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Abstract 
Many plant-derived secondary metabolites have interesting biological activities and 

some plant compounds such as artemisinin (antimalarial) and vincristine (anticancer 

agent) are the active principles of main-stream pharmaceuticals. South Africa has an 

immense biodiversity and there are in the order of 25 000 indigenous plant species in 

the country. The phytochemistry of many of these plants has never been investigated. 

Many bioactive compounds have been isolated from the Thymelaeaceae, such as 

prostatin (potent anti-HIV agent) and antitumour diterpenoids. Although a large number 

of  Thymelaeaceae species are indigenous to South Africa, only a limited number of 

species have been subjected to phytochemical investigations. Dais cotinifolia L. is one 

species on which phytochemical results have not been published and this tree was the 

subject of this investigation. 

Four compounds were isolated from D. cotinifolia. Three of these compounds are known 

metabolites, two furofuran lignans, kobusin and eudesmin, and the flavonoid catechin. 

A fourth compound is novel norlignan, 2-hydroxy-5-(3-methoxyphenyl)-1-(4-

methoxyphenyl)pentan-1-one. 

The compounds were isolated by applying different chromatographic procedures, such 

as column chromatography, preparative centrifugal thin-layer chromatography and 

semi-preparative high-performance liquid chromatography. The structural elucidation of 

the compounds was based on mass spectrometry and nuclear magnetic spectroscopy. 

The antioxidant activities of the crude extracts of the different plant parts were 

determined by the DPPH assay. In comparison with ascorbic acid, the crude extracts 

only had mild antioxidant activities. The mild activities of the extracts can be explained 

by the fact that three of the compounds isolated are aromatic compounds, but have 

methoxy substituents and not free phenolic groups, which are often associated with 

high-antioxidant activity. 
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Chapter 1: Introduction and Aim 
1.1 Traditional Medicine/Medicinal Plants 

The field of traditional medicine stimulated research on natural products (NPs) and drug 

discovery. Traditional medicine arises from the knowledge, skills, and practices based 

on beliefs and experiences that are native to various cultures and it is utilised for 

prevention, diagnosis, and treatment of multiple ailments (Benzie and Wachtel-Galor, 

2011). Plants, medicinal plants in particular, have played a significant role in advancing 

traditional medicine systems (Koleva et al., 2002). Medicinal plants are a class of plants 

used in herbalism and they contain compounds that are usually extracted for therapeutic 

purposes, and these compounds can be located in various parts of the plant (Mehta et 

al., 2010). Traditional medicine mostly comprises of herbs, herbal preparations, and 

finished herbal products, which have either active plant ingredients or plant materials or 

both (Crouch et al., 2006). Herbs include chopped or powdered plant material such as 

leaves, bark, roots, seeds, flowers, stems, and rhizomes (Crouch et al., 2006). Herbal 

preparations can be either extracts or essential oils from plant material, and these are 

produced by extraction, fractionation, purification and other procedures. Finished herbal 

products are simple herbal preparations made from one or more herbs (Scartezzini and 

Speroni, 2000). Traditional medicine helps mend the medical gap between developed 

and developing countries since it is more affordable to most people. The only downfall 

of traditional medicine is that information is based solely on empirical grounds, and there 

are often no scientific validations (Peteros and Uy, 2010). 

In China, traditional medicine is referred to as "Traditional Chinese Medicine (TCM)" and 

has existed for over 3000 years. The first herbal text in the world was compiled in China 

about 2000 years ago (Benzie and Wachtel-Galor, 2011). TCM produced the three top-

selling botanical products, Ginkgo biloba L., Allium sativum (garlic), and Panax ginseng, 

which are used to treat various diseases (Benzie and Wachtel-Galor, 2011). In the 

Philippines, medicinal plants are regarded as one of their ‘living treasures’ (Peteros and 

Uy, 2010). Out of 13 500 plant species that are found in the Philippines, 1 500 are 

medicinal, but only 120 of them have been studied for safety and efficacy (Peteros and 

Uy, 2010). About 90% of the African population and 70% of the people in India depend 

solely on traditional medicine for primary health care needs (Benzie and Wachtel-Galor, 

2011). In Africa, traditional medicine is the oldest and most diverse medicine system 

(Watt and Breyer-Brandwijk, 1962). Africa is considered as one of the continents with 
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biological and cultural diversity with marked regional differences in healing practices. 

Nonetheless, African medicinal plants are threatened due to deforestation (Koleva et al., 

2002). In early years, people in the United States of America adopted traditional 

remedies, but during the 20th century the safety and efficacy of herbs and botanicals 

were questionable and due to that herbal medicine was rejected (Yadav and Agarwala, 

2011). However, plants are still regarded as a source of pure chemical compounds in 

the development of medicine (Yadav and Agarwala, 2011). In Europe, a growing trend 

has been observed towards the use of traditional medicine along with pharmaceutical 

drugs. In Germany alone, it is estimated that 90% of the people use herbal medicines 

(RBGK, 2017).  

Medicinal plants contain a diverse collection of secondary metabolites with various 

functions like defence against herbivores, diseases, and parasites (Peteros and Uy, 

2010). These chemicals often have complex chemical structures that are not available 

in synthetic compound libraries. Botanic Gardens Conservation International estimates 

that there are about 400 000 plants worldwide (BGCI, 2017) and only about 28 000 are 

considered as medicinal plants (RBGK, 2017). Furthermore, just 5-20% of these species 

have been investigated for general usefulness or biologically active compounds (Peteros 

and Uy, 2010). The potential of using plants as a source of compounds that are used for 

drugs production has been proven, for example, by paclitaxel, isolated from Taxus 

brevifolia Nutt., which is used for lung, ovarian and breast cancer  (Gurib-Fakim, 2006). 

This has prompted researchers worldwide to investigate different species and their 

therapeutic principles (Richards and Sharma, 1991). In some countries, traditional 

medicine is now being integrated into mainstream healthcare systems. In December 

2016, the Chinese Government announced that by 2020 TCM would be incorporated 

into their healthcare system (RBGK, 2017).  

1.2 Traditional Medicine in South Africa 

The use of plants in traditional medicine in South Africa is well documented. A treatise 

on southern Africa was published by Watt and Breyer-Brandwijk in 1962. Hutchings and 

co-workers compiled an inventory of nearly 1000 Zulu medicinal plants (Hutchings et al., 

1996) and Van Wyk et al. (2009) described the ethnobotany and pharmacology of more 

than 150 plant species used in traditional medicine.  

Medicinal plants are marketed in two separate ways in Southern Africa, i.e. a formal and 

an informal system. The formal market system includes herbal remedies, nutraceuticals, 
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phytomedicines, and cosmeceuticals, while the informal market system focuses entirely 

on traditional medicines and herbal remedies (Crouch et al., 2006).   

Southern Africa is one of the most diverse floristic regions in the world. It is estimated to 

have over 30 000 plant species and 1 000 of these are traded in informal markets, but 

only 5% are traded formally. Below (Table 1.1) is a list of some popular medicinal plants 

used in South Africa (Crouch et al., 2006). 

1.3 Natural Products 

NH2

CH3

+ H
N

NH2
H3C O

NH2

Lisdexamfetamine (1.3)L-LysineD-Amphetamine

NH2
O

NH2
HO

 

Scheme 1.1. Lisdexamfetamine a hybrid molecule of dextroamphetamine and the 

amino acid L-lysine. 

Natural products (NPs) are secondary metabolites derived from natural sources such as 

plants, animals, and microorganisms (Cragg et al., 1997). Secondary metabolites are 

compounds that are not essential for the growth, development, or reproduction of an 

organism. NPs have been a significant source of chemical diversity for starting materials 

in organic synthesis and have also been influential in the discovery of pharmaceuticals 

for over a 100 years (Firn and Jones, 2003). Back in history, pharmaceutical companies 

have been using plant extracts to form relatively crude therapeutic formulations. 

However, formulation of pure compounds became the norm with the advancement of 

antibiotics in the mid-twentieth century (Mishra and Tiwari, 2011). There are 1562 new 

drugs that came on the market in the United States from 1981 – 2014, 67 (4%) are 

unaltered natural products, 9 (1%) are botanical drugs (herbal extracts), 320 (21%) are 

natural product derivatives, 61 (4%) are synthetic compounds with NP pharmacophors 

and 334 (21%) are synthetic compounds that mimic natural products, i.e. in total 51% of 

these drugs are NPs or have their origin in NPs (Newman and Cragg, 2016).   To mention 

one, Sativex® is a mixture of dronabinol (1.1) and cannabinol (1.2) and this drug is an 

analgesic for severe pain used by advanced cancer patients. Lisdexamfetamine 

(Scheme 1.1),   a hybrid molecule of dextroamphetamine and the amino acid L-lysine, 

is used as a prodrug of dextroamphetamine used for the treatment of attention deficit 
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hyperactivity disorder (ADHD) and binge eating disorder (Luqman and Pezzuto, 2010) 

(Figure 1.1).  

O

OH

CH3

Dronabinol (1.1)

OH

CH3

CH3
H2C

Cannabinol (1.2)

HO

 

Figure 1.1. Some natural product-derived drugs. 

1.4  Phytochemicals 

Plants produce a large number of chemical compounds (phytochemicals) (Crouch et al., 

2006). These compounds are produced to ensure the survival of the plants by providing 

preventive properties against parasites and herbivores (Crouch et al., 2006). In higher 

plants, these phytochemicals are classified as alkaloids, coumarins, steroids, lignans, 

flavonoids, terpenoids and tannins, amongst others (Peteros and Uy, 2010). Almost 50% 

of drugs derived from NPs are plants based. However, only a tiny fraction of plants have 

been studied for their chemical and pharmacological properties (Richards and Sharma, 

1991). Figure 1.2 shows examples of some of the classes of secondary metabolites that 

are frequently found in plants and they are discussed in detail below. 

N

O
H3C

O O O HO

OH

H

H
O

OH

LignanSteroidCoumarinAlkaloid  

 

F l a v o n o i d 

O O H 

N e r o l a t e r p e n o i d 
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O O
O

O
O

O

O

O

O

O

O

HO
OH

HO

OH
OH

OH

OH

OH
OH

HO
OH

OH

HO

HO
OH

Pentagalloylglucose, a hydrolysable tannin  

Figure 1.2. Some classes of natural products that are frequently found in plants. 

1.4.1 Alkaloids 

Alkaloids were first introduced in the 19th century by Carl Friedrich Wilhelm Meisner 

(Bruneton, 1999). They are defined as natural substances that react like bases, but there 

is no exact definition for alkaloids, and it is also difficult to distinguish them from other 

natural nitrogen-containing metabolites (Bruneton, 1999). However, the simplest way of 

identifying them is that the nitrogen is part of the heterocyclic structure and that they are 

derived from amino acids (Bruneton, 1999). Even though alkaloids are regarded as 

nitrogen-containing organic compounds, simple amines and peptides are not considered 

as alkaloids (Roeder and Wiedenfeld, 2011). Nonetheless, from a different perspective, 

alkaloids are regarded as a cyclic organic compound that possesses a nitrogen atom in 

its negative oxidation state (Bruneton, 1999). According to this definition amines, amides 

and quaternary ammonium are included but nitrate derivatives are excluded (Bruneton, 

1999). Alkaloids consist of complex structures and due to the presence of nitrogen atoms 

they often have significant pharmacological activity (Bruneton, 1999). One example of 

an alkaloid is nitidine (1.4) (Figure 1.3), which is known to have antimalarial 

(antiplasmodial) activity (Bouquet et al., 2012). 

N
O

O

O

O

H3C
H3C

Nitidine (1.4)  

Figure 1.3. Structure of nitidine, an alkaloid. 
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Table 1.1. Some popular medicinal plants of southern Africa. 

Scientific name  Common 
name  

Zulu name  Traditional/Medicinal uses 

Alepidea 
amatymbica Eckl. & 
Zeyh. 

(Apiaceae) 

Giant 
Alepidea 

iKhathazo/ iQwili The plant is extensively used for the treatment 
of tuberculosis. The rhizome is carried as a 
charm and is also used for colds, asthma, 
chest pain and influenza (Crouch et al., 2006) 

Artemisia afra 
Jacq. ex Willd. 

(Asteraceae) 

African 
wormwood 

uMhlonyane The plants are used for the treatment of 
respiratory tract infections, indigestion, fever, 
cold, influenza, sore throats, asthma, 
pneumonia, gout, and malaria (Crouch et al., 
2006). 

Bersama tysoniana 
Oliv. 

(Melianthaceae) 

Common 
white ash 

isiNdiyandiya/ 
uNdiyaza 

The bark of the plant is used as the sniffing 
powder for the treatment of headaches and 
sinus congestion. The plant is also used in the 
treatment of snakebites (Crouch et al., 2006). 

Bowiea volubilis 
Harv. ex Hook.f. 

(Hyacinthaceae) 

Climbing lily iGibisila/ iGuleni The plant is used to treat bladder problems, 
sterility in women and tissue swelling which is 
caused by the accumulation of fluid (Crouch et 
al., 2006). 

Combretum caffrum 

(Eckl. & Zeyh.) 
Kuntze 

(Combretaceae) 

Cape 
bushwillow  

uMdubu The Xhosa people use the roots of the plant to 
soothe body pain, while Zulu people use root 
bark as a malicious charm. The plant contains 
a compound called combretastatin, which has 
strong anticancer properties. This compound is 
under development as an anticancer drug 
(Crouch et al., 2006).  

Cryptocarya latifolia 
Sond. 

(Lauraceae) 

Broad-leaved 
quince/ 

Bastard 
stinkwood 

uMkhondweni/ 
uNdlangwenya 

The bark of the plant is used to treat chest 
pains, headaches, stomach ailments and 
bladder diseases (Crouch et al., 2006).  

Dioscorea dregeana 

(Kunth) T.Durand & 
Schinz 

(Dioscoreaceae) 

Wild yam isiDakwa The tuber of the plant is used as a sedative for 
treating insane people. Adding small pieces of 
tuber to beer is claimed to increase the 
strength of the beer. The plant is also used to 
treat sores, fits, wounds and also to facilitate 
childbirth (Crouch et al., 2006).  

Drimia robusta 
Baker 

(Hyacinthaceae) 

Satin squill isiKlenama/ 
iNdongana-
zimbomvana 

The bulb is used for relieving pain, feverish 
cold, coughs, and as a heart tonic (Crouch et 
al., 2006). 

Elaeodendron 
transvaalense 
(Burtt Davy) 
R.H.Archer 

(Celastraceae) 

Transvaal 
saffron  

uMgodudo/ 
iNgwavuma 

The bark of the plant is used as an emetic to 
strengthen the blood of men to improve their 
sexual ability. Bark infusions are used in the 
treatment of stomach cramps and diarrhoea 
(Crouch et al., 2006). 
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Eriospermum 
mackenii 

(Eriospermaceae) 

Yellow fluffy 
seed  

iNsulansula/ 
iNcamashela/ 
uMathintha 

The tuber is used in the treatment of diarrhoea 
by means of an enema (Crouch et al., 2006). 

Gasteria croucheri 

(Hook.f.) Baker 

(Asphodelaceae) 

Gasteria iMpundu The plant is used in the treatment of 
rheumatoid pains by either application as an 
enema or by washing the painful area. The 
leaves of the plant are used to treat paralysis. 
The plant can also be sprinkled around the 
household to prevent conflict (Crouch et al., 
2006). 

Hypoxis 
hemerocallidea 
Fisch., C.A.Mey. & 
Avé-Lall. 

(Hypoxidaceae) 

African 
potato/ Star 
flower 

iLabatheka/ 
iNkomfe 

The tuberous rootstock is used for the 
treatment of headaches, mental disorders, 
dizziness, cancers, inflammation, and HIV-
AIDS (Crouch et al., 2006).  

 

1.4.2 Coumarins 

Coumarins are heterocyclic molecules that have been intensely studied due to their 

biological activities (Zhang et al., 2017). Apart from that, coumarins also have favourable 

photophysical properties (Zhang et al., 2017). Coumarins have been used as potential 

fluorescence materials and emissive dopants in organic light-emitting diode (OLEDs) 

applications (Yu et al., 2010). Their derivatives are regarded as a new class of 

antituberculosis candidates, and also possess other pharmacological properties like 

anticancer (Sashidhara et al., 2010), antiproliferative, anti-HCV, anti-HIV, antimalaria  

(Kadhum et al., 2011), antioxidant, antibacterial, antifungal, and anti-Alzheimer activities 

(Hu et al., 2017). Some coumarins-based derivatives are acenocoumarol (1.5), 

dicoumarolum (1.6), warfarin (1.7), hymecromone (1.8) and carbocromen (1.9) (Figure 

1.4) (Hu et al., 2017).  
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Figure 1.4. Some examples of coumarins. 

1.4.3 Steroids 

Steroids are one of the largest group of secondary metabolites (Bruneton, 1999). 

Steroids, in general, arise from the mevalonate pathway and plant steroids arise from 

squalene-like triterpenes (Bruneton, 1999). The plant steroids have a similar mechanism 

(act as architectural components of membranes) to that of triterpenes except that theirs 

is specific to plants (Bruneton, 1999). This applies to steroidal alkaloids (1.10), 
cardenolides (1.11), phytosterols (1.12), and saponins (1.13) (Figure 1.5) (Bruneton, 

1999) (Figure 1.5). Steroids exhibit biological activities, especially the nitrogen-

containing steroidal compounds (Martínez-Pascual et al., 2017). These compounds 

have several biological activities such as anti-inflammatory (Huang et al., 2012), 

antiparasitic, antifungal, and antitumour activity (Krojer et al., 2013). Steroidal lactams 

have antiproliferative, antileukemic, and antifungal activities (Martínez-Pascual et al., 

2017).  
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Figure 1.5. Some examples of steroids. 

1.4.4 Flavonoids 

Flavonoids are phenolic compounds that are found in plants and fungus, and some 

beverages such as tea and wine (Gonyela, 2016). They consist of different skeletons, 

either flavone, isoflavone or neoflavone based and are commonly polyphenolic (Mouri 

et al., 2014). There are about 4000 flavonoids that have been identified so far (Dengada, 

2014). They possess a variety of biological activities including antifungal, antibacterial, 

antiviral, antioxidants, anti-inflammatory, antiproliferative and anti-allergenic properties 

(Feyen et al., 2007). Due to their diverse structural patterns, flavonoids are regarded as 

a rich source of compounds with good anticancer potential. Some flavonoids are also 

known to inhibit angiogenesis by blocking cell cycle-induced apoptosis and disrupting 

mitotic spindle formation (Mouri et al., 2014). 

1.4.5 Terpenoids 

Terpenoids are one of the largest groups of natural secondary metabolites (Bruneton, 

1999), and they are produced by nearly all life forms (Xie et al., 2017). There are over 

15 000 structures of terpenoids that have been elucidated, however, the exact number 

of terpenoids that exist in nature is still unclear (Bian et al., 2017). Some examples of 

terpenoids (Figure 1.6) are paclitaxel (1.15), an important anticancer drug, artemisinin 

(1.16), an antimalarial drug, and ginsenoside (1.17) (Figure 1.6), a major component of 

the Chinese traditional medicine ginseng (Bian et al., 2017). In the search for antidiabetic 

compounds, three triterpenoid glycosides were isolated from Centipeda minima; 3′-
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desulfated atractyloside, 15-O-[α-L-rhamnosyl-(1→2)-β-D-glucosyl]grandiflorolic acid, 

and 2α-hydroxylemmonin, which show α-glucosidase inhibitory activity (Nguyen et al., 

2017). 

      

            

 

 

 

                                                                                 

 

 

 

 

 

 

Figure 1.6. Some examples of terpenoids. 

1.4.6 Tannins 

Tannins are secondary metabolites that are widespread in “woody and herbaceous 

plants” (p.1072) with predominant availability in legumes and twigs (Widsten et al., 

2010). Primarily, they are divided into two categories, condensed tannins and 

hydrolysable tannins (Theodoridou et al., 2010). The hydrolysable tannins consist of a 

carbohydrate as the central core (Figure 1.7). Hydrolysable tannins are polyols, glucose 

usually, which are esterified with phenolic acids (Akiyama et al., 1998). These phenolic 

acids are usually gallic acid in gallotannins or hexahydroxydiphenic acid in ellagitannins. 

Hydrolysable tannins  are commonly found in fruit pods and in contrast to condensed 

tannins, their degradation products are absorbed in the small intestines of animals 

(Theodoridou et al., 2010). Condensed tannins are mostly found in forage legumes, 
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trees and shrubs (Theodoridou et al., 2010), and are complexes of oligomers or 

polymers of flavonoid units that are linked by carbon-carbon bonds (Theodoridou et al., 

2010). Both hydrolysable (Figure 1.8) and condensed tannins have bactericidal activity 

against Staphylococcus aureus (Chung et al., 1993). 

Tannic acid
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Figure 1.7. Structure of tannic acid, a hydrolysable tannin. 

1.4.7 Lignans 

Lignans are diaryl compounds that are widely distributed to different plants (Milder et al., 

2005). The richest source of lignans is flaxseed; other sources are grains, vegetables, 

fruits and beverages (Shyu and Hwang, 2002). Lignans are a class of NPs that are 

derived from cinnamic acid and they exhibit a variety of biological activities, which 

include antioxidant and anti-oestrogenic properties (Davin and Lewis, 2000). These 

activities are the source of the ability of lignans to reduce the risk of some cancers and 

cardiovascular diseases (Davin and Lewis, 2000). They reduce these diseases by 

interfering with cell division in both animals and humans (Moss, 2000). They also play a 

vital role in the most famous and old traditional medicine; TCM. In TCM lignans are used 

to treat viral hepatitis and as liver protection (Moss, 2000).   

1.5 Problem statement  

Cancer is a group of diseases that are characterised by an uncontrollable growth of cells 

and the spread of abnormal cells (Luqman and Pezzuto, 2010). It is a major public health 

problem in the United States and other countries around the globe (Luqman and 

Pezzuto, 2010). According to statistics of the World Health Organization (WHO) 

published February 2017, cancer is one of the leading causes of morbidity and mortality 

worldwide; it had approximately 14 million new cases in 2014, and the number is 

expected to increase by 70% in 20 years’ time. It is estimated to cause 8 million deaths 

each year, and the number is continuously increasing (Jemal et al., 2008). If the existing 
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trend continues, 1 in 4 people will die of cancer (Luqman and Pezzuto, 2010). The 

economic impact of cancer is significantly rising. According to WHO about 70% of deaths 

from cancer occur in low and middle-income countries (WHO, 2014). In 2010, the sum 

of the annual economic cost of cancer was estimated to be US$ 1.16 trillion.  

Literature shows that there are a number of natural products (NPs) that are available as 

chemoprotective agents against the most commonly occurring cancers around the globe 

(Reddy et al., 2003). Antioxidants, phenols and reactive groups that show protective 

properties are marked as the major groups of these products, these natural products are 

found in fruits, vegetables, plant extracts and herbs (Table 1.2). 

Table 1.2. Chemoprotective products found in fruits, vegetables, plant extracts, and 

herbs. 

Source Active component Mechanism of 
action 

Cancer inhibited  References 

Olives  Polyphenols Antioxidants Various cancers (Langseth, 1995)  

Citrus fruits β–Cryptoxanthin, 

bioflavonoids, 

chalcones, Vitamin 

C 

Antioxidants 

stimulate 

expression of RB 

genes and p73 

gene (a p53 related 

gene)  

Rat tumour, 

various cancers  

(Nishino et al., 

2000) 

Garlic, onions, 

leeks, chives 

Allicin, flavonoids, 

vitamin C, 

selenium, sulfur 

Detoxifies 

carcinogen, inhibits 
Helicobacter pylori, 

cell cycle arrest 

from S to G2M 

boundary phase  

Stomach cancer (Barch et al., 

1996) 

Gymnosporia 

rothiana Laws 

GCE: chloroform 

ether extract 

DNA/RNA and 

protein synthesis 

inhibited after 

treatment for 12-36 

hr 

Leukaemia in 

mice  

(Chapekar and 

Sahasrabudhe, 

1981) 

Scutellaria radix, 

S. indica 

Flavonoids  Prostaglandin E2 

production 

Rat C6 glioma 

cells  

(Nakahata et al., 

1998) 

The mechanism of the protective effect is still unclear. However, there is undeniable 

evidence that the consumption of fruits and vegetables decreases the incidence of 

carcinogenesis (Reddy et al., 2003).  Diet and diseases have been associated since the 

early history of medicine (Mehta et al., 2010). “Let food be thy medicine and medicine 

be thy food," said Hippocrates the father of modern medicine 2 500 years ago (Mehta et 
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al., 2010). Later Galen of Pergamon (129–199 A.D.) who was a Greek physician, 

prescribed different types of food, including barley, and various vegetables for the 

treatment of cancer (Karpozilos and Pavlidis, 2004). Some anticancer NPs can be 

directly isolated from plants, i.e. Daphne genkwa Sieb.et Zucc, a species of the 

Thymelaeaceae family that is known to have a number of compounds, for example 

flavonoids, lignans, coumarins and daphnane-type diterpene esters. All these 

compounds are known to have moderate anticancer activity but the diterpene esters are 

known to have the highest anticancer capacity (Li et al., 2013).  

Human Immunodeficiency Virus (HIV) is a lentivirus that can escalate to acquired 

immune deficiency syndrome (AIDS). HIV was discovered in 1981, and it already caused 

the deaths of 25 million people globally. It is a major threat to humankind to date 

(Kurapati et al., 2016). Nonetheless, the introduction of highly active antiretroviral 

therapy (HAART) has reduced the HIV incidence drastically (Kurapati et al., 2016). The 

natural products that commonly show activity against HIV are prenylated 

benzophenones, guttiferones that are extracted from different genera namely;  Garcinia, 

Symphonia and Clusia (Mzozoyana, 2015). In the Thymelaeaceae family, there is 

Stellera chamaejasme L. that was found to possess anti-HIV compounds (Asada et al., 

2013). The plant has been used in TCM as dermatological and anthelmintic agent 

(Asada et al., 2013). When investigation on HIV agents was conducted on the plant, 

eight compounds were isolated and only two compounds; stelleralide A and gnidimacrin 

which were found to have a very potent anti-HIV activity (Asada et al., 2013). 

Dais L. is one of the smallest genera of the Thymelaeaceae family with only 2 species. 

The phytochemistry of both species in this genus has not been published apart from  a 

conference abstract on Dais cotinifolia L., which reported  that a number of lignans had 

been isolated from this species (Crabtree and Belofsky, 2010). No structures are given 

in this references and no follow-up papers have been published. Nevertheless, there are 

other genera of this family with species with known phytochemistry, like Daphne L. and 

Gnidia L. and these genera are rich in anticancer and anti-HIV compounds (Meruelo et 

al., 1988). The limitation in drug discovery from this family is that some genera are toxic, 

i.e. Gnidia species have diterpene esters which are PKC activators for adjuvant therapy 

towards the eradication of HIV-1 but the downfall is the toxicity of these compounds 

(Meruelo et al., 1988). This family has a potential of producing antiviral and anticancer 

compounds, therefore, it deserves attention since most species of this family that are 

found in South Africa have not been studied. The family is reviewed in depth in Chapter 

2. 
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1.6  Aim and objectives 

Aim 

The aim of this study is to investigate the phytochemistry of the medicinal plant species 

Dais cotinifolia L.  

The research objectives were as follows: 

• Identify and collect the tree material. 

• Extract different parts of the plant with various solvents. 

• Isolate pure compounds from different parts of the tree using DIOL column, 

vacuum liquid chromatography (VLC) column, column chromatography, 

centrifugal thin-layer chromatography (CTLC), HPLC and TLC. 

• Identification and characterisation of the isolated compounds following various 

spectroscopic techniques; NMR (1D & 2D), LC-MS, TOF-MS, and UV.  

• Identification of appropriate bioassays based on classes of the isolated 

compounds. 

• Assaying the compounds for biological activity thereby enhancing further use of 

the plants or validating their ethnomedicinal use. 

1.7  Structure of the thesis 

This thesis is divided into five chapters. Chapter 2 provides an overview of the literature 

of the Thymalaeaceae family and Dais cotinifolia L., it also gives a brief overview of the 

instrumentation that was used during this study. Chapter 3 focuses on the results 

obtained in the investigation  and  Chapter 4 gave the experimental details of the project. 

Chapter 5 is a general conclusion of the study, limitations are discussed and future work 

is proposed. 
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Chapter 2: Literature review 
The plant under investigation in this study, Dais cotinifolia L., is part of the family 

Thymelaeaceae.  This Chapter focuses on the literature of the Thymelaeaceae, some 

genera and species of this family that are used in traditional medicine, and genera that 

exhibit biological activity. In the second part of the Chapter, methods used to isolate pure 

compounds are discussed and spectroscopic methods essential for the structure 

elucidation of pure compounds are briefly reviewed.  

2.1 Thymelaeaceae 

Thymelaeaceae is a medium-sized family of flowering plants that comprises about 900 

species that are divided into around 55 genera, which are widespread in tropical and 

sub-tropical areas (Beyers and Marais, 1998). Thymelaeaceae is classified into four 

subfamilies; Aquilarioideae, Gonystyloideae, Synandrodaphnoideae and 

Thymelaeoideae (Beaumont et al., 2009). Aquilarioideae, Gonystyloideae, and 

Synandrodaphnoideae are small subfamilies and contain seven, three and one genera, 

respectively. The majority of the genera are classified under Thymelaeoideae, including 

the largest genus Gnidia (140 species). 

In Africa alone, there are more than 40 genera of Thymelaeaceae (Ferrari et al., 2000), 

including Dais, Dicranolepis, Craterosiphon, Englerodaphne, Gnidia, Lachnaea, 

Lasiosiphon, Octolepis, Peddiea, Struthiola, Synandrodaphne, and Synaptolepis 

(Oladipo and Oyaniran, 2013). However, some of the genera in this family, such as 

Gnidia and Pimelea, need revision because of uncertain generic circumscription (Maurin 

et al., 2013). The key problem is the classification within the subfamily Thymelaeoideae 

(Maurin et al., 2013). The largest genera in this family are discussed in detail below. 

Dais has only two species, but it is included since it is the plant of interest in this study. 

In Figure 2.1 a graph listing some genera of the Thymelaeaceae and the number of 

species in each genus, is given. 
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Figure 2.1. Some genera of the Thymelaeaceae. 

2.1.1 Gnidia L. 

The genus Gnidia L. was established by Linnaeus in 1753, when the genus had only 

three species (Beaumont et al., 2009). Gnidia is one of the genera of the subfamily 

Thymelaeoideae of Thymelaeaceae  (Franke et al., 2002) and comprises about 140 

species  (Beaumont et al., 2009). This genus is also known to be polyphyletic and, 

therefore, needs to be reclassified  (Boatwright et al., 2017). Many species in this genus 

are used in African traditional medicine (ATM) to treat ailments such as a sore throat, 

abdominal pain, wounds, and burns (Franke et al., 2002). Gnidia species are known to 

contain daphnane-type diterpene esters that possess antineoplastic activity (Mothana 

and Lindequist, 2005). Phytochemical investigations that were conducted on species of 

this genus identified coumarin, lignans, flavonoids and benzophenone glycosides in this 

genus (Franke et al., 2002).   

 Gnidia glauca Fresen. is used to treat sore throats, abdominal pain, wounds, burns, 

snake bites, contusions, swellings, backache and joint ache (Ghosh et al., 2012). G. 

glauca has been recently reported to have compounds with antidiabetic properties 

(Ghosh et al., 2012).  The stem, leaf and flower extract of G. glauca were assayed for 

inhibition of  porcine pancreatic α-amylase and glucosidases from pancreas, liver, and 

small intestine of Swiss mice, extracts were found to have a high inhibition of α-amylase 

(Ghosh et al., 2012). The results provided evidence that G. glauca has anti-diabetic 

activity (Ghosh et al., 2012). The compounds that have been isolated from this plant are 

gnidilatin 20-palmitate (2.4), gnidilatidin 20-palmitate (2.7), gnidilatin (2.5) and 

gnidilatidin (2.6) (Kiptoon et al., 1982) (Figure 2.2). 

0

20

40

60

80

100

120

140

N
um

be
r o

f S
pe

ci
es

Genera



17 | P a g e  
 

Gnidia latifolia and Gnidia glaucus have activity against leukemia (Kupchan et al., 1976). 

G. latifolia also has piscicidal activity (Kupchan et al., 1976). Another species in this 

genus is Gnidia socotrana, which is endemic to Socotra Island (Franke et al., 2002). 

When phytochemical studies were conducted on the leaves and twigs of the plant,  six 
novel compounds were identified, i.e. a biscoumarin (2.3), two novel umbelliferyl-

flavonoids and three other compounds with a spiro-bis-γ-lactone structure (Franke et al., 

2002). Gnidia lamprantha contains predominantly diterpenoid daphnetoxins with 

antitumour activity (Ferrari et al., 2000). Compounds isolated from this plant include 

gnididin (2.2) and huratoxin (Kupchan et al., 1976). The compounds that were isolated 

from Gnidia latifolia were similar to that of G. lamprantha except for some 

sesquiterpenoids  (Kiptoon et al., 1982). The roots of Gnidia involucrata Steud. ex A. 

Rich, along with other Thymelaeaceae species, are used in Zimbabwe to reduce the 
virginal orifice (Ferrari et al., 2000). When phytochemical studies were conducted on G. 

involucrate, six compounds were obtained and identified as 2,3,4,5,6-

pentahydroxybenzophenone-4'-C-glucoside (2.1), 2,4',6-trihydroxy-4-

methoxybenzophenone-2-O-glucoside, mangiferin, kaempferol-3-O-glucoside, 

yuankanin and manniflavanone (Ferrari et al., 2000). Furthermore, the roots of the plant 

are also internally used in Ethiopia as laxatives and vermifuge (Borris et al., 1988). In 

some African countries like Nigeria, Congo, Zimbabwe, Malawi and Sudan they Gnidia 

kraussiana Meissn. is used as a source of hunting and fish poisons  (McGaw and Eloff, 

2008). 
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Figure 2.2. Some of the compounds isolated from Gnidia species. 

2.1.2 Pimelea Banks & Sol. ex Gaertn. 

Pimelea (Thymelaeoideae subfamily) originates in Australia and consists of about 110 

species. It is now widespread in Lord Howe Island, New Zealand, and Timor, with about 

90 species endemic to inland Australia (Silcock et al., 2012). Pimelea is closely related 

to Thecanthes (a small genus with about five species in total) (Motsi et al., 2008). 
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Pimelea linofolia (P. linofolia) and Pimelea ligustrina (P. ligustrina) are native to the east 

coast of Australia (Tyler and Howden, 1981). Extracts from these two species have 

anticancer activity. Nevertheless, the compounds associated with this activity were not 

successfully identified from these species but two compounds (linifolins A and B) with 

piscicidal activity were identified (Tyler and Howden, 1981). The name of linifolin A was 

later changed to linimacrin A and linifolin B to pimelea factor P3 (Tyler and Howden, 

1985). Many species in this genus are reported to be poisonous when ingested, for 

example, P. altior F. Muell., P. decora Domin, P. elongata Threlfall, P. flava R. Br., P. 

glauca R. Br., P. haematostachya F. Muell., P. linifolia Sm., P. microcephala R. Br., P. 

pauciflora R. Br., P. simplex F. Muell., P. trichostachya Lindl, P. neo-anglica Threlfall 

and P. prostrata Willd. (Silcock et al., 2012).  Among the species above, three species 

cause most of the problems and these are P. trichostachya, P. simplex and P. elongate. 

However, the mechanism of poisoning is still unclear (Silcock et al., 2012). Although 

most species in this genus are poisonous, there are species that possess anti-neoplastic 

activity, and these are P. linifolia (Smith and Towers, 1985), P.  ligustrina, and P. simplex 

(Tyler and Howden, 1985). The compounds that are responsible for the antineoplastic 

activity are gnidimacrin (2.9) from P. ligustrina, simpleximacrin (2.8) from P. simplex, 

linimacrin D (2.10)  and pimelea factor P3 (2.11) from P. linifolia (Tyler and Howden, 

1985). Figure 2.3 below shows some of the compounds that were isolated from different 
Pimelea species. 
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Figure 2.3. Compounds present in Pimelea species. 

2.1.3 Daphne L. 

The genus Daphne comprises about 100 species (Khodadadian et al., 2016), 

widespread across Europe, Asia, Africa, and Australia  (Noshad et al., 2009). Forty-four 

of these species occur in China (Zhang et al., 2008) and seven in Turkey (Sanda et al., 

2015). The seven species that are found in Turkey are D. gnidioides Jaub. & Spach., D. 

mezereum L., D. mucronata Royle., D. oleoides Schreb., D. pontica L. and D. serica 

(Sanda et al., 2015).  In various countries, species of Daphne are used as herbal folk 

medicine to treat different ailments (Sanda et al., 2015). The most-used species are 

Daphne oleoides, which is used to treat rheumatic pain, lumbago, and to reduce fever 

(Kupeli et al., 2007), D. genkwa, which is used to treat inflammatory disorders (Zheng 

et al., 2006), D. acutiloba, used for wounds and bruises, D. tangutica, which is used for 

the treatment of rheumatoid arthritis, D. mezerium, which is used for chronic 

rheumatism, skin diseases, gout, and inflammations in the lymph tissue (Chen et al., 

2004), and D. giraldii Nitshe, which is used for the treatment of aches and rheumatism 

(Zhang et al., 2008). Various compounds have been isolated from D. giraldii, to name a 

few, monomeric coumarins (Sun et al., 2006), biscoumarins, flavonoids (Liao et al., 

2005), lignans, phenolic glycosides (2.9), daphnodorin A (2.13), daphnodorin B, 

daphnoretin (2.12), glucogenkwanin (2.14), yuankanin, daphneside (2.15), and 

syringaresinol (2.16) (Zhang et al., 2008). 

  The genus Daphne is prominent for having species used for treatment of cancer since 

the time of Aphodisias (AD 2nd century) (Kupeli et al., 2007). One of the species that is 

used to treat cancer is D. mucronate Royle., which is indigenous to Iran (Khodadadian 

et al., 2016). Daphnodorins (flavonoids), which were isolated from the roots of D. 

genkwa, have antitumour activity (Zheng et al., 2007). The flower buds of this species 

were used against mammary cancers (Zheng et al., 2006). D. mezereum was also 

reported to have anticancer activity (Kupeli et al., 2007). The extracts of D. gnidioides 
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and D. pontica were found to be an excellent source of natural antioxidants for both 

medicinal and food applications (Sanda et al., 2015). The secondary metabolites that 

are usually isolated from Daphne species are flavonoids, coumarins and diterpenoids 

(Sanda et al., 2015). Figure 2.4 shows some compounds that were isolated from Daphne 

species. 
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Figure 2.4. Some organic compounds isolated from the genus Daphne. 
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2.1.4 Wikstroemia Endl. 

The genus Wikstroemia comprises about 70 species (Guo et al., 2015). It consist of  

tropical and subtropical shrubs or trees that are distributed in southeast Asia to Malaysia, 

northeast Australia and in the Pacific islands (Gupta and Gillett, 1969). Phytochemical 

investigations conducted on species in this genus have revealed that it has daphnane-

type diterpenoids. These compounds possess a number of biological activities such as 

antitumour, cytotoxic, anti-HIV, pesticide and skin irritant activities (Guo et al., 2015). 

Some compounds that have been isolated from species in this genus are active 

daphnane-type diterpene esters, tiglianes, lignans, bioflavonoids and bicoumarins (2.21) 

(Liao et al., 2006).  Wikstroemia hainanensis Merr., is a shrub that shows anticancer 

activity, and the active compounds were three lignans, wikstrone (2.17), wikstroemol 

(2.18), and wikstroemone (2.19). The three lignans were isolated from the aerial parts 

of the shrub along with twelve known compounds, erythro-guaiacylglycerol-O-4’-sinapyl 

ether, trans-4-hydroxycinnamic acid (2.20), pinoresinol, medioresinol, syringaresinol, 

nortrachelogenin, lariciresinol, ficusesquilignan A, sitosterol, hederagenin, 

umbelliferone, and daphnoretin (Liao et al., 2006). The aforementioned compounds are 

illustrated in Figure 2.5. 
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Figure 2.5. Structures of compounds from the genus Wikstroemia. 

https://en.wikipedia.org/wiki/Stephan_Ladislaus_Endlicher
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2.1.5 Daphnopsis Mart. 

The genus Daphnopsist has 65 species. Daphnopsis was first described by Martius and 

Zuccarinil in 1824 and is native to Central America, Antilles and South America (Chang 

et al., 2017). Although different Daphnopsis species have been reported to have 

different medicinal and practical properties, limited phytochemical studies have been 

reported on this genus (Blaskó et al., 1988). Daphnopsis brasiliensis Mart. et Zucc. is 

known to be used to treat psoriasis and also as a purgative (Blaskó et al., 1988). 
Daphnopsis schwartzii Meisn is used as a stimulant, sialagogue and diuretic (Blaskó et 

al., 1988). Apart from medicinal uses, Daphnopsis brasiliensis is used to manufacture 

paper (Adolf and Hecker, 1982) and Daphnopsis ramnosa Griseb fibrous bark is used 

to make rope. D. ramnosa was the first species in this genus on which phytochemical 

studies were conducted and tigliane (2.22), daphnane (2.23), and alpha-alkyldaphnane 

esters were identified (Adolf and Hecker, 1982). Some compounds isolated from species 

in this genus are shown in Figure 2.6 below.  

Tigliane (2.22) Daphnane (2.23)  

Figure 2.6. A few compounds isolated from the genus Daphnopsis. 

2.1.6 Lachnaea L. 

The genus Lachnaea is native to the Cape Floral Region (Beyers and Van Wyk, 1998) 

and was first established by Linnaeus in 1753. New species were later discovered, but 

the taxonomy for the genus was only established in 1840 by Meisner based on Drege’s 

collection (Beyers and van der Walt, 1995). Nineteen species and eight infra-specific 

taxa were discovered in 1915 (Beyers and van der Walt, 1995). However,  there are 34 

species and eight infra-specific taxa known to date (Beyers and Van Wyk, 1998). Most 

species of this genus are found on mountain ranges (Beyers and Van Wyk, 1998). No 

phytochemical results have been reported on this genus. 

https://en.wikipedia.org/wiki/Karl_Friedrich_Philipp_von_Martius
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2.1.7 Thymelaea Mill. 

Thymelaea comprises about 30 species of evergreen shrubs (Vincent and Thieret, 

1987). This genus consists of woody and herbaceous species that are native to the 

northern hemisphere of the Old World, especially to the Mediterranean region (Vincent 

and Thieret, 1987). The genus Thymelaea is only represented by one species in North 

America, Thymelaea passerine L (Vincent and Thieret, 1987). Some species in this 

genus are known to have activities against some ailments, for example, Thymelaea 

hirsuta L a medicinal plant that grows in Tunisia (Yahyaoui et al., 2018), is used as a 

decoction in the treatment of diabetes (Djeridane et al., 2006). Apart from being used as 

a decoction in the treatment of diabetes, T. hirsuta has been used in folk medicine as a 

source of antioxidant (Djeridane et al., 2006), and compounds that possess anti-

melanogenic activity (Akrout et al., 2011). The phytochemical investigation revealed that 

the plant is rich in phenolics (2.24) (Figure 2.7) and tannins (Yahyaoui et al., 2018). 

OH

O

HO
OH

Phenolic-caffeic acid (2.24)  

Figure 2.7. Structure of caffeic acid (2.24), a phenolic present in T. hirsuta. 

2.1.8 Phaleria Jack. 

Phaleria comprises about 30 species. However, the predominant species is Phaleria 

macrocarpa (Scheff.) Boerl. because of its anticancer activity (Altaf et al., 2013). P. 

macrocarpa is a medicinal plant that is native to Indonesia and Malaysia. The leaves 

and fruits of this plant have been used for the treatment of several types of cancers since 

the ancient times (Altaf et al., 2013). The extracts of this plant have been evaluated and 

reported to have biological activities like anticancer, antioxidant, antifungal, anti-

inflammatory, antibacterial, antidiabetic and vasorelaxant effects (Hendra et al., 2011). 

Compounds isolated from the various parts of the plant include lignans, flavonoids, gallic 

acid, alkaloids, saponins (1.13), and mangiferin (2.26) (Figure 2.8) (Altaf et al., 2013)  

  

https://en.wikipedia.org/wiki/Philip_Miller


25 | P a g e  
 

 

 

Figure 2.8. Structure of compounds from the genus Phaleria. 

2.1.9 Dais L. 

Dais L. is a small genus in Thymelaeaceae. There are two species, Dais cotinifolia L. 

(SANBI, 2017) (Figure 2.9) and Dais madagascariensis Lam, found in Madagascar 

(Zavada and Lowrey, 1995). D. cotinifolia is the plant of interest in this study. The 

phytochemistry and bioactivity of neither of the two species have been investigated. 

Dais cotinifolia (D. cotinifolia) 

 

Figure 2.9. Dais cotinifolia L.  (photographed by B. Danca). 

Dais cotinifolia L. (kannabas, pompom tree – intozwane emnyama) is a flowering tree 

that belongs to the Thymelaeaceae family. This plant is one of the two species of Dais, 

and is indigenous to South Africa with an isolated population in the eastern highlands of 

Zimbabwe. However it is now widely distributed as a garden tree in a number of 

countries in Africa and Europe . In South Africa the plant is widespread in the eastern 

part of the country, i.e. KwaZulu-Natal, Eastern Cape, Gauteng, Mpumalanga, Limpopo 

and Free State provinces (SANBI, 2017). D. cotinifolia is a small tree that can grow up 

to six meters in height, with flowers that can grow up to three centimeters (Zavada and 

Lowrey, 1995). The flowering times for this plant varies according to the climate 
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conditions of the area. In warm places like Cape Town, the plant flowers in the beginning 

of summer and in cold places, it flowers towards the end of December (SANBI, 2017). 

The plant has a strong bark and as a result, it is used for tying and weaving. The fibrous 

bark are also used for plaiting strong ropes. This plant is not important in traditional 

medicine, but a decoction of the leaves is ingested to treat stomach ache (SANBI, 2017). 

In some countries, the plant is planted for ornamental purposes. The only phytochemical 

report on this is a conference proceeding which mentioned the isolation of lignans from 

the plant extracts, with no indication of the structures of the isolated compounds 

(Crabtree and Belofsky, 2010).  

2.2 Separation of compounds  

Chromatographic techniques are widely used for the analysis of chemical substances 

and natural products, it is used for the separation of complex mixtures and the isolation 

of pure compounds.The mobile phase is the gas or liquid (solvent) that carries the 

components of a sample through the stationary phase, whereas the stationary phase is 

the solid material to which a sample is added. Stationary phases can be kaolin, alumina, 

silica, and activated charcoal.  Substances that are added to a stationary phase move 

according to the rate at which they are adsorbed by both the stationary and mobile 

phases (Skoog et al., 2004). 

2.2.1 Thin-layer chromatography (TLC) 

Thin-layer chromatography (TLC) is a simple, affordable, and fast procedure that 

determines how many components are in a mixture (Meyers and Meyers, 2008). TLC 

can also be used in the identification of unknown compounds by comparing it with a 

known compound using the retention factor (Rf).  To accomplish this, the compound or 

the components of the mixture can be either viewed under ultraviolet (UV) light or 

sprayed by a phytochemical screening reagent that will cause colour change according 

to the class of phytochemicals that are present on the plate. Stains can also be used to 

view the components that are not visible under UV light (Sasidharan et al., 2011). TLC 

can also be used to determine the purity of isolated compounds.  In TLC, the alumina or 

any powdered adsorbent is fixed on the glass, plastic or metal as a stationary phase. 

The mobile phase is then allowed to travel up the stationary phase with the components 

that were spotted just above the solvent (Tesso, 2005).  
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2.2.2 Column chromatography (CC) 

In column chromatography (Figure 2.10), the solutes of a solution are allowed to travel 

down the column, while the separate components are adsorbed by the stationary phase. 

A common stationary phase in natural products is silica gel or alumina. The component 

that is strongly adsorbed by the stationary phase will remain near the top of the column 

while other components travel down the column along with the mobile phase (solvent). 

In column chromatography, there are two different kinds of packing, wet packing and dry 

packing. With wet packing, the silica gel is suspended in a suitable solvent before it is 

introduced onto the column. With dry packing, the silica gel is added dry to the column, 

and then the solvent is added (Tesso, 2005). The solvent system is usually chosen 

according to how the individual components of a solution respond to it on a TLC plate. 

The fractions that are eluted from the column are again monitored by TLC (Tesso, 2005).  

 

Figure 2.10. Column chromatography (photographed by B. Danca). 

2.2.3 High-performance liquid chromatography (HPLC) 

High-performance liquid chromatography (HPLC) is an advanced column 

chromatographic method, whereby the columns are packed with very tiny particles. The 

flow rate is altered to decrease band broadening and also to keep the baseline straight 

(Yamaguchi et al., 1998). The pump is the pressure supplier. HPLC can be performed 

on a normal or a reversed phase column.  With a normal column, polar silica gel and 

non-polar solvents are used, whereas with reversed phase, polar solvents are usually 

used with a non-polar surface of the packing material (Engelhardt, 2012). The HPLC 

system detector determines the solvents that can be used, and also limits compounds 

that can be absorbed (Tesso, 2005).  
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2.2.4 Preparative Centrifugal Thin-layer Chromatography (PCTLC) 

PCTLC (Figure 2.11) is performed on a thin layer of absorbent on a rotor that is covered 

by a teflon lid that is transparent to ultraviolet (UV) light, to allow the detection of UV 

absorbing bands. A motor rotates the rotor at a constant speed by a shaft that passes 

through a hole in the centre of the main vessel. A solution of compounds that is to be 

separated is applied to the absorbent through the inlet and wick. Elution by solvent forms 

concentric bands of separated substances which leave the edge of the rotor together 

with the solvent. A channel collects the eluate and transfers it to the output tube. The 

absorbent layer can be prepared in sizes of 1 mm, 2 mm or 4 mm (Desai et al., 1985).  

 

Figure 2.11. Normal PCTLC (A), PCTLC plate under UV showing concentric bands of 

separated substances (B) (photographed by B. Danca). 

2.3 Structural elucidation 

2.3.1 Nuclear magnetic resonance spectroscopy (NMR) 

NMR is a technique that relies on the ability of unpaired atomic nuclei to spin when it 

interacts with a radio wave at a specific frequency in an external magnetic field. When 

molecules are exposed to a strong magnetic field, the magnetic moment of the nuclei 

align with the magnetic field and when the radio frequency is applied the nuclei gain 

energy (excited state). When the nuclei lose energy (revert to ground state), a radio 

frequency is emitted (Clayden et al., 2001), which is recorded and transformed into a 

NMR spectrum This method helps with the structural elucidation of different chemical 

compounds. One-dimension (1D) NMR (1H NMR) assists with the determination of 

proton environments while 13C NMR determines the carbon atom environments  (Tesso, 

2005). Distortionless Enhancement by Polarization Transfer (DEPT) 135 is used for the 

identification of methylene carbons which appear as negative peaks in the spectrum. 

A B 
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Two-dimension (2D) NMR Correlation Spectroscopy (COSY) relies on 1H,1H 

correlations, whereas Heteronuclear Single Quantum Correlation (HSQC) and 

Heteronuclear Multiple Bonding Correlation (HMBC) spectra give information on the 
1H,13C correlations (Bruice, 2014). 

2.3.2 One-Dimensional NMR 

In 1D pulsed Fourier transform NMR the signal is recorded as a function of a single time 

variable followed by the Fourier transformed to give a spectrum which is a function of a 

single frequency variable, whereas in 2D NMR the signal is noted as a function of two 

time variables followed by a double Fourier transformed to give a spectrum which is a 

function of a double frequency variables (Noda et al., 2000). 

Proton NMR (1H NMR) is used to detect the number of protons in a compound. The 

number of signals designates the different proton environments in a spectrum. 1H is the 

most abundant isotope of hydrogen in nature, 99.985% to be precise. In 1H NMR protons 

couple to show connectivity of the structure (Clayden et al., 2001). A spectrum is divided 

into six regions (Bruice, 2014). The chemical shift range of a spectrum is between 0-12 

parts per million (ppm).  The first region (0-1.5 ppm) is the saturated region followed by 

allylic region (1.5-2.5 ppm), Z= O, N, halogen (2.5-4.5 ppm), vinylic region (4.5-6.5 ppm), 

aromatic region (6.5-8.0 ppm), and a carbonyl region (9.0-12 ppm) (Bruice, 2014). 

The number of signals in a 13C NMR spectrum designates the number of various kinds 

of carbons a compound consists of, just like the number of signals in a 1H NMR spectrum 

tell us the number of various kinds of hydrogens in a compound. The signals in this 

experiment appear as singlets because the 13C NMR are recorded based on the proton 

decoupling and all the 13C-1H coupling are decoupled by irradiation of all the protons. 

This kind of analytical procedure is only carried out through computers that carry out a 

Fourier transform (FT) (Clayden et al., 2001). In 13C NMR, FT is required because 

carbon has a poor sensitivity and this results in obtaining weak signals that are not easily 

differentiated from the background electronic noise and this is because of the the poor 

sensitivity of carbon. 13C FT-NMR has to be rapidly repeated to achieve visible signals 

(Clayden et al., 2001). Visible signals are achieved by adding together many scans that 

are recorded. Hundreds of scans are added together to achieve visible 13C signals. Due 

to the randomness of the electric noise, its sum is close to zero. The separate signals of 
13C are weak, one of the reasons is the isotope of carbon (13C) that produces 13C NMR 

signals. It makes only 1.11% of carbon in nature and also 13C has a very low 

magnetogyric ratio of about one-fourth as compared to that of a proton. The most 
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abundant carbon in nature is 12C, nonetheless, this carbon cannot produce an NMR 

signal because it does not have a nuclear spin. However, 13C NMR spectroscopy has a 

chemical shift of carbon atom range of over 220 ppm, in contrast to 10-12 ppm for 

hydrogens. This enables carbons in different environments to be easily distinguished 

from one another  (Bruice, 2014).  

2.3.3 1D DEPT 13C NMR 

Distortionless Enhancement by Polarization Transfer (DEPT), is a technique that was 

created to differentiate between CH3, CH2, CH and C group (Clayden et al., 2001). This 

technique is now usually used in place of proton-coupled 13C spectra to detect the 

number of hydrogens that are attached to each carbon in a compound (Bruice, 2014). 

2.3.4 Two-dimensional NMR 

This spectroscopy is used to examine complex molecules like proteins and nucleic acids 

because the signals in their spectra overlap. 1H NMR and 13C NMR have one frequency 

axis and one intensity axis, whereas 2D NMR spectra consist of two frequency axes and 

one intensity axis. The common 2D NMR in natural products are COSY, NOESY, HMQC 

and HMBC (Tesso, 2005).  

2.3.5 2D 1H, 1H-COSY (Correlated Spectroscopy) 

Correlated Spectroscopy (COSY) is a 2D NMR spectroscopy that is used in the 

characterization of small molecules but also of larger biomolecules such as proteins. In 
COSY spectroscopy, the spectra show coupling between neighbouring protons in a 2J, 
3J and 4J range (Tesso, 2005).  A 1H NMR spectrum is plotted on both axes (x and y) to 

determine the correlation. In analyzing the spectrum, a diagonal line is drawn through 

the dots that intersect the spectrum (Ernst et al., 1987). Cross peaks that are found on 

the sides of the diagonal line are used to determine proton coupling. The COSY 

spectrum is symmetrical with regards to the diagonal line (Friebolin and Becconsall, 

1993). 

2.3.6 HMBC (Heteronuclear Multiple Bond Correlation) 

The heteronuclear multiple bond correlation (HMBC) experiment is used to determine 

the long-range coupling between hydrogen and carbon that are two or three bonds apart. 

It is used to identify a correlation between 1H and 13C nuclei in different spectra (Clayden 
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et al., 2001). This experiment is sensitive to the extent that it can detect large coupling 

constraints, i.e. 4-10 Hz (Tesso, 2005).  

2.3.7 HSQC (Heteronuclear Single Quantum Correlation) 

The heteronuclear single quantum correlation experiment is used to identify one-bond 
1H and 13C or 15N correlations of two different spectra of a single compound (Tesso, 

2005). In biochemistry, HSQC is used as a correlating experiment between 1H and 15N 

chemical shifts. In chemistry, it is mostly 1H,13C correlations that are important. This 

experiment proved to be useful in elucidating larger molecule (Yuan et al., 2011). 

2.3.8 LCMS (Liquid Chromatography-Mass Spectrometry) 

Liquid chromatography-mass spectrometry (LC-MS) experiments are a combination of 

chromatography and mass spectrometry. As all different chromatography methods, LC 

has a stationary and a mobile phase. The stationary phase is a solid and a mobile phase 

is a gas. Mass spectrometry is used for the mass measurement. LCMS as a combined 

method deals with separation and measurement. In this technique, a sample is injected 

onto a column, eluted with a selected solvent system (Lindsey et al., 2001). The mass 

of an LC eluent is measured by a MS detector, the commonly used MS detector is a 

triple quadrupole MS (QQQ). In a MS QQQ a high voltage is applied into an LC eluent 

which creates a spray of ionized molecules, the ionized molecule is transferred to the 

first quadrupole where they are separated and selected according to specific ions 

(Taylor, 2005). In the second quadrupole the specific ion is fragmented into product ions, 

and the product ions are transferred to the third quadrupole. In the third quadrupole, a 

product ion is isolated and sent to a detector for measurement. However, in this study, 

the MS used was a single quadrupole which only deals with separation and selection of 

a specific ion. The results are displayed as molecular ion adducts (Niessen, 2006).  

2.3.9 Time-Of-Flight Mass Spectrometry 

Mass spectrometry (MS) is an analytical technique that helps with structural elucidation. 

This technique measure mass (m) to charge (z) ratio (m/z) of the ions in an analyte or 

sample (Breitkopf et al., 2017). The ratios that are obtained from the results provide 

atomic signatures for the different components of the sample. Usually z = 1, therefore, 

the ratio is the mass of the ion. MS gives a mass as an integer (Breitkopf et al., 2017). 

The disadvantage of this technique is that a molecular mass does not give concrete 

evidence of the exact mass of a compound. High-resolution mass spectrometry (HRMS), 
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is used to amend that disadvantage by means of determination of the exact mass of a 

fragment to a 0.0001 precision by separating the analyte into fragments prior to analysis. 

This technique gives the molecular weight in five decimal places, and this eliminates 

99% of the error, hence making it easy to differentiate between the compounds with a 

similar molecular mass to the nearest integer (Clayden et al., 2001). Time-of-flight is an 

HRMS technique that uses time measurement to determine m/z of an ion. This technique 

is used for both qualitative and quantitative analyses. Accurate results can be obtained 

from the spectral data of this instrument. This technique provides an accurate mass and 

isotopic reliability (Issaq et al., 2002).  

2.3.10 Ultraviolet (UV) spectroscopy 

The ultraviolet (UV) spectroscopy gives details of the organic compounds with 

conjugated double bonds. The part of the molecule that absorbs UV light is called a 

chromophore.  UV light consists of relevant energy that causes an electronic transition 

in a molecule. In other words, it causes an electron to move from one molecular orbital 

to a molecular orbital with higher energy (excited state) (Förster, 2004). The molecules 

that absorb UV light have a UV spectrum that ranges between 180-400 nm, in contrast 

to visible light which ranges between 400-780 nm. A UV spectrum consists of broad 

absorption bands due to electronic state that has vibration sublevels. Therefore, the 

electronic transitions occur within these various sublevels (Bruice, 2014).   

2.4 Conclusion 

To conclude, though a number of plants have been studied and found to have bioactive 

compounds, there is still a need to explore the phytochemistry of many other South 

African indigenous species.  No literature is available on the phytochemistry of the genus 

Dais. Exploring the phytochemistry of this genus could possible results in obtaining new 

bioactive compounds with interesting properties. 
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Chapter 3: Results and Discussion 
3.1 Introduction 

As discussed in Chapter 2, many bioactive compounds have been isolated from plants 

of the Thymelaeaceae family. The compounds are active against several diseases that 

claim lives in South Africa, i.e. cancer, hypertension, malaria, diabetes and HIV. This 

plant family is well represented in most provinces in South Africa. The focus of this thesis 

was to investigate the phytochemistry of a Thymelaeaceae species that has not been 

studied previously and Dais cotinifolia was selected. 

D. cotinifolia was collected from the University of Kwazulu-Natal Pietermaritzburg 

campus (UKZN-PMB) Botanical Garden. The different parts of the plant, i.e. leaves, 

branches, roots and root bark, were dried and extracted using different solvent systems. 

The structures of the compounds were elucidated by interpretation of their 1H and 13C 

NMR, LC-MS, TOF-MS and UV/Vis experimental data and by comparison with literature 

data. The antioxidant activity of the various crude extracts was determined.  

3.1.1. Isolation and structural elucidation of kobusin (3.1) 

The crude DCM extract of the leaves was fractionated by VLC. TLC was used to monitor 

the fractions and one fraction (fraction C) was taken for further fractionation by VLC and 

preparative centrifugal thin-layer chromatography. A single compound (3.1) was isolated 

and the purity of the compound was assessed by HPLC (Figure 3.1).  

 

Figure 3.1. HPLC chromatogram of kobusin (3.1). 

The structural elucidation of 3.1 was based on NMR, MS and UV analysis. In the low-

resolution ESI-(+) mass spectrum of 3.1, a pseudo-molecular ion was observed at m/z 
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393.1 [M+Na]+, which corresponds to a molecular formula of C21H22O6 (calculated for 

C21H22O6Na, 393.4). 

The NMR data of compound 3.1 are collated in Table 3.1. The proton NMR analysis was 

based on the 1H NMR (Figure 3.2) and COSY NMR (Figure 3.3) spectra.  There was 

evidence of six aromatic protons that were allocated to two aromatic rings. A careful 

analysis of the splitting patterns of the aromatic proton signals indicated that there were 

two 1,3,4-trisubstituted phenyl rings (arbitrarily designated as ring A and ring B).  In ring 

A, a proton signal was observed at δH 6.84 (1H, d, J = 8.3 Hz, H-5) and this proton was 

ortho-coupled to the proton resonating at δH 6.87 (1H, dd, J = 1.8 Hz; 9.9 Hz, H-6). The 

proton resonating at δH 6.87 also has a meta-coupling to the proton resonating at δH 

6.90 (1H, d, J = 1.7 Hz, H-2). On the other aromatic ring (ring B), the proton resonating 

at δH 6.85 (1H, d, J = 1.7 Hz, H-2') was meta-coupled to a proton resonating at δH 6.81 

(1H, dd, J = 1.3 Hz; 8.2 Hz, H-6'). The proton resonating at δH 6.81  was ortho-coupled 

to the proton resonating at δH 6.78 (1H, d, J = 8.0 Hz, H-5') and meta-coupled to the 

proton resonating at δH 6.85.  

Figure 3.2. 1H NMR spectrum of kobusin (3.1) in CDCl3 at 400 MHz. 

At δH 5.95, a two-proton singlet resonance was observed and the chemical shift indicated 

that these protons were attached to a carbon atom bonded to two oxygen atoms. These 

protons were assigned as a -OCH2O- (methylenedioxy) group. More upfield, there was 

an indication of two closely-related sets of protons resonating at δH 4.75 (d, J 5.5 Hz) 

and 4.73 (d, J 5.4 Hz) ppm, a two-proton multiplet at δH 4.26 ppm, a 2-proton multiplet 

at δH 3.87 ppm and a two-proton multiplet resonating at δH 3.12 ppm. In the COSY 

spectrum (Figure 3.3), a correlation was observed between the proton resonance at δH 

4.74 and the resonance at δH 3.12 ppm. The latter resonance also showed a correlation 

with both the resonances at δH 4.26 ppm and δH 3.87. These two resonances also 
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showed a correlation with each other. The remaining two signals in the 1H NMR 

spectrum were two three-proton singlets resonating at δH 3.90 and δH 3.87, consistent 

with two methoxy groups attached to aromatic rings. 

 

Figure 3.3. COSY NMR spectrum of kobusin (3.1) in CDCl3. 

In the 13C NMR spectrum (Figure 3.4), there were 21 signals indicating that there were 

21 carbons in different chemical environments. A DEPT spectrum (Figure 3.5) was used 

to differentiate between methyl, methylene, methine and quaternary carbon atom 

resonances. The HSQC spectrum (Figure 3.6) enabled us to establish one-bond 

correlations between proton and carbon atoms, whereas the HMBC spectrum (Figure 

3.7) allowed us to connect different fragments. 
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Figure 3.4. 13C NMR spectrum of kobusin (3.1) in CDCl3 at 100 MHz. 

 

Figure 3.5. DEPT 135 NMR spectrum of kobusin (3.1) in CDCl3 at 100 MHz. 

In the aromatic region, six quaternary carbons resonated between δC 133 and 149 ppm. 

Among the six quaternary carbons, four were more downfield, indicating that they were 

directly bonded to oxygen atoms. These four resonances were at δC 147.3, 148.2, 148.9 

and 149.5 ppm, while the other two quaternary carbons resonated at 133.8 and 135.3 

ppm.  Six additional aromatic carbon signals ranging from δC 106.7 to 119.6 ppm were 

identified as methine carbons. In the HSQC spectrum, it was observed that the three 

proton resonances on aromatic ring A, δH 6.84 (s, J = 8.3 Hz, H-5), δH 6.87 (dd, J = 1.8 

Hz; 9.9 Hz, H-6) and δH 6.90 (d, J = 1.7 Hz, H-2), correlated to the carbon resonances 
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at δC 109.5, 118.5 and 111.4, respectively. The three B-ring proton resonances at δH 

6.85 (d, J = 1.7 Hz, H-2'), δH 6.81 (dd, J = 1.3 Hz; 8.2 Hz, H-6'), and δH 6.78 (d, J = 8.0 

Hz, H-5') correlated to the carbon resonances at δC 106.7, 119.6, and 108.4, 

respectively. 

 

Figure 3.6. HSQC NMR spectrum of kobusin (3.1) in CDCl3. 

In the HMBC spectrum (Figure 3.7), a correlation between the proton resonance at δH 

6.84 (J = 8.3 Hz, H-5, ring A) and the carbon resonance at δC 149.5, and the proton 

resonance at δH 6.90 (H-2, ring A) and the carbon resonance at δC 149.5, were 

observed. Therefore, the signals at δC 149.5 and δC 149.5 were assigned to C-3 and C-

4, respectively, of ring A. In the HMBC spectrum, a correlation between the signals at 

δC 149.5 and δC 148.9 and the methoxy proton resonances at δH 3.90 and δH 3.87, 

respectively, were observed. The methoxy proton resonances at δH 3.87 and 3.90 

correlated to the carbon resonances at δC 56.2 and 56.1, respectively, in the HSQC 

spectrum (Figure 3.8).  The correlations discussed above enabled us to assign a part 

structure to ring A (Figure 3.8). 
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Figure 3.7. HMBC NMR spectrum of kobusin (3.1) in CDCl3. 

A methylene carbon resonating at δC 101.3 was observed in the DEPT spectrum (Figure 

3.5) and in the HSQC spectrum (Figure 3.6) and this carbon resonance correlated to the 

proton resonance at δH 5.95, confirming the presence of a –OCH2O- fragment. In the 

HMBC spectrum (Figure 3.7), the methylene proton resonance (δH 5.95) correlated to 

the two B-ring carbon resonances at δC 148.2 and 147.3. These two resonances also 

correlated to proton resonances at δH 6.81 (H-5') and δH 6.85 (H-2'), respectively, and 

was assigned to C-3' and C-4', respectively. These correlations allowed us to construct 

ring B as indicated in Figure 3.8. 
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Figure 3.8. Part-structures proposed for ring A and ring B of 3.1. 

The remaining signals in the 13C NMR spectrum consisted of three pairs of resonances 

at δC 86.1/86.0 (oxymethine), δC 72.0/71.9 (oxymethylene) and δC 54.6/54.4 (methine 

carbon). These carbons correlated to the proton resonances at δH 4.75/4.73 ppm, the 

two-proton multiplet at δH 4.26 ppm and the two-proton multiplet at δH 3.87 ppm, and the 

two-proton multiplet resonating at δH 3.12 ppm, respectively. This observation allowed 

us to propose the presence of two -OCH2-CH-CHO- fragments in compound 3.1. By 
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combining these two fragments with ring A and ring B, a furofuran lignan structure was 

proposed for 3.1, with the signals at δH 4.75/4.73 ppm assigned to H-7/7', δH 3.12 ppm 

to H-8/8', and signals at δH 4.26 ppm and δH 3.87 ppm to the two diastereotopic protons 

at C-9/9'. 

There are 4 stereocentres in the proposed furofuran lignan; therefore, there are eight 

possible diastereomers. Geometric constraints restrict the ring junction between the two 

five-membered rings as cis and only four possible diastereomers remain, the 7-H/8-H 

trans, 7'-H,8'-H trans isomer (A), the 7-H/8-H trans, 7'-H,8'-H cis isomer (B), the 7-H/8-

H cis, 7'-H,8'-H trans isomer (C), and the 7-H/8-H cis, 7'-H,8'-H cis isomer (D) (Figure 

3.9). 
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Figure 3.9. Possible diasteromers for furofuran lignans. 

The determination of the relative configuration of the furofuran lignans is not always easy 

to determine by NMR due to conformational changes that can occur with different 

substituents on C-7 and C-7'. Takahashi and Nakagawa (1966) reported that a small 

coupling constant (J ≈ 4 Hz) between 7-H/8-H or 7′-H/8′-H corresponds to a trans 

configuration and a large coupling constant (J ≈ 7 Hz) corresponds to a cis configuration. 

Kamikado et al. (1975) reported that for the symmetric diastereomer A (Figure 3.9), the 

chemicals shift of H-7, 8 and 9 are almost the same as those of H-7', 8' and 9', whereas 

for the asymmetric diastereomer C, substantial chemical shift differences for these 

protons were observed. By considering the NMR data of a number of furofuran lignans, 

it was proposed that the relative configuration of these compounds could be derived by 

considering the chemical shift differences between the two diastereotopic protons on C-

9 and C-9' (Xu et al., 2018). These authors proposed that for type A (Figure 3.9), ΔδH‑9 

and ΔδH‑9′ = 0.30−0.40, for type B and type C ΔδH‑9 = 0.25−0.36, ΔδH‑9′ > 0.50, and 

for type D ΔδH‑9 and ΔδH‑9′ < 0.20. 

Considering the discussion above, 3.1 was identified as a class A lignan (Figure 3.9). 

The small differences in chemical shifts between H-7 and H-7′, H-8 and H-8′, and H-9 

and H-9′, indicated that the furofuran moiety is symmetrical and that class B and class 

C could be eliminated.  The coupling constant between H-7 and H-8 and also between 

H-7' and H-8' in 3.1 are both J ~ 5.5 Hz, which is in agreement with a trans relationship 

between the protons.  Finally, the chemical shift difference between the two 
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diastereotopic C-9 protons is δH = 4.26 – 3.87 = 0.39, which is characteristic of a 7-H/8-

H trans, 7'-H,8'-H trans isomer (Xu et al., 2018). 

Based on the NMR data discussed above, the structure of the isolated compound 3.1 

was identified as kobusin (Figure 3.10), a lignan that was first reported by Kamikado et 
al. (1975), who isolated the compound from Magnolia kobus DC. The NMR data of 

kobusin (3.1) is in agreement with the published data by Kamikado et al., 1975. 
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Figure 3.10. Structure of kobusin (3.1). 

The UV/Vis spectrum of compound 3.1 showed two absorption maxima at λmax = 230 nm 

and λmax = 285 nm (Figure 3.11). This spectrum is in agreement with the chromophore 

of the proposed structure, i.e. two benzene rings. 

 

 

 

 

 

 

 

Figure 3.11. The UV/Vis spectrum of kobusin (3.1). 

As stated already above, the furofuran lignan kobusin (3.1) was first isolated from the 

methanol crude extract of the leaves and seeds of Magnolia kobus DC. and this lignan 

was found to be a growth inhibitor of silkworm larvae (Iida et al., 1982, Kamikado et al., 

1975). The same lignan was also isolated from the plant Melicope hayesii T.G.Hartley 

in 1999 (Latip et al., 1999). 
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Table 3.1. 1H (400 MHz) and 13C (100 MHz) NMR data of kobusin (3.1) in CDCl3. 

Position δC (ppm) δH (ppm) δH (ppm) 
(Kamikado et al., 
1975) 

δC (Latip et al., 
1999) 

1 

1’ 

133.8 

135.3 

-  135.7 

2 

2’  

109.5 

106.7 

6.90 (1H, d, J = 1.7 

Hz) 

6.85 (1H, d, J = 1.7 

Hz) 

 

* 106.4 

3 

3’ 

148.9 

147.3 

-  147.8 

4 

4’ 

149.5 

148.2 

-  148.8 

5 

5’ 

111.4 

108.4 

6.84 (1H, d, J = 8.3 

Hz) 

6.78 (1H, d, J = 8.0 

Hz) 

* 109.3 

6 

6’ 

118.5 

119.6 

6.87(1H, dd, J = 1.8 

Hz; 9.9 Hz) 

6.81 (1H, dd, J = 1.3 

Hz; 8.2 Hz) 

* 119.3 

7 

7’ 

86.0 

86.1 

4.74 (2H, d, J = 5.5 

Hz) 

4.75 (2H, d, J = 4) 86.6 

8 

8’ 

54.4 

54.6 

3.08 (2H, m)  54.9 

9 

9’ 

71.9 

72.0 

4.26 (1H, m) 

3.87 (1H, m) 

4.16 – 4.40 (2H, m) 71.9 

O-Me 56.2 3.87 (3H, s) 3.87 (3H, s) 56.1 

O-Me 56.1 3.90 (3H, s) 3.90 (3H, s)  

O-CH2-O 101.3 5.96 (2H, s) 5.95 (2H, s) 101.2 

*Given as δH 6.8-7.8 (6H, Ar-H) by Kamikado et al. (1975). 
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3.1.2 Isolation and structural elucidation of eudesmin (3.2) 

The crude MeOH extract of the leaves was fractionated by VLC. TLC was used to 

monitor the fractions and fraction C was further fractionated by preparative centrifugal 

thin-layer chromatography. The purity of a single compound that was isolated was 

assessed by HPLC (Figure 3.12). 

 

Figure 3.12. A HPLC chromatogram of eudesmin (3.2). 

The structural elucidation of 3.2 was performed on the basis of NMR, MS and UV 

analysis. The low-resolution ESI-(+)-mass spectrum of 3.2, a pseudo-molecular ion was 

observed at m/z 409.3 [M+Na]+
, which corresponds to a molecular formula of C22H26O6 

(calculated for C22H26O6Na, 409.4). 

The NMR spectroscopic data of compound 3.2 are summarised in Table 3.2. Both the 
1H and 13C NMR spectra of 3.2 were much simpler than those of 3.1. In the 1H NMR 

spectrum (Figure 3.13) nine different signals, including two methoxy resonances were 

observed, whereas in the 13C NMR spectrum (Figure 3.15), eleven carbon resonances 

could be observed. Taking the molecular mass into account, it was clear that 3.2 was a 

symmetrical molecule.  

The proton environments of the proposed structure were determined using 1H NMR 
(Figure 3.13) and COSY NMR (Figure 3.14) spectra. Since 3.2 was identified as a 

symmetrical molecule, only one half of the molecule will be discussed. There was an 

indication of 3 aromatic protons that were attributed to an aromatic ring. The splitting 

patterns indicated that this was a 1,3,4-trisubstituted phenyl ring. A proton that resonated 

at δH 6.91 (d, J = 2.3 Hz) was observed, and this proton was meta-coupled to the proton 

resonating at δH 6.87. A proton resonating at δH 6.85 (d, J = 2.35 Hz) was observed, and 

this proton was ortho-coupled to the proton resonating at δH 6.87 (2H, d, J = 2.3 Hz; 7.0 

Hz).   
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Figure 3.13. 1H NMR spectrum of eudesmin (3.2) in CDCl3 at 400 MHz. 

At δH 4.76 a one-proton doublet resonance was observed, and the chemical shift 

indicated that this proton was attached to a carbon bonded to an oxygen. The proton 

was assigned as a -OCHPh- (oxymethine) group. A proton resonating at δH 4.29 was 

split by a proton resonating at δH 3.89. This suggested the presence of a methylene 

group and the chemical shift indicated that the protons were attached to a carbon 

bonded to an oxygen. There were two singlets resonating at δH 3.89 and δH 3.87, 

consistent with methoxy groups attached to an aromatic ring. A one-proton multiplet 

resonance at δH 3.12 was observed and this proton was assigned as a -CH- (methine) 

group.   

 

Figure 3.14.  COSY NMR spectrum of eudesmin (3.2) in CDCl3. 



44 | P a g e  
 

The 13C NMR spectrum (Figure 3.15) showed signals equivalent to 11 carbons and this 

was due to the plane of symmetry in the proposed structure. A DEPT spectrum (Figure 

3.16) was used to differentiate between methyl, methylene, methine and quaternary 

carbon atom resonances. The HSQC spectrum (Figure 3.17) enabled us to establish 

one-bond correlations between proton and carbon atoms, whereas the HMBC spectrum 

(Figure 3.18) allowed us to connect different fragments. 

There were six aromatic carbon resonances between δC 109.5-149.5. Three of these 

carbon resonances were attributed to quaternary carbons. The chemical shifts of the 

quaternary carbon resonances at δC 148.9 and 149.5 indicated that they were directly 

bonded to oxygen and the carbon at δC 133.8 was C-C bonded. In the DEPT NMR  and 

HSQC NMR, three other aromatic carbons ranging between δC 109.5-118.5 ppm were 

identified as methine carbon signals. The rest of the signals were observed at δC 86.0 

(oxymethine), 71.9 (oxymethylene) and 54.4 (methine). The last two signals at δC 56.1 

and 56.2 were assigned as two methoxy carbons.   

 

Figure 3.15. 13C NMR spectrum of eudesmin (3.2) in CDCl3 at 100 MHz. 
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Figure 3.16.  DEPT 135 NMR spectrum of eudesmin (3.2) in CDCl3 at 100 MHz. 

 

Figure 3.17.  HSQC NMR spectrum of eudesmin (3.2) in CDCl3. 

The HSQC spectrum (Fig 3.15) confirmed that the proton resonating at δH 4.26 was 

attached to the same carbon as the proton at 3.89, confirming that this was an 

oxymethylene group.  
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Figure 3.18.  HMBC NMR spectrum of eudesmin (3.2) in CDCl3. 

The HMBC spectrum (Figure 3.18) showed a 3J correlation between δC 148.7 and the 

methoxy proton protons. A 3J connectivity was between a proton resonating at δH 4.76 

and carbons resonating at δC 85.8, δC 133.6 and δC 109.3. This confirms that in the 

proposed structure, a furofuran ring system is connected to a benzene ring. This was 

further confirmed by the 2J correlation of a proton resonating at δH 4.76 and carbons 

resonating at δC 85.8 and δC 133.6. A 2J connectivity was observed between the carbon 

resonating at δC 54.7 and the proton resonating at δH 4.76 and also the proton resonating 

at δH 4.27. Similar to compound 3.1, compound 3.2 was a lignan with signals at δH 4.73 

ppm assigned to H-7/7', δH 3.12 to H-8/8', and signals at δH 4.25 and 3.85 attributed to 

the two diastereotopic protons at H-9/9’.  

The structure of the isolated compound was assigned as eudesmin (3.2) (Figure 3.19). 

The isolation and NMR structural elucidation of eudesmin were first reported in 1975 

when it was isolated from Magnolia kobus DC (Kamikado et al., 1975). The isolation of 

this compound from D. cotinifolia has not been reported previously. The NMR data was 

consistent with data reported previously (Yang et al., 2006). Kobusin (3.1) and eudesmin 

(3.2) have the same relative stereochemistry (Yang et al., 2006). 
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Figure 3.19. Structure of eudesmin (3.2). 

The UV/Vis spectrum of compound 3.2 showed two absorption wavelengths (λmax = 230 

nm and λmax = 280 nm) (Figure 3.20). The chromophore of the proposed structure was 

the benzene ring. 

 

 

 

 

 

 

Figure 3.20. The UV/Vis spectrum of eudesmin (3.2). 

Similar to kobusin (3.1), eudesmin (3.2) was first isolated from the methanol crude 

extract of  Magnolia kobus as a growth inhibitor of silkworm larvae. They were also both 

isolated from Melicope hayesii (Latip et al., 1999). The furofuran lignans are known to 

possess a number of biological activities, including anti-inflammatory, cytotoxic and 

antioxidant activity (Xu et al., 2018). The antioxidant free radical scavenging activity 

enables these lignans to prevent cancer. There have been a number of studies that have 

been conducted to investigate the anticancer activity of lignans, and the literature states 

that lignans have a protective effect against cancer, hormone-related cancers in 

particular, i.e. breast cancer (Thompson, 1998).  
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Table 3.2. 1H (400 MHz) and 13C (100 MHz) NMR data of eudesmin (3.2) in CDCl3. 

H and C positions δC δH δH (Yang et al., 2006) δC (Yang et al., 2006) 

1/1’ 133.6 -  134.8 

2/2’  109.3 6.91 (2H, d, J = 

1.6 Hz) 

7.02 (2H, d, J = 1.0 

Hz) 

110.5 

3/3’ 148.7 -  149.9 

4/4’ 149.3 -  149.2 

5/5’ 111.2 6.85 (2H, d, J = 

8.2 Hz) 

6.92 (2H, d, J = 8.5 

Hz) 

112.1 

6/6’ 118.3 6.87 (2H, dd, J = 

8.2, 1.6 Hz) 

 

6.94 (2H, dd, J = 2.0, 

6.0 Hz) 

118.5 

7/7’ 85.8 4.76 (2H, d, J = 

4.2 Hz) 

4.73 (2H, d, J = 4.5 

Hz) 

85.9 

8/8’ 54.2 3.12 (2H, m) 3.10-3.14 (2H, m, H-

8, H-8') 

54.6 

9/9’a 

9/9’b 

71.7 4.27 (1H, dd, J = 

9.0, 6.8 Hz) 

3.89 (1H, m)  

4.25 (2H, dd, J = 5.5, 

8.0 Hz) 

3.85 (2H, dd, J = 4.0, 

11.0 Hz) 

71.7 

O-Me 56.0 3.87 (3H, s) 

3.89 (3H, s) 

3.82 (6H, s, 4- and 4') 

3.84 (6H, s, 3- and 3') 

55.6 

 

3.1.3 Isolation and structural elucidation of catechin (3.3) 

The crude MeOH extract of the root bark was fractionated by VLC. TLC was used to 

monitor the fractions. Fraction E was further purified by column chromatography and 

preparative TLC.  

The structural elucidation of 3.3 was based on NMR, MS and LC-MS analysis. In the 

low-resolution ESI-(+)-mass spectrum of 3.3 obtained from a LC-MS run (Figure 3.21), 

a molecular ion was observed at m/z 291 [M+Na]+, which corresponds to a molecular 

formula of C15H13O6 (calculated for C15H13O6Na, 291).  
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Figure 3.21. The LC-MS spectrum of catechin (3.3). 

The NMR data of 3.3 are collated in Table 3.3. The proton NMR analysis was based on 
1H NMR (Figure 3.22) and COSY NMR (Figure 3.23) spectra. There was evidence of 5 

aromatic protons that were allocated to two aromatic rings. A careful analysis of the 

splitting patterns of the aromatic protons revealed that one ring was a 1,2,3,5-

tetrasubstituted phenyl ring (benzopyran ring system) and the second one was a 1,3,4-

trisubstituted phenyl ring. A proton resonance was observed at δH 5.93 (1H, d, J = 2.3 

Hz). This proton was meta-coupled to the proton resonating at δH 5.86 (1H, d, J = 2.3 

Hz). A proton resonance was observed at δH 6.72 (1H, dd, 1.9, 8.2 Hz) and this proton 

was meta-coupled to the proton resonating at δH 6.84 (1H, d, J = 1.9 Hz) and ortho-

coupled to the proton resonating at δH 6.77 (1H, d, J = 8.1 Hz). A one-proton signal 

resonating at δH 4.57 was observed and the chemical shift indicated that the proton was 

attached to both an oxygen and a phenyl group and was assigned as a -CH- (methine) 

group. A one-proton multiplet resonating at δH 3.98 was observed, the chemical shift 

indicated that the proton was attached to a carbon bonded to a hydroxy group and was 

assigned as a -HCOH- (hydroxymethylene). At δH 2.85 a one-proton doublet of doublets 

(dd) was observed and this proton was split by a one-proton signal resonating at δH 2.51. 

The proton was assigned as a -CH2- (methylene) group. 
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Figure 3.22. 1H NMR spectrum catechin (3.3) in CD3OD at 400 MHz. 

A COSY correlation confirmed that the protons resonating at δH 2.85 and δH 2.51 were 
attached to the same carbon and that the multiplicity of these protons was a dd. A proton 

resonating at δH 4.57 showed a correlation to a proton resonating at δH 3.98, and was 

assigned as a doublet. A proton resonation at δH 3.98 had a correlation with the proton 

resonating at δH 2.85 and δH 2.51 and was assigned as a multiplet. 

 

 

Figure 3.23.  COSY NMR spectrum of catechin (3.3). 
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In the 13C NMR spectrum (Figure 3.24), fifteen carbon signals were observed. There 

were twelve aromatic carbons resonating at δC 95.7-158.0 ppm and seven of these were 

quaternary carbons with five carbons directly bonded to oxygen. The five C-O carbons 

resonated at δC 158.0, 157.7, 157.0, 146.4 and 146.3 ppm. The other two quaternary 

carbons resonated at δC 132.4 and 101.0 ppm. In the DEPT NMR (Figure 3.25) and 

HSQC NMR (Figure 3.26) spectra, the other aromatic carbons were identified as 

methine carbons. The rest of the signals were observed at δC 83.0 (methine), 68.9 

(hydroxymethylene) and 28.6 (methylene). 

 

Figure 3.24. 13C NMR spectrum of catechin (3.3) in CD3OD at 100 MHz. 

 

Figure 3.25.  DEPT 135 NMR spectrum of catechin (3.3) in CD3OD at 100 MHz. 
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Figure 3.26.  HSQC NMR spectrum of catechin (3.3) in MeOH. 

The HMBC NMR spectrum (Figure 3.27) and Figure 3.29 were used to confirm 

connectivities between the atoms in the proposed structure. A 2J correlation was 

observed between the carbon resonating at δC 158.0 and a proton resonating at δH 5.93. 
Another 2J connectivity was observed between proton resonating at δH 5.86 and a 

carbon at δC 95.7. There was a 2J correlation between a carbon resonating at δC 132.4 

and a proton at δH 4.57, confirming the connectivity between a benzene ring and a pyran 

ring system. 3J correlations were observed between a carbon resonating at δC 101.0 and 

proton resonances at δH 3.98, 2.85 and 2.51. These correlations confirmed the presence 

of a benzopyran ring system and were supported by the correlation of carbons 

resonating at δC 101.0 and 157.7 and protons at δH 5.93 and 5.86. The NMR data 

suggested that the isolated compound was catechin (3.3) (Figure 3.28). The long-range 
1H,13C-correlations derived from the HMBC spectrum (Figure 3.27) for 3.3 are indicated 

in Figure 3.29. 
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Figure 3.27.  HMBC NMR spectrum of catechin (3.3) in CD3OD. 
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Figure 3.28. Structure of catechin (3.3). 
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Figure 3.29. HMBC correlations observed for catechin (3.3). 
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Figure 3.30. HPLC UV spectrum of catechin (3.3). 

The UV spectrum of compound (3.3), obtained from the diode-array detector of the 

HPLC, showed a maxima absorption at λmax = 280 nm (Figure 3.30). This spectrum is in 

agreement with the chromophore of the proposed structure, which is a benzene ring. 

Table 3.3. 1H (400 MHz) and 13C NMR (100 MHz) data of catechin (3.3) in CD3OD. 

Carbon (C) and 
Proton (H) 
Positions 

δH (ppm) δC (ppm) DEPT-135 

 

1’ - 132.4  

2’ 6.72 (1H, dd, 1.92, 8.16 Hz) 120.2 CH 

3’ 6.77 (1H, d, J = 8.12 Hz) 116.3 CH 

4’ - 146.3 - 

5’ - 146.4 - 

6’ 6.84 (1H, d, J = 1.90 Hz) 115.4 CH 

2 4.57 (1H, d, J = 7.48 Hz) 83.0 CH 

3 3.98 (1H, m, Hz) 68.9 CH 

4α 

4β 

2.85 (1H, dd, J = 5.44, 10.72 

Hz) 

2.51 (1H, dd, J = 8.12, 8.00 

Hz) 

28.6 CH2 

4a - 101.0 - 

5 - 157.0 - 

6 5.86 (1H, d, J = 2.32 Hz) 95.7 CH 

7 - 158.0 - 

8 5.93 (1H, d, J = 2.28 Hz) 96.5 CH 

8a - 157.7 - 
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The most common type of catechins is tea catechin, which is a major constituent of fresh 

tea (Okushio et al., 1996). Catechins that are abundant in green tea are epicatechin, 

epicatechin gallate, epigallocatechin and epigallocatechin gallate (Okushio et al., 1996). 

The configurations at C-2 and C-3 are used to describe the compounds.If the relative 
configuration is trans, the compound is called catechin and if it a cis, the compound is 

called epicatechin. Catechin, like most flavonoids, possesses antioxidant activity, 

therefore, preventing the effects of cancer.   

3.1.4 Structural elucidation of 3.4 

The crude DCM extract of the leaves was fractionated by VLC. HPLC analysis indicated 

the presence of two compounds in fraction B of the VLC. The compounds that were 

labelled by the chromatogram (Figure 3.31) were then isolated by semipreparative 

HPLC. The mass of the compound correlating with peak A was very small and 

spectroscopic data could not be obtained. Compound 3.4 was obtained from peak B. 

Further HPLC analysis (Figure 3.32) confirmed the purity of 3.4. 

 

Figure 3.31. HPLC chromatogram showing the separation of a fraction of the crude 

DCM extracts of the leaves. 

 

Figure 3.32. HPLC chromatogram of 3.4. 



56 | P a g e  
 

The structural determination of 3.4 was based on NMR, MS and UV analysis. In the 

high-resolution ESI-(+)-mass spectrum of 3.4 (Figure 3.33), a pseudo-molecular ion was 

observed at m/z 337.1403 [M+Na]+, corresponding to a molecular formula of C19H22O4 

(calculated for C19H22O4Na, 337.1416). 

 

Figure 3.33. The ESI-(+)-TOF-MS spectrum of 3.4. 

The NMR spectroscopic data of compound 3.4 are summarised in Table 3.4. The 1H 

NMR spectrum Figure 3.34 suggested that there were eight aromatic protons distributed 

around two aromatic rings and resonating δH 6.70 – 7.84. Two two-proton resonances 

at δH 7.84 (2H, d, J = 8.9 Hz) and 6.94 (2H, d, J = 8.9 Hz) were characteristic of a 1,4-

disubstituted phenyl ring and a correlation between them could be observed in the COSY 

spectrum (Figure 3.35). The triplet resonance at δH 7.16 (1H, t, J = 7.8 Hz), two broad 

doublets at δH 6.70 (1H, d, J = 7.2 Hz) and 6.73 (1H, d, J = 8.5 Hz) and a broad singlet 

at δH 6.94 in the 1H NMR spectrum suggest the presence of a second disubstituted 

benzene ring. The triplet signal at δH 7.16 (1H, t, J = 7.8 Hz) indicated the presence of a 

proton adjacent to two other ortho-protons and thus the presence of a 1,3-disubstituted 

phenyl ring.  

A signal for a methine proton was observed at δH 5.01 (1H, dd, J = 2.8, 7.5 Hz). The 

chemical shift of this proton suggested that it is not only on a carbon that contains an 

oxygen substituent, but that there is also another electron-withdrawing group attached 

to the carbon. In the COSY spectrum (Figure 3.35), a correlation with a signal at δH 1.57 

(overlapping with water peak), which was assigned to an aliphatic methylene. In the 

aliphatic region, a total of six protons were observed as complex multiplets at δH 2.64 

(1H, m), 2.57 (1H, m), 1.87 (2H, m), 1.75 (1H, m), 1.57 (1H, m). A COSY correlation was 

observed between the protons resonating at δH 2.61 and 2.57 and this observation 

suggested that these protons were attached to one carbon. The COSY correlation also 

suggested that the proton resonances at δH 1.87 and 1.57 were attached to the same 

carbon and lastly the proton resonances at δH 1.87 and 1.75 ppm were also assigned to 

two methylene protons. The aliphatic signals were assigned to three adjacent methylene 

groups. Therefore, the following fragment could be constructed: -CHOH-CH2CH2CH2-. 
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/ 

Figure 3.34. 1H NMR for compound 3.4 in CDCl3 at 500 MHZ. 

 

Figure 3.35.  COSY NMR spectrum of compound 3.4. 

The remaining two signals were observed as two three-proton singlets resonating at δH 

3.89 and δH 3.77, consistent with methoxy groups attached to an aromatic ring. 

Only a small amount of 3.4 could be isolated and not enough material was available for 

a 13C NMR spectrum. However, by using the 13C projections of the HSQC (Figure 3.36) 

and HMBC (Figure 3.37) spectra, the 13C NMR shifts of all 19 carbons could be obtained 

(Table 3.4). 
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Figure 3.36.  HSQC NMR spectrum of 3.4 in CDCl3. 

The 13C NMR data confirmed the presence of a 1,4-disubstituted phenyl ring in 3.4. In 

the HMBC spectrum of 3.4, the doublet resonance at δH 7.84 showed a correlation with 

a carbonyl carbon resonating at δC 200.5 and also with a sp2- carbon resonating at δC 

164.0. The latter carbon also showed a correlation with one of the methoxy proton 

signals. These observations enabled us to propose the presence of a 4-methoxybenzoyl 

moiety in 3.4. The HMBC correlations also confirm that the second aromatic ring also 

had a methoxy substituent. 

 

Figure 3.37.  HMBC NMR spectrum of 3.4 in CDCl3. 

The NMR data suggested that compound 3.4 might be a diarylpentanoid derivative 

(Celebioglu et al., 2017). Based on the spectroscopic evidence, the structure of 3.4 was 

assigned as 2-hydroxy-5-(3-methoxyphenyl)-1-(4-methoxyphenyl)pentan-1-one, a 

novel diarylpentanoid (Figure 3.38). In order to confirm the structure of 3.4, the NMR 
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data was compared with those reported for diplomorphanone (3.5) (Figure 3.39) 

(Devkota et al., 2012) (for the ‘left-hand’ side of the molecule) and for 3-butylanisole 

(Tietze et al., 2009) for the ‘right-hand side’ of the molecule (Table 3.37). The data 

obtained for 3.4 showed an excellent fit with the published data. 
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Figure 3.38. Structure of compound (3.4). 
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Figure 3.39. Structure of diplomorphanone. 

The UV spectrum of compound 3.4 (Figure 3.40), showed a maximum absorption at λmax 

= 270 nm and this absorption was attributed to the benzene rings in the structure. 

 

Figure 3.40. HPLC UV spectrum of 3.4. 

Diarylheptanoids (two aryl groups connected by a seven-carbon chain) are well known 

compounds and over 400 different derivatives have been isolated, mostly from the 

Zingiberaceae. The most well-known member of this family is curcumin. In contrast, only 

twenty diarylpentanoids have been reported (Celebioglu et al., 2017). From these 20 

compounds, 15 were isolated from the Thymelaeaceae family (Celebioglu et al., 2017). 

The structure of 3.4 is closely related to daphneolone (3.6) (Figure 3.41), the first 

diarylpentanoid to be isolated (Suzuki and Umezawa, 2007). It has been reported that 

the diarylpentanoids isolated from Thymelaeaceae plants have anti-HIV, cytotoxic and 
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insecticidal effects. Considering the interesting biological effects of closely related 

compounds, it would be of interest to investigate the biological activity of 3.4 in a future 

study. 

Table 3.4. 1H (500 MHz) and 13C (125 MHz) NMR data of compound (3.4) in CDCl3. 

Position δC δH δH 

(Devkota et al., 2012) 

δC 

(Devkota et al., 2012)1 

(Tietze et al., 2009)2 
C-1 200.5 -  200.11 

C-4' 164.0 -  161.31 

C-3'' 159.8 -  159.52 

C-1'' 143.8 -  144.62 

C-2'.6' 130.6 7.84 (2H, d, J = 8.9 

Hz) 

7.78 (d, J 8.8 Hz) 131.31 

C-5'' 129.0 7.16 (1H, t, J = 7.8 

Hz) 

6.87 (d, J 8.8. Hz) 129.12 

C-1' 126.4 -  126.11 

C-6'' 120.6 6.70 (1H, dd, J = 

1.7, 7.2 Hz) 

 120.82 

C-2'' 113.9 6.94 (1H, dd, J = 

1.9, 7.0 Hz) 

 114.22 

C-3',5' 113.8 6.94 (1H, dd, J = 

1.9, 7.0 Hz) 

 115.91 

C-4'' 110.9 6.73 (1H, ddd, J = 

2.4, 8.5 Hz) 

 110.62 

C-2 72.3 5.01 (1H, dd, J = 

2.8, 7.5 Hz) 

5.02 (m) 72.51 

4'-OCH3 55.3 3.89 (3H, s)   

3''-OCH3 54.9 3.77 (3H, s)  55.12 

C-4 35.3 1.87 (1H, m) 

1.75 (1H, m) 

1.89 (m) 

1.76 (m) 

33.52 

C-5 35.0 2.64 (1H, m) 

2.57 (1H, m) 

2.63 (m) 35.51 

35.72 

C-3 26.0 1.87 (1H, m) 

1.57 (1H, m) 

1.89 (m) 

1.58 (m) 

35.51 

1Chemical shifts reported for 2-hydroxy-1-(4-hydroxyphenyl)-5-phenyl-1-pentanone 
(dilpomorphanone, 3.5) by Devkota et al. (2009) (Figure 3.38). 
2Chemical shifts reported for 3-butylanisole by Tietze et al. (2009). 
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Figure 3.41. Structure of diplomorphanone. 

Lignans are phenylpropanoid (C6C3) dimers. Based on biosynthetic considerations, 1,5-

diarylpentanoids can be considered as norlignans, i.e. they have one carbon less than 

a lignan. Compound 3.1 can be considered as a C7-C9'-linked norlignan. Suzuki and 

Umezawa (2007) proposed a biosynthetic pathway for norlignans, which is shown in 

Scheme 3.1. 
O OH
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Scheme 3.1. Biosynthetic pathway for norlignans. 
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3.2 Antioxidant assay: DPPH radical scavenging activity 

Recent studies found that free radicals cause oxidative damage to biomolecules. The 

damage caused by the free radical induce atherosclerosis, ageing, cancer and other 

diseases (Yamaguchi et al., 1998). Antioxidants which scavenge free radicals play a 

vital role in preventing the free radical-induced diseases (Yamaguchi et al., 1998). The 

common secondary metabolites with antioxidant activity are flavonoids, and anti-

oxidative vitamins such as ascorbic acid and α-tocopherol (Yamaguchi et al., 1998). The 

DPPH assay was used to evaluate the free radical-scavenging activity of an extract of 

the plant. The 2,2-diphenyl-1-picryhydrazyl (DPPH) assay is the most common assay in 

plant biochemistry and it is used for the evaluation of plant constituents for the 

scavenging of free radicals (Gupta et al., 2016). 

In the DPPH assay, the antioxidant activity of a sample is determined by the reduction 

of a stable radical DPPH (λmax 517 nm) to a yellow-coloured diphenyl-picryl hydrazine 

(Scheme 3.1). The results are usually expressed as the IC50 value, which is the amount 

of antioxidant required to decrease the initial DPPH concentration by 50%. In this study 

the different concentration of each plant extract (5, 10, 15, 20 and 25 mg/ml) and 

ascorbic acid(AA) (0.07, 0.14, 0.21, 0.28, and 0.35 mg/ml) were plotted against the 

radical scavenging activity (RSA) percentage to generate the standard curve for each 

plant extract and AA. The IC50 values were calculated from the straight line equation 

from each curve (Gupta et al., 2016). The results of antioxidant scavenging ability of AA 

along with the leaves, root bark, and root extracts of the plant are shown in Table 3.1, 

Table 3.2, Table 3.5 and Table 3.8, respectively. The IC50 values were 0.20 mg/ml (AA), 

14.57 mg/ml (leave extract), 15.47 mg/ml (root bark extract), and 16.59 mg/ml (root 

extract). The results for each research sample show that the %RSA of each sample was 

directly proportional to the concentration (Thaipong et al., 2006).  

N N NO2

NO2

N NH NO2

NO2

R:H R+ +

DPPH DPPH-H  

Scheme 3.2. Scavenging the DPPH Radical by an antioxidant. 
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Table 3.5. The radical scavenging activity of ascorbic acid at different concentrations 

against the DPPH stable free radical 

Sample 
volume 
(µL) 

Blank 
Absorbance 

Extract 
Absorbance 

Extract 
concentration 
(mg/mL) 

%RSA IC50 
(mg/ml) 

200 0.99264 0.74606 0.07 24.84  

0.20 400 0.99264 0.64171 0.14 35.093 

600 0.99264 0.50312 0.21 48.952 

800 0.99264 0.32576 0.28 66.688 

1000 0.99264 0.10752 0.35 88.512 

 

Figure 3.42. The relationship between the radical scavenging activity of ascorbic acid 

in different concentrations by DPPH assay. 

Table 3.6. The radical scavenging activity of leave extract of Dais cotinifolia at different 

concentrations against the DPPH stable free radical. 

Sample 
volume 
(µL) 

Blank 
Absorbance 

Extract 
Absorbance 

Extract 
concentration 
(mg/mL) 

%RSA IC50 
(mg/ml) 

200 0.99264 0.82462 5 16.9  

14.57 400 0.99264 0.61859 10 37.7 

600 0.99264 0.50786 15 48.8 

800 0.99264 0.32291 20 67.5 

1000 0.99264 0.13723 25 86.2 

y = 227.06x + 5.1353
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Figure 3.43. The radical scavenging activity MeOH leave extract of D. cotinifolia in 

different concentrations by means of DPPH assay. 

Table 3.7. The radical scavenging activity of root bark extract of Dais cotinifolia at 

different concentrations against the DPPH stable free radical. 

Sample 
volume 
(µL) 

Blank 
Absorbance 

Extract 
Absorbance 

Extract 
concentration 
(mg/mL) 

%RSA IC50 
(mg/ml) 

200 0.99264 0.85606 5 13.6  

15.47 400 0.99264 0.69171 10 30.3 

600 0.99264 0.52312 15 47.3 

800 0.99264 0.32676 20 67.1 

1000 0.99264 0.16752 25 83.1 

 

Figure 3.44. The relationship between the radical scavenging activity MeOH root bark 

extract of D. cotinifolia in different concentrations by means of DPPH assay. 
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Table 3.8. The radical scavenging activity of root extract of Dais cotinifolia at different 

concentrations against the DPPH stable free radical. 

Sample 
volume 
(µL) 

Blank 
Absorbance 

Extract 
Absorbance 

Extract 
concentration 
(mg/mL) 

%RSA IC50 
(mg/ml) 

200 0.99264 0.85606 5 8.5  

16.59 400 0.99264 0.69171 10 20.6 

600 0.99264 0.52312 15 42.2 

800 0.99264 0.32676 20 68.9 

1000 0.99264 0.16752 25 79.6 

  

Figure 3.45. The relationship between the radical scavenging activity MeOH root 

extract of D. cotinifolia in different concentrations by means of DPPH assay. 

The ascorbic acid had a higher radical scavenging ability (Figure 3.42) as compared to 

the crude extract followed by the leaves crude extract, root bark extract and then the 

roots, the evidence is exhibited by the IC50 values (listed above). This means that the 

plant extracts are required at a higher concentration as compared to the ascorbic acid 

to scavenge the DPPH stable free radical. Therefore, ascorbic acid was observed to be 

a better antioxidant than the plant extract. When comparing the plant extracts, the 

evidence pointed out that the leaf extract had a better antioxidant activity than the other 

parts of the plant. Nonetheless, there was no much difference in the antioxidant activity 

between the plant extracts. The differences between the leaves and root bark were 0.9 

mg/ml and 2.02 mg/ml between the leaves and the roots. Furthermore, when looking at 

the plant extracts at a concentration of 5 mg/ml, the leaf extracts could scavenge 16.9% 

of DPPH, root bark extract scavenged 13.6% and the root extract scavenged 8.5%. At 
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a concentration of 15 mg/ml,  the leaves scavenged 48.8%, the root bark scavenged 

47.8% and the roots scavenged 42.2%. From this observation it was noticed that the 

leaves had a better antioxidant activity as compared to the other parts of the plant, 

followed by the root bark and then the roots. Nevertheless, all the different parts of the 

plant had antioxidant activity (Gupta et al., 2016) (Figure 3.43-3.45). 
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Chapter 4: Experimental 
4.1 General Experimental Procedures 

Extraction and chromatography were performed with analytical grade dichloromethane 

(DCM), ethyl acetate (EtOAc), and methanol (MeOH). Hexanes (Hex) (a mixture of 

hexane isomers) were distilled before use. Water used always refers to distilled water. 

4.1.1 Thin-Layer Chromatography (TLC) 

Aluminum-backed thin-layer chromatography (TLC) plates (Silica gel 60 F254, 0.25 mm, 

Merck) were used for the detection of different components in extracts and to select 

solvent systems for column chromatography and preparative centrifugal thin-layer 

chromatography (PCTLC). A TLC plates (stationary phase) would be introduced into a 

particular solvent system (mobile phase) for the detection of various components in an 

extract. The separation of the components was then examined under ultraviolet (UV) 

light at two different wavelengths, a short wavelength (254 nm) and a long wavelength 

(365 nm). To detect the components in a sample that do not absorb UV, the plate was 

sprayed with a reactive stain reagent, i.e. anisaldehyde stain reagent. The anisaldehyde 

stain reagent was prepared by introducing 84 mL of MeOH in a 250 mL volumetric flask 

in an ice bath. While continuously shaking and maintaining a low temperature, the 

following reagents were added sequentially: acetic acid (100 mL), sulfuric acid (40 mL, 

dropwise) and anisaldehyde (5 mL, dropwise). The homogenous mixture was stored in 

a fridge. 

4.1.2 DIOL SPE Chromatography 

Applied Separations SPE Diol column (2 g/6 mL) were used for analytical fractionation 

of crude extracts. A crude extract was fractionated into five different fractions by eluting 

the sample components with solvents of increasing polarity. The C18 DIOL served as a 

stationary phase in which the silica is derivatised with 1,2-dihydroxypropane. To run a 

DIOL column, 100 mg of extract dissolved in 1 mL of a DCM-MeOH (1:1) mixture was 

deposited onto the DIOL column. The solution was allowed to percolate down the 

column and was allowed to dry for 24 h. The following day a slight vacuum was applied 

to the column for at least 15 minutes ensuring that the residual solvent was removed. 

Sequential elution was then performed with 12 mL of each of the following solvents with 

increasing polarity, Hex-DCM (9:1), DCM-EtOAc (20:1), EtOAc, EtOAc-MeOH (5:1), and 

MeOH. 
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4.1.3 Vacuum Liquid Chromatography (VLC) 

Vacuum Liquid Chromatography (VLC) is similar to DIOL SPE chromatography 

regarding analytical fractionation, but this method was used for fractionation of larger 

amounts of crude extracts. The crude extract was divided into five fractions. The solvent 

systems that were used for fractionation were similar to the solvent systems that were 

used for the DIOL fractionation, but sequential elution was performed with 200 mL of 

each solvent system. The stationary phase in the VLC was silica gel 60 (40-63 μm, 

Merck). With a VLC column, 30 g of silica gel was used for every 1 g of the sample.  

4.1.4 Liquid-Liquid Extraction 

Liquid-Liquid extraction was performed to isolate the extract components according to 

polarity. A summary of the procedure is given in Figure 4.1 below. 

 

Figure 4.1. Summary of liquid-liquid extraction. 
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4.1.5 Column Chromatography (CC) 

Column Chromatography (CC) is an analytical method that was used for the isolation of 

a mixture of compounds. CC was performed on a glass column packed with silica gel 

60 (40-63 μm, Merck) as the stationary phase.  To pack the column, a silica gel slurry 

was loaded into the glass column, followed by the sea sand to separate the sample from 

the silica gel, sample (pre-adsorbed in silica gel 60), and then the sea sand to prevent 

the solvent from disturbing the sample layer. Sequential isolation based on the polarity 

of solvents was performed to separate the components of a sample or extracts. Figure 

4.2 is the summary of a general procedure for column chromatography that was followed 

in the isolation of compounds from different plant extracts. 

 

Figure 4.2. The general procedure for column chromatography. 

4.1.6 Preparative Centrifugal Thin-layer Chromatography (PCTLC) 

Preparative Centrifugal Thin-Layer Chromatography (PCTLC) combines the advantages 

of both TLC and CC, and this method was used to isolate compounds from smaller 



70 | P a g e  
 

amounts of mixtures. PCTLC was performed on a Harrison Research Chromatotron™, 

model ENF-280 C/F. The rotor was coated with a mixture of silica gel 60 PF254 containing 

gypsum (Merck) and dried in an oven at 50 ºC before use. For 1 mm thickness, 45 g of 

silica was mixed with 90 mL of distilled water, for 2 mm thickness 65 g of silica was 

mixed with 130 mL of distilled water, and for 4 mm thickness, 115 g of silica was mixed 

with 230 mL of distilled water.  

The sample was dissolved in a small volume of eluting solvent before it was applied to 

the spinning plate. The eluting solvent was delivered by gravity from a container that 

was lifted about 70 cm above the rotor and flow through an inlet stopper marked 1, 2 or 

4, following the thickness of the silica layer. Separation was achieved through gradient 

or isocratic elution based on the TLC profile. The moving bands were visualised using 

UV light at λ 254 or λ 365 nm. Small fractions were collected (Desai et al., 1985). 

4.1.7 High-Performance Liquid Chromatography (HPLC) 

High-Performance Liquid Chromatography (HPLC) is an analytical method that was 

used for analysis of small quantities of compound mixtures. Analyses were performed 

on a SHIMADZU HPLC, CBM-20A communication bus module, LC-20AB prominence 

liquid chromatography, SIL-20A prominence autosampler, and SPD-M20A prominence 

diode-array detector. A 200 ppm sample was prepared with an HPLC analytical solvent. 

The solution was injected onto a LUNA 5µ C18 (2) (250 x 4.60 mm, 5µ) column. The 

sample was eluted using the following a standard gradient method, as shown in Table 

4.1 below. 

Table 4.1. Standard gradient method used for HPLC. 

Time (minutes) % MeOH: ACN: 
FA (4: 3: 0.1) 

% Ultrapure water with 0.1 % 
formic acid 

0.01 40 60 

28 100 0 

35 100 0 

38 40 60 

42 Stop stop 
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4.1.8 Liquid Chromatography-Mass Spectrometry (LC-MS) 

A SHIMADZU LCMS-2020 with a quadrupole mass detector was used for the 

characterisation of compounds in terms of spectrum and mass determination. A 200-

ppm solution of crude samples was injected onto a Shim-pack GIST (3 µm C18-HP, 4.6 

x 150 mm) column and eluted with solvents of different polarity. For a pure compound, 

a 10 ppm solution was injected. 

4.1.9 Nuclear Magnetic Resonance (NMR) Spectroscopy 

Nuclear Magnetic Resonance (NMR) Spectroscopy was used for the characterisation of 

pure compounds. The NMR spectra were recorded on a Bruker Avance III 500 

(operating at 500 MHz for 1H and 125 MHz for 13C) or a Bruker Avance III 400 (operating 

at 400 MHz for 1H and 100 MHz for 13C) spectrometers. The NMR experiments that were 

used for structural elucidation were 1H, 13C, DEPT-135, COSY, NOESY, HSQC and 

HMBC. All spectra were recorded in deuterated chloroform and methanol at 30 ºC using 

a 5 mm BBOZ probe or 5 mm TBIZ probe. Chemical shifts (δ) are given in part per million 

(ppm) relative to tetramethylsilane, TMS (δ = 0) and are referenced to residual 

protonated solvent peaks, for CDCl3: 1H = δ 7.26, 13C = δ 77.0 and CD3OD: 1H δ 3.31, 
13C δ 49.1. The multiplicities of peaks were abbreviated as follows; s = singlet, d = 

doublet, dd = doublet of doublets, ddd = doublets of doublets of doublets, t = triplet, dt = 

doublet of triplet and m = multiplet. Coupling constant (J) are given in Hz. A 10 mg/ 0.5 

mL sample was prepared for 1H NMR, and a 20 mg/0.5 mL sample was prepared for 13C 

NMR. 

4.1.10 Time-of-Flight Mass Spectrometry (TOFMS) 

An LCT Premier Time-of-flight Mass Spectrometer (TOF-MS) from MICROMASS 

TECHNOLOGIES was used for the determination of the accurate mass of a compound. 

TOF-MS (time-of-flight mass spectrometry) is a type of a high-resolution mass 

spectrometry. The ionisation used was  electrospray ionisation (ESI) either in the 

positive mode or negative (Breitkopf et al., 2017). 

4.1.11 Ultraviolet (UV)-Vis Spectroscopy  

A Cary 100 UV-Vis spectrometer from Agilent Technology was used to determine the 

spectrum of a pure compound. The ultraviolet (UV) spectrometer characterises organic 

compounds with conjugated double bonds (Bruice, 2014). The absorption of the 
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compound was recorded at different concentrations. All the spectra were recorded at a 

UV range of 180-400 nm. 

4.2 Extraction and Isolation 

4.2.1 Plant Material 

Plant material of D. cotinifolia was collected in the UKZN Botanical Garden, University 

of KwaZulu-Natal, Pietermaritzburg, on the 19th of April 2016. The plant was identified 

by Ms Alison Young, curator of the UKZN Botanical Garden.  A voucher specimen (B. 

Danca1 (NU)) was prepared and deposited in the Bews Herbarium, School of Life 

Sciences, UKZN.  

The various parts of the plant (leaves, branches, roots and root barks) were separated, 

any soil particles removed from the plant material, and plant parts dried at room 

temperature for two to three weeks. The dry material was ground with a hammer mill. 

The masses of the dry materials are shown in Table 4.2. 

Table 4.2. Mass of dry plant material. 

Plant material  Dry powdered 
Mass (g) 

Description 

Leaves 529 Green powder 

Branches 544 Light-brown 

powder 

Roots 616 Light-brown 

powder 

Root barks 950 Brown powder 

 

4.2.2 Preparation of Crude Extracts  

The powdered plant materials [leaves (529 g), branches (544 g), roots (616 g) and root 

bark (950 g)] were extracted sequentially with DCM, DCM-MeOH (1:1) and MeOH. The 

plant material was first submerged in DCM and then left on an orbital shaker (120 rpm) 

at 23 ºC for 24 h. The plant material was filtered, and the solvent was removed under 

vacuum with a rotavapor to yield a crude DCM extract; this process was repeated, and 

the two DCM extracts were combined. The recovered plant material was left to dry at 

room temperature, DCM-MeOH (1:1) mixture was added to the plant material and the 
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mixture left on an orbital shaker (120 rpm) at 23 ºC for 24 h. The material was filtered, 

and the solvents removed under vacuum using a rotavapor to yield a crude DCM-MeOH 

extract. This process was repeated, and the extract combined with the first DCM-MeOH 

extract. The recovered plant material was dried at room temperature, MeOH was added, 

and the mixture was left on an orbital shaker (120 rpm) at 23 ºC for 24 h. The contents 

were filtered, and the solvent was evaporated using a rotavapor to yield the MeOH crude 

extract. This extraction was also repeated a second time, and the two MeOH extracts 

were combined. The masses of the crude extracts are shown in Table 4.3. 

Table 4.3. Mass of crude extracts of different plant parts. 

Plant material Solvents Weight of dry 
material (g) 

Weight of 
extracts (g) 

Description Fraction 

Leaves DCM 10  0.399  BBD-1-5A 

 DCM-MeOH 10  

50  

0.650 

5.874 

 BBD-1-7B 

BBD-1-11A 

 MeOH 10  

50  

0.603 

2.718 

 BBD-1-8B 

BBD-1-11B 

Leaves mass 
extraction  

DCM 

DCM-MeOH 

MeOH 

 

450 

42.315 

14.493 

14.810 

Dark green 

Dark green 

Dark green 

BBD-1-15A 

BBD-1-15B 

BBD-1-15C 

      

Branches DCM-MeOH 50  3.744  BBD-1-15D 

 MeOH 50  1.693  BBD-1-15E 

Branches mass 
extraction 

DCM-MeOH 

MeOH 

470  23.234 

13.934 

Brown 

Dark brown 

BBD-1-27A 

BBD-1-27B 

      

Roots DCM 10  0.079  BBD-1-5A 

 DCM-MeOH 10  

50 

0.293 

2.024 

 BBD-1-7A 

BBD-1-21A 

 MeOH 10  

50  

0.603 

1.997 

 BBD-1-8A 

BBD-1-21B 
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Roots mass 
extraction  

DCM-MeOH 

MeOH 

550 7.933 

6.878 

Brown 

Dark brown  

BBD-1-40A 

BBD-1-40B 

      

Root barks DCM 10  0.209  BBD-1-5C 

 DCM-MeOH 10  

50  

0.852 

6.516 

 BBD-1-7C 

BBD-1-17A 

 MeOH 10  

50  

0.603 

4.905 

 BBD-1-8C 

BBD-1-17B 

Root barks mass 
extraction 

DCM-MeOH 

MeOH 

885 42.296 

25.124 

Light brown 

Dark brown 

BBD-1-47A 

BBD-1-47B 

 

4.2.3 Isolation of Pure Compounds 

A DCM leave extract (BBD-1-50A) of D. cotinifolia (4.128 g) was subjected to VLC on 

120 g silica gel. Five fractions, BBD-1-54A to BBD-1-54E, were obtained after 

performing sequential elution with the solvent systems described in Section 4.1.3. The 

yields of the fractions were BBD-1-54 A (54 mg), B (1.162 g), C (1.581 g), D (43 mg) 

and E (245 mg). A TLC analysis was performed on the fractions and fraction B and C 

were investigated further.  Fraction BBD-1-54 C was subjected to VLC on 30 g of silica 

gel eluting with solvents of increasing polarity, Hex-EtOAc (8:2), (7:3), (6:4), (1:1), (4:6), 

(7:3), (2:8), EtOAc, and MeOH. A TLC profile was performed, and fractions with the 

same compounds according to the Rf values were combined. Further isolation on 2 mm 

CTLC plate was performed for BBD-1-57G (73 mg), with an isocratic solvent system of 
hexane: Hex: EtOAc (6:4), which yielded 14 mg of kobusin (3.1).  

Similar to the above: A MeOH leaf extract (BBD-1-50C) of D. cotinifolia (12.114 g) was 

subjected to VLC on 200 g silica gel. Five fractions were obtained with the solvent 

systems described in Section 4.1.3. The yields of the fractions were BBD-1-67A (11 mg), 

B (513 mg), C (648 mg), D (537 mg) and E (9.448 g). After performing TLC analysis, 

fractions with the same Rf values were combined, and BBD-1-67C was further purified 

on a 4 mm CTLC plate. A TLC analysis was performed on the fractions, and the fractions 

were combined based on the Rf values. Fraction BBD-1-70B (combination of the BBD-

1-67C fractions) was subjected to PCTLC on a 1 mm Chromatotron™ plate and eluted 
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with an isocratic mixture of hex: EtOAc (6:4), yielding BBD-1-70B2 (17 mg), which both 

contain eudesmin (3.2). 

A DCM-MeOH root bark extract (BBD-1-71A) of D. cotinifolia (12.046 g) was subjected 

to VLC on 200 g of silica gel. Five fractions, BBD-1-73A-E were obtained with Hex-DCM 

(9:1), DCM-EtOAc (20:1), EtOAc, EtOAc-MeOH (5:1) and MeOH as solvent systems. 

The yields of the fractions were A (11 mg), B (251 mg), C (469 mg), D (752 mg) and E 

(8.755 g). BBD-1-73 B (125 mg) was subjected to PCTLC on a 4 mm plate with an 

isocratic solution, hex-EtOAc (7:3), which yielded BBD-1-75I (3 mg), which was also 

identified as eudesmin (3.2). 

A MeOH root bark extract (BBD-1-71B) of D. cotinifolia (12.001 g) subjected to VLC on 

200 g silica gel. Five fractions were obtained from the following solvent systems, Hex-

DCM (9:1), DCM-EtOAc (20:1), EtOAc, EtOAc-MeOH (5:1) and MeOH. The yields of the 

fractions were BBD-1-84C (8 mg), D (313 mg), E (367 mg), F (197 mg) and G (6.164 g), 

respectively. After considering the TLC profile, fractions with the same Rf values were 

combined, and BBD-1-84E was fractionated further on a small column with 3 g of silica 

gel. TLC analysis was performed on the fractions, and the fractions were mixed based 

on the Rf values. The sample was further isolated on a preparative plate (TLC) using 

DCM-MeOH (9:1) as a solvent system yielding BBD-1-92A (5mg), which was 

characterised as catechin (3.3).  

The crude DCM extract of leaves of D. cotinifolia BBD-1-50A (4.128 g) was fractionated 

on a VLC column. Five fractions were obtained from the following solvent systems, Hex-

DCM (9:1), DCM-EtOAc (20:1), EtOAc, EtOAc-MeOH (5:1) and MeOH. The yield of the 

fraction was as follows; BBD-1-54A (54 mg), B (1.162 g), C (1.581 g), D (43 mg), and E 

(245 mg) respectively. TLC analysis was performed, and a further fractionation was 

performed on fraction B. 100 mg of BBD-1-54B was dissolved into a DCM-MeOH (1:1) 

solvent and left to percolate down the DIOL SPE column for 24 h. The extract was then 

fractionated with the solvent systems that were used on VLC.  The yields of the fractions 

were BBD-1-104A (30.1 mg), B (40.6 mg), C (9.6 mg), D (3.9 mg) and E (4.2 mg). After 

TLC analysis, fraction BBD-1-104B was taken for assessment on HPLC. A 40.6 mg of 

BBD-1-104B fraction was dissolved in HPLC grade MeOH (1 mL), sonicated for 5 min 

in a SCIENTECH ultrasonic bath. The solution was then filtered through a C8 SPE 

cartridge under vacuum.  Multiple injections of 200 µL of the extract were performed in 

HPLC using the standard gradient method (in the experimental section) yielding BBD-1-

104B2 (2.5 mg) which was compound (3.4). The extraction summary of all the 

compounds is shown in Figure 4.3. 



76 | P a g e  
 

 

 

Figure 4.3. Extraction summary. 

 

The physical data for the pure compounds:  

Physical data of kobusin (3.1) 

Physical description: White powder 

Yield:   14 mg 

TOF-MS: 393.1 

Molecular formula: C22H22O6 

NMR data:  

1H NMR:  Plate 1A 

13C NMR:  Plate 1B 

DEPT:   Plate 1C 

COSY:  Plate 1D 
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HSQC:  Plate 1E 

HSQC:  Plate 1F (Ar-HSQC) 

HMBC:  Plate 1G 

HMBC:  Plate 1H (Ar-HMBC) 

Physical data of eudesmin (3.2) 

Physical description: White powder 

Yield:   17 mg 

TOF-MS: 409.3 

Molecular formula: C22H26O6 

NMR data:  

1H NMR: Plate 2A 

13C NMR: Plate 2B 

DEPT:  Plate 2C  

COSY:  Plate 2D 

HSQC:  Plate 2E 

HMBC:  Plate 2F 

Physical data of catechin (3.3) 

Physical description: Yellow powder 

Yield:   5 mg 

MS:  291  

Molecular formula: C15H14O6  

NMR data:  

1H NMR:  Plate 3A 
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13C NMR: Plate 3B 

DEPT:  Plate 3C  

COSY:  Plate 3D 

HSQC:  Plate 3E 

HMBC:  Plate 3F 

Physical data of compound 3.4 

Physical description: White powder 

Yield:   2.5 mg 

TOF-MS: 337.1 

Molecular formula:  

NMR data:  

1H NMR:  Plate 4A 

COSY:  Plate 4B 

HSQC:  Plate 4C 

HMBC:  Plate 4D 

 

4.3 Biological Assay 

4.3.1 DPPH Radical Scavenging Assay   

This experiment was carried out according to Shivashankara et al., 2004.  

Preparation of stock solutions 

1 mM DPPH methanolic stock solution: 0.0049 g of DPPH was dissolved in 12.5 mL 

of methanol in the dark and stored at -20 ºC before use. 
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0.1 mM DPPH working solution (10x dilution): 10 mL of the stock solution was mixed 

with 90 mL of methanol and was used immediately.  

2 mM ascorbic acid (AA) standard solution: 0.0035 g of AA was dissolved in 10 mL 

of methanol. Dilutions of AA in a 2 mL centrifuge tube was prepared as indicated in Table 

4.4 below. 

 

Table 4.4. Prepared dilutions of ascorbic acid (AA). 

 
Concentration 
(mg/mL) 

2 mM AA (µL) Methanol (µL) Final volume 
(µL) 

Std1 0 0 1000 1000 

Std2 0.07 200 800 1000 

Std3 0.14 400 600 1000 

Std4 0.21 600 400 1000 

Std5 0.28 800 200 1000 

Std6 0.35 1000 0 1000 

Sample preparation: For each crude extract (leaves, root bark and roots MeOH 

extracts) of D. cotinifolia, the following procedure was followed. The extract (0.5 g) was 

dissolved in 10 mL of methanol using an Ultra Turrax ® T25 basic homogeniser (IKA 

Works, Willmington NC). The mixture was then sonicated for 30 minutes in a CHECK 

(Bransonic Ultrasonic Co. Danbury, CT) and centrifuged at 10 000 rpm for 10 min at 4 

°C. The aliquot was collected and stored at -26 °C before analysis with 2,2-diphenyl-1-

picrylhydrazyl (DPPH).  

200 µL of each standard extract was added into a clean cuvette, 800 µL of methanol 

was added to each tube, and then 1 mL of 0.1 mM DPPH solution was added to each 

tube in the dark, covered with aluminium foil and allowed to stand for 60 min at room 

temperature. The absorbance was measured at 517 nm against the blank (methanol) 

under dim light. Table 4.5 below, shows the dilutions of different plant extracts.  
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Table 4.5. The standard stock solutions of different parts of the plant extract (leaves, 

root bark, and roots) were diluted into 2 mL centrifuge tubes as follows: 

 
Extracts 
concentration 
(mg/mL) 

Extract (µL) Methanol (µL) Final volume 
(µL) 

Std1 0 0 1000 1000 

Std2 5 200 800 1000 

Std3 10 400 600 1000 

Std4 15 600 400 1000 

Std5 20 800 200 1000 

Std6 25 1000 0 1000 

A 0.1 mM DPPH solution in methanol was prepared and 1 mL of the solution was added 

to 1 mL of the sample. After shaking the mixture vigorously, it was allowed to remain at 

room temperature in the dark for 30 minutes. The absorbance of each mixture was 

measured in triplicates at 517 nm using a UV Shimadzu UV-1800 spectrometer. 

Ascorbic acid (AA) was used as the standard because of its intense reducing power and 

a weak metal chelating ability. The absorbance was measured at different 

concentrations of AA as depicted in Table 4.4. The IC50 was calculated using different 

concentrations of the extracts/ascorbic acid versus radical scavenging capacity curve. 

The IC50 value is the concentration of an analyte or sample that is needed to inhibit 50% 

of the DPPH free radicals.   The free radical scavenging activity was observed by the 

discolouration of the DPPH solution. The percentage DPPH scavenging effect of each 

extract was calculated by the following equation: 

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐴𝐴𝐴𝐴𝐴𝐴 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝐴𝐴𝐴𝐴𝐴𝐴 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
× 100 

The blank was the absorbance without the extract or AA. Extract indicated the 

absorbance that was taken in the presence of an extract or AA. Abs denoted the 

absorbance.  
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Chapter 5: Conclusion 
In this thesis, a phytochemical investigation of the tree Dais cotinifolia (Thymelaeaceae) 

is described in detail. Many bioactive compounds have been isolated from the 

Thymelaeaceae, such as prostratin (potent anti-HIV agent) and antitumour diterpenoids. 

Although a large number of  Thymelaeaceae species are indigenous to South Africa, 

only a limited number of species have been subjected to phytochemical investigations. 

Dais cotinifolia L. is one species on which phytochemical results have not been 

published and this tree was the subject of this investigation. 

Four compounds were isolated from the different parts of the plant, two furofuran lignans, 

kobusin (3.1) and eudesmin (3.2), a flavonoid, catechin (3.3), and a novel norlignan 

(3.4). The antioxidants activities in plants extracts are often associated with the presence 

of phenolic compounds. Catechin (3.1) is a known antioxidant. The two lignans and the 

norlignan only have methoxy substituents on the phenyl rings and there are no free 

hydroxy groups.  The lack of free hydroxy groups on the major compounds may explain 

the relatively low antioxidant activity observed for the crude extracts of the different plant 

parts of D. cotinifolia.  

Lignans are known to have anticancer and anti-HIV activity. The norlignans are 

associated with a variety of biological activities. Advanced biological assays were not 

part of this investigation but the compounds isolated, especially the novel norlignan need 

to be assessed for their biological acvtivities. 

Future work should include 

• The isolation of larger amounts of compounds 

• The reinvestigation of the extracts for the presence of the interesting norlignans 

• Determination of the biological activity of the compounds 

• The relatively simple structure of the norlignan may lead to the synthesis of this 

compound and synthetic analogues for bioactivity assays. 
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Plate 1A. 1H NMR spectrum of kobusin (3.1) in CDCl3 at 400 MHz. 
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Plate 1B. 13C NMR spectrum of kobusin (3.1) in CDCl3 at 100 MHz.  
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Plate 1C. DEPT 135 NMR spectrum of kobusin (3.1) in CDCl3 at 100 MHz. 
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Plate 1D. COSY NMR spectrum of kobusin (3.1) in CDCl3. 
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Plate 1E. HSQC NMR spectrum of kobusin (3.1) in CDCl3. 
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Plate 1F. HSQC NMR aromatic region spectrum of kobusin (3.1) in CDCl3.  
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Plate 1G. HMBC NMR spectrum of kobusin (3.1) in CDCl3.  
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Plate 1H. HMBC NMR aromatic region spectrum of kobusin (3.1) in CDCl3. 
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Plate 2A. 1H NMR spectrum of eudesmin (3.2) CDCl3 at 400 MHz. 
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Plate 2B. 13C NMR spectrum of eudesmin (3.2) in CDCl3 at 100 MHz. 
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Plate 2C. DEPT NMR spectrum of eudesmin (3.2) in CDCl3 at 100 MHz. 
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Plate 2D. COSY NMR spectrum of eudesmin (3.2) in CDCl3. 
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Plate 2E. HSQC NMR spectrum of eudesmin (3.2) in CDCl3. 
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Plate 2F. HMBC NMR spectrum of eudesmin (3.2) in CDCl3. 
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Plate 3A . 1H NMR spectrum of catechin (3.3) in CD3OD at 400 MHz. 
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Plate 3B. 13C NMR spectrum of catechin (3.3) in CD3OD at 100 MHz. 
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Plate 3C. DEPT NMR spectrum of catechin (3.3) in CD3OD at 100 MHz. 
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Plate 3D. COSY NMR spectrum of catechin (3.3) in CD3OD. 
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Plate 3E. HSQC NMR spectrum of catechin (3.3) in CD3OD. 
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Plate 3F. HMBC NMR spectrum of catechin (3.3) in CD3OD. 
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Plate 4A. 1H NMR spectrum of compound 3.4 in CDCl3 at 500 MHz. 
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Plate 4B. COSY spectrum of compound 3.4 in CDCl3 at 500 MHz. 
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Plate 4C. HSQC spectrum of compound 3.4 in CDCl3. 
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Plate 4D. HMBC spectrum of compound 3.4 in CDCl3. 
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