iii) Suppose n = m and an = bn. Since ex > 13, there exists k < n such
that an-l = bn-l, ... ,ak+l = bk+1 and ak > bk. Then

ex--;-f3 = wk(ak - bk) +Wk-1ak_l + ... +wal + aa,

ex --;- (ex --;- (3) = ex,

ex --;- (ex --;- (3) --;- 13 = ex --;- 13 ,

ex --;- (ex --;- (3) --;- 13 --;- 13 = o.
o

It follows that the relative subvariety of Hb- (or of He-) generated by
(W W )~_ has the RCEP. When EB E C*, this relative subvariety is a variety
(with the CEP), since the (EB, ~,O)-reduct of (WW)~_ is a right complemented
monoid: see Example 1.10.

We have given the most economical proof of Proposition 5.7 that we know,
but we also wish to show how its condition (ii) illustrates our characterization
of the IEP from Theorem 4.28. The next two claims connect the IEP for He-
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to the general characterization. Since H&_ is the trivial variety, we assume
n > 0.

Claim: For all n, mEw with n > 0, Hc-satisfies

x -=- (x -=- my) -=- (mn)y ~ 0.

(We remark that if EEl E C* this Claim is clearly true. If C* = { -=- } then any
A E Hc- is a subreduct of a polrim B E H{ffi, -=-} but for n > 1, it is not
obvious that we can choose B E H{ffi, -=- }. So a proof is necessary.)

We prove this Claim by induction on m. The cases m = °and m = 1 are
trivial. Suppose that the Claim holds for some m ~ 1. Then Hc- satisfies
x -=- Y -=- (x -=- Y -=- my) -=- (mn)y ~ 0, hence Hc-satisfies

x -=- (x -=- (m + l)y) -=- (mn)y

~ x -=- (x -=- (m + l)y) -=- (mn)y -=- (x -=- y -=- (x -=- (m + l)y) -=- (mn)y)

<

< x -=- (x -=- (m + l)y) -=- (x -=- y -=- (x -=- (m + l)y))

(by repeated application of (AI))

< x -=- (x -=- y) (by (AI)).

By repeated application of (A10), and by (Zn), Hc- satisfies

x -=- (x -=- (m + l)y) -=- (mn)y -=- ny :S x -=- (x -=- y) -=- ny ~ 0,

which completes the inductive proof.

Claim: For every t(x) E T there exists a kt E w such that Hc- satisfies
t(x) -=- ktxo ~ 0. (Here T is as defined on page 77.)

To see this, first observe that H{ffi, -=-} satisfies

x -=- Yl -=- ... -=- Yn -=- (z -=- Yl -=- ... -=- Yn) -=- (x -=- z)

~ x-=- (Yn EEl .. · EEl Yl) -=- (z -=- (Yn EEl .. · EEl Yl)) -=- (x -=- z) ~ ° (by (AI)),

hence H{ -=-} satisfies

x-=- Yl -=- ... -=- Yn -=- (z -=- Yl -=- ... -=- Yn) -=- (x -=- z) ~ 0.

Thus H{ ....:...} (and hence He-) satisfies

(48) z -=- Yl -=- ... -=- Yn ~ ° implies x-=- Yl -=- ... -=- Yn :S x-=- z.

If t( xo) is Xo or 0, we may take kt to be 1. Suppose t( x) = t( Xo, ... ,xn ) =
XI-=-(XI-=-t1(X)-=-t2(x)), where 1:S m and, for i = 1,2, ti(x) E T and there
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exists kti E w such that Hc. satisfies ti(X) -=-- ktixo >::::: O. By two applications of
(48), we obtain

Hc. ~ XI-=-- (e1 + kt2 )xo >::::: XI-=-- kt1xo -=-- kt2xo :::; XI-=-- h(x) -=-- t 2 (x),

hence

Hc. ~ t(x) >::::: XI -=-- (XI -=-- t1(x) -=-- t2(X)) :::; XI -=-- (XI -=-- (k t1 + kt2 )xo).

Using the first Claim, we obtain that He. satisfies

t(x)-=--((kt1 +kt2 )n)xo

< XI -=-- (XI -=-- (k t1 + kt2 )xo) -=-- ((k t1 + kt2 )n)xo >::::: O.

Thus, setting k t = (k t1 + kt2 )n completes the inductive proof of the Claim.

For relative subvarieties of He" therefore, condition (iii) of Theorem 4.28
holds, with uHx,y) = X for i = 1, ... ,kt

.

For mEw and formulas rp, '1/;, we shall use rp ~ 'I/; to denote the formula
rp --t rp --t ... --t rp --t 'I/; with rp and --t each occurring m times. By Proposi­
tion 5.7 and the remark following the statement of Corollary 4.30, we obtain
the following:

Corollary 5.9. Let 5 be an axiomatic extension of C-H such that for some
nEw, f- s p ~ ((p --t q) --t q). Then 5 has a LDDT with local deduction
detachment system {{p ~ q} : mEw}.

The above corollary captures as a special case (wi th n = 1) the result
that every superimplicational fragment of HBCK has a LDDT (with the local
deduction detachment system given in the corollary).

The relative suhvarieties of Hc. are not the only relative subvarieties of He­
that have the IEP. In Example 5.12, we shall exhibit a subvariety of H{ -'-, n, U}

which has TDPI (hence also the IEP) but does not satisfy the identity (Zn) for
any nEw. Nevertheless, if EB, 1 <f:. C* then, among the relative subvarieties of
He', those of Hc' are characterized by the IEP together with a kind of weak
finiteness condition. More precisely:

Theorem 5.10. Let K be a relative subvariety of He', where EB, 1 <f:. C", and
let nEw. Then K ~ Hc- if and only if K has the lEP and

K ~ x-=--( x-=-- y) -=-- ny >::::: x-=--( x-=-- y) -=-- (n + 1)y.

Proof. We have already observed that if K ~ Hc. then K has the IEP
and, over K, the required identity follows easily from (Zn)' For the con­
verse, we shall consider in detail only the case C* = { -=-- , n , U }. Set u(x, y) =
x-=--( X -=-- y) -=-- ny. Let F be the K-free algebra generated by the free generators
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x, y and let A be the subalgebra of F generated by {u, V}, where u = uF(x, y).
Note that u..:- y = u by our assumptions.

For each binary C*-term v = v(xo, xd, let f( v) be the number of occurrences
of connectives in v, and let v = vA(y, u) E A. One can show easily by induction
on f( v) that

(49) v:::; u u y for every binary C*-term v (hence for every v EA).

Claim: For every binary C*-term v (hence for every v EA),

(50) v :::; y or v;:::: u.

Certainly this is true if f( v) = O. Now let 0 < mEw and suppose that
(50) holds whenever f(v) < m. Consider a binary C*-term v with f(v) = m.
Then v = VI n V2 or V = VI UV2 or V = VI ..:- V2 for binary C*-terms VI, V2 with
f(VI), f(V2) < m. In the first two cases one can easily show that (50) holds.
Suppose v = VI ..:- V2' If VI :::; Y then v :::; y as well. If VI ;:::: u and V2 :::; Y then

If VI ;:::: u and V2 ;:::: u then by (49) and (C9) (see page 43),

v = VI":-V2:::; (uuy) ":-V2 = (U":-V2) u (Y":-V2) = OF U(Y":-V2):::; y.

Thus our Claim holds.

Next, we show, using Lemma 4.19, that (Y)A = {v EA: v :::; V}. Trivially,
OF, Y :::; y. Suppose that VI, V2 E (y) A such that VI, £12 :::; Y and let v E A.
Then v ..:- (£1..:- VI ..:- V2) E (y) A. By our Claim, we know that either v :::; y or
V ;:::: u. In the first case, we have v ..:- (£1..:- VI ..:- £1 2 ) :::; y, and in the second case,
we have

v..:- (v ..:- VI ..:- V2) :::; V ..:- (v ..:- y ..:- y) :::; V ..:- (u ..:- y ..:- y)

= v..:-u:::; (uuy)..:-u (by (49))

:::; Y (by (CS), page 42), as required.

Now it is evident that u E (y)F' hence the IEP implies that u E (y)A' so
U :::; y. Thus u ..:- y = OF. Since u ..:- y = u it follows that u = OF. By properties
of free algebras, we have that K 1= u(x, y) :::::: O.

For the case C* = { ..:- }, the above argument may be modified, the essential
fact being that .eR satisfies either v( Xo, Xl) :::; Xo or v( Xo, xd :::; Xl for any
binary C*-term v. The result for intermediate values of C* follows from these
two cases. D
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A quasivariety K has definable principal relative congruences if there exists
a formula cP(xo, Xl, Yo, YI) in the first order language with equality I:-~ (whose
only non-logical symbols are the connectives of I:- interpreted as function sym­
bols), such that for all A E K, and all a, b, c, d E A,

(c,d) E e~(a,b) if and only if A F= cP[a,b,c,d].

It is known that a locally finite quasivariety K with the RCEP has definable
principal relative congruences: see [Nur90b] (and [BB75] for varieties). When
K is also relatively congruence distributive, K has EDPRC by [BP88, Corollary
4.7]. Thus, in particular, every locally finite relative subvariety of Hc - with the
IEP (e.g., each Hc-) must have TDPI (see Proposition 4.22). The following
result clarifies and strengthens this observation.

A quasivariety K is called 2-finite if, for any A E K and X ~ A with IXI S 2,
the algebra SgA(X) is finite. In particular, every locally finite quasivariety is
2-finite.

Corollary 5.11. Let K be a 2-finite relative subvariety of Hc-) where EEl, 1 ~

C*) that has the lEP. Then there exist n, mEw such that K ~ Hc- and K
has TDPl with respect to the set {x~myL i.e.) for A E K and a,b EA)

bE (a)A if and only if b~ ma = O.

Proof. Since K is 2~finite, the K-free algebra F on two free generators X, y
is a finite algebra in which {x ~ (x ~ y) ~ ny : nEw} is a descending chain.
Thus K F= X ~ (x ~ y) ~ ny ~ x ~ (x ~ y) ~ (n + l)y for some nEw. Now the
first part of the corollary follows from the previous theorem.

By a similar argument, since K is 2-finite, it satisfies an identity x ~ my ~
x ~ (m + l)y for some mEw. In view of the last assertion of Proposition 5.7,
for A E K and a E A, we have (a)A = {b EA: b~ ma = O}. 0

Example 5.12. We present an example of an algebra A such that HSP(A)
is a subvariety of H{ ...:... ,n ,U} that has the IEP but does not satisfy (Zn) for
any n E w. 13 Let A be the algebra defined in Example 1.13. Recall that the
underlying partial order S on A is given by the following diagram:

13We could add 1 to the type of A without affecting the truth of any claims here, but in
the context of Theorem 5.10 and Corollary 5.11, the example is of more interest if we omit
1.
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Since (A;~) is linearly ordered, if we define lattice operations n, u on A
corresponding to the meet and join operations on (A; ~), respectively, then the
algebra A' = (A; ...:.., n, u, 0) lies in H{ ~, n, U}· Note that A' ~ H7. ~, n, U}

for any nEw, since

More strongly, A' does not satisfy x ...:.. (x ...:.. y) ...:.. ny ~ X ...:.. (x ...:.. y) ...:.. (n +l)y for
any nEw. For example, aa"':" (aa"':" an +3)"':" (n +1)an+3 = an +2"':" an +3 = an +4·

One can show that A' satisfies the identity

X ...:.. 2(x ...:.. y) ...:.. (y ...:.. x) ~ y ...:.. 2(y ...:.. x) ...:.. (x ...:.. y),

which is of the form of (27) hence, by Proposition 4.4(ii), A' generates a
subvariety of H{ ~,n, U}, say V. We claim that condition (ii) of Theorem 5.4
holds for V and, hence, that V has TDPI. Set

Then u is a term of the syntactic form described in Theorem 5.4(ii). By (34)
(see page 77), for each t(xa, , xn ) E T, H{ ~, n, U} satisfies t(O, xl,··· ,xn ) ~

0, hence also u(O, t(O, XI, , x n )) ~ u(O, 0) ~ °~ t(O, Xl, ... , xn ). Moreover,
one easily checks that for all i, j E w,

(51) a; -'-- (a; -'-- aj -'-- (a; -'-- (a; -'-- aj -'-- (a; -'-- (a; -'-- aj -'-- aj))))) = a;.

It follows that for all t( xa, ... ,xn ) E T and bl , ... ,bn E A,

u (aj, t (aj , bl , . . . , bn )) = t (aj, bI, . . . , bn )

regardless of the value of t(aj, bl , ... , bn ). Thus our claim holds and so V has
TDPI and therefore also the IEP.

This example therefore shows that we cannot drop from Theorem 5.10 the
condition that K satisfy x -'-- (x -'-- y) -'-- ny ~ x -'-- (x -'-- y) -'-- (n + l)y. Of course,
this example does not contradict Corollary 5.11, as A' is 2-generated (by
{aa, ad) but infinite.



99

Example 5.13. We now present an example which shows that Corollary 5.11
(and Theorem 5.10) would fail if we allowed EB E C* or 1 E C*. Let B
be a four-element set {O, a, b, 1}, and define a binary operation EB on B by
oEB x = x EB 0 = x for all x E B; a EB a = a; a EB b = b and x EB y = 1 otherwise.
Define a linear order :::; on B by 0 :::; a :::; b :::; 1 (see Figure 7).

1

b

a

o
Figure 7.

Then (B; EB, 0;:::;) is an integral pomonoid, residuated on the left as follows:
x -'-y = 0 for x,y E B with x:::; y; b-'-a = l-'-a = 1-'-b = b. Let nand u
be the meet and join operations of the poset (B,:::;), respectively. Since:::; is
a linear order, the algebra B = (B; EB, -'-, n, U ,0,1) is in H. For each C*, let
Bc. denote the C*-reduct of B.

The ( -'- ,O)-reduct of B is isomorphic to the subalgebra of w + 2{ -'-} (as
defined in Example 1.8) with universe {O, 1,w,w + I}. By Corollary 4.6, each
Bc. generates a subvariety of He', say Bc•. Note that 1 -'- (1 -'- a) -'- na = b -#
ofor each nEw. Suppose C* contains EB and consider the C*-term

u(x, y) = y -'- (y -'- x -'- ((y EB x) -'- ((y EB x) -'- x))).

Evidently u is of the syntactic form described in Theorem 5.4(ii) and for every
t(x) E T, it may be shown that Bc. satisfies t(x) ~ u(xo, t(x)), hence Bc. has
TDPI. Moreover, if 1 E C*, then it can be shown similarly, using the C*-term

ut (x, y) = y -'- (y -'- x -'- (1 -'- (1 -'- x) )),

that Bc * has TDPI.

5.3. Finitely Subdirectly Irreducible Algebras in He.. Recall that for
a quasivariety K" the class of all [relatively] finitely subdirectly irreducible
algebras in K, is denoted K,[R)FSI and that, by Proposition 4.21, (He· )RFSI =
(He· )FSI.

Proposition 5.14. For n E W J an algebra A E Ho. belongs to (Ho. )FSI if
and only if 0 is meet irreducible in (A, :::;).
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Proof. (=*) As observed after Proposition 4.22, algebras in 'He' are finitely
subdirectly irreducible if and only if their ( -=- ,O)-reducts are. We may there­
fore assume, without loss of generality, that C* = { -=- }.

Let nEw and A E ('He' )FSI. Suppose 0 =J a, b E A and that 0 is the
only common lower bound of a and b in (A; :s). Let B be the subalgebra of
A whose universe is (a] U (b]. Since (a] n (b] = {O}, (a] and (b] are preideals
(hence ideals, by Proposition 5.7) of B.

Now 'He. has the rEP, so (a)A nB = (a)B = (a] and (b)A n B = (b)B = (b],
so

(a)A n (b)A n B = (a] n (b] = {O}.

Let 0 =J c E (a) A n (b)A. By the last assertion of Proposition 5.7, there exist
k,l E w with

(52) c -=- ka = 0 = c -=- lb.

Choose k, l minimal such that (52) is true and note that k, l > O. Then,

(53)

(54)

hence

(55)

o=J c -=- (k - l)a :S a,

o=J c-=- (l- l)b:S b,

c -=- (k - l)a -=- (l- l)b :S a, b.

By assumption, therefore,

(56) c -=- (k - l)a -=- (l- l)b = O.

Thus c -=- (k-l)a E Bn (b)A and, by (52), c -=- (k-l)a E (a)A' so c -=- (k-l)a E
(a)An(b)AnB, i.e., c-=- (k-l)a = 0, contradicting (53). So (a)An(b)A = {O}.
By Proposition 4.21, therefore, (a)A = {O} or (b)A = {O}, hence a = 0 or b= 0,
as required.

(<==) Let 0 be meet irreducible in (A; :S) and let I and J be ideals of A with
In J = {O}. Suppose I =J {O} and choose a E I with a =J O. Let b E J. Any
common lower bound of a and b is in I n J, so the greatest lower bound of
a and b in (A;:S) is O. Thus b = 0, by meet irreducibility of 0 in (A; :S), so
J = {O} and A is finitely subdirectly irreducible by Proposition 4.21. 0

Consider the following quasi-identity:

(57) z -=- (x -=- y) ~ 0 and z -=- (y -=- x) ~ 0 implies z ~ o.
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If an algebra A E He. satisfies (57), then for all a, bE A, 0 is the only common
lower bound of a":'" band b..:... a in (A; ~). Evidently, when n E Co, (57) is
equivalent to the identity

(58) (x..:...y)n(y..:...x)~O.

Moreover, when n E Co, the (..:..., n,O)-identity (58) is equivalent to the
( ..:... ,O)-identity

(59) z..:... (z..:... (x..:...y))..:...(z..:...(y..:...x)) ~O.

For, by (Yo) (see page 42), H{...:..., n} satisfies

z ..:... (( X ..:... y) n (y ..:... x)) ..:... (z ..:... (x ..:... y)) ..:... (z ..:... (y ..:... x)) ~ O.

Thus, over H{...:..., n}, (58) implies (59). Conversely, over H{...:..., n}, we may
derive (58) from (59) if we set z = (x..:... y) n (y..:... x).

Corollary 5.15. For A E He. J consider the following conditions:

(i) A is linearly ordered/

(ii) A satisfies (59) /

(iii) A satisfies (57).

In general, (i) =} (ii) =} (iii). If A E (He. )FSI J for some n E W J the three
conditions are equivalent. I,t in addition, n E C* J (i)-(iii) are each equivalent
to

(iv) A satisfies (58).

Proof. (i) =} (ii) Under any interpretation of x, y, z in A, one of x..:... y and
y ..:... X takes the value 0, hence (59) holds in A.

(ii) =} (iii) This implication is clear.

Suppose now that A E (He. )FSI, where nEw.

(iii) =} (i) By Proposition 5.14, 0 is meet irreducible in (A; ~), hence, for
a, bE A, (57) implies that a..:... b = 0 or b..:... a = 0, so a ~ b or b ~ a.

The remaining statement follows from the discussion preceding this corol-
lM~ D

The special case of Corollary 5.15 in which C* = { ..:... }, A is subdirectly irre­
ducible and n = 1 (hence A is a BCK-algebra) was discovered by M. Palasinski
[Pal80]. Thus, the next corollary also generalizes some known properties of
BCK-algebras.

Corollary 5.16. For nEw and A E He. J the following are equivalent:
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(i) ,A satisfies (59),.
(ii) A is a subdirect product of linearly ordered subdirectly irreducible

algebras in reo. j

(iii) A is a subdirect product of linearly ordered algebras in 1{c•.

In this case) A satisfies (57). When n E C*) we may replace (59) by (58) m
(i).

Proof. (i) =} (ii) By the quasivarietal analogue of Birkhoff's subdirect decom­
position theorem (Theorem 0.9), A is a subdirect product of relatively (Hc.-,
or equivalently, Hc.-) subdirectly irreducible algebras Ai E H(A)nHc ., i E I.
Each Ai satisfies (59) because A does. Now, Hc.-subdirectly irreducible al­
gebras in Hc • are subdirectly irreducible (by Proposition 4.21)' hence finitely
subdirectly irreducible. By Corollary 5.15, therefore, each Ai is linearly or­
dered, and the result follows.

The implication (ii) =} (iii) is trivial and (iii) =} (i) follows by Corollary 5.15
since subdirect products preserve identities. The remaining statements of the
corollary follow from the discussion preceding Corollary 5.15. 0

For each nEw, let Lc. denote the class of all linearly ordered members of
Hc•. Let Kc. denote the relative subvariety of Hc• generated by Lc., i.e.,
Kc. = H c• n H S P(Lc.). By Corollary 5.16, Kc. satisfies (59).

Corollary 5.17. The subquasivariety Q(Lc.) of Hc.) where nEw) gener­
ated by Lc• is Kc•. The class Kc. is axiomatized, relative to H c.) by (59)
(equivalently, by (58)) when n E C·).

Proof. Since Kc. is a quasivariety containing Lc., Q(Lc.) ~ Kc•. If A E Kc.
is Kc.~subdirectly irreducible, then it is Hc.-subdirectly irreducible, hence
finitely subdirectly irreducible (in the absolute sense) in Hc. (by Proposi­
tion 4.21), and satisfies (59). By Corollary 5.15, A is linearly ordered, so A
E Lc.. Now,

K"J:. = IPs((K"J:.)Rsr) ~ IPs(L"J:.) ~ Q(L"J:.),

where RSI refers to Kc.-subdirectly irreducible. Thus Kc. = Q(Lc.).
Obviously, Kc. is a subclass of H c• that satisfies (59). Conversely, suppose

A is a member of Hc. that satisfies (59). By Corollary 5.16, A is a subdirect
product of linearly ordered algebras in Hc., hence A E Q(Lc.) = Kc•. Thus
Kc. is axiomatized, relative to H c., by (59). 0

The members of Kc. (= Q(Lc.)) shall be called the representable algebras
. '1../nzn I (.c.'
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5.4. Equationally Definable Principal Relative Meets. A quasivariety
K has equationally definable principal relative meets (EDPRM) if there exists
a finite system I; = {(Ui(X,y,z,W),Vi(X,y,z,w)) : i = 1, ... ,n}, of pairs of
4-ary terms such that, for all A E K and a, b, c, dE A,

e~(a, b) n e~(c, d) = U{e~(ui(a, b, c, d), vi(a, b, c, d)) : i = 1, ... , n}

where the join is taken in the lattice Conx::A. In this case I; is called a system
of principal intersection terms for K. (We drop the qualification 'relative' and
speak of 'EDPM' if K is a variety.) For varieties, this notion originates in
[BP86]. It has been studied mainly in the context ofaxiomatization problems:
see [BP86], [CD90], [Dzi89]. For example, constructive proofs of some of the
finite basis theorems mentioned in Chapter °for finitely generated [relatively]
congruence distributive [quasi]varieties K may be simplified considerably under
the assumption that K has EDP[R]M.

Theorem 5.18. [CD90, Theorem 2.3, Corollary 2.4] For a quasivariety K of
algebras the following are equivalent:

(i) K has EDPRM;

(ii) K is relatively congruence distributive and KRFSI forms a universal

class;

(iii) there exists a finite system I; = {(Ui(X,y,z,W),Vi(X,y,z,w)):

i = 1, ... , n}) of pairs of 4-ary terms such that KRFSI satisfies

n

(Vx)(Vy)(Vz)(Vw) [(/\ Ui(X,y,z,w) ~ Vi(X,y,z,w)) iff (x ~ y or z ~ w)].
i=l

In this case I; is a system of principal intersection terms for K.

Recall that for a class K of similar algebras, KNT denotes the class of all
nontrivial algebras in K, and Ks the class of all simple algebras in K. A variety
V is called semisimple if every subdirectly irreducible member of V is simple,
i.e., if VSI = Vs. The following result is essentially well known. A proof is
included for the reader's convenience.

Proposition 5.19. Let V be a variety with EDPC.
(i) V is semisimple if and only if V is generated (as a variety) by a class of
simple algebras.
(ii) If V is semisimple) say V = V(K)) where K ~ Vs) then

(VFSI)NT = VSI = Vs = (ISPu(K))NT

and V has EDPM.
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Proof. (i) By Lemma 5.1(iii), (v), V is congruence distributive with the CEP.

(:::}) V = V(VSI) = V(Vs).

(~) Let K <;;; Vs with V = V(K). By Lemma 5.1(iv), Pu(K) <;;; Vs and,
by the CEP, (S(VS))NT <;;; Vs, hence (H S(VS))NT <;;; Vs. Now by J6nsson's
Theorem (Theorem 0.2), VSI <;;; (VFSI)NT <;;; (H S PU(K))NT <;;; Vs, so V is
semisimple.

(ii) Since Vs <;;; VSI (for any variety), the above proof also establishes
the equations in the first assertion of (ii). Thus, when V is semisimple,
(VFSI)NT = Vs = Pu(Vs) = (S(VS))NT, so VFSI is closed under subalgebras
and ultraproducts, i.e., VFSI is a universal class (see Theorem 0.8). By Theo­
rem 5.18, V has EDPM. 0

Semisimple varieties with EDPC have also been studied under the name
]iltral varieties: see [BP82] for further information and references.

In Corollary 5.25 we show, for each nEw, that Kc. has EDPRM, by
presenting a system of principal intersection terms for Kc.. We include the
following proof, however, as it is an interesting illustration of Theorem 5.18(ii).

Corollary 5.20. For nEw) the quasivariety Kc. of representable algebras in
Hc. has EDPRM.

Proof. Since Kc. is a relative subvariety of He', it is relatively congruence
distributive. The class Lc. is axiomatized by the axioms of Hc. together with
the following universal sentence:

(Vx)(Vy) (x-=-y ~ 0 or y-=-x ~ 0).

Thus Lc. is a universal class, so it is closed under I, Sand P u . Lemma 1.5 of
[CD90] states that, for a class M of similar algebras, every nontrivial member
of Q(M)RFSI belongs to IS Pu(M), hence Q((Lc.)RFSI) <;;; IS Pu(Lc.). Now,
by Corollary 5.17,

(KC·)RFSI = (Q(Lc·))RFsI <;;; ISPu(Lc') <;;; Lc •·

Conversely, if A E Lc" then A is linearly ordered, hence OA is meet irreducible,
so A E (KC')FSI, by Proposition 5.14. By Proposition 4.21, (KC.)FSI =
(KC')RFSI, so (KC.)RFSI = Lc.. Thus (KC.)RFSI is a universal class. By
Theorem 5.18, Kc. has EDPRM. 0

Proposition 5.21. Let K be a relative subvariety of He•. Suppose that there
exist terms ti(x, y)) i = 1, ... , n) such that for all A E K and a, bE A)

(a)A n (b) A = ({ tt-(a, b) : i = 1, ... , n })A.
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Then K has EDPRM with a system of principal intersection terms

~ = {(u! (x, y, z, w), 0) : i = 1, ... , n; j = 1, ... , 4},

where, for i = 1, ... ,n,

u}(x, y, z, w) = ti(X ~ y, z ~ w), u7(x, y, z, w) = ti(x ~ y, w ~ z),

uf(x, y, z, w) = ti(Y ~ x, z ~ w), ut(x, y, z, w) = ti(y ~ x, W ~ z).

Moreover, if A E K, a, bE A and 1 is an ideal of A for which tt(a, b) E 1 for
i = 1, ... ,n, then

1 = (I U {a})A n (1 U {b})A.

Proof. By Theorem 5.18 and Proposition 4.21, we need only show that

4 n

KFS1 F (Vx)(Vy)(Vz)(Vw) [(/\ /\ ui(x,y,z,w) ~ 0) iff (x ~ y or z ~ w)].
j=li=l

Note that, for A E K and a E A,

{O} = (a) A n (0) A = ({tt(a, 0) : i = 1, ... ,n} )A,

so tt(a,O) = 0 for i = 1, ... ,n. Similarly tt(O,a) = 0 and tt(b,O) = 0 =
tt(O, b) for i = 1, ... , n. The implication from right to left now follows easily.

"A
Conversely, let A E KFSI and let a, b, c, d E A such that u~ (a, b, c, d) = 0

for each i,j. By assumption,

hence, by Proposition 4.21 and the fact that A is finitely subdirectly irre­
ducible, either (a ~ b)A = {O} or (c ~ d)A = {O}. Thus, either a...:... b = 0 or
c"':'" d = O. By similar considerations, we obtain that: a"':'" b = 0 or d ~ c = 0;
b~ a = 0 or c ~ d = 0; and b~ a = 0 or d ~ c = O. It follows from (A4) that
either a = b or c = d, as required.

The last observation follows by the distributivity of ideals (see Proposi­
tion 4.22): we have

(I U {a}) A n (1 U {b}) A = 1 U Id A ( (a)A n (b) A)

= 1 u Id A ( { tt(a, b) : i = 1, ... , n} )A = 1.

D

Lemma 5.22. For n, mEw, rCc' satisfies

z ~ (x ~ (x ~ y)) ~ n(x ~ y) ~ (x ~ (x ~ y)) ~ n(x ~ y) ~ ...

~(x~(x~y))...:...n(x~y)~ z~mx,
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where there are m occurrences of each of x ..:- (x ..:- y) and n(x ..:- y) in the above
expresszon.

Proof. The case m = 0 is trivial. For m = 1, we have that reo> satisfies

Z ..:- (x ..:- (x ..:- y)) ..:- n(x ..:- y)
~ z..:- (x ..:- (x ..:- y)) ..:- n(x ..:- y) ..:- (x ..:- (x ..:- (x ..:- y)) ..:- n(x ..:- y)) (by (Zn))

:::; z..:- X (by repeated application of (AI)).

For values of m greater than 1 the result follows from the case m = 1. 0

Lemma 5.23. Lett(i,w) be any (..:-,O)-term. Then, forn E w) every repre­
sentable algebra in rfc> satisfies

(60) t(i, x ..:- y) ~ 0 and t(i, y ..:- x) ~ 0 implies t(i, 0) ~ O.

Proof. Let A E Dc>, let a, b, c E A and suppose that tA(C, a ..:- b) = 0 =
tA(c, b..:- a). Since A is linearly ordered, a ..:- b = 0 or b..:- a = 0, so tA(C, 0) = O.
Thus Lc> satisfies the quasi-identity (60). By Corollary 5.17, Kc> = Q(Lc»,
hence Kc> satisfies (60) as well. 0

Lemma 5.24. Let nEw) A E Kc> and a, bE A. Then

(a) A n (b)A = ({a..:- (a..:- b), b..:- (b..:- a)})A.

Moreover, if I is an ideal of A and a..:- (a..:- b), b..:- (b..:- a) E I) then

I = (I U {a})A n (I U {b})A.

Proof. Since a..:-(a..:-b):::; a, we have a..:-(a..:-b) E (a)A; since A E Hc>, we
have a":- (a..:- b)..:- nb = 0 hence a":- (a..:- b) E (b)A. Thus a..:- (a..:- b) E (a)A n
(b)A and, similarly, b..:- (b..:- a) E (a)A n (b)A' so ({a..:- (a..:- b), b..:- (b..:- a)})A ~

(a)A n (b)A.

Conversely, let c E (a)A n (b)A. By the last assertion of Proposition 5.7,
there exists mEw such that c"':" ma = 0 = c"':" mb. Set

t(x, y, z, w) = Z ..:- (x ..:- (x ..:- y)) ..:- (y ..:- (y ..:- x)) ..:- nw ..:- ... ..:- (x ..:- (x ..:- y))

..:- (y ...:.. (y ..:- x)) ...:.. nw,

where there are m occurrences of each of x...:.. (x..:- y), y...:.. (y..:- x) and nw. Now

tA(a, b, c, a..:- b)

< c..:- (a...:.. (a ...:.. b)) ..:- n(a ...:.. b) ...:.. ... ...:.. (a ..:- (a ...:.. b)) ...:.. n(a ..:- b)

< c...:.. ma (by Lemma 5.22)

0,
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SO tA(a, b, c, a -'- b) = °and, similarly, tA(a, b, c, b -'- a) = 0. By Lemma 5.23,
therefore, t A

( a, b, c, 0) = 0, i.e.,

C -'- (a -'- (a -'- b)) -'- (b -'- (b -'- a)) -'- .. , -'- (a -'- (a -'- b)) -'- (b -'- (b -'- a)) = 0,

so c E ({a -'- (a -'- b), b -'- (b -'- a) })A. The remaining statement follows from
Proposition 5.21. 0

The above lemma and Proposition 5.21 give us the following:

Corollary 5.25. For nEw, a system of principal intersection terms for ,Cc'
is given by

Ul(X, y, z, w) = x -'- y -'- (x -'- y -'- (z -'- w)), Vl(X, y, z, w) = 0,

U2(X, y, z, w) = x -'- y -'- (x -'- y -'- (w -'- z)), V2(X, y, z, w) = 0,

U3(X,y,Z,w) = y-'-x-'-(y-'-x-'-(z-'-w)), V3(X,y,Z,w) = 0,

U4(X,y,Z,w) = Y-'-x-'-(Y-'-x-'-(w-'-z)), V4(X,y,Z,w) = 0,

U5(X,y,Z,w) = z-'-w-'-(z-'-w-'-(x-'-y)), V5(X,y,Z,w) = 0,

U6(X,y,z,w) = z-'-w-'-(z-'-w-'-(y-'-x)), V6(X,y,Z,w) = 0,

U7(X,y,Z,w) = w-'-z-'-(w-'-z-'-(x-'-y)), V7(X,y,Z,w) = 0,

U8(X,y,z,w) = w-'-z-'-(w-'-z-'-(y-'-x)), V8(X,y,Z,w) = 0.

Lemma 5.26. Let nEw, n E C·, A E rea' and a, b E A. Then (a) A n
(b)A = (a n b)A. Moreover, if I is an ideal of A and an bEl, then I =
(I U {a})A n (I U {b})A.

Proof. Let c E (a)A n (b)A. By the last assertion of Proposition 5.7, there
exists mEw such that c -'- ma =°= c -'- mb. Note that

(61 ) c -'- d1 -'- . . . -'- d2m = °
whenever di E {a, b} for each i E {I, ... , 2m}. To see this, we need only note
that amongst the di's there are at least m a's or at least m b's. Now, using
two applications of (61) (namely with d2m = a and d2m = b) and appealing to
(YO) (see page 42) and (A2), we infer that

(62) c -'- d1 -'- ... -'- d2m- 1 -'- (a n b) = °
whenever di E {a, b} for each i E {I, ... ,2m -I}. Now, using two applications
of (62) (with d2m- 1 = a and d2m- 1 = b) and appealing to (Y1 ) and (A2), we
:find that

c -'- d1 -'- .•• -'- d2m- 2 -'- (a n b) -'- (a n b) = 0.

Continuing in this way, we obtain

c -'- (2m)(a n b) = 0,



VI ( x, y, z, w) = 0,

V2 ( x, y, z, w) = 0,

V3(X, y, z, w) = 0,

V4(X,y,Z,w) = O.
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hence c E (a n b)A. Thus (a)A n (b)A ~ (a n b)A. The reverse inclusion is
trivial. The remaining statement follows from Proposition 5.21. 0

By the above lemma and Proposition 5.21, we therefore obtain the following:

Corollary 5.27. Suppose n E C*. Then) for each nEw) a system of princi­
pal intersection terms for H c- is given by

Ul (x, y, z, w) = (x ..:- y) n (z ..:- w),
U2 (x, y, z, w) = (x ..:- y) n (w ..:- z),

U3(X,y,z,w) = (y..:-x)n(z..:-w),

U4(X,y,Z,w) = (y..:-x)n(w..:-z),

The above results illustrate for H c- (n E C*) and Kc- a general prop­
erty of quasivarieties K with EDPRM: for each A E K, the compact relative
congruences of A form a sublattice of ConJCA [CD90, Theorem 2.3]. Since
H{ ~, n} is the variety of 'lower BCK-semilattices', the above results (in the

case n E C*) generalize some theorems of [RS87].

We remark that the variety V of Example 5.12 and the varieties Bc- of
Example 5.13, when n E C* (which are not in Hc-for any nEw), have EDPM
with same system of principal intersection terms as in the above corollary. In
the case of the first example, it follows from the linear order on A that A
(hence also V) satisfies

u(x,z)nu(y,z) ~ u(xny,z).

Now, for B E V and a, b, c E E, we have c E (a)B n (b)B if and only if c =
uB(a, c) and c = uB(b, c). In this case,

c = cnc = uB(a,c)nuB(b,c) = uB(anb,c),

hence c E (a n b)B. Thus (a)B n (b)B = (a n b)B. The fact that V has EDPM
now follows from Proposition 5.21.14

When C* contains n it can be shown in a similar manner that the varieties
Bc- of Example 5.13 also have EDPM. Since Bc- is finitely generated, Corol­
lary 5.27 and the methods of [BP86] could be employed to construct a finite
equational basis for Bc -.

14In the next chapter, we shall observe that the algebra A of Example 5.12 is simple.
Since V(A) has EDPC, the fact that it has EDPM could also have been derived from
Proposition 5.19. This does not apply to any of the other varieties with EDPM identified
in the present chapter.
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CHAPTER 6

THE LATTICE OF VARIETIES OF LEFT

RESIDUATION ALGEBRAS

By an £R-variety we shall mean a variety consisting of left residuation
algebras. We denote by p V(£R) the partially ordered "set" of all £R-varieties
(ordered by inclusion). In Section 1 we shall show that pV(£R) is, in fact,
a (distributive) lattice. This lattice has a unique atom, namely, the variety
generated by the two-element left residuation algebra C 2 . In this chapter we
investigate the lattice of £R-varieties and, in particular, the covers of the atom
V(C 2 ).

Two finitely generated covers of the atom are the varieties V(L3 ) and V(H3 ),

where L 3 and H 3 are (dually) isomorphic to the implication reducts of the
three-element Lukasiewicz algebra and the three-element linearly ordered Heyt­
ing algebra, respectively. These are, in fact, varieties of BCK-algebras and it
was recently proved [Kow95] that they are the only covers of the atom V(C2 )

in the lattice of varieties of BCK-algebras. In Section 2 we describe a third
finitely generated cover of the atom in the lattice of £R-varieties. This va­
riety is generated by a five-element algebra Ps; we prove that it, together
with V(L3 ) and V(H3 ), are the only finitely generated covers of the atom in
pV(£R).

In Section 3 we show that if V is an £R-variety that covers the atom and
contains a nonsimple subdirectly irreducible algebra whose smallest nontrivial
ideal consists of two elements, then V is V(H3 ) or V(Ps). Thus, we con­
clude that the only £R-variety that covers the atom, has EDPC and is not
semisimple is V(H3 ).

In Section 4 we investigate covers of the atom that are semisimple and have
EDPC. We show that among £R-varieties, those that are semisimple with
EDPC are precisely the fixed point discriminator £R-varieties. We present a
countably infinite sequence AI, A 2 , A3 , ... of infinite left residuation algebras
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that generate distinct £R-varieties that are semisimple, have EDPC and cover
the atom. Also, we show that the variety generated by all the Ai's is an
£R-variety that has 2l{o subvarieties, none of which is generated by its finite
members, except V(Cz) and the trivial variety. The algebra Al coincides with
the algebra defined in Example 1.13; we establish a finite axiomatization of
the variety V(A I ) in Section 5.

6.1. The Lattice of £R-Varieties. Recall from Proposition 4.22 that ev­
ery £R-variety is congruence distributive. Thus, J6nsson's Theorem (Theo­
rem 0.2) applies to every £R-variety, that is, if K is a class of left residuation
algebras and V = H S P(K) is an £R-variety, then VSI ~ V FSI ~ H S Pu(K); in
particular, if K is a finite set of finite left residuation algebras and H S P(K) is
an £R- variety, then V SI ~ VFSI ~ H S(K).

In general the varietal join of two subvarieties of a quasivariety K need not
be contained in K. (An example can be extracted from [KM92, Example 6.6].)
The proof of the following theorem is identical to the proof of [BR95, Theorem
11], which asserts the same result for the poset of all varieties of BCK-algebras.
We include the proof for the sake of completeness.

Theorem 6.1. Let VI, Vz be £R-varieties. Then their varietal join H SP(VIU
Vz) is also an £R-variety. Consequently, the poset pV (£R) of all £R-varieties
is a lattice. Moreover,

pV(L:R)
VI U . Vz = H SP(VI UVz) = IS P( (h)sI U (VZ)sI)'

Proof. By Proposition 4.4, there are identities

(63) x -'- ~7=1 t i ( x, y) ~ Y -'- ~7=1Si (X, y) ,
(64) X-'-~7=lUi(X,y) ~ y-'-~7=lVi(X,y),

(65) ti(x, x) ~ Si(X, x) ~ Ui(X, x) ~ Vi(X, x) ~ 0, for i = 1, ... , n,

such that VI satisfies (63), Vz satisfies (64) and £R satisfies (65). (For nota­
tional simplicity we use a uniform n; this loses no generality since £R satisfies
x ~ x -'- (y...:... y).) Now, let V be the variety of type (2,0) over the language
( ...:... ,0) satisfying (65) and

(66) X...:...~7=lti(X,y)"':"'~j=lUj(X"':"'~~lti(X,Y),y"':"'~7=lSi(X,y))

~ y...:... ~~I Si(X, y)...:... ~j=l Vj(x"':'" ~7=lti(X, y), y...:... ~7=1 Si(X, y)).

Observe that £R satisfies

U)(X...:... ~~I ti(x, x), x...:... ~7=1 Si(X, x)) ~ Uj(x, x) ~ °
~ Vj ( x, x) ~ Vj (x ...:... ~7= 1ti (x, x), X ...:... ~Si (x, x) )
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for j = 1, ... ,n. This, together with (65) and Proposition 4.4(i), implies that
V is an .eR-variety. Now, V2 satisfies (66), since (66) is a substitution instance
of (64), while in VI, the left-hand side of (66) reduces, by (63) and (65), to

x -"-- ~~=lti(X, y) -"-- ~~=IUj(X -"-- ~~=lti(X,y), X -"-- ~~=lti(X, y))

~ x -"-- ~~=I ti(X, y) -"-- ~~=IO ~ X -"-- ~~=I ti(X, y).

Similarly, the right-hand side of (66) becomes y -"-- ~~ISi(X,y) in Vb so that
VI satisfies (66), as a consequence of (63). Thus VI U V2 ~ V. Write VI U V2

for the join of VI and V2 in the lattice of all varieties of type (2,0). Clearly,
VI U V2 is an .eR-variety. Thus VI U V2 is a congruence distributive variety. By
Corollary 0.3, (VI UV2)SI = (VI)sI U (V2 )SI, hence

h U V2 ~ IS P( (VI U V2)sI) = IS P( (h)SI U (V2)sI) ~ VI U V2 •

o
Corollary 6.2. p v (.eR) is a distributive lattice.

Proof. Let VI, V2 , V3 be .eR-varieties. By the previous theorem, V = H S P(VIU
V2 U V3 ) is an .eR-variety, so V is a congruence distributive variety and the
poset pv (V) of subvarieties of V is clearly a sublattice of pv (.eR). Since V
is congruence distributive, pv (V) is a distributive lattice, by Corollary 0.4.
Thus,

VI n (V2 U V3 ) = (VI n V2 ) U (VI n V3 ),

where U is the join operation of V, hence also of pV (.eR), as required. 0

It is well known that there are 2No varieties of BCK-algebras. Since.eR
has finite type, it follows that IPv (.eR)1 = 2No also. In [WK84],Wronski
and Kabzinski proved that there is no largest variety of BCK-algebras, by
constructing a denumerable sequence Bo, Bl, B 2 , ... of finite BCK-algebras,
a subalgebra B of an ultraproduct of {B i : i E w} and a homomorphic image
D of B that violates the quasi-identity (A4) and is therefore not in .eR. We
have mentioned that the variety generated by any finite BCK-algebra consists
of BCK-algebras; in particular V(B i ) is an .eR-variety for each i E w. This
argument therefore shows also that the lattice pv (.eR) has no greatest element.
Nevertheless, just as in the case of BCK-algebras, we obtain the following
result, whose proof reproduces that of [BR95, Corollary 12]:

Corollary 6.3. The lattice pv (.eR) contains cofinal chains of order type w.

Proof. The "set" of all .eR-varieties that are axiomatized, relative to .eR,
by an identity of the form of (63), where .eR satisfies ti(X, x) ~ 0 ~ Si(X, x),
is cofinal in pv (.eR), by Proposition 4.4(i), and may be enumerated, say as
VG, VI, V2 ,· •.. Define Wo = Vo and for each nEw, choose W n+1 to be the
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variety constructed as in the proof of Theorem 6.1, containing W n and Vn+1 .

(Note that W n+1 is one of the Vm .) The sequence Wo, W1 , W 2 , ... is a cofinal
chain in pV (£R). 0

6.2. Finitely Generated Covers of the Atom. Recall from Section 4.1
that the unique two-element left residuation algebra C 2 is embeddable in ev­
ery nontrivial left residuation algebra, hence the variety V(C 2 ) (which is a
variety of BCK-algebras) is the smallest nontrivial £R-variety, i.e., it is the
unique atom of the lattice pV (£R). Up to isomorphism, there are exactly
two subdirectly irreducible three-element left residuation algebras, namely
L3 = ({0,1,2}; ":,,,,0), where 0 ::::: 1 ::::: 2 and 2..:...1 = 1 (thus, L3 is just
the ordinal algebra 3{-,-} of Example 2.17); and H 3 = ({0,1,2}; ..:... ,0), where
o ::::: 1 ::::: 2 and 2..:... 1 = 2. The algebras L3 and H 3 are (dually) isomorphic
to the implication reducts of the three-element Lukasiewicz algebra and the
three-element linearly ordered Heyting algebra, respectively, and are there­
fore BCK-algebras. It follows from J6nsson's Theorem that V(L3 ) and V(H3 )

are covers of the atom V(C2 ) in the lattice of varieties of BCK-algebras. Of
course, V(L3 ) and V(H3 ) are therefore also (finitely generated) covers of the
atom V(C 2 ) in the lattice PV(£R). We shall now describe a third finitely
generated cover.

Let (A;:::::) be the poset depicted in Figure 8 and define a binary operation
EEl on A by the rules (where x, YEA): 0 EEl x = x = x EEl 0; x EEl y = e if
x, y E {e, d}; e EEl e ~ e; e EEl d = e EEl b = b; and x EB y = a in all the remaining
cases. (A; EB, 0;:::::) is an integral pomonoid, residuated on the left as follows
(where x, YEA): x..:... 0 = x; x..:... y = 0 if x ::::: y; a":'" b = a":'" e = b..:... e =
d ..:... e = e":'" e = e ..:... d = e ..:... b = d; a":'" e = b..:... e = e":'" e = b..:... d = e..:... d = e
and a":'" d = b.

a

e

e

Figure 8.

Thus, (A; EEl, ..:... ,0) is a polrim with associated order :::::. A has a subalge­
bra with universe {O, d, e} that is isomorphic to the ordinal algebra 3{EB, -,-}.

Its only other nontrivial proper subuniverses are {O,a}, {O,e} and {O,e}.
The (..:..., O)-reduct A{ -'-} of A has as a further subuniverse the set Ps =
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{a, a, b, c, d}. The algebra P5 = (P5; -'-,0) is depicted in Figure 9; its subal­
gebra on {a, b, c, d} is an isomorphic copy of C z x C z. An algebra isomorphic
to P5 shall be called a pendent square. Notice that every proper subalgebra of
p 5 is embeddable in C z X C z·

a

b

d c

Figure 9.

One may check that P 5 satisfies

x -'- 2(x -'- y -'- y) -'- 2(x -'- y) -'- 2(y -'- x -'- x) -'- 2(y -'- x) ~

y -'- 2(y -'- x -'- x) -'- 2(y -'- x) -'- 2(x -'- y -'- y) -'- 2(x -'- y),

which is an identity of the form of (27), hence V(P5) is an -CR-variety, by
Proposition 4.4(i). By J6nsson's Theorem, V(P5)sr ~ H S(P5). Each proper
subalgebra of P 5 is in V(Cz) and the only nontrivial ideals of P5 are P5 and
{a, d}. Since IP5 /8 Ps (0, d)1 = 2, the (nonisomorphic) subdirectly irreducible
algebras in H S(P5) are just P 5 and C z. Thus V(P5)sr = I{P5, C z}, so V(P5)
is a cover of the atom V(Cz) distinct from V(H3 ) and V(L3 ). We remark
that V(P5) does not have the IEP (nor the CEP, therefore): the subalgebra
({O,b,c,d}; -'- ,0) ofP5 has an ideal {O,c} and no ideal ofP5 meets {O,b,c,d}
in {O,c}.

We shall prove the following:

Theorem 6.4. The only finitely generated -CR-varieties that cover the atom
V(Cz) are V(H3 ), V(L3 ) and V(P5).

We recall here some facts concerning the variety V(C z) of Tarski algebras.
Most of these derive from the fact that Tarski algebras are exactly the ( -'- ,0)­
subreducts of Boolean algebras (A; n, U ,',0,1) (where x -'- y = x n (y')).

(i) The variety V(Cz) consists of all BCK-algebras satisfying

(67) x -'- (y -'- x) ~ x.

It follows by Lemma 1.6 that V(Cz) is axiomatized by (67) and

(AI) x -'- y -'- (z -'- y) -'- (x -'- z) ~ °
(A2) X-'-O~X
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(A3)

(A4)

(AI5)

O-=--x~O

x-=-- y ~ 0 and y -=-- x ~ 0 implies x ~ y

x-=--(x-=--y)-=--y~O.

The quasi-identity (A4) can be replaced in this axiomatization by

(68) x-=--(x-=--y)~y-=--(y-=--x),

which is of the form of (27) and accounts for the fact that V(C 2 ) is an £R­
variety. Moreover, in the presence of the other axioms, (67) and (68) render
(A2) and (AI5) redundant, so V(C 2 ) is axiomatized by (AI), (A3), (67) and
(68).

(ii) The partial order defined on an algebra in V(C 2 ) by x :::; y iff x-=-- y ~ 0 is
a meet-semilattice order; the meet operation is definable by x n y = x-=--( x -=-- y)
(~y -=-- (y -=-- x)). Also, V(C2 ) satisfies x -=-- (x n y) ~ x -=--y.

Let A E V(C 2 ).

(iii) If a, bE A have an upper bound in (A; :::;), then they have a least upper
bound a u b, in particular,

a U b = n {c EA: c is an upper bound of a and b}.

(iv) If a, bI , . .. ,bn E A and bI U ... U bn exists in (A; :::;), then

a-=--(bI U . . . U bn ) = (a -=-- bI ) n . . . n (a -=-- bn ).

(v) For each a E A, (a] = ((a]; n, u,', 0, a) is a Boolean algebra, where n
and U are the meet and join operations corresponding to the partial order :::;
on A, and b' = a -=-- b for all b E (a]. In particular, when A is a finite algebra,
(a] is a finite Boolean algebra for each a E A.

(vi) Let A be a finite algebra in V(C2 ). Then each a E A is the join of all
the atoms e of the (finite) Boolean algebra (a].

Lemma 6.5. If A is a left residuation algebra that satisfies (67)! then A also
satisfies x -=-- y -=-- y ~ x -=-- y.

Proof. By two applications of (67), A satisfies

x -=-- y ~ x -=-- y -=-- (y -=-- (x -=-- y)) ~ x-=-- y -=-- y.

D

We shall make use the fact that, owing to (AI2) (see page 18), if A is a
left residuation algebra and B is a hereditary subset of A (with respect to the
associated partial order), then B is a subuniverse of A.
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Let V be a finitely generated .eR-variety that is a cover of the atom V(C 2 ).

Then V is generated by a single finite left residuation algebra A. Moreover,
A can be chosen in such a way that no proper subalgebra of A generates V.
Thus, every proper subalgebra of A is in V(C2 ) and, therefore, satisfies (AI5),
(67) and (AI4) (see page 22). Let a be a maximal element of A. Then A \ {a}
is a hereditary subset of A, hence it is the universe of a proper subalgebra of
A, which must lie in V(C 2 ).

Assume that V is neither V(L3 ) nor V(H3 ). Thus, A contains no linearly
ordered three-element subalgebra. The following four lemmas prove that A
must contain a pendent square, which proves Theorem 6.4.

Lemma 6.6. A has a largest element.

Proof. Suppose that A has more than one maximal element. We shall infer
that A satisfies (67) and (AI5), i.e., that A E V(C2 ) (by (i), page 113), a
contradiction.

Claim 1. A satisfies (67): x -"-- (y -"-- x) ~ x.
Let a be any maximal element. First, we show that for any other maximal
element b, we have a -"-- (b -"-- a) = a.

Case 1: (a] = {O,a}.
Since a and b are maximal, a 1:. b. Thus, a 1:. b -"-- a (since b -"-- a ~ b), hence
a -"-- (b -"-- a) =I o. But a -"-- (b -"-- a) E (a], hence a -"-- (b -"-- a) = a.

Case 2: (a] contains more than two elements.
Since (a] is a proper subalgebra of A, (a] E V(C 2 ). By (v) (see page 114),
(a] is a finite Boolean algebra which, by assumption, has more than one atom.
Let el, ... ,en be the atoms of (a]; so a = elU ... Ue n . Since b,ei E A\{a},
ei -"-- (b -"-- ei) = ei for each i, by (67). Now, for each i, b -"-- a ~ b -"-- ei, by (All)
(see page 18), so, by (All) and (AlO),

ei -"-- (b -"-- ed ~ ei -"-- (b -"-- a) ~ a -"-- (b -"-- a),

so ei ~ a -"-- (b -"-- a) . Thus

a = e1 U . . . U en ~ a -"-- (b -"-- a),

so a = a -"-- (b -"-- a).

Since a, b were arbitrary, it follows that a -"-- (b -"-- a) = a for all maximal
elements a, b. Suppose c, d E A are not both maximal elements. Let a be a
maximal element different from c, d. Then c, d E A \ { a}, hence c -"-- (d -"-- c) = c.
We therefore conclude that A satisfies (67).

By Lemma 6.5, A satisfies x -"-- y -"-- y ~ x -"-- y.
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Claim 2. A satisfies (A15): x -=-- (x -=-- y) -=-- y ~ O.
If a, b E A are such that at most one of a, b is maximal, then there exists an­
other maximal element c E A such that a, b E A \ {c}, hence a-=--(a -=-- b) -=-- b = 0,
by (A15). So, let a, b be distinct maximal elements. If a-=-- b = a then
a -=-- (a -=-- b) -=-- b = 0 -=-- b = 0, as required. Suppose that a-=-- b < a. Note that
a-=--(a -=-- b) i= a otherwise {O, a -=-- b, a} is a linearly ordered three-element sub~

universe of A, contradicting our assumptions about V(A), so a -=-- (a -=-- b) < a.
Thus,

a-=--(a-=--b)-=--b

(a -=-- (a -=-- b)) -=-- (a -=-- b) -=-- b (by Lemma 6.5)

(a-=--(a-=--b))-=--b-=--(a-=--b) (by (A14), sincea-=--(a-=--b),a-=--b,bE A\{a})

< a-=--b-=--(a-=--b)=O.

Since a, b were arbitrary, it follows that a-=--(a -=-- b) -=-- b = 0 for all maximal
elements of A, hence A satisfies (A15). Thus, A E V(C 2), a contradiction.
D

Let a be the maximum element of A. Let el, ... ,en be the atoms of A \ {a}
and note that n > 1. Since A satisfies x-=-- y ::; x, we have ei -=-- b = ei for each
atom ei and each b E A \ {a} for which ei 1:. b. Note that for each b E A \ {O, a},
a-=-- b i= a and a-=-- b i= b, otherwise {O, b, a} is a linearly ordered three-element
subuniverse of A, contradicting our assumptions about V(A).

Lemma 6.7. Let I be a proper subset of {I, ... , n}. Then the set {ei : i E I}
has a least upper bound in A \ {a}.

Proof. We consider only the case I = {I, ... , n - I}. For each i El,
a -=-- en 2: ei -=-- en = ei, hence a -=-- en is an upper bound for {el"'" en-I}'
Since a -=-- en, el,···, en-l E A\{a}, {el"'" en-d has a least upper bound in
A\{a}, by (iii) (see page 114). 0

Lemma 6.8. The set {el, ... ,en} has a least upper bound in A \ {a}.

Proof. Suppose, on the contrary, that {el"'" en} does not have an upper
bound in A \ {a}. Then a is the only upper bound of {el" .. , en} in A. We
show that this implies that A E V(C

2
).

Claim 1. A satisfies (67): x-=-- (y -=-- x) ~ x.
If b, c E A \ {a}, then b -=-- (c -=-- b) = b. For an atom ei of A, we have a-=--( ei -=-- a)
= a-=--O = a. Also, for j i= i, a-=-- ei 2: ej -=-- ei = ej, so

a-=-- ei 2: U{ej : j i= i} E A \ {a} (by Lemma 6.7).
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Since a ~ ei =I a, a ~ ei E A \ {a}. Also, a ~ ei '1. ei, otherwise a ~ ei is an
upper bound for {el,' .. ,en} in A \ {a}, contradicting our assumption. Thus,
by (vi) (see page 114), a ~ ei = U{ej : j =I i}, so

ei~(a~ei) ei~(U{ej:j=li})

= n {ei ~ ej : j =I i} (by (iv), page 114)

Now let b E A \ {a} and, without loss of generality, assume b is the join of
distinct atoms el, ... ,em , where m> 1. Note that a~(b~a) = a~O = a.
For i = 1, ... ,m, ei S; b, so a ~ b S; a ~ ei, hence

b~ (a ~ b) 2 b~ (a ~ ei) 2 ei ~ (a ~ ei) = ei·

Thus b~ (a ~ b) 2 el U ... U em = b, so b~ (a ~ b) = b, which completes the
proof of the claim.

Claim 2. A satisfies (AI5): x ~ (x ~ y) ~ y ~ 0.
The only nontrivial case to verify is a~(a~b)~b = 0, where b E A\{a,O}.
Now

a~(a~b)~b

(a ~ (a ~ b)) ~ (a ~ b) ~ b (by Lemma 6.5)

(a ~ (a ~ b)) ~ b~ (a ~ b) (by (A14), since a ~ (a ~ b), a ~ b, b E A \ {a} )

< a~b~(a~b)=O,

as required. Thus A E V(C 2 ), which completes the proof of the claim and
also the lemma. 0

By the above lemma, there exists an element b E A \ {a} that is the join of
all the atoms of A \ {a}. Since every C E A \ {a} is the join of the atoms less
than or equal to C (by (vi), page 114), b is the maximum element of A \ {a}.

Lemma 6.9. The pendent square Ps is embeddable into A.

Proof. Set c = a~b, so C E A\{O,a,b}. We shall show that {O,a,b,c,c/} is
the universe of a subalgebra of A isomorphic to Ps, where c' = b~ c is the
Boolean complement of c in (b]. By (v) (see page 114), b~ c' = c ~ c' = c and
b~ c = C' ~ C = c'.

By (AI), a~c/~(b~c/)~(a~b) = 0, hence a~c/~c~c = 0. Since
a ~ c', c E A \ {a}, 0 = a ~ c' ~ c ~ c = a ~ c' ~ c, hence a ~ c' S; c. But
a ~ c' 2 b~ C' = c, so a ~ C' = c.

Now, a~c E A\{a}, so a~cS; b. Also, a~c 2 b~c = C' and a~c 2
a ~ b = c, hence a ~ c 2 c u C' = b. Thus a ~ c = b. 0
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This completes the proof of Theorem 6.4. In fact, it follows that among the
subvarieties of .eR that are generated by their finite members, only V(H3 ),

V(L3 ) and V(Ps) cover V(C2 ).

Corollary 6.10. Let V be an .eR-variety distinct from V(H3 )J V(L3 ) and
V(Ps) such that V covers V(C2). Then every finite algebra in V is a Tarski
algebra.

Proof. By the above, if Vfin is the class of finite algebras in V then C 2 E
H S P(Vfin) which is a proper subclass of V, so H S P(Vfin ) = V(C 2 ). 0

6.3. Other Covers of the Atom. Let A be an algebra in .eRRSI (i.e., in
.eRsI , by Proposition 4.22). By Proposition 4.14, there exists a unique nonzero
ideal of A that is the intersection of all nonzero ideals of A; we call this ideal
the monolith of A. Recall that a variety V is semisimple if every subdirectly
irreducible algebra in V is simple, i.e., VSI = Vs.

Proposition 6.11. Let V be an .eR-variety that is a cover of the atom V(C 2).

If V contains a subdirectly irreducible and nonsimple algebra whose monolith
consists of two elements, then V is V(H3 ) or V(Ps).

Proof. Let B be a subdirectly irreducible and nonsimple algebra in V whose
monoli th is I = {O, e}, say. So e covers 0 in the partial order of Band e ~ bEl
for all bE B. .

Observe that for a E B\I and m, nEw,

(69) a ~ ne ~ (a ~ me) El,

since a ~ ne ~ (a ~ me) ::; a ~ (a ~ me) E I, by Lemma 4.17.

For each a E B\I, set Ba = I U {a ~ ne : nEw}. It follows from (69) that
Ba is a subuniverse of B.

Suppose there exists a E B\I such that Ba is infinite. Then, for all nEw,
a ~ (n + l)e < a ~ ne. Moreover, a ~ ne ~ (a~ (n + l)e) E (e)B = I, so
a ~ ne ~ (a ~ (n + l)e) = e. For each nEw, let an denote a ~ ne.

Let u( x, y) be any (~)-term such that .eR satisfies u( x, x) >:::::: O. We
claim that u(an, am) E I for all n, mEw. By (A4), .eR satisfies the quasi­
identity: x ~ y >:::::: 0 and y ~ x >:::::: 0 implies u(x, y) >:::::: O. Since I E Id Band
an ~ am, am ~ an E I by (69), it follows that u(an, am) E I (see page 72).

Let x ~ E7=lUi(X,y) >:::::: y ~ E~=lVj(X,y) be any identity for which.eR satis­
fies Ui(X,X) >:::::: 0>:::::: Vj(x,x) for each i,j. By the above claim, for each i and all
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rn, nEw, ui(an , am) :::; e, so

aa ~ E7=1Ui( aa, ak+d 2 aa ~ ke = ak > ak+l 2 ak+I ~ E;=lVj( aa, ak+l),

so B fails to satisfy any identity of the form (27). This contradicts Proposi­
tion 4.4(i) since V is an .eR-variety. Thus, for each a E B\I, Ba is a finite
subuniverse of B.

For each a E B\I, let Ba denote the algebra (Ba; ~,O). Since V is a cover
of V(C2 ) and Ba E V, V(Ba ) is either V or V(C2 ). If, for some a E B\I,
V(B a ) = V, then V is finitely generated, hence V is V(H3 ), V(L3 ) or V(Ps ).

We can exclude V(L3), however, since it is semisimple.

Suppose that for each a E B\I, V(Ba ) = V(C2 ). Set J = {b E B : e 1:- b}.
Note the following:

(i) If b E J (i.e., e 1:- b), c E Band c:::; b, then c E J as well.

(ii) If b rt J then b~ e E J: since e, bE Bb E V(C 2), (67) implies that

e ~ (b ~ e) = e =J 0, so e 1:- b~ e.

(iii) If b E J then e ~ b = e: e ~ b E {O, e} and e ~ b =J 0 since e 1:- b.

Claim. J is a nonzero ideal of B.
To see this, first note that 0 E J. Let b, c E J and a E B. If a E J then
a ~ (a ~ b~ c) :::; a E J, hence a ~ (a ~ b~ c) E J, by (i).

If a rt J, then e :::; a, so

a ~ (a ~ b~ c) :::; a ~ (e ~ b~ c) a ~ (e ~ c) (by (iii))

a ~ e (by (iii))

E J (by (ii)),

hence a ~ (a ~b ~ c) E J, by (i). By Lemma 4.17(iii), J is an ideal of B. Also,
J is not {O} since for any bE B\I, either bE J or 0 =J b~ e E J, by (ii).

Now e rt J, so I Cl J, contradicting the assumption that I is the monolith
of B. 0

Corollary 6.12. The only .eR-variety that covers V(C 2 )) has EDPC and is
not semisimple is V(H3 ).

Proof. Let V be an .eR-variety that covers V(C2 ), has EDPC and is not
semisimple. Note that V is not generated by a simple algebra, otherwise, by
Proposition 5.19(i), V would be semisimple. Thus, since V covers V(C 2), each
simple algebra in V must lie in V(C2 ), so, up to isomorphism, the only simple
algebra in V is C 2 .
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Let A E VS1\ Vs and let I be the monolith of A. We claim that the subalgebra
I = (1; ~,o) of A is simple. Let J be an ideal of I. Since V has EDPC,
it follows from Proposition 5.1(v) that it also has the CEP. It follows from
Proposition 4.14 that there exists an ideal K of A such that J = KnI. But Kn
I is Ior {a} since I is the monolith of A, so J is Ior {a}. By Proposition 4.14
again, I is simple. Thus I is isomorphic to C 2 . By Proposition 6.11, V is V(H3)

or V(Ps), but we can exclude V(Ps) as it does not have the CEP. 0

6.4. Covers that are Semisimple with EDPC. Corollary 6.12 prompts us
to investigate DR.-varieties that cover V(C2 ), are semisimple and have EDPC.
(We have seen that V(L3 ) is the only such variety that is generated by its
finite members.) We start with a more general discussion.

A discriminator variety is a variety V generated by a class K of algebras,
having a ternary term p such that V satisfies p(x, x, y) ~ y, and pA(a, b, c) = a
whenever A E K, a, b, c E A and a -I b. Discriminator varieties have strong
and desirable properties and behave, in several respects, like the variety of
Boolean algebras. In particular, every such variety is semisimple and arith­
metical [BS81, Theorem IV.9.4]. Since a nontrivial DR.-variety is never con­
gruence permutable, it cannot be a discriminator variety. Parts of the theory
of discriminator varieties were extended to a hierarchy of wider classes of va­
rieties in [BP94bJ, from which the following definitions have been taken:

A ternary term p = p(x, y, z) is a ternary deductive (TD) term for a class K
of similar algebras if

(i) Kp:p(x,x,z)~z,

and for all A E K and a, b, c, d E A,

(ii) pA(a,b,c) = pA(a,b,d) if (c,d) E 8 A(a,b).

(Note that the converse of (ii) follows from (i).) A TD term p on K is com­
mutative if K satisfies the identity

(70) p(x, y, p( x' , y', z)) ~ p(x' , y', p( x, y, z) ).

A ternary operation p on a set A is called a fixed point discriminator if there
exists d E A such that

p(a, b, c) = { ~ if a = bj
otherwise.

A variety V is a fixed point discriminator variety if there is a ternary term
function p of V and a subclass K of V such that V = V(K) and p is a fixed
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point discriminator on each A E iC; p is called a fixed point discriminator term
for V, in this case.

A variety with a TD term must have EDPC [BP94b, Corollary 2.5]. By
[BP94b, Theorem 3.4], a variety generated by simple algebras which has a
commutative TD term is a fixed point discriminator variety for which the TD
term is a fixed point discriminator term. Conversely, every fixed point discrim­
inator variety V is a semisimple variety for which the fixed point discriminator
term is a commutative TD term (so V has EDPC).

It is not known whether every semisimple, congruence 3-permutable variety
with EDPC has a TD term. Even if congruence permutability is assumed, a
semisimple variety with EDPC need not have a commutative TD term (i.e.,
it need not be a fixed point discriminator variety) [BP94b]. We now show,
however, that for £R-varieties, there is no such distinction.

Proposition 6.13. Let V be an £R-variety that is semisimple and has EDPC.
Let u(x,y) be a term as described in Theorem 5.4 (ii) that witnesses TDPI for
V. Then

(i) p(x, y, z) = z...:.. u(x...:.. y, z) -'- u(y -'- x, z) is a commutative TD term for V)
(ii) V is a fixed point discriminator variety with fixed point discriminator

term p.

Proof. It suffices, by the above discussion, to show that pA is a fixed point
discriminator on every simple algebra A E V, with OA as the 'fixed point' d.

Recall that for any A E V and a, b E A, we have b E (a) A if and only if
b = uA(a, b) (Corollary 5.5). It follows that V satisfies u(x, 0) :::::; 0, while £R
satisfies u(O, x) :::::; 0 (by (34), page 77); therefore V satisfies p(x, x, z) :::::; z.

Now let B be a simple algebra in V and a, b, c E E with a # b. Then
a-'-b # 0 or b-'-a # 0, so (a-'-b)A = E or (b-'-a)A = E, by the simplicity
of B. Thus, c E (a -'- b)A or c E (b -'- a)A' so c = u(a -'- b, c) or c = u(b -'- a, c),
whence p(a, b, c) = c...:.. C = 0, as required. 0

In view of the remarks preceding the above proposition, we infer the follow­
ing characterization of semisimple £R-varieties with EDPC.

Corollary 6.14. For an £R-variety V) the following are equivalent:

(i) V is semisimple with EDPC)

(ii) V is semisimple with a commutative TD term)

(iii) V is a fixed point discriminator variety.
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We shall exhibit a countably infinite sequence of .eR-varieties that are
semisimple with EDPC and covers of V(C 2). Set A = {O} U {ai : i E w},
where (ai : i E w) is a one-to-one sequence whose range excludes O. Let::; be
the partial order on A defined by the following Hasse diagram:

We shall define a countably infinite sequence AI, A 2 , A 3 , ... of algebras
each with universe A. Let n 2: 1. Define a binary operation ~ n on A as
follows: for x,y E A, set x ~nO = x, X ~nY = 0 iff x ::; y (thus ai ~naj = 0
iff i 2: j); for i, j E w with j 2: 1, set

Let An denote the algebra (A; ~ n, 0). (Observe that Al is the algebra defined
at the end of Chapter 1 and discussed in Example 5.12, page 97). Then each
An is a left residuation algebra that satisfies

which is of the form of (27). (In fact, as noted in Example 5.12, Al satisfies
the simpler identity of the same form:

Thus each An generates an .eR-variety V(An ), which we denote by Vn. In
particular, Vn is a congruence distributive variety for each n.

For the next three lemmas, we shall assume that n 2: 1 is fixed. We drop
the subscript from ~ n'

Lemma 6.15. An is simple.
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Proof. Evidently (ao)An = A. Let i ::::: 1. Then

so ai-I E (ai)An , by Lemma 4.17(iii). It follows that (ai)An = A. Thus the
only ideals of An are {O} and A, so An is simple, by Proposition 4.14. 0

Lemma 6.16. Condition (ii) of Theorem 5.4 holds for Vn with respect to the
term

u( x, y) = y -'- (y -'- x -'- (y -'- (y -'- x -'- (y -'- (y -'- x -'- x))))).

Thus Vn has EDPC and EDPM and is semisimple. A system of principal
intersection terms for Vn is given by

SI (x, y, z, w) = (x -'- y) -'- (z -'- w),

S2 (x, y, z, w) = (x -'- y) -'- (w -'- z),

S3(X,y,Z,w) = (y-'-x)-'-(z-'-w),

S4 (x, y, z, w) = (y -'- x) -'- (w -'- z),

h(x,y,z,w) = x -'-y,

t 2(x,y,z,w) = x -'-y,

t3(x,y,z,w) = Y -'-x,

t4(x, y, Z, w) = y -'- x.

Proof. The situation for Al (see Example 5.12, page 97) generalizes fully: for
any t(xo, ... , x m ) E T, .eR satisfies u(O, t(O, Xl, ... , Xm )) ~ t(O, Xl, ... , xm ).

Moreover, for all i, j E w, we still have

ai -'- (ai -'- aj -'- (ai -'- (ai -'- aj -'- (ai -'- (ai -'- aj -'- aj) )))) = ai.

Thus, for all t(xo, ... , xm ) E T and bI , ... , bm E A, u(aj, t(aj, bI , ... , bm )) =
t(aj, bI , ... , bm ) regardless of the value of t(aj, bI , ... , bm ). By Theorem 5.4, Vn

has EDPC. By Lemma 6.15, Vn is also semisimple so, by Proposition 5.19, Vn

has EDPM. To see that {(Si( x, y, z, w), ti( x, y, z, w)) : i = 1, ... ,n} is a system
of principal intersection terms for Vn , we need (in view of Theorem 5.18) to
show that (Vn)FSI satisfies the following universal sentence:

(72)
4

(Vx)(Vy)(Vz)(Vw) [(f\ Si(X,y,z,w) ~ ti(x,y,z,w)) iff (x ~ y or z ~ w)].
i=l

By Proposition 5.19, (Vn)FSI = IS Pu(An); in particular, (Vn)FSI is a universal
class. Thus, we need only show that An satisfies (72). The implication from
right to left in (72) is trivial. For the other implication, let a, b, c, dEAn such
that sf-n (a, b, c, d) = tf-n (a, b, c, d) for i = 1, ... ,4, and note that

An F (Vx)(Vy) [(x -'- y ~ x) iff (x ~ 0 or y ~ 0)].

Thus, a -'- b = 0 or c -'- d = 0, and a -'- b = 0 or d -'- c = 0, and b -'- a = 0 or
c-'-d = 0, and b-'-a = 0 or c-'-d = O. It follows by (A4) that a = b or c = d,
as required. 0
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In the first order sentence (73) below, Y ~ x abbreviates Y -'-- x ~ 0, Y < x
abbreviates ((y ~ x) and (-.(x ~ y))) and

Prel(y,x) abbreviates (y < x) and (\lz)((z < x) implies (z ~ y)).

In the proof of Lemma 6.17 we also use the following inductively defined ab­
breviations:

for n 2' 1, Pren+l(y,x) abbreviates (:Jz)((Pren(z,x)) and (Prel(y,z))).

It follows from the definition of -'-- that An satisfies the first order sentence

(73) (\Ix) [(-.(x ~ 0)) implies (:JYl)(:JY2)'" (:JYn+l)((Prel(yl,x))

and (Prel (Y2,Yl)) and ... and (Prel(Yn+l,Yn))

and (x -'-- Yl ~ Yn+d and (x -'-- Y2 ~ Yn+l) and ...

and (x -'-- Yn ~ Yn+l) and (\ly)((y < Yn) implies (x -'-- Y ~ Yn)))]

By Los's Theorem, Pu(An) satisfies the above sentence as well.

That An is linearly ordered is expressible by the universal sentence

(\lx)(\ly)(x ~ Y or Y ~ x),

hence every algebra in 8 Pu(An) is linearly ordered as well.

Lemma 6.17. Every finitely subdirectly irreducible algebra in Vn is isomorphic
to C 2 or has a subalgebra isomorphic to An.

Proof. By Proposition 5.19, Lemmas 6.15 and 6.16, ((Vn)FSI)NT = (Vn)s =
(Vn)sI = (8 Pu(An))NT. Let B E Pu(An). The result will follow if we can
show that every subalgebra of B on at least 3 elements has a subalgebra
isomorphic to An. For each nonzero bEE, the truth of (73) in B says that
there are unique elements Cl, ... ,Cn E E such that Prei(Ci, b) is true in B for
i = 1, ... , n. Let us write Ci = Prei(b) is this case.

Claim. Let 0 i- bEE. Then 8gB ({b,Prel (b), ... ,Pren(b)}) is isomorphic to
An.

By (73),

b -'-- Prel(b)

Prel(b) -'-- Pre2(b)

Pren+l(b),

Pren+2(b),
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hence {b,Prel (b), ... ,Pre2n (b)} ~ SgB({b,Prel(b), ... ,Pren(b)}). By induc­
tion and (73), {O, b} U {Prem (b) : m 2: I} is a subuniverse of
SgB( {b, Prel(b), ... , Pren(b)}) isomorphic to An, hence the Claim holds.

Next, we show that every subalgebra of B on at least 3 elements contains a
subset of the form {b, Prel(b), ... , Pren(b)} for some bE B. A subset of B of
the form {b, Prel(b), ... , Prek-l(b)}, where b E Band k 2: 1, will be called a k­
element chain in B. Let C be a nontrivial subalgebra of B not isomorphic toC2
and let 0 i=- b, c E C. Without loss of generality, suppose b < c. By (73), either
c ~ b = Pren+l(c), in which case c ~ (c ~ b) = Pren(c), or c ~ b = Pren(c), in
which case c~(c~b) = Pren+l(c). In either case, {c~b,c~(c~b)} forms a

2-element chain in C. Suppose that {d, Prel (d), ... , Prek
-

l (d)} is a k-element
chain in C, where 2 ::; k < n. By (73),

d ~ Prel(d)

Prel (d) ~ Pre2(d)

Prek- 2 (d) ~ Prek - l (d)

d ~ Pren+l (d)

Prek
-

l (d) ~ Pren(d)

Pren+l(d),

Pren+2(d),

Pren+k-l(d),

Pren(d),

Pren+k(d).

Thus {Pren(d), ... , Pren+k(d)} is a (k + I)-element chain in C. By induction,
C contains an n-element chain. By the Claim, C contains a subalgebra iso­
morphic to An· D

Proposition 6.18. For each n 2: 1, Vn is a cover of the atom V(C2).

Proof. Suppose W is a nontrivial.eR-variety such that W ~ Vn . Let B E WS1 ,

so B E (Vn)sI as well. Then, by Lemma 6.17, B is isomorphic to C 2 , or B
contains a subalgebra isomorphic to An. Thus, W is V(C2) or Vn. D

Set X = V( {AI, A 2, A 3 , ... }). Each Ai satisfies (71), hence X does as well,
so X is an .eR-variety. Moreover, p(x, y, z) = z ~ u(x ~ y, z) ~ u(y ~ x, z) is a
fixed point discriminator on each Ai, hence X is a fixed point discriminator
variety. Thus X is semisimple with EDPC and so, by Proposition 5.19, XS1 =
Xs = (S P u ({AI, A2, ... }))NT.

Proposition 6.19. There are precisely 2No subvarieties of X. Moreover, X
contains no finite algebra other than members of V(C2 ).
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Proof. Set N = {1,2,3, ... }. Let 11,12 ~ N, 11 =I- 12 . Without loss of
generality, suppose n E 11 \12 , We claim that An rf- V({Ai: i E 12 }) = V.
V is also semisimple with EDPC, hence VSI = Vs = (SPU({Ai : i E 12}))NT.
Consider the following first order sentence 4J, which is equivalent to a universal
sentence:

-,[(3xo) ... (3xn)[(xo > ... > xn) and (xQ -'- Xl ~ Xn+l) and ...

and (xQ -'- Xn ~ Xn+l) and (xQ -'- Xn+l ~ xn )]].

Evidently, each Am, where m =I- n, satisfies 4J. Thus 4J is satisfied by Vs. But
An does not satisfy 4J, so An rf- Vs· Since An is a simple algebra, we must
have An ~ V.

It follows from the claim that V(An ) CZ V( {Ai : i E 12}), hence that
V({Ai: i E Id) =I- V({Ai: i E 12 }). Since 11 and 12 we arbitrary, it follows
that there must exist as many subvarieties of X as there are subsets of N, i.e.,
2No subvarieties.

Let B be any finite subdireetly irreducible left residuation algebra with
IEI > 2. Let r.p be a first order sentence such that for any algebra A of type
(2,0) we have: A satisfies r.p if and only if A has a subalgebra isomorphic to B.
Evidently, for each n 2 1, An does not satisfy r.p, hence An satisfies -'r.p. The
sentence -'r.p is equivalent to a universal sentence, hence S Pu ({AI, A 2 , •.. })

satisfies -'r.p. Thus B t/:- S Pu ({AI, A 2 , ... }), hence B t/:- X. It follows that X
contains no finite algebras other than members of V(C 2 ). D

6.5. Finite Axiomatization: V(Al ) and V(A 2 ). We present here a finite
axiomatization of V(A l ). We also deduce from theoretical considerations that
V(A2 ) is a finitely based variety.

We shall write -'- instead of -'- 1. As in Lemma 6.16, we set

u(x, y) = y -'- (y -'- X -'- (y -'- (y -'- X -'- (y -'- (y -'- x -'- x))))).

Consider the following identities:

(D1) x -'- 2(x -'- y) -'- (y -'- x) ~ y -'- 2(y -'- x) -'- (x -'- y),
(D2) u(x, y -'- (y -'- z -'- w)) ~ y '-,- (y -'- u(x, z) -'- u(x, w) ),
(D3) x -'- (y -'- (y -'- x)) ~ x -'- y,
(D4) x-'-y-'-(y-'-x)~x-'-y,

(D5) x -'- (x -'- (y -'-u(x,y))) ~ 0,
(D6) x -'- y -'- 2(x -'- 2y) -'- 2(y -'- (x -'- y)) ~ 0,

(D7) x -'- y -'- (x -'- y -'- (x -'- z -'- (x -'- z -'- (z -'- (x -'- y) -'- (z -'- (x -'- y)
-'- (z -'- (x -'- (x -'- y)))))))) ~ 0,
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(D8) x -=- (x -=- (x -=- y)) ~ x-=- y,

(D9) x-=-y-=-(x-=-y-=-(x-=-3(x-=-y))) ~ 0.

We shall prove the following:

Theorem 6.20. V(Ad is axiomatized by (A1)-(A3) and (D1)-(D9).

We know that Al satisfies (A1)-(A3) and (D1). It is routine to check that
Al satisfies (D3)-(D9). By the proof of Lemma 6.16, Al satisfies x ~ °or
u(x,y) ~ y, and.eR satisfies u(O,y) ~ 0. It follows that Al satisfies (D2).

Conversely, let W be the variety axiomatized by (A1)-(A3) and (D1)-(D9).
Since W satisfies (A1)-(A3) and (D1), it follows from Proposition 4.4(i) that
W is an .eR-variety.

Lemma 6.21. For each C E Wand all a, b E C) b E (a)c if and only if
u(a, b) = b. Thus) W has EDPC.

Proof. (~) If u(a,b) = b then, since u(a,b) E (a)c, we have b E (a)c.

(=?) Suppose b E (a)c. By Corollary 4.18, there exist nEw and bo, ... , bn E C
such that bn = b and for each i E {O, ... ,n}, bi = a or bi = c-=-(c-=-bj-=-bk )

for some c E C and j,k < i. Un = °then b = bo = a and u(a,b) = b.
Suppose that n > 0. Either bn = a (so u(a, b) = b), or bn = c -=- (c -=- bj -=- bk ),

where j, k < nand c E C. In the second case, by an induction hypothesis,
u(a, bj ) = bj and u(a, bk ) = bk , and

u(a, b) u(a, c -=- (c -=- bj -=- bk ))

= c -=- (c -=- u(a, bj ) -=- u(a, bk )) (by (D2))

= c -=- (c -=- bj -=- bk ) = b,

as required. By Theorem 5.4, W has EDPC. D

In the Lemmas 6.22 to 6.30, E denotes an arbitrary subdirectly irreducible
algebra in W with monolith I.

Lemma 6.22. For all a E E and bEl) a-=- b = a if and only if b = °or
a = O.

Proof. Sufficiency follows from (A2) and (A3), respectively. Conversely, sup­
pose a-=-b = a and a =I O. By (D3), b-=-a = b-=-(a-=-(a-=-b)) = b-=-O = b.
Now, I ~ (a)c and bEl, so bE (a)c. By Lemma 6.21, u(a, b) = b, i.e.,

b -=- (b -=- a-=-( b -=- (b -=- a-=-( b -=- (b -=- a -=- a))))) = b,

from which it follows that 0 = b. D

Lemma 6.23. For all a E E\1 and bEl) we have b < a.
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Proof. By (D4), a-=-- b -=-- (b -=-- a) = a-=-- b. Since bEl, we have b -=-- a E I as well.
By Lemma 6.22, either a-=-- b = 0 or b -=-- a = O. But a-=-- b = 0 implies a E I, a
contradiction, so b -=-- a = 0, i.e., b S; a (hence b < a). 0

Lemma 6.24. E is simple.

Proof. Let 0 =J= bEl and let a E E. By (D5), b-=--(b-=--(a-=--u(b,a))) = 0,
so b = b -=-- (a -=-- u(b, a)). Since b =J= 0, we have b -=-- (a -=-- u(b, a)) =J= 0, so b 1:­
a-=-- u(b, a). By Lemma 6.23, since bEl we have b S; c for each c E E\!. Thus
a-=--u(b,a) 1:. E\I, so a-=--u(b,a) E I. Since u(b,a) E (b)E = I, we have a E I,
so E = I and E is simple. 0

Lemma 6.25. E is linearly ordered.

Proof. Let 0 =J= a, bEE such that a =J= b. We cannot have both a -=-- b = 0 and
b -=-- a = 0 hence, since E is simple, either a-=-- b E (b -=-- a)E or b -=-- a E (a -=-- b)E.
Suppose the former holds. By Lemma 6.21, u(b -=-- a, a -=-- b) = a-=-- b, i.e.,

a-=--b = a-=--b-=--(a-=--b-=--(b-=--a)-=--(a-=--b-=--(a-=--b-=--(b-=--a)

-=--(a-=--b-=--(a-=--b-=--(b-=--a)-=--(b-=--a))))))

a-=--b-=--(a-=--b-=--(a-=--b-=--(a-=--b-=--(a-=--b-=--(a-=--b))))) (by (D4))

0,

so a S; b. If b -=-- a E (a -=-- b)E then we similarly obtain that b S; a.

The next lemma follows from Lemmas 6.22 and 6.24.

o

Lemma 6.26. For all a,b E E J a-=--(a-=-- b) = 0 if and only if a = 0 or b = O.

Lemma 6.27. For all a, bE E J a-=-- b = b if and only if a = 0 and b = O.

Proof. Suppose a -=-- b = b. Then a -=-- b -=-- b = 0 and b -=-- (a -=-- b) = 0, so (D6)
implies that a -=-- b = O. Thus, b = a -=-- b = 0 and a = a-=--O = a -=-- b = O. The
other implication is trivial. 0

Lemma 6.28. Let a, bEE such that 0 < b < a. Then a has a unique
predecessor that is either a -=-- b or a-=--(a -=-- b).

Proof. Evidently, both a -=-- b S; a and a-=--(a -=-- b) S; a. By Lemma 6.26, we
cannot have a-=-- b = a or a-=--( a-=-- b) = a, so a-=-- b < a and a-=--( a-=-- b) < a.
By Lemma 6.27, a-=-- b =J= a-=--( a-=-- b), so the linear order on E implies that
a-=-- b < a -=-- (a -=-- b) or a -=-- (a -=-- b) < a-=-- b. Let c E E such that c < a. By (D7),

a-=--b-=--(a-=--b-=--(a-=--c-=--(a-=--c-=--(c-=--(a-=--b)-=--(c-=--(a-=--b)

-=-- (c -=-- (a -=-- (a -=-- b)))))))) = O.
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Thus, by Lemma 6.26, either a -=-- b = 0 or

a-=-- c -=-- (a -=-- c -=-- (c -=-- (a -=-- b) -=-- (c -=-- (a -=-- b) -=-- (c -=-- (a -=-- (a -=-- b)))))) = O.

Since a -=-- b =f 0, the latter holds. By Lemma 6.26 again, either a-=-- c = 0 or
c -=-- (a -=-- b) -=-- (c -=-- (a -=-- b) -=-- (c -=-- (a -=-- (a -=-- b)))) = O. Since a -=-- c =f 0, the latter
holds so, by Lemma 6.26 once more, either c -=-- (a -=-- b) = 0 or c -=-- (a -=-- (a -=-- b)) =
O. Thus c < a implies c :S a-=-- b or c::; a -=-- (a -=-- b). Now, if a-=-- b < a -=-- (a -=-- b)
then c < a implies c ::; a -=-- (a -=-- b), i.e., a -=-- (a -=-- b) is the predecessor of a; if
a -=-- (a -=-- b) < a-=-- b then c < a implies c ::; a-=-- b, i.e., a-=-- b is the predecessor
of a. 0

Note that Lemma 6.28 implies that every nonzero element of E has a unique
predecessor, which we shall denote by PreE(a).

Lemma 6.29. Let a, bEE such that 0 < b < a and suppose that PreE(a) =
a -=-- (a -=-- b). Then PreE(PreE(a)) = a-=-- b.

Proof. Clearly, a-=-- b < a, so by Lemma 6.27, a-=-- b < a -=-- (a -=-- b). By
Lemma 6.28, either

(74) PreE(a-=--(a-=--b))=a-=--(a-=--b)-=--(a-=--b) or

(75) PreE (a -=-- (a -=-- b)) = a-=--(a -=-- b) -=-- (a -=-- (a -=-- b) -=-- (a -=-- b)).

By (AI) and (D8),

(76) a-=--(a -=-- b) .:... (a -=-- (a -=-- b) -=-- (a -=-- b)) ::; a-=--( a-=--(a -=-- b)) = a -=-- b.

By (D9), a -=-- b -=-- (a -=-- b -=-- (a -=-- 3(a -=-- b))) = 0, so, by Lemma 6.26, either a -=-- b =
oor a -=-- 3(a -=-- b) = O. Since a -=-- b =f 0, the latter holds, so

(77) a-=--2(a-=--b)::;a-=--b.

By (74), (75), (76) and (77), we have that PreE(a -=-- (a -=-- b)) ::; a-=-- b. Since
a-=-- b < a -=-- (a -=-- b), we have PreE(a -=-- (a -=-- b)) = a-=-- b, i.e., PreE(PreE(a)) =
a-=--b. 0

Lemma 6.30. Let a, bEE such that 0 < b < a. If b = PreE(a) then a-=-- b =
PreE(PreE(a)); if b < PreE(a) then a-=-- b = PreE(a).

Proof. By Lemma 6.28, either a -=-- b = PreE(a) or a -=-- (a -=-- b) = PreE(a). If b =
PreE(a) then a-=-- b =f PreE(a) otherwise b = a-=-- b, contradicting Lemma 6.27,
so a -=-- (a -=-- b) = PreE(a). By Lemma 6.29, therefore, PreE(PreE(a)) = a-=-- b.

Suppose b < PreE(a). If a -=-- (a -=-- b) = PreE(a) then b < a -=-- (a -=-- b) so

b ::; PreE(PreE(a)) = a-=-- b by Lemma 6.29. But b::; a-=-- b implies PreE(a) =
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a-=-(a-=-b):::; a-=-b = PreE(PreE(a)), a contradiction. Thus a-=-b = PreE(a),
as required. D

As in Section 6.4, let VI = V(AI). Let U be a nonprincipal ultrafilter over w,
let C = A~ and D = A~ /U. Los' Theorem (Theorem 0.6) implies the following
properties of D, because they are first order definable properties of AI: (D;:::;)
is linearly ordered with a top element, T say, and every nonzero d E D has a
nonzero (unique) predecessor PreD(d) in (D; :::;). If DD =I- d, d' E D, then

d -=- PreD(d) = PreD(PreD(d) ) (denoted Pre2D(d) )

and if d' :::; Pre2D(d) then d -=- d' = PreD(d).

Lemma 6.31. If E E WSI and B is a finitely generated subalgebra of E then
there exists a one-to-one homomorphism 'P : B -t D.

Proof. Let E E WSI. By Lemmas 6.24 and 6.25, E is simple and linearly or­
dered. By Lemma 6.21, W has EDPC, hence also the CEP, so every nontrivial
subalgebra B of E is also simple and linearly ordered and Lemmas 6.28 and
6.30 apply to B.

Now, assume that B E (S(E))NT is finitely generated. Let {bo, bI , ... , bn }

be a minimal subset of E such that B = SgE( {bo, bl, ... , bn }) and bo > bI >
... > bn > DE. If n = 0, we may choose 'P = {(bo, T), (DE, DD)} so assume
n > O. If n > 1, by repeated use of Lemmas 6.28 and 6.30, {PreiE(bo) :
i E w} ~ SgE({bo,b2}) (where we define PreOE(bo) = bo and Prek+IE(bo) =
PreE(PrekE(bo)) for k E w). In this case if bI = PreiE(bo) for some i E w then
i =I- 0 and bI = (Prei-IE(bo))-=-b2, so bI E SgE({bo,b2 , ... ,bn }), contradicting

the minimality of {bo, bI , ... , bn }. Thus, bI < PreiE(bo) for all i E w, or n = 1.

Repeating this argument, we conclude that E = {DE} U (U~=o Er) where
Er = {Pre1E(br ): i E w} for r < n and either (Case (i)) En = {PreiE(bn ): i E
w} or (Case (ii)) En = {bn}.

For each r, sEw, define c~ E C by c~(j) = arj+s (j E w) and note that
c:/U = PresD(c~/U) > C~+I/U (because {j E w : c:(j) > C~+l(j)} = {j E w :
j > s} E U for any r, SEw).

Define 'P = {(DE, DD)} U {(PreiE(br ), c~/U) : i E w, r < n} U 'l/J, where, in
Case (i), 'l/J = {(PreiE(bn ), c~/U) : i E w} while, in Case (ii), 'l/J = {(bn , c~/U)}.
Then 'P is an embedding of B into D, as required. D

Corollary 6.32. WS1 ~ ISPu(AI).

Proof. This follows because every E E WS1 is embeddable in an ultraproduct of
its finitely generated subalgebras (Theorem 0.5) and the class operator IS P u
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is idempotent. 0

By Birkhoff's Subdirect Decomposition Theorem and the above corollary,
we have W ~ VI, hence W = VI, completing the proof of Theorem 6.20.

We turn our attention to the variety V2 (= V (A2)). We have been unable to
find a finite set ofaxiomatizing identities for V2 , but we shall use Theorem 0.11
to prove the following:

Theorem 6.33. V2 is a finitely based variety.

We shall use -'- instead of -'- 2 and we shall use the abbreviations y ::; x,
y < x and Prel (y, x) that were defined in the previous section. We show that
(V2)FSI is a strictly elementary class by showing that (V2)FSI is axiomatized by
the first order sentences which are the closures of (Al)-(A4),

(El) (\fx)(\fy)((x::; y) or (y::; x))
(E2) (\fx)[(-,(x ~ 0)) implies (:Jy)(Prel(y, x))]
(E3) (\fx)[((-,(x ~ 0)) and (-'Prel(O, x)) and (\fw)(-'Prel(x,w))) implies

(cPI (x) or cP2 (x))]
(E4) (\fx)[((-,(x ~ 0)) and (:Jw)(Prel(x, w))) implies cP2(X)]

where cPI (x) is the first order formula

(:JXd(:JX2)[(-'(XI ~ 0)) and (-'(X2 ~ 0)) and Prel(xI,x) and Prel (x2,xI)

and ex -'- Xl ~ X2) and (\fy)((y ::; X2) implies (x -'- y ~ Xl))],

and cP2 (x) is the first order formula

(:JXI)(:JX2)(:JX3)[(-'(XI ~ 0)) and (-'(X2 ~ 0)) and (-'(X3 ~ 0)) and

Prel(xI' x) and Prel (x2' Xl) and Prel (x3' X2) and (x -'- Xl ~ X3)
and (x -'- X2 ~ X3) and (\fy)((y ::; X3) implies (x -'- y ~ X2))].

Let Z be the class of all algebras of type (2,0) over the language (-'-,0)
satisfying (Al)-(A4) and (El)-(E4). By (Al)-(A4), Z ~ £R.

By Proposition 5.19 and Lemma 6.16, (V2)FSI = IS P U (A2). Evidently, A 2
(hence (V2)FSr) satisfies the universal sentences (Al)-(A4) and (El). By Los'
Theorem (Theorem 0.6), any algebra B E PU (A2) shares the following (first
order) properties of A 2: (B;::;) is linearly ordered with a top element and
every nonzero bE B has a nonzero (unique) predecessor PreB(b) in (B; ::;). If
OB =I b, b' E B, then

b-'- PreB(b) = b-'- Pre2B (b) = Pre3B (b)

and if b' ::; Pre3 B(b) then b -'- b' = Pre2B(b)
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(where Pre2B (b) = PreB(PreB(b)) and Pre3B (b) = PreB(Pre2B (b))). Thus,
A2 and P U (A2) satisfy (Vx)((--'(x ~ 0)) implies (h(x)). A 2's subuniverses on
three or more elements are just its hereditary subsets, together with the sets
obtained from these by deleting the second-to-top element. By considering
which elements may be omitted in taking subalgebras of ultrapowers we find
that S P U (A2) satisfies (E2), (E3) and (E4). Thus, (V2)FSI ~ Z.

Let U be a nonprincipal ultrafilter over w, let C = A2' and D = A2' /U.

Lemma 6.34. If E E Z and B is a finitely generated subalgebra of E then
there exists a one-to-one homomorphism 'P : B --7 D.

Proof. Let B = SgE(X), where X is a finite subset of E and OE tf. X. If
X = 0 then B is the trivial algebra; if !XI= 1 then B is isomorphic to C2,
which embeds into D. For each nonzero e E E, we use PreE(e) to denote the

oE +IE E 'Epredecessor of e, and we set Pre (e) = e and Pre' (e) = Pre (Pre' (e)),
for each i E w. Suppose IXI > 1 and let bo be the greatest element of X.
If E F cPI[bo] then {PreiE(bo) : i E w} ~ B. If E F cP2[bo] then {bo} U
{PreiE(bo) : i 2: 2} ~ B, and PreIE(bo) E B if and only if PreIE(bo) EX. Set
Xl = X\{PreiE(bo): i E w}. If IXI ! > 1, let bl be the greatest element of Xl
and proceed as above. We repeat the above process until, for some nEw, we
have !XnI ~ 1. If !XnI = 1, we denote the unique element of X n by bn.

The above process will account for all nonzero elements of B. Thus, B is
the disjoint union {OE} U (U~=o Br) where, for each r E {O, ... , n ---'-1},

(78)

or

(79) Br = {PreiE(br ) : i E w},

and Bn = 0 or Bn = {bn}.

As in Lemma 6.31, for each r, sEw, we define c~ E C by c~(j) = arj+s

(j E w). Then c~/U = PresD(c~/U) > C~+l/U, Define'P = {(OE, OD)} U
(U~=o 'ljJr), where, for each r E {O, ... , n - I}, 'ljJr is defined in one of the
following ways. If E F cPI[br] then (79) holds and we set 'l/Jr = {(br, c~/U)} U
{(Pre'E(br),c~+l/U): i 2: 1}. IfE 1= cP2[br] then (78) or (79) holds. In the first
case, set 'l/Jr = {(br,c~/U)} U {(Pre'E(br),c~/U): i 2: 2}. In the second case,
set 'ljJr = {(Pre'E(br),c~/U) : i E w}. Set 'ljJn = {(bn,c~/U)} if Bn = {bn} and
set 'l/Jn = 0 otherwise. Then 'P is an embedding of B into D, as required. 0

The proof of the following corollary is analogous to that of Corollary 6.32.

Corollary 6.35. Z ~ IS P U(A2 ) = (V2)FSI.
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Thus (V2)FSI = Z, so (V2)FSI is a strictly elementary class. Since V2 is
congruence distributive, we may deduce Theorem 6.33 from Theorem 0.11.

It appears that this proof of Theorem 6.33 may be extended to the varieties
Vn (= V(An )), for all n ~ 3, but that the sentence playing the role of (E3)
becomes very complicated as n increases. (Its conclusion has five disjuncts
even when n = 3.) We have therefore not been able to formulate an elegant
uniform generalization of the proof.
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CHAPTER 7

RESIDUATION NEARLATTICES AND

AN EMBEDDING THEOREM

The problem of how 'best' to embed a sernilattice into a distributive lat­
tice was probably first addressed by MacNeille [Mac37]. Note that a hered­
itary subset of a distributive lattice L = (L; n, u) is necessarily a meet­
subsemilattice of L in which all nonempty (upper) bounded subsets have joins
(the 'upper bound' property); also the operation n distributes over all such
joins. A meet semilattice with these (abstracted) properties is called a dis­
tributive 'nearlattice'. Implicit in [Mac37] is an important converse: every
distributive nearlattice A embeds as an initial segment (in fact as a hereditary
partial sublattice) in a distributive lattice B. The sublattice AO of B generated
by A may be considered a canonical distributive lattice extension of A. (Also
see [Fle76], [FS79] and [Stu92] for much additional information.)

In this chapter, we consider 'distributive residuation lattices', namely, those
algebras in H{ ...:... , n , u } whose underlying lattice order is distributive. A hered­
itary subalgebra of the ( ~ , n ,O)-reduct of a distributive residuation lattice
is an algebra in H{...:..., n} whose underlying meet semilattice is a distributive
nearlattice and that satisfies

(x U y) ~ z ~ (x ~ z) U (y ~ z),

whenever the left hand join exists. Such an algebra we shall call a 'distributive
residuation nearlattice'. The main result of this chapter will be the converse of
the above observation, namely that every distributive residuation nearlattice is
embeddable, as a hereditary partial subalgebra, into a distributive residuation
lattice.

Section 1 contains some necessary definitions. In Section 2 we show that
the residuation operation of a distributive residuation nearlattice A can be
extended to the canonical lattice extension A ° in such a way that A ° be-
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comes a distributive residuation lattice. Since the natural morphisms between
residuation nearlattices are not purely algebraic homomorphisms, we phrase
in category-theoretic terms a result to the effect that the association A t---+ A 0

behaves well with respect to the extension of suitable morphisms. In Section
3 we show that the ideal lattices of A and A 0 are isomorphic. Consequently,
second order algebraic properties such as simplicity and subdirect irreducibil­
ity are preserved by the canonical extension. We also show that when nEw

and A is a distributive residuation nearlattice that lies in rC? --'-, n} (i.e., that

satisfies x -'- (x --'- y) -'- ny ~ 0) and satisfies (x -'- y) n (y -'- x) ~ 0, then A and
the ( -'- , n ,O)-reduct of A 0 belong to the same varieties.

The results here generalize several results from [RS88] (and hence also
[CST84] and [Stu82]) which concern BCK-algebras. An example is given at
the end of Section 4 to show that these generalizations are essential.

In Section 4 we show that the ( -'- ,O)-subreducts of distributive residuation
lattices form a proper subquasivariety of H{ --'-, n}.

7.1. Preliminaries. Recall that the quasivariety H{ --'- , n , U } was defined and
axiomatized in Section 2.2 (see Corollaries 2.11 and 2.15). We denote by D
the class of all algebras in H{ --'-, n , U } whose ( n , U ,O)~reducts are distributive
lattices, i.e., that satisfy

(D) (xuy)nz~(xnz)u(ynz).

An algebra in D is called a distributive residuation lattice. D is a proper relative
subvariety of H{ --'-, n, U} [OK85] (see also Example 7.14); it is not a variety
(as witnessed by the algebra in the proof of Theorem 4.1). We remark that no
explicit axiomatization of the class of ( -'-, n, O)-subreducts of elements of D
is known. This is an open problem posed in [OK85].

Let 5 be a set. We define

5w = {X ~ 5 : 0 < IXI < ~o}.

Now let 5 = (5; S) be a partially ordered set. If every element of 5 has the
form USX for some X E Tw then T is said to be a finitelY-Join-dense subset of
5. 5 is said to have the upper bound property if for each X E 5w , USX exists
whenever the elements of X have a common upper bound in 5 (equivalently,
for every a E 5, (a] is a join semilattice).

If 5 = (5; n) is a meet semilattice then for X, Y ~ 5 and c E 5, we define

X n Y = {a n b : a EX; bEY} ; c n Y = {c} n Y.

A meet semilattice satisfying the upper bound property is called a nearlattice.
If 5, U are nearlattices then a semilattice homomorphism f : 5 ---+ U is called
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a nearlattice homomorphism if

(80) f(U SX) = UU f(X)

for all X E Sw for which US X exists. We shall often write U (without super­
script) when the underlying nearlattice is understood.

A nearlattice S which satisfies (a U b) n C = (a n c) U (b n c) whenever a, b, c E
S and a U b exists is called a distributive nearlattice. It follows easily that a
distributive nearlattice S satisfies

(81 ) (U X) n b = U(X n b)

for all X E Sw for which UX exists and all b E S. (Equivalently, a meet
semilattice S is a distributive nearlattice if and only if (a] is a distributive
lattice for each a E S.)

An algebra A = (A; -'-, n, 0) E H{ ..:.., n} for which (A; n ,0) is a [distribu­
tive] nearlattice and which satisfies

(aub)-'-c= (a-'-c)u(b-'-c)

whenever a, b, C E A and a U b exists is called a [distributive] residuation near­
'lattice. Note that every hereditary subalgebra of the (-'-, n ,O)-reduct of a
[distributive] residuation lattice is a [distributive] residuation nearlattice15 .

Let A be a residuation nearlattice. If we define

X -'- b = {a -'- b : a E X}

for X ~ A and b E A, then it follows easily that A satisfies

(82) (UX) -'- b = U(X -'- b)

for every X E Aw for which UX exists and all b E A. If a, b, c E A then
the upper bound property implies that (a -'- b) u (a -'- c) exists (since a is a
common upper bound of a -'- b and a -'- c). It follows from (All) (see page 18)
that (a -'- b) u (a -'- c) ~ a -'- (b n c). Moreover,

a -'- (b n c) -'- ((a -'- b) u (a -'- c))

a -'- (bn c) -'- ((a -'- b) u (a -'- c)) -'- (a -'- b -'- ((a -'- b) u (a -'- c)))-'­

(a -'- c -'- ((a -'- b) u (a -'- c))) (by (C5) and (C6), page 42)

o (by (Yi), page 42).

Thus a -'- (b n c) ~ (a -'- b) u (a -'- c), hence

15A residuation lattice must not be confused with the much less general notion of a
residuaied lattice appearing, e.g., in [WD39].
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If A and Bare residuation nearlattices [resp. lattices] and f : A ----+ B
is a nearlattice [resp. lattice] homomorphism, then f is called a residuation
nearlattice [resp. lattice] homomorphism if f(a-,-Ab) = f(a)-,-B f(b) for all
a,b EA.

Another example: if (A; EB, -'-, n ,0) E H{ffi, -'-, n} and (A; n ,0) is a [dis­
tributive] nearlattice then (A; ..::.., n, 0) is a [distributive] residuation nearlat­
tice. To see this, note first that, for all x, yEA, x EB y (and y EB x) is an
upper bound of x, y, hence x U y exists in A by the upper bound property.
Let a, b, c E A, so a U band (a -'- c) U (b -'- c) exist. Suppose d E A such that
a -'- c :S d and b -'- c :S d, so a :S d EB c and b :S d EB c. Then

(a Ub) -'- c -'- d :S (d EB c) -'- c -'- d = 0

by (A6) (see page 18), so (a U b) -'- c :S d. Thus, (a U b) -'- c = (a -'- c) U (b -'- c),
as required.

7.2. The Construction. We outline here a construction which appears in
detail in [FS79] (also see [Fle76]). Earlier work on this construction can be
found in [Mac37].

Let D = (D; :S) be a distributive nearlattice. The relation :S' on Dw defined
by

X :S' Y if and only if a = UanY for each a E X,

where X, Y E Dw , is a quasiorder, hence (:S')n(:s,)-1 is an equivalence relation
on D compatible with :S. Let DO = Dw/(:S' n (:S't1). We denote by c = en :
Dw ----+ DO the canonical surjection, i.e.,

c(X) = ~ if and only if X E ~ E DO.

Also, we define a mapping e = en : D ----+ DO by

e(a)=c({a}) (a E D).

Finally, the relation on DO (also denoted :S) defined by

~ :S TJ if and only if ("IX E O(VY E TJ) X:S' Y

16 By results from Chapter 2, a residuation nearlattice A is also embeddable into an alge­
bra B E 1i{ ~, n , U} which satisfies (83) universally (see Corollary 2.15). The temptation
to infer the above result about A directly from this identity of B must be resisted, however,
because the partial join operation of (A;~) need not coincide with the restriction to A of
the operation U B. (This phenomenon manifests itself repeatedly in the present chapter.)
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(equivalently, e~ 1] if and only if (3X E O(3Y E 1]) X~' Y)
where e, 1] E DO, is a partial order. The following results are proved in [FS79]:

a. DO = (DO;~) is a distributive lattice.

If for each eE DO we choose a representative v(e) E ethen for all 1] ,( E DO)

1] = c:(v(1])) = UD Oe[v(1])],

(hence e(D)

(84)

(85)

is a finitelY-Join-dense subset of DO) and

1] U ( = c:(v("l) U v(()),

''In( = c:({anb: a E v("l);b E v(()}).

b. e: D _ DO is a one-to-one nearlattice homomorphism from D into
DO. If Y s;:: D and n yD exists} then e(n Dy) = n DO e[Y]. If D has a least
element 0 then e(O) is the least element of DO. Moreover} e[D] is a hereditary
subset of DO .

c. If L is a distributive lattice and f : D - L is a nearlattice homomor­
phism} then there exists a unique lattice homomorphism 9 : DO - L such that
ge = f. The mapping 9 is one-to-one if f is.

Since e is one-to-one and e[D] is clearly a generating set for the lattice
(DO; n , u), we call DO the canonical (lattice) extension of D.

Next, we show that the above construction can be used to embed distributive
residuation nearlattices into distributive residuation lattices; i.e., we show that
the canonical extension A ° of a distributive residuation nearlattice A may be
enriched with a residuation operation (extending that of A) which makes A°
a distributive residuation latticeY

For the rest of this section} A = (A; ~ , n ,0) will be a distributive residua­
tion nearlattice. Consider (AO; n, U, e(O)), where (AO; n, u) is the canonical
extension of (A; ~). We can define a binary operation ~ AO on AO in the
following way: for e, 1] E AO, X E eand YE 1], define

(86) e~ AO 1] = c( {a ~ UanY: a E X}).

This definition originates in [Stu82]. That ~ AO is well-defined (i.e., does not
depend on the choice of X and Y) can be proved using the arguments of
[RS88, Lemmas 2.2 and 2.3]' which were stated in the framework of BCK­
algebras, but generalize effortlessly. We shall show that the algebra A ° =
(AO; ~ AO, n, U, e(O)) satisfies (Al)-(A4), (C2), (C3), (C5), (C6), (C8), (C9),

l70nce again, the embeddings of Chapter 2 cannot be usefully invoked here, as they may
fail to preserve the partial join operation of (A; :S).
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(CI0) (see pages 41-43) and (D), i.e., that AO E 1) (by Corollary 2.15). Hence­
forth we shall drop the superscript from -=- A o. It will always be clear from the
context to which operation we are referring.

We shall need the following fact: for ~,TJ E A0
,

(87) ~ -=- TJ = e(O) if and only if ~:::; TJ·

This fact is derived as follows:

~ :::; TJ iff (:=JX E O(:=JY E TJ) X :::;' Y

iff (:=JX E O(:=JY E TJ) a = UanY for each a E X

iff (:=JX E O(:=JY E TJ) a-=-UanY = 0 for each a E X.

The last observation follows from the fact that U anY :::; a for each a EX.
Now

~ -=-TJ = e(O) = c:({O}) iff {a-=-UanY: a EX} = {O}

iff a":" U anY = 0 for each a EX,

and the result follows.

That AO satisfies the identities (A2), (A3), (A4), (C2), (C3), (C5), (C6) and
(C9) is a straightforward consequence of the definitions of -=-, nand u on AO
(see [RS88, Section 2] for some of the details). That (D) holds is evident from
a on page 138. We .give proofs that the remaining identities also hold.

Lemma 7.1. For a, b, c, d E A and Y, Z E Aw the following hold:

(i) a-=-( bn d) -=- (c -=- b) -=- (a -=- c) = a -=- d -=- (c -=- b) -=- (a -=- c) J

(ii) (a n c) -=- ((U anY) n (U c n Y)) = (a n c) -=- U c n Y,
(iii) (a n c) -=- U anY:::; c -=- U c n Y J

(iv) a -=- (U anY) -=- (U (a -=- UanY) n {c -=- U c n Y : c E Z}) :::; a -=- U a n Z.

Proof. (i)

a-=-( bn d) -=- (c -=- b) ..:.. (a -=- c)

- ((a-=- b) u (a -=- d)) -=- (c ..:.. b) -=- (a -=- c) (by (83))

((a ..:.. b -=- (c -=- b)) u (a -=- d -=- (c -=- b))) ..:.. (a -=- c) (by (82))

- (a -=- b -=- (c..:... b) -=- (a -=- c)) U (a -=- d -=- (c -=- b) -=- (a..:.. c)) (by (82))

ou (a -=- d -=- (c -=- b) -=- (a..:.. c)) (by (AI))

a-=- d -=- (c -=- b) -=- (a -=- c).
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(ii) We have Uan c n Y :::; (U anY) n (U c n Y), hence, by (All) (see page 18)

(a n c) -=- ((U anY) n (U cn Y))

< (anc)-=-UancnY

- (anc)-=-UancncnY
= (anc)-=-((anc)nUcnY) (by (81))

- (anc) -=-UcnY (by (Cll), page 43)

< (a n c) -=- ((U anY) n (U en Y)) (by (All)),

so (ii) holds.

(iii) It follows from (i) and the fact that (a n c) -=- c = 0 that

(a n c) -=- (U anY) -=- (c -=- Uc n Y)

- (a n c) -=- ((U anY) n (U c n Y)) -=- (c -=- Uc n Y)

- (anc) -=-(UcnY) -=-(c-=-UcnY) (by (ii))

< (anc)-=-c=O (by (AI)),

hence (iii) follows.

(iv)

(U (a -=- UanY) n {c -=- Uc n Y : c E Z}) n ((U an Z) -=- UanY)

= U{(a-=- UanY) n (c -=- Uc n Y) n (U (a n Z) -=- UanY) : c E Z}

(by (81))

- U{(a-=- UanY) n (c -=- Ucn Y) n (U {(a n c') -=- UanY: c' E Z}) : c E Z}

(by (82))

- U{U {(a -=- UanY) n (c -=- Uc n Y) n ((a n c') -=- UanY) : c' E Z} : c E Z}

(by (81))

= U{U{(c-=-UcnY)n((anc/)-=-UanY): c' E Z}: cE Z}
= U{U{(c-=-UcnY)n((a'nc/)-=-UanY): cE Z}: c' E Z}
- U{(((a n c') -=- UanY) n (c' -=- Uc' n Y)) u (( (a n c') -=- UanY) n

U{c -=- Uc n Y : c E Z and c i= c'}) : c' E Z} (by (81))

- U{( (a n c') -=- UanY) u (( (a n c') -=- UanY) n

U{c-=-UcnY: c E Z and c i= c'}): c' E Z} (by (iii))

- U {(a n c') -=- UanY : c' E Z}

= (U{anc/ : c' E Z})-=-UanY (by (82))

- (U a n Z) -=- UanY.
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Thus

Uan Z --=- UanY:::; U (a --=- UanY) n {c --=- Uc n Y : c E Z},

hence, by (All),

a--=- (U anY) --=- (U (a --=- UanY) n {c --=- Ucn Y : c E Z}))

< a--=- (U anY) --=- ((U an Z) --=- UanY)

< a--=-UanZ (by (AI)).

D

Lemma 7.2. Let e, 77, ( E AO and let X E e, YE 77, Z E (. Then

Proof. We shall show that e--=- 77 --=- (( -"-77) :::; e--=- ( and appeal to (87). By
definition (86),

e--=-( = c({a--=-UanZ: a EX}).

Also by (86) we have {a --=- UanY: a E X} E e --=-77 and {c --=- Uc n Y : c E
Z} E ( --=-77 hence, by (86),

e--=-77 --=- (( --=-77) =

c( {a --=- (U anY) -"- U{(a--=- UanY) n {c --=- Ucn Y : c E Z}} : a E X}).

To show that e --=-77 --=- (( -"-77) :::; e --=- ( it is only necessary to show that {,B(a) :
a E X} :::;' {a(a) : a E X}, where for each a E X,

a(a) = a--=- Uan Z,

,B(a) = a--=- (U anY) --=- U(a --=- UanY) n {c -"- Uc n Y : c E Z}.

Let a E X. Then ,B(a) :::; a(a) by Lemma 7.1 (iv), so

,B(a) nU,B(a) n {a(a') : a' E X}

- ,8(a) n ((,8(a) n a(a)) U U {,8(a) n a(a') : a' E X and a' 1= a})
- ,B(a) n (,B(a) U U {,B(a) n a(a') : a' E X and a' 1= a})
- ,8(a).

D

Lemma 7.3. Let e,77,( E AO and let X E e, YE 77, Z E (. Then
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Proof. For each a EX,

UanY n Z - U {a n bne: bEY and c E Z}
- U {a n bn a ne: bEY and c E Z}
_ U{U({anb: bEY} n(anc)): c E Z}

_ U{(anc)nU{anb:bEY}:cEZ} (by (81))

= (U{anb:bEY})n(U{anc:cEZ}) (by (81))

- (U anY) n (U a n Z).

Thus

a -'- (U anY n Z) = a -'- ((U anY) n (U a n Z))
= (a-'-UanY)u(a-'-UanZ) (by (83)).

Now, by (85) and (84), respectively,

~-'-(1]nO = c:({a-'-(UanYnZ) :aEX})
= c:({(a-'-UanY)u(a-'-UanZ): a EX}),

(~-'-1])u(~-'-0 = c:({a-'-UanY: a E X} U {a-'-UanZ: a EX}).

Set a( a) = a -'- UanY, f3( a) = a -'- Ua n Z. We need to show that

{a(a) u f3(a) : a E X} -::;.' {a(a) : a E X} U {f3(a) : a EX}.

Now, for any a E X,

(a(a)uf3(a))nU(a(a)uf3(a))n({a(a'): a' E X} U {f3(a'): a' EX})
- (a(a) U f3(a)) n [(((a(a) U f3(a)) n a(a)) U ((a(a) U f3(a)) n f3(a))) U

U (a( a) U f3( a)) n ({a( a') : a' EX; a' i- a} U {f3( a') : a' EX; a' i- a} )]
= (a(a) U f3(a)) n [(a(a) U f3(a)) U

U (a( a) U f3( a)) n ({a( a') : a' EX; a' i- a} U {f3( a') : a' EX; a' i- a} )]
- a(a)uf3(a).

Thus ~ -'- (1] n 0 ~ (~-'- 1]) U (~-'- O·

Since AO satisfies (AI), (A2) and (87), it follows that it also satisfies (All),
from which we can deduce that (~-'- 1]) U (~-'- 0 ~ ~ -'- (1] n 0, hence the result
holds. 0

Lemma 7.4. Let~, 1] E AO and let X E ~, YE 1]. Then
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Proof.

(~U7]) -:-7]-:-~

C(X U Y) -:-7] -:- ~ (by (84))

c( {a -:- UanY: a E X U Y}) -'- ~
c( {a -:- UanY: a E X} U {a -'- UanY: a E Y}) -'- ~

c({a-:-UanY: a E X} U {O})-'-~

c({b-'-UbnX: bE {a -'-UanY: a E X} U {On)

c({a -'- U0 n X} U {a -'- (U anY) -:- U (a -'- UanY) n X : a E X})

c({a} U {a -:- (Ua nY) -'- [((a -'- Ua n Y) n a) U

U(a-:-UanY)n(X\{a})]: a EX})

c({a} U {a -'- (Ua n Y) -'- [(a -'- Ua n Y) U

U(a-:-UanY)n(X\{a})]: a EX})

c( {a} U {a}) = c( {a}) = e(O).

o
Theorem 7.5. The algebra AO is a dzstributive residuation lattice; the map­
ping e : A -+ A° is a one-to-one residuation nearlattice homomorphism and
erA] is a hereditary) finitelY-Join-dense subset of AO.

Remark. As noted after the definition of a residuation nearlattice, every
hereditary subalgebra of the ( -'-, n ,O)-reduct of A ° is a distributive resid­
uation nearlattice (since A ° is a distributive residuation lattice). Thus the
assumption that A be a distributive residuation nearlattice cannot be weak­
ened if the above theorem is to hold. Consequently, the hereditary ( -'- , n, 0)­
subreducts of distributive residuation lattices are exactly the distributive resid­
uation nearlattices.

Proof. By Lemmas 7.2, 7.3 and 7.4 and the remarks preceeding Lemma 7.1, we
have that A ° is a distributive residuation lattice. Let a, b E A. We have that
e(a)-'-e(b) = e({a})-:-c({b}) = e({a-:-(anb)}) = e({a-'-b}) (by (Cll)) =
e(a -:- b). Thus, by b on page 138, e is a one-to-one residuation nearlattice
homomorphism. By a and b on page 138, erA] is a hereditary, finitely-join­
dense subset of A 0. 0

We may now refer to A ° = (AO; -'-, n, U, e(O)) as the canonical residuation
lattice extension of A.

If C is a distributive residuation nearlattice and f : A -+ C is a residuation
nearlattice homomorphism, then eef : A -+ Co is also a residuation nearlat­
tice homomorphism. By c on page 138, eef may be extended to a unique
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lattice homomorphism from A 0 to Co, which we shall denote by r. (The
rule r(UAOW) = UCOr[W], w E A~, defines r unambiguously.) In [RS88,
Lemma 2.7]' where (A; ....:...,0) is assumed to be a BCK-algebra, it is shown
that r preserves....:..., i.e., for all ~,( E AO, r(e) ....:... r(() = r(~....:... co (). The
proof used there holds for distributive residuation nearlattices as well, hence
we have the following:

Proposition 7.6. If C is a distributive residuation nearlattice and f : A -t C
is a residuation nearlattice homomorphism, then r :A 0 -t Co is a residuation
lattice homomorphism.

The next corollary follows from the above proposition and c on page 138.

Corollary 7.7. If B is a distributive residuation lattice and f : A -t B is a
residuation nearlattice homomorphism, then there exists a unique residuation
lattice homomorphism r :A 0 -t B such that re = f. Moreover, the mapping
r is one-to-one if f is.

Since nearlattice morphisms are not describable as homomorphisms of a
purely algebraic type, the relationship between classes of structures established
here is a category theoretic one.

Indeed, the class of all distributive residuation nearlattices [resp. lattices]
together with all residuation nearlattice [resp. lattice] homomorphisms forms
a category, which we denote DRN [resp. DRL]. Inasmuch as residuation near­
lattice homomorphlsms between objects of DRL are residuation lattice homo­
morphisms, DRL is a full subcategory of DRN and the association A I-t A 0,
f I-t r, defines a functor 0 from DRN to DRL. The fact that morphisms f
from objects of DRN to those of DRL have unique extensions r in the mor­
phism class of DRL with re = f makes 0 a reflection of DRN in DRL. It
is called a simple reflection because e is one-to-one. We say that the func­
tor 0 is mono-preserving because the last assertion of Corollary 7.7 is true.
Summarizing Corollary 7.7 in category theoretic terms, we have

Corollary 7.8. The functor 0 is a simple mono-preserving reflector, hence
DRL is a full simple reflective subcategory of DRN.

7.3. Algebraic Properties of the Canonical Extension. The following
identity is satisfied by algebras in H{ -'-, n, U} (by (C9), page 43) and also by
residuation nearlattices whenever the required join exists (by (82), page 136):

(88) (U7=lXi) ....:...Xl....:...··· "":"'X n ~ O.

It follows by Lemma 4.16(ii) that ideals of such algebras are closed under the
formation of existent finite joins.
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Let A be a residuation nearlattice and let a, b, c E A such that cub exists.
Then

a .:- b .:- c a .:- b .:- c .:- (( cub) .:- b .:- c) (by (88))

< a.:-b.:-((cub).:-b) (by (AI))

< a':- (cu b) (by (AI)).

It follows by (AlO) and (All) that the following identity holds in all algebras in
H{ -'- , n , U} and all residuation nearlattices whenever the required joins exist:

For the rest of this section we will assume that A is a fixed distributive
residuation nearlattice and A ° is its canonical distributive residuation lattice
extension.

By the proof of Proposition 4.26, the class of distributive residuation near­
lattices that are subreducts of a member of V need not have the ideal extension
property. Nevertheless, we have:

Lemma 7.9. Let I be an ideal of A. Then (I)Ao consists of all elements of
AO of the form U~lai) where nEw and al, ... , an E I. Thus (I)Ao n A = I.

Proof. Set J{ = {Ui=lai : nEw and al, ... , an E I}. It follows by (88)
that J{ ~ (I)Ao • Conversely, let a E (I)Ao • By Corollary 4.18, there exists a
sequence aa, al,.· ., an of elements of AO such that an = a and for each i :S n,
either ai E I, or ai = b.:- (b -'- aj':- ak), where j, k < i and bE AO.

We prove by induction on n that a E K. If n = 0 then an = aa E I ~ K.
Suppose that n > 0 and that for all j < n, aj is a finite join of elements of
I. Either an E I ~ K, or an = b.:- (b -'- aj':- ak), where j, k < nand b E AO.
Moreover, we can assume that

b = U~lbi

aj = U~=ICs

ak = Ui=ldt

where each bi E A,

where each Cs E I,

where each dt E I.
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Now,

an b-=-(b-=-aj-=-ak)

(U ~Ibi) -=- ((U ~I br ) -=- aj -=- ak)

(U~lbi) -=-U~=I(br -=-aj -=-ak) (by (82), page 136)

U~I(bi -=-U~I(br -=-aj -=-ak)) (by (82))

< U~l(bi-=-(bi-=-aj-=-ak)) (by (All))

U~l(bi -=- (bi -=- (U~=ICS) -=- Ui=ldt ))

< U~I(bi-=-(bi-=-Cl-=- ... -=-cp-=-dl -=- ... -=-dq )) (by (89)).

Setei::;: (bi -=- (bi -=- Cl -=- ... -=- Cp -=- dl -=- ... -=- dq )) for i ::;: 1, ... , m. Since bi E
A and Cl,' .. ,cp , dl , ... ,dq E I, we have that ei E I for each i by Lemma 4.17.

Now an :S U~lei so, by (81),

For i ::;: 1, ... ,m we have ei n an :S ei E I ~ A hence, by the heredity of A in
A° and the heredity of I in A, we infer that ei n an E I. Thus an is a finite join
of elements of I, so an E K. Thus, K ::;: (I)A O • This proves the first statement
of the lemma; the second statement follows easily from the first. 0

Theorem 7.10. The lattices Id A and Id AO are isomorphic. Thus the lat­
tices of H{ --'-- , n }-congruences of A and H{ --'-- , n ,U } -congruences of A ° are
isomorphic. A is .subdirectly irreducible [resp. simple} if and only if A° is
subdirectly irreducible [resp. simple).

Proof. Define a map <p: IdA --+ IdAo by r.p(I)::;: (I)A O • For I,J E IdA we
have that r.p(I) U Id A °r.p( J) ~ r.p(I U Id A J). Conversely,

I U IdA J::;: (I U J)A ~ (r.p(I) U r.p(J))A O ::;: r.p(I) U IdAO r.p(J),

therefore r.p(I u Id A J) ~ r.p(I) U Id A°r.p( J), so r.p preserves joins.

We have that r.p(I n J) ~ r.p(I) n r.p(J). Conversely, let a E <p(I) n r.p(J) ::;:
(I)Ao n (J)Ao. By Lemma 7.9, a ::;: Ui=lai ::;: Uj=lb j , where n,m E wand
aI, ... ,an El, bl , ... ,bm E J. Thus

(Ui=lad n (Uj=lbj )

Ui=l(ai n (Uj=lbj )) (by (81))

Ui=IUj=l(ai n bj ) (by (81)).

Since I and J are hereditary subsets of A, ai n bj E In J for all i and j. Thus,
a E (I n J)Ao ::;: <p(I n J). So r.p(I) n r.p(J) ~ r.p(I n J) and so <p preserves
intersections.
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Suppose cp(I) = cp(J), i.e., (I)Ao = (J)A o • Then, by Lemma 7.9, I =

(I)Ao n A = (J)A O n A = J, so cp is one-to-one.

Let K E IdAo
. Then K n A E IdA and cp(K n A) ~ K. Suppose a E K.

Since A is finitely join dense in AD and K is hereditary in (AD; S), a = U7=lai,
where each ai E KnA. Thus a"':" a1 ...:.. ... ...:.. an = (U 7=1 ai)"':" al ...:.. ... ...:.. an = 0
by (88), hence a E cp(KnA). So K = cp(KnA) and cp is onto, which completes
the proof of the first statement of the theorem.

That the lattices of H{ -'- ,n }-congruences of A and H{ -'- ,n , U } -congruences
of AD are isomorphic follows from Lemma 4.14. The remaining statements of
the theorem follow from Proposition 4.21. 0

Let C be a residuation nearlattice that satisfies

for some nEw and also

(59) z...:.. (z...:..(x...:..y))...:.. (z...:.. (y...:..x)) ~ 0

(equivalently (58): (x -'-- y) n (y -'-- x) ~ 0). Suppose that s ~ t is an identity
over the language (-'--, n ,0) that is satisfied by C. By Birkhoff's Subdirect
Decomposition Theorem, C is a subdirect product of subdirectly irreducible
algebras, say {Ci : i E I}, which are homomorphic images of C. By Corol­
lary 5.15, each C i is linearly ordered, hence each C i (enriched with the natural
u) is in D. Moreover, each C i satisfies s ~ t. Thus DiE! Ci E D and satisfies
s ~ t. Let f be the subdirect embedding of C into DiE! C i . By Corollary 7.7,
there exists a one-to-one residuation lattice homomorphism r :Co --t DiE! C i
such that r ec = f, hence Co satisfies s ~ t as well. Thus we have the follow­
mg:

Corollary 7.11. Let C be a residuation nearlattice that satisfies (Zn) for some
nEw and also (59)} and let s ~ t be an identity over the language ( -'-- , n ,0).
Then C satisfies s ~ t if and only if Co does. Thus} C and the ( -'-- , n ,0)­
reduct of Co belong to the same varieties.

The following example presents a distributive residuation nearlattice whose
( ...:.. ,O)-reduct is not a BCK-algebra, thereby showing that the results con­
tained in this chapter are essential generalizations of the results in [RS88]
(and therefore, also of [CST84]).

Example 7.12. Let A = (A; -'--, n, 0), where A = {O, a, b, c, d} is a five­
element set, n is the meet operation on A determined by the Hasse dia­
gram in Figure 10; for x, YEA, x...:.. Y = 0 if x S y; x -'-- 0 = x, a -'-- b = d,
a -'-- c = a -'-- d = a, b -'-- c = b -'-- d = b, and c"':" a = c -'-- b = c -'-- d = c. One checks
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routinely that A E H{...:..., n } and (Ai n ,0) is a distributive nearlattice, so A is
a distributive residuation nearlattice. Moreover, a"':'" b -'- C = 0 =f d = a -'- C ...:... b,
so (A; -'- ,0) is not a BCK-algebra.

e

a
C

Figure 10. Figure 11.

The algebra AO = (AO; -'- Aa, n, U, 0) obtained from A using the construc­
tion in Section 2 has the lattice order described by Figure 11. The residuation
operation...:... Aa extends -'- A as follows: a"':'" f = d, e ...:... a = e -'- b = c, e -'- C = a,
e -'- d = e, e -'- f = d, f -'- a = f -'- b = c, f ...:... C = band f ...:... d = f.

7.4. Subreduets of Distributive Residuation Lattices. For the remain­
der of this chapter we consider the ( -'-, n, 0)- and ( -'- , U ,O)-subreducts of
distributive residuation lattices (i.e., algebras in D). Ono and Komori have
shown in [OK85, Theorem 5.15] that the class of all ( -'- , U ,O)-subreducts of
algebras in D coincides with the quasivariety H{ ...:... , U }; that is, every algebra
in H{ ...:... , U } is embeddable into an algebra in D. Finding an explicit axiomati­
zation of the ( ...:... , n, O)-subreducts of algebras in D is an open problem that is
implicit in [OK85, §9, Question 6], which effectively asks for an axiomatization
with the separation theorem of the Hilbert system H (= HBK ) extended by the
distributive law:

(p 1\ (q V r)) -* ((p 1\ q) V (p 1\ r)).
A first step toward solving this problem is given by the following proposi­
tion and subsequent example, which present a quasi-identity not satisfied by
H{ ...:..., n} but satisfied by the ( -'- , n ,O)-subreducts of algebras in D.

Proposition 7.13. The ( -'- , n ,0) -quasi-identity

(90) xn(w-'-z):=;w-'-y and x:=;w-'-(ynz) implies x:=;w...:...y

holds in every distributive residuation lattice and hence in every ( ...:... , n ,0)­
subreduet of a distributive residuation lattice.

Proof. Suppose A E D and a, b, c, dE A such that

(i) an(d-'-c):=; d-'-b,

(ii) a :=; d -'- (b n c).
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By (i) and (D) (see page 135),

d~b= (an(d~c))u(d~b) = (au(d~b))n((d~c)u(d~b)).

Thus, since d~c:::; (d~c)u(d~b),

d~b2. (au(d~b))n(d~c).

Since d~ c 2. (a U (d ~ b)) n (d ~ c),

(d~b)n(d~c) 2. (au(d~b))n(d~c).

From the fact that

(d~b)n(d~c):::;(au(d~b))n(d~c),

it follows that
(d~b)n(d~c)= (au(d~b))n(d~c).

Now

au((d~b)u(d~c))

au(d~(bnc)) (by (C12), page 44)

d ~ (bn c) (by (ii))

(d ~ b) u (d ~ c) (by (C12)).

Since a u (d ~ b) and d ~ b form equal meets and equal joins with d~ c, and
(A;:::;) is distributive, it follows that a u (d ~ b) = d ~ b, i.e., a :::; d ~ b. 0

Example 7.14. Let A be a six-element set {O,a,b,c,d,e} and let:::; be the
partial order on A defined by the Hasse diagram in Figure 12.

a

b

c
d

Figure 12.

Let A = (A; ~, n, u, 0), where nand u are the meet and join operations
determined by:::;; for all x, yEA, x ~ y = 0 if x :::; y; x ~ 0 = x, a ~ b =
a ~ c = d ~ b = d~ c = d, a ~ d = b~ d = c ~ d = b~ e = c, b~ c = e,
a ~ e = a, c ~ e = c and d ~ e = d. It is straightforward to check that A
E H{ ..:... , n , U} and it is evident from Figure 12 that A ~ D. We now consider
whether the ( ~ , n ,O)-reduet of A, A n say, is embeddable in an element of
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V. By the previous proposition, this is not possible, since A n does not satisfy
(90):

bn (a ~ c) = bn d = e :S c = a ~ d,

and
b:Sa=a~(dnc),

but
b 1:. c = a ~ d.

This shows that the (~, n ,0) -subreduets of members of V form a proper
subquasivariety of'H{ -'-, n}.
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APPENDIX

TOPOLOGIZING FILTERS ON RINGS

Topologizing filters on rings with identity (mentioned briefly in Example 1. 7)
are a relatively recent focus of research in ring theory. This expository ap­
pendix on them is included because they provide natural and useful examples
of (lattice ordered) polrims that are not generally residuated on the right.

8.1. Lattice Ordered Monoids. Let (M; ffi, O;:S) be a pomonoid. For B S;;;
M and a E M, we define

Bffia={bffia:bEB}, affiB={affib:bEB}

and we denote the infimum of B in (M; :S) by nB, if this exists. For a, c EM,
let

~ B = {b EM: c :S b ffi a} and B~ = {b EM: c :S a ffi b}.

Clearly, (M; ffi, O;:S) is left [resp. right] residuated if and only if, for each
a, c E M, n ~B [resp. n B~] exists and

(n ~B) ffi a = n ((~B) ffi a)
[resp. a ffi (n B~) = n (a ffi (B~))].

We may deduce:

Proposition 8.1. Let M = (M; ffi, O;:S) be a pomonoid such that (M;:S) is
a complete lattice. Then M is left [resp. right) residuated if and only if, for
any BU {a} S;;; M J

(nB)ffia=n(Bffi a)

[resp. a ffi (n B) = n (a E9 B)J.

Following [Bir73] and [Go187]' we call the pomonoid (M; ffi, O;:S) a lattice
ordered monoid if (M;:S) is a lattice (with binary meet and join operations
n, U, say) and (M; ffi, n) satisfies both of
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(C13) xEB(ynz) ~ (xEBy)n(xEBz);

(C14) (ynz)EBx ~ (YEBx)n(zEBx).

Thus, a pomonoid(M; EB, O;~) is a lattice ordered monoid whenever it is
residuated on both sides and (M;~) is a complete lattice. Also, by Propo­
sition 2.15, if A = (A; EB, ....:..., n, u, 0,1) E 'H has associated order ~ then
(A; EB, 0; ~) is an integral lattice ordered monoid.

8.2. Ideals of Rings. By a ring we mean an associative ring with identity,
throughout. Let R = (R; +,., -, 0, 1) be a ring. Let Id RR, IdRR and Id R
denote the sets of right, left and two-sided ideals of R, respectively. (Hence­
forth, 'ideal' shall always mean two-sided ideal.) For I E Id RR, J E IdRR,
B ~ R and a E R, we define

Ba = {ba : b E Bl, aB = {ab: b E Bl,

(1:T B) = {r ER: Br ~ I} E IdRR,

(J :1 B) = {r ER: rB ~ J} E IdRR,

(1:T a) = (1:T {a}) and (J: 1 a) = (J: 1 {a}).

If I E Id R then I ~ (1 :T B) n (1 :1 B) for any B ~ R. If in addition,
B E Id RR [resp. B E IdRR] then (1 :T B) E Id R [resp. (1 :1 B) E Id R].

Recall (Example 1. 7) that (Id R; ., R; 2) (where· is ideal multiplication) is
an integral pomon~id and (Id R; 2) is a complete (in fact, a modular, dually
algebraic and atomic) lattice. This pomonoid is both left and right residuated,
the left and right residuation operations being :1 and :T, respectively. In fact,
(IdR;.,:I, u,n,R,{O}) E 'H, where IuJ = n{I<: IuJ ~ I< E IdR} =
{i + j : i E I; j E J} for any I, J E Id R. In particular, Id R := (Id R; .,:/, R)
is a polrim. The distributive identities of Section 1 manifest themselves here
as

for B U {J} ~ Id R. In particular, (Id R; ., R; 2) is a lattice ordered rnonoid.

For each I E Id R, let .,,(1) be the principal filter of the lattice Id RR
generated by I, viz., .,,(1) = {I< E Id RR : I ~ I<}.

8.3. Topologizing Filters. Again, let R = (R; +, ., -,0,1) be a ring. Con­
sider the (algebraic, modular) lattice Id RR = (Id RR;~) of right ideals of
R.

A (nonempty) filter (in the lattice theoretic sense) F of Id RR is called a
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(right) topologizing filter18 on R if (1 :T a) E F whenever 1 E F and a E R. The
set of all topologizing filters on R is denoted by Fil-R. Clearly, "1(1) E Fil-R
for every ideal 1 of R.

The poset (Fil-R;~) is an algebraic lattice which is also modular [vdB95,
Proposition 11.1.6, p68] and atomic [GoI87, Corollary 2.24, p24]. Its greatest
and least elements are Id RR and {R}, respectively. For F,9 E Fil-R, define

F EB 9 = {J{ E Id RR: there exists H E F such that

(1<:T a) E gfor alIa EH}.

Then {I J : 1 E F, J E 9} ~ F EB 9 E Fil-R (hence F, 9 ~ F EB 9). Now,
(Fil-R; EB, {R};~) is an integral pomonoid. Whenever ~ U {F} ~ Fil-R, we
have

(n~) EB F = n(~ EB F);

if, in addition, ~ is finite then, also,

F EB (n~) = n(F EB ~).

Thus, (Fil-R; EB, {R};~) is a lattice ordered monoid and, since (Fil-R;~) is
a complete lattice, we deduce from Proposition 8.1 that this pomonoid is left
residuated. We denote its left residuation operation by -'--. Thus, F -'-- 9 =
nfH E Fil-R: for each F E F, there exists H E H such that (F :T a) E
9 for all a E H} for any F, 9 E Fil-R, and Fil-R := (Fil-R; EB, -'--, {R}) is
a (lattice ordered) polrim. Moreover, if u is the join operation of (Fil-R;~)

then (Fil-R; EB, -'-- ,'n, U ,{R}, Id RR) E H.

Proposition 8.2. [GoI87, Propositions 2.7, 3.4, pp17, 31] For any ring R,
the map "I : Id R I-t Fil-R defined by 1 I-t .,,(1) = {J{ E Id RR : 1 ~ J{}
(1 E IdR) is a one-to-one homomorphismfrom (IdR;·,:I, u,n,R,{O}) into
(Fil-R; EB, -'--, n, U , {R}, Id RR) and TJ(U B) = nTJ[B] for any B ~ Id R.

Thus, (Id R;~) is dually isomorphic to a sublattice (also a meet-complete
subsemilattice) of (Fil-R; ~), while Id R is isomorphic to a subalgebra of
the polrim Fil-R. It follows that Fil-R carries at least as much information
about R as does (Id R; ~). Of course, (Id R;~) ~ Con R, and congruence
lattices are the universal algebraist's standard tool for analysing algebras. The
next two results illustrate the fact that Fil-R is a strictly sharper tool for the

l8The name derives from the fact that the topologizing filters of a ring R are just the
subsets of Id RR that form neighbourhood bases at 0 for the so-called linear topologies on
R. Here, a topology T on R is called (right) linear (on R) if the binary operation +, the
unary operation - and, for each r E R, the operation a 1-+ ra (a E R) are continuous in
T and there exists a neighbourhood base at 0 for T that consists of right ideals of R. For
further details, see [Gol87].
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analysis of R than is (Id R; ~) (and hence Con R). The first of these contrasts
with the fact that the condition lId RI = 2 (i.e., R is simple) gives very little
information about R.

Proposition 8.3. Let R be a ring.
(i) (e.g., [Kat83, Theorem 3.2]) IFil-RI = 2 if and only if R is a simple
artinian ring (i. e., R is isomorphic to the ring of n x n matrices over some
division ring, for some positive integer n).
(ii) (Fil-R; n, EB,' , {R}, Id RR) is a Boolean algebra (where F' = (Id RR) -'- F
for F E Fil-R) if and only if R is a semisimple ring (i. e., a finite direct
product of simple artinian rings).

For any F E Fil-R, we have nF E Id R, so F ~ 1J(n F). If, in addition,
nF E F (so that F = 1](nF)), we call F a Jansian topologizing filter.

Proposition 8.4. [BB78, Corollary 3.3] The following conditions on a nng
R (with identity) are equivalent.
(i) Every (right) topologizing filter on R is Jansian;
(ii) 1] : Id R ~ Fil-R;
(iii) R is a right artinian ring, i. e., (Id RR;~) satisfies the descending chain
condition.

The next example shows that the polrim Fil-R need not be right residuated,
even if R is a commutative ring. In particular, the commutativity of R does
not guarantee the commutativity of EB in Fil-R. If Ris both commutative and
noetherian (i.e., (Id R; ~) satisfies the ascending chain condition) then Fil-R
is a pocrim. This is a consequence of more general results in [vdBl].

Example 8.5. 19 Let R = F[xo, Xl, X2, . .. ] be the ring of all polynomials over
a field F in denumerably many (commuting) indeterminates Xo, Xl, X2, ....
Thus, R is a commutative ring. For 5 ~ R, we write (5) for the ideal of R
generated by 5, and (Sl,S2"") for ({SI,52"" }).

Let In = (XO,Xl, ... ,Xn) for nEw, and let Iw = (XO,Xl"")' Then 10 C
11 C ... C I w (where C denotes proper subset). Let F n = 1](In) for nEw +1.

Observe that nnEw Fn = 1J(UnEw Fn ) = Fw .

Define 9 = {]{ E Id R : ]{ contains some cofinite subset of {x n : nEw}}.
We show that

9 EB (nF n ) of- n(Q EB F n ),
nEw nEw

19The author thanks Dr J .E. van den Berg for drawing attention to this example.
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which shows, by Proposition 8.1, that the pomonoid (Fil-R; EB, {R}; <;;;;) is not
right residuated. Note that

{I< E IdR: I< 2 Hlw for some HE 9}

and

9 EB Fn 9 EB ry(In)

{I< E IdR: I< 2 Hln for some HE 9}.

Take I< = ({XiXj : i i= j and i,j E w}) and H = (X n +l,Xn +2'" .). Then
I< 2 Hln and HE 9 as I< E 9EBFn . Thus, I< E nnEw(9EBFn). But I< R. Hlw
for any H E 9 because I< contains no element of the form X;, whereas HIw

clearly does. Thus, I< 1- 9 EB (nnEw F n), so 9 EB (nnEw F n) i= nnEw(9 EB F n), as
required.

As with any polrim, Fil-R can be embedded in an integral pomonoid that
is residuated on both sides, but such a pomonoid would bear little relation to
R, in general. 20

For a ring R, a (unital) right R-module M and FE Fil-R, define

O".r(M) = {m EM: mA = {OA} for some a E F};

O".r(M) is a submodule of M (and O".r(R) an ideal of R). The functor on the
category of right R-modules induced by the maps M I---t O".r(M) is called a
torsion preradical (alias kernel fun etor) ; it determines F. Torsion preradicals
can also be defined abstractly and are often taken as the starting point in
a study of topologizing filters. The following conditions on F E Fil-R are
equivalent:

(i) F EB F = F
(ii) O".r(MjO".r(M)) = {OM/l7 F (M)} for all right R-modules M.

We call F a Gabriel filter (and O"M a torsion radica0 if these conditions hold.
Such filters facilitate generalizations of the abelian group theoretic notions
'torsion' and 'torsion free', and the ring theoretic notion 'localization', i.e.,
the formation of various kinds of 'rings of fractions'. Historically, this was the
subject's original motivation: see [Gab62]' [Mar64], [Go169]' [Lam71]. There
is a wealth of literature on Gabriel filters. The condition that every member of
Fil-R be a Gabriel filter (i.e., that Fil-R be a Brouwerian semilattice) has no

20Thus, an advantage of the perspective of this thesis (which takes polrims, rather than
structures with two residuations, as its starting point) is that the natural models of the
theory include the topologizing filter lattices of all rings with identity.
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known purely ring theoretic characterization but the commutative rings with
this property are just the finite direct products of fields [Vio75]. For further
results connecting properties of R with properties of Fil-R, see [vdBl], [vdB2],
[Go187] and their bibliographies.
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