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Abstract

A common feature of microbiological datasets is their tendency to contain many zero

values. Statistical inferences based on such data are likely to be inefficient or wrong

unless careful thought is given to how these zeros arose and how best to handle them.

Analyzing these data using the classical linear model is mostly inappropriate, even af-

ter transformation of outcome variables. Zero-adjusted mixture count models such as

zero-inflated and hurdle count models are applied to count data when overdispersion and

excess zeros exist. This study considers data collected from four large water treatment

plant sites at Umgeni Water in South Africa the province of KwaZulu-Natal. A unique

characteristic of the daily incidence data collected from these sites is the occurrence of

many zeros. The most common microbiological organisms that are detected during rou-

tine water quality checks are E. coli, total coliforms, and heterotrophic plate counts (HPC

at 37◦C). Count data models including traditional (Poisson and negative binomial) mod-

els, zero modified models (zero-inflated Poisson and zero-inflated negative binomial) and

hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and

compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle

(NBLH) and zero-inflated negative binomial (ZINB) models showed the best performance

in both datasets. The results show that total chlorine and free chlorine reduces the occur-

rence of E. coli, total coliform counts, and heterotrophic plate counts as expected and are

positively correlated with excess zeros. The model further shows that high temperature

significantly increases bacterial growth and at low temperatures, the organism would not

achieve significant growth. A further important finding is that a declining trend of log

ix



mean positive counts over time was detected as a result that can be interpreted to mean

a sustained improvement of water quality.
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Chapter 1

Introduction

1.1 Background

It is common to encounter the problem of having a large proportion of zero values in

many physical processes, including those in microbiological and environmental studies.

Data with a large proportion of zero counts, also called zero-inflated data, appear quite

frequently in various fields of research, including health research, agricultural research,

ecology and manufacturing (Ridout et al., 1998). In microbiology, zero-inflated data are

often found when examining counts of microbiological organisms from water samples,

where water samples produce no microbiological organisms.

In this context, the distribution of zero and positive counts in the data set which is be-

ing investigated is very important. The Poisson distribution is the basic model that is

commonly applied to study count data. However, the equivalence of mean and variance

assumption of the Poisson process is invalid for many processes such as in microbiological

data because in most cases there are no occurrences of micro-organisms (total coliform, E.

coli and HPC at 37◦C counts) in drinking water which causes the microbiological data set

to generally have more zeros than expected. For this reason, overdispersion which is the

situation that the variance is greater than the mean seems to be the main feature for mi-
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crobiological datasets. The negative binomial model is an alternative model for handling

over-dispersed count data. An alternative form of expressing the negative binomial model

for over-dispersion is to express the variance in terms of the mean. Overdispersion can

occur in two ways, namely apparent and real overdispersion. Missing values and outliers

requiring interaction terms or misspecified link function can cause apparent overdisper-

sion while the violation of distributional assumptions can cause real overdispersion. It is

well known that analyzing these data using classical linear models is mostly inappropri-

ate, even after the transformation of the outcome variables. Zero-inflated models have

been developed to handle inflated zero values for the dependent variable which otherwise

would lead to the violation of distributional assumptions .

In general, hurdle and zero-inflated models are used for modelling count data with a

preponderance of zeros. The hurdle and other zero-inflated models are two component

models in which one component models the probability of zero counts and the other

component uses a truncated Poisson/ negative binomial distribution that modifies an

ordinary distribution by conditioning on a positive outcome (Dalrymple et al., 2003).

The zero-inflated model has a distribution that is a mixture of a binary distribution that

is degenerate at zero and an ordinary count distribution such as Poisson or negative

binomial. The hurdle model considers the zeros to be completely separate from the non-

zero values. The zero-inflated model is similar to the hurdle model; however, it permits

some of the zeros to be analyzed along with the non-zeros (Hua et al., 2014). The choice

of the zero-inflated model in this thesis is guided by the researcher’s beliefs about the

source of the zeros. There are two distinct processes driving the zeros, one is sampling

zeros which occur by chance and can be assumed to be as a result of a dichotomous

process, and the other one is structural zeros (true zeros) which are inevitable and are

part of the counting process. Beyond this substantive consideration, the choice should be

based on the model providing the closest fit between the observed and predicted values.
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1.2 Literature Review

Zero-inflated Poisson (ZIP) models were developed by Lambert (1992) to handle zero-

inflated count data. Zero-inflated models combine two sources of zero outcomes which

are called true zeros and excess zeros. Greene (2008) investigated zero-inflated models

as modifications of the Poisson and the negative binomial models. He also presented

the test procedure to separate the zero inflation and over-dispersion. Fahrmeir and Os-

una Echavarŕıa (2006) developed structured additive regression models for over-dispersed

and zero-inflated data. Boucher et al. (2009) presented different risk classification mod-

els for panel count data based on the zero-inflated Poisson distribution. Mullahy (1986)

first discussed in the econometric literature hurdle count data models, which were also

called two-part models by Heilbron (1994). Gurmu (1998) introduced a generalized hurdle

model for the handling of overdispersion and also under-dispersion which is the situation

where the variance is less than the mean. Ridout et al. (1998) reviewed some zero-inflated

models and hurdle models and gave an example of biological count data. Saffari et al.

(2012) suggested using a hurdle negative binomial regression model to overcome the prob-

lem of over-dispersion. They introduced a censored hurdle negative binomial model on

count data with many zeros. In this work, they also described several extensions of the

models and presented an application to water quality data when comparing the models.

They reviewed the development of zero-inflated models and paid attention to the fact

that there are very few applications on microbiological frequency data in the literature.

Bermúdez and Karlis (2011) extended this work based on Bayesian inference by using

multivariate Poisson regression models with their zero inflated versions. Mouatassim and

Ezzahid (2012) compared the Poisson model to the zero-inflated model and applied his

approach to water quality data set. Mouatassim et al. (2012) analyzed operational risk to

the zero-inflated data and assessed the impact of the zero-inflated Poisson distribution on

the operational capital charge. They concluded that the zero-inflated and hurdle models

had the most consistent performance at any combination of dispersion and zero-inflation

3



in the simulation study.

1.2.1 Zero Inflation Due to True Zeros

True zeros means that a zero data value indicates the absence of the object being mea-

sured. When true zeros lead to an excess of zeros, zero-inflated models such as the two-

part (also known as conditional or hurdle models) or mixture models are recommended

(Lambert, 1992; Barry and Welsh, 2002). The negative binomial has also been advocated

for modeling data sets with many zeros because of its ability to account for overdisper-

sion (Warton, 2005). However, Barry and Welsh (2002) and Warton (2005) demonstrated

that the excess number of zeros often exceeds those expected under a negative binomial

distribution. For count data, there are two parts in the modelling approach, whereby the

first part is a binary outcome model (i.e. Bernoulli), and the second part is a truncated

count model (e.g. Poisson or negative binomial) (Cameron and Trivedi, 1998). This

approach assumes that zeros arise from a single process with a set of covariates. One

of its computational benefits are that it is possible to fit these models in two parts, for

example, fitting zeros using a logistic regression separately from fitting non-zeros using a

truncated Poisson (Barry and Welsh, 2002; Dobbie and Welsh, 2001).

Mixture models are combinations of probability distributions chosen for their ability

to represent two or more real ecological processes. The ZIP mixture model used to

model count data is a mixture of a point mass at zero and a Poisson distribution. With

this approach, zeros may arise from one of two processes and their related covariates, a

zero process from which only zero values are observed and a Poisson process in which

non-zero and a proportion of the zero values, appropriate to the Poisson distribution

are observed (Lambert, 1992). The interpretation of mixture model parameters is less

straightforward than the two-part model. For example, to get the true estimate of relative

mean abundance from the ZIP one must multiply the estimated relative mean number

of individuals at a site by the probability that the relative mean number of individuals
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at a site is generated through a Poisson distribution. Where there is zero inflation and

overdispersion caused by large counts of individuals (e.g. total coliform counts and E.

coli), the use of a zero-inflated negative binomial (ZINB) mixture model has been shown

to be appropriate (Barry and Welsh, 2002).

1.2.2 Zero Inflation Due to False Zeros

If false zeros are present in the data, a zero-inflated mixture modeling approach is required

because we are interested in modelling two processes, that is a process leading to true

zeros and a process leading to false zeros (Bolker, 2008). Failing to take account of false

zero observations in the analysis may have substantial impacts on the ability to accurately

infer relationships between site occupancy and habitat attributes or management actions

(Martin et al., 2005). The zero-inflated binomial model and its extensions provide an

appropriate framework for analyzing data that are collected for these purposes and which

are likely to contain false-zero observation error.

1.3 Introduction of Microbiota

Water quality management is a critical component of overall integrated water resources.

Human health depends on safe drinking water more than any other thing, and most of the

problems in developing countries are mainly due to the lack of safe drinking water (Sharp

et al., 2006). Drinking water should meet the accepted quality standards which imply

that water should be wholesome and clean. It should be free from any micro-organisms,

parasites and from any substances which, in number or concentration, constitute a po-

tential risk to human health. Besides, the water of poor quality can also be harmful from

an economic perspective as resources must be directed towards improving and purifying

the water supply system. For these reasons, there is growing pressure to improve water

treatment and water quality management at catchment scale to ensure safe drinking wa-
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ter at reasonable costs (Won et al., 2013). The microbial quality in the South African

National Standard (SANS 241) is addressed by setting maximal allowed limits of human

gastroenteritis bacteria that are total coliforms, Escherichia coli (E. coli) and (HPC at

37◦C counts.

Coliforms Bacteria

Total coliforms bacteria are a group of bacteria that are present in the environment

and in the faeces of all warm-blooded animals and humans. Coliform bacteria will not

likely cause illness. However, their presence in drinking water indicates that disease-

causing organisms (pathogens) could be in the water system. Most pathogens that can

contaminate water supplies come from the faeces of humans or animals. If coliform

bacteria are found in a water sample, water system operators work to find the source

of contamination and restore safe drinking water. There are three different groups of

coliform bacteria and each has a different level of risk. Total coliform, faecal coliform,

and E. coli are all indicators of microbial water quality. The total coliform group is a

large collection of different kinds of bacteria. Faecal coliforms are types of total coliform

that mostly exist in faeces. E. coli is a sub-group of faecal coliform. Some of these

bacteria can grow during decomposition of plant residues in the soil, and some of the

plant material in water. Generally, the growth of these bacteria in the soil and water are

best at a temperature below 40◦C. The analysis of coliform bacteria often takes place at

37◦C.

Escherichia coli

Escherichia coli (E. coli) bacteria normally live in the intestines of humans and an-

imals. It is gram-negative, facultatively anaerobic, rod-shaped bacterium that is com-

monly found in the lower intestine of warm-blooded organisms. Most E. coli are harmless

and actually are an important part of a healthy human intestinal tract. However, some E.
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coli are pathogenic, meaning that they can cause illness, either diarrhea or illness outside

the intestinal tract. The types of E. coli that can cause diarrhea can be transmitted

through contaminated water or food, or through contact with animals or persons. Still,

other kinds of E. coli are used as markers for water contamination, which as said earlier

are not themselves harmful, but indicate that the water is contaminated. It is the most

appropriate group of coliforms to indicate faecal pollution from warm-blooded animals.

Heterotrophic Plate Counts (HPC at 37◦C)

The HPC at 37◦C is a procedure used to estimate the number of live heterotrophic bacte-

ria that are present in a water sample. A sample of water is put on a plate that contains

nutrients that the bacteria need to survive and grow. Heterotrophic plate counts detect

a wide range of bacteria which are omnipresent in nature. Pollution of water can give

rise to conditions conducive to bacterial growth, such as high nutrient concentrations and

high turbidity and can result in a substantial increase of these naturally-occurring organ-

isms. High heterotrophic plate counts in treated water indicate inadequate treatment of

the water, post-treatment contamination or bacterial growth in the distribution system.

Therefore, pathogenic micro-organisms, bacteria, viruses or parasites could possibly be

present in the water and pose a health risk when the water is used for domestic consump-

tion. The HPC at 37◦C results are generally reported as CFU/ml or Colony Forming

Units per milliliter. The maximum allowed value of HPC at 37◦C is 1000 CFU/mL.

1.4 Objectives

The main objective of the study is to find the statistical methods or techniques to model

the rare occurrences of microbiological organisms that exceed the acceptable standards

limit at Umgeni Water. A second objective is to compare the performance of different

7



methods for handling both excess zeros and positive counts of microbiological organisms.

Sound model adequacy methods will then be used to determine the best method that can

handle the data well. The data set will be analyzed to infer on factors and conditions that

reduce or increase the occurrence of the microbiological organisms that are of interest to

monitoring and evaluation of water quality.

1.5 Thesis Layout

The layout of this study is as follows: Chapter 2 is the exploratory analysis of the data. In

Chapters 3 and 4, the methods used to achieve the objectives of the study are discussed.

Chapter 5 focuses on the application and the results of the analysis of Umgeni Water

quality dataset. Discussion, conclusion and recommendation for further investigations

are given in Chapter 6.
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Chapter 2

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an approach for data analysis that employs a variety

of techniques (mostly graphical and tabular displays) to extract important variable, test

underlying assumptions and help to develop parsimonious models. The EDA approach

is not a set of techniques, but a preliminary process about how data analysis may be

carried out. Any method of looking at data that does not include formal statistical

modeling and inference falls under the term exploratory data analysis. It was promoted

by Rosenthal (1995) to encourage statisticians to visually examine the data sets at hand

and to formulate hypotheses that could be tested on new datasets. EDA is a critical first

step in analyzing any data from an experiment or observational study (Rosenthal, 1995).

Here are the main reasons we use EDA:

• Detection of mistakes,

• Checking of assumptions, and

• Determining relationships among the explanatory variables.

9



2.1 Data Description

In this research, we use water quality data that has been collected over a period of 24

years (1991 - 2015) at Umgeni Water. Umgeni water is one of Africa’s most successful

organisations involved in water management and is the largest supplier of bulk potable

water in the province of KwaZulu-Natal, South Africa. We consider data from two sites

at Umgeni Water, namely Midmar (TMM007) and DV Harris (TDV006). The most

common microbiological organisms that are detected during routine water quality checks

are E. coli, total coliform counts and heterotrophic plate counts (HPC at 37 ◦C). The

associated water quality data that influence the response variables are free chlorine, total

chlorine, pH, temperature, and turbidity. Table 2.1 displays all the variables, their units

of measurements and the acceptable standard limits.

Table 2.1: Variables definition.

Variable Unit Standard limits

Total coliform counts Count per 100 mL ≤ 10

E. coli Count per 100 mL = 0

HPC at 37◦C Count per ml ≤ 1000

Free chlorine mg/l ≤ 1.5

Total chlorine mg/l ≤ 5

Temperature Degrees celsius [10, 25] ◦C

Turbidity NTU ≤ 1

pH pH units [5, 9.7]
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2.1.1 Descriptive Statistics

Descriptive statistics are used to describe the basic features of the data in a study. They

provide simple summaries about the sample and the measures. As shown in the descrip-

tive statistic Table 2.2 below, the highlighted variables of total coliform, E. coli and HPC

at 37◦C counts imply the presence of overdispersion. Overdispersion occurs when the

variance of count data exceeds the mean which can lead to the occurrence of extreme

values/ outliers. The number of observation is the same for the whole study because

the complete case analysis strategy was used. Complete case analysis is used when the

analysis is confined to cases or units with complete variable information. However, it

should be quick to point out that such a strategy can lead to biased results if the omitted

cases are not comparable to those that are used for analysis to estimate the quantities. It

should also be noted that HPC at 37◦C counts have the highest variability in both sites

and it may lead to higher probability of occurrence of extreme values which will skew the

mean to higher values (see Table 2.2).

Table 2.2: Descriptive statistics for dependent and independent variables in all sites.

Sites Variables N Mean St. Dev. Min Max

Total coliforms 6,853 0.05 2.02 0 145
E.coli 6,853 0.0004 0.04 0 3
HPC at 37◦C 6,853 1.58 23.61 0 1,000

Midmar Free chlorine 6,853 0.23 0.26 0.05 2.50
Total chlorine 6,853 2.06 0.53 0.05 6.0
pH 6,853 8.53 0.37 6.84 9.70
Temperature 6,853 18.04 3.48 7.0 29.70
Turbidity 6,853 0.22 0.09 0.01 2.14

Total coliforms 9,011 0.043 0.933 0 59
E.coli 9,011 0 0 0 0
HPC at 37◦C 9,011 1.23 17.89 0 1,000

DV Harris Free chlorine 9,011 0.25 0.24 0.050 3.50
Total chlorine 9,011 1.97 0.48 0.050 4.0
pH 9,011 8.65 0.33 6.40 9.80
Temperature 9,011 17.85 3.49 7.0 28.20
Turbidity 9,011 0.25 0.14 0.01 7.32
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2.1.2 Frequency Tables for Total Coliform Counts, E. coli and

HPC at 37◦C.

A frequency table is another way of summarizing data. The table depicts the number of

times a data value occurs. Tables 2.3, 2.4 and 2.5 give the distribution of total coliform,

E. coli and HPC at 37◦C for each of the two sites, namely Midmar and DV Harris. The

main common feature in all the tables is that most of the samples had more zero counts

leading to highly skewed and zero-inflated data which justifies the use of statistical models

that can adequately account for such excess zeros in the analysis. The overall compliance

for total coliform counts was above 99.0% in all sites. There are many total coliform

counts in DV Harris (86 counts) compared to Midmar (38 counts). It can be observed

that the compliance for E. coli was 100% in DV Harris. E. coli was acceptable as it was

found to be above 99.9% in Midmar. The overall compliance for HPC at 37◦C in Midmar

and DV Harris was 100%, according to Umgeni Water limits.

Table 2.3: Frequency table for total coliform counts occurrence in water samples.

Sites Coliforms Frequency Relative frequency (%)

Midmar 0 6815 99.48

1 - 10 33 0.47

≥ 11 5 0.08

DV Harris 0 8925 99.05

1 - 10 76 0.85

≥ 11 10 0.10

12



Table 2.4: Frequency table for E.coli occurrence in water samples.

Sites E. coli Frequency Relative frequency (%)

Midmar 0 6852 99.99

3 1 0.010

DV Harris 0 9011 100

Table 2.5: Frequency tables for HPC at 37◦C occurrence in water samples.

Sites HPC at 37◦C Frequency Relative frequency (%)

Midmar 0 5107 74.52

1 - 100 1737 25.35

101 - 1000 9 0.13

DV Harris 0 7033 78.05

1 - 100 1967 21.72

101 - 1000 17 0.231
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In Figures 2.1 and 2.2, the histograms reveals a high occurrence of zero total coliform

and E. coli counts, which cannot be accounted for by the variance function of a Poisson

or negative binomial distribution. It therefore seems sensible to apply the proposed

techniques that account for zero inflation in the data.

(a) Midmar (b) DV Harris

Figure 2.1: Frequency plot of total coliforms.

(a) Midmar (b) DV Harris

Figure 2.2: Frequency plot of E.coli.

2.1.3 Plots of Total Coliforms Counts against other Measurable

Variables

Comparative displays for total coliforms counts against all regressors are shown in the

figures below.
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(a) Total coliforms and free chlorine against date.

(b) Total coliforms and total chlorine against date.

(c) Total coliforms and temperature against date.
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(d) Total coliforms and turbidity against date.

(e) Total coliforms and pH against date.

All displays show that the number of total coliform counts increases or decreases with the

regressors as expected. Total and free chlorine decreases/ inactivates the total coliform

counts, the rate of inactivation varies widely but is more rapid when more chlorine is

present in the water. The total coliform counts grow very fast at higher temperature

as well. Turbidity has a positive effect on positive counts, therefore low (< 1.0 NTU)

turbidity measurement is an indication of adequate water treatment. The pH values

complies with the accepted limits in both sites, it is a good indication that water is safe

to drink.
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Chapter 3

Generalized Linear Models (GLM)

Generalized Linear models by Nelder and Baker (1972) and second one by McCullough

and Nelder (1989) provide a powerful theoretical and computational framework, includ-

ing classical linear models and enlarging the scope to a wider class of distributions under

the exponential family. Generalized linear models (GLMs) expand the well known linear

model to accommodate non-normal response variables in a single unified approach. It

is common to find response variables which do not adhere to the standard assumptions

of the linear models (normally distributed errors, constant variance), for example count

data, dichotomous variables and truncated data. The GLM is based on well developed

theory and with the advances in statistical software, these models have become a basic

tool for statistical analyses by most researchers. There are two fundamental issues in

the notion of generalized linear models, namely the distribution of the response (as we

mentioned above), but also the functional form that relates the mean response to the

regression variables.

The generalized linear models are an extension of classical linear models so that the

latter form a suitable starting point for discussion. A vector of observation y having n

components is assumed to be a realization of a random variable Y whose components are
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independently distributed with the vector of the means µ. The systematic part of the

model is a specification of the ith component for the vector µ in terms of a small number

of unknown parameters β0, ..., βq. In the case of ordinary linear models, this specification

takes the form

µi =

q∑
j=0

xijβj, (3.1)

where the β′s are the parameter whose values are usually unknown and have to be esti-

mated from the data. If we let i index the observation then the systematic part of the

model may generally be written as

g(E(Yi)) = g(µi) =
p∑
j=1

xijβj; i = 1, ..., n, (3.2)

where xij is the value of the jth covariate for observation i. In matrix notation where µ

is n× 1, X is n× p and β is p× 1 we may write

g(µ) = Xβ,

whereX is the model matrix, β is the vector of parameters and p = q+1. This completes

the specification of the systematic part of the model.

3.1 The Generalization

To simplify the transition to generalized linear models, we shall rearrange (3.1) slightly

to produce the following three part specification:

1. The random component: the components of Y have independent Normal distribu-

tions with E(Y ) = µ and constant variance σ2.

2. The systematic component: covariates x1, x2, ..., xp produce a linear predictor
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η given by

η =

p∑
1

xjβj.

3. In the case of the identity link we have,

µ = η.

This generalization introduces a functional relationship between the mean µ and the

linear predictor η. If we write

ηi = g(µi),

then g(·) will be called the link function. In this formulation, the classical linear models

have a Normal (or Gaussian) distribution in component 1 and the identity link function

for component 3. Generalized linear models allow two extensions; first the distribution in

component 1 may come from an exponential family other than the Normal, and secondly

the link function in component 3 may become any monotonic differentiable function.

3.2 The Exponential Family

An important unifying concept underlying the GLM is the exponential family of distri-

butions. The exponential family of distribution was first described by Efron and Hinkley

(1978). Members of the exponential family of distributions all have probability density

(or probability mass) functions that can be expressed in the form:

f(yi; θi, φ) = exp

{
yiθi − b(θi)
a(φi)

+ c(yi, φ)

}
, (3.3)

where θi is referred to as a natural or canonical parameter and a(φi), b(θi) and c(yi, φ)

are known functions. The term a(φi) has the form a(φi) = φ
wi

, where wi is a known

weight depending on whether the data is grouped and φ is referred to as the dispersion
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or scale parameter. It can be shown that if a response Yi has a distribution belonging to

the exponential family, then its mean and variance are

E(Yi) = µi = b′(θi) (3.4)

V ar(Yi) = b′′(θi)a(φi), (3.5)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi) with respect to θi.

b′′(θi) is a function of the mean, thus it is referred to as the variance function denoted by

v(µi).

The variance of Yi from the exponential family can be also expressed as

V ar(Yi) = ai(φ)v(µi) (3.6)

=
φ

wi
v(µi). (3.7)

Thus, another property of the GLM is that of a non-constant variance where the variance

may vary as a function of the mean. When ai(φ) > 1 the distribution of Yi is said

to be overdispersed since V ar(Yi) > v(µi). Similarly, the distribution of Yi will be

underdispersed when ai(φ) < 1. Therefore, standard errors calculated on the assumption

ai(φ) = 1 would be incorrect when ai(φ) 6= 1.

3.3 Maximum Likelihood Estimation (MLE)

The idea behind MLE is to provide estimates for a given model’s parameters. The

estimated parameters maximise the likelihood of the sample data. In general, MLEs do
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not have a closed form for GLMs and therefore one has to rely on approximation methods

such as the Newton-Raphson or Fisher scoring to find MLEs. From a statistical point

of view, the method of maximum likelihood is considered to be more robust (with some

exceptions) and yields estimators with good statistical properties when compared to other

methods such as the method of least square estimation. The MLE estimation method

is versatile and applies to most models and to different types of data. Due to advances

in statistical theory and computer software, this method of estimation has become the

most popular technique in applied statistics (Wu, 2005). The estimation of the dispersion

parameter φ may also become necessary, particularly if it is differed from one implying

the case of over-dispersion (φ > 1) or under-dispersion (φ < 1). The estimation of φ is

imported in order to correctly determine standard errors for parameter estimates.

3.3.1 Parameters Estimation

The log-likelihood function contribution for a single observation is given by

`i = ln(f(yi; θi, φ)) =
yiθi − b(θi)
a(φi)

+ c(yi, φ). (3.8)

Since Yi, i = 1, ..., n, are independent, the joint log-likelihood function is

`(β, y) =
n∑
i=1

`i. (3.9)

The ML estimate of βj, j = 0, ..., p, is the solution to the score equation

∂`i
∂βj

= 0. (3.10)
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To obtain this solution, we use the chain rule of differentiation as

∂`i
∂βj

= ∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj
. (3.11)

Using Equation (3.8), we get

∂`i
∂θi

=
yi − b′(θi)
a(φi)

. (3.12)

Since µi = b′(θi), V ar(Yi) = a(φi)v(µi) and ηi =
∑
j

βjxij,

∂`i
∂θ

= yi−µi
a(φi)

∂µi
∂ηi

= b′′(θi) = v(µi)

∂ηi
∂βj

= xij.

(3.13)

Thus,
∂`(β,y)
∂βj

=
n∑
i=1

yi−µi
a(φi)

1
v(µi)

∂µi
∂ηi
xij

=
n∑
i=1

(yi − µi)Wi
∂ηi
∂µi
xij,

(3.14)

where Wi is referred to as the iterative weights given by

Wi = 1
a(φ)

(
∂µi
∂ηi

)2

v−1
i

= 1
V ar(Yi)

(
∂µi
∂ηi

)2

,
(3.15)

and vi = v(µi) is the variance function. Since ηi = g(µi),
∂µi
∂ηi

depends on the link function

for the model.

Therefore, solving for the score equation below will give the ML estimate of β from

n∑
i=1

(yi − µi)Wi
∂ηi
∂µi
xij = 0. (3.16)

This score equation is a nonlinear function of β, and therefore requires iterative procedures
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to be solved. The Newton Raphson and Fisher Score iterative Equations can be used,

where the score U is given by the left hand side of Equation (3.16). Thus, the Newton

Raphson iterative equation will be

β̂(t+1) = β̂(t) − (H(t))−1U (t), (3.17)

and the Fisher Score iterative equation

β̂(t+1) = β̂(t) + (T (t))−1U (t), (3.18)

with information matrix

T = −E(H)

= −E
(

∂2`
∂β∂β

)
= X ′WX,

(3.19)

where W is known as the weight matrix with diagonal elements given in Equation (3.15).

Equation (3.18) can also be represented as

T (t)β̂(t+1) = T (t)β̂(t) +U (t). (3.20)

It can be shown that the right hand side of Equation (3.20) can be written as

X ′W (t)z(t), (3.21)

where W (t) is weight matrix evaluated at β̂(t), and z(t) has the following elements eval-

uated at β̂(t)

zi = ηi + (yi − µi)
(
∂ηi
∂µi

)
. (3.22)

This variable zi is often called the adjusted dependent variable or the working dependent
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variable. Therefore, we can obtain

β(t+1) = (X ′W (t)X)−1X ′W (t)z(t). (3.23)

Thus, each iteration step is the result of a weighted least squares regression of the adjusted

variable z on the predictors x with working weight W . Fisher scoring can therefore be

regarded as an iteratively re-weighted least squares (IRWLS) procedure carried out on a

transformed version of the dependent variable (Vazquez et al., 2010).

It follows that the asymptotic variance (also known as the asymptotic covariance) of this

estimate of β is the inverse of the information matrix given in Equation (3.19) and can

be estimated by

ˆV ar(β̂) = (X ′ŴX)−1, (3.24)

where Ŵ is W evaluated at β̂ and depends on the link function of the model. The

dispersion parameter φ, in the function a(φi) that is used in the calculation of Wi, gets

cancelled out of the IRWLS procedure, thus the value of β̂ is the same under any value of

φ. However, the value of φ is required for the calculation of the variance of β̂, therefore

when φ is unknown, it can be estimated using a moment estimator (McCullough and

Nelder, 1989), given by

φ̂ =
1

n− p− 1

n∑
i=1

wi(yi − µ̂i))2

v(µ̂i)
, (3.25)

where wi is the weight for observation yi defined in Equation (3.3).

3.4 Measure of Fit

An important step in statistical analysis is to assess the goodness-of-fit of the model of

interest. One way in which this could be done is by using the deviance, a measure of

discrepancy between the predicted values from the fitted model and the actual values
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from the data set. If, for the fitted model with p + 1 parameters, `(µ̂, φ,y) is the log-

likelihood function maximized over β̂ for a fixed value of the dispersion parameter φ, and

`(y, φ,y) is the maximum log-likelihood achievable under the saturated model where the

number of parameters equals the number of observations, the scaled deviance is

Ds =
−2[`(µ̂, φ,y)− `(y, φ,y)]

φ
. (3.26)

If φ = 1, the deviance is defined as

D = −2[`(µ̂, φ,y)− `(y, φ,y)]. (3.27)

The (scaled) deviance converges asymptotically to a χ2 distribution with n−p−1 degrees

of freedom. Thus, when testing at a level of significance of α, the fitted model is rejected

if the calculated deviance is greater than or equal to χ2
n−p−1;α.

Another commonly used measure of goodness-of-fit is the generalized Pearsons chi-square

statistic given by

χ2 =
∑n

i

(yi − µ̂i)n

v(µ̂i)
, (3.28)

where v(µ̂i) is the estimated variance function for the distribution in question. This

statistic also asymptotically follows χ2 distribution with n − p − 1 degrees of freedom.

Similar to the deviance, the smaller the value of the χ2 statistic, the better the fit of the

model. The scaled Pearsons χ2 statistic is χ2

φ
(Wu, 2005). For linear models, the value

of the Pearsons χ2 statistic is the residual sum of squares since v(µ̂i) is generally taken

as one, and both the deviance and Pearsons χ2 statistic have exact χ2 distributions. For

other distributions, these measures of goodness-of-fit have asymptotic χ2 distributions

and neither is superior to one another when samples are small. However, the deviance

has an advantage over Pearsons χ2 statistic as it is additive for nested models (Nelder

and Baker, 1972).
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3.4.1 Wald Test

When a hypothesis test on a single parameter, βj , is to be carried out, a commonly used

method is the Wald test. The test statistic for this test is

z0 =
β̂j

se(β̂j)
. (3.29)

The standard error of β̂j is the square root of the diagonal elements in the inverse of the

information matrix given in Equation (3.19). This test statistic follows an approximately

standard normal distribution. Some software packages square this value of the Wald

test statistic and thus compare it to a chi-square distribution with 1 degree of freedom

(Heeringa et al., 2010). Thus, for large values of the test statistic, one would reject the

null hypothesis H0 : βj = 0 and conclude its corresponding variable is significant to the

model.
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Chapter 4

Zero-Inflated Count Data Regression

Models

Various statistical models have been developed to model count data and zero-inflated

count data. When describing count data variables, we note that it is common for many

of the units to have never have exhibited or experienced positive counts. The resulting

variable distribution, therefore, has many zeros and just a few other values (Atkins et al.,

2013). In this chapter, four models are discussed that can deal with the excessive number

of zeros, namely, the zero-inflated Poisson (ZIP), the zero-inflated negative binomial

(ZINB) models, the Poisson logit hurdle (PLH), and the negative binomial logit hurdle

(NBLH) models. There are two main distinctions in these abbreviations, namely zero-

inflated (ZI) versus logit hurdle (LH), and Poisson versus negative binomial. The latter

pair of Poisson versus negative binomial should be familiar territory with the negative

binomial models (ZINB and NBLH) to deal with a certain degree of overdispersion.

Furthermore, because a Poisson GLM is nested in a negative binomial GLM, the ZIP is

nested in a ZINB, and a PLH is nested in a NBLH. The difference between ZI and LH

models is slightly more complicated and is related to the nature of the zeros. Below, a

brief outline for each of the models mentioned above is given.
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4.1 The Poisson Model

Poisson regression is traditionally conceived as the basic count model upon which a variety

of other count models are based (Hilbe, 2011). If events occur randomly over time,

without occurrence dependence or duration dependence, the number of events during a

unit time interval is Poisson distributed with probability function

f(y;λ) = P (Y = y) = e−λ(λy)
y!

, y = 0, 1, 2, ...;λ > 0 (4.1)

where the random variable y is the count response and the parameter λ is the mean. One

strict assumption about the model is that the mean is equal to the variance. Unlike most

other distributions, the Poisson distribution does not have a distinct scale parameter

(McCullagh and Nelder, 1989).

The standard Poisson distribution, which assumes equal variance and mean, is not ap-

propriate to fit the observed counts since the variance of the most observed data is much

larger than their mean. Violations of equidispersion indicate correlation in the data,

which affects both standard errors of the parameter estimates and the further model fit.

When such a situation arises, modifications are made to the Poisson model to account for

inconsistency in the goodness of fit of the underlying distribution. The negative binomial

(NB) distribution is commonly used to model overdispersed count data. A dispersion

parameter is included in the NB model to cater for overdispersion by allowing the vari-

ance to be greater than the mean and accommodate the unobserved heterogeneity in the

count data.

The Poisson regression model is derived from generalized linear models or GLMs (Mc-

Cullagh and Nelder, 1989) and relates λ,β and x′
i through:

log(λi) = x′
iβ. (4.2)
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Here, x′
iβ is the linear predictor, which is also symbolized by η within the context of

generalized linear models (GLM). In equation (4.1), y denotes dependent variable having

the Poisson distribution. The log-likelihood for the Poisson regression model is, (Walhin,

2001)

LL (β|y,x) =
n∑
i=1

[yix
′
iβ − exp (x′iβ)− lnyi!] . (4.3)

The vector parameters can be estimated by maximizing the log likelihood function in

order to get ML estimates (Yesilova et al., 2012). Methods that can be used including

the Newton-Raphson and the Fisher scoring methods which are iterative in nature.

4.2 The Negative Binomial (NB) Model

The negative binomial model is a type of generalized linear model in which the dependent

variable Y is a count of the number of times an event occurs (Greene, 2008). The negative

binomial distribution is given by:

P (Y = y) =
Γ(y + 1/α)

Γ(y + 1)Γ(1/α)

(
1

1 + αµ

)1/α(
αµ

1 + αµ

)y
(4.4)

where µ > 0 is the mean of Y , α > 0 is the heterogeneity parameter and the random

variable Y has a negative binomial distribution with parameters τ ≥ 0 and λ ≥ 0. The

shape parameter τ quantifies the amount of overdispersion and its mean and variance of

the distribution are given by:

E(Y ) = τλ (4.5)

Var(Y ) = τλ(1 + λ) = E(Y )(1 + λ). (4.6)
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(Greene, 2008) derives this parametrization as a Poisson-gamma mixture, or alternatively

as the number of failures before the (1/α)th success, though we will not require 1/α to

be an integer. The traditional negative binomial regression model, designated the NB2

model in equation 4.4, is

lnµ = β0 + β1x1 + β2x2 + ...+ βpxp, (4.7)

where the predictor variables x1, x2, ..., xp are given, and the population regression coef-

ficients β0, β1, β2, ..., βp are to be estimated.

Given a random sample of n subjects, we observe for subject i the dependent variable

yi and the predictor variables x1i, x2i, ..., xpi. Utilizing vector and matrix notation, we

let β = (β0 β1 β2 ... βp)
T , and we gather the predictor data into the design matrix X as

follows:

X =



1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
...

1 xn1 xn2 . . . xnp


Designating the ith row of X to be xi, and exponentiating equation 4.7, we can then

write the distribution in equation 4.4 as

P (Y = yi) = Γ(yi+1/α)
Γ(yi+1)Γ(1/α)

(
1

1+αexiβ

)1/α (
αexiβ

1+αexiβ

)yi
, i = 1, 2, ..., n. (4.8)

We estimate α and β using maximum likelihood estimation. The likelihood function is

L (α,β) =
n∏
i=1

p(yi) =
n∏
i=1

Γ(yi + 1/α)

Γ(yi + 1)Γ(1/α)

(
1

1 + αexiβ

)1/α(
αexiβ

1 + αexiβ

)yi
, (4.9)
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and the log-likelihood function is

lnL (α,β) =
n∑
i=1

(
yilnα + yi(xiβ)−

(
yi + 1

α

)
ln(1 + αexiβ) + lnΓ(yi + 1

α
)− lnΓ(yi + 1)− lnΓ

(
1
α

))
.

(4.10)

The values of α and β that maximize lnL(α,β) will be the maximum likelihood estimates

we seek, and the estimated variance-covariance matrix of the estimators is
∑

= −H−1,

where H is the Hessian matrix of second derivatives of the log-likelihood function. Then

the variance-covariance matrix can be used to find the usual Wald confidence intervals

and p−values of the coefficient estimates.

Since µ ≥ 0, the variance of NB distribution generally exceeds its mean implying overdis-

persion (Winkelmann, 2008). It has been proposed as one of the distributions to model

excessive variation in microbiological organisms that affect water quality. The NB dis-

tribution has been widely used for modeling count variables, usually for over-dispersed

count outcome variables. However, distributional problems affect both models (Poisson

and NB) such as overdispersion resulting from the specification of errors in the systematic

part of the regression model, hence NB model themselves may be over-dispersed (Hilbe,

2011). Nevertheless, both models can be extended to accommodate any extra correlation

or dispersion in the data that result in a violation of distributional properties of each re-

spective distribution. The enhanced Poisson or NB model can be regarded as a solution

to the violation of distributional assumptions of the primary model (4.1). For a better

fit, an overdispersed model that incorporates excess zeros should serve as an alternative.

Zero modified models such as zero-inflated models and hurdle count models are capable

of incorporating excess zeros. They are applied to count data when overdispersion exists

and have an excess of zeros.
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4.3 Zero-Inflated (ZI) Models

The other problem with Poisson regression model is having far more zeros than expected

by the distributional assumption of the Poisson and negative binomial models, hence

resulting in incorrect parameter estimates. The use of zero-inflated Poisson or zero-

inflated negative binomial models is proposed as a solution for this problem (Loeys et al.,

2012).

4.3.1 Zero-Inflated Poisson (ZIP) Regression

This model was proposed by Lambert (1992) to model count data with excess zeros. In

ZIP regression, excess zero counts are assumed to occur with probability pi and follow a

Poisson distribution with mean λi, with probability 1 − pi where i = 0, 1, 2, ..., n. The

ZIP model can thus be seen as a mixture of two component distributions, a zero part and

non-zero component, given by:

P (Y = yi|λ, pi) =


pi + (1− pi)e−λi , yi = 0

(1− pi) e
−λλyi
yi!

, yi = 1, 2, ...

(4.11)

The first part of the equation above is the zero part of the model and the second part

is the non-zero count’s part of the model. The two components together constitute the

zero-inflated model.

The mean and variance of the zero-inflated Poisson model are:

E(Yi) = λi(1− pi) (4.12)

Var(Yi) = λi(1− pi)(1 + λipi), (4.13)

where both pi and λi are functions of xi derived from (4.14) and (4.15) below. Note that
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this distribution approaches the Poisson distribution as pi → 0.

Note that, zero observations arise from both the zero-component distribution and the

Poisson distribution. The zero-component distribution is therefore related to modeling

‘excess’ or ‘inflated’ zeros that are observed in addition to zeros that are expected to be

observed under the assumed Poisson distribution. To assess the impact of covariates on

the count distribution in a ZIP model pi and λi can be explicitly expressed as a function

of covariates using appropriate link functions. The most natural choice to model the

probability of excess zeros is to use a logistic regression model with a logit link specified

as:

logit(pi) = z′iγ

pi = ez
′
iγ

1+e
z′
i
γ

1− pi = 1

1+e
z′
i
γ
,

(4.14)

where x′
i represents a vector of covariates and β a vector of parameters. The effect of

covariates count data excluding excess zeros can be modelled through Poisson regression:

log(λi) = x′
iβ

λi = ex
′
iβ.

(4.15)

Now we have:

f(yi) =


pi + (1− pi)e−λi = ez

′
iγ

1+ez
′
i
γ

+ e−e
x′iβ

1+ez
′
i
γ
; when yi = 0

(1− pi) e
−λiλ

yi
i

yi!
= e−e

x′iβ (ex
′
iβ)yi

(1+ez
′
i
γ)yi!

; when yi = 1, 2, ...

(4.16)

The likelihood function is :

L(γ,β;yi) =
n∏
i=1

((
eziγ

1 + eziγ
+

e−e
xiβ

1 + eziγ

)(
e−e

xiβ(exiβ)yi

(1 + eziγ)yi!

))
, (4.17)
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and the log-likelihood function to be used to estimate the parameter vectors γ and β, as

well as, λ and p is given by,

`(γ,β;yi) =
∑
yi=0

log(eziγ + e−e
xiβ)−

n∑
i=1

log(1 + eziγ) +
∑
yi>0

(yixiβ − exiβ)−
∑
yi>0

log(yi!).

(4.18)

The parameter estimation can be carried out by employing EM algorithm or Newton-

Raphson algorithm.

4.3.2 Zero-Inflated Negative Binomial (ZINB) Regression

The ZINB distribution is a mixture distribution, similar to the ZIP distribution, where pi

denotes the probability for excess zeros and the probability (1− pi) is for the rest of the

counts which follow the negative binomial distribution. Note that the negative binomial

distribution can be viewed as a mixture of Poisson distributions, which allows the Poisson

mean λi to be distributed as Gamma, and in this way overdispersion is modeled. The

ZINB distribution is given by:

P (Y = yi) =


pi + (1− pi)

(
τ

τ + λi

)τ
, yi = 0 (4.19)

(1− pi)
Γ(τ + yi)

yi!Γ(τ)

(
τ

τ + λi

)τ (
λi

λi + τ

)yi
, yi = 1, 2, ... (4.20)

The mean and variance of the ZINB distribution are:

E(Yi) = (1− pi)λi (4.21)

Var(Yi) = (1− pi)λi
(

1 + piλi +
λi
τ

)
. (4.22)

Observe that this distribution approaches the zero-inflated Poisson distribution and the
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negative binomial distribution as τ → ∞ and pi → 0, respectively. If both 1
τ

and

pi ≈ 0 then the ZINB distribution reduces to the Poisson distribution. Now consider

a sample of n observation which independently follow the ZINB distribution but not

necessary identical. The ZINB regression model relates pi and λi to covariates, through

the equations:

log(λi) = x′
iβ, (4.23)

and

logit(pi) = z′iγ, (4.24)

where i = 1, 2, ..., n and x′
i and z′i are p− and q− dimensional vectors of covariates

pertaining to the ith subject, and with β and γ the corresponding vectors of regression

coefficients, respectively.

The ZINB log-likelihood given the observed data is:

l(β, γ;y) =
n∑
i=1

log(1 + eziγ)−
n∑

i=1:yi=0

log

(
eziγ +

(
exiβ+τ

τ

)−τ)
+

n∑
i=1:yi>0

(
τ log

(
exiβ+τ

τ

)
+ yilog(1 + e−xiβτ)

)
+

n∑
i=1:yi>0

(logΓ(τ) + logΓ(1 + yi)− logΓ(τ + yi)).

(4.25)

Parameter estimation can be carried out using the quasi-Newton optimization method.

4.4 Hurdle Regression Model

The hurdle model proposed by Mullahy (1986) uses a two-part model where the first

part is a binary outcome model, and the second part is a truncated count model. As per
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Cameron and Trivedi (1998) “Such a partition permits the interpretation that positive

observation arises from crossing the zero hurdle or the zero thresholds. The first part

models the probability that the threshold is crossed. In principle, the threshold need

not be at zero; it could be any value. The zero value has a special appeal because in

many situations it partitions the population into subpopulations in a meaningful way”.

So, a data set is split into zero and non-zero (positive) values to fit two different models

with associated covariates in regression. A variety of population distributions can be

considered for zero counts. The frequently used distributions in real-life data are binomial

distribution, Poisson distribution, and negative binomial distribution.

4.4.1 Poisson Logit Hurdle (PLH) Model

PLH model is a two-component model comprising of a hurdle component that models

zero versus non-zero counts, and a truncated Poisson count component is employed for

the non-zero counts:

P (Y = yi|λ, pi) =


pi, yi = 0

(1−pi)e−λλy
(1−e−λ)yi!

, yi = 1, 2, ...

(4.26)

where now pi models all zeros from the degenerate zero distribution and the standard

Poisson count distribution. For PLH model, the most natural choice to model probability

of zeros as a function of covariates is to use a logistic regression model:

logit(pi) = z′iγ, (4.27)

while the effect of covariates z′ on strictly positive (that is, censored) count data are

modeled through Poisson regression:

log(λi) = x′iβ. (4.28)

36



Note that equations (4.27) and (4.28) allow the covariates in the zero counts and the all

non-zero models to be different but in practice the set of covariates in the two components

are made to be the same.

4.4.2 Negative Binomial Logit Hurdle (NBLH) Model

Similarly to the Poisson hurdle model, the NBLH distribution can be used instead of

Poisson distribution above in case of over-dispersion. In this case the all-zero and the

positive count components are given by

P (Y = yi|λ, pi) =


pi, yi = 0

(1− pi) Γ(yi+τ)
Γ(yi+1)Γ(τ)

(1+τλ)−(yi+τ)τyiλy

1−(1+τλ)τ
, yi = 1, 2, ...

(4.29)

Again the most natural choice to model probability of excess zeros is to use a logistic

regression model:

logit(pi) = x′iγ. (4.30)

Impact of covariates on count data are modelled through NB regression model given by:

log(λi) = x′iβ. (4.31)

Given π = P (Y > 0), the probability of a non-zero response with η = x′iβ as given in

Equation (4.31), the expected value and the corresponding variance are given by:

E(Y ) = η =
πλi

1− p(0; τ)
(4.32)

V ar(Yi) = η(λi − ηi) +
πσ2

1− p(0; τ)
. (4.33)

Both zero-inflated and hurdle models need distributional assumptions for their count

component. The two classes differ with respect to their dependencies of estimation of
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parameters of the “zero” component on these assumptions (Loeys et al., 2012). Unlike

ZI models, estimation of parameters γ related to pi in the hurdle model is not dependent

on estimation of parameters β related to λi. Hence, if assumptions about the (truncated)

Poisson/ negative binomial model are violated (for example due to extreme outlying ob-

servations), the hurdle model will in contrast to zero-inflated model, still yield consistent

estimators for parameters in the logit model (if correctly specified) (Loeys et al., 2012).

Much as the hurdle model will be consistent in the absence of a good model for the

non-zero counts, one of it’s weaknesses is that it assumes all zeros to come from a single

degenerate population.

4.5 Model choice between a hurdle model and a zero-

inflated model

The choice between a zero-inflated model and a hurdle model is often dependent on

the nature of the problem. Although these two models are similar in many aspects,

conceptually there is a subtle difference between the two models and depending on the

application and the data collection procedures, one may be more appropriate than the

other (Hilbe, 2014). Despite differences between the modelling frameworks (the hurdle

model includes a mass at zero and a truncated distribution whereas the zero-inflated

model is based on a mass at zero and a regular distribution), the inferential results are

often very similar. Hurdle models are more general in the sense that they can handle

both cases where there are fewer or more zeros than assumed by a regular distribution.

Note, the hurdle models does not necessarily have to be set at 0. Zero-inflated models,

although less general than hurdle models, are sometimes preferred due to the assumption

that two different types of zeros (structural or true zeros, vs. sampling zeros) may exist

in the data. Ideally, the hurdle models are more appropriate for cases where a real

separation of mechanisms producing the zeros and the positive counts is justified (Hilbe,
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2014). Otherwise, zero-inflated models are more appropriate due to lack of information

or knowledge regarding the non-existence of overlap between the two potential sources

of zeros. In practice, often due to lack of clear evidence regarding the nature of zeros,

model selection procedures are implemented in order to arrive at the best model choice.

From a technical standpoint, the two methodologies are substantially different since hur-

dle models are two-stage models where the algorithms for fitting the model for the binary

component and the non-zero data component are implemented separately while zero-

inflated models fall under the class of finite mixture models (the parameters for zero and

non-zero parts of the models are estimated simultaneously). Consequently, the interpre-

tation of parameter estimation results may be difficult across these two models due to

differences in model structures.

4.5.1 Vuong Test

For non-nested models, a comparison between models with p.m.f, p1(.) and p2(.) can be

performed using Vuong test (Vuong, 1989), V = m
√
n

sd(m)
, where m is the mean of mi, sd(m)

is the standard deviation of mi,n is the sample size and mi = ln
(
p1i(yi)
p2i(yi)

)
. The Vuong

test statistics follows a standard normal. As an example, for 0.05 significance level, the

first model is “closer” to the actual model if V is larger than 1.96. On the other hand,

the second model is “closer” to the actual model if V is smaller than −1.96. Otherwise,

neither model is “closer” to the actual model and there is no difference between using

the first or the second model.

For models with unequal number of parameters, the equation for mi in the Vuong test

is slightly modified to account for the difference in the number of parameters, mi =

ln
(
p1i(yi)
p2i(yi)

)
− k1−k2

2
ln(n), where k1 and k2 are the number of parameters in model 1 and

model 2 respectively.
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4.6 Model Comparison

Akaike’s information criterion was developed by Hirotsugu Akaike under the name of

“an information criterion” (AIC) in 1971 and proposed in Posada and Crandall (1998).

For comparison of non-nested models based on maximum likelihood, to choose the best

fitting model, Akaike’s information criterion (AIC) has been proposed for model selection

criteria based on the fitted log-likelihood function. As a measure of the relative goodness

of fit of a statistical model, AIC not only rewards goodness of fit but also includes a

penalty that is an increasing function of the number of estimated parameters. Since the

log-likelihood is expected to increase as parameters are added to a model, the AIC criteria

penalize models with larger q. This penalty function may also be a function of n, the

number of observations. This penalty discourages over fitting. Thus the AIC is specified

as

AIC = −2log(L) + 2q, (4.34)

where L is the maximized value of the likelihood function for the estimated model, with

q being equal to the number of degrees of freedom used in the model and 2 is a tuning

parameter meant to balance the information in the model based on the degrees of free-

dom with information in the residuals. A model with lowest AIC is preferred. Several

alternatives of AIC also exist, viz Bayesian information criteria (BIC) and Consistent

Akaike’s information criterion (CAIC). AIC is optimal in selecting the model with the

least mean squared error while BIC is not asymptotically optimal. An AIC, CAIC or BIC

difference of less than 4 indicates that the two competing models are indistinguishable,

while a value difference of 4 to 10 suggests moderate superiority of one model against

the other, and an AIC, CAIC or BIC difference of greater than 10 implies that for two

competing models, one model is better than the other.
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Chapter 5

Application and Results

In the following, we illustrate all models described above by applying them to the data

set from Umgeni Water. At the end of this chapter, all fitted models are compared

highlighting that the mean function is similar across models and that the fitted likelihoods

are different. The models differ with respect to explaining overdispersion and the excess

zeros in the data.

5.1 Fitting the Poisson Model

As a first attempt to capture the relationship between the total coliform counts and all

regressors in a parametric regression model, we fitted the basic Poisson regression model

and obtain the coefficient estimates along with associated partial Wald tests. Note, E. coli

could not be modelled because it had very few positive counts. The level of significant

used for the statistical tests is 0.05. Results in Tables 5.1 and 5.2 are statistical test

results for the two sites after fitting the Poisson model.
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Table 5.1: Results of Poisson model estimates for total coliform counts at Midmar site.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.1699 1.4160 -7.18 <0.0010∗∗∗

Free chlorine -5.8140 0.7033 -8.27 <0.0010∗∗∗

Total chlorine -1.8879 0.1367 -13.81 <0.0010∗∗∗

pH 0.6114 0.1509 4.05 <0.0010∗∗∗

Temperature 0.2544 0.0192 13.27 <0.0010∗∗∗

Turbidity 3.1501 0.3622 8.70 <0.0010∗∗∗

Time 0.0741 0.0130 5.70 <0.0010∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.2: Results of Poisson model estimates for total coliform counts at DV Harris site.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.0724 1.4562 -6.23 <0.0010∗∗∗

Free chlorine -6.6724 0.6759 -9.87 <0.0010∗∗∗

Total chlorine -1.7079 0.1225 -13.94 <0.0010∗∗∗

pH 0.7064 0.1555 4.54 <0.0010∗∗∗

Temperature 0.1141 0.0163 7.00 <0.0010∗∗∗

Turbidity -2.2525 0.5660 -3.98 <0.0010∗∗∗

Time 0.1632 0.0098 16.58 <0.0010∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

From both Tables 5.1 and 5.2, we notice that all coefficients are highly significant on both

sites. However, the Wald test results might be too optimistic due to a misspecification of

the likelihood. From the exploratory analysis in Chapter 2, it was clear that overdisper-

sion is present in this data set. Thus, a first remedial action is to re-compute the Wald

tests using sandwich standard errors and the R-statement. Sandwich standard errors can

be used to estimate the variance of MLE when underlying model is incorrect.
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coeftest(Poisson, vcov = sandwich) .

Table 5.3: Results of Wald test for total coliform counts at Midmar site.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -10.1699 4.6499 -2.19 0.0287∗

Free chlorine -5.8140 2.7248 -2.13 0.0328∗

Total chlorine -1.8879 0.7414 -2.55 0.0109∗

pH 0.6114 0.4871 1.26 0.2094

Temperature 0.2544 0.1026 2.48 0.0132∗

Turbidity 3.1501 1.3526 2.33 0.0199∗

Time 0.0741 0.0339 2.19 0.0286∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.4: Results of Wald test for total coliform counts at DV Harris site.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -9.0724 6.2263 -1.46 0.1451

Free chlorine -6.6724 1.4357 -4.65 < 0.0010∗∗∗

Total chlorine -1.7079 0.6197 -2.76 0.0058∗∗

pH 0.7064 0.7046 1.00 0.3161

Temperature 0.1141 0.0537 2.13 0.0335∗

Turbidity -2.2525 2.3467 -0.96 0.3371

Time 0.1632 0.0430 3.78 0.0002∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The only difference we noticed between the two pairs of tables (Tables 5.1, 5.2 versus 5.3,

5.4), is that in the Tables 5.3 and 5.4 the standard errors are large but the coefficient

estimates remain the same. All regressors are still significant (p < 0.05) except pH in the

Midmar site, pH and temperature in the DV Harris site. Next we consider more superior

models that deal with overdispersion and excess zeros in a more formal way.
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5.1.1 Fitting the Negative Binomial Model

A more formal way to accommodate overdispersion in a count data regression model is

to use a negative binomial model. This model was fitted to the data and the results are

presented in Tables 5.5 and 5.6 for Midmar and DV Harris sites respectively.

Table 5.5: Results of negative binomial model estimates for total coliform counts at
Midmar site.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -19.1488 7.4805 -2.56 0.0105∗

Free chlorine -3.4536 1.7479 -1.98 0.0482∗

Total chlorine -0.7836 0.8756 -0.89 0.3709

pH 0.4865 0.8042 0.60 0.5452

Temperature 0.5778 0.1008 5.73 < 0.0010∗∗∗

Turbidity 7.8449 2.7783 2.82 0.0048∗∗

Time 0.0714 0.0824 0.87 0.3865

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.6: Results of negative binomial model estimates for total coliform counts at DV
Harris site.

Estimate Std. Error z value Pr(> |z|)

(Intercept) 0.1908 4.6746 0.04 0.9674

Free chlorine -7.5007 1.5617 -4.80 < 0.0010∗∗∗

Total chlorine -1.3974 0.4806 -2.91 0.0036∗∗

pH -0.6214 0.5080 -1.22 0.2213

Temperature 0.1248 0.0501 2.49 0.0128∗

Turbidity -2.3980 1.7119 -1.40 0.1613

Time 0.2511 0.0360 6.97 < 0.0010∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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As shown in Tables 5.5 and 5.6, both regression coefficients and standard errors are not

quite similar to the results in previous models (Tables 5.1, 5.2, 5.3 and 5.4). We note

that the standard errors of negative binomial model are also generally larger than those

from the standard Poisson model as expected. One advantage of the negative binomial

model is that it is associated with a formal likelihood so that information criterion are

readily available. The non-significant variables are total chlorine (p = 0.3709), pH (p =

0.5452), and time (p = 0.3865) at the Midmar site while for the DV Harris site it is

pH (p = 0.2213) and turbidity (p = 0.1613) that are non-significant. Free chlorine has

a significant negative effect on total coliform counts on both sites as expected. Total

chlorine also has a significant negative effect on total coliform counts at the DV Harris

site as expected. Temperature (p < 0.001) and turbidity (p < 0.01) have significant

positive effects on total coliform counts in the Midmar site while turbidity (p = 0.1613)

is not significant at the DV Harris site but the temperature (p < 0.01) is significant. The

time effect is not significant at the Midmar site but it is significant at the DV Harris site.

The model seems to indicate an increasing occurrence of total coliform counts over time

but caution is needed because the excess zeros are not well accounted in the model.

5.2 Zero-Inflated and Hurdle Regression Estimation

Results

The exploratory analysis in Chapter 2 conveyed the impression that there might be more

zero observations than explained by the basic count data distributions, hence in this

section the zero-inflated and hurdle models are used to model both positive counts and

excess zeros. Tables 5.7 and 5.8 show the parameter estimates of zero-inflated and hurdle

models with associated standard error under both the Poisson and negative binomial

distributions at Midmar and DV Harris sites.
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Table 5.7: Estimation of coefficients using zero-inflated and hurdle models for total col-
iform counts at Midmar site.

ZIP ZINB PLH NBLH
Count model coefficients
(Intercept) 3.33 −11.29 3.67 −3.82

(2.95) (10.73) (3.00) (11.53)
Free chlorine −6.39∗∗∗ −4.18 −6.46∗∗∗ −6.09

(0.72) (3.64) (0.73) (3.75)
Total chlorine −0.48∗∗∗ −0.65 −0.53∗∗∗ −0.59

(0.13) (1.05) (0.14) (1.72)
pH 0.45 1.30 0.39 −0.19

(0.29) (1.07) (0.30) (1.64)
Temperature −0.05 0.16 −0.04 0.03

(0.03) (0.15) (0.03) (0.31)
Turbidity 6.56∗∗∗ 3.59 6.84∗∗∗ 6.48

(0.77) (2.57) (0.80) (4.01)
Time −0.35∗∗∗ −0.29∗∗ −0.35∗∗∗ −0.29∗

(0.02) (0.09) (0.02) (0.13)

Zero model coefficients
(Intercept) 13.45∗∗ 4.53 −12.92∗∗ −12.92∗∗

(4.53) (12.51) (4.44) (4.44)
Free chlorine −1.35 −2.60 −1.56 −1.56∗∗

(1.35) (2.62) (1.35) (1.35)
Total chlorine 1.05∗ 1.57 −1.18∗∗ −1.18∗∗

(0.49) (1.01) (0.46) (0.46)
pH −0.28 0.88 0.42 0.42

(0.48) (1.20) (0.47) (0.47)
Temperature −0.27∗∗∗ −0.37 0.25∗∗∗ 0.25∗∗∗

(0.06) (0.20) (0.06) (0.06)
Turbidity 2.28 0.84 −0.65 −0.65

(1.75) (3.83) (1.72) (1.72)
Time −0.29∗∗∗ −0.58∗∗ 0.19∗∗∗ 0.19∗∗∗

(0.05) (0.20) (0.04) (0.04)
Log(theta) −4.31∗∗∗ −11.80

(0.56) (15.89)
AIC 1020.63 624.77 1021.75 618.33
Log Likelihood -496.32 -297.39 -496.87 -294.16
Number of observations 6853 6853 6853 6853
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table 5.8: Estimation of coefficients using zero-inflated and hurdle models for total col-
iform counts at Midmar site.

ZIP ZINB PLH NBLH
Count model coefficients
(Intercept) 13.26∗∗∗ 8.65 13.08∗∗∗ 6.78

(1.68) (7.16) (1.70) (24.72)
Free chlorine −2.71∗∗ −1.58 −2.78∗∗ −0.92

(0.84) (2.36) (0.86) (2.82)
Total chlorine −0.90∗∗∗ −1.83∗∗∗ −0.90∗∗∗ −2.54∗∗∗

(0.12) (0.50) (0.13) (0.77)
pH −0.69∗∗∗ −0.19 −0.67∗∗∗ −0.30

(0.17) (0.69) (0.17) (0.84)
Temperature −0.07∗∗∗ −0.02 −0.07∗∗∗ −0.08

(0.02) (0.11) (0.02) (0.10)
Turbidity −3.81∗∗∗ −3.05 −3.89∗∗∗ −5.45∗

(0.76) (1.99) (0.78) (2.60)
Time −0.07∗∗∗ −0.15∗ −0.07∗∗∗ −0.12

(0.02) (0.07) (0.02) (0.07)

Zero model coefficients
(Intercept) 18.77∗∗∗ 24.54∗∗∗ −15.88∗∗∗ −15.88∗∗∗

(3.24) (6.87) (3.07) (3.07)
Free chlorine 2.64∗ 2.27 −3.54∗∗ −3.54∗∗

(1.13) (2.16) (1.09) (1.09)
Total chlorine 0.43 −0.02 −0.65∗ −0.65∗

(0.30) (0.57) (0.29) (0.29)
pH −0.93∗∗ −1.27 0.76∗ 0.76∗

(0.34) (0.66) (0.33) (0.33)
Temperature −0.20∗∗∗ −0.27∗∗ 0.18∗∗∗ 0.18∗∗∗

(0.04) (0.09) (0.04) (0.04)
Turbidity −1.50 −2.71 0.07 0.07

(1.17) (2.13) (0.64) (0.64)
Time −0.20∗∗∗ −0.36∗∗∗ 0.19∗∗∗ 0.19∗∗∗

(0.02) (0.08) (0.02) (0.02)
Log(theta) −3.14∗∗∗ −8.55

(0.50) (23.54)
AIC 1578.91 1191.54 1580.68 1187.58
Log Likelihood -775.45 -580.77 -776.34 -578.79
Number of observations 9011 9011 9011 9011
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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5.2.1 Heterotrophic Plate Counts (HPC at 37 ◦C)

Tables 5.9 and 5.10 show results of HPC at 37 ◦C for the zero-inflated and hurdle models
under both the Poisson and negative binomial distributions at Midmar and DV Harris
sites.

Table 5.9: Estimation of coefficients using zero-inflated and hurdle models for HPC at 37
◦C at Midmar site.

ZIP ZINB PLH NBLH
Count model coefficients
(Intercept) 2.77∗∗∗ −1.62 2.79∗∗∗ −9.41

(0.24) (1.01) (0.24) (18.79)
Free chlorine −0.28∗∗∗ −0.31∗ −0.30∗∗∗ −0.47∗∗

(0.05) (0.14) (0.05) (0.18)
Total chlorine −1.42∗∗∗ −0.78∗∗∗ −1.43∗∗∗ −0.88∗∗∗

(0.02) (0.09) (0.02) (0.11)
pH −0.08∗∗ 0.03 −0.08∗∗ −0.19

(0.03) (0.11) (0.03) (0.14)
Temperature 0.06∗∗∗ 0.12∗∗∗ 0.06∗∗∗ 0.08∗∗∗

(0.00) (0.01) (0.00) (0.02)
Turbidity 1.12∗∗∗ 1.73∗∗∗ 1.12∗∗∗ 1.30∗

(0.07) (0.49) (0.07) (0.59)
Time 0.11∗∗∗ 0.09∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(0.00) (0.01) (0.00) (0.01)

Zero model coefficients
(Intercept) 5.44∗∗∗ 1.28 −5.34∗∗∗ −5.34∗∗∗

(0.75) (2.71) (0.74) (0.74)
Free chlorine 0.13 −0.18 −0.18 −0.18

(0.12) (0.41) (0.12) (0.12)
Total chlorine −0.03 0.03 −0.13 −0.13

(0.09) (0.27) (0.09) (0.09)
pH −0.08 0.32 0.08 0.08

(0.08) (0.29) (0.08) (0.08)
Temperature −0.19∗∗∗ −0.32∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.01) (0.03) (0.01) (0.01)
Turbidity −1.51∗∗∗ −1.95 1.59∗∗∗ 1.59∗∗∗

(0.29) (1.05) (0.28) (0.28)
Time 0.02∗∗ 0.08∗∗ −0.01 −0.01

(0.01) (0.03) (0.01) (0.01)
Log(theta) −1.88∗∗∗ −12.61

(0.05) (18.75)
AIC 55667.45 14912.48 55658.46 14508.39
Log Likelihood -27819.73 -7441.24 -27815.23 -7239.20
Number of observations 6853 6853 6853 6853
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table 5.10: Estimation of coefficients using zero-inflated and hurdle models for HPC at
37 ◦C at DV Harris site.

ZIP ZINB PLH NBLH
Count model coefficients
(Intercept) −5.09∗∗∗ −8.88∗∗∗ −5.11∗∗∗ −22.87

(0.28) (1.12) (0.28) (64.15)
Free chlorine 0.10∗∗ −0.04 0.10∗∗ 0.04

(0.04) (0.13) (0.04) (0.16)
Total chlorine −0.39∗∗∗ −0.01 −0.39∗∗∗ −0.20

(0.03) (0.14) (0.03) (0.19)
pH 0.72∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 1.04∗∗∗

(0.03) (0.12) (0.03) (0.16)
Temperature 0.02∗∗∗ 0.11∗∗∗ 0.02∗∗∗ 0.03

(0.00) (0.01) (0.00) (0.02)
Turbidity 0.00 0.39 −0.00 0.15

(0.04) (0.26) (0.04) (0.16)
Time 0.07∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.06∗∗∗

(0.00) (0.01) (0.00) (0.01)

Zero model coefficients
(Intercept) 4.58∗∗∗ −14.42∗∗ −5.04∗∗∗ −5.04∗∗∗

(0.77) (5.16) (0.76) (0.76)
Free chlorine −0.05 −0.76 0.06 0.06

(0.11) (0.75) (0.11) (0.11)
Total chlorine 0.09 0.78 −0.11 −0.11

(0.08) (0.43) (0.08) (0.08)
pH −0.11 0.58 0.15 0.15

(0.08) (0.48) (0.08) (0.08)
Temperature −0.11∗∗∗ −0.23∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(0.01) (0.04) (0.01) (0.01)
Turbidity −1.32∗∗∗ −6.29∗∗ 1.32∗∗∗ 1.32∗∗∗

(0.23) (2.22) (0.23) (0.23)
Time −0.01 0.52∗∗∗ 0.01∗ 0.01∗

(0.01) (0.10) (0.01) (0.01)
Log(theta) −2.30∗∗∗ −15.55

(0.03) (64.13)
AIC 61066.33 17011.13 61067.78 16669.30
Log Likelihood -30519.16 -8490.57 -30519.89 -8319.65
Number of observations 9011 9011 9011 9011
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Poisson regression was not used for this model because there was clear indication that

the distribution of the dependent variable (total coliform counts) had a variance con-

siderably larger than the mean. The Poisson goodness of fit analysis indicated that the

Poisson distribution should not be used (p < 0.001). Instead, a negative binomial model

was preferred with the total coliform counts as the dependent variable. A test of the

overdispersion parameter alpha revealed that alpha was significantly different from zero

(p < 0.001), indicating that the negative binomial distribution was superior to the Pois-

son distribution. Zero-inflated and hurdle models were used because of the prevalence

of zero counts. The negative binomial hurdle model was considered as the best model

because it had smaller AIC values (618.33 and 1187.58). Tables 5.7, 5.8, 5.9 and 5.10

show the summary of fitted count regression for Umgeni Water data: coefficient estimates

from count model, zero-inflation model (both with standard errors), the number of esti-

mated parameters, maximized log-likelihood and AIC. All coefficient estimates confirm

the results from the exploratory analysis in Figure 2.3a to Figure 2.3e. Tables 5.7 and 5.8

show the results for total coliform counts at the Midmar and DV Harris sites. The count

model parts at the Midmar site shows that time has a negative effect with 0.29 units on

the total coliform counts, meaning that total coliform counts are significantly decreasing

over time. Total chlorine is significant (p < 0.001) at DV Harris site and that means it is

reducing the total coliform counts. Turbidity at DV Harris site has a negative effect with

5.45 units on total coliform counts. The low turbidity measurements are indications of

adequate water treatment. The zero model parts in Tables 5.7 and 5.8 show that free and

total chlorine have a positive significant effect (p < 0.01) on zero counts at the Midmar

and DV Harris sites, therefore it increases the number of zeros (total coliform counts

meet the accepted standards limits). Free chlorine was not significant (p > 0.05). The

model also showed that at low temperature, the total coliform counts would not increase

significantly (p < 0.001).

Tables 5.9 and 5.10 show the results for HPC at 37 ◦C at the Midmar and DV Harris

sites. It can be observed that from count model, free and total chlorine are significantly
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(p < 0.01) reducing the HPC at 37 ◦C at Midmar site. The model further shows that high

temperature significantly (p < 0.01) increases bacteria growth and this is also supported

by previous findings. Time has a negative effect on HPC at 37 ◦C, that is, the counts are

decreasing over time at Midmar and DV Harris sites. The pH has a positive significant

(p < 0.01) relationship with HPC at 37 ◦C at DV Harris site. The zero model parts in

Table 5.9 and 5.10 shows that temperature and turbidity significantly (p < 0.001) affect

HPC at 37 ◦C on both sites.

5.3 Model Comparison

Note that the model output above does not indicate in any way if the zero-inflated

and hurdle models are an improvement over a standard Poisson and negative binomial

model. This can be determined by running the corresponding standard Poisson/ negative

binomial models and then performing a Vuong test of the two models. To compare the

performance of each model we may use the Vuong test as the models are non-nested.

Tables 5.11 and 5.12 show that the hurdle model is the most superior to the rests. The

ZIP and ZINB have almost similar performance and the Vuong test indicated that the

two models do not have a significant difference. The reason might be due to the statistical

non-significance of the estimate of the dispersion parameter, that is log(theta).

Table 5.11: Vuong test for comparisons of different models at Midmar site.

ZIP ZINB PLH NBLH P NB Best model
ZIP 0.02∗ 0.398 0.000∗∗∗ 0.01∗ 0.021∗ Hurdle
ZINB 0.02∗ 0.000∗∗∗ 0.008∗∗ 0.144 Hurdle
HLP 0.009∗∗ 0.014∗ 0.022∗ Hurdle
HLNB 0.008∗∗ 0.061∗ Hurdle
POI 0.009∗∗ NB
NB
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table 5.12: Vuong test for comparisons of different models at DV Harris site.

ZIP ZINB HLP HLNB Poi NB Best model
ZIP 0.005∗∗ 0.262 0.000∗∗∗ 0.000∗∗∗ 0.011∗ Hurdle
ZINB 0.004∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗ Hurdle
HLP 0.000∗∗∗ 0.000∗∗∗ 0.011∗ Hurdle
HLNB 0.000∗∗∗ 0.000∗∗∗ Hurdle
POI 0.000∗∗∗ NB
NB
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

5.3.1 Akaike information criterion (AIC)

In this section we compare all the fitted models for total coliform counts using Akaike

information criteria. The AIC values to select the best model that fits the data set are

presented in Table 5.13.

Table 5.13: The comparison of different models using Akaike Information Criterion (AIC).

Models AIC (Midmar) AIC (DV Harris)
Poisson 4304.23 3828.76
Negative Binomial 646.75 1241.81
Zero-Inflated Poisson 1020.63 1578.91
Zero-Inflated Negative Binomial 624.77 1191.54
Poisson Logit Hurdle 1021.75 1580.68
Negative Binomial Logit Hurdle 618.33 1187.58

According to the Table 5.13, the Poisson model is not the best performing model because

it yields the largest AIC values in both sites. Since the negative binomial model has the

small AIC value, one can say that it is the best fitting model for the data set. However,

the dispersion parameter for the negative binomial model is 1, 0405 and the dispersion

parameter for the Poisson model is 1, 201623 which indicate that the dependent variable

(total coliform counts data) is overdispersed. On the other hand, we used the Vuong test

to check if the zero-inflated model is better than the Poisson model, and zero-inflated

negative binomial model is better than the negative binomial model. For the Poisson part,

the computed Vuong test statistic is V = −6, 722759 (p-value < 0.001) which indicates

that zero-inflated Poisson model fits better than the standard Poisson model, and for
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the negative binomial part, the computed Vuong’s test statistic is V = −1, 569072 (p-

value = 0, 0583156) which indicates that the zero-inflated negative binomial model fits

the data better than the standard negative binomial model because we test significance

at the 0.05 level. We can also state that zero-inflated Poisson model is better than the

standard Poisson model, and that the zero-inflated negative binomial model is better

than the negative binomial model. Since the zero-inflated negative binomial model and

the hurdle negative binomial model have the closest AIC values, we can say that these

models perform best for our data set.

Table 5.14: The zero counts capturing in Midmar site.

Observed P NB ZIP ZINB PLH NBLH
6815 6524 6815 6815 6815 6815 6815

Table 5.15: The zero counts capturing in DV Harris.

Observed P NB ZIP ZINB PLH NBLH
8925 8643 8925 8925 8926 8925 8925

One may conclude that the Poisson model is again not appropriate as it accounted for

the least number of zeros compared to the other models. The NBLH, ZINB, PLH, and

ZIP models captured 6815 and 8926 zeros which are equal to the observed (Tables 5.14

and 5.15). The modified NB based models (ZINB and NBLH) offered the best fit to zero-

inflated microbial data in terms of the AIC (minimum value for all the models fitted).

In summary, the hurdle and zero-inflation models lead to the best results (in terms of

likelihood) on this data set. Above, their mean function for the count component of the

model was already shown to be similar, below look at the fitted zero components.
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Table 5.16: The fitted zero components in Midmar site.

Intercept Total chlorine Free chlorine Temperature pH Turbidity
ZINB 4.53 -2.60 1.57 0.88 -0.37 0.84
Hurdle-NB -12.92 -1.56 -1.18 0.42 0.25 -0.65

Table 5.17: The fitted zero component in DV Harris site.

Intercept Total chlorine Free chlorine Temperature pH Turbidity
ZINB 24.54 2.27 -0.02 -1.27 -0.27 -2.71
Hurdle-NB -15.88 -3.54 -0.65 0.76 0.18 0.07

This shows that the absolute values are different, which is not surprising as they pertain

to slightly different ways of modeling zero counts but the signs of the coefficients match,

i.e., they oppose each other. For the hurdle model, the zero hurdle component describes

the probability of observing a positive count whereas, for the ZINB model, the zero-

inflation component predicts the probability of observing a zero count from the point mass

component. Overall, both models lead to the same qualitative results and very similar

model fits. Perhaps the hurdle model is preferable because it has the nicer interpretation:

there is one process that controls the non-occurrence of microbiological organisms, and

a second process that determines how many microbiological-organisms (positive counts)

have been detected/ occurred.
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5.4 Model Validation

An important part of all regression analyses is to examine residual diagnostics, influential

data points, and non-linearity in the predictors (Andersen, 2012). After fitting a regres-

sion model it is important to determine whether all the necessary model assumptions are

valid before performing inference. If there are any violations, subsequent inferential pro-

cedures may be invalid resulting in faulty conclusions. Therefore, it is crucial to perform

appropriate model diagnostics.

(a) Midmar site (b) DV Harris site

Figure 5.1: Correlation between variables.

(a) Midmar site (b) DV Harris site

Figure 5.2: The leverage plots for the model fitted to total coliform counts data.

Figure 5.2 helps us to find influential cases (i.e. subjects) if any. Not all outliers are in-
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fluential in linear regression analysis. Even though data might have extreme values, they

might not be influential in determining a regression line. That means, the results would

not be much different if we either include or exclude them from analysis. They follow

the trend in the majority of cases and they do not really matter; they are not influential.

On the other hand, some cases could be very influential even if they look to be within

a reasonable range of the values. They could be extreme cases against a regression line

and can alter the results if we exclude them from analysis. Another way to put it is

that they do not get along with the trend in the majority of the cases. In both Figures

(a) Midmar site (b) DV Harris site

Figure 5.3: Residuals versus fitted values for the hurdle model.

(a) Midmar site (b) DV Harris site

Figure 5.4: Residuals versus fitted values for the hurdle model.

5.3 and 5.4 the we have plots for residuals versus the fitted values (ŷ) for hurdle model
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and the scale of the residuals have been decreased to make pattern visible. The typical

regression model shows a slight pattern in the results as the line slated down. There is no

systematic trends thus the model’s predictions are very good. However, the plot of the

fitted versus residuals (DV Harris site) seems to have more variation at low-level values

compared with the high fitted values.
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Chapter 6

Discussions and Conclusions

The primary objective of this study was to find the statistical methods or techniques

to model the rare microbiological organisms that exceed the acceptable standards limit

at Umgeni Water. Analyzing the distribution of the data set is crucial, especially the

microbiological data set which has more zeros than expected. This drives analyst to work

with zero modified models such as zero-inflated and hurdle models. In this study, the

Poisson and negative binomial models which are traditional methods to analyze count

data, the zero-inflated Poisson, zero-inflated negative binomial, hurdle model with hurdle

negative binomial model are applied to microbiological data. There are five independent

variables, which are free chlorine, total chlorine, temperature, turbidity, pH and time.

Plot analysis indicated that the datasets contained a very large proportion of zeros which

leads to overdispersion (see Figures 2.1 and 2.2). The dispersion parameter is used to see

if there is overdispersion in the data set and the Vuong test is used to compare non-nested

models. The AIC and log-likelihood values are used to compare different models.

On average, the count model shows that free and total chlorine reduce the total coliform

counts. Turbidity has a negative effect on total coliform counts, that is, as turbidity

increases the total coliform counts decreases. Time has a negative effect on total coliform

counts and that means the total coliform counts are decreasing over time. The study has
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demonstrated that temperatures of 15, 25 and 35◦C (Figure 2.3c), generally have negative

impact on coliform, E. coli and HPC at 37 ◦C bacteria levels, resulting in a decrease in

their counts in the water phase. The results indicate that, in the absence of nutrients,

high temperature could be an important factor in reducing the survival and growth of

bacteria. The zero part model shows that the free and total chlorine are significantly

increasing the number of zero counts, meaning very few positive counts are found in

water with higher levels of free and total chlorine. The temperature has a negative effect

on zeros counts, the positive counts would not achieve any significant growth at low

temperature.

From our simulation experiment, we see that the zero-inflated models, ZIP, ZINB, and

hurdle, are consistent with the changes of the model parameters. The specification of the

correct model is very important. Based on the AIC and Vuong tests, the hurdle model

has higher flexibility to fit a model with a mixture of distribution for zeros and positive

counts and it performs in a competitive way with ZIP and ZINB. The ZIP model is a

very good fit over the standard Poisson model and the ZINB is the better statistical fit

compared to the negative binomial model. The zero-inflated binomial model is a better

fit over the zero-inflated Poisson model for modeling the microbiological data. The zero-

inflated models fit better than their corresponding non-zero inflated counterparts; this

suggests the best fitting model needs to account for both overdispersion and zero-inflation

in the observed data. Sometimes overdispersion of a data set may not be significant if

the percentage of zeros is too high (might be 80% or more) and in such a case, the ZIP

and ZINB have nearly identical estimate of the parameters. In most cases, ZIP does not

fit the data well if there is overdispersion with a moderate percentage of zeros.
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6.1 Future Research

It is suggested that future research considers other proportions of zeros and event stage

distributions, underdispersion adjustments, different optimization procedures. This re-

search should also be extended to an approach for direct marginal inference. The aim is to

develop a marginalized model for zero-inflated univariate count outcome in the presence

of overdispersion.
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Appendix A

R Syntax

Import Data

Midmar <-is data sets from Midmar site

DV Harris <- is data sets from DV Harris site

# import data

Midmar <-read.spss("C:/Users/Zibusiso Hlongwane/Documents/R/Analysis/New Data

/U.sav",use.value.labels = T,to.data.frame = T)

DV Harris <-read.spss("C:/Users/Zibusiso Hlongwane/Documents/R/Analysis

/New Data/TDVHarris.sav",use.value.labels = T,to.data.frame = T)

# Create new data sets without missing data

Midmar <-na.exclude(Midmar)

DV Harris <-na.exclude(DV Harris)

# Descriptive statistics

stargazer(Midmar)
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stargazer(DV Harris)

# Frequency table

#Midmar site

A1 <-cbind(Freq=table(Coliforms),Cumul=cumsum(table(Midmar$Coliforms)),

relative=100*prop.table(table(Coliforms)))

A2 <-cbind(Freq=table(\textit{E. coli}),Cumul=cumsum(table(

\textit{E. coli})),relative=100*prop.table(table(\textit{E. coli})))

A3 <-cbind(Freq=table(HPC at 37 $^{\circ}$C),Cumul=cumsum(table(

HPC at 37 $^{\circ}$C)),relative=100*prop.table(table(HPC at 37 $^{\circ}$C)))

# DV Harris site

B1 <-cbind(Freq=table(Coliforms),Cumul=cumsum(table(Coliforms)),

relative=100*prop.table(table(Coliforms)))

B2 <-cbind(Freq=table(\textit{E. coli}),Cumul=cumsum(table

(\textit{E. coli})),relative=100*prop.table(table(\textit{E. coli})))

B3 <-cbind(Freq=table(HPC at 37 $^{\circ}$C),Cumul=cumsum(table

(HPC at 37 $^{\circ}$C)),relative=100*prop.table(table(HPC at 37 $^{\circ}$C)))

# Plots

date1 <-as.Date(Midmar$Date)

date2 <-as.Date(DV Harris$Date)

par(mar=c(5,4,4,5)+.1)

plot(date1,Coliforms,ylim =c(0,150),main="Midmar",col="blue",

ylab="Total coliforms (counts)",xlab="Date",data=Midmar)

par(new=T)

plot(date1,pH,type="l",col="red",xaxt="n",ylim =c(6,10),

yaxt="n",xlab="",ylab="")
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axis(4)

mtext("pH",side=4,line=3)

############################################################################

par(mar=c(5,4,4,5)+.1)

plot(date2,Coliforms,ylim =c(0,150),main="Midmar",col="blue",

ylab="Total coliforms (counts)",xlab="Date",data=DV Harris)

par(new=T)

plot(date2,pH,type="l",col="red",xaxt="n",ylim =c(6,10),yaxt="n",xlab="",ylab="")

axis(4)

mtext("pH",side=4,line=3)

Fit Regression Models

/********************* Model Fitting *********************/ \\

# Midmar site

# Standard regression models

summary(m1 <-glm(Colifor0ms~freechlorine+totalchlorine+pH+Temperature+Turbidity+

Time,family="poisson",data=Midmar))

summary(m2 <-glm.nb(Coliforms~freechlorine+tchlorine+pH+Temp+Turb+

Time,data=Midmar))

# Zero modified and hurdle models

summary(m3 <-zeroinfl(Coliforms~freechlorine+totalchlorine+pH+Temperature+Turbidity+

Time,data=Midmar,dist="poisson"))

summary(m4 <-zeroinfl(Coliforms~freechlorine+totalchlorine+pH+Temperature+Turbidity+

Time,data=Midmar,dist="negbin"))

summary(m5 <-hurdle(Coliforms~freechlorine+totalchlorine+pH+Temperature+Turbidity+

Time,data=Midmar,dist="poisson"))
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summary(m6 <-hurdle(Coliforms~freechlorine+totalchlorine+pH+Temperature+Turbidity+

Time,data=Midmar,dist="negbin"))

# DV Harris site

# Standard regression models

summary(m1 <-glm(Coliforms~freechlorine+totalchlorine+pH+Temperature+

Turbidity+Time,family="poisson",data=DV Harris))

summary(m2 <-glm.nb(Coliforms~freechlorine+totalchlorine+pH+Temperature+

Turbidity+Time,data=DV Harris))

# Zero modified and hurdle models

summary(m3 <-zeroinfl(D1$Coliforms~freechlorine+totalchlorine+pH+Temperature+

Turbidity+Time,data=DV Harris,dist="poisson"))

summary(m4 <-zeroinfl(D1$Coliforms~freechlorine+totalchlorine+pH+Temperature+

Turbidity+Time,data=DV Harris,dist="negbin"))

summary(m5 <-hurdle(D1$Coliforms~freechlorine+totalchlorine+pH+Temperature+

Turbidity+Time,data=DV Harris,dist="poisson"))

summary(m6 <-hurdle(D1$Coliforms~freechlorine+totalchlorine+pH+Temperature+

Turbidity+Time,data=DV Harris,dist="negbin"))
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