
University of KwaZulu-Natal

School of Mathematics, Statistics and Computer Science

South Africa

GARCH MODELLING OF VOLATILITY IN THE

JOHANNESBURG STOCK EXCHANGE INDEX

Tsepang Patrick Mzamane

Thesis Submitted Fulfillment of an Academic Requirement for the Degree of

Master of Science in Statistics

May 2013



Abstract

Modelling and forecasting stock market volatility is a critical issue in various fields
of finance and economics. Forecasting volatility in stock markets find extensive
use in portfolio management, risk management and option pricing. The primary
objective of this study was to describe the volatility in the Johannesburg Stock
Exchange (JSE) index using univariate and multivariate GARCH models.

We used daily log-returns of the JSE index over the period 6 June 1995 to 30
June 2012. In the univariate GARCH modelling, both asymmetric and symmetric
GARCH models were employed. We investigated volatility in the market using
the simple GARCH, GJR-GARCH, EGARCH and APARCH models assuming
different distributional assumptions in the error terms. The study indicated that
the volatility in the residuals and the leverage effect was present in the JSE index
returns.

Secondly, we explored the dynamics of the correlation between the JSE index,
FTSE-100 and NASDAQ-100 index on the basis of weekly returns over the period 6
June 1995 to 30 June 2012. The DCC-GARCH (1,1) model was employed to study
the correlation dynamics. These results suggested that the correlation between the
JSE index and the other two indices varied over time.
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Chapter 1
Introduction

1.1 Background

Modelling and forecasting stock market volatility is a very critical issue in various

fields of finance and economics. There have been numerous studies on the volatility

of financial markets using time-series, econometric and other relevant techniques.

Volatility is defined as a measure of dispersion of returns for a given security or

market index [Tsay, 2010]. In simple terms, volatility can be defined as a relative

rate at which the price of a market oscillate around its expected value. Volatility

can also be measured by computing the variance or standard deviation of returns

from the same stock market index. Generally, the higher the volatility, the riskier

the market index.

Stock returns can be characterized by the following stylized facts:

• The closing prices are generally unstable, and returns are usually stationary;

• The series of returns exhibit no or little autocorrelation;

• Serial independence between the square values of the series is often rejected,

pointing to the existence of non-linear relationships between the subsequent

observations;
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• Volatility of returns appears to be clustered;

• Normality is rejected in favour of some leptokurtic distribution;

• Some series portray so called leverage effect.

Another key aspect of stock market volatility is the so-called leverage effect noted

by Black [1976]. This involves an asymmetry of the impact of past positive and

negative values on the current volatility. Negative returns (corresponding to price

decrease) tends to increase the volatility by larger amount than positive returns

(corresponding to price increase) of the same magnitude.

The problem of modeling time series with time varying variance and heteroscedas-

ticity was always obscure. A first attempt to surmount these complications was

through the Autoregressive Conditional Heteroscedastic (ARCH) models intro-

duced by Engle [1982]. The Generalized Autoregressive Conditional Heteroscedas-

tic (GARCH) models introduced by Bollerslev [1986] went a step further with aim

of capturing leptokurtic returns and volatility clustering. However, despite the

success of GARCH models, they have been criticized for failing to capture the

leverage effect present in squared [Liu and Hung, 2010].

It is clear that conditional variance is a function only of the magnitudes of the

lagged mean corrected returns. This limitation is overcome by introducing more

flexible volatility modelling by accommodating the asymmetric responses of volatil-

ity to positive and negative mean corrected returns. This more recent class of asym-

metric GARCH models includes the Exponential GARCH (EGARCH) model of

Nelson [1991] and GJR-GARCH model of Glosten et al. [1993].

This study interrogates patterns in the volatility of returns from the Johannesburg

stock exchange (JSE) all share index. The JSE all share index series represents the

performance of South African companies, providing investors with a compendious

and complementary set of indices, which measures the performance of the major

capital and industry sectors of the South African market. Further, the JSE all share

index constitutes 99% of the full market capital value, prior to the consideration

of any investability weighings, of all ordinary securities listed on the main board

of the JSE based on free-float and liquidity benchmark.
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The JSE combines the buyers and sellers of four different financial markets, specif-

ically equities, equity derivatives, commodity derivatives and interest rate instru-

ments. The market was established in 1887 after the discovery of gold fields in

Johannesburg. In terms of market capitalization, JSE is among the top 20 largest

equities exchanges in the world. Despite the fact that JSE changed the methodol-

ogy of index computation on the 24th of June 2002 from the JSE Actuaries Index

Series to the FTSE/JSE Index Series. It recalculated the new index dating back

to July 1995 [Ferreira and Krige, 2011]. At the end year 2007, JSE had 411 listed

companies with an accumulated market capital of US$828 billion. The significant

increase in global flows along with the increasing globalized economic activity has

resulted in increased interdependence of major of financial markets all over the

world.

The interdependence between global financial markets compels investors and port-

folio managers to focus on the movement of not only the domestic markets but

also the international markets in order to cautiously project their global investment

strategy. Globalization has become a major concern in economic circles since the

mid-1990s as it became increasingly clear that the trend toward more integrated

world markets has opened a wide potential for greater growth, and presents an

unparalleled favourably circumstance for developing countries to enhance their

standards of living. The term globalization has many definitions but it differs with

the context. According to Mittelman [2000], globalization is a network of processes

and activities, to some extent than a single unified phenomenon. The processes

and activities, in general, refer to the reduction of barriers between countries.

There are numerous studies that focus on the stock market linkage across coun-

tries. Sariannidis et al. [2010] analyzed the volatility linkages among three Asian

stock markets, namely India, Singapore and Hong Kong. The results indicated

that the markets portray a strong GARCH effect and are highly integrated re-

acting to information which induce not only the mean returns but their volatility

as well. Horng et al. [2009], found that the South Korean and Japanese stock

price market volatilities had an asymmetrical relationship in the same period. In

this study we shall investigate the co-movement between South Africa and key

players in the global markets. We considered the FSTE1-00 and NASDAQ-100 as
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proxies of trends and performance of global markets. The FTSE-100 is a market-

capitalization weighted index representing the performance of the 100 largest UK

listed blue chip companies, which pass screening for size and liquidity. The index

epitomizes almost 84.35% of the UK’s market capitalization and is appropriate

as the basis for investment products, such as, derivatives and exchange-traded

funds. The FSTE-100 also account for 8.02% of the worlds market capitalization.

FTSE-100 constituents are all traded on the London Stock Exchange’s SETS trad-

ing system. The NASDAQ-100 index comprises 100 of the largest United States

and international securities listed on the NASDAQ Stock Market based on market

capitalization. The NASDAQ-100 index reflects companies across major indus-

try groups covering hardware and software, telecommunications, retail/wholesale

trade and biotechnology. However, there has been few studies that modeled the

volatility of stock returns in the emerging stock markets, especially in the South

African stock market [Onwukwe et al., 2011, Makhwiting et al., 2012, Chinzara

and Aziakpono, 2009, Cifter, 2012].

1.2 Literature Review

Mandelbrot [1963] and Fama [1965] played a significant role in detecting that

the uncertainty of stock prices as measured by variances vary with time. Fama

[1965] observed further that volatility clustering and leptokurtosis are commonly

observed in financial time series. In addition to these features, Black [1976] noted

that another phenomenon often observed in a return series is the so called leverage

effect, which occurs when stock prices are negatively correlated with changes in

volatility. The so called leverage effect was further investigated by Christie [1982].

According to them the leverage effect suggested that a reduction in the equity

value leads to a rise in the debt-to-equity ratio hence raising the riskiness of the

firm as manifested by an increase in the future volatility [Bollerslev et al., 1992].

Consequently, observing volatility clustering, the postulate of homoscedasticity

becomes irrelevant prompting researchers to investigate how to model volatility

clustering or time-varying variance.



5

Granger and Andersen [1978] developed the bilinear model which enables the con-

ditional variance to rely upon the past realization of the series. Nevertheless, the

unconditional variance is either zero or infinity which makes it an unattractive

specification [Engle, 1982].

In order to capture the characteristics of financial time series, Engle [1982] proposed

the autoregressive conditional heteroscedastic (ARCH) model using lagged distur-

bances. They considered the residuals of a fundamental ARCH model, employing

the Lagrange multiplier (LM) test to explore for the autoregressive heteroscedastic

errors and to detect ARCH errors. The importance of adjusting for the ARCH

effects in the residuals is discussed extensively in the literature [Bera et al., 1988,

Connolly, 1989, Schwert and Seguin, 1990]. It is argued that inferences can be ad-

versely influenced by ignoring the ARCH error structure [Bollerslev et al., 1992].

Empirical evidence based on the study by Bollerslev et al. [1992] revealed that high

order ARCH model is required to capture the dynamic behaviour of conditional

variance.

To circumvent the deficiencies of ARCH model, Bollerslev [1986] proposed a gen-

eralized autoregressive heteroscedastic (GARCH) model. Both the ARCH and

GARCH models accommodate volatility clustering and leptokurtosis. However,

they fall astray to capture the leverage effect. This impediment is dealt with by

considering more tractable volatility models. This is achieved by fitting models for

asymmetric responses of positive and negative residuals. Other extended class of

asymmetric GARCH models include the Exponential GARCH (EGARCH) model

by Nelson [1991], the GJR-GARCH model by Glosten et al. [1993] and the Asym-

metric Power ARCH (APARCH) model by Ding et al. [1993].

Baillie and Bollerslev [1989] applied the Student-t distribution whereas Nelson

[1991] suggested the Generalized Error Distribution (GED). Most of the studies

for modelling volatility have been applied on data from the developed countries

while there is rare literature on work that have been conducted in emerging mar-

kets. Olweny and Omondi [2011] considered the effect of macro-economic factors

on the stock return volatility on the Nairobi Securities Exchange (NSE), Kenya.

The attention of the study was on the effect of foreign exchange rate, interest
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rate and inflation fluctuation on stock return volatility at the Nairobi Securities

Exchange. The study used monthly time series data for a 10-year period between

January 2001 and December 2010. EGARCH and Threshold Generalized Autore-

gressive Conditional Heteroscedastic (TGARCH) model was used in the study. In

the study the returns were found to be leptokurtic and followed a non-normal dis-

tribution. The results exhibited substantiation that foreign exchange, interest rate

and inflation have an impact on the Nairobi stock return volatility.

Onwukwe et al. [2011] considered a time-series behaviour of daily stock returns of

four firms listed in the Nigerian Stock Market from 2 January 2002 and 31 De-

cember 2006, employing three heteroscedastic models, particularly GARCH(1,1),

EGARCH(1,1) and GJR-GARCH(1,1) models respectively. The four firms whose

share prices were explored in the study were UBA, Unilever, Guiness and Mobil.

The return series of the four firms exhibited a leverage effect, leptokurtic, volatil-

ity clustering and negative skewness which are frequent characteristics of financial

time-series. The results showed that the GJR-GARCH(1,1) produces better fit to

the data.

Olowe [2009] investigated the volatility of Naira/Dollar exchange rates in

Nigeria using GARCH(1,1), GJR-GARCH(1,1), EGARCH(1,1), APARCH(1,1),

IGARCH(1,1) and TS-GARCH(1,1) models. The monthly time series data over

the period January 1970 to December 2007. The TS-GARCH and APARCH were

found to be the best fitting models.

Makhwiting et al. [2012] developed ARMA-GARCH type models for modelling

volatility and financial risk of shares on the Johannesburg Stock Exchange under

the assumption of skewed Student-t distribution. The daily data was used for

the period January 2002 to December 2010. The GARCH type models that were

employed included TGARCH, GARCH-in mean and EGARCH. The results showed

that the ARMA(0,1)-GARCH(1,1) model produces the most accurate forecasts.

Cifter [2012] investigated the relative performance of the asymmetric normal mix-

ture generalized conditional heteroscedastic (NM-GARCH) benchmarked GARCH

models with the daily stock market returns of the Johannesburg Stock Exchange,

South Africa. The predictive performance of the NM-GARCH was compared
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against a set of the GARCH models with the assumption of normal,student-t and

skewed student-t distributions. The results showed that mixture errors enhances

the predictive performance of volatility models.

Mangani [2008] explored the structure of the JSE by employing ARCH-type mod-

els. In the analysis volatility was found to be prevalent in this market. The results

showed that the standard GARCH(1,1) model provides the best description of the

return dynamics relative to its complex augmentations.

Alagidede and Panagiotidis [2009] investigated the behaviour of stock returns in

Africa’s largest stock market particularly, Egypt, Kenya, Morocco, Nigeria, South

Africa, Tunisia and Zimbabwe. The results showed that the empirical stylized

facts of volatility clustering, leptokurtosis and leverage effect are present in the

African data. Leading world stock markets have become more closely linked in

recent years, and this has brought deep interest in the impact of those linkages.

A major concern is that stock price movements and other shocks are likely to be

transmitted promptly between markets, which implies that interdependence be-

tween markets may result to the transmission of national financial disturbances,

with wide-ranging implications for other markets [Jefferis et al., 1999]. There

have been several studies recently conducted for the transmission of volatility be-

tween the markets. Nevertheless, substantially, insufficient work has been done in

volatility transmission and return co-movement between matured stock markets

and emerging African markets.

Sariannidis et al. [2010] investigated linkages among three Asia stock exchange

markets namely, India, Hong Kong and Singapore, during the period July 1997 to

October 2005. In the study the multivariate GARCH model was employed. The

results indicated that there was ARCH effects among the markets and are highly

integrated reacting to information which induce not only the mean returns but

their volatility as well.

Gupta and Mollik [2008] studied the varying correlations between equity returns of

Australia and the emerging equity markets. The Dynamic Conditional Correlation

(DCC) model, which enables correlations to vary with time, have been employed

to test if the volatilities of individual markets have any influence on the change
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in correlations. The results suggested that the correlations between Australia’s

equity and emerging markets’ equity returns change in time and the variation in

correlations was influenced by the volatility of the emerging markets.

Anaraki [2011] examined how the European stock market responds to the US

fundamentals including the Federal Fund Rate (FFR), the Euro-dollar exchange

rate, and the US stock market indices. The Johansen [1988] cointegration technique

was employed, and the result suggested that a long-term relationship exists between

the European stock market, and the US fundamentals.

Chinzara and Aziakpono [2009] explored returns and volatility linkages between

the South African (SA) equity market and the world major equity markets using

daily data for the period January 1999 to December 2007. The univariate and

multivariate Vector Autoregressive (VAR) models were employed. The results

showed that both returns and volatility linkages exist between the South African

and the major world stock markets, with Australia, China and the United States

portraying most influence on SA returns and volatility.

1.3 Comment on the review

With regard to modelling and forecasting volatility, most of the studies have been

conducted on the developed markets. To improve the literature in the emerging

markets, GARCH models and their extensions need to be employed within the

emerging markets to provide a better understanding of dynamics therein. Another

important issue is that of the correlation between the markets. Due to the short-

age of software packages for the multivariate GARCH for modelling correlation,

there is need for further research on methods that can facilitate development of

statistical software and tools to analyse relevant data sets. Furthermore, to ac-

commodate some of the regularities of the returns in the multivariate GARCH,

different statistical distributions can be considered for the errors to better describe

their statistical properties.
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1.4 Problem Statement

In financial markets, large price changes are likely to be followed by large price

changes and small changes by small price changes. This characteristic of financial

time-series data is known as volatility clustering. Volatility clustering is incompat-

ible with homoscedastic (that is, with a constant variance) marginal distribution

for the returns. Moreover, one of the idiosyncrasies of this volatility is its uncer-

tainty. As a result, there has been a lot of empirical studies on modelling and

forecasting volatility. Modelling volatility is essential for portfolio management,

risk management and option pricing.

The interrelation between international financial markets is a very important is-

sue that is linked with the study of correlation dynamics between markets. The

leading world stock markets have become more closely linked in recent years, and

this has brought very strong interest in studying and understanding the impact of

those linkages. A major concern is that the stock price movements are likely to be

transmitted promptly between markets, which implies that the markets may lead

to rapid transmission of national disturbances, with wide-ranging implications for

other markets. Understanding the linkage between markets is becoming increas-

ingly important because of the emergence of regional and world economic blocks

such as the BRICS (Brazil, Russia, India, China and South Africa). The chance

that a financial market in one country will influence the other is more probable

that it was before the creation such economic blocks.

1.5 Objectives of the Study

1.5.1 Broad Objectives

The primary objective of this study is to describe the volatility in the Johannesburg

Stock Exchange (JSE) index using univariate and multivariate GARCH models.
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1.5.2 Specific Objectives

The specific objectives of this study are:

1. To review statistical properties of the univariate GARCH models and their

extensions;

2. To review statistical properties of the Multivariate GARCH models;

3. To investigate volatility in the Johannesburg Stock Exchange (JSE) using

the univariate and multivariate GARCH.



Chapter 2
ARCH AND GARCH Models

2.1 Introduction

Modelling and forecasting stock market volatility has been the subject of attention

in recent years. Volatility can be employed as a barometer of risk in financial

markets. Most of the econometric models assume the that the variance or volatility

is time invariant. Nevertheless, many of the empirical studies that have been

carried out concerning volatility refutes this assumption. In financial markets, large

price changes tend to be followed by large price changes and small prices changes by

small price changes. Thus, the assumption of constant variance (homoscedasticity)

is inappropriate. In a seminal paper, Engle [1982], introduced a time-varying

conditional variance model called the Auto-Regressive Conditional Heteroscedastic

(ARCH) model. The ARCH model employs past errors to model the variance of the

series and enables the variance to oscillate over time. In this Chapter, we describe

the important statistical issues concerning the ARCH and GARCH Models. We

then employ the methods discussed to analyse volatity in the JSE index returns.
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2.2 The ARCH (p) process

2.2.1 The ARCH (1) process

The elementary and very useful model for financial time series with time varying

volatility is the Autoregressive Conditional Heteroscedastic model of order one,

which is abbreviated as ARCH(1). This model was introduced by Engle [1982].

Now let us assume that the continuously compounded return of an asset is given

by

rt = µt + εt,

= µt + σtzt,

where zt is a sequence of independent and identical distributed random variables

with mean zero and variance of one. Let ΦΦΦt−1 represent the information set at

t − 1, µt = E[rt | ΦΦΦt−1] the conditional mean function and σ2
t = V ar[rt|ΦΦΦt−1] the

conditional variance function. Then the residual return or shock at time t can is

defined as

εt = rt − µt,

= σtzt.

Model description

Definition 1. A process {ε1, ε2, . . . , εt} is called an autoregressive conditional het-

eroscedastic process of order one ARCH(1) if it can be written as

εt = σtzt, (2.1)

where the random variables zt are independent and identical distributed with zero

mean and variance one and where σ2
t satisfies the following constraints

σ2
t = α0 + α1ε

2
t−1, (2.2)
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where α0 and α1 ≥ 0.

To gain the insight into the ARCH models, we first explore the statistical properties

of the fundamental ARCH(1) model and then proceed to cross examine properties

of extensions of the model that exist in literature. Under the normality assumption

of εt, the process can expressed conditional on ΦΦΦt−1 as

εt|ΦΦΦt−1 = εt|εt−1 ∼ N(0, σ2
t ).

From the structure of the ARCH (1) model in Definition 1, it is clear that a large

past squared mean-corrected return or shock implies a large conditional variance

σ2
t for the mean-corrected return εt. Hence, εt tends to possess a large value in

absolute value [Tsay, 2010]. This means that, in Definition 1, large shocks tend to

be followed by another large shock. This characteristic is identical to the volatility

clusterings observed in asset returns.

Theorem 1. Let {εt} be an ARCH (1) process with V ar[εt] = σ2 < ∞, then it

follows that {εt} is a white noise process.

Proof. From the conditional expectation

E[εt|ΦΦΦt−1] = E[σtzt|ΦΦΦt−1] = σtE[zt|ΦΦΦt−1]] = σt(0) = 0

it follows that E[εt] = 0 and

Cov[εt, εt−k] = E[εtεt−k]− E[εt].E[εt−k],

= E[εtεt−k],

= E[E[εtεt−k|ΦΦΦt−1]],

= E[εt−kE[εt|ΦΦΦt−1]],

= 0.

Since {εt} is a martingale difference sequence, then it is an uncorrelated sequence

process.



14

Theorem 2. Suppose that the process {εt} is a second-order stationary ARCH (1)

process with V ar[εt] = σ2 <∞. Then it follows that,

σ2 =
α0

1− α1

.

Proof. From the definition of variance of εt we have

V ar[εt] = E[ε2
t ]− (E[εt])

2 = E[ε2
t ].

It then follows that

V ar[εt] = E[E[ε2|ΦΦΦt−1]],

= E[σ2
t ],

= E[α0 + α1ε
2
t−1],

= α0 + α1E[ε2
t−1],

= α0 + α1E[ε2
t ].

Further, since εt portrays a second-order stationarity, that is E[ε2
t ] = E[ε2

t−1], we

have

V ar[εt] = α0 + α1V ar[εt],

which implies that

V ar[εt] = σ2 =
α0

1− α1

when α1 < 1.

For the variance of εt to be positive, we require α0 > 0 and 0 ≤ α1 < 1. If the

innovation zt is symmetrically distributed around zero, then all odd moments of

εt are equal to zero. Under the assumption of normal distribution the existence of

higher even moments can be be derived.

Theorem 3. Suppose that the process {εt} is an ARCH (1) process, zt ∼ N(0, 1)

and E[ε4
t ] = c <∞. Then
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1. The fourth moment of εt about zero is

E[ε4
t ] =

3α2
0(1 + α1)

(1− 3α2
1)(1− α1)

,

with 3α2
1 < 1.

2. The unconditional distribution of εt is leptokurtic.

Proof.

1. If we assume that the series εt is fourth-order stationary, then

E[ε4
t ] = E[ε4

t−1].

The fourth moment of εt about zero then becomes

E[ε4
t ] = E[E[ε4

t |ΦΦΦt−1]],

= E[E[σ4
t z

4
t |ΦΦΦt−1]],

= E[σ4
tE[z4

t |ΦΦΦt−1]],

= E[3σ4
t ],

= 3E[σ4
t ],

since zt ∼ N(0, 1) and E[z4
t ] = 3. Further,

E[ε4
t ] = 3E[(α0 + α1ε

2
t−1)2],

= 3E[(α2
0 + 2α0α1ε

2
t−1 + α2

1ε
4
t−1)],

= 3α2
0 + 6α0α1E[ε2

t−1] + 3α2
1E[ε4

t−1],

= 3α2
0 + 6α0α1E[ε2

t−1] + 3α2
1E[ε4

t ].

Making E[ε4
t ] the subject we find

(1− 3α2
1)E[ε4

t ] = 3α2
0 + 6α0α1E[ε2

t−1]

and so

E[ε4
t ] =

3α2
0 + 6α0α1E[ε2

t−1]

1− 3α2
1

.
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Replacing E[ε2
t−1] = V ar[εt] = α0

1−α1
in this expression and simplifying we get

E[ε4
t ] =

3α2
0 − 3α2

0α1 + 6α2
0α1

(1− 3α2
1)(1− α1)

,

=
3α2

0 + 3α2
0α1

(1− 3α2
1)(1− α1)

,

=
3α2

0(1 + α1)

(1− 3α2
1)(1− α1)

.

Hence the desired result.

2. The kurtosis of εt is given by

Kurt[εt] =
E[ε4

t ]

(E[ε2
t ])

2 ,

=

3α2
0(1+α1)

(1−3α2
1)(1−α1)

( α0

1−α1
)2

,

=
3(1− α2

1)

(1− 3α2
1)
,

= 3 +
6α2

1

(1− 3α2
1)
> 3.

Thus for the ARCH (1) process it is required that 0 ≤ α1 <
1√
3

for the fourth-order

moment and the conditional kurtosis to exist. Furthermore, the excess kurtosis of

εt is heavier than that of normal distribution [Tsay, 2010]. The variance σ2
t is thus

a serially correlated random variable with expected value

E[σ2
t ] = α0 + α1E[ε2

t−1],

= α0 + α1E[ε2
t ].

The series of squared mean-corrected ε2
t exhibits important properties, and one of

them is that it has a stationary autoregressive representation of order one. We

know that

σ2
t = α0 + α1ε

2
t−1. (2.3)
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Adding ε2
t both sides on equation (2.3) we get

σ2
t + ε2

t = α0 + α1ε
2
t−1 + ε2

t (2.4)

which implies that

ε2
t = α0 + α1ε

2
t−1 + ε2

t − σ2
t ,

= α0 + α1ε
2
t−1 + νt,

where

νt = ε2
t − σ2

t ,

= σ2
t z

2
t − σ2

t ,

= σ2
t (z

2
t − 1)

is a conditional heteroscedasticity martingale difference sequence.

Furthermore the series of squared mean-corrected returns ε2
t exhibits volatility

mean reversion.

Estimation of parameters of the ARCH (1) model

The parameters of the ARCH (1) model can be estimated by implementing different

estimation procedures. In general, however, the estimation of the ARCH (1) model

is normally carried out using the maximum likelihood [Berndt et al., 1974].

Suppose that a time series {ε1, ε2, . . . , εT} is assumed to be a realization of an

ARCH (1) process. Under the normality assumption of εt, the likelihood function

on ARCH (1) model can be expressed as

f(ε1, ε2, . . . , εT ) = f(εT |ΦΦΦT−1)× f(εT−1|ΦΦΦT−2)× . . .× f(ε2|ΦΦΦ1)× f(ε1|θθθ),

=
T∏
t=2

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
f(ε1|θθθ),

where θθθ = (α0, α1)′ is a vector of unknown parameters and f(ε1|θθθ) is a probability

density function of ε1. However, the exact form of f(ε1|θθθ) is complicated. It is
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generally removed from the prior likelihood function, especially when the sample

size is sufficiently large. This allows us to use the conditional-likelihood function

which can be written as

f(ε2, . . . , εT |θθθ, ε1) =
T∏
t=2

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
,

where σ2
t can be evaluated recursively. The model parameter estimates are ob-

tained by maximizing the conditional likelihood under the assumption of normal-

ity. Maximizing the conditional-likelihood function is equivalent to maximizing its

logarithm, which is easier to handle. The conditional log-likelihood is given by

l(ε2, . . . , εT |θθθ, ε1) = −1

2

T∑
t=2

[
ln(2πσ2

t ) +
ε2
t

σ2
t

]
,

=
T∑
t=2

[
−1

2
ln(2π)− 1

2
ln(σ2

t )−
ε2
t

2σ2
t

]
.

Since the first term ln(2π) does not involve any parameters in it, the log-likelihood

estimating function becomes

l(ε2 . . . , εT |θθθ, ε1) ∝ −1

2

T∑
t=2

[ln(σ2
t ) +

ε2
t

σ2
t

], (2.5)

where σ2
t = α0 + α1ε

2
t−1 can be recursively evaluated.

The maximization of equation (2.5) with respect to θθθ is a non-linear optimization

problem, which can be solved numerically [Franke et al., 2008]. The conditional

estimator of θθθ is denoted by θ̂θθ = (α̂0, α̂1)′. Note that alternatively the log-likelihood

function as

l(ε2 . . . , εT |θθθ, ε1) = −
T∑
t=2

lt,

where lt = 1
2

[
ln(σ2

t ) +
ε2t
σ2
t

]
and where T is the sample size. In order to find the

estimates, we differentiate with respect to parameters α0 and α1 and equate the

derivatives to zero. More generally, the partial derivative of l with respect to

θθθ = (α0, α1)′
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∂l

∂θθθ
=

T∑
t=2

∂lt
∂σ2

t

∂σ2
t

∂θθθ
,

= −1

2

T∑
t=2

{
1

σ2
t

− ε2
t

σ4
t

}(
1

ε2
t−1

)
,

where
∂σ2
t

∂θθθ
= (1, ε2

t−1)′. Moreover
∂2σ2

t

∂θθθ∂θθθ′
= 0, then the Hessian matrix is given by

∂2l

∂θθθ∂θθθ′
=

T∑
t=2

∂2lt
∂σ4

t

∂σ2
t

∂θθθ

∂σ2
t

∂θθθ′
,

= −1

2

T∑
t=2

{
ε2
t

(σ2
t )

3
+

(
ε2
t

σ2
t

− 1

)
1

σ4
t

}[
1 ε2

t−1

ε2
t−1 ε4

t−1

]
.

The Fisher information which is denoted by I(θθθ) is defined to be the negative of

the expected value of the Hessian, that is

I(θθθ) = −E
[
∂2l

∂θθθ∂θθθ′

]
.

Since

E[(
ε2
t

σ2
t

− 1)
1

σ4
t

[
1 ε2

t−1

ε2
t−1 ε4

t−1

]
|ΦΦΦt−1] = 0

and

E

[
ε2
t

(σ2
t )

3
|ΦΦΦt−1

]
=
σ2
t

σ6
t

=
1

σ4
t

it follows that

I(θθθ) =
1

2

T∑
t=2

(
1

σ4
t

)[
1 ε2

t−1,

ε2
t−1 ε4

t−1

]

as in Engle [1982]. The maximum likelihood estimator θ̂θθ cannot be obtained an-

alytically. In order to mitigate this difficulty we require iterative optimizations.

A particular optimization routine that is often employed to estimate the model in

ARCH models is BHHH algorithm named after Berndt et al. [1974]. To introduce

this algorithm we employ a vectorial notation θθθ = (α0, α1)′ and ∂l
∂θθθ

= ( ∂l
∂α0

, ∂l
∂α1

)′
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where

l =
T∑
t=2

lt,

= −1

2

T∑
t=2

[
ln(σ2

t ) +
ε2
t

σ2
t

]
.

According to this algorithm the ith estimator is obtained as

θ̂θθi = θ̂θθi−1 + φ

(
T∑
t=2

∂lt
∂θθθ

∂lt
∂θθθ′

∣∣∣θθθ=θ̂θθi−1

)−1 T∑
t=2

∂lt
∂θθθ

∣∣∣θθθ=θ̂θθi−1
, (2.6)

where φ > 0 is used to modify the step length. This method is a modification of

the Newton-Raphson method. Furthermore the algorithm is very sensitive to the

initial values. Note that the computations should make sure that α0 + α1 < 1.

The maximum likelihood estimator θ̂θθ = (α̂0, α̂1)′ is asymptotically normal, that is,
√
T (θ̂θθ − θθθ)→ N(0, I(θθθ)−1) and I(θθθ) is approximated.

Forecasting with the ARCH (1) model

Forecasting is one of the primary goals of time series modeling. We consider the

series ε1, ε2 . . . , εT . The l−step ahead forecast for l = 1, 2, . . . at the forecast origin

T, denoted by εT (l), is assumed to be the minimum square error predictor. The

mean squared prediction error is given by

MSE = E[εT+l − f(ε)]2,

where f(ε) is a function of observations, then

εT (l) = E[εT+l|ε1, . . . , εT ].

For the simple ARCH (1) model we have

εT (l) = E[εT+l|ε1, . . . , εT ] = 0.



21

The forecasts for the series εt are not useful and it is therefore essential to consider

the squared mean-corrected returns ε2
t . That is,

ε2
T (l) = E[ε2

T+l|ε2
1, . . . , ε

2
T ].

The one step ahead forecast is given by

ε2
T (1) = α̂0 + α̂1ε

2
T ,

which is equivalent to

σ2
T (1) = E[σ2

T+1|ΦΦΦT ] = α̂0 + α̂1ε
2
T

where α̂0 and α̂1 are conditional maximum likelihood estimates of the model pa-

rameters [Tsay, 2010]. Analogously, the two-step ahead forecast of ε2
t follows from

the law of iterated expectations,

ε2
T (2) = E[ε2

T+2|ΦΦΦT ],

= σ2
T (2),

= E[σ2
T+2|ΦΦΦT ],

= α̂2
0 + α̂1E[ε2

T+1|ΦΦΦT ],

= α̂2
0 + α̂1(α̂2

0 + α̂1ε
2
T ),

= α̂0(1 + α̂1) + α̂1ε
2
T .

A generic expression for a l-step ahead forecast can be formulate by repeatedly

substitution and is given by

ε2
T (l) = E[ε2

T+l|ΦΦΦT ] = σ2
T (l) =

l−1∑
i=0

α̂0α̂
i
1 + α̂l1ε

2
T .

This result has been derived elsewhere in the literature [Tsay, 2010].
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2.2.2 ARCH (p) model

Model description

The family of ARCH models was introduced by Engle [1982] to accommodate the

the dynamics of conditional heteroscedasticity [Gourieroux and Jasiak, 2001]. Its

advantages are simplicity of formulation and ease of estimation [Gourieroux and

Jasiak, 2001]. The ARCH models have been extensively used in financial empirical

research and have bee extended in various respects. Let rt denote the stochastic

process of returns, E[rt|ΦΦΦt−1] = µt be mean of returns, εt represent a discrete time

stochastic process of mean-corrected returns or shocks with conditional mean and

variance parameterized by finite dimensional vector, and let ΦΦΦt−1 represent the

available information set at time t− 1.

Definition 2. A stochastic process {ε1, ε2, . . . , εt} follows an ARCH model of order

p if

rt = E[rt|ΦΦΦt−1] + εt = µt + εt,

where E[εt|ΦΦΦt−1] = 0 and the conditional variance

V ar[εt|ΦΦΦt−1] = σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + . . .+ αpε

2
t−p,

= α0 + α(L)pε
2
t ,

where L is the lag operator such that Lkεt = εt−k and α(L)p is a polynomial in the

lag operator given by

α(L)p =

p∑
i=1

αiL
i,

= α1L+ α2L
2 + . . .+ αpL

p.

Alternative specification of the ARCH (p) model is

εt = σtzt, zt ∼ iid(0, 1),
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where

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + . . .+ αpε

2
t−p,

= α0 + α(L)pε
2
t .

To ensure that the conditional variance is positive the parameters have to satisfy

the constraints α0 > 0 and αi ≥ 0 for i = 1, 2, . . . , p. The random variable zt

is not necessarily to be normally distributed. It can follow a leptokurtic distri-

bution. The stochastic process {ε1, ε2 . . . , εT} is a martingale difference sequence

with conditionally heteroscedastic errors. The conditional mean and variance are

then E[εt|ΦΦΦt−1] = 0 and

V ar[εt|ΦΦΦt−1] = E[ε2
t |ΦΦΦt−1]− (E[εt|ΦΦΦt−1])2 = E[ε2

t |ΦΦΦt−1] = σ2
t

We also see that E[εkt |ΦΦΦt−1] = 0 if k is odd.

Theorem 4. Suppose that the process {ε1, ε2 . . . , εt} is an ARCH (p) process with

V ar[εt] = σ2 <∞. Then

1. νt = σ2
t (z

2
t − 1) is a white noise process and

2. ε2
t is an AR(p) with

ε2
t = α0 +

p∑
i=1

αiε
2
t−i + νt.

Proof.

1. We first prove that νt = σ2
t (z

2
t − 1) is a white noise process.

(a) The expected value of νt is

E[νt] = E[σ2
t (z

2
t − 1)] = E[σ2

t ]E[z2
t − 1] = 0.

(b) The variance of νt is given by

V ar[νt] = E[ν2
t ]− (E[νt])

2 = E[ν2
t ] = E[σ4

t (z
2
t − 1)2].
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This expression further simplifies to

V ar[νt] = E[σ4
t ]E[z4

t − 2z2
t + 1],

= E[σ4
t ](E[z4

t ]− 2E[z2
t ] + 1),

= E[σ4
t ](3− 2 + 1),

= 2E[σ4
t ],

= 2E[(σ2
t )

2],

= 2E[(α0 +

p∑
i=1

αiε
2
t−i)

2],

which is a constant independent of t.

(c) The covariance between νt and νt+s is given by

Cov[νt, νt+s] = E[σ2
t (z

2
t − 1)σ2

t+s(z
2
t+s − 1)])2,

= E[σ2
t (z

2
t − 1)σ2

t+s]E[z2
t+s − 1],

= 0

for s 6= 0.

2. The desired result follows from:

ε2
t = σ2

t z
2
t ,

= σ2
t + σ2

t (z
2
t − 1),

= α0 +

p∑
i=1

αiε
2
t−i + νt.

Since the stochastic process νt is a martingale difference sequence, it implies that

εt is an uncorrelated process. Moreover the error term εt is stationary with mean

zero and constant unconditional variance.

Theorem 5. Suppose that the process {ε1, . . . , εt} is an ARCH(p) process with
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V ar[εt] = σ2 <∞. Then

σ2 =
α0

1− α1 − . . .− αp
,

with α1 + α2 + . . .+ αp < 1.

Proof. The variance of

V ar[εt] = E[ε2
t ]− (E[εt])

2 = E[ε2
t ] = E[E[ε2

t |ΦΦΦt−1]] = E[E[z2
t σ

2
t |ΦΦΦt−1]],

which simplifies to

V ar[εt] = E[σ2
tE[z2

t |ΦΦΦt−1]],

= E[σ2
t ],

= σ2.

Assuming second-order stationarity of εt, then the variance of εt is obtained as

E[σ2
t ] = E[α0 + α1ε

2
t−1 + α2ε

2
t−2 + . . .+ αpε

2
t−p],

= α0 + α1E[ε2
t−1] + α2E[ε2

t−2] + . . .+ αpE[ε2
t−p],

= α0 + α1E[σ2
t ] + α2E[σ2

t ] + . . .+ αpE[σ2
t ],

which implies that

E[σ2
t ] =

α0

1− α1 − α2 − . . .− αp
,

=
α0

1−
∑p

i=1 αi
,

= σ2.

In order for second-order stationarity of εt to hold then the constraint
∑p

i=1 αi < 1

has to be satisfied. If instead
∑p

i=1 αi ≥ 1, then the unconditional variance does

not exist and the process is not covariance-stationary. It is intricate with the

ARCH(p) model that in some applications a larger order p must be used, since
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larger lags only loose their influence on the volatility slowly. The disadvantage of

larger order is that many parameters have to be estimated under restrictions.

Estimation of parameters of the ARCH (p) model

There are several likelihood functions which are frequently employed in the ARCH

estimation, depending on the distributional assumption of ε2
t [Tsay, 2010]. Con-

sider a time series of mean-corrected returns {ε1, ε2 . . . , εT}. Under the normality

assumption, the likelihood function of an ARCH (p) model is defined as

L(ε1, ε2 . . . , εT |θθθ) = f(εT |ΦΦΦT−1)f(εT−1|ΦΦΦT−2) . . . f(εp+1|ΦΦΦp)f(ε1, ε2 . . . , εp|θθθ),

=
T∏

t=p+1

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
f(ε1|θθθ)f(ε1, ε2 . . . , εp|θθθ),

with θθθ = (α0, α1, . . . , αp)
′ the vector of unknown parameters and f(ε1, . . . , εp|θθθ)

is a joint probability density function of {ε1, ε2 . . . , εp}. Since the exact form of

f(ε1, . . . , εp|θθθ) is unknown, it is commonly dropped from the conditional likeli-

hood function, especial when the sample size T is sufficiently large [Tsay, 2010].

Therefore, the conditional likelihood used is given by

L(εp+1, . . . , εT |θθθ, ε1, . . . , εp) =
T∏

t=p+1

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
,

where σ2
t can be evaluated recursively. The maximum likelihood estimates are

obtained by maximizing this expression, or, equivalently the log-likelihood function

l(εp+1, . . . , εT |θθθ, ε1, . . . , εp) =
T∑

t=p+1

lt,

where lt = −1
2

ln(2π)− 1
2

ln(σ2
t )−

ε2t
2σ2
t

is the log-likelihood of observation at time t.

The methods of optimization used are the same as those employed in the ARCH(1)

model.
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Forecasting with the ARCH (p) model

The procedure of forecasting using an ARCH (p) model is very similar as that of an

ARCH (1) model. If we have a time series of mean-corrected returns {ε1, . . . , εT} ,

the l−step ahead forecast, represented by εT (l) is the minimum mean squared error

predictor that minimizes E[εT+l − f(ε)]2 where f(ε) is a function of observations,

ε [Talke, 2003]. Therefore, since E[εT (l)] = 0, this predictor is not instrumental εt

[Talke, 2003]. Therefore, we consider the squared mean-corrected returns ε2
t . The

forecasts of the ARCH (p) model are obtained recursively.

The singe-step ahead forecast for σ2
T+1 is given by

σ2
T (1) = α̂0 + α̂1ε

2
T + . . .+ α̂pε

2
T+1−p,

= α̂0 +

p∑
i=1

ε2
T+1−i,

where θ̂θθ = (α̂0, α̂1, . . . , α̂p)
′ is the vector of conditional estimates [Tsay, 2010].

For the 2 − step ahead forecast for σ2
T+2, we need the forecast of ε2

T+1 which is

given by σ2
T (1). We, therefore, have

σ2
T (2) = α̂0 + α̂1σ

2
T (1) + α̂1ε

2
T . . .+ α̂pε

2
T+2−p.

The l − step ahead forecast for σ2
T+k is given by

σ2
T (l) = α̂0 + α̂1σ

2
T (l − 1) + . . .+ α̂pσ

2
T (l − p),

= α̂i +

p∑
i=1

α̂0σ
2
T (l − i),

for i = 1, 2, . . ., where σ2
T (l − i) = ε2

T+l−i if l ≤ i.

2.2.3 ARCH models with non-Gaussian error distributions

In spite of the strengths of the assumption that the mean-corrected returns or

errors εt are conditionally normal, ARCH models can be specified and estimated
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using alternative distributional assumptions. The consideration for implementing

distributions different from the normal can enhance the model. A more suitable

choice of the conditional distribution of the standardized returns may enhance the

precision of the volatility process parameter estimates, in the case of maximum

likelihood estimation, the estimates will be efficacious. There are three distribu-

tions among the many that have been employed to estimate the parameters of

the ARCH process. The first distribution is a standardized student’s t distribu-

tion with given degrees of freedom say v [Bollerslev, 1987]. The distribution of εt

follows a Student-t distribution if its probability density function is given by

f(εt, v, σ
2
t ) =

Γ(v+1
2

)

Γ(v
2
)

1√
π(v − 2)

1

σt
[1 +

ε2
t

(v − 2)σ2
t

]−
(v+1)

2 , (2.7)

where Γ(.) is the gamma function. That is,

Γ(x) =

∫ ∞
0

yx−1e−ydy.

This distribution is only well defined if v > 2.

Thus we may express the conditional likelihood of εt as

f(εp+1, . . . , εT |θθθ,ΦΦΦp) =
T∏

t=p+1

Γ(v+1
2

)

Γ(v
2
)

1√
π(v − 2)

1

σt
[1 +

ε2
t

(v − 2)σ2
t

]−
(v+1)

2 , (2.8)

where v > 2 and ΦΦΦp = (ε1, ε2 . . . , εp) [Tsay, 2010, Hamilton, 1994]. We refer to

the estimates that maximizes the conditional likelihood function as the maximum

likelihood estimates under t distribution [Tsay, 2010]. A value of degrees of freedom

between 4 and 8 is often used if it is pre-specified [Tsay, 2010]. Thus if the degrees

of freedom v of the Student− t distribution is pre-specified, then the conditional

log-likelihood function is given by

l(εp+1, . . . , εT |θθθ,ΦΦΦp) = −
T∑

t=p+1

[
v + 1

2
ln(1 +

ε2
t

(v − 2)σ2
t

) +
1

2
ln(σ2

t )]. (2.9)

Nevertheless, if the degrees of freedom parameter v is to be estimated by maximum
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likelihood estimation, then the log-likelihood function is modified into

l(εp+1, . . . , εT |θθθ, v,ΦΦΦp) = (T − p)
{

ln[Γ(
v + 1

2
)]− ln(Γ[

v

2
])− 1

2
ln[(v − 2)π]

}
+ l(εp+1, . . . , εT |θθθ,ΦΦΦp)

that incorporates additional terms.

The second distribution suggested in the literature is the generalized error dis-

tribution [Nelson, 1991]. A random variable εt with shape parameter v, a mean

of zero, and variance σ2
t belongs to the generalized error distribution if its has a

probability density function given by

f(εt|θθθ, v) =
v exp(−1

2
| εt
λσt
|v)

2
v+1
v λΓ( 1

v
)

, (2.10)

where λ =
2−

2
v Γ( 1

v
)

Γ( 3
v

)
.

When the shape parameter v = 2 the generalized error distribution becomes a

standard normal distribution. The GED is fat-tailed when v < 2 and thin-tailed

when v > 2. In order for this distribution to be employed for forecasting ARCH

parameters, it is necessary that v ≥ 1 since the variance is not finite when v <

1. The maximum likelihood estimates can be obtained by maximizing the log-

likelihood function, and using BHHH algorithm in the R-numerical optimization

routines.

The third useful distribution introduced by Hansen [1994] extends the standardized

student−t distribution to accommodate skewness of returns. Thus the probability

density function of εt is given by

f(εt|v, λ,θθθ) =

{
bc(1 + 1

(v−2)
( bεt+aσt
σt(1−λ)

)2)−
v+1
2 for εt < −a

b
,

bc(1 + 1
(v−2)

( bεt+aσt
σt(1+λ)

)2)−
v+1
2 for εt ≥ −a

b
,

(2.11)

where a = 4λc(v−2
v−1

), b = 1 + 3λ2 − a2 and c =
Γ( v+1

2
)√

π(v−2)Γ( v
2

)
.

The parameters v and λ in this distribution control the kurtosis and skewness re-

spectively. This distribution may be a better approximation to the true distribu-
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tion since they allow kurtosis which is greater than that of the normal distribution.

2.3 GARCH (p, q) model

In this section, we discuss the GARCH (p, q) model. We first describe the

GARCH(1, 1) model and then examine statistical consideration for estimation

and forecasting approaches that exist in the literature.

2.3.1 GARCH (1, 1) model

Despite the fact that the ARCH model is simple, it often requires many parameters

to fit the data. To circumvent this difficulty, Bollerslev [1986] proposed a useful

extension of ARCH model known as the generalized ARCH (GARCH) model.

Their results suggested that the GARCH model better captures the volatility in a

return series than the ARCH model. Let εt = rt−µt be the mean-corrected return

at time t.

Definition 3. A stochastic process {ε1, . . . , εt} follows a GARCH (1, 1) model if

εt = σtzt,

and

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (2.12)

where {zt} is a sequence of independent and identically distributed random variables

with zero mean and variance one.

An imperative condition for the variance to be positive is that parameters are

constrained such that α0 > 0, α1 ≥ 0, and β1 ≥ 0. Equation (2.12) exhibits that

large past mean-corrected squared returns ε2
t−1 or past conditional variances σ2

t−1

or both give rise to large σ2
t . This means that a large ε2

t−1 tends to be followed by

another large ε2
t , generating, again, the well-known behavior of volatility clustering

in financial time series Tsay [2010].
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The stochastic process {εt} is a martingale difference sequence with conditionally

heteroscedasticity errors, since E[εt|ΦΦΦt] = 0. As in the ARCH (1) model, the

GARCH (1, 1) model can be expressed as

ε2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + ε2

t − σ2
t ,

= α0 + α1ε
2
t−1 + β1σ

2
t−1 − β1ε

2
t−1 + β1ε

2
t−1 + ε2

t − σ2
t ,

= α0 + α1ε
2
t−1 + β1ε

2
t−1 + β1(σ2

t−1 − ε2
t−1) + ε2

t − σ2
t ,

= α0 + α1ε
2
t−1 + β1ε

2
t−1 − β1νt−1 + νt,

= α0 + (α1 + β1)ε2
t−1 − β1νt−1 + νt,

where νt = ε2
t − σ2

t .

As in the case of ARCH (1) model, the conditional mean of νt is zero, that is,

E[νt|ΦΦΦt−1] = 0, and νt is martingale difference sequence. The information history

is given by ΦΦΦt−1 =
{
ε1, σ

2
1, . . . , εt−1, σ

2
t−1

}
. However, unlike ARCH (1) process

which can be transformed into AR(1), the GARCH (1, 1) process is transformed

into ARMA(1,1). By implementing the same methods that were employed to the

ARCH (1) model for deriving the unconditional variances of εt, the conditional

variance for the GARCH (1, 1) return process is given by

V ar[εt] = E[ε2
t ]− (E[εt])

2,

= E[ε2
t ],

= E[α0 + (α1 + β1)ε2
t−1 − β1νt−1 + νt],

= α0 + E[(α1 + β1)ε2
t−1],

=
α0

1− (α1 + β1)
,

since E[ε2
t ] = E[ε2

t−1]. The requirements for stationarity are such that 1−α1−β1 >

0, α1 ≥ 0, β1 ≥ 0 and α0 > 0.

Theorem 6. Suppose that the process {ε1, . . . , εt} is a GARCH (1, 1) process with

V ar[εt] = σ2 <∞ and zt is normally distributed with mean zero and variance one.

Then E[ε4
t ] <∞ holds if and only if 2α1β1 + 3α2

1 + β2
1 < 1. The kurtosis is given
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as

Kurt[εt] = 3 +
6α2

1

1− 2α1β1 − 3α2
1 − β2

1

.

Proof. If we assume that zt is normally distributed with mean zero and variance

one and fourth-order stationarity holds, then, E[z4
t ] = 3 and henceforth

E[ε4
t ] = E[E[ε4

t |ΦΦΦt−1]],

= E[E[σ4
t z

4
t |ΦΦΦt−1]],

= E[σ4
tE[z4

t |ΦΦΦt−1]],

= E[3σ4
t ],

= 3E[σ4
t ].

The expression for E[σ4
t ] is given by

E[σ4
t ] = E[(σ2

t )
2],

= E[(α0 + α1ε
2
t−1 + β1σ

2
t−1)2],

= α2
0 + 2α0α1E[ε2

t−1] + 2α0β1E[σ2
t−1] + 2α1β1E[ε2

t−1σ
2
t−1] + α2

1E[ε4
t−1] + β2

1E[σ4
t−1].

The expression for E[σ4
t ] can be simplified further as

E[σ4
t ] =

α2
0 + 2α0α1σ

2 + 2α0β1σ
2

1− 2α1β1 − 3α2
1 − β2

1

and finally, upon substituting σ2 = α0

1−α1−β1 for σ2 in this expression we get

E[ε4
t ] =

3(1 + α1 + β1)

(1− α1 − β1)(1− 2α1β1 − 3α2
1 − β2

1)
.
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The kurtosis of a GARCH (1,1) model is then given by

Kurt[εt] =
E[ε4

t ]

(V ar[εt])2
,

=
3(1 + α1 + β1)(1− α1 − β1)

1− 2α1β1 − 3α2
1 − β2

1

> 3,

= 3 +
6α2

1

1− 2α1β1 − 3α2
1 − β2

1

.

Therefore, the required condition for the kurtosis to exist is such that

1− 2α1β1 − 3α2
1 − β2

1 > 0.

and the GARCH (1, 1) model has fatter tails than those of normal distribution.

In practical applications it is frequently shown that models with smaller order

sufficiently describe the data. In most cases GARCH (1, 1) is sufficient.

Estimation of parameters of the GARCH (1, 1) model

The estimation of parameters of the GARCH (1, 1) model is carried in a similar

fashion as that of the ARCH (1) model. For parameter estimation, Bollerslev

[1986] suggested that the unconditional variance for εt should be considered as a

starting value for variance. That is,

E[ε2
t ] =

α0

1− α1 − β1

.

Under the normality assumption, the likelihood function of the GARCH (1, 1)

model is expressed as

f(ε1, . . . , εT , σ
2
1, . . . , σ

2
t ) = f(εT , σ

2
T |ΦΦΦT−1)f(εT−1, σ

2
T−1|ΦΦΦT−2) . . . f(ε2, σ

2
2|ΦΦΦ1)f(ε1, σ

2
1|θθθ),

=
T∏
t=2

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
f(ε1, σ

2
1|θθθ),
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where θθθ = (α0, α1, β1)′ is the vector of unknown parameters and f(ε1, σ
2
1|θθθ) is

a probability density function. Since f(ε1, σ
2
1|θθθ) is complicated, it is commonly

dropped from the conditional likelihood function, especially when the sample size

is sufficiently large.

Henceforth, we consider the conditional likelihood function

f(ε2, . . . , εT , σ
2
2, . . . , σ

2
T |θθθ, ε2

1, σ
2
1) =

T∏
t=2

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}

to estimate θθθ.

The maximum likelihood estimates are obtained by directly maximizing this ex-

pression or, equivalently the log-likelihood function given by

l(θθθ|ε1, σ
2
1) =

T∑
t=2

lt(θθθ),

where

lt(θθθ) = −1

2
ln(2π)− 1

2
ln(σ2

t )−
ε2
t

2σ2
t

,

is the log-likelihood function of observation t.

The algorithm for optimization employed to find the conditional maximum likeli-

hood estimates is similar to that discussed for the ARCH (1) model.

Forecasting with the GARCH (1, 1) model

Forecasts for the GARCH (1, 1) model are obtained recursively in a similar way as

for the ARCH (1) model. Let T to be the forecast origin. Then the single−step
ahead forecast for ε2

T+1 is

ε2
T (1) = α̂0 + α̂1ε

2
T + β̂1ε

2
T .
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Since ε2
T = σ2

T z
2
T , the GARCH (1, 1) model can be re-written as

σ2
T = α0 + α1ε

2
T−1 + β1σ

2
T−1,

= α0 + (α1 + β1)σ2
T−1 + α1σ

2
T−1(z2

T−1 − 1),

so that at time T + 2, we have

σ2
T+2 = α0 + (α1 + β1)σ2

T+1 + α1σ
2
T−1(z2

T+1 − 1)

with E[(z2
T+1 − 1)|ΦΦΦT ] = 0. Therefore the 2− step ahead forecast is

σ2
T (2) = α̂0 + (α̂1 + β̂1)σ2

T (1). (2.13)

In general, the l − step ahead forecast for σ2
T+l is

σ2
T (l) = α̂0 + (α̂1 + β̂1)σ2

T (l − 1) (2.14)

for l > 1.

By repeated substitution of (2.14) the l − step ahead forecast for GARCH (1, 1)

can be expressed as

σ2
T (l) = α̂0 + (α̂1 + β̂1)l−1(σ2

T (1)− σ̂2)

for l > 1 ,where σ̂2 = α̂0

1−α̂1−β̂1
.

The expression shows that σ2
T (l)→ σ̂2 as l→∞, provided that (α̂1 + β̂1) < 1. The

multi-step ahead forecast of a GARCH (1, 1) model converges to the unconditional

variance of εt as the forecast horizon goes to infinity provided that the variance of

εt exists [Tsay, 2010].

2.3.2 GARCH (p, q) model

The GARCH (p, q) model is a generalization of the GARCH (1, 1) model which

was discussed in the previous section. For a log return series {rt}, let εt = rt − µt
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be the mean corrected return at time t [Tsay, 2010].

Definition 4. A stochastic process {ε1, . . . , εt} follows a GARCH (p, q) model if

εt = σtzt

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j,

where {zt} is a sequence of independent and identically distributed random variables

with mean zero and variance one, α0 > 0, αi ≥ 0 (i = 1, 2, . . . , p), βj ≥ 0 (j =

1, 2, . . . , q), and
∑max(p,q)

i=1 (αi + βi) < 1.

Theorem 7. Suppose that the process {ε1, . . . , εt} is GARCH (p, q) process with

E[ε4
t ] = c < ∞ and zt normally distributed with mean zero and variance one. It

follows that

1. νt = σ2
t (z

2
t − 1) is white noise.

2. ε2
t is an Autoregressive Moving Average(m,p) process with

ε2
t = α0 +

m∑
i=1

γiε
2
t−i −

q∑
j=1

βjνt−j + νt (2.15)

with m = max(p, q), γi = αi+βi, αi = 0 when i > p, and βj = 0 when j > q.

Proof.

1. In order to show that νt = σ2
t (z

2
t − 1) is white noise, we find the expected

value of νt and the variance of νt.

(a) The expected value of νt is

E[νt] = E[σ2
t (z

2
t − 1)] = E[σ2

t ]E[z2
t − 1] = 0

(b) The variance of νt is

V ar[νt] = E[ν2
t ]−(E[νt])

2 = E[ν2
t ] = E[σ4

t (z
2
t−1)2] = E[σ4

t ]E[z4
t−2z2

t +1]
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which simplifies to

V ar[νt] = E[σ4
t ](E[z4

t ]−2E[z2
t ]+1) = E[σ4

t ](3−2+1) = 2E[σ4
t ] = 2E[(σ2

t )
2]

and finally leads

V ar[νt] = 2E[(α0 +

p∑
i=1

ε2
t−i)

2] = constant,

which is a constant independent of t.

(c) For k 6= 0, the covariance between νt and νt+k is

Cov[νt, νt+k] = E[σ2
t (z

2
t − 1)σ2

t+s(z
2
t+k − 1)])2

= E[σ2
t (z

2
t − 1)σ2

t+k]E[z2
t+k − 1],

= 0

2. We can rewrite ε2
t as follows

ε2
t = σ2

t z
2
t = σ2

t + σ2
t z

2
t − σ2

t = σ2
t + σ2

t (z
2
t − 1).

Given that

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j,

it then follows that

ε2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j + νt.

But from νt−j = σ2
t−j(z

2
t−j − 1) we obtain

σ2
t−j = σ2

t−jz
2
t−j − νt−j = ε2

t−j − νt−j
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so that

ε2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βj(ε
2
t−j − νt−j) + νt,

= α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjε
2
t−j −

q∑
j=1

βjνt−j + νt,

= α0 +
m∑
i=1

(αi + βi)ε
2
t−i −

q∑
j=1

βjνt−j + νt,

= α0 +
m∑
i=1

γiε
2
t−i −

q∑
j=1

βjνt−j + νt.

The series {νt} is a martingale difference sequence, that is, E[νt] = 0 and

Cov(νt, νt−j) = 0 for j ≥ 1. Nonetheless, the series {νt} in general is not an

independent and identical distributed sequence. The equation (2.15) is expressed

as an ARMA form for the mean-corrected squared series ε2
t . The fundamental and

adequate conditions for the positivity of the conditional variance in higher-order

GARCH models are formidable than the sufficient conditions stipulated and have

been provided in [Nelson and Cao, 1992].

Theorem 8. Suppose that the process {ε1, . . . , εt} is a GARCH (p, q) process with

V ar[εt] = σ2 <∞. Then

σ2 =
α0

1−
∑p

i=1 αi −
∑q

j=1 βj
.

with
∑p

i=1 αi +
∑q

j=1 βj < 1

Proof. The variance of εt is given by

V ar[εt] = E[ε2
t ]− (E[εt])

2 = E[ε2
t ] = E[E[ε2

t |ΦΦΦt−1]] = E[σ2
t ] = σ2
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Then

V ar[εt] = E[α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j],

= α0 +

p∑
i=1

αiE[ε2
t−i] +

q∑
j=1

βjE[σ2
t−j],

= α0 +

p∑
i=1

αiσ
2 +

q∑
j=1

βjσ
2

Therefore, we have

E[ε2
t ] =

α0

1−
∑p

i=1 αi −
∑q

j=1 βj
,

given that the denominator of the function is positive [Tsay, 2010].

However, there are several disadvantages of the GARCH models. Firstly, they do

not allow leverage effect which is a significant feature in stock returns. Secondly, we

need to impose restrictions on the parameters to ensure the positivity of the uncon-

ditional variance of ε2
t which complicate the estimation procedure. Furthermore,

the interpretation of the persistence in the GARCH models is indeterminate.

Estimation of parameters of the GARCH (p, q) model

In general, to estimate the parameters of the GARCH (p, q) model, we employ the

maximum likelihood estimation. If we consider a time series of returns {r1, . . . , rT},
and the denote m = max(p, q) the number of observations lost for initializing the

process. Under normality assumption, the likelihood function of a GARCH (p, q)

model is

f(ε1, . . . , εT |θθθ) = f(εT |ΦΦΦT−1)f(εT−1|ΦΦΦT−2) . . . f(εm+1|ΦΦΦm)f(ε1, . . . , εm|θθθ),

=
T∏

t=m+1

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
f(εm+1|ΦΦΦm)f(ε1, . . . , εm|θθθ),

where θθθ = (α0, α1, . . . , αp, β1, . . . , βq)
′ is a vector of unknown parameters and

f(ε1, . . . , εm|θθθ) is a joint probability density function of ε1, . . . , εm.
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The exact form of f(ε1, . . . , εm|θθθ) is complicated, therefore it is dropped from the

conditional likelihood function, especially when the sample size T is sufficiently

large. Thus we focus on the conditional likelihood function

f(εm+1, . . . , εT |θθθ, ε1, . . . , εm) =
T∏

t=m+1

1√
2πσ2

t

exp

{
− ε2

t

2σ2
t

}
(2.16)

Tsay [2010]. The maximum likelihood estimates are obtained by maximizing equa-

tion (2.16) with respect to θθθ, or, equivalently the conditional likelihood function

l(θθθ|εt, t = 1, 2, . . . , T ) =
T∑

t=m+1

lt(θθθ)

where lt(θθθ) = −1
2

ln(2π)− 1
2

ln(σ2
t )−

ε2t
2σ2
t

is the log-likelihood of observation t with

εt = rt−µt. We employ the same methods of optimization as those discussed in the

ARCH (1) model. Further, we can apply generalized error distribution, student t

distribution and standardized student’s t distribution to enhance the accuracy of

the parameter estimation.

Forecasting with the GARCH (p, q) model

Forecasting volatility of a return series {rt} with the GARCH (p, q) is done in

the same way as that of a GARCH (1, 1) model. Let T be the starting date for

forecasting. Then the 1− step ahead forecast for σ2
T+1 is given by

σ2
T (1) = α̂0 +

m∑
i=1

(α̂i + β̂i)E[ε2
T+1−i|ΦΦΦT ]−

q∑
i=1

β̂iE[νT+1−i|ΦΦΦT ],

where (ε2
T , . . . , εT+l−m) and (σ2

T , . . . , σ
2
T−q+1) are known at time T.

By extension, the l− step ahead forecast of the conditional variance in a GARCH
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(p, q) model is given by

σ2
T (l) = E[ε2

T+l|ΦΦΦT ],

= α̂0 +
m∑
i=1

(α̂i + β̂i)E[ε2
T+l−1|ΦΦΦT ]−

q∑
i=1

β̂iE[νT+l−i|ΦΦΦT ]
(2.17)

where E[ε2
T+l|ΦΦΦT ] is given recursively in equation (2.17).

2.4 Exploratory and model diagnostic tech-

niques

2.4.1 Investigating Stationarity

One of the fundamental concepts underpinning time series analysis is stationar-

ity. A time series {rt} is said to be strictly stationary if the joint distribution

(rt1 , . . . , rtk) is identical to that of (rt1+τ , . . . , rtk+τ ) for all τ, where k is an arbi-

trary positive integer and (t1, . . . , tk) is a collection of k positive integers [Tsay,

2010].

A weaker classification of stationarity is often assumed. A time series {rt} is weakly

stationary if both the mean of rt and covariance between rt and rt−l are unchanging

with time, where l is an arbitrary integer. Mathematically, a series {rt} is weakly

stationary if

• E[rt] = µ, which is a constant, and

• Cov(rt, rt−l) = γl, which only depends on l [Tsay, 2010].

Suppose we have observed a time series data points {r1, . . . , rT}, the weak sta-

tionarity suggests that the time plot of the data would portray that the T values

of the series fluctuate with a constant variation around a fixed level. The weak

stationarity allows us to make inference about future observations [Tsay, 2010].
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Autocorrelation

Suppose we have a weakly stationary time series {rt}. In order to assess the linear

dependence between rt and rt−l, we focus on the correlation. The correlation

coefficient between rt and rt−l is called the lag-l autocorrelation of rt and is denoted

by ρl, which under weak stationarity assumption is a function of l only. Basically,

we define

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rt, rt−l)

V ar(rt)
=
γl
γ0

where the property V ar(rt) = V ar(rt−l) for a weakly stationary time series is

used. Autocorrelations take values in the interval [−1, 1]. That is, −1 ≤ ρl ≤ 1.

Furthermore, a weakly stationary time series {rt} is not serially uncorrelated if

and only if ρl = 0 for all l > 0.

Portmanteau test and Box-Ljung test for autocorrelations

In financial time series modelling it is essential to test jointly that several autocor-

relations of rt are zero. Box and Pierce [1970] proposed the Portmanteau statistic

which is given by

Q∗(m) = T
m∑
l=1

ρ̂2
l ,

where T is the sample size of returns, m is the number of lags and ρ̂ is the estimate

of the lth autocorrelation of returns given by

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ l < T − 1

with

r̄ =
T∑
t=1

rt
T
.
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The aim is to the test a null hypothesis H0 : ρ1 = . . . = ρm = 0 against the

alternative hypothesis Ha : ρ 6= 0 for i = 1, 2, . . . ,m. If underlying assumption

is that {rt} is an independent and identically distributed sequence with certain

moment conditions, then Q∗(m) is asymptotically a chi-squared random variable

with m degrees of freedom.

Ljung and Box [1978] revised the Q∗(m) statistic to enhance the power of the test

in finite samples. The Box-Ljung statistic is given by

Q(m) = T (T + 2)
m∑
l=1

ρ̂2
l

T − l
,

The decision rule is to reject the null hypothesis if Q(m) is greater than χ2
α, where

χ2
α denotes the 100(1−α)th percentile of a chi-squared distribution with m degrees

of freedom.

Jarque-Bera test

Jarque-Bera is a test statistic that is employed for testing whether the series of T

observations is normally distributed. The Jarque-Bera (JB) statistic is calculated

as

JB =
T

6
(S2 +

1

4
(K − 3)2)

where S is the sample skewness, K is the sample kurtosis and T is the sample

size. Under normality assumption S and K − 3 are distributed asymptotically as

normal with zero mean and variances 6
T

and 24
T

, respectively. We reject the null

hypothesis at α% significance level if JB > χ2
1−α

2
, where χ2

1−α
2

is the critical value

of the chi-square distribution with 2 degrees of freedom [Tsay, 2010].

2.4.2 Testing for ARCH effect

It is intuitive to check if there are ARCH effects in the residuals before we fit the

GARCH model. Let εt = rt − µt be the residuals of the mean equation. The time
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series {ε2
t} is used to detect conditional heteroscedasticity and two possible test

procedures can be used for this purpose. The first test that we can implement is

the usual Box-ljung test Q(m) to for auto-correlations in the series {ε2
t} [McLeod

and Li, 1983]. The second test which can be used to detect the ARCH effect in a

time series of returns is the Lagrange Multiplier (LM) test of [Engle, 1983]. The

null hypothesis is that the first m lags of the ACF of the series {ε2
t} are zero. The

lagrange multiplier test for testing the null hypothesis corresponds to the normal

F − statistic in the linear regression

ε2
t = α0 + α1ε

2
t−1 + . . .+ αmε

2
t−m + et, t = m+ 1, . . . , T, (2.18)

where et represents the error term, m is the number of lags, and T is the sample

size. Let SSR0 =
∑T

t=m+1(ε2
t − µ̂)2, where µ̂ = ( 1

T
)
∑T

t=1 ε
2
t is the sample mean of

{ε2
t}, and SSR1 =

∑T
t=m+1 ê

2
t , where êt is the least squares residuals of the prior

linear regression. Then we can define the statistic

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m− 1)
,

which is asymptotically distributed as a chi-square distribution with m degrees of

freedom under the null hypothesis. Furthermore, the decision rule stipulates that

we reject the null hypothesis if F is greater than χ2
m(α), where the χ2

m(α) is the

upper 100(1− α)th percentile of χ2
m [Tsay, 2010].

2.4.3 Diagnostic Checking

When a GARCH model has been fitted to the data, we need to explore the ad-

equacy of the fitted model by using several graphical and statistical diagnostics.

For a properly specified GARCH model, the standardized residuals given by

ε̃t =
ε̂t
σ̂t

(2.19)

form a sequence of independent and identical distributed random variables. We

explore the goodness of fit of the model by examining the series of estimated stan-
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dardized residuals. If the GARCH model is correctly specified the residuals should

portray no serial correlation, conditional heteroscedasticity or any type of non-

linear dependence. Further, the distribution of the standardized residuals should

match the specified error distribution used in the estimation. To detect the ARCH

effects, we can plot the ACF of the squared standardized residuals. Statistically,

the modified Box-Ljung statistics can be used to test the null hypothesis of no

autocorrelation up to a specified lag and Engle’s ARCH can be employed to test

the ARCH effect. If it is assumed that errors are normally distributed, then a

Quantile-Quantile plot should look roughly linear, and the Jarque-Bera statistic

should not be too much larger than six [Zivot, 2009].

2.5 Model Selection

In time series modelling it often essential to identify the model that best fits the

data from a set of candidate models. We now consider several selection procedures

that have been proposed in the time series literature for selecting among various

possible choices for GARCH models.

The most common selection criterion employed are the Akaike information crite-

rion (AIC) and the Schwartz Bayesian information criterion (BIC). If the possible

models possess the nested structure in terms of the possible parameters, we can

simply compare their empirical likelihoods. But that is not always the case where

the models differ in the number of parameters. In such cases, we can apply the

Akaike information criterion which make improvements to the likelihood function

to account for the number of parameters in the model.

If the number of parameters in the model is denoted as p, then the AIC is defined

by

AIC(p) = −2 ln(ML) + 2p,

where ML is the maximum likelihood.
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The second model criterion selection criteria is given by

BIC(p) = −2 ln(ML) + p ln(T )

where ML is the maximum likelihood and T is the number of observations. For a

large data set, the BIC has a heavier penalty for the number of parameters in the

model, therefore it will select a more parsimonious model than AIC does [Zivot,

2009].

2.6 Data Analysis

2.6.1 Data characteristics

This section presents a preliminary description of the data set used and pro-

vides an exploratory analysis of the data prior to the complete analysis. The

time series data employed in this study consist of daily closing prices of Jo-

hannesburg Stock Exchange (JSE) market index over the period from June 30,

1995 to June 6, 2012, constituting 4320 observations during. The data for the

JSE closing prices were obtained with permission from the McGregorBFA website

(http://research.mcgregorbfa.com/Default.aspx). To prepare the data for analysis,

we employ the continuously compounded daily returns which are given by

rt = ln

(
Pt
Pt−1

)
(2.20)

where Pt and Pt−1 are the daily closing market index of the JSE at time t and

t − 1, respectively. The return series consist of 4319 observations because one

observation is lost due to differencing the daily closing price series.

Figure 2.1 presents the time series plot of the JSE daily closing prices. It is evident

from the figure that the time series of JSE daily closing prices is non-stationary

due to the non-constant mean. With the purpose of getting stationary financial

time series, we transformed the prices into a natural logarithmic returns, which

are displayed in Figure 2.2. The series of returns has constant mean except clearly
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Figure 2.1. The daily closing price of the JSE All share index for the period 30 June
1995 to 6 June 2012.
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Figure 2.2. The daily returns for the JSE All share index for the period 30 June 1995
to 6 June 2012.

non-constant variance.

Figure 2.3 is a plot of the normal distribution with same mean and standard

deviation as for the returns data, whose statistics appears in Table 2.1, with a

histogram of the same daily returns also embedded in the figure.
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Figure 2.3. A density histogram and the QQ plot for the JSE All Share Index returns
data for the period 30 June 1995 to 6 June 2012.

In the Quantile-Quantile plot, the curvature implies that the data does not come

from the normal distribution. Evidently from the table the kurtosis for the JSE

daily index returns is 8.936735 which is higher than the value of normal distri-

bution. The high value of the kurtosis confirms that the time series of returns

possesses the fat-tail characteristic. This characteristic is frequently known to ex-

hibit itself in data from financial markets. The returns of the JSE index are left

skewed since the value of the coefficient is −0.466593. Moreover, the Jarque-Bera

test statistic for the JSE daily returns is 6363.881. The large value for the Jarque-

Bera test statistic suggests the underlying non-normality in the return series.

2.6.2 Results

This section presents the Autocorrelation, Heteroscedasticity by employing En-

gle’s ARCH test. Furthermore the estimation of parameters of the GARCH model

and its extensions, model selection, diagnostics of the models and forecasting the

volatility are part of the results discussed. All of the tests and parameter estima-

tions of the models are processed using the R software package.
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Table 2.1. Descriptive Statistics for JSE daily returns

Statistics values

Standard deviation 0.01293513

Mean 0.00045608

Minimum -0.1268996

Maximum 0.07423013

Skewness -0.4665953

Kurtosis 8.936735

Jarque-Bera 6363.881

p-value 0.000

2.6.2.1 Autocorrelation

Apparently in Figure 2.4, ACF for the JSE index daily returns becomes significant

at lags 1, 3, 4, 5, 7, 8, 18, 26, 34, 35 and 36 at 95% confidence level. Thus, the

correlation among JSE index returns is significant. To test joint significance for the

first 36 lags of ACF, Box-Ljung test is employed. As we can see in Table 2.2, the

value of the Box-Ljung test statistic is 107.0798 and its corresponding p-value is

less than 0.001. Therefore, the null hypothesis ( that there is no autocorrelation)

is rejected at significance level 0.001. We accept an alternative hypothesis that

there is autocorrelation.
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Figure 2.4. The ACF for the JSE All Share Index returns

Table 2.2. Box-Ljung Q-Statistic for Autocorrelation
Lag Critical-value Statistic p-value

10 23.209 44.5817 0.0000
15 30.578 55.3774 0.0000
20 37.566 65.0827 0.0000
36 58.619 107.0798 0.0000

2.6.2.2 Heteroscedasticity

In order to detect heteroscedasticity, we plot the ACF for the square returns. The

ACF of the squared returns in Figure 2.5 exhibits a higher length of serial auto-

correlation through to the 36th lag. Furthermore the ARCH effect is investigated

using Engle’s ARCH test for the mean corrected returns which is given below in

Table 2.3. From Table 2.3 it can be seen that all values of the Engle’s (LM) ARCH

statistics are greater than their corresponding critical values and the null hypoth-

esis is rejected at significance level 0.001. Thus, we reject the null hypothesis and

conclude that there is heteroscedasticity in the returns.
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Figure 2.5. The ACF for the JSE All Share Index square returns

Table 2.3. Engle’s ARCH test for Heteroscedasticity
Lag Critical-value Statistic p-value

10 23.209 627.1386 0.0000
15 30.578 643.8851 0.0000
20 37.566 654.0117 0.0000
36 58.619 679.7896 0.0000

2.6.2.3 Model Selection

An essential task in modelling volatility using GARCH models is the determination

of the ARCH order p and GARCH order (p, q) for a particular series. Considering

GARCH models is similarly done as ARMA models using residuals and classi-

cal model selection criteria such as the Akaike information criterion (AIC) and the

Schwartz-Bayesian information criterion (BIC) can be employed for choosing mod-

els. The R software package is employed to compute the AIC and BIC to determine

best fitting model. Generally, GARCH models with p, q ≤ 2 are typically selected

by AIC and BIC. In the Table 2.4 below smaller AIC and BIC is an indication of

an appropriate model. Therefore, since GARCH (1, 1) has the smallest AIC and

BIC among the contesting models we consider it as the appropriate model.
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Table 2.4. Model selection for the estimated GARCH (p, q) models assuming Normal
distribution

Model AIC BIC Log-Likelihood

GARCH(1,0) -5.9562 -5.9517 12597.48
GARCH (1, 1) -6.1621 -6.1560 13033.66

GARCH(1,2) -6.1615 -6.1540 13033.57
GARCH(2,1) -6.1618 -6.1543 13034.07
GARCH(2,2) -6.1615 -6.1525 13034.48

2.6.2.4 Estimation of the GARCH (1, 1) Model

In Table 2.5 below all the estimated parameters were obtained by employing the

maximum likelihood estimation process which is performed using the R software

package. As shown in Table 2.5, all the estimated parameters are statistically

significant and their correspond standard errors are to small which is an indication

of a good fit. Furthermore, the sum of the estimated parameters α̂1 + β̂1 is equal

to 0.991, which indicates that volatility shocks are persistent.

Table 2.5. Parameter estimates for GARCH (1, 1)

Parameter Estimate Std. Error t value Pr(>|t|)
µ 0.0008231 0.001484 5.545 < 0.001
α0 0.000002 < 0.001 4.357 < 0.001
α1 0.112 0.0106 10.593 < 0.001
β1 0.879 0.011 79.728 < 0.001

2.6.2.5 Diagnostic Checking of the GARCH (1, 1) Model

After the specification of the GARCH model, it is imperative to investigate its

adequacy. To explore the relationship between the residuals obtained from the

fitted model, the corresponding conditional standard deviations, and the observed

returns are studied. We can perceive that both residuals and returns in the Figure

2.6 portray volatility clustering. Nevertheless if we plot the time series of stan-

dardized residuals as shown in Figure 2.7, it can be perceived that they become

generally stable with little clustering. In order to assess normality for the residuals

we can plot the quantile-quantile plot. If the standardized residuals come from
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Table 2.6. Box-Ljung Q-statistic test for squared standardized residuals, Engle’s ARCH
test, and Jarque-Bera test for normality

Statistic value p-value

Q2(10) 20.1 0.028
Q2(15) 22.1 0.106
Q2(20) 27.5 0.121

Engle’s ARCH test 27.3 0.128
Jarque-Bera test 575.74 < 0.001

the gaussian distribution the plot should be a straight line. Apparently in Fig-

ure 2.9 the quantile-quantile plot does not form a straight line which implies that

the standardized residuals do not come from the normal distribution. Moreover

the value do Jarque-Bera statistics is 575.7491 which is too large, imply that the

normality assumption of the standardized residuals is rejected. The ACF of the

squared standardized residuals in Figure 3.8 portrays no autocorrelation except

for the two critical values that appear on lag 1 and lag 2. To corroborate this

conclusion we employed the Box-Ljung test for standardized residuals. The value

of the Box-Ljung test statistic Q(20) is equal to 27.53516 and less than the critical

value 37.566 at 0.001 significance level. Therefore, there is no heteroscedasticity

left in the fitted model. In addition the correlation of the standardized residuals

is tested using Engle’s ARCH test. The Engle’s (LM) ARCH test which is shown

in Table 2.6 indicate that heteroscedasticity has been removed.
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Figure 2.7. Standardized residuals of GARCH (1, 1)

Before applying the GARCH (1, 1) model to the data, both the Engle’s ARCH

test and Box-Ljung test illustrated rejection of their respective null hypothesis

showing overwhelming evidence in support of ARCH effects. In the post estimation

applying standardized residuals based on the estimated GARCH (1, 1) model, the

corresponding test results is an affirmation of their respective null hypothesis. The

results justify effectiveness of the GARCH (1, 1) model.
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Figure 2.8. ACF for the squared standardized residuals
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Figure 2.9. QQ-plot for the standardized residuals

2.6.3 Forecasting with the GARCH (1, 1) model

In this section we forecast the volatility of the JSE all share index for the next 10

trading days (during the period 7-20 June 2012). The forecast for the volatility

for the next day (t+1) is generated by the equation

σ̂2
t+1 = 2.208e− 06(±5.068e− 07) + 0.112(±0.01057)ε2

t + 0.879(±0.01103)σ2
t ,
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where σt and εt are known at time. For the following days i = 2, . . . , 10, the

volatility can be forecasted as:

σ̂2
t+i = α0 + (α̂1 + β̂1)σ2

t+i−1,

Table 2.7. Ten day forecasts of JSE all share index from GARCH (1, 1)

Day mean-forecast forecasted standard deviation observed volatility

1 0.0008283 0.009439 0.0129439
2 0.0008283 0.009515 0.0129424
3 0.0008283 0.009589 0.0129410
4 0.0008283 0.009662 0.0129403
5 0.0008283 0.009734 0.0129407
6 0.0008283 0.009804 0.0129394
7 0.0008283 0.009874 0.0129374
8 0.0008283 0.009943 0.0129364
9 0.0008283 0.010010 0.0129348
10 0.0008283 0.010077 0.0129351

In order to assess the forecasting ability of the estimated GARCH (1, 1) model

we have estimated within sample forecasts. If the size of the difference between

forecasted volatility and observed volatility is small then the model has good fore-

casting ability. In Table 2.7, it is evident that GARCH (1, 1) produces good results.



Chapter 3
Extensions of GARCH models

3.1 Introduction

In the basic GARCH model, we consider the squared residuals ε2
t , in the equation

of the conditional variance, therefore the sign of the residuals or mean corrected

returns have no impact on conditional volatility. However, a stylized fact of finan-

cial volatility is that bad news (negative residuals) tends to have a larger influence

on the volatility than good news (positive residuals) of the same magnitude [Black,

1976]. The asymmetric impact on volatility is mainly referred to as the leverage

effect. We now provide a brief outline of the three models that are generally used

to accommodate the leverage effect.

3.2 Asymmetric GARCH Models

3.2.1 Exponential GARCH model

The leverage effect can be incorporated into a GARCH model in various ways.

The first model that takes into account the leverage effect was proposed by Nelson

[1991], and is given by
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ln(σ2
t ) = α0 +

p∑
i=1

αig(zt−i) +

q∑
j=1

βj ln(σ2
t−j)

where the value of g(zt) rely upon several elements. To accommodate the asym-

metric relation between stock returns and volatility changes, the value of g(zt)

must be a function of both the magnitude and the sign of zt. Thus the following

expression for g(zt) is used namely:

g(zt) = ψzt + γ[|zt| − E[|zt|]] (3.1)

An advantage of the exponential GARCH over the fundamental GARCH model

is that the conditional variance σ2
t is guaranteed to be positive regardless of the

values of the coefficient in equation (3.1), because the logarithm of σ2
t instead of

σ2
t itself is modelled Zivot [2009].

3.2.2 GJR-GARCH models

Another extension to the traditional GARCH model used to model the leverage

effect is the GJR-GARCH model, named after Glosten et al. [1993] who developed

the model. In this extension conditional variance can be expressed as

σ2
t = α0 +

p∑
i=1

(αiε
2
t−i + γiSt−iε

2
t−i) +

q∑
j=1

βjσ
2
t−j, (3.2)

where

St−i =

{
1 for εt−i < 0

0 for εt−i ≥ 0
(3.3)
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The TGARCH model of Zakoian [1994] is very similar to the GJR model but

models the standard deviation of the conditional variance.

3.2.3 APARCH model

Ding et al. [1993] introduced the Asymmetric Power ARCH (APARCH) model to

allow for the leverage effect. The APARCH (p, q) model can be expressed as

σδt = α0 +

p∑
i=1

αi(|εt−i| − γiεt−i)δ +

q∑
j−1

βjσ
δ
t−j, (3.4)

where α0 > 0, δ ≥ 0, βj (j = 1, · · · , q),αi (i = 1, · · · , p), and |γi| < 1 (i = 1, · · · , p).
The exponent δ may also be estimated as an additional parameter which enhances

the flexibility of the model. Furthermore the family APARCH models includes

other seven GARCH extensions as special cases:

• ARCH model of Engle [1982] when δ = 2, γi = 0 (i = 1, · · · , p) and βj = 0

(j = 1, · · · , q)

• GARCH model of Bollerslev [1986] when δ = 2, and γi = 0 (i = 1, · · · , p)

• TS-GARCH of Taylor [1986] and Schwert [1990] when δ = 1 and γi (i =

1, · · · , p)

• GJR of Glosten et al. [1993] when δ = 2

• TARCH of Zakoian [1994] when δ = 1

• NARCH of Higgins and Bera [1992] when γi (i = 1, · · · , p) and βj = 0

(j = 1, · · · , q)

• The log-ARCH of Geweke [1986] and Pantula [1986] when δ → 0.
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3.3 Parameter Estimation

Consider a stochastic process {ε1, ε2, · · · , εT} of residuals that are conditionally

independent. Let Φt−1 represent the history information available up to time t-1.

Then the likelihood function for the residuals series is given by

f(ε1, ε2, · · · , εT |ΦT−1) =
T∏
t=1

f(εt|Φt−1), (3.5)

where f is the general notation for a density function. Under the normal assump-

tion, the conditional density function of εt is

f(εt|Φt−1) =
1√

2πσ2
t

exp

{
− ε2

t

2σ2
t

}
, (3.6)

where σ2
t = α0 +

∑p
i=1 αi(|εt−i| − γiεt−i)2 +

∑q
j=1 βjσ

2
t−j. We employ the maximum

likelihood method to estimate the unknown parameters in the APARCH (p, q)

model. To make the model less difficult to work with, we define some vector pa-

rameters. We define the vector θθθ = (α0, α1, · · · , αp, β1, β2, · · · , βq, γ1, γ2, · · · , γp),
which contains unknown parameters. In order to estimate the parameters we differ-

entiate the log-likelihood function with respect to θθθ and equate to zero. However,

the maximum likelihood for θ̂θθ is nonlinear, thus its maximization must be per-

formed using appropriate nonlinear optimization routine. To solve the problem of

nonlinearity in the estimation, we use BHHH iterative algorithm to estimate the

unknown parameters. Similarly for the EGARCH model parameters can be esti-

mated by employing the maximum likelihood method in conjuction with BHHH

algorithm.
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3.4 Forecasting with the Asymmetric GARCH

Models

The conditional variance can be forecasted independently from the mean. For

an APARCH (p, q) process, the distribution of residuals may have an impact on

the forecast, the h-step ahead forecast for the conditional variance is computed

recursively from

σ̂δ̂T+h|T = E[σδT+h|ΦT ]

= α̂0 +

p∑
i=1

α̂iE[(|εT+h−i| − γ̂iεT+h−i)
δ̂|ΦT ] +

q∑
j=1

β̂jσ
δ̂
T+h−j|T

[Pasha et al., 2007].

For an EGARCH (1, 1) process, the h-step ahead forecast for the conditional vari-

ance is computed recursively from

σ̂2
T+h|T = σ2β̂1

T+h−1 exp

(
α̂0 − α̂1

√
2

π

){
exp

(
(γ̂ + α̂1)2

2

)
N(γ̂ + α̂1)

+exp

(
(γ̂ − α̂1)2

2

)
N(γ̂ − α̂1)

}
,

where N(.) is the standard Normal cumulative distribution [Tsay, 2010].

3.5 Data Analysis

3.5.1 Estimation Results

Tables 3.1, Table 3.2, and Table 3.3 present the parameter estimates for GARCH

(1, 1), GJR-GARCH (1, 1), EGARCH (1, 1) and APARCH (1, 1) assuming normal,

student-t and skewed-t distribution respectively. The values in the parentheses are

standard errors of corresponding parameter estimates. The numbers in square

brackets are p-values of test statistics. Log(L) represents the value of the maxi-
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mized log likelihood function. The values Q[10], Q[15] and Q[20] are Box-Ljung

Q-statistic calculated on standardized residuals of order 10, 15 and 20 respec-

tively. The values Q2[10], Q2[15] and Q2[20] are Box-Ljung Q-statistic calculated

on squared standardized residuals of order 10, 15 and 20 respectively. Further-

more, JBStat represents Jarque-Bera test statistic for normality. The estimates of

the coefficient α1 that accommodates the effect of the new shocks on volatility are

statistically significant for all estimated four models. The estimate is positive for

the GARCH (1, 1), GJR-GARCH (1, 1) and APARCH (1, 1) but negative in the

case of EGARCH (1, 1) model. However the superiority of EGARCH (1, 1) model

is that it allows asymmetric response to past positive or negative returns and uses

logarithmic volatility to mitigate the parameter constraints. The parameter esti-

mate β1 that measures persistence of volatility shocks, is positive and statistically

significant at 1% significance level. The asymmetry coefficient γ is positive and

statistically significant at 1% significance level in all four models with different dis-

tributional assumptions. This strongly supports the assertion that residuals have

asymmetric influence on the volatility of JSE index closing prices, especially, the

positive sign indicates that negative residuals increase volatility more than positive

residuals of the same magnitude. The coefficient of the the APARCH (1, 1) model

δ assuming normal, student-t and skewed-t distribution is positive and statistically

significant at 1% significance level. In Table 3.2 and Table 3.3 the estimates of the

shape parameter are statistically significant for the GARCH models. Therefore

this shows that JSE index return series is leptokurtic. In Table 3.3 the skewness

estimate is approximately equal to 0.9(±0.02) and is statistically significant for

all the estimated GARCH models. The results show that the density of the JSE

index return is skewed to the right in all the estimated models. The Jarque-Bera

test indicates that the residuals that resulted from the estimated GARCH models

do not conform to normal distribution. Furthermore, because of the presence of

leverage effect, the asymmetric models apparently perform better than the sym-

metric GARCH models. The EGARCH (1, 1) model has both smallest AIC and

BIC under skewed-t distributional assumption. Thus, the EGARCH (1, 1) model

assuming skewed-t distribution is more likely to be the best fit of JSE index returns.
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Table 3.1. Estimation results from GARCH (1, 1), GJR-GARCH (1, 1), EGARCH (1, 1)
and APARCH (1, 1) under normal distribution assumption

JSE

GARCH GJR-GARCH EGARCH APARCH

Coefficients

µ 8.231e-04 (< 0.001) 5.859e-04 (< 0.001) 5.840e-04 (< 0.001) 5.803e-04 (< 0.001)

α0 2.208e-06 (< 0.001) 2.434e-06 (< 0.001) -0.213 (0.037) 3.639e-05 (< 0.001)

α1 0.112 (0.011) 0.0924 (0.011) -0.077 (0.008) 0.104 (0.010)

β1 0.879 (0.011) 0.887 (0.0109) 0.976 (0.004) 0.892 (0.010)

γ - - 0.260 (0.038) 0.205 (0.017) 0.333 (0.049)

δ - - - - - - 1.421 (0.153)

Log(L) 13033.66 13064.37 13074.94 13065.13

Residuals test statistics

Q[10] 42.0 [< 0.001] 41.9 [< 0.001] 42.2 [< 0.001] 40.0 [< 0.001]

Q[15] 44.8 [< 0.001] 45.2 [< 0.001] 45.2 [< 0.001] 43.4 [< 0.001]

Q[20] 53.1 [< 0.001] 53.8 [< 0.001] 53.3 [< 0.001] 51.4 [< 0.001]

JBStat 575.7 [< 0.001] 408.8 [< 0.001] 420.1 [< 0.001] 466.3 [< 0.001]

Q2[10] 20.2 [0.028] 16.7 [0.082] 28.6 [0.001] 31.1 [0.001]

Q2[15] 22.1 [0.105] 20.4 [0.156] 32.4 [0.006] 34.7 [0.003]

Q2[20] 27.6 [0.119] 25.9 [0.171] 38.5 [0.008] 41.0 [0.004]

Information Criteria

AIC -6.1621 -6.1761 -6.1811 -6.1760

BIC -6.1560 -6.1686 -6.1736 -6.1670
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Table 3.2. Estimation results from GARCH (1, 1), GJR-GARCH (1, 1), EGARCH (1, 1)
and APARCH (1, 1) under student-t distribution assumption

JSE

GARCH GJR-GARCH EGARCH APARCH

Coefficients

µ 8.605e-04 (< 0.001) 7.040e-04 (< 0.001) 6.870e-04 (< 0.001) 6.933e-04 (< 0.001)

α0 2.080e-06 (< 0.001) 2.270e-06 (< 0.001) -0.176 (0.036) 1.025e-04 (< 0.001)

α1 0.106 (0.011) 0.090 (0.011) -0.068 (0.009) 0.091 (0.010)

β1 0.885 (0.012) 0.890 (0.011) 0.981 (0.004) 0.907 (0.010)

γ - - 0.235 (0.045) 0.180 (0.018) 0.372 (0.069)

δ - - - - - - 1.156 (0.168)

shape 8.663 (1.000) 9.498 (1.196) 9.532 (1.196) 9.332 (1.143)

Log(L) 13099.76 13117.24 13128.67 13112.30

Residuals test statistics

Q[10] 41.9 [< 0.001] 41.4 [< 0.001] 41.9 [< 0.001 32.2 [< 0.001]

Q[15] 44.7 [< 0.001] 44.7 [< 0.001] 44.8 [< 0.001] 36.1 [0.002]

Q[20] 53.0 [< 0.001] 53.3 [< 0.001] 52.8 [< 0.001] 42.8 [0.002]

JBStat 574.1 [< 0.001] 414.2 [< 0.001] 466.8 [< 0.001] 15038.1 [< 0.001]

Q2[10] 23.3 [0.010] 18.1 [0.054] 46.8 [< 0.001] 14.5 [0.153]

Q2[15] 25.3 [0.046] 21.7 [0.114] 50.8 [< 0.001] 15.5 [0.414]

Q2[20] 30.8 [0.057] 27.3 [0.127] 57.4 [< 0.001] 16.8 [0.666]

Information Criteria

AIC -6.1928 -6.2006 -6.2060 -6.1978

BIC -6.1853 -6.1916 -6.1970 -6.1873
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Table 3.3. Estimation results from GARCH (1,1), GJR-GARCH (1,1), EGARCH (1,1)
and APARCH (1,1) under skewed student-t distribution assumption

JSE

GARCH GJR-GARCH EGARCH APARCH

Coefficients

µ 6.980e-04 (< 0.001) 5.616e-04 (< 0.001) 5.620e-04 (< 0.001) 5.615e-04 (< 0.001)

α0 1.925e-06 (< 0.001) 2.146e-06 (< 0.001) -0.168 (0.034) 8.874e-05 (< 0.001)

α1 0.102 (0.011) 0.088 (0.010) -0.064 (0.009) 0.088 (0.010)

β1 0.889 (0.011) 0.895 (0.019) 0.981 (0.004) 0.909 (0.010)

γ - - 0.225 (0.044) 0.176 (0.018) 0.356 (0.068)

δ - - - - - - 1.179 (0.169)

shape 9.124 (1.109) 9.840 (1.287) 9.851 (1.265) 9.662 (1.230)

skewness 0.901 (0.021) 0.906 (0.021) 0.907 (0.021) 0.907 (0.021)

Log(L) 13110.05 13126.53 13137.52 13121.92

Residuals test statistics

Q[10] 42.2 [< 0.001] 42.1 [< 0.001] 42.6 [< 0.001] 33.6 [< 0.001]

Q[15] 45.1 [< 0.001] 45.31 [< 0.001] 45.5 [< 0.001] 37.4 [0.001]

Q[20] 53.2 [< 0.001] 53.8 [< 0.001] 53.4 [< 0.001 44.2 [0.001]

JBStat 583.6 [< 0.001] 420.1 [< 0.001] 484.2 [< 0.001] 7996.4 [< 0.001]

Q2[10] 25.3 [0.005] 19.6 [0.033] 51.2 [< 0.001] 20.9 [0.021]

Q2[15] 27.3 [0.027] 23.3 [0.079] 54.9 [< 0.001] 22.4 [0.097]

Q2[20] 33.0 [0.034] 28.9 [0.090] 61.7 [< 0.001] 24.4 [0.225]

Information Criteria

AIC -6.1972 -6.2046 -6.2098 -6.2019

BIC -6.1882 -6.1940 -6.1992 -6.1899
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3.5.2 Diagnostic Checking of the GJR-GARCH (1, 1)
Model

According to the AIC and BIC, the EGARCH (1, 1) model with skewed-t distribu-

tion in the errors perform better than all models considered in this study since it

has both the least AIC and BIC values. On exploring the EGARCH (1, 1) model

further we noted that heteroscedasticity was not completely discarded in the resid-

uals. The GJR-GARCH (1, 1) model with student-t errors seems to be the best

fit since it removes the heteroscedasticity in the residuals. Figure 3.1 shows that

the fitted residuals portray volatility clustering. Moreover if we plot the stan-

dardized residuals as shown in Figure 3.2, they appear generally stable with little

clustering. This ACF of the standardized residuals plot in Figure 3.3 exhibits no

autocorrelation except for the two values that appear on lag 2 and lag 3.

In order to justify this outcome we use the Box-Ljung for squared standardized

residuals. The value of the Box-Ljung statistic Q(20) is equal to 27.45 and smaller

than the critical value 37.57 at 0.001 significance level. Thus, we can conclude that

there is no heteroscedasticity in the fitted model. Furthermore the correlation of

the standardized residuals is tested using Engle’s ARCH test. The p-value of the

Engle’s ARCH statistic at lag 12 which is shown in Table 3.4 is greater than 0.05.

Therefore we accept the null hypothesis that there is no heteroscedasticity. The

value of the Jarque-Bera statistic as presented in Table 3.4 is 414.2105 which is

quite a big number, therefore the assumption of the normal standardized residuals

is rejected. Furthermore the empirical density and qq-plot substantiates the same

result that were suggested by the Jarque-Bera statistic. In the pre-estimation

both Engle’s ARCH test and Box-Ljung statistic supported the rejection of their

respective null hypothesis. After the GJR-GARCH (1,1) model has been fitted,

the same tests signify acceptance of their respective null hypothesis. These results

justify the efficiency of the GJR-GARCH model.
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Figure 3.2. Standardized residuals of GJR-GARCH (1,1)

Table 3.4. Box-Ljung Q-Statistic test for squared standardized residuals, Engle’s ARCH
test for standardized residuals, and Jarque-Bera test for normality

Statistic value p-value

Q2(10) 18.2 0.052
Q2(15) 21.9 0.111
Q2(20) 27.5 0.123

Engle’s ARCH test 20.8 0.053
Jarque-Bera test 414.2 < 0.001
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Chapter 4
Multivariate GARCH Process

4.1 Introduction

Modelling volatility in financial markets has been a key issue in econometrics and

time series analysis following the landmark contributions by Engle [1982], Boller-

slev [1986], and Taylor [1986] who introduced the GARCH and the stochastic

volatility models. Since modelling volatility of returns in financial markets has

been the subject of extensive research, an understanding of the co-movements

of returns among different markets globally is of great significance. Multivariate

volatilities play a crucial role in portfolio selection and asset allocation and can

also be implemented to calculate the value at risk of a financial position comprising

multiple assets. Rather than a limited discussion concerning volatility in a uni-

variate return series greater value can be found in extending the ideas concerning

GARCH models to a multivariate setting. For instance, asset pricing and risk man-

agement significantly rely upon the conditional covariance structure of the assets

of a portfolio. Modelling a covariance is a non-trivial issue because of the likely

high dimensionality of the problem and the constraint that compels the positive

definiteness of the covariance matrix. The most essential part in modelling the

multivariate volatility is to render a realistic but parsimonious specification of the

covariance matrix ensuring its positivity. A major drawback in the multivariate

approach is that the number of parameters in the GARCH model increases rapidly
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leading to complexities associated with parameter estimation and inference. This

dictates the analyst or modeller to tend to confine or limit the number of assets

(financial markets) to be incorporated into the model for easy of estimation and

interpretation. Numerous specifications of multivariate GARCH have been intro-

duced in the literature. For the purpose and scope of this study, we will limit our

attention to the Dynamic Conditional Correlation (DCC) model of Engle [2002].

4.2 Multivariate GARCH Models

The volatilities of financial indices are known to move synchronously across dif-

ferent markets or slightly delayed. Essentially, detecting how financial markets

are inter-related is of paramount importance. For an investor holding a variety of

assets, the dynamic relationship between returns on the assets play a crucial role

in decision making.

In modelling the multivariate volatility, we consider an N-dimensional vector series

of returns rt = (r1t, . . . , rNt)
′. The vector rt has an N−dimensional conditional

mean vector µµµt and a (N ×N) conditional covariance matrix Ht.

Letting ΦΦΦt−1 represents the information history generated by the observed time

series rt up to and including t − 1 and θθθ be a finite vector of parameters, rt is

conditionally heteroscedastic in the following manner:

rt = µt(θθθ) + εtεtεt (4.1)

where µµµt(θθθ) is the conditional mean vector with respect to the information set ΦΦΦt−1

and

εεεt = H
1
2
t (θθθ)zt (4.2)

where H
1
2
t (θ) is a positive definite matrix of order (N ×N).

Further, we assume that the N-dimensional vector zt is an independent and iden-

tical distributed random vector that satisfies E[zt] = 0 and E[ztz
′
t] = IN, where

IN is an identity matrix of order N .
Definition 5 (Second-order stationarity). The process rt is said to be second-order
stationary if:
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1. E[rt] = µµµ = constant

2. E[r2
it] <∞, for i = 1, 2, . . . , N

3.

ΓΓΓ(k) = E[(rt − µµµ)(rt−k − µµµ)′]

=


γ1 γ12(k) . . . γ1N

γ21(k) γ2 . . . γ2N(k)
...

...
. . .

...
γN1(k) γN2(k . . . γN


where the expectation is taken element by element over the the joint distribution of
rt. The mean is N-dimensional vector consisting of unconditional expectations of
the components of rt. The covariance matrix ΓΓΓ(k) is an (N ×N) matrix where γit
is the ith diagonal element and where the (i, j)th element is the covariance between
rit and rjt, and it is a function of k.

The main goal is to model the conditional covariance matrix Ht which is an (N×N)

positive definite matrix.

4.2.1 The CCC-GARCH (p, q) Model

Bollerslev[1990] proposed a multivariate specification in which all conditional con-

ditional correlations are time invariant and thus the conditional variances are mod-

elled by univariate GARCH models. This specification is called Constant Condi-

tional Correlation (CCC). This specification abridges the number of parameters to

be estimated and thus alleviates the estimation. Then, the conditional covariance

matrix Ht, may be expressed as:

Ht = DtRDt where hijt = ρij
√
hiithjjt,∀i 6= j,

Dt = diag(
√
h11t,

√
h22t, · · ·

√
hNNt),
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where hiit can be defined as a univariate GARCH model, R is an (N ×N) corre-

lation matrix. The elements of the correlation matrix are given by

ρijt =
Cov(εit, εjt|ΦΦΦt−1)√

V ar(εit|ΦΦΦt−1)V ar(εjt|ΦΦΦt−1)
(4.3)

with ρij = 1, ∀i = 1, · · · , N . Dt represents the (N×N) diagonal matrix consisting

of the conditional standard deviations of element εt. The CCC-GARCH specifica-

tion assumes that the conditional correlations are time invariant ρijt = ρij, so that

the temporal variation in Ht is only determined by the time varying conditional

correlations for each in εt. As long as each conditional variances are positive, the

CCC guarantees that the resulting conditional matrices are positive definite.

4.2.2 The DCC-GARCH (p, q) Model

Despite the simplicity of the Constant Conditional Correlation, the major draw-

back is that the correlation tends to vary over time in real application. The as-

sumption of constant correlations may be seen unrealistic in many empirical ap-

plications. Thus, Engle [2002] and Tse and Tsui [2002] propose a generalization of

the conditional constant correlation model by making the conditional correlation

matrix time-dependent. The generalized model is the called a Dynamic Condi-

tional Correlation (DCC) model. The DCC model of Engle [2002] and Tse and

Tsui [2002] are genuinely multivariate and are instrumental when modelling high

dimensional data sets.
Definition 6. The DCC model of Tse and Tsui [2002] is defined as:

Ht = DtRtDt (4.4)

where Dt = diag(
√
h11t, . . . ,

√
hNNt) is an (N × N) diagonal matrix, hiit can be

obtained as any univariate GARCH model and

Rt = (1− θ1 − θ2)R + θ1ΨΨΨt−1 + θ2RRRt−1. (4.5)

In equation (4.5), θ1 and θ2 are nonnegative scalar parameters satisfying θ1+θ2 < 1,
R is a symmetric (N × N) positive definite matrix with ρij = 1 and ΨΨΨt−1 is the
(N × N) correlation matrix of uτ for τ = t −M, t −M + 1, . . . , t − 1. Its (i, j)th

element is given by
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ψij,t−1 =

∑M
m=1 ui,t−mui,t−m√

(
∑M

m=1 u
2
i,t−m)(

∑M
m=1 u

2
j,t−m)

(4.6)

where uit = εit√
hiit

A necessary condition to ensure positivity of ΦΦΦt−1, and therefore also of Rt, is that

N ≤M .
Definition 7. The DCC model Engle [2002] is defined as:

Ht = DtRtDt (4.7)

with

Rt = (Q∗t )
−1Qt(Q

∗
t )
−1 (4.8)

where Q∗t = diag(Qt)
1
2 , Qt is the (N×N) symmetric positive definite matrix given

by

Qt = (1− θ1 − θ2)Q̄ + θ1ut−1u
′
t−1 + θ2Qt−1. (4.9)

θ1 and θ2 are nonnegative scalar parameters satisfying θ1+θ2 < 1. Q̄ is the (N×N)
unconditional covariance matrix consisting of standardized residuals resulting from
the first-step estimation, where ut = (u1t, . . . , uNt)

′ is the standardized residuals
vector (uit = εit√

hiit
, for i = 1, 2, . . . , N)

(Q∗t )
−1 = diag(

1
√
q11

, . . . ,
1

√
qNN

)

The typical element Rt will be of the form

ρijt =
qijt√
qiiqjj

A disadvantage of the DCC models is that θ1 and θ2 are scalars, so that all the

conditional correlations obey the same dynamics. This is necessary to ensure that

Rt is positive through sufficient conditions on the parameters.
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4.2.3 Estimation of DCC-GARCH Model

In order to estimate the unknown parameters of the DCC-GARCH model, we

employ the method of conditional maximum likelihood estimation.

Under the assumption of normally distributed errors, parameters can be estimated

by maximizing the log-Likelihood function given by

l(θ) = −1

2

T∑
t=1

[
N ln(2π) + ln(|Ht|) + εεε′H−1

t εεεt
]

= −1

2

T∑
t=1

[
N ln(2π) + ln(|DtRtDt|) + u′tDtD

−1
t R−1

t D−1
t Dtut

]
= −1

2

T∑
t=1

[
N ln(2π) + 2 ln(|Dt|) + ln(|Rt|) + u′tR

−1
t ut

]
where T represents the number of observations, N is the number of stock mar-

kets and θ denotes the number of parameters to be estimated. However, the log-

likelihood function is non-linear, therefore it is maximized by an iterative numerical

algorithm called BHHH algorithm which in turn estimates the desired parameters.

4.2.4 Diagnostics of DCC-GARCH model

An exploratory diagnostic analysis in require to ascertain the adequacy of DCC-

GARCH model. Such a procedure confirms whether an estimated DCC-GARCH

model can render the desired estimates and statistical inference. In order to check

the overall significance of the residual correlation, we consider the Box-Ljung port-

manteau statistic. This test was proposed by Ljung and Box [1978] as one of the

diagnostics in Autoregressive Moving Average (ARMA) time series modelling. Let

ẑt = Ĥ
− 1

2
t ε̂εεt represent the N-dimensional vector of standardized residuals. Fol-

lowing Hosking [1980], a multivariate version of the Box-Ljung statistic is given

by

Qm(k) = T 2

k∑
j=1

(T − j)−1tr{C−1
Zt

(0)CZt(j)C
−1
Zt

(0)C ′Zt(j)}, (4.10)
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where tr denotes the trace of a matrix. Zt = vech(ẑtẑ
′
t), CZt(j) is the sample auto-

covariance matrix of order j and vech is the operator that stacks a matrix as column

vector. Under the null hypothesis (No ARCH effect), Qm(k) is asymptotically as

χ2 with N2k degrees of freedom. Duchesne and Lalancette [2003] generalized this

statistic using a spectral approach and obtained higher asymptotic power by using

different kernel than the truncated uniform kernel used in Qm(k). This test is also

employed to detect the misidentification in the conditional matrix Ht [Bauwens

et al., 2006].
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4.3 Empirical Results

4.3.1 Summary Analysis

The data set contains weekly prices for the period June 1995 to June 2012 for three

selected stock market, namely the JSE All Share Index, FTSE-100 and NASDAQ-

100.

Table 4.1 presents the summary statistics of the log weekly return for the three

stock market indices. Both FTSE-100 and NASDAQ-100 show the highest kurtosis.

The Jarque-Bera test rejects the normality assumption of the returns.

One of the key aims of this study was to investigate the nature of the relation-

ship between South African market and key players in global markets. Table 4.2

presents the correlation matrix computed for the three stock markets. The results

confirm the coexistence of correlation among markets. Correlation between all the

markets is positive, suggesting that there is a common factor driving markets in

the same direction. In particular, correlation between JSE and both FTSE and

NASDAQ indices is low, specifically less than 0.5. The autocorrelation Function

(ACF) and Cross-correlation Function (CCF) in Figure 4.2 also suggest a decline

in correlation between the JSE stock market index and the two other indices with

increasing lag. The results suggest that it will be appropriate to model the condi-

tional variance of returns of the stock markets.

The Box-Ljung statistics for lag 12 implemented on squared returns (denoted by

Q2[12]) suggest significant time dependence of the second moments.

Furthermore, the null hypothesis of no ARCH effects in each of the returns is

rejected at 1% level of significance.
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Figure 4.1. Time series plots of the price (left) and return (right) series for the JSE,
FTSE and NASDAQ indices

Table 4.1. Descriptive Statistics of JSE All Share Index, FTSE-100 and NASDAQ-100
returns

Summary statistics JSE returns FTSE-100 NASDAQ-100

number of observations 781 781 781

Standard deviation 0.02652 0.0266 0.04264

Mean 0.002465 0.0006332 0.001997

Minimum -0.1732 -0.2578 -0.291

Maximum 0.1026 0.1258 0.1926

Skewness -0.7839 -1.279 -0.8298

Kurtosis 7.487 15.73 9.191

Q2[12] 93.29 118.4 111.4

p-value (< 0.001) (< 0.001) (< 0.001)

Engle’s ARCH test[12] 54.14 82.38 64.77

p-value (< 0.001) (< 0.001) (< 0.001)

Jarque-Bera 735.1 5485 1337

p-value (< 0.001) (< 0.001) (< 0.001)
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Figure 4.2. ACF and CCF for the JSE All Share Index, FTSE-100 and NASDAQ-100
squared returns

Table 4.2. Constant Correlation Estimates
JSE returns FTSE-100 returns NASDAQ-100

JSE returns 1.0000 0.4604 0.3406
FTSE-100 returns 0.4604 1.0000 0.6206

NASDAQ-100returns 0.3406 0.6206 1.0000

4.3.2 Parameter Estimation for DCC-GARCH(1,1) model

The univariate GARCH (1, 1) models for each stock market in Table 4.3 are rep-

resenting the diagonal elements of Dt in Definition 6 and 7. The coefficient α0 is

highly significant at 1% level in all the three stock markets. The significant α1 for

all three stock markets are indicating persistence of volatility and a large coeffi-

cient of asymmetric volatility for all the three stock markets, which could suggest
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possible transmissions in volatility from other stock markets that was taken in by

other stock markets. The coefficient β1 is also significant in all three markets and

indicates a large asymmetric impact implying that the stock markets are reacting

to different sources of information from different markets and adapt their portfolio

consequently. The DCC-GARCH (1, 1) parameters θ1 and θ2 are also presented in

Table 4.3, both parameters are significant implying the correlations are dynamic,

Thus, this enables us to interpret the results in terms of time varying correlations

for South Africa and other stock markets. The sum of θ1 and θ2 is very close to 1

which implies that the conditional covariance is highly persistent.
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Table 4.3. DCC-GARCH(1,1) Estimates for JSE, FTSE100 and NASDAQ100 Indices

Parameter Estimate Standard Error
GARCH parameters

α0,JSE 0.00004 (< 0.001)
α1,JSE 0.102 0.027
β1,JSE 0.847 0.034

α0,FTSE100 0.00003 (< 0.001)
α1,FTSE100 0.176 0.072
β1,FTSE100 0.803 0.0506

α0,NASDAQ100 0.00006 (< 0.001)
α1,NASDAQ100 0.137 0.040
β1,NASDAQ100 0.840 0.042

Correlation parameters
θ1 0.018 0.003
θ2 0.981 0.005

4.3.3 Diagnostic Checking for the DCC-GARCH (1, 1)

Once the model has been fitted, it is essential to assess the adequacy of the speci-

fication of the model. In order to check the adequacy of the fitted models we use

Box-Ljung statistics on the standardized squared residuals for univariate GARCH

models and we employ multivariate version of Box-Ljung for the estimated squared

standardized residuals which are provided presented in Table 4.4 and 4.5 respec-

tively. For the univariate GARCH models which estimates the diagonal elements

of the matrix Dt, the diagnostic tests of residuals are all insignificant. Thus, the

result suggest that heteroscedasticity has been removed in the residuals. Similarly

for the multivariate version of Box-Ljung statistics, all diagnostic statistics are

all insignificant. Therefore there is no heteroscedasticity left in in the estimated

DCC-GARCH (1, 1) model.

Table 4.4. Box-Ljung statistics for squared standardized residuals
JSE FTSE-100 NASDAQ-100

Q2[15] 7.6(0.939) 13.4(0.576) 3.5(0.999)
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Table 4.5. Multivariate Box-Ljung Q-statistic test for squared standardized residuals
Statistic value p-value

Q2(5) 46.6 0.406
Q2(10) 100.8 0.204
Q2(15) 136.8 0.442
Q2(20) 152.6 0.932



Chapter 5
Conclusion

Volatility of stock returns is a fundamental measurement to several financial deci-

sion making models, hence it has been the subject of many empirical studies around

the world. Furthermore, the volatilities of financial markets are known to move

synchronously across different markets or slightly delayed. Thus, it is essential

to examine how financial markets are inter-related. There has been little amount

of studies conducted on the emerging stock markets especially in South Africa.

The main aim of this study has been to review models to describe the volatility

in the Johannesburg Stock Exchange (JSE) index. In this thesis, we focused on

modelling volatility and correlation dynamics between JSE index, NASDAQ 100

and FTSE 100 indices. In modelling volatility of the JSE index, we employed daily

JSE all-share index closing prices during the sampled period 30 June 1995 to 6

June 2012.

In the preliminary analysis in Chapter 2, daily closing price series for the JSE index

was found to be non stationary. We then transformed JSE index closing prices

into continuously compounded returns to make it stationary. The time series of

returns exhibited volatility clustering, which implies that variance of returns was

not constant during the sampled period. The assumption of normality in the JSE

returns was rejected. The QQ-plot in Figure 2.3 also revealed the same results

that the returns do not conform to normal distribution. The distribution of the

returns was negatively skewed, as having a value of −0.4666 which implies that
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the distribution has a long left tail. In addition, the distribution of the returns was

found to be fat-tailed, since the value of the kurtosis was equal to 8.9367 which

is greater than that of the normal distribution. The large value of the kurtosis

implies thatr large price changes occurred often during the sample period.

For modelling the volatility of the JSE index returns, we first checked the auto-

correlation and heteroscedasticity effect. The null hypothesis that there was no

autocorrelation in the returns was rejected. Moreover, the null hypothesis that

there was no heteroscedastic effect in the returns was rejected. We thus concluded

that there was heteroscedasticity present in the returns. We fitted both sym-

metric GARCH models to accommodate some financial time series characteristics

assuming the normal distribution in the errors. Based on the Akaike Informa-

tion Criterion (AIC) and Bayesian Information Criterion (BIC), GARCH (1, 1)

performed better than all models that were investigated in the JSE index for sym-

metric GARCH models. The parameters of the GARCH (1, 1) were all statistically

significant. The sum of the estimated parameters α̂1 and β̂1 is equal to 0.991 which

implies that the volatility of the residuals was persistent.

In Chapter 3, we fitted GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 1) and

APARCH (1, 1) models with the normal, student-t and skewed student-t distri-

bution to accommodate some financial time series characteristics. The GARCH

(1, 1) was employed and other three GARCH models, namely, GJR-GARCH (1, 1) ,

EGARCH (1, 1) and APARCH (1, 1) for capturing leverage effect which was noted

by Black [1976]. The parameter estimates α̂1 and β̂1 are statistically significant

in both symmetric and asymmetric GARCH models and their sum is less than

one. These results suggested volatility of residuals was persistent. The leverage

parameter γ̂ was statistically significant and positive indicating the leverage effect

was present in the JSE index return series. The results revealed that negative

residuals increase volatility more than positive residuals of the same magnitude.

The EGARCH (1, 1) model with the assumption of the skewed student-t distri-

bution on the error terms was selected by both AIC and BIC as the best model.

However the heteroscedasticity was not removed in the model, so we decided to

select the second best model which was GJR-GARCH (1, 1) with the assumption

of the student-t distribution in the errors. The results are in line with Cifter [2012].
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In Chapter 4, we studied the correlation dynamics between JSE index, NASDAQ

100 and FTSE 100 index. We employed weekly returns during the sampled period

30 June 1995 to 6 June 2012. In all three time series returns that were employed in

the study, the assumption of normality was rejected. In addition, the heteroscedas-

ticity was found present in the returns of all the indices. The correlation between

JSE index and FTSE 100 index is equal to 0.4604 and the correlation between JSE

index and NASDAQ 100 index is 0.3406. This implies that the condition for inter-

national portfolio diversification (that is the correlation among the markets should

be low) is satisfied. We then fitted the DCC-GARCH (1, 1) model to study the

correlation dynamics between JSE, FTSE 100 and NASDAQ 100 index returns.

The DCC-GARCH (1, 1) model parameters θ̂1 and θ̂2 are statistical significant at

1% significance level indicating that the correlation in this study are dynamic.

Moreover, the sum of the parameter estimates θ̂1 and θ̂2 was less than one, which

implies that the correlation of the returns was persistent.

For future research, in modelling the volatility of the JSE index returns we can

employ artificial neural networks to account for the nonlinearity patterns of the

returns. Moreover, we can apply the BEKK-GARCH (1, 1) and GO-GARCH (1, 1)

models with different distributions on the errors to study further the dynamics of

the correlation between financial markets. In addition, we can apply Multivariate

GARCH models to study the returns from more than one sector of the JSE market

to describe relationships between the sectors. Even further, study how the JSE

impacts local microeconomic variables.



Appendix A
R Code for Univariate and
Multivariate GARCH Models

A.1 R Code for Asymmetric GARCH Models

#################################################

########### Asymmetric power arch ###############

####### Assuming Normal distribution###########

#################################################

aparch=garchFit(~aparch(1,1),data=returns,trace=FALSE

,cond.dist="norm")

summary(aparch)

gjr=garchFit(~aparch(1,1),data=returns,trace=FALSE,delta=2,

include.delta=FALSE,cond.dist="norm")

summary(gjr)

##################################################

library(rugarch)

returns= data$returns[-1]

egarch11.spec = ugarchspec(variance.model=list(model=

"eGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0))

,distribution.model="norm")

p1=ugarchfit(egarch11.spec,returns)

p1
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plot(p1)

#################################################

########### Asymmetric power arch ###############

####### Assuming skew-t distribution###########

#################################################

aparchtsk=garchFit(~aparch(1,1),data=returns,

trace=FALSE,cond.dist="sstd")

summary(aparchtsk)

gjrtsk=garchFit(~aparch(1,1),data=returns,

trace=FALSE,delta=2,

include.delta=FALSE,cond.dist="sstd")

summary(gjrtsk)

##################################################

library(rugarch)

returns= data$returns[-1]

egarch11.spec = ugarchspec(variance.model=

list(model="eGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),

distribution.model="sstd")

p1=ugarchfit(egarch11.spec,returns)

p1

plot(p1)

#################################################

########### Asymmetric power arch ###############

####### Assuming t distribution ############

#################################################

apt=garchFit(~aparch(1,1),data=returns,trace=FALSE,

cond.dist="std")

summary(apt)

tgt=garchFit(~aparch(1,1),data=returns,

trace=FALSE,delta=1,

include.delta=FALSE,cond.dist="std")

summary(tgt)

gjrt=garchFit(~aparch(1,1),data=returns,
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trace=FALSE,delta=2,

include.delta=FALSE,cond.dist="std")

summary(gjrt)

plot(gjrt)

##################################################

library(rugarch)

returns= data$returns[-1]

egarch11.spec = ugarchspec(variance.model=

list(model="eGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),

distribution.model="std")

p1=ugarchfit(egarch11.spec,returns)

p1

plot(p1)

jarque.bera.test(returns)

plot(p1)

A.2 R Code for Symmetric GARCH Models

#############################################

##############GARCH Models##################

#############################################

library(fGarch)

m1=garchFit(~garch(1,1),data=

returns,trace=FALSE)

summary(m1)

m2=garchFit(~garch(1,2),data=

returns,trace=FALSE)

summary(m2)

m3=garchFit(~garch(2,1),data=returns,

trace=FALSE)

summary(m3)

m4=garchFit(~garch(2,2),data=returns,

trace=FALSE)

summary(m4)
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m5=garchFit(~garch(1,0),data=

returns,trace=FALSE)

summary(m5)

A.3 R Code for DCC-GARCH (1, 1) GARCH

Models

library(rugarch)

jseret= data$jseret[-1]

garch11jse.spec = ugarchspec(variance.model=

list(model="sGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),

distribution.model="norm")

p1=ugarchfit(garch11jse.spec,jseret)

p1

plot(p1)

ftseret= data$ftseret[-1]

garch11ftse.spec = ugarchspec(variance.model=

list(model="sGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),

distribution.model="norm")

q1=ugarchfit(garch11ftse.spec,ftseret)

q1

plot(q1)

nasdaqret= data$nasdaqret[-1]

garch11nasdaq.spec = ugarchspec(variance.model=

list(model="sGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),

distribution.model="norm")

r1=ugarchfit(garch11nasdaq.spec,nasdaqret)

r1

plot(r1)
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library(ccgarch)

library(fGarch)

y=cbind(jseret,ftseret,nasdaqret)

a = c(0.000039,0.000027,0.000057)

A = diag(c(0.101569,0.176424,0.136712))

B = diag(c(0.846575 ,0.802763,0.839890))

dccpara = c(0.2,0.1)

dccresults = dcc.estimation(inia=a,

iniA=A, iniB=B,

ini.dcc=dccpara,dvar=x, model="diagonal")

dccresults$out

DCCrho = dccresults$DCC[,2]

matplot(DCCrho, type=’l’)
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