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Abstract

Entanglement in real physical systems has been of great interest due to its importance

in quantum mechanics. It has applications related to quantum information science

specifically quantum cryptography since it eliminates the possibility of photon number

splitting attack during the key distribution process (Quantum Key Distribution). This

thesis deals with creation, detection and characterisation of the correlated polarised pho-

ton pairs, which were emitted from a nonlinear BBO crystal via Spontaneous Parametric

Down Conversion (SPDC) process. The procedure that leads to the construction of a

polarisation-based entangled system is discussed by considering some of the measure-

ment techniques, which can be applied to study fundamental quantum mechanics and

its applications in quantum communication. This thesis consists of a set of experiments

to validate the entanglement of single photon pairs. The first experiment realised by

generating of polarised based entangled photon pairs. The quantum correlation between

the entangled photon pairs have been tested by measuring the visibility of the system

and by verifying the maximal violation of CHSH (Clauser, Horne, Shimony and Holt)

inequality. In the second experiment, the fidelity of the system has been measured by

carrying out the state tomography to reconstruct the two-photon density matrix and

consider the interference effect of two photons. This helps to study the preservation of

the quantum state during the propagation.
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“If Quantum Mechanics has not profoundly shocked you, you have not understood it

yet.”

Niels Bohr



Acknowledgements

I would like to express my special appreciation and thanks to my advisors Professor

Francesco Petruccione and Dr. Yaseera Ismail. Prof. F. Petruccione, you have been a

tremendous mentor for me. I would like to thank you for encouraging my research and

for allowing me to grow as a research scientist. Your advice on both research as well as

on my career has been priceless. I am also very grateful for your patience, motivation,

enthusiasm, and the great knowledge that you have in Quantum technology in general.

I especially want to thank my Co. Supervisor, Dr.Yaseera Ismail, whose support and

guidance made my thesis work possible. She has been actively helpful in my experimental

work and has always been available to advise me. I would like to extend my thanks to

Prof. Mark Tame for his guidance and recommendations on the exprimental work which

made the measurements more accurate.

I also thank all my colleagues and the postgraduate students at the school of Chem-

istry and Physics at UKZN, Dr. M. Mariola, Ms. M. Schuld, Ms. S. Pillay and Mr. S.

A. Uriri for sharing their knowledge with me in my project. Special thanks to Ms. M.

Schuld and Ms. S. Pillay for the discussions, advice, that they shared with me in gen-

eral throughout my research, specially M. Schuld for reading through my thesis couple

of times. I should not forget to thank my friend Ms. Dina Osman for her support when

I started the degree together with grammatical corrections to the thesis in general.

I thank the National Research Foundation (NRF) South Africa for financial support.

I also would like to thank the Center of Quantum Technology group at UKZN for

providing a great environment for me to learn more about the field in general, the

interactions that I experienced during group meetings and seminars are priceless.

Special thanks to my family. Words cannot express how grateful I am to my mother,

father, brothers for all of the sacrifices that you have made on my behalf. Your prayer for

is what has sustained me thus far. A very special thanks to my lovely husband Aymen

and my daughter Shahd for always being there for me.

iv



Dedicated to my family.

v



Contents

Abstract i

Declaration of Authorship ii

Acknowledgements iv

Contents vi

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

2 Basics Concepts of Quantum Mechanics 6

2.1 Brief History of the Theory of Quantum Mechanics . . . . . . . . . . . . . 6

2.2 Mathematical Representation of Quantum System . . . . . . . . . . . . . 8

2.3 Superposition principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Spin 1
2 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Quantum State Tomography . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Mixed State and Density Matrix . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Composite Systems And Tensor Product . . . . . . . . . . . . . . . . . . . 17

3 Quantum Entanglement Theory 19

3.1 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The History of Quantum Entanglement . . . . . . . . . . . . . . . . . . . 20

3.3 Bell’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Bell’s Theorem and Bell’s Inequality . . . . . . . . . . . . . . . . . 22

3.3.2 Bell’s Test Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 CHSH Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Applications of Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



Contents vii

3.6 Entanglement and Quantum Communication . . . . . . . . . . . . . . . . 25

3.6.1 Cryptography and Protocols . . . . . . . . . . . . . . . . . . . . . 25

3.6.2 Entanglement Based QKD . . . . . . . . . . . . . . . . . . . . . . . 29

4 The Experiment Implementation 31

4.1 Entangled Photon Pairs Production . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Non-linear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Spontaneous Parametric Down Conversion . . . . . . . . . . . . . . 34

4.2 Correlation of Entangled Photon Pairs . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Bell States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 The Polarisation State for Entangled Photon Pairs . . . . . . . . . 37

4.2.3 Correlation and CHSH Inequality Violation . . . . . . . . . . . . . 41

4.3 Fidelity of Polarised Entangled System . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Hong-Ou-Mandel Effect . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Tomographic reconstruction of quantum states . . . . . . . . . . . 45

4.3.3 The Set of Projection Measurements . . . . . . . . . . . . . . . . . 45

5 Experimental Realisation 49

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Preparing a Pair of Polarised Entangled Photons . . . . . . . . . . 51

5.1.1.1 The laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1.2 Type-I BBO Crystal . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Polarisers and Wave plates . . . . . . . . . . . . . . . . . . . . . . 52

5.1.3 The collection of the entangled photons . . . . . . . . . . . . . . . 54

5.1.4 Single Photon Avalanche Detector . . . . . . . . . . . . . . . . . . 55

5.1.5 Coincidence Counts Unit Using the Altera DE2 FPGA . . . . . . . 56

5.1.6 Taking Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 The correlation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 The Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 CHSH Inequality Violation . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Fidelity of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 63

Bibliography 66



List of Figures

2.1 Bloch sphere representation for quantum mechanics system (qubit). . . . 12

3.1 The figure shows the first Quantum key distribution protocol BB84 and
how Alice and Bob measure their basis. Firstly, Alice chooses her bits
randomly and her basis also to sent in to Bob. Bob chooses his basis and
measures the incoming bits from Alice. The sifting key is composed from
the remaining measurements. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Illustration of the Ordinary and Extraordinary polarisation: unpolarised
incident light pumping through a crystal and that emerges two kind of
polarisations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 A) Spontaneous Parametric Down Conversion of the entangled photon
pair is produced by pumping nonlinear crystal with photons. The emerged
entangled photons are called signal and idler. B) The conservation of
the momentum, C)the energy to generate the entangled photons are also
illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Type-I (right) and type-II (left) down conversion. The entangled photons
emerging from type-I down conversion crystal will have the same polari-
sations that is opposite to the pump photon. And The entangled photons
emerging from type-II down conversion crustal will have the orthogonal
polarisations that is opposite to the pump photon. . . . . . . . . . . . . . 36

4.4 Two identical BBO crystals are cut for type-I down conversion, one ori-
ented at 90◦ respected into the other, the cone shows the emission of the
horizontal and vertical polarised photon pairs. . . . . . . . . . . . . . . . . 38

4.5 Hong-Ou-Mandel interference for two photons. 1) the photon A is re-
flected and photon B is transmitted, 2) Both of the photons (A and B)
are transmitted, 3) Both of photons are reflected, 4) Photon A is trans-
mitted and the photon B is reflected. . . . . . . . . . . . . . . . . . . . . 44

4.6 Hong-Ou-Mandel dip illustrated the coincidence counts vs the relative
delay for single photon interference (Mandel (1999)) . . . . . . . . . . . . 44

4.7 The tree diagram for determining the required measuring projection for
n-number of qubits (James et al., 2001). . . . . . . . . . . . . . . . . . . . 47

viii



List of Figures ix

5.1 Optical design of entanglement source consist of 405 nm pump laser,
pumped through a Half Wave Plate (HWP), mirror (M1), Quartz Crystal
(QC) and BBO non-linear crystal. Entangled photon pairs directed to-
wards into two arms with two mirrors (M2,M3), each arm contain a Quar-
ter Wave Plates (QWPA, QWPB), Half Wave Plates (HWPA, HWPB),
Polarisers (PoLA, PolB), Narrow Band Filter (NBF), Fibre coupler, Sin-
gle Mode Fibre (SMF), Single Photon Avalanche Detector (SPAD) and
the photons will registered as coincidence in FPGA. The coincidence will
send to Personal Computer (PC) for counting. . . . . . . . . . . . . . . . 50

5.2 Two BBO crystal are cut to obtain type-I down conversion. The entangled
photon pairs will emerge with 50% probability with horizontal, vertical
polarisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Qarter Wave Plates (right) and Half Wave Plate (left) were used to vary
the polarisation, and to obtain the coincidence counts for various projec-
tive measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Thorlab motorized precision rotation stage used to mount the wave-plates
as well as the polarisers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Two Single Photon Avalanche photodiode Detectors (SPAD) were con-
nected to fibre couplers with Single Mode Fibre (SMP). SMP were col-
lected the down converted photons to be converted into electric signal in
SPAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Field Programmable Gate Array (FPGA) is a coincidence counts module
that detect the incoming signal from the SPAD to register it as coincidence. 57

5.7 Figure illustrated the final alignment of the equipments which used to test
the visibility, CHSH inequality and the fidelity of the system. A 405 nm
laser has pumped through a Half Wave Plate (HWP), mirror (MI), the
phase difference of the polarisation of the pump beam is adjusted with
Quartz Crystal (QC), the pump beam photons directed toward a BBO
non-linear crystal which is the medium for SPDC. The entangled photon
pairs emerge from the BBO crystal and directed to arms two mirrors, each
arm contain a Quarter Wave Plates (QWP), Half Wave Plates (HWP),
Polarisers (PoL), Narrow Band Filter (NBF), Fibre coupler to collect the
entangled photons, Single Mode Fibre (SMF) to transfer the entangled
photon pairs to Single Photon Avalanche Detector (SPAD). The photons
will registered as coincidence in FPGA, and the coincidence will send to
Personal Computer (PC) for counting. . . . . . . . . . . . . . . . . . . . . 58

5.8 Plot illustrating the polarisation correlation between the rectilinear and
diagonal bases. Fig. (5.8a) shows the measured coincidence counts for
different polarisations in the rectilinear basis. Fig. (5.8b) represents the
measured coincidence counts for different polarisations in the diagonal basis. 59

5.9 Graphical representation of the real part of the density matrix that re-
constructed in the above results. . . . . . . . . . . . . . . . . . . . . . . . 62



List of Tables

5.1 Coincidence counts data for violating CHSH inequality experiment with
different polarisations angles and with integration time 1s and accidental
coincidence=8%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 The coincidence counts data measured in different polarisation projection
to reconstruct the density matrix. . . . . . . . . . . . . . . . . . . . . . . . 61

x



Abbreviations

QKD Quantum Key Distribution

BB84 Bennett Brassard 1984

E91 Ekert 1991

EPR Einstein Podolsky Rosen

CHSH Clauser Horne Shimony Holt

PNS Photon Number Splitting

SPDC Spontaneous Parametric Down Conversion

FWM Four Wave Mixing

HVT Hidden Variable Theory

LHV Local Hidden Variable

BBO β Barium BOrate

RSA Rivest Shamir Adleman

SHG Second Harmonic Generation

HWP Half Wave Plate

QWP Qarter Wave Plate

SPAD Single Photon Avalanche Detector

FPGA Field Programmable Gare Array

CCU Coincidence Counting Unit

Lab VIEW Laboratory Virtual Instrumentation Engineering Workbench

xi



Chapter 1

Introduction

The theory of quantum mechanics is one of the most successful theories that governs

our physical reality. It has been widely used in information exchange theories such as

quantum information.

Quantum Key Distribution (QKD) is one of the most significant current applications

in the field of quantum information theory. QKD is a method that uses the laws of

quantum mechanics to guarantee the secret communication between two parties “The

transmitter and the receiver”, often called Alice and Bob, without any interception from

a third party “Eve”. A secretly distributed key is shared and exchanged between Alice

and Bob to encode and decode the information. The security of the key is provided by the

laws of the quantum mechanics instead of using complicated mathematical calculations

as in the case of classical encoding (Moskovich, 2015).

QKD was first proposed as a communication protocol by Charles H. Bennett and

Gilles Brassard in 1984, known as BB84 (Bennett and Brassard, 1984). This protocol is

based on using photon polarisation states to achieve the security. QKD is unconditionally

secure, since Eve can use any technology to hack the communication such as quantum

computers and digital computers, but that is not enough to break QKD. To add more

layers of privacy and security, an optimised setup like an entanglement-based quantum

key distribution system is resistant to any eavesdropping attack (Waks et al., 2002).

Entanglement occurs when two particles have been generated at the same time from

the interaction of the particles in a nonlinear crystal. The properties of these particles

will then remain connected in future times even if they are separated by a long distance.

1
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The quantum state of the compound systems, in general, is inseparable (Dehlinger and

Mitchell, 2002). Determination of the quantum state of one particle simultaneously

determines the quantum state of the other particle irrespective of the distance between

the particles. The measurement of the complete system of the entangled particle is

always correlated.

The history of quantum entanglement is associated with the predictions of quan-

tum mechanics which was first discussed in 1935 by Albert Einstein, in a joint paper

with Boris Podolsky and Nathan Rosen, known as the Einstein-Podolsky-Rosen (EPR)

paradox (Einstein et al., 1935). In this paper they wrote “we are thus forced to conclude

that the quantum-mechanical description of physical reality given by a wave functions

is not complete”. Like Einstein, Schrödinger was dissatisfied with the concept of the

entanglement, because it seemed to violate the speed limit on the transmission of in-

formation, which is implicit with the theory of relativity (Schrödinger, 1936). Later,

Einstein considered the entanglement as a feature of “spooky action at a distance”. The

discussion remained continuous for a long period until 1964, when John Stewart Bell

(Bell, 1964) proposed an experiment involving the “hidden variable λ”, that he added

to complete quantum mechanics. Bell also demonstrated theoretically an inequality

with a probability distribution. Soon after, Clauser, Horne, Shimony and Holt (CHSH)

tested Bell’s inequality experimentally by using pairs of polarisation entangled photons

(Clauser et al., 1969).

Quantum entanglement is one of the most significant phenomena in current quan-

tum mechanics research with applications in communication, computing, biology and

chemistry. In recent years, there has been an increasing interest in quantum entan-

glement, and it has become a fundamental physical concept in quantum information

processing, such as quantum cryptography (Jennewein et al., 2000), quantum telepor-

tation (Bouwmeester et al., 1997), quantum swapping (Pan et al., 1998) as well as

quantum computation (Horodecki et al., 2009). QKD based on quantum entanglement

was proposed by Ekert (1991). In this protocol, entangled particles from some source are

received by Alice and Bob, who can measure and analyse the polarisation states along

different basis. The security of the information is realised by violating CHSH inequality.

Entanglement is also a basic theme in understanding many communication phenom-

ena like secret sharing (Karlsson et al., 1999), entanglement purification for quantum

communication (Pan et al., 2001), and dense coding (Mattle et al., 1996).
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Entanglement introduced new visions of considering many physical phenomena in-

cluding, super-radiance (Lambert et al., 2004), superconductivity (Berkley et al.), dis-

ordered systems (Serbyn et al., 2013), and the emergence of classicality (Mascarenhas

and Santos, 2009). There are a number of recent entanglement experiments: for ex-

ample, multiphoton path entanglement which is created via the stimulated parametric

down-conversion process (Eisenberg et al., 2005), entanglement based quantum commu-

nication and violating of the Clauser-Horne-Shimony-Holt inequality measured by two

observers separated by free space link 144 km (Ursin et al., 2007), and the experimental

purification of two-atom entanglement (Reichle et al., 2006). Beside the aforementioned

applications, entanglement between many photons (Zhao et al., 2004), ions (Häffner

et al., 2005) and the entanglement between photon and an atom has been established

(Volz et al., 2005).

Currently, most of the applications involving QKD experiments are using a true

single photon source, but that is impractical because it is generating the problem of

Photon Number Splitting (PNS) attacks. Experiments using a single photon source

produce highly attenuated light with a low photon rate, which leads to producing a pho-

ton in multi-photon bunches. This makes the intercepts much easier for Eve by splitting

off and storing a single photon while the parties receive the other photons without any

effect on the polarisation of the photons (Jennewein et al., 2000). An entanglement

based QKD method eliminates the PNS attack because the likelihood of simultaneously

producing two entangled photon pairs is very low, such that the effectiveness of a PNS

attack is vastly reduced.

QKD based entangled photons use quantum states of entangled photon pairs that

are generally generated in optical system to realise quantum communication. To build

an optical system for the quantum communication, the structure of the optical system

will necessitate sources of pure entangled optical states with high fidelity. In order to

obtain such optimized sources, the first step is to generate entangled photons from an

ultra brightness photon source. In this thesis, we use a process known as Spontaneous

Parametric Down Conversion (SPDC). This is a method of generating entangled photon

pairs, which was established by Burnham and Weinberg (1970). They demonstrated that

by pumping photons through a nonlinear crystal, it is possible to split a photon into a

single photon pair, known as a signal and an idler. This non-linear process conserves

energy and momentum; in other words, the added energy of the split signal and idler is
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equal to the energy of the pump photon. This also applies to the momentum. In 1988,

Leonard Mandel revealed the first optical experiment that uses the optical SPDC to

generate the entangled state (Ou and Mandel, 1988). Afterwards the scientist Yanhua

Shih violated Bell’s inequality by using the Mandel’s experiment (Shih and Alley, 1988).

There exist other methods of generating entanglement, for example through quantum

dots, as proposed by Mark Reed in 1988 (Reed et al. (1988)), exploiting atomic cascades

(Aspect et al., 1981) and also by using fibre coupled to mix photons and to generate

narrowband entangled photons (Aspect et al., 1981, Fedrizzi et al., 2007). Recently

through the use of spontaneous Four-Wave Mixing (FWM) in micro-resonators (Helt

et al., 2010).

This thesis describes the development of an automated portable optical quantum

entanglement device, used to generate and characterise a polarised entangled photon

pairs for QKD. These photons are emitted from a nonlinear crystal via type-I SPDC.

This portable device is designed to generate a high efficiency, photon-on-demand entan-

glement, and to enhance high-quality entangled photon pairs. The output of this device

will be a commercial product, which can be used in the scientific research..

In this thesis, I give a brief review of entanglement of photons, based on photon

field interactions. I will focus on generating polarised entangled photons through type-I

SPDC. Type-I SPDC is useful to generate stable entangled photons as well as they are

easy to be aligned properly. An type-I β Barium Borate (BBO) nonlinear crystal is

used as SPDC source to overcome the decoherence limitation of the brightness of the

SPCD-based entanglement source. Also, a crystal compensator is used to increase the

brightness and increasing the fidelity of the system (Rangarajan et al., 2010).

I report the characteristic of the polarised entangled photon system to implement

QKD by testing the non-classical correlations from entangled photon pairs. This test is

realised by measuring the visibility of the system in two different bases (rectilinear and

diagonal basis), hence I verify the existence of the entangled photons by violating the

CHSH inequality. I also describe the quantum state tomography technique to complete

the characterisation of the entangled photon pairs from the SPDC source according to

the polarisation degree of freedom and measuring the fidelity of the system (James et al.,

2001).

This thesis is structured as follows:
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Chapter 2 provides an overview of the mathematical description of quantum me-

chanics, focusing on the representation of states and operators in Hilbert space, the

techniques used to reconstruct the quantum state for a qubit. It also contains the dif-

ference between pure and mixed quantum states and the general properties of density

matrix. Finally, composite states and tensor product are discussed.

Chapter 3 discusses the concept of entanglement in detail with a brief history of

the theory, and the physical concept of the entanglement between two photons. We also

review Bell’s inequality and CHSH inequality. Additionally, some of the application of

entanglement such as a quantum cryptography specifically known as QKD are discussed.

Chapter 4 presents a theoretical explanation to implement a polarisation entangled

photon pair experiment. It includes the discussion of the creation of the correlated

photon pairs via type-I SPDC process. We discuss the correlation relation which is

realised by measuring the visibility of the system and the violation the CHSH inequality.

Further more, we consider the fidelity of the system in order to test the purity of the

generated entangled photons, that is accomplished by reconstructing the density matrix

of the quantum state.

Chapter 5 provides the experimental setup that includes the components and the

procedure for the preparation of polarised entangled state as well as the detection of

these entangled photons through coincidence counts. The following step is to test the

visibility of the system, followed by the violating of the CHSH inequality and performing

the state tomography to reconstruct the density matrix. The results and analysis that

proves entanglement are presented.

Chapter 6 provides a summary and conclusion together with the plans for future

works.



Chapter 2

Basics Concepts of Quantum

Mechanics

Chapter two provides a historical background and some basic concepts in quantum

mechanics used as the foundation of the theory of quantum entanglement. It discusses in

detail the mathematical representation of quantum mechanical systems, quantum state

tomography, qubits, pure and mixed states, density matrix, and composite systems and

tensor product.

2.1 Brief History of the Theory of Quantum Mechanics

It has been more than a century since the birth of quantum mechanics. It demonstrated

great results in theoretical and experimental aspects of physics. The theory of quantum

mechanics is based on the concept of quantum packets (quanta) to describe the behavior

of matter and energy of subatomic particles such as electrons, atoms and molecules. This

behavior is predictable by observing the interactions of matter and radiation (Gamow,

1966). Quantum theory is an accurate description when classical mechanics fails to

describe microscopic systems. For example, quantum theory is needed to describe the

observation of spectra of light emitted when heating gases.

The concept of quanta proposed by Max Planck suggests that light beam is com-

posed of photons. These photons have both a wave-like and particle-like nature, which

is called “duality” (Planck, 1957). His discovery led to the birth of quantum mechanics,

6
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which it deals with the subatomic world (Planck and Kangro, 1972). Max Planck also

postulated that energy can be emitted or absorbed by matter, realised by his famous

Black Body Radiation experiment (Kuhn, 1978) (an ideal body that absorbs all the

radiation without reflecting it). A quanta of energy E is related to frequency as follows,

E = hν, (2.1)

where h is Planck’s constant, and ν is the frequency of the quanta.

Another basic concept of quantum mechanics is the uncertainty principle, which was

formulated in 1927 by Werner Heisenberg. It states that the position and the momentum

of a subatomic particle cannot be measured simultaneously (Heisenberg, 1949). This

means there has to be some cutoff between classical mechanics and a quantum system.

The mathematical description of quantum mechanics has been developed by Born,

Pauli, Jordan and others, and is based on observable quantities. The above mentioned

scientists were able to solve the non-trivial problem of a harmonic oscillator (Gamow,

1966). According to Dirac, all physical quantities can be represented by operators. Also,

he established that the quantum state of a quantum system are vectors in a Hilbert space

(Dirac, 1939).

Einstein and other scientists considered the incompleteness of this theory (Einstein

et al., 1935), since it was considered to be just an illustration for a system directed by

a wave-particle equation. Also, they studied the applicability of the theory to work in

the macroscopic scale.

There are a number of experimental set ups to show that quantum mechanic systems

cannot be labeled by classical mechanics. One of these experiments is the Mach-Zehnder

interferometer experiment (Rarity et al., 1990), which is named after the physicists

Ludwig Mach and Ludwig Zehnder. In this experiment, a photon is directed toward a

beam splitter followed by two detectors placed in the path of the outcoming photon.

The photon behaves like a particle when the outcoming photon is detected by one of the

detectors, and it behaves like a wave when propagating through the beam splitters. Here

the photon illustrates a phenomena known as wave-particle duality. This phenomena

leads to the theory of the quantum entanglement (Bromley and Greiner, 2000). In the

next section, we will introduce some of the mathematical description of quantum system.
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2.2 Mathematical Representation of Quantum System

States and Operators in Hilbert Space

Quantum theory is a mathematical model of the physical world. In order to characterise

the model we need to specify how quantum states and operators are represented. This

section follows the notation in Griffiths (2003).

States

A state is a complete description of a physical system. In quantum mechanics, a state

is represented by a unit vector in Hilbert Space H which is essentially a complex vector

space with an inner product. It describes the statistical state of a quantum system.

The vectors in the Hilbert space are denoted by |ψ〉. The inner product of the

state |ψ〉 with it is complex conjugate 〈φ| is written as 〈ψ|φ〉. The aforementioned inner

product has the following properties for the vectors |ψ〉 and |φ〉 in H,

• Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 = 0.

• Linearity: 〈φ| (a |ψ1〉+ b |ψ2〉) = a 〈φ|ψ1〉+ b 〈φ|ψ2〉.

• Symmetry: 〈φ|ψ〉 = 〈ψ|φ〉.

A pure quantum state can be defined by a state vector, a wave function, or a

complete set of quantum numbers for a definite system (Hayashi et al., 2014). The inner

product for a vector |ψ〉 in Hilbert space with itself is greater than one with the property

that it is complete in the normalization condition, given as,

||ψ||2 = 〈ψ |ψ〉 = 1.

In the case that the vector |ψ〉 is the zero vector, the inner product 〈ψ |ψ〉 = 0
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Operators

In quantum mechanics, observable physical quantities are represented by operators that

are linear maps of the Hilbert Space H into itself. Here, three cases are defined:

Case 1: When the unit operator Î (identity operator) acts on a state vector |ψ〉 ,

the result is the same vector, such as,

Î |ψ〉= |ψ〉.

Case 2: A general operator Â acting on |ψ〉 is defined to give another vector |ψ′〉 in

the same Hilbert space,

Â |ψ〉= |ψ′〉.

Case 3: Operators can be linearly combined. Given two operators Â and B̂ acting

on a state |ψ〉 , the sum of these operators aÂ + bB̂ when applied to the state |ψ〉 is

defined as,

[aÂ+ bB̂] |ψ〉=a(Â |ψ〉) + b(B̂ |ψ〉),

where a, b are complex numbers.

Case 4: There are zero operators 0̂ which always gives the null vector as a result,

0̂ |ψ〉= |0〉.

2.3 Superposition principle

In quantum theory all possible measurement outcomes are modeled by a vector basis in

a Hilbert space. The state is however not restricted to one of these basis vectors, but

can be in a superposition, where it is specified that, any two (or more) quantum states

can be added together (“superposed”) and the result will be another quantum state. It

also specifies that conversely, every quantum state can be represented as a sum of two or

more other distinct states (Wilde, 2013). An example of the superposition is a two-level
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atom (a qubit state), which is a linear superposition of the “basis states” |0〉 and |1〉,

which can be defined as,

|ψ〉 = α |0〉+ β |1〉 . (2.2)

The main difference between qubit state |ψ〉 and a classical probability distribution is

that the probabilities interfere in general.

2.4 Qubits

The indivisible unit of classical information is the bit, it takes one of the two possible

values 0 or 1. The analogue in quantum information is the qubit - which is short for

quantum bit.

Qubits are mathematical objects with specific properties which are realised in an

actual physical system. The qubit state can be represented with two computational

states |0〉 and |1〉 in Hilbert Space. These states are assumed to be normalized and

orthogonal. It is also possible to form linear combinations of states, which are called

superpositions (Nielsen and Chuang, 2010),

|ψ〉 = α |ψ〉+ β |ψ〉 , (2.3)

where α and β are probability amplitudes, which are complex numbers and related

through the normalization condition.

|α|2 + |β|2 = 1. (2.4)

In quantum mechanics a two-dimensional complex Hilbert space H is used for de-

scribing the angular momentum or “spin” of a spin-half particle (electron, proton) and

also the polarisation of a photon, which then provides a physical representation of quan-

tum system.

The following sections will present the spin and the polarisation for a qubit.
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2.4.1 Spin 1
2

Particles

In quantum mechanics, the simplest possible system is a two-level system such as an

electron or proton. These two-level systems have an intrinsic angular momentum which

is associated with a quantity called spin. When an electron is placed in a magnetic field,

a certain amount of energy can make the electron exist in either the ground state or

excited state referred as two discrete, quantized spin states: spin up |↑〉 and spin down

|↓〉, which can be represented by |0〉 and |1〉, respectively.

In a case when the electron at the ground state absorbs slightly less energy than

is required to flip it to the excited state, the result is a superposition of the spin up

and down states of this electron and oriented in such a way that it lies between the two

discrete directions (Nielsen and Chuang, 2010).

The single qubit can be represented by the Bloch sphere which is a three dimensional

geometrical sphere. It provides a useful means of visualizing the state of the single qubit.

The coefficients α and β can be written in terms of angles as,

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiϕ(sin

θ

2
|1〉
)
, (2.5)

where θ, ϕ and γ are real numbers, the factor eiγ can be ignored as it has no observable

effects, therefore Eq. (2.5) can be written as,

|ψ〉 =

(
cos

θ

2
|0〉+ eiϕ(sin

θ

2
|1〉
)
, (2.6)

where the numbers θ and ϕ define a point on the unit Bloch sphere, see Fig. (2.1).

When an electron in a magnetic field is observed, the measurement of the qubit

in a state |ψ〉, which is the superposition of the two states |0〉 and |1〉, will collapse to

either |0〉 or |1〉, resulting in an output of the state of spin “up” or spin “down”. This

means that the information on coefficients α and β is essentially lost. In principle, the

coefficients can be obtained experimentally only if infinitely identically prepared qubits

were measured. The measurement probability for a qubit in the state |ψ〉, is given by,

|ψ〉 =
1√
2
|0〉+

1√
2
|1〉 , (2.7)
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Figure 2.1: Bloch sphere representation for quantum mechanics system (qubit).

where by the state |ψ〉 has a 50% probability to collapse to either a state |0〉 or |1〉.

The next section will present the polarisation for a qubit.

2.4.2 Polarisation

A photon is another important two state system which can have two independent po-

larisations. Photons are massless particles with spin-1. These polarisation states also

transform under rotations, where their rotations about the axis is determined by their

momentum. For a photon this corresponds to the familiar property of a light. The waves

are polarised transverse to the direction of propagation.

Under a rotation about the axis of propagation, the two linear polarisation states

|H〉 and |V 〉 for horizontal and vertical polarisation respectively transform as follows,

|H〉 → cos θ |H〉+ sin θ |V 〉 , (2.8)

|V 〉 → − sin θ |H〉+ cos θ |V 〉 . (2.9)
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To describe the quantum interference phenomenon for the photon, suppose there

is a polarisation analyser which allows only one of the two linear photon polarisations

to pass through it. The polarised H or V photon then has a probability 1
2 of getting

through a 45◦ rotated polariser, and a polarised 45◦ photon has probability 1
2 of getting

through an H and V analyser (Zeilinger, 2010).

The polarisation analyser can be constructed easily in order to rotate the linear

polarisation of a photon, and by applying the transformation Eq. (2.6) to a qubit. The

relative phase of the two orthogonal linear polariation states are written as,

|H〉 → e
iϕ
2 |H〉 , (2.10)

|V 〉 → e
−iϕ
2 |V 〉 . (2.11)

2.5 Quantum State Tomography

Quantum State Tomography is the process of reconstructing the state of a quantum

system by measurements based on multiple copies of the state by multiple modifications

of the measurement apparatus.

The general principle behind quantum state tomography is determined by recon-

structing the density matrix of the quantum system which is the best fit with the ob-

servations, by repeatedly performing different measurements on the quantum system.

Coincidence counts can then be used to infer possibilities, and these possibilities which

combined with Born’s rule to determine a density matrix (Altepeter et al., 2005).

George Stokes, in 1852, established the first experimental technique for determining

the state of a system with his famous four parameter method. The method allows an

experimenter to determine the polarisation state of a photon by considering coherent

light beams with two-polarisation degrees of freedom. This makes the photon an ensem-

ble of two level quantum mechanical systems. The Stokes parameters for such a system

allows one to determine the density matrix describing this ensemble (Stokes, 2009).

In various experimental circumstances, the linear tomographic technique was de-

vised in which the density matrix or Wigner function of a quantum state is found from

a linear transformation of experimental data. The problem however, with this method
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is that due to the experimental noise, the recovered state might not correspond to a

physical state. The shortcoming with the Stokes parameter occurs because the density

matrices for any quantum state must be hermitian and positive semidefinite unit trace.

An alternative method to reconstruct the density matrix of a physical system is the

“maximum likelihood” tomographic approach. This method allows for the estimation

and development of quantum states, thus avoiding the problem of the tomographically

measured matrices which often fail to be positive semidefinite. The problem occurs

when measuring low-entropy states, especially since the density matrix has produced a

measured data set that is obtained by numerical optimization (James et al., 2001).

The quantum state tomography technique has been successfully employed for the

measurement of quantum systems for unknown quantum state. The next section will

discuss pure and mixed states.

2.6 Mixed State and Density Matrix

Mixed State

The mixed state is the combination of probabilities that contain the information about

the quantum state of the quantum system. A system is said to be in a mixed state if

there is partial or no knowledge of the system. In terms of a probability density p , this

means that more than one of its eigenvalues must be non-zero. A system can be describe

by a mixed state when it is impossible to describe it by a state vector, except in the

case that the state is not reducible to a convex combination of other statistical states,

in which it is said to be in a pure state. The density matrix is a practical tool when

dealing with mixed states. Typical mixed state refers to any case in which we subdivide

a microscopic or macroscopic system into an ensemble, for which there is initially no

phase relationship between the elements of the mixture. In general, for a mixed state,

where the system is in the quantum-mechanical state |ψi〉 with probability ρi, the density

matrix is the sum of the projectors, weighted with the appropriate probabilities (Hall,

2013).

In general, the mixed state can be considered as a collection of pure states |ψi〉,

each with an associated probability pi, with the conditions 0 ≤ pi ≤ 1 and
∑

i pi = 1,
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so the mixed state can then be written as the sum of pure state density matrices, as

follows,

ρ =
∑
i

piρ
pure
i =

∑
i

pi |ψi〉 〈ψi|. (2.12)

The expectation value, can be defined as,

〈Aρmix〉 = Tr(ρmixA). (2.13)

The expectation value of the mixed state can be expressed as the sum of the expectation

values of its constituent pure states, given as,

〈Aρmix〉 =
∑
i

ρi 〈ψi|A|ψi〉. (2.14)

Density Matrix

In quantum theory, the density matrix or density operator ρ, acting on the Hilbert space

are introduced to give a partial description of a quantum system. For example, the

nee to construct a quantum description of subsystems, as composite quantum systems

consist of two or more subsystems (Nielsen and Chuang, 2010). To represent systems

by their density operator can be more useful and practical than the representation by

state vectors.

For a physical system C in the pure state |ψc〉 , the density operator of C equals

the projector on this state, given by,

ρc = |ψc〉 〈ψc| . (2.15)

To compute the expectation values from such a density operator for an observable A,

the function is given by,

〈A〉 = 〈ψ|A|ψ〉 . (2.16)

The expectation values can be written as a trace of the observable, multiplied with the

density operator, as follows,

〈A〉 = 〈ψ|A|ψ〉 = Tr 〈ψ|A|ψ〉 = Tr(ρA). (2.17)
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General Properties of Density Matrices

For a pure quantum system found in state |ψ〉 with probability p , the density operator

ρ for this system is defined as the outer product of the wave function and its conjugate.

as we introduced in Eq. (2.15).

The density matrix is used to calculate the expectation value of any operator Â,

which can be described as an observer A of the system. The density matrix is averaged

over the different states |ψ〉. This is achieved by taking the trace of the product of ρ

and A, that is defined by, 〈
Â
〉

= Tr(ρA). (2.18)

The properties of the density matrix are as follows:

• Projector: ρ2 = ρ for pure state,

• Hermiticity: ρ† = ρ.

• Normalization: Tr(ρ2) = 1 for pure state , Tr (ρ2) < 1 for mixed state.

• Positivity: ρ ≥ 0.

The first property for the density matrix is no longer valid for the mixed state which

can be defined by,

ρ2
mix =

∑
i

∑
j

ρiρj |ψi〉 〈ψi|ψj〉 〈ψj |, (2.19)

where 〈ψi|ψj〉 = δij = 1, hence Eq. (2.19) becomes,

ρ2
mix =

∑
i

∑
j

ρiρj |ψi〉 〈ψj | 6= ρmix. (2.20)

Thus far the quantum systems discussed involved only one particle. The next section

introduces the case of more than one system, and the tensor product will be defined and

explained.
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2.7 Composite Systems And Tensor Product

A composite system is a system that consists of more than one particle, or the particle

has internal degrees of freedom in addition to its center of mass.

If there is a composite system that involves numbered systems from 1 to 2, and

system j is prepared in the state |ψj〉, the state of the composite system can be given

as follows,

|ψ1〉 ⊗ |ψ2〉 . (2.21)

In quantum mechanics, the state space of a composite system from two different

Hilbert spaces such as two qubits, is a tensor product of the Hilbert spaces of the

component systems, whereHab = Ha⊗Hb, and the symbol ⊗ denotes the tensor product.

For example, the tensor product of one particle in the Hilbert space is the tensor

product of three spaces, each corresponding to the motion in one dimension (Griffiths,

2003). In case of a system composite of two Hilbert spaces HA and HB, their tensor

product A ⊗ B can be obtained by assuming for simplicity that the space is finite

dimensional. Let us consider |a〉j for {j = 1, 2} to be an orthonormal basis consisting of

a 2-dimensional system A, and |b〉p for {p = 1, 2} to be an orthonormal basis consisting

of a 2-dimensional system B, then the collection of the element of the system AB , is

given by,

|aj〉 ⊗ |bp〉 ,

where |aj〉 =
∑

j aj |aj〉, |bp〉 =
∑

p bp |bp〉. The Hilbert space H consists of all vectors

that can be written in the form,

|ψ〉 =
∑
j

∑
p

Njp(|aj〉 ⊗ |bp〉), (2.22)

where Njp are complex coefficient = αjβp in the case of the product state, Eq. (2.22)

can be written as,

|a〉 ⊗ |b〉 =
∑
j

∑
p

αjβp(|aj〉 ⊗ |bp〉). (2.23)

In the product state, every element of HA ⊗HB can be written in the form |aj〉 ⊗ |bp〉

such as Eq. (2.23). This means that the system A has the vector |a〉 and system B has
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the vector |b〉. For example the product state of ( |a1〉− |a2〉 )⊗ (|b1〉+ 1
2 |b2〉) is defined

by,

|a1〉 ⊗ |b1〉+
1

2
|a1〉 ⊗ |b2〉2 − |a2〉 ⊗ |b1〉 | −

1

2
|a2〉 ⊗ |b2〉 . (2.24)

States which are not product states are said to be entangled, such that one cannot

typically obtain definite properties of the individual systems A and B. In this case

the complex coefficient Njp 6= αjβp. Nevertheless, if the state |ψ〉 is not representing

an actual physical property, but representing the state as a “pre-probability”, then the

probabilities of the properties of the separate subsystems a and b can be given by using

the same aforementioned example Eq. (2.24) and replacing the sign of the last term,

the entangled state can be defined by,

|a1〉 ⊗ |b1〉+
1

2
|a1〉 ⊗ |b2〉 − |a2〉 ⊗ |b1〉+

1

2
|a+ 2〉 ⊗ |b2〉 . (2.25)

An example of entangled state is a two qubit system, and the state can be written as,

|ψ〉 = α |00〉+ β |11〉 , (2.26)

where α 6= 0, β 6= 0. In the next chapter we will discuss the entangled state in more

detail.



Chapter 3

Quantum Entanglement Theory

Chapter three forms the literature review where the existing research on entanglement

and QKD will be summarized. The chapter will discuss in detail the theory of Quantum

Entanglement as well as some aspects of entanglement applications, such as Quantum

Communication.

3.1 Quantum Entanglement

A pure state |ψ〉 is called separable if it can be written as |ψ〉 = |ψ1〉 ⊗ |ψ2〉. If is not

seprable state means, it is an entangled state. An example for an inseparable state is

|00〉. Typical example of entangled state are the Bell states, which are given by,

|ψ±〉 =
1√
2
|00〉 ± |11〉 . (3.1)

|φ±〉 =
1√
2
|01〉 ± |10〉 . (3.2)

Entanglement is a physical phenomena that occurs when two subsystems particles

generated or interacted at some point in time. The properties of these particles will then

remain connected in future times even if they are separated by a long distance, and the

quantum state of the compound systems is in general not separable. The determina-

tion of the quantum state of one particle simultaneously determines the quantum state

of the other particle. Quantum entanglement has become a fundamental physical con-

cept in quantum information processing and is used in quantum cryptography, quantum

19



Chapter 3. Quantum Entanglement Theory 20

teleportation, quantum error correction codes as well as quantum computation (Macchi-

avello et al., 2001). Entanglement indicates a strong correlation between the entangled

particles even after they are spatially separated. This correlation cannot be identified

by classical mechanics.

3.2 The History of Quantum Entanglement

The history of entanglement theory is associated with the birth of the theory of quantum

mechanics. The foundation of quantum entanglement demonstrated in 1930 by von

Neumann, in which he proposed that the measurement of entangled photons, can be

obtained without making use of the probability theory (Neumann, 1955). According to

the standard “Copenhagen” interpretation of quantum mechanics, the measurement on

the entangled photons state collapses into the basis, in which the measurement is carried

out with the associated probabilities (Redhead, 1989). Von Neumann also presented the

measurement of the collapsing state, which can be explained by entanglement of the

measurement apparatus with the system that has been measured.

Schrödinger defined entanglement as a feature of quantum mechanics, by consid-

ering the entanglement between a macroscopic system (cat) and a microscopic object

(atom). In 1935 He proposed a thought experiment as a discussion of the EPR paper.

He described how to produce entanglement in a macroscopic system, in which the system

depends on a quantum particle that was in a superposition. This thought experiment

involves a cat that was put in a steel chamber together with a little amount of radioactive

atom in a Geiger counter and it also contains a hammer and poison. The cat’s life or

death depends on whether radioactive atom had decayed and emitted radiation which

will be detected with a Geiger counter. If the Geiger counter detects radiation, the ham-

mer would crush the poison to kill the cat. According to the Copenhagen interpretation,

the cat remains both alive and dead until the state is observed. An observer would see

whether the cat was alive or dead according to the “superposition” principle. The fact

that the cat was in a superposition state gives probability 50% of the state to collapse

into either the complete knowledge that the cat is “alive” or “dead” but not both. This

outward paradox is known as the Schrödinger cat paradox (Schrödinger, 1935).
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“ In a complete theory there is an element corresponding to each element of reality”,

this was stated by Einstein (Einstein et al., 1935). In 1935, EPR designed a thought

experiment “Gedankenexperiment” to suspect the incompleteness of quantum mechanics

(Einstein et al., 1935). EPR queried whether quantum theory could provide a full

description of a physical reality in nature by considering the condition of the possibility

of predicting the physical quantities with certainty, without disturbing the system. The

logic of the experiment of EPR was as follows. For two particle system in a state

|φ〉 = 1√
2
|01〉 ± |10〉, the measurement made on the first particle has an impact to the

outcome on the second particle. After measurement of the first particle, the first particle

is in a state |0〉 or |1〉 with probability 1
2 . The same results are obtained for the second

particle. Suppose that the particles are separated from each other by millions of light

years. If measuring the first particle it is obtained a state |0〉, then it is known that the

second one is in a state |1〉. This means, the knowledge on the state of second particle

came to the observer of the first particle faster than the speed of light. It follows that

it is not satisfied at least in the principle of quantum mechanics.

Einstein came to the conclusion that some quantum effects travel faster than light,

which is contradiction to the theory of relativity. They also concluded that by consid-

ering the problem of making predictions concerning a system, where the measurements

made by another system that it had previously interacted with, leads to the result that

these two systems cannot have a simultaneous reality (Mermin, 1985). This led to con-

clude that the description of reality as given by a wave function is not complete and

this seemed somewhat paradoxical to Einstein. They were convinced that any complete

physical theory must incorporate the principles of locality and reality.

EPR Locality and Realism, Locality is the idea that a physical state of one

system can not be sufficiently separated. Performing any measurement to one system

does not affect the other simultaneously; this means that there is no action at a distance

whereby the measurement on a (sub) system does not affect the measurements on the

other (sub) systems when they are far away from each other.

Realism, according to EPR is an element of physical reality corresponding to any

physical quantity if the value of a physical quantity can be predicted with a probability

equal to 1, without disturbing the system, hence the quantity has a physical reality.

This seems paradoxical to the superposition principle, which state that the quantum
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state is in state |0〉 or |1〉 with probability 1
2 . EPR maintained that, to explain quantum

mechanics an ”elements of reality” (hidden variables) must be added.

Hidden Variable Theory (HVT) is a theory similar to classical mechanics, which

was proposed by Einstein to substitute quantum mechanics. Einstein believes in the

completeness of this theory since it contained local interactions, which was implemented

later by John Bell (Bell, 1966). The hidden variable element is defined as λ, and contains

the missing information from quantum mechanics.

3.3 Bell’s Theorem

3.3.1 Bell’s Theorem and Bell’s Inequality

John Stewart Bell originally proposed the idea for Bell’s Theorem in his 1964 paper

“On the Einstein Podolsky Rosen paradox” (Bell, 1964). In his analysis, he derived

formulas called Bell inequality which concerned the conjecture that the Quantum Me-

chanical state of a system needs to be supplemented by further “elements of reality” or

“hidden variables” or “complete states” in order to provide a complete description. The

incompleteness of the quantum state was the explanation for the statistical character of

Quantum Mechanical predictions concerning the system. In testing the inequality, it is

the principle of locality that stands to fail rather than quantum mechanics. Indeed, tests

of Bell’s inequality have shown violations of the conditions to all Local Hidden Variable

(LHV) theories.

3.3.2 Bell’s Test Experiment

In the past many experiments have been carried out for testing Bell’s inequalities by

several scientists. In the mid of 1970’s, Clauser, Freedman, Fry and Thompson created

entangled states by using a radiative cascade of calcium, in which they had static anal-

ysers (Freedman and Clauser, 1972; Fry and Thompson, 1976). Also, in the 1980’s, As-

pect and his group used a very complex entangled source to generate polarised entangled

photons, which was calcium atoms pumped by two separated lasers. The experimental

results were compatible with quantum mechanics (Aspect et al., 1981).
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In the beginning of the 1990s, theoretical results were obtained in Bell inequalities

violation by Alain Aspect, Philippe Grangier and Gerard Roger. They engaged two

photon transitions of atomic cascade to create pairs of entangled photons (Aspect et al.,

1981).

In 1998, Zeilinger and his group provided an experiment for testing the Bell’s in-

equalities, which showed that the distance did not break the entanglement (Weihs et al.,

1998). This experiment was achieved by using parametric down-conversion source and a

β Barium Borate (BBO) crystal for producing the entangled states. They were able to

send light through fiber couple optics over several kilometers distance. The results for

this experiment were sufficiently good for quantum cryptography between two parties,

Alice could not get any information from Bob with photons velocities less than the speed

of light, and that established the condition of the Einstein locality.

Clauser, Horne, Shimony and Holt (CHSH) tested Bell’s inequalities by using cor-

relation pairs of polarisation entangled photons (Clauser et al., 1969), which generalises

Bell’s inequality from the spin of the electron, used in the Bell’s original proposal.

3.4 CHSH Inequality

In 1969 John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH) pub-

lished a paper (Clauser et al., 1969) in the form of the inequality to be used in the proof

of Bell’s theorem, which states that certain consequences of entanglement in quantum

mechanics cannot be reproduced by local hidden variable theories.

Experimental verification of the violation of the inequalities is seen as experimental

confirmation that nature cannot be described by local hidden variables. They derived

the CHSH inequality, based on John Bell’s original inequality. This inequality relates

expectation values, that are obtained experimentally in a two-photon polarisation mea-

surement. A violation of the CHSH inequality would violate human intuition as well,

since it would imply that either locality or reality, if not both, must be rejected as

fundamental features of nature. A detailed description of this test is reserved for the

experimental part of this work.
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The correlation quantity S is defines the CHSH inequality form, which is given by,

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′), (3.3)

where E is the quantum correlation of the photon pair. And a, a′ and b, b′ denote the

local measurement settings of the two observers, respectively.

− 2 ≤ S ≤ 2. (3.4)

The mathematical formalism of quantum mechanics predicts a maximum value for

S of 2
√

2 which is greater than 2 as illustrated in CHSH Eq. (3.3), and violates the

CHSH inequality.

The theory of entanglement attempts to give answers to fundamental questions

such as; how entanglement can be created, characterised, detected and how to quan-

tify entanglement theoretically and experimentally. These questions were answered by

Werner and Popescu; Werner gives a precise definition of mixed separable states that

are not entangled. He also noted that there exist entangled separable state that do

not violate Bell’s inequalities (Werner, 1989). Popescu found that the system in such a

separable state, can be an entangled state by detecting the Bell’s inequality when using

of local operations and post coincidence (Popescu and Rohrlich, 1992). Later Gisin,

developed Popescu’s idea known as “filters” to enhance the violation of Bell inequalities

(Gisin, 1991). The next section discuss in detail some of the application of the quantum

entanglement.

3.5 Applications of Entanglement

Entanglement played a significant part in the development of quantum cryptography

(Jennewein et al., 2000), computing (Deutsch, 1985), teleportation (Bouwmeester et al.,

1997) and swapping (Pan et al., 1998), which include the measurement based structures,

one-way quantum protocol, and linear optics quantum computing.

Quantum cryptography was proposed by Stephen Wiesner in 1983, as a cryptosys-

tem aimed to communicate information among parties without leaving chance of eaves-

dropping (Wiesner, 1983). He used the concept of the quantum state in the cryptography
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to raise the security of the information. In this cryptosystem, two messages can be sent

through a quantum channel, the receiver can repossess either one of the two messages

but not both at the same time.

An extension to Wiesner’s work, Charles Bennett and Gilles Brassard have devel-

oped a cryptosystem (protocol) in 1984. It is an application for QKD and it is known as

BB84 (Bennett and Brassard, 1984). The original entanglement – based quantum cryp-

tography protocol, proposed by Artur Ekert in 1991 is known as E91 protocol (Ekert,

1991). These protocols will be discussed in more detail in the next section.

Around the same period of developing quantum cryptography, quantum computa-

tion has been formalised by David Deutsch in 1985. Quantum computing is the science

of using quantum mechanic theory for computing (Deutsch, 1985). While classical com-

puters operate on digitised binaries called bits (0, 1), a quantum computer operates on

a superposition of two-dimensional quantum bit known as “qubits” represented by the

states |0〉, |1〉.

Quantum teleportation is another practice of quantum entanglement which was

proposed by Bennett and his group in 1993 (Bennett et al., 1993). It is the technique

of sending a quantum state from one place to another, that demonstrated by using en-

tangled photons and classical communication. In a simple illustration of this technique,

the two parties Alice and Bob share a maximally pure entangled state, Alice is provided

an unknown quantum state to be teleported to Bob, after Alice measured her state, the

teleported unknown state will be provided by a Bell – basis measurement. Quantum

swapping is a generalised theme for quantum teleportation since it can be applied to

mixed entangled photons.

3.6 Entanglement and Quantum Communication

3.6.1 Cryptography and Protocols

Cryptography is the science of sending message between multiple people without allowing

anyone to tamper the information. The purpose of a cryptographic protocol is to solve

some problems including allowing multiple users to share information without letting

anyone else know the constituents of the secret information.
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Coding a message was traditionally one of the interests of military applications

and spy agencies, that needed to get messages back to their headquarters. Nowadays

cryptography becomes a fundamental part of everyone’s life in ensuring secure connec-

tions such as credit card numbers needed to be transmitted securely over the Internet

(Moskovich, 2015).

The simplest cryptographic task is sending a secret message between two parties, say

from Alice to Bob, without any third parties, Eve, learning the contents of the message.

A popular method used to encrypt the original message is public key cryptography. In

this method, Bob first creates both a public key and private key, and publishes the

public key over a public channel. Alice then uses Bob’s public key to send him a secure

message, in which she encrypts it by using the public key. Bob decrypts the message

with his private key. Key generation is based on a calculation made by Bob, which is

difficult to reverse by an eavesdropper— called Eve. The intended recipient applies a

decryption rule utilizing the same key to this cyphertext in order to recover the original

plaintext message (Gisin et al., 2002).

Theoretically, the one-time pad protocol is the only way to ensure secure communi-

cations. This protocol uses a long random key shared securely between the parties and

used only once. The problem of this approach is the key has to be distributed, which

may be vulnerable to interception. Also reusing a one-time pad allows to code-breakers

to find patterns that can reveal the key. RSA (Ron Rivest, Adi Shamir, and Leonard

Adleman), which is one of the first practical public-key cryptosystems, is the standard

classical method for solving these problems, in which Eve is limited computational power

prevents her from factoring large numbers (Rivest et al., 1978).

Another classical cryptographic protocol is the Bit commitment, in this protocol

Alice chooses a bit randomly (0) or (1), and sends some of her choice to Bob, but he

cannot know what Alice’s bit choice is until she reveals it to him. Once she does, Bob

can simply verify that she is telling the truth by using computational power. The un-

conditionally secure problem of this protocol realized when Bob is not able to determine

the value of Alice’s bit, which allows Alice to safely change the bit without Bob finding

out. This led to a great disappointment, and later results proved that cryptographic

protocols based on two quantum states (qubit) were possible (Goldreich, 2009).
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The quantum method for ensuring the information is to secure the information

without been decoded by an eavesdropper. To distribute a key that made of quantum

channel, is hard to be intercepted without being detected by the sender or receiver. This

is efficient because any act of measuring a quantum state by an eavesdropper will cause

changes that can be detected and also because the measurements of the photon beam

will cause detectable errors in the data.

QKD as we introduced previously, was proposed by Charles Bennett and Gilles

Brassard. Their protocol is known as BB84 (Bennett and Brassard, 1984). The BB84

protocol uses the laws of quantum mechanics to ensure the security of the information

between the parties by sharing a secret key in the form of qubits. For example, Alice

generates a beam of polarised photons in one of two orthogonal basis: rectilinear (vertical

/horizontal), or diagonal (±45◦), whereby each basis represents one orientation realised

as bit “0” or “1”. Alice randomly choses a basis and a bit for each photon sent over

the quantum channel to Bob. Bob selects a basis randomly to measure the photon

either rectilinear or diagonal without knowing the preprepared basis, after which he

communicates with Alice over the public classical channel after he has measured all the

photons. Bob reveals the basis being used, Alice confirms to keep or discard the bits

based on basis selections.

The secret key will be generated by discarding the photon measurements (bits)

when Bob uses a different basis as shown in Fig. (3.1). This process provides a secure

quantum channel for key distribution because for Eve to eavesdrop the channel, She

has to guess which basis to measure in. In the case, when Alice and Bob choose the

same basis but the eavesdropper choses a different basis then the probability is 50% that

Bob will measure a bit value different from what Alice sent, allowing Alice and Bob to

detect an eavesdropper by publicly comparing and discarding a certain number of bits

for which they chose the same basis.

The BB84 protocol was simplified by Charles Bennett in 1992 to the B92 protocol

(Bennett, 1992). The coding in the B92 protocol uses two non-orthogonal states rather

than the four polarisation states as in BB84 (Bennett and Brassard, 1984). For example,

the bits “0” can be encoded as 45◦ on the diagonal basis while the bit “1” can be encoded

by 0◦ in the rectilinear basis.
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Figure 3.1: The figure shows the first Quantum key distribution protocol BB84 and
how Alice and Bob measure their basis. Firstly, Alice chooses her bits randomly and
her basis also to sent in to Bob. Bob chooses his basis and measures the incoming bits

from Alice. The sifting key is composed from the remaining measurements.

In 1999, Pasquinucci and Gisin proposed another modification of BB84 protocol,

which known as the Six-State Protocol (SSP) (Bechmann-Pasquinucci and Gisin, 1999).

In SSP, the coding uses six states on three orthogonal bases. It is similar to BB84 except

using six states rather than using two or four states. This protocol provides another

layer of security because an eavesdropper would need to choose the right basis from a

total of three bases and that produce a higher rate of error which can be easy to detect .

The security of B92 protocol is was realised by using a single-photon source, which was

demonstrated by Tamaki and Lütkenhaus, 2004.

The SARG04 protocol was proposed by Scarani, Acin, Ribordy, and Gisin in 2004

(Scarani et al., 2004). This protocol shares the state sending phase and the measure-

ment phase of BB84. Also, it uses the same four states and the same experimental

measurement. The only difference between the two protocols is Alice does not directly

reveal her bases to Bob, she reveals the non-orthogonal bases and Bob can measures his

state with two possibilities, that his measurement is correct and that means he used the
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right basis that Alice used to encode her bits, or he measured the incorrect basis and he

will not be to determine Alice bits phase.

There are some other protocols that are not discussed in this study.

3.6.2 Entanglement Based QKD

Qubits are the basis for an entangled quantum system, they are generated from a single

photon source to use them in quantum communication. The most commonly imple-

mented entangled photon systems has been used in experimental demonstrations of

various quantum communication protocols like teleportation, dense coding, and QKD

(Jennewein et al., 2000).

Entanglement based quantum communication was proposed by Artur Ekert in 1991

(E91) (Ekert, 1991). In the E91 protocol, the entangled states are perfectly correlated,

which means if Alice and Bob both measure their photons with vertical or horizontal

polarisations, they always get the same answer with 100% probability. However, Alice

and Bob each receive half of an entangled photons, and by measuring the polarisation

along different basis (similar to BB84 protocol). The results are completely random,

which means it is impossible for Alice to predict if she (and thus Bob) will get vertical

polarisation or horizontal polarisation. The security of this protocol is realised when Eve

intercepts and resends anything, her measurement will break the entanglement between

the photons and destroy the correlation in a way that Alice and Bob can easily detect

(Lo and Lütkenhaus, 2007).

In Ekert’s original paper, Alice and Bob would measure polarisation along three

different angles. Alice would measure along 0◦, 45◦, and 90◦, while Bob would measure

along 45◦, 90◦, and 135◦. As in BB84, they keep their series of basis choices secret until

the measurements are completed. Then Alice and Bob publicly reveal the polarisation

basis they used to measure. The measurement are carried out by making two groups of

photons: The first one consists of photons measured using the same basis by Alice and

Bob which is used as bits to generate the key while the second contains all other photons

used to construct the the correlation quantity (S) that is used in the Clauser-Horne-

Shimony-Holt (CHSH) inequality (Clauser et al., 1969). By finding the quantity S, Alice

and Bob could infer whether any eavesdropper had measured the polarisation state as
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this would destroy entanglement and thus not allow violation of the CHSH inequality

(Moskovich, 2015).

Anton Zeilinger, applied the E91 protocol by using a polarised entangled photon

pair to demonstrate an Internet Banking Transfer over a distance of 1.4 km (Poppe

et al., 2004). The free space optical link together with the moving frame space link

communication processes, was established by using entangled photons and the fidelity

was successfully verified (Tapster et al., 1994), (Aspelmeyer et al., 2003).

Entanglement based QKD provides the possibility to obtain a secure key, which is

provably secure against eavesdropping. Additionally, QKD can be composed with other

encryptions, providing an additional secure layer for an already secure message. For

example a message that was encrypted using the RSA cryptosystem, the public key can

be encrypted again by using a quantum key. To intercept this message, an eavesdrop-

per would have to break both the quantum key and the classical key. The capability

distinguished by QKD from among all encryption methods it comes in the detection

of eavesdropper where the measurements could be processed in different methods (Jen-

newein et al., 2000).



Chapter 4

The Experiment Implementation

This chapter discusses the experimental implementation and the theory of generating

a polarised-entangled photon pairs. The creation of entangled photon pairs via a non-

linear SPDC process. Characterisation of the created polarised-entangled photon pairs,

which can achieved by measuring the visibility of the system. The characterisation can

be obtained by verifying the entanglement with violating Bell’s Inequality as well as the

measuring of the fidelity of system by testing the purity of the generated state.

4.1 Entangled Photon Pairs Production

The SPDC is a common scheme in the generation of entangled photon pairs. SPDC is

a second order non-linear process involving the mixing of three electromagnetic waves.

SPDC was first established in 1970 by D.C. Burnham and D.L. Weinberg, who im-

plemented it by pumping photons at different points into the non-linear crystal. The

photons that emerge from the crystal will split into singlet photons (Burnham and Wein-

berg, 1970).

4.1.1 Non-linear Optics

The interaction of a photon in a non-linear matter causes changes in frequency, the

phase and the polarisation of the incident photon. The non-linear phenomena occurs

when the photon travels through the material containing an optical field that depends

31
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on a non-linear manner of the strength on the electric field Ẽ(t). This produces a linear

polarisation P̃ (t), which depends linearly on the behavior of the applied field, which is

given by,

P̃ (t) = χẼ(t), (4.1)

where χ is the susceptibility coefficients, which is a tensor representing the relation

between the polarisation vector and the product of the electric field vector.

For higher order electric field the material system can be described by the material

polarisation, that is given by,

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ(t)2 + χ(3)Ẽ(t)3 + ....., (4.2)

where the χ(n), (n 6= 1) are the non-linear susceptibility coefficients, which depend on

the direction of the electric field vector.

The main consideration to choose a crystal with large susceptibility is it high trans-

mitting ability of the material for all wavelength ranges as well as the high resistance

to laser damage. Another important requirement for choosing a crystal, is the good

efficiency for the second-order nonlinear process such as SPDC. The phase matching of

the incident and transmitted light waves is defined as,

∆K = ks − k2 − k1 <
1

L
(4.3)

where ∆K is the spatial variation in the wave function, L is the length of the material

interaction region, ks is the wave vector of the higher frequency, and k1, k2 are the wave

vector of the other frequencies.

The phase matching condition that defined by the constructive interference cannot

be easily satisfied that is because the refractive indices depend on the frequency, which

results in some effects when using birefringence material.

Birefringence Material: Birefringence is a phenomena that is produced by a

double value of refractive indices in uniaxial crystal, resulting in a rise of effects such

as ordinary and extraordinary polarisation (Lin, 2013). When a crystal allows only one

direction of propagation of light, the optical axis of the crystal z-axis, then is called an

uniaxial crystal .
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Figure 4.1: Illustration of the Ordinary and Extraordinary polarisation: unpolarised
incident light pumping through a crystal and that emerges two kind of polarisations.

Ordinary and Extraordinary Polarisation: Ordinary and extraordinary polar-

isation are two types of polarisation resulting when an unpolarised pump light is directed

towards a birefringent crystal, and splits into two rays. The two split rays represent the

two types mentioned above, and illustrated in Fig. (4.1):

1. Ordinary (O) Polarisation: the split ray will have a polarisation in the direction

perpendicular to the optical axis of the medium, also it follows Snell’s Law to give

a constant refractive index.

2. Extraordinary (E) polarisation: the split ray will have a polarisation in the direc-

tion of the optical axis of the medium, so that Snell’s Law is not satisfied because

it has a variable refractive index.

The birefringence can be defined as the difference between the refractive index

for the extraordinary polarisation ne and the refractive index for the ordinary

polarisation no,

∆n = ne − no. (4.4)

The positivity of the crystal is attained when ∆n > 0, while ∆n < 0 insure the negativity

of the crystal.
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Figure 4.2: A) Spontaneous Parametric Down Conversion of the entangled photon
pair is produced by pumping nonlinear crystal with photons. The emerged entangled
photons are called signal and idler. B) The conservation of the momentum, C)the

energy to generate the entangled photons are also illustrated.

4.1.2 Spontaneous Parametric Down Conversion

Spontaneous Parametric Down Conversion (SPDC) is a time-reversed process of Second

Harmonic Generation (SHG), also referred to as parametric fluorescence or parametric

scattering. It is a second-order non-linear process associated with the split of a high

frequency photon into two lower frequency photons. It is a method to generate entangled

photon pairs by pumping the incident photon through a non-linear crystal. The crystal

lacks inversion of symmetry (de Dood et al., 2004). The entangled photons are usually

called the signal and the idler while the incident photon is called the pump photon. See

Fig. (4.2).
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SPDC is said to be “Spontaneous” because the signal and idler are generated spon-

taneously inside the crystal. It is “Parametric” since the process depends on the down-

conversion of the photons electric field and their intensities. This results in a definite

phase relation between the pump and entangled photons. “Down Conversion” means

that the process of the split frequency of the pump photon producing entangled photons

with lower frequencies (Beck, 2012). The entangled photons are produced at nearly the

same time, and the individual photon properties are free to differ (Fox, 2006).

In SPDC, the splitting of the pump photon into two down-converted photons occurs

in accordance with the conservation of energy and momentum of their single parent

photon.

The energy conservation implies that the frequency of the signal and idler waves

are added to each other, in which the energy of the pump photon is equal to the sum of

the energies of the down-converted photons:

~ωp = ~ωs + ~ωi (4.5)

ωp = ωs + ωi, (4.6)

where ~ = h
2π , h is Plank’s constant, ωp, ωs and ωi are the frequencies of the pump,

signal and idler photons.

The conservation of the momentum is equivalent to the phase matching, which

requires,

kp = ks + ki, (4.7)

where kp is the wave vector of the pump photon frequency, and ks, ki are the wave vector

of the signal and idler photon frequencies respectively, see Fig. (4.2).

There are three types of SPDC of the down-converted process, that are charac-

terised by the polarisation of the pump photon to produce entangled photons. Type-0

down conversion, Type-I down-conversion produces two down-converted photons with

the same polarisation, but opposite to the pump photon. For type-II down-conversion,

the down-converted photons have an orthogonal polarisation (Prutchi, 2012). Fig. (4.3)

shows the difference between them.
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Figure 4.3: Type-I (right) and type-II (left) down conversion. The entangled photons
emerging from type-I down conversion crystal will have the same polarisations that is
opposite to the pump photon. And The entangled photons emerging from type-II down
conversion crustal will have the orthogonal polarisations that is opposite to the pump

photon.

The creation of the entangled photons via the SPDC process, allow us to study

the fundamentals aspects of quantum mechanics. For example it allows to test the

correlation between these photons and violating some classical theories such as Bell’s

inequality.

4.2 Correlation of Entangled Photon Pairs

The measurements on two qubits, that their entanglement state represented by Bell

state in different basis, illustrated a perfect correlation when the qubits select the same

basis.
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4.2.1 Bell States

Bell states (sometimes called EPR states) are four specific maximally entangled quantum

states of two qubits. Qubits are usually spatially separate, and they exhibit perfect

correlation that cannot be explained without quantum mechanics (Kwiat et al., 1995).

The four Bell States for polarised down converted photons are,

|ψ+〉 =
1√
2

(|HH〉+ |V V 〉) , (4.8)

|ψ−〉 =
1√
2

(|HH〉 − |V V 〉) , (4.9)

|φ+〉 =
1√
2

(|HV 〉+ |HV 〉) , (4.10)

|φ−〉 =
1√
2

(|HV 〉 − |HV 〉) , (4.11)

where H,V denoted to the Horizontal and Vertical polarisation respectively.

The Bell state defined in Eq. (4.8) and Eq. (4.9) can be written in the following

equation,

|ψ〉Bell =
1√
2

(|H〉s |H〉i ± |V 〉s |V 〉i) , (4.12)

in which the indices s, i are for the signal and idler down converted photons respectively.

Bell state are defined the correlation of entangled states, in which the measurements

on the outcome down converted photons in the vertical basis or horizontal basis, will

have a 1
2 probability for each basis. Also in case of taking the measurements at the same

time for both of the down converted photons, the outcomes will appear random, but

they are still correlated. This correlation helps the violation of local realism, because

the measurement of one photon which is spatially separated from another photon does

not influence the second photon.

4.2.2 The Polarisation State for Entangled Photon Pairs

The measurement of the polarisation state of the entangled photons, which are heading in

different directions in the vertical and horizontal basis can be demonstrated by pumping

a photon beam through a polariser with angle α, which gives rise to two possible results
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Figure 4.4: Two identical BBO crystals are cut for type-I down conversion, one
oriented at 90◦ respected into the other, the cone shows the emission of the horizontal

and vertical polarised photon pairs.

with 50% probability for each basis. In the case that the two photons are either both

vertical states or horizontal states in terms of angle α, they are defined as follows,

|Vα〉 = cosα |V 〉 − sinα |H〉 , (4.13)

|Hα〉 = sinα |V 〉+ cosα |H〉 , (4.14)

The polarisation state for down converted photons generated from Bell state in Eq.

(4.12) is given by,

|ψ〉Bell =
1√
2

(|Hα〉s |Hα〉i ± |Vα〉s |Vα〉i) , (4.15)

where |Vα〉, |Hα〉 are the polaristion state obtained after rotation of α from the vertical

and horizontal basis respectively.

For the purpose of our experiment as will be shown later, the down converted

photons were produced by using two identical BBO crystals, in which one is rotated 90◦

from the other, which have been cut to support type-I down conversion as represented

in Fig. (4.4). Each crystal can support down conversion of one polarisation of the

pump beam while the other polarisation can pass through the crystal with no change

(Dehlinger and Mitchell, 2002).
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The polarisation state of the pump photon in the input of the BBO crystal is given by:

|ψ〉 = cosφ |H〉+ sinφ |V 〉 , (4.16)

when the pump photon is been absorbed by the first BBO crystal, the state reads:

|H〉 → |V V 〉 ≡ |V 〉s ⊗ |V 〉i ; (4.17)

when the pump photon is been absorbed by the second BBO crystal, the state is:

|V 〉 → |HH〉 ≡ |H〉s ⊗ |H〉i . (4.18)

The state of the photon in the output of the two BBO crystals takes the form:

|ψ〉 = cosφ |V V 〉+ sinφ |V V 〉 . (4.19)

The polarisation states for the pump photon beam directed toward to the BBO crystal

with despersion angle ∆, are given by,

|Vp〉 → |H〉s |H〉i , (4.20)

|Hp〉 → ei∆ |V 〉s |V 〉i , (4.21)

where the notation p, s and i, denoted the pump, signal and idler photons respectively,

and ∆ is the phase resulting from the dispersion in the crystal.

The polarised entangled photons can be generated by directing the pump beam

through a linear polariser. The beam will create an angle θ from the vertical and the

phase of the polarisation component φl will be shifted and that by using a birefringent

quartz plate (Dehlinger and Mitchell, 2002). The polarisation of the pump beam is

defined as,

|ψpump〉 = cos θl |H〉p + eiφl sin θl |V 〉p . (4.22)

The polarisation of the state |ψDC〉 for the down converted photons after the pump

beam reaching the crystal, is given by,

|ψDC〉 = cos θl |H〉s |H〉i + eiφ sin θl |V 〉s |V 〉i , (4.23)
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where φ is defined as the phase difference of two polarisation components and given by

φ =φl+∆.

In order to measure the polarisation states of the down converted photons, two

polarisers rotated with angles α and β, are placed in the path of the signal and idler

photons. Four possible outcomes can be detected: V V, V H,HV,HH (Geller, Dehlinger

and Mitchell, 2002). The probability for detecting the vertical vertical (V V ) basis is

given by,

PV V (α, β) = | sinα sinβ cos θl + eiφ cosα cosβ sin θl|2

= sin2 α sin2 β cos2 θl + cos2 α cos2 β sin2 θl

+
1

4
sin 2α sin 2β sin 2θl cosφ

=
1

2
cos2(α− β). (4.24)

The remaining probabilities of the polarisation combination for the horizontal horizontal

(HH), vertical horizontal (VH) and horizontal vertical (HV) outcomes are defined as:

PHH(α, β) =
1

2
cos2(α− β), (4.25)

PV H(α, β) =
1

2
sin2(α− β), (4.26)

PHV (α, β) =
1

2
sin2(α− β). (4.27)

The experiment measures the coincidence counts C(α, β) for the signal and idler photon

pair with polarisation angle α, β can be written as:

PV V (α, β) =
C(α, β)

Ctotal
, (4.28)

PHH(α, β) =
C(α⊥, β⊥)

Ctotal
, (4.29)

PV H(α, β) =
C(α, β⊥)

Ctotal
, (4.30)

PHV (α, β) =
C(α⊥, β)

Ctotal
, (4.31)
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where α⊥ = α+ 90◦, β⊥ = β + 90◦ and Ctotal is the total number of coincidence counts

of photon detection, which is defined as:

Ctotal = C(α, β) + C(α⊥, β⊥) + C(α, β⊥) + C(α⊥, β). (4.32)

4.2.3 Correlation and CHSH Inequality Violation

The entangled states must demonstrate a perfect correlation, which is independent of

the basis when the measurement is carried out. The measurements are performed in a

given basis (orthogonal basis) and if the correlation is found; the same measurements

can be repeated in a different bases (orthogonal and diagonal bases) to check whether

or not the correlation still exists.

Experimentally, the determination of the correlation of the entangled photon pairs

can be achieved by testing the visibility in a different basis (Dehlinger and Mitchell,

2002). The visibility is given by,

V =
Cmax − Cmin

Cmax + Cmin
, (4.33)

where V is the visibility, Cmax and Cmin are the maximum and minimum coincidence

rates of detecting the entangled states respectively. To satisfy the condition of observing

the entangled state, the visibility must be larger than 1√
2
.

By applying the Gaussian error propagation rule, the error in calculating the visi-

bility (∆V ) can be given as:

∆V =

√
(
∂V

∂Cmax
∆Cmax)2 + (

∂V

∂Cmin
∆Cmin)2. (4.34)

After observing the visibility, another measurement had to be performed to violate Bell’s

inequality to verify the entanglement.

The experimental realisation of Bell’s Inequality (Bell, 1964), presented by Clauser-

Horne-Shimony-Holt (CHSH) Inequality (Clauser et al., 1969), showed a classical ar-

gument that limits the correlation of two polarised photons under measurements at

different polarisers angles.
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The CHSH Inequality uses a correlation of the probabilities, which can be defined

by two measurement quantities, the correlation function E and the quantity S. The

correlation function is given by,

E(α, β) = PV V (α, β) + PHHV (α, β)− PV H(α, β)− PHV (α, β)

=
1

2
cos2(α− β) +

1

2
cos2(α− β)− 1

2
sin2(α− β)− 1

2
sin2(α− β)

= cos2(α− β)− sin2(α− β)

= cos(2(α− β)). (4.35)

The correlation function E is the first measurement for proving the violation in terms

of the coincidence counts of the outcomes photon pair, all the possible measurement

outcomes are varied from +1 to −1,

E(α, β) =
C(α, β) + C(α⊥, β⊥)− C(α, β⊥)− C(α⊥, β)

C(α, β) + C(α⊥, β⊥) + C(α, β⊥) + C(α⊥, β)
. (4.36)

The uncertainty of measuring the correlation function E is given by,

(∆E(α, β))2 =
1− E(α, β)

C(α, β) + C(α⊥, β⊥) + C(α, β⊥) + C(α⊥, β)
(4.37)

The second measurement considered by the CHSH Inequality is the quantity S , which

can be obtained by constraining the correlation function E by using four angles combi-

nation;

S = |E(a, b)− E(a, b′)|+ |E(a′, b)− E(a′, b′)|, (4.38)

where the notations a, a′, b, b′ are four different polarisers angles.

S is proved by the local HVT to be equal to 2 and soon after determining by CHSH

to be:

|S| 6 2 (4.39)

The theoretical limit of the violation of CHSH inequality with the choice of certain

angles must be equal to,

S = 2
√

2 (4.40)
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The standard deviation of the calculated S is given by,

∆S =

√ ∑
a=α,α′

∑
b=β,β′

∆E(a, b)2 (4.41)

The next section will discuss how to measure the fidelity of entangled system.

4.3 Fidelity of Polarised Entangled System

The purity of the generated entangled photon pair can be achieved by determining the

fidelity of the system. The fidelity is realised by obtaining the density matrices of pair

of the entangled photons (qubits) after considering the interference effect of entangled

photons, which has been attained through the Hong-Ou-Mandel interference effect.

4.3.1 Hong-Ou-Mandel Effect

The interference of two photons directed towards a non-polarising beam splitter (interfer-

ometer) is illustrated by the effect of Hong-Ou-Mandel. This is the phenomena applied

for testing the degree of indistinguishably of two incoming photons is demonstrated by

C. K. Hong, Z. Y. Ou and Leonard Mandel in 1987 (Hong et al., 1987).

When two photons (A and B) enter a 50 : 50 beam splitter, see Fig. (4.5), there

are four possible behavior for theses photons :

1) Photon A is reflected and photon B is transmitted.

2) Both of the photons (A and B) are transmitted.

3) Both of photons are reflected.

4) Photon A is transmitted and the photon B is reflected.

Fig. (4.6), shows the HOM dip for two photons interference, which is firstly observed

by using visible-light photon pair generated in a nonlinear crystal via parametric down-

conversion. The indistinguishability of the photons can be tested by using two detectors

to detect the photon pairs after they passed through beam splitter, the out coming

photons register in coincidence. The incoming photons will be completely indistinguish-

able, if they have the same wavelength, polarisation and spatial-temporal mode, which
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Figure 4.5: Hong-Ou-Mandel interference for two photons. 1) the photon A is re-
flected and photon B is transmitted, 2) Both of the photons (A and B) are transmitted,
3) Both of photons are reflected, 4) Photon A is transmitted and the photon B is

reflected.

Figure 4.6: Hong-Ou-Mandel dip illustrated the coincidence counts vs the relative
delay for single photon interference (Mandel (1999))

realised in the case of zero coincidence counts when the dip, almost reaches the zero.

while the incoming photons are distinguishable in case of no-dip (Mandel, 1999)

The interference of the generated photon pair applied for testing the fidelity of

the entangled photon pair system. Experimentally the distinguishability of the pho-

ton pairs, obtained via a balanced beam-splitter instead of constructing a traditional

interferometer. This by making use of a fused 50 : 50 polarisation maintaining beam

splitter.

The output of the 50 : 50 polarisation maintaining beam splitter was connected

via a receiving collimator to the coincidence counter in order to measure the coinci-

dence. Using the aforementioned interferometer a state tomography can be performed
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to reconstruct the density matrix of an unknown quantum state.

4.3.2 Tomographic reconstruction of quantum states

Quantum state tomography is a very useful method to achieve the quantum state of the

system. The reconstruction of a quantum state through quantum state tomography is

realised by using a set of pre-defined projective measurements on a collective identically

prepared particles.

In this experiment, the state tomography (tomographic reconstruction) applied to

measure the fidelity of the entangled system by reconstructing the density matrix, which

is linearly related to a set of 16 projective measured quantities for the entangled photon

pairs. The fidelity F of the system can be measured through the following relation;

F = Tr[(
√
ρthρexp

√
ρth)2], (4.42)

where ρexp is the experimental density matrix that is obtained by the state tomography,

ρth is the theoretical density matrix. The value of the fidelity of the system varies from

0 to 1 (Altepeter et al., 2005).

To satisfy the indistinguishability condition the value of the fidelity must equal 1

and is obtained when ρth = ρexp. The number of the coincidence counts Cν observed

during the experiment is determined by;

Cν = C〈ψν |ρ̂ |ψν〉 , (4.43)

where ρ̂ represent the tomographic reconstructed density matrix (experimental density

matrix) for the entangled photon pair, C is the total number of the coincidence counts

and |ψν〉 is the projection measurement.

4.3.3 The Set of Projection Measurements

The number of projections required for measurements of two polarised photons can be

realised by the Stokes parameters Si, with his four parameters that allow to determine

the polarisation state of a light beam (Stokes, 2009), the stokes parameters for single
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qubit are defines as follow,

S0 ≡ 2n0 = N (〈R|ρ̂|R〉+ 〈L|ρ̂|L〉),

S1 ≡ 2(n1 − n0) = N (〈R|ρ̂|L〉+ 〈L|ρ̂|R〉),

S2 ≡ 2(n2 − n0) = N i(〈R|ρ̂|L〉 − 〈L|ρ̂|R〉),

S3 ≡ 2(n3 − n0) = N (〈R|ρ̂|R〉 − 〈R|ρ̂|R〉), (4.44)

where S0, S1, S2 and S3 are the Stokes parameters, n0, n1, n2 and n3 are the number of

photons counted by detector, N is constant depend on the detector efficiency and the

light intensity and R and L are the right and left -handed circular states.

For reconstructing the quantum state of a system composed of two qubits, here we

use the 2-photon Stokes parameters Si1,i2 that is defined in an anlagous manner in single

photon Stokes paramenters that defined in Eq. (4.44). The Si1,i2 can be calculated from

the qubit measurement operaters µ̂i and Pauli operators σi together with the total num-

ber of the coincidence counts C (James et al., 2001). These parameters also characterise

the density matrix. This density matrix can be written in terms of a superposition of

the two-qubit Pauli matrices σ̂i1 ⊗ σ̂i2 , weighted by the Stokes parameters Si1,i2 . It is

given by,

ρ̂ =
1

4

3∑
i1,i2

Si1,i2
S0,0

σ̂i1 ⊗ σ̂i2 , (4.45)

where S0,0 is a normalisation factor. The σ̂i matrices are defined as;

σ̂0 =

1 0

0 1

 , σ̂1 =

0 1

1 0

 , σ̂2 =

0 −i

i 0

 , σ̂3 =

1 0

0 −1

 . (4.46)

For a single qubit, the measurement for a quantum state tomography by four set of

projection measurements operators µ̂0, µ̂1, µ̂2, µ̂3 suffice to reconstruct the state in the

Horizontal, Vertical, Diagonal, Right circular and Left circular polarisation components

[H, V, D, R,L].

In case of two qubits, the state can be determined by the set of 16 measurements

represented by the measurement operators µ̂i⊗ µ̂j (i, j = 0, 1, 2, 3) (4n) (n is the number

of the qubits) Fig. (4.7).
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Figure 4.7: The tree diagram for determining the required measuring projection for
n-number of qubits (James et al., 2001).

To obtain the coincidence counts for the 16 projections, the pump beam was pro-

jected onto a polarisation state by using three optical elements (polariser, a Quarter-

Wave Plate (QWP), and a Half-Wave Plate (HWP)), which are placed facing each of the

down converted photon pairs in front of each detector. The polariser allows transition

of only vertically polarised light, while the wave plates angles set randomly, allow the µ

ν projection polarisation state to be stable.

The possible combination of projecting the two photons into either H, V plus diago-

nal P or right circular R states is defined with 4×4 matrices Γ̂ν and Γ̂µ, where ν, µ = H,

V, D, L, R, which notate for H =horizontal, V =vertical, D= diagonal, L=left-handed

circular and R= right-handed circular. The D, R and L are polarisation states resulting

from the superposition of H and V, by using the notation following James et al. (2001)

for this section, the projections are given by,

|H〉 =

1

0

 , |V 〉 =

0

1

 . (4.47)

The states D and R are defined, respectively, as ;

|D〉 =
1√
2

(|H〉+ |V 〉). (4.48)

|L〉 =
1√
2

(|H〉+ i |V 〉). (4.49)

|R〉 =
1√
2

(|H〉 − i |V 〉). (4.50)
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The density operator defined as summation of Γ̂ν matrices and rν , which is given by,

ρ̂ =

16∑
ν=1

Γ̂νrν . (4.51)

rν is the νth element of the 16- element column vector that represent the projection.

The element of the vector rν , is given by:

rν = Tr(Γ̂ν .ρ). (4.52)

The coincidence counts Cν measured for the entangled photon pairs illustrate a linear

relation with the element of the vector rν , by using Eq. (4.43) Cν , are given as;

Cν = C
16∑
µ=1

Bν,µrµ. (4.53)

In which Tr (Γ̂ν , Γ̂µ) = δν,µ, C =
∑4

ν=1Cν is the total numbers of counts and Bν,µ is

16× 16 matrix, defined as:

Bν,µ = 〈ψν |Γ̂µ |ψν〉 . (4.54)

rν = (C)−1
16∑
µ=1

(B−1)ν,µnν . (4.55)

By introducing 4×4 matrix M̂ν to help in compacting the reconstruction for the density

operator and to obtain the coincidence counts for the 16 projections, which based on

tensor products of the complete set of Pauli matrices, is represented by,

M̂ν = (B−1)ν,µΓ̂µ. (4.56)

The reconstructed density matrices for 16 projections can be obtained by substituting

Eq. (4.55) into Eq. (4.51) and by using Eq. (4.56). The density matrix ρ̂ can be given

as;

ρ̂ =

∑16
ν=1 M̂νCν∑4
ν=1Cν

. (4.57)

The Fidelity of the entangled system that obtained in Eq. (4.42) can be determined

by substituting the density operator or the experimental density matrix in Eq. (4.57)

into Eq. (4.42).
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Experimental Realisation

The theoretical background was introduced in the previous chapter, here, we will provide

the experimental procedure, results and discussion.

Our experiment is based on the polarisation degree of freedom, since it has been

the most well defined in free - space system. The experimental work was based on

generating and characterising a polarised entangled single photon source. This was

established in four parts: Starting with the experimental setup to create and detect a

polarised entangled photon pairs. This was achieved by using a linearly polarised diode

laser beam to pump a nonlinear BBO crystal. The detection was realised with single

photon counting module based on single photon avalanche detectors.

We performed two tests to verify the entanglement. The first experiment was done

by testing the correlation between the entangled photon in two different basis. The sec-

ond analysis was to violate the CHSH inequality to prove the existence of the entangled

photons.

Finally, the purity of the polarised entangled state was tested by measuring the

fidelity of the system. The fidelity was determined by reconstructing the density matrix

via the quantum state tomography.

49
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Figure 5.1: Optical design of entanglement source consist of 405 nm pump laser,
pumped through a Half Wave Plate (HWP), mirror (M1), Quartz Crystal (QC) and
BBO non-linear crystal. Entangled photon pairs directed towards into two arms with
two mirrors (M2,M3), each arm contain a Quarter Wave Plates (QWPA, QWPB), Half
Wave Plates (HWPA, HWPB), Polarisers (PoLA, PolB), Narrow Band Filter (NBF),
Fibre coupler, Single Mode Fibre (SMF), Single Photon Avalanche Detector (SPAD)
and the photons will registered as coincidence in FPGA. The coincidence will send to

Personal Computer (PC) for counting.

5.1 Experimental setup

For our experiment, the optical system to generate entangled photon pairs consists of

a UV diode laser (λ = 405nm), half wave plate and two concatenated BBO crystals

which were cut to demonstrate type-I down conversion. A polariser, a half wave plate

and a quarter wave plate were placed in each arm of the down converted photons are

used for the projection measurements. A fibre coupler collected the entangled photons,

which was transfered to the Single Photon Avalanche Detectors (SPAD) to register the

photons as electric pulses. These electric pulses were registered as coincidence counts

by using the Field Programming Gate Array (FPGA). For the purpose of the alignment

process we used a mirror and fibre coupler laser as illustrates in the optical setup in Fig.

(5.1).
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5.1.1 Preparing a Pair of Polarised Entangled Photons

The generation of the entangled photon pairs for entanglement system was obtained by

using a laser to pump the photons. These photons were directed to the BBO crystal to

create the entangled photons.

5.1.1.1 The laser

In our study we used a UV diode laser with a wavelength of 405nm and 150mw optical

output power. This laser has high energy. Because the laser is produced by a diode,

then all the photons will have the same polarisation.

A half wave plate was placed after the laser and adjusted to 22.5◦ to give an equal

superposition for the horizontal and vertical polarisation. This beam passed through

the crystal which created down converted photon pairs.

5.1.1.2 Type-I BBO Crystal

The polarised entangled photon pairs were generated by a BBO crystal which was the

medium for the SPDC, that was discussed in Section. (4.1.2). Two crystals were cut for

type-I down conversion, mounted orthogonal such that, each one of them was responsible

to generate one type of the rectilinear polarisation (horizontal, vertical), as illustrated

in Fig. (5.2). The entangled photon pairs emerged with an equal probability of the

horizontal, vertical polarisation.

The wavelength of the emerging photons from the BBO crystal was double (810nm)

compared to the wavelength of the pump beam (405nm). This was because of energy

conservation. The polarisation of these photons was entangled, such that they will have

the same polarisation.

The birefringence of the BBO crystal and the condition of the phase matching forces

the entangled photons to propagate in cone shape with circular cross section around the

pump beam direction. Those photons emerge with the same energy which was half of

the pump beam energy.
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Figure 5.2: Two BBO crystal are cut to obtain type-I down conversion. The entangled
photon pairs will emerge with 50% probability with horizontal, vertical polarisation.

The phase matching angle for type-I down conversion was set to produce entangled

photon pairs by creating an angle of ±3◦ with the pump beam direction. To satisfy the

condition of conserving the momentum during the SPDC, the down converted photons

were emitted in opposite position points in the emitted cone. The crystal was mounted

on a rotating stage, which assisted to adjust the crystal optical axis to be in a horizontal

plane.

To measure the polarisation state for the down converted photons optical equip-

ments such as polarisers and wave plates were added, which is discussed in the next

section.

5.1.2 Polarisers and Wave plates

The polariser is an optical filtering device, which produces a linearly or circularly po-

larised light from unpolarised light and also has the ability to block certain polarisations.

A polariser was placed in each arm of the entangled photon to measure the polarisation

state of the entangled photons.

The wave plates are optical devices consisting of uniaxial birefringent crystal. The

wave plates change the polarisation state of the light passing through them, by altering

the phase between two perpendicular polarisation components of that light.
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Figure 5.3: Qarter Wave Plates (right) and Half Wave Plate (left) were used to vary
the polarisation, and to obtain the coincidence counts for various projective measure-

ments.

Two popular types of the wave plate are half wave plate and quarter wave plate, as

shown in Fig. (5.3).

The HWP (λ/2) transfers the linear polarisation of a light by an angle π and the

phase shift between the extraordinary and the ordinary modes is introduces by the same

aforementioned angle. The HWP is shown in Fig. (5.3) (left).

The QWP (λ/4) transfers the linear polarisation to circular polarisation and vice

versa, and introduces a phase shift of an angle π2. The QWP is shown in Fig. (5.3)

(right).

In our experiment, we used Thorlab motorized precision rotation stages (PRM1Z8E)

to mount the wave plates and the polariser. The PR1Z8E was small, compacted size

with 23mm thickness and the motor can rotated continuously with 360◦. The angular

displacement can been measured by the Vernier dial, which was marked on the rotating

plate.

The PRM1Z8E stages were driven by the Thorlab TDC001 servomotor driver which

was controlled by personal computer with its APT software or by LabVIEW as third

party software, see Fig. (5.4).
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Figure 5.4: Thorlab motorized precision rotation stage used to mount the wave-plates
as well as the polarisers.

The LabVIEW was coded by following the steps provided in the APT guide to

labview.

5.1.3 The collection of the entangled photons

The entangled photon pairs were collected by fibre coupler lenses which transfered the

single photons to single mode fibre. Two fibre couplers were chosen to couple a single

mode of the polarisation bases for specific wavelength.

These couplers were placed in each arm of the output of the crystal to collect the

entangled photon pairs which was transfered to the detector.

The alignment of the fibre couplers were achieved by using the method of the back

alignment. In this method, a fibre coupler red laser was plugged on the output of the

single mode fibre coupler. We directed the red laser beam through the BBO crystal and

by tilting the lens of the fibre coupler adjusted the phase matching angle.
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Figure 5.5: Two Single Photon Avalanche photodiode Detectors (SPAD) were con-
nected to fibre couplers with Single Mode Fibre (SMP). SMP were collected the down

converted photons to be converted into electric signal in SPAD .

The signal was transfered through the fibre coupler to Single Photon Avalanche

Detector (SPAD), the next section contain a more detail about the SPAD.

5.1.4 Single Photon Avalanche Detector

Single Photon Avalanche Detector (SPAD) is a compact semiconductor electric device

with high efficiency up to 60% for the 810nm wavelength, low dark count noise and low

electrical power consuming. SPAD has the ability to detect the photon number range

from few hundred to 30 million photons per second, and that is by using the technique to

measure very weak avalanches pulses at the early period when running the experiment.

The principle behind the SPAD operation is based on converting the energy of

the incident photon to free electric charge in semiconductor material by the concept of

the photoelectric effect. The output electric signal from the avalanche photodiode is

proportional to the number of the incident photon pulses.

The experiment was implemented in dark room due to the sensitivity of these de-

tectors to the background light, in the case when the background light is high, the

detection goes above the threshold and that may cause damage to the detectors. For

the best performance, the detector was often cooled thermo-electrically to−30◦C, but it

can be used even at room temperature.
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In our experiment, we used two SPAD to detect the down converted photons, see

Fig. (5.5). The output electrical pulses from the SPAD were connected to the coincidence

count module. We used the Altera DE2 FPGA programmed as a counting module,

in which the experiments were based on the coincidence counts to demonstrate the

measurements.

5.1.5 Coincidence Counts Unit Using the Altera DE2 FPGA

The simultaneous detection of two photons in different detectors is defined as coincidence

count. The direct method for counting the coincidence is to use logical AND gates. The

pulses from the two detectors are sent to the inputs of AND logic gates and the output

of the gate is logically true if and only if both inputs are simultaneously high and the

signals must arrive at the same time. The coincidence counting unit was responsible to

measure the coincidence. In our experiment this was based on the programmable logic

integrated circuit FPGA.

Our Coincidence-Counting Unit (CCU) is a multi-channel CCU built of integrated

circuit components. Two signals from the SPAD registered as inputs in the coinci-

dence counting unit, which registered a combination of random 2-fold coincidences. The

coincidence window was opened in a very short period 8ns. The pulses registered in

two outputs into a field programmable gate array (FPGA), the coincidence counts for

integration time intervals of 1 s .

FPGA is a hardware integrated circuit (chip of semiconductor material) configured

by software pre-written in VDHL language. This language was used to control the

quantum signal and to tell the machine which gate and module to register the incoming

signals from the SPAD detector and how to output the results. The FPGA is high speed

and high sensitivity with low dark noise / low excess noise, see Fig. (5.6).

5.1.6 Taking Data

Once all the aforementioned equipment were aligned properly, it was possible to count

the coincidence data from the FPGA, and this data was transfered to a personal com-

puter via a USB, which was interfaced by using LabVIEW.
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Figure 5.6: Field Programmable Gate Array (FPGA) is a coincidence counts module
that detect the incoming signal from the SPAD to register it as coincidence.

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench)

is a graphical programming language from National instruments. It uses icons instead

of lines of codes to create an environment to run a certain applications. LabVIEW uses

dataflow programming, in which the data flow determines the execution.

LabVIEW program is also known as Virtual Instrument (VI), since it has the ability

to operate as a physical instrument. VI uses functions to display an input from the user

interface or other sources and present the information in computer files. VI consist of

three components: a) the front panel, which is the user interface, that is built of a set of

tools and objects. b) The code or the block diagram which is used to control the front

panel by adding graphical representations of functions. c) Icons and connector pane,

classifies the VI. Also, the VI has the property to be used inside another VI, which is

called a subVI.

In our study, we used LabVIEW code for the coincidence counts written by Mark

Beck. We have modified it in order to be compatible to our equipments.
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Figure 5.7: Figure illustrated the final alignment of the equipments which used to
test the visibility, CHSH inequality and the fidelity of the system. A 405 nm laser has
pumped through a Half Wave Plate (HWP), mirror (MI), the phase difference of the
polarisation of the pump beam is adjusted with Quartz Crystal (QC), the pump beam
photons directed toward a BBO non-linear crystal which is the medium for SPDC. The
entangled photon pairs emerge from the BBO crystal and directed to arms two mirrors,
each arm contain a Quarter Wave Plates (QWP), Half Wave Plates (HWP), Polarisers
(PoL), Narrow Band Filter (NBF), Fibre coupler to collect the entangled photons,
Single Mode Fibre (SMF) to transfer the entangled photon pairs to Single Photon
Avalanche Detector (SPAD). The photons will registered as coincidence in FPGA, and

the coincidence will send to Personal Computer (PC) for counting.

5.2 The correlation Measurements

The optical equipments used to test the correlation of the entangled photons were il-

lustrated in Fig. (5.7) and Fig. (5.5) and the HWP and QWP were set to 0◦. This

correlation was tested by measuring the visibility of the rectilinear and diagonal bases,

and by violating the CHSH inequality.

5.2.1 The Visibility

In order to test the visibility of the entangled photon pairs in the two non-orthogonal

bases (the rectilinear and the diagonal bases), two polarisers were adjusted. The angle of

the first polariser was set to 0◦ degree for the rectilinear bases, and 45◦ for the diagonal
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(a) Rectilinear basis (b) Diagonal basis

Figure 5.8: Plot illustrating the polarisation correlation between the rectilinear and
diagonal bases. Fig. (5.8a) shows the measured coincidence counts for different polari-
sations in the rectilinear basis. Fig. (5.8b) represents the measured coincidence counts

for different polarisations in the diagonal basis.

basis and by changing the orientation of the second polariser and by measuring the

coincidence by the FPGA, the the visibility were obtained. The outcomes coincidence

counts were plotted against the different angles of the second polariser, which allowed

us to test the correlation and the existence of the entangled photons by observing the

cosine square dependence .

The coincidence counts for two non-orthogonal bases were observed as illustrated

in Fig. (5.8), which demonstrated a cosine square dependence and proves the existence

of the entangled photons.

The visibility was measured by using Eqn. (4.33) and Eqn. (4.34) to be 94± 0.016

for the rectilinear basis, and 90±0.013 for the diagonal basis, and this verified the strong

correlation and demonstrated the non-classical behaviour of the entangled photon pairs.

5.2.2 CHSH Inequality Violation

We also used the same optical setup to violate the CHSH inequality. This was demon-

strated by measuring the coincidence counts of the polarised entangled photon pairs after

each had passed through polariser analyser. Here, we used different angle orientations

for the two polariser (polariser A with an angle α, polariser B with an angle β). The

correlation function E was measured by running four different angles setting for each
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Table 5.1: Coincidence counts data for violating CHSH inequality experiment
with different polarisations angles and with integration time 1s and accidental

coincidence=8%.

α β C(α, β)

0 22.5◦ 9841
90◦ 22.5◦ 903
0◦ 112.5◦ 1476
90◦ 112.5◦ 9702

45◦ 22.5◦ 11911
135◦ 22.5◦ 370
45◦ 112.5◦ 2122

1355◦ 122.5◦ 4588

0 67.5◦ 711
90◦ 67.5◦ 7706
0 157.5◦ 10263

90◦ 157.5◦ 2890

45◦ 67.5◦ 12171
135◦ 67.5◦ 350
45◦ 157.5◦ 3173
135◦ 157.5◦ 4667

polariser, (α, α′, α⊥, α
′
⊥) and (β, β′, β⊥, β

′
⊥). The resulted 16 coincidence counts rates

represented in Table. (5.1).

The expectation value E was measured using the 16 coincidence counts given in

Table. (5.1). After we applied Eqn. (4.36), we obtained the different values of E for

different polarisations as follows,

E(0, 22.5◦)=0.78± 0.002

E(45◦, 22.5◦)=0.74± 0.003

E(0, 67.5◦)=−0.67± 0.003

E(45◦, 67.5◦)=0.65± 0.003

The quantity S is calculated according to Eqn. (4.38) to be 2.80 ± 0.011.

The above mentioned results violate the CHSH inequality and provided strong ev-

idence, that our system was described by quantum theory.
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Table 5.2: The coincidence counts data measured in different polarisation projection
to reconstruct the density matrix.

State v HWP 1 QWP 1 HWP 2 QWP 2 C

v = 1 |H〉 |H〉 45◦ 0 45◦ 0 30101

v = 2 |H〉 |V 〉 45◦ 0 0 0 818

v = 3 |V 〉 |V 〉 0 0 0 0 39653

v = 4 |V 〉 |H〉 0 0 45◦ 0 594

v = 5 |R〉 |H〉 22.5◦ 0 45◦ 0 8392

v = 6 |R〉 |V 〉 22.5◦ 0 0 0 12014

v = 7 |P 〉 |V 〉 22.5◦ 45◦ 0 0 17205

v = 8 |P 〉 |H〉 22.5◦ 45◦ 45◦ 0 11508

v = 9 |P 〉 |R〉 22.5◦ 45◦ 22.5◦ 0 14070

v = 10 |P 〉 |P 〉 22.5◦ 45◦ 22.5◦ 45◦ 22680

v = 11 |R〉 |P 〉 22.5◦ 0 22.5◦ 45◦ 9589

v = 12 |H〉 |P 〉 45◦ 0 22.5◦ 45◦ 10774

v = 13 |V 〉 |P 〉 0 0 22.5◦ 45◦ 7288

v = 14 |V 〉 |L〉 0 0 22.5◦ 90◦ 8896

v = 15 |H〉 |L〉 45◦ 0 22.5◦ 90◦ 13064

v = 16 |R〉 |L〉 22.5◦ 0 22.5◦ 90◦ 31007

5.3 Fidelity of the System

The fidelity of the system was measured by reconstructing the density matrix via the

quantum state tomography, as discussed in Section. (4.3.2).

To observe 16 coincidence counts for 16 projection measurements were performed

by adjusting the orientation of HWP and QWP as shown in Table. (5.2).

The density matrix was reconstructed for 16 projective polarisations state which

are given in Table. (5.2). From Eqn. (5.1) ,the reconstructed matrix is normalised with

Trρ̂ = 1 and Hermitian ρ̂† = ρ̂. The fidelity of the system was equal to 0.97 ± 0.0003,

this value demonstrated the indistinguishbility of the entangled photons. The real part

of the reconstructed density matrix is given in the graphical representation shown in

Fig. (5.9).
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ρ̂ =


0.4229 0.0337i− 0.0659 −0.0978i− 0.0540 0.0147i+ 0.6281

−0.0337i− 0.0658 0.0115 0.3392i− 0.2730 −0.1155i− 0.0426

0.0977i− 0.05395 −0.3392i− 0.2730 0.00835 0.1578i− 0.1803

0.6281 − 0.0147i 0.1040i− 0.0426 −0.1578i− 0.1804 0.55719


(5.1)

Figure 5.9: Graphical representation of the real part of the density matrix that
reconstructed in the above results.
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Conclusion

Quantum theory was originally developed to describe the smallest entities in physics.

Later it turned out that it also makes fascinating predictions over macroscopic distances.

Establishing quantum technology as an application in quantum information science en-

ables quantum systems to become available as a resource for communication protocols

such as Quantum Key Distribution (QKD), for both fibre and free space system.

QKD has been considered as a field of research that uses quantum mechanical prin-

ciple to transfer the information between parties. QKD based entanglement is a com-

munication protocol that produces a higher layer in the security of the information. The

successful implementation of such protocol, is based on the transmission and detection

of entangled photons, would validate the key technology of a quantum communications

protocol.

Although the development in the present technologies such as quantum optics and

fibre optic technology had implemented the privacy tasks of the QKD, there are some

factors reduces the security of the QKD based entanglement. It involves the equipment

efficiencies, decoherence of the entangled photons and the coincidence collections effi-

ciency. It also limits the rate of producing a good quality of entangled photons as well

as the security of the QKD.

This thesis has given a brief outline of quantum entanglement and it is application in

QKD and explained the method of producing entangled photon pairs. The detection of

good quality entangled states was also a part of this study. Furthermore, it represented

experimental results on some tests have been done to characterise the system for QKD.

63
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This project was undertaken to design an automated, portable system that gen-

erated efficient polarised entangled photon pairs, which can be used to develop the

quantum communication-based entanglement such as QKD. Our system demonstrated

the fundamental features that important to implement the privacy task for QKD based

entanglement. We started by producing efficient entangled photons that are providing

a high rate for transforming the information, this was established by using Spontaneous

Parametric Down Conversion (SPDC) process.

Afterwards, the correlation was tested by measuring the visibility of the system in

two different bases (rectilinear and diagonal basis). The resulting values illustrate the

strong correlation of our entangled photons. Also, the Clauser, Horne, Shimony and Holt

(CHSH) inequality was violated to prove the existence of the entangled photons. Vio-

lating the CHSH inequality demonstrates the non-classical correlation of these photons

and the strong evidence of non-locality of nature.

Finally, the purity of our system has been established by carrying out the quantum

state tomography technique and reconstructing the density matrix to measure the fidelity

of the system.

Many techniques were considered in this study to overcome the decoherence and the

coincidence collection efficiency limitations. This was obtained by using type-I ultra-

bright β Barium BOrate (BBO) crystal as medium for SPDC together with crystal

compensator. These two are used to increase the brightness of type-I source and that

improves the fidelity of the system. Also, by adjusting the relative phase shift between

photons of different polarisation in birefringent crystals increase the coincidence collec-

tion efficiencies.

Taken all together, our good results suggest that our system can be used to imple-

ment the privacy tasks of QKD. The study enhances our understanding in entanglement

as phenomena with too many applications in quantum mechanics field area and the

quantum information theory. This research will serve as a base for future studies involv-

ing QKD in our research group, generating the key and producing the communication

protocols in everyday life. The current finding adds to a growing body of literature on

the testing fundamental of quantum mechanics with large scale ground spaces and mov-

ing frames, involving ground satellite links which is of my interest for future work. The

ground satellite links tests are based on link distances exceeding the Low Earth Orbit
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(LEO) scale (below 2000 km). Satellites with orbits higher than LEO are interesting

for the implementation of secure information protocols for future Global Navigation

Satellite System (GNSS) constellations, or for the realisation of permanent links with

GEOstationary (GEO) satellites.
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