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It turns out to be very difficult to devise a theory to describe the universe all in one 
go. Instead, we break the problem up into bits and invent a number of partial theo­
ries. Each of these partial theories describes and predicts a certain limited class of 
observations, neglecting the effects of other quantities, or representing them by sim­
ple sets of numbers. It may be that this approach is completely wrong. If everything 
in the universe depends on everything else in a fundamental way, it might be impos­
sible to get close to a full solution by investigating parts of the problem in isolation. 
Nevertheless, it is certainly the way we have made progress in the past. 

Stephen Hawking 
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Abstract 

Cables in hoisting installations, due to their flexibility, are susceptible to vi­

brations. A common arrangement in industrial hoisting systems comprises a driving 

winder drum, a steel wire cable, a sheave mounted in headgear, a vertical shaft and 

a conveyance. This system can be treated as an assemblage of two connected in­

teractive, continuous substructures, namely of the catenary and of the vertical rope, 

with the sheave acting as a coupling member, and with the winder drum regarded as 

an ideal energy source. The length of the vertical rope is varying during the wind so 

that the mean catenary tension is continuously varying. Therefore, the natural fre­

quencies of both subsystems are time-dependent and the entire structure represents 

a non-stationary dynamic system. 

The main dynamic response, namely lateral vibrations of the catenary and 

longitudinal vibrations of the vertical rope, are caused by various sources of excita­

tion present in the system. The most significant sources are loads due to the winding 

cycle acceleration/deceleration profile and a mechanism applied on the winder drum 

surface in order to achieve a uniform coiling pattern. The classical moving frame 

approach is used to derive a mathematical model describing the non-stationary re­

sponse of the system. First the longitudinal response and passage through primary 

resonance is examined. The response is analyzed using a combined perturbation 

and numerical technique. The method of multiple scales is used to formulate a 

uniformly valid perturbation expansion for the response near the resonance, and a 

system of first order ordinary differential equations for the slowly varying ampli­

tude and phase of the response results . This system is integrated numerically on 

a slow time scale. A model example is discussed, and the behaviour of the es­

sential dynamic properties of the system during the transition through resonance is 

examined. 

Interactions between various types of vibration within the system exist. The 

sheave inertial coupling between the catenary and the vertical rope subsystems fa-
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Abstract IV 

cilitates extensive interactions between the catenary and the vertical rope motions. 

The nature of these interactions is strongly non-linear. The lateral vibration of the 

catenary induces the longitudinal oscillations in the vertical system and vice-versa. 

In order to analyze dynamic phenomena arising due these interactions the non­

linear partial-differential equations of motion are discretised by writing the deflec­

tions in terms of the linear, free-vibration modes of the system, which result in a 

non-linear set of coupled, second order ordinary differential equations with slowly 

varying coefficients. Using this formulation, the dynamic response of an existing 

hoisting installation, where problematic dynamic behaviour was observed, is simu­

lated numerically. The simulation predicts strong modal interactions during passage 

through external, parametric and internal resonances, confirming the autoparamet­

ric and non-stationary nature of the system recorded during its operation. 

The results of this research demonstrate the non-stationary and non-linear be­

haviour of hoisting cables with slowly varying length. It is shown that during pas­

sage through resonance a large response may lead to high oscillations in the cables' 

tensions, which in turn contribute directly to fatigue damage effects. The results 

obtained show also that the non-linear coupling in the system promotes significant 

modal interactions during the passage through the instability regions. The analy­

sis techniques presented in the study form a useful tool that can be employed in 

determining the design parameters of hoisting systems, as well as in developing a 

careful winding strategy, to ensure that the regions of excessive dynamic response 

are avoided during the normal operating regimes. 



Acknowledgments 

The author is grateful to his supervisor Professor S Adali who has provided 

stimulus, support and encouragement over the period in which these studies have 

been carried out. 

Thanks are also due to Professor R R Mankowski and to Dr C P Constancon 

who have helped with technical advice and discussion of a number of problems. 

The author gratefully acknowledges the financial support received from the 

University of Natal Research Fund. 

Mention must also be made of colleagues at the University of Natal. Thanks 

are due to Professor G D J Smith who gave valuable support in lightening the au­

thor's teaching and administrative load during the crucial stage of this research. 

Special thanks to Professor V E Verijenko for his kind advice and encouragement. 

The author is also grateful to Professor L W Roberts for his valuable help provided 

at the beginning of this project. 

The author would also like to acknowledge Professor B Skalmierski, formerly 

of the Silesian University of Technology, Poland, for his guidance through the av­

enues of Applied Mechanics. 

Finally, the author wishes to thank his wife May for her patience, understand­

ing and faithful support throughout the entire period of this work. 

v 



Contents 

Preface ........ . ...... ... .... . .. .. ... . .. .. .... .. ..... . .... . ...... . .............. . . . 1 

1 Introduction .... ... ..... .. . ... ...... ... .. .. .. . ....... . . .... .. .. .... . . . . . .... .. 2 

1.1 Typical Hoisting Systems ........ . .. .... ... . .. .. . . ....... ... ... . ..... . .. . .... 2 

1.2 Summary of Previous Work .. . . ......... .. ...... . .. . ......................... 6 

1.2.1 Stationary Parameter Studies .. . . . .. .. ...................... ..... . . .... 6 

1.2.2 Non-Stationary Parameter Studies .. ......... . ...... .. ................. 8 

1.3 Objectives of the Study . .. . ..... . ... . . . .... . ......... . .. .. ... . .. ....... . . ... 10 

2 Vibrations of One-Dimensional Continua with Slowly Varying 
Length .............. .. .. ... . . ... .. .. .. .... . ....... . .............. . .......... . 12 

2.1 Governing Equations ..... . . .. .. .. .... ..... .. . .. . . .... . . .. .. .. .... .. ... ..... 13 

2.2 The Dynamic Characteristics and Methods of Analysis .. . .. .. .... . . . .. . ... ... 17 

3 Mathematical Model of a Hoisting System . . . . . ..... .. .. .... ... . . ..... . 24 

3.1 Vibrations in the Hoisting Cable .. .. ....... ... .. . . .. . ........ . .... . .. . .. . . . . 24 

3.2 Equations of Motion ... . . . . .. .... . ... . . . . ... .. .. . . .. . ............. .. . .... . . . 27 

3.2.1 Free Undamped Motion ...... . .. . ............ . .. . ..... . ....... . ...... 31 

3.2.2 Boundaryexcitation . ...... ...... .......... .. . ............... . .. ..... 37 

3.2.3 Damping Model ... .... ..... ..... . .... . .. . ..... .... .... . . .. ........ . . 40 

4 Longitudinal Dynamics . ...... ... .... . ... . . . ........ . .... . ................. 43 

4.1 Longitudinal Discrete Model. . .. .. .. . ...... . .. . ..... .. ...... . ..... .. . . .... . . 44 

VI 



Contents Vll 

4.2 Single-Mode Approximation ...... .. ....... . .............. .. ........ . ...... . 49 

4.3 The Multiple Scales Solution ....... .. .... . .. . .. . ............ ... ......... .. . 52 

4.4 Longitudinal Damping Parameters .. . ..... .... .......... .. ............... . .. 54 

4.5 Numerical Example and Results ... .. .. .. ....... . .... .. ........... . ... . ...... 56 

4.5.1 Overall Dynamic Response .. . ........ . .. .. .......................... 56 

4.5.2 Response at the resonance region . .. .... .. .... . ............. . ..... . ... 63 

4.6 Summary and Conclusions: Longitudinal Dynamics .. . . .. .. . .......... . ...... 66 

5 Non-Linear Interactions in a Hoisting Cable System .. ............... . 79 

5.1 Discrete Model ... . ....... .. . ..... .. ......... . .. ..... . ............ . ..... . . . . 80 

5.2 Damping Parameters ............. . ......................................... 86 

5.3 Excitation Definition ............. . ..... . ..... . . .. .... ..... . . ... .. ....... . .. 88 

5.4 Numerical Simulation and Results ........................ . .. .. .... . ......... 91 

5.4.1 The KloofGold Mine Winding System . ........... . .. . . . ............. 93 

5.4.2 Kloof Simulation Model . . ... .. . ......... . . . ... . .. . ............... ... 98 

5.4.3 Kloof Simulation results ......... .. .. .. .. .. . . .......... .. . . .......... 99 

5.4.4 Elandsrand Simulation . .. ..... . .. . .... . ........ .. ........... . ....... 138 

5.5 Summary and Conclusions: Non-Linear Interactions ................ .. .... ;. ' 138 

6 Conclusion . .. . ..... .. . . . .. . . . .. .. .... . . ... . . .... ............ . ..... . ........ 148 

6.1 Summary of Conclusions of Preceding Chapters and Final Recommendations. 148 

6.2 Suggestions for Future Work .... ... . . .. . . .. .... . .. ..... .... . ..... . ....... .. 152 

References ....... . ..... .. .... . ..... . .. . .......... . .............. .. .... . .. . .... 154 

A The Longitudinal Eigenvalue Problem .. ........ . .... . ... . ........ . ... . 164 



Contents Vlll 

B Coefficients of Multi-Degree-of-Freedom Longitudinal Model . .. . . 168 

C The Perturbation Procedure of Multiple Scales ........... .. .......... 171 

D The Profile of a Catenary Cable . . .. ..................................... 180 

E Equivalent Viscous Damping Considerations ......... .. ........... . .. 183 

F MAT LAB ODE function . . . . .. ......... ............ .. . . .. .. .. . ...... . .... 188 

G Simulation Results ..... ... . . ..... ..... .. .... .. .. ... . . ......... .. .. ... ..... 192 



Contents IX 

List of Figures 

Configuration of a typical industrial hoisting installation ............... ... ... .. .. 3 

2 Double-drum winder layout. .... .. ... ... ... . ..... . ............. . .. . ...... . .. ... 4 

3 Configuration of the Koepe system .. .... . ..... .. ........ . .... .. ............ . . . .. 5 

4 Uniform rod with time-varying length .... .... .. ........ .. ....... . ...... ... ... . . 14 

5 Strand cross-section of the triangular strand rope. . ... .. . . ...... .. ...... . ....... 25 

6 Model of a Catenary-Vertical Rope System . ... .. . .. . .. . ................... . . . .. 28 

7 Simplified longitudinal model of a hoisting cable ... ................... .. ....... 43 

8 Longitudinal model of a vertical rope. . ..... . ............ . ..................... 45 

9 Cross-over zones of the Lebus system ......... ....... ..... ........... . .. .. ... . . 66 

10 Longitudinal frequency curves for Elandsrand Mine winder, with horizontal 
lines denoting the frequency of excitation S1, corresponding to various nominal 
winding velocities: Ve = 12 ( . . ·),14 (_. -), 16 (--), and 18 (-) m/s .. ...... 67 

11 Longitudinal modal co-ordinates for Elandsrand Mine simulation at the 
nominal winding velocity Ve = 16 m/ s . ......... ... . ..... . .... .. .... .......... 68 

12 Longitudinal response of the Elandsrand system at the nominal winding 
velocity Vc = 16 m/ s: (a) at the sheave; (b) at the conveyance ....... . .......... 69 

13 Total cable tensions for Elandsrand Mine winder at the nominal velocity 
Vc = 16 m/ s: (a) the catenary tension Te; (b) the vertical rope tension Ts at 
the sheave; (c) the vertical rope tension T M at the conveyance; (d) the tension 
ratio across the sheave Te/Ts . ............................. ........ ..... .... ... 70 

14 Dynamic cable tensions for Elandsrand Mine winder at the nominal velocity 
Vc = 16 m/ s: (a) the catenary dynamic tension Ted; (b) the vertical rope 
dynamic tension TSd at the sheave; (c) the vertical rope dynamic tension T Md 

at the conveyance. . .. .. ... ....... .... .. . ........ .. ........... . ........... .... . 71 

15 Overall response and dynamic cable tensons for Elandsrand Mine winder 
at the nominal velocity Ve = 16 m/ s with superimposed envelope curves 
obtained from the multiple scales model at the resonance region: (a) the 
sheave response; (b) the rope tension at the sheave; (c) the rope tension at the 
conveyance ..... ... .... .... ... ....... .. ..... .. .. .. .... ..... .... . .. .... .. ...... 72 



Contents 

16 Non-stationary amplitude response during passage through resonance in 
Elandsrand Mine system: (a) the frequency-response curves; (b) amplitudes 
against the vertical length, for the winding velocities Vc = 12 ( .. . ), 14 

x 

(- . -), 16 (--), and 18 (-) m/ s . ...... ... . .. . ................ .... ........ . . 73 

17 Conveyance amplitude response during passage through resonance in 
Elandsrand Mine system: (a) the non-stationary frequency-response curves; 
(b) amplitudes against the vertical length, for the winding velocities Vc = 12 
(-. ·),14 (_. -), 16 (--), and 18 (-) m/s . .. .. ..... ............. .. ....... ... 74 

18 Catenary dynamic tension envelopes during passage through resonance in 
Elandsrand Mine system shown (a) against the frequency detuning parameter; 
(b) against the vertical length, for the winding velocities Vc = 12 (- .. ), 14 
(_. -), 16 (--), and 18 (-) m/s . ........................................... 75 

19 Sheave dynamic tension envelopes during passage through resonance in 
Elandsrand Mine system shown (a) against the frequency detuning parameter; 
(b) against the vertical length, for the winding velocities Vc = 12 ( ... ), 14 
(-. -), 16 (--), and 18 (-) m/s ... ......................................... 76 

20 Conveyance dynamic tension envelopes during passage through resonance in 
Elandsrand Mine system shown (a) against the frequency detuning parameter; 
(b) against the vertical length, for the winding velocities Vc = 12 (- . . ), 14 
(- . -) , 16 (--) , and 18 (-) m/ s . ........................................... 77 

21 Boundary excitation functions ........ . .. ...................... .. ....... ....... 90 

22 Schematic arrangement of cables in the BMR Kloof winder [Dimitriou & 
Whillier, 1973]. ............................................................... 94 

23 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves 
for Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
nominal winding velocity Vc = 15 m/ s. Vertical lines ( . .. ) indicate the layer 
change locations ............................................................. 103 

24 Phase space trajectories and the power spectra of the catenary lateral in-plane 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within 
the interval Lv = 1000 - 800 m . .. ............ .. ........... . ........... .... .. 104 

25 Phase space trajectories and the power spectra of the catenary lateral 
out-of-plane modal co-ordinates during the ascending Kloof cycle at Vc = 15 
m/ s within the interval Lv = 1000 - 800 m . . ... ... ... . .... .. .... .. ........... 105 



Contents 

26 Phase space trajectories and the power spectra of the vertical rope longitudinal 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within 

Xl 

the interval Lv = 1000 - 800 m. . ............................................ 106 

27 Phase space trajectories and the power spectra of the catenary lateral in-plane 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within 
the interval Lv = 800 - 600 m. . ......... ... ....................... ..... ..... 107 

28 Phase space trajectories and the power spectra of the catenary lateral 
out-of-plane modal co-ordinates during the ascending Kloof cycle at Vc = 15 
m/ s within the interval Lv = 800 - 600 m .................................... 108 

29 Phase space trajectories and the power spectra of the vertical rope longitudinal 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within 
the interval Lv = 800 - 600 m. .. ............................................ 109 

30 Phase space trajectories and the power spectra of the catenary lateral in-plane 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within 
the interval Lv = 600 - 400 m. . ............................................. 11 0 

31 Phase space trajectories and the power spectra of the catenary lateral 
out-of-plane modal co-ordinates during the ascending Kloof cycle at Vc = 15 
m/ s within the interval Lv = 600 - 400 m . .................................. . 111 

32 Phase space trajectories and the power spectra of the vertical rope longitudinal 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within 
the interval Lv = 600 - 400 m. .. ............................................ 112 

33 Displacement response ofKloofMine winding cables for Vc = 15 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; 
longitudinal responses (c) at the sheave and (d) at the conveyance ..... ..... .... 113 

34 Lateral cable motion at the fi rst quarter point of the catenary in the Kloof 
system at Vc = 15 m/ s . ...................................................... 115 

35 The trajectory of the first quarter point of the catenary during various 
stages of the ascending cycle in the Kloof system at Vc = 15 m / s: (a) 
Lv = 1600 - 1400 m, (b) Lv = 1400 - 1200 m, (c) Lv = 1200 - 1000 m, (d) 
1000 - 800 m . ... ...................... . . . ... .. .............. . ........... ... 118 

36 The trajectory of the first quarter point of the catenary during various stages 
of the ascending cycle in the Kloof system at Vc = 15 m/ s - continued: (a) 
Lv = 800 - 600 m, (b) Lv = 600 - 400 m, (c) Lv = 400 - 150 m, (d) 
150 - 60 m .......... . .... .. .. . . .. .. .. .... .. ..................... . ........... 119 



Contents 

37 Total tensions in Kloof Mine winding cables at the nominal velocity Ve = 15 
m/ s: (a) the catenary tension Te; (b) the vertical rope tension Ts at the sheave; 
( c) the vertical rope tension T M at the conveyance; (d) the tension ratio across 

xu 

the sheave Te/Ts ........... .. . .. .. . ...... . .............. . .. .. .............. .. 120 

38 Dynamic tensions in Kloof Mine winding cables at the nominal speed Vc = 15 
m/ s: (a) the catenary dynamic tension Ted; (b) the vertical rope dynamic 
tension TSd at the sheave; (c) the vertical rope dynamic tension T Md at the 
conveyance ....... . ...... ....... .. .......... ......... . ............ . .......... 121 

39 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves 
for Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
winding velocity Ve = 12 m/ s. Vertical lines ( ... ) indicate the layer change 
locations ........................ . ............................................ 122 

40 Displacement response ofKloofMine winding cables for Ve = 12 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; 
longitudinal responses (c) at the sheave and (d) at the conveyance .... ..... . .... 123 

41 The trajectory of the first quarter point of the catenary during various 
stages of the ascending cycle in the Kloof system at Vc = 12 m/ s: (a) 
Lv = 1600 - 1400 m, (b) Lv = 1400 - 1000 m, (c) Lv = 1000 - 400 m, (d) 
400 - 70 m .. ..... ............ .... ............. . .. . ...... . ... ...... ..... . ... . 124 

42 Total tensions in Kloof Mine winding cables at the winding velocity Ve = 12 
m/ s: (a) the catenary tension Te; (b) the vertical rope tension Ts at the sheave; 
(c) the vertical rope tension T M at the conveyance; (d) the tension ratio across 
the sheave Te/Ts .. ....... ...... ..... ...... ... . .. ..... ............... .. .. . .... 125 

43 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves 
for Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
winding velocity Ve = 14 m/ s. Vertical lines ( .. . ) indicate the layer change 
locations .. ....... ... ... .. ...... .. ..... .... .. ... ..... . ........... . ............ 126 

44 Displacement response ofKloofMine winding cables for Vc = 14 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; 
longitudinal responses (c) at the sheave and (d) at the conveyance . . ... . ... ..... 127 

45 The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloofsystem at Vc = 14 m/s: (a) Lv = 800 - 600 
m, (b) Lv = 600 - 400 m, (c) Lv = 400 - 150 m, (d) 150 - 60 m ............ . 128 



Contents Xlll 

46 Total tensions in Kloof Mine winding cables at the winding velocity Vc = 14 
m / s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; 
(c) the vertical rope tension TM at the conveyance; (d) the tension ratio across 
the sheave Tc/Ts .. ....... . ... .... .. .... ........ .. ... .. .... .. .... .. ..... .. ... . 129 

47 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves 
for Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
winding velocity Vc = 16 m/ s. Vertical lines (- .. ) indicate the layer change 
locations ............... .. ...... . ....... . ..... . ... . .. . ....... .. ......... . .. . .. 130 

48 Displacement response of Kloof Mine winding cables for Vc = 16 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; 
longitudinal responses (c) at the sheave and (d) at the conveyance . .. .. ....... . . 131 

49 The trajectory of the first quarter point of the catenary during various 
stages of the ascending cycle in the Kloof system at Vc = 16 m/ s: (a) 
Lv = 1200 - 1000 m, (b) Lv = 1000 - 800 m, (c) Lv = 800 - 600 m, (d) 
600 - 400 m .. ............ ....... . . .. . ...... .. ... . .. . . .. ...... . ........ . ... .. 132 

50 Total tensions in Kloof Mine winding cables at the winding velocity Vc = 16 
m/ s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; 
(c) the vertical rope tension T M at the conveyance; (d) the tension ratio across 
the sheave Tc/Ts .. .............. ..... . .. ................. . ................... 133 

51 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves 
for Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
winding velocity Vc = 18 m/ s. Vertical lines ( ... ) indicate the layer change 
locations ..................... . .. .. ............ .. ... .. ... . . .. .. . . .. ....... .... 134 

52 Displacement response of Kloof Mine winding cables for Vc = 18 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; 
longitudinal responses (c) at the sheave and (d) at the conveyance ............. . 135 

53 The trajectory of the first quarter point of the catenary during various 
stages of the ascending cycle in the Kloofsystem at Vc = 18 m/s: (a) 
Lv = 1600 - 1400 m, (b) Lv = 1400 - 1200 m, (c) Lv = 1200 - 1000 m, (d) 
1000 - 800 m .. ........... ...... ... .. ... .......... .... . .. .... . ... .. ....... .. 136 

54 Total tensions in Kloof Mine winding cables at the winding velocity Vc = 18 
m / s: (a) the catenary tension Tc; (b) the vertical rope tension Ts atthe sheave; 
(c) the vertical rope tension T M at the conveyance; (d) the tension ratio across 
the sheave Tc/Ts .. ....... ... ...... .. ..... . .. ... . . ... . . .. ..... . . . ....... .. .... 137 



Contents 

55 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves 
for Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
winding velocity Vc = 19.5 m / s. Vertical lines ( . .. ) indicate the layer change 

XIV 

locations ...... ... ........... .. .... ..... ........ ... ............ .... ........... 141 

56 Displacement response of KloofMine winding cables for Vc = 19.5 m/s: 
lateral (a) in-plane and (b) out-of-plane motions at the first quarter of the 
catenary; longitudinal responses (c) at the sheave and (d) at the conveyance ... . . 142 

57 The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloof system at Vc = 19.5 m/ s: (a) Lv = 800 - 600 
m, (b) Lv = 600 - 400 m, (c) Lv = 400 - 150 m, (d) 150 - 70 m ............. 143 

58 Total tensions in Kloof Mine winding cables at the winding velocity Vc = 19.5 
m/ s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; 
(c) the vertical rope tension T M at the conveyance; (d) the tension ratio across 
the sheave Tc /Ts .. ........................................................... 144 

59 Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves for 
Elandsrand Gold Mine winder (ascending cycle), with horizontal lines (--) 
denoting the first and the second harmonics of the excitation frequency at the 
winding velocity Vc = 16 m/ s. Vertical lines ( ... ) indicate the layer change 
locations ......... . .................. ......... . .. .. ... ................ . ....... 145 

60 Displacement response of Elandsrand Mine winding cables for Vc = 16 m/ s: 
lateral (a) in-plane and (b) out-of-plane motions at the first quarter of the 
catenary; longitudinal responses (c) at the sheave and (d) at the conveyance ..... 146 

61 Total tensions in Elandsrand Mine winding cables at the winding velocity 
Vc = 16 m/ s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at 
the sheave; (c) the vertical rope tension T M at the conveyance; (d) the tension 
ratio across the sheave Tc/Ts . ... ...................................... . ...... 147 

62 Catenary supported at equal elevation . . ....................................... 180 

63 Inclined catenary cable ... ...... ... .... .. ....... .. .............. . .... ... ...... 181 

64 Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 15 m/ s . . ....... 193 

65 Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 15 m/ s . .... 194 

66 Longitudinal modal co-ordinates for Kloof simulation, Vc = 15 m/ s .. . ......... 195 

67 Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 12 m/ s . ........ 196 



Contents xv 

68 Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 12 mj s ... .. 197 

69 Longitudinal modal co-ordinates for Kloof simulation, Vc = 12 mj s .. .. ..... . .. 198 

70 Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 14 mj s ..... ... . 199 

71 Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 14 mj s ... .. 200 

72 Longitudinal modal co-ordinates for Kloof simulation, Vc = 14 mj s .. .. ........ 201 

73 Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 16 mj s ... ...... 202 

74 Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 16 m/ s ..... 203 

75 Longitudinal modal co-ordinates for Kloof simulation, Vc = 16 m/ s .. ... ....... 204 

76 Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 18 m/ s .. ..... .. 205 

77 Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 18 m/ s ..... 206 

78 Longitudinal modal co-ordinates for Kloof simulation, Vc = 18 m/ s .. . ... . . ... . 207 

79 Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 19.5 mj s ..... . . 208 

80 Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 19.5 mj s ... 209 

81 Longitudinal modal co-ordinates for Kloof simulation, Vc = 19.5 m/ s .......... 210 

82 Lateral in-plane modal co-ordinates for Elandsrand simulation, Vc = 16 mj s. ..211 

83 Lateral out-of-plane modal co-ordinates for Elandsrand simulation, Vc = 16 
mjs ........... . ......... .......... . ....... ....... .... ..... . .. .... ..... . . .. .. 212 

84 Longitudinal modal co-ordinates for Elandsrand simulation, Vc = 16 mj s . .... . 213 



Contents XVI 

List of Tables 
Elandsrand Simulation Parameters ........ .. . .... .. .... . .. . ..... . .... ... ....... 57 

2 Fundamental parameters of No 1 Shaft Kloof Gold Mine winder . .... .. .. .. . .... . 95 

3 Kloof Simulation Parameters .. ............ .. ................ .... .. ............ 97 

4 Estimations of Lateral Equivalent Modal Damping Ratios - KloofGold Mine ... 185 



Contents XVll 

List of Symbols 
A cable effective cross-sectional area 
c longitudinal wave speed 
c lateral wave speed 
I mass moment of inertia of the sheave 
M conveyance mass 
m linear cable mass 

slowly varying length parameter 
Lc catenary length 
Lv vertical rope length 
N lat number of lateral modes 
N1on,q number of longitudinal modes 
Pn nth lateral in-plane modal co-ordinate 
Pk lateral in-plane load 
qn nth lateral out-of-plane modal co-ordinate 
Q k lateral out-of-plane load 
R sheave radius 
s Lagrangian co-ordinate 
t time 
T fast time scale 
T~ catenary mean tension 
T~ vertical rope mean tension 
U v longitudinal displacement of the vertical rope 
Ul longitudinal boundary excitation 
v catenary in-plane lateral displacement 
Vl lateral in-plane boundary excitation 
W catenary out-of-plane lateral displacement 
Wl lateral out-of-plane boundary excitation 
zn nth longitudinal modal co-ordinate 
Zr longitudinal load 
<Pn nth lateral mode shape 
Y,l nth longitudinal mode shape 
In longitudinal eigenvalue 
c small parameter 
Ai lateral damping coefficient 
l1i longitudinal damping coefficient 
<Pn nth lateral mode shape 
wn nth longitudinal natural frequency 
wn nih lateral natural frequency 
Dn nth harmonic of excitation 
~n lateral damping ratio of the nth mode 
T slow time scale 



Preface 

This whole thesis is the author's own work, and has not been submitted in part, or 

in whole to any other university. The research work was carried out in the School of 

Mechanical Engineering of the University of Natal under supervision of Professor S Adali. 

The research results reported on in this dissertation form a culmination of the au­

thor's interest in the dynamics of non-stationary systems, and in the dynamic behaviour of 

hoisting cables in particular. The impOliance of the subject cannot be overestimated, espe­

cially in the context of the mining industry, where the safety of personnel and profitability 

rely on stable designs. 

It is hoped that the results of this study would shine more light on the dynamic phe­

nomena occurring in hoisting installations, and would provide stimulation for further re­

search in the field. 



Chapter 1 
Introduction 

Structural elements such as ropes and cables are among the oldest tools used by 

humanity in its quest for technological advancement. For example, a copper wire rope 

was foul1d in the ruins of Nemeveh near Babylon which originate from about 700 B.C. 

[Costello, 1990], and in Pompeii bronze ropes estimated to be 2400 years old were ex­

cavated [Glushko, 1966]. Thus, it is not surprising that the behaviour and mechanical 

properties of cable elements have been studied extensively for many hundreds of years, 

and these studies have resulted in the introduction of a number of well-known theories and 

techniques. For example, Stevin in 1586 instituted the triangle of forces by experiment­

ing with loaded strings, Beeckman in about 1615 solved the suspension bridge problem, 

and James and Jolm Bernoulli between 1690 and 1691 established the foundations of the 

catenary theory 1 [Irvine, 1981]. 

Cable elements are known to be of low bending and torsional stiffness, and to have 

the ability to resist relatively large axial loads. Therefore, they have been widely used 

in towing operations, to support structures, to conduct signals, and to carry payloads. In 

this latter application cables have played indispensable role in cranes, in building elevators 

and in industrial hoisting installations. In this research the dynamics of cables in hoisting 

systems is investigated. 

1.1 Typical Hoisting Systems 

A schematic configuration of a common arrangement in industrial hoisting systems, re­

ferred to as a single-drum system, is shown in Figure 1. It comprises a driving winding 

drum, a steel wire cable, a sheave mounted in headgear, and a conveyance. The cable 

passes from the drum over the sheave, forming a horizontal or inclined catenary, to the 

1 The word catenary comes from the Latin for chain, and means the shape of a chain suspended between 
two supports. 

2 
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conveyance constrained to move in a vertical shaft, and forms the vertical rope hanging be­

low the headsheave. A cable storage mechanism on the winder drum is applied in order 

to facilitate a uniform coiling pattern. This system can be treated principally as an assem­

blage of two cOlmected interactive, continuous substructures, namely of the catenary and of 

the vertical rope, with the sheave acting as a coupling member, and with the winder drum 

regarded as an ideal energy source. 

windng 
drum 

headgear sheave 

vertical rope 

conveyance 

I 

Figure 1. Configuration of a typical industrial hoisting installation. 

3 

The dynamic behaviour of this typical installation, further referred to as the catenary­

vertical rope system, is addressed in this study. Other different configurations of the hoisting 
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system are used in various industries, however they usually can be modelled as a simple 

single-drum installation. For example in the mining industry, double-drum systems oper­

ate at higher depths. These systems are formed essentially by two mechanically coupled 

single-drum systems, with one system acting as the overlay and the other as the underlay in­

stallation. This system is driven by two electric motors, as shown schematically in Figure 2. 

Another common configuration is the Blair Multi-Rope system (BMR). The configuration of 

this system is similar to a typical double-drum winder with two conveyances, however each 

conveyance is supported by two ropes, and the drums are twin rope compartment drums. 

A compensating sheave fitted on the conveyance ensures that loads are distributed equally 

between the ropes. 

gearbox 
r-- de motor 

-x 
-

de motor 

underlay drum overlaydrum -t>( 
-

Figure 2. Double-drum winder layout. 

In some installations the Koepe system is employed. This winding system is schemat­

ically depicted in Figure 3. It has two conveyances, each supported by the head rope passing 

over the friction wheel driven by an electric motor. The tail rope attached to the conveyances 

improves the balance of the system. The dynamic behaviour of each conveyance together 
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with the respective section of the head rope, with the tail rope mass incorporated into the 

conveyance mass, can be modelled as a single drum system without a catenary cable. As 

there is no rope storage facility in the Koepe system, the effects resulting from the coiling 

mechanism on the winder drum should be then neglected. 

An important feature of hoisting systems is that the hoisting cables are of time-varying 

length.. However, the rate of change is small and the length is said to vary slowly. Conse­

quently, the dynamic characteristics of the system vary slowly during the wind, rendering 

the system non-stationary. 

friction wheel drive 

idler sheave 
head rope 

conveyance 

conveyance 
tail rope 

Figure 3. Configuration of the Koepe system. 
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1.2 Summary of Previous Work 

Numerous aspects of the dynamic behaviour of cable elements with slowly varying length, 

in particular in elevators and in mine hoists, have been studied in the past. A concern for the 

safety factors was the main cause for embarking on these investigations. 

1.2.1 Stationary Parameter Studies 

In early research attempts the scope of the studies was limited to the longitudinal dynamic 

behaviour of a vertical rope of fixed length with end mass. This model was used to in­

vestigate the dynamic stresses under emergency braking. Vaughan (1904) investigated the 

effect of kinetic shocks on loaded winding ropes of various lengths when they were mov­

ing with constant velocity and suddenly stopped. He concluded that the portion of the rope 

near the end load suffered the most and was expected to deteriorate more rapidly than other 

portions. Perry (1906) considered oscillations of a vertical rope with an end weight, mov-
~ 

ing downwards with a constant velocity, when its upper end was stopped and held fixed. He 

formulated a mathematical model in terms of the wave equation and corresponding bound­

ary conditions, and obtained a closed-form solution to the problem. Perry & Smith (1932) 

analyzed mechanical breaking procedures and their influence on winding equipment, and es­

tablished a criterion to determine whether or not slip of a rope on headgear sheave occurs 

during acceleration and deceleration phase. Pollock and Alexander [1950] extended the pre­

ceding investigations on deceleration control, concluding that no advantage was gained by 

building up a rate of deceleration gradually. They stated that a definite maximum rate of 

deceleration is preferable. Harvey & Laubscher [1965] accounted for inertial effects of the 

winder drum and head sheave in the longitudinal behaviour of mine hoists, and proposed that 

a new braking control system be implemented on deep-level winders. Dimitriou & Whillier 

[1973] discussed the problematic transverse-longitudinal dynamic behaviour of hoisting ca-
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bles occurring in some mine hoist installations. They concluded that whirling motions of 

catenary cable, referred to as rope whip, was the result of non-linear couplings in the system, 

and a method of reducing rope whip was proposed. 

Czaja (1977) proposed a distributed-parameter longitudinal model of head and tail 

ropes in the Koepe winding system with the overwind arresting of conveyances. A closed­

form solution was formulated and the rope forces were calculated for a set of model parame­

ters. Wojnarowski & Tejszerska (1977) developed a stationary distributed-parameter model 

of longitudinal - torsional vibrations of ropes in the Koepe system. The Laplace transform 

combined with a numerical technique was used to determine the natural frequencies, elastic 

rope forces and torques in order to verify the safety criteria in the system. A lumped-mass 

longitudinal model of a multi-rope Koepe system was presented by Wojnarowski & Meder 

(1977). The model was used to numerically determine the response and the rope tensions 

resulting from a step torque applied at the wheel drive. Klich (1981) presented a computer 

method to determine the head and tail dynamic loads taking into account the interactions 

between a conveyance and shaft steelwork. 

More recently Greenway [1990a] and Hamilton & Greenway [1991] used the finite 

element method to analyze the influence of longitudinal-torsional coupling on the response 

of vertical rope. They found that the natural frequencies and mode shapes Were strongly 

affected, however the tensile forces due to typical dynamic loads were not influenced by the 

coupling. It was concluded that the use of longitudinal models could be usually justified. 

Greenway [1990b] studied peak rope loads that develop during conveyance loading. An 

analytical closed-form solution to the problem was found, and forces due to the loading of 

payload material, and due to the sudden release ofkeppiug clamps were determined. 
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1.2.2 Non-Stationary Parameter Studies 

The true nature of hoisting systems is non-stationary, due to the time-varying length of the 

hoisting cables. This nature complicates substantially the dynamic analysis. Goroshko & 

Savin [1962; 1971] studied the dynamics of hoisting cables with slowly varying length ap­

plying integro-differential equations with time-varying intervals and kernels. Following the 

fundamental concepts for non-linear oscillating systems with slowly varying parameters, es­

tablished by Bogolubov & Mitropolskii [1961], they developed an im10vative and efficient 

approach to model one-dimensional systems with time-varying length. This approach was 

used to investigate longitudinal and transverse oscillations of a vertical rope due to the ac­

celeration and deceleration inertial loads. Visco-elastic characteristics of the rope and slip 

phenomena occurring on the winder drum were accommodated in the analysis. 

Klich [1977] considered the non-stationary dynamics of winding ropes together with 

the driving electrical system. The problem of optimal control of the driving system was 

analyzed and modelling techniques were discussed. Kotera [1978] treated free and forced 

vibrations of a vertical rope with end mass and proposed an analytical method based on 

the method of separation of variables. Marczyk & Niziol [1979] analyzed the influence of 

longitudinal oscillations on the lateral behaviour of vertical hoisting ropes. The methodology 

developed by Goroshko & Savin [1962] was applied to construct an asymptotic solution to 

the problem. Model examples of calculations were presented showing the resonant behaviour 

of the system. 

Mankowski [1982] carried out a computer simulation of the dynamic behaviour of a 

typical hoisting cable system. A lumped-mass model of the system was developed to de­

scribe the lateral motions of the catenary cable and the longitudinal dynamics of the vertical 

rope due to a kinematic excitation arising at the winder drum. Parameters of the Kloof Gold 

Mine winder was used to implement the numerical simulation of non-linear equations of 
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motion. Numerical instability was reported to occur during the simulation at a depth of ap­

proximately 800 m during the ascending cycle. This instability was attributed to the neglect 

of rope slip at the sheave in the simulation model and to the autoparametric resonance taking 

place in this depth region. 

Constancon [1993] re-addressed the problem as stated by Mankowski [1982] and pro­

posed a distributed-parameter model describing the lateral-longitudinal dynamics of the sys­

tem applying the theory of travelling cables formulated by Perkins & Mote Jr. [1987]. In 

this study first a stationary model was used to investigate the stability of linear steady-state 

motion in the context of the non-linear equations of motion of the system by applying a 

harmonic balance method. The stability analysis established that regions of secondary reso­

nance might occur at sum and difference combinations of the linear lateral and longitudinal 

natural frequencies due to autoparametric excitation. These regions were confirmed by a lab­

oratory experiment. It was appreciated by the author that the system was non-stationary, and 

the stationary analysis could only serve as broad guidelines of how to avoid regions of insta­

bility in the hoisting system. A numerical simulation of equations of motion conducted in 

the final stage of the study, in which Kloof parameters were used, and the non-stationary na­

ture of the system was accounted for, confirmed these reservations. It was noted that in the 

numerical simulation of the nominal ascending cycle, the cable tension across the sheave ex­

ceeded the limits for no slip at a depth of approximately 300 m , which violated the model 

assumptions and rendered the results above this depth unrealistic. In conclusion, the neces­

sity to account for the non-stationary aspects ofthe winding cycle in order to achieve realistic 

interpretation of the observed dynamic phenomena was affirmed. 

More recently Kumaniecka & Niziol [1994] presented interesting results on paramet­

ric resonance in a longitudinal-transverse model of a vertical rope with dry friction, mate­

rial non-linearity and slowly varying length. They extended the research done by Marczyk 

and Niziol [1979] and applied the method of harmonic balance to identify parametric com-
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bination resonance regions. It was found that as a result of non-linear coupling between 

the longitudinal and transverse modes, parametric resonance was possible, but only at high 

amplitudes of longitudinal motion, which could take place during emergency braking op­

erations. Non-stationary parametric resonance was considered also by Terumichi, Ohtsuka, 

Yoshizawa, Fukawa, & Tsujioka [1997]. They analyzed passage through resonance in a 

model ·of a high-rise building elevator and studied vibrations of a vertical string with time­

varying length and a mass-spring system attached at the lower end. The upper end was sub­

ject to a harmonic motion. The influence of the axial velocity on the transverse amplitude 

was examined and was shown that the amplitude decreased when the velocity was increased. 

The results also revealed that the higher the velocity, the larger the delay of peak amplitudes 

during the passage. 

1.3 Objectives of the Study 

A good understanding of the non-stationary nature of the dynamic behaviour of hoisting 

cables is essential for determining an appropriate design methodology, as well as for estab­

lishing a winding strategy, to ensure that the regions of excessive vibrational interactions are 

avoided during the normal and emergency operating regimes. This is particularly important 

in the South African mining industry, where it is currently being considered that the depth 

limits of rope hoisting in single-lift shafts be extended to at least 4000 m [Greenway, 1990c]. 

The non-stationary aspects have been analyzed in previous research work, however a strong 

need exists to formulate new efficient models in order to verify results of previous research 

and to carry out more in-depth analysis oftransient resonance phenomena occurring in hoist­

ing systems. The intention of this study is to address these issues. Thus, this thesis has the 

following objectives: 
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• The review of fundamental characteristics and methods of analysis of the dynamic 

response of systems with slowly varying parameters. 

11 

• The development of the non-linear mathematical model of the catenary-vertical rope 

hoisting system with slowly varying parameters. 

• The development of a combined perturbation - numerical technique to investigate the 

passage through longitudinal primary resonances in the system. 

• The development and the implementation of the non-linear numerical simulation 

of the non-linear model of the system in order to analyze the non-linear transient 

resonance phenomena occurring in the system. 

• The formulation of recommendations for the design methodology and for the 

operation strategy of hoisting systems so that the adverse dynamic response is reduced 

during the winding cycle. 



Chapter 2 
Vibrations of One-Dimensional Continua with 

Slowly Varying Length 

Physical systems such as beams, bars, strings and cables are classified in the cate­

gory of one-dimensional continuous systems. In this case the displacement field depends 

on time and on a single spatial co-ordinate. Such elements are commonly used as struc­

tural members in engineering arrangements. Often lengths of these members vary with 

time in installations where an axial transport motion occurs. For example, this takes place 

in cable systems used to carry payloads in various transport installations. Also other ax­

ially moving continua, such as conveyor belts, magnetic tapes and band saw blades can 

be modelled efficiently as systems with time-varying length via an appropriate choice of 

co-ordinates [Goroshko & Savin, 1971]. A number of studies of vibrations in systems hav­

ing members with time-varying length were conducted. These include investigations into 

transverse and longitudinal oscillations of mine hoisting cables [Goroshko & Savin, 1962; 

Savin & Goroshko, 1965; Savin & Kayuk, 1965; Goroshko & Titova, 1971; Stuhler, 1978; 

Ogut, 1978; Kumaniecka & Niziol; 1994], vibrations of strings with time-varying length 

[Vesnitzky & Potapov, 1975; Kotera, 1978; Tagata, 1983; Kevorkian & Li, 1984; Ram & 

Caldwell, 1996; Terumichi et ai, 1997], and oscillations of beams of varying length [Za­

jaczkowski & Lipinski, 1979; Zajaczkowski & Yamada, 1980]. 

In many practical cases the rate of change of the length is small, and the respective 

system can be treated as a slowly varying system. In what follows, fundamental charac­

teristics and equations describing the dynamic response of one-dimensional mechanical 

systems with slowly varying length are formulated and discussed. 

12 
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2.1 Governing Equations 

Consider a mechanical structure regarded as an assemblage of one-dimensional distributed 

subsystems (referred to as components) and acting together as a single system due to con­

straints imposed between adjacent subsystems. Assume that the components have time 

dependent lengths. The entire system is then non-stationary and its response can be de­

scribed by a system of partial differential equations of the form 

with s = 1, 2, . . . , where x denotes spatial material (Lagrangian) co-ordinate, US(x , t) = 

[Ut, U2, ... U/, .. . ]T is a local (component) dynamic displacement vector representing mo-

tion of component s, U = [U
l T

, U 2T
, . . . , usT

, . . . V represents global dynamic displace­

ment vector of the entire assemblage, ( ),t designates partial derivatives with respect to time, 

LS is a local linear spatial operator. NS is an operator acting upon the global displacement 

vector, and representing non-linear couplings and inter-component constraints in the system. 

CS denotes a local damping operator, F S is a forcing function with harmonic terms of fre­

quency e s =ns , where the overdot indicates total differentiation with respect to time, and p s 

is a local mass distribution function. 

Ds is a local spatial domain. The global spatial domain is a sum of all local sub­

domains, namely D=D l '-.../ D2 '-.../ . . . '-.../ Ds '-.../ .. . , with its components defined as 

D s (t) = {x : lsI (t) < x < ls2 (t) } . (2.2) 

Furthermore, the displacement U s is subject to the following homogeneous boundary con­

ditions 

BHUS
] = 0, at x = lsI, B 2[US

] = 0, at x = ls2' S = 1,2,. . . (2.3) 

where Bf, B2 are linear spatial differential operators. 

The time-varying length of the component s is given as Ls(t) = ls2(t) -lsl(t). When 

the variation of Ls, and therefore also the variation of the parameters lsi, i = 1, 2, is small 

over a time period corresponding to the fundamental frequency of the system considered at 

fixed values of these parameters, the length is said to vary slowly with time. This requires 

the introduction of a slow time scale T s, to observe the variation of lsi. Consider the linear 
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variation case, when lsi (t) = lsi(O) + vsit, i = 1,2, where Vsi = canst denotes the rate of 

variation of lsi . One can introduce the non-dimensional fast time scale T = wot, where Wo is 

the initial fundamental frequency of the entire system, and also the non-dimensional length 

l;i = lsd Lso , where Lso = ls2 (0) - lsi (0). It can be shown that the time rate of variation of 

l;i with respect to the fast time scale is given as 

dl;i Vsi 
dT woLso' 

Noting that the non-dimensional length of the component is L; 
variation of L; is defined as 

dL* s Vs 
dT woLso' 

where Vs = 1}s2 - V sl· 

L(t) 

-f I /=-. -.-.-.- .+ 

(2.4) 

l;2 - l;l' the rate of 

(2.5) 

Figure 4. Uniform rod with time-varying length. 

Goroshko and Savin [1971] used this non-dimensional quantity as a small parameter 

to assess the slow variability of length in non-stationary one-dimensional structures. They 

argued that in a number of cases this parameter has a simple physical interpretation. Consider 

for instance longitudinal oscillations of the elastic uniform rod shown in Figure 4. lfthe rod 

is of mass per unit length m, of Young's modulus E, of cross-sectional area A, and of time­

varying length L(t) , its initial fundamental natural frequency can be determined as 

7r 

Wo = 2Lo c, (2.6) 
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where Lo = L(O), and c = ~ defines the velocity of propagation of the longitudinal 

stress wave. Therefore, if the rate of change of L is denoted by v, and the frequency (2.6) is 

used in equation (2.5) the small parameter is given as 

2v 
c = -- , 

7f C 
(2.7) 

and is directly related to the ratio of the rate of variation of the length of the rod and the 

longitudinal wave velocity. 

Upon assuming that V s2 > Vsl the local small parameter can be defined as 

(2.8) 

and local slow time scale is established as T s = csT, noting that 0 < Cs « 1. It is conve­

nient to establish a global slow time scale for the entire system as T = cT, where c is the 

smallest element in [clc2 ... Cs ... j. Therefore, in this formulation the length of component 

s is expressed in terms of the slow time T as 

(2.9) 

where as = c; Lso, so that Ds = Ds( T). 

In the approach proposed by Goroshko and Savin [1962] differential equations of the 

type given by the equation (2.1) were integrated over the domain D s (T) and an equivalent 

formulation in terms of integro-differential equations was formed. Global discretization of 

these equations was achieved by expansion in terms of eigenfunctions of the corresponding 

linear system. However, discretization can be applied directly to the differential equation 

system (2.1). Using the Rayleigh-Ritz method an approximate solution to this system can be 

represented by 
N. 

ut = L 'l! :n(x, Ls)r:n(t) , i = 1, 2, ... (2.1 0) 
n=l 
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where rfn are generalized co-ordinates, and wfn are slowly varying normal free-oscillation 

modes of the corresponding linear undamped stationary component s. They are solutions of 

LS[w S(x, Ls)] = >/( Ls)Ps WS(x, Ls), xE D, 
Bf[WS(x, Ls)] = 0, at x = lsI , B 2[WS(x, Ls)] = 0, at x = ls2' 

(2.11) 

where 'lis = [Wf , W2, ... , Wf, .. . ]T, and the parameter Ls is considered to be instantaneously 

frozen. The eigenvalue problem defined by (2.11) yields a denumerably infinite sequence of 

eigenvalues )... fn related to the natural frequencies wfn of the sub-system s , and corresponding 

eigenfunctions wfn' for each value of Ls. Thus, the local natural frequencies are treated as 

slowly varying and are considered to be flmctions of the slow time, namely wfn = wfn (T). 

By substituting the expansion (2.10) into (2.1), and by multiplying the result by Wfk ' 

integrating over the domain Ds , using the boundary conditions (2.3), a second-order ordinary 

differential equation system for the generalized coordinates is obtained. Using the fast non­

dimensional time scale T , and the slow time scale T , this system can in turn be put into the 

standard first-order matrix form 

Y (T) = A (T, T; E) Y (T) +EN (T, y) + F (T, T) , (2.12) 

in which dots designate differentiation with respect to fast time, y (T) = [rT, rTF denotes 

the system state vector, where r (T ) = [rl T , r2T , .. . , rsT, . .. J T, and rS (T) = [rh, rf2 ' . .. , rfNs' 

r 21 , rh, .. . ,r2Ns ' .. . , r fl' rI2' .. . ,rINs' .. . ]T, A (T; E) is slowly varying linear coefficient 

matrix, the vector N (T , y) represents non-linear coupling terms, and F (T , T) is the external 

excitation vector. 

The form (2.12) represents a slowly varying (non-stationary) weakly non-linear dy­

namic system. In this representation the system is treated as a multi-degree-of freedom 

system, with the natural slowly varying frequencies W I , W2, ... , W N, where N denotes the 

number of degrees of freedom, and the non-linearities are assumed to be primarily quadratic 

and/or cubic. 
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2.2 The Dynamic Characteristics and Methods of Analysis 

An appreciation and correct interpretation of the dynamic characteristics of a non-linear sys­

tem is important for its design and control. The non-linearities are responsible for a wide 

range of pivotal dynamic phenomena in mechanical structures. A number of these phenom­

ena were described and classified by Nayfeh & Mook [1995]. Mitropolskii [1965] devel­

oped fundamental concepts and methods in the analysis of non-stationary dynamic systems. 

A comprehensive survey of perturbation techniques to investigate resonant behaviour of 

non-linear oscillatory systems with slowly varying parameters was conducted by Kevorkian 

[1987]. Nayfeh & Balachandran [1989] presented an extensive review of research carried 

out and concerning possible modal and resonance interactions in dynamical systems with 

stationary parameters. 

Important resonance phenomena and modal interactions arise when certain frequency 

tuning conditions take place in the system [Nayfeh & Mook, 1979]. The phenomenon of 

parametric resonance may arise in systems governed by differential equations with time­

dependent coefficients. These coefficients form parametric excitations, and the principal 

parametric resonance arise when the frequency of this excitation n is close to twice of one of 

the natural frequencies of the system (n ~ 2wn). Also, combination parametric resonances 

may occur if, for example, n ~ Wm~Wn, where k denotes an integer. 

If the natural frequencies are commensurable or nearly commensurable internal (au­

toparametric) resonances may occur. When the non-linearity is quadratic internal resonance 

may occur if Wn ~ 2wm or Wn ~ Wm ± Wk. When the non-linearity is cubic internal reso­

nance can arise if Wn ~ Wm, Wn ~ 3wm, Wn ~ 1±2wm ± wk l, or Wn ~ I±wm ± Wk ± wd . In 

a free multi-degree-of freedom system with an internal resonance frequency tuning, energy 

initially contributed to one of the modes involved in the internal resonance is continuously 

being exchanged between all the modes involved in that resonance. In this phenomenon 
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the mode with the initially imparted energy forms essentially a parametric excitation for the 

non-linearly coupled other modes taking part in the resonance. 

In a muIti-degree-of freedom system with a harmonic external excitation of frequency 

D primary resonances (D = wm), secondary resonances (PD = qWm, with p and q being 

integers) and combination resonances may occur. The type of combination resonance that 

might arise in a system depends on the order of non-linearity and on the number of modes 

involved. If quadratic non-linearities are present combination summed and/or difference res­

onances, that is D = I±wm ± wkl, might be excited. For a cubic non-linearity combination 

resonances may occur ifD = I±wm ± Wk ± wzi, D = 1±2wm ± wkl, or 2D = I±wm ± wkl. 

Similar combination resonances might arise in parametrically excited systems. These com­

bination resonances may lead to interactions between high- and low-frequency modes, and 

a high-frequency excitation may produce large-amplitude responses in the low-frequency 

modes involved in the combination resonance. 

An internal resonance may exist in addition to an external primary resonance, or to a 

combination resonance. In these cases many interesting phenomena occur. For example, a 

saturation phenomenon might take place in the forced response of a system with quadratic 

non-linearities that has an internal resonance. In another case, two or more fractional har­

monics might exist in the response of a system involved in a combination resonance. This 

phenomenon may occur in systems with quadratic or cubic non-linearities. When the in­

ternal resonance W2 ~ 2WI and the combination resonance D ~ WI + W2 take place for 

a quadratic non-linearity, the fractional pair an, ~n) might exist in the response. Simi­

larly, for a cubic non-linearity with the internal resonance W2 ~ 3WI and the combination 

resonance n ~ W2 + 2Wl the fractional pair (iD, ~n) may result. 

Resonance phenomena and modal interactions in mechanical structures have been the 

subject of extensive research. It was widely recognized that in actual practice the parame­

ters and dynamic characteristics of these structures are not stationary, and vary slowly with 
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time. However, in many cases an idealization was made that the system components were 

time independent and stationary models were studied. Multi-degree-of-freedom systems 

with parametric excitations were considered by Hsu [1963], who applied the method ofvari­

ation of parameters together with the series expansion of the perturbation method to identify 

the regions of parametric instabilities when the parametric coupling terms were small. Osta­

chowicz [1979] proposed the finite element method for the dynamic analysis of mechanical 

structures with periodic stiffness. Combination parametric resonances in systems having 

multiple degrees of freedom were discussed and treated by the method of harmonic bal­

ance by Kruszewski, Gawronski, Ostachowicz, Tarnowski & Wittbrodt (1984). Nayfeh & 

Zavodny [1986] used the method of multiple scales to investigate the response of two-degree­

of-freedom systems with quadratic non-linearities to a combination parametric resonance in 

the presence of two-to-one internal resonances. 

An important investigation on autoparametric phenomena was conducted by Nayfeh, 

Mook & Marshall [1973]. They analyzed the non-linear coupling between the pitch and 

roll modes of ship motions with their frequencies being in the ratio of two to one. The per­

turbation analysis by the method of multiple scales showed that a saturation phenomenon 

occurred when the excitation frequency was near the pitch frequency. Namely, it was re­

vealed that when the amplitude of the excitation was small, only the pitch mode was excited. 

As this amplitude increased and reached a critical value, the pitch mode became saturated 

and all the extra energy was transferred to the roll mode due to the internal (autoparametric) 

resonance. 

Nayfeh, Mook & Lobitz [1974] established a numerical-perturbation method for treat­

ing non-linear structures having complicated geometry. According to this method, the prob­

lem is represented as a non-linear temporal problem, and a linear spatial problem describing 

the boundary conditions. The spatial problem is then solved numerically, and the temporal 

problem is solved by the method of multiple scales. 
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Autoparametric coupling effects in a beam system were studied by Roberts & Cart­

mell [1984]. They examined a two to one internal resonance between two bending modes of 

vibration in a pair of coupled cantilever beams using the method of multiple scales, and ver­

ified the perturbation analysis results by a laboratory experiment. It was shown that small 

non-linear coupling terms in the system had a significant effect under the condition of in­

ternal resonance. A similar two-degree-of freedom model of a beam system was also inves­

tigated by Haddow, Barr & Mook [1984], demonstrating a saturation phenomenon. These 

studies were extended by Cartmell & Roberts [1988]. They illustrated a complex response 

arising in a four-degree-of-freedom model of a cantilever beam structure with external ex­

citation and two internal resonances, each in the form of a combination resonance, existing 

in close proximity to each other. The system was treated by the multiple scales method and 

a laboratory experiment was conducted. It was established that in addition to the saturation 

phenomenon, the resulting four mode interaction could exhibit non-synchronous large am­

plitude responses of indirectly excited modes, and that small shifts in internal tunings could 

noticeably affect the modal responses of the system. Interesting investigations into the theme 

of absorption of unwanted vibration by means of suitably arranged autoparametric interac­

tion between the vibrating components, and an added-on absorber element were recently 

carried out by Cartmell & Lawson [1994]. 

A mechanism of the energy transfer from high- to low frequency modes was studied 

analytically by Nayfeh & Nayfeh [1993]. In this investigation the response of a perturbation 

model of a two-degree-offreedom system with cubic non-linearities, and with widely spaced 

modes to a harmonic excitation near the natural frequency of its high-frequency mode was 

presented. The system served as a paradigm for the interaction of high- and low-frequency 

modes, with the high natural frequency normalized to unity and the low frequency to a small 

positive parameter c. This analytical study confirmed that an excitation applied to the high­

frequency mode could result in large-amplitude responses in the low frequency mode, with 
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the mechanism of this energy transfer being neither an internal mechanism nor an external or 

parametric resonance. In an experimental study reported by Nayfeh & Nayfeh [1994] it was 

confirmed that modal interactions in systems with widely space modes do not necessarily 

require any special frequency relationships in the system. It was concluded that these inter­

actions could arise whenever there exist modes whose natural frequencies are much lower 

than the natural frequencies of the modes being directly driven. Also, it was deduced that the 

interactions could occur whenever the amplitudes and phases of the high-frequency modes 

undergo slow modulation. 

The responses of non-linear systems with non-stationary parameters and excitations 

are qualitatively different from the responses of stationary systems, especially in the neigh­

bourhood of some critical values of the parameters, when transitions through resonance re­

gions occur. The non-stationary resonance phenomena are often delayed, and frequently 

accompanied by beat phenomena. Hence, specialized treatment is required in order to ana­

lyze the responses of these systems. A number of studies were carried out in this area. 

Agrawal & Evan-Iwanowski [1973], Agrawal [1975] and Evan-Iwanowski [1976] ex­

tended the asymptotic method developed by Bogolubov & Mitropolskii [1961] and Mitropol­

skii [1965] for determining resonant responses of non-stationary, non-linear multi-degree­

of-freedom systems. The first approximation to the solution was established for the general 

case of combination resonances, with the concept of virtual work applied to define the res­

onance conditions. This method was applied to analyze a two-degree-of-freedom model of 

a gyroscopic rotor system exhibiting combination resonances, subjected to a non-stationary 

excitation due to unbalance. 

Kevorkian [1971] considered passage through resonance in a harmonically excited 

single-degree-of-freedom system with slowly varying natural frequency. In this study the 

solution was constructed by matching two asymptotic expansions: the outer expansion away 

from resonance, and the inner expansion near resonance. It was shown that this approach 
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could also be applied to non-stationary multi-degree-of freedom systems, and the method 

was successfully implemented in the analysis of a mathematical model for the problem of 

roll build up encountered in the high altitude flight vehicles with slight aerodynamic and 

mass asymmetries [Kevorkian, 1974; Lewin & Kevorkian, 1978]. 

The theory and methodology to describe the behaviour of a system evolving slowly 

through internal non-linear resonance was presented by Ablowitz, Funk & Newell [1973] 

and Kevorkian [1980]. They investigated interactions in a two-degree-of freedom model with 

quadratic non-linear coupling and two to one internal resonance, and also applied outer and 

inner perturbation expansions together with a matching procedure. A similar problem was 

analyzed by Rubenfeld [1977] who adopted a modified version of the derivative-expansion 

method to investigate the system response. 

More recently Kevorkian [1982; 1987], Bosley & Kevorkian [1991; 1992] and Bosley 

[1996] proposed that in order to generate an approximate solution, the slowly varying oscil­

latory second-order system of N equation can be transformed into a Hamiltonian standard 

form of 2N first-order differential equations using action and angle variables together with 

the concept of adiabatic invariance. Later perturbation techniques, namely the method of 

averaging or the method of multiple scales, can be applied to determine the solution. 

Alternatively, the perturbation techniques can be applied directly to the second-order 

model. For example, using the method of multiple scales a first-order system can be obtained 

to compute the amplitudes and the phases for the first approximation of the response. Nayfeh 

& Asfar [1988] and Neal & Nayfeh [1990] used this methodology to study single-degree­

of-freedom systems with non-stationary parametric excitations. This technique was also 

implemented by Tran & Evan-Iwanowski [1990] to study the response of the Van der Pol 

oscillator with non-stationary external excitation, and by Cveticanin [1991] in the analysis 

of non-stationary oscillations of a textile machine rotor. 
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In conclusion, a number of classical approximate analytical methods have been used 

to analyze both stationary and non-stationary non-linear dynamic systems. Usually they 

form a combination of a suitable perturbation method with a numerical technique. However, 

often systems of a more complicated nature are intractable to a perturbation analysis, and the 

classical approximate analysis is not adequate to predict their adverse dynamic behaviour. In 

these cases a direct numerical simulation of the equations of motion is the most feasible and 

convenient approach. 



Chapter 3 
Mathematical Model of a Hoisting System 

A configuration of cables in typical industrial hoisting system has been described in 

Chapter 1. In this system, treated as an assemblage of two interactive substructures, namely 

of the catenary and of the vertical rope, the length of the vertical rope is varying during the 

wind so that the mean catenary tension is also continuously varying. Therefore, the natural 

frequencies of both subsystems are time-dependent and the entire structure represents a 

non-stationary dynamic system. Hence, vibrations of cables in the hoisting installation can 

be described by differential equations of the type given by equation (2.1). These differential 

equations of motion are formulated in what follows. 

3.1 Vibrations in the Hoisting Cable 

Cables in hoisting installations, due to their flexibility, are susceptible to vibrations. They 

are often classified as transverse and longitudinal vibrations [Dimitriou & Whillier, 1973]. 

Steel wire cables can also respond in torsion to applied axial load, and the torsional re­

sponse is coupled with the longitudinal response [Greenway, 1990; Goroshko & Savin, 

1971]. The torsional vibration may occur in cables of certain construction, for example in 

the triangular strand winding ropes, which have become the industry norm for some hoist­

ing installations. The wires in the strands in these ropes are bent over a triangular center 

wire, as shown in Figure 5. Due to the large effective cross-sectional area this type of rope 

is suitable for multi-layer coiling on drum hoists [Hitchen, 1963]. It was shown by Hamil­

ton & Greenway [1991] that the effect of the torsional coupling on the dynamic response 

of the triangular strand rope was not significant, and it was concluded that it can be ne-

24 
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glected in the dynamic analysis of hoisting cables. Thus, the torsional vibrations are not 

considered in the present analysis. 

outer wire 

wire 

Figure 5. Strand cross-section of the triangular strand rope. 

The winding cable vibrations are caused by various sources of excitation present in the 

system. The most significant sources are load due to the winding cycle acceleration/deceleration 

profile and a mechanism applied on the winder drum surface in order to achieve a uniform 

coiling pattern. Other sources may include motions of the headgear, shape imperfections 

and eccentricity of the winder drum and sheave, misalignment in the shaft steelwork, and 

aerodynamic effects. Some of these sources may be manifested as external excitations in 

the system, and appear as inhomogeneities in the governing differential equations, and some 

may lead to parametric excitations, which appear as coefficients in the governing differential 

equations. 
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In the catenary-vertical rope system the longitudinal vibration is usually associated 

with the vertical rope. This vibration affects the motion of the conveyance introducing the 

so called "yo-yo" type oscillation, and may also be observed at the headsheave. The inertial 

load due to the winding cycle acceleration/deceleration profile is primarily responsible for 

the longitudinal transient response. Longitudinal pulses arising due to coil cross-over zones, 

and also due to the cable layer change at the winder drum, cause additional longitudinal 

response. 

The transverse oscillations are usually associated with the catenary. They often lead to 

the catenary whirling motion referred to as "rope whip", which may cause miscoiling at the 

winder drum, may lead to the cable jumping out of the sheave groove, and also to damage 

caused by impact of the cable against the frame ofthe headgear structure or against the wind­

ing house openings [Dimitriou & Whillier, 1973]. The primary sources of these oscillations 

are the periodic excitation due to the coil cross-over motion and the layer change pulses. The 

transverse vibrations are also noticeable in the vertical rope, mainly at the upper level of the 

shaft. Mankowski [1982] noted that they were of small amplitude and of a wide range of 

frequencies, and may be induced by the misalignment in the shaft steelwork or irregularities 

at the sheave. Also, the rope transverse vibration may result due to a parametric excitation 

when the dynamic tension fluctuations in the catenary are transmitted to the vertical section 

via the headsheve. 

Interactions between various types of vibration within each subsystem exist. The 

sheave inertial coupling between the two subsystems also facilitates extensive interactions 

between the catenary and the vertical rope motions. The nature of these interactions is 

strongly non-linear. The lateral vibration of the catenary induces the longitudinal oscilla­

tions in the vertical system and vice-versa. Also, significant coupling between the lateral 

vibration of the vertical system and the lateral motion of the catenary can be observed [Con­

stancon, 1993] . 
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Hence, the hoisting cable system is essentially a non-linear non-stationary oscillatory 

system with slowly varying natural frequencies and mode shapes. The dynamic behaviour of 

this system is very complex, and a passage through various resonance conditions may occur 

during its operation. 

3.2 Equations of Motion 

In general, two main approaches can be distinguished in mathematical modelling of the 

dynamics of cable hoisting systems. In the first, a motion of the winder drum is assumed 

to be prescribed, usually through a known velocity or acceleration profile. In this model the 

driving system, usually an electric dc or ac motor, is not taken into consideration. In the 

second approach, in order to define the transportation motion, the dynamic characteristics 

of an external source of power are included into the studies. This means that additional 

differential equations describing the driving motor dynamic characteristics must be added 

to the governing differential equations of the system which result in additional degrees of 

freedom. 

In modern installations advanced control systems are used, which allow accurately 

prescribed velocity and acceleration profiles of the winder drum to be realized. Therefore, 

the first approach is often well justified, in which the system power supply is considered to 

be unlimited. The winder drum is therefore treated as an ideal source of energy, and the 

system is referred to as an ideal system. 

A model of the hoisting cable system is represented in Figure 6. In this model, the cable 

is divided into a horizontal catenary2 of length OC = Lc passing over a sheave of radius R, 

2 Using the justification that the effect of gravity due to a catenary inclination is small in comparison to the 
total quasi-static tension, this model is valid also in the case of a system with an incline catenary cable. This 
approximation results in a uniform mean catenary tension, and was also applied by Mankowski [1982] and by 
Constancon [1993]. 
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Figure 6. Model of a Catenary-Vertical Rope System. 
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M 

and of mass moment of inertia I , and into a vertical rope with a mass M, representing 

the conveyance mass and payload, attached to its bottom end. The end 0 1 of the cable 

is moving with a prescribed winding velocity V(t) due to the cable being coiled onto a 

rotating cylindrical drum, so that the entire system translates axially, with the mass M being 

constrained in a lateral direction. The section l = 001 represents a time-varying length of 

this part of the cable that is already coiled onto the winder drum. The cable has a constant 

effective cross-sectional area A, a constant mass per unit length m, and effective Young's 

modulus E. 

In order to describe the oscillations of the cable the classical moving frame approach 

is applied [de lalon & Bayo, 1994]. Two frames of reference are established: a coordinate 

system 01 XYZ attached to, and moving with the upper end of the cable, and a stationary 

inertial system OXY Z. The following fundamental assumptions are made: 
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1. The system is an ideal system. 

2. The cable material is uniform. 

3. The winder drum, headgear, sheave, conveyance, and shaft steelwork are perfectly rigid. 

4. There is no cable slip on the winder drum or across the sheave. 

5. The effect of torsional coupling on the dynamic response is not significant and can be 

neglected. 

6. The catenary cable is taut and flat in its initial equilibrium configuration.3 

7. Only longitudinal motion in the vertical subsystem is admitted. 

The dynamic deformed position P of an arbitrary section of the cable during its motion 

is defined in the inertial frame by the position vector 

R(s, t) = R OI (t) + Jli(S) + -o(s , t), (3.1) 

where s denotes the Lagrangian (material) coordinate of p i, representing the dynamically 

undeformed position of the cable section, and measured from the origin 0 1 . In this repre­

sentation the axial transport motion is treated as essentially an overall rigid body translation, 

and the dynamic elastic deformations are referred to the moving frame associated with this 

3 The catenary profile lies very close to the chord between the drum and the sheave under the normal 
loading conditions due to the payload and mass of the vertical cable. Thus, the catenary tension is high 
and it is assumed that the catenary cable forms the limiting configuration of a taut string, with its initial 
curvature being, by definition, zero. Detailed discussion of this approximation is presented in Appendix 
D. 
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motion. The entire cable is prestressed, and all dynamic characteristics of the cable are func­

tions of the independent variables (s , t), with s being referred to the prestressed state and 

the moving frame. The vector R Ol (t) = [-l, 0, ° V represents the position of the origin 

0 1 in the inertial frame, R,i = [s , 0, oV defines the initial reference position p i of the ca­

ble section, D = [u( s, t) , v(s , t) , w(s, t)]T is the dynamic displacement vector from the 

reference configuration, with u, v, and w representing the longitudinal, in-plane lateral, and 

out-of-plane lateral motion, respectively. The upper bar denotes vectors referred to the mov­

ing frame. Upon assuming that the modulus E of the cable material is high, the strain of the 

cable wound around the drum can be neglected [Savin & Goroshko, 1971], and the length l 

is then given by 

l(t) = l(O) ± fat V(~)d~, (3.2) 

where signs "+" and "-" correspond to ascending and descending respectively, and l(O) is the 

initiallength4
. 

Taking into consideration the assumption that there is no lateral motion in the vertical 

rope, and denoting the longitudinal dynamic deflection in the catenary and in the vertical 

rope as uc(s, t) and uv(s, t), respectively, the deformed position vector is defined as 

R = { [s + uc(s, t) -l, v(s , t~ w(s, t)r, l ::; s ::; L1, } 
[s + uv(s, t) - l , 0, 0)] , L1 ::; s ::; Lo, 

4 The exact geometric relationship should read 

l (t) + u(l,t)=± ltV(~)~, 

(3.3) 

where u (l, t) denotes a longitudinal deformation of the cable wound around the drum. This expression can be 
differentiated with respect to t, so that 

or 

i(t) _ V(t) 
- 1 ou( l,t) , 

+ os 

l (t) = l (0) ± t V (0 d~ . 
J o 1 + ou(l,€) 

For cables of high Young's modulus, for example for steel wire ~~bles, the longitudinal strain is small, namely 
o,~~,t) « 1, so that the approximation (3.2) can be applied. 
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where L1 = l + Le , and Lo denotes the total length of the cable in the reference configuration. 

The continuity of deflection across the sheave requires ue(L1) t) = uv (L1) t) = U1, and the 

dynamic elastic deflection at the vertical cable bottom end is U2 = uv(Lo ) t). The velocity 

vector of a cable particle P is then determined as 

(3.4) 

where the overdot indicates total differentiation with respect to time, and ( ) ,t denotes partial 

derivatives with respect to time. 

3.2.1 Free Undamped Motion 

The equations governing the free undamped response of the system can be derived by apply­

ing the variational approach of analytical mechanics. In this approach Hamilton's principle 

can be used which requires that the measure of action, namely the time-integral of the differ­

ence between the kinetic and potential energies, shall be stationary [Lanczos, 1962]. Thus, 

Hamilton's procedure asserts that the actual motion realized in nature is that particular mo­

tion for which action assumes its smallest value. Hence, the Hamilton formulation applied 

to the hoisting cable system yields 

(3.5) 

where E , IIe, and IIg denote the system kinetic energy, the cable elastic strain energy, and the 

system gravitational potential energy, respectively. Upon assuming that dynamic deflections 

of section 001 of the cable can be neglected, the kinetic energy of the system is expressed 

as follows 

(3.6) 
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where 

Ee 
1 
"2mVe, V el (3.7a) 

Ev 
1 
"2mVv' VVl (3 .7b) 

Es 
1 I .2 
"2 R2 q1l (3.7c) 

EM 
1 .2 

"2
Mq2l (3.7d) 

where ql = Uv,t(L Il t) - i, and q2 = UV,t(LOl t) - i, with ql, q2 representing the total dis­

placements at the sheave and at the conveyance, respectively. 

The elastic strain energy of the cable is 

(3.8) 

where II~ is the strain energy in the reference prestressed configuration, and 

. 1 
(T~ + "2EAEe)Eel (3.9a) 

. 1 
(T~ + "2EAEv)Evl (3.9b) 

where Ee and Ev represent the strain measure in the catenary section and the vertical section 

of the cable respectively, T~ , and T~ represent the quasi-static tension in the catenary, and 

in the vertical cable in the reference configuration, respectively. Using the so called large 

displacement approach [Geradin & Rixen, 1994], the catenary strain measure resulting from 

Green 's symmetric strain tensor is given by 

1 2 2 
Ee = Ue,s + 2(V's + W), (3.10) 

where ( ),s denotes partial differentiation with respect to s. In this non-linear strain measure 

large displacements generated by the rotations are accounted for, with the assrunption that 

the axial deformations remain small. The strain measure in the vertical rope is given in 

the classical linear straight bar form [Geradin & Rixen, 1994], where both rotations and 
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displacements are assumed to be small, namely 

tv = uv,s· (3.11 ) 

The gravitational potential energy of the cable expressed in terms of the dynamic de­

flections is given by 

f
LO 

ITg = IT~ - mguvds - M gQ2, 
L 1 

(3.12) 

where IT~ is the gravitational potential energy in the undeformed reference configuration. 

Hamilton's principle requires also that any virtual displacement, arbitrary between two 

instants tl and t 2 , vanishes at the ends of the time interval, so that 

(3. 13 a) 

(3.13b) 

(3.13c) 

at t = tl and t 2 . Inserting equations (3.6), (3.8), and (3.12) into equation (3.5) the 

following result is obtained 

(3.14) 

where 

8Ee 
aEe aEe aEe 
8 8Ue,t + a 8v,t + a 8w,t' (3.1Sa) 

Ue,t V,t W,t 

8ITe 
art aIt ane 
aOUe,s + aOv,s + aOw,s, (3.lSb) 

Ue,s v,s W, s 

8Ev 
aEe 
aOUv,t, (3.1Sc) 

Uv,t 

onv 
anv 
-a-OUV,S) (3.15d) 

Uv,s 
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DEs 
aEs . 

(3.1Se) yoql, 
q1 

OEM 
aEMo ' 
aq2 q2· (3.1 Sf) 

Upon assuming that the operators 0 and a/at, as well as 0 and a/as, are commutative, and 

also that integration with respect to t and s are interchangeable, integrating by parts in (3.14) 

both with respect to sand t, accounting for (3. 13a)-(3.13c), and noting that 

oue(l, t) = oV(l, t) = ow(l, t) = 0, 
oV(L1' t) = oW(Ll' t) = 0, 
oue(Ll, t) = oUv(L1' t) = oql, 
oUv(Lo, t ) = oq2, 

the following result is obtained 

_ 2.( OEe) + ~(ofre)] oue+ at OUe,t as oUe,s 

fiL l _2.(flb) + ~ (ofre)] 011+ ds+ Jl at OV,t as OV,s 

(3.16) 

_2.( OEe) + ~(ofre) ] ow 

j
t 2 at OW,t as ow,s 

f Lo [_ 2. ( oEv ) + ~ ( ofrv ) + mg] OU ds+ dt = ° (3.17) 
tj Ll &t OUv,t as OU"'S v 

( gu~:'S - g!~~s ) s=Ll - 1£ (%t ) 1 oql + 

Mg - !i ( OS,M ) - ( ofry ) oq2 
dt OQ2 OU"'S s=Lo 

The virtual displacements DUe, ov, ow, OU, oUv, oq1,and oq2 are arbitrary, and the equation 

(3.17) can be satisfied for all values of the virtual displacements if and only if 

a ( aEe ) a one 
- !::It ~ + !::l(~ = 0, l < S < L 1 , 

U uUe,t uS uUe,s 
(3.18) 

(3.19) 

(3 .20) 

(3.21) 
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-:t (~!:) + (:~:, - :~~,) ooL, ~ 0, (3 .22) 

_ ~ (O~M) _ (orrv ) + Mg = 0. (3.23) 
dt OQ2 oUv ,s s=Lo 

Equations (3 .18)-(3 .21) are the equations of motion for the system, and equations (3.22)-

(3.23) represent the longitudinal boundary conditions. 

Substituting equations (3 .7a)-(3 .7d), and (3.9a)-(3.9b) together with (3.10) and (3.11) 

into the equations (3.18)-(3.23) yields the non-linear equations of motion 

.. 1 2 2 i 
m(uc,tt - l) - EA[uc,s + 2(v,s + w)l,s - Tc,s = 0, l < s < L 1, (3.24) 

mV,tt - EA { [Uo" + ~ (v~ + w:,)] v" L -7;;v,,, - r ;" v,, ~ 0, 1 < s < £1, (3.25) 

mW,tt - EA { [Uo" + ~(v:, + W:,)] w,' L -r ;w,,, - 7;;"w" ~ 0, 1 < s < £1, (3.26) 

m(uv,tt -I) - EAuv,ss - T~,s - mg = 0, L1 < S < Lo , 

~2 [(uv ,tt + uv,sti)s=Ll -zJ + EA(Ec - Ev)s=Ll + (T~ - T~) s=Ll = 0, 

M [(uv,tt) S=LO -IJ + EA(uv,s)s=Lo + (T~ )s=Lo - Mg = 0. 

(3.27) 

(3.28) 

(3.29) 

In this non-linear system, the equations (3.24)-(3.27) describe the dynamics ofthe catenary 

and the vertical rope, the equation (3.28) represents the balance of forces across the sheave, 

and the last equation (3.29) defines motion of the end mass . 

The equations governing the reference configuration can be extracted from the system 

(3.24)-(3.29) by setting all time derivatives and the dynamic strain components to zero. The 

following conditions result 

T; s , 0, (3.30) 

T~ , s + mg 0, (3.31) 

(T~ - T~)s=Ll 0, (3.32) 

(T~)s=Lo - M 9 0. (3.33) 
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Integrating equation (3.31) yields 

(3.34) 

Furthermore, it results from (3.30) and from (3.31) that the mean (quasi-static) catenary 

tension is uniform over its entire length, and that this tension is equal to the vertical rope 

mean tension at the sheave, that is 

(3.35) 

Thus, using (3.35) in (3.34), and accounting for the condition (3.33) yields the following 

expression for the catenary tension 

(3.36) 

Consequently, when the result (3.36) is used in (3.34), the vertical rope tension is given as 

T~(s) = Mg + mg(Lo - s), L1 :S s :S La· (3.37) 

It is possible to reduce the differential equations of motion (3.24)-(3.29). The longi­

tudinal inertia term m(uc,tt -z) can be neglected in equation (3.24) upon assuming that the 

catenary cable stretches in a quasi-static manner [Perkins, 1992]. This simplification, ap­

plied also by Luongo, Rega & Vestroni [1984] and Watzky [1992], is a consequence of the 

fact that the longitudinal wave speed is large, and greatly exceeds that of the lateral waves. 

Therefore, taking into account the condition (3.30), equation (3.24) can be integrated once 

to give 
1 2 2 

uc,s + "2 (v,s + w) = e(t) , (3.38) 

where e(t ) represents the spatially uniform catenary strain. Hence, the following equations 

describe the lateral dynamics of the catenary 

mV,tt - EAe(t)v,ss - T~v,ss 

mW,tt - EAe(t)w,ss - T;w,ss 

0, 

0, 

(3.39) 

(3.40) 
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which are defined over the spatial intervall < s < L 1, with 0 ::; t < 00. It is assumed at 

this stage that lateral motions, both at the drum and the sheave ends, are not allowed. This 

results in trivial boundary conditions for v and w at s = l, L1 , respectively. 

Treating the sheave and the end mass M as additional inertial loads applied to the 

system, and using the conditions (3 .31)-(3 .33), the following dynamic model of the vertical 

rope subsystem results 

where L1 < s < Lt, 0 ::; t < 00, with the boundary conditions 

EA [e(t) - uv,s(L1,t) ] 

EAuv,s(Lt, t) 

0, 

0, 

(3.41) 

(3.42a) 

(3.42b) 

where Ms = ~2 is the effective mass of the sheave, e(t) is given by ((3.38)), 8 is the 

Dirac delta function, L1 denotes the point immediately to the left of Ms, Lt is the point 

immediately to the right of M, and the mass distribution function p( s) is defined as 

p = m + Ms8(s - L1 ) + M8(s - Lo). (3.43) 

Thus, in this formulation the vertical subsystem is modeled as constrained by the catenary at 

s = L1 , free at s = Lt , and acted upon by an inertial load due to the axial transport motion. 

3.2.2 Boundary excitation 

The cable cross-over motion at the drum results in additional longitudinal, in-plane lateral, 

and out-of-plane lateral displacements at s = l, relative to the overall rigid body translation. 

This results in a boundary excitation, which can be accounted for by suitable formulation 

of boundary conditions at s = l . Thus, for the longitudinal motion the boundary condition 
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should read 

and for the lateral motions the boundary conditions are formulated as 

v(l, t) = Vl(t), 
tV(l, t) = tVl(t), 
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(3.44) 

(3.45) 

where Ul (t), VI (t), and tVl (t) are periodic functions prescribed by the geometry of the cross-

over zones. 

The inertial load in the in-plane and out-of-plane lateral direction due to the cross-over 

geometry can be accommodated via a suitable coordinate transformation, with the cross-over 

displacements being regarded as additional rigid-body translations in the lateral directions. 

Since the catenary is constrained in the lateral directions at the sheave end, these transla­

tions vary from Vl and tVl respectively at the drum, to zero at the sheave. Thus the absolute 

displacements v and tV can be expressed as 

s -l 
v(s, t) = v(s, t) + 1)l(1- -) (3.46) 

Lc 
s - l 

w(s, t) = w(s, t) + Wl(1- 4) (3.47) 

where v and w represent displacements relative to the rigid-body motions in the lateral di­

rections. It follows from (3.46) and (3.47) that 

and also that 

_ - VI 
v,S - v,s - Lc' 

_ - WI 
w,S - w,s - Lc' 

V,ss = v,ss, 
w,ss = w,ss, 

- + .. (1 s-l) 2· i r V,tt = V,tt Vl - r;; + VI Lc + VI Lc ' 

(3.48) 

(3.49) 

- .. (1 s-l) 2· i r (3.50) . W,tt = W,tt + WI - r;; + tVl Lc + tVl Lc . 

Insertll1g (3.49) and (3.50) into (3.39) and (3.40) respectively, the catenary dynamics is de-

scribed by equations 

mV,tt - T;v,ss EAe(t)v,ss + Fv(s, t), (3 .51a) 
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mW,tt - T~w,ss = EAe(t)w ,ss + Fw(s, t), (3 .51 b) 

defined over the spatial intervall < s < L1, with trivial boundary conditions for v and W at 

s = l, L 1, and where the inertial loads Fv and F ware defined as 

Fv(s ,t) = -m [~h(l- sr:l ) +21!IL+V1LJ, 
Fw(s , t) = -m wl(l- sr:l ) + 2W1L + wlLl· 

(3.52) 

The catenary strain e can be determined from equation (3.38), which can be re-written 

as 

1 2 2) Uc,s = e(t) - "2 (v ,s + w,s . (3.53) 

Integrating (3.53) and using the boundary condition (3.44) gives 

Uc(S, t) = Ul(t) + (s - l)e(t) - - (v 2
s + w2

s)ds. lIS 
2 I ' , 

(3 .54) 

Consequently, when the continuity of longitudinal deflection across the sheave is accounted 

for, the following results 

e(t) = L [U"(L j , t) - u,(t) + ~ [ ' (v~ + W~,)dS]. (3.55) 

When the boundary conditions (3.45) are used together with the transformation (3.48) the 

catenary strain is given as 

This result can be accommodated in the boundary condition (3.42a) as follows 

(3.57) 

where k = EA and 
c Lc' 

(3.58) 
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Consequently, the dynamic model of the vertical rope is formulated as 

p(8)Uv,tt - EAuv,ss = p(8)l" + { kc[Ul(t) - fc(t)] - MsUv ,sti } 8(8 - L1), 

for LI < 8 < Lt , with the homogeneous boundary conditions 

kcuv(LI ' t) - EAuv,s (L I , t) 

EAuv,s (Lt , t) 

0, 

0, 
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(3.59) 

(3.60a) 

(3.60b) 

Hence, the undamped response of the hoisting cable system is defined by equations 

(3.51a) and (3.51b) for the catenary cable (l < 8 < L I ), with trivial boundary conditions, 

and by equation (3.59) for the vertical system (LI < 8 < Lt), with boundary conditions 

(3.60a)-(3.60b). In this formulation the vertical system is modeled as a system constrained 

at 8 = LI by a linear spring of constant kc, representing the longitudinal elastic catenary 

effects, and free at 8 = Lt. This system is acted upon by an inertial load due to the transport 

motion, and is subjected to the boundary excitation and to an elastic force resulting from the 

catenary lateral strain. 

3.2.3 Damping Model 

The correct definition of damping in the system presents a difficult problem, as both lateral 

and longitudinal damping mechanisms in hoisting steel wire cables are complex phenomena. 

However, it is a recognized practice to replace resisting forces of a complicated nature by 

equivalent viscous damping for purposes of analysis [Timoshenko, Young & Weaver 1974; 

Tse, Morse & Hinkle, 1978]. The equivalent damping coefficients can then be determined 

from energy considerations and through an experiment. For example, Kumaniecka & Niziol 

[1994] considered the combination of viscous and dry friction damping in a steel wire rope, 

and found the equivalent viscous damping coefficient from the equality of the energy dis­

sipated by dry friction forces, and the energy dissipated by the equivalent viscous damping 
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forces over one period of vibration. A brief discussion regarding the equivalent viscous 

damping is presented in Appendix E. 

The viscous damping distributed force in a continuous structural member can be given 

in the following form 

(3.61) 

where C is a linear damping operator, and U denotes the displacement. The special case 

of viscous damping known as proportional damping has the advantage of being particularly 

convenient to analyze. In this case the operator C is a linear combination of the stiffness 

operator £ and of the mass distribution function p, and is given as 

(3.62) 

where il l and il2 are coefficients of damping. In this model the first term in the operator 

(3.62) can accommodate internal damping effects, often modeled as proportional to the rate 

of strain in the structure and referred to as Kelvin-Voigt damping [Inman, 1994]. The second 

term may account for the external damping, such as air damping for example. When modal 

analysis is applied the modal damping ratio defined as 

1 il2 
<;"n = -2 (illW n + -) 

Wn 
(3.63) 

where Wn is the nth natural frequency, represents the damping effect on the nth mode. When 

il2 = 0 (while Ql > 0) the resulting damping model is referred to as relative damping. 

In this case the damping ratio in each mode is proportional to the corresponding natural 

frequency, which means that the responses of the higher modes will be more rapidly damped 

than those of the lower modes. On the other hand, when ill = 0 (while il2 > 0) the 

resulting model is often called absolute damping. In this model the damping ratio is inversely 

proportional to the corresponding natural frequency, so that the lower modes will be damped 

more strongly that the higher modes. Hence, the relative damping and the absolute damping 

represent extreme cases which, when combined together into the general proportional model 
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(3.62), the most representative damping model arises for the dynamic response analysis of 

structures. 

Following this approach, the catenary lateral damping forces are introduced as 

-Cl[V,t] , 

-Cdw,t], 

where the lateral damping operator is defined as 

. 82 

Cl = -AIT; 882 + A2m , 

(3 .64a) 

(3 .64b) 

(3.65) 

where Al and A2 are constant coefficients of lateral damping. Similarly, the vertical rope 

damping force can be expressed as 

(3.66) 

where 
82 

Cu = - J.Ll EA 882 + J.L2P, (3 .67) 

where J.Ll and J.L2 are coefficients of longitudinal damping. 

Thus, when the damping terms are taken into consideration, the response of the system 

is governed by the following equations 

(3 .68) 

mW,tt - AIT~w,sst + A2mW,t - T~w,ss = EAe(t)w,ss + Fw(8, t), (3.69) 

PUv, tt - J.L1EAuv,sst + J.L2PUv,t - EAuv,ss = pl'+ {kC[Ul(t) - jc(t)]- MsUv,sti} 8(8 - L 1), 

(3 .70) 

where the lateral equations of motion (3.68) and (3.69) are defined over l < 8 < L1 with 

trivial boundary conditions, and the longitudinal equation of motion (3.70) is defined over 

L1 < 8 < Lt with the boundary conditions remaining in the form of equations (3 .60a)-

(3.60b). 
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Figure 7. Simplified longitudinal model of a hoisting cable. 

Chapter 4 
Longitudinal Dynamics 

An analysis of the longitudinal dynamics of hoisting cables is essential to understand 

the main characteristics of the dynamic behaviour of this system and to predict the dynamic 

loads that occur in winding ropes. These loads arise during normal and emergency oper­

ating conditions, and a knowledge of their amplitudes is fundamental to the definition of 

safety factors during hoisting. 

A simplified longitudinal model of a hoisting cable is shown in Figure 7. This model 

has been used extensively in the analysis of vibration phenomena in hoisting systems. The 

equation oflongitudinal motion of this system can be obtained from equations (3.24), and 

(3.27)-(3.29), with the catenary lateral motions and the sheave inertia neglected. Noting 

the conditions (3.30)-(3 .33), and combining the catenary motion U c and the vertical rope 

motion U v into a single variable u, the following equation of motion results 

p(s)u,tt - EAu,ss = p(s)l', l < s < Lt , (4.1) 

where p = m + M8(s - Lo) denotes the mass distribution function. Accounting for the 

longitudinal boundary excitation (3.44), and noting that the end mass M is acconunodated 

in the mass distribution function, the boundary conditions are given as 

u(l , t) 

EAuALt, t) 

43 

0, 

(4.2) 

(4.3) 
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where II (t) denotes boundary excitation function5
. The mean catenary and vertical ca­

ble tensions are then defined by equations (3 .36) and (3.37), respectively. Regarding the 

longitudinal boundary excitation as an additional rigid-body translation the substitution 

U(s, t) = u(s, t) + Ul(t) (4.4) 

accommodates this excitation as an additional inertial load in the equation of motion. There­

fore, when the proportional damping model with the operator (3.67) is used over the domain 

l < s < Lt, the variable transformation (5.31) leads to the following equation 

p(s)U,tt - JL1EAu,sst + JL2PU,t - EAu,ss = p(s) (r- iLL) ' l < s < Lt, (4.5) 

with the homogeneous boundary conditions 

u(l , t) 

EAu,s (Lt, t) 

0, 

O. 

(4.6) 

(4.7) 

In order to accommodate the sheave inertia in the longitudinal response of the vertical 

rope, it is convenient to assume the quasi-static catenary strain model, and to use equation 

(3.70). If the lateral catenary motion is not accounted for this equation yields 

PUv,tt - JL1EAuv ,sst + JL2PUv,t - EAuv,ss = l(s, t) + [kcuI(t) - Msuv,sti] o(s - L1 ), (4.8) 

where l(s, t) = pl", and the boundary conditions are given by equations (3.60a)-(3.60b). 

4.1 Longitudinal Discrete Model 

5 This function can be assumed in the form of a periodic excitation prescribed by the geometry ofthe drum 
cross-over zones, as suggested earlier in equation (3.44). However, other boundary phenomena can be also 
accommodated in this formulation . Goroshko & Savin [1971] considered slip and non-slip conditions at the 
winder drum for example. 
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Figure 8. Longitudinal model of a vertical rope. 

In order to determine the longitudinal response during the entire winding cycle an approxi­

mate solution to the equations of motion can be sought using the Rayleigh-Ritz method. 

Hence, for the simplified model (4.5) the motion is assumed in the form 

N 10ng 

U = L Yn(s, l)zn(t), (4.9) 
n=l 

where 2n (t) are generalized co-ordinates, and Yn can be specified as 

Yn = sin l' n (s - l) , (4.10) 

and are free-oscillation modes of the system with l being instantaneously frozen, and l' n are 

the eigenvalues of the frozen system calculated from the transcendental equation 

(4.11) 

This formulation can be used successfully to study transient resonance phenomena in a hoist­

ing cable [Kaczmarczyk, 1997a]. The functions Yn defined by (4.1 0) are essentially eigen­

functions of the corresponding frozen system. However, it is possible to use another class of 

functions, namely admissible functions6 in the series (4.9). It can be shown [Kaczmarczyk, 

6 In the differential eigenvalue problem three classes of functions of special interest can be distinguished 
[Meirovitch, 1990] : eigenfunctions, comparison junctions, and admissible junctions. There are two types of 
boundary conditions, namely geometric conditions and natural conditions. The first type accounts for a gemet-
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1994] that so called cable functions defined by the determinant 

s -l 
b3 

(s_l)n 
(Lo-l)n 1 

bn+2 

46 

(4.12) 

where bn = M + m(Lo - l ), n = 1, 2, ... , Nlong present a convenient set of admissible functions. 
11 

They form a complete orthogonal set with a weight p( s) 

1L p(s)Y;.(s, l)Yn(s, l)dx = 0, r =J n, (4.13) 

and also, over a wide range of values of the ratio m( Lo -l) / M, represent a good approxima­

tion to the free-oscillation modes of the frozen system. Therefore, a fast rate of convergence 

is guaranteed by the series (4.9). 

In many industrial hoisting arrangements the sheave inertia is substantial and should 

not be neglected in the dynamic analysis, as it may considerably affect the response of the 

entire system. Therefore, the present study of the longitudinal dynamics is focused on the 

formulation given by equation (4.8), where the catenary cable is modeled as a non-inertial 

spring element of constant kc, and the sheave is represented by an effective mass Ms in the 

mass distribution function p, which results in an additional inertial load due to the axial trans­

port motion. Thus, using the Rayleigh-Ritz method the vertical rope motion is approximated 

by the series 
N long 

U v = L Yn(s, l)zn(t) , (4.14) 
n=l 

ric condition at the boundary (zero displacement or zero slope, for example), and the second type reflects force 
or moment balance at the boundary. The eigenfunctions satisfy all the boundary conditions and the differential 
equation of the eigenvalue equation. The class of comparison functions consists of arbitrary functions which 
satisfy all the boundary conditions, but not necessarily the differential equation. This class is larger than the 
class of eigenfunctions corresponding to the eigenvalue problem. Admissible functions are any arbitrary func­
tions satisfying only the geometric boundary conditions, and form a far larger class of functions than the class 
of comparison functions. 
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where Zn (t) are generalized co-ordinates, and Yn are free-oscillation modes of the corre­

sponding system constrained at s = L-; by the catenary spring, with the parameter l con­

sidered to be instantaneously frozen, as shown in Figure 8. These modes are given by the 

following equation 

( 
1 Ms) . Yn(s,l) = cos,ny(s , l) + -L -'n- sm,ny(s,l), 
cln m 

(4.15) 

where In = wny), with c = jil-, and Wn represents the longitudinal natural frequency, and 

Y = s - L1. The eigenvalues In are determined from the following frequency equation 

(L -~ 'Y~) (cos 'YnL" - ~ 'Yn sin 'YnL" ) - 'Yn (~ 'Yn cos 'YnL" + sin 'YnL") ~ 0, 

( 4.16) 

where Lv = Lo - L1 . The details of this eigenvalue problem are given in Appendix A. 

The representation (4.14) results in the following expressions for partial derivatives of 

Uv,t (4.17) 

Uv,tt ( 4.18) 

N Long 

Uv,ss L Y~'Zn, (4.19) 
n=l 

Uv,st = (4.20) 

It can be also found from equation (4.15) that 

Y' n -'n [sin,ny - (Lc~n - ~s'n) COSln y] , (4.21a) 

( d'n ) [ ( 1 Ms 2). ] - TtY - 'n In COS,nY + Lc - m In sm InY 
BY' n 

8l 
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d'n [ . Ms 1 - sm 'n +2-'ncos'nY , 
dl m 

(4.21b) 

so that 

(4.22a) 

(4.22b) 

By substituting the expressions (4.17)-(4.20) into equation (4.8), multiplying the result 

by Yr., by integrating from L1 to Lt, and by accounting for the boundary conditions (3.60a)­

(3 .60b), using the orthogonality properties of the eigenfunctions Yn , and finally by applying 

the relationships (4.22a)-( 4.22b), the following system of equations results 

.. . 2 
Zr + f.L2 Zr + Wr Zr = 

1 Nl

ong 

[ • • ( 1 M ) 1 -- '" 2lCv 
- EAA + Msl - - ~"V2 i -v 6 rn rn L In n mr c m 

n=l 

N10ng 

~v L (i2 D~n + rC~n - EAiB~n + f.L2 iC~n + Msi2r n) Zn + 
r n= l 

9r (t) + Zr (t) , (4.23) 

where 9r (t) = ..1..,; kcUl(t) , r = 1, 2, . . . ,Nlong , and 
mr 

(4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 

(4.24e) 
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J LO Am - 111 Y;. y~' ds, (4.24f) 
L1 

Zr 
1 JLO - f(s, t)Y;.ds. 
m~ L1 

(4.24g) 

The system of equation (4.23) forms a multi-degree-of -freedom model of the linear 

longitudinal dynamics of the system. It should be noted that the time-varying coefficients 

in this system depend on the eigenvalues Tn' that must be determined from the transcen­

dental frequency equation (4.16). The detailed procedure of their determination is given in 

Appendix B. The system (4.23) can be integrated numerically to determine the overall lon­

gitudinal dynamic response of the vertical cable during the winding cycle. This numerical 

simulation enables one to obtain transient components arising during the cycle accelera­

tion/deceleration phase as well as to monitor the response due the periodic cross-over excita­

tion acted upon the system during the constant velocity winding phase. This latter response 

is caused by relatively small longitudinal pulses. However, the axial stiffness of the rope is 

high, and this results in high amplitude oscillations in the rope tension contributing directly 

to fatigue damage effects [Dimitriou & Whillier, 1973]. In view of this, a passage through 

main longitudinal resonance would be of particular interest. A suitable computational tech­

nique to study tllis passage in more detail is discussed in what follows. 

4.2 Single-Mode Approximation 

When a single term is taken in the expansion (4.14) the result is referred to as a single-mode 

approximation, and the system is reduced to a single-degree-of-freedom model. This simple 

model has been used extensively and successfully in the analysis offree and forced vibrations 

of structures [Szemplinska-Stupnicka, 1990]. This approach can be applied to investigate the 

passage through resonance in the hoisting cable system [Kaczmarczyk, 1997a, b]. Near the 
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resonance region, the actual resonant mode is dominant, and it is reasonable to conclude that 

the shape of the vibration is close to this mode during the passage. Hence, the single-mode 

approximation to the response given by (4.8) can be assumed as 

(4.25) 

where Yr denotes the resonant mode shape function which can be determined from equation 

(4.15r . Substituting this form into equation (4.8) and applying the Rayleigh-Ritz procedure 

yields 

ir + w;(l)zr = 

- m:(l) [2iC~r(l) - EAArr(l) + Msi (~c -~ "(;(l)) + m~(l)J-L2l zr -

m:(l) (i2D~r(l) + l"c~r (l) - EAiB~r(l) + J-L2ic~r(l) + Msi2fr(l)) Zr + 
Kr (l) cos Dt + Z.,. (t) , (4.26) 

where Kr = ~kcuo. In this formulation, the cable cross-over motion at the drum is repre-
m r 

sented by a harmonic boundary excitation of the form 

u/ ( t) = Uo cos Dt, (4.27) 

with the amplitude Uo defined by the geometry of the cross-over zone, and the frequency 

D = nWd, where n is an integer and Wd denotes the drum frequency. 

Following the approach outlined in Chapter 2, two time scales are defined in order to 

seek the solution of equation (4.26). The first one, a fast non-dimensional scale, is deter­

mined as 

T = wot, (4.28) 

7 Alternatively the longitudinal system can be modeled by treating the vertical rope as an unconstrained 
subsystem [Kaczmarczyk, 1997b], and by using Y,. = cos "iTY( s , l) - "ir ~ sin "irY(s , l) in equation (4.25). 
However, the present approach yields more accurate results . 
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where Wo = Wr (l (0) ). The second scale is a slow scale T = cT, and a variation of [ is 

observed on this scale. For example, during the ascending constant velocity winding phase, 

following the relationship (3.2), this length is given as 

[ = [(0) + Vct, ( 4.29) 

where Vc denotes the nominal winding velocity. Assuming [(0) = 0, and defining the small 

parameter c according to the relationship (2.8) as 

where Lvo = Lv (l(O)), yields 

Noting that 

Zr 

Zr 

[ 

[ 

Vc 
c=--

woLvo' 

l = LvoT. 

dZr 
wo dT ' 

2d2zr 
Wo dT2' 

woc[' , 

W6c2 [11 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

where the prime denotes the derivative with respect to T, and assuming that the damping is 

small, so that one may set 

the following equation valid for the constant velocity winding phase is obtained 

d2 Zr _ 2 _ dZr - - 2 
dT2 + Wr(T)Zr - c/r(T, dT) + Kr(T) cos fJT + O(c ), 

(4.36) 

(4.37) 

(4.38) 
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where W = ~ n = II k = &- and 
r wo ' wo ' r w6 ' 

4.3 The Multiple Scales Solution 

Equation (4.38) represents a single-degree-of-freedom system having slowly varying natural 

frequency and coefficients. Studies to predict the response of this system during the transition 

through primary resonance, when the slowly varying frequency coincides with the frequency 

of the periodic excitation at some critical time instant, can be carried out by the method of 

multiple scales [Nayfeh & Mook, 1979]. This method is discussed in detail in Appendix C. 

Thus, the solution is sought in terms of the fast and slow scales in the form 

(4.40) 

where CPr represents the fast scale and is defined by 

dCPr _ ( ) 
dT = Wr T . (4.41) 

In the resonant case values wr ( T) are near n. This nearness can be quantified by a 

slowl y varying detuning parameter a r ( T) introduced as follows 

(4.42) 

Therefore, when the relationship (4.41) is taken into account, one gets from (4.42) 

(4.43) 

where 

(4.44) 
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When a r = 0, unbounded oscillations would be predicted for a corresponding undamped 

system with constant parameters. In the actual system, the oscillations are limited by the 

damping and infl. uenced by the non-stationary terms on the right hand side of equation (4.3 8), 

present as components of the function (4.39). Therefore, the excitation needs to be ordered 

so that it will appear when the damping and the non-stationary terms appear. Thus, in order 

to determine the first approximation one sets 

(4.45) 

so that Kr = O(c). By substituting (4.40) into (4.38) and by equating the coefficients of cO 

and c on both sides of the resulting equation, the following results 

_ 2( fJ2 ZrO 
Wr 8¢; + zrO) = 0, (4.46) 

_2(82
zr1 ) _ 82zrO _1 8zrO (_ 8zro ) -

Wr 8A.2 + Zrl = -2wr 8¢ 8 - Wr 8A. + ir T, Wr 8A. + 2kr cos nT. 
'f'r r T 'f'r 'f'r 

(4.47) 

The general solution of (4.46) is found to be 

(4.48) 

where Ar is the complex conjugate of Ar that is given by the polar form 

(4.49) 

where ar and!3r are real. Using (4.48) and (4.43) in (4.47), with ir(T,Wr ~~~) expanded in a 

Fourier series, one obtains the following equation 

w;(a;;~! + Zrl) = -i(2wrA~ + w~A)ei¢" + I:~=-oo irn(Ar, Ar, T) ein¢r+ 
krei(¢r+'l9r) + ee, 

where 

(4.50) 

(4.51) 
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and cc denotes the complex conjugate of the preceding terms. The condition for the elimina­

tion of the secular terms in (4.50) is 

(4.52) 

where 
- 1 r27r 

- '¢ 
fTl (Ar) Ar) T) = 27f Jo fr(AT) AT) T) <Pr )e-t rd<Pr ' (4.53) 

By expressing Ar in the polar form in equation (4.52), by separating the result into its real 

and imaginary parts, and also by denoting 

'l/Jr = 'l9r - f3r) (4.54) 

one obtains the following set 

I _ 1 w:. 1 fc 27r f ( _. ()) . () d() !5x.' ./, a - --2 -=-ar - -2 - 0 r T) -arwr Sln r SIn r r + - SIn 'f/r) r w,. 1rWr Wr 

.// = CTr(T) + -2 _1 f027r f r(T ) -arwrsin()r) COS ()rd()r + _kr cos'l/Jr) 
'fI r 7rw,.a," J ( wrar 

(4.55) 

(4.56) 

Following the expansion (4.40), the first approximation to the solution is obtained when 

(4.54) together with (4.43) are used in (4.48). This results in 

(4.57) 

with ar and 'l/Jr given by (4.56) . 

4.4 Longitudinal Damping Parameters 

The longitudinal damping force is defined by equation (3 .66) with the damping operator 

elL given by (3.67). In this model, which was also assumed in the analysis presented by 
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Thomas & Brillhart [1987], the damping coefficient fJ-l represents internal damping effects, 

that are proportional to the rate of strain in the cable, and the second damping coefficient fJ-2 

accommodates the external damping in the system. 

The coefficient fJ-l is usually assumed to be a function of some cable parameters, which 

may be established from an appropriate experiment. Goroshko & Savin [1971] showed that 

this coefficient is independent of the amplitude of oscillations in the cable dynamic tension, 

but depends on the mean (quasi-static) value of the cable tension. Namely, fJ-l decreases with 

increasing mean tension. This effect was also observed by Mankowski and Cox [1986]. It 

can be argued that when the tension is increased, the wire strands are more readily locked, 

and the inter-strand relative motion is constrained, resulting in the coefficient fJ-l being de­

creased. This agrees with an earlier observation by Vanderveldt and Gilheany [1970] who 

found that the velocity of propagation of a longitudinal pulse in wire ropes increases with 

increasing applied tension load, and postulated that this was due to the cable approaching 

the geometry of a solid bar due to a gradual tightening of the wires and strands. Green­

way [1989] extracted the damping coefficient fJ-l from the measurement of the logarithmic 

measurement of the fundamental longitudinal mode performed on a mine hoist installation. 

I t was shown that the damping coefficient increased in proportion to the rope length. Con­

stancon [1993] analyzed the results of damping measurements via drop tests carried out 

at Elandsrand Mine, R.S.A. In these tests, a conveyance was clamped between the guides, 

loaded with a dead weight, and released. The response was monitored with an accelerometer, 

and the modal damping ratios were extracted from the measurements using standard param­

eter estimation procedures. A strong dependency of the fundamental mode ratio on the mean 

rope tension was recorded. It was evident that the damping ratio decreased approximately 

linearly with the tension. However, in the final model the relative damping coefficient fJ- l 

was assumed to depend on the cable length, as proposed earlier by Greenway. 
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Taking into account the existing strong evidence, the dependency of the damping coef­

ficient 111 on the mean tension is accommodated in the present analysis. The model proposed 

by Savin and Goroshko [1971] is adopted. In this approach, based on experimental data, the 

damping coefficient is defined as 

= ( 23000) x 10-4 

111 0.5 + 3500 + 0.75 x 1O-5 0"~ , 
(4.58) 

where O"~ denotes the mean stress in the cable in N/m2 and is given as 

i T~ 
O"v = A' (4.59) 

with the mean tension T~ in the vertical rope determined from equation (3.37). 

The external damping effects, such as air damping, friction at conveyance guides, and 

damping at the sheave wheel bearings, may be represented by the coefficient 112' The order 

of this coefficient was established by the drop tests conducted at Elandsrand Gold Mine, and 

its value can be estimated from the corresponding test results. 

4.5 Numerical Example and Results 

4.5.1 Overall Dynamic Response 

The total longitudinal dynamic behaviour of the system is described by the set of linear or­

dinary differential equations (4.23), and the solution of these equations, combined with the 

expansion (4.14), gives the overall longitudinal response. The coefficients in the system 

(4.23) are slowly time-varying, and the system is referred to as linear time-varying system 

[D' Angelo, 1970]. In general, it is not feasible to obtain an exact closed-form solution to 

time-varying coupled systems of ordinary differential equations. Traditionally, approximate 

analytical studies to predict the response of these system have been carried out by the pertur-
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Number of longitudinal modes Nlong 4 
Total winding cycle ti me [s] 163 
Acceleration/decelerat ion time [s] 26 
Nominal hoisting ve locity Vc [~] 16 
Total hoisted mass M [kg] 23649 
Sheave wheel moment of inertia I I kgm"L I 25689 
Winder drum radus Rd [m] 2.77 
Sheave wheel radius R [m] 2.77 
Coil cross-over arc f3 [rad] 0.1 
Cable diameter d [m] 48 x 1O -;j 

Cable linear density m I * I 9.75 

Cable effective steel area A Im:t I 1.053 x 1O -;j 

Cable effective Young's Modulus El~l 1.25 x lOll 
Catenary length Lc [m] 73 
Maximum depth of winding Lv max [m] 2204 
Relative damping coefficient J.Ll [s] given by (4.58) 
Absolute damping coefficient J.L2 Is .11 0.159 

Table 1. Elandsrand Simulation Parameters 

bation methods, as discussed earlier in Chapter 2. However, the algebra in these techniques 

is quite involved. An alternative method was presented by Shahruz & Tan [1989] , who found 

an approximate closed-form solution to the response oflinear slowly varying systems lll1der 

external excitations using the technique of freezing slowly varying parameters. This tech­

nique, however, is not suitable for the general case when the eigenvalues of the frozen system 

cannot be obtained explicitly in terms of the frozen time parameter. Thus, the most conve­

nient approach to solving the system of equations (4.23) is by direct numerical integration. 

The numerical simulation requires the definition of necessary input data, which are 

shown in Table 1. These data are based on the winder and rope parameters of the double drum 

rock winder at Elandsrand Gold Mine [CSIR, 1995; Van Zyl, 1998], and can be considered 

typical for a deep mine hoisting system operating in South Africa. 

The boundary excitation UL present in equation (4.23) is assumed in the harmonic form 

given by equation (4.27) with the amplitude Uo prescribed by the geometry of a mechanism 
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employed to implement the coiling process. The Elandsrand Mine winder drum is equipped 

with 1800 - 1800 Lebus arrangement to achieve a repetitive coiling pattern during a winding 

cycle. In this mechanism, the winder drum surface is covered by parallel circular grooves 

with two diametrically opposed cross-over zones per drum circumference, as shown in Fig­

ure 9. Each zone offsets the grooves by half a cable diameter and when the cable passes 

through a cross-over an additional axial displacement relative to the nominal transport mo­

tion occurs. The magnitude of this displacement can be calculated as approximately equal to 

the difference between the arc length transversed through the cross-over and the correspond­

ing diametrical arc [Mankowski, 1982], which gives the amplitude 

(4.60) 

where Rd is the drum radius, d represents the cable diameter, and (3 is the angle defining 

the diametrical arc corresponding to the cross over region. As the cross-over occurs twice 

per drum revolution the frequency of the excitation is equal to twice that of drum frequency, 

namely n = 2Wd. 

Since the highest dynamic forces in hoisting cables occur during the up-wind, the 

simulation is carried out for the ascending cycle, when a fully loaded conveyance is being 

raised from the bottom of the shaft. This winding cycle consists of three main phases: the 

acceleration phase, the constant velocity phase, and the deceleration phase. The natural 

frequencies of the system vary slowly during the entire wind due to the slowly varying length 

of the vertical rope. This is illustrated in Figure 10, where the first four up-wind longitudinal 

natural frequencies, determined from the transcendental equation (4.16), are plotted against 

the vertical cable length. Frequencies of the excitation n, corresponding to various winding . 
velocity 1/;;, are also shown in this diagram. As one can observe, the natural frequencies 

increase with the shortening length of the vertical rope. For the nominal winding velocity 

of 16 m / s , a transition through resonance occur twice: at the beginning of the cycle when 



4.5 Numerical Example and Results 59 

the excitation frequency coincides with the third natural frequency at approximately Lv = 

1950 m, and later during the wind when a passage through the second natural frequency 

takes place at approximately Lv = 950 m. 

The system (4.23) demonstrates features of a stiff problem [Nikravesh, 1988]. It can 

be seen from the frequency diagram in Figure 10, that the eigenvalues are widely spread, 

especially at the end of the wind, and therefore the complete solution to the problem will 

consist of slow and fast components. Hence, if the numerical solution is to return the en­

tire transient response of the system over a long time interval, integration must be performed 

using relatively large time step to cover the slow components. However, the time step must 

be also small enough to capture the fast components, and to keep the numerical solution 

within acceptable bounds. Thus, due to these requirements integration methods not designed 

for stiff problems are ineffective, and lead to unstable results when applied to stiff equa­

tions. The problem of numerical integration of systems of stiff ordinary differential equa­

tions has attracted considerable attention, and a number of efficient integration algorithms 

that allow relatively large time steps, and that guarantee stability and bounded numerical er­

ror are available [Hairer & Wanner, 1991; Shampine, 1994]. Multistep methods based on 

backward differentiation formulas (BDF's), (also known as Gear's method), have been the 

most prominent and most widely used for solving stiff problems. Recently a new family of 

formulas called the numerical differentiation formulas (NDF's) have been developed and 

implemented in the MATLAB ODE suite [Shampine & Reichelt, 1996]. They are more ef­

ficient than the BDF's, though the higher order formulas in this family are somewhat less 

stable. Both BDF's and NDF's codes are available from the ode15s MATLAB solver. An­

other stiff solver, namely ode23s, based on Rosenbrock formula of order 2, is also provided 

with the MATLAB ODE suite. It is a one-step method and is especially effective at crude 

tolerances. 
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The non-stationary modal equations (4.23) are integrated numerically in the MATLAB 

5 computing environment. First the equations are written in the standard form, namely as 

if (t) = A (t) Y (t) +F (t) , (4.61) 

where y = [ZT , 27J T, is the 2Nlong -dimensional modal state vector, with z = [Zl' Z2, . .. , ZN10nJ T, 

A (t) is the 2Nlong X 2Nlong system matrix, and F (t) is the 2Nlong -dimensional excitation 

vector. The time-varying system matrix is defined as 

where 

[K'V 1 = diag [w 2
J + rn (N1ong X N1ong ) r 

[~: (I'D;:' + iC~n - EAiB~n + ,"2ie::" + Msi2r n) 1 ' 
[C~nl (N10ng X N10ng ) = J.L2I + 

[~~ { 2ic~n - EAArn + Msi (~c - ~,~) } 1 ' 

(4.62) 

(4.63) 

and 0 and I are Nlong X Nlong null and identity matrices, respectively. The excitation vector 

F is given as 

F (t) = [ O( N10ngXl) ]. (4.64) 
[gr + Zr 1 (N1ong Xl) 

Next, the equation (4.6\) is coded in a MATLAB ODE file, and the ode15s solver with 

the default numerical differentiation formulas, with the default relative accuracy tolerance 

and absolute error tolerances of 10- 3 and of 10- 6 respectively, is applied to simulate the 

system on the total winding cycle time interval. The time-varying natural frequencies and 

coefficients are calculated prior to the simulation, and are assembled in look-up tables as 

flU1ctions of the length parameter l. The linear interpolation is later applied to determine the 

actual values of the natural frequencies and of the coefficients during the simulation. 
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The simulation results are shown in Figures 11 -14. The generalized modal co-ordinates 

Zn, n = 1, ... ,4, are plotted against the vertical rope length Lv in Figure 11. The displace­

ments at the sheave and at the conveyance, given as 

4 

Us LYn (L1 , l) Zn (t) , (4.65) 
n = l 

4 

UM - LYn (Lo , l) Zn (t) , (4.66) 
n = l 

respectively, are shown in Figure 12. The plots of the total catenary tension Tc , and of the 

total vertical rope tension Ts at the sheave and TM at the conveyance, together with the 

tension ratio across the sheave, versus Lv are presented in Figure 13. In these plots the 

tensions are determined as follows . The total catenary tension is calculated as 

(4.67) 

where the catenary mean tension T~ is given by (3 .36). The vertical rope tension is defined 

as 

(4.68) 

where the dynamic component TVd is expressed using the Kelvin-Voigt viscoelastic model, 

whereby the normal stress is related to the strain and strain rate, namely 

TVd (s , t) = EA [uv,s + J-L1 (s) Uv ,ts] , (4.69) 

and the mean tension T~ is defined by equation (3.37). Hence, the rope tensions at the sheave 

and at the conveyance are given as Ts = Tv (L1 , t), and TM = Tv (Lo, t), respectively. The 

catenary dynamic tension is defined as 

(4.70) 
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the vertical rope dynamic tension are given as TSd = TVd (L1 ' t) at the sheave and T!VI d 

Tud (Lo, t) at the conveyance, and are plotted against Lv in Figure 14. 
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The results demonstrate various transient vibration phenomena that occur during the 

wind. Significant response due to the initial acceleration / final deceleration inertial loads 

at the beginning, and at the end of the cycle respectively, is predicted. This response is 

prominent both at the sheave and at the conveyance. Referring to the modal co-ordinate plots, 

it is evident that the fundamental mode dominates in the resulting transient oscillations, as 

recorded in the co-ordinate Zl plot shown in Figure 11. As anticipated earlier in the frequency 

diagram (Figure 10), passages tlu'ough resonance are manifested in the response plots. This 

is can be seen in Figure 11 , where the co-ordinate Z2 displays resonance behaviour in the 

region n = W2, and Z3 demonstrates transition through the resonance condition n = W3. 

These resonance phenomena affect especially the sheave response, which can be seen in 

Figure 12(a). 

The cable tensions reflect the system dynamics during the wind. The dynamic compo­

nents oscillate about the corresponding mean values, that for the catenary and at the sheave 

increase with the vertical length. The tension ratio across the sheave is close to unity over 

the entire cycle, demonstrating a small increase at the end of the wind, but remaining in the 

limits of approximately 0.94 - 1.05. This indicates that frictional slip will not occurs. The 

influence of acceleration/deceleration, and of transitions through resonance on the cable ten­

sile forces is better illustrated in Figure 14. It can be seen, that significant oscillations in the 

8 Skalmierski [1979] discussed the equilibrium between a rope and a Koepe pulley in hoisting machines. It 
was shown that the equation governing the impending slipping of the rope around the pulley may be written 
in the classical form T2 = T1 e-{LC", where T I , T2 are the larger tensile force and the smaller tensile force, 
respectively, in the two parts of the rope not in contact with the pulley, J.L is the coefficient of friction, and a 
denotes the angle of contact. This relationship can be used to formulate a criterion for no slip between the 
cable and the headsheave in the hoisting system, requiring that e-/-LQ < ¥: < e/-LQ . A similar criterion was 
used earlier by Perry & Smith [1932], and was adopted by Mankowski [19§2] and Constancon [1993]. Using 
for example the average value of J.L = 0.25, and the angle a = 135°, this criterion shows that the tension ratio 
must be within the limits [0.5559 , 1.8023] for slip not to occur. 
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dynamic tensions are predicted during the initial and final stages of winding due to the ac­

celeration/deceleration inertial loads. Also, at the depth of approximately 700 - 1000 m, the 

resonance condition n = W2 produces substantial tension oscillations. The effect of the main 

resonance on the system dynamics is discussed in more detail in what follows. 

4.5.2 Response at the resonance region 

The single-mode response of the system near the resonance is given by equations (4.25), 

and (4.57), with the slowly varying amplitude and the phase determined by the system of 

first order differential equations (4.56). These autonomous ordinary differential equations 

with variable coefficients do not easily lend themselves to an analytical solution. Analyti­

cal methods for analysis of problems this type are very few and tend to be either difficult to 

apply or limited in application to a small class of systems. For example, Raman, Bajaj & 

Davies [1996] treated analytically classical non-linear vibratory systems in the presence of 

non-stationary excitation. They discussed passage through primary resonance in the forced 

Duffing 's oscillator, described by the averaged first order equations for the amplitude and 

phase. An analytical study of the response was presented using matched asymptotic ex­

pansions. This teclmique is however applicable only within a small neighbourhood of the 

instability region, and various beating phenomena associated with the passage cannot be 

predicted by this approach. As shown by Nayfeh & Mook [1979], direct numerical integra­

tion of non-stationary amplitude-phase equations is perhaps the most convenient approach. 

This technique was also successfully used by Cveticanin [1991] , who analyzed the passage 

tlu·ough resonance in a textile machine rotor with variable mass. The amplitude ar and phase 

1/Jr governed by equations (4.56) are slowly varying functions, and the system can be solved 

numerically without difficulty using standard integration methods. The MATLAB ode23 
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solver based on an explicit Runge-Kutta (2, 3) pair of Bogacki and Shampine [Shampine, 

1994] is used to determine the solution in what follows . 

The accuracy of this solution and of the first approximation given by equation (4.S7) 

can be verified by comparison with the overall response obtained earlier from the system of 

equations (4.23). This comparison is shown in Figure IS , where passage through resonance 

region n = W 2 (that is for r = 2) in the Elandsrand system operating at the nominal hoisting 

velocity Vc = 16 r;- is illustrated. In Figure IS(a) the response envelope, determined as 

as = Y2 (L1 ' l) a2, is superimposed on the sheave response obtained from equation (4.6S). 

The rope dynamic tensions TSd at the sheave and T Md at the conveyance, calculated using 

the expansion (4.14) and equation (4.69), with superimposed tension envelopes are shown 

in Figure IS(b) and Figure IS(c) , respectively. The tension envelopes are determined from 

equation (4.69) using the single-mode representation (4.2S) together with the approximation 

(4 .S7), and are given by 

(4.71) 

where 

(4.72) 

(4.73) 

It can be seen that in the resonance region the single-mode solution approximates well the 

overall response and tension curves. 

Transition through the resonance region n = W2 is further illustrated in Figure 16. In 

Figure 16( a) the non-stationary frequency-response curves are shown, with the amplitudes 

a2 plotted against the detuning parameter (72, and in Figure 16(b) these amplitudes are shown 

against the vertical length (depth) Lv, for four winding velocities, namely Vc = 12,14, 16, 

and 18 m/ s. It should be noted, that these amplitudes represent directly the maximum sheave 

motions, as the resonant modes Yr in equation (4 .2S) are normalized to the unity at the sheave 
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end. It can be seen that the resonance region is reached at higher depths for lower values of 

the winding velocities, while the detuning parameter CY2 decreases when making a single 

passage tlu'ough zero. This is consistent with the frequency diagram shown in Figure 10, 

where the resonance regions for the corresponding velocities can be identified against the 

depth. The amplitudes start growing when the resonance region is approached, and near the 

resonance (CY r ~ 0) they increase rapidly, and decline afterwards due to damping, developing 

damped beat phenomena. The period of the beats decreases with time. It can be observed 

that the higher the winding velocity, the higher the maximum value of the corresponding 

amplitude. A different pattern of behaviour can be identified at the conveyance end, which 

is illustrated in Figure 17(a), and 17(b). In this figure, the conveyance amplitude envelope 

curves, determined as aM = Yr (Lo) l) a2, are represented against the frequency detuning 

parameter and against the depth, respectively. As one can see, in this case higher maximum 

values of amplitudes are recorded for lower winding velocities. 

The upper envelopes of the dynamic tensions, namely E cd of the catenary cable, ESd 

of the rope at the sheave and EMd at the conveyance, are plotted against the detuning pa­

rameter and the vertical length in Figures 18, 19 and 20. The catenary tension envelopes are 

determined using equation (4.70) where the single-mode solution (4.57) is applied, so that 

(4.74) 

The rope tension envelopes are found from equation (4.71). It is evident from the tension 

envelope plots that the tension amplitUdes increase rapidly during the passage through reso­

nance, declining slowly afterwards. Both in the catenary and in the vertical rope the tension 

amplitudes demonstrate the tendency to reach higher values for higher velocities. 



II 

4.6 Summary and Conclusions: Longitudinal Dynamics 66 

I I 
! . d/2 
I , ---1--' 
II ... . . . . . . . . . "\ . . . "c~~ss-over I Rd ~ 

.,. . .. .... ... . ,.. .- ------' 

-?J j -- - r- -H - . - . -
. d/2 .,. . . . ---t--,- t 

\ . cross-over , Rd ~ .,. . . . . . . . .. . ... , ... 

I I 

Figure 9. Cross-over zones of the Lebus system. 

4.6 Summary and Conclusions: Longitudinal Dynamics 

The overall longitudinal dynamic behaviour of a hoisting cable system is demonstrated in the 

numerical simulation of the double drum winder system at Elandsrand Gold Mine. The sim­

ulation results illustrate a transient response due to the acceleration/deceleration inertial load 

and passages through primary longitudinal resonances, when the frequency of the excitation 

due to a coiling mechanism at the winding drum coincides with the natural frequencies dur­

ing the cycle. Also, significant dynamic fluctuations in the cable tensions are predicted. The 

tension ratio across the sheave is close to the unity which indicates that frictional slip will 

not occur. 

The effect of transitions through the primary resonances is investigated using a com­

bined perturbation and numerical technique. A single-mode model is applied to represent 

the system during a passage through resonance. It accommodates the fundamental feature 

of the system, namely its non-stationary nature, and adequately represents the main type of 
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Figure 10. Longitudinal frequency curves for Elandsrand Mine winder, with horizontal 
lines denoting the frequency of excitation 0, corresponding to various nominal winding ve­
locities: Vc = 12 C' .), 14 (- . - ), 16 (--), and 18 (-) m/ s. 
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Figure 11. Longitudinal modal co-ordinates for Elandsrand Mine simulation at the nomi­
nal winding velocity 11:: = 16 m / s. 
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Figure 12. Longitudinal response of the Elandsrand system at the nominal winding veloc­
ity Vc = 16 mj s: (a) at the sheave; (b) at the conveyance. 
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Figure 13. Total cable tensions for Elandsrand Mine winder at the nominal velocity 
Vc = 16 m/s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; 
(c) the vertical rope tension T M at the conveyance; (d) the tension ratio across the sheave 
Tc/Ts. 
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Figure 14. Dynamic cable tensions for Elandsrand Mine winder at the nominal velocity 
Vc = 16 m/ s: (a) the catenary dynamic tension Ted; (b) the vertical rope dynamic tension 
TSd at the sheave; (c) the vertical rope dynamic tension T Md at the conveyance. 
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Figure 15. Overall response and dynamic cable tensons for Elandsrand Mine winder at 
the nominal velocity Vc = 16 m/ s with superimposed envelope curves obtained from the 
multiple scales model at the resonance region: (a) the sheave response; (b) the rope tension 
at the sheave; (c) the rope tension at the conveyance. 
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Figure 16. Non-stationary amplitude response during passage through resonance in Eland­
srand Mine system: (a) the frequency-response curves; (b) amplitudes against the vertical 
length, for the winding velocities Vc = 12 (- . ·),14 (- . -),16 (--), and 18 (--) m/ s. 
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Figure 17. Conveyance amplitude response during passage through resonance in Eland­
srand Mine system: (a) the non-stationary frequency-response curves; (b) amplitudes against 
the vertical length, for the winding velocities Vc = 12 ( .. ·),14 (-. -),16 (--), and 18 
(--) m/s. 
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Figure 18. Catenary dynamic tension envelopes during passage through resonance in 
Elandsrand Mine system shown (a) against the frequency detuning parameter; (b) against 
the vertical length, for the winding velocities Vc = 12 (- . . ), 14 (- . -) , 16 (--) , and 18 
(-) mls. 
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Figure 19. Sheave dynamic tension envelopes during passage through resonance in Eland­
srand Mine system shown (a) against the frequency detuning parameter; (b) against the ver­
tical length, for the winding velocities Vc = 12 (- . . ), 14 (- . -), 16 (--) , and 18 (-) 
mls. 
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Figure 20. Conveyance dynamic tension envelopes during passage through resonance in 
Elandsrand Mine system shown (a) against the frequency detuning parameter; (b) against 
the vertical length, for the winding velocities Vc = 12 (- .. ), 14 (- . -), 16 (--), and 18 
(-) mls. 
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vibration occurring in the system. The multiple scales method is used which leads to a sys­

tem of first order ordinary differential equations for the amplitude and phase of the response. 

These are slowly varying functions and the system can be solved numerically without diffi­

culty. The accuracy of this solution is verified against the overall response obtained from a 

numerical simulation of the original second order ordinary differential equations of motion. 

It is shown that the single-mode model approximates well the system in the main resonance 

regIOn. 

The analysis demonstrates that the main resonance is reached at higher depths for lower 

values of hoisting velocities. The amplitude plots reveal that the more rapid the passage 

through resonance, the smaller the maxima of the conveyance response, and the higher the 

maxima of the response at the sheave. The amplitudes decline after the passage due to 

damping developing beat phenomena. The dynamic cable tensions also grow rapidly during 

the passage, and reach higher levels for higher hoisting velocities. 



Chapter 5 
Non-Linear Interactions in a Hoisting Cable 

System 

The dynamic behaviour of hoisting cables demonstrates a strongly non-linear char­

acter which was reported in published research [Dimitriou & Whiller, 1979; Mankowski, 

1982; Constancon, 1993]. TIns non-linear behaviour includes ballooning or whip in long 

catenaries. Namely, conditions exist in mine hoist installations under wmch the lateral 

catenary motion becomes unstable and the cable begins to whirl like a jump rope. This 

phenomenon was observed also in many other string or cable systems [Nayfeh & Mook, 

1979]. 

A non-linear model of the catenary-vertical rope system is given in terms of the par­

tial differential equations (3.68), (3.69), and (3 .70). The source of non-linearity in this 

system is the large displacement catenary approximation, and therefore is geometric in na­

ture. Besides, the equations are defined over time dependent spatial domain rendering the 

problem non-stationary. Hence, the exact solution to this problem is not available, and 

recourse must be made to an approximate analysis. In what follows, the spatial varia­

tion of displacements is assumed in terms of the linear slowly varying undamped natural 

modes of the system, and the Rayleigh-Ritz procedure is employed to obtain non-linear, 

non-stationary, coupled second-order ordinary-differential equations describing the tempo­

ral behaviour. These equations are later analyzed numerically. 

79 
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5.1 Discrete Model 

The equations of motion (3.68), (3.69), and (3.70) can be discretised by applying the 

Rayleigh-Ritz procedure. Hence, the dynamic response of the catenary (lateral) system 

is approximated by the following expansions 
N Lat 

V = ~ <Pn(S, l)Pn(t), (5.1 a) 
n=l 
NLat 

~ <pn(s, l)qn(t) , (5.1b) 
n=l 

where Pn and qn are generalized (modal) coordinates, and <Pn, are linear free-oscillation 

modes of the corresponding undamped stationary system. The in-plane and the out-of-plane 

modes <Pn are assumed to be identical, and equivalent to those of a taut string, which in the 

co-ordinate system used are given as 

<Pn = Sin[~: (s - l)]. (5.2) 

The corresponding natural frequencies are defined as wn(l) = ~:c, where c = JT~l), 
with the mean tension T~ given by equation (3.36) An approximate dynamic response ofthe 

vertical (longitudinal) system is represented by the series (4.14), with the shape functions 

Y,1 defined by equation (4.15), and with the eigenvalues determined from the transcendental 

expression (4.16). 

The expansions (5.1 a) and (5.1 b) result in the following expressions for partial deriva­

tives of the lateral displacement functions 

(5.3) 

N Lat N Lat 

v,s = ~ <P~Pn' ill,s = ~ <P~qn, (5.4) 
n=1 n=1 

V,tt (5.5a) 
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W,tt (S.Sb) 

(S.6) 

N
1at (a<I>' . ) N

1at (a<I>' . ) 
ii,st = L at lpn + <I>~n ,W,st = L at lqn + <I>~qn , 

n=l n=l 

(S.7) 

Nl
at ( a<I>" . ) N

1at (a<I>" . ) 
ii,sst = L at lpn + <I>~Pn ,W,sst = L at lqn + <I>~qn . 

n=l n=l 

(S .8) 

where the primes denote partial derivatives with respect to s. 

By substituting the series (S.4) into the expression (3.S6) the discretised form of the 

catenary strain e can be obtained. This is accomplished by finding directly from the expan­

sions (S.1a) and (S.1b) that 

-2 
W,s 

N 1at N1at 

L LPiPj <I>~<I>~ , 
i =l j=l 

N 1at Nlat 

L L qiqj<I>~<I>~, 
i=l j=l 

(S.9a) 

(S.9b) 

so that, when the orthogonality properties of the lateral modes are applied, the following 

results 

(S.10) 

Noting also that 

ILl I Ll 
1 ii ,s = 1 W,s = 0, (S.11) 
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and applying the series (4.14) with the eigenfunctions (4.1S) to express the deflection at the 

sheave as U v (L1 ' t) = ~:,::~g Zn, the following expression for the catenary strain results 

1 N Long NLat 

e(t) = Fl(t) + L L Zn + L,B~(p~ + q~), 
c n=l n=l 

(S .12) 

where Fz(t) = L {2L [vl(t) + wr(t) ] - Ul(t) } , and,Bn = ~1"L · 
By substituting the expansions (S.3)-(S.8) together with the strain (S.12) into the differ­

ential equations of motion (3.68) and (3.69), and by applying the Rayleigh-Ritz procedure, 

the discretised lateral equations in the following form are obtained 

(S.13) 

(S .14) 

(k 1 ( A2) "2 A1Wk + Wk ' (S.lSa) 

mk ILl 
m 1 <p~ds, (S.lSb) 

Bkn ILl 8<p~ 
1 <Pkmds, (S.1Sc) 

Ckn 
ILl 8<pn 

m 1 <Pkmds, (S.1Sd) 

Dkn 
ILl 82<pn 

m 1 i!>k7Ji2ds, (S.lSe) 

Pk 
1 ILl - <PkFv(S, t)ds , (S.lSf) 

mk 1 
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1 j L
l Qk = - cI> kFw(S, t)ds. 

mk I 
(S.1Sg) 

Similarly, the nonlinear longitudinal equation of motion (3.70) is discretised by using 

the expansion (4.14) together with (S .l a), and (S.lb). Noting that this transforms equation 

(3.S8) into the form 

J,(t) = 2~, [~ n;' (p;' + q;') + vi + wi] , (S.16) 

the Rayleigh-Ritz method yields the following equation 

Zr + fJ,2Zr + WrZr - - m~ L..m=1 Tn - rn + S L c - m I n Zn-.. . 2 _ 1 ,\,N Long [2l'CV E AA M l' ( 1 ~ 2)] . 
~~ L~~i'9 (i2 D~n + i'c~n - EAiB~n + fJ, 2 iC~n + Msi2r n) Zn- (S.17) 

!~ [L~~{ {3~ (p~ + q~ ) + Fl(t)] + Zr, 

where r = 1, 2, . .. , N1ong , and the non-stationary coefficients m~, B~n' C~n' D~n' r n , Arn, 

and the excitation term Zr are defined by the expressions (4.24a)-(4.24g). 

The lateral coefficients and excitation terms (S.1Sb)-(S.lSg) can be determined di­

rectly, and are given as 

(S.18a) 

(S.18b) 

(S.18c) 

(S.18d) 

(S.18e) 

(S.18f) 
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The longitudinal coefficients and excitation terms appearing in the longitudinal equation 

(S.17) depend on the non-stationary eigenvalues Tn' and must be calculated numerically 

following the procedure outlined in Appendix B, as indicated earlier in Chapter 4. 

It should be noted that the lateral natural frequency in equations (S.13) and (S .14), 

as well as the longitudinal natural frequency and coefficients in (S.17) depend on the non­

stationary parameter l, and are varying slowly. Hence, their variation can be observed on 

a slow time scale, and following the formulation used Chapter 4 this scale is defined as 

T = cT, where c is a small parameter. T denotes the fast scale given by equation (4.28), 

and a variation of the generalized co-ordinates Pk, qk, and Zr are observed on this fast scale. 

By assuming that the damping is small, the longitudinal damping coefficients are ordered as 

in the expressions (4.36) and (4.37). Similarly, the lateral damping coefficients are arranged 

as 

so that 

(S.19a) 

(S.19b) 

(S.20) 

Therefore, by substituting the expressions (4.32)-( 4.3S) together with the time derivatives of 

the in- and out-of-plane temporal co-ordinates given as 

(S.21a) 

(S.21b) 

for k = 1,2, ... , N lat , respectively, into equations (S.13), (S.14), and (5.17), the following 

results 
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~ w ~ P ~ Ok 
where k = 1, 2, . . . ,Nlat , Wk = --1£., Pk = q, Qk = -:4 , and 

Wo Wo Wo 

where r = 1, 2, . . . , N1ong , Zr = ~, and 
. Wo 

112 dZr 

- Wo dT ' 

where A * (T) = f Lo 1I*y' Y" ds 
rn L1 ""'1 r n . 
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(5.22) 

(5 .23) 

(5.24) 

(5.25a) 

(5 .2Sb) 

(S .2Sc) 
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The discrete model equations (5.22)-(5.24) form a non-linear slowly varying ordinary­

differential equation system. It describes the interactions of lateral oscillations of the cate­

nary cable and of longitudinal oscillations of the vertical rope in the hoisting cable system. 

In the catenary (lateral) system a quadratic coupling between the lateral and the longitudinal 

modes exists, and a cubic coupling arises between the in- and out-of-plane lateral modes. In 

the vertical rope (longitudinal) system a quadratic coupling with the lateral modes results. 

The lateral and longitudinal natural frequencies change with time, and linear coupling terms 

due to the non-stationary nature of the natural modes arise. The lateral system equations 

contain parametric excitation terms. Terms representing the inertial load due to the axial 

transport motion, and the cross-over external excitation are present in both systems. 

5.2 Damping Parameters 

The equivalent proportional viscous damping has been assumed in the non-linear model to 

represent both the lateral and longitudinal overall damping effort in the system. The longitu­

dinal damping parameters have already been discussed and defined in the analysis presented 

in Chapter 4. The choice of the cable lateral damping parameters requires attention. 

There is not much published research available concerning the lateral damping in wire 

cables. The basic nature of internal damping in stranded structural cables and its influence 

on transverse vibration was studied by Yu [1952]. In this study, static and dynamic exper­

imental tests on 7-wire cable specimens were performed, from which the deformation and 

energy relationships were developed. It was established that interstrand dry friction is the 

main source of internal damping in wire cables, and energy dissipation per cycle (damping 

capacity) is a linear function of amplitude. Factors that may influence internal damping were 

also identified, namely, that the test results indicated the increase of damping capacity with 

the reduction of lay length; the increase of this capacity with the increase of number of wires 
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in strands of comparable sizes; and the reduction of the capacity with prestressing of cables 

over yield point. It was also shown that cables with wires in which the twist was formed 

before they were stranded together (preformed cables) possess less damping capacity that 

non-preformed ones. 

Vanderveldt, Chung & Reader [1973] also conducted damping studies in wire ropes 

of various types, and determined the lateral equivalent viscous damping coefficient from 

measurement of the logarithmic decrement. The results of this investigation showed that the 

damping coefficient increases with increasing axial load applied to the rope. It was concluded 

that this increasing tensile load contributes to the friction effects between individual wires 

and strands, and that Coulomb damping is responsible for a major portion of the equivalent 

damping coefficient. Furthermore, it was also established, that the geometry and construction 

of a wire rope has a significant influence on the damping coefficient. 

Irvine [1981] studied the dynamic response of a flat-sag suspended cable making pro­

vision for lateral viscous damping through modal damping, introduced in the discrete model 

of the cable. He stated that the internal damping in wire cables, represented by ),1 in (3.65), 

is affected by the lay of the strands and is usually small, resulting due to rubbing between 

individual wires. He quoted also that the internal damping could be expected to be larger 

in slack cables rather than in taut cables, with the corresponding damping ratios ( = 4 % 

and ( = 0.4 %, respectively. The air (external) damping, represented by ),2, was identified 

as negligible in still air, but as contributing substantially to the energy dissipation in strong 

winds, with the suggested damping ratio up to 4 %. 

Mankowski [1988] proposed an empirical formula for quantifying the damping mech­

anism occurring in mine hoisting cables undergoing non-planar lateral motion. He expressed 

the power dissipation in terms of the amplitude and frequency of vibration, the cable span, 

and two experimentally determined coefficients, namely the damping capacity coefficient, 

and the curvature characteristic. A mathematical relationship was developed that enabled 
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the amount of internal power loss due to damping to be assessed. Furthermore, it was es­

tablished that a critical cable curvature exists above which the internal power loss increased 

linearly with increasing amplitude-to-span ratio. The results of this research were extended 

and applied to assess the effects of internal friction occurring at the wavefront of travelling 

transverse disturbances on mine hoisting cable [Mankowski, 1990]. 

Constancon [1993] used this damping model and converted Mankowski's results into 

equivalent viscous damping coefficients, and consequently determined the corresponding 

equivalent damping ratios (, which were identified to be very small, namely ranging from 

0.007 % to 0.017 %. He indicated that aerodynamic effects may be significant in the lateral 

damping mechanism, and determined the corresponding equivalent viscous damping coeffi­

cients in terms of the air density, cable diameter and span, and the amplitude and frequency 

of vibration. The corresponding damping ratios were calculated for the same parameters as 

used by Mankowski, and were found to be between 0.04 % to 0.1 %. 

Due to the lack of any other reliable lateral damping data, Mankowski's test results 

are used as the basis of the lateral damping model in the present analysis. Consequently, the 

lateral damping is represented by ratios ( r in the equations of motion (5.13) and (5.14), and 

the order of these ratios is established following the calculations summarized in Appendix 

E. 

5.3 Excitation Definition 

The cross-over excitation represented by periodic functions VI (t), WI(t), and u[(t) is imparted 

to the system during the winding cycle. Typically a repetitive coiling pattern during a wind­

ing cycle in hoist systems is achieved via a symmetrical 1800 Lebus liner as discussed earlier 

and shown in Figure 9. 
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The lateral out-of-plane excitation Wl occurs due to a traverse motion of the cable 

in the cross-over zone across the drum through a distance of a half its diameter, relative 

to the entry position. As multiple layers are required to wind the cable, the direction of 

this motion is reversed after the layer change which represents a 1800 phase shift in the 

excitation relative to that of the previous layer. The cross-over excitation Vl in the lateral 

in-plane direction takes place on the second and higher layers, and represents a radial shift 

of the cable over underlying coils of the previous layer. An additional axial displacement 

relative to the nominal transport motion is also applied to the cable in the cross-over region. 

As stated earlier, this is a consequence of the increase in the axial velocity of the cable to 

compensate for the difference between the arc length covered through a cross-over, and that 

which would be covered without a cross-over. This effect is represented by the excitation 

component Ul. 

These excitation functions can be defined in terms of the geometry of the system and 

the transport velocity. Mankowski] 1982] proposed a definition by means of versine func­

tions. During the constant velocity phase the excitation functions are given by the following 

equations 

_ { ~vo [1 - cos(2vt)] , O:S t :S t{3 } 
Vl-

0, t{3 :S t :S T ' (5.26) 

Wl = { )wo [1 - cos(vt)] , O:S t :S t{3 }, 
2' t{3:St:ST 

(5.27) 

Ul = { ~uo [1 - cos(vt)] , O:S t :S t{3 } 
, UO(T-t)/(T-t{3 ), t{3 :St:ST ' 

where 710, Wo, and Uo are determined from the geometry of a cross-over as 

(5.28) 

710 = (n -1)(1- V;)d,n = 1,2,3, 4, (5.29) 

d 
Wo = 2' (5.30) 

(5.31) 
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Figure 21. Boundary excitation functions 

in which n denotes the layer number, d is the cable diameter, Rd is the drum radius, (3 is 

the angle defining the cross-over diametrical are, and where t{3 = (31 Wd, with Wd = Vel Rd , 

represents the duration of the cross-over pulse, T = 7r In, where 0, = 2Wd, is the period of the 

excitation, Vc denotes the nominal transport velocity, and v = 7r It{3. The boundary excitation 

functions for the values of d = 0.048 m, Rd = 2.14 m, Ve = 15 ml s, and (3 = 0.2 rad, are 

shown in Figure 21 
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5.4 Numerical Simulation and Results 

The non-linearly coupled equations (5.22)-(5.24) describing the temporal behaviour and in­

teractions in the catenary-vertical rope system, are of a complicated nature, and cannot be 

solved exactly. An approximate solution can be sought using asymptotic (perturbation) meth­

ods. However, the strictly non-stationary nature of this system, namely the fact that both the 

system parameters and excitation are time-varying, introduces a substantial complication to 

an asymptotic analysis of the system. This complication, combined with the non-linear na­

ture of the system, leads to involved algebraic manipulations, and to a situation intractable 

to perturbation analysis. Thus, a numerical analysis is applied in what follows in order to 

predict the dynamic behaviour of the system. 

In this analysis the system (5.22)-(5.24) is represented in the matrix form given by the 

equation 

y = A (T, T; c:) y + N (T, y) + F (T, T) , (5.32) 

where y = [pT, qT , ZT , pT, c{, :l7] T is the 2 (2Nlat + Nlong)-dimensional modal state vec­

tor, with p = [Pl ,P2" " ,PNl a JT, q= [Ql,Q2, .. . ,QNl aJT, and z = [Zl,Z2, ... ,ZN
lOng

]T, 

and dots denote differentiation with respect to fast time, A (T, T; c:) is 2 (2Nlat + Nlong ) 

x2 (2N1at + N1ong ) -dimensional slowly varying linear coefficient matrix, N (T, y) repre­

sents the 2 (2N1at + N1ong)-dimensional vector of non-linear coupling terms, and F (T, T) is 

the 2 (2N1at + N1ong)-dimensional external excitation vector. The non-stationary coefficient 

matrix is given as 

A (T, T; c:) = [ -K fT, T) -C ~T; c:) 1 ' (5.33) 

where 0 and I are (2Nlat + N1ong ) X (2Nlat + Nlong ) null and identity matrices, respectively, 

and K and Care (2Nlat + Nlong ) X (2Nlat + Nlong ) matrices. These matrices are defined as 

[ 

Klat (T, T) 
K (T,T) = 0 

o 

o 
Klat (T, T) 

o 
(5.34) 
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[ 

c lat ( T; c) 0 0] 
C(T;c) = 0 Clat(T;c) 0 

o 0 clong (T;c) 
(5.35) 

where Klat, Clat are diagonal N1at X Nlat matrices, and Klong, clong are diagonal N long X 

N10ng matrices. When terms 0 (c2) are neglected in equations (5.22)-(5.24), these matrices 

are determined as 

c
lat 

(T) = [Ck~;] = 2c { diag [C:Wk (T)] + ~~c [Ckn]} ) 

Klong (T) = diar [w; (T)J ) 

* clong (T) = [c;~ng] = c f.L2 1+ 
Wo 

c [lleV () EA A* I ( 1 Ms 2)] m~(T) 2 Tn T - Wo Tn + NIsI L c - m In ) 

where I is N long X N long identity matrix. The non-linear vector N ( T ) y) is given as 

where 

(5.36) 

(5 .37) 

(5.38) 

(5.39) 

(5.40) 

(5.43) 
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The excitation vector F is in the form 

F (T , T) = (5.44) 

5.4.1 The Kloof Gold Mine Winding System 

Problematic dynamic behaviour of hoisting cables was reported to occur during the normal 

operating conditions on the two main rock winders of No 1 Shaft of Kloof Gold Mine in 

South Africa [Dimitriou & Whillier, 1973 ; Mankowski, 1982; Constancon, 1993]. 

The Kloof winder is a double-drum Blair multi-rope (BMR) system with two con­

veyances (skips) attached via compensating sheaves on bridles. A schematic diagram show­

ing the arrangement of cables in this system is presented in Figure 22. In this installation 

the underlay cable 1 wound onto the underlay drum D1 passes over the headsheaves HI and 

H2 and supports the underlay skip 51, forming two catenary sections and two vertical ropes. 

Similarly, two catenaries and vertical ropes are formed by the overlay cable 2 wound onto 

the overlay drum D2 and supporting the underlay skip 52. Fundamental parameters of the 

system are summoned in Table 2 [Dimitriou & Whillier, 1973]. 

The dynamic behaviour of cables in the Kloofwinding plant were under regular obser­

vation over many years, and the vibration phenomena occurring in this system were recorded. 

Dimitriou & Whillier [1973] documented these observations and gave a thorough description 

of the cable vibrations during the ascending cycle, when a full conveyance was being raised. 

The parameters of modern mine hoist systems are similar to those of the Kloof arrangement, 

and the observations made by Dimitriou and Whillier are still pertinent. 
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Figure 22. Schematic arrangement of cables in the BMR Kloof winder [Dimitriou & 
Whi11 ier, 1973]. 
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Maximum hoisting velocity [7] 15 
Weight of skip and bridle [kN] 180 
Load on skip [kN] 165 ± 10 
Winder drum diameter [m] 4.27 
Sheave wheel diameter [m] 4.27 
Cable diameter [m] 48 x 10 -.1 

Cable linear density I ~ I 8.49 

Cable type 6-strand Lang's lay 
Number of layers on winder drum 4 
Length of catenaries A, B, C, D [m] 74.4, 79.6, 69.8, 75.3 
Maximum depth of wind [m] 2085 

Table 2. Fundamental parameters of No 1 Shaft Kloof Gold Mine winder. 
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Two distinct phases were identified, namely Phase 1 of duration approximately 20 s, 

starting when the conveyance is arow1d 900 m below the headsheave, which corresponds 

to about t = 110 s, and Phase 2 starting at the third to the fourth layer cross-over on the 

drum (at the depth of around 550 m) and ending at the top of the winding cycle. The main 

characteristics of the vibrations are as follows. 

1. Except during Phases 1 and 2 the catenary vibrations are of no clearly defined modes 

and are of small amplitudes. Smaller amplitudes and higher frequencies are recorded at 

higher depths, when the conveyance is near the bottom of the shaft. 

2. During Phase 1, the amplitudes increase and the second mode (full sine-wave) is clearly 

identified, both in the in-plane and out-of-plane motion of the catenaries. The amplitude 

of the out-of-plane vibration is usually larger and is judged to be of the order of 1 m. 

3. Sometimes these vibrations continue through Phase 2, with a gradual change in mode 

shape, but no appreciable change in amplitude. 

4. Lateral vibrations in vertical ropes also occur during Phase 1, and continue throughout 

Phase 2. The maximum amplitude of these vibrations is about 0.1 m. Photographic 

evidence exists which indicates that the main wavelength is approximately the same as 

the wavelength of the catenaries. The main frequency is estimated as 2 Hz. 
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Number of lateral modes Nlat 4 
Number of longitudinal modes Nlong 4 
Total winding cycle time [s] 156 
Acceleration/deceleration time [s] 19.7 
Nominal hoisting velocity Vc [~] 15 
Total hoisted mass M [kg] 17584 
Sheave wheel moment of inertia I I kgm"1.1 15200 
Winder drum radus Rd [m] 2.14 
Sheave wheel radius R [m] 2.13 
Coil cross-over arc f3 [rad] 0.2 
Cable diameter d [m] 48 x 1O-.j 

Cable linear density m I ~ I 8.4 

Cable effective steel area A Im"1.1 1.028 x 10 -3 

Cable effective Young's Modulus E I:!!i 1 1.1 X 1011 
Catenary length Lc [m] 74.95 
Maximum depth ofwinding Lv max [m] 2100 
Lateral modal damping ratio ( % 0.05 
Relative damping coefficient III [s] given by (4.58) 
Absolute damping coefficient 112 Is .1 1 0.159 

Table 3. Kloof Simulation Parameters 

5. At times, at the beginning of Phase 2, the in-plane catenary vibrations reach amplitudes 

exceeding 2 m. It was recorded that this motion exhibits the first mode shape pattern. 

6. The reduction of the winding velocity from 15 mj s to 14 mj s at the beginning of Phase 

1 is sufficient to decrease significantly the amplitude of vibrations throughout both 

Phase 1 and Phase 2. 

7. None of the above vibration phenomena were observed during the descending winding 

cycle. 
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5.4.2 Kloof Simulation Model 

The parameters of one of the Kloof winders are chosen in the numerical simulation of equa­

tions (5.22)-(5.24), and are presented in Table 3. It should be noted that a single overlay, or 

underlay, arrangement with one conveyance is analyzed in what follows. In this model a sin­

gle equivalent catenary and equivalent vertical rope, supporting one half of the full weight 

of the conveyance, represent the two actual catenaries and two vertical ropes. An ascending 

cycle of this equivalent cable system is considered. Both the longitudinal and lateral natu­

ral frequencies of the system vary slowly during this cycle, as shown in Figure 23. The first 

four longitudinal and lateral natural frequencies of the system are plotted versus the vertical 

rope length, and the first and the second harmonics of the excitation frequency at the nominal 

winding velocity Vc = 15 m/ s together with the cable layer change locations are shown in 

this figure. The longitudinal frequencies increase, and the lateral frequencies decrease, with 

the decreasing length of the rope, and conditions arise for primary longitudinal and lateral 

resonances, as well as for combination, internal (autoparametric) and parametric resonances 

during the up-wind. 

It must be noted that the natural modes are widely spaced throughout the entire wind­

ing cycle, and the that system is stiff. Thus, an appropriate integration strategy is required in 

the numerical simulation, as discussed earlier in Section 4.5. Thus, equation (5.32) is coded 

in a MATLAB ODE file (the code is presented in Appendix F), and the ode15s stiff solver 

function is applied to the problem. The solver is invoked with the numerical differentiation 

formulas (NDF's) chosen to implement the integration. The relative accuracy tolerance Rel­

Tal = 10- 4 and the default absolute error tolerance AbsTol = 10-6 are used to monitor and 

control the error of each integration step. In order to improve the efficiency of the calcula­

tions the total time span of the simulation is broken into a number of smaller pieces9• The 

9 The solver uses as many time points as necessary to produce a smooth solution. If the ODE function 
changes on a time scale that is very short compared to the simulation time span, then the solver will use a large 
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natural frequencies, the time-varying coefficients, and the excitation parameters are deter­

mined in advance and are made available in look-up tables as functions of length l. The 

actual values of these non-stationary characteristics are determined at each step of the inte­

gration by means of the linear interpolation. 

5.4.3 Kloof Simulation results 

Nominal winding velocity 

The primary simulation results for an ascending cycle with the nominal winding ve­

locity Vc = 15 m/ s are presented in Figures 64-66, and assembled in Appendix G. These 

results have been further processed, and the resulting graphs are shown in Figures 24-38. 

The modal phase space trajectories with associated power spectra are illustrated in Figures 

24-32. The displacement response plots are given in Figure 33 , where the lateral motions at 

the first quarter point of the catenary cable, and the longitudinal motions at the sheave and 

at the conveyance vs. the vertical length are presented. The whirling motion of the catenary 

cable is further illustrated in Figures 34-36. The lateral motion at the first quarter point of 

the catenary against the vertical length is presented in Figure 34. The trajectory ofthis point 

is illustrated in more detail in eight different time windows in Figures 35-36. The total cable 

tension plots vs. the vertical length, together with the tension ratio across the sheave plot, 

are shown in Figure 37. This is followed by the dynamic cable tension plots given in Figure 

38. 

The simulation results demonstrate the dynamic phenomena occurring during the wind. 

When the conveyance accelerates from the bottom of the shaft, the acceleration inertial load 

results in a transient response, evident in the longitudinal modal co-ordinate plots and in the 

number of time steps. This is the case in the present problem, as the simulation time span of the entire winding 
cycle is long, and for the nominal velocity of Vc = 15 m/ s it exceeds 156 s. 
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longitudinal displacement plots. A similar effect can be noted when the conveyance is decel­

erated to rest at the end of the wind. The effect of transition from the acceleration phase to 

the constant velocity phase, and from the constant velocity phase to the deceleration phase, 

is clearly visible as a rapid change in the mean value of the longitudinal response. The cate­

nary response is planar between the start of the wind and the first layer change, evident in the 

in-plane lateral response at approximately Lv = 1600 m. The longitudinal co-ordinates and 

displacements exhibit drifts in agreement with the overall lateral out-of-plane cable motion 

across the winding drum. This means that the longitudinal motions digress in a negative di­

rection during the first layer, and go off in the opposite during the second layer. This pattern 

repeats itself throughout the wind. 

Taking into consideration the quadratic coupling between the longitudinal and lateral 

modes, and the cubic coupling between the in- and out-of-plane lateral modes, a number of 

resonance conditions arise during the wind. One-to-one (1 : 1) lateral internal resonances 

occur throughout the wind since the in- and out-of-plane lateral natural frequencies are the 

same. Upon close examination of the frequency chart given in Figure 23, one can notice 

that interesting frequency tunings occur in the depth region Lv = 900 - 700 m. At the 

depth Lv ~ 900 m the fourth longitudinal and the second lateral natural frequencies are 

in the ratio 2 : 1, and a two-to-one (W4 ~ 2(2 ) internal resonance condition takes place. 

A primary external resonance exists simultaneously with this condition, since at this level 

the second harmonic of the Lebus cross-over motion directly excites the fourth longitudinal 

mode ([22 = W4). 

Furthermore, at the depth Lv ~ 750 the second longitudinal frequency is near twice 

that of the first lateral natural frequency (W2 ~ 2Wl), so that another two-to-one internal 

resonance arises. At the same, time the second longitudinal frequency is tuned closely to 

the second lateral frequency (W2 ~ ( 2), implicating also a one-to-one internal resonance. At 

this depth the model is also involved in primary external resonances, since the first harmonic 
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of the cross-over excitation is near the second longitudinal natural frequency and the second 

lateral frequency ([21 ~ W2 ~ (2), and also the second harmonic of the excitation is near the 

fourth lateral natural frequency ([22 ~ ( 4). Principal parametric resonances of the first and 

of the second lateral modes occur at the same time, namely the resonances [21 ~ 2W1 and 

[22 ~ 2W2, and also the summed combination resonance [22 ~ W2 + W2 exists. In addition 

to these conditions, the primary resonances [21 ~ W3 at Lv ~ 1550 m, and [22 ~ W3 at 

Lv ~ 500 m occur during the wind. 

The response plots vs. the depth Lv along with phase plots and associated frequency 

power spectra illustrate the problematic dynamic behaviour of the system, when a passage 

through the regions of instability occurs due to the above resonance conditions. The funda­

mental excitation frequency corresponding to the nominal winding speed of 15 mj sis 2.23 

H z, and this frequency together with its harmonics are evident in the system response, as 

shown in the power spectra presented in Figures 24-32. The associated phase portraits show 

crossings/twisting of the phase trajectories demonstrating the complexity of the motions. 

Considering the depth region Lv = 1000 - 800 m, the primary resonance [22 = W4 

is apparent in the fourth longitudinal modal co-ordinate plot of Figure 66, and in the power 

spectrum presented in Figure 26. At the same time, a passage through the autoparametric 

resonance W4 ~ 2W2 of the second lateral mode shows in the corresponding lateral co­

ordinate response plots. 

In the depth region Lv = 800 - 600 m large lateral motions and substantial longitudinal 

response occur. At this stage of the winding cycle, the system passes through the primary 

resonances [21 ~ W2 ~ W2 and [22 ~ W4 . It should be noted that the out-of-plane lateral 

motions are strongly excited, with the in-plane excitation being much smaller throughout 

the wind. It is interesting to observe that in this instability region the second mode of the 

in-plane response continues to grow after the out-of-plane response has reached its peak 

value. Hence, it is evident that the large in-plane response is a direct consequence of the 
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auto parametric 1 : 1 resonance and of the energy exchange between the lateral modes, with 

the out-of-plane motion being essentially a parametric excitation for the in-plane motion. 

The lateral response remains large beyond the 600 m depth level, due to cascading 

energy exchanges among the modes. This is evident from a visual inspection of response 

plots shown in Figure 33, and also from the illustration of the tubular motion at the first 

quarter point of the catenary given in Figure 34. The trajectory plots of lateral motion at 

this point presented in Figures 35-36 show that up to the level Lv ~ 1000 m the catenary 

response is small. Afterwards it grows, and in the region of approximately 800 - 600 m the 

cable begins to whirl, and consequently a full ballooning motion is developed in the region 

of 600 - 400 m, which persists till the end of the simulation. 

The dynamic behaviour of the system is further demonstrated in the cable tension plots. 

From an inspection of the total cable tension plots given in Figure 37, it is evident that the 

mean catenary tension and the mean vertical rope tension at the sheave decrease during the 

up-wind due to the decreasing length of the vertical rope. Significant oscillations in the 

tensions occur at the beginning of the ascending cycle. These oscillations, caused by the 

initial acceleration inertial load, are of low frequency and become small after approximately 

1500 m depth level. Large tension fluctuations begin to take place from the 1000 m level and 

continue till the end of the wind. They result due to the non-linear modal interactions and 

resonance phenomena occurring in the system. It should be noted, however, that the tension 

ratio across the sheave does not exceed the limits for no slip \0. The tension oscillations are 

better illustrated in Figure 38. It can be seen that the most severe tension oscillations occur 

in the catenary cable, and are caused by large lateral motions of this cable. 

10 Following the considerations presented earlier in Subsection 4.5.1, these limits can be assumed as [0.5559, 
1.8023]. Consequentely, the model assumptions are not violated during the simulation. 
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Figure 23. Longitudinal frequency W n (- . -) and lateral frequency wn (--) curves for 
KloofGold Mine winder (ascending cycle), with horizontal lines (--) denoting the first and 
the second harmonics of the excitation frequency at the nominal winding velocity Vc = 15 
m / s. Vertical lines (- . . ) indicate the layer change locations. 
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Figure 24. Phase space trajectories and the power spectra of the catenary lateral in-plane 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 mj s within the interval 
Lv = 1000 - 800 m 
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Figure 25. Phase space trajectories and the power spectra of the catenary lateral 
out-of-plane modal co-ordinates during the ascending Kloof cycle at Vc = 15 mj s within 
the interval Lv = 1000 - 800 m. 
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Figure 26. Phase space trajectories and the power spectra of the veliical rope longitudinal 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within the interval 
Lv = 1000 - 800 m. 
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Figure 27. Phase space trajectories and the power spectra of the catenary lateral in-plane 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within the interval 
Lv = 800 - 600 m. 
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Figure 28. Phase space trajectories and the power spectra of the catenary lateral 
out-of-plane modal co-ordinates during the ascending Kloof cycle at Vc = 15 mj s within 
the interval Lv = 800 - 600 m. 
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Figure 29. Phase space trajectories and the power spectra of the vertical rope longitudinal 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within the interval 
Lv = 800 - 600 m. 
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Figure 30. Phase space trajectories and the power spectra of the catenary lateral in-plane 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m / s within the interval 
Lv = 600 - 400 m . 
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Figure 31 . Phase space trajectories and the power spectra of the catenary lateral 
out-of-plane modal co-ordinates during the ascending Kloof cycle at Vc = 15 m / s within 
the interval Lv = 600 - 400 m. 
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Figure 32. Phase space trajectories and the power spectra of the vertical rope longitudinal 
modal co-ordinates during the ascending Kloof cycle at Vc = 15 m/ s within the interval 
Lv = 600 - 400 m. 
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Figure 33. Displacement response ofKloofMine winding cables for Vc = 15 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; longitudinal 
responses (c) at the sheave and (d) at the conveyance. 
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Other Winding Velocity Regimes 

Changes in the winding velocity can shift the resonance locations. Hence, the winding 

velocity is the most important parameter of the system. In order to investigate and to predict 

the system response under various winding velocity regimes simulations were carried out for 

other than the nominal velocity values. 

The simulation results for the winding velocity Vc = 14 mj s are presented in Figures 

70-72 in Appendix G. The corresponding linear frequency map, showing the relationship 

between the natural frequencies of the system, and the first two harmonics of the cross-over 

excitation, is given in Figure 43. The actual displacements in the system are presented in 

Figures 44. As one can observe, the system develops a large dynamic response after a depth 

of approximately 500 m . An inspection of the linear frequency map reveals that at a depth of 

Lv = 400 m the second lateral mode is tuned to the fundamental harmonic of the excitation, 

and simultaneously the fourth lateral mode is tuned to the second harmonic of the excitation. 

Hence, the primary resonances ['21 ~ W2 and ['22 ~ W4 take place. Since the second lateral 

natural frequency is twice the first lateral natural frequency (W2 = 2(1), and the fourth lateral 

natural frequency is twice the second lateral natural frequency (W4 = 2(2) , the catenary 

cable is simultaneously involved in the principal parametric resonances ['21 ~ 2W1 and ['22 ~ 

2W2. Autoparametric interactions between the in- and out-of-plane lateral modes also occur, 

and these resonance conditions produce large catenary ballooning motions. As one can see 

from plots given in Figures 44 and 45, the amplitudes of these motions approach 1 m. This 

large lateral catenary response affects the longitudinal response significantly. This effect 

can be observed in the first, the second and in the third modal longitudinal co-ordinate plots 

presented in Figure 72, and in the displacement response at the sheave and at the conveyance 

shown in Figure 44. Besides, passages through longitudinal primary resonances occur during 

the wind. In particular, the third longitudinal mode is directly activated by the fundamental 
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Figure 34. Lateral cable motion at the first quarter point of the catenary in the Kloof sys­
tem at Vc = 15 mls. 
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harmonic of the excitation at the depth level Lv ;:::j 1700 m, and later by the second harmonic 

of the excitation at Lv ;:::j 550 m. Also, at Lv ;:::j 1000 m the fourth longitudinal mode 

tunes to the second harmonic of the excitation, and at Lv ;:::j 800 m the second longitudinal 

mode tunes to the fundamental harmonic of the excitation. To conclude this set of results, 

the total cable tension plots are presented in 46. As expected, significant oscillations in the 

cable tensions arise in the catenary resonance region. However, the limits for no slip are not 

exceeded. 

The frequency relationship map for a winding cycle with the velocity Vc = 16 m/ s 

is shown in Figure 47. This is followed by the simulation results given in Figures 48-50. 

The primary and parametric catenary resonances are shifted towards the halfway depth level, 

and occur at Lv ;:::j 1150 m . As in the previous simulations, amplitude modulated whirling 

motions result, which promote a significant longitudinal response at the sheave. The system 

also passes through a number of primary longitudinal resonances, which are noticeable in 

the tension plots. However the tension ratio across the sheave remains within the no slip 

range. 

Interesting dynamic phenomena can be observed when the winding velocity is in­

creased to 18 m / s. The frequency map given in Figure 51 shows that the catenary reso­

nance is then shifted further towards the beginning of the wind, and takes place at a depth 

of Lv ;:::j 2000 m, during the initial acceleration phase. At this level the system has not yet 

reached the full winding speed, and the resonance phenomena are delayed until the level of 

approximately 1900 m is attained. This is evident from the response plots presented in Fig­

ures 52-54. As one can see, large catenary whirling motions are developed which exceed 

1 m. These motions coincide with a significant longitudinal response at the sheave, and at 

the conveyance. Large dynamic tension fluctuations arise, and the tension ratio across the 

sheave exceeds the limits for no slip condition in the depth region Lv ;:::j 800 - 1200 m . 
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Catenary resonance can be avoided throughout the main part of the ascending cycle 

if the winding velocity is further raised. This is illustrated in Figure 55, where the system 

frequency map for a velocity of 19.5 m/ s is presented. The simulation results for this case 

are shown in Figures 56-58. It can be noticed that the system response remains small for 

the most part of the wind, with an increase taking place only at the end of the cycle. This 

increase can be attributed to the fact that at the end of the wind the fundamental harmonic of 

the excitation becomes close to the third lateral natural frequency, namely is 0 1 ~ W3. Also, 

several longitudinal resonances occur during the wind and are manifested in the longitudinal 

modal co-ordinate plots. It is not possible to evade the longitudinal resonances within the 

winding cycle, and they contribute to the cable tension fluctuations, as can be seen in Figure 

58 . 

It is evident from the results for Vc = 14, 15, 16 and 18 m/ s that when the even lateral 

modes are resonant at some stage of the wind, a large response occurs in the system. In the 

Kloof installation this can be avoided if the velocity is increased above 19 m/ s. However, 

if the winding velocity is lowered, for example to 12 m/ s, only the third lateral mode is 

directly excited by the second harmonic of the excitation at a depth of approximately 1200 

m , as can be seen in Figure 39. The simulation results for this winding velocity are presented 

in Figures 40-42, and, as one can notice, the response remains small throughout the wind. 
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Figure 35. The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloof system at Vc = 15 m/s: (a) Lv = 1600 - 1400 m, (b) 
Lv = 1400 - 1200 m, (c) Lv = 1200 - 1000 m, (d) 1000 - 800 m. 
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Figure 36. The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloof system at Vc = 15 m/ s - continued: (a) Lv = 800 - 600 
m, (b) Lv = 600 - 400 m, (c) Lv = 400 - 150 m, (d) 150 - 60 m. 
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Figure 37. Total tensions in Kloof Mine winding cables at the nominal velocity Vc = 15 
m / s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; (c) the 
vertical rope tension TM at the conveyance; (d) the tension ratio across the sheave Tc/Ts. 
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Figure 38. Dynamic tensions in Kloof Mine winding cables at the nominal speed Vc = 15 
m/ s: (a) the catenary dynamic tension Ted; (b) the vertical rope dynamic tension TSd at the 
sheave; (c) the vertical rope dynamic tension T M d at the conveyance. 
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Figure 39. Longitudinal frequency W n ( - . - ) and lateral frequency w n (-) curves for 
Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) denoting the first 
and the second harmonics of the excitation frequency at the winding velocity Vc = 12 m / s. 
Vertical lines ( ... ) indicate the layer change locations. 
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Figure 40. Displacement response of Kloof Mine winding cables for Vc = 12 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; longitudinal 
responses (c) at the sheave and (d) at the conveyance. 
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Figure 41. The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloof system at Vc = 12 m/ s: (a) Lv = 1600 - 1400 m , (b) 
Lv = 1400 - 1000 m , (c) Lv = 1000 - 400 m , (d) 400 - 70 m. 
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Figure 42. Total tensions in Kloof Mine winding cables at the winding velocity Vc = 12 
m/s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; (c) the 
vertical rope tension TlVJ at the conveyance; (d) the tension ratio across the sheave Tc/Ts . 
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Figure 43. Longitudinal frequency W n (- . -) and lateral frequency wn (--) curves for 
Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) denoting the first 
and the second harmonics of the excitation frequency at the winding velocity Vc = 14 m/ s. 
Vertical lines ( . .. ) indicate the layer change locations. 
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Figure 44. Displacement response ofKloofMine winding cables for Vc = 14 m/ s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; longitudinal 
responses (c) at the sheave and (d) at the conveyance. 
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Figure 45 . The trajectory of the first quarter point of the catenary during various stages 
of the ascending cycle in the Kloof system at Vc = 14 m/ s: (a) Lv = 800 - 600 m, (b) 
Lv = 600 - 400 m, (c) Lv = 400 - 150 m, (d) 150 - 60 m. 
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Figure 46. Total tensions in Kloof Mine winding cables at the winding velocity Vc = 14 
m / s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; (c) the 
vertical rope tension TM at the conveyance; (d) the tension ratio across the sheave Tc/Ts. 
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Figure 47. Longitudinal frequency Wn (- . -) and lateral frequency wn (--) curves for 
Kloof Gold Mine winder (ascending cycle), with horizontal lines (--) denoting the first 
and the second harmonics of the excitation frequency at the winding velocity Vc = 16 m/ s. 
Vertical lines ( ... ) indicate the layer change locations. 
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Figure 48. Displacement response of Kloof Mine winding cables for Vc = 16 m/ s: lateral 
(a) in-plane and (6) out-of-plane motions at the first quarter of the catenary; longitudinal 
responses (c) at the sheave and (d) at the conveyance. 
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Figure 49 . The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloof system at Vc = 16 m/s: (a) Lv = 1200 - 1000 m, (b) 
Lv = 1000 - 800 m, (c) Lv = 800 - 600 m, (d) 600 - 400 m. 
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Figure 50. Total tensions in Kloof Mine winding cables at the winding velocity Vc = 16 
m/ s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; (c) the 
vertical rope tension TM at the conveyance; (d) the tension ratio across the sheave Tc/Ts. 



5.4 Numerical Simulation and Results 

40 ,----,-.--------~------_,--------,_------_,1 

35 

25 

15 

10 

5 

0 
70 

\ 

\ 

\ 

---~~-~--~---------
\ : 

\ 

\ . 

\ : 

\ 
\ 

, . 
" 

\ 

\ 

\ 

'\ 

'\ 

, , 
' . 

'. 
- - - - ~ - - - - - - ~- - --- - - ---='-_. -' 

' . 
'\ 

, 
, 

, 
"- , 

:, 

, 
_. 

-
'\ 

, 

" - . 

400 800 1200 1600 2000 
L v [m] 

134 

Figure 51. Longitudinal frequency Wn (- . -) and lateral frequency wn (-) curves for 
Kloof Gold Mine winder ( ascending cycle), with horizontal lines (- -) denoting the first 
and the second harmonics of the excitation frequency at the winding velocity Vc = 18 m/ s. 
Vertical lines ( ... ) indicate the layer change locations. 
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Figure 52. Displacement response ofKloofMine winding cables for Vc = 18 m / s: lateral 
(a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; longitudinal 
responses (c) at the sheave and (d) at the conveyance. 
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Figure 53. The trajectory of the first quarter point of the catenary during various stages of 
the ascending cycle in the Kloof system at Vc = 18 m / s: (a) Lv = 1600 - 1400 m, (b) 
Lv = 1400 - 1200 m, (c) Lv = 1200 - 1000 m, (d) 1000 - 800 m. 
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Figure 54. Total tensions in Kloof Mine winding cables at the winding velocity Vc = 18 
m / s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; (c) the 
vertical rope tension TM at the conveyance; (d) the tension ratio across the sheave Tc/Ts. 
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5.4.4 Elandsrand Simulation 

The non-linear response of the Elandsrand Mine winding cables, with parameters presented 

earlier in Table 1, has also been simulated. The results for the nominal ascending cycle 

with a winding velocity of 16 mj s are presented in Figures 60-61. It is evident from the 

frequency plot given in Figure 59 that the second harmonic of the excitation is near the 

third lateral frequency at approximately Lv ~ 800 m. This resonance does not produce a 

significant increase in the response, as can be seen in the lateral co-ordinate plots and in the 

displacement response plots. However, at the begilming of the wind a passage through the 

fundamental lateral resonance takes place, which can observed in the out-of-plane response 

curves. The effects of this resonance are damped out soon and, in general, the response is 

small throughout the main part of the cycle. It is interesting to observe a significant growth 

in the fundamental in-plane lateral mode at the end of the wind. Rope tension fluctuations 

occur due to the passage through the longitudinal resonances, but the limits for no slip across 

the sheave are never reached. Hence, the wind can be mostly considered as trouble-free, and 

this resembles the Kloof cycle at the winding velocity 12 mj s, when also a passage through 

the third lateral resonance occurred, but large catenary amplitude modulated motions and 

energy exchanges were absent. 

5.5 Summary and Conclusions: Non-Linear Interactions 

The results of numerical simulations of a number of ascending cycles for the non-linear 

model of a hoisting cable system, based on the parameters of the KloofMine winding plant, 

show a vast range of interesting and potentially dangerous non-linear dynamic phenomena. 

The nominal cycle simulation with winding velocity Vc = 15 mj s demonstrates prob­

lematic dynamic behaviour from the depth level of approximately 900 m. The results of 
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this simulation principally corroborate the observations recorded during the operation ofthe 

Kloof winding plant presented earlier in Subsection 5.4.1. The adverse dynamic behaviour 

of the system is caused largely by the primary catenary even (second and fourth) resonances, 

and by the autoparametric interactions between the in- and out-of-plane catenary modes. 

Principal parametric resonances of the lateral modes also occur, and conditions for autopara­

metric interactions between the lateral and longitudinal modes arise. Additionally, a tran­

sition through a number of primary longitudinal resonances takes place during the wind. It 

should also be noted that the adverse dynan1ic motions in the system promote large oscilla­

tions in the cable tension. These oscillations must be considered significant with respect to 

fatigue of the cable. 

The phase space trajectories and associated power spectra further illustrate the com­

plexity of motions during passages through the resonance regions. A more advanced analyt­

ical analysis would be required to predict and to investigate possible bifurcation phenomena 

arising during the slow transitions across the points of dynamic instability. Many inter­

esting dynamic phenomena have recently been reported as occurring in resonant motions 

of strings which can be pertinent to the catenary dynamic behaviour. These include torus 

doubling bifurcations and the destruction of the torus, leading to a strange attractor, and to 

chaotic vibrations [Johnson & Bajaj, 1988; Molteno & Tufillaro, 1990, O'Reilly & Holmes, 

1992]. However, the non-stationary nature of the catenary-vertical rope system complicates 

the problem significantly, as the bifurcations do not occur at the bifurcation points in the 

stationary response: they are delayed [Raman, Bajaj & Davies, 1996]. 

When the winding velocity is changed the resonance locations are shifted. The simu­

lation of the winding cycle at 14 m/ s demonstrates that the primary catenary resonances are 

moved towards the end of the wind, and thus the catenary response is decreased throughout 

the main part of the cycle. The strategy of decreased winding velocity had often been applied 

in practice in the Kloof winding installation, as reported in the observations documented by 
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Dimitriou & Whillier [1973]. However, the simulation predicts large catenary whirling mo­

tions at the end of the wind. The simulation results for 16 m/ sand 18 m/ s further clarify 

the role of the location of the primary catenary resonances, and confirm the autoparametric 

nature of the system. Hence, it is evident that the catenary resonances can be avoided, to a 

large extent, if the winding velocity is increased to an appropriate level. For example, in the 

Kloof winding plant a velocity of about 19.5 m / s could be applied on the ascending cycle 

in order to achieve suitable resonance shifts. The simulation results for this velocity confirm 

the benefits of this strategy. 

The Kloof simulation with the winding velocity decreased to 12 m / s demonstrates 

that the adverse dynamic response of the system can be largely suppressed if the even lateral 

primary resonances are avoided during the wind. This is further confirmed in the Elandsrand 

Mine parameter simulation at the nominal velocity of 16 m/ s. In both cases only third 

lateral modes are directly excited during the constant velocity phase of the up-wind. It is 

known that the Elandsrand system have not experienced major vibration problems during its 

nominal operational regimes, and this corroborates the simulation results. 
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Figure 55. Longitudinal frequency W n (- . -) and lateral frequency wn (--) curves for 
Kloof Gold Mine winder ( ascending cycle), with horizontal lines (- -) denoting the first 
and the second harmonics of the excitation frequency at the winding velocity Vc = 19.5 
m / s. Vertical lines ( .. . ) indicate the layer change locations. 
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Figure 56. Displacement response of Kloof Mine winding cables for Vc = 19.5 m / s: lat­
eral (a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; longitudinal 
responses (c) at the sheave and (d) at the conveyance. 
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Figure 57. The trajectory of the first quarter point of the catenary during various stages 
of the ascending cycle in the Kloofsystem at Vc = 19.5 m/s: (a) Lv = 800 - 600 m, (b) 
Lv = 600 - 400 m, (c) Lv = 400 - 150 m, (d) 150 - 70 m. 
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Figure 58. Total tensions in Kloof Mine winding cables at the winding velocity Vc = 19.5 
m/s : (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; (c) the 
vertical rope tension TM at the conveyance; (d) the tension ratio across the sheave Tc/Ts. 
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Figure 59. Longitudinal frequency W n (- . -) and lateral frequency wn (-) curves for 
Elandsrand Gold Mine winder (ascending cycle), with horizontal lines (--) denoting the 
first and the second harmonics of the excitation frequency at the winding velocity Vc = 16 
m / s. Vertical lines (- .. ) indicate the layer change locations. 
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Figure 60. Displacement response of Elandsrand Mine winding cables for Vc = 16 m/ s : 
lateral (a) in-plane and (b) out-of-plane motions at the first quarter of the catenary; longitu­
dinal responses (c) at the sheave and (d) at the conveyance. 
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Figure 61. Total tensions in Elandsrand Mine winding cables at the winding velocity 
Vc = 16 m/s: (a) the catenary tension Tc; (b) the vertical rope tension Ts at the sheave; 
(c) the vertical rope tension T M at the conveyance; (d) the tension ratio across the sheave 
Tc/Ts. 



Chapter 6 
Conclusion 

6.1 Summary of Conclusions of Preceding Chapters and 
Final Recommendations 

An extensive analytical and numerical dynamic analysis of hoisting cable systems is ,pre­

sented in this thesis. The emphasis is put on the non-stationary nature of these systems, 

with hoisting cables being treated as one-dimensional continua with slowly varying length, 

which have been introduced in Chapter 2. Thus, hoisting installations are represented 

as non-stationary oscillatory systems with slowly varying natural frequencies and mode 

shapes. Furthermore, non-stationary characteristics of excitations in these systems are also 

accounted for in the numerical studies. This non-stationary aspect is important in mine 

hoist systems where a mechanism applied on the winder drum surface to ensure a uniform 

coiling pattern forms a source of cross-over excitation, which consists of lateral and lon­

gitudinal pulses. The frequency of these pulses varies during the acceleration/deceleration 

phases, as it is directly related to the drum frequency. Also, the phase of this excitation is 

altered by 1800 following the layer change, when the rope changes its traverse direction. 

Following the concepts introduced by Goroshko & Savin [1971] and using the clas­

sical moving frame approach, the non-stationary parameters of hoisting cable systems are 

accounted for via a slowly varying length parameter l representing a time-varying length 

of the cable section coiled onto the winder drum. Applying the Lagrangian representation 

of motion an original mathematical model of a typical industrial hoisting cable installa­

tion has been derived and formulated in Chapter 3. This non-linear dynamic model of the 
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catenary-vertical rope system describes the lateral motions of the catenary cable, coupled 

with the longitudinal motion of the vertical rope, when acted upon by an inertial load due 

to the transport motion, and subjected to boundary cross-over excitation. 

This formulation has a number of advantages, and has facilitated an extension of the 

research work conducted by Mankowski [1982] and Constancon [1993] to simulate the dy­

namic behaviour of cables in deep mine hoist winding plants. The use of the Lagrangian rep­

resentation rather than the Eulerian representation of motion has simplified substantially the 

partial differential equations of motion of the system. The introduction of the non-stationary 

parameter I has enabled the non-stationary effects in the system, due to the time-varying 

natural frequencies and mode shapes, to be efficiently accounted for. Furthermore, the de­

pendency of the longitudinal damping parameters on the mean tension of the vertical rope 

has been accommodated in the analysis. 

A simplified longitudinal model of the hoisting system has been analyzed in Chapter 4. 

This model enables one to investigate the longitudinal uncoupled non-stationary response of 

the system, and to study passages through primary resonances which occur during a winding 

cycle. The overall longitudinal dynamic response of the hoisting cable system is determined 

through direct numerical integration of the longitudinal discrete model obtained from the 

Rayeligh-Ritz approximation. Since the hoisting cable system represents a stiff problem, the 

numerical differentiation formulas (NDF's) are applied to carry out the simulation. Param­

eters of the double drum rock winder at Elandsrand Gold Mine are used in this simulation. 

The results illustrate a transient response due to the acceleration/deceleration inertial load 

and passages through primary longitudinal resonances, when the frequency of the excitation 

due to a coiling mechanism at the winding drum coincides with the natural frequencies dur­

ing the cycle. These passages are further investigated using a combined perturbation and 

numerical teclmique applied to a single-mode model of the system. The influence of the 

winding velocity on the response amplitude, and on the cable tensions has been established. 

It has been shown that the more rapid the passage through resonance, the smaller the max­

ima of the conveyance response, and the higher the maxima of the response at the sheave. 
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Also, it has been demonstrated that dynamic cable tension grows rapidly during the passage, 

and reaches higher levels for higher hoisting velocities. 

In Chapter 5 attention has been turned to non-linear dynamic interactions arising in the 

catenary-vertical rope system. The numerical simulation of differential equations of motion 

describing the dynamics of the system has corroborated the problematic dynamic behaviour 

of hoisting cables at the KloofMine winding plant during the nominal ascending cycle with a 

winding velocity of 15 mj s. During this cycle, the catenary even lateral modes become reso­

nant at a depth of approximately 750 m , and the results of the simulation indicate that energy 

exchanges among the in- and out-of-plane modes take place, resulting in amplitude modu­

lating whirling motions. Also, conditions for autoparametric interactions between the lon­

gitudinal and lateral modes arise. However, these interactions are not clearly evident in the 

simulation results . Perhaps the amplitudes of the longitudinal response are not large enough 

to excite autoparametrically the lateral modes at this stage of the winding cycle. A more ad­

vanced study would be required to investigate the longitudinal-lateral internal resonance in 

detail , as previous research [Kumaniecka & Niziol.1994] revealed that in emergencies, the 

longitudinal amplitude was sufficiently high to promote transverse-longitudinal resonance in 

a vertical rope. Also, a possibility exists that energy exchanges among widely spaced modes 

take place due to a mechanism which is neither a classical internal resonance nor an ex­

ternal or parametric resonance involving the low-frequency mode [Nayfeh & Mook, 1995J. 

Rather, slow modulation of the amplitude and phase of the high-frequency modes allows for 

the energy to be transferred to the low-frequency modes. Favourable conditions for such an 

exchange arise at the end of ascending cycles, when the longitudinal modes are excited by 

the second harmonic of the excitation, with their frequencies becoming very high and with 

the lateral frequencies being low. 

It has become evident from simulations carried out, for other than the nominal regimes, 

that a suitable change of winding velocity can eliminate the main catenary resonances. It has 
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been demonstrated that in the Kloof system this effect can be achieved when the winding 

velocity is raised to approximately 19.5 m/ s. Alternatively, the possibility of elimination 

of the catenary resonances should be considered at the design stage. The simulation results 

revealed also that in the case of a single catenary resonance the dynamic response of the 

system remains small. This has been demonstrated, both in the Kloof, and in the Elandsrand 

non-linear simulations. 

The non-linear simulation has revealed that the non-linear interactions in the catenary­

vertical rope hoisting system lead to adverse dynamic behaviour of the entire installation. 

The Elandsrand simulation demonstrates the significant difference between the uncoupled 

longitudinal behaviour studied in Chapter 4, and the non-linear response. Therefore, it 

should be appreciated that the longitudinal dynamics studies are limited only to systems 

where the catenary lateral dynamics plays a lesser role. 

The non-linear simulation of ascending winding cycles has proved to be a challenging 

task. This has been due to reach modal interactions taking place during the winding and 

due to the stiff character of the problem. Thus, a suitable modelling approach II, and an 

appropriate numerical integration strategy has had to be used to ensure that the necessary 

numerical tolerances were maintained during the simulation. Eventually, this has proved to 

be a success, largely due the correct choice of an efficient numerical algorithm with a suitable 

set of the ODE solver parameters. 

11 It is important how the vertical system is modelled. Constancom [1993] represented the vertical rope 
as a linearly unconstrained subsystem, and applied unrestrained normal modes in his model. This approach 
leads to an overestimation of the response at lower depths during ascending cycles [Kaczmarczyk, 1997c]. 
Consequently, the simulation results become unrealistic from a depth of approximately 300 m during the Kloof 
nom inal cycle. 
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6.2 Suggestions for Future Work 

It is appreciated that results of a numerical and/or analytical study alone may not be, and 

often are not a sufficient source from which to draw correct conclusions. In the present 

study available publications, observations and reports from industry has provided suitable 

reference material to corroborate the results. More actual experimental evidence would be 

required. However, experimental activities on operating shafts are restricted and difficult 

due to production restraints. Thus, a need exists for a suitable laboratory rig to be designed, 

which sufficiently represents the non-stationary catenary-vertical rope system. This labora­

tory model should accommodate slowly varying characteristics of the actual system, namely 

time-varying catenary tension and variable mass and stiffness of the vertical subsystem. 

Some aspects of a feasible experimental laboratory simulation have already been discussed 

[Constancon, E-mail communication, 1995], and some measurement arrangements and tech­

niques tested under the author's supervision [Carter-Brown, 1996]. Hence, this work would 

form an interesting and important avenue for future research. 

Furthermore, as has already been stated, the non-linear simulation results should be 

supported by more advanced analytical studies. The non-stationary multiple scales analysis 

applied to the longitudinal model could be extended to a simplified multi-degree-of-freedom 

model with slowly varying parameters. Also, the techniques described by Kevorkian [1987] 

would be applicable to the non-stationary perturbation analysis of the system. It would be 

advantageous if this future research incorporates using symbolic manipulation programming 

systems such as MAPLE or MATHEMATICA. 

Scope exists for further work to include lateral modes of the vertical rope into the non­

stationary analysis. The current simulation results show that the in-plane catenary modes re­

main dormant during the first layer coiling. In the present model the in-plane modes become 

directly excited only from the second layer onwards, and the existing non-linear coupling has 
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not resulted in lateral in-plane motions during the initial stage of winding. However, small 

in-plane motions have been observed in practice during the first layer winding. Hence, an 

additional coupling must exist in the system, and this coupling may involve the lateral mo­

tions of the vertical rope. Also, the headgear structure is not perfectly rigid, and its flexible 

motions could be accounted for in order to provide further clarification. 

Further limitation of the current hoist system model is the assumption that the winder 

drum represents an ideal source of energy. Consequently, the inertial effects of the drum are 

not considered. Investigation into the response of the system by including these effects would 

represent a further extension to the non-stationary analysis. Some aspects of this problem 

have already been considered by the author, and it was shown that the problem involved the 

electrical characteristics of the winder motor being taken into account [Kaczmarczyk, 1994]. 
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Appendix A 
The Longitudinal Eigenvalue Problem 

The differential equation for the stationary free longitudinal motion of the uncon­

strained system shown in Figure 8 can be written as 

(AI) 

which must be satisfied over the domain 0 < y < Lv, and where y = s - L1. In addition, 

U v must satisfy the boundary conditions 

MSUv,tt(O, t) - EAuv,y(O, t) 

MUv,tt(Lv, t) + EAuv,y( Lv, t) 

U sing the separation of variables method, the displacement U is expressed as 

Uv(y , t ) = Y(y)f(t) , 

(A2a) 

(A2b) 

(A3) 

where f is a harmonic function of time with the frequency w, so that Uv,tt = -w2Y(y)f(t). 

The eigenvalue problem (AI)-(A2b) is then reduced to 

Y" + 'lY = 0, (A4) 

where the prime designates differentiation with respect to y. Thus, the boundary conditions 

assume the following form 

The solution of (A.4) is 

(kc - Msw 2
) Y(O) - E AY'(O) 

- Mw2Y(Lv) + EAY'(Lv) 

Y (z ) = C cos ,y + D sin , y, 

so that the conditions (A.5a)-(A.5b) yield 

0, 

O. 

[ 
kc - M sw

2 
- EA, 1 

-(Mw2 cos,Lv + EA, sin , Lv) Ekycos,Lv - Mw2 sin , Lv 
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(A5a) 

(A5b) 

(A.6) 
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Therefore, a nontrivial solution is possible only if the determinant of the coefficient matrix 

in (A.7) vanishes, which results in the following form 

(~ _ Ms,2) (COS , Lv _ M ,sin ,Lv) _ , (M ,cos,Lv + sin ,Lv) = o. (A.8) 
Lc m m m 

The eigenfunction coefficients C, D can be obtained from (A.7). Scaling C = 1, the mode 

shapes are given as 

( 
1 Ms). Yn=cos'nY+ -L --'n sm'nY· 
C'n m 

(A.9) 

The orthogonality properties ofthe eigenfunctions (A.9) can be examined by consid­

ering modes i and j of the eigenvalue problem as the following equations 

EAY" 
~ 

EAY" 
J 

-mw;Yi, 

-mw;~. 

(A. lOa) 

(A.10b) 

Multiplying the first of these equations by ~ and the second by Yi, and integrating over the 

length Lv gives 

{Lv 
EA)o ~~"dy 

{Lv 
EA)o YiYj'dy 

{Lv 
-mw;)o ~Yidy, 

{Lv 
-mw; )o Yi~dy. 

(A.lla) 

(A. lIb) 

The first boundary condition (A.5a) for modes i and j may be written as the following 

expressIOns: 

EA~ (0) ~' (0) 

EAYi (0) Y; (0) 

(kc - Msw;) ~ (0) Yi(O), 

(kc - Msw;) Yi (0) ~(O), 

(A.12a) 

(A.12b) 

where the first expression has been multiplied by ~ (0) , and the second by Yi (0). Simi­

larly, the second boundary condition (A.5a) for modes i and j may be written as 

EA~ (Lv) ~' (Lv) Mw;~ (Lv) Yi(Lv), 

EAYi (Lv) Y; (Lv) - Mw;Yi (Lv) ~(Lv). 

(A. 13 a) 

(A.13b) 
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Adding (A.12a) to equation (A. II a) and subtracting (A.l3a) from the resulting expression 

gIves 

(A.14a) 

Similarly, adding (A.l3a) to equation (A. 11 b) and subtracting (A.13b) from the result 

yields 

{Lv 
EA io ~YJ' dy + EA~ (0) Y; (0) - EA~ (Lv) Y; (Lv) = 

(Lv 
kc~ (0) lj(O) - w~[m io ~ljdy + (A.l5a) 

Mslj (0) ~(O) + Mlj (Lv) ~(Lv ) . 

Evaluating the integrals on the left in (A.14a) and (A.15a) by parts produces the combined 

relationships 

- EA JoLv Y;~' dy = kclj (0) ~(O) -
{Lv 

w;[m io lj~dy + Mslj (0) ~(O) 

+Mlj (Lv) ~(Lv)], 

- EA JoLv ~/Y; dy = kc~ (0) lj (0) -
(Lv 

w~ [m io ~ljdy + Mslj (0) ~(O) 

+Mlj (Lv) ~(Lv)J. 

Subtracting equation (A.16b) from equation (A.16a) yields 

(A.16a) 

(A.16b) 

(wj - wi) [m { " liY;dy + MsY; (0) li(O) + MY; (L") li(L")] = O. (A.l7) 

Since i i= j , equation (A. 17) gives the orthogonality relationship 

(A.l8) 
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or 

{Lv 
io p(y)~Yjdy = 0, (A.19) 

where p = m + Ms8 (y) M8 (y - Lv). For the case when i = j the second term in (A. 17) 

may be an arbitrary constant, so that one can choose 

(Lv 
io p(y)Y/dy = mjj. (A.20) 

It can also be seen that when the orthogonality property (A.I8) is used in (A.14a) the 

following relationship for i o:J j results 

EA [to Y;Y!' dy + Y; (0) Yo' (0) - Y; (L. ) Yo' (L.)]- keY; (0) Y; (0) = O. (A.2l) 

When i = j and the eigenfunctions are normalized to satisfy the (A.20), equation (A.14a) 

gIves 

EA [to Y;Yj'dy + Y; (0) Yj (0) - Y; (L. ) Yj (L.)]- keY; (0) Y; (0) = -m;;w;. 

(A.22) 



Appendix B 
Coefficients of Multi-Degree-of-Freedom 

Longitudinal Model 

The coefficients and excitation terms appearing in the system (4.23) depend on the 

non-stationary parameter l , and are defined by equations (4.24a)-( 4.24g) in terms of the 

eigenvalues In' the eigenfunctions Yn, and their derivatives. The eigenvalues In are found 

from the transcendental frequency equation (4.16) which is solved using the modified reg­

ula falsi method [Gerald & Wheatley, 1989]. The partial derivatives of Yn with respect to l 

are gIVen as 

(B.Ia) 

(B.2a) 

The derivatives of the eigenvalues In with respect to l are obtained through differentiation 

of the frequency equation (4.16), and are calculated as 

din Nn(l) 
dl Dn(l) , (B.3) 

(B.4) 
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where 

(B.7) 

(B.8) 
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Finally, noting that 

Y " 2'J n = -'nIn) 

f}Y~' ( d'n f}Yn) 8z = -'n 2dzYn + lnaz ) 

the expressions (4.24a)-(4.24g) are evaluated numerically. 

(B.9) 

(B.10) 



Appendix C 
The Perturbation Procedure of Multiple 

Scales 

Many physical problems exhibit features which preclude exact analytical solutions. 

In dynamic and vibration problems these features include for example non-linearities, vari­

able coefficients, and unknown boundaries. In order to obtain information about solu­

tions of equations governing these problems special methods must be adopted. Usually 

numerical methods, approximation methods, or a combination of both are applied. The 

approximation methods include perturbation (asymptotic) methods, in which the solution 

is represented by the first few terms of an asymptotic expansion [Nayfeh, 1973]. Usually 

parameter perturbations are used, and expansions are carried out in terms of a small pa­

rameter which appears naturally in the equations, or which is introduced artificially for 

convemence. 

Often the problem is represented by the non-homogeneous differential equation 

£ (u,t,c) = F(t) (C.l) 

where u = u(t) , £ represents a differential operator of a general nature, containing linear 

and non-linear terms in u and its derivatives; c is a small parameter, and F(t) is the non­

homogeneous part of the equation, with harmonic terms. 

C .. l Stationary System Analysis 

Generally the problem (C.1) cannot be solved exactly. Consider the case when the operator 

.c is of constant coefficients, with the assumption that for c = 0 the problem can be solved 

exactly, and the general solution is Uo (t ). 

The fundamental perturbation technique, referred to as the straightforward expansion, 

can then be used, in which a solution of equation (C.1) is expressed in the form of a power 
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series in c, namely 

(C.2) 

where U n is independent of c. This series is in turn substituted into equation (C.l), and 

one collects coefficients of each power of c. Equating each of the coefficients to zero yields 

simpler equations for Un, which can be solved successively. However, the solutions of these 

equations contain terms that grow indefinitely with time, referred to as secular terms. In 

addition to the secular terms, the solutions contain terms whose denominators may be very 

small, referred to as small-divisor terms, and occurring at resonant frequencies. Therefore, 

the straightforward expansions are non-uniform and break down for extended periods of 

time, and are often referred to as pedestrian expansions. 

More advanced perturbation techniques exist that yield approximate solutions free 

of secular and small-divisor terms. The method of multiple scales is one the most widely 

applied to formulate uniformly valid perturbation expansions for dynamic problems of the 

form (C. I), and has been used to treat various resonance phenomena. The solution is then 

represented by an expansion having the form 

where 

'T.n = cnt n = 0 1 2 ... , , , , (C.4) 

represent different time scales. Because c is a small parameter, To represents a fast scale, Tl 

represents a slower scale, T2 denotes a more slower scale, and so on. Hence, the behaviour 

of U is observed on the different time scales. Consider equation (C.1) in the following form 

u + w2u = cf(u , it) + F(t) , (C.S) 

where the overdot designates differentiation with respect to time, w denotes the natural 

frequency, F(t) represents a monofrequency excitation 

F(t) = K cos nt , (C.6) 
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and f is a function which accounts for damping and nonlinear effects in the system. As 

u( t, c) = u(To , T I , T2, ... ; c), the time derivatives of u are expressed as 

au au 2 au 
u -+c-+c -+ .. . 

aTo aTI aT2 
(e.7a) 

a
2
u a

2
u 2 (a

2
u a

2
u ) 

u aT(} + 2c 8To8TI + c 28To8T2 + 8Tl + .. . (C.7b) 

It can be noted that when equations (e.7a)-(e.7b) are substituted into (C.S), the origi­

nal ordinary differential equation is replaced by a partial differential equation. However, 

this complication does not present a problem, and is far outweighed by the advantages 

of the method in analysis of various resonance phenomena. Substituting the expansion 

(C.3) into (e.7a)-(C.7b), inserting the resulting expressions into equation (e.S), and equat­

ing coefficients of the same power of c, yields a set of partial differential equations for 

the approximations Un . In resonant cases so called detuning parameters are introduced to 

transform small-divisor terms into terms that lead to secular terms, and the partial differen­

tial equations are solved in succession by using the conditions, referred to as the solvability 

conditions, for the elimination of the secular terms. 

For example, in order to investigate a primary or main resonance in the system (C.S), 

a detuning parameter 0", describing the nearness ofD to w, is introduced as follows 

n = w + cO". (e.8) 

In order to determine the first approximation to the solution of equation (e.S) two time 

scales, namely the scales To and TI , are sufficient. Accordingly, the solution is expressed 

as 

(e.9) 

By applying equation (C.8) the excitation is also expressed in terms of the two scales as 

F(t) = 2ck cos (wTo + O"TI ) , (C.lO) 

where the amplitude K is ordered so that the excitation will appear at O(c) where the 

function f representing damping and nonlinear terms first appear. This will ensure that a 

uniformly valid approximate solution to the problem is obtained, as the actual response of 

the system is limited by the damping and the non-linearity. Substituting (C.9) and (C.lO) 
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into (C.S) gives 

Equating the coefficients of like powers of c yields 

82uo 2 
8T,2 + w Uo = 0, 

o 
82Ul 82uo 8uo 
-- + W2Ul = -2 + f(uo, -) + 2k cos (wTo + aT1) . 
8TJ 8~8~ 8~ 

The general solution of(C.12a) is given as 

where A is the complex conjugate of A, that can be expressed in the polar form 

A(Tl) = ~a(Tdeif3(Tl), 
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(C.lla) 

(C.12a) 

(C.12b) 

(C.13) 

(C.14) 

where a and (3 represent real amplitude and phase angle, respectively. Expressing the 

excitation term in complex form, namely 

substituting (C.13) into equation (C.12b), noting that 

8uo . ", - = iwA(T )eZW.LO + ee 8To 1 , 

82uo . 71 
--- = iwA'ezw 

0 + CC 
8To8T1 ' 

(C.lS) 

(C.16a) 

(C. 1 6b) 

where the prime denotes the derivative with respect to T1, and ee designates the complex 

conjugate of the preceding terms, leads to 

-2iwA' eiwTo + kei(wTo+aT1 ) + ee + 

f (AeiWTo + ee, iweiwTo + ee) . (C.17a) 

All particular solutions of equation (C.17a), which depend on A, contain secular terms, 

namely terms proportional to To e±iwTo. Therefore, the component cUI can grow without 
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bounds as t increases, and the expansion (C.9) is not uniformly valid. However the func­

tion A(Tl) can be chosen so that the secular terms vanish. from the particular solution of 

(C.17a). To this end it can be noted that f is periodic and its Fourier expansion is 

where <D = wTo, and 

00 

n=-oo 

fn(A, A) = ~ r27r 

f e-inif> d<D . 
27f Jo 

Thus, the solvability condition is 

2iwA' - keiaT1 
- h (A,.1) = o. 

(C.18) 

(C.19) 

(C.20) 

Expressing A in the polar form (C.14), separating the transformed form (C.20) into its real 

and imaginary parts, and also denoting 1jJ = (JT1 - {3, leads to 

k 1 127r a' = -sin1jJ - - f(acose, - awsine) sinede , 
w 27fw 0 

(C.2la) 

k 1 127r 
1jJ' = (J + - cos1jJ + - - f( acose , -awsine) cosede , 

aw 27faw 0 
(C.21b) 

where e = wTo + (3 (Tl)' Therefore, the first approximation to the steady-state response is 

given by 

u = a cos (n t - 1jJ ) + 0 (c2
) , (C.22) 

where a and 1jJ are solutions of equations (C.2l a) and (C.2I b), respectively. 

C .. 2 Non-stationary Vibrations 

The procedure of multiple scales can be extended to analyze systems having components 

that are time dependent (i.e. are non-stationary). Physically, these components may be 

the amplitude or frequency of excitation, mass and length parameters, stiffness and mate­

rial properties, or damping coefficients. Usually it can be assumed that these components 

are slowly varying, and the non-stationary studies are concerned with the modification of 

the response near the resonance conditions called passage through resonance fNayfeh & 

Mook, 1979]. Two cases can be distinguished in these resonance studies [Kevorkian, 1987]. 

In the first case the resonant behaviour is of short duration and is referred to as transient 
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resonance. This resonance phenomenon occur in systems in which the rate of slow varia­

tion of parameters is considered to be equivalent to the order of the weak damping or weak 

non-linearity. Namely, if the strength of the damping or the nonlinear coupling is of order 

o (c:), then the parameter variation can be observed on a slow scale defined as 

T = ct. (C.23) 

The second case concerns systems in which the parameters vary more slowly relative to the 

order of the damping or non-linearity, which remains 0 (c:). The variation of the parameters 

is then observed on a very slow time scale T* = c:2t, and the resonance, referred to as 

sustained resonance, persists for long times [Bosley & Kevorkian, 1991]. 

In this study systems with slowly varying components are considered. These non­

stationary systems can generally be described by 

.c ( u , t , c:t , c:) = F ( t, ct) , (C.24) 

where the operator .c has slowly varying coefficients, and the excitation term is of slowly 

varying amplitude and frequency. Nayfeh [1979] considered transient resonance in a sys­

tem with constant parameters, and with non-stationary excitation. The problem is described 

by equation (C.S) with the excitation term given by 

F(t, cSt) = 2c:k (c:t) cos [e (t, cSt)] , (C.2S) 

where e, the frequency of the excitation, is close to the natural frequency w during a short 

time interval. The method of mUltiple scales, with a fast scale To and a slow scale TI , is 

used to find an approximate solution in the form of the expansion (C.9). The nearness of 

the frequency of the excitation to the natural frequency is quantified by a slowly varying 

detuning parameter ()" (T1), so that 

(C.26) 

and consequently e(To , T1 ) = wTo + v (TI ), with ;;'1 = ()" (TI). Following the standard 

procedure of substituting the asymptotic series (C.9) into the differential equation (C.S), 

and of collecting coefficients of each power of c: leads to the solution for Uo given by 



Appendix C The Perturbation Procedure of Multiple Scales 177 

equation (C.13), and consequently to a partial differential equation for Ui of the form 

f (AeiWTo + ee, iweiwTo + ee) . (C.27a) 

With f expanded in a Fourier series according to (C.18), the solvability condition is given 

by 

(C.28) 

where h is found from (C.19). Denoting 'I/J = lI(Ti ) - (3(Ti)' it is found eventually that 

the response during the transition through the main resonance is given by 

(C.29) 

where a and 'I/J are given by differential equations having the same form as for the stationary 

case, namely by equations (C.2l a) and (C.2l b), respectively. However in the non-stationary 

case k and (J" are slowly varying, consequently steady-state solutions do not exist, and the 

response is aperiodic. 

Resonances in non-stationary systems with slowly varying parameters, namely sys­

tems described by equation (C.24) with [, having slowly varying coefficients, can also be 

treated by the multiple scales procedure. Consider a system with non-stationary parameters 

and stationary excitation described by 

u+w2 (r)u = cj*(u,u,r) + F(t) , (C.30) 

where F is given by (C.6), r is a slow scale defined by (C.23), the natural frequency w 

is varying slowly, and 1* represents damping and nonlinear terms, and additional reactive 

effects due to the variation of mass or length in the system. The solution to equation (C.30) 

is sought in terms of the slow and fast scales in the form 

u = Uo (</J, r) + CUi (</J, r) + " ', (C.3l) 

where </J denotes the fast scale defined as 

(C.32) 
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Thus, the time derivatives of u in terms of the two scales become 

du OU OU 
dt = W o¢ + E OT ' (C.33a) 

d2u 02U 02u OU 02u 
dt2 = w

2 
O¢2 + E(2w O¢OT + Wi o¢) + E2 OT2 ' (C.33b) 

where the prime denotes the derivative with respect to T. Using the series (C.31) in (C.33a)-

(C.34a) 

When transient resonance is of concern, values of the slowly varying natural frequency are 

near n, so that 

(C.35) 

where (J (T) is a slowly varying detuning parameter. Using the definition (C.32), it follows 

from (C.35) that 

(C.36) 

where 

(C.37) 

Thus, ordering the amplitude of the excitation as K = 2Ek, applying the expression (C.36), 

and equating the coefficients of cO and E on both sides of equation (C.34a) gives 

0, (C.38a) 

(C.38b) 

The general solution of (C.38a) is given as 

(C.39) 
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which alternatively can be written in a complex form 

(C.40) 

where 

A(T) = ~ a(T) ei/3(T). (C.41) 
2 

Using the solution (C.40) together with the excitation term expressed in a complex form in 

(C.38b) yields 

w2 ( ~2;21 + Ul) = - i (2w A' + w' A) ei
¢ + kei

(¢+19) + cc + 

1 (Aei
¢ + cc, iwAei

¢ + cc, T) . 

When 1 is expanded into a Fourier series 

where 

00 

n=oo 

17: (T ,A ,A) = ~ r27r 

j* (4), T,A , A) e-in¢d4>, 
27r Jo 

the solvability condition can be written as 

- i(2wA' + w'A) + kei19 + 1; (T , A , A) = o. 

(C.42a) 

(C.43) 

(C.44) 

(C.4S) 

Expressing A in polar form in equation (C.4S), separating the result into the real and imag­

inary parts, denoting 1/; = {) - {3, and e = ¢ + {3, leads to 

a' 
1 w' 1 127r k 

- - - a - -- j* ( T , a cos e, - aw sin e) sin ede + - sin 1/;, 
2 W 27rw 0 w 

(C.46a) 

1/;' = 
1 127r k 

0" + -- j*( T , a cos e, - aw sin e) cos ede + - cos 1/;. 
27rwa 0 wa 

(C.46b) 

The response is then given by 

U = acos (rlt - 1/;) + 0 (c:2) , (C.47) 

where a and 1/; are determined from the first order system (C.46a)-(C.46b). It is evident 

that, as in the case with non-stationary excitation, the response is aperiodic. It can be also 

noted that when wand 0" are constant, and the non-stationary reactive effects are neglected, 

so that 1* - 1, the system (C.46a)-(C.46b) is reduced to the stationary form given by 

equations (C.21a) and (C.21 b) . 
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Figure 62. Catenary supported at equal elevation. 

Appendix D 
The Profile of a Catenary Cable 

In a typical hoisting system, the catenary cable is inclined at an angle e. Due to the 

high tension the catenary profile lies closely to the chord between the sheave and drum, and 

it is of interest to determine an approximate solution to this profile. 

Constancon [1993] based this solution on a model with the horizontal catenary, with 

the corrected gravitational constant 9 cos e, as shown in Figure 62, with the co-ordinate 

frame (x, z). Using the results derived by Irvine [1981], the profile in this configuration is 

governed by the following differential equation 

H~:: + [1 + (~;) ,]1 mgcosO = 0, (D.1) 

where H denotes the horizontal component of cable tension, and m is the cable mass per 

unit length. If the profile is fiat, namely the ratio of sag to span is 1:8 or less, the derivative 

~~ is considered sufficiently small for its square to be ignored, and equation (D.1) reduces 

to 

d2z 
H dx2 = -mg cose , (D.2) 
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Figure 63. Inclined catenary cable. 

for which the exact solution is 

181 

B 

(D.3) 

where z = zlmgL2 cos el H , x = xl L, in which L is the span of the cable. Thus, noting 

that the flat profile curvature is approximated as K = ~:~, it can be concluded from equation 

(D.2) that the catenary equilibrium curvature is constant and defined as 

mgcose 
K = ---=:--

H 
(D.4) 

Irvine [1981] showed that the differential equation governing the equilibrium config­

uration of an inclined catenary shown in Figure 63 is 

d
2 * [( d *) 2] ~ H d:2 + 1 + tant1 + d: mg = 0, (D.S) 

where z* denotes the dip of the profile below the chord. This non-linear equation cannot 

be solved exactly, and an approximate solution is sought in the form of a straightforward 

expanSIOn 

z* (x; c) = zo (x) + cz; (x) + ... , (D.6) 

where z* = z* I (mg L2 I H cos e), and c is a small parameter defined as 

c = mgLsin()I H. (D.7) 
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Substituting the series (D.6) into equation (D.S), and collecting the coefficients of EO and E 

yields 

d2 -* Zo 
- I , (D.8) 

&t2 

d2 -* dzo Zl (D.9) 
dx2 dx' 

where Zo and z~ must satisfy zero boundary conditions at A (x = 0), and at B.(x = 1). 

These equations are solved successively to produce Zo = ~x (1 - x) and 

z~ = 112X (1 - x) (1 - 2x), respectively, so that 

z* = ~x (1 - x) [1 + ~ (1- 2X)] + 0 (E2) . (D.10) 

It can be noted that this profile is asymmetric with respect to the mid span. However, for 

small E equations (D.3) and (D.10) yield similar results. Hence, if E « 1 the catenary 

profile can be approximated by a symmetric parabola. 

Using equation (D.3) or (D.1 0), together with equation (D.4), one can prove that for 

a typical industrial hoisting installation the catenary profile lies very close to the chord, and 

has negligible curvature. For example, in the case of a typical mine hoist system, with the 

mass of a loaded conveyance M = 17500 kg, the cable mass per unit length m = 8.5 kg/m, 

the length of vertical rope Lv = 10 -7- 2100 m, the catenary length Lc = 75 m, and with the 

angle of inclination e = 45°, where the equilibrium tension H is defined as 

H = (M + mLv) g, (D.1l) 

the maximum sag varies between 0.12 to 0.24 m, so that the corresponding sag to span 

ratios are between 1 : 312 and 1 : 625, respectively. Furthermore, the curvature range 

is (1.7003 -7- 3.4179) x 10- 4
. Hence, as these values are very small, the catenary in a 

typical industrial hoisting system can be treated as a taut fiat cable, or string element. 

Consequently, the catenary strain measure is assumed in the form (3.10), which is the basis 

for a non-linear string equation. 



Appendix E 
Equivalent Viscous Damping Considerations 

E .. 3 Fundamental Considerations 

Various types of damping may be represented by equivalent viscous damping. In this ap­

proach, one can approximate the response of the actual system with damping forces of 

a complicated nature with the solution of a viscously damped system that dissipates an 

equivalent amount of energy per cycle. Damping effects are the most important at res­

onance regions in systems with periodic excitation. Consider a linear viscously damped 

single-degree-of-freedom system subjected to harmonic excitation with frequency n, de­

fined by 

mq + cq + kq = Fo cos nt, (E.1) 

where m denotes mass, c is the coefficient of damping, and k represents stiffness properties 

of the system. The steady-state response is of the form 

q = X cos (nt - cp) , (E.2) 

where cp denotes the phase shift due to damping. The energy dissipated in this system per 

cycle of motion is given by 

f· IT+'Pln 
6.E = cqdq = cq2dt, 

'PIn 
(E.3) 

where T = 2n In. Using equation (E.2) in (E.3) and integrating yields 

(E.4) 

When the energy loss given by equation (E.4) is equated to the energy dissipation associated 

with another form of damping, an equivalent viscously damped system can be created. 

For example, if the single-degree-of-freedom system under consideration is subjected to 

quadratic damping the equation of motion becomes 

mq + aq2sgn (q) + kq = Fo cos nt. (E.5) 

183 
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This type of damping can be used to model the air damping, for example [Inman, 1996]. 

Noting that the steady-state response is of the form given by equation (E.2), the energy 

dissipated per cycle in this case of damping is determined as 

f I
T+'Pln 

!::.E = a (/sgn (I]) dq = a 1]3 sgn (I]) dt. 
'PIn 

(E.6) 

so that 

1
2n 8 

!::.E = -aX3n2 sin3 ()sgn (I]) d() = -aX3n2
. 

o 3 
(E.7) 

Equating the energy loss given by equation (E.7) to the energy loss for viscous damping 

given by equation (EA) yields the equivalent viscous damping coefficient 

8 
Ceq = - axn. 

3n 

The corresponding equivalent damping ratio is then determined as 

Ceq 
( eq = -2-' mw 

so that the equivalent viscously damped system is described by 

q + 2(eqwl] + wq = fo cos nt, 

where w = Jk/m, and fo = Fo/m. 

E . .4 Equivalent Lateral Viscous Damping 

(E.8) 

(E.9) 

(E.I0) 

Mankowski [1988] conducted studies to determine the internal energy loss arising from 

inter-wire/strand friction in a wire cable undergoing non-planar transverse motion. It was 

established through experimental tests that the internal power loss Pn in W, corresponding 

to the cable nth transverse vibration mode is given by 

(E.11) 

where Rss denotes the sag to span ratio, fn is the nth natural frequency in Hz, Xn is the 

amplitude of the nth mode in m, and C1, C2 are the cable characteristics. Namely, C1 is 

the damping capacity in J, and C2 denotes the curvature characteristic in m-l. Mankowski 

used equation (E. 11 ) to analyze the power losses in a single catenary cable of the Blair 

double-drum winding plant installed in No. 1 Shaft at Kloof Gold Mine. The resonant 
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Mode Frequency in Ampliude Power Loss Modal Damping Modal Damping 
No. n H zlwn 7'~d X nm W Ratio Cq % Ratio (~air % 
I 1.1217.0372 1.0 3.4218 0.0031 0.1314 
2 2.24 / 14.0743 0.575 14.0430 0.0048 0.0755 
3 3.36 /2 1.1115 0.5 40.3341 0.0054 0.0657 
4 4.48 / 28.1487 0.375 69.1004 0.0069 0.0493 

Table 4. Estimations of Lateral Equivalent Modal Damping Ratios - Kloof Gold Mine 

conditions were chosen in this analysis, namely when the cable natural lateral frequencies 

are tuned to the integer multiplies of the fundamental drum frequency during normal op­

erations. The worst -case amplitudes of vibration were used in calculations, with the cable 

characteristic constants C1 = 42 .75 J and C2 = 0.34 m-1, and span Lc = 75 m. 

The results obtained from this analysis can be employed to determine the equivalent 

viscous damping coefficients and damping ratios corresponding to each vibration mode. 

Namely, by using equation (EA), one can equate the energy losses as follows 

(E.12) 

where wn is the lateral natural frequency and Tn = 27r / Wn , so that the equivalent viscous 

damping coefficient corresponding to the nth mode is given by 

n 2Pn 
Ceq = X 2 - 2 · 

nWn 
(E.13) 

Noting that the modal mass of the catenary cable is given by equation (5.18a), the equiva­

lent modal damping ratio is determined as 

I'n 2Pn 
'-" eq - L X2-3 . m c nWn 

(E.l4) 

The modal damping ratios calculated using equations (E.ll) and (E.14) are presented in 

Table 4. 

Constancon [1993] considered the influence of air damping on the lateral catenary vi­

bration. It has been assumed that the air damping can be represented as quadratic damping 

with the coefficient a given as 
1 

a = 2CpA, (E.l5) 

where C is the air drag coefficient, p denotes the air density, and A is the cross-sectional 

area of the moving object. Recalling that damping effects are the most important at the 
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resonance region, when the cable response demonstrates a single-mode behoviour, a planar 

air damping force per unit length of the cable corresponding to the resonance mode r can 

be represented as 

F; = ~CpdV~?Sgn (Vr), (E.l6) 

where d is the cable diameter, and Vr denotes the cable velocity. When, for instance, the 

out -of-plane motion is considered the velocity is given by 

(E.l7) 

where <Pr = sinG:y), 0 < y < Lc, so that equation (E.l6) assumes the form 

F; = ~CPdq; sin
2 (~: y) sgn (qr) . (E.18) 

The corresponding modal damping force is defined as 

Q~ = /Lc F;<prdy = ~rCpdq;sgn (qr) /Lc/r sin3 (nr y) dy, 
Jo 2 Jo Lc 

(E.19) 

and integrating yields 

(E.20) 

During the steady-state motion at resonance the response qr is of the form given by equation 

(E.2), namely qr = Xr cos (wrt - 'Pr), and the energy loss can be calculated as in equation 

(E.6) 

(E.21) 

(E.22) 

Equating the energy loss given by equation (E.22) to the energy loss for viscous damping 

given by equation (E.4), in which one uses X = Xr and n = Wr, yields the equivalent 

viscous damping coefficient 

The corresponding modal damping ratio is then calculated as 

rr 16 
"' eqair = -9 2CpdXr. m7r 

(E.23) 

(E.24) 
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The same results are produced when the in-plane motion is considered. The air damping 

equivalent modal damping ratios, calculated using the drag coefficient C = 1, the density 

of air p = 1.29 kg 1m3 and the same modal amplitudes as for the internal damping ratios, 

are also presented in Table 4. 

These calculations confirm Constancon's conclusion, namely that air damping is 

large compared with internal damping, and may play an important role in the catenary 

energy dissipation mechanism. Hence, the lateral modal damping ratios assumed in this 

analysis comply with the order of (~qair values presented above. 



Appendix F 
MATLAB ODE function 

function ydot=minode(t,y) 

% NON-UNEAR MODEL OF A CATENARY-VERTICAL ROPE SYSTEM 

global t1 t2 p v TT 

global om_lat mrlat Clat Dlat ee omJat beta zeta 

global om_long c3d la3d mra zra c 10m 

global E A Ms Me m Lc LO kc d Rd alfa dmp210 

global T Fee wtot wdtot wddtot vtot vdtot vddtot 

ift<=t1 

1=1O+0.5*p*t/\2; 

Idot=p*t; 

Iddot=p; 

elseif t < =t2 

1=1O+0.5*p*t1 /\2+v*(t-t1); 

Idot=v; 

Iddot=O; 

else 

1=10+0.5 *p*(t1 /\2-t2/\2)+v*(t-t1 )+p*(t2 *t-0.5 *t/\2); 

Idot=v-p*(t-t2); 

Iddot=-p; 

end 

Ll=l+Lc; 

omegalat=interp 1 (lom,om _lat,l); 

omegalong=interp 1 (lom,om _long,l); 

gamlong=omegalong/c; 

Im·long=interp 1 (lom,mra,l); 

Clong=interp 1 (lom,c3d,1); 
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Appendix F MATLAB ODE function 

Lalong=interp 1 (lom,la3d,I); 

Zrlong=interp 1 (lom,zra,l); 

wl=interp 1 (T,wtot,t); 

wld=interp 1 (T,wdtot,t); 

wldd=interpl (T,wddtot,t); 

Fe=interp 1 (T,Fee,t); 

ift<=TT 

vl=O; 

vld=O; 

vldd=O; 

elseif t <=t2 

vl=O; 

vld=interp 1 (T,vdtot,t); 

vldd=interp 1 (T,vddtot,t); 

else 

vl=interp 1 (T,vtot,t); 

vld=interp 1 (T, vdtot,t); 

vldd=interpl(T,vddtot,t); 

end 

% construct [C} 

% lateral motions v,w: 

Cv=2/mrlat* ldot* CIat; 

zz=2*zeta'. *omegalat; 

for r=l:4 

Cv(r,r)=Cv(r,r)+zz(r); 

end 

% longitudinal motion u: 

La =zeros( 4); 

La=[Lalong(1) Lalong(2) Lalong(3) Lalong(4); ... 
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Lalong(5) Lalong(6) Lalong(7) Lalong(8); ... 

Lalong(9) Lalong(10) Lalong(11) Lalong(12); ... 

Lalong(13) Lalong(14) Lalong(15) Lalong(16)]; 

Cl=zeros(4); 

Cl=[Clong(1) Clong(2) Clong(3) Clong(4); ... 

Clong(5) Clong(6) Clong(7) Clong(8); ... 

Clong(9) Clong(10) Clong(1l) Clong(12); .. . 

Clong(13) Clong(14) Clong(15) Clong(l6)]; 

Cu=-E* A *La+2*ldot*CI; 

gg=Ms*ldot*(lILc-Ms/m*gamlong." '2); 

for r=I:4 

Cu(:,r)=Cu(:,r)+gg(r); 

end 

for r=1:4 

Cu(r,:)=Cu(r,:)/mrlong(r); 

Cu(r,r)=Cu(r,r)+dmp2; 

end 

% total C: 

C=[Cv zeros(4,8);zeros(4) Cv zeros(4);zeros(4,8) Cu]; 

% Construct [K] 

% lateral motions v, w: 

cc 1 =interp 1 (lom,cc,I); 

FF=(1 +(c/ccl)A2*Fe); 

kk= FF * omegalat.A2; 

K v=(ldotA2 *Dlat+lddot*Clat)/rnrlat; 

for r=I:4 

K v(r,r)=K v(r,r)+kk(r); 

end 

% longitudinal motion u: 
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Ku=zeros( 4); 

omegalong2=omegalong."2; 

for r=I:4 

Ku(r,r)=omegalong2(r); 

end 

% Total K: 

K=[Kv zeros(4,8);zeros(4) Kv zeros(4);zeros(4,8) Ku]; 

% The main matrix: 

AA=[zeros(12) eye(12); -K -C]; 

% Nonlinear terms: 

Nv=-( clcc 1 )"2*(sum(y(9: 12))lLc+sum(beta."2'. *(y(1 :4)."2+y(S :8)."2))) ... 

* omegalat. "2 ' . *y( 1:4); 

Nw=-( ciccI )"2*(sum(y(9: 12))lLc+sum(beta."2'. *(y(1 :4)."2+y(S:8)."2))) ... 

*omegalat."2'. *y(S :8); 

Nu=-E* A *sum(beta."2'. *(y(1 :4)."2+y(S:8)."2))./mrlong'; 

N=[ zeros(12, 1 );Nv;Nw;Nu]; 

% The excitation terms: 

1'=1:4; 

P=-2*(vldd-(2*vld*ldot+vl *lddot)/Lc. *((-1 )." r-1 ))/pi./r; 

Q=-2*(wldd-(2 *wld*ldot+wl *lddot)/Lc. *((-1 )."r-1 ))/pi./r; 

Z=-E* A *Fe./mrlong+lddot*Zrlong; 

FT=[ zeros( 12, 1 );P' ;Q' ;Z']; 

% The final system: 

ydot=AA *y+N+FT; 
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Appendix G 
Simulation Results 

The numerical integration of non-linear equations leads to the determination of modal 

co-ordinates Pn, qn and Zn . The simulation for various values of winding velocity have been 

conducted taking into consideration the Kloof Mine parameters. The Kloof results are 

plotted against the depth Lv in Figures 64-81. The dynamic behaviour of the Elandsrand 

winder system, with the nominal winding velocity, has also been simulated. The respective 

results obtained from this simulation are shown in Figures 82-84 
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Figure 64. Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 15 mj s. 
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Figure 65. Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 15 m/ s. 
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Figure 66. Longitudinal modal co-ordinates for Kloof simulation, Vc = 15 m / s. 
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Figure 67. Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 12 m / s. 
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Figure 68. Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 12 m/ s. 
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Figure 69. Longitudinal modal co-ordinates for Kloof simulation, Vc = 12 m/ s. 
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Figure 70. Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 14 m/ s. 
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Figure 71. Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 14 m/ s . 
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Figure 72. Longitudinal modal co-ordinates for Kloof simulation, Vc = 14 m/ s. 
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Figure 73 . Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 16 m/ s. 
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Figure 74. Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 16 m / s. 
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Figure 75. Longitudinal modal co-ordinates for Kloof simulation, Vc = 16 m / s. 



Appendix G Simulation Results 

O.S ~------,,---------,------'r-----~ 

~ 0 
Q. 

-O.S sLo-----SOLO-----1-0LOO-----1-S-'-0-0 ----2-:-:0~0-::-'0 

1.S ----~-----.------_,_------r--, 

-1 .S sLo-----SOLO-----1- 0LO-0 -----1S-'-0-0 -----20-'-0---'0 

0.3 ~----~-----,---___,_--.__------,--_____, 

-0.3 L-.----'---___ --L.. _____ '--____ ----L---...l 

SO SOO 1000 1S00 2000 

0.1S ~----r------,------,--___ --,-----, 

.". 
Q. 

-0.1S L-----'--------L.. _____ .l...--____ -L---.J 

SO SOO 1000 1S00 2000 
Lv {m] 

205 

Figure 76. Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 18 m/ s. 
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Figure 77. Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 18 m/ s. 
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Figure 78. Longitudinal modal co-ordinates for Kloof simulation, Vc = 18 m / s. 
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Figure 79. Lateral in-plane modal co-ordinates for Kloof simulation, Vc = 19.5 m / s. 
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Figure 80. Lateral out-of-plane modal co-ordinates for Kloof simulation, Vc = 19.5 mj s. 
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Figure 81. Longitudinal modal co-ordinates for Kloof simulation, Vc = 19.5 m / s. 
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. Figure 82. Lateral in-plane modal co-ordinates for Elandsrand simulation, Vc = 16 m / s. 
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Figure 83 . Lateral out-of-plane modal co-ordinates for Elandsrand simulation, Vc 16 
mls. 
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Figure 84. Longitudinal modal co-ordinates for Elandsrand simulation, Vc = 16 m/ s. 
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