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Abstract 

 

________________________________________________________________________ 

 

Invasions of ecosystems by exotic species are increasing and they may often act as a 

significant driver of the homogenization of the Earth’s biota, resulting in global 

biodiversity loss.  Moreover, the addition of exotic species may have dramatic effects on 

ecosystem structure and functioning which may result in the extirpation of indigenous 

species.  In 2004, a large population of an unknown lymnaeid was found in the 

Amatikulu Hatchery, northern KwaZulu-Natal, South Africa, and was subsequently 

found in few garden fish ponds in Durban.  In 2007, it was identified using molecular 

techniques as Radix rubiginosa (Michelin, 1831) – a species widespread in southeast 

Asia.  An invasion by R. rubiginosa is however likely to go unnoticed because its shell 

morphology resembles some forms of the highly variable and widely distributed 

indigenous lymnaeid, Lymnaea natalensis Krauss, 1848. 

 

Accurate and “easy” species identifications would permit the ready assessment of 

introduction histories and distributions, but in the present case identification was difficult 

due to unclear and contradicting accounts of the indigenous L. natalensis in the literature.  

A redescription of L. natalensis with emphasis on conchological and anatomical 

characteristics was therefore presented. This will help to distinguish variation between R. 

rubiginosa and L. natalensis and also assist those carrying out rapid bioassessment 

(SASS) surveys  in South African rivers in recognising R. rubiginosa should it spread. 

 

For this, shells of R. rubiginosa and L. natalensis from both the UKZN Pond and the 

Greyville Pond were selected into either size class 1 (shell length < 10 mm) or size class 

2 (shell length ≥ 10 mm).  Six shell characters, shell length (height), shell width, aperture 

length (height), aperture width, length of last body whorl and spire height for each 

specimen was measured and analysed using principal component analysis (PCA) and 
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discriminant functions analysis (DFA).  The most useful discriminant conchological 

characters were shell length, length of the last body whorl and aperture width.  Use of 

these shell characters provided simple yet effective criteria for the separation of R. 

rubiginosa and L. natalensis.  For both size classes R. rubiginosa had larger, more 

broadly ovate shells with longer (higher) body whorls than either of the two populations 

of L. natalensis that exhibited smaller, elongated shells with shorter (lower) body whorls.  

Also, R. rubiginosa had a narrower aperture width compared to the larger, wider aperture 

of the UKZN Pond L. natalensis population.  The Greyville L. natalensis population was 

found to have narrower apertures than both R. rubiginosa and L. natalensis (UKZN 

Pond). 

 

The morphology of the radula and the reproductive anatomy of R. rubiginosa and L. 

natalensis from both the UKZN and Greyville Ponds showed little variation.  The species 

did however vary in the relative numbers of radula teeth in each field and this serves as 

an additional useful diagnostic character.  Both L. natalensis populations had similar 

mantle pigmentation patterns but that of R. rubiginosa was different.  The mantle surface 

of R. rubiginosa was mottled black with patches of pale white to yellow.  There were also 

large unpigmented fields and stripes that were not observed in L. natalensis.  Having 

found characters to conveniently separate the alien R. rubiginosa from the indigenous L. 

natalensis, it became increasingly important to assess the potential invasiveness of this 

introduced species and its likely impact. 

 

The potential invasiveness of R. rubiginosa was assessed in relation to the already 

invasive North American Physidae Physa acuta Draparnaud, 1805 and the indigenous L. 

natalensis.  This was particularly important in view of the success of P. acuta as an 

invader in South Africa.  The hatching success, frequency of egg abnormalities, 

embryonic development, growth, survivorship, fecundity and life history parameters 

(GRR, Ro, rm, T and λ) for the four snail populations were assessed at three experimental 

temperatures (20
o
C, 25

o
C and 30

o
C). 
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The results showed that R. rubiginosa and P. acuta had a higher growth coefficient (K), 

longer survivorship, higher fecundity (higher hatching success, fewer egg abnormalities, 

longer duration of oviposition), shorter incubation period, greater life history parameters 

(GRR, Ro, rm and λ) and wider temperature tolerances than the two L. natalensis 

populations tested. 

 

The high adaptability of P. acuta to changing environmental factors such as temperature, 

is in agreement with the fact that it is now more widespread in South Africa than the 

indigenous species L. natalensis.  This has important implications for R. rubiginosa, since 

this species displayed reproductive attributes and a temperature tolerance that were 

similar and in certain cases even exceeded the performance of the invasive P. acuta.  This 

therefore implies that R. rubiginosa has the potential to colonize a wider geographical 

and altitudinal range than L. natalensis, and perhaps even P. acuta.  Also, the superior 

reproductive ability of R. rubiginosa over L. natalensis is likely to present a situation that 

allows for its rapid spread as well as a possible impact on the indigenous L. natalensis 

that might render it vulnerable. 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 vi 

________________________________________________________________________ 

 

Preface 

 

________________________________________________________________________ 

 

The research work described in this dissertation was carried out in the School of 

Biological and Conservation Sciences, University of KwaZulu-Natal, Westville Campus, 

Durban under the supervision of Professor C.C. Appleton. 

 

These studies represent original work by the author and have not otherwise been 

submitted in any form for any degree or diploma to any tertiary institution.  Where use 

has been made of the work of others, it is duly acknowledged in the text. 

 

 

 

____________________________ 

Devandren Subramoney Nadasan 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 vii 

________________________________________________________________________ 

 

Acknowledgements 

 

________________________________________________________________________ 

 

This endeavour to complete my doctoral degree and dissertation could never have been 

accomplished without the support and assistance of so many over the years. 

 

I would want to express my heart-felt gratitude to God Almighty, whose blessings have 

accompanied me every step of my academic pursuits. 

 

A special thanks to my supervisor, Professor C.C. Appleton, whose wisdom and 

knowledge has guided this research from its inception.  His support, guidance and advice 

throughout this study, as well as his painstaking effort in critically reviewing the drafts 

are greatly appreciated.  I am also grateful for the confidence he showed in both me and 

my research, and for his constructive supervision and stimulating discussion.  Thank you 

for being an enthusiastic collaborator and tutor and sharing your broad knowledge 

selflessly with me. 

 

I wish to express my sincere gratitude and appreciation to the following individuals who 

assisted in various aspects of this study: 

 

I am grateful to staff members of the School of Biological and Conservation Sciences, 

Westville Campus for the provision of facilities and equipment used for the duration of 

the study. 

 

The staff of the Electron Microscope Unit (University of KwaZulu-Natal, Westville 

Campus) for their invaluable assistance, support and advice with the microscopy studies. 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 viii 

I would also want to thank my friends and fellow colleagues for their academic 

inspiration, and for sharing experiences and friendship throughout a long and not always 

easy road with me. 

 

A special thanks to my loving wife, Terusha for her support and encouragement.  Thank 

you for playing an important role along my journey, as we mutually engaged in making 

sense of the various challenges we faced and in providing continuous encouragement, 

understanding and inspiration. 

 

Funding for the duration of the study was provided through Prestigious and Equity 

Scholarships awarded by the National Research Foundation (NRF) of South Africa.  In 

addition, financial assistance from the University of KwaZulu-Natal, Westville Campus 

is duly acknowledged. 

 

My heart-felt thanks to my parents and brothers for the myriad ways in which they have 

supported me in my determination to find and realise my potential.  Thank you for the 

unconditional love, prayer, encouragement and support.  I love you all. 

 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 ix 

________________________________________________________________________ 

 

List of Contents 

 

________________________________________________________________________ 

 

Dedication.................................................................................................................... 

Abstract....................................................................................................................... 

Preface......................................................................................................................... 

Acknowledgements..................................................................................................... 

List of Contents........................................................................................................... 

List of Tables............................................................................................................... 

List of Figures............................................................................................................. 

 

ii 

iii 

vi 

vii 

ix 

xvi 

xxii 

Chapter 1 

General Introduction 

 

1.1  Biological Invasions.............................................................................................. 

1.2  Factors affecting Biological Invasions..................................................................  

1.3  Impacts of Biological Invasions............................................................................ 

1.4  Invasive freshwater snails in South Africa............................................................ 

1.5  First Report of Radix rubiginosa in South Africa................................................. 

 

 

1 

2 

3 

4 

4 

Chapter 2 

Review of the Family Lymnaeidae 

 

2.1  The systematic – taxonomic confusion in the family Lymnaeidae....................... 

2.2  Phylogeny of the Family Lymnaeidae................................................................... 

 2.2.1  Shell Characters and their use in Phylogeny................................................ 

 2.2.2  Anatomical Characters and their use in Phylogeny...................................... 

 2.2.3  Biochemical and Molecular Studies and their use in Phylogeny................. 

 

8 

9 

9 

10 

11 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 x 

2.3  Lymnaeids in parasite transmission....................................................................... 

2.4  Conservation status of the Lymnaeidae................................................................. 

 

12 

14 

Chapter 3 

Redescription of Lymnaea natalensis Krauss, 1848 from its type locality 

 

3.1  Introduction........................................................................................................... 

3.2  Methodology.......................................................................................................... 

 3.2.1  The Study Site.............................................................................................. 

 3.2.2  Shell Morphology......................................................................................... 

 3.2.3  Anatomical Morphology............................................................................... 

  3.2.3.1  Radula............................................................................................... 

  3.2.3.2  Mantle pigmentation patterns........................................................... 

  3.2.3.3  Reproductive Anatomy..................................................................... 

3.3  Classification and Distribution of Lymnaea in Africa........................................... 

3.4  Results.................................................................................................................. . 

 3.4.1  Original  Description.................................................................................... 

 3.4.2  Shell Morphology......................................................................................... 

 3.4.3  Anatomical Morphology............................................................................... 

  3.4.3.1  Radula............................................................................................... 

  3.4.3.2  Mantle pigmentation patterns........................................................... 

  3.4.3.3  Reproductive Anatomy..................................................................... 

3.5  Discussion.............................................................................................................. 

3.6  Appendix to Chapter 3........................................................................................... 

 

 

 

 

 

 

 

 

16 

18 

18 

20 

21 

21 

22 

22 

23 

27 

27 

28 

29 

29 

33 

34 

38 

42 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xi 

Chapter 4 

Morphological and Anatomical Variation in Radix rubiginosa and Lymnaea 

natalensis 

 

4.1  Introduction........................................................................................................... 

4.2  Methodology.......................................................................................................... 

 4.2.1  The Malacological Study Sites..................................................................... 

 4.2.1.1  Amatikulu Prawn and Fish Hatchery (Amatikulu)........................... 

 4.2.1.2  UKZN Pond (Cato Manor, Durban)................................................. 

 4.2.1.3  Greyville Race Course (Greyville, Durban)..................................... 

 4.2.2  Snail species occurring in the study areas.................................................... 

 4.2.3  Vegetation types present in the study areas.................................................. 

 4.2.4  Shell Morphology and Morphometrics......................................................... 

 4.2.4.1  Characters selected for Shell Morphometric Analysis..................... 

 4.2.4.2  Statistical Morphometric Analyses................................................... 

  (a)  Error Measurements....................................................................... 

  (b)  Principal Component Analysis (PCA)........................................... 

  (c)  Discriminant Functions Analysis (DFA)....................................... 

 4.2.5  Anatomical Morphology............................................................................... 

  4.2.5.1  Radula............................................................................................... 

  4.2.5.2  Mantle pigmentation patterns........................................................... 

  4.2.5.3  Reproductive Anatomy..................................................................... 

4.3  Results.................................................................................................................. . 

 4.3.1  Shell Morphology and Morphometrics......................................................... 

 4.3.1.1  Shell Description.............................................................................. 

  (a)  Radix rubiginosa (Amatikulu Prawn and Fish Hatchery).............. 

  (b)  Lymnaea natalensis (UKZN Pond)................................................ 

  (c)  Lymnaea natalensis (Greyville Pond)............................................ 

 4.3.1.2  Error Measurements......................................................................... 

 4.3.1.3  Normality, Skewness and Kurtosis................................................... 

 4.3.1.4  Size Class 1 (shell length < 10mm).................................................. 

 

45 

49 

49 

50 

52 

52 

53 

55 

55 

55 

57 

57 

59 

59 

60 

60 

60 

60 

61 

61 

61 

61 

62 

63 

64 

65 

67 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xii 

  (a)  Principal Component Analysis.......................................................  

  (b)  Discriminant Function Analysis.................................................... 

 4.3.1.5  Size Class 2 (shell length ≥ 10mm).................................................. 

  (a)  Principal Component Analysis....................................................... 

  (b)  Discriminant Function Analysis.................................................... 

 4.3.2  Anatomical Morphology............................................................................... 

 4.3.2.1  Radix rubiginosa............................................................................... 

  (a)  Radula............................................................................................ 

  (b)  Mantle pigmentation...................................................................... 

  (c)  Reproductive Anatomy.................................................................. 

 4.3.2.2  Lymnaea natalensis (UKZN Pond).................................................. 

  (a)  Radula............................................................................................ 

  (b)  Mantle Pigmentation...................................................................... 

  (c)  Reproductive Anatomy.................................................................. 

 4.3.2.3  Lymnaea natalensis (Greyville Pond).............................................. 

  (a)  Radula............................................................................................ 

  (b)  Mantle Pigmentation...................................................................... 

  (c)  Reproductive Anatomy.................................................................. 

4.4  Discussion.............................................................................................................. 

 4.4.1  Shell Morphology and Morphometrics......................................................... 

 4.4.2  Anatomical Morphology............................................................................... 

 

67 

68 

70 

70 

71 

74 

74 

74 

78 

79 

80 

80 

80 

80 

81 

81 

84 

85 

86 

87 

89 

Chapter 5 

Embryonic Development of Radix rubiginosa, Lymnaea natalensis and Physa acuta 

 

5.1  Introduction........................................................................................................... 

5.2  Methodology.......................................................................................................... 

 5.2.1  Egg Abnormalities, Viable Eggs and Hatching Success.............................. 

  5.2.1.1  Egg Abnormalities............................................................................ 

  5.2.1.2  Viable Eggs and Egg Hatching Success........................................... 

 5.2.2  Embryonic Development.............................................................................. 

 

91 

94 

94 

94 

95 

95 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xiii 

5.3  Results................................................................................................................... 

 5.3.1  Description of Egg Capsules........................................................................ 

  (a)  Radix rubiginosa..................................................................................... 

  (b)  Lymnaea natalensis................................................................................. 

  (c)  Physa acuta............................................................................................. 

 5.3.2  Viability of Eggs and Egg Abnormalities..................................................... 

  (a)  Hatching Success.................................................................................... 

  (b)  Dwarf Eggs............................................................................................. 

  (c)  Eggs without Egg Cells........................................................................... 

  (d)  Eggs without Development..................................................................... 

  (e)  Polyvitelline Eggs................................................................................... 

 5.3.3  Embryonic Development.............................................................................. 

 (a)  Egg Cell before Cleavage....................................................................... 

 (b)  First Cleavage (2-cell stage)................................................................... 

 (c)  Second Cleavage (4-cell stage).............................................................. 

 (d)  Third Cleavage (8-cell stage)................................................................. 

 (e)  Fourth Cleavage (16-cell stage).............................................................. 

 (f)  Fifth Cleavage (24-cell stage)................................................................. 

 (g)  Sixth Cleavage (64-cell stage)................................................................ 

 (h)  Blastula Stage......................................................................................... 

 (i)  Gastrula Stage......................................................................................... 

 (j)  Early Trochophore Stage......................................................................... 

 (k)  Late Trochophore Stage......................................................................... 

 (l)  Early Veliger Stage................................................................................. 

 (m)  Late Veliger Stage................................................................................. 

 (n)  Hatching Stage....................................................................................... 

  5.3.3.1  Analysis of the incubation period, mean size and mean 

    geometric growth rate.............................................................. 

5.4  Discussion.............................................................................................................. 

 5.4.1  Egg Capsule Descriptions............................................................................. 

 5.4.2  Viability of Eggs and Egg Abnormalities..................................................... 

97 

97 

99 

100 

100 

101 

101 

102 

103 

103 

103 

108 

108 

108 

110 

111 

113 

114 

114 

115 

115 

117 

118 

119 

120 

121 

 

122 

128 

128 

129 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xiv 

 (a)  Hatching Success.................................................................................... 

 (b)  Dwarf Eggs............................................................................................. 

 (c)  Eggs without Egg Cells........................................................................... 

 (d)  Eggs Without Development.................................................................... 

 (e)  Polyvitelline Eggs................................................................................... 

 5.4.3  Embryological Development........................................................................ 

 

129 

129 

130 

131 

131 

133 

Chapter 6 

Growth and Life History Parameters of Radix rubiginosa, Lymnaea natalensis and 

Physa acuta 

 

6.1  Introduction........................................................................................................... 

6.2  Methodology.......................................................................................................... 

 6.2.1  Growth.......................................................................................................... 

 6.2.2  Survival, Fecundity and Life History Parameters........................................ 

 (a)  Age (x).................................................................................................... 

 (b)  Survival rate (lx)...................................................................................... 

 (c)  Fecundity (mx)......................................................................................... 

 (d)  Gross reproductive rate (GRR)............................................................... 

 (e)  The net reproductive rate (Ro)................................................................. 

 (f)  Intrinsic rate of natural increase (rm)....................................................... 

 (g)  Mean generation time (T)....................................................................... 

 (h)  Finite rate of increase (λ)........................................................................ 

6.3  Results.................................................................................................................. . 

 6.3.1  Growth.......................................................................................................... 

 6.3.2  Survival Rate................................................................................................ 

 6.3.3  Fecundity...................................................................................................... 

 6.3.4  Life History Parameters................................................................................ 

  (a)  Gross Reproductive Rate (GRR)............................................................. 

  (b)  The net reproductive rate (Ro)................................................................. 

  (c)  Intrinsic rate of natural increase (rm)....................................................... 

 

136 

139 

139 

140 

141 

141 

141 

142 

142 

142 

143 

143 

144 

144 

151 

157 

164 

164 

169 

170 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xv 

  (d)  Mean generation time (T)....................................................................... 

  (e)  Finite rate of increase (λ)........................................................................ 

6.4  Discussion.............................................................................................................. 

 6.4.1  Growth.......................................................................................................... 

 6.4.2  Survival Rate................................................................................................ 

 6.4.3  Fecundity...................................................................................................... 

 6.4.4  Life History Parameters................................................................................ 

 (a)  Gross Reproductive Rate (GRR)............................................................. 

 (b)  The net reproductive rate (Ro)................................................................. 

 (c)  Intrinsic rate of natural increase (rm)....................................................... 

 (d)  Mean generation time (T)....................................................................... 

 (e)  Finite rate of increase (λ)........................................................................ 

 

171 

171 

173 

174 

176 

177 

179 

179 

180 

180 

182 

183 

Chapter 7 

General Discussion and Conclusions........................................................................ 

References.................................................................................................................... 

 

186 

200 

 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xvi 

________________________________________________________________________ 

 

List of Tables 

 

________________________________________________________________________ 

 

Chapter 3 

Redescription of Lymnaea natalensis Krauss, 1848 from its type locality 

 

Table 3.1:  Selected water chemistry parameters for the UKZN Pond.  All values 

measured are indicated as mean (± standard deviation), n = 35.................................. 

 

 

 

19 

Chapter 4 

Morphological and Anatomical Variation in Radix rubiginosa and Lymnaea 

natalensis 

 

Table 4.1:  Selected water chemistry parameters for the three study sites.  All 

values measured are indicated as mean (± standard deviation), n = 35....................... 

 

Table 4.2:  Snail species identified from the three study sites.  (+) indicates 

presence; (-) indicates absence..................................................................................... 

 

Table 4.3:  Aquatic plant species present in the three study sites.  (+) indicates 

presence; (-) indicates absence..................................................................................... 

 

Table 4.4:  Descriptive statistics for the six shell characters (n = 30), arranged in 

order of increasing percentage measurement error (%ME).  CVWI = overall within-

individual error and CVBI = overall between-individual error.  Minimum (min), 

maximum (max) and mean values are provided for each character.  To assess the 

associated error levels, 30 individuals with a complete suite of shell characters 

were randomly chosen, five individuals from each of the three study sites and the 

 

 

52 

 

 

54 

 

 

55 

 

 

 

 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xvii 

two size classes…………………………………………………………………….... 

 

Table 4.5:  Basic statistics (arithmetic mean and standard deviation) for the six 

shell characters of size class 1 (shell length < 10 mm) from the three study sites (n 

= 100).  The results of the normality (Kolmogorov-Smirnov Test), skewness (g1) 

and kurtosis (g2) tests are also given............................................................................ 

 

Table 4.6:  Basic statistics (arithmetic mean and standard deviation) for the six 

shell characters of size class 2 (shell length ≥ 10 mm) from the three study sites (n 

= 100).  The results of the normality (Kolmogorov-Smirnov Test), skewness (g1) 

and kurtosis (g2) tests are also given............................................................................ 

 

Table 4.7:  Component loadings (correlation coefficients) of shell morphological 

characters for R. rubiginosa and L. natalensis from size class 1 (shell length < 10 

mm).  The component loadings were derived from principal component analysis of 

the six shell characters after natural logarithm transformation.  Values with the 

highest component loadings are in bold....................................................................... 

 

Table 4.8:  Standardised canonical discriminant function coefficients of principal 

component loadings for R. rubiginosa and L. natalensis from size class 1 (shell 

length < 10 mm).  Only the results of those parameters that contributed 

significantly to the DFA model are shown.................................................................. 

 

Table 4.9:  Component loadings (correlation coefficients) of shell morphological 

characters for R. rubiginosa and L. natalensis from size class 2 (shell length ≥ 10 

mm).  The component loadings were derived from principal component analysis of 

the six shell characters after natural logarithm transformation.  Values with the 

highest component loadings are in bold....................................................................... 

 

 

 

64 

 

 

 

 

66 

 

 

 

 

66 

 

 

 

 

 

67 

 

 

 

 

68 

 

 

 

 

 

70 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xviii 

Table 4.10:  Standardised canonical discriminant function coefficients of principal 

component loadings for R. rubiginosa and L. natalensis from size class 2 (shell 

length ≥ 10 mm).  Only the results of those parameters that contributed 

significantly to the DFA model are shown.................................................................. 

 

 

 

71 

 

Chapter 5 

Embryonic Development of Radix rubiginosa, Lymnaea natalensis and Physa acuta 

 

Table 5.1:  Comparison of egg capsule dimensions and clutch sizes for each of the 

four snail populations (n = 100).  Dimensions are presented as mean millimeters (± 

standard error).............................................................................................................. 

 

Table 5.2:  Hatching success and egg abnormalities (%) for the four snail 

populations at the three temperatures (n = 25).  The values are presented as 

percentage means (± standard deviation)..................................................................... 

 

Table 5.3:  Kruskal-Wallis analysis of the influence of temperature on viable eggs 

(hatching success) and egg abnormalities for the four snail populations (n = 25).  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

Table 5.4:  Kruskal-Wallis analysis for viable eggs (hatching success) and egg 

abnormalities between snail populations maintained at 20
o
C (n = 25).  Probability 

values are two-tailed and significance was determined at p < 0.05............................. 

 

Table 5.5:  Kruskal-Wallis analysis for viable eggs (hatching success) and egg 

abnormalities between snail populations maintained at 25
o
C (n = 25).  Probability 

values are two-tailed and significance was determined at p < 0.05............................. 

 

Table 5.6:  Kruskal-Wallis analysis for viable eggs (hatching success) and egg 

abnormalities observed between snail populations maintained at 30
o
C (n = 25).  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

 

 

99 

 

 

 

102 

 

 

 

104 

 

 

 

105 

 

 

 

106 

 

 

 

107 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xix 

Table 5.7:  Incubation period, mean size and mean geometric growth rate (GGR) of 

the different embryonic stages of development for R. rubiginosa at the three 

temperature treatments (n = 15).  Mean sizes of embryo are given in millimetres (± 

standard deviation).  Gaps in the incubation periods between embryonic stages are 

due to an absence of synchronous development.......................................................... 

 

Table 5.8:  Incubation period, mean size and mean geometric growth rate (GGR) of 

the different embryonic stages of development for L. natalensis (UKZN pond) at 

the three temperature treatments (n = 15).  Mean sizes of embryo are given in 

millimetres (± standard deviation).  Gaps in the incubation periods between 

embryonic stages are due to an absence of synchronous development....................... 

 

Table 5.9:  Incubation period, mean size and mean geometric growth rate (GGR) of 

the different embryonic stages of development for L. natalensis (Greyville pond) at 

the three temperature treatments (n = 15).  Mean sizes of embryo are given in 

millimetres (± standard deviation).  Gaps in the incubation periods between 

embryonic stages are due to an absence of synchronous development....................... 

 

Table 5.10:  Incubation period, mean size and mean geometric growth rate (GGR) 

of the different embryonic stages of development for P. acuta at the three 

temperature treatments (n = 15).  Mean sizes of embryo are given in millimetres (± 

standard deviation).  Gaps in the incubation periods between embryonic stages are 

due to an absence of synchronous development.......................................................... 

 

Table 5.11:  Kruskal-Wallis analysis for the size of the embryonic stages of 

development for the four snail populations as a function of temperature (n = 15).  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

 

 

 

 

 

 

 

123 

 

 

 

 

 

124 

 

 

 

 

 

125 

 

 

 

 

 

126 

 

 

 

127 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xx 

Chapter 6 

Growth and Life History Parameters of Radix rubiginosa, Lymnaea natalensis and 

Physa acuta 

 

Table 6.1:  Estimated growth parameters of the four snail populations maintained at 

the three temperatures.  These parameters were estimated using the Ford-Walford 

method.......................................................................................................................... 

 

Table 6.2:  Analysis of the mean age specific survival rate (lx) within the four snail 

populations, for each of the three temperatures (n = 90).  Differences in survival 

rates within populations were analysed using the Mann-Whitney-U test.  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

Table 6.3:  Analysis of the mean age specific survival rate (lx) for the four snail 

populations, maintained at the three temperatures (n = 90).  Differences in survival 

rates between populations were analysed using the Mann-Whitney-U test.  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

Table 6.4:  Analysis of the mean age specific fecundity (mx) for the four snail 

populations at each of the three temperatures (n = 3).  Differences in fecundity 

within populations and between temperatures were analysed using the Mann-

Whitney-U test.  Probability values are two-tailed and significance was determined 

at p < 0.05..................................................................................................................... 

 

Table 6.5:  Analysis of the mean age specific fecundity (mx) for the four snail 

populations maintained at the three temperatures (n = 3).  Differences in fecundity 

between populations were analysed using the Mann-Whitney-U test.  Probability 

values are two-tailed and significance was determined at p < 0.05............................. 

 

 

 

 

 

 

147 

 

 

 

 

151 

 

 

 

 

153 

 

 

 

 

 

157 

 

 

 

 

160 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxi 

Table 6.6:  Life history parameters of the four snail populations maintained at the 

three temperature treatments (n = 3).  The values are based on a time interval of 

one week and are presented as means (± standard deviation)...................................... 

 

Table 6.7:  Multiple comparisons using Tukey HSD.  Life history parameters 

within the four snail populations were analysed for differences at each of the three 

temperatures (n = 3).  Probability values are two-tailed and significance was 

determined at p < 0.05.................................................................................................. 

 

Table 6.8:  Multiple comparisons using Tukey HSD.  Life history parameters 

between the four snail populations were analysed for differences at 20
o
C (n = 3).  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

Table 6.9:  Multiple comparisons using Tukey HSD.  Life history parameters 

between the four snail populations were analysed for differences at 25
o
C (n = 3).  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

Table 6.10:  Multiple comparisons using Tukey HSD.  Life history parameters 

between the four snail populations were analysed for differences at 30
o
C (n = 3).  

Probability values are two-tailed and significance was determined at p < 0.05.......... 

 

Table 6.11:  Summary of the results for the age specific growth, survival, fecundity 

and life history parameters for each of the four snail populations…………………... 

 

 

 

165 

 

 

 

 

166 

 

 

 

167 

 

 

 

168 

 

 

 

169 

 

 

173 

Chapter 7 

General Discussion and Conclusions 

 

Table 7.1:  Examples of research on hypotheses of species invasiveness and 

ecosystem invasibility.................................................................................................. 

 

 

188 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxii 

________________________________________________________________________ 

 

List of Figures 

 

________________________________________________________________________ 

 

Chapter 3 

Redescription of Lymnaea natalensis Krauss, 1848 from its type locality 

 

Figure 3.1:  Map of KwaZulu-Natal showing the UKZN Pond study site (U), 

selected for the redescription of L. natalensis.............................................................. 

 

Figure 3.2:  The UKZN Pond....................................................................................... 

 

Figure 3.3:  Schematic drawing of the shell indicating the points (●) where shell 

thickness was measured.  The mean shell thickness was presented as μm (± 

standard deviation)....................................................................................................... 

 

Figure 3.4:  Lymnaea natalensis from Arabia, with the locality given in 

parentheses, scale bar 10 mm. 

A-B, Lymnaea caillaudi (Mesajia, Yemen); C, Lymnaea muscatensis (Muscat); D-

E, Lymnaea caillaudi (Kalhat, Saudi Arabia).............................................................. 

 

Figure 3.5:  Lymnaea natalensis from Madagascar, with the locality given in 

parentheses, scale bar 10 mm. 

A-C, Lymnaea natalensis (Antisirabe, Madagascar); D-F, Lymnaea natalensis 

(Lake Renobe, Madagascar); G-H, Lymnaea pacifica (Ambatondigen, 

Madagascar); I-J, Lymnaea specularis (Ankazoaba, Western Madagascar); K-O, 

Lymnaea hovarum (Antanamena, Madagascar); P, Lymnaea pacifica (Ankazoaba, 

Western Madagascar); Q, Lymnaea electa (Ankazoaba, Western Madagascar)......... 

 

 

 

18 

 

20 

 

 

 

21 

 

 

 

 

23 

 

 

 

 

 

 

 

24 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxiii 

Figure 3.6:  Lymnaea natalensis from Africa, with the locality in which they were 

described given in parentheses, scale bar 10 mm. 

A-B, Lymnaea exsertus (Sweet water Canal, Suez); C, Lymnaea pharaonum 

(Egypt); D, Lymnaea caillaudi (Alexandria, Egypt), E-G, Lymnaea caillaudi 

(Nuruya, Darfur); H-I, Lymnaea ribeirensis (San Antao Island, Cape Verde Island); 

J-M, Lymnaea nyansae (Entebbe, Uganda); N, Lymnaea elmeteitensis (Northern 

Uganda); O-P, Lymnaea undussumae (Ndola Swamp, Northern Zimbabwe); Q, 

Lymnaea nyansae (Luanshyla, Northern Zimbabwe); R-S, Lymnaea caillaudi 

(Northern Zimbabwe); T-W, Lymnaea natalensis (Port Natal, South Africa); X-Y, 

Lymnaea natalensis (Durban, South Africa)................................................................ 

 

Figure 3.7:  The distribution of Lymnaea spp. in Africa and Madagascar.  

Occurrences in the Cape Verde Islands are not shown on the map.  According to 

Hubendick (1951) and later Brown (1994) there is little justification for 

maintaining most of the many named species in Africa; the whole range seems to 

be inhabited by a single but variable species, Lymnaea natalensis.  The shaded 

regions are intended to represent the main areas of occurrence, however, continuity 

of distribution is not implied and there may be significant discontinuities within the 

shaded areas.................................................................................................................. 

 

Figure 3.8:  The original description, in Latin and German, of L. natalensis 

transcribed from Krauss (1848:  85), supplemented with the original figure of the 

shell of a specimen from a lentic pool in what is now the city of Durban (see, 

Figure 15 in text).......................................................................................................... 

 

Figure 3.9:  Shells of L. natalensis (UKZN Pond) showing the variation found in 

the population, scale bar 10 mm................................................................................... 

 

Figure 3.10:  Scanning electron micrograph of the central tooth and lateral teeth of 

L. natalensis (UKZN Pond).  A smaller accessory cusp is located on the central 

tooth (indicated by the arrow), scale bar 10 μm. 

 

 

 

 

 

 

 

 

 

24 

 

 

 

 

 

 

 

 

25 

 

 

 

 

27 

 

 

28 

 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxiv 

C – central tooth; L – lateral tooth............................................................................... 

 

Figure 3.11:  Scanning electron micrograph of the lateral teeth from the left side of 

a transverse row of L. natalensis (UKZN Pond).  For lateral teeth 6-8, the endocone 

and mesocone appeared very acute in shape and gradually became sub-equal in 

length, scale bar 10 μm................................................................................................ 

 

Figure 3.12:  Scanning electron micrograph of the intermediate laterals (9
th
 and 10

th
 

pair of teeth) of L. natalensis (UKZN Pond).  In the 9
th
 pair, the ectocone split into 

two smaller, acute-shaped denticles (indicated by the arrows).  The ectocones of the 

10
th

 pair did not split into two smaller denticles and they resembled the tricuspid 

shape and pattern of the 7
th

 and 8
th
 laterals, scale bar 10 μm. 

IL – intermediate lateral tooth; L – lateral tooth; M – marginal tooth......................... 

 

Figure 3.13:  Scanning electron micrograph of the marginal teeth (indicated by 

numbers 3-12) of L. natalensis (UKZN Pond).  The marginal teeth were 

multicuspid having four cusps that were short, bluntly rounded and obliquely 

placed, scale bar 10 μm................................................................................................ 

 

Figure 3.14:  Lymnaea natalensis (UKZN Pond) – animal with shell removed to 

show pigmentation patterns. 

A – Dorsal view of animal showing the mantle pigmentation pattern, scale bar 10 

mm. 

B – Ventral view showing foot and mouth, scale bar 10 mm. 

f – foot; m – mouth; vc – visceral coil; vm – visceral mass......................................... 

 

Figure 3.15:  Reproductive anatomy of L. natalensis (UKZN Pond), scale bar 10 

mm. 

ag – albumen gland; ng – nidamental gland; od1 – proximal portion of oviduct; 

od2 – distal portion of oviduct; odc – oviducal caecum; osd – ovispermiduct; 

ot – ovotestis; pp – praeputium; ppp – protractor muscle of praeputium; 

29 

 

 

 

 

30 

 

 

 

 

 

 

31 

 

 

 

 

32 

 

 

 

 

 

 

33 

 

 

 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxv 

pr – prostate; ps – penial sheath; rpp – retractor muscle of praeputium; 

rpp’ – smaller retractor muscle of praeputium; rps – retractor muscle of penial 

sheath; sd – spermiduct; sp – spermatheca; spd – spermathecal duct; sv – seminal 

vesicle; va – vagina; vd – vas deferens........................................................................ 

 

Figure A1.1:  Tree based on 389 nucleotides of the 18SrRNA gene from lymnaeid 

samples, with the outgroup Stagnicola palustris.  Tree constructed using 

neighbour-joining method.  Bayesian posterior probabilities, neighbour-joining and 

maximum parsimony bootstrap values were all very weak (<50%) and were thus 

omitted.  The maximum parsimony tree obtained represented a strict consensus of 

526 shortest trees.  The scale of the branch length of 0.005 represents the number of 

substitutions per site. 

LNA - samples from the Amatikulu Hatchery, Amatikulu, South Africa; LNP - 

samples from the Nwanetsi River in Mamitwa, Limpopo province, South Africa; 

LNU - samples from the UKZN Pond, Durban, South Africa; LSV - samples from 

Hanoi, Vietnam............................................................................................................ 

 

Figure A1.2:  Tree based on 533 nucleotides of the cytochrome oxidase subunit I 

gene of lymnaeid samples, with the outgroup Planorbis corneus.  Tree constructed 

using neighbour-joining method.  Numbers on branches represent Bayesian 

posterior probabilities percentages, neighbour-joining and maximum parsimony 

bootstrap values, respectively.  Only values greater than 50% are shown (* 

indicates support of < 50% for distance analysis).  The maximum parsimony tree 

obtained represented a strict consensus of 219 shortest trees.  The scale of the 

branch length of 0.002 represents the number of substitutions per site. 

LNA - samples from the Amatikulu Hatchery, Amatikulu, South Africa; LNU - 

samples from the UKZN Pond, Durban, South Africa.; LSV - samples from Hanoi, 

Vietnam........................................................................................................................ 

 

Figure A1.3:  Tree based on 360 nucleotides of the 16SrRNA gene of lymnaeid 

samples, with the outgroup Stagnicola elodes.  Tree constructed using neighbour-

 

 

 

37 

 

 

 

 

 

 

 

 

 

 

 

42 

 

 

 

 

 

 

 

 

 

 

 

43 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxvi 

joining methods.  Numbers on branches represent Bayesian posterior probabilities 

percentages, neighbour-joining and maximum parsimony bootstrap values 

respectively.  Only values greater than 50% are shown (* indicates support of 

<50% for distance analysis).  The maximum parsimony tree obtained represented a 

strict consensus of 210 shortest trees.  The scale of the branch length of 0.002 

represents the number of substitutions per site. 

LNA - samples from the Amatikulu Hatchery, Amatikulu, South Africa; LNU - 

samples from the UKZN Pond, Durban, South Africa; LSV - samples from Hanoi, 

Vietnam........................................................................................................................ 

 

 

 

 

 

 

 

 

 

44 

Chapter 4 

Morphological and Anatomical Variation in Radix rubiginosa and Lymnaea natalensis 

 

Figure 4.1:  Map of KwaZulu-Natal showing the study sites selected for sampling:  

(1) – Amatikulu Prawn and Fish Hatchery (Amatikulu); (2) – UKZN Pond (Cato 

Manor, Durban); (3) – Greyville Race Course Pond (Greyville, Durban)................... 

 

Figure 4.2 A, B:  The Amatikulu Prawn and Fish Hatchery (Amatikulu). 

A - Aerial view of Hatchery (Courtesy of G. Upfold). 

B - Inside view of tanks in a typical polytunnel........................................................... 

 

Figure 4.3:  The Greyville Pond................................................................................... 

 

Figure 4.4:  Representatives of the family Lymnaeidae, identified from the study 

areas. 

A – Lymnaea natalensis Krauss, 1848, scale bar 10 mm 

B – Radix rubiginosa (Michelin, 1831), scale bar 10 mm........................................... 

 

Figure 4.5:  Schematic drawing of the six shell characters used for the traditional 

morphometric approach. 

AL – aperture length; AW – aperture width; LBW – length of last body whorl; SL 

 

 

 

49 

 

 

 

51 

 

53 

 

 

 

 

56 

 

 

 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxvii 

– shell length; SPH – spire height; SW – shell width.................................................. 

 

Figure 4.6:  Shells of R. rubiginosa (Amatikulu) showing the variation found in the 

population, scale bar 10 mm........................................................................................ 

 

Figure 4.7:  Shells of L. natalensis (UKZN Pond) showing the variation found in 

the population, scale bar 10 mm................................................................................... 

 

Figure 4.8:  Shells of L. natalensis (Greyville Pond) showing the variation found in 

the population, scale bar 10 mm................................................................................... 

 

Figure 4.9:  Plot of canonical scores defined by functions 1 and 2 from forward 

stepwise DFA of shell morphological characters for size class 1 (shell length < 10 

mm).  Radix rubiginosa from the Amatikulu site is represented by the closed circles 

(●).  Lymnaea natalensis from the UKZN Pond and Greyville Pond are indicated 

by the open triangles () and open squares (□) respectively...................................... 

 

Figure 4.10:  Plot of canonical scores defined by function 1 and 2 from forward 

stepwise DFA of shell morphological characters for size class 2 (shell length ≥ 10 

mm).  Radix rubiginosa from the Amatikulu site is represented by the closed circles 

(●).  Lymnaea natalensis from the UKZN Pond and Greyville Pond are indicated 

by the open triangles () and open squares (□) respectively...................................... 

 

Figure 4.11:  Scanning electron micrograph of the central tooth and lateral teeth of 

R. rubiginosa.  A smaller accessory cusp is located on the left side towards the base 

of the central tooth (indicated by the arrows), scale bar 3 μm. 

C – central tooth; L – lateral tooth............................................................................... 

 

Figure 4.12:  Scanning electron micrograph of the lateral teeth from the left side of 

a transverse row of R. rubiginosa, scale bar 10 μm..................................................... 

 

57 

 

 

61 

 

 

62 

 

 

63 

 

 

 

 

 

69 

 

 

 

 

 

72 

 

 

 

 

74 

 

 

75 

 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxviii 

Figure 4.13:  Scanning electron micrograph of the intermediate laterals (10
th

 and 

11
th

 pairs of teeth) of R. rubiginosa.  The 10
th
 pair was tricuspid but developed a 

small enlargement towards the base of the ectocone (indicated by the arrow).  In the 

11
th

 pair the ectocone, located towards the base of the tooth, split into two cusps, 

scale bar 10 μm. 

IL – intermediate lateral tooth; L – lateral tooth; M – marginal tooth......................... 

 

Figure 4.14:  Scanning electron micrograph of the marginal teeth of R. rubiginosa, 

scale bar 10 μm............................................................................................................ 

 

Figure 4.15:  External features and pigmentation patterns of R. rubiginosa from the 

Amatikulu hatchery. 

A – Dorsal view of animal with shell removed to show the mantle pigmentation 

pattern, scale bar 10 mm. 

B – Ventral view showing foot and mouth, scale bar 10 mm. 

el – eye lobe; f – foot; t – tentacle; m – mouth; vc – visceral coil; vm – visceral 

mass.............................................................................................................................. 

 

Figure 4.16:  Scanning electron micrograph of the central tooth and lateral teeth of 

L. natalensis (Greyville), scale bar 3 μm. 

C – central tooth; L – lateral tooth............................................................................... 

 

Figure 4.17:  Scanning electron micrograph of the lateral teeth of L. natalensis 

(Greyville), scale bar 10 μm......................................................................................... 

 

Figure 4.18:  Scanning electron micrograph of the intermediate laterals (7
th
 and 8

th
 

pair of teeth) of L. natalensis (Greyville), scale bar 10 μm. 

IL – intermediate lateral tooth; L – lateral tooth; M – marginal tooth......................... 

 

Figure 4.19:  Scanning electron micrograph of the marginal teeth of L. natalensis 

(Greyville), scale bar 10 μm......................................................................................... 

 

 

 

 

 

76 

 

 

77 

 

 

 

 

 

 

 

78 

 

 

 

81 

 

 

82 

 

 

 

83 

 

 

84 



The invasive potential of the freshwater snail Radix rubiginosa recently introduced into South Africa 

 xxix 

Figure 4.20:  External features and pigmentation patterns of L. natalensis 

(Greyville). 
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Figure 5.1:  Characteristic egg capsule morphology for the Lymnaeidae (A) and 

Physidae (B) showing curvature of the capsule after oviposition.  Dextral and 

sinistral families have the egg capsules curved in opposite directions, R. rubiginosa 

and L. natalensis are dextral snails while P. acuta is a sinistral snail.  Lymnaeid 

capsules display anticlockwise torsion while physid capsules show clockwise 

torsion.  In lymnaeid capsules (C), distinct capsular strings and egg strings were 

observed, resulting in the characteristic corkscrew arrangement of the eggs within 

the capsule.  In the Physidae (D), the egg strings were not as well developed as in 

the Lymnaeidae, scale bar 1 mm. 

cs – capsular strings; e – egg; em – external membrane; et – existus terminalis 

(terminal point of capsule); fo – fila ovi (egg strings); im – internal membrane;  

pg – pallium gelatinosum (gelatinous slimy outer envelope)...................................... 

 

Figure 5.2:  Sequence of the morphological characteristics occurring during the 

first cleavage (2-cell stage). 

A – Fertilised egg cell before cleavage. 

B – Uncleaved egg cell showing the animal and vegetative poles, with the polar 

body (see arrow). 

C – Cleavage was initiated at the animal pole by the appearance of a cleavage 

furrow (see arrow). 
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D – First cleavage divided the egg cell into blastomeres AB and CD.  The 

blastomeres were linked to each other by the cytoplasmic bridge (see arrow). 

E – The blastomeres approached each other, increasing their surface contact. 

F – The cleavage cavity was observed between the two blastomeres. 

ap – animal pole; cc – cleavage cavity; vp – vegetative pole...................................... 

 

Figure 5.3:  During the cleavage period of rapid cell division, the size of the 

embryo does not change, rather the cleavage cells or blastomeres become smaller 

with each division.  In second cleavage (4-cell stage), the four large blastomeres A, 

B, C and D were of the same size and orientated side by side. 

The cleavage furrows linking the alternate blastomeres in the animal and vegetative 

poles of the embryo were observed.  In addition the cleavage cavity (see arrow) 

reappeared in the central space formed by the furrows of the blastomeres. 

This regular succession of formation and extrusion of the cleavage cavity continues 

until the gastrula stage.................................................................................................. 

 

Figure 5.4:  Third cleavage (8-cell stage) showing an upper tier of micromeres (1a 

– 1d) and the lower tier of macromeres (1A – 1D).  The micromeres were 

orientated over the junction between each of the macromeres. 

A – Lateral view of the 8 cell stage, showing the upper tier of micromeres and a 

lower tier of macromeres. 

B – Third cleavage when viewed from the egg axis or from the animal pole.  The 

cleavage cavity was observed in the animal half of the embryo. 

cc – cleavage cavity; ma – macromeres; mi – micromeres.......................................... 

 

Figure 5.5:  The fourth cleavage (16-cell stage).  During this stage, the 

dexiotropically-formed micromeres and marocmeres divided laeotropically. 

cc – cleavage cavity; ma – macromeres; mi – micromeres.......................................... 

 

Figure 5.6:  At the fifth cleavage (24-cell stage), dexiotropic division of the embryo 
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Figure 5.7:  During the sixth cleavage (64-cell stage), the micromeres and 

macromeres divided laeotropically.  Also, division synchrony was lost at this stage 

and bilaterally symmetrical division took place........................................................... 

 

Figure 5.8:  The blastula stage. 

A – Embryo with space between the animal and vegetative poles. 

B – Blastocoel surrounded by cells (see arrow). 
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Figure 5.9:  During the gastrula stage, the macromeres situated in the centre of the 

vegetal region changed in shape.  They reduced their external surface area whereas 

the inner part widened forming a pit at the vegetal pole of the embryo.  At the 

beginning of the gastrula stage, this pit (blastopore) was very wide.  As gastrulation 

proceeded, the blastopore narrowed and closed from back to front until only a small 

opening remained.  

A – Young gastrula with a wide pit (blastopore) forming at the vegetative pole. 

B – Older gastrula with a reduced blastopore. 

ap – animal pole; bp – blastopore; vp – vegetative pole.............................................. 

 

Figure 5.10:  Trochophore embryo developed after gastrulation showing the 

prototroch, a band of ciliated cells, the prototroch, around the equator.  The 

prototroch thus divided the trochophore into the upper pretrochal region and the 

lower posttrochal region.  Smaller cilia also occurred over the rest of the larva.  The 

blastopore moved towards the apical plate and developed into the mouth (see 

arrow).   

lpt – lower posttrochal region; pr – prototroch; upt – upper pretrochal region............ 

 

Figure 5.11:  Late trochophore showing development of the distinct anterior region 

and visceral mass, indicated by the accumulation of large vacuolated cells.  The 

formation of the shell gland, represented by a thickening of the ectoderm (see 

arrow) occurred at the posterior region where the shell spire later develops.  No 
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evidence of the shell was seen at this stage.  During the late trochophore stage, the 

larva was still observed to move within the egg. 

f – foot; sg – shell gland............................................................................................... 

 

Figure 5.12:  The early veliger stage showing the development of a distinct head, 

shell and foot. 

A – The head region was distinguished with aggregations of ganglia forming the 

eyes (see arrow).  The posterior region of the visceral mass was covered by an 

embryonic shell. 

B – The embryo exhibited considerable coordination of movement by use of the 

muscular foot.  Elevations of the tentacle regions were observed as well as a raised 

ridge marking the margin of the mantle (see arrow).  This ridge encircled the lower 

part of the visceral mass. 

f – foot; s – shell; t – tentacles; vm – visceral mass..................................................... 

 

Figure 5.13:  The late veliger embryo.  The ridge (see arrow) marking the edge of 

the mantle clearly differentiated the visceral mass from the muscular foot region.  

The shell was now larger and covered the entire visceral mass.  At the anterior head 

region, the eyes were more prominent.  The heart and other organs of the visceral 

mass were also visible. 

e – eyes; f – foot; s – shell; vm – visceral mass........................................................... 

 

Figure 5.14:  Young snail shortly before hatching.  The snail occupied the entire 

interior of the egg.  Continued thinning of the internal egg membrane by the 

movements of the shell and foot resulted in its rupture. 

e – eyes; f – foot; m – mouth; s – shell; vm – visceral mass........................................ 
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General Introduction 
 

________________________________________________________________________ 

 

 

1.1  Biological Invasions 

 

Anthropogenic alterations of natural ecosystems and human-assisted dispersal of species 

outside of their native ranges have caused an unprecedented redistribution and 

homogenization of the Earth’s biota (Olden et al., 2004).  The expansion of a species 

range is a natural process, but non-indigenous introductions are growing increasingly 

frequent as species are moved across geographical barriers, either intentionally or 

unintentionally (Perrings et al., 2000; Ricciardi, 2006). 

 

The process of invasion can be divided into three successive stages namely; introduction, 

establishment and integration.  Introduction involves the dispersal of a non-indigenous 

species from its native range to that of the recipient range.  Through local reproduction 

and recruitment the new population is established (Vermeij, 1996; Richardson et al., 

2000).  This would eventually augment or replace dispersal from the native range as a 

means for the sustainability of the invading population.  Integration occurs when the 

invading species develops ecological links with other species in the recipient region 

(Vermeij, 1996; Richardson et al., 2000). 

 

Although research on biological invasions is often weighted toward terrestrial 

ecosystems, the importance of understanding and preventing non-indigenous species 

introductions in aquatic systems is highlighted by the increasing number and rate of  

freshwater invasions, the high endemicity of freshwater ecosystems and the importance 

of freshwater ecosystems for human health and the economy (Johnson et al., 2009).  

Considering that freshwater covers only about 0.8% of the Earth’s surface (Gleick, 1996), 

this makes freshwater ecosystems extremely species-rich habitats and particularly 



Chapter 1:  General Introduction 

 2 

vulnerable to non-indigenous species introductions.  Since abiotic conditions in 

freshwater ecosystems are generally more homogenous and less fluctuating than in 

terrestrial habitats (Cohen and Carlton, 1998; Padilla and Williams, 2004; Gollash, 2006), 

the initial chances of survival for an aquatic non-indigenous species may be higher 

(Cook, 1990).  Once introduced into an ecosystem, dispersal (either intentional or 

unintentional) may be easier for freshwater than terrestrial species.  This is expected since 

fewer dispersal barriers exist for freshwater ecosystems. 

 

Pathways of intentional introduction for freshwater species are the trades in live aquatic 

organisms including aquaculture (Naylor et al., 2001), nursery plants (Reichard and 

White, 2001; Maki and Galatowitsch, 2004), live food (Weigle et al., 2005), pet (Padilla 

and Williams, 2004; Rixon et al., 2005) and bait trades (Mills et al., 1993).  Other 

pathways arise for the unintentional transfer of freshwater species.  These include 

transport in ballast tanks of intercontinental ships (Mills et al., 1993; Ricciardi, 2006), 

inter-basin and inter-catchment transfer schemes for water supply purposes and 

introduction as contaminants of aquatic plants (Maki and Galatowitsch, 2004). 

 

1.2  Factors affecting Biological Invasions 

 

In general, the species that become successful invaders are predicted to be species that, in 

their native ranges, display traits that prompt them to successfully survive conditions 

encountered during transport, introduction, establishment and integration (Suarez and 

Tsutsui, 2008).  Two main attributes of biological invasions are:  invasiveness, i.e. the 

traits that enable a species to invade a habitat and invasibility, i.e. the characteristics of 

the new habitat that determine its susceptibility to the establishment and integration of an 

invasive species (Lonsdale, 1999; Alpert et al., 2000; Marco et al., 2002). 

  

Successful invaders possess characteristics associated with effective dispersal, rapid 

growth, short generation times, high fecundity, a high degree of phenotypic plasticity, 

broad physiological tolerance (euryhalinity and eurythermy) and a broad diet (Rejmanek 
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and Richardson, 1996; Williamson and Fitter, 1996; Reid and Orlova, 2002; Ruesink, 

2005; Moyle and Marchetti, 2006; Keller et al., 2007; Suarez and Tsutsui, 2008). 

 

Also, the abiotic environment sets clear limits on species invasibility.  Invasion site 

characteristics hypothesized to favour frequent or rapid invasion include (a) similarity to 

the native ranges of the invasive species, (b) a history of recent natural or anthropogenic 

disturbance, and (c) a low niche diversity within the habitat (Elton, 1958; Moyle and 

Light, 1996; Moyle and Marchetti, 2006).  It should be noted though that caution must be 

taken when using such characteristics for predicting invasions as each invader uses the 

biotic and abiotic environment in a different way. 

 

1.3  Impacts of Biological Invasions 

 

While not all introduced species become invasive, successful colonisers can have major 

ecological, economic and health implications.  Ecological impacts are focused on faunal 

composition, community structure and ecosystem functioning (Mack et al., 2000).  All 

these impacts are mediated by numerous processes that act at the individual, community 

and ultimately the ecosystem level (Simon and Townsend, 2003).  At the level of the 

individual, invasive species may alter the behaviour of indigenous species, influencing 

habitat use and foraging.  At the population level, the invasive species may influence 

changes in the abundance or distribution of other species.  According to both Gurevitch 

and Padilla (2004) and Ricciardi (2004), the introduction of non-indigenous species acts 

as a significant driver of global biodiversity loss, second only to habitat destruction. 

 

These changes in or even loss of biodiversity may occur through predation, competition, 

hybridization with the indigenous species, extirpation of competitively inferior species 

and alteration of the abiotic environment (Vitousek et al., 1996; Ricciardi et al., 1998; 

Mack et al., 2000; Clavero and Garcia-Berthou, 2006).  At the community level, invaders 

may alter both direct and indirect interactions among populations and finally, at the 

ecosystem level invasive species may change the pathways and magnitude of movements 

of energy and nutrients (Simon and Townsend, 2003). 
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Economic impacts result from the effects of introduced species on the indigenous biota, 

as well as funds expended for costly control or eradication programmes (Perrings et al., 

2000).  Introduced species have also affected industrial constructions such as reservoirs, 

pumps and water pipes.  For an example, in the United States, it is estimated that non-

indigenous species cost the national economy $120 billion to $137 billion per year 

(Pimentel et al., 2005), while for the United Kingdom, Australia, South Africa, India and 

Brazil together, costs exceeded $200 billion (Pimental et al., 2001).  Finally, invasive 

species can impact human health either directly when they are infectious or pathogenic to 

humans, or indirectly by promoting the transfer of disease. 

 

1.4  Invasive freshwater snails in South Africa 

 

In an assessment of the ecological impact and economic consequences of invasive 

freshwater snails in South Africa, Appleton (2003) listed a prosobranch (Tarebia 

granifera Lamarck, 1822) and three pulmonates (Lymnaea columella Say, 1817, Physa 

acuta Draparnaud, 1805 and Aplexa marmorata Guilding, 1828) as being of concern.  

Lymnaea columella and P. acuta were introduced in the early 1940s (Brown, 1994; 

Appleton and Brackenbury, 1998; Appleton, 2003), while A. marmorata was collected 

for the first time in this country in 1986 (Appleton et al., 1989).  The recently introduced 

species, T. granifera, was reported for the first time in Africa by Appleton and Nadasan 

(2002) after it was discovered in 1999 in a reservoir supplying water to a paper mill in 

KwaZulu-Natal. 

 

1.5  First Report of Radix rubiginosa in South Africa  

 

In 2004, a large population of an unknown lymnaeid was found in a prawn and tropical 

fish breeding facility in Amatikulu, northern KwaZulu-Natal, South Africa.  Since Asia is 

a frequent source of supply for tropical fish and plants for the South African aquarium 

trade, and the fact that several other snails in this facility were of Asian origin, it was 

thought likely that this new lymnaeid was Asian as well.  Available keys to Asian 

freshwater snails (Brandt, 1974; Burch, 1980) suggested that the new snail belonged to 
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the genus Radix but could be any of several species known from the region.  In 2007 

snails supplied by myself from the Amatikulu Hatchery were identified using molecular 

techniques as Radix rubiginosa (Michelin, 1831) – a species widespread in southeast 

Asia (J. Lamb and K. Pillay, unpubl. data). 

 

Radix rubiginosa has been listed as a “hothouse” alien species in Great Britain, Ireland 

and Israel (Mienis 1986; Anderson, 2005), becoming established in greenhouses, aquaria 

within greenhouses and similar artificially-heated habitats.  Dondero and Lim (1976) and 

Mienis (1986) have commented that it is easy to breed R. rubiginosa in aquaria and this 

was also found to be the case in this study.  The indigenous Lymnaea natalensis Krauss, 

1848 is not as easy to breed and this raises the question, “If R. rubiginosa spreads in 

South Africa, will it do so at the expense of L. natalensis?”  The natural occurrence of L. 

natalensis in KwaZulu-Natal appears to have decreased already perhaps due to the 

invasiveness displayed by yet another lymnaeid, Lymnaea columella.  If R. rubiginosa 

populations become established in the same area then this could increase pressure on the 

indigenous L. natalensis and eventually lead to its extirpation (C.C. Appleton pers. 

comm.). 

 

The presence of R. rubiginosa in a nearby reservoir on the Amatikulu facility, suggests 

that the spread of this species may already have taken place.  Furthermore, accidental 

escape or deliberate release may well go unnoticed due to its strong resemblance to the 

indigenous L. natalensis.  This is because the shell morphology of L. natalensis is 

notoriously variable and some of its variants resemble R. rubiginosa.  There was thus a 

clear need to be able to differentiate the two lymnaeid species but identification was 

difficult due to unclear and contradicting accounts in the literature.  This is further 

complicated by increasing evidence suggesting that the forms of what is widely called L. 

natalensis in Africa may in fact comprise more than one species (Brown, 1994). 

 

Snails introduced into new settings provide opportunities for new host-parasite 

associations to develop and according to Mas-Coma and Bargues (1997), a broad range 

of lymnaeid species can serve as hosts of fasciolid parasites.  In South Africa, the 

http://en.wikipedia.org/wiki/Greenhouse
http://en.wikipedia.org/wiki/Aquarium
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intermediate host of the giant liver fluke Fasciola gigantica is Lymnaea natalensis and 

this fluke is confined to the subtropical lowland regions.  The intermediate host for the 

common liver fluke Fasciola hepatica is Lymnaea truncatula Müller, 1774, however this 

species is confined to the cooler areas of the eastern highlands in South Africa (altitude 

above approximately 800 m), and also the low-lying parts of the Eastern and Western 

Cape, South Africa (Brown, 1994).  Radix rubiginosa serves as the intermediate host for 

F. gigantica over much of south-eastern Asia (Srihakim and Pholpark, 1991; Malone, 

1997) and if it were to become invasive in South Africa, it could exacerbate the 

fascioliasis problem in the country.  Radix rubiginosa has also been identified as the 

intermediate host for the avian blood fluke, Trichobilharzia sp., a cause of schistosome 

dermatitis (Nithuithai et al., 2004), Schistosoma incognitum (Bunnag et al., 1983) and 

various echinostomes (Charoenchai et al., 1997).   

 

The overall aim of this study was to assess the invasive capability of R. rubiginosa in 

South Africa.  By comparing specific characteristics between R. rubiginosa and the 

already invasive North American snail Physa acuta (Physidae), it was possible to assess 

the potential impact of this introduced lymnaeid on the indigenous L. natalensis. 

 

This study is arranged in seven chapters.  Chapter 1 provides an overview of the literature 

on biological invasions giving emphasis on factors affecting invasion, as well as the 

possible or proven impacts of such invasions. 

 

Chapter 2 provides a review of the family Lymnaeidae.  In this Chapter the phylogeny of 

the Lymnaeidae is addressed based on conchological, anatomical and molecular 

characteristics. 

 

Invasion by R. rubiginosa is likely to go unnoticed because the shell morphology of L. 

natalensis is highly variable and some of its variations resemble those of R. rubiginosa.  

There was thus a clear need to be able to differentiate the two lymnaeid species but 

identification was difficult due to a lack of clarity in the literature.  Chapter 3 presents a 
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redescription of the indigenous species L. natalensis with emphasis on conchological and 

anatomical characters. 

 

In Chapter 4, the traditional morphometric approach was used to assess the suitability and 

efficacy of conchological characters to distinguish shell variations and patterns within 

and between populations of two species of Lymnaeidae, the introduced R. rubiginosa and 

the indigenous L. natalensis.  This includes an examination of the radula, the 

reproductive anatomy and a description of the pigmentation patterns on the mantle.  

These characters were then used as criteria to easily recognize and separate R. rubiginosa 

from L. natalensis. 

 

Chapter 5 describes and compares the effects of three experimental temperatures on the 

hatching rates and embryonic development of four populations of three snail species:  R. 

rubiginosa from the Amatikulu Hatchery, L. natalensis from both the UKZN and 

Greyville Ponds and P. acuta from the Greyville Pond.  A description of the morphology 

of each developmental stage is provided.  In addition, a study of the frequency of various 

egg abnormalities and their relation to the breeding intensity of these species are 

assessed. 

 

In Chapter 6 the invasiveness of R. rubiginosa is assessed in relation to the indigenous L. 

natalensis and the already established invader, the North American, Physa acuta.  This 

investigation determined the growth, survivorship, fecundity and life history parameters 

of the three species and the role of temperature in causing observed differences.  This was 

seen as particularly important in view of the success of P. acuta as an invader in South 

Africa.  The growth, survivorship, fecundity and life history parameters were then 

comparatively analysed to allow for a more precise focus on the specific attributes that 

may determine the invasive success of R. rubiginosa. 

 

Chapter 7 presents a general discussion of the present study, integrating the key findings 

and conclusions from the previous chapters. 
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2 

 

Review of the Family Lymnaeidae 
 

________________________________________________________________________ 

 

 

The pulmonate basommatophoran superfamily Lymnaeoidea includes several families of 

freshwater snails, among which is the Lymnaeidae.  The Lymnaeidae inhabit a wide 

variety of freshwater habitats, and as such display a tremendous morphological diversity, 

both conchological and anatomical.  This high level of morphological diversity makes 

phylogenetic studies of the Lymnaeidae difficult.  Despite this, interest in phylogeny of 

the lymnaeids is important, because firstly, many lymnaeid species are intermediate hosts 

for trematode parasites and secondly, lymnaeids are part of a growing number of 

freshwater taxa that are threatened due to the increasing destruction of freshwater 

ecosystems. 

 

2.1  The systematic – taxonomic confusion in the family Lymnaeidae 

 

About 1800 species and 34 genera of lymnaeids have been named in the past, with 

classifications recognising a single genus (Walter, 1968), two genera (Hubendick, 1951; 

Te, 1976; Jackiewicz, 1998) or more than two genera (Burch, 1965, 1980; Malek, 1985; 

Jackiewicz, 1993; Glöer and Meier-Brook, 1998), while Kruglov and Starbogatov (1993) 

recognised up to 26 different genera within the family. 

 

Despite several approaches being used to evaluate the taxonomy and relationships within 

the family, consensus has not yet been reached because of the poor/inadequate systematic 

resolution of the information (Hubendick, 1951; Burch, 1965; Inaba, 1969; Walter, 1969; 

Burch and Lindsay, 1968; Burch and Ayers, 1973; Rudolph and Burch, 1989; Remigio 

and Blair, 1997).  Disagreement between the results of morphological studies on the 

shell, radula and prostate gland with those from karyological and biochemical methods 
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(Bargues et al., 2001), suggests that morphological and anatomic homoplasy is common 

among lymnaeids.  Hence species systematics and delineation within the Lymnaeidae are 

obscure due to the great number of described species and the morphological similarities 

between them.  These have often made identification of specimens of the Lymnaeidae 

difficult (Mas-Coma and Bargues, 1997). 

 

2.2  Phylogeny of the Family Lymnaeidae 

 

The phylogeny and classification of the Lymnaeidae has traditionally been based on the 

use of shell characters, however, once the variable nature of the shell was demonstrated, 

workers started to take a more anatomical focus in species determination.  In recent years, 

various cytological, biochemical and molecular studies have proven to be very useful 

tools in resolving some of the phylogenetic questions.  

 

2.2.1  Shell Characters and their use in Phylogeny 

 

Historically, the shape and sculpture of the shells of different lymnaeid species were 

considered to be consistent and were generally the primary characteristics used in species 

identifications (Puslednik, 2006).  However, intraspecific variation in shell shape has 

been demonstrated to be common throughout the Lymnaeidae and is thought to be a 

response to the relative transience of many freshwater habitats (Russell-Hunter, 1978).  

Freshwater environments are often dominated by short-term, small scale isolation.  In 

these environments, different populations of a given species may be subjected to different 

environmental conditions and selection pressures.  This results in much inter-population 

diversity, although very little of this diversity results in speciation (Russell-Hunter, 1978; 

Britton and McMahon, 2004). 

 

Phenotypic plasticity is therefore an important adaptive trait in the family (Via et al., 

1995).  This is supported by several studies within the Lymnaeidae (Hubendick, 1951; 

Arthur, 1982; Lam and Calow, 1988; Evans, 1989; Oviedo et al., 1995; Ward et al., 

1997; Wullschleger and Jokela, 2002), where shell variation is seen to be a result of 
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environmental effects.  These environmental effects include factors such as habitat type, 

water movement and predation (Arthur, 1982; Lam and Calow, 1988; Crowl, 1990; De 

Witt, 1998). 

 

The exclusive use of shell characters to understand evolutionary relationships can also be 

problematic when differentiation is limited.  An absence of obvious shell diversification 

can result in the incorrect assumption of a single evolutionary lineage.  Cryptic speciation 

has been demonstrated in a number of freshwater molluscs (Baker et al., 2003; Liu et al., 

2003; Pfenninger et al., 2003) and examples from within the Lymnaeidae are the South 

American taxa Lymnaea viatrix Orbigny, 1835 and Lymnaea cubensis Pfeiffer, 1839.  

These species are genetically and anatomically distinguishable, but they have identical 

shells (Jabbour-Zahab et al., 1997; Samadi et al., 2000; Durand et al., 2002). 

 

2.2.2  Anatomical Characters and their use in Phylogeny 

 

Anatomical studies of the soft parts of snails have proved useful in the past for 

identifying and separating species.  However, at the same time, these characteristics are 

also thought to be problematic and have obscured systematic relationships (Inaba, 1969).  

Some authors have proposed that anatomical characters are too variable and should be 

avoided in phylogenetic studies, since they are prone to selective processes and hence 

more homoplastic than other characters (Hubendick, 1951; Bargues et al., 2001; 

Remigio, 2002).  Differences in anatomy due to variable relaxation/contraction during 

fixation is also a factor.  Other authors advocate that only a small, limited set of 

anatomical characters is useful in determining species, such as the distal genitalia, 

prostate and radula teeth (Hubendick, 1951; Walter, 1968; 1969). 

 

Radula morphology is generally considered stereotypic within species and is frequently 

used as a taxonomic character for studies on molluscan systematics (Fretter and Graham, 

1994; Padilla, 1998; deMaintenon, 2004).  The shape and form of the radula teeth are 

typically unique to a species or genus and some features of the radula, such as tooth 
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numbers have been used to investigate higher level molluscan taxonomic relationships 

(deMaintenon, 2004). 

 

More recent descriptions of lymnaeids have identified numerous characteristics of the 

outer body, kidney, nervous system and digestive system that are useful in distinguishing 

species (Paraense 1976; 1982; 1984; 1994; 1995; Ponder and Waterhouse, 1997; Samadi 

et al., 2000).  In the description of the European lymnaeids, Jackiewicz (1959; 1984; 

1986; 1988; 1993; 1998) placed a strong emphasis on the male and female reproductive 

systems as characteristics to identify various species.  Russian workers (Kruglov and 

Starbogatov, 1981; 1989; 1993) based their designations within the Lymnaeidae on very 

minor differences in the reproductive system, such as the changes in the shape of the 

oothecal gland.  More recent studies have also examined the value of other characters 

such as the size and shape of the tentacles (Jackiewicz, 1990; Jackiewicz and 

Buksalewicz, 1998) and the pneumostome (Jackiewicz and Dudzien, 1998) in the 

identification of lymnaeids.   

 

Despite the variation of anatomical characters within populations, some of the characters 

referred to above have proven to be more useful in discriminating taxa than shell 

morphology (Samadi et al., 2000).  Thus, the value of anatomical characters in 

understanding the systematics of the Lymnaeidae should not be underestimated. 

 

2.2.3  Biochemical and Molecular Studies and their use in Phylogeny 

 

To overcome problems associated with the phenotypic plasticity of the shell and variation 

in anatomical characters, cytological, biochemical and molecular studies have been 

carried out within the Lymnaeidae.  These techniques include crossbreeding experiments 

(Pagulayan and Enriquez, 1983; Kruglov and Starbogatov, 1985), enzyme electrophoresis 

(Evans, 1989; Monzon et al., 1994; Jabbour-Zahab et al., 1997; Durand et al., 2002), 

body surface chromatography (Wright, 1964), cytology (Burch and Lindsay, 1969; 

Garbar and Korniushin, 2002; 2003), immunological studies (Burch, 1973; Burch and 

Lindsay, 1973; Burch and LoVerde, 1973; Burch and Hadzisce, 1974), allozymes 
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(Coutellec-Vreto et al., 1994), PCR-RFLP's (Carvalho et al., 2004), RAPD analysis 

(Rybska et al., 2000) and DNA sequencing (Márquez et al., 1995; Bargues and Mas-

Coma, 1997; Bargues et al., 1997; Remigio and Blair, 1997; Stothard et al., 2000; 

Bargues et al., 2001; Remigio, 2002; Bargues et al., 2003; Puslednik, 2006). 

 

The majority of studies listed have generally been focused on defining species limits, and 

understanding the taxonomy and distribution of the lymnaeids.  Of these techniques, 

DNA sequencing has been the most successful tool in understanding speciation.  

However, major inconsistencies have been identified between relationships predicted 

from DNA gene sequencing compared to those predicted from the use of traditional shell 

and anatomical characters.   

 

Molecular phylogenies have shown that taxa with the same number of prostate folds or 

identical radula dentition (characters considered to be phylogenetically important within 

the family), are not necessarily closely related (Remigio and Blair, 1997; Remigio, 2002; 

Puslednik, 2006).  For example, morphological phylogenies have indicated that 

Stagnicola palustris Müller, 1774 was distantly related to Stagnicola corvus Gmelin, 

1791 and Lymnaea stagnalis Linnaeus, 1758, whereas the molecular relationships 

showed S. palustris and S. corvus to be sister taxa, with L. stagnalis sister to the S. corvus 

and S. palustris clade (Remigio, 2002; Puslednik, 2006).  Despite these inconsistencies, 

molecular approaches have over the past decade proven their value not only in resolving 

phylogenetic issues, but also in providing a sense of the time scale of evolutionary 

divergence (Thollesson, 1999; Remigio and Herbert, 2003). 

 

2.3  Lymnaeids in parasite transmission 

 

Species of this family are of parasitological importance due to their capacity to act as 

intermediate hosts for numerous helminth parasites (Brown, 1978; 1994; Bargues and 

Mas-Coma, 1997).  These include several digenean flukes of medical and veterinary 

importance, such as Fasciola hepatica and Fasciola gigantica (Malek, 1980; Boray, 
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1982; Chen and Mott, 1990; Bargues and Mas-Coma, 1997), as well as certain cestode 

and nematode species. 

 

Lymnaeids worldwide participate in the life cycles of at least 71 trematode species 

belonging to 13 families whose members use birds and both domestic and sylvatic 

mammals as definitive hosts (Brown, 1978; Bargues et al., 2001).  For example, nearly 

30 cercarial species have been recorded from Lymnaea stagnalis in Europe (Erasmus, 

1972); 21 species from the North American Lymnaea emarginata Say, 1821 (Cort et al., 

1937) and in South Africa, Porter (1938) found 43 species in Lymnaea natalensis Krauss, 

1848.  The trematode parasite Fasciola is specific to lymnaeids, with at least 12 named 

species acting as natural intermediate hosts for one or both of the two economically 

important species of Fasciola (Malek, 1980; Boray, 1982; Mas-Coma and Bargues, 

1997).  Both Fasciola species have wide distributions; F. hepatica is cosmopolitan while 

F. gigantica is limited to the more tropical regions (Brown, 1978; Torgerson and Claxton, 

1999). 

 

Fascioliasis has an important economic impact on livestock because it results in reduced 

weight gain, progressive decrease in milk yield, lowered fertility and abortion (Dargie, 

1987).  Other causes of economic loss are the condemnation of infected livers at 

slaughter and the cost of control strategies.  The disease has been reported to cause 

significant economic losses amounting to between US$20 million to US$107 million in 

countries such as the Philippines, Cambodia and Indonesia, where the prevalence of 

infection is high (Spithill et al., 1999).  The same authors estimated losses due to 

Fasciola infection between 1975 and 1997 to exceed US$3200 million in tropical 

countries alone. 

 

While fascioliasis has traditionally been a veterinary problem, there have been an 

increasing number of outbreaks in people (Chen and Mott, 1990; Esteban et al., 1998; 

Mas-Coma et al., 1999), resulting in a major public health problem in several areas of the 

world, including Bolivia, Ecuador, Peru, the Caribbean Islands, the Nile Delta in Egypt 

and central Vietnam.  The largest problem areas are the Caribbean Islands and South 
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America, with the highest levels of infection rates being reported from the Bolivian 

Altiplano (highland) region, with up to 66.7% of individuals from this region being 

infected.  As a consequence, this has led to human fascioliasis being listed as an 

emerging medical disease (Mas-Coma et al., 1995; Esteban et al., 1997; Mas-Coma et 

al., 1999; Esteban et al., 2003; Curtale et al., 2005; Keiser and Utzinger, 2005; Mas-

Coma et al., 2005). 

 

2.4  Conservation status of the Lymnaeidae 

 

The increasing destruction of freshwater ecosystems through a decline in water quality, 

pollution, increased sediment deposition, diversion and damming has resulted in 

freshwater molluscs representing one of the most threatened groups of animals in the 

world (Saunders et al., 1999; Lydeard et al., 2004; Strong et al., 2008).  Despite 

comprising only ~5% of the world’s gastropod fauna, freshwater molluscs account for 

~20% of recorded mollusc extinctions (Strong et al., 2008).   

 

In North America, the increasing number of species being listed as endangered or 

threatened reflects this growing crisis.  For example, according to Riccardi et al., (1998), 

72% of North America’s recognised mussel species are listed as endangered, threatened 

or of special concern.  Puslednik (2006) stated that in the state of Idaho, six lymnaeid 

species have been listed federally as endangered or threatened.  In Europe, the decline of 

Myxas glutinosa Müller, 1774 (considered to be one of the rarest freshwater molluscs) 

has been attributed to eutrophication, increased turbidity and the regulation of water flow 

in lakes (Whitfield et al., 1998; Puslednik, 2006).   

 

Despite this, only five lymnaeid species have been listed as threatened on the IUCN Red 

List (IUCN, 2009).  These include two North American taxa, Stagnicola bonnevillensis 

Call, 1884 and Stagnicola utahensis Call, 1884; Myxas glutinosa from Europe; Erinna 

newcombi Adams, 1855 from the Hawaiian islands and the fifth species Lantzia carinata 

Jousseaume, 1872 which is restricted to Reunion Island in the Indian Ocean (IUCN, 

2009).  This indicates that the threat to lymnaeids is not a localised problem, but a 
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phenomenon that is occurring across the world.  In the draft IUCN Red Data List the two 

indigenous lymnaeids in southern Africa, L. natalensis and Lymnaea truncatula Müller, 

1774 are listed as having “no threats” and are therefore of “least concern”, as far as their 

conservation status goes (C.C. Appleton pers. comm.), though competition from the 

invasive Lymnaea columella Say, 1817 is mentioned as a possible threat. 

 

Also as discussed previously, many lymnaeids are intermediate hosts for Fasciola spp., 

which have a large economic impact on agriculture.  Various control measures such as 

the draining of wetlands and the use of molluscicides have resulted in over 90% of the 

snail populations in a targeted area in the United States of America being killed (Graczyk 

and Fried, 1999).  This wide scale destruction of temporary ponds and the snails within 

them poses an additional threat to indigenous freshwater species (Puslednik, 2006). 
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Redescription of Lymnaea natalensis Krauss, 1848 from its type locality 

 
________________________________________________________________________ 

 

 

3.1  Introduction 

 

Species delineation within freshwater snails of the genus Lymnaea Lamarck, 1799 

(Gastropoda:  Lymnaeidae) is controversial and characterised by a long and confused 

systematic history largely due to problems associated with variability in shell shape.  The 

family Lymnaeidae has a world-wide distribution and they have the potential to colonise 

many fresh water environments (Stothard et al., 2000).  Several species are of medical 

and veterinary importance because they serve as intermediate hosts of numerous 

trematode parasites, including the liver flukes Fasciola hepatica and Fasciola gigantica, 

as well as certain cestode and nematode species (Brown, 1978; Malek, 1980; Boray, 

1982; Chen and Mott, 1990; Bargues and Mas-Coma, 1997). 

 

As noted in Chapter 1, Lymnaea natalensis Krauss, 1848 is the intermediate host of the 

giant liver fluke F. gigantica in South Africa and this fluke is confined to the subtropical 

lowland regions.  Lymnaea truncatula Müller, 1774 is the intermediate host for the 

common liver fluke F. hepatica, however this snail species is confined to the cooler areas 

of the eastern highlands in South Africa (altitude above approximately 800 m), and also 

the low-lying parts of the Eastern and Western Cape, South Africa (Brown, 1994).  

Recently, another lymnaeid, Radix rubiginosa (Michelin, 1831) was recorded in a 

tropical fish breeding facility at Amatikulu, northern KwaZulu-Natal, South Africa. 

 

This is important since R. rubiginosa serves as the intermediate host for F. gigantica over 

much of south-eastern Asia (Srihakim and Pholpark, 1991; Malone, 1997) as well as the 

schistosomes Trichobilharzia sp. (Nithuithai et al., 2004) and Schistosoma incognitum 
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(Bunnag et al., 1983) and several echinostomes (Charoenchai et al., 1997).  Also, the 

introduction of R. rubiginosa is likely to go unnoticed due to its resemblance to the 

indigenous L. natalensis.  This is because the shell morphology of L. natalensis is 

notoriously variable and some of its variations resemble R. rubiginosa.  There was thus a 

clear need to be able to differentiate the two lymnaeid species but identification was 

difficult due to unclear and contradicting accounts in the literature.  This has important 

implications for studies of community structure, food web dynamics, biodiversity and 

biomonitoring that critically depend on the accuracy of species discrimination and 

identification. 

 

Recent research into the epidemiology of human and bovine fascioliasis has also focused 

attention on the different “forms” of L. natalensis in Africa and this was further 

complicated by increasing evidence suggesting that what is widely called L. natalensis in 

Africa may in fact comprise more than one species (Brown, 1994; S. Mas-Coma pers. 

comm. to C.C. Appleton, 2006).  This therefore highlights the need for accurate species 

identification.  Because the type locality of L. natalensis is „Port Natal‟, i.e. Durban, the 

species is redescribed here based on topotypical specimens from Durban.  This 

redescription of the conchological and anatomical characteristics could then form a basis 

for new investigations into the true identity of what is currently known as L. natalensis 

across Africa. 
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3.2  Methodology 

 

3.2.1  The Study Site 

 

In his original description of L. natalensis, Krauss (1848) stated, “In stagnis natalensibus, 

frequens” (in still waterbodies in Natal, frequent).  However, Herbert and Warén (1999) 

found probable syntypes of this species in the Stockholm Museum with the locality given 

as Port Natal.  Taking this into consideration and to provide topotypical material, various 

waterbodies in and around the Durban Metropolitan Area were investigated for the 

presence of populations that refer morphologically to L. natalensis.  Of the habitats 

visited, surprisingly few yielded L. natalensis and of these, the UKZN Pond (Cato 

Manor) was designated as a suitable site (Figure 3.1). 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Map of KwaZulu-Natal showing the UKZN Pond study site (U), selected for the redescription 

of L. natalensis. 

U 
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UKZN Pond (Cato Manor, Durban) 

 

This is a permanent but isolated waterbody (S 29
o
 52‟ 02.6” E 30

o
 58‟ 03.6”, the altitude 

is 24 m), located close to a highway and a sports and recreational stadium (Figure 3.2).  

The aquatic macro-flora comprised of Marsilea sp., Typha capensis, Pistia stratiotes, 

Nymphaea nouchali and several representatives of the Cyperaceae.  About 75% of the 

surface area was covered by P. stratiotes, Marsilea sp. and N. nouchali, with some areas 

covered by dense mats of filamentous green algae.  Albizia adiantifolia trees and dense 

shrubs along the periphery of the pond limited accessibility and provided partial shade. 

 

The temperature in the Durban Metropolitan Area is mild in winter (June to August) and 

warm to hot in summer (December to February).  Mean monthly figures for the minimum 

and maximum daily air temperatures were 10.3
o
C to 21.5

o
C and 22.8

o
C to 28.9

o
C 

respectively (Source:  South African Weather Service, Durban).  The total annual rainfall 

usually exceeds 1000 mm, of which the most falls in spring and summer (September to 

February).  The pond is dependent on rainfall and its depth varied between 2.1 m in 

winter to 4.5 m in summer.  It has not been seen to dry out.  The water chemistry 

parameters for the UKZN Pond were measured by the author at a depth of 30 cm, using a 

YSI 6920 multi-probe data logger.  A summary of selected water chemistry parameters is 

presented in Table 3.1. 

 

Table 3.1:  Selected water chemistry parameters for the UKZN Pond.  All values measured are indicated as 

mean (± standard deviation), n = 35. 

 

Parameter Mean (± standard deviation) 

  

pH 8.13 (± 0.12) 

Conductivity (mS/cm) 0.57 (± 0.01) 

Dissolved Oxygen (mg/L) 8.08 (± 0.81) 
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Figure 3.2:  The UKZN Pond. 

 

3.2.2  Shell Morphology 

 

The snails were identified based on conchological characteristics according to the 

original description by Krauss (1848) and subsequent authors (Connolly, 1939; 

Hubendick, 1951; Mandahl-Barth, 1954; de Azevedo et al., 1961; Brown, 1994; 

Appleton, 1996; Herbert and Warén, 1999).  Due to the variable nature of the shell of L. 

natalensis wherever it was found, a molecular study of snails from this site was 

conducted in 2007 (J. Lamb and K. Pillay unpubl. data).  This was the same molecular 

study that identified the Amatikulu lymnaeid as R. rubiginosa.  DNA analyses confirmed 

that the lymnaeid from the UKZN Pond was L. natalensis (see Appendix to Chapter 3). 

 

Fifteen adult L. natalensis from the study site were selected to measure the shell 

thickness.  In order to compare the snails without size bias, only adult snails of 15-22 mm 
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in shell length were used.  The shell thickness was measured at three points on the shell 

and expressed as the mean shell thickness (Figure 3.3).   

 

            

     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Schematic drawing of the shell indicating the points (●) where shell thickness was measured.  

The mean shell thickness was presented as μm (± standard deviation). 

 

3.2.3  Anatomical Morphology 

 

3.2.3.1  Radula 

 

Before dissection, 15 adult L. natalensis from the UKZN Pond were relaxed for 24 hours 

using menthol crystals.  The specimens were fixed in 10% formalin for a further 24 hours 

and then stored in 75% alcohol.  To study the radula, the buccal mass of each relaxed 

snail was removed and put into a test tube of 5% NaOH solution for 48 hours.  This 

procedure removed the tissues surrounding the radula, leaving only the radular ribbon in 

the test tube. 

 

● ● ● 
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The contents of the test tube were emptied into a watch glass and the radula ribbon 

removed under the dissecting microscope.  The extracted radula was then washed in three 

changes of distilled water, three minutes per rinse and stored in 75% alcohol.  The radula 

was then mounted on a specimen stub using two way laboratory tape and allowed to dry 

at room temperature.  After coating with gold, the radula was viewed using a LEO 

scanning electron microscope. 

 

The number, shape, size and position of the cusps on the central, lateral and marginal 

teeth were noted and where appropriate, photographed. 

 

3.2.3.2  Mantle pigmentation patterns 

 

Fifteen adult L. natalensis from the study site were relaxed for 24 hours using menthol 

crystals and then immersed for approximately a minute in hot water (70
o
C), from which 

they were transferred to water at room temperature.  The soft tissues were separated and 

dissected following the methodology proposed by Paraense (1976).  By holding the 

cephalopedal mass with a forceps and gently twisting the shell in an anti-clockwise 

motion, the soft parts were drawn from the shell.  Drawings of the mantle pigmentation 

were made using a camera lucida fitted on a stereomicroscope. 

 

3.2.3.3  Reproductive Anatomy 

 

Fifteen adult L. natalensis from the study site were prepared as outlined in section 

3.2.3.2.  In order to compare the snails without size bias, only adult snails of 15-22 mm in 

shell length were used.  Snails were dissected under a stereoscopic microscope and 

drawings of the reproductive system were made using a camera lucida. 
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3.3  Classification and Distribution of Lymnaea in Africa 

 

A great many forms and species of Lymnaea (Figures 3.4 - 3.6) have been described from 

Africa (Hubendick, 1951).  Between the years 1848 and 1939 no less than 11 species 

were described from or reported to occur in South Africa alone.  The first substantial 

taxonomic revision by Germain (1919) recognised six species of Lymnaea:  L. natalensis 

Krauss, 1848; L. africana Bourguignat, 1883; L. elmeteitensis Smith, 1894; L. tchadiensis 

Germain, 1905; L. vignoni Germain, 1909 and L. gravieri Bourguignat, 1885.  Connolly 

(1939) recognised only two as actually occurring in this country, namely Lymnaea 

natalensis and Lymnaea caillaudi Bourguignat, 1883.  However, a further reduction by 

Hubendick (1951) placed all forms and species within the synonymy of Lymnaea 

natalensis.  This opinion was followed by Brown (1994) with the caution that there may 

be more than one taxon involved. 

 

 

 

  

 

  

 

 

              (redrawn from Hubendick, 1951) 

 

Figure 3.4:  Lymnaea natalensis from Arabia, with the locality given in parentheses, scale bar 10 mm. 

A-B, Lymnaea caillaudi (Mesajia, Yemen); C, Lymnaea muscatensis (Muscat); D-E, Lymnaea caillaudi 

(Kalhat, Saudi Arabia). 

A B C D E 
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              (redrawn from Hubendick, 1951) 

 

Figure 3.5:  Lymnaea natalensis from Madagascar, with the locality given in parentheses, scale bar 10 mm.  

A-C, Lymnaea natalensis (Antisirabe, Madagascar); D-F, Lymnaea natalensis (Lake Renobe, Madagascar); 

G-H, Lymnaea pacifica (Ambatondigen, Madagascar); I-J, Lymnaea specularis (Ankazoaba, Western 

Madagascar); K-O, Lymnaea hovarum (Antanamena, Madagascar); P, Lymnaea pacifica (Ankazoaba, 

Western Madagascar); Q, Lymnaea electa (Ankazoaba, Western Madagascar). 

 

 

 

 

 

 

 

 

 

 

                                 (redrawn from Hubendick, 1951) 

     

Figure 3.6:  Lymnaea natalensis from Africa, with the locality in which they were described given in 

parentheses, scale bar 10 mm.   

A-B, Lymnaea exsertus (Sweet water Canal, Suez); C, Lymnaea pharaonum (Egypt); D, Lymnaea caillaudi 

(Alexandria, Egypt), E-G, Lymnaea caillaudi (Nuruya, Darfur); H-I, Lymnaea ribeirensis (San Antao 

Island, Cape Verde Island); J-M, Lymnaea nyansae (Entebbe, Uganda); N, Lymnaea elmeteitensis 

(Northern Uganda); O-P, Lymnaea undussumae (Ndola Swamp, Northern Zimbabwe); Q, Lymnaea 

nyansae (Luanshyla, Northern Zimbabwe); R-S, Lymnaea caillaudi (Northern Zimbabwe); T-W, Lymnaea 

natalensis (Port Natal, South Africa); X-Y, Lymnaea natalensis (Durban, South Africa). 
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After acknowledging the intraspecific variation characteristic of Lymnaea, Brown (1994) 

followed Hubendick (1951) in accepting that Africa had a single widespread species, 

Lymnaea natalensis Krauss, 1848.  Furthermore L. natalensis has been found to occur in 

Madagascar, the Cape Verde Islands and Tenerife as well as Yemen and Oman in the 

Arabian Peninsula (Figure 3.7). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           (Seddon et al., 2011) 

 

Figure 3.7:  The distribution of Lymnaea spp. in Africa and Madagascar.  Occurrences in the Cape Verde 

Islands are not shown on the map.  According to Hubendick (1951) and later Brown (1994) there is little 

justification for maintaining most of the many named species in Africa; the whole range seems to be 

inhabited by a single but variable species, Lymnaea natalensis.  The shaded regions are intended to 

represent the main areas of occurrence, however, continuity of distribution is not implied and there may be 

significant discontinuities within the shaded areas. 
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In common with other species of Lymnaea, there is considerable conchological variation 

within L. natalensis that appears continuous across populations whilst local populations 

may be uniform and distinctive.  Haas (1936) discussed the different forms of L. 

natalensis and considered that certain forms were characteristic to certain parts of Africa.  

This suggestion was not confirmed by Hubendick (1951), stating that the species has a 

vast range of irregular microgeographical variation.  According to Hubendick (1951), L. 

natalensis was treated as the African part of the Lymnaea auricularia Linnaeus, 1758 

super-species which extended throughout the Palearctic and Oriental regions.  However, 

according to Brown (1994), it appears that certain forms are indeed distinct to certain 

parts of Africa.   

 

For example, the succineiform forms of L. natalensis are most common in, and even 

possibly restricted to, South Africa.  On Madagascar the extremely broad and bulging 

forms seem to be more common and their shape possibly more pronounced, than in other 

regions of Africa.  Also, Lymnaea hovarum Tristram, 1863, from Madagascar has been 

treated as distinct (Starmühlner, 1969), but seems to be a form of L. natalensis according 

to Brown (1994).  Furthermore, the name Lymnaea caillaudi Bourguignat, 1883, has 

often been used to describe snails from eastern Africa, belonging to a form narrower than 

the typical L. natalensis (Brown, 1994).  Mandahl-Barth (1954) reduced L. caillaudi to a 

subspecies of L. natalensis but later expressed the opinion that even the subspecies could 

no longer be regarded as being distinct from L. natalensis (Pretorius and van Eeden, 

1969). 

 

In addition, three widespread European species, Lymnaea palustris Müller, 1774, 

Lymnaea peregra Müller, 1774 and Lymnaea stagnalis Linnaeus, 1758 also occur in 

North Africa, while Lymnaea truncatula Müller, 1774 has an eastern distribution from 

Egypt to South Africa.  Also, Lymnaea columella Say, 1817, an introduction of North 

American origin, is now well established in southern Africa (van Eeden and Brown, 

1966; Brown, 1994; Appleton, 2003).  Recent research into the epidemiology of human 

and bovine fascioliasis has renewed interest in the identification and classification of the 

different “forms” of L. natalensis in Africa.  It has called into question the placing of so 
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many forms across the continent in a single species.  As a starting point for unraveling 

this problem, it seems appropriate to redescribe L. natalensis using topotypical material 

from Port Natal, i.e. Durban, South Africa. 

 

3.4  Results 

 

3.4.1  Original  Description  

 

The systematic position of L. natalensis is as follows: 

 Family Lymnaeidae Rafinesque, 1815 

  Subfamily Lymnaeinae Rafinesque, 1815 

   Genus Lymnaea Lamarck, 1799 

    Lymnaea natalensis Krauss, 1848 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  The original description, in Latin and German, of L. natalensis transcribed from Krauss (1848:  

85), supplemented with the original figure of the shell of a specimen from a lentic pool in what is now the 

city of Durban (see, Figure 15 in text). 
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3.4.2  Shell Morphology 

 

Although it is subject to considerable variation in detail, the shell of L. natalensis is 

remarkably constant in its general characters (Figure 3.9).  The shell is succineiform, 

dextral and thin (110.60 μm ± 22.14, n = 15 see Figure 3.3).  The colour of the shell 

varies from glossy, pale yellowish, brownish to dark brownish.  There is an elongate, 

tapering spire with an acute apex.  These characteristics of the spire however, were 

variable.  There are generally four tightly coiled and convex whorls that are separated by 

well-impressed and constricted sutures.  The body whorl is markedly swollen and forms 

the greatest portion of the shell. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Shells of L. natalensis (UKZN Pond) showing the variation found in the population, scale bar 

10 mm. 

 

The aperture is large and ovate, with a fold in the middle part of the parietal wall on 

which a thin white callus can be observed.  The base of the aperture joins the columella in 

a broadly rounded curve.  The peristome is thin and sharp.  The outer lip of the aperture is 

generally evenly rounded; inner lip is closely appressed to the parietal wall.  The 

umbilicus is completely closed by the expanded and reflected inner lip.  The columella is 
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short, straight and attenuate at the base; the columellar axis is generally gyrate or twisted.  

The sculpture consists of growth lines only; these are distinct on the body whorl, but less 

prominent on the preceding whorls. 

 

3.4.3  Anatomical Morphology 

 

3.4.3.1  Radula 

 

The individuals from the UKZN Pond had between 68 – 80 rows of teeth, with each 

transverse row of teeth conforming to a radula formula of 12:  8 – 10:  1:  8 – 10:  12.  

The radula consisted of a single longitudinal row of central teeth found at the middle of 

the radula, 8 – 10 pairs of lateral teeth (two pairs were identified as being intermediate 

teeth) and 12 pairs of marginal teeth. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10:  Scanning electron micrograph of the central tooth and lateral teeth of L. natalensis (UKZN 

Pond).  A smaller accessory cusp is located on the central tooth (indicated by the arrow), scale bar 10 μm. 

C – central tooth; L – lateral tooth. 
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The central tooth was asymmetrically bicuspid and very small compared to the other 

teeth on the radula (Figure 3.10).  The main cusp was larger, having a sharp spade-like 

triangular shape.  The cutting point was sharp and acute.  A smaller accessory cusp was 

located on the left hand side towards the base.  This accessory cusp was curved and 

directed towards the larger cusp of the central tooth (see arrows, Figure 3.10).  This 

smaller cusp diminished in size and seemed to disappear after the 10
th
 – 15

th
 transverse 

row. 

 

From right to left in Figures 3.10 and 3.11, the laterals are rather broad, quadrate and 

asymmetrically tricuspid.  The small, short and spade-shaped endocone was fused to the 

mesocone.  The mesocone was about three times as wide as the endocone.  The ectocone 

was much larger than the endocone and was placed approximately halfway down the 

mesocone, on its outer margin.  For lateral teeth 6-8, the endocone and mesocone 

appeared very acute in shape and gradually became sub-equal in length (Figure 3.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Scanning electron micrograph of the lateral teeth from the left side of a transverse row of L. 

natalensis (UKZN Pond).  For lateral teeth 6-8, the endocone and mesocone appeared very acute in shape 

and gradually became sub-equal in length, scale bar 10 μm. 
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The transition from the lateral to marginal teeth was very abrupt with the 9
th
 and 10

th
 pair 

of laterals being the transitional or intermediate teeth (Figure 3.12).  These intermediate 

laterals were tricuspid with the endocone and mesocone subequal in length.  The 

ectocone was smaller than the preceding laterals, but still placed approximately midway 

on the outer margin of the mesocone.  In the 9
th
 pair, the ectocone split into two smaller, 

acute-shaped denticles (see arrow, Figure 3.12).  The ectocone of the 10
th
 pair did not 

split into two smaller denticles and they resembled the tricuspid shape and pattern of the 

7
th

 and 8
th
 laterals.  This bicuspid pattern of the ectocone was unique for the 9

th
 

intermediate laterals only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12:  Scanning electron micrograph of the intermediate laterals (9th and 10th pair of teeth) of L. 

natalensis (UKZN Pond).  In the 9th pair, the ectocone split into two smaller, acute-shaped denticles 

(indicated by the arrows).  The ectocones of the 10th pair did not split into two smaller denticles and they 

resembled the tricuspid shape and pattern of the 7th and 8th laterals, scale bar 10 μm. 

IL – intermediate lateral tooth; L – lateral tooth; M – marginal tooth. 

 

The marginal teeth commenced at the 11
th
 tooth and there were 12 pairs of these 

multicuspidate teeth on each half of a transverse row (Figure 3.13).  The mesocone 
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persisted throughout the marginal teeth, while the endocone split up into several smaller 

cusps.  The cusps of the endocone and the mesocone were approximately subequal in 

length and this characteristic was maintained throughout the marginals.  In the 1
st
 and 2

nd
 

marginals the endocone split into two cusps (Figure 3.13).  The ectocone was still placed 

approximately midway on the outer margin of the mesocone.  In addition, smaller 

denticles appeared below the ectocone, towards the base of these marginals (1
st
 and 2

nd
 

marginal teeth).  For the marginal teeth 3-12, the mesocone and endocone usually 

consisted of four bluntly rounded claw-like cusps.  In addition, two to three smaller 

denticles were observed below the ectocone.  Proceeding laterally, the teeth became 

longer and more slender.  At the same time, some of the denticles disappeared 

progressively until only a few were left at the margin of the radula. 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13:  Scanning electron micrograph of the marginal teeth (indicated by numbers 3-12) of L. 

natalensis (UKZN Pond).  The marginal teeth were multicuspid having four cusps that were short, bluntly 

rounded and obliquely placed, scale bar 10 μm. 

 

12 
11 

10 
9 

8 

7 
6 

5 
4 3 2 1 

 

10μm 



Chapter 3:  Redescription of Lymnaea natalensis 

 33 

3.4.3.2  Mantle pigmentation patterns 

 

The entire mantle of L. natalensis (UKZN Pond) was gray to black in colour but 

interspersed with unpigmented spots that were usually circular and regular in outline.  

These spots appeared to be numerous in the region above the kidney and towards the mid 

region of the mantle.  The visceral coil was unpigmented (Figure 3.14).  The head was 

diffusely grayish with scattered pigmentation.  Only the outer margin of the foot was 

pigmented (Figure 3.14). 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14:  Lymnaea natalensis (UKZN Pond) – animal with shell removed to show pigmentation 

patterns. 

A – Dorsal view of animal showing the mantle pigmentation pattern, scale bar 10 mm. 

B – Ventral view showing foot and mouth, scale bar 10 mm. 

f – foot; m – mouth; vc – visceral coil; vm – visceral mass. 
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3.4.3.3  Reproductive Anatomy 

 

Figure 3.15 shows the reproductive anatomy of L. natalensis.  The ovotestis (ot) occupies 

the upper whorls of the body and is embedded in the digestive gland.  Externally, it 

appears as an elongated sac composed of a cluster of irregular lobules or acini that empty 

into the ovispermiduct.  The ovispermiduct (osd) is a convoluted tube pale white in 

colour, that passes from the ovotestis to the under side of the albumen gland.  This duct 

can be distinguished into three regions.  The first has a short and thin proximal segment 

connecting the atrium of the ovotestis with the second region, a bosselated swelling of the 

ovispermiduct.  This second region termed the seminal vesicles (sv) is characterised by 

several blind diverticulae.  The third region forms the longest part of the ovispermiduct.  

It narrows into a distal segment that extends from the seminal vesicles and terminates in 

the carrefour. 

 

The albumen gland (ag) is a large kidney-shaped organ that is slightly concave on the 

ventral surface and convex on the dorsal surface.  This gland obscures the carrefour and 

the hindmost portions of the oviduct and ovispermiduct.  The albumen gland opens 

laterally into the carrefour from a broad duct.  On the same side as the opening of the 

albumen gland duct, the ovispermiduct divides into the oviduct and the upper portion of 

the prostate. 

 

The oviduct is a transverse tubular structure that emerges ventrally from the carrefour.  It 

follows a convoluted course from left to right between the albumen and nidamental 

glands, and is divided into two distinct regions.  The region proximal to the albumen 

gland (od1) is smaller than the distal region (od2), which is formed by larger, dilated 

tubes.  Near its distal end, prior to the junction with the nidamental gland, the oviduct 

opens into the oviducal caecum.  The oviducal caecum (odc) is pouch-like, oval in shape 

and situated under the oviduct.  The oviduct then proceeds towards the head, continuing 

into the nidamental gland. 

 



Chapter 3:  Redescription of Lymnaea natalensis 

 35 

The nidamental gland (ng) constitutes the largest part of the female genital system.  This 

voluminous gland is oblong to pyriform in shape, widely convex dorsally and flattened 

ventrally.  The outer surface is characterised by a smooth surface with distinct transverse 

folds that give it a striated appearance.  Its ventral aspect is depressed into a medial 

groove that is occupied by the spermiduct and the prostate. 

 

The spermatheca (sp) varies from slightly elongated to spherical in shape, is yellowish in 

colour and joined to the vagina by the spermathecal duct (spd).  This duct is uniformly 

thin, about as long as the body of the spermatheca and gradually widens as it reaches the 

vaginal wall.  The term vagina, as employed by different authors, does not always denote 

exactly the same structure.  According to Baker (1928), it indicates that portion of the 

female duct which is situated distally to the entrance of the spermathecal duct while de 

Larambergue (1928) and Hubendick (1951) used the term for the slender portion of the 

female duct distally to the broader nidamental gland.  In this study the vagina (va) is 

considered that part of the female genital system which extends distally from the base of 

nidamental gland to the female genital pore (Pretorius and van Eeden, 1969). 

 

The spermiduct (sd) emerges from the carrefour beside the distal portion of the oviduct 

and continues along a depression in the middle of the ventral region of the nidamental 

gland.  On reaching about half the length of the nidamental gland it narrows and then 

swells again to form the prostate gland. 

 

Externally, the prostate gland (pr) can be distinguished into two regions, the apical region 

and the basal region.  The apical region, continuous with the spermiduct, is a long 

flattened ribbon-like structure.  It is yellowish in colour and possesses a granulated outer 

wall.  The basal region of the prostate gland is bulbous in shape.  At the distal end of the 

prostate gland, an inwardly directed fissure is formed by a folding of its margin.   

The vas deferens (vd) emerges from within the distal portion of the prostate gland as a 

comparatively wide tube which gradually becomes smaller in diameter.  The vas deferens 

interweaves with the surrounding tissue and continues somewhat thicker to the penis that 

lies within the penial sheath. 
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The penial sheath (ps) is wider than the vas deferens and is swollen at the proximal end.  

It is a regularly cylindrical muscular tube of about the same length as the praeputium.  

The praeputium (pp) is a hollow cylindrical structure of at least twice the width of the 

penial sheath and characterised by highly muscular walls.  This structure tends to lie at an 

angle to the longitudinal axis of the body and opens directly to the exterior through the 

male genital pore near the base of the right tentacle.  The pigmentation of the praeputium 

is evenly distributed over the whole organ and stout muscle bands attach the praeputium 

to the body wall and the columellar muscle. 

 

The extrinsic muscles of the penial complex are usually two main retractors and several 

smaller retractors and protractors.  A retractor muscle arising from the columellar muscle 

divides into two branches.  One of them, the penial sheath retractor (rps), is inserted into 

the top of the penial sheath and the other, the praeputial retractor (rpp), is inserted into the 

juncture of the penial sheath with the praeputium.  Besides these two main retractors, 

smaller extrinsic muscles are inserted into the praeputial wall.  The protractors of the 

praeputial wall (ppp) connect the wall of the praeputium to the wall of the head while the 

opposing retractors (rpp‟) originate from a branch of the columellar muscle. 
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Figure 3.15:  Reproductive anatomy of L. natalensis (UKZN Pond), scale bar 10 mm. 

ag – albumen gland; ng – nidamental gland; od1 – proximal portion of oviduct; od2 – distal portion of 

oviduct; odc – oviducal caecum; osd – ovispermiduct; ot – ovotestis; pp – praeputium; ppp – protractor 

muscle of praeputium; pr – prostate; ps – penial sheath; rpp – retractor muscle of praeputium;  

rpp‟ – smaller retractor muscle of praeputium; rps – retractor muscle of penial sheath; sd – spermiduct;  

sp – spermatheca; spd – spermathecal duct; sv – seminal vesicle; va – vagina; vd – vas deferens. 
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3.5  Discussion 

 

An understanding of the speciation and taxonomy in the Lymnaeidae is often hampered 

by the considerable morphological plasticity of individuals within the family (Hubendick, 

1951; Burch, 1968; Burch and Lindsay, 1973; Arthur, 1982; Lam and Calow, 1988; 

Evans, 1989; Oviedo et al., 1995; Ward et al., 1997; Wullscheleger and Jokela, 2002).  

Despite the shell shape variation observed in Lymnaea, the shell characteristics of L. 

natalensis from the UKZN Pond were similar to the descriptions of the species given by 

other authors (Krauss, 1848; Connolly, 1939; Hubendick, 1951; Mandahl-Barth, 1954; de 

Azevedo et al., 1961; Brown, 1994; Appleton, 1996; Herbert and Warén, 1999). 

 

Anatomical studies of the soft parts of snails have proved useful in the past for 

identifying and separating species.  However, some authors have proposed that 

anatomical characters are too variable and should be avoided in phylogenetic studies, 

since they are prone to selective processes and hence are more homoplastic than other 

characters (Hubendick, 1951; Bargues et al., 2001; Remigio, 2002).  Other authors 

advocate that only a small, limited set of anatomical characters are useful in determining 

species, such as the distal genitalia, prostate and radula teeth (Hubendick, 1951; Walter, 

1968). 

 

The dentition of the radula has long been established as providing informative characters 

for the taxonomy of gastropods (Ponder and Lindberg, 1996).  The number, shape, size 

and cuspidal features of the central, lateral, intermediate and marginal teeth play 

important roles in classification and have proven to be of value at the generic level 

(Malek and Cheng, 1974; Kilburn, 1988; Monzon et al., 1993). 

 

Lymnaea natalensis sampled from the UKZN Pond had a radula formula of 12:  8-10:  1: 

8-10:  12.  In his discussion of the dentition of L. natalensis (Figure 298:  43), Hubendick 

(1951), mentioned that the central teeth were asymmetrically unicuspid.  This unicuspid 

(with a single rounded cusp) characteristic of the central tooth was also observed by de 

Azevedo et al. (1961) in material from Mozambique. 
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In this study, however, L. natalensis from the UKZN Pond had a central tooth that was 

asymmetrically bicuspid, with the smaller cusp located on the left side towards the base 

of the main cusp.  This smaller cusp diminished in size and disappeared after the 10
th
 – 

15
th
 transverse row, towards the rear of the radula.  This could explain the unicuspid 

characteristic described by Hubendick (1951) and de Azevedo et al. (1961).  According 

to Pretorius and van Eeden (1969), the diminished size and disappearance of the 

accessory cusp could be attributed to detrition.  This was found to be the case in this 

study, as the accessory cusp was present on teeth that had not yet been used for grazing. 

 

The transition from the tricuspid lateral to multicuspid marginal teeth was abrupt with the 

9
th

 and 10
th
 pairs of laterals being the transitional or intermediate teeth (Figure 3.12).  In 

the 9
th
 pair, the ectocone split into two smaller, acute-shaped denticles (see arrow, Figure 

3.12).  This unique characteristic was noted only by de Azevedo et al. (1961):  

“Intermediate teeth with four cusps, irregular, pointed; the internal two larger and joined 

halfway, and the external two smaller and isolated.” 

 

Mantle pigmentation patterns have been used as a useful diagnostic character in the 

descriptions of many lymnaeid species.  Jackiewicz (1993) reported that these patterns on 

the mantle showed great diversity, being similar in some species only.  From a systematic 

standpoint it is pertinent to know to what extent these patterns are stable or to what extent 

they vary within a species.  The pigmentation pattern was consistent among all 

individuals sampled from the UKZN Pond.  The intensity of the pigmentation on the 

mantle varied however among individuals, but the distribution pattern of the spots was 

distinct and similar to those described by other authors (Hubendick, 1951; de Azevedo et 

al., 1961; Pretorius and van Eeden, 1969). 

 

There were no significant differences between the reproductive anatomy of L. natalensis 

from the UKZN Pond and representative of the species described by other authors 

(Hubendick, 1951; de Azevedo et al., 1961; Pretorius and van Eeden, 1969).  Some 

variations were observed within the present material in the dimensions of the 
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spermathecal duct, penial sheath and praeputium, but these were attributed to different 

degrees of contraction and relaxation during preservation. 

 

Hubendick (1951) drew attention to the fact that the different structures of the male 

reproductive anatomy varied so much in shape and intra-species variation within single 

species of Lymnaea, that this system could not be considered as being of taxonomic 

importance in the Lymnaeidae.  In their study of the male reproductive anatomy of L. 

natalensis, Pretorius and van Eeden (1969) observed that in some specimens the penis 

was much shorter than its penial sheath (Pretorius and van Eeden, 1969; see Figure 84, 

page 100), while in other specimens it extended beyond the velum well into the 

praeputium (Pretorius and van Eeden, 1969; see Figure 85, page 100).  These conditions 

reflected the different degrees of retraction and eversion respectively, of the penis at the 

time of fixation.  Similarly, the praeputium was also subject to varying degrees of 

contraction and relaxation (Pretorius and van Eeden, 1969). 

 

In this study, conchological and anatomical characters were used to identify the snail 

population from the UKZN Pond as L. natalensis Krauss, 1848.  Despite some observed 

variation, the individuals sampled from this study site conformed to accounts made by 

other authors. 

 

Historically gastropod taxonomy has been based purely on morphological characters, 

however the large degree of morphological plasticity exhibited by the Lymnaeidae has 

confused the taxonomy of this group.  In the last few decades, the use of molecular 

techniques in taxonomic studies (Márquez et al., 1995; Bargues and Mas-Coma, 1997; 

Bargues et al, 1997; Remigio and Blair, 1997; Stothard et al., 2000; Bargues et al., 2001; 

Remigio, 2002; Bargues et al., 2003; Puslednik, 2006), often in conjunction with more 

traditional morphological approaches, has provided increased taxonomic clarity about 

relationships within molluscan groups.  In a study of lymnaeids from the Amatikulu 

Hatchery and the UKZN Pond, KwaZulu-Natal, South Africa (J. Lamb and K. Pillay, 

unpubl. data), molecular data were obtained by sequencing three gene regions:  two 

mitochondrial DNA genes (cytochrome oxidase subunit I and 16S rRNA) and one 
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nuclear DNA gene (18S rRNA).  In this molecular study, the cytochrome oxidase subunit 

I (COI) gene was chosen as it was useful in analysing variation among closely allied taxa 

(Black et al., 1997; Attwood and Johnston, 2001; Attwood et al., 2003; Remigio and 

Herbert, 2003; Staton, 2003; Genner et al., 2004).  The 16S rRNA region was selected as 

it had both slow and rapidly evolving regions, allowing for family and genus level 

delineation (Hillis and Dixon, 1991; Reid et al., 1996; Remigio and Blair, 1997; Attwood 

et al., 2003).  In addition the slowly evolving 18SrRNA gene was included to resolve any 

deeper phylogenetic divergences. 

 

Figures A1.1 - A1.3 in the Appendix to Chapter 3 represent the trees that were 

constructed using the neighbour-joining method.  The results of this comparative 

molecular study established a clear distinction between the lymnaeids from the UKZN 

Pond and the Amatikulu Hatchery.  The results of the DNA sequencing identified the 

UKZN Pond population as Lymnaea natalensis Krauss, 1848, an indigenous lymnaeid, 

and the population from the Amatikulu Hatchery as Radix rubiginosa (Michelin, 1831), a 

lymnaeid from southeast Asia. 
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3.6  Appendix to Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 (J. Lamb and K. Pillay, unpubl. data) 

 

Figure A1.1:  Tree based on 389 nucleotides of the 18SrRNA gene from lymnaeid samples, with the 

outgroup Stagnicola palustris.  Tree constructed using neighbour-joining method.  Bayesian posterior 

probabilities, neighbour-joining and maximum parsimony bootstrap values were all very weak (<50%) and 

were thus omitted.  The maximum parsimony tree obtained represented a strict consensus of 526 shortest 

trees.  The scale of the branch length of 0.005 represents the number of substitutions per site. 

LNA - samples from the Amatikulu Hatchery, Amatikulu, South Africa; LNP - samples from the Nwanetsi 

River in Mamitwa, Limpopo province, South Africa; LNU - samples from the UKZN Pond, Durban, South 

Africa; LSV - samples from Hanoi, Vietnam. 
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          (J. Lamb and K. Pillay, unpubl. data)  

 

Figure A1.2:  Tree based on 533 nucleotides of the cytochrome oxidase subunit I gene of lymnaeid 

samples, with the outgroup Planorbis corneus.  Tree constructed using neighbour-joining method.  

Numbers on branches represent Bayesian posterior probabilities percentages, neighbour-joining and 

maximum parsimony bootstrap values, respectively.  Only values greater than 50% are shown (* indicates 

support of < 50% for distance analysis).  The maximum parsimony tree obtained represented a strict 

consensus of 219 shortest trees.  The scale of the branch length of 0.002 represents the number of 

substitutions per site. 

LNA - samples from the Amatikulu Hatchery, Amatikulu, South Africa; LNU - samples from the UKZN 

Pond, Durban, South Africa; LSV - samples from Hanoi, Vietnam.
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                    (J. Lamb and K. Pillay, unpubl. data) 

       

Figure A1.3:  Tree based on 360 nucleotides of the 16SrRNA gene of lymnaeid samples, with the outgroup 

Stagnicola elodes.  Tree constructed using neighbour-joining methods.  Numbers on branches represent 

Bayesian posterior probabilities percentages, neighbour-joining and maximum parsimony bootstrap values 

respectively.  Only values greater than 50% are shown (* indicates support of <50% for distance analysis).  

The maximum parsimony tree obtained represented a strict consensus of 210 shortest trees.  The scale of 

the branch length of 0.002 represents the number of substitutions per site. 

LNA - samples from the Amatikulu Hatchery, Amatikulu, South Africa; LNU - samples from the UKZN 

Pond, Durban, South Africa; LSV - samples from Hanoi, Vietnam. 
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________________________________________________________________________ 

 

4 

 

Morphological and Anatomical Variation in Radix rubiginosa and 

Lymnaea natalensis 

 
________________________________________________________________________ 

 

 

4.1  Introduction 

 

The fundamental observation of biology is that morphology and morphological data form 

the basis of virtually all systematic descriptions (MacLeod, 2002).  This is reinforced by 

the fact that the vast majority of systematic studies begin by grouping organisms on the 

basis of morphological similarity.  Once they are so grouped, relationships amongst the 

groups are studied, often by careful examination of variation in morphological features, 

but increasingly often by using these morphologically defined groups as the basis for 

conducting studies on molecular variation (Jensen, 2003).  Hence, morphology remains 

one of the richest and most reliable sources of information about systematic, evolutionary 

and ecological relationships (McLellan and Endler, 1998). 

 

Several types of techniques have been devised for the quantitative analysis of shape 

(Rohlf, 1990; Rohlf and Bookstein, 1990).  Most effort has been directed towards those 

using information about the locations of several points in an image, or landmarks which 

are measured directly on the specimen (Bookstein, 1989; Marcus, 1990; Rohlf and 

Bookstein, 1990; Marcus et al., 1996; McLellan and Endler, 1998).  Various techniques 

for describing shell morphometrics have been widely used in malacology to show 

conchological variations.  At other times they are used to explore ecological 

relationships, usually linking morphological variations to a specific set of environmental 

conditions (Branch and Marsh, 1978; McMahon and Whitehead, 1987; Lam and Calow, 

1988; Denny, 2000).  
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Historically, the shape and sculpture of gastropod shells were considered to be rich 

sources of taxonomic information in the designation of species and evolutionary 

relationships (Chiu et al., 2002).  However, an understanding of the speciation and 

taxonomy in the pulmonate family Lymnaeidae is hampered by the morphological 

problems associated with shell shape variation.  The problem arises due to the great 

morphological range of variation within species of the Lymnaeidae (Hubendick, 1951; 

Burch, 1968; Burch and Lindsay, 1973; Arthur, 1982; Lam and Calow, 1988; Evans, 

1989; Oviedo et al., 1995; Ward et al., 1997; Wullschleger and Jokela, 2002), and this 

causes real difficulties in studies on species determination. 

 

Anatomical studies on lymnaeids have proved useful in the past for the identification of 

species, however, similarities among some species and variation within a species have 

combined to create a number of unusual taxonomic problems (Inaba, 1969).  Despite 

several approaches being used to evaluate the taxonomy and relationships within the 

Lymnaeidae, consensus has not yet been reached because of the poor systematic 

resolution of the information and differing interpretations of and emphases on 

morphological and anatomical features. 

 

The family Lymnaeidae is also of great parasitological importance, due to its capacity to 

act as intermediate hosts of numerous trematode parasites (Brown, 1978; Bargues and 

Mas-Coma, 1997).  These snail-transmitted helminth diseases, in particular fascioliasis 

(which is restricted to the family Lymnaeidae), have serious economic and public health 

impacts (Rim et al., 1994; Marquardt et al., 2000; Remigio, 2002).  Appropriate control 

strategies for fascioliasis cannot be effective if the specific identity of the snail 

intermediate host implicated in transmission cannot be readily determined (Pfenniger et 

al., 2006). 

 

Additionally, the growing interest in biodiversity and its evaluation has highlighted the 

importance of reliable taxonomic identification at the species level (Ronquist and 

Gärdenfors, 2003; De Meeus et al., 2003; Hurtrez-Boussès et al., 2005).  Also, the 

presence or absence of freshwater snails (macroinvertebrates) is used in water quality 
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assessments (Pfenniger et al., 2006).  Such biological monitoring or biomonitoring is an 

essential element needed to assess the environmental health of aquatic ecosystem and to 

protect biological resources (Karr and Chu, 1997).  Biomonitoring has gained increasing 

value since it has been realised that such an assessment can be of critical importance in 

the understanding of environmental threats and also in the prediction of water quality.   

 

In South Africa this was evident in the formal design and implementation of the River 

Health Programme (RHP).  The South African Scoring System (SASS) is a rapid 

biomonitoring index using macroinvertebrate families as indicators (Dickens and 

Graham, 2002) to assess water quality and river health (Dallas, 1997; Vos et al., 2002).  

The prime disadvantage of using invertebrates is the fact that they are difficult to identify 

to species level, as indicated by the previously used Saprobien Index (Kolkwitz and 

Marsson, 1909) and the Chutter Biotic Index (Chutter, 1970). 

 

According to Herricks and Schaeffer (1985) organisms should be easily identifiable in 

order for such a technique to be considered as a valid biomonitoring approach.  In 

addition, the majority of taxonomic identifications in these rapid bioassessments are not 

made by systematic specialists of the representative taxa, resulting in widespread 

misidentifications (Gotelli, 2004; Hurtrez-Boussès et al., 2005). 

 

This difficulty is complicated by the fact that the aquaculture industry and aquarium trade 

(which are implicated in the introduction of several exotic species into South Africa) 

have not been especially concerned with the species-level identification of snails that are 

accidentally introduced (Rawlings et al., 2007).  These growing concerns highlight the 

need for reliable species identifications and a better inspection system at points of entry.  

While identification for SASS surveys need only be to the family level, the results of 

such biomonitoring assessments also include important findings, e.g. invasive species. 

 

In this study, the morphometric approach was used to provide an assessment of the 

suitability and efficacy of conchological characters to help distinguish shell variation 

patterns within and between populations of two species of the Lymnaeidae, the 
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introduced Radix rubiginosa (Michelin, 1831) and the indigenous Lymnaea natalensis 

Krauss, 1848.  This includes an examination of the radula, the reproductive anatomy and 

the pigmentation patterns on the mantle.  These characters were subsequently used as 

criteria to easily recognise and separate R. rubiginosa from L. natalensis by non-

systematic specialists.  It should be noted however that while shell characters and 

pigmentation patterns on the mantle will be useful to SASS practitioners, characteristics 

of the radula and reproductive anatomy will not since they both require careful dissection 

in a laboratory. 
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4.2  Methodology 

 

4.2.1  The Malacological Study Sites 

 

Three study sites (Figure 4.1) were selected namely; Amatikulu Prawn and Fish Hatchery 

(Amatikulu), University of KwaZulu-Natal (UKZN) Pond (Cato Manor, Durban) and 

Greyville Race Course Pond (Greyville, Durban).  All these waterbodies were artificial 

but were chosen because of the depauperate nature of the malacofauna in natural 

waterbodies within the Durban Metropolitan Area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Map of KwaZulu-Natal showing the study sites selected for sampling:  (1) – Amatikulu Prawn 

and Fish Hatchery (Amatikulu); (2) – UKZN Pond (Cato Manor, Durban); (3) – Greyville Race Course 

Pond (Greyville, Durban).
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As noted in Chapter 3, the lymnaeid population from the Amatikulu site was identified 

using molecular techniques as R. rubiginosa while the UKZN Pond population was 

identified as L. natalensis.  In addition, the lymnaeid population from the Greyville Pond 

was also selected as they conformed morphologically to L. natalensis from the UKZN 

Pond. 

 

4.2.1.1  Amatikulu Prawn and Fish Hatchery (Amatikulu) 

 

The hatchery (S 29
o
 04‟ 18.8” E 31

o
 38‟ 54.0”, altitude 12m) is situated in a low lying 

coastal area on the northern bank of the Amatikulu River, approximately 140 km north of 

Durban (Figure 4.2A).  It is an aquaculture facility supplying tropical fish and prawns to 

local and overseas markets.  Aquatic plants are also cultivated and supplied to the 

aquarium trade both in South Africa and abroad. 

 

A total of 52 polytunnels are located on the hatchery (Figure 4.2A), with only 14 utilised 

constantly.  Each of these tunnels housed 28 concrete-lined holding tanks (4.0 x 2.5 m, 

water depth of approximately 1.1 m), used primarily for the breeding and growing of 

tropical fish (Figure 4.2B).  Many of these tanks had blooms of filamentous algae, with 

R. rubiginosa present in high densities on the inner walls and in drains leading from each 

tank to an external reservoir.   

 

This site had a warm climate, with high summer and moderate winter temperatures.  The 

summer mean air temperature was 23
o
C with the winter mean of 18

o
C.  The temperature 

range was 16-37
o
C with a mean annual rainfall of 1500 mm.  The water chemistry 

parameters at the Amatikulu Hatchery were measured by the author at a depth of 30 cm, 

using a YSI 6920 multi-probe data logger.  Selected chemical parameters of tank water 

are summarised in Table 4.1.   
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Figure 4.2 A, B:  The Amatikulu Prawn and Fish Hatchery (Amatikulu). 

A - Aerial view of Hatchery (Courtesy of G. Upfold). 

B - Inside view of tanks in a typical polytunnel. 

A 

B 
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Table 4.1:  Selected water chemistry parameters for the three study sites.  All values measured are indicated 

as mean (± standard deviation), n = 35. 

 

Study Site pH Conductivity (mS/cm) Dissolved Oxygen (mg/L) 

    

Amatikulu 8.26 (± 0.09) 1.31 (± 0.08) 8.20 (± 0.48) 

UKZN Pond 8.13 (± 0.12) 0.57 (± 0.01) 8.08 (± 0.81) 

Greyville Pond 7.72 (± 0.17) 0.93 (± 0.01) 5.48 (± 0.61) 

 

4.2.1.2  UKZN Pond (Cato Manor, Durban) 

 

To avoid repetition the reader is referred to Chapter 3, Section 3.2.1. 

 

4.2.1.3  Greyville Race Course (Greyville, Durban) 

 

This ornamental pond (S 29
o
 50‟ 35.4” E 31

o
 00‟ 53.1”, altitude 16 m) is located 

approximately 5.5 km from the UKZN Pond on a golf course within the grounds of 

Greyville Race Course (Figure 4.3).  It supports floating mats of Nymphaea nouchali, 

Pistia stratiotes and filamentous algae so that about 30% of the water surface was 

generally covered.  The pond had gently sloping banks with the approximate water depth 

recorded in winter and summer of 1.8 m and 3.4 m respectively.  The temperature and 

rainfall data for the Greyville race course Pond were similar to the UKZN Pond.  The 

water chemistry parameters at the Greyville Pond were measured by the author at a depth 

of 30 cm, using a YSI 6920 multi-probe data logger.  A summary of the selected water 

chemistry parameters is presented in Table 4.1. 

 

 

 

 

 

 

 

 



Chapter 4:  Morphological and Anatomical Variation 

 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

        

Figure 4.3:  The Greyville Pond. 

 

4.2.2  Snail species occurring in the study areas 

 

A total of nine freshwater snail species belonging to four families were identified from 

the three study sites (Table 4.2).  Three of the nine were prosobranchs and six were 

pulmonates.  Physa acuta Draparnaud, 1805 was the most widespread species occurring 

in all three study sites while Lymnaea natalensis Krauss, 1848, Helisoma duryi 

Wetherby, 1879 and Melanoides tuberculata Müller, 1774 occurred in two study sites.  

The remaining species were each present in only one of the sites. 
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Table 4.2:  Snail species identified from the three study sites.  (+) indicates presence; (-) indicates absence. 

 

Species Study Site 

 Amatikulu Hatchery UKZN Pond Greyville Pond 

    

Prosobranchs    

Pomacea diffusa + - - 

Melanoides tuberculata + - + 

Tarebia granifera + - - 

    

Pulmonata    

Lymnaea natalensis - + + 

Radix rubiginosa + - - 

Gyraulus chinensis + - - 

Helisoma duryi + - + 

Physa acuta + + + 

Aplexa marmorata - - + 

    

Total species 7 2 5 

Indigenous species 1 1 2 

Introduced species 6 1 3 

 

Compared to the other sites, the Amatikulu site had a greater number of gastropod 

species (Table 4.2), but six of these seven were introduced.  Also, the Greyville Pond was 

the only site to record the presence of both the physids, Aplexa marmorata Guilding, 

1828 and Physa acuta.  In addition, it was noted that the North American lymnaeid, 

Lymnaea columella Say, 1817 was absent from all three sites. 
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4.2.3  Vegetation types present in the study areas 

 

Seven macrophyte species were observed (Table 4.3).   

 

Table 4.3:  Aquatic plant species present in the three study sites.  (+) indicates presence; (-) indicates 

absence. 

 

Species Study Site 

 Amatikulu Hatchery UKZN Pond Greyville Pond 

    

Marsilea sp. - + - 

Cyperus immensus - + - 

Cyperus papyrus - + + 

Cyperus textilis - + + 

Typha capensis - + + 

Nymphaea nouchali + + + 

Pistia stratiotes + + + 

 

4.2.4  Shell Morphology and Morphometrics 

 

4.2.4.1  Characters selected for Shell Morphometric Analysis 

 

Morphometric shell characters were chosen based on their representation in previous 

studies on shell morphometrics and their ability to provide a comprehensive 

characterisation of shell morphology (Pace, 1973; Brandt, 1974; Liu et al., 1979, Burch, 

1980; Lam and Calow, 1988; Chiu et al., 2002).  To assess the morphology of R. 

rubiginosa and L. natalensis shells (Figure 4.4) in a repeatable, objective fashion, a 

traditional morphometric approach was used.  
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Figure 4.4:  Representatives of the family Lymnaeidae, identified from the study areas. 

A – Lymnaea natalensis Krauss, 1848, scale bar 10 mm 

B – Radix rubiginosa (Michelin, 1831), scale bar 10 mm 

 

Shells of two size classes were selected (shell length < 10 mm and shell length ≥ 10 mm).  

An initial suite of six characters for each specimen was measured and used to describe 

the within-group and between-group variability for the two lymnaeid species.  Shell 

characters were measured to the nearest 0.01 mm using a graticuled eyepiece on a Leica 

stereomicroscope and a 20 cm vernier caliper.  To avoid the effects of bilateral 

asymmetry, bilateral characters were measured on the right hand side of the shell.  

Measurements were taken from reference points as denoted in Figure 4.5 for the six 

characters:  shell length (SL), shell width (SW), aperture length (AL), aperture width 

(AW), length of last body whorl (LBW) and spire height (SPH). 

A B 
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Figure 4.5:  Schematic drawing of the six shell characters used for the traditional morphometric approach. 

AL – aperture length; AW – aperture width; LBW – length of last body whorl; SL – shell length; SPH – 

spire height; SW – shell width. 

 

4.2.4.2  Statistical Morphometric Analyses 

 

(a)  Error Measurements 

 

Within any study utilising morphometric data, variation in characters among populations 

may arise from heritable components and non-heritable random variation components 

SL 

SW 

AW 

AL LBW 

SPH 



Chapter 4:  Morphological and Anatomical Variation 

 58 

that often confound true taxonomic and evolutionary relationships (Pankakoski et al., 

1987; Richards, 2007).  Measurement error describes that component of non-heritable 

morphological variation arising from variability of repeated measurements of a particular 

character taken on the same individual, relative to its variability among individuals in a 

particular group (Bailey and Byrnes, 1990). 

 

According to Bailey and Byrnes (1990), repeatability of measurements of a particular 

character varies depending on the level of precision relative to the total variability among 

individuals in a particular group.  Precision, in this sense, is described as the „closeness‟ 

of repeated character measurements to each other and is considered the converse of 

measurement error (Taylor et al., 1990; Zar, 1999).  Furthermore, a term often incorrectly 

used in synonymy with precision is accuracy, which describes the „closeness‟ of a 

measurement to the actual value of the character measured (Zar, 1999). 

 

To assess the associated error levels, 30 individuals with a complete suite of shell 

characters were randomly chosen, five individuals from each of the three study sites and 

the two size classes.  As a test of measurement error, the six shell characters were 

measured once a day for three days.  The series of three measurements were thus 

independent of each other and allowed the measurement error to be assessed. 

 

Percentage measurement error (%ME) is the within-individual error relative to the 

between-individual error, and was calculated using methods outlined in Pankakoski et al. 

(1987).  Mean within-individual coefficients of variation were calculated for each 

individual and character, using arithmetic means and standard deviations.  According to 

Pankakoski et al. (1987), the effects of differences in character means between the 30 

individuals were excluded by calculating separate coefficients of variation for each 

individual, for each character measurement (CVc).  The overall within-individual error 

(CVWI) corresponded to the means of the 30 individual CVc measurements. The overall 

between-individual error (CVBI) was calculated from the total variability of each of the 

three replicates of character measurements for the 30 individuals. 
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The primary objective, using repeated measures of the shell characters, was to assess the 

associated error levels.  This was done to ensure that only characters with low error levels 

were included in the subsequent analyses. 

 

(b)  Principal Component Analysis (PCA) 

 

Since shell character measurements are highly correlated, the morphometric data were 

analysed by PCA (Statistica for Windows Release 5.1, StatSoft Inc., 1996).  The PCA 

maintained the morphological distances among species, yet removed the redundancy of 

highly correlated shell characteristics.  Therefore the primary objective of using PCA was 

to summarise the variation from a correlated multi-attribute to a set of uncorrelated 

components. 

 

The total suite of six shell character measurements was pre-examined for homogeneity 

and transformed to natural logarithms to enhance normality and equalize variances.   

The proportion of the variance subsumed by each component was then expressed as an 

eigenvalue.  This provided a series of loadings showing the correlation of the measured 

characters with the principal components (Blackith and Reyment, 1971; Kuris and Brody, 

1976; Wellington and Kuris, 1983; Rohlf, 1996).  The eigenvalues were then used to 

create a multivariate plot using forward stepwise discriminant function analysis. 

 

(c)  Discriminant Functions Analysis (DFA) 

 

A discriminant functions analysis is an inferential analysis that maximises between-group 

variability and minimises within-group variability, thus allowing for a high percentage of 

correct groupings for conchologically similar species (Flury and Riedwyl, 1983; Norušis, 

1990; Armbruster, 1995).  The significance of the overall discriminatory power of the 

analysis was tested using the Wilks‟ Lambda standard statistic, while the standardised 

coefficients were studied to examine each shell character‟s contribution in the 

discriminant function. 
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The analysis was performed using Statistica for Windows Release 5.1, Statsoft Inc., 

1996.  All assumptions required for the DFA to be performed were met.  These were that 

no two morphometric characters should be highly correlated and that there was no 

significant deviation from normality. 

 

4.2.5  Anatomical Morphology 

 

To avoid repetition the reader is referred to Chapter 3 as indicated below. 

 

4.2.5.1  Radula 

 

See Section 3.2.3.1 of Chapter 3. 

 

4.2.5.2  Mantle pigmentation patterns 

 

See Section 3.2.3.2 of Chapter 3. 

 

4.2.5.3  Reproductive Anatomy 

 

See Section 3.2.3.3 of Chapter 3. 
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4.3  Results 

 

4.3.1  Shell Morphology and Morphometrics 

 

4.3.1.1  Shell Description 

 

(a)  Radix rubiginosa (Amatikulu Prawn and Fish Hatchery) 

 

The shell is broadly ovate and dextral (Figure 4.6).  Radix rubiginosa has a hard, 

relatively thick shell (172.60 μm ± 14.10, n = 15 see Figure 3.3 of Chapter 3) with 

moderate to prominent sutures.  The spire is variable and elongate and its contours merge 

gradually into those of the body whorl.  The colour of the shell varies from glossy pale 

yellow to dark brown.  The body whorl is markedly swollen and forms the greatest 

portion of the shell. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6:  Shells of R. rubiginosa (Amatikulu) showing the variation found in the population, scale bar 10 

mm. 

 

The aperture is relatively large, wide and semi-ovate to ear-like.  The peristome is thick 

with the lower lip of the columella that merges with the peristome curved back or 
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deflected slightly.  The outer lip of the aperture is often expanded; the inner lip is more or 

less elevated and continuous across the body.  The upper region of the peristome is 

usually relatively straight and directed outwards; below this region the peristome runs 

almost parallel to the main axis of the shell.  The umbilicus is completely closed.  The 

columellar margin is narrowly reflexed and generally twisted or obliquely folded where it 

joins the parietal wall; the columellar axis is twisted but not gyrate.  The sculpture 

consists of growth lines only; these are distinct on the body whorl, but less distinct on the 

preceding whorls. 

 

(b)  Lymnaea natalensis (UKZN Pond) 

 

The shell is succineiform (Figure 4.7), dextral and thin (110.60 μm ± 22.14, n = 15 see 

Figure 3.3 of Chapter 3).  The colour of the shell varies from glossy, pale yellowish, 

brownish to dark brownish.  There is an elongate, tapering spire with an acute apex.  

These characteristics of the spire however, were variable.  There are generally four 

tightly coiled and convex whorls that are separated by well-impressed and constricted 

sutures.  The body whorl is markedly swollen and forms the greatest portion of the shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  Shells of L. natalensis (UKZN Pond) showing the variation found in the population, scale bar 

10 mm. 
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The aperture is large and ovate, with a fold in the middle part of the parietal wall on 

which a thin white callus can be observed.  The base of the aperture joins the columella in 

a broadly rounded curve.  The peristome is thin and sharp.  The outer lip of the aperture is 

generally evenly rounded; inner lip is closely appressed to the parietal wall.  The 

umbilicus is completely closed by the expanded and reflected inner lip.  The columella is 

short, straight and attenuate at the base; the columellar axis is generally gyrate or twisted.  

The sculpture consists of growth lines only; these are distinct on the body whorl, but less 

prominent on the preceding whorls. 

   

(c)  Lymnaea natalensis (Greyville Pond) 

 

The shell morphology L. natalensis from the Greyville Pond (Figure 4.8) was similar to 

that described for L. natalensis from the UKZN Pond.  The shell was however thinner 

(102.89 μm ± 6.21, n = 15 see Figure 3.3 of Chapter 3) than the UKZN Pond L. 

natalensis population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8:  Shells of L. natalensis (Greyville Pond) showing the variation found in the population, scale 

bar 10 mm. 
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4.3.1.2  Error Measurements 

 

Table 4.4 provides some of the descriptive statistics and values for within-individual and 

between-individual variability for each shell character in 30 randomly selected 

specimens, i.e. both size classes combined.  The percentage measurement error (%ME), 

arranged in increasing order of magnitude, ranged from 0.29% to 3.03%.  Shell length 

(SL) had the lowest %ME (0.29%), while aperture width (AW) had the highest (3.03%). 

 

Table 4.4:  Descriptive statistics for the six shell characters (n = 30), arranged in order of increasing 

percentage measurement error (%ME).  CVWI = overall within-individual error and CVBI = overall 

between-individual error.  Minimum (min), maximum (max) and mean values are provided for each 

character.  To assess the associated error levels, 30 individuals with a complete suite of shell characters 

were randomly chosen, five individuals from each of the three study sites and the two size classes.   

 

Character 
Min Value 

(mm) 

Max Value 

(mm) 

Mean 

(mm) 
CVWI CVBI %ME 

       

Shell Length (SL) 4.39 25.30 12.01 0.15 53.50 0.29 

Length of Last Body Whorl (LBW) 3.89 22.21 10.69 0.26 53.21 0.48 

Shell Width (SW) 2.00 14.20 6.25 0.49 56.30 0.87 

Aperture Length (AL) 3.00 18.93 8.72 0.88 54.97 1.61 

Spire Height (SPH) 0.35 3.24 1.32 1.07 59.02 1.81 

Aperture Width (AW) 1.50 10.00 4.60 1.60 52.90 3.03 

 

Shell characters with high %ME were often associated with high within-individual 

variability and could not be accurately measured.  Aperture length (AL) and aperture 

width (AW) displayed %ME values of 1.61% and 3.03% respectively.  These high %ME 

values were a result of the difficulty in recording such measurements accurately, the 

fragility of the aperture and the inability to locate definable and consistent endpoints 

across the individuals examined. 

 

Spire height (SPH) had a relatively high %ME (1.81%), even though it was defined using 

two unambiguous points on the shell.  This was probably because the three-dimensional 
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curvature of the shell made it more difficult than expected to get an accurate 

measurement of this height each time. 

 

Following Taylor et al. (1990) characters with %ME greater than 10% were considered 

unreliable and should be discarded from the data set.  No characters displayed %ME 

greater than 10%, hence the full suite of six characters was used in further analyses of the 

shells (Table 4.4). 

 

The consequences of high %ME are important.  In univariate analyses, statistical tests of 

differences among groups will be more conservative for those measurement variables 

with a substantial %ME.  Since covariances between measurement variables will also be 

affected by the high %ME, the correct biological interpretation of discriminant or 

principal component axes would be difficult (Bailey and Byrnes, 1990). 

 

Between-individual coefficients of variation were uniformly high, reflecting the large 

size range of snails in the randomly selected sample of 30 individuals (Table 4.4).  

Within-individual coefficients of variation were low, ranging from 0.15 to 1.60, for shell 

length and aperture width respectively. 

 

4.3.1.3  Normality, Skewness and Kurtosis 

 

Results of the basic statistics and tests for normality, skewness and kurtosis for the shell 

characters of size classes 1 and 2 are presented in Tables 4.5 and 4.6 respectively.  Shell 

characters were skewed or kurtotic if data values exceeded twice the value of the standard 

error of g1 (skewness) or g2 (kurtosis).   

 

In size class 1 (shell length < 10 mm), standard error levels for g1 were 0.264 and 0.523 

for g2.  Characters with g1 values greater than 0.528 were skewed and characters with g2 

values greater than 1.046 were kurtotic.  All characters in the data set were therefore 

normally distributed (p > 0.05), non-skewed and non-kurtotic (Zar, 1999). 
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Table 4.5:  Basic statistics (arithmetic mean and standard deviation) for the six shell characters of size class 

1 (shell length < 10 mm) from the three study sites (n = 100).  The results of the normality (Kolmogorov-

Smirnov Test), skewness (g1) and kurtosis (g2) tests are also given. 

 

Character Mean (mm) SD KS-Test g1 g2 

      

Shell Length (SL) 5.77 2.28 0.546 -0.241 -0.602 

Shell Width (SW) 2.92 1.16 0.464  0.021 -0.518 

Aperture Length (AL) 4.09 1.62 0.576 -0.149 -0.384 

Aperture Width (AW) 2.24 0.90 0.814  0.141 -0.256 

Length of Last Body Whorl (LBW) 5.16 1.99 0.873 -0.252 -0.549 

Spire Height (SPH) 0.61 0.33 0.844  -0.229 -0.566 

 

In size class 2 (shell length ≥ 10 mm), standard error levels for g1 were 0.204 and 0.406 

for g2.  Characters with g1 values greater than 0.408 were skewed and characters with g2 

values greater than 0.812 were kurtotic.  All characters in the data set were normally 

distributed (p > 0.05), non-skewed and non-kurtotic, except spire height.  Spire height 

was not normally distributed and skewed to the right (g1 = 0.899). 

 

Table 4.6:  Basic statistics (arithmetic mean and standard deviation) for the six shell characters of size class 

2 (shell length ≥ 10 mm) from the three study sites (n = 100).  The results of the normality (Kolmogorov-

Smirnov Test), skewness (g1) and kurtosis (g2) tests are also given. 

 

Character Mean (mm) SD KS-Test g1 g2 

      

Shell Length (SL) 16.06 3.19 0.731 0.250 0.133 

Shell Width (SW) 8.47 1.69 0.822  0.283 0.330 

Aperture Length (AL) 11.70 2.26 0.592 0.074 0.409 

Aperture Width (AW) 6.28 1.17 0.571 0.304 0.531 

Length of Last Body Whorl (LBW) 14.13 2.71 0.913 0.165 0.322 

Spire Height (SPH) 1.93 0.62 0.005 0.899 0.386 
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4.3.1.4  Size Class 1 (shell length < 10 mm) 

 

(a)  Principal Component Analysis  

 

Six principal component loading values (correlation coefficients) were derived from the 

six shell characters for size class 1 (Table 4.7).  Principal component 1 described 97.85% 

of the variance and yielded high loading values for shell length, length of last body 

whorl, aperture length and shell width (Table 4.7).  This suggests that PC1 is a measure 

of size. 

 

The remaining five principal components (PC2, PC3, PC4, PC5 and PC6) accounted 

collectively for the remaining 2.15% of the variance.  Spire height showed the highest 

loading value for PC2.  Aperture width loaded the highest for PC3, shell width for PC4, 

aperture length for PC5 and shell length for PC6. 

 

Table 4.7:  Component loadings (correlation coefficients) of shell morphological characters for R. 

rubiginosa and L. natalensis from size class 1 (shell length < 10 mm).  The component loadings were 

derived from principal component analysis of the six shell characters after natural logarithm 

transformation.  Values with the highest component loadings are in bold. 

 

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

       

Log10SL -0.998214 0.015822 -0.050174 0.002547 0.027680 0.005256 

Log10SW -0.992021 -0.004263 0.090009 0.088111 -0.003445 -0.000118 

Log10AL -0.992994 0.076177 -0.077374 0.003415 -0.046502 0.000234 

Log10AW -0.987409 0.097121 0.101994 -0.072020 -0.001307 0.000024 

Log10LBW -0.996042 0.057504 -0.060752 0.004381 0.029336 -0.004744 

Log10SPH -0.968282 -0.248256 -0.002656 -0.027463 -0.006162 -0.000681 

Cumulative % 97.8536 
 

99.1943 
 

99.7061 
 

99.9351 
 

99.9992 
 

100.0000 
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(b)  Discriminant Function Analysis 

 

The DFA extracted two highly significant functions (Wilks‟ Lambda = 0.14707, F = 

19.559, d.f. = 12, 146, p < 0.00001).  Functions 1 and 2 explained 85.15% and 14.85% of 

the total morphometric variation respectively.  Within the first function, principal 

component 1 was an important parameter of discrimination (Table 4.8).  The shell 

characters contributing the highest loading values for principal component 1 (see Table 

4.7) were shell length (0.998214), length of last body whorl (0.996042), aperture length 

(0.992994) and shell width (0.992994).  These shell characters were identified as those 

having the longest dimensions of the shell.  Function 1 was therefore interpreted as 

representing the overall size component. 

 

Table 4.8:  Standardised canonical discriminant function coefficients of principal component loadings for 

R. rubiginosa and L. natalensis from size class 1 (shell length < 10 mm).  Only the results of those 

parameters that contributed significantly to the DFA model are shown. 

   

Variable Function 1 Function 2 Wilks’ λ F to remove p 

      

PC 3 -0.827665 -0.719902 0.326239 44.46592 <0.00001 

PC 1 0.916043 -0.605516 0.330573 45.54144 <0.00001 

PC 4 -0.826474 0.029758 0.237058 22.33290 <0.00001 

PC 2 0.773824 -0.099656 0.224934 19.32408 <0.00001 

PC 5 -0.536413 0.079098 0.181850 8.63142 <0.00043 

Eigenvalue 3.310254 0.577503    

Cumulative % 85.15 100.00    

Wilks‟ λ 0.147071 0.633913    

χ2 144.7214 34.4162    

d.f. 12 5    

p <0.00001 <0.00001    
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The remaining variance must then be attributed to factors other than size, i.e. aspects of 

shape.  Principal component 3 (PC3) contributed the most to Function 2 (see Table 4.8).  

Aperture width contributed the highest character loadings on PC3 (see Table 4.7).  

Function 2 therefore represented a part of the overall shape component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9:  Plot of canonical scores defined by functions 1 and 2 from forward stepwise DFA of shell 

morphological characters for size class 1 (shell length < 10 mm).  Radix rubiginosa from the Amatikulu 

site is represented by the closed circles (●).  Lymnaea natalensis from the UKZN Pond and Greyville Pond 

are indicated by the open triangles () and open squares (□) respectively. 

 

The plot of canonical scores Figure 4.9 separated the lymnaeids into two main distinct 

clusters.  Lymnaea natalensis from the UKZN Pond and Greyville Pond were separated 

from R. rubiginosa along function 1.  This axis ordinated the shells in a gradient from 

larger, more broadly ovate and larger body whorl characteristics (negative scores), to 

smaller, elongated shells with smaller body whorl characteristics (positive scores). 
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Function 2 ordinated the shells in a gradient from those with a larger, wider aperture 

(positive scores) to a narrower aperture (negative scores).  Aperture width was a highly 

discriminant parameter for R. rubiginosa and L. natalensis (UKZN Pond), grouping them 

closely together.  This shell character however, displayed considerable variation for the 

Greyville Pond L. natalensis population, as indicated by the range of both positive and 

negative scores along function 2 of the canonical plot (Figure 4.9). 

 

4.3.1.5  Size Class 2 (shell length ≥ 10 mm) 

 

(a)  Principal Component Analysis 

 

Six principal component loading values (correlation coefficients) were derived from the 

six shell characters for size class 2 (Table 4.9).  Principal component 1 described 90.24% 

of the variance and yielded high loading values for shell length and length of the last 

body whorl (Table 4.9).  This suggests that PC1 is a measure of size. 

 

Table 4.9:  Component loadings (correlation coefficients) of shell morphological characters for R. 

rubiginosa and L. natalensis from size class 2 (shell length ≥ 10 mm).  The component loadings were 

derived from principal component analysis of the six shell characters after natural logarithm 

transformation.  Values with the highest component loadings are in bold. 

 

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

       

Log10SL -0.994800 -0.000103 -0.068332 0.050334 -0.055741 0.007940 

Log10SW -0.977739 0.028319 -0.098430 -0.182905 0.009077 0.000035 

Log10AL -0.977583 0.136401 -0.093734 0.074552 0.106688 -0.000051 

Log10AW -0.927529 0.197646 0.317010 -0.011457 -0.000123 0.000013 

Log10LBW -0.984631 0.119344 -0.092902 0.053804 -0.068457 -0.006793 

Log10SPH -0.826713 -0.558552 0.064457 0.016365 0.011854 -0.001459 

Cumulative % 90.2422 
 

96.6538 
 

98.9275 
 

99.6748 
 

99.9981 
 

100.0000 
 

 

The remaining 9.76% of the variance was explained collectively by the five principal 

components (PC2, PC3, PC4, PC5 and PC6).  Spire height showed the highest loading 
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value for PC2, aperture width loaded the highest for PC3, shell width for PC4, aperture 

length for PC5 and shell length for PC6. 

 

(b)  Discriminant Function Analysis 

 

The DFA extracted two highly significant functions (Wilks‟ Lambda = 0.24276, F = 

27.593, d.f. = 10, 268, p < 0.00001).  Function 1 representing 77.97% of the total 

morphometric variation extracted principal component 1 as an important parameter of 

discrimination (Table 4.10).  The shell characters contributing the highest loading values 

for principal component 1 (see Table 4.9) were shell length (0.994800) and length of last 

body whorl (0.984631).  Since these characters represented the longest dimensions of the 

shell, function 1 was interpreted to explain the overall size component. 

 

Table 4.10:  Standardised canonical discriminant function coefficients of principal component loadings for 

R. rubiginosa and L. natalensis from size class 2 (shell length ≥ 10 mm).  Only the results of those 

parameters that contributed significantly to the DFA model are shown. 

 

Variable Function 1 Function 2 Wilks’ λ F to remove p 

      

PC 2 0.825842 0.509240 0.426735 50.77415 <0.0001 

PC 1 0.886745 0.044926 0.402903 44.19682 <0.0001 

PC 5 -0.647446 0.419957 0.337082 26.03086 <0.0001 

PC 3 0.181302 -0.788722 0.309722 18.47974 <0.0001 

PC 4 0.414621 -0.371306 0.283538 11.25344 <0.0001 

Eigenvalue 1.754104 0.495672    

Cumulative % 77.97 100.00    

Wilks‟ λ 0.242763 0.668596    

χ2 192.53 54.75    

d.f. 10 4    

p <0.0001 <0.0001    

 

Function 2 explained 22.03% of the morphometric variation and was considered an 

aspect of shape.  Along function 2, function principal component 3 (PC3) contributed the 



Chapter 4:  Morphological and Anatomical Variation 

 72 

highest coefficient (see Table 4.10).  Table 4.9 shows that aperture width contributed the 

highest character loadings on PC3.  Function 2 therefore represented a part of the overall 

shape component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10:  Plot of canonical scores defined by function 1 and 2 from forward stepwise DFA of shell 

morphological characters for size class 2 (shell length ≥ 10 mm).  Radix rubiginosa from the Amatikulu 

site is represented by the closed circles (●).  Lymnaea natalensis from the UKZN Pond and Greyville Pond 

are indicated by the open triangles () and open squares (□) respectively. 

 

The plot of canonical scores (Figure 4.10) separated the lymnaeids into two distinct 

clusters along function 1.  Function 1 ordinated the shells in a gradient from larger, more 

broadly ovate and larger body whorl (negative scores), to smaller, elongated shells with 

smaller body whorl (positive scores). 

 

The shell variability of R. rubiginosa and L. natalensis (UKZN Pond) overlapped in the 

central morphospace of the canonical plot, forming a cluster that was significantly 
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different from that of L. natalensis (Greyville Pond).  The Greyville Pond L. natalensis 

population formed a distinct cluster in the lower right quadrant of the DFA plot, 

displaying characteristics of smaller shell lengths and a much reduced last body whorl in 

comparisons to those of the „Radix rubiginosa – Lymnaea natalensis (UKZN Pond)‟ 

cluster. 

 

Function 2 had principal component 3 (aperture width) contributing the highest loading 

value (see Table 4.10).  Shells were ordinated on this axis from those with larger, wider 

apertures (positive scores) to narrower apertures (negative scores). 

 

Function 2 separated both the populations of L. natalensis.  The L. natalensis population 

from the UKZN Pond overlapped with R. rubiginosa forming a cluster in the central 

morphospace of the canonical plot, indicating a large overlap of aperture width 

measurements.  Lymnaea natalensis from the Greyville Pond however, formed a distinct 

cluster in the lower right quadrant of the DFA plot.  Hence, aperture width proved to be a 

highly discriminant parameter, between both L. natalensis populations. 
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4.3.2  Anatomical Morphology 

 

4.3.2.1  Radix rubiginosa 

 

(a)  Radula 

 

The teeth were divided into three distinct series, the central, laterals and marginals. An 

additional series of intermediate teeth was transitional between the laterals and marginals, 

combining the characteristics of these two series of teeth.  Each radula generally 

consisted of 80 - >100 overlapping rows of these teeth.  In studying the radula 

morphology it is important to consider only the newer perfect teeth, as older teeth near 

the mouth are usually worn and hence give a false idea of the true form of the cusps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11:  Scanning electron micrograph of the central tooth and lateral teeth of R. rubiginosa.  A 

smaller accessory cusp is located on the left side towards the base of the central tooth (indicated by the 

arrows), scale bar 3 μm. 

C – central tooth; L – lateral tooth. 
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Examination of representative radula showed 95 – 116 rows of teeth, each row consisting 

of a central tooth, 11 pairs of lateral teeth (two pairs were identified as intermediate teeth) 

and 21 pairs of marginal teeth.  Each transverse row had a radula formula of 21:  11:  1:  

11:  21.  A single longitudinal row of median or central teeth was found at the middle of 

the radula (Figure 4.11).  The central tooth was asymmetrically bicuspid, having a sharp 

spade-like triangular cusp.  A smaller accessory cusp was located on the left side towards 

the base (see arrows, Figure 4.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12:  Scanning electron micrograph of the lateral teeth from the left side of a transverse row of R. 

rubiginosa, scale bar 10 μm. 

 

The laterals were a little longer than wide, usually asymmetrically tricuspid and were the 

largest teeth in the radula (Figures 4.11 and 4.12).  These teeth had a small, short, spade-

shaped endocone (inner cusp) situated close to and adjacent to a much larger and longer 

mesocone (medial cusp).  These cusps were fused.  The mesocone was about three times 

as wide as the endocone and bluntly rounded.  The ectocone (outer cusp) was much larger 

than the endocone and seemed to overlie the fused endocone and mesocone. 

 

10μm 
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In R. rubiginosa, the 1
st
 and 2

nd
 pair of laterals displayed a sub-equal endocone and 

ectocone.  The distance down the mesocone, leading to both the endocone and ectocone 

was similar (Figures 4.11 and 4.12).  For lateral pairs 3 – 9, the ectocone began to 

migrate lower down towards the base of the mesocone and appeared to be prominently 

overlying (Figure 4.12).  The number of lateral teeth on each side of the central tooth was 

consistent for R. rubiginosa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13:  Scanning electron micrograph of the intermediate laterals (10th and 11th pairs of teeth) of R. 

rubiginosa.  The 10th pair was tricuspid but developed a small enlargement towards the base of the 

ectocone (indicated by the arrow).  In the 11th pair the ectocone, located towards the base of the tooth, split 

into two cusps, scale bar 10 μm. 

IL – intermediate lateral tooth; L – lateral tooth; M – marginal tooth. 

 

The intermediate laterals (10
th
 and 11

th
 pairs of teeth), situated after the nine pairs of 

lateral teeth, were “transitional” forms, i.e. they began to change from the tricuspid 

pattern of the laterals into the multicuspid pattern of the marginals (Figure 4.13).   
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The 10
th
 intermediate pair displayed the tricuspid pattern with the development of a small 

enlargement towards the base of the ectocone (see arrow, Figure 4.13).  In the 11
th
 pair 

the mesocone was smaller, more spade-shaped and sub-equal with the endocone.  The 

ectocone, located towards the base of the tooth, split into two cusps.  This bicuspid 

pattern of the ectocone was distinct in the marginals, but became progressively 

degenerate and even absent in the marginals towards the lateral margin of the radula. 

 

The marginal teeth, the last of the morphological tooth types, comprised the outermost 

group of teeth on each side of a transverse row (Figure 4.14).  The endocone and 

mesocone were subequal and split into tiny denticles giving rise to the multicuspid 

condition common to most marginals.  The marginal teeth of R. rubiginosa possessed 

four to five cusps that were short, bluntly rounded and obliquely placed.  A few of the 

smaller cusps were acute and triangular shaped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14:  Scanning electron micrograph of the marginal teeth of R. rubiginosa, scale bar 10 μm. 
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There were a further two smaller cusps at the outer margin, towards the base of each 

tooth.  These cusps, representing the reduced ectocone, may occur on up to the 4
th
 or 5

th
 

last marginal tooth, beyond which they progressively disappeared.  Proceeding laterally, 

there was a reduction of the number of cusps as the size of the tooth itself reduced 

(Figure 4.14).  Marginal teeth occupying the extreme lateral borders of the radula had 

smaller and poorly defined blunt-shaped cusps.  These extreme marginals were claw-like 

with three small cusps. 

 

(b)  Mantle pigmentation 

 

The mantle surface of R. rubiginosa was mottled black with patches of pale white to 

yellow, interspersed with numerous unpigmented spots (Figure 4.15).   

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Figure 4.15:  External features and pigmentation patterns of R. rubiginosa from the Amatikulu hatchery. 

A – Dorsal view of animal with shell removed to show the mantle pigmentation pattern, scale bar 10 mm. 

B – Ventral view showing foot and mouth, scale bar 10 mm. 

el – eye lobe; f – foot; t – tentacle; m – mouth; vc – visceral coil; vm – visceral mass. 
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These circular spots were numerous in the region above the kidney and towards the mid-

region of the mantle surface.  There were also large unpigmented fields and stripes. 

 

A pale white collar area bordered the mantle edge (Figure 4.15).  Above this collar area 

the mantle surface was heavily pigmented with a strongly developed, narrow, irregular 

black stripe.  This pigmentation pattern was observed for R. rubiginosa but not for L. 

natalensis.  The head was diffusely grayish with scattered darker pigmentation.  Only the 

outer margin of the foot was pigmented.  Visceral coil pigmentation was absent. 

 

(c)  Reproductive Anatomy 

 

The reproductive anatomy of R. rubiginosa was similar to that of L. natalensis from the 

UKZN Pond (see Section 3.4.3, Figure 3.15 of Chapter 3). 

 

The penial sheath is wider than the vas deferens and is swollen at its proximal end.  It is 

about twice the length of the praeputium.  The praeputium of R. rubiginosa displayed a 

more intense pigmentation pattern than that of L. natalensis.  The pigmentation of the 

praeputium of R. rubiginosa is also distributed over the whole organ, much like that of L. 

natalensis.  The spermatheca is rounded and connected to the vagina by a long, slender 

spermathecal duct.  The number of lobules / diverticula in the prostate is an important 

character in the planorbids, especially Biomphalaria.  There was however, no difference 

in this character between R. rubiginosa and L. natalensis. 
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4.3.2.2 Lymnaea natalensis (UKZN Pond) 

 

To avoid repetition the reader is referred to Chapter 3 as indicated below. 

 

(a)  Radula 

 

See Section 3.4.3, Figure 3.10-3.13 of Chapter 3. 

 

(b)  Mantle Pigmentation 

 

See Section 3.4.3, Figure 3.14 of Chapter 3. 

 

(c)  Reproductive Anatomy 

 

See Section 3.4.3, Figure 3.15 of Chapter 3. 
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4.3.2.3 Lymnaea natalensis (Greyville Pond) 

 

(a)  Radula 

 

Examination of representative radulae showed the presence of 108 – 120 rows of teeth, 

with each half row consisting of a central tooth, eight pairs of lateral teeth (two pairs 

were identified as intermediate teeth) and usually 28-30 pairs of marginal teeth.  Each 

transverse row therefore had a radula formula of 28-30:  8:  1:  8:  28-30. 

 

The single longitudinal row of central teeth was asymmetrically bicuspid.  The main cusp 

was sharply pointed and triangular in shape (Figure 4.16) with a smaller, bluntly rounded 

accessory cusp on the left side towards the base.  This accessory cusp (see arrow, Figure 

4.16), was not as prominent as that observed in L. natalensis from the UKZN Pond (see 

arrow, Figure 3.10). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16:  Scanning electron micrograph of the central tooth and lateral teeth of L. natalensis 

(Greyville), scale bar 3 μm. 

C – central tooth; L – lateral tooth. 
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The laterals were a little longer than wide and asymmetrically tricuspid (Figure 4.17).  

These teeth consisted of a small, short and spade-shaped endocone situated adjacent to a 

much larger and longer mesocone.  The endocone was also slightly directed towards the 

mesocone.  Proceeding laterally, the mesocone became more pronounced with the 

endocone being situated higher up the inner margin of the mesocone (Figure 4.17).  The 

ectocone was much larger than the endocone and seemed to overlie the fused endocone 

and mesocone more prominently than was observed for the lymnaeids from the UKZN 

Pond L. natalensis population (see, Figure 3.11). 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17:  Scanning electron micrograph of the lateral teeth of L. natalensis (Greyville), scale bar 10 μm. 

 

The intermediate laterals (7
th
 and 8

th
 pair of teeth) were obliquely placed with a reduced 

and smaller mesocone (Figure 4.18).  On the 8
th
 pair, the endocone sometimes split and 

displayed the formation of a small denticle (see arrow, Figure 4.18). 
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Figure 4.18:  Scanning electron micrograph of the intermediate laterals (7th and 8th pair of teeth) of L. 

natalensis (Greyville), scale bar 10 μm. 

IL – intermediate lateral tooth; L – lateral tooth; M – marginal tooth. 

 

The mesocone and endocone of the marginal teeth were subequal with usually three to 

four bluntly rounded cusps (Figure 4.19).  The ectocone became much reduced and 

sometimes absent in the marginals towards the lateral margin of the radula.  Proceeding 

laterally, there was a reduction of the number of cusps as the size of the tooth itself was 

reduced.  These marginal teeth were smaller, narrower and had poorly defined blunt 

cusps. 

M 
M 

IL IL L L 

8 7 

 

10μm 



Chapter 4:  Morphological and Anatomical Variation 

 84 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.19:  Scanning electron micrograph of the marginal teeth of L. natalensis (Greyville), scale bar 10 

μm.  

 

(b)  Mantle Pigmentation 

 

The entire mantle surface was covered by a grayish to black pigmentation, interspersed 

with clusters of unpigmented spots that were usually circular and regular in outline 

(Figure 4.20).  These spots were numerous in the region above the kidney and towards 

the mid-region of the mantle.   

 

The mantle boundary was heavily pigmented and described by a strongly developed, 

fairly broad, irregular black stripe (Figure 4.20).  The visceral coil was unpigmented.  

The head and foot displayed a diffusely gray pigmentation.  
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Figure 4.20:  External features and pigmentation patterns of L. natalensis (Greyville). 

A – Dorsal view of animal with shell removed to show the mantle pigmentation pattern, scale bar 10 mm. 

B – Ventral view showing foot and mouth, scale bar 10 mm. 

el – eye lobe; f – foot; t – tentacle; m – mouth; vc – visceral coil; vm – visceral mass. 

 

(c)  Reproductive Anatomy 

 

There were no differences observed between L. natalensis from the UKZN Pond and the 

Greyville Pond.  For a description of the reproductive anatomy see Section 3.4.3, Figure 

3.15 of Chapter 3. 

 

 

 

 

 

 

 

A 

vm 

B 

vc 

el t 

f 

m 



Chapter 4:  Morphological and Anatomical Variation 

 86 

4.4  Discussion 

 

During the last century, humans have caused an unprecedented redistribution of many 

organisms, including plants and animals.  As introductions of non-indigenous species 

continue in biological communities the accurate identification of species is fundamental 

to both basic and applied aquatic research.  Studies of community structure, food web 

dynamics, biodiversity and biomonitoring depend critically on the accuracy of species 

discrimination and identification.  It is therefore increasingly important for ecologists to 

be able to identify invasives and to understand the spread of the invasive species as well 

as to predict the impact that a given invasive will have on indigenous species in the 

invaded habitat (Parker et al., 1999; Byers and Goldwasser, 2001). 

 

The genus Radix Montfort, 1810 (Gastropoda:  Basommatophora:  Lymnaeidae), 

formerly included in Lymnaea, has a European and Asian distribution (Pfenninger et al., 

2006).  Radix rubiginosa identified from the Amatikulu Prawn and Fish Hatchery, is 

indigenous to southeast Asia (Monzon et al., 1993; Remigio and Blair, 1997).  This 

implies that the snails were introduced to KwaZulu-Natal as a result of trade in the pet 

and aquarium industry. 

 

The presence of these potentially invasive snails has important implications for 

freshwater invertebrate diversity and to humans and domestic stock due to their role as 

intermediate hosts of F. gigantica (Srihakim and Pholpark, 1991; Malone, 1997) and the 

avian blood fluke, Trichobilharzia sp., a cause of schistosome dermatitis (Nithuithai et 

al., 2004).  Radix rubiginosa has also been identified as the intermediate host for 

Schistosoma incognitum (Bunnag et al., 1983) and various echinostomes (Charoenchai et 

al., 1997).  The natural habitat for R. rubiginosa includes the low-lying areas of 

tropical/subtropical southeast Asia which suggests that if it becomes invasive it could 

colonize the lowlands KwaZulu-Natal, Mpumalanga, Limpopo and perhaps further north 

and eastwards.  This presents a problem as it could then exacerbate the fascioliasis 

problem in the country.  However efforts aimed at controlling fascioliasis cannot be 

effective if the specific identity of the snail hosts implicated in transmission has not been 
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determined (Pfenninger et al., 2006).  This is particularly true for lymnaeids, given their 

long history of taxonomic confusion resulting from a purely phenotypic approach. 

 

4.4.1  Shell Morphology and Morphometrics 

 

Molluscan taxonomy has historically been based largely on morphological characters, 

with shell form, radular structure and anatomy being the most commonly used characters.  

However, the large degree of morphological plasticity exhibited by lymnaeids has 

plagued the taxonomy of this family and the value of these morphological characters is 

therefore under scrutiny.  In this study, the morphometric approach was used to provide 

an assessment of the suitability of conchological characters to be used as identification 

criteria for separating R. rubiginosa and L. natalensis. 

 

Size is assumed to correspond to general factors, i.e. linear combinations of appropriate 

suites of characters (Mosimann and Malley, 1979; Bookstein et al., 1985; Sundberg, 

1989).  There are many ways in which such a general-size factor could be defined.  It is 

most commonly taken as the first principal component obtained from a principal 

component analysis (PCA) correlation matrix of log-transformed morphometric 

characters (Jolicoeur, 1963; Reyment et al., 1984; Sundberg, 1989).  Jolicoeur and 

Mosimann (1960) argued that the first principal component can be viewed as size if all 

coefficients of this component display similar loading values (Tables 4.7 and 4.9). 

 

From the analyses for size class 1 (shell length < 10 mm), PC1 was an important 

parameter of discrimination along function 1 (Table 4.8).  Shell length and the length of 

the last body whorl were the characters with the highest loading values on this component 

(Table 4.7).  Interestingly, these characters were identified as having the longest 

dimensions of the shell and were therefore interpreted as representing the overall size 

component.  From the canonical plot (Figure 4.9), R. rubiginosa was found to have 

larger, more broadly ovate shells with longer (higher) body whorls than either of the two 

populations of L. natalensis which had smaller, elongated shells with shorter (lower) 
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body whorls.  Importantly, these L. natalensis populations could not be separated based 

on size dimensions of the shell (function 1) for size class 1 (Figure 4.9). 

 

The orthogonality imposed by principal component analysis makes all components 

independent and if the first component is an indication of size, the remaining components 

are then indications of shape (Jolicoeur, 1963; Reyment et al., 1984; Bookstein et al., 

1985; Sundberg, 1989; Atchley and Hall, 1991; Costa et al., 2004).  For size class 1 (shell 

length < 10 mm), PC3 was the most important parameter of discrimination along function 

2 (Table 4.8).  Since aperture width contributed the highest loading value to this 

component, it was interpreted as representing the overall shape component (Table 4.7).  

Radix rubiginosa and L. natalensis (UKZN Pond) displayed a similar variation in the 

width of the aperture (Figure 4.9).  This can be explained due to the high morphological 

variation evident in the family Lymnaeidae. 

 

According to Wullschleger and Ward (1998), characters associated with the aperture are 

extremely plastic and allow for adaptation to ecological conditions, such as the increase 

in aperture size due to enlargement of the foot, in order to adequately attach to substrates.  

Despite the overlap shown by the canonical plot (Figure 4.9), R. rubiginosa had narrower 

apertures in comparison to the UKZN Pond L. natalensis population which displayed a 

larger, wider aperture.  The use of aperture width as a character displayed considerable 

variation in L. natalensis from the Greyville Pond.  It was apparent that some specimens 

of this population exhibited the larger, wider aperture and others the narrower aperture 

characteristics (Figure 4.9). 

 

For size class 2 (shell length ≥ 10 mm), PC1 contributed the highest loading values on 

function 1 (Table 4.10).  Shell length and the length of the last body whorl were the shell 

characters with the highest loading values for this component (Table 4.9).  The above 

characters for R. rubiginosa and L. natalensis (UKZN Pond) overlapped in the central 

morphospace of the canonical plot (Figure 4.10), indicating a degree of similarity in shell 

variation patterns.  Despite this morphological plasticity for size class 2, the shells of R. 

rubiginosa were larger, more broadly ovate with longer (higher) body whorls in 
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comparison to the smaller, elongated shells with shorter (lower) body whorls of L. 

natalensis (UKZN Pond).  For this size class, the Greyville Pond L. natalensis population 

exhibited the smallest shell dimensions (Figure 4.10). 

 

From Table 4.10 it was shown that PC3 contributed the highest loading values for the 

shape component (function 2) in size class 2 (shell length ≥ 10 mm).  Aperture width 

contributed the highest loading value to this component and was interpreted as 

representing a part of the overall shape component (Table 4.9).  The overlap of aperture 

width for R. rubiginosa and L. natalensis (UKZN Pond) was evident from the canonical 

plot (Figure 4.10).  This again confirmed the problem of phenotypic plasticity evident in 

the family Lymnaeidae.  Radix rubiginosa did however, have a narrower aperture width 

in comparison to the UKZN Pond L. natalensis population.  Furthermore, aperture width 

was a highly discriminant shell characteristic used in separating both the L. natalensis 

populations.  From Figure 4.10 it was shown that L. natalensis from the UKZN Pond 

displayed larger and wider apertures than the Greyville Pond L. natalensis population. 

 

4.4.2  Anatomical Morphology 

 

The morphology of the radula for R. rubiginosa and both the L. natalensis populations 

showed very little variation in tooth shape and were observed to be homoplastic (the 

characters of the central, lateral and marginal teeth were similar for all populations).  The 

species did however vary in the relative numbers of teeth in each field and this serves as 

an additional useful diagnostic character.  In this study, each transverse row of the radula 

of R. rubiginosa had a radula formula of 21:  11:  1:  11:  21.  The UKZN Pond and the 

Greyville Pond L. natalensis populations had radula formulae of 12:  8-10:  1:  8-10:  12 

and 28-30:  8:  1:  8:  28-30 respectively.  These differences in the morphology in the two 

L. natalensis populations only approximately 5.5 km apart focuses attention on the 

phenotypic plasticity that is an important adaptive trait in the family Lymnaeidae. 

 

Jackiewicz (1993) suggested that the distribution and intensity of pigmentation patterns 

on the mantle are a useful diagnostic character in the descriptions of many lymnaeid 
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species.  It was further reported that these patterns showed great diversity, being similar 

in some species only.  In this study, both L. natalensis populations had similar mantle 

pigmentation patterns.  The entire mantle was gray to black in colour but interspersed 

with unpigmented spots that were numerous in the region above the kidney and towards 

the mid-region of the mantle.  Radix rubiginosa however, displayed a distinctly different 

mantle pigmentation pattern.  The mantle surface of R. rubiginosa was mottled black 

with patches of pale white to yellow.  There were also large unpigmented fields and 

stripes that were not observed in L. natalensis.  In addition, the mantle was interspersed 

with numerous unpigmented spots that were most frequent in the region above the kidney 

and towards the mid-region of the mantle. 

 

Since the primary objective was to comparatively discern patterns of variation among R. 

rubiginosa and L. natalensis, characters limited to those of the shell and mantle 

pigmentation patterns are summarised below.   

 

Radix rubiginosa was identified based on the following characteristics: 

 Larger, more broadly ovate shells with longer (higher) body whorls; shell is hard and thick; 

 narrower apertures; moderate to prominent sutures; spire is variable and elongate; the upper region 

 of the peristome is usually straight and directed outwards, below this region the peristome runs 

 almost parallel to the main axis of the shell; the mantle surface is mottled black with patches of 

 pale white to yellow and large unpigmented fields and stripes; the mantle is also interspersed with 

 numerous unpigmented spots that are most frequent in the region above the kidney and towards 

 the mid-region of the mantle. 

 

Lymnaea natalensis was identified based on the following characteristics: 

 Shell is succineiform, smaller, elongate with shorter (lower) body whorls; shell is thin; larger, 

 wider apertures; the base of the aperture joins the columella in a broadly rounded curve; the 

 sutures are well-impressed and constricted; variable, elongate, tapering spire with an acute apex; 

 the entire mantle is gray to black in colour but interspersed with unpigmented spots that are 

 numerous in the region above the kidney and towards the mid-region of the mantle. 

 

These characteristics would assist non-systematic specialists to easily recognise and 

separate Radix rubiginosa from Lymnaea natalensis. 
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________________________________________________________________________ 

 

5 

Embryonic Development of Radix rubiginosa, Lymnaea natalensis and 

Physa acuta 

 

________________________________________________________________________ 

 

5.1  Introduction 

 

In general, the species that become invasive are not a random sampling of biodiversity.  

Instead, successful invaders are predicted to be species that, in their native ranges, display 

traits that enable them to successfully survive conditions encountered during transport, 

introduction, establishment and integration (Suarez and Tsutsui, 2008).  Successful 

invaders possess characteristics associated with effective dispersal, rapid growth, short 

generation times, high fecundity, high degree of phenotypic plasticity, broad 

physiological tolerance (euryhalinity and eurythermy) and a broad diet (Rejmanek and 

Richardson, 1996; Williamson and Fitter, 1996; Reid and Orlova, 2002; Ruesink, 2005; 

Moyle and Marchetti, 2006; Keller et al., 2007; Suarez and Tsutsui, 2008). 

 

Because patterns of invasions by exotic species can be hard to predict, research into the 

reproductive biology of a species is essential for an understanding of its ecology and 

therefore, of its ability to spread (Sastry, 1979; Borcherding, 1995).  Indeed, the success 

and extent to which a species can spread in a given environment is related mainly to those 

factors which can limit the species reproduction (Sastry, 1979).  In respect of freshwater 

snails, Russell-Hunter (1978) reported that temperature was probably the most important 

factor determining development, growth and reproduction.  It may also act as an 

important selection pressure (Hardy, 1979; Lam and Calow, 1990) that can determine the 

geographical distribution, relative abundance, physiological responses (particularly 

growth and reproduction) and behaviour of freshwater snails.  It was noted by Joubert 

and Pretorius (1985) that species could become adapted to different thermal regimes over 
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their geographic distribution.  It is therefore essential to investigate the effects of 

temperatures not only on the adult snails, but on their eggs and embryonic development 

as well. 

 

Developmental studies are thus crucial in determining the distribution of a species both in 

terms of its response to environmental parameters and its relation to, and impact on, 

closely related species (Elliott, 1988; Lillehammer et al., 1989; Brittain and Campbell, 

1991).  Knowledge of the timing of the embryonic stages and the effect of temperature on 

the duration of embryonic development is important in assessing this. 

 

The introduction of Radix rubiginosa (Michelin, 1831) to northern KwaZulu-Natal is 

important, especially in view of the success of the North American physid, Physa acuta 

Draparnaud, 1805, as an invader in South Africa (Hamilton-Attwell et al., 1970; De Kock 

et al., 1989; Brackenbury and Appleton, 1993; Appleton and Brackenbury, 1998; 

Appleton, 2003; De Kock and Wolmarans, 2007).  In their review of introduced 

freshwater snails worldwide, Madsen and Frandsen (1989) concluded that the aquarium 

trade was a source of multiple introductions and responsible for the distribution of several 

of the common species, including P. acuta, a view supported by Appleton (2003). 

 

Its superior reproductive capacity (Appleton and Brackenbury, 1998), ability to migrate 

upstream and to quickly recolonise a water-body (Brakenbury and Appleton, 1993), have 

resulted in P. acuta being one of the most widespread and dominant freshwater gastropod 

species in South Africa.  Given the abundance and easy accessibility of P. acuta, this 

species was selected as a comparison to assess the invasive potential of R. rubiginosa. 

 

The aim of this experimental study was to describe and compare the effect of three 

experimental temperatures (20
o
C, 25

o
C and 30

o
C) on the hatching success and embryonic 

development of four snail populations of three species:  R. rubiginosa from the 

Amatikulu Hatchery, Lymnaea natalensis Krauss, 1848 from both the UKZN and 

Greyville Ponds and P. acuta from the Greyville Pond.  A description of the morphology 
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of each developmental stage is also provided.  In addition, the frequency of various egg 

abnormalities and their relation to the breeding intensity of these species was assessed. 
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5.2  Methodology 

 

The snails used in this study were from breeding colonies maintained in the laboratory.  

These colonies were originally collected from the three study sites described in Chapter 

4, while P. acuta was collected from the Greyville Pond.  A total of 50 individuals with 

shells 10 – 15 mm in height were randomly selected from each population and placed 

into five aerated aquaria (45 x 29 x 12 cm), each containing six litres of dechlorinated tap 

water (water depth approximately 6 cm).  The aquaria were maintained at three constant 

temperatures (20
o
C, 25

o
C and 30

o
C) and a 12:12 (L:D) photoperiod.  To prevent the 

snails from escaping, the aquaria were covered with a netted mesh. 

 

The snails were fed lettuce daily with the amount adjusted to the maximum daily 

consumption.  In addition the diet was supplemented ad libitium with Tetramin® (a 

commercially available brand of fish food) and Marcus Rohrer® Spirulina (two tablets 

crushed into a fine powder and added to the water).  Leaves of Nymphaea nouchali and 

Marsilea sp. were placed in the aquaria to provide resting and egg laying surfaces for the 

snails (since the snails were observed to lay egg capsules on the under-surfaces of the 

leaves rather than on the sides of the aquaria).  The aquaria water was changed weekly 

and the faeces were removed daily. 

 

5.2.1  Egg Abnormalities, Viable Eggs and Hatching Success 

 

5.2.1.1  Egg Abnormalities 

 

Egg capsules were isolated and carefully removed with a scalpel (care being taken not to 

rupture the capsular membrane).  The capsules were then transferred to separate 

containers (10 x 10 x 2 cm) maintained at the three constant temperatures.  The number 

of eggs present in each capsule was counted and recorded. 

 

To determine the effects of species and temperature on the proportion of egg 

abnormalities, 600 eggs were viewed under a stereomicroscope for each of the four snail 
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populations.  Egg capsules containing 18 – 40 eggs were used in order to provide a 

satisfactory statistical base for computing the proportion of egg abnormalities.  The 

experiment was replicated three times.  Dwarf eggs, non-nucleated eggs, eggs without 

development and polyvitelline eggs were used to assess the frequency of abnormalities. 

 

5.2.1.2  Viable Eggs and Egg Hatching Success 

 

Immediately prior to hatching the numbers of viable eggs (embryos showing normal 

development) were counted to calculate hatching success.  Egg capsules were then 

returned to the container and allowed to hatch.  For the purposes of these experiments, 

hatching was defined as the escape of the young snail from the egg, rather than from the 

egg capsule, since a delay may occur before the young snail finds its way out of the latter.  

This gave less variable results and so allowed a more accurate definition of the effect of 

species and temperature on the hatching success (Harris and Charleston, 1977). 

 

Data were not normally distributed even after transformation and were analysed using a 

non-parametric Kruskal-Wallis test (Zar, 1999).  Statistical analyses were performed 

using SPSS 11.0.1 (SPSS Inc.).  Probability values are two-tailed and significance was 

determined at p < 0.05. 

 

5.2.2  Embryonic Development 

 

Leaves of N. nouchali and Marsilea sp. were carefully examined for the presence of 

newly laid egg capsules.  Examining the leaves and removal of egg capsules were carried 

out over an eight hour period daily for one week.  This procedure ensured an adequate 

sample of egg capsules to assess the effects of species and temperature on embryonic 

development. 

 

The time of oviposition was noted and egg capsules were transferred to separate 

containers (10 x 10 x 2 cm) maintained at the three constant temperatures.  The egg 

capsules were fixed using 0.5% formalin at hourly intervals for the first 24 hours after 
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oviposition.   After this period, samples were fixed and viewed at daily intervals, until 

hatching was observed.  The morphology and developmental stages of the embryo were 

viewed using a stereomicroscope.  The duration of embryonic development (incubation 

period) was noted and the size of the embryos at different stages was measured. 

 

The average geometric growth rate for the developing embryos was calculated using the 

formulation of Simpson and Roe (1939).   

 

G = 2.303 log Yt – log Y0 

                 _____________ 

                            t 

 

where, 

Y0 = initial size 

Yt = size at time t 

t = time measured at intervals of 1 day 

G = geometric growth rate 

 

All measurements were recorded using NIS Elements D image analysis software. 
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5.3  Results 

 

5.3.1  Description of Egg Capsules 

 

During oviposition, the egg masses of freshwater snails are firmly attached to a 

substratum, such as leaves, stones and submerged pieces of wood (Berrie, 1965).  These 

non-moving objects must be located in habitats with favourable conditions for the 

development of embryos and hatchlings (Geraerts and Joosse, 1984).  The egg masses 

contain encapsulated embryos that are surrounded by a nutrient (capsular fluid).  

Therefore, the egg and egg capsule serve the dual purpose of providing a source of 

nutrition and protection for the developing embryos. 

 

The shape and structure of the eggs and egg masses, as well as the number of eggs per 

mass and their arrangement within the mass, are characters that should be considered in 

the identification of snails (Nekrassow, 1929; De Witt, 1954).  According to Bondesen 

(1950), these characters could also be used to determine relationships between families 

and even higher taxa of gastropods (De Witt, 1954).  To obtain clarity and system in the 

structural features of the egg capsules, the descriptions of the egg capsules for the four 

snail populations follow Bondesen (1950) and are briefly explained below. 

 

In the Lymnaeidae and Physidae (Figure 5.1), there is a gelatinous slimy outer envelope 

(pallium gelatinosum) and a more distinct inner capsular wall (Bondesen, 1950; De Witt, 

1954).  The egg consisting of the egg cell (ovum) with its albumen and the internal 

membrane around it, varied from spherical to ovoid in shape.  The albumen was the sole 

source of food available to the developing embryo until hatching.  The internal membrane 

of the egg was surrounded by a series of fine lamellar structures forming the external 

membrane.  Bondesen (1950) and De Witt (1954) noted that the external membrane 

continued to form egg strings (fila ovi) that connected the individual eggs with each other 

throughout the capsule.  This was also seen in the present study.  The terminal point of a 

capsule (existus terminalis) was elongated into a terminal tail that was prolonged into a 
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spout, a tube or a tapering end.  This characteristic terminal part of the capsule was 

especially important for the orientation of the capsules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   (redrawn from Bondesen, 1950) 

 

Figure 5.1:  Characteristic egg capsule morphology for the Lymnaeidae (A) and Physidae (B) showing 

curvature of the capsule after oviposition.  Dextral and sinistral families have the egg capsules curved in 

opposite directions, R. rubiginosa and L. natalensis are dextral snails while P. acuta is a sinistral snail.  

Lymnaeid capsules display anticlockwise torsion while physid capsules show clockwise torsion.  In 

lymnaeid capsules (C), distinct capsular strings and egg strings were observed, resulting in the 

characteristic corkscrew arrangement of the eggs within the capsule.  In the Physidae (D), the egg strings 

were not as well developed as in the Lymnaeidae, scale bar 1 mm. 

cs – capsular strings; e – egg; em – external membrane; et – existus terminalis (terminal point of capsule); 

fo – fila ovi (egg strings); im – internal membrane; pg – pallium gelatinosum (gelatinous slimy outer 

envelope). 
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From Table 5.1 it was evident that the egg capsules from the four snail populations varied 

considerably in dimensions and in the number of eggs per capsule (clutch size). 

 

Table 5.1:  Comparison of egg capsule dimensions and clutch sizes for each of the four snail populations (n 

= 100).  Dimensions are presented as mean millimeters (± standard error). 

 

Snail Populations Egg Capsule Length Egg Capsule Width Clutch Size Egg Length Egg Width 

      

R. rubiginosa 15.66 (±0.51) 5.00 (±0.08) 52.81 (±2.40) 0.90 (±0.008) 0.73 (±0.005) 

L. natalensis (UKZN Pond) 12.85 (±0.33) 3.17 (±0.03) 27.95 (±1.20) 0.83 (±0.008) 0.62 (±0.003) 

L. natalensis (Greyville Pond) 13.02 (±0.30) 3.80 (±0.05) 24.38 (±0.88) 0.88 (±0.006) 0.65 (±0.003) 

P. acuta 9.92 (±0.37) 4.87 (±0.09) 39.80 (±1.81) 0.75 (±0.004) 0.62 (±0.004) 

 

(a)  Radix rubiginosa 

 

The egg capsule was elongated and sometimes a curvature to the left was observed.  The 

distinct terminal tail was a continuation of the capsule.  Radix rubiginosa had the largest 

egg capsule dimensions of the three snail species investigated (Table 5.1).  The smallest 

capsule recorded was 5.00 x 2.92 mm, with four eggs enclosed.  The largest capsule 

measured 38.17 x 4.67 mm, with 134 eggs enclosed. 

 

The egg cell of R. rubiginosa was darker yellow in comparison to L. natalensis and P. 

acuta.  The eggs were regularly oval.  The mean dimensions of R. rubiginosa eggs were 

0.90 x 0.73 mm, larger than the eggs of either P. acuta or L. natalensis from both the 

UKZN and Greyville Ponds (Table 5.1).  Radix rubiginosa also produced a higher mean 

number of eggs per capsule (clutch size). 

 

The corkscrew arrangement of the eggs was difficult to see in egg capsules of R. 

rubiginosa.  This was because the capsular strings were not as prominent as in L. 

natalensis and also since R. rubiginosa produced more eggs per capsule, the eggs were 

often orientated very close to each other. 
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(b)  Lymnaea natalensis 

 

The egg capsules for L. natalensis from both the UKZN and Greyville Ponds were 

similar to those of R. rubiginosa, except that R. rubiginosa eggs and capsules were larger 

and also had the largest mean clutch sizes (Table 5.1).  The egg capsules of L. natalensis 

from both study ponds also displayed a corkscrew spiral arrangement of eggs.  This could 

be attributed to the distinct capsular strings, the loose orientation of the eggs in the 

capsule and the fact that the eggs were laid almost in a single layer. 

 

For L. natalensis from the UKZN Pond, the number of eggs per capsule ranged from 6 – 

80.  The smallest capsule of this snail population was 6.58 x 2.83 mm and the largest was 

24.92 x 2.92 mm.  For the Greyville Pond population, the smallest egg capsule recorded 

was 4.17 x 3.00 mm, with 5 eggs enclosed.  The largest capsule recorded was 23.17 x 

4.50 mm, with 59 eggs enclosed. 

 

It is evident that while the Greyville lymnaeids displayed larger mean egg capsule 

dimensions, they produced smaller clutch sizes in comparison to the UKZN pond 

population (Table 5.1).  This could be attributed to the marginally smaller mean egg 

dimensions (0.83 x 0.62 mm) of the UKZN Pond population, resulting in more eggs 

being packaged per capsule. 

 

(c)  Physa acuta 

 

The egg capsules of P. acuta were kidney-shaped but the curvature depended upon the 

number of eggs in the capsule.  Smaller capsules with few eggs were not curved and were 

round or oval but larger capsules were curved clockwise.  The terminal part of the 

capsule was shortened, or sometimes entirely lacking, resulting in the capsule tapering.  

The egg cells were oval to pear-shaped and pale yellow in colour. 

 

The number of eggs per capsule ranged from 6 – 99.  The smallest capsule recorded for 

P. acuta was 4.75 x 4.00 mm and the largest was 22.83 x 7.17 mm.  Physa acuta had the 
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smallest mean egg and egg capsule length dimensions of the three species examined, 

however, it produced a higher mean number of eggs per capsule when compared to L. 

natalensis from both the UKZN and Greyville Ponds.  Of importance to this study is the 

fact that R. rubiginosa produced, on average, more eggs per capsule than the invasive P. 

acuta. 

 

5.3.2  Viability of Eggs and Egg Abnormalities 

 

During embryogenesis, the growth and development of the embryo is subjected to 

various factors that influence development.  These factors can be either intrinsic (lack of 

fertilisation, quantity of albumen) or extrinsic (crushing of the egg cell during the 

formation of the capsule, crowding as a result of abnormal development of a 

neighbouring embryo, changes in the environment).   

 

An assessment of both the hatching success (proportion of viable eggs per capsule) and 

the frequency of egg abnormalities is presented in Table 5.2.  Viable eggs were recorded 

as those that eventually hatched, while dwarf eggs, eggs without egg cells, eggs without 

development and polyvitelline eggs were characteristics used to assess egg abnormality. 

 

(a)  Hatching Success 

 

At each of the three temperatures, P. acuta had the highest mean hatching success 

followed closely by R. rubignosa.  Lymnaea natalensis from both the UKZN and 

Greyville ponds had the lowest hatching success (Table 5.2). 

 

All four snail populations displayed a common trend inasmuch as the highest hatching 

success was at 25
o
C.  Radix rubiginosa and both the L. natalensis populations had their 

lowest hatching success at 20
o
C, while P. acuta had its lowest success at 30

o
C.  For all 

populations, the mean hatching success increased from 20
o
C to 25

o
C, but decreased at 

30
o
C. 
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Table 5.2:  Hatching success and egg abnormalities (%) for the four snail populations at the three 

temperatures (n = 25).  The values are presented as percentage means (± standard deviation). 

 

Temperature Snail Populations 
Hatching 

Success 
Dwarf Eggs 

Eggs without 

Egg Cells 

Eggs without 

Development 

Polyvitelline 

Eggs 

       

20oC R. rubiginosa 94.72 (±0.23)  1.96 (±0.04) 1.12 (±0.08) 2.11 (±0.14) 0.09 (±0.16) 

 L. natalensis (UKZN Pond) 87.62 (±0.74) 4.42 (±0.29) 3.33 (±0.40) 4.24 (±0.15) 0.39 (±0.09) 

 L. natalensis (Greyville Pond) 87.10 (±0.52) 4.68 (±0.20) 3.80 (±0.38) 3.97 (±0.22) 0.45 (±0.11) 

 P. acuta 96.88 (±0.21) 1.39 (±0.20) 0.63 (±0.22) 1.01 (±0.11) 0.10 (±0.09) 

       

25oC R. rubiginosa 96.90 (±0.37) 1.24 (±0.40) 0.78 (±0.16) 0.92 (±0.21) 0.15 (±0.14) 

 L. natalensis (UKZN Pond) 92.60 (±0.51) 2.91 (±0.12) 1.63 (±0.17) 2.63 (±0.53) 0.23 (±0.09) 

 L. natalensis (Greyville Pond) 92.71 (±0.41) 2.89 (±0.16) 1.91 (±0.35) 2.20 (±0.18) 0.29 (±0.13) 

 P. acuta 97.86 (±0.18) 0.79 (±0.06) 0.47 (±0.07) 0.73 (±0.14) 0.16 (±0.05) 

       

30oC R. rubiginosa 95.59 (±0.42) 1.85 (±0.19) 0.73 (±0.35) 1.68 (±0.03) 0.15 (±0.16) 

 L. natalensis (UKZN Pond) 90.89 (±0.28) 3.02 (±0.30) 2.76 (±0.46) 3.19 (±0.34) 0.15 (±0.14) 

 L. natalensis (Greyville Pond) 90.52 (±1.03) 2.71 (±0.61) 3.23 (±0.23) 3.30 (±0.31) 0.25 (±0.09) 

 P. acuta 96.17 (±0.31) 1.38 (±0.16) 0.78 (±0.10) 1.54 (±0.18) 0.13 (±0.13) 

 

(b)  Dwarf Eggs 

 

Dwarf eggs were smaller in size than the normally proportioned viable eggs and were the 

most frequently occurring egg abnormality.  Bondesen (1950) noted that they were 

generally found placed first or last in the row of normally proportioned eggs within the 

capsule, rarely occurring in the middle of the egg capsule and this was also seen in the 

present study. 

 

For the dwarf egg abnormality (Table 5.2), all four snail populations had the highest 

percentage at 20
o
C.  For the Greyville Pond population, the lowest occurrence was at 

30
o
C, while the remaining snail populations had the lowest values for this abnormality at 

25
o
C.  In addition, at each of the three temperature treatments, P. acuta had the lowest 

mean percentage of dwarf eggs followed by R. rubignosa with marginally higher 
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percentages.  Lymnaea natalensis from both the UKZN and Greyville Ponds displayed 

considerably higher rates of occurrence for this abnormality. 

 

(c)  Eggs without Egg Cells 

 

In this abnormality, the eggs were of normal proportion but they lacked an egg cell.  This 

could be possibly due to a cessation in the supply of egg cells to the albumen gland 

(Bondesen, 1950).  From Table 5.2, a trend was observed similar to that for the dwarf 

eggs however at 30
o
C R. rubiginosa and P. acuta had the lowest (0.73%) and highest 

(0.78%) percentages for this abnormality respectively.  Again, both R. rubiginosa and P. 

acuta had lower percentages than the lymnaeids. 

 

(d)  Eggs without Development 

 

Eggs showing this type of abnormality had no characteristic place in the egg-row but 

were often inserted between the normally developed eggs.  For these eggs that did not 

develop, a trend was observed similar to the previously described abnormalities (Table 

5.2).  Snails maintained at 25
o
C had the lowest proportion of undeveloped eggs.  Radix 

rubiginosa and the lymnaeids had the highest rate of eggs without development at 20
o
C, 

while P. acuta appeared to be influenced by the higher temperature of 30
o
C, resulting in 

its highest recorded proportion of undeveloped eggs at this temperature. 

 

(e)  Polyvitelline Eggs 

 

Usually there is one egg cell per egg, but occasionally more may be present.  In most 

cases these were normally proportioned eggs that contained two egg cells (twins) and 

were most frequently found first or last in the egg row.  This was the least common 

abnormality of all three temperature treatments (Table 5.2).  For each of the three 

temperature treatments L. natalensis from both the UKZN and Greyville Ponds had a 

higher percentage occurrence for polyvitelline eggs than either R. rubiginosa or P. acuta.  
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Table 5.2 also shows that those populations producing the largest numbers of 

polyvitelline eggs also laid the largest number of eggs lacking egg cells. 

 

The influence of temperature on the viable eggs (hatching success) and egg abnormalities 

is presented in Table 5.3.   

 

Table 5.3:  Kruskal-Wallis analysis of the influence of temperature on viable eggs (hatching success) and 

egg abnormalities for the four snail populations (n = 25).  Probability values are two-tailed and significance 

was determined at p < 0.05. 

 

Snail Populations Viable Eggs Dwarf Eggs 
Eggs without 

Egg Cells 

Eggs without 

Development 

Polyvitelline 

Eggs 

      

R. rubiginosa 0.119 0.259 0.484 0.029 0.907 

L. natalensis (UKZN Pond) 0.004 0.010 0.012 0.029 0.597 

L. natalensis (Greyville Pond) 0.004 0.001 0.009 0.038 0.545 

P. acuta 0.389 0.209 0.552 0.298 0.848 

 

The effect of temperature was significant for both L. natalensis populations (Table 5.3).  

The invasive snail, P. acuta showed no significant difference in the hatching success or 

egg abnormalities at the three temperatures (Table 5.3).  This has importance since it 

indicates that the physid could be adapted to reproduce efficiently over a wide 

temperature range.  Radix rubiginosa displayed a similar pattern to P. acuta but only eggs 

without development were influenced by temperature (p = 0.029).  None of the other 

characters showed a significant temperature effect for R. rubiginosa.  Polyvitelline eggs 

had non significant p-values (p > 0.05) for all snail populations (Table 5.3). 

 

The effects of each of the test temperatures on egg viability and abnormality are 

presented in Tables 5.4 – 5.6.  Due to the rare occurrence of polyvitelline eggs, there was 

no significant difference between populations for this abnormality (see Tables 5.4 – 5.6). 
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Table 5.4:  Kruskal-Wallis analysis for viable eggs (hatching success) and egg abnormalities between snail 

populations maintained at 20oC (n = 25).  Probability values are two-tailed and significance was determined 

at p < 0.05.   

 

Snail Populations 
Viable 

Eggs 

Dwarf 

Eggs 

Eggs 

without 

Egg Cells 

Eggs without 

Development 

Poly-

vitelline 

Eggs 

       

R. rubiginosa L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 0.001 0.165 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 0.006 0.075 

 P. acuta 0.029 0.101 0.262 0.017 0.921 

       

L. natalensis (UKZN Pond) R. rubiginosa <0.001 <0.001 <0.001 0.001 0.165 

 L. natalensis (Greyville Pond) 0.725 0.584 0.535 0.627 0.659 

 P. acuta <0.001 <0.001 <0.001 <0.001 0.130 

       

L. natalensis (Greyville Pond) R. rubiginosa <0.001 <0.001 <0.001 0.006 0.075 

 L. natalensis (UKZN Pond) 0.725 0.584 0.535 0.627 0.659 

 P. acuta <0.001 <0.001 <0.001 <0.001 0.053 

       

P. acuta R. rubiginosa 0.029 0.101 0.262 0.017 0.921 

 L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 <0.001 0.130 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 <0.001 0.053 

 

At 20
o
C there was no significant difference in the hatching success or egg abnormalities 

for either of the L. natalensis populations (Table 5.4).  These lymnaeids were however, 

significantly different to both R. rubiginosa and P. acuta.  Despite hatching success being 

significantly different, R. rubiginosa was similar to P. acuta for the percentage of dwarf 

eggs (p > 0.101) and eggs without egg cells (p > 0.262). 

 

Snail populations maintained at 25
o
C (Table 5.5) and 30

o
C (Table 5.6) displayed similar 

trends.  There was no significant difference between R. rubiginosa and P. acuta for any 

of the abnormalities (Tables 5.4 - 5.6).  The two L. natalensis populations were similar to 

each other but both differed significantly from R. rubiginosa and P. acuta (Table 5.5).   
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Table 5.5:  Kruskal-Wallis analysis for viable eggs (hatching success) and egg abnormalities between snail 

populations maintained at 25oC (n = 25).  Probability values are two-tailed and significance was determined 

at p < 0.05.   

 

Snail Population 
Viable 

Eggs 

Dwarf 

Eggs 

Eggs 

without 

Egg Cells 

Eggs without 

Development 

Poly-

vitelline 

Eggs 

       

R. rubiginosa L. natalensis (UKZN Pond) <0.001 0.002 0.014 <0.001 0.509 

 L. natalensis (Greyville Pond) <0.001 <0.001 0.002 0.002 0.461 

 P. acuta 0.091 0.153 0.347 0.545 1.000 

       

L. natalensis (UKZN Pond) R. rubiginosa <0.001 0.002 0.014 0.001 0.509 

 L. natalensis (greyville Pond) 0.740 0.660 0.584 0.682 0.923 

 P. acuta <0.001 <0.001 0.001 <0.001 0.509 

       

L. natalensis (Greyville Pond) R. rubiginosa <0.001 <0.001 0.002 0.002 0.461 

 L. natalensis (UKZN Pond) 0.740 0.660 0.584 0.682 0.923 

 P. acuta <0.001 <0.001 <0.001 <0.001 0.474 

       

P. acuta R. rubiginosa 0.091 0.153 0.347 0.545 1.000 

 L. natalensis (UKZN Pond) <0.001 <0.001 0.001 <0.001 0.509 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 <0.001 0.474 

 

At 30
o
C, however, the UKZN Pond L. natalensis population was similar to R. rubiginosa 

(p > 0.138) and P. acuta (p > 0.206) for eggs without development (Table 5.6). 
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Table 5.6:  Kruskal-Wallis analysis for viable eggs (hatching success) and egg abnormalities observed 

between snail populations maintained at 30oC (n = 25).  Probability values are two-tailed and significance 

was determined at p < 0.05.   

 

Snail Populations 
Viable 

Eggs 

Dwarf 

Eggs 

Eggs 

without 

Egg Cells 

Eggs without 

Development 

Poly-

vitelline 

Eggs 

       

R. rubiginosa L. natalensis (UKZN Pond) <0.001 0.004 <0.001 0.138 0.944 

 L. natalensis (Greyville Pond) <0.001 0.017 <0.001 0.005 0.645 

 P. acuta 0.417 0.707 0.648 0.533 1.000 

       

L. natalensis (UKZN Pond) R. rubiginosa <0.001 0.004 <0.001 0.138 0.944 

 L. natalensis (Greyville Pond) 0.356 0.559 0.134 0.303 0.708 

 P. acuta <0.001 0.001 0.000 0.206 0.927 

       

L. natalensis (Greyville Pond) R. rubiginosa <0.001 0.017 <0.001 0.005 0.645 

 L. natalensis (UKZN Pond) 0.356 0.559 0.134 0.303 0.708 

 P. acuta <0.001 0.003 <0.001 0.001 0.624 

       

P. acuta R. rubiginosa 0.417 0.707 0.648 0.533 1.000 

 L. natalensis (UKZN Pond) <0.001 0.001 <0.001 0.206 0.927 

 L. natalensis (Greyville Pond) <0.001 0.003 <0.001 0.001 0.624 
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5.3.3  Embryonic Development 

 

Embryonic development takes place entirely within the eggs from which the young 

hatched as crawling juvenile snails.  Development was direct and passed through 

cleavage, blastula, gastrula, trochophore and veliger stages.  The egg capsules were 

transparent, allowing all phases in the embryonic development to be easily monitored.  

Development in R. rubiginosa was used to illustrate and review the sequence and 

morphology of the embryonic stages that typically occur in pulmonate snails (Figures 5.2 

- 5.14). 

 

(a)  Egg Cell before Cleavage 

 

Figure 5.2A is of a fertilised egg cell (zygote) before the first cleavage.  The egg was 

isolecithal (nearly uniform distribution of the yolk through the cytoplasm of the egg).  An 

accumulation of yolk material at the vegetative pole of the egg cell resulted in a 

yellowish colour.  With the appearance of the two polar bodies (see arrow, Figure 5.2B), 

the uncleaved egg cell was observed to contain a relatively yolk free zone at the animal 

pole, thus giving this region a clear appearance.   

 

(b)  First Cleavage (2-cell stage) 

 

During the cleavage period there was a rapid succession of cell division.  During this 

period the size of the embryo does not change but the cleavage cells or blastomeres 

become smaller with each division (Balinsky, 1970).  Initiation of the first cleavage was 

observed by an indentation (cleavage furrow) that appeared at the animal pole (see arrow, 

Figure 5.2C).  Cleavage of the animal pole region was more rapid than that of the 

vegetative pole, resulting in the cleavage furrow gradually becoming predominant. 
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Figure 5.2:  Sequence of the morphological characteristics occurring during the first cleavage (2-cell stage). 

A – Fertilised egg cell before cleavage. 

B – Uncleaved egg cell showing the animal and vegetative poles, with the polar body (see arrow). 

C – Cleavage was initiated at the animal pole by the appearance of a cleavage furrow (see arrow). 
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D – First cleavage divided the egg cell into blastomeres AB and CD.  The blastomeres were linked to each 

other by the cytoplasmic bridge (see arrow). 

E – The blastomeres approached each other, increasing their surface contact. 

F – The cleavage cavity was observed between the two blastomeres. 

ap – animal pole; cc – cleavage cavity; vp – vegetative pole.  

 

This plane of this first division passed through the main axis of the egg dividing it 

meridionally into two blastomeres AB and CD (Figure 5.2D).  Both these blastomeres 

were rounded and linked to each other by only a small cytoplasmic bridge (see arrow, 

Figure 5.2D). 

 

After this division the two blastomeres approached each other, increasing their surface 

contact.  The spherical blastomeres were then closely applied to each other over a flat 

partition (Figure 5.2E), with the formation of a separating blastomeric membrane.  This 

was also noted by Raven (1966) and Kawano et al. (1992).  A cleavage cavity was 

observed between the two blstomeres and increased in size pushing the blastomeres apart 

(Figure 5.2F).  According to Raven (1966) and Kawano et al. (1992) this cavity has as an 

osmo-regulatory function. 

 

(c)  Second Cleavage (4-cell stage) 

 

The plane of the second division was also meridional and passed through the main axis, 

but it was at right angles to the first plane of cleavage.  The blastomere AB divided into 

A and B, while CD divided into C and D, resulting in a four cell stage embryo (Figure 

5.3).  In this four cell stage the blastomeres A and C were situated slightly higher than 

blastomeres B and D.  Blastomeres A and C met each other at the animal pole in the 

animal cross furrow while blastomeres B and D met each other at the vegetative pole in 

the vegetative cross furrow (Figure 5.3). 

 

Blastomeres A, B, C and D, also called the quadrants of the embryo, follow an 

arrangement that may be dextral, i.e. dexiotropic (clockwise) or sinistral, i.e. laeotropic 

(anticlockwise). 
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Figure 5.3:  During the cleavage period of rapid cell division, the size of the embryo does not change, 

rather the cleavage cells or blastomeres become smaller with each division.  In second cleavage (4-cell 

stage), the four large blastomeres A, B, C and D were of the same size and orientated side by side.  The 

cleavage furrows linking the alternate blastomeres in the animal and vegetative poles of the embryo were 

observed.  In addition the cleavage cavity (see arrow) reappeared in the central space formed by the 

furrows of the blastomeres.  This regular succession of formation and extrusion of the cleavage cavity 

continues until the gastrula stage. 

 

(d)  Third Cleavage (8-cell stage) 

 

The egg cells of both lymnaeids and physids displayed spiral holoblastic cleavage, 

despite the presence of a dense isolecithal yolk.  The third cleavage occurred at right 

angles to the first two planes and to the main axis of the egg (Figure 5.4).  This cleavage 

was therefore horizontal or parallel to the equator of the egg.  It resulted in the eight cell 

stage that consisted of four smaller micromeres (1a – 1d) at the animal pole and four 

larger macromeres (1A – 1D) at the vegetative pole (Figure 5.4). 

 

These two tiers were not orientated precisely one above the other and the upper tier of 

micromeres was shifted slightly in the same direction in relation to the lower tier of 

macromeres.  This resulted in an orientation where the upper tier was over the junction 

between each of the vegetal macromeres (Figure 5.4).  This unequal division coincided 
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with the end of division synchrony within the embryo.  In further divisions both the 

micromeres and macromeres divided asynchronously.  The cleavage cavity was no longer 

situated in the centre of the embryo but in the animal half between the micromeres and 

macromeres (Figure 5.4B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4:  Third cleavage (8-cell stage) showing an upper tier of micromeres (1a – 1d) and the lower tier 

of macromeres (1A – 1D).  The micromeres were orientated over the junction between each of the 

macromeres. 

A – Lateral view of the 8 cell stage, showing the upper tier of micromeres and a lower tier of macromeres. 

B – Third cleavage when viewed from the egg axis or from the animal pole.  The cleavage cavity was 

observed in the animal half of the embryo. 

cc – cleavage cavity; ma – macromeres; mi – micromeres. 

 

A relationship exists between the types of cleavage of the egg in relation to the type of 

coiling of the adult shell.  If, at third cleavage, the micromeres at the animal pole were 

displaced in a clockwise direction relative to the corresponding vegetal macromeres, the 

cleavage was dextral or dexiotropic and the adult snail had a dextrally coiled shell, e.g. 

Lymnaeidae.  If the micromeres were displaced anticlockwise, the cleavage was 

laeotropic and the coiling of the shell was sinistral, e.g. Physidae (Raven, 1966; Balinsky, 

1970; Verdonk and Biggelaar, 1983). 
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(e)  Fourth Cleavage (16-cell stage) 

 

The embryo continued to develop according to the general plan of molluscan spiral 

cleavage and divided faster at the animal pole than at the vegetative pole.  According to 

the law of alternating cleavage, first formulated by Kofoid (1894), a regular succession of 

dexiotropic and laeotropic divisions followed each other (Verdonk and Biggelaar, 1983).  

At fourth cleavage, the dexiotropically-formed micromeres 1a – 1d and the macromeres 

1A – 1D divided laeotropically (Figure 5.5).        

     

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5:  The fourth cleavage (16-cell stage).  During this stage, the dexiotropically-formed micromeres 

and marocmeres divided laeotropically. 

cc – cleavage cavity; ma – macromeres; mi – micromeres. 

 

The micromeres at the animal pole divided into an upper and lower tier (Figure 5.5).  The 

macromeres present at the vegetative pole divided into the second quartet of micromeres 

and macromeres.  During each cycle the cleavage cavity swelled and thereafter collapsed.  

A gradual increase in the size of the cleavage cavity was also observed.  Up to the 8 – 16 

cell cleavage stage, collapse of the cleavage cavity always immediately preceded cell 

division and no cleavage cavity was present while the cells were dividing.   
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(f)  Fifth Cleavage (24-cell stage) 

 

At the fifth cleavage, dexiotropic division of the macromeres occurred (Figure 5.6).  The 

micromeres of the first quartet did not divide and the embryo passed from a 16 into a 24 

cell embryo. 

 

  

  

  

  

   

 

 

 

 

 

 

Figure 5.6:  At the fifth cleavage (24-cell stage), dexiotropic division of the embryo occurred. 

 

(g)  Sixth Cleavage (64-cell stage) 

 

The interval between the fifth and sixth cleavage is generally longer than the preceding 

intermitotic stages, and is therefore often called a resting stage (Verdonk and Biggelaar, 

1983).  This was also observed in the present study.  The sixth cleavage was laeotropic 

and lead to the formation of a fourth quartet of micromeres and macromeres (Figure 5.7).  

At this 64 cell stage the regular character of spiral cleavage was lost and bilaterally 

symmetrical division took place. 
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Figure 5.7:  During the sixth cleavage (64-cell stage), the micromeres and macromeres divided 

laeotropically.  Also, division synchrony was lost at this stage and bilaterally symmetrical division took 

place. 

 

(h)  Blastula Stage 

 

This stage was characterised by the formation of a space between the animal and 

vegetative poles (Figure 5.8A).  As the vegetal micromeres were larger than the animal 

micromeres, a well defined cavity (blastocoel) was situated in the animal half of the 

embryo.  Later, a ball shaped layer of cells surrounded the blastocoel (see arrow, Figure 

5.8B). 

 

(i)  Gastrula Stage 

 

A flattening of the vegetative pole towards the animal pole marked the beginning of 

gastrulation (Figure 5.9A).  This was followed by the invagination of the vegetative 

region towards the interior of the embryo and resulted in the formation of a spherical 

opening, the blastopore.  As gastrulation proceeded the blastopore gradually became 

narrower (Figure 5.9B) and was later positioned ventrally.  When gastrulation was 

complete, the embryo developed into a trochophore larva. 
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Figure 5.8:  The blastula stage. 

A – Embryo with space between the animal and vegetative poles. 

B – Blastocoel surrounded by cells (see arrow). 

bc – blastocoel. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9:  During the gastrula stage, the macromeres situated in the centre of the vegetal region changed 

in shape.  They reduced their external surface area whereas the inner part widened forming a pit at the 

vegetal pole of the embryo.  At the beginning of the gastrula stage, this pit (blastopore) was very wide.  As 

gastrulation proceeded, the blastopore narrowed and closed from back to front until only a small opening 

remained.  

A – Young gastrula with a wide pit (blastopore) forming at the vegetative pole. 

B – Older gastrula with a reduced blastopore. 

ap – animal pole; bp – blastopore; vp – vegetative pole. 
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(j)  Early Trochophore Stage 

 

The first larval stage developing from the gastrula stage was the trochophore and the 

embryo began to increase considerably in size.  The trochophore was characterised by a 

distinct prototroch around the equator of the embryo, consisting of cells bearing cilia 

(Figure 5.10).  The early trochophore stage was ovoid and revolved slowly and 

irregularly within the egg.  These larval movements later became smoother and more 

rapid. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10:  Trochophore embryo developed after gastrulation showing the prototroch, a band of ciliated 

cells, the prototroch, around the equator.  The prototroch thus divided the trochophore into the upper 

pretrochal region and the lower posttrochal region.  Smaller cilia also occurred over the rest of the larva.  

The blastopore moved towards the apical plate and developed into the mouth (see arrow).   

lpt – lower posttrochal region; pr – prototroch; upt – upper pretrochal region. 

 

These movements resulted in the formation of an anterior and posterior axis.  The 

prototroch divided the larva into the upper or pretrochal region and the lower or 

posttrochal region (Figure 5.10).  The pretrochal region was formed by a set of cells that 

gave rise to such larval structures as the apical plate, cephalic plate and the head vesicle.  

The blastopore moved towards the apical plate and developed into the mouth (see arrow, 

Figure 5.10).  The apical plate, cephalic plate and head vesicle formed the head and 
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anterior region of the embryo (Raven, 1966; Kawano et al., 1992; Creton et al., 1993).  

The posttrochal region comprised of the stomodaeum, which formed the mouth and cells 

that formed the foot and shell gland (Raven, 1966; Kawano et al., 1992; Creton et al., 

1993). 

  

(k)  Late Trochophore Stage 

 

The late trochophore stage was characterised with the larva beginning to flatten and 

display a slightly elongated, kidney-like shape.  In this stage, the cells responsible for the 

formation of the head and foot were seen at the anterior region (Figure 5.11).  On the 

dorsal side opposite the mouth, the shell gland was represented by a thickening of the 

ectoderm (see arrow, Figure 5.11).  A single lobe that represents the future foot is 

observed. 

 

 

 

 

       

 

 

    

 

 

 

 

 

Figure 5.11:  Late trochophore showing development of the distinct anterior region and visceral mass, 

indicated by the accumulation of large vacuolated cells.  The formation of the shell gland, represented by a 

thickening of the ectoderm (see arrow) occurred at the posterior region where the shell spire later develops.  

No evidence of the shell was seen at this stage.  During the late trochophore stage, the larva was still 

observed to move within the egg. 

f – foot; sg – shell gland. 
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(l)  Early Veliger Stage 

 

The characteristic veliger was the larval stage following the earlier trochophore stage.  

Unlike the trochophore, the veliger had many of the characteristic features of the adult 

(Figures 5.12A and B).  It possessed a muscular foot, eyes, tentacles, a fully developed 

mouth and a shell.  The shell was observed at the edge of the mantle fold and partially 

covered the visceral mass (Figure 5.12).  Structures such as the apical plate, head vesicle 

and prototroch formed a large part of the veliger’s body. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12:  The early veliger stage showing the development of a distinct head, shell and foot. 

A – The head region was distinguished with aggregations of ganglia forming the eyes (see arrow).  The 

posterior region of the visceral mass was covered by an embryonic shell. 

B – The embryo exhibited considerable coordination of movement by use of the muscular foot.  Elevations 

of the tentacle regions were observed as well as a raised ridge marking the margin of the mantle (see 

arrow).  This ridge encircled the lower part of the visceral mass. 

f – foot; s – shell; t – tentacles; vm – visceral mass. 
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(m)  Late Veliger Stage 

 

At the late veliger stage, the embryonic shell had greatly increased in size to cover the 

entire visceral mass.  It also started to coil.  This unpigmented larval shell began to take 

on a light brown colour that was more evident just prior to hatching.  It was separated 

from the head region by the mantle ridge that was depressed to form the mantle cavity 

(see arrow, Figure 5.13).  The eyes and tentacles in the pretrochal region were well 

developed (Figure 5.13).  The mouth was situated at the boundary between the head and 

foot.  In the posttrochal region the foot had grown in size and was much more 

differentiated.  A distinct regular heart beat was noted and the embryo still moved 

actively within the egg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13:  The late veliger embryo.  The ridge (see arrow) marking the edge of the mantle clearly 

differentiated the visceral mass from the muscular foot region.  The shell was now larger and covered the 

entire visceral mass.  At the anterior head region, the eyes were more prominent.  The heart and other 

organs of the visceral mass were also visible. 

e – eyes; f – foot; s – shell; vm – visceral mass. 
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(n)  Hatching Stage 

 

During the stage immediately prior to hatching, the embryo increased in size to fill most 

of the egg (Figure 5.14).  During this period the embryo was observed creeping over and 

rasping off the inner surface of the egg.  Thus, by the time the animal filled the egg, the 

inner membrane was reduced to a very thin envelope through which the young snail 

could be seen scraping into the cavity of the egg capsule.  Once hatching had occurred, 

the snail moved freely in the gelatinous matrix of the egg capsule and escaped through an 

opening made in its outer wall or through an opening made by another snail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14:  Young snail shortly before hatching.  The snail occupied the entire interior of the egg.  

Continued thinning of the internal egg membrane by the movements of the shell and foot resulted in its 

rupture. 

e – eyes; f – foot; m – mouth; s – shell; vm – visceral mass. 
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5.3.3.1  Analysis of the incubation period, mean size and mean geometric growth rate 

 

Assessments of the incubation period, mean size and mean geometric growth rate of the 

different embryonic stages of development are presented in Tables 5.7 – 5.10 for the four 

snail populations. 

 

The time needed for development prior to hatching decreases with increasing temperature 

(Tables 5.7 – 5.10).  Physa acuta had the shortest incubation period at all three 

temperatures (Table 5.10).  For this species the longest embryonic development period 

was 9 days at 20
o
C, while at 30

o
C development was completed in 5 days.  The incubation 

period for R. rubiginosa (Table 5.7) was marginally longer than P. acuta, but followed a 

similar trend (incubation period increasing with decreasing temperature).  In addition, it 

was comparatively shorter than L. natalensis from the UKZN and Greyville Ponds 

(Tables 5.8 and 5.9 respectively). 

 

Table 5.1 showed that R. rubiginosa had the largest mean egg dimensions (0.90 x 0.73 

mm), followed by the Greyville and UKZN Pond L. natalensis.  The eggs of P. acuta 

were the smallest (0.75 x 0.62 mm).  An assessment of the mean size at hatching (Tables 

5.7 - 5.10) indicated that R. rubiginosa had the largest values for all three temperatures, 

followed by the Greyville and UKZN pond lymnaeids.  Despite P. acuta having the 

shortest incubation period, this snail had the smallest mean size at hatching for all three 

temperatures, a characteristic attributed to its smaller egg size (Table 5.1).  The mean size 

at hatching was therefore limited by the size of the egg and the quantity of albumen. 

 

Despite higher temperatures resulting in the acceleration of development and a shorter 

incubation period, the final size of the hatched embryo was smallest at 30
o
C for all four 

snail populations.  At 20
o
C however, all four snail populations had the largest mean sizes 

for hatched embryos (Tables 5.7 – 5.10). 
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Embryonic growth followed the same general pattern observed for most other metazoans 

(De Witt, 1954).  As previously stated, the size of the embryo does not change during 

cleavage (Tables 5.7 – 5.10) because as the total number of cells increased, the cleavage 

cells or blastomeres became smaller with each division (Balinsky, 1970).  A rapid 

increase in embryo size followed the gastrula stage of development however and the 

fastest rate of growth occurred during the trochophore and veliger stages. 

 

Growth rate was influenced by temperature and the length of the incubation period.  At 

each of the three temperatures, the growth rates of the four snail populations were highest 

30
o
C, leading to a shorter incubation period.  Lymnaea natalensis from both the UKZN 

and Greyville Ponds (Tables 5.8 and 5.9 respectively) had growth rates that were similar, 

except that the UKZN population had a higher growth rate for most developmental stages 

at 30
o
C.  Also, the two L. natalensis populations had lower growth rates for most 

developmental stages when compared to R. rubiginosa (Table 5.7) and P. acuta (Table 

5.10).  A comparison of the growth rates from Tables 5.7 and 5.10 indicated that P. acuta 

had higher growth rates than R. rubiginosa except for the early veliger stage where R. 

rubiginosa had higher growth rates. 

 

The influence of temperature on the size of the embryonic stages of development is 

presented in Table 5.11.   

 

Table 5.11:  Kruskal-Wallis analysis for the size of the embryonic stages of development for the four snail 

populations as a function of temperature (n = 15).  Probability values are two-tailed and significance was 

determined at p < 0.05. 

 

Snail Populations Cleavage Blastula Gastrula 
Early 

Trochophore 

Late 

Trochophore 

Early 

Veliger 

Late 

Veliger 
Hatching 

         

R. rubiginosa 1.000 0.915 0.092 0.000 0.012 0.001 0.000 0.021 

L. natalensis (UKZN Pond) 1.000 0.114 0.200 0.034 0.566 0.022 0.017 0.001 

L. natalensis (Greyville Pond) 1.000 0.258 0.275 0.007 0.003 0.002 0.003 0.000 

P. acuta 1.000 0.890 0.607 0.001 0.003 0.000 0.019 0.098 
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For each of the four snail populations, the size of the early stages of embryonic 

development (cleavage, blastula and gastrula) was not significantly influenced by 

temperature, as indicated by the p-values (p > 0.05).  However, the size of the embryo for 

the remaining developmental stages (early trochophore, late trochophore, early veliger, 

late veliger and hatching) was significantly temperature dependent (Table 5.11).  For the 

lymnaeids from the UKZN pond, the size of the late trochophore embryo was not 

influenced by temperature (p = 0.566).  Also, P. acuta displayed no significant difference 

(p = 0.098) in the size of the hatched embryos, a characteristic that indicates a wide 

tolerance in temperature (Table 5.11). 

 

5.4  Discussion 

 

5.4.1  Egg Capsule Descriptions 

 

In the freshwater basommatophorans encapsulation of eggs has evolved with internal 

fertilisation as a means of enhancing reproductive success.  Egg capsules provide a 

source of nutrition and protection for embryos from such environmental stresses as 

predation (Pechenik, 1979; Perron, 1981), bacterial attack (Lord, 1986), osmotic changes 

(Pechenik, 1982; Hawkins and Hutchinson, 1988), desiccation (Spight, 1977; Pechenik, 

1978), temperature shock (Spight, 1977; Pechenik, 1986) and current action (Perron, 

1981). 

 

Further, the stressful nature of the freshwater habitat has necessitated the suppression of 

the planktonic stages.  Because the entire development process is direct rather than 

planktonic and takes place within the egg, more perivitelline fluid for feeding and more 

space for development are needed.  Hence there must be a greater emphasis on egg size 

than on numbers of eggs (Fioroni and Schmekel, 1976; Calow, 1978; Geraerts and 

Joosse, 1984). 

 

From the morphological comparisons of egg capsules for each of the four snail 

populations (Table 5.1), P. acuta produced the smallest eggs and egg capsules.  Despite 
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this, P. acuta produced the second highest mean number of eggs per capsule (clutch size), 

a trait that must enhance its invasiveness.  Radix rubiginosa had the largest egg capsules 

and produced the most eggs per capsule as well as the largest eggs.  This presents an 

advantage in that a larger amount of albumen is at the disposal of the embryo, allowing 

for more rapid development before hatching.  Physa acuta had the fastest development 

time (5 - 9 days). 

 

5.4.2  Viability of Eggs and Egg Abnormalities 

 

Even when still in ovo, the embryo may be subjected to various influences that interfere 

with its normal development.  Following Bondesen (1950), these included either intrinsic 

factors (lack of fertilisation, quantity of albumen) or extrinsic factors (crushing of the egg 

cell during the formation of the capsule, crowding as a result of abnormal development of 

a neighbouring embryo, changes in the physical and / or chemical environment). 

 

(a)  Hatching Success 

 

The mean hatching success (mean percentage viable eggs) increased from 20
o
C to 25

o
C, 

with a decrease recorded for all populations at 30
o
C (Table 5.2).  Physa acuta had the 

highest hatching success at all three temperatures (96.17 - 97.86%).  This was due to its 

high reproductive capacity which Appleton and Brackenbury (1998) believed to 

contribute to the invasive success of P. acuta.  Of importance was the observation that R. 

rubiginosa had the second highest mean hatching success (94.72 - 96.90%), only 

marginally lower than P. acuta.   

 

(b)  Dwarf Eggs 

 

Dwarf eggs were smaller than normally proportioned eggs and associated with the 

starting and stopping of a bout of oviposition.  If the snail was disturbed during 

oviposition, it was probable that the albumen production was reduced and could cease 

(Bondesen, 1950).  Dwarf eggs may therefore contain an insufficient quantity of albumen 
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for nourishment of the embryo.  Thus, as the embryo developed, it used a larger 

proportion of the available albumen causing a decrease in egg size (Bondesen, 1950).  If 

growth of the embryo was restricted by the egg being too small, the embryo would 

invariably grow deformed and might cease development early. 

 

In Table 5.2 it was noted that L. natalensis from both the study ponds had the highest 

percentage of dwarf eggs (2.71 - 4.68%).  These snails also displayed the highest 

percentage of eggs without development (2.20 - 4.24%).  Radix rubiginosa had a 

considerably lower percentage of dwarf eggs than either of the L. natalensis populations.  

This is important since the embryos of R. rubiginosa would not be influenced by the 

smaller size of the egg restricting growth and also by the lesser quantity of albumen 

present.  The embryos of R. rubiginosa would therefore be better equipped for survival in 

comparison to the two populations of L. natalensis.  The invasive, P. acuta had the 

lowest occurrence of dwarf eggs (0.79 - 1.39%) followed by R. rubiginosa (1.24 - 

1.96%). 

 

(c)  Eggs without Egg Cells 

 

This abnormality affected the growth and development of neighbouring embryos in the 

egg capsule.  As previously stated, due to the growth requirements of the embryo in 

normally proportioned eggs, large quantities of albumen were used causing a decrease in 

egg size.  As the eggs decreased in size, those possessing no egg cells were rounded off 

and pressed against the normally proportioned eggs causing it to become considerably 

narrowed.  This resulted in the embryo attaining an abnormal, elongated shape.  

According to Bondesen (1950), a few of the empty eggs can also be used as extra 

nourishment for the embryos.  This was also seen in the present study where empty egg 

envelopes were seen.  From Table 5.2, R. rubiginosa had a considerably lower percentage 

of eggs without development than both the L. natalensis populations.  Physa acuta had 

the lowest occurrence of this abnormality at 20
o
C (0.63%) and 25

o
C (0.47%).  At 30

o
C, 

however, R. rubiginosa (0.73%) had a percentage lower than P. acuta (0.78%). 
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Eggs with this type of abnormality would restrict the growth and development of 

neighbouring embryos.  This would have an unfavourable effect on the viability of the 

hatched young when they are exposed to the environmental conditions after emerging.  It 

is therefore suggested that the adjacent eggs would not be adapted for survival and might 

perish soon after emergence from the egg capsule. 

 

(d)  Eggs Without Development 

 

It is possible that in a given egg mass some eggs did not develop because they had not 

been fertilised previously.  However, it was also observed that normal development until 

the trochophore stage was not always followed by the hatching of juveniles.  This 

condition of embryos not completing development could be attributed to a lack of energy 

required for radular movements after the rapid utilisation of energy stores during 

embryonic development (Vaughn, 1953; Costil, 1997).  Imai (1937) observed that 

hatching was influenced by the mechanical action of the radula and that the longer 

hatching was delayed (due to lower temperatures), the weaker the action of the radula 

became resulting in the cessation of development (Vaughn, 1953).  From Table 5.2, it 

was noted that snail populations maintained at 20
o
C had a higher occurrence of eggs 

without development.  Physa acuta (0.73 - 1.54%) and R. rubiginosa (0.92 - 2.11%) had 

considerably fewer eggs that did not develop than both L. natalensis populations (2.20 - 

4.24%). 

 

(e)  Polyvitelline Eggs 

 

Polyvitelline eggs were among the rarer abnormalities (< 1%) and the least frequently 

recorded at the three temperatures (Table 5.2).  These included eggs with two or more 

egg cells and were most frequently observed first or last in the egg row.  Of these the 

majority were situated at the terminal end of the egg capsule and consequently deposited 

last on the substratum.  It was therefore hypothesised that polyvitelline eggs could be 

attributed to a disruption in the oviposition process (Bondesen, 1950; De Witt, 1954). 
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According to Crabb (1927) and De Witt (1954), it was probable that active contraction of 

the gizzard during feeding inhibited the passage of ova down the hermaphrodite duct to 

such an extent that several ova accumulated in the duct’s enlarged part.  During a period 

of reduced activity of the gizzard all the ova could pass into the uterus at the same time.  

In this way, a number of egg cells were enveloped by the albumen and the egg membrane 

which would normally cover a single egg cell (De Witt, 1954). 

 

For each of the three experimental temperatures P. acuta (0.10 - 0.16%) and R. 

rubiginosa (0.09 - 0.15%) had a lower occurrence of polyvitelline eggs than either of the 

L. natalensis populations (0.15 - 0.45%).  Also from Table 5.2, it was noted that there 

was a tendency for those snails producing the most polyvitelline eggs to also lay the 

largest numbers of eggs lacking egg cells.  The overall effect of both polyvitelline eggs 

and eggs lacking egg cells at the three temperatures accounted for 0.63 - 0.91% in P. 

acuta and 0.88 - 1.21% in R. rubiginosa.  The L. natalensis population from both the 

UKZN Pond and the Greyville Pond had an occurrence of 1.86 - 3.72% and 2.20 - 4.25% 

respectively for both these abnormalities. 

 

It is therefore evident that the individual egg abnormalities comprise a small proportion 

of the total egg output.  However, collectively these abnormalities comprise a higher 

proportion and would therefore reduce the hatching success of the four snail populations.  

At each of the three temperatures R. rubiginosa and P. acuta had lower frequencies in 

comparison to the two L. natalensis populations.  This therefore implies that a greater 

proportion of the eggs produced by R. rubiginosa and P. acuta are likely to hatch.  From 

Table 5.3 it was evident that temperature had a significant effect on the hatching success 

and egg abnormalities (dwarf eggs, eggs without egg cells and eggs without 

development) for both the L. natalensis populations.  Radix rubiginosa and P. acuta 

showed no such difference in hatching success or egg abnormalities (Table 5.3).  This has 

special importance since it indicates that both R. rubiginosa and P. acuta are adapted to 

reproduce maximally over a wider range in temperature. 
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5.4.3  Embryological Development 

 

Temperature induces developmental responses in body size, with larger individuals 

developing at lower temperatures (Atkinson, 1994; Partridge and French, 1996; Chown 

and Gaston, 1999; Fischer et al., 2003).  In a study of the growth of the larval shell of 

Lymnaea japonica under controlled temperature conditions, Imai (1937) noted that higher 

temperatures resulted in the acceleration of development but the hatching size of this 

snail species was smaller (Noland and Carriker, 1946).  According to Imai (1937), 

embryos developing at lower temperatures had larger sizes at hatching.  It was therefore 

suggested that the animals grew and developed more rapidly at higher temperatures, 

using larger amounts of energy and were thus of a smaller size (Imai, 1937; Vaughn, 

1953).  In this study all four snail populations had larger mean hatching sizes at 20
o
C 

(Tables 5.7 - 5.10) than at 25
o
C or 30

o
C. 

 

For freshwater snails, a sufficient quantity of nourishment is of importance for the growth 

and survival of the embryos and that the size of the snail at hatching depends largely 

upon this.  It was noted that R. rubiginosa had both the largest mean egg size (Table 5.1) 

and the largest embryo size at hatching (Table 5.7).  These were comparatively higher 

than both L. natalensis populations and P. acuta. 

 

The embryonic development period decreased with increasing temperature (Tables 5.7 – 

5.10).  Physa acuta had the shortest incubation period at all three temperatures followed 

marginally by R. rubiginosa.  Lymnaea natalensis had the longest incubation period at all 

temperatures. 

 

Growth rates (Tables 5.7 - 5.10) were not constant for successive periods of observation 

and were dependent on both the temperature and incubation time.  At higher 

temperatures, faster growth rates occurred due to an acceleration of development leading 

to shorter incubation periods.  A rapid increase in embryo size followed gastrulation with 

the fastest growth rates recorded for the trochophore and veliger stages (Tables 5.7 – 

5.10).  These faster growth rates were attributed to the development of specialised 
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structures and organs at these stages.  Following this period, the rate decreased as the 

young snail neared the maximum prenatal size. 

 

In summary, the temperatures at which snails lay eggs and the relationship between egg 

development and temperature have important implications for the distribution and 

potential spread of an introduced species (Harris and Charleston, 1977).  The ascendancy 

in abundance and distribution of introduced species generally results in a decline of 

indigenous species (Zukowski and Walker, 2008). 

 

Unsurprisingly, P. acuta proved to have a higher fecundity, a shorter incubation period 

and wider temperature tolerances than the other species tested.  These are characteristics 

that enhance its success as an invasive.  On the basis of this argument, its high 

adaptability to changing environmental factors such as temperature, is in agreement with 

the fact that P. acuta is more widespread in South Africa than L. natalensis (Hamilton-

Attwell et al., 1970; De Kock et al., 1989; Brackenbury and Appleton, 1993; Appleton 

and Brackenbury, 1998; Appleton, 2003; De Kock and Wolmarans, 2007). 

 

This has important implications for R. rubiginosa, since this snail displayed similar 

characteristics to P. acuta, and exhibited greater adaptability and survival over a wider 

temperature range than L. natalensis.  Several authors (Dondero and Lim, 1976; Mienis 

1986) have also commented that it is easy to breed R. rubiginosa in aquaria and this was 

found to be the case in the present study as well.  The indigenous L. natalensis is not as 

easy to breed and this raises the question, “If R. rubiginosa spreads in South Africa, will 

it become invasive, probably at the expense of L. natalensis?” 

 

Radix rubiginosa appears to have a number of reproductive advantages over L. 

natalensis.  It produces larger egg capsules with more eggs per capsule.  The eggs of R. 

rubiginosa are larger, allowing the developing embryo more space and nourishment, 

increasing its adaptability and tolerance of environmental conditions after emerging.  The 

hatching success of R. rubiginosa are also high and only marginally lower than the 

already invasive P. acuta.  Also, R. rubiginosa has a much higher hatching success than 
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L. natalensis at all temperatures tested.  The lower frequency of egg abnormalities in both 

R. rubiginosa and P. acuta further implies that a greater proportion of the eggs produced 

by these introduced species are likely to hatch. 

 

In addition a shorter incubation period, larger size at hatching, faster rates of growth and 

development as well as the potential for rapid development over an extended range of 

temperatures are all advantageous to R. rubiginosa.  Therefore the competitive 

superiority of R. rubiginosa over the indigenous L. natalensis with respect to their 

reproductive potential presents a situation that allows for rapid spread of the former and 

possibly the extirpation of the latter. 



Table 5.7:  Incubation period, mean size and mean geometric growth rate (GGR) of the different embryonic stages of development for R. rubiginosa at the three temperature 

treatments (n = 15).  Mean sizes of embryo are given in millimetres (± standard deviation).  Gaps in the incubation periods between embryonic stages are due to an absence of 

synchronous development. 

 

Embryonic Stage 20
o
C   25

o
C   30

o
C   

 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

          

First Cleavage 4 – 6 hours 0.122 (±0.016)  3 – 4 hours 0.122 (±0.016)  2 – 3 hours 0.122 (±0.016)  

Second Cleavage 6 – 7 hours 0.122 (±0.016)  4 – 5 hours 0.122 (±0.016)  3 – 4 hours 0.122 (±0.016)  

Third Cleavage 8 -10 hours 0.122 (±0.016)  5 – 6 hours 0.122 (±0.016)  4 – 5 hours 0.122 (±0.016)  

Fourth Cleavage 10 – 11 hours 0.122 (±0.016)  7 – 8 hours 0.122 (±0.016)  6 – 7 hours 0.122 (±0.016)  

Fifth Cleavage 12 – 14 hours 0.122 (±0.016)  9 – 12 hours 0.122 (±0.016)  7 – 8 hours 0.122 (±0.016)  

Sixth Cleavage 18 – 22 hours 0.122 (±0.016)  16 – 20 hours 0.122 (±0.016)  11 – 14 hours 0.122 (±0.016)  

Blastula 23 – 30 hours 0.127 (±0.006) 0.039 21 – 24 hours 0.126 (±0.007) 0.037 16 – 19 hours 0.125 (±0.008) 0.040 

Gastrula 31 – 48 hours 0.139 (±0.006) 0.274 24 – 48 hours 0.135 (±0.015) 0.570 20 – 36 hours 0.131 (±0.010) 0.264 

Early Trochophore 3 – 4.5 days 0.221 (±0.014) 0.273 2 – 3 days 0.169 (±0.009) 0.224 1.5 – 2 days 0.165 (±0.008) 0.345 

Late Trochophore 4.5 – 6 days 0.347 (±0.031) 0.299 3 – 4 days 0.325 (±0.018) 0.653 2 – 3 days 0.316 (±0.020) 1.304 

Early Veliger 6 – 8 days 0.593 (±0.031) 0.358 4 – 5 days 0.559 (±0.038) 0.541 3 – 4 days 0.540 (±0.032) 0.536 

Late Veliger 8 – 11 days 0.735 (±0.033) 0.107 6 – 7 days 0.716 (±0.050) 0.124 4 – 5 days 0.659 (±0.025) 0.200 

Hatching 12 days 0.875 (±0.041) 0.044 8 days 0.845 (±0.026) 0.083 6 days 0.838 (±0.014) 0.120 



Table 5.8:  Incubation period, mean size and mean geometric growth rate (GGR) of the different embryonic stages of development for L. natalensis (UKZN pond) at the three 

temperature treatments (n = 15).  Mean sizes of embryo are given in millimetres (± standard deviation).  Gaps in the incubation periods between embryonic stages are due to 

an absence of synchronous development.   

 

Embryonic Stage 20
o
C   25

o
C   30

o
C   

 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

          

First Cleavage 4 – 6 hours 0.116 (±0.007)  3 – 4 hours 0.116 (±0.007)  2 – 3 hours 0.116 (±0.007)  

Second Cleavage 7 – 8 hours 0.116 (±0.007)  5 – 6 hours 0.116 (±0.007)  4 – 5 hours 0.116 (±0.007)  

Third Cleavage 9 – 10 hours 0.116 (±0.007)  6 – 7 hours 0.116 (±0.007)  5 – 6 hours 0.116 (±0.007)  

Fourth Cleavage 10 – 13 hours 0.116 (±0.007)  8 – 10 hours 0.116 (±0.007)  6 – 8 hours 0.116 (±0.007)  

Fifth Cleavage 14 – 18 hours 0.116 (±0.007)  12 – 14 hours 0.116 (±0.007)  10 – 12 hours 0.116 (±0.007)  

Sixth Cleavage 26 – 34 hours 0.116 (±0.007)  20 – 28 hours 0.116 (±0.007)  16 – 19 hours 0.116 (±0.007)  

Blastula 38 – 60 hours 0.125 (±0.008) 0.049 30 – 48 hours 0.123 (±0.006) 0.049 21 – 36 hours 0.120 (±0.007) 0.039 

Gastrula 2.5 – 3.5 days 0.134 (±0.009) 0.073 2 – 3 days 0.131 (±0.009) 0.084 1.5 – 2 days 0.128 (±0.009) 0.103 

Early Trochophore 3.5 – 5 days 0.175 (±0.014) 0.269 3 – 4 days 0.167 (±0.017) 0.242 2 – 3 days 0.162 (±0.009) 0.471 

Late Trochophore 5 – 7 days 0.324 (±0.029) 0.410 4 – 6 days 0.315 (±0.022) 0.632 3 – 5 days 0.313 (±0.027) 0.660 

Early Veliger 7 – 10 days 0.495 (±0.030) 0.212 6 – 8 days 0.480 (±0.021) 0.211 5 – 6 days 0.455 (±0.049) 0.187 

Late Veliger 10 – 13 days 0.671 (±0.022) 0.101 8 – 11 days 0.641 (±0.055) 0.144 6 – 8 days 0.617 (±0.054) 0.304 

Hatching 14 days 0.816 (±0.036) 0.049 12 days 0.783 (±0.024) 0.050 9 days 0.744 (±0.070) 0.063 



Table 5.9:  Incubation period, mean size and mean geometric growth rate (GGR) of the different embryonic stages of development for L. natalensis (Greyville pond) at the 

three temperature treatments (n = 15).  Mean sizes of embryo are given in millimetres (± standard deviation).  Gaps in the incubation periods between embryonic stages are 

due to an absence of synchronous development.     

   

Embryonic Stage 20
o
C   25

o
C   30

o
C   

 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

          

First Cleavage 4 – 6 hours 0.119 (±0.006)  3 – 4 hours 0.119 (±0.006)  2 – 3 hours 0.119 (±0.006)  

Second Cleavage 7 – 8 hours 0.119 (±0.006)  5 – 6 hours 0.119 (±0.006)  3 – 4 hours 0.119 (±0.006)  

Third Cleavage 10 – 11 hours 0.119 (±0.006)  6 – 7 hours 0.119 (±0.006)  4 – 6 hours 0.119 (±0.006)  

Fourth Cleavage 12 – 14 hours 0.119 (±0.006)  8 – 10 hours 0.119 (±0.006)  6 – 8 hours 0.119 (±0.006)  

Fifth Cleavage 14 – 20 hours 0.119 (±0.006)  12 – 14 hours 0.119 (±0.006)  10 – 12 hours 0.119 (±0.006)  

Sixth Cleavage 28 – 48 hours 0.119 (±0.006)  20 – 28 hours 0.119 (±0.006)  15 – 20 hours 0.119 (±0.006)  

Blastula 2 – 3 days 0.126 (±0.009) 0.030 1.25 – 2 days 0.125 (±0.009) 0.040 1 – 1.75 days 0.121 (±0.007) 0.017 

Gastrula 3 – 4 days 0.135 (±0.015) 0.071 2 – 3 days 0.134 (±0.011) 0.096 2 – 2.5 days 0.129 (±0.009) 0.069 

Early Trochophore 4 – 6 days 0.178 (±0.006) 0.274 3 – 4 days 0.175 (±0.005) 0.269 2.5 – 3.5 days 0.169 (±0.008) 0.539 

Late Trochophore 6 – 8 days 0.336 (±0.023) 0.318 4 – 6 days 0.319 (±0.018) 0.600 3.5 – 5.5 days 0.309 (±0.014) 0.601 

Early Veliger 8 – 11 days 0.512 (±0.025) 0.211 6 – 8 days 0.484 (±0.039) 0.208 5.5 – 7 days 0.463 (±0.037) 0.202 

Late Veliger 11 – 14 days 0.705 (±0.030) 0.107 8 – 11 days 0.677 (±0.050) 0.168 7 – 9 days 0.649 (±0.039) 0.225 

Hatching 15 days 0.845 (±0.023) 0.045 12 days 0.821 (±0.027) 0.048 10 days 0.793 (±0.029) 0.067 



Table 5.10:  Incubation period, mean size and mean geometric growth rate (GGR) of the different embryonic stages of development for P. acuta at the three temperature 

treatments (n = 15).  Mean sizes of embryo are given in millimetres (± standard deviation).  Gaps in the incubation periods between embryonic stages are due to an absence of 

synchronous development.   

   

Embryonic Stage 20
o
C   25

o
C   30

o
C   

 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

Cumulative 

Incubation 

Period 

Mean Size 

(mm) 

GGR 

(mm/day) 

          

First Cleavage 3 – 4 hours 0.112 (±0.008)  2 – 3 hours 0.112 (±0.008)  2 – 3 hours 0.112 (±0.008)  

Second Cleavage 5 – 6 hours 0.112 (±0.008)  4 – 5 hours 0.112 (±0.008)  3 – 4 hours 0.112 (±0.008)  

Third Cleavage 6 – 8 hours 0.112 (±0.008)  5 – 6 hours 0.112 (±0.008)  4 – 5 hours 0.112 (±0.008)  

Fourth Cleavage 9 – 11 hours 0.112 (±0.008)  7 – 9 hours 0.112 (±0.008)  5 – 6 hours 0.112 (±0.008)  

Fifth Cleavage 16 – 18 hours 0.112 (±0.008)  11 – 14 hours 0.112 (±0.008)  7 – 8 hours 0.112 (±0.008)  

Sixth Cleavage 21 – 26 hours 0.112 (±0.008)  18 – 23 hours 0.112 (±0.008)  12 – 14 hours 0.112 (±0.008)  

Blastula 28 – 35 hours 0.118 (±0.012) 0.045 24 – 28 hours 0.117 (±0.010) 0.053 15 – 19 hours 0.116 (±0.007) 0.061 

Gastrula 36 – 48 hours 0.129 (±0.011) 0.277 29 – 36 hours 0.125 (±0.012) 0.317 20 – 24 hours 0.125 (±0.100) 0.353 

Early Trochophore 2 – 3 days 0.174 (±0.009) 0.594 1.5 – 2 days 0.163 (±0.012) 0.895 1 – 1.5 days 0.154 (±0.014) 1.241 

Late Trochophore 3 – 5 days 0.307 (±0.017) 0.567 2 – 3 days 0.291 (±0.012) 1.161 1.5 – 2.5 days 0.283 (±0.015) 1.219 

Early Veliger 5 – 6 days 0.455 (±0.027) 0.197 3 – 4 days 0.417 (±0.009) 0.362 2.5 – 3.5 days 0.403 (±0.013) 0.353 

Late Veliger 6 – 8 days 0.581 (±0.035) 0.246 4 – 5 days 0.556 (±0.039) 0.287 3.5 – 4.5 days 0.537 (±0.038) 0.287 

Hatching 9 days 0.726 (±0.022) 0.074 6 days 0.719 (±0.016) 0.128 5 days 0.710 (±0.017) 0.186 
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________________________________________________________________________ 

 

6 

Growth and Life History Parameters of Radix rubiginosa, Lymnaea 

natalensis and Physa acuta 

 

________________________________________________________________________ 

 

6.1  Introduction 

 

Characteristics of an introduced species are critical to both the success and impact of the 

invader (Lodge, 1993) and the identification of these characteristics allows 

recommendations to be made on how to evaluate the invasive potential of these new 

introductions (Kolar and Lodge, 2001).  Factors that have been suggested as predictors of 

invasive success include abundance and wide range in the native habitat, a broad 

physiological tolerance (euryhalinity and eurythermy), rapid growth and life history 

parameters such as short generation times, high fecundity and high intrinsic rate of 

natural increase (Rejmanek and Richardson, 1996; Williamson and Fitter, 1996; Barrat-

Segretain et al., 2002; Moyle and Marchetti, 2006; Keller et al., 2007; Suarez and 

Tsutsui, 2008).  Therefore the extent to which a species can spread, as well as its success 

in a given environment, are thought to be mainly due to those factors which may limit 

growth, reproduction and survival (Sastry, 1979; Borcherding, 1995). 

 

Among ecological factors, temperature is frequently limiting for the growth, distribution 

and population dynamics of organisms (Vaidya and Nagabhushanam, 1978; Raut et al., 

1992; Abdul Aziz and Raut, 1996).  The influence of such factors is more obvious in 

poikilothermic organisms like molluscs where the body temperature approximates the 

temperature of the environment.  In general, research on the effects of different 

temperatures on snails has dealt with geographic distribution, relative abundance and 

physiological responses, particularly growth and reproduction (McDonald, 1973).  In 

these animals, temperature has an influence on the metabolism and life history 
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characteristics, and may act as an important selection pressure (Hardy, 1979; Lam and 

Calow, 1990). 

 

Furthermore, knowledge of the effect of temperature on life history traits is important in 

assessing interactions between various species and also in determining the potential 

invasiveness of introduced species (Brittain and Campbell, 1991).  A study on 

interactions between species also requires knowledge of the parameters that may 

influence the competitive process.  Among these growth, survival and fecundity are the 

most relevant and are necessary components of life tables (Barbosa et al., 1992). 

 

The construction of life tables is an important analytical tool for understanding the 

characteristics and dynamics of a snail population.  Parameters such as age specific 

survival and fecundity are of particular interest because of their close relationship to 

fitness itself (Charlesworth, 1980; Stearns, 1992; Lessells, 1991; Partridge et al., 1995).  

Therefore, life history analysis has a range of applications that include measuring the 

growth capacity of a population (Southwood and Henderson, 2000), examining the 

dynamics of colonising or invading species, predicting life history evolution and 

estimating extinction probabilities (Granett et al., 1983; Trichilo and Leigh, 1985; Carey 

et al., 1988; Omer et al., 1992; McPeek and Kalisz, 1993; Vargas et al., 1997). 

 

A key parameter of life tables is the intrinsic rate of natural increase (rm).  This biometric 

parameter is a comprehensive numeric evaluation of a specific environmental factor in 

terms of the survival rate and fecundity of cohorts of a species (De Kock, 1973; De Kock 

and van Eeden, 1976; Prinsloo and van Eeden, 1976).  The intrinsic rate of natural 

increase further indicates whether a population will increase, decrease or remain static in 

numbers.  It has been used as a measure of population growth (Lotka, 1943) and as a 

quantitative expression of the relative favorability of experimental conditions in studies 

on population dynamics and limiting factors (Birch, 1948; Leslie and Park, 1949; Root, 

1960; De Kock, 1973; Prinsloo and van Eeden, 1976). 
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Since rm summarises the reproductive capacity in terms of the speed of development, 

survival rate and fecundity, comparison of rm values enables an assessment of the 

potential rate of population increase of a species under specified conditions (Force and 

Messenger, 1964; De Kock, 1973; Prinsloo and van Eeden, 1976). 

 

The aim of this study was to assess the invasiveness of Radix rubiginosa (Michelin, 

1831) in relation to the already established invader, the North American Physidae, Physa 

acuta Draparnaud, 1805 and the indigenous Lymnaea natalensis Krauss, 1848.  This 

investigation assessed the growth and various life history parameters of the three species 

and the role of temperature in causing observed differences.  This was particularly 

important in view of the success of P. acuta as an invader over a wide geographical and 

altitudinal range in South Africa (Hamilton-Attwell et al., 1970; De Kock et al., 1989; 

Brackenbury and Appleton, 1993; Appleton and Brackenbury, 1998; Appleton, 2003; De 

Kock and Wolmarans, 2007).  The survival rate, fecundity and intrinsic rate of natural 

increase were then comparatively analysed to allow for a more precise focus on the 

specific attributes likely to enhance the ability of R. rubiginosa to spread. 
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6.2  Methodology 

 

The methodology for the culture and maintenance of the four snail populations was 

described in Chapter 5.2.  Individual F1 snails (progeny raised in the laboratory from field 

collected snails) were pre-acclimated to the experimental temperatures.  The F1 snails 

were then utilised for the cohorts to study the effects of temperature on the growth and 

life history parameters for each of the four populations. 

 

At the start of the experiment, a total of 30 individuals with shell lengths measuring 

approximately 1 mm were randomly selected from each population and placed into 

aerated aquaria (45 x 29 x 12 cm), containing six litres of dechlorinated tap water (water 

depth approximately 6 cm).  The aquaria were maintained at three constant temperatures 

(20
o
C, 25

o
C and 30

o
C) and a 12:12 (L:D) photoperiod.  To prevent the snails from 

escaping, the aquaria were covered with a net.  Each trial was done in triplicate. 

 

The snails were fed lettuce daily and the amount was adjusted to the maximum daily 

consumption.  In addition the diet was supplemented ad libitium with Tetramin® (a 

commercially available brand of fish food) and Marcus Rohrer® Spirulina (2 tablets 

crushed into a fine powder and added to the water).  Leaves of Nymphaea nouchali and 

Marsilea sp. were placed into the aquaria to provide resting and egg laying sites for the 

snails.  The aquaria water was changed weekly and the faeces were removed daily. 

 

6.2.1  Growth 

 

Shell length was measured every week to the nearest 0.01 mm, using either a graticuled 

eyepiece on a stereomicroscope or a Vernier caliper.  Growth was expressed as an 

increase in the mean shell length.  The relationship between size and age for consecutive 

intervals of growth was used to estimate the rate of growth and maximal size of a given 

population (Walford, 1946; Ricker, 1975).   
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An estimate of theoretical growth for the four snail populations was obtained by fitting 

the observed data to the von Bertalanffy growth equation: 

 

Lt = L∞ (1 - e 
-K (t - t0)

) 

 

where, 

Lt = shell length at age t 

L∞ = asymptotic length 

K = growth coefficient (the exponential rate at which length approaches the asymptotic 

length) 

t0 = time at which length is theoretically zero on the modeled growth trajectory 

 

The von Bertalanffy growth parameters K and L∞ were estimated by the Ford-Walford 

method, where Lt at time t along the abscissa is plotted against Lt + 1 at time t + 1 along 

the ordinate, using as unit time the interval between two successive observations.  The 

coordinate at which the regression line intersects the line y = x is L∞.  The slope of the 

regression line is e 
-K

 (i.e. the growth coefficient is equal to the negative natural logarithm 

of the slope of the Ford-Walford plot).  Using the L∞ value obtained, a resulting plot of ln 

(L∞ - Lt) against t was constructed.  The intercept of that regression with the ordinate (i.e. 

where t = 0) was used to calculate t0: 

 

t0 = (intercept - ln L∞) / K 

 

The slope of the regression line and therefore K, depend upon the interval between 

successive measurements.  This is allowed for in the von Bertalanffy growth equation. 

 

6.2.2  Survival, Fecundity and Life History Parameters 

 

To evaluate the response of the four snail populations to the three temperatures, the 

standard statistics for life tables were calculated.  Methods of calculations discussed by 

Birch (1948); Andrewartha and Birch (1954); De Kock (1973); Southwood (1978) and 
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Gutierrez et al. (2000) were followed.  A week was taken as the unit time for the life 

tables.  This was because it was envisaged that this time period might reflect subtle 

differences in the survival, fecundity and growth of the four snail populations, which 

might otherwise be diluted and unnoticed if recorded over a forthnight, as was done by 

other workers (Shiff, 1964; De Kock, 1973).  As R. rubiginosa, L. natalensis and P. acuta 

are hermaphroditic, each individual was a potential female and fecundity was calculated 

from the total number of viable eggs per individual.  Therefore data analysis was carried 

out following the single sex method and the life tables were constructed using the 

following parameters. 

 

(a)  Age (x) 

 

The life table was divided into uniform durations of one week.  All data collected in the 

period of one age group were taken as if they occurred at the mid-point of that age group. 

 

(b)  Survival rate (lx) 

 

This parameter monitored the survival of a cohort through time, i.e. it is the proportion of 

individuals surviving at age x in relation to the initial size of the cohort.  The lack of 

response to mechanical stimuli was considered a criterion of death.  Snails judged as dead 

were kept under surveillance for 24 hours before the final mortality figure was noted.  All 

dead snails were removed from the aquaria after calculations were completed.  

Survivorship was recorded weekly until the last snail died.  The duration of mortality was 

also assessed over the period between the first and last mortality. 

 

(c)  Fecundity (mx) 

 

Fecundity was presented as the average number of eggs laid per snail over one week for 

each of the three temperature treatments.  Eggs were removed from the aquaria every day 

to control for any effects associated with a reduced surface area available for ovipositon. 
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(d)  Gross reproductive rate (GRR) 

 

This parameter represents the sum of eggs produced per snail over the entire duration of 

the study:  GRR = Σ mx 

 

(e)  The net reproductive rate (Ro) 

 

The net reproductive rate (Ro) represents the actual mean replacement per generation 

which included the effect of the cohort’s survival rate during reproduction.  It is the sum 

of the product of lx and mx in each group:  Ro = Σ lx mx 

 

(f)  Intrinsic rate of natural increase (rm) 

 

This biometric parameter is a comprehensive numeric evaluation of a specific 

environmental factor in terms of the survival rate and fecundity of cohorts of a species 

and indicated whether a population will increase, decrease or remain static in numbers.  

The intrinsic rate of natural increase (rm) represents the maximum population growth 

under the particular conditions of the experiment.  The rm is calculated by iteration of the 

formula (Lotka, 1925):  Σ e 
-rm x

 lx mx = 1 

 

Since the intrinsic rate of natural increase summarises the reproductive capacity of the 

four snail populations in terms of the speed of development, survival rate and fecundity, 

comparison of the respective rm values enables an accurate assessment of the influence of 

temperature on the potential rate of population increase of these species (Force and 

Messenger, 1964). 
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(g)  Mean generation time (T) 

 

The mean duration of a generation can be considered as the time between one birth and 

the next one.  This parameter was calculated using the formula:  T = loge Ro / rm 

 

where, Ro is the net reproductive rate and rm is the intrinsic rate of natural increase. 

 

(h)  Finite rate of increase (λ) 

 

This parameter indicates the number of individuals of the future cohort that will replace 

one individual of the existing cohort (number of times the population will multiply itself 

per unit time).  Therefore the finite rate of increase was the natural antilogarithm of the 

innate capacity of increase:  λ = e 
rm

  

 

To compare the effects of temperature on the survival and fecundity within and between 

the four snail populations, a non-parametric Mann-Whitney-U test was performed.  This 

test was selected because the data were not normally distributed even after 

transformation.  The life history parameters were subjected to an analysis of variance 

(ANOVA) and the means were separated using the Tukey HSD.  Statistical analyses were 

performed using SPSS 11.0.1 (SPSS Inc.).  Probability values are two-tailed and 

significance was determined at p < 0.05. 
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6.3  Results 

 

6.3.1  Growth 

 

The growth curves of the four snail populations maintained at the three temperatures are 

presented in Figures 6.1 - 6.3.  At 20
o
C, Radix rubiginosa reached the largest observed 

shell length (18.20 mm) at 29 weeks (Figure 6.1).  Lymnaea natalensis from the UKZN 

Pond attained a maximum shell length of 16.25 mm at 22 weeks while the Greyville Pond 

population had its largest shell length of 15.65 mm at 19 weeks.  The smaller-sized Physa 

acuta attained a maximum shell length of 11.80 mm but this population exhibited the 

greatest longevity of 35 weeks (Figure 6.1). 

   

Figure 6.1:  Growth expressed as an increase in the mean shell length for R. rubiginosa, L. natalensis 

(UKZN and Greyville Ponds) and P. acuta at 20oC (n = 90). 
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At 25
o
C (Figure 6.2), R. rubiginosa attained a maximum shell length of 17.40 mm, while 

L. natalensis from both the UKZN and Greyville Ponds had maximum shell lengths of 

13.95 mm and 13.35 mm respectively.  The maximum shell length recorded by P. acuta 

at this temperature was 10.20 mm. 

 

Figure 6.2 also shows that P. acuta had the greatest longevity of 28 weeks followed by R. 

rubiginosa (25 weeks) and finally L. natalensis (18 weeks for the UKZN Pond population 

and 16 weeks for the Greyville Pond population). 

 

Figure 6.2:  Growth expressed as an increase in the mean shell length for R. rubiginosa, L. natalensis 

(UKZN and Greyville Ponds) and P. acuta at 25oC (n = 90). 
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At 30
o
C (Figure 6.3) P. acuta attained the greatest longevity (22 weeks) followed by R. 

rubiginosa (21 weeks).  The longevity of L. natalensis at 30
o
C was 12 weeks (UKZN 

Pond) and 14 weeks (Greyville Pond). 

            

  

Figure 6.3:  Growth expressed as an increase in the mean shell length for R. rubiginosa, L. natalensis 

(UKZN and Greyville Ponds) and P. acuta at 30oC (n = 90). 
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acuta (0.1236), L. natalensis from the UKZN Pond (0.1128) and finally L. natalensis 

from the Greyville Pond (0.1017).  At 25
o
C and 30

o
C, P. acuta had the highest K value, 

followed by R. rubiginosa, the UKZN Pond L. natalensis population and finally the L. 

natalensis population from the Greyville Pond. 

 

Importantly, R. rubiginosa exhibited a growth coefficient (K) at 20
o
C that was 1.06 times 

larger than that of P. acuta, while those exhibited by P. acuta at 25
o
C and 30

o
C were 1.05 

and 1.04 times greater than that of R. rubiginosa (Table 6.1).  The growth coefficients for 

both R. rubiginosa and P. acuta were 1.10 - 1.29, 1.19 - 1.35 and 1.11 - 1.36 times larger 

than those of the two L. natalensis populations at 20
o
C, 25

o
C and 30

o
C respectively. 

 

Table 6.1:  Estimated growth parameters of the four snail populations maintained at the three temperatures.  

These parameters were calculated using the Ford-Walford method. 

 

Temperature Snail Populations K L∞ t0 

     

20oC R. rubiginosa 0.1316 19.00 -3.5289 

 L. natalensis (UKZN Pond) 0.1128 18.00 -1.8652 

 L. natalensis (Greyville Pond) 0.1017 18.50 -1.2566 

 P. acuta 0.1236 12.00 -1.9005 

     

25oC R. rubiginosa 0.1234 18.75 -2.3598 

 L. natalensis (UKZN Pond) 0.1034 16.50 -1.1934 

 L. natalensis (Greyville Pond) 0.0960 17.00 -0.8667 

 P. acuta 0.1299 10.50 -2.5512 

     

30oC R. rubiginosa 0.1014 18.50 -1.7535 

 L. natalensis (UKZN Pond) 0.0910 16.25 -0.1989 

 L. natalensis (Greyville Pond) 0.0779 17.50 -0.4134 

 P. acuta 0.1059 10.25 -1.7686 

 

K - the growth coefficient; L∞ - the asymptotic length; t0 - the time at which shell length is theoretically 

zero. 
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The asymptotic length (L∞) was largest at 20
o
C and the smallest at 30

o
C, with the 

exception of L. natalensis (Greyville Pond) that displayed its smallest L∞ at 25
o
C (Table 

6.1).  For each of the three temperatures, R. rubiginosa had the largest L∞, followed by 

the UKZN Pond and Greyville Pond populations of L. natalensis and finally P. acuta.  

The L∞ (Table 6.1) was always larger than the observed maximum shell length (Figures 

6.1 - 6.3). 

 

The time at which shell length is theoretically zero (t0) displayed a similar pattern to the 

growth coefficient (K).  From Table 6.1, it is seen that the highest and lowest t0 values 

were at 20
o
C and 30

o
C respectively.  For each of the three temperatures R. rubiginosa 

and P. acuta exhibited the highest t0 values, while the lowest t0 values were recorded for 

both the L. natalensis populations (Table 6.1). 

 

The estimated growth parameters and the observed age for the four populations were 

fitted into the von Bertalanffy growth equation, resulting in the growth curves shown in 

Figures 6.4 - 6.6. 

 

Figure 6.4:  The von Bertalanffy growth curve for R. rubiginosa, L. natalensis (UKZN and Greyville 

Ponds) and P. acuta at 20
o
C. 
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Using the von Bertalanffy growth curve for 20
o
C (Figure 6.4), it was predicted that R. 

rubiginosa would reach the largest shell length of 18.74 mm followed by both the UKZN 

Pond (16.78 mm) and Greyville Pond populations (16.14 mm) of L. natalensis and finally 

P. acuta (11.87 mm).  From Figure 6.1, the observed maximum shell lengths attained by 

R. rubiginosa, L. natalensis (UKZN Pond), L. natalensis (Greyville Pond) and P. acuta 

were slightly lower at 18.20 mm, 16.25 mm, 15.65 mm and 11.80 mm respectively. 

 

At 25
o
C the maximum predicted shell lengths (Figure 6.5), for R. rubiginosa, the UKZN 

Pond and Greyville Pond populations of L. natalensis and P. acuta were 18.11 mm, 14.23 

mm, 13.63 mm and 10.30 mm respectively.  Figure 6.2 showed the observed maximum 

shell length attained by R. rubiginosa, L. natalensis (UKZN Pond), L. natalensis 

(Greyville Pond) and P. acuta at 25
o
C were 17.40 mm, 13.95 mm, 13.35 mm and 10.20 

mm respectively.   

 

Figure 6.5:  The von Bertalanffy growth curve for R. rubiginosa, L. natalensis (UKZN and Greyville 

Ponds) and P. acuta at 25oC. 
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At 30
o
C, the maximum predicted shell length using the von Bertalanffy growth curve for 

R. rubiginosa, the UKZN Pond and Greyville Pond populations of L. natalensis and P. 

acuta were 16.66 mm, 10.90 mm, 11.81 mm and 9.42 mm respectively.  From Figure 6.3, 

the observed maximum shell lengths attained at this temperature by R. rubiginosa, L. 

natalensis (UKZN Pond), L. natalensis (Greyville Pond) and P. acuta were 16.10 mm, 

11.25 mm, 11.65 mm and 9.20 mm respectively.  For all three temperatures the 

maximum predicted shell lengths using the von Bertalanffy growth equation for all four 

populations (Figures 6.4 - 6.6) were larger than the observed maximum shell lengths 

(Figures 6.1 - 6.3). 

 

Figure 6.6:  The von Bertalanffy growth curve for R. rubiginosa, L. natalensis (UKZN and Greyville 

Ponds) and P. acuta at 30oC. 
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6.3.2  Survival Rate 

 

Age specific survival rates (lx) for the four snail populations maintained at the three 

temperatures are presented in Figures 6.7 - 6.9 and statistical comparisons are 

summarised in Tables 6.2 and 6.3. 

 

Table 6.2 summarises the statistical differences between the age specific survival rates of 

the four snail populations.  For R. rubiginosa, there was no significant difference in 

survivorship between 20
o
C and 25

o
C (p = 0.098) and also between 25

o
C and 30

o
C (p = 

0.113).  There was however, a significant difference in survivorship between 20
o
C and 

30
o
C (Table 6.2). 

 

Table 6.2:  Analysis of the mean age specific survival rate (lx) within the four snail populations, for each of 

the three temperatures (n = 90).  Differences in survival rates within populations were analysed using the 

Mann-Whitney-U test.  Probability values are two-tailed and significance was determined at p < 0.05. 

 

Temperature R. rubiginosa 
L. natalensis  

(UKZN Pond) 

L. natalensis  

(Greyville Pond) 
P. acuta 

      

20oC 25oC 0.098 0.349 0.169 0.014 

 30oC 0.004 0.002 0.021 <0.001 

      

25oC 20oC 0.098 0.349 0.169 0.014 

 30oC 0.113 0.010 0.238 0.008 

      

30oC 20oC 0.004 0.002 0.021 <0.001 

 25oC 0.113 0.010 0.238 0.008 

 

Table 6.2 also shows that the UKZN Pond L. natalensis population displayed similar 

within population survivorship patterns at 20
o
C and 25

o
C (p = 0.349), while the Greyville 

Pond population displayed similar patterns at 20
o
C and 25

o
C (p = 0.169) and at 25

o
C and 

30
o
C (p = 0.238).  For the invasive physid, P. acuta, there was a significant difference in 

age specific survival rate at all three temperatures (Table 6.2). 
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Figure 6.7 represents graphically the age specific survival rates of the four snail 

populations maintained at 20
o
C.  The first mortality was in L. natalensis populations from 

the Greyville Pond three weeks after the start of the cohort while the UKZN Pond 

population had its first mortalities four weeks after the start of the experiment.  First 

mortalities for P. acuta and R. rubiginosa occurred after six and seven weeks respectively 

(Figure 6.7). 

 

Figure 6.7:  Age specific survival rates (lx) for R. rubiginosa, L. natalensis (UKZN and Greyville Ponds) 

and P. acuta at 20oC. 
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Table 6.3 summarises statistical differences between the age specific survival rates for 

the four snail populations at the three temperatures. 

 

Table 6.3:  Analysis of the mean age specific survival rate (lx) for the four snail populations, maintained at 

the three temperatures (n = 90).  Differences in survival rates between populations were analysed using the 

Mann-Whitney-U test.  Probability values are two-tailed and significance was determined at p < 0.05. 

 

Snail Populations 20
o
C 25

o
C 30

o
C 

     

R. rubiginosa L. natalensis (UKZN Pond) 0.001 0.007 <0.001 

 L. natalensis (Greyville Pond) 0.001 0.001 0.003 

 P. acuta 0.033 0.297 0.585 

     

L. natalensis (UKZN Pond) R. rubiginosa 0.001 0.007 <0.001 

 L. natalensis (Greyville Pond) 0.878 0.269 0.375 

 P. acuta <0.001 0.001 0.001 

     

L. natalensis (Greyville Pond) R. rubiginosa 0.001 0.001 0.003 

 L. natalensis (UKZN Pond) 0.878 0.269 0.375 

 P. acuta <0.001 <0.001 0.005 

     

P. acuta R. rubiginosa 0.033 0.297 0.585 

 L. natalensis (UKZN Pond) <0.001 0.001 0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 0.005 

 

Survivorship at 20
o
C showed no significant difference between the two L. natalensis 

populations (p = 0.878).  All other populations displayed a significant difference in 

survival rate (Table 6.3). 

 

At 25
o
C the first mortalities occurred in the UKZN and Greyville Pond L. natalensis 

populations at three and four weeks respectively (Figure 6.8).  First mortalities for R. 

rubiginosa and P. acuta occurred five weeks after the start of the experiment. 
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Figure 6.8:  Age specific survival rates (lx) for R. rubiginosa, L. natalensis (UKZN and Greyville Ponds) 

and P. acuta at 25oC. 
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shorter LT50 value of 15.50 weeks while the UKZN and Greyville Pond L. natalensis 

populations had LT50 values at 11 and 10 weeks respectively. 
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for the Greyville Pond population and 15 weeks for the UKZN Pond population.  Radix 
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The analysis of differences in survivorship between populations maintained at 25
o
C 

(Table 6.3), indicated no significant difference between R. rubiginosa and P. acuta (p = 

0.297).  Also, the two L. natalensis populations had survival rates similar to each other (p 

= 0.269) and lower than R. rubiginosa and P. acuta.  

 

Age specific survival rates at 30
o
C are shown in Figure 6.9.  The first occurrence of 

mortality was by L. natalensis (UKZN Pond) two weeks after the start of the experiment.  

The remaining three snail populations exhibited their initial mortalities at three weeks for 

both the Greyville Pond L. natalensis population and P. acuta and four weeks for R. 

rubiginosa (Figure 6.9). 

 

Longevity patterns at 30
o
C were similar to those at 20

o
C and 25

o
C.  Lymnaea natalensis 

from both the UKZN and Greyville Ponds displayed the shortest longevity at 12 and 14 

weeks respectively (Figure 6.9) while P. acuta and R. rubiginosa had greater longevity at 

22 and 21 weeks respectively. 

 

At 30
o
C the L. natalensis populations again displayed the lowest LT50 values.  For the 

UKZN Pond population this was seven weeks and eight weeks for the Greyville Pond 

population (Figure 6.9).  A LT50 value of 14 weeks was recorded for R. rubiginosa, 

marginally higher than that recorded for P. acuta (13 weeks).  Also in Figure 6.9, L. 

natalensis from both the UKZN and Greyville Ponds had the shortest duration of 

mortalities (10 weeks for the UKZN Pond population and 11 weeks for the Greyville 

Pond population).  Radix rubiginosa had mortalities over a period of 17 weeks while P. 

acuta did so for 19 weeks.  From Figures 6.7 - 6.9 it is evident that the lowest survival 

rate was shown by the two L. natalensis populations, while P. acuta displayed the highest 

survival rate.  This was to be expected given the highly invasive characteristics of this 

physid. 
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Figure 6.9:  Age specific survival rates (lx) for R. rubiginosa, L. natalensis (UKZN and Greyville Ponds) 

and P. acuta at 30oC. 
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patterns of survivorship (p = 0.375). 
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6.3.3  Fecundity 

 

Table 6.4 summarises statistical differences between the age specific fecundity for the 

four snail populations at each of the three temperatures.  For R. rubiginosa, there were no 

significant differences in fecundity between 20
o
C and 25

o
C (p = 0.136) or at 25

o
C and 

30
o
C (p = 0.193), but there was a significant difference between 20

o
C and 30

o
C. 

 

Table 6.4:  Analysis of the mean age specific fecundity (mx) for the four snail populations at each of the 

three temperatures (n = 3).  Differences in fecundity within populations and between temperatures were 

analysed using the Mann-Whitney-U test.  Probability values are two-tailed and significance was 

determined at p < 0.05. 

 

Temperature R. rubiginosa 
L. natalensis  

(UKZN Pond) 

L. natalensis  

(Greyville Pond) 
P. acuta 

      

20oC 25oC 0.136 0.081 0.035 0.010 

 30oC 0.010 <0.001 0.250 <0.001 

      

25oC 20oC 0.136 0.081 0.035 0.010 

 30oC 0.193 0.001 0.932 0.056 

      

30oC 20oC 0.010 <0.001 0.250 <0.001 

 25oC 0.193 0.001 0.932 0.056 

 

For L. natalensis from the UKZN Pond there was no significant difference in age specific 

fecundity between 20
o
C and 25

o
C (p = 0.081) but fecundity did differ significantly 

between 20
o
C and 30

o
C as well as between 25

o
C and 30

o
C (Table 6.4).  For L. natalensis 

from the Greyville Pond similar fecundity were exhibited between 20
o
C and 30

o
C as well 

as between 25
o
C and 30

o
C. 

 

For P. acuta (Table 6.4) the fecundity at 25
o
C and 30

o
C were marginally similar (p = 

0.056), while at 20
o
C and 25

o
C as well as at 20

o
C and 30

o
C, the fecundity for P. acuta 

were clearly influenced by temperature. 
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Figures 6.10 - 6.12 show the age specific fecundity for the four snail populations 

maintained at the three temperatures. 

 

Figure 6.10:  Age specific fecundity (mx) for R. rubiginosa, L. natalensis (UKZN and Greyville Ponds) and 

P. acuta at 20oC. 

 

At 20
o
C R. rubiginosa began oviposition three weeks after the start of the experiment 

(Figure 6.10).  Egg production was high and fluctuated until the death of the last 

individual at 29 weeks.  From Figure 6.10 it is seen that R. rubiginosa had five distinct 

peaks in fecundity at 10, 13, 19, 23 and 27 weeks.  The most prominent fecundity peak 

occurred at 10 weeks (128.08 eggs per snail) while fecundity at 13 weeks was 102.74 

eggs per snail.  By 19 weeks R. rubiginosa had declined to the 50% mortality level 

(Figure 6.7) and the remaining reproductive peaks at 19 (42.39 eggs per snail), 23 (18.10 

eggs per snail) and 27 (13.50 eggs per snail) weeks were much lower (Figure 6.10). 

 

Also, a decrease in the fecundity at week seven (Figure 6.10) coincided with the first 

occurrence of mortalities in R. rubiginosa (Figure 6.7).  The reduced fecundity at weeks 
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this period (Figure 6.7).  Conversely, the gradual increase in the fecundity after week 14 

until the reproductive peak at 19 weeks (Figure 6.10) coincided with fewer mortalities 

and a more stable survival rate (Figure 6.7). 

 

Egg production at 20
o
C for P. acuta began four weeks after the start of the experiment 

and continued until 35 weeks (Figure 6.10).  Five fecundity peaks were observed for P. 

acuta at 10, 12, 19, 28 and 32 weeks.  The highest reproductive peak for P. acuta, 

observed at 10 weeks (112.25 eggs per snail) was lower than the peak observed for R. 

rubiginosa at the same time.  From Figure 6.10 it was further noted that three of the 

reproductive peaks for P. acuta occurred before the population reached the 50% mortality 

level at 22 weeks (Figure 6.7).  The decrease in the fecundity at week six (Figure 6.10) 

coincided with the first occurrence of P. acuta mortalities (Figure 6.7). 

 

Oviposition by L. natalensis began at five weeks after the start of the experiment and 

stopped at 20 and 19 weeks in the UKZN Pond and Greyville Pond populations 

respectively (Figure 6.10).  The UKZN Pond population displayed three fecundity peaks 

at 8, 10 and 17 weeks with the most prominent at 10 weeks (77.50 eggs per snail).  The 

Greyville Pond population also exhibited three peaks at 9, 11 and 16 weeks with the 

highest at 9 weeks (67.38 eggs per snail).  Furthermore these reproductive peaks were 

attained before the two L. natalensis populations declined to the 50% mortality level at 

13.50 weeks (Figure 6.7).  It is also clear from Figure 6.10 that R. rubigionsa and P. 

acuta displayed higher fecundity and longer oviposition periods than either of the two L. 

natalensis populations. 
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Table 6.5 summarises the statistical differences in the age specific fecundity between the 

four snail populations at the three temperatures. 

 

Table 6.5:  Analysis of the mean age specific fecundity (mx) for the four snail populations maintained at the 

three temperatures (n = 3).  Differences in fecundity between populations were analysed using the Mann-

Whitney-U test.  Probability values are two-tailed and significance was determined at p < 0.05. 

 

Snail Populations 20
o
C 25

o
C 30

o
C 

     

R. rubiginosa L. natalensis (UKZN Pond) 0.003 0.019 <0.001 

 L. natalensis (Greyville Pond) 0.001 0.003 0.060 

 P. acuta 0.028 0.155 0.249 

     

L. natalensis (UKZN Pond) R. rubiginosa 0.003 0.019 <0.001 

 L. natalensis (Greyville Pond) 0.203 0.085 0.045 

 P. acuta <0.001 0.002 <0.001 

     

L. natalensis (Greyville Pond) R. rubiginosa 0.001 0.003 0.060 

 L. natalensis (UKZN Pond) 0.203 0.085 0.045 

 P. acuta <0.001 <0.001 0.001 

     

P. acuta R. rubiginosa 0.028 0.155 0.249 

 L. natalensis (UKZN Pond) <0.001 0.002 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 0.001 

 

At 20
o
C both the L. natalensis populations displayed similar patterns in age specific 

fecundity (p = 0.203) while R. rubiginosa and P. acuta exhibited fecundity significantly 

different from L. natalensis (Table 6.5). 

 

At 25
o
C oviposition by R. rubiginosa began at three weeks after the start of the 

experiment and stopped at 25 weeks when the last mortality occurred (Figure 6.11).  The 

three fecundity peaks observed at 6, 9 and 13 weeks occurred before the population had 

declined to the LT50 level of 15.50 weeks (Figure 6.8).  The most prominent of these 
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reproductive peaks was at nine weeks (143.58 eggs per snail) and this exceeded the 

maximum rate of 128.08 eggs per snail observed at 20
o
C (Figure 6.10). 

  

 

Figure 6.11:  Age specific fecundity (mx) for R. rubiginosa, L. natalensis (UKZN and Greyville Ponds) and 

P. acuta at 25oC. 

 

Physa acuta started egg production at three weeks and stopped at 28 weeks.  The 

fecundity fluctuated over this period with four peaks at 6, 8, 10 and 15 weeks.  All these 

reproductive peaks were attained before the population declined to the LT50 level at 17.50 

weeks (Figure 6.8).  Among the four snail populations maintained at 25
o
C, P. acuta had 

the highest fecundity, recorded at eight weeks (150.57 eggs per snail).  Smaller but less 

erratic fecundity were observed after 20 weeks (Figure 6.11).  This could be attributed to 

a more stable older population with a gradual mortality rate (Figure 6.8). 

 

The fecundity of both L. natalensis populations were lower and the duration of egg 

production was shorter in comparison to that of R. rubiginosa and P. acuta (Figure 6.11).  

Egg production started in both the UKZN and Greyville Pond L. natalensis populations at 
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five and four weeks respectively.  Fecundity stopped at 18 weeks in the UKZN 

population and at 16 weeks in the Greyville population. 

 

From Figure 6.11, it can be seen that the UKZN Pond populations had two peaks at 5 

(22.24 eggs per snail) and 10 (83.09 eggs per snail) weeks while the Greyville population 

also had two fecundity peaks at 10 (84.01 eggs per snail) and 12 (50.90 eggs per snail) 

weeks.  Again, all reproductive peaks occurred before the populations reached the LT50 

level (Figure 6.8). 

 

Table 6.5 shows that the fecundity curves displayed by R. rubiginosa and P. acuta at 

25
o
C were similar to each other (p = 0.155) while there was again no significant 

difference in the fecundity between the two L. natalensis populations (p = 0.085). 

 

At 30
o
C R. rubiginosa began egg production four weeks after the start of the experiment 

and stopped at 20 weeks (Figure 6.12).  Three fecundity peaks were observed at 7 (43.22 

eggs per snail), 11 (72.82 eggs per snail) and 15 (26.67 eggs per snail) weeks.  The two 

largest peaks occurred before R. rubiginosa reached the 50% mortality level at 14 weeks 

(Figure 6.9). The relatively steady fecundity from four to six weeks (Figure 6.12) was 

associated with few mortalities and a stable survival rate over that period (Figure 6.9). 

 

Fecundity in P. acuta began at three weeks and stopped at 20 weeks (Figure 6.12).  Peaks 

in fecundity were observed at 5 (35.89 eggs per snail), 10 (80.58 eggs per snail), 14 

(31.00 eggs per snail) and 17 (15.31 eggs per snail) weeks.  The larger reproductive peaks 

occurred before the population declined to the LT50 level at 13 weeks (Figure 6.9) and the 

fecundity peaks occurring after this period were much lower (Figure 6.12).  Among the 

four snail populations maintained at 30
o
C, P. acuta had the highest fecundity, recorded at 

10 weeks (80.58 eggs per snail). 
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Figure 6.12:  Age specific fecundity (mx) for R. rubiginosa, L. natalensis (UKZN and Greyville Ponds) and 

P. acuta at 30oC. 

 

Egg production by L. natalensis from the UKZN Pond began four weeks after the start of 

the experiment and stopped at 12 weeks while the Greyville Pond population began 

oviposition at five weeks and stopped at 14 weeks (Figure 6.12).  Prominent fecundity 

peaks were exhibited at 10 weeks (43.86 eggs per snail) for the UKZN Pond population 

and at nine weeks (39.76 eggs per snail) for L. natalensis from the Greyville Pond 

population.  The decreases in fecundity in both L. natalensis populations declined after 

the populations had fallen to the 50% mortality level (Figure 6.9). 

 

From Figure 6.12 it is evident that all snail populations at 30
o
C had lower egg production 

and shorter fecundity durations than at 20
o
C and 25

o
C.  Also, both L. natalensis 

populations had lower fecundity and shorter durations of egg production than either R. 

rubiginosa or P. acuta. 

 

It can be seen from Table 6.5 that at 30
o
C there was no significant difference in fecundity 

between R. rubiginosa and P. acuta (p = 0.249) or between R. rubiginosa and the 
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Greyville Pond L. natalensis population (p = 0.060).  It was also noted that at 20
o
C and 

25
o
C there was no significant difference in fecundity between the two L. natalensis 

populations (Table 6.5) but at 30
o
C these populations differed slightly from each other as 

indicated by the marginally significant probability value of p = 0.045. 

 

6.3.4  Life History Parameters 

 

The life history parameters calculated for the four snail populations maintained at the 

three temperatures are summarised in Table 6.6.  These parameters include the gross 

reproductive rate, net reproductive rate, intrinsic rate of natural increase, mean generation 

time and finite rate of increase. 

 

(a)  Gross Reproductive Rate (GRR) 

 

All snail populations had the highest gross reproductive rate (GRR) at 25
o
C while the 

lowest values were at 30
o
C.  Physa acuta had the highest GRR, followed by R. 

rubiginosa and then L. natalensis (Table 6.6).  This pattern in GRR was evident at all 

temperatures.  From Table 6.7 it was also noted that the effects of temperature on GRR 

were significant within the snail populations except P. acuta which displayed a similar 

GRR at 20
o
C and 25

o
C (p = 0.397). 

 

Multiple comparisons between GRR for the four snail populations were analysed using 

Tukey HSD (Tables 6.8 - 6.10).  Strongly significant differences in GRR p-values were 

recorded between the populations.  Exceptions to this pattern however were both L. 

natalensis populations at 20
o
C and 30

o
C (Tables 6.8 and 6.10). 
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Table 6.6:  Life history parameters of the four snail populations maintained at the three temperature 

treatments (n = 3).  The values are based on a time interval of one week and are presented as means (± 

standard deviation). 

 

Temperature Snail Populations GRR Ro rm T λ 

       

20oC R. rubiginosa 951.306 

(±35.529) 

749.833 

(±10.911) 

0.994 

(±0.005) 

6.657 

(±0.018) 

2.703 

(±0.013) 

 L. natalensis (UKZN Pond) 491.025 

(±14.570) 

316.378 

(±13.930) 

0.712 

(±0.009) 

8.081 

(±0.070) 

2.039 

(±0.019) 

 L. natalensis (Greyville Pond) 368.271 

(±5.866) 

228.756 

(±5.626) 

0.667 

(±0.014) 

8.145 

(±0.155) 

1.949 

(±0.026) 

 P. acuta 1109.520 

(±107.159) 

903.522 

(±59.839) 

1.066 

(±0.031) 

6.383 

(±0.121) 

2.906 

(±0.088) 

       

25oC R. rubiginosa 1037.518 

(±7.657) 

715.644 

(±9.689) 

1.050 

(±0.003) 

6.259 

(±0.023) 

2.858 

(±0.007) 

 L. natalensis (UKZN Pond) 573.442 

(±32.294) 

319.600 

(±6.45) 

0.765 

(±0.019) 

7.543 

(±0.201) 

2.149 

(±0.041) 

 L. natalensis (Greyville Pond) 413.730 

(±19.487) 

216.167 

(±7.601) 

0.759 

(±0.027) 

7.087 

(±0.289) 

2.137 

(±0.058) 

 P. acuta 1186.765 

(±46.144) 

898.578 

(±38.959) 

1.218 

(±0.025) 

5.584 

(±0.082) 

3.381 

(±0.084) 

       

30oC R. rubiginosa 360.181 

(±19.661) 

255.711 

(±13.578) 

0.781 

(±0.019) 

7.104 

(±0.113) 

2.183 

(±0.04) 

 L. natalensis (UKZN Pond) 149.963 

(±17.394) 

51.656 

(±7.837) 

0.594 

(±0.032) 

6.632 

(±0.097) 

1.812 

(±0.058) 

 L. natalensis (Greyville Pond) 150.620 

(±16.091) 

59.567 

(±15.836) 

0.544 

(±0.041) 

7.469 

(±0.059) 

1.724 

(±0.071) 

 P. acuta 478.406 

(±4.387) 

294.689 

(±4.745) 

0.917 

(±0.032) 

6.206 

(±0.230) 

2.503 

(±0.080) 

 

GRR – gross reproductive rate; Ro – net reproductive rate; rm – intrinsic rate of natural increase; T – mean 

generation time; λ – finite rate of increase. 
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Table 6.7:  Multiple comparisons using Tukey HSD.  Life history parameters within the four snail 

populations were analysed for differences at each of the three temperatures (n = 3).  Probability values are 

two-tailed and significance was determined at p < 0.05. 

 

Snail Populations Temperature GRR Ro rm T λ 

R
. 
ru

b
ig

in
o
sa

 

       

20oC 25oC 0.011 0.025 0.002 0.001 0.001 

 30oC <0.001 <0.001 <0.001 <0.001 <0.001 

25oC 20oC 0.011 0.025 0.002 0.001 0.001 

 30oC <0.001 <0.001 <0.001 <0.001 <0.001 

30oC 20oC <0.001 <0.001 <0.001 <0.001 <0.001 

 25oC <0.001 <0.001 <0.001 <0.001 <0.001 

L
. 

n
a
ta

le
n

si
s 

(U
K

Z
N

 P
o

n
d

) 

       

20oC 25oC 0.011 0.918 0.062 0.007 0.043 

 30oC <0.001 <0.001 0.001 <0.001 0.001 

25oC 20oC 0.011 0.918 0.062 0.007 0.043 

 30oC <0.001 <0.001 <0.001 <0.001 <0.001 

30oC 20oC <0.001 <0.001 0.001 <0.001 0.001 

 25oC <0.001 <0.001 <0.001 <0.001 <0.001 

L
. 

n
a
ta

le
n

si
s 

(G
re

y
v

il
le

 P
o
n

d
) 

       

20oC 25oC 0.023 0.377 0.020 0.001 0.013 

 30oC <0.001 <0.001 0.005 0.012 0.006 

25oC 20oC 0.023 0.377 0.020 0.001 0.013 

 30oC <0.001 <0.001 <0.001 0.111 <0.001 

30oC 20oC <0.001 <0.001 0.005 0.012 0.006 

 25oC <0.001 <0.001 <0.001 0.111 <0.001 

P
. 

a
cu

ta
 

       

20oC 25oC 0.397 0.988 0.002 0.002 0.001 

 30oC <0.001 <0.001 0.002 0.407 0.003 

25oC 20oC 0.397 0.988 0.002 0.002 0.001 

 30oC <0.001 <0.001 <0.001 0.007 <0.001 

30oC 20oC <0.001 <0.001 0.002 0.407 0.003 

 25oC <0.001 <0.001 <0.001 0.007 <0.001 

 

GRR – gross reproductive rate; Ro – net reproductive rate; rm – intrinsic rate of natural increase; T – mean 

generation time; λ – finite rate of increase. 
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Table 6.8:  Multiple comparisons using Tukey HSD.  Life history parameters between the four snail 

populations were analysed for differences at 20oC (n = 3).  Probability values are two-tailed and 

significance was determined at p < 0.05. 

 

Snail Populations  GRR Ro rm T λ 

       

R. rubiginosa L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 P. acuta 0.038 0.001 0.004 0.050 0.003 

       

L. natalensis (UKZN Pond) R. rubiginosa <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (Greyville Pond) 0.111 0.037 0.052 0.873 0.170 

 P. acuta <0.001 <0.001 <0.001 <0.001 <0.001 

       

L. natalensis (Greyville Pond) R. rubiginosa <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (UKZN Pond) 0.111 0.037 0.052 0.873 0.170 

 P. acuta <0.001 <0.001 <0.001 <0.001 <0.001 

       

P. acuta R. rubiginosa 0.038 0.001 0.004 0.050 0.003 

 L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 

GRR – gross reproductive rate; Ro – net reproductive rate; rm – intrinsic rate of natural increase; T – mean 

generation time; λ – finite rate of increase. 
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Table 6.9:  Multiple comparisons using Tukey HSD.  Life history parameters between the four snail 

populations were analysed for differences at 25oC (n = 3).  Probability values are two-tailed and 

significance was determined at p < 0.05. 

 

Snail Populations  GRR Ro rm T λ 

       

R. rubiginosa L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 0.002 <0.001 

 P. acuta 0.001 <0.001 <0.001 0.008 <0.001 

       

L. natalensis (UKZN Pond) R. rubiginosa <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (greyville Pond) 0.001 0.001 0.987 0.058 0.994 

 P. acuta <0.001 <0.001 <0.001 <0.001 <0.001 

       

L. natalensis (Greyville Pond) R. rubiginosa <0.001 <0.001 <0.001 0.002 <0.001 

 L. natalensis (UKZN Pond) 0.001 0.001 0.987 0.058 0.994 

 P. acuta <0.001 <0.001 <0.001 <0.001 <0.001 

       

P. acuta R. rubiginosa 0.001 <0.001 <0.001 0.008 <0.001 

 L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 

GRR – gross reproductive rate; Ro – net reproductive rate; rm – intrinsic rate of natural increase; T – mean 

generation time; λ – finite rate of increase. 
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Table 6.10:  Multiple comparisons using Tukey HSD.  Life history parameters between the four snail 

populations were analysed for differences at 30oC (n = 3).  Probability values are two-tailed and 

significance was determined at p < 0.05. 

 

Snail Populations  GRR Ro rm T λ 

       

R. rubiginosa L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 0.014 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 0.051 <0.001 

 P. acuta <0.001 0.013 0.003 <0.001 0.001 

       

L. natalensis (UKZN Pond) R. rubiginosa <0.001 <0.001 <0.001 0.014 <0.001 

 L. natalensis (Greyville Pond) 1.000 0.829 0.296 <0.001 0.392 

 P. acuta <0.001 <0.001 <0.001 0.024 <0.001 

       

L. natalensis (Greyville Pond) R. rubiginosa <0.001 <0.001 <0.001 0.051 <0.001 

 L. natalensis (UKZN Pond) 1.000 0.829 0.296 <0.001 0.392 

 P. acuta <0.001 <0.001 <0.001 <0.001 <0.001 

       

P. acuta R. rubiginosa <0.001 0.013 0.003 <0.001 0.001 

 L. natalensis (UKZN Pond) <0.001 <0.001 <0.001 0.024 <0.001 

 L. natalensis (Greyville Pond) <0.001 <0.001 <0.001 <0.001 <0.001 

 

GRR – gross reproductive rate; Ro – net reproductive rate; rm – intrinsic rate of natural increase; T – mean 

generation time; λ – finite rate of increase. 

 

(b)  The net reproductive rate (Ro) 

 

All snail populations exhibited the lowest net reproductive rates (Ro) at 30
o
C (Table 6.6).  

At 20
o
C R. rubiginosa, P. acuta and L. natalensis (Greyville Pond) displayed the highest 

Ro values while the UKZN Pond L. natalensis population had its highest Ro value at 

25
o
C.  The high Ro values calculated could be attributed to the longer survival (Figures 

6.7 and 6.8) and higher fecundities (Figures 6.10 and 6.11) recorded at both 20
o
C and 

25
o
C.  Within temperature treatments, P. acuta had the highest Ro followed by R. 

rubiginosa and then L. natalensis (Table 6.6). 
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As shown in Table 6.7, P. acuta (p = 0.988) and both L. natalensis populations (p = 0.918 

for the UKZN Pond and p = 0.377 for the Greyville Pond) exhibited Ro values that were 

not significantly different at 20
o
C and 25

o
C.  The net reproductive rates of R. rubiginosa 

however were significantly different at all temperatures (Table 6.7). 

 

Multiple comparisons of Ro between the four snail populations (Tables 6.8 - 6.10) 

displayed a trend similar to that recorded for GRR.  Strongly significant differences in Ro 

were recorded between all snail populations maintained at the three temperatures.  There 

were however, no significant differences between the two L. natalensis populations at 

30
o
C (p = 0.829). 

 

(c)  Intrinsic rate of natural increase (rm) 

 

Since the intrinsic rate of natural increase (rm) summarises the reproductive capacity of 

the snails in terms of longevity, survival and fecundity, comparisons of the respective rm 

values enabled an assessment of the effects of the various temperatures on the 

reproductive capacity. 

 

The optimum temperature was 25
o
C (Table 6.6).  At this temperature all four snail 

populations were expected to increase as indicated by rm.  From Table 6.6 the highest 

mean rm values recorded were 1.218 (P. acuta), 1.050 (R. rubiginosa), 0.765 (L. 

natalensis from the UKZN Pond) and 0.759 (L. natalensis from the Greyville Pond).  At 

30
o
C all four populations had the lowest rm values and they therefore exhibited their 

weakest performance at this temperature. 

 

From Table 6.7 it is seen that temperature significantly influenced the intrinsic rate of 

natural increase.  Only L. natalensis from the UKZN Pond displayed a similar rm at 20
o
C 

and 25
o
C (p = 0.062).  The multiple comparisons of rm between the four snail populations 

(Tables 6.8 - 6.10) were significantly different for each temperature.  Only L. natalensis 

(both populations) had statistically similar rm values at each of the three temperatures 

(Tables 6.8 - 6.10).  Overall, the invasive P. acuta had the highest mean rm followed by 
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R. rubiginosa, L. natalensis from the UKZN Pond and lastly the Greyville Pond 

population (Table 6.6). 

 

(d)  Mean generation time (T) 

 

Physa acuta (6.383) and the two L. natalensis populations (8.081 and 8.145 for both the 

UKZN Pond and the Greyville Pond respectively) exhibited their longest mean 

generation times (T) at 20
o
C while R. rubiginosa (7.104) had its longest at 30

o
C (Table 

6.6).  The shortest T was at 30
o
C for the UKZN Pond L. natalensis population and at 

25
o
C for all remaining snail populations.  Physa acuta had the shortest T at 20

o
C and 

25
o
C followed by R. rubiginosa and thereafter both populations of L. natalensis.  At 30

o
C 

however, P. acuta still had the shortest T, but was now followed by L. natalensis from 

the UKZN Pond, R. rubiginosa and lastly L. natalensis from the Greyville Pond. 

 

Table 6.7 shows that the mean generation time for P. acuta was similar at 20
o
C and 30

o
C 

(p = 0.407) while L. natalensis (Greyville Pond) exhibited similar values at 25
o
C and 

30
o
C (p = 0.111).  Significant temperature influences were recorded for all the remaining 

snail populations.  Comparisons of T between the four snail populations are presented in 

Tables 6.8 - 6.10.  At 20
o
C (Table 6.8), the mean generation time was similar for R. 

rubiginosa and P. acuta (p = 0.050) and also for the two L. natalensis populations (p = 

0.873).  At 25
o
C (Table 6.9), the two L. natalensis populations were again similar (p = 

0.058) while R. rubiginosa and the Greyville Pond L. natalensis population exhibited no 

statistical difference at 30
o
C (Table 6.10). 

 

(e)  Finite rate of increase (λ) 

 

Table 6.6 shows that the pattern for the finite rate of increase (λ) was similar to that of the 

intrinsic rate of natural increase (rm).  All four snail populations had the highest λ values 

at 25
o
C.  Of these P. acuta had the highest λ value, indicating that 3.381 individuals of 

the next cohort will replace one individual of the original cohort.  The multiplication 

value for R. rubiginosa was 2.858 followed by L. natalensis that exhibited the lowest 
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finite rate of increase, 2.149 and 2.137 for the UKZN and Greyville Ponds respectively 

(Table 6.6).  Also, all four snail populations had the lowest λ values at 30
o
C.   

 

Table 6.7 shows that significant differences in the finite rate of increase were recorded 

for all populations.  This indicated that λ the finite rate of increase was significantly 

influenced by temperature.  Multiple comparisons of λ between the four snail populations 

(Tables 6.8 - 6.10) displayed a similar pattern to rm.  No significant differences were 

recorded for the L. natalensis populations at 20
o
C (0.170), 25

o
C (0.994) or 30

o
C (0.392).  

The λ values for the two L. natalensis populations were significantly different when 

compared to R. rubiginosa and P. acuta (Tables 6.8 - 6.10). 
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6.4  Discussion 

 

The key findings of Chapter 6 are summarised in Table 6.11. 

 

Table 6.11:  Summary of the results for the age specific growth, survival, fecundity and life history 

parameters for each of the four snail populations. 

 

 Summary of Key Results 

  

G
ro

w
th

 

 As temperature increased, the maximum mean shell length decreased for all four snail populations. 

 When compared to L. natalensis, R. rubiginosa exhibited a higher longevity and growth coefficient (K) at each of the 

three temperatures. 

 Physa acuta had the highest longevity for all temperatures, being slightly higher than that of R. rubiginosa. 

 At 20oC, R. rubiginosa had a higher K than P. acuta, while at 25oC and 30oC, R. rubiginosa had a slightly lower K 

than P. acuta. 

 The asymptotic length (L∞) decreased with increasing temperature. 

 Radix rubiginosa had the highest L∞ at each temperature. 

 The longevity, K and  L∞ for both the L. natalensis populations were similar at all temperatures. 

  

S
u

rv
iv

al
 

 Overall, P. acuta exhibited the highest values for longevity, LT50 and the duration of mortality, being only slightly 

higher than R. rubiginosa. 

 It was only at 30oC that R. rubiginosa had a higher LT50 value than P. acuta. 

 Both R. rubiginosa and P. acuta exhibited the longest time until first mortality, LT50 and longevity values when 

compared to the two L. natalensis populations. 

 There was no significant difference between the two L. natalensis populations for survivorship. 

  

F
ec

u
n
d
it

y
 

 For each of the four snail populations, the highest fecundity peak was attained before the population declined to the 

LT50 level. 

 Radix rubiginosa and P. acuta displayed higher fecundity and longer oviposition periods compared to the two L. 

natalensis populations. 

 At 20oC, R. rubiginosa had a higher reproductive peak than P. acuta. 

 At 25oC and 30oC P. acuta had the highest reproductive peak, but more importantly, there was no significant 

difference in the fecundity for R. rubiginosa and P. acuta at these temperatures. 

 The two L. natalensis populations were similar at 20oC and 25oC, but not at 30oC. 
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 Summary of Key Results 

  

L
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 All four snail populations had the highest and lowest GRR at 25oC and 30oC respectively. 

 At each of the three temperatures P. acuta had the highest GRR, followed by R. rubiginosa and then L. natalensis. 

 Strongly significant differences in the GRR p-values were recorded between the four populations at all temperatures, 

with the exception for the two L. natalensis populations at 20oC and 30oC. 

 

 Multiple comparisons of Ro between the four snail populations displayed a trend similar to that recorded for GRR.  

 Strongly significant differences in Ro were recorded between all snail populations maintained at the three 

temperatures. 

 There were however, no significant differences between the two L. natalensis populations at 30oC. 

 

 At the optimum temperature of 25oC, P. acuta had the highest mean rm value followed by R. rubiginosa, L. natalensis 

(UKZN Pond) and L. natalensis from the Greyville Pond. 

 There was no significant difference between the two L. natalensis populations for rm. 

 

 At 20oC and 25oC P. acuta had the shortest mean generation time followed by R. rubiginosa and thereafter the two L. 

natalensis populations. 

 Importantly, at 20oC, the mean generation times for R. rubiginosa and P. acuta were similar. 

 

 The λ values for the four snail populations followed a trend similar to rm. 

 

6.4.1  Growth 

 

The quantification of age and growth is a vital component in understanding the life 

history traits of organisms.  This is especially important for an introduced species.  

Knowledge of the individual growth rates and age structure of an introduced population 

is required to help determine its success and degree of establishment, as well as to predict 

its impact on the indigenous populations.  Growth rate information can also be used to 

compare dynamics among environments, to describe trends over time, to determine the 

general status of a population and to assess the adaptation of a species to different 

environmental conditions (Kwak et al., 2006; Pedicillo et al., 2008). 
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Temperature affects growth and also its underlying processes (von Bertalanffy, 1960; 

Hochachka and Somero, 1984; Gillooly et al., 2001).  For poikilotherms, rising 

temperature leads to increasing rates of biochemical processes, physiological processes 

and life history characteristics (Woods et al., 2003).  Most poikilotherms are larger when 

they develop in or acclimate to colder temperatures compared with conspecifics exposed 

to warmer temperatures (Ray, 1960; von Bertalanffy, 1960; Körner and Larcher, 1988; 

Atkinson, 1994; Woods et al., 2003) and this can have important consequences for fitness 

(Roff, 1992; Stearns, 1992; Caley and Schwarzkopf, 2004). 

 

Figures 6.1 - 6.3 show that when compared to the indigenous L. natalensis, R. rubiginosa 

exhibited the larger shell length at all three temperatures as well as having a greater 

longevity and a higher growth coefficient (Table 6.1).  The large shell size of R. 

rubiginosa may present an advantage in competitive interactions over L. natalensis.  The 

rapid growth of R. rubiginosa might allow it to achieve and maintain a size advantage 

over the indigenous L. natalensis.  In addition, despite P. acuta having the smallest shell 

size across all temperatures (Figures 6.1 - 6.3), it had the fastest growth coefficient at 

25
o
C and 30

o
C (Table 6.1).    

 

The estimated growth parameters for P. acuta are in accordance with what is known 

about the species’ biology, i.e. P. acuta is an invasive, long lived and rapidly growing 

species.  In addition, due to its faster life history (high growth coefficient and smaller 

body size), this species tends to devote proportionally more of its resources to increased 

reproductive output (Read and Harvey, 1989; Gunderson, 1997; Denney et al., 2002).  

These traits are to be anticipated given the invasive characteristics of P. acuta. 

 

The growth coefficient (K) is a measure of the growth rate of a population.  The higher 

the K value, the more rapid the growth (expressed as an increase in the mean shell 

length).  All four snail populations exhibited the highest and lowest growth coefficients at 

20
o
C and 30

o
C respectively (Table 6.1).  As K increased, the rate at which the asymptote 

was approached also increased.  From Table 6.1, it was apparent that K decreased as the 

temperature increased. 
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The asymptotic length (L∞) also decreased with increasing temperature (Table 6.1).  For 

each of the three temperature treatments, R. rubiginosa had the highest L∞.  This 

parameter also indicated a competitive superiority for R. rubiginosa over the indigenous 

L. natalensis. 

 

6.4.2  Survival Rate 

 

The most important characteristics of the survival rate are the time elapsed before any 

individuals died (100% survival), the 50% mortality level (LT50) and the time elapsed 

until all the individuals of a cohort were dead (0% survival).  The survivorship curves 

(Figures 6.7 - 6.9) corresponded to the Type II, diagonal survival curves, following the 

classification of Slobodkin (1962).  From these curves it was evident that mortality 

occurred during the early life of the individual and that there was a gradual reduction in 

mortality as the individual approached adulthood.  The three age specific survival 

characteristics listed above all decreased as the temperature increased from 20
o
C to 30

o
C 

(Figures 6.7 - 6.9). 

 

The within population variation (Table 6.2) indicated that survival was significantly 

influenced by temperature for P. acuta.  This adaptability could contribute to its invasive 

success as it tended to maximise the survivorship characteristics at each temperature.  

Radix rubiginosa displayed similar within population survivorship patterns between 20
o
C 

and 25
o
C, as well as between 25

o
C and 30

o
C (Table 6.2).  This indicated that the survival 

rates for R. rubiginosa were not influenced by temperature and that R. rubiginosa could 

be adapted to survive over a wider temperature range than P. acuta.  But P. acuta is 

widely distributed in South Africa over a wide altitudinal range. 

 

At 20
o
C, 25

o
C and 30

o
C, the cohorts of P. acuta survived approximately 1.21, 1.12 and 

1.05 times longer than R. rubiginosa (Figures 6.7 - 6.9).  In addition, LT50 values at 20
o
C 

and 25
o
C were 1.16 and 1.13 times longer in P. acuta than R. rubiginosa (Figures 6.7 and 

6.8).  At 30
o
C however, R. rubiginosa exhibited a LT50 value 1.08 times longer than that 

of P. acuta (Figure 6.9).  The similarity in the survival rates of these species is quite 
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evident and Table 6.3 shows that the survivorship curves of R. rubiginosa and P. acuta 

were similar at 25
o
C and 30

o
C. 

 

In addition, the survivorship curves for the two L. natalensis populations were similar to 

each other, but significantly different from both R. rubiginosa and P. acuta (Table 6.3).  

This was apparent at all three temperatures.  From Figures 6.7 - 6.9 it is evident that the 

cohorts of R. rubiginosa and P. acuta lived 1.53 - 1.75, 1.39 - 1.75 and 1.50 - 1.83 times 

longer than those of the L. natalensis populations at 20
o
C, 25

o
C and 30

o
C respectively.  

So too the LT50 values of R. rubiginosa and P. acuta were 1.41 - 1.63, 1.41 - 1.75 and 

1.63 - 2.00 times longer than the L. natalensis populations at 20
o
C, 25

o
C and 30

o
C 

respectively. 

 

It was also evident from the survivorship curves (Figures 6.7 - 6.9) that R. rubiginosa and 

P. acuta exhibited the highest age specific survival characteristics (duration until first 

mortality, LT50 and longevity) at each of the three temperatures when compared to the L. 

natalensis populations.  This is advantageous to both R. rubiginosa and P. acuta in that 

they are longer lived and therefore more competitive in terms of size, accessing resources 

(food and oviposition sites) and exhibiting an extended duration of oviposition in 

comparison to the indigenous L. natalensis. 

 

6.4.3  Fecundity 

 

Life histories are constrained by trade offs between survival and reproduction yielding 

combinations that should maximise the reproductive output (De Kock, 1973; Roff, 1992; 

Stearns, 1992; Charnov, 1993; Denney et al., 2002).  Analysis of the species’ 

reproductive data should allow identification of a mechanism that can affect invasion 

success. 

 

From Figures 6.10 - 6.12, it was evident that higher temperatures shortened longevity and 

lowered fecundity.  All populations exhibited the highest and lowest fecundity at 25
o
C 

and 30
o
C respectively (Figures 6.10 - 6.12). 
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Both R. rubiginosa and P. acuta displayed longer durations of oviposition than the 

indigenous L. natalensis, presumably because of their greater longevity (Figures 6.7 - 

6.9).  When the maximum fecundity of any of the four snail populations was related to its 

survival rate, it was clear that peaks in reproductive activity occurred when a high 

proportion of the cohort was still alive, i.e. before the cohorts declined to the 50% 

mortality level (LT50).  This was evident at all temperatures.  It was also noted that the 

LT50 values for R. rubiginosa and P. acuta were reached much later in comparison to 

those of L. natalensis and this could contribute to the higher fecundity displayed by R. 

rubiginosa and P. acuta. 

 

The within population variation (Table 6.4) indicated that fecundity was significantly 

influenced by temperature for P. acuta.  This adaptability could again contribute to its 

invasive success as it laid the most eggs at each test temperature.  Radix rubiginosa 

displayed similar within population oviposition patterns between 20
o
C and 25

o
C, as well 

as between 25
o
C and 30

o
C (Table 6.4).  This indicated that the fecundity shown by R. 

rubiginosa was not influenced by temperature and that it could reproduce efficiently over 

a wider range in temperature than the two L. natalensis populations. 

 

At 20
o
C, the reproductive peak of R. rubiginosa was 1.14 times higher than that of P. 

acuta (Figure 6.10).  At 25
o
C and 30

o
C however, P. acuta had reproductive peaks 1.05 

and 1.11 times higher than R. rubiginosa (Figures 6.11 - 6.12).  The similarity in 

fecundity is quite evident and it is further noted in Table 6.5 that the survivorship curves 

of R. rubiginosa and P. acuta were similar to each other at 25
o
C and 30

o
C.  From Table 

6.5, both L. natalensis populations exhibited similar fecundity at 20
o
C (p = 0.203) and 

25
o
C (p = 0.085) and were only marginally different at 30

o
C (p = 0.045).  It is clear that 

the two L. natalensis populations were significantly different from R. rubiginosa and P. 

acuta (Table 6.5) with the exception that R. rubiginosa and the Greyville L. natalensis 

population were only marginally different at 30
o
C (p = 0.060). 

 

Importantly, at 20
o
C the reproductive peaks of both R. rubiginosa and P. acuta were 1.45 

- 1.90 times greater than those of L. natalensis (Figure 6.10).  At 25
o
C and 30

o
C the 
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reproductive peaks exhibited by both R. rubiginosa and P. acuta were 1.71 - 1.81 and 

1.66 - 2.03 times greater than L. natalensis respectively (Figures 6.11 and 6.12).  It was 

therefore evident that R. rubiginosa and P. acuta were reproductively superior across a 

wide temperature range when compared to L. natalensis. 

 

6.4.4  Life History Parameters 

 

Two types of reproductive rates, namely, gross reproductive rate (GRR) and the net 

reproductive rate (Ro), were obtained from the life tables. 

 

(a)  Gross Reproductive Rate (GRR) 

 

The gross reproductive rate (GRR) represented the sum of eggs produced per snail over 

the entire duration of the study.  All snail populations had their highest and lowest GRR 

at 25
o
C and 30

o
C respectively (Table 6.6).  Physa acuta exhibited the highest GRR for all 

temperature treatments and this rate was 1.17, 1.14 and 1.33 times greater than that of R. 

rubiginosa at 20
o
C, 25

o
C and 30

o
C respectively.  This was anticipated given the success 

of P. acuta as an invader in South Africa (Hamilton-Attwell et al., 1970; De Kock et al., 

1989; Brackenbury and Appleton, 1993; Appleton and Brackenbury, 1998; Appleton, 

2003). 

 

In addition, the reproductive peaks of both R. rubiginosa and P. acuta were 1.94 - 3.01 

times greater than those of L. natalensis at 20
o
C and 1.81 - 2.87 and 2.39 - 3.19 times 

greater at 25
o
C and 30

o
C (Table 6.6).  This has important implications in that the high 

reproductive yield of R. rubiginosa could lead to a competitive superiority over the 

indigenous lymnaeid L. natalensis.  However, the GRR as a reproductive parameter does 

not incorporate mortality during the reproductive period.  Therefore the more appropriate 

parameter to assess the reproductive capacity would be the net reproductive rate (Ro). 
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(b)  The net reproductive rate (Ro) 

 

The optimal life history strategy for a species has been defined as the one that maximises 

lifetime reproduction and is determined by maximizing age specific survival and 

fecundity (Roff, 1992; Stearns, 1992; Arendt, 1997).  The net reproductive rate (Ro) 

represents the actual mean replacement per generation and includes the effect of the 

cohort survival rate (Birch, 1948; Shiff, 1964).  In this study, all snail populations had the 

lowest Ro at 30
o
C (Table 6.6).  Lymnaea natalensis from the UKZN Pond had its highest 

Ro at 25
o
C while the remaining snail populations exhibited their highest Ro values at 

20
o
C.  This characteristic of highest Ro values at 20

o
C was attributed to the extended 

longevity, increased survival and higher oviposition rates displayed by the populations 

(Figures 6.7 - 6.10). 

 

From Table 6.6, it was noted that Ro for P. acuta was higher than R. rubiginosa at all 

three temperatures (1.20, 1.26 and 1.15 times at 20
o
C, 25

o
C and 30

o
C respectively).  In 

addition, Ro for both R. rubiginosa and P. acuta was 2.37 - 3.95 times greater than L. 

natalensis at 20
o
C and 2.24 - 4.16 and 4.29 - 5.70 times greater at 25

o
C and 30

o
C 

respectively (Table 6.6).  This parameter also highlights the reproductive and competitive 

superiority of R. rubiginosa and P. acuta over the indigenous L. natalensis. 

 

(c)  Intrinsic rate of natural increase (rm) 

 

All organisms tend towards unlimited increase and it has long been known (Lotka, 1925) 

that in unrestricted conditions, the number of individuals approaches consistency as the 

rate of increase approaches its final value (Shiff, 1964; De Kock, 1973; Prinsloo and van 

Eeden, 1976).  Under natural conditions increase will become restricted and the organism 

will live according to a life pattern, depending on the environmental circumstances.  This 

pattern, however, is not only dependent upon environmental factors, but is also affected 

by an innate attribute on the part of the organism itself (Shiff, 1964). 
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Life history parameters are important as indices used to assess how a species’ population 

growth might respond to selected conditions.  In addition, these parameters can also be 

used as bioclimatic indices to assess the invasive potential of an introduced population 

(Southwood and Henderson, 2000).  The intrinsic rate of natural increase (rm) is a key 

population parameter based on the comparative summary of the longevity, age specific 

survival rate and fecundity under a particular set of environmental conditions (Shiff, 

1964; De Kock, 1973; Prinsloo and van Eeden, 1976). 

 

The rate rm was initially used as a measure of population growth (Lotka, 1943) but was 

later described by Andrewartha and Birch (1954) as the maximal rate of increase attained.  

It is also a useful measure of the relative favourability of experimental conditions in 

studies on population dynamics and limiting factors (Birch, 1948; Leslie and Park, 1949; 

Evans and Smith, 1952; Shiff, 1964). 

 

The intrinsic rate of natural increase has a number of component variables that influence 

its magnitude (Birch, 1948).  The length of the non-reproductive period in relation to the 

duration of oviposition and age specific fecundity is one such variable.  The earlier in an 

animal’s life that an egg is laid, the greater is its contribution to the values of rm and Ro.  

Another important determinant of rm is the survival pattern, i.e. the shape of the lx curve.  

When rm is small its value may depend significantly on oviposition in late adult life but 

when it is large it is determined mostly by oviposition rates in early adult life (Birch, 

1948).  In addition, rm and Ro have been shown to be associated in terms of the mean 

generation time (T).  If rm decreases while Ro remains constant, T will be correspondingly 

longer (Shiff, 1964). 

 

The intrinsic rate of natural increase (rm) can also be a good indicator of the temperature 

at which the increase of a population is most favourable, because it reflects the overall 

effects of temperature on longevity, survival rate and fecundity of the population.  In this 

study, all snail populations had the lowest rm values at 30
o
C while the highest values were 

recorded at 25
o
C.  This suggests that the optimum temperature was 25

o
C and that the 

populations would be under ideal conditions at this temperature.  The high rm values 
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attained at 25
o
C were further attributed to the high oviposition rates early in the adult life 

of the individual (Figure 6.11) and the shorter mean generation times (Table 6.6). 

 

Differences in rm values reflect the influence of temperature on the potential rate of 

population increase of the populations as shown in Table 6.7.  The multiple comparisons 

between rm values of the four snail populations (Tables 6.8 - 6.10) were also significantly 

different at each temperature.  Only the two L. natalensis populations had statistically 

similar rm values at each of the three temperatures. 

 

Table 6.6 shows that the highest mean rm value recorded was 1.218 for P. acuta and this 

was anticipated given its rapid recolonisation of the Umsindusi River, KwaZulu-Natal, 

South Africa (Brackenbury and Appleton, 1993).  The intrinsic rate of natural increase 

for R. rubiginosa (1.050) was higher than the corresponding value for L. natalensis from 

the UKZN Pond (0.765) and from the Greyville Pond (0.759). 

 

(d)  Mean generation time (T) 

 

If two or more populations have the same Ro but their rm values are different then this 

could be attributed to differences in their mean generation time (T) since rm is inversely 

but strongly related to T.  A shortening of T will in effect increase rm (Birch, 1948; Cole, 

1954; Shiff, 1964; Lewontin, 1965).  It therefore follows that an accurate estimate of the 

mean generation time cannot be obtained until the value of rm is known (Birch, 1948). 

 

When a population with a high rm at the optimal temperature lives in an environment in 

which the temperature approaches this optimum, the population will expand rapidly until 

such time as other factors begin to restrict the increase (Shiff, 1964).  Therefore, if rm is 

lower, i.e. if conditions are suboptimal, Ro may still be high but the population will take 

longer to achieve this stable state and the mean generation time will be longer. 

 

Physa acuta and both L. natalensis populations exhibited their longest mean generation 

times (T) at 20
o
C while R. rubiginosa had its longest T at 30

o
C (Table 6.6).  It was 
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evident that all snail populations exhibited their highest rm values at 25
o
C, i.e. conditions 

were optimal for population increase.  This trait eventually resulted in the shortest mean 

generation time being recorded for P. acuta, R. rubiginosa and the Greyville Pond L. 

natalensis population at 25
o
C. 

 

This life history trait has important implications for an assessment of the invasivness of a 

species.  At an optimal temperature of 25
o
C, P. acuta required 5.584 weeks to attain the 

Ro of 898.578 (Table 6.6).  R. rubiginosa required 6.259 weeks to attain its Ro of 715.644 

while the UKZN and Greyville L. natalensis populations required 7.543 and 7.087 weeks 

to attain Ro values of 319.600 and 216.167 respectively (Table 6.6). 

 

The reproductive superiority of P. acuta in comparison to the other snail species is 

evident.  This is to be expected given the widespread distribution of P. acuta and its 

invasive characteristics.  From Table 6.6 it is also evident that R. rubiginosa displays a 

tendency for rapid population growth over a short mean generation time.  This has 

important implications for potential invasiveness. 

 

(e)  Finite rate of increase (λ) 

 

This parameter indicates the number of individuals of the future cohort that will replace 

one individual of the existing cohort.  Since the finite rate of increase (λ) is the natural 

antilogarithm of the innate capacity of increase (rm), λ values displayed similar trends to 

rm (Table 6.6). 

 

All four snail populations had their highest λ values at 25
o
C.  Of these, P. acuta had the 

highest λ, indicating that 3.381 individuals of the future cohort will replace one 

individual of the existing cohort.  The multiplication value for R. rubiginosa was 2.858 

followed by L. natalensis which had the lowest, 2.149 and 2.137 for the UKZN and 

Greyville populations respectively (Table 6.6).  Finally, all four snail populations had 

their lowest λ values at 30
o
C. 
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In summary, life history parameters reflect the schedule of resource allocation to growth 

and reproduction which the organisms then adjust to mortality so that reproductive output 

is maximised (Roff, 1992; Stearns, 1992; Charnov, 1993).  For most organisms, it is size 

rather than age that determines survivorship (Gross, 1981; McGraw and Wulff, 1983; 

Werner, 1988) and fecundity (McGraw and Wulff, 1983; Aarssen and Clauss, 1992).  

The growth rate is therefore an important factor to consider since it defines the 

relationship between size and age (Gotthard et al., 1994). 

 

When compared to the indigenous L. natalensis, R. rubiginosa exhibited the largest shell 

length at all three temperatures, as well as having a higher longevity and growth 

coefficient (K).  When compared to the invasive P. acuta, it was evident that R. 

rubiginosa exhibited longevities and K values that either exceeded or conformed closely 

to that of the physid.  At 20
o
C R. rubiginosa had a higher K than P. acuta, indicating that 

at this temperature, R. rubiginosa was superior to P. acuta in terms of growth (Table 6.1).  

At 25
o
C and 30

o
C however, P. acuta had the highest K followed marginally by R. 

rubiginosa. 

 

The large shell sizes of R. rubiginosa may present an advantage in competitive 

interactions over L. natalensis.  The rapid growth displayed by the species allowed it to 

achieve and maintain a size advantage over the indigenous L. natalensis.  While the 

asymptotic length (L∞) decreased with increasing temperature (Table 6.1), R. rubiginosa 

had the highest L∞ at each temperature.  This parameter (L∞) also indicated a competitive 

superiority of R. rubiginosa over L. natalensis. 

 

Survival and reproduction are also measures of the success of a species and affect the 

numerical stability of its populations.  Knowledge of mortality and reproductive rates 

allows for inferences to be made on factors that are important in the evolution of a 

species’ life history (Butler, 1984). 

 

It was evident from the survivorship curves that R. rubiginosa and P. acuta exhibited the 

highest age specific survival characteristics (time until first mortality, LT50 and longevity) 
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at each of the three temperatures in comparison to the two L. natalensis populations.  

This presents an advantage to both R. rubiginosa and P. acuta, in that since they are 

longer lived, they might be more competitive in terms of size, accessing resources (food 

and oviposition sites) and exhibiting an extended duration of oviposition in comparison to 

the indigenous L. natalensis.  At 20
o
C and 25

o
C P. acuta had a higher LT50 level than R. 

rubiginosa.  At 30
o
C however, R. rubiginosa had a slightly higher LT50 than P. acuta, 

indicating that it has a higher maximum temperature tolerance which might contribute 

significantly to its potential spread. 

 

Both R. rubiginosa and P. acuta exhibited longer durations of oviposition and higher 

fecundities at the three temperatures in comparison to the two L. natalensis populations.  

At 20
o
C R. rubiginosa had a higher reproductive peak than P. acuta but at 25

o
C and 30

o
C 

P. acuta had the higher reproductive peak.  More importantly, there was no significant 

difference in the fecundity between R. rubiginosa and P. acuta at these temperatures.  

This implies that R. rubiginosa has the ability to equal and at lower temperatures even 

exceed the reproductive potential of P. acuta.  This assessment of the exceptional 

fecundity of R. rubiginosa suggests a likelihood for rapid spread. 

 

Selection favours members of any population that leave the greatest number of 

descendents (Shiff, 1964).  Overall, the invasive P. acuta had the highest mean rm 

followed by R. rubiginosa, L. natalensis from the UKZN Pond and finally the Greyville 

Pond L. natalensis population.  This pattern was evident for all temperatures.  Taking into 

account the similarities between the age specific survival and fecundity of R. rubiginosa 

and P. acuta coupled with high rm values and shorter generation times, it seems clear that 

R. rubiginosa has a propensity for rapid spread and that if this happens, it could impact 

on the indigenous L. natalensis and lead to its extirpation in some situations. 
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7 

General Discussion and Conclusions 

 

________________________________________________________________________ 

 

The discovery of an alien freshwater snail in any country is a cause for concern, 

particularly, if it has the potential to (a) spread and (b) to be of economic importance.  

But it is frequently non-biologists who are in the front line when it comes to intercepting 

these aliens as, for example, they inspect aquarium supplies at points of entry or work as 

SASS practitioners sampling rivers.  Guidelines are needed to enable these staff to 

recognize such snails and Chapter 4 of this study does this by identifying simple 

characters that allow the alien Radix rubiginosa (Michelin, 1831) to be separated from 

the indigenous Lymnaea natalensis Krauss, 1848. 

 

A suite of conchological characters, shell length, length of last body whorl and aperture 

width, provide simple though variable criteria for the separation of R. rubiginosa and L. 

natalensis.  Radix rubiginosa had larger, more broadly ovate shells with longer (higher) 

body whorls than either of the two populations of L. natalensis that exhibited smaller, 

elongated shells with shorter (lower) body whorls.  Also, R. rubiginosa had a narrower 

aperture width compared to the larger, wider aperture of the UKZN Pond L. natalensis 

population.  The Greyville L. natalensis population was found to have narrower apertures 

than both R. rubiginosa and L. natalensis (UKZN Pond). 

 

The morphology of the radula and the reproductive anatomy of R. rubiginosa and L. 

natalensis from both the UKZN and Greyville Ponds showed little variation and were 

observed to be homoplastic.  The species did however vary in the relative numbers of 

radula teeth in each field and this serves as an additional useful diagnostic character. 
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Mantle pigmentation however offered a more definitive distinguishing character.  Both L. 

natalensis populations had similar mantle pigmentation patterns.  The entire mantle was 

gray to black in colour but interspersed with unpigmented spots that were numerous in 

the region above the kidney and towards the mid-region of the mantle.  Radix rubiginosa 

displayed a distinctly different mantle pigmentation pattern.  The mantle surface of R. 

rubiginosa was mottled black with patches of pale white to yellow.  There were also large 

unpigmented fields and stripes that were not observed in L. natalensis.  In addition, the 

mantle was interspersed with numerous unpigmented spots that were most frequent in the 

region above the kidney and towards the mid-region of the mantle. 

 

Having found characters to conveniently separate the alien R. rubiginosa from the 

indigenous L. natalensis, it became increasingly important to assess the invasiveness of 

this introduced species and its likely impact. 

 

In general, the species that become successful invaders are predicted to be species that, in 

their native ranges, display characteristics that enable them to successfully survive 

conditions encountered during transport, introduction, establishment and integration 

(Suarez and Tsutsui, 2008).  Two main attributes of biological invasions are thus:  

invasiveness, the traits that enable a species to invade a habitat and invasibility, the 

habitat characteristics that determine its susceptibility to the establishment and integration 

of an invasive species (Lonsdale, 1999; Alpert et al., 2000; Marco et al., 2002). 

 

Numerous hypotheses address the reasons behind successful biological invasion 

(Richardson and Pyšek, 2006) and most attribute it to characteristics of the invader or 

characteristics of the invaded ecosystems (Catford et al., 2009).  Table 7.1 presents 

examples of some of these hypotheses. 
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Table 7.1:  Examples of research on hypotheses of species invasiveness and ecosystem invasibility.  

 

Hypothesis / Trait Definition Reference 

   

Introduction Effort 

Hypothesis 

The invasiveness of a species can be increased by 

repetitive and extensive introductions. 

Williamson, 1996; Richardson, 1998; 

Lockwood et al., 2005; Gravuer et al., 

2008 

   

Residence Time 

Hypothesis 

Invasions experience a lag and that species introduced 

earlier are more likely to become invasive. 

Richardson, 1998; Rejmánek, 2000 

   

Enemy Release 

Hypothesis 

A species may proliferate in non-native ecosystems 

because they leave behind their co-evolved predators, 

disease and parasites that regulate their populations in 

the native ecosystems. 

Keane and Crawley, 2002; Fromme and 

Dybdahl, 2006; van der Velde et al., 

2006; Wilson et al., 2009  

   

Ecosystem Invasibility Besides characteristics of species themselves, certain 

habitat aspects, such as close proximity to the 

metropolitan area, a high disturbance regime, or low 

native species diversity, can make an ecosystem prone to 

invasion. In habitats rich in native species, niches are 

already occupied and resources are fully utilised leaving 

little available for exploitation by invaders. 

Elton, 1958; Richardson, 2004 

   

Invasional Meltdown 

Hypothesis 

The risk of new establishments by non-indigenous 

species increases when the habitat is already invaded by 

another introduced species.  A species that is already 

established in a community could facilitate the invasion 

of a second species. 

Simberloff and Von Holle, 1999; Bruno 

et al., 2003 

   

Species Traits Certain intrinsic traits of the non-indigenous species may 

enhance establishment and invasiveness. 

Rejmánek and Richardson, 1996; Kolar 

and Lodge, 2001 

 

With reference to the “Introduction Effort Hypothesis”, Madsen and Frandsen (1989) in 

their review of introduced freshwater snails worldwide, concluded that the aquarium 

trade was a source of multiple introductions and responsible for the introduction and 
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distribution of several of the common invasive species, including Physa acuta 

Draparnaud, 1805 (Appleton, 2003).  In addition, Duggan et al. (2006) stated that a clear 

relationship existed between the frequency of occurrence of exotic species in the pet and 

aquarium industry to the increased likelihood of non-indigenous introduction and 

establishment.  According to the “Invasional Meltdown Hypothesis”, a species that is 

already established in a community could facilitate the invasion by a second alien 

species.  If this is the case with two non-indigenous species, “invasional meltdown” may 

occur, with every new introduced species making it easier for subsequent ones to 

establish.  This results in an accelerating accumulation of introduced species (Bruno et 

al., 2003). 

 

In the context of this study, the “Introduction Effort” and “Invasional Meltdown” 

hypotheses are important since the Amatikulu Hatchery trades with Asia for both tropical 

fish and plants and may explain the many Asian exotic snails at the Hatchery.  A survey 

of the snail species occurring at this study site showed that five of the six snail species 

present were introduced (Table 4.2).  With reference to the above hypotheses, three 

invasive snails, Tarebia granifera Lamarck, 1822, Physa acuta Draparnaud, 1805 and 

Lymnaea columella Say, 1817 already occur in KwaZulu-Natal and could facilitate the 

establishment and spread of R. rubiginosa. 

 

The “Enemy Release Hypothesis”, states that invasive species are able to succeed in their 

new range (achieving higher population densities and broader ecological ranges than in 

their native range) because they have been released from the pressures that kept their 

population in check in their native ranges, such as predation, disease and parasitism 

(Keane and Crawley, 2002; van der Velde et al., 2006).  As previously noted R. 

rubiginosa is the intermediate host for several trematodes over much of southeast Asia, 

i.e. Fasciola gigantica (Srihakim and Pholpark, 1991; Malone, 1997), Trichobilharzia sp. 

(Nithuithai et al., 2004), Schistosoma incognitum (Bunnag et al., 1983) and various 

echinostomes (Charoenchai et al., 1997).  Introduced populations could however evolve 

lower investment in resistance or could down-regulate their immune system as a response 

to the absence of predators, disease and parasites (Fromme and Dybdahl, 2006).  This 
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response might have consequences for the success of introduced species as with no or 

few natural “enemies” the introduced species will have a greater success at establishing 

and spreading in the new area (Keane and Crawley, 2002; Wilson et al., 2009). 

 

Characteristics of the introduced species are critical to both their success and impact 

(Lodge, 1993) and identification of these traits allows recommendations to be made on 

how to evaluate the invasive potential of these new introductions (Kolar and Lodge, 

2001).  Factors that have been suggested as predictors of invasive success include 

abundance and range in the native habitat, a broad physiological tolerance (euryhalinity 

and eurythermy), rapid growth, large size, early sexual maturity and life history 

parameters such as short generation times, high fecundity and a high intrinsic rate of 

natural increase (Rejmánek and Richardson, 1996; Williamson and Fitter, 1996; Barrat-

Segretain et al., 2002; Moyle and Marchetti, 2006; Keller et al., 2007; Suarez and 

Tsutsui, 2008).  Therefore, the extent to which a species can spread, as well as its success 

in a given environment, is thought to be determined mainly by those factors which can 

limit growth, reproduction and survival (Sastry, 1979; Borcherding, 1995). 

 

Data presented in Chapters 5 and 6 clearly show that in terms of the rates of embryonic 

development, growth, survivorship, fecundity and life history parameters (GRR, Ro, rm, T 

and λ) at the three test temperatures, there is (i) little difference between the two 

introduced species R. rubiginosa and P. acuta and (ii) that they consistently perform 

better than the two populations of the indigenous L. natalensis which are similar to each 

other. 

 

The temperatures at which snails lay eggs and the relationship between embryonic 

development, growth, survivorship, fecundity and life history parameters to temperature 

have important implications for the potential of an introduced species to spread and the 

extent of that spread (Harris and Charleston, 1977).  Further, following Zukowski and 

Walker (2008), the increase in abundance and distribution of introduced species generally 

results in a decline of indigenous species. 
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As anticipated, P. acuta had a higher growth coefficient, longer survivorship, higher 

fecundity (higher hatching rate, fewer egg abnormalities, longer duration of oviposition), 

a shorter incubation period, greater life history parameters (GRR, Ro, rm and λ) and wider 

temperature tolerances than the other species tested.  These attributes undoubtedly 

contribute to its success as an invader.  On the basis of this argument, its high adaptability 

to changing environmental factors such as temperature, is in agreement with the fact that 

P. acuta is now more widespread in South Africa than the indigenous species L. 

natalensis. 

 

This has important implications for R. rubiginosa, since this snail displayed attributes and 

a temperature tolerance similar to the invasive P. acuta.  This implies that R. rubiginosa 

also has the ability to colonize a wider geographical and altitudinal range than L. 

natalensis.  Further, the superior reproductive ability of R. rubiginosa over L. natalensis 

is likely to create a situation that allows for the rapid spread of this species as well as 

impact on the indigenous L. natalensis that might render it vulnerable. 

 

In Chapter 5, it was observed that R. rubiginosa had the largest egg capsules and the 

highest number of eggs per capsule (clutch size) of the three snail species investigated.  

Also, R. rubiginosa had the largest eggs and this may confer an advantage in that a larger 

amount of albumen is at the disposal of the embryo, allowing for more rapid development 

before hatching.  Physa acuta produced the smallest eggs and smallest egg capsules but 

despite this characteristic it produced the second largest average clutch size after R. 

rubiginosa.  As noted by Shiff (1964), selection favours members of any population that 

leave the greatest number of descendents.  This characteristic is exhibited by both of the 

introduced species, R. rubiginosa and P. acuta, and may enhance the reproductive 

advantage of R. rubiginosa over the indigenous L. natalensis. 

 

At each of the three temperatures, R. rubiginosa and P. acuta had higher mean hatching 

rates than the two L. natalensis populations (Table 5.2).  In addition, R. rubiginosa and P. 

acuta exhibited frequencies of egg abnormalities that were 2.34 - 4.12, 2.36 - 3.46, 2.07 - 

2.48 times lower than either of the populations of L. natalensis at 20
o
C, 25

o
C and 30

o
C 
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respectively (Table 5.2).  The lower frequencies of egg abnormalities at each of the three 

temperatures in both R. rubiginosa and P. acuta further implies that a greater proportion 

of the eggs produced by these introduced species are likely to hatch. 

 

Radix rubiginosa and P. acuta showed no significant difference in hatching rate or egg 

abnormalities at the three temperatures except that the number of eggs without 

development for R. rubiginosa showed a temperature influence (Table 5.3).  This is 

important since it indicates that both R. rubiginosa and P. acuta have the ability to 

reproduce more efficiently over a wider range in temperature than the indigenous L. 

natalensis. 

 

For each of the three test temperatures there was no significant difference in hatching rate 

or the frequency of egg abnormalities between the two L. natalensis populations (Tables 

5.4 - 5.6).  Importantly these lymnaeids were significantly different from both R. 

rubiginosa and P. acuta for these attributes.  In addition, there was no significant 

difference between R. rubiginosa and P. acuta for hatching rate and egg abnormalities at 

25
o
C and 30

o
C.  Despite hatching rates being significantly different at 20

o
C, R. 

rubiginosa was similar to P. acuta for the occurrence of dwarf eggs, eggs without egg 

cells and polyvitelline abnormalities.  This suggested that R. rubiginosa exhibited similar 

characteristics to P. acuta, more so at the higher temperatures. 

 

Incubation periods decreased with increasing temperature (Tables 5.7 - 5.10).  Radix 

rubiginosa had a marginally longer incubation period than P. acuta, which had the 

shortest period for all temperatures.  Importantly, the incubation periods for R. rubiginosa 

and P. acuta were shorter than the two L. natalensis populations. 

 

Temperature induces developmental responses in body size, with larger individuals 

developing at lower temperatures (Imai, 1937; Vaughn, 1953; Fischer et al., 2003).  It 

was therefore suggested by Vaughn (1953) that the animals grew and developed more 

rapidly at higher temperatures, using larger amounts of energy but were of a smaller size.  

This was found to be the case in this study as all four snail populations had the largest 
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and smallest hatching sizes at 20
o
C and 30

o
C respectively (Tables 5.7 - 5.10).  For 

freshwater snails, a sufficient quantity of nourishment is of importance for the growth and 

survival of embryos since the size of the snail at hatching depends largely upon the 

supply of albumen available to the developing embryo.  It was noted that R. rubiginosa 

had both the largest egg size and the largest embryo size at hatching. 

 

The growth rate was however not constant for successive developmental periods and was 

dependent on both the temperature and length of the incubation period.  At higher 

temperatures, faster growth rates associated with accelerated development of the embryo 

led to shorter incubation periods.  Both L. natalensis populations exhibited similar growth 

rates but these were low when compared to R. rubiginosa and P. acuta (Tables 5.7 - 

5.10).  In fact, P. acuta had higher growth rates than R. rubiginosa for most 

developmental stages.  The exception was the early veliger stage where R. rubiginosa had 

higher growth rates. 

 

In Chapter 6, an assessment of the growth coefficient (K) indicated that R. rubiginosa and 

both L. natalensis populations had their highest values at 20
o
C while P. acuta had its 

highest K value at 25
o
C.  All four populations had their lowest K values at 30

o
C, i.e. 

hatchling growth was fastest at the lower temperature and less so at the higher 

temperature.  Radix rubiginosa had a K value at 20
o
C that was 1.06 times greater than 

that of P. acuta, while those exhibited by P. acuta at 25
o
C and 30

o
C were 1.05 and 1.04 

times greater than R. rubiginosa (Table 6.1).  Importantly, this indicated that at 20
o
C R. 

rubiginosa had a growth advantage over P. acuta, while at 25
o
C and 30

o
C it matched the 

higher values exhibited by the physid.  The K values for both R. rubiginosa and P. acuta 

were 1.10 - 1.29, 1.19 - 1.35 and 1.11 - 1.36 times larger than those of the two L. 

natalensis populations at 20
o
C, 25

o
C and 30

o
C respectively. 

 

Both the maximum shell length and the asymptotic shell length (L∞) were largest at 20
o
C 

and smallest at 30
o
C for all snail populations except L. natalensis (Greyville Pond) which 

displayed its smallest L∞ at 25
o
C (Table 6.1).  Radix rubiginosa had the largest shell 

length and L∞ at each temperature followed by the two L. natalensis populations and 
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finally P. acuta (Figures 6.1 - 6.3).  This suggests that R. rubiginosa enjoys a competitive 

superiority over P. acuta in terms of its rapid growth creating and maintaining a size 

advantage over the indigenous L. natalensis as well.  This is of advantage to both the 

introduced species in that they are longer lived and more competitive in terms of size, 

accessing resources (food and oviposition sites) and exhibit an extended duration of 

oviposition in comparison to L. natalensis. 

 

Measurements of age specific survivorship indicated that there was no significant 

difference between the two L. natalensis populations (Table 6.3).  When compared to the 

indigenous populations, R. rubiginosa and P. acuta exhibited higher survivorship values 

for the time until first mortality, the 50% mortality level (LT50) and longevity (Figures 

6.7 - 6.9).  Physa acuta exhibited the greatest longevity, LT50 and longest duration of 

mortality, being only marginally higher than R. rubiginosa.  Importantly, the time until 

first mortality for R. rubiginosa was similar to P. acuta at 25
o
C but slightly longer at 

20
o
C and 30

o
C (Figures 6.7 - 6.9).  In addition, at 30

o
C R. rubiginosa had a higher LT50 

when compared to P. acuta, indicating that it has a higher maximum temperature 

tolerance which might contribute significantly to its ability to spread.  A comparison of 

survivorship indicated no significant differences between R. rubiginosa and P. acuta at 

25
o
C and 30

o
C, i.e. at the higher temperatures survivorship of R. rubiginosa conformed 

closely to that of the already invasive physid, P. acuta (Table 6.3). 

 

Higher temperatures were associated with short oviposition periods and lowered 

fecundity for all four snail populations (Figures 6.10 - 6.12).  Although the two L. 

natalensis populations displayed similar age specific fecundity (Table 6.5), R. rubiginosa 

and P. acuta had higher fecundity and longer oviposition periods.  It was also noted that 

the LT50 values for R. rubiginosa and P. acuta were attained much later compared to L. 

natalensis and this could contribute to the higher fecundity displayed by the two exotics. 

 

Comparisons between these introduced species showed that at 20
o
C R. rubiginosa had the 

higher reproductive peak while P. acuta did so at 25
o
C and 30

o
C.  More importantly 

perhaps, there was no significant difference in fecundity between P. acuta and R. 
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rubiginosa at the higher temperatures (Table 6.5).  This implies that R. rubiginosa has the 

ability to equal and at lower temperatures even exceed the reproductive potential of P. 

acuta.  This assessment of the exceptional fecundity of R. rubiginosa suggests real 

potential for significant spread. 

 

The higher gross reproductive rates (GRR) and net reproductive rates (Ro) recorded at 

20
o
C and 25

o
C could be attributed to the extended longevity, increased survivorship and 

higher oviposition rates displayed by all populations at these temperatures.  At each of 

the three temperatures P. acuta had the highest GRR and Ro, followed by R. rubiginosa 

and then finally the two populations of L. natalensis.  This was anticipated given the 

success of P. acuta as an invader in South Africa (De Kock et al., 1989; Brackenbury and 

Appleton, 1993; Appleton, 2003; De Kock and Wolmarans, 2007).  A higher 

reproductive yield is an attribute on the part of the introduced species that allows for 

maximum oviposition over a wide range in temperature and highlights the potential 

reproductive superiority of the introduced R. rubiginosa and P. acuta over the indigenous 

L. natalensis. 

 

In this study, 25
o
C was clearly the optimum temperature for all four snail populations 

since they all exhibited a maximum intrinsic rate of natural increase (rm) at this 

temperature (Table 6.6).  This is also the experimental temperature found to be suitable 

for planorbids such as Biomphalaria and Bulinus spp. (Shiff, 1964; De Kock, 1973; 

Brackenbury and Appleton, 1991).  The maximum rm exhibited at 25
o
C was attributed to 

the high oviposition rates early in adult life and the shorter mean generation times.  At 

30
o
C all populations had their lowest rm values and therefore exhibited their weakest 

performance at this temperature.  Multiple comparisons of rm among the four snail 

populations were significantly influenced by temperature (Tables 6.8 - 6.10).  Only L. 

natalensis (both populations) had statistically similar rm values at each of the three 

temperatures.  Overall, the invasive P. acuta had the highest mean rm followed by R. 

rubiginosa, L. natalensis from (UKZN Pond) and finally the Greyville Pond population.  

Since λ is the natural antilogarithm of the innate capacity of increase (rm), λ values 

displayed similar patterns to rm values. 
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In the earlier chapters, it was noted that the introduction of R. rubiginosa is likely to go 

unnoticed due to its resemblance to L. natalensis.  This is because the shell morphology 

of L. natalensis is notoriously variable and some of its variations resemble R. rubiginosa.  

This is reflected in recent research into the epidemiology of human and bovine 

fascioliasis (Chen and Mott, 1990; Mas-Coma and Bargues, 1997; Esteban et al., 1998; 

Mas-Coma et al., 1999; Marquardt et al., 2000) which has focused on the different 

“forms” of L. natalensis in Africa.  This is further complicated by increasing evidence 

suggesting that the forms of what is widely called L. natalensis in Africa may in fact 

comprise more than one species (Brown, 1994). 

 

Dondero and Lim (1976) and Mienis (1986) have commented that it is easy to breed R. 

rubiginosa in aquaria and this was also found to be the case in this study.  The indigenous 

L. natalensis is not as easy to breed and this raises the question, “If R. rubiginosa spreads 

in South Africa, will it do so at the expense of L. natalensis?”  The occurrence of L. 

natalensis in KwaZulu-Natal appears to have decreased already perhaps due to the 

competition with yet another introduced lymnaeid, Lymnaea columella Say, 1817 (C.C. 

Appleton pers. comm).  If R. rubiginosa becomes established in the same area then this 

could increase pressure on the indigenous L. natalensis and eventually lead to its 

extirpation in some areas. 

 

Importantly, analysis of the results from Chapters 5 and 6 indicated that the introduced R. 

rubiginosa and P. acuta exhibited a superior performance at all temperatures when 

compared to L. natalensis.  Radix rubiginosa and P. acuta therefore exhibited a wider 

temperature tolerance than L. natalensis, which might reflect a capability for these 

introduced species to colonize a wider geographical area and altitudinal range in South 

Africa.  This wide range for P. acuta has already been documented (De Kock et al., 1989; 

De Kock and Wolmarans, 2007) and this species is regarded as one of the most invasive 

freshwater gastropod species in the country.  According to De Kock and Wolmarans 

(2007), P. acuta has the ability to establish and maintain populations over an altitudinal 

range of 0 - 2000m, virtually the whole sub-continent. 
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The potential of R. rubiginosa to also occupy a wide geographical and altitudinal range is 

however at variance with its natural distribution, where R. rubiginosa occurs (and serves 

as the intermediate host for F. gigantica) over the lowlands of much of south-eastern 

Asia.  In Chapters 5 and 6 it was noted that at higher temperatures (25
o
C and 30

o
C), the 

performance of R. rubiginosa was similar to that of P. acuta.  However, at 20
o
C R. 

rubiginosa had the ability to equal and even exceed the performance of P. acuta in 

respect of certain attributes (growth coefficient and fecundity).  This apparent anomaly 

where a south-east Asian species (R. rubiginosa) is found to exhibit a similar 

performance and in certain attributes exceed the performance of a palearctic species 

probably introduced from Europe (P. acuta) was unexpected.  The data show that the 

advantage of R. rubiginosa lay in the period of growth from hatching to maturity coupled 

with its fecundity.  No explanation can immediately be offered for this eurythermal 

performance of R. rubiginosa extending to such low temperatures.  Unfortunately, there 

is a dearth of information on the biology of R. rubiginosa. 

 

The present series of experiments suggest that R. rubiginosa has the ability to colonize a 

range of South African environments similar to that of the invasive P. acuta and 

depending on its compatibility to the local strain of F. gigantica, it could exacerbate the 

fascioliasis problem in the country too.  Here again it is likely to interact with L. 

columella though the role of this latter species in fascioliasis transmission in South Africa 

has not been investigated.  Lymnaea columella has been shown to be susceptible to F. 

gigantica in Egypt (Ahmed and Ramzy, 1999; Dar et al., 2005), and so is likely to be 

susceptible here as well. 

 

Finally, it should be appreciated that laboratory studies on embryonic development, 

growth, survivorship, fecundity and life history parameters cannot be directly 

extrapolated to natural populations.  They do however provide a useful basis from which 

to predict the invasive potential of introduced species.  It not only increases our 

understanding of the mechanics of biological invasions but it helps to identify which 

potentially invasive species should be targeted at points of entry.  This implies the need 

for quantitative analyses of the processes involved in biological invasions (attributes that 
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might enhance the invasiveness of introduced species and identification of invasion 

pathways) and of the large scale biotic changes (biotic homogenization and the possible 

extirpation of indigenous species) following the invasions. 

 

The conclusions that can be drawn from this study are: 

 

(i) The shell length, length of last body whorl and aperture width are useful 

 conchological characters in the separation of R. rubiginosa and L. natalensis.  

 Radix rubiginosa had larger, more broadly ovate shells with longer (higher) body 

 whorls than either of the two populations of L. natalensis that exhibited smaller, 

 elongated shells with shorter (lower) body whorls.  R. rubiginosa had a narrower 

 aperture width compared to the larger, wider aperture of the UKZN Pond L. 

 natalensis population.  The Greyville L. natalensis population was found to have 

 narrower apertures than both R. rubiginosa and L. natalensis (UKZN Pond).  

 These differences in morphology in L. natalensis populations only approximately 

 5.5 km apart again focuses attention on the plasticity of shell shape in this 

 indigenous lymnaeid. 

 

(ii) The mantle surface of R. rubiginosa was mottled black with patches of pale white 

 to yellow and large unpigmented fields and stripes; the mantle was also 

 interspersed with numerous unpigmented spots that were most frequent in the 

 region above the kidney and towards the mid-region of the mantle.  The entire 

 mantle of L. natalensis was gray to black in colour but interspersed with 

 unpigmented spots that were numerous in the region above the kidney and 

 towards the mid-region of the mantle. 

 

(iii) Radix rubiginosa and P. acuta had a higher growth coefficient (K), longer 

 survivorship, higher fecundity (higher hatching rate, fewer egg abnormalities, 

 longer duration of oviposition), shorter incubation period, greater life history 

 parameters (GRR, Ro, rm and λ) and wider temperature tolerances than the two L.  

 natalensis populations tested. 
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(iv) The high adaptability of P. acuta to changing environmental factors such as 

 temperature, is in agreement with the fact that it is now more widespread in South 

 Africa than the indigenous species L. natalensis. 

 

(v) Radix rubiginosa displayed attributes and a temperature tolerance that were 

 similar to and in certain cases even exceeded the performance of the invasive P. 

 acuta. 

 

(vi) Radix rubiginosa appears to have the potential to colonize a wider geographical 

 and altitudinal range than L. natalensis, perhaps also P. acuta.  Also, the superior 

 reproductive ability of R. rubiginosa over L. natalensis is likely to present a 

 situation that allows for its significant spread as well as a possible impact on the 

 indigenous L. natalensis that might render it vulnerable. 
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