THE LINING OF STEEP LANDFILL SLOPES IN SOUTH AFRICA AND THE APPLICABILITY OF THE "MINIMUM REQUIREMENTS FOR WASTE DISPOSAL BY LANDFILL" BY THE DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Avinash Shripersadh Dookhi

In partial fulfilment of the

MASTERS OF SCIENCE IN ENGINEERING

College of Agriculture, Engineering and Science University of KwaZulu- Natal Durban South Africa

November 2013

Supervisor: Mr SM Jewaskiewitz

ABSTRACT

In August 2013, the landfill liner designs prescribed by the Minimum Requirements for Waste Disposal by Landfill was superseded by the containment barriers of landfills, now prescribed by the National Norms and Standards for Disposal of Waste to Landfill. These newly prescribed lining systems were assessed in terms of mineral layers, geosynthetic materials and alternatives of equivalent performance. A Class B landfill lining system was then selected to determine its performance on various slope angles.

Various geosynthetic materials were tested for their interface shear strength parameters using a ring shear apparatus. These shear strength parameters were then used as inputs to calculate the selected factors of safety. The factors of safety for stability on slopes of 1:4, 1:3, 1:2 and 1:1 using 2-D limit equilibrium analyses were then calculated. The factors of safety for the integrity of the selected geosynthetic materials were also calculated.

Where factors of safety were found to be less than the accepted value of 1.5, the lining system components were replaced with geosynthetics of equivalent performance and the factors of safety for stability on slopes of 1:4, 1:3, 1:2 and 1:1 were recalculated. Where factors of safety were still below 1.5, another geosynthetic in the form of veneer reinforcement was used to increase the factor of safety to an acceptable value. Alternative single sided textured and double sided textured HDPE geomembrane liners were also used to help increase the interface shear parameters.

The findings from this dissertation will provide a greater understanding to landfill designers about the selection of materials of equivalent performance, the interface shear strengths of the materials tested and the performance of various landfill lining systems on steep and varying slopes. This research will also assist landfill designers to determine the relationship between various lining systems, the slope angles and factors of safety. Although this research will provide assistance with the above concepts, site specific testing is still required.

Finally, the recommendations for further research on the lining of steep slopes are also highlighted.

In Memory of

Reya Dookhi

(22 March 2011 – 28 March 2011)

DECLARATION

I, Avinash Shripersadh Dookhi, declare that:

- 1. The research reported in this thesis, except where otherwise indicated, is my original research.
- 2. This thesis has not been submitted for any degree or examination at any other university.
- 3. This thesis does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.
- 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:
 - a) Their words have been re-written but the general information attributed to them has been referenced
 - b) Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced.
- 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections.

.

Signed: Avinash Shripersadh Dookhi

22.7.2014 Date

As the candidate's Supervisor I agree / do not agree to the submission of this thesis

.....

Signed: Mr SM Jewaskiewitz

22.7.2014 **Date**

ACKNOWLEDGEMENTS

Firstly, I would like to thank my Supervisor, Mr SM Jewaskiewitz, for his wisdom and assistance and the extra hours that he has put in in helping me achieve my objectives and meet my deadlines. Thank you, your assistance is much appreciated.

I would like to thank my Employer, Envitech Solutions, for giving me the time off for completing this research. I have been trying to balance work and this research for the year; however without the time given to me towards the end of this research I would not have been able to complete this research.

Kaytech Engineered Fabrics and Aquatan Lining Systems for providing me with all the geosynthetic samples that I needed and the technical data sheets. Apologies for hassling you guys.

Mr Preneshen Govender and Mr Mark Holder, your assistance with the shear box testing is much appreciated. Sitting in the laboratory taking continuous readings for four hours straight for weeks is no easy task. Your assistance has helped me to continue with work pressures when I needed it the most. Thank you.

To my family, who always believes that I can do more, I express my deepest gratitude. To my mum and dad, if it wasn't for the occasional nagging of "when are you going to finish", I could have let this research / degree that I started so long ago slide. Thank you for wanting more for me and for giving me all that you can.

To Nerissa, your support during this research has been amazing and your understanding when I was neglecting you even more so. Without you, this would not have been possible. I am forever grateful and indebted to you. Thank you! And finally, to my little man Sahil, who I have not spent enough time with during this research either, although he always wanted to do "work" with me. Maybe one day you will understand that this was all for you, trying to protect this earth for you and your future generations...

TABLE OF CONTENTS

ABSTRAC	CT	ii
DECLARA	ATION	iv
ACKNOW	/LEDGEMENTS	v
TABLE O	F CONTENTS	vi
LIST OF A	ABBREVIATIONS	xiii
СНАРТЕН	R 1	1
INTRODU	JCTION	1
1.1	Introduction	1
1.2	Motivation for the Investigation	4
1.3	Aim of the Investigation	4
1.4	Objectives of the Investigation	5
1.5	Outline of the Dissertation	5
СНАРТЕВ	R 2	7
LITERAT	URE REVIEW	7
2.1	Review of Past and Present Prescribed Lining Systems	7
2.2	Specification of Prescribed Lining System Elements	14
2.3	Introduction and Description of Applicable Geosynthetics	16
2.4	Equivalency Issues	18
2.4.1	Geonets	18
2.4.2 (Geotextiles as a Protection Layer	20
2.4.3 (Geosynthetic Clay Liner	23
2.4.4 \$	Summary of Equivalent Landfill Lining Components and Factors Ado Prove Equivalency	pted to 24
2.5	Landfill Stability	25
2.5.1 Me	ethods of Stability Analysis	26
2.5.2 Fa	ectors of Safety	30
2.6	Test Methods	32
2.6.1 Ma	aterial Properties	32
2.6.2 In	terface Shear	33
2.7	Peak Shear Strength Versus Residual Shear Strength	36
2.8	Literature Review Conclusion	37

CHAPTE	R 3	
METHO	OOLOGY	38
3.1	Introduction	38
3.2	Stability Analysis Approach	40
3.3	Selection of Lining System to be Assessed	40
3.4	Equivalent Lining System Components	42
3.4.1	Under Drainage and Monitoring System	43
3.4.2	Compacted Clay Liner	44
3.4.3	HDPE Geomembrane Protection	45
3.5	Selection of HDPE Geomembranes	46
3.6	Direct Shear Apparatus	47
3.7	Selection of Slope Angles	49
3.8	Selection of Factor of Safety	49
3.9	Summary of Methodology	50
CHAPTE	R 4	51
RESULTS	S AND DISCUSSIONS	51
4.1	Presentation of Results	51
4.2	Selection of Lining System Interfaces for Investigation	51
4.3	Effects of Slope Angle	55
4.4	Selection of Critical Interfaces	57
4.5	Configuration No. 1	58
4.6	Configuration No. 2	60
4.7	Configuration No. 3	64
4.8	Factors Not Included in Above Analyses	65
4.9	Correlation of Results	66
CHAPTE	R 5	68
CASE ST	UDY	68
5.1	Introduction	68
5.2	Lining System	70
5.3	Lining System Interfaces	71
5.4	Assessment by Appointed Geotechnical Engineer	76
5.5	Comments on the Case Study	76

CHAPTER	3 6
SUMMAR	Y AND CONCLUSIONS
6.1	Introduction
6.2	Methodological Approach Used To Achieve Objectives 80
6.3	Summary of Results
6.4	Conclusions 82
6.5	Suggestions for Further Research
REFERI	ENCES
APPENI	DICES
Appendi	x A: Technical Data Sheets
GCL D	Data Sheet
GCL I	nterface Friction Test Report
GCL T	ensile Strength Test
Geotex	tile Data Sheet
HDPE	Data Sheet
Rock C	Grid PC Data Sheet
Secugr	id Data Sheet
Appendi	x B: Geotextile Equivalency Calculations for HDPE Protection Layer 100
Appendi	x C: Stability Calculations
C.1.	Ring Shear Tests – Raw Data and Graphs 106
C.2.	Configuration No. 1 Factors of Safety116
C.3.	Factors of Safety for HDPE Geomembrane Integrity
C.4.	Configuration No. 2 Factors of Safety
C.5.	Factors of Safety for GCL, Protection Geotextile and Veneer Reinforcement Integrity
C.6.	Configuration No. 3 Factors of Safety140
Appendi	x D: Case Study – Mariannhill Landfill Site149
D.1.	Planning Phases Site Plan and Construction Layout Plan 150
D.2.	Ring Shear Tests – Raw Data and Graphs 153
D.3.	Shear Box Test – Secugrid vs Protection Geotextile
D.4.	Calculation of Factors of Safety for Mariannhill Landfill Site
D.5.	Factors of Safety for HDPE Geomembrane, Protection Geotextile and Veneer Reinforcement Integrity

D.6. Mariannhill Landfill Cell 4 – Phase 3 – Consultant Letter
--

LIST OF FIGURES

Figure 2.1: G:S:B ⁻ Landfills (DWAF, 1998)	8
Figure 2.2: G:M:B ⁻ Landfills (DWAF, 1998)	8
Figure 2.3: G:L:B ⁻ Landfills (DWAF, 1998)	9
Figure 2.4: G:S:B ⁺ Landfills (DWAF, 1998)	9
Figure 2.5: G:M:B ⁺ and G:L:B ⁺ Landfills (DWAF, 1998)	9
Figure 2.6: H:h Landfills (DWAF, 1998)	. 10
Figure 2.7: H:H Landfills and Encapsulation Cells (DWAF, 1998)	. 10
Figure 2.8: Class A Landfill (Government Gazette, No. 36784, 2013)	. 12
Figure 2.9: Class B Landfill (Government Gazette, No. 36784, 2013)	. 12
Figure 2.10: Class C Landfill (Government Gazette, No. 36784, 2013)	. 13
Figure 2.11: Class D Landfill (Government Gazette, No. 36784, 2013)	. 13
Figure 2.12: Examples of Geotextiles	. 17
Figure 2.13: Examples of GCLs	. 17
Figure 2.14: Examples of Geomembranes	. 18
Figure 2.15: Limit Equilibrium forces involved in a finite length slope analysis	. 27
Figure 2.16: Forces acting on two adjacent wedges of a waste mass in a	. 29
Figure 2.17: Interface shear forces in a double composite liner system (Qian, 2008)	. 33
Figure 2.18: Sketch of a typical shear box (www.tonygraham.co.uk/)	. 34
Figure 2.19: Sketch of a typical ring shear apparatus (http://www.controls-	
group.com/eng/soil-mechanics-testing-equipment/bromhead-ring-shear-	
apparatus.php)	. 35
Figure 2.20: Direct shear test data (Koerner, 2005)	. 36
Figure 2.21: Mohr-Coulomb failure envelopes (Koerner, 2005)	. 36
Figure 3.1: Design flow chart: Steep side slope lining system (Dixon et al., 2003)	. 39
Figure 3.2: Class B Landfill (Government Gazette, No. 36784, 2013)	. 42
Figure 3.3: Angle of repose	. 43
Figure 3.4: Construction of a compacted clay liner on a landfill slope	. 47
Figure 3.5: Ring shear apparatus (UKZN)	. 47
Figure 3.6: Ring shear apparatus showing geosynthetics	. 48
Figure 3.7: Geosynthetics after a ring shear test	. 48
Figure 3.8: Methodology adopted for this research	. 50
Figure 4.1: Interface No. 1 shear strength parameters	. 52
Figure 4.2: Interface No. 2 shear strength parameters	. 52
Figure 4.3: Interface No. 3 shear strength parameters	. 52
Figure 4.4: Interface No. 4 shear strength parameters	. 53
Figure 4.5: Interface No. 5 shear strength parameters	. 53
Figure 4.6: Interface No. 6 shear strength parameters	. 53
Figure 4.7: Configuration No. 1	. 58
Figure 4.8: Graphical presentation of Configuration No. 1 factors of safety	. 59
Figure 4.9: Configuration No. 2	. 60

Figure 4.10: Graphical presentation of Configuration No. 2 factors of safety62
Figure 4.11: Configuration No. 3
Figure 4.12: Graphical presentation of Configuration No. 3 factors of safety65
Figure 5.1: Lining of gentle slope
Figure 5.2: Earthworks showing steep slope70
Figure 5.3: Type A lining system
Figure 5.4: Type B lining system
Figure 5.5: Type C lining system
Figure 5.6: Interface No. 3a shear strength parameters72
Figure 5.7: Interface No. 4a shear strength parameters72
Figure 5.8: Interface No. 5a shear strength parameters
Figure 5.9: Shear strength parameters for test purposes
Figure 5.10: Graphical presentation of Mariannhill Landfill Site Cell 4 Phase 3 factors of
safety75
Figure 5.11: Difference between GLB ⁺ site prescribed lining system and the lining system
used at Mariannhill Landfill site on the steepest slope of 1 in 277
Figure 5.12: Cell 4 Phase 3 upon completion

LIST OF TABLES

Table 2.1:	Landfill Disposal Requirements Based on Waste Type	11
Table 2.2:	Generalised Technical Equivalency Assessment for GCL Liners Beneath	
	Landfills and Surface Impoundments (Koerner et al., 1993)	24
Table 2.3:	Summary of Equivalent Landfill Lining Components and Factors Adopted to	
	Prove Equivalency	25
Table 3.1:	Lining system interfaces analysed and tested	42
Table 3.2:	Factors of safety for a Bidim A10 nonwoven polyester geotextile to be used as a	ì
	protection layer	46
Table 3.3:	Selection of slope angles	49
Table 4.1:	Lining system interfaces tested	51
Table 4.2:	Friction angles and adhesion values from ring shear tests carried out	54
Table 4.3:	Additional friction angles and adhesion values	55
Table 4.4:	Selected slope angles showing recommended minimum peak friction angles	56
Table 4.5:	Slope length of geosynthetics on selected slope angles	57
Table 4.6:	Configuration No. 1 factors of safety	58
Table 4.7:	Factor of safety for HDPE geomembrane integrity	50
Table 4.8:	Configuration No. 2 factors of safety	51
Table 4.9:	Factors of safety for geosynthetics integrity	53
Table 4.10	: Configuration No. 3 factors of safety	54
Table 5.1:	Cell construction sequence showing geomembrane liners used	59
Table 5.2:	Lining system interfaces	72
Table 5.3:	Friction angles and adhesion values from direct shear tests	74
Table 5.4:	Mariannhill Landfill site factors of safety of the weakest interface	74
Table 5.5:	Integrity factors of safety	75
Table 6.1:	Summary of factors of safety for analysed lining systems	32
Table 6.2:	Factors of safety for Mariannhill Landfill Site	82

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
CCL	Compacted Clay Liner
DWAF	Department of Water Affairs and Forestry
FS	Factor of Safety
GCL	Geosynthetic Clay Liner
UKZN	University of Kwa-Zulu Natal
VS	Versus

CHAPTER 1

INTRODUCTION

This Chapter introduces the research topic and the reasons and motivation for this research. The introduction also highlights the importance of the topic in the waste management industry in South Africa and the important possible impacts thereof. The main objectives are also defined. Chapter 1, Introduction, is concluded by an outline of the chapters to follow for this dissertation.

1.1 Introduction

The focus of this dissertation is to assess the lining system of landfill slopes as recommended by the Minimum Requirements for Waste Disposal (MRWD) Second Edition 1998 by the South African Department of Water Affairs and Forestry and to determine whether the minimum requirements specified are applicable to steep landfill slopes. The introduction will briefly explain the history of waste management and the progression thereof globally and within South Africa with regards to general practice and legislation. The introduction will also clarify the definition of steep landfill slopes.

Since the beginning of mankind, waste has been generated. It was only around 10 000BC when man abandoned his nomadic behaviour and started living in communities that waste became a problem. The waste within the communities then started jeopardising the city defences. It was around 500BC in Athens, Greece that the first recorded municipal waste dump was established. However, the practice of dumping waste within cities was still common in the United States and Europe until the late 1800s. Towards the end of the 19th Century and the beginning of the 20th Century, communities realised that the waste was causing ill health and diseases and began collecting the waste and disposing of it in open dumps, in the sea or burning the waste. Global waste management then progressed rapidly from the precursor to the modern landfill that was started in California in 1935, to the first guidelines for a "sanitary landfill" published by The American Society of Civil Engineers in 1959, to the American Solid Waste Disposal Act of 1965, to the American Resource Conservation and Recovery Act of 1976 to eventually the new American Federal Standards

for Municipal Solid Waste (MSW) Landfills established by the Environmental Protection Agency (EPA) in 1991.

Following closely behind the global progression of waste management, the Waste Management Series produced by the South African Department of Water Affairs and Forestry was published in 1994. The Waste Management Series comprises of the following documents:

Document 1: Minimum Requirements for the handling, Classification and Disposal of Hazardous Waste

Document 2: Minimum Requirements for Waste Disposal by Landfill

Document 3: Minimum Requirements for Monitoring at Waste Management Facilities

After various workshops and consultation, the Second Edition of the Waste Management Series was published in South Africa in 1998.

As new technologies become available and experience is gained, waste regulations, legislations, policies and standards are continuously adapted to ensure maximum protection to the human health and the environment. Currently, Waste in South Africa is governed by means of a number of pieces of legislation, including:

- The South African Constitution (Act 108 of 1996)
- Hazardous Substances Act (Act 5 of 1973)
- Health Act (Act 63 of 1977)
- Environment Conservation Act (Act 73 of 1989)
- Occupational Health and Safety Act (Act 85 of 1993)
- National Water Act (Act 36 of 1998)
- The National Environmental Management Act (Act 107 of 1998)
- Municipal Structures Act (Act 117 of 1998)
- Municipal Systems Act (Act 32 of 2000)
- Mineral and Petroleum Resources Development Act (Act 28 of 2002)
- Air Quality Act (Act 39 of 2004)
- National Environmental Management: Waste Act, 2008 (Act 59 of 2008)

During the compilation of this dissertation on 23 August 2013, The Minister of Environmental Affairs published the following Regulations, Norms and Standards for immediate implementation:

- R634 Waste Classification and Management Regulations
- R635 National Norms and Standards for the Assessment of Waste for Landfill Disposal
- R636 National Norms and Standards for Disposal of Waste to Landfill

The implementation of the above National Norms and Standards has had a direct impact on my dissertation and research, as the landfill classification and liner system / containment barrier specified in the Minimum Requirements for Waste Disposal by Landfill has been superseded. This dissertation and research will be based on the containment barrier specified in the new National Norms and Standards for Disposal of Waste to Landfill dated 23 August 2013.

The Minimum Requirements for Waste Disposal by Landfill states that the impoundment slope must not be steeper than 1 vertical to 3 horizontal and, depending on geotechnical factors, may have to be flatter than this whereas the National Norms and Standards for Disposal of Waste to Landfill states that alternative design layouts for slopes exceeding 1:4 (vertical:horizontal) may be considered provided equivalent performance is demonstrated.

Although currently, in South Africa and globally the concept of Integrated Waste Management, which also includes waste minimisation, recycling and treatment is being promoted, there is, and will be, the need for landfill sites in the foreseeable future. As land for these landfill sites become scarcer, and although there are greater technical design challenges, the use of land with slopes greater than 1 in 4 and 1 in 3 become more commercially viable.

The definition of a steep slope is often subjective and is often assumed to be near vertical. Jones and Dixon (2003) suggest that slope angles in excess of 30° are "steep". Fowmes (2007) suggests that the classification of steep sided landfill be based on the stability of the internal components, and the following definition of a steep slope is suggested and will be used for this dissertation:

"A steep slope lining system is a side slope lining system placed at an angle, at, or greater than the limiting value at which the geological barrier, drainage layer, or artificial sealing liners are naturally stable without application of additional loads from the waste mass, anchorage or engineered support structures." Fowmes (2007)

The general objective of a landfill design is to provide a cost effective, environmentally accepted waste disposal facility and the main objective of the lining system is to prevent pollution by leachate of the adjacent ground water and surface water. Therefore, the stability and integrity of the lining system on steep slopes, in both the short and the long term, are vital in its performance as a barrier.

1.2 Motivation for the Investigation

During the design of various lining systems for different sites, the stability and integrity, of the lining system is always in question. Although the National Norms and Standards for Disposal of Waste to Landfill provides the minimum requirements for the lining system and states that alternative design layouts for slopes exceeding 1:4 may be considered, the design engineer is always left with the decision of what the optimum lining system would comprise of and what the most desirable landfill side slopes should be taking into consideration the cost implications and whether the design is environmentally acceptable for the duration of its intended life.

Although every lining system design is site specific, the design of lining systems on steep slopes has and always will be a global challenge. Elton et al., 2002 paper which details geomembrane research needs states that further research is required on geomembranes on steep walls, thus the motivation for this investigation.

1.3 Aim of the Investigation

The aim of this investigation was to assess the stability of legislated landfill lining systems on varying slopes by calculating the factors of safety whilst using the critical interface parameters.

1.4 Objectives of the Investigation

The objectives of this investigation were:

- 1. To select a representative landfill lining system from the various classes of landfills prescribed by the National Norms and Standards for Disposal of Waste to Landfill.
- 2. To determine the various landfill system interfaces and performing direct shear tests between these interfaces.
- 3. To determine the stability of the prescribed landfill lining systems on various slopes by calculating the Factors of Safety on the critical interfaces by using the limit equilibrium analyses for a finite slope length.
- 4. To determine whether the use of alternative geosynthetics instead of the prescribed mineral layers in the lining system will help increase the Factors of Safety on steep slopes.
- 5. To determine whether the landfill lining systems prescribed by the National Norms and Standards for Disposal of Waste to Landfill is stable and suitable for steep slopes.

Although not one of the primary objectives, this investigation was to act as a first generation preliminary guide to designers of lining systems to determine the relationship between the various lining layers, slopes and factors of safety that may be encountered, although site specific testing must be carried out.

The Mariannhill Landfill site was selected as a case study due to the varying and steep valley side slopes, the variability of the lining system elements for the various landfill cells, as technology improved and legislation changed, and the overall complexity of the site. The site specific conditions of the various lining system elements were assessed to determine the stability of the lining system on the steep side slopes. The aim was to determine the overall factor of safety and to confirm that the design was conservative.

1.5 Outline of the Dissertation

Chapter Two of this dissertation details the changes in legislation and prescribed lining systems and introduces the various liner components. The available tools used for

determining the stability of lining systems is discussed and explained. The decision on whether to use the peak or residual shear strengths is also discussed.

Chapter Three presents the methodology used for determining the stability of lining systems from the tools available in chapter two. The use of alternative lining components is investigated where the prescribed lining components are not suitable. The test methods used are also discussed and the direct shear testing methods used for this dissertation is detailed.

Chapter Four presents the results obtained from the direct shear testing, by means of ring shear tests, and the stability analyses, for the prescribed lining system components, as well as the alternative geosynthetics used to help improve the stability. The self-weights of the various lining system components are also assessed. The use of geogrids as veneer reinforcement is analysed. Finally, the factors that were not considered during this investigation are discussed.

The case study used for this dissertation is presented in Chapter Five. The case study aims to assess the lining system on a steep sided valley landfill site. The complexity of this site is discussed and the reasons for selecting this site are explained. The selected lining system is analysed and the factor of safety is checked for stability.

Chapter Six presents a summary of the research and conclusions for the dissertation. The results obtained from the research are explained and the objectives of this research are revisited. Recommendations for further research on this topic are also highlighted.

CHAPTER 2

LITERATURE REVIEW

Chapter Two assesses the change in legislation with regards to the prescribed lining systems and introduces the various liner components. The definitions and a review of various geosynthetics are undertaken. The concept of landfill stability is discussed. The limit equilibrium concept is explained and the limit equilibrium forces are shown. The applicable factors of safety are assessed. The various applicable test methods are reviewed. Finally, the decision on whether to use peak or residual shear strengths is discussed.

2.1 Review of Past and Present Prescribed Lining Systems

The Waste Management Series that was published in 1998 by the Department of Waters Affairs and Forestry is the prescribed reference framework of standards for waste management in South Africa. Document 2 of the Waste Management Series, Minimum Requirements for Waste Disposal by Landfill detailed the landfill liner designs when the research for this dissertation commenced and will therefore be highlighted. The landfill liner designs were based on the following criteria:

- <u>Waste Class</u>, and the waste class may be:
 - ➢ General Waste (G) or
 - ➢ Hazardous Waste (H)
- Landfill Size Class, and the landfill size class may be:
 - Communal (C), with a maximum rate of deposition of less than 25 tonnes per day,
 - Small (S), with a maximum rate of deposition of more than 25 tonnes per day and less than 150 tonnes per day,
 - Medium (M), with a maximum rate of deposition of more than 150 tonnes per day and less than 500 tonnes per day or
 - ➤ Large (L), with a maximum rate of deposition of more than 500 tonnes per day

- <u>The Potential for Significant Leachate Generation</u>, and may be:
 - ➢ Does not generate significant leachate (𝔥⁻) or
 - ➢ Generates significant leachate (**B**⁺)

The landfill liner designs based on the Minimum Requirements for Waste Disposal by Landfill, that was applicable to all slopes i.e. gentle and/or steep, are illustrated in Figure 2.1 to Figure 2.7.

Waste body 150mm Base preparation layer In situ soil

Figure 2.1: G:S:B⁻ Landfills (DWAF, 1998)

Figure 2.2: G:M:B⁻ Landfills (DWAF, 1998)

Figure 2.3: G:L:B⁻ Landfills (DWAF, 1998)

Figure 2.4: G:S:B⁺ Landfills (DWAF, 1998)

Figure 2.5: G:M:B⁺ and G:L:B⁺ Landfills (DWAF, 1998)

Figure 2.7: H:H Landfills and Encapsulation Cells (DWAF, 1998)

On 23 August 2013, the above landfill liner designs were superseded by the Landfill Classification and Containment Barrier Designs as contained in the new National Norms and Standards for Disposal of Waste to Landfill. The containment barrier designs are now based on the new waste classification and are prescribed by the waste types.

The waste types are extensively prescribed in Government Gazette, No. 36784, 2013.

The landfill disposal requirements for the waste types are also included in Government Gazette, No. 36784, 2013 and are summarised in Table 2.1 and compared to the Minimum Requirements for Waste Disposal by Landfill.

Weste Tree	Landfill Disposal Requirements and Comparison			
waste Type	National Norms and Standards for Disposal of Waste to Landfill classification	Minimum Requirements for Waste Disposal by Landfill classification		
Type 0 Waste	Waste to landfill is not allowed. Waste must be treated and re-assessed			
Type 1 Waste	Class A landfill	H:h / H:H		
Type 2 Waste	Class B landfill	$G:L:B^+$		
Type 3 Waste	Class C landfill	$G:L:B^+$		
Type 4 Waste	Class D landfill	G:L:B		

 Table 2.1: Landfill Disposal Requirements Based on Waste Type

The containment barriers that are now applicable to all slopes i.e. gentle and/or steep are illustrated in Figure 2.8 to Figure 2.11.

Literature Review

Figure 2.8: Class A Landfill (Government Gazette, No. 36784, 2013)

Figure 2.9: Class B Landfill (Government Gazette, No. 36784, 2013)

Figure 2.10: Class C Landfill (Government Gazette, No. 36784, 2013)

Waste body 150mm Base preparation layer In situ soil

Figure 2.11: Class D Landfill (Government Gazette, No. 36784, 2013)

This dissertation was based on the analysis of the containment barrier designs as contained in the new National Norms and Standards for Disposal of Waste to Landfill, as the landfill liner designs previously prescribed by the Minimum Requirements for Waste Disposal by Landfill have been superseded.

It should be noted however, that although the landfill liner designs have been superseded by the containment barrier designs, the Minimum Requirements for Waste Disposal by Landfill still prescribes the specifications of the barrier design elements as these have not been amended by the new National Norms and Standards for Disposal of Waste to Landfill, and is applicable to both gentle and/or steep slopes.

The Mariannhill Landfill Site case study was based on the lining system as prescribed by the Minimum Requirements for Waste Disposal by Landfill, as that was the legislated lining system during the design of the Mariannhill Landfill Site in 2010.

2.2 Specification of Prescribed Lining System Elements

As can be seen in the above figures, every containment barrier design is made up of a series of liner components. The purpose of a containment barrier is to prevent pollution by leachate of the adjacent ground water and surface water and each liner component has a specific function. The detail and variation associated with each liner component is described below (DWAF, 1998) and is currently applicable, as it has not been amended by the National Norms and Standards for Disposal of Waste to Landfill:

- Base Preparation Layer: The base preparation layer comprises of a compacted layer of reworked in-situ soil with a minimum thickness of 150mm and constructed to the same compaction standards as the clay liner layer. Where the permeability of a base preparation layer can be proven to be of the same standard the clay liner layer, it may replace the lowest clay liner layer.
- Clay Liner Layer: Comprises of a 150mm thick compacted clay liner layer. This layer must be compacted to a minimum density of 95% Standard Proctor maximum dry density at a water content of Proctor optimum to optimum +2%. Permeabilities must be such that the outflow rates must not exceed 3 x 10^{-7} cm/s and 1 x 10^{-7} cm/s respectively for a Class A landfill and is dependent on the receiving waste type, and 1 x 10^{-6} cm/s for Class B, Class C and Class D landfills. Interfaces between the clay liner layers must be lightly scarified to assist in bonding the layers together.
- Geomembrane Liner: A 1.5mm HDPE geomembrane liner for Class A, Class B and Class C landfills. As well as an additional 2.0mm HDPE geomembrane liner for a Class A landfill which must be laid in direct contact with the upper surface of a compacted clay liner layer.

The geomembrane thickness specified shall be minimum thickness, as measured in accordance with the SABS Specification 1526 test method.

Protection Layer: This is a cushion of 100mm of fine to medium sand or similar suitable material which is placed immediately above any geomembrane liner layer to protect it from mechanical damage. A geotextile of equivalent performance may be used.

- Leachate Collection Layer: A leachate collection layer comprising a layer of single-sized gravel or crushed stone having a size of between 38mm and 50mm. The thickness of the leachate collection layer varies from 200mm thick for a Class A landfill, 150mm thick for a Class B landfill and a 300mm thick finger drain of geotextile covered aggregate for a Class C landfill. A Class D landfill does not contain a leachate collection layer.
- Geotextile Filter: The geotextile filter is placed above the leachate collection layer and/or leachate detection system to prevent excessive clogging (Koerner, 2005).

Leakage Detection System: Applicable to Class A landfills only and comprises of a 150mm thick single-sized gravel or crushed stone having a size of between 38mm and 50mm. A geosynthetic equivalent may be used.

Under Drainage and Monitoring System: Applicable to Class B and Class C landfills only and may comprise of finger drains within the base preparation layer.

A few of the above containment barrier components may be replaced with alternative elements of proven performance (Government Gazette, No. 36784, 2013), such as the replacement of:

i) Granular filters or drains with geosynthetic filters or drains

- ii) Protective soil layers with geosynthetics
- iii) Clay components with geomembranes or geosynthetic clay liners

The use of the above alternatives raises the concept of Equivalency and will be discussed in 2.4 below.

2.3 Introduction and Description of Applicable Geosynthetics

Geosynthetics is defined as a planar product manufactured from polymetric material used with soil, rock, earth, or other geotechnical related material as an integral part of a humanmade project, structure or system (ASTM D4439).

Geosynthetic materials perform five major functions (Koerner, 2005):

- 1) Separation
- 2) Reinforcement
- 3) Filtration
- 4) Drainage
- 5) Containment (of liquid and/or gas)

The use of geosynthetics has basically two aims: (1) to perform better (e.g., with no deterioration of material or excessive leakage) and (2) to be more economical than using traditional materials and solutions) either through lower initial costs or through greater durability and longer life, thus reducing maintenance and replacement costs) (Koerner, 2005).

There are currently eight types of geosynthetics available namely, geomembranes, geosynthetic clay liners, geotextiles, geonets, geogrids, geopipes, geofoam and geocomposites.

The use of a single geosynthetic or a multitude of geosynthetics for a specific function or a combination of functions is vital to the design of containment barrier systems and is even more vital for the design of containment barrier systems on steep slopes.

A brief description and the function of the geosynthetics that were tested are listed below:

a) Geotextiles are permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect, or drain. Typically made from polypropylene or polyester. Geotextile fabrics come in three basic forms: woven, needle punched or heat bonded (Wikipedia, accessed 21/11/13).

Figure 2.12: Examples of Geotextiles

b) Geosynthetic clay liners (GCLs) are factory-manufactured hydraulic barriers comprising of a thin layer of bentonite (or other very low permeability material) supported by geotextiles and/or geomembranes, being mechanically held together by needling, stitching, or chemical adhesives (Koerner, 2005).

Figure 2.13: Examples of GCLs

c) A Geomembrane is defined as a very low permeability synthetic membrane liner or barrier used with any geotechnical engineering related material so as to control fluid (or gas) migration in a human-made project, structure, or system (ASTM D4439).

Geomembranes are made from relatively thin continuous polymeric sheets, but they can also be made from the impregnation of geotextiles with asphalt, elastomer or Polymer sprays, or as multilayered bitumen geocomposites. In this research, we will focus on continuous polymer sheet geomembranes since they are, by far, the most common (Wikipedia, accessed 21/11/13).

Figure 2.14: Examples of Geomembranes

2.4 Equivalency Issues

Most international regulations allow for the replacement of certain lining system components if the alternative component is technically equivalent. The regulations however, rarely illustrate or provide sufficient criteria as to how technical equivalency is to be justified.

In South Africa, the following alternative lining system components of proven equivalent performance is allowed (Government Gazette, No. 36784, 2013):

- i) Replacement of granular filters or drains with geosynthetic filters or drains
- ii) Replacement of protective soil layers with geosynthetics
- iii) Replacement of clay components with geomembranes or geosynthetic clay liners

It is therefore here that the Design-by-Function concept, with the establishment of adequate factors of safety, was applied.

2.4.1 Geonets

The function of granular filters or drains is in-plane drainage of liquids or gases and could be replaced with the use of geonets. Since the primary function of granular filters or drains and

geonets on landfill sites is to convey liquid within the plane of its structure, the in-plane hydraulic flow rate, or transmissivity is of paramount importance (Williams et al., 1984).

For geonets, where flow rate is the primary function, the factor of safety takes the following form as detailed by Koerner (2005):

$$FS = \frac{q_{allow}}{q_{required}}$$
(2-1)

where

- $FS = {Factor of safety (to handle unknown loading conditions or uncertainties in the design and testing methods),}$
- $q_{\text{allow}} =$ Allowable flow rate as obtained from laboratory testing, and

 $q_{required} =$ Required flow rate as obtained from design of the actual system

Alternatively, we could work from transmissivity to obtain the equivalent relationship. It should be emphasized however, that *flow rates per unit width* values are not *transmissivity* values. To convert flow rate per unit width to transmissivity θ , Darcy's formula may be used (assuming saturated conditions and laminar flow):

$$q = kiA$$

$$q = ki (W x t)$$

$$q/W = i (k x t)$$

$$kt = \theta = \frac{q}{iW}$$

where

- q = Volumetric flow rate (m³/s)
- k = Coefficient of permeability (m/s)
- i = Hydraulic gradient (dimensionless)
- A = Flow cross-sectional area (m^2)

 θ = Transmissivity (m²/s) W = Width (m) t = Thickness (m)

The q value developed using Darcy's formula is applicable to both the q_{allow} and $q_{required}$ mentioned in equation (2-1) above, and may be used for conversion purposes.

For granular filters or drains, Darcy's law constitutive equation may be used to calculate the flow of a fluid through a porous medium.

It should be noted that although geonets are mentioned, they have not been tested during this research due to their larger aperture sizes, scale effects and the limitations of the ring shear apparatus.

2.4.2 Geotextiles as a Protection Layer

Protective soils may be replaced by an appropriate geotextile. Since the primary function of the protective soil is to protect the HDPE geomembrane liner from damage and/or puncture, the key properties for the use of a geotextile as a protection layer are Burst Resistance, Tensile Strength, Puncture Resistance and Impact (Tear) Resistance.

The design-by-function equation formulated by Koerner (2005) for the use of geotextiles is as follows:

$$factor of safety (FS) = \underline{allowable (test) property} required (design) property (2-3)$$

where

allowable property	=	a numeric value based on a laboratory test that models
		the actual situation or is adjusted accordingly
required property	=	a numeric value obtained from a design method that
		models the actual situation
factor of safety (FS)	=	FS against unknown loads and/or uncertainties in the analytic
		or testing process, sometimes called a global factor of safety

Burst Resistance

The equations to calculate burst resistance are as follows (Giroud, 1984):

$T_{reqd} = 0.5 p' d_v [f (\in)]$ (2-	-4)
---	-----

where

T _{reqd}	=	required geotextile strength (kPa)
p'	=	stress on the geotextile, which is slightly less than p, the tire inflation pressure at the ground surface (Pa)
d_v	=	maximum void diameter of the stone $(0.33d_a(m))$
d _a	=	the average stone diameter (m)
$f(\in)$	=	strain function of the deformed geotextile,
		с ¬

$$= \frac{1}{4} \left[\frac{2y}{b} + \frac{b}{2y} \right], \text{ in which}$$
(2-5)

b	=	width of opening (or void) (m)
у	=	deformation in the opening (or void) (m)

Tensile Strength

The equation to calculate the tensile strength is as follows (Giroud, 1984):

T_{allow} = maximum grab strength of geotextile with cumulative reduction factors

T _{reqd}	=	p'	d_v^2	[f	(E)]	(2	2-6)
		-		-					-	(-	

where

T_{reqd}	=	required grab tensile force (N)
p'	=	applied pressure (Pa)
d_v	=	maximum void diameter of the stone @ $0.33d_a(m)$
d _a	=	the average stone diameter (m)
$f(\in)$	=	strain function of the deformed geotextile,

$$=$$
 $\frac{1}{4}$ $\left[\frac{2y}{b} + \frac{b}{2y} \right]$, in which

b = width of stone void (m) y = deformation into stone void (m)

Puncture Resistance

The equation to calculate the puncture resistance is as follows (Koerner, 2005):

 F_{allow} = ultimate puncture strength according to ASTM D4833

F_{read} =

$$p' d_a^2 S_1 S_2 S_3$$
 (2-7)

where

F _{reqd}	=	required vertical puncturing force to be resisted (N)
p'	=	pressure exerted on the geotextile (approximately 100% of tire inflation pressure at the ground surface for thin covering thicknesses) (Pa)
		pressure at the ground surface for thin covering theknesses) (1 a)
d _a	=	average diameter of the puncturing aggregate or sharp object (m)
\mathbf{S}_1	=	protrusion factor of the puncturing object (dimensionless)
S ₂	=	scale factor to adjust the ASTM D4833 puncture test value that uses a 8mm diameter puncture probe to the actual puncturing object (dimensionless)
S ₃	=	shape factor to adjust the ASTM D4833 flat puncture probe to the actual shape of the puncturing object (dimensionless)

Impact (Tear) Resistance

The resistance to impact of a geotextile is a survivability function as well as a protection and separation function. An object will rarely be intentionally dropped on an exposed geotextile with additional force, so only gravitational energy will be assumed.

The equation to calculate the energy developed due to the mass of an object due to acceleration by gravity is as follows (Koerner, 2005):

E_{allow} = geotextile allowable impact strength

 $E_{reqd} = m g h$ $= (V x \rho) g h$ (2.8)

$$= [V \ x \ (\rho_w G_s)] \ gh$$

$$= \left[\frac{\pi (d_o / 1000)^3}{6} \right] \left[\frac{1000 \text{kg}}{\text{m}^3} \right] (2.6) \ (9.81) \ h$$

$$= 13.35 \ x \ 10^{-6} \ d_o^{-3} \ h$$

where

		energy developed dependant on diameter of object and
E	=	height of fall and (Joules)
m	=	mass of the falling object (kg)
g	=	acceleration due to gravity (m/sec ²)
h	=	height of fall (m)
V	=	volume of the object (m ³)
ρ	=	density of the object (kg/m^3)
$\rho_{\rm w}$	=	density of water (kg/m ³)
G_s	=	specific gravity of the object (dimensionless)
d _o	=	diameter of the object (mm)

 E_{reqd} is a calculated required value to calculate the factor of safety for impact (tear) resistance.

2.4.3 Geosynthetic Clay Liner

The technical equivalency between compacted clay liners (CCLs) and geosynthetic clay liners (GCLs) is often based on the flow rate or flux through the competitive materials using Darcy's formula. This parameter however, is only the beginning of a complete equivalency comparison as various issues such as construction issues, hydraulic issues and physical/mechanical issues need to be assessed.

A complete set of equivalency issues that often require analysis is shown in Table 2.2.
Category	Criterion for Evaluation	Probably Superior	Probably Equivalent	Probably Not Equivalent	Equivalency Depends on Site or Product
Hydraulic issues	Steady flux of water		✓		
	Steady solute flux		✓		
	Chemical adsorption capacity			✓	
	Breakout time				
	Water				✓
	Soluble				✓
	Horizontal flow in seams and lifts		✓		
	Horizontal flow beneath geomembrane		\checkmark		
	Generation of consolidation water		~		
Physical / Mechanical	Freeze-thaw behaviour		✓		
issues	Total settlement			✓	
	Differential settlement		✓		
	Stability on slopes				✓
	Squeezing or bearing stability			✓	
Construction issues	Puncture resistance			✓	
	Subgrade conditions			✓	
	Ease of placement	✓			
	Speed of construction	✓			
	Availability of materials	✓			
	Requirements for water	✓			
	Air pollution effects	✓			
	Weather constraints				✓
	Quality assurance considerations	✓			

Table 2.2:	Generalised Technical Equivalency Assessment for GCL Liners Beneath
	Landfills and Surface Impoundments (Koerner et al., 1993)

Although the above table highlights equivalencies, the decision on whether to use CCLs or GCLs is very site specific, and in most cases, also budget dependant.

2.4.4 Summary of Equivalent Landfill Lining Components and Factors Adopted to Prove Equivalency

A summary of the prescribed lining system components and the corresponding alternative lining system components with the relevant equivalency factors that were assessed during this research are highlighted in Table 2.3.

Table 2.3:	Summary of Equivalent Landfill Lining Components and Factors Adopted
	to Prove Equivalency

	Prescribed Lining System Component	Alternative Lining System Component	Factors to Prove Equivalence	Comments
1	Under drainage and monitoring system	Geosynthetic filter (Geonets)	Hydraulic flow rate or transmissivity	Equation (2-1) or Darcy's formula (Geonets have not been tested in this research due to the limitations on the ring shear apparatus used)
2	100mm Protection layer of silty sand	Geotextiles	Burst resistance, Tensile strength, Puncture resistance and Impact (tear) resistance	Equation (2-5), Equation (2-6), Equation (2-7) and Equation (2-8)
3	Compacted clay liner	Geosynthetic clay liners	Hydraulic, Physical/Mechanical and Construction issues	As per Table 2.1

In addition to the prescribed lining system components used for this research, the alternative landfill lining system components were adopted and tested during this research to assist in achieving an acceptable factor of safety of greater than 1.5 on steep slopes. This is due to the limitations and instability of the mineral layers on the steep slopes.

2.5 Landfill Stability

The stability of landfills has been a major concern for past and present environmental geotechnical engineers as both the short term and long term stability is vital to the performance as a containment barrier system for leachate.

The stability of a landfill is controlled by the following factors (Oweiss, 1992):

- The properties of the supporting soil (strength and bearing characteristic).
- The strength characteristics and the weight of the refuse (density, cohesion and friction angles).
- The inclination of the slope.
- Leachate levels and movements within the landfill (affecting pore pressures, effective stress and interface friction).
- The type of cover (soil, soil-geomembrane).
- Cover resistance to erosion.

All of the above factors are vital to landfill stability, however the inclination of the slope is highlighted as it relates directly to this research.

From above, it can be seen that the inclination of the slope is a major factor that affects overall landfill stability and therefore the design and construction of legislative compliant lining systems on steep slopes are a major challenge.

2.5.1 Methods of Stability Analysis

Currently in South Africa and internationally the limit state approach is the accepted geotechnical engineering design practice. Using this approach to analysis, there are two states in which failure can occur (Dixon et al., 2003):

Ultimate limit state where there is a complete loss of stability or function (example, slope failure), and **Serviceability** limit state such that the function of a structure is impaired (example, stressing of a landfill liner leading to increased permeability).

In the context of landfill lining system design (Dixon et al., 2003):

Stability of the lining system is the ultimate limit state; and **Integrity** of the lining system is the serviceability limit state.

Due to the difference between the ultimate limit state and the serviceability limit state, different methods of analysis for the two limit states are required.

Serviceability limit state, relates to the stresses, strains and deformations, in the system and within defined liner components, and this type of analysis requires analytical techniques such as **finite difference** and **finite element** formulations that require the use of computer programmes for analysis.

The analysis of ultimate limit state (example, slope instability) can be done by using the **limit equilibrium** concepts on an assumed circular arc failure plane or alternatively on a **two-part wedge analysis** for a finite length slope analysis as shown in Figure 2.15. Deformations and stresses that are encountered in the serviceability limit state can be

controlled in the limit equilibrium analysis by increasing the factor of safety, however it is difficult to determine the stress and strain relationship with a given factor of safety.

Figure 2.15: Limit Equilibrium forces involved in a finite length slope analysis for a uniformly thick cover soil (After Koerner and Soong, 1998)

The driving forces creating the instability in the two-part wedge analysis are the gravitational forces, equipment loads, surcharge loads, seepage forces and/or seismic forces. Each must be carefully considered in the context of site-specific conditions.

In Figure 2.15, two discreet zones can be visualised. There is a small passive wedge near the toe of the slope resisting a long thin active wedge extending the length of the finite slope. This method of analysis also assumes that the continuity is broken with the remaining cover soil at the crest.

By taking free bodies of the active and passive wedges with the appropriate forces being applied, the formulation of the factor of safety results. The resulting equation is not an explicit solution for the factor of safety, and must be solved using the quadratic equation.

For the above analysis in Figure 2.15, the resulting factor of safety value is obtained from the following equation (Koerner, 2005) and the complete development of the equation is given by Koerner and Soong (1998):

FS =
$$-b + \sqrt{b^2 - 4 ac}$$
 (2.9)
2 a

where

а	=	$(W_A - N_A \cos \beta) \cos \beta$	(2.10)
b	=	- $[(W_A - N_A \cos \beta) \sin \beta \tan \phi + (N_A \tan \delta + C_a)]$	
		$\sin\beta \ \cos\beta \ + \sin\beta \ (C + W_p \tan \phi)$], and	(2.11)
c	=	$(N_A \tan \delta + C_a) \sin^2 \tan \phi$	(2.12)

and where

W_A	=	total weight of the active wedge
W_P	=	total weight of the passive wedge
N_A	=	effective force normal to the failure plane of the active wedge
N_P	=	effective force normal to the failure plane of the passive wedge
γ	=	unit weight of the cover soil
h	=	thickness of the cover soil
L	=	length of slope measured along the geomembrane
β	=	soil slope angle beneath the geomembrane
ф	=	friction angle of the cover soil
δ	=	interface friction angle between the cover soil and geomembrane
C_a	=	adhesion force between cover soil and the active wedge and the geomembrane
c _a	=	adhesion between cover soil of the active wedge and the geomembrane
С	=	cohesion force along the failure plane of the passive wedge
c	=	cohesion of the cover soil
E _A	=	interwedge force acting on the active wedge from the passive wedge
E_P	=	interwedge force acting on the passive wedge form the active wedge
FS	=	factor of safety against cover soil sliding on the geomembrane

In addition

Back slope - refers to the side slopes of the landfill which have generally steep slopes Front slope - refers to the basal / base areas of a landfill which have generally gentle slopes

In the above two-part wedge method, the direction of the interwedge force is assumed to be parallel to either the back slope or the front slope (U.S Army Corps of Engineers, 1960). In the new approach of the two-part wedge method developed by Qian and Koerner in 2003 and

updated by Qian and Koerner in 2004, 2005 and 2007 and by Qian in 2006 and 2008, the interwedge forces, EA and EP, are assumed to be inclined at an unknown angle (ω) to the normal direction of the interface between the active and passive wedges, and each of them is divided into two components, as seen in Figure 2.16, where EHA and EVA are the two components of EA, EHP and EVP are the two components of EP, UHA and UHP are the resultants of the pore water pressures acting on the interface between the active and passive wedges, UNA and UNP are the resultants of the pore water pressures acting on the bottom of the active and passive wedges, NA and NP are the normal forces acting on the bottom of the active and passive wedges, WA and WP are the weights of the active and passive wedges, FA and FP are the frictional forces acting on the bottom of the active and passive wedges, B is the top width of the waste mass, and H is the height of the back slope. In order to meet the waste shear failure criteria at the interface between the active and passive wedges, the average shear stress on the interface must be less than the average shear strength of the waste at the interface. Considering the equilibrium of the whole waste mass, the factor of safety at the interface between active and passive wedges, FSV, should not be less than the factor of safety for the entire solid waste mass, FS. FS is assumed to be the same at all points on the failure surface. (Qian, 2008)

Figure 2.16: Forces acting on two adjacent wedges of a waste mass in a landfill cell (Qian, 2008)

The force equilibrium equation for the resulting factor of safety can be expressed as follows (Qian, 2008):

$$FS = -B \pm \sqrt{B^2 - 4AC}$$
(2.13)

where

A	=	$(W_T m_{SW} \sin \beta \sin \theta + W_A \sin \beta \cos \theta + W_P \cos \beta \sin \theta - n_{SW} \sin (\beta - \theta) + U_H m_{SW} \sin (\beta - \theta))$
В	=	$-[W_T (\sin\beta\cos\theta\tan\delta_P + \cos\beta\sin\theta\tan\delta_A) m_{SW} - (W_A \tan\delta_P + W_P \tan\delta_A) \sin\beta\sin\theta + W_P \tan\delta_A) \sin\beta\sin\theta + W_P \tan\delta_A \sin\beta\sin\theta + W_P \sin\beta\cos\theta\sin\theta + W_P \sin\beta\cos\theta + W_P \sin\beta\phi$
		$(W_A \tan \delta_A + W_P \tan \delta_P) \cos \beta \cos \theta - n_{SW} (\tan \delta_A - \tan \delta_P) \cos (\beta - \theta) + C_A \cos \theta + C_A \cos$
		$C_P \cos \beta + (C_A \sin \theta + C_P \sin \beta) m_{SW}$ - $U_{NA} \cos \theta \tan \delta_A$ - $U_{NP} \cos \beta \tan \delta_P$ -
		$(U_{NA} \sin \theta \tan \delta_A + U_{NP} \sin \beta \tan \delta_P) m_{SW} + U_H \cos (\beta - \theta) (\tan \delta_A - \tan \delta_P) m_{SW}]$
С	=	$W_T m_{SW} \cos \beta \cos \theta \tan \delta_A \tan \delta_P$ - $(W_A \cos \beta \sin \theta + W_P \sin \beta \cos \theta) \tan \delta_A \tan \delta_P$ -
		n_{SW} tan δ_A tan δ_P sin (β - θ) - C_A sin θ tan δ_P - C_P sin β tan δ_A + (C_A cos θ tan δ_P +
		$C_P \cos \beta \tan \delta_A$) m_{SW} + ($U_{NA} \sin \theta$ + $U_{NP} \sin \beta$) $\tan \delta_A \tan \delta_P$ - ($U_{NA} \cos \theta$ +
		$U_{NP}\cos\beta$) $m_{SW}\tan\delta_A \tan\delta_P + U_H\sin(\beta - \theta) m_{SW}\tan\delta_A \tan\delta_P$
m _{SW}	=	$\tan \phi_{SW} / FS_V$
n _{SW}	=	C_{SW} / FS_V

The use of the above limit equilibrium tools is site specific and vital to the stability analysis of landfill lining systems.

Another key element for stability calculations is the selection of design values and their possible ranges, for the controlling actions. This includes (Dixon et al., 2003):

- Slope geometry
- Material properties (example, unit weight of liner components and waste properties)
- Water pressures
- Gas pressures
- Construction plant forces
- Actions relating to the method of construction

2.5.2 Factors of Safety

The definition of a Factor of Safety is the numerical expression of the degree of confidence that exists, for a given set of conditions, against a particular failure mechanism occurring (Dixon et al., 2003).

The factor of safety is based on the limit equilibrium condition and is commonly expressed as follows (Koerner, 2005) :

FS	_	resisting forces	
10 -		driving forces	
	_	F	
	_	W sin β	
	_	N tan δ	
=		W sin β	
	_	W cos β tan δ	
	_	W sin β	
FS	_	tan δ	(2 14)
10	_	tan β	(2.14)

where

β	=	slope angle
δ	=	friction angle between the geomembrane and its cover soil

Although based on the limit equilibrium condition, the factor of safety above refers specifically to the general relationship between the slope angle and friction angle of an infinite slope consisting of cohesionless interfaces with no seepage and is not based on the two-part wedge method of analyses. This factor of safety may be used only as a first guide to determine the friction angle required for a given slope angle. The two-part wedge method, or your selected method of analysis, and site specific testing must still be carried out.

The debate on what appropriate factors of safety for all considerations has been an endless one. Various international Directives and a commonly accepted value for the factor of safety in geotechnical engineering slope stability analysis is $FS \ge 1.5$ for most conditions and is deemed acceptable (Thiel, 2001).

The DWAF Minimum Requirements for Waste Disposal to Landfill specifies a factor of safety of at least 1.5 for the slipping of the geomembrane liner on its underlying compacted soil layer.

The selection of an appropriate factor of safety that is required by a specific design, must also reflect the issues related to the consequences of failure namely, the risks to the environment and/or persons and the ease and cost of remedial actions.

It is therefore vital that an experienced geotechnical engineer using past experience to develop engineering judgement be consulted.

2.6 Test Methods

The material properties of the various lining components used in a lining system and their interface shear are critically important for the proper design of geomembrane lined side slopes of landfill. In the past, South Africa had no standard on definition of geosynthetics, no standard on geosynthetic testing, out of date standards and no standard guidelines on geosynthetic materials. Therefore, the use of international standards for the testing of material properties and interface shear has been the norm in South Africa. Only until recently, within the past two years, the South African National Standards (SANS) has been aligned with the International Organisation for Standardisation (ISO) and have adopted twelve (12) ISO standards to be used as SANS standards. Although South Africa is a long way from promulgating all applicable geosynthetic test standards, it is a start.

2.6.1 Material Properties

The current SANS that are applicable in South Africa to geosynthetics and the tests to determine their material properties are:

General:

1. SANS 10318	—	Geosynthetics – Terms and definitions
2. SANS 9862	_	Sampling and preparation of test specimens

Geotextiles and Geotextile related products:

3. SANS 9863-1	_	Determination of thickness at specified pressures
4. SANS 9864	_	Determination of mass per unit area of geotextiles []
5. SANS 1525	_	Wide-width tensile test
6. SANS 11058	_	Determination of water permeability []
7. SANS 12236	_	Static puncture test (CBR test)
8. SANS 12956	_	Determination of the characteristic opening size
9. SANS 13433	_	Dynamic perforation test
10. DDS circulated	_	UV Resistance
11. SANS 13431	_	Determination of tensile creep and creep rupture
		behaviour
12. SANS TR 20432	_	Guidelines for the determination of the long-term
		strength of the geosynthetics for soil reinforcement

For all other test methods, international standards will continue to be used.

2.6.2 Interface Shear

The interface shear forces in a lining system are critical to stability and may be complex, as shown in Figure 2.17 for a double composite liner system, and must be carefully considered.

Figure 2.17: Interface shear forces in a double composite liner system (Qian, 2008)

The study of landfill liner interface parameters for stability calls for detail and comprehensive study of the following (Saravanan et al. 2006):

- i) Landfill liner components and their interface properties.
- ii) Geosynthetic liner materials and their physical properties.
- iii) The compacted clay liner (CCLs) interface properties with geomembrane and geosynthetic clay liners (GCLs).
- iv) The interface properties of compacted clay liners (CCLs) and geosynthetic clay liners (GCLs) with native soils.
- v) Interface properties between CCLs, GCLs, non-woven geotextile and geomembrane.
- vi) Study the suitable configuration of composite liner system which could improve the liner stability without neglecting the hydraulic conductivity requirement.

Literature Review

- vii) Conduct detail stability analysis study of various configurations of landfill liner using laboratory data by limit equilibrium method.
- viii) Propose recommendation for landfill stability design and installation guide for landfill liner and landfill cover to improve overall stability of landfill site by providing sufficient strain compatibility within component members

The test method used to determine the interface shear is a test adopted from the geotechnical engineering direct shear test for determining soil-to-soil friction. The size of the shear test apparatus must also be carefully considered. For geomembranes against sands, silts or clays a 100mm x 100mm square shear box is recommended by Koerner (2005) and for geosynthetic-to-soil and geosynthetic-to-geosynthetic a 300mm x 300mm square shear box is recommended (unless it can be justified that a smaller size is suitable) (ASTM D5321).

The use of the ring shear device of 180mm outside diameter and 25mm sample width, adopted for this research, would provide accurate analyses results on condition that all interfaces are tested using the same apparatus.

Figure 2.18: Sketch of a typical shear box (www.tonygraham.co.uk/)

The Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils, may also be used as it is suited to the relatively rapid determination of drained residual shear strength because of the short drainage path through the thin specimen, and the capability of testing one specimen under different normal stresses to quickly obtain a shear strength envelope. The test results are primarily applicable to assess the shear strength in slopes that contain a pre-existing shear surface, such as old landslides, soliflucted slopes, and sheared bedding planes, joints, or faults (ASTM D6467 – 13).

Figure 2.19: Sketch of a typical ring shear apparatus (http://www.controlsgroup.com/eng/soil-mechanics-testing-equipment/bromhead-ring-shearapparatus.php)

The ASTM test methods are straightforward and the test method to be used must be based on site specific conditions. Although the direct shear test method is globally accepted, the current challenges are as follows:

- i) Fixity or edge restraints.
- ii) In the case of GCLs and geocomposites, the mid-pane or interface.
- iii) Calibration in terms of the internal reference material
- iv) Normal pressure validation.
- v) Saturation.
- vi) Consolidation.
- vii) Strain rate.
- viii) Friction correction.
- ix) Adequate shear displacement to ensure adequate post peak value is reached.

The above test methods result in the shear strength parameters, for the materials tested, as illustrated in Figure 2.20 and Figure 2.21.

Figure 2.20: Direct shear test data (Koerner, 2005)

Figure 2.21: Mohr-Coulomb failure envelopes (Koerner, 2005)

2.7 Peak Shear Strength Versus Residual Shear Strength

The resultant peak shear strength and residual shear strength often leaves the designer in a dilemma. The residual shear strength is often much lower than the peak shear strength and the use of each, or a combination, results in different factors of safety. Although the use of the peak, residual or a combination of shear strength will continue to be debated, recent research recommends the following (Thiel, 2001):

• Using peak shear strengths on the landfill base, and residual shear strengths on the side slopes appears to be a successful state-of-the-practice in many situations.

• Designers should consider evaluating all facilities for stability using the residual shear strength along the geosynthetic interface that has the lowest peak strength. This would be an advisable risk-management practice for designers, even if the FS under these conditions is simply greater than unity.

2.8 Literature Review Conclusion

The DWAF Minimum Requirements for Waste Disposal Second Edition was applicable since 1998 and prescribed the lining systems for all landfill in South Africa. In August 2013, the prescribed lining systems were superseded by the Landfill Classification and Containment Barrier Designs as contained in the new National Norms and Standards for Disposal of Waste to Landfill. This change in legislation directly impacted the dissertation research and the research was redirected to assess the new prescribed lining systems. Therefore, this dissertation assesses the lining of steep slopes in South Africa and the applicability of the new National Norms and Standards for Disposal of Waste to Landfill.

The concept of landfill bottom liner stability design, has of recently, been well researched in South Africa and internationally, however the lining of steep slopes is still a major challenge and concern. The use of alternative lining components in the form of geosynthetics may help in improving stability, however the issues of equivalency must be addressed.

Various analytical tools, such as limit equilibrium analysis and finite element analysis, are available to assess the stability of landfill lining systems and the acceptable factors of safety, however each landfill lining system must be designed on site specific conditions using site specific materials and site specific test methods.

CHAPTER 3

METHODOLOGY

Chapter Three presents the methodology used for assessing the stability of the lining system on various slopes and calculating the corresponding factors of safety. Where the factors of safety were found unacceptable and where there were construction limitations, various alternative lining components were substituted to determine the effect on the stability. The selection of the relevant test methods, the alternative lining system components and the stability analyses are explained and were based on international accepted standards.

3.1 Introduction

The objectives of the investigation were to assess the legislated lining systems in South Africa and to determine the stability of the lining systems on various slopes and to determine whether the use of alternative geotextiles would help improved stability on steep slopes.

The various methods used to assess the stability of the lining system were considered and discussed in the literature review and were selected in the stability assessment methodology.

The design on steep side slope lining systems must also consider stability and integrity failure modes both during construction (unconfined) and in the long term following waste placement (confined). The design issues, controlling factors and analysis methods used for self-supporting and waste supported lining systems are shown in Figure 3.1 (Dixon et al., 2003).

Figure 3.1: Design flow chart: Steep side slope lining system (Dixon et al., 2003)

This research was based on Figure 3.1 and the stability of the lining system was carried out accordingly.

The methodology also discusses the selection of the following parameters required to carry out this research:

- 1) The lining system to be used for assessment.
- 2) The equivalent lining system components.
- 3) The direct shear apparatus.
- 4) The various slope angles.
- 5) The accepted factors of safety.

3.2 Stability Analysis Approach

According to Qian (2008), calculating the factor of safety along the same interface at both the back slope and base may result in an unsafe result as the critical interfaces with the minimum factor of safety are generally at different interfaces along the back slope and along the base.

To achieve the objectives of this research, angle (ω) was assumed to be constant for all selected liner configurations and the two-part wedge method, where the direction of the interwedge force is assumed to be parallel to either the back slope or the front slope, is currently globally accepted and was used. Therefore, the analysis of ultimate limit state using the limit equilibrium concepts based on a two-part wedge analysis, shown in Figure 2.15, for a finite slope length was adopted for this research.

3.3 Selection of Lining System to be Assessed

The major difference between the landfill liner designs based on the Minimum Requirements for Waste Disposal by Landfill and the containment barrier designs specified by the National Norms and Standards for Disposal of Waste to Landfill is the introduction of a composite lining system. The advantage of a composite lining system is the inherent redundancy in the system and the significant reduction in leachate leakage.

Due to the replacement of the landfill liner designs based on the Minimum Requirements for Waste Disposal by Landfill with the containment barrier designs specified by the National Norms and Standards for Disposal of Waste to Landfill, a representative lining system was selected from the National Norms and Standards for Disposal of Waste to Landfill. However, the selection of a representative lining system to be used for the assessment was difficult.

Ideally a Class A landfill lining system as prescribed by the National Norms and Standards for Disposal of Waste to Landfill, which comprises of a double composite liner, would have been useful as it contains all the possible interface interactions. However, due to the possible assessment of a geocomposite leakage detection system, which comprises of a geonet between two geotextiles, the Class A landfill lining system was not selected. The ring shear apparatus used was unable to determine the interface shear of a geonet against a geotextile due to the large aperture/opening size of the geonet. Therefore a Class B landfill lining system was selected to assess the lining of steep landfill slopes. A Class B landfill lining system, when compared to a Class A landfill lining system, contains all the interface interactions that were encountered except for the following:

- i) A geotextile filter layer against a clay liner
- ii) A clay liner against a 2mm thick HDPE geomembrane

For the purpose of this research a Class B landfill lining system would therefore be acceptable and is again shown below.

Figure 3.2: Class B Landfill (Government Gazette, No. 36784, 2013)

From the above Class B landfill lining system adopted for this research, the interfaces that were analysed and tested are shown in Table 3.1.

Interface No.	Interface					
1	HDPE geomembrane - makro spike	vs	Protection geotextile Bidim A10 (fluffy)			
2	HDPE geomembrane - micro spike	vs	Protection geotextile Bidim A10 (fluffy)			
3	HDPE geomembrane - smooth	vs	Protection geotextile Bidim A10 (fluffy)			
4	HDPE geomembrane - makro pike	vs	GCL X1000 nonwoven			
5	HDPE geomembrane - micro spike	vs	GCL X1000 nonwoven			
6	HDPE geomembrane - smooth	vs	GCL X1000 nonwoven			

Table 3.1: Lining system interfaces analysed and tested

3.4 Equivalent Lining System Components

As landfill side slopes get steeper, construction limitations and material limitations, makes it impossible and unsafe to construct certain of the prescribed lining system components. Therefore it is necessary to replace certain of the lining system components with geosynthetics of equal performance. As discussed in the literature review, this raises the concern of equivalency. The lining system components, as specified by the containment barrier designs, which may require replacement are detailed below.

3.4.1 Under Drainage and Monitoring System

The under drainage and monitoring system usually comprises of a 150mm thick single sized gravel or crushed stone having a size of between 38mm and 50mm. The limiting factor would be the angle of repose of the gravel or crushed stone and the construction thereof on steep slopes.

Angle of Repose

Angle of repose may be defined as is the steepest angle of descent or dip of the slope relative to the horizontal plane when material on the slope face is on the verge of sliding (http://en.wikipedia.org/wiki/Angle_of_repose) and is illustrated in Figure 3.3.

Figure 3.3: Angle of repose

The angle of repose of single sized gravel or crushed stone is between 25° to 30° (http://en.wikipedia.org/wiki/Angle_of_repose) and is therefore the limiting factor. However, the construction of single sized gravel or crushed stone on slopes steeper than 1V:3H with machinery is not safe and not practical. Therefore the overall limiting factor was selected as 1V:3H (18,4°) for this research.

The under drainage and monitoring system may be replaced with a composite geosynthetic leakage detection system that comprises of a geonet with geotextiles on either side. However, as discussed in 3.3 above, the use of a composite geosynthetic leakage detection system is outside the scope of this research.

For the purpose of this research, it is assumed that the under drainage and monitoring system is located in the interim anchor trenches that drains by gravity to leachate detection manholes.

3.4.2 Compacted Clay Liner

Most compacted clay soils with a firm to stiff consistency and constructed in horizontal layers will have sufficient shear strength to support slope angles of 1V:2H (27°) for banks up to about 4m high. Another method is to construct the layers by working up and down batter slopes. Some compaction equipment will have difficulty safely negotiating the steep slopes while still sufficiently compacting the clay. A flatter batter of 1V:3H, or even 1V:4H (14°) will provide a much higher percentage compaction if this method is adopted (IPENZ Practice Note 21, 2013).

The construction of a compacted clay liner on a landfill slope is shown in Figure 3.4 below. The thickness of the compacted clay liner is consistently parallel to the underlying layer.

Figure 3.4: Construction of a compacted clay liner on a landfill slope

The limitation for the construction of compacted clay liners (CCLs) is therefore the slope angle for the construction, to attain the specified compaction to achieve the required hydraulic conductivity. Construction of CCLs on slopes steeper than 1V:3H with machinery is also a safety hazard and therefore not practical. Therefore, on slopes steeper that 1V:3H

the CCL was replaced with a geosynthetic clay liner (GCL). The selection of the GCL was based on the equivalency issues as discussed in Section 2.4.3.

The selected GCL that was used for this research was the enviroFIX X1000 that is manufactured locally and was supplied by Kaytech Engineered Fabrics. The Technical Data Sheet for the enviroFIX X1000 is attached in Appendix A.

3.4.3 HDPE Geomembrane Protection

The protection of the HDPE geomembrane may be achieved by a 100mm thick layer of silty sand or a geotextile of equivalent performance (DWAF, 1998).

The limiting factor for the 100mm thick layer of silty sand would be the angle of repose of the silty sand and the construction thereof on steep slopes.

The angle of repose of silty sand is 1V:1.55H (34°) (http://en.wikipedia.org/wiki/Angle_of_ repose) and is therefore the limiting factor. However, the construction of silty sand on slopes steeper than 1V:3H with machinery is not safe and not practical. The construction of silty sand on slopes steeper than 1V:3H with labour may be considered. However, the overall limiting factor of 1V:3H (18,4°) was selected for this research.

The use of geotextiles as a protection layer may be considered and has been discussed in Section 2.4.2. The 150mm thick stone leachate collection system above the protection geotextile is of vital importance for the correct selection. The selection of the protection geotextile was determined by the burst resistance, tensile strength, puncture resistance and impact (tear) strength and is summarised in Table 3.2. The calculations of the factors of safety for the above parameters for a Bidim A10 nonwoven polyester geotextile may be found in Appendix B.

Table 3.2: Factors of safety for a Bidim A10 nonwoven polyester geotextile to be used as a protection layer

Parameter	Factor of Safety (FS)
Burst Resistance	1.90
Tensile Strength	14.84
Puncture Resistance	5.16
Impact (Tear) Resistance	2.13

All of the above factors of safety are above 1.5 and therefore the Bidim A10 nonwoven polyester geotextile was used as a protection geotextile in this research. The Technical Data Sheet for the Bidim A10 is attached in Appendix A.

3.5 Selection of HDPE Geomembranes

The HDPE geomembranes selected for this research are as follows:

- 1) 2.0mm double-sided textured HDPE
 - Processed from flat die process (cast sheet)
 - Method of texturing was by structuring or patterning
 - Asperity height makro spike ≤ 0.9 mm
 - - micro spike ≤ 0.4 mm
- 2) 2.0mm single-sided textured HDPE
 - Processed from flat die process (cast sheet)
 - Method of texturing was by structuring or patterning
 - Asperity height ≤ 0.9 mm

Although there are other processes of manufacturing HDPE geomembranes, like circular die (blown sheet), and other methods of texturing like coextrusion, impingement and lamination, the sample chosen to be tested for this research was based on current industry trends and personal past design experience.

Both the above 2.0mm double-sided textured HDPE and the 2.0mm single-sided textured HDPE was used for the direct shear testing for this research. The use of the above two 2.0mm HDPE geomembranes for this research, instead of a 1.5mm HDPE geomembrane recommended, by the National Norms and Standards, was due to product availability, as the HDPE geomembrane was imported from Germany. The 2.0mm HDPE geomembrane was used consistently throughout this research and therefore the overall results would not be affected.

The Technical Data Sheets for the HDPE geomembranes used is attached in Appendix A.

3.6 Direct Shear Apparatus

The interface shear and interface frictional properties between the various lining system components for a Class B landfill was determined by the use of a ring shear apparatus. The large scale 180mm outside diameter ring shear was used at the University of Kwa-Zulu Natal, Howard College. The test method used to carry out the testing was based on ASTM D6467 – 13, The Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils. The ring shear apparatus that was used is shown in Figure 3.5, Figure 3.6 and Figure 3.7.

Figure 3.5: Ring shear apparatus (UKZN)

Figure 3.6: Ring shear apparatus showing geosynthetics

Figure 3.7: Geosynthetics after a ring shear test

Based on ASTM D6467 – 13, The Standard Test Method for Torsional Ring Shear Test, the general testing procedures involved:

- A ring shear device of 180mm outside diameter and 25mm sample width
- The rate of displacement was set to 1mm/min before the tests commenced. Displacement indicators were used to check for internal movement in the GCL
- The geosynthetic materials were secured using adhesive
- Tests were performed at vertical normal stresses of 50, 100, 200 and 400 kPa. The vertical stresses were controlled using weights and lever arms
- The geosynthetic materials were hydrated and submerged during the duration of the tests
- Shearing loads were measured using two load cells mounted symmetrically about the central axis. The shear load was taken to be the sum of two load cell readings. The calibration of the load cells was checked before the tests commenced.

• All soils to geosynthetic materials interfaces adopted for this research from external sources, given in Table 4.3, were obtained using the same ring shear device and test method above.

The general procedure above is illustrated in Figure 2.19.

3.7 Selection of Slope Angles

In order to determine the effects of steep slopes on the stability of a Class B landfill lining system, four (4) slopes angles were chosen for this research. The reasons for the selection of these four (4) slopes angles are explained in Table 3.3.

Slope (V:H)	Slope Angle	Reason for selection
1:4	14.04°	Recommended by the new National Norms and Standards for Disposal of Waste to Landfill
1:3	18.43°	Recommended by the Minimum Requirements for Waste Disposal, Second Edition, DWAF 1998
1:2	26.57°	Adopted for this research
1:1	45.00°	Adopted for this research

Table 3.3: Selection of slope angles

The slope angles selected were required for the calculation of the various factors of safety using the limit equilibrium concepts on the selected two-part wedge analysis.

Slopes steeper than 1:1 were not selected for this research as the selected definition of a steep slope lining system, detailed in Section 1.1, would have been compromised. Slopes steeper than 1:1 would not be naturally stable without additional loads from the waste mass, anchorage or engineered support structures.

3.8 Selection of Factor of Safety

As discussed under literature review, a commonly accepted value for the factor of safety in slope stability analysis is $FS \ge 1.5$ and was adopted for this research.

3.9 Summary of Methodology

After a detailed study of the research topic which included the applicable South African Standards, the various lining system components, the apparatus available for direct shear testing, stability analysis tools, equivalency issues, lining system components and the relevant factors of safety, all the parameters for this research were chosen. The parameters chosen had to adequately investigate the objectives of this research.

The methodology adopted for this research is shown in Figure 3.8.

Figure 3.8: Methodology adopted for this research

It must be noted that although the methodology may be used for steep slopes as well as gentle slopes, the selection of different test materials and geosynthetics will affect the overall results. It is therefore strongly recommended that site specific tests be carried out.

CHAPTER 4

RESULTS AND DISCUSSIONS

Chapter Four presents the results obtained from the ring shear tests and the stability analyses for the prescribed lining system components as well as the alternative geosynthetics used to help improve the stability. The design approach for the various combinations of liner components to increase stability is highlighted. The self-weights of the various lining system components are also assessed. The use of geogrids as veneer reinforcement is analysed. Finally, the factors that were not considered for this investigation are discussed.

4.1 Presentation of Results

The results presented in this chapter are summaries of all the calculations carried out to achieved the objectives of this research. All calculations are attached in Appendix C and are indexed accordingly and will be cross referenced in this chapter.

The results are discussed in the order that the analyses were performed.

4.2 Selection of Lining System Interfaces for Investigation

,

The initial lining system interfaces were dictated by the selected Class B landfill lining system and the critical interfaces tested were listed in Table 3.1 above and are repeated in Table 4.1 for ease of reference.

Interface No.	Interface			
1	HDPE geomembrane - makro spike	vs	Protection geotextile Bidim A10 (fluffy)	
2	HDPE geomembrane - micro spike	vs	Protection geotextile Bidim A10 (fluffy)	
3	HDPE geomembrane - smooth	vs	Protection geotextile Bidim A10 (fluffy)	
4	HDPE geomembrane - makro pike	vs	GCL X1000 nonwoven	
5	HDPE geomembrane - micro spike	vs	GCL X1000 nonwoven	
6	HDPE geomembrane - smooth	vs	GCL X1000 nonwoven	

Fable 4.1:	Lining	system	interfaces	tested
------------	--------	--------	------------	--------

The raw data from the ring shear tests are attached in Appendix C.1 and the corresponding graphical shear strength parameters are as follows:

Figure 4.1: Interface No. 1 shear strength parameters

Figure 4.2: Interface No. 2 shear strength parameters

Figure 4.3: Interface No. 3 shear strength parameters

Figure 4.4: Interface No. 4 shear strength parameters

Figure 4.5: Interface No. 5 shear strength parameters

Figure 4.6: Interface No. 6 shear strength parameters

Therefore, from the above ring shear tests carried out, the peak and residual interface friction angles and their corresponding peak and residual adhesion values are given in Table 4.2.

		Peak Friction	Peak Adhesion	Residual Friction	Residual Adhesion
			(\mathbf{C}_{a})	(Decreace)	(\mathbf{c}_a)
HDPE Geomemic	brane	(Degrees)	(KPa)	(Degrees)	(KPa)
Makro spike vs	Protection geotextile	23.17	32.26	10.88	18.43
Micro spike vs	Protection geotextile	20.92	16.59	8.42	12.66
Smooth vs	Protection geotextile	18.68	0.00	10.70	0.00
HDPE Geomembrane					
Makro spike vs	GCL	31.40	28.56	13.59	20.13
Micro spike vs	GCL	29.64	25.59	12.67	18.39
Smooth vs	GCL	18.20	0.00	7.19	0.00

 Table 4.2: Friction angles and adhesion values from ring shear tests carried out

From the ring shear tests carried out, Interface No. 3 and Interface No. 6 have resulted in negative adhesion values. The negative adhesion value may be the result of the following conditions:

- The points at higher stresses were run too fast resulting in an artificially higher strength.
- The points at higher stresses were run on a higher strength material than the lower point.
- There is potential that there is a nonlinear strength envelope, even though a linear strength envelope is specified.

Since the negative adhesion values are small, it is norm to typically assume the adhesion values to be zero. Therefore, the negative adhesion values obtained at Interface No. 3 and Interface No. 6 are reflected as zero in Table 4.2 above.

Additional friction angles and adhesion values considered for this research are given in Table 4.3. The values given in Table 4.3 were obtained from the same ring shear apparatus used for the values given in Table 4.2 above, and therefore the values were used in parallel without corrections.

HDPE Geomembrane		Peak Friction Angle (δ) (Degrees)	Peak Adhesion (c _a) (kPa)	Residual Friction Angle (δ) (Degrees)	Residual Adhesion (c _a) (kPa)	Notes
Makro spike vs	Protection layer of stabilised river sand (3% cement)	35.05	6.62	31.77	17.67	*a
Micro spike vs	Protection layer of stabilised river sand (3% cement)	31.33	5.86	26.45	17.92	*b
Smooth vs	Protection layer of stabilised river sand (5% cement)	19.10	5.80	17.40	0.00	*с
Makro spike vs	Clayey silt	36.00	0.00	29.20	0.00	*d
Smooth vs	Clayey silt	25.90	0.00	12.70	0.00	*e
HDPE Geomembrane						
Makro spike vs	CCL	22.60	16.80	17.60	13.20	*f
Smooth vs	CCL	13.20	3.10	6.90	4.70	*g

Table 4.3:	Additional	friction	angles	and	adhesion	values
------------	------------	----------	--------	-----	----------	--------

Notes:	*a, *b	-	Representative data courtesy of PDNA.
	*c, *d, *e	-	Representative data courtesy of Thekweni GeoCivils and
			Drennan, Maud & Partners.
	*f, *g	-	Representative data courtesy of Jones & Wagener.

4.3 Effects of Slope Angle

As discussed under literature review, various slopes were chosen for this research. The slopes, the corresponding slope angles and the recommended minimum peak friction angles for each slope angle are shown in Table 4.4.

Vertical:Horizontal	Slope angle (β)	Recommended minimum peak friction angle (δ)
1:4	14.04	14.04
1:3	18.43	18.43
1:2	26.57	26.57
1:1	45.00	45.00

Table 4.4: Sel	lected slope an	gles showing	g recommended	l minimum	peak fr	iction ar	igles
----------------	-----------------	--------------	---------------	-----------	---------	-----------	-------

If all of the interface shear strengths (interface friction angles) are greater than the slope angle, stability is achieved and the only deformation involved is a small amount to achieve elastic equilibrium (Wilson-Fahmy et al., 1993). However, if any interface shear strengths (interface friction angles) are lower than the slope angle, wide-width tensile stresses are induced into the overlying geosynthetics. This can cause the failure of the geosynthetics or pull-out from the anchor trench, or it can result in quasistability via tensile reinforcement. If the last is the case, we can refer to the overlying geosynthetics as acting as nonintentional reinforcement (Koerner, 2005). The use of geosynthetics acting as nonintentional reinforcement is not ideal and should be avoided.

It was also important to position the critical slip plane above the primary liner and/or geomembrane. Therefore attempts were made in the lining systems configurations to ensure that the friction angle below the geomembrane was higher than the friction angle above. This ensures that the geomembrane is not compromised should there be a failure.

The peak shear strengths were used for this research as the use of the residual shear strengths of the materials tested resulted in most of the factors of safety being below 1.5. The objectives of this research were still met using the peak shear strengths.

Due to the large number of variables for the assessment of a multilined side slope, the following assumptions were made in order to achieve the objectives of this research:

- a) The subgrade of all lining system configurations are considered to be stable.
- b) The liner support systems are considered to be stable and were positioned at 10m vertical height lifts resulting in different lengths of geosynthetic on the slopes as shown in Table 4.5.

Vertical:Horizontal	Slope angle (β)	Elevation difference (h)	Slope Length of geosynthetics (1)
1:4	14.04	10	41
1:3	18.43	10	32
1:2	26.57	10	22
1:1	45.00	10	14

Tuble her blope length of geobynthetics on beleeted blope ungle	Table 4.5:	Slope length of	of geosynthetics	on selected slope	angles
---	-------------------	-----------------	------------------	-------------------	--------

- c) Adhesion values obtained from the laboratory testing were adopted for all computations as this would produce a more accurate design approach.
- d) Slopes of 1:4 and 1:3 takes into consideration equipment loads. Slopes of 1:2 and 1:1 were considered with and without equipment loads to achieve the objectives of this research.
- e) On slopes of 1:2 and 1:1, the leachate collection layer will be placed in lifts ahead of waste placement to ensure stability. However, the effects of the leachate collection layer on these slopes were considered, to achieve the objectives of this research.

4.4 Selection of Critical Interfaces

The critical interfaces selected for this research were based on the following criteria:

- The interface shear strengths obtained from laboratory direct shear tests were greater than the slope angle to achieve stability.
- The lowest interface shear strength obtained from laboratory direct shear tests was selected as that interface would govern the overall landfill lining system stability.
- The critical slip plane was positioned above the primary liner and/or geomembrane to ensure that the friction angle below the geomembrane was higher than the friction angle above.

Therefore, using the above criteria, and the limiting factors discussed under literature review, the lining system components and configurations were chosen in line with a Class B landfill lining system and will be used as inputs to the theoretical design adopted for this research.

4.5 Configuration No. 1

Figure 4.7: Configuration No. 1

The factors of safety for Configuration No. 1 are shown in Table 4.6 and are graphically represented in Figure 4.8. The calculations are attached as Appendix C.2.

Configuration No. 1 <u>Critical Interface:</u> HDPE Geomembrane Makro Spike vs 100mm Protection layer of stabilised sand (5% cement)							
Factor of Safaty	Slope						
Factor of Safety	1:4	1:3	1:2	1:1			
Uniform Cover Soil and Stone Layer	5.01	4.52	3.16	1.93			
Thickness	5.91						
Uniform Cover Soil Thickness and Stone	4.61	3.32	2.09	1.07			
Layer Thickness with Equipment Loads	4.01						

Table 4.6:	Configuration	No. 1	factors	of safety
1 abic 4.0.	Configuration	110. 1	lactors	of safety

Figure 4.8: Graphical presentation of Configuration No. 1 factors of safety

From the CCL, the HDPE geomembrane makro spike and the protection layer of stabilised sand tested in Configuration No. 1, the factors of safety with the equipment loads on slopes 1:4 and 1:3 are greater than 1.5 and are acceptable. Although the factor of safety on the 1:2 slope is acceptable, the CCL has a construction limitation and is not practical on a slope of 1:2 and was not considered further. The CCL was replaced with a GCL for all slopes steeper than 1:3. The factor of safety on the 1:1 slope with the equipment loads is less than 1.5 and is not acceptable.

It can also been seen that the curve connecting the factors of safety without the equipment loads is almost parallel to the curve connecting the factors of safety with the equipment loads and is exponentially lower.

Another key parameter was the interface adhesion (c_a) of 5.8kPa. This adhesion value is considered to be high and is a resultant of using stabilised sand. Adhesion values of less than 0.15 would result in all factors of safety being ≤ 1.5 .

Other combinations for Configuration No. 1 were assessed and could have been chosen, however any other combination with the CCL, results with a higher friction angle above the HDPE geomembrane liner, and wide width tensile stresses are induced in the geomembrane which could result in failure from anchor trench pull-out or quasistability via tensile reinforcement. The geomembrane therefore acts as nonintentional veneer reinforcement which is not recommended. The use of an additional geosynthetic, such as a geogrid, would have to be considered.
Integrity of the HDPE Geomembrane

The integrity of the HDPE geomembrane was calculated by comparing the self-weight of the HDPE geomembrane with its yield strength assuming the worst case scenario of no frictional support from the underlying layer. The factors of safety for integrity of the HDPE geomembrane for the acceptable slopes are listed in Table 4.7. The calculations of the HDPE geomembrane integrity factors of safety are attached as Appendix C.3.

 Table 4.7: Factor of safety for HDPE geomembrane integrity

	1:4 Slope	1:3 Slope
Factor of Safety	43.55	55.80

The integrity of the HDPE geomembrane on the 1:4 and 1:3 slopes are acceptable.

4.6 Configuration No. 2

From the materials and geosynthetics tested, many combinations were available for Configurations No. 2. The combination that was selected was based on industry norm where a single sided textured HDPE geomembrane is used, with the textured surface in contact with a GCL and the smooth surface in contact with either a mineral protection layer or a geosynthetic protection layer. The geosynthetic protection layer option was chosen for this research configuration since the friction angle was less than the friction angle against the stabilised sand layer that was tested. Configurations No. 2 is illustrated in Figure 4.9.

Figure 4.9: Configuration No. 2

Since Configuration No. 2 includes a GCL, the Hydraulic issues, Physical/Mechanical issues and Construction issues are again highlighted. Table 2.1 in Chapter 2 details the concerns. For the GCL used, the peak friction angle is 34.6° and the adhesion is 99kPa. The interface friction test report and peel test is attached in Appendix A. The stability calculations, when using the GCL, assumes that the configurations do not fail due to internal shear of the GCL.

The factors of safety for Configuration No. 2 are shown in Table 4.8 and are graphically represented in Figure 4.10. The calculations are attached as Appendix C.4.

The use of the HDPE geomembrane single sided texture with the smooth surface in contact with the protection geotextile resulted in all factors of safety < 1.5. It was therefore necessary to use veneer reinforcement. The stability calculations were therefore extended to include for veneer reinforcement for Configuration No. 2. Various strengths of veneer reinforcement were assessed and the strengths of the veneer reinforcement required to achieve factors of safety ≥ 1.5 are also shown in Table 4.8.

Configuration No. 2 <u>Critical Interface:</u> HDPE Geomembrane Smooth Upper vs Protection Geotextile A10					
Easter of Sofety Slope					
Factor of Safety	1:4	1:3	1:2	1:1	
Uniform Stone Layer Thickness	1.39	1.05	0.72	0.87	
Uniform Stone Layer Thickness with Equipment Loads	1.38	1.03	0.70	0.59	
Uniform Stone Layer Thickness with Veneer Reinforcement (Rock Grid PC strength required)	1.72 (50/50)	1.68 (100/100)	3.30 (200/200)	1.75 (200/200)	

 Table 4.8: Configuration No. 2 factors of safety

Figure 4.10: Graphical presentation of Configuration No. 2 factors of safety

From the GCL, the HDPE geomembrane micro spike and the protection geotextile tested in Configuration No. 2, the factors of safety with the uniform stone layer thickness and the equipment loads on slopes 1:4, 1:3, 1:2 and 1:1 are all less than 1.5 and are not acceptable. The minimal increase of factor of safety from a 1:2 slope to a 1:1 slope may be attributed to the reduced slope length and the assistance from the loading of the stone leachate collection layer on the shorter slope.

The equipment loads have a minimal effect on Configuration No.2 with regards to the factors of safety. Although the factors of safety with the equipment loads have a minimal difference than those without the equipment loads, there is still an exponential relationship with the factors of safety for the various slopes.

In order to achieve acceptable factors of safety for Configuration No. 2, veneer reinforcement was required. The addition of veneer reinforcement creates another interface that needs to be assessed. The addition of veneer reinforcement also creates another component for the inclusion in Configuration No. 2 which has significant cost implications and is not ideal. The large increase in the factor of safety from the 1:3 slope to the 1:2 slope was due to a higher tensile strength reinforcing grid selected on the 1:2 slope. The selection of a 200kN/m reinforcing grid on the 1:2 slope, instead of the 100kN/m reinforcing grid selected in a factor of safety lower than 1.5 on the 1:2 slope.

As shown above, a way of increasing a given slope's factor of safety is to reinforce it with a geosynthetic material. Such reinforcement can be either intentional or non-intentional. By intentional, we mean to include a reinforcing grid or high strength geotextile within the cover soil to purposely reinforce the system against instability. Depending on the type and amount of reinforcement, the majority, or even all, of the driving, or mobilizing, stresses can be supported by the reinforcing grid resulting in major increase in the factor of safety value.

Other combinations for Configuration No. 2 were also assessed and were not chosen to prevent the HDPE geomembrane acting as nonintentional veneer reinforcement as discussed previously.

Integrity of the GCL, Protection Geotextile and Veneer Reinforcement

The integrity of the HDPE geomembrane was checked in Section 4.5 above and was considered acceptable.

The integrity of the GCL, protection geotextile and veneer reinforcement was calculated by comparing the self-weight of the geosynthetics with its yield strength assuming the worst case scenario of no frictional support from the underlying layer. The factors of safety for integrity of the geosynthetics for the various slopes are listed in Table 4.9. The calculations of the geosynthetics integrity factors of safety are attached as Appendix C.5. It must be noted that the factors of safety listed in Table 4.9 are only applicable with the use of the veneer reinforcement tensile strengths used, as Configuration No. 2 factors of safety without veneer reinforcement is unacceptable.

Factor of Safety with the use of Veneer Reinforcement	1:4 Slope	1:3 Slope	1:2 Slope	1:1 Slope
GCL	4.83	6.19	9.01	14.16
Protection Geotextile	188.96	242.10	352.15	553.37
Veneer Reinforcement	430.95	1104.32	3243.44	5096.84

Table 4.9: Factors of safety for geosynthetics integrity

The factors of safety for the integrity of the GCL, protection geotextile and veneer reinforcement on the various slopes are more than adequate.

4.7 Configuration No. 3

The selection of the lining system components for the final configuration, Configuration No. 3, was based on using the highest friction angles attained from the geosynthetics that were tested, whilst still ensuring that the friction angle below the HDPE geomembrane was greater that the friction angle above the HDPE geomembrane and the internal shear of the GCL was greater than the highest friction angles used. Configurations No. 3 is illustrated in Figure 4.11.

Figure 4.11: Configuration No. 3

The factors of safety for Configuration No. 3 are shown in Table 4.10 and are graphically represented in Figure 4.12. The calculations are attached as Appendix C.6.

Configuration No. 3 <u>Critical Interface:</u> HDPE Geomembrane Makro Spike Upper vs Protection Geotextile A10					
Factor of Safety	Slope				
Factor of Safety	1:4	1:3	1:2	1:1	
Uniform Stone Layer Thickness	40.30	30.91	21.82	13.74	
Uniform Stone Layer Thickness with Equipment Loads25.4317.7110.515.2					

 Table 4.10:
 Configuration No. 3 factors of safety

Figure 4.12: Graphical presentation of Configuration No. 3 factors of safety

The use of a double sided textured HDPE geomembrane has significantly increased the factors of safety for both the conditions. All the factors of safety are significantly above 1.5 and are acceptable. The factors of safety with the equipment loads are almost parallel to the factors of safety without the equipment loads. The relationship between the factors of safety without the equipment loads appears to be linear. The relationship between the factors of safety with the equipment loads appears to be exponential, as previously seen.

Integrity of the GCL, HDPE Geomembrane and Protection Geotextile

The integrity of the HDPE geomembrane, GCL and protection geotextile was checked in Section 4.4 and 4.5 above and is acceptable.

4.8 Factors Not Included in Above Analyses

The following factors have not been considered in the above analyses and/or in this research:

- a) The effects of thermal increases on the characteristics of geosynthetics.
- b) The effects of leachate head on the factors of safety.
- c) The effects of using the methods of coextrusion, impingement or lamination for the texturing of the HDPE geomembrane.
- d) Slopes steeper than 1 in 1.

- e) The effects of Seismic forces.
- f) A cost analyses between the use of mineral lining system components and/or geosynthetic lining system components.

4.9 Correlation of Results

Various ring shear tests were carried out to determine the friction angles and adhesion values of the selected geosynthetics. These shear strength parameter results were then used to check the stability by means of calculating the factors of safety of selected liner configurations.

Three lining system Configurations were then selected to try to achieve the objectives of this research.

Configuration No. 1, that was based directly on a Class B landfill lining system, has shown that on slopes of 1:4 and 1:3, the selected CCL and mineral protection layer have acceptable factors of safety. On steeper slopes of 1:2 and 1:1, due to construction issues and stability issues showing low factors of safety, the Class B landfill lining system using mineral layers on slopes steeper than 1:3 is not acceptable.

In Configuration No. 2, the mineral layers investigated from the Class B landfill lining system was replaced with equivalent geosynthetics. However, the smooth surface of the single sided HDPE geomembrane against the protection geotextile showed unacceptable factors of safety on all slopes i.e. 1:4, 1:3, 1:2 and 1:1. The use of various tensile strengths of veneer reinforcement, on appropriate slope angles, was needed to increase the factors of safety to the acceptable norm of above 1.5 on all slopes.

Configuration No. 3 was selected by using the highest appropriate friction angles, from the geosynthetics tested, to try to achieve acceptable factors of safety without using veneer reinforcement. The use of a double sided textured HDPE geomembrane increased all the factors of safety above 1.5 on all the slopes.

The three lining system configurations selected have shown various factors of safety for the selected slope angles. However, there is a consistent relationship between the factors of

safety and the slope angles. It was found that the steeper the slope, the factors of safety reduced exponentially. Therefore, the relationship between the slope angle and factor of safety is exponential.

The selection of Configuration No. 3 and the factors of safety achieved, clearly shows that the interfaces, and lining system components, of any steep slope lining system can be made stable by using appropriate geosynthetics, using site specific conditions and appropriate testing.

CHAPTER 5

CASE STUDY

Chapter Five presents the case study used for this dissertation. The case study aims to assess the lining system constructed on a steep valley side slope at the Mariannhill Landfill site. The reasons for the selection of this site are discussed. The lining system constructed at the Mariannhill Landfill site is analysed and the factor of safety is checked. Finally, comments are given on the constructed lining system and the checked factor of safety.

5.1 Introduction

The Mariannhill Landfill site, located in Durban, was selected as the appropriate case study. Mariannhill Landfill site is classified as a GLB^+ site as per the DWAF Minimum Requirements for Waste Disposal by Landfill and the landfills cells were designed accordingly. Construction of the Mariannhill Landfill site commenced in 1998. The site is located in a long narrow valley with varying gradients of 1 in 8 in the valley base, 1 in 3 on the side slopes, up to an elevation of 290 above mean seal level, and 1 in 2 on the upper side slopes.

The geology of the site comprises of shallow sandstone bedrock outcropping at < 1.0, depth on the steeper side slopes becoming deeper between 3m to 4m depth beneath a hillwash / colluvium profile in the valley base. Since that are no thick soils on the side slopes and the sandstone bedrock is fairly horizontally bedded, there were no slope stability problems on shaping and trimming of the side slopes.

The Mariannhill Landfill site landfill cells were constructed using a cellular phased approached. Due to the varying design principles, availability of materials and landfill lining systems progression over the years, different geomembrane liners and lining systems have been used for construction of the various landfill cells at the site. The construction sequence of the landfill cells and the geomembrane liners used are shown in Table 5.1.

Landfill Cell Name	Year Constructed	Geomembrane Liner
Cell 1	1998	FPP monotextured
Cell 2	1998	FPP monotextured
Cell 3	1999	FPP monotextured
Cell 4 Phase 1	2001	FPP monotextured
Cell 4 Phase 2	2002	FPP monotextured
Call 2 Phase 2 2002		FPP monotextured and LLDPE double
Cell 5 Fliase 2	2003	sided textured
Cell 3 Phase 3	2007	HDPE monotextured
Cell 4 Phase 3	2011	HDPE double sided textured

Table 5.1: Cell construction sequence showing geomembrane liners used

More specifically, Cell 4 Phase 3 at Mariannhill Landfill site was chosen as the case study for this dissertation. The reason for the selection of Cell 4 Phase 3 was due to the complexity of the landfill cell. The landfill cell was above landfill Cell 4 Phase 2 which was constructed with FPP monotextured geomembrane and the side slopes varied from 1 in 4 to 1 in 2. The position of Cell 4 Phase 3 is shown in the Planning Phases Site Plan (courtesy of PDNA) attached in Appendix D.1. The construction layout plan of Cell 4 Phase 3 (courtesy of PDNA) is also attached in Appendix D.1.

The difference between the gentle slopes and steep slopes during construction are shown in Figures 5.1 and 5.2.

Figure 5.1: Lining of gentle slope

Figure 5.2: Earthworks showing steep slope

5.2 Lining System

The lining system constructed for Cell 4 Phase 3 was different for the varying slopes and is detailed below:

a)	Slopes of 1 in 4 to 1 in 3	-	Type A
b)	Slopes of 1 in 3 to 1 in 2.5	-	Type B
c)	Slopes of 1in 2.5 to 1 in 2	-	Type C

Type A, Type B and Type C lining system details are illustrated in Figure 5.3, Figure 5.4 and Figure 5.5 respectively.

Figure 5.3: Type A lining system

Figure 5.4: Type B lining system

Figure 5.5: Type C lining system

5.3 Lining System Interfaces

The lining system interfaces for the above lining systems are listed in Table 5.2.

Interface No.	Interface				
1a	Insitu material	vs	Stabilised sand (3% cement)		
2a	Shotcrete	vs	Non-woven geotextile		
3a	Stabilised sand (3% cement)	vs	HDPE geomembrane - makro spike		
4a	Non-woven geotextile	vs	HDPE geomembrane - makro spike		
5a	HDPE geomembrane - micro spike	vs	Protection geotextile		
ба	Protection geotextile	vs	Veneer reinforcement (Securgrid 120/40)		

Table 5.2:	Lining	system	interfaces
-------------------	--------	--------	------------

Ring shear tests were carried out at UKZN, using a ring shear device of 180mm OD and a 25mm sample width. The raw data from the ring shear tests are attached in Appendix D.2 and the corresponding graphical shear strength parameters are as follows:

Figure 5.6: Interface No. 3a shear strength parameters

Figure 5.7: Interface No. 4a shear strength parameters

Figure 5.8: Interface No. 5a shear strength parameters

Figure 5.9: Shear strength parameters for test purposes

Interface 1a was only applicable to slopes of 1 in 4 to 1 in 2.5 and was considered stable. Interface 2a was only applicable to slopes of 1 in 2.5 to 1 in 2 and was also considered stable.

Interface 6a could not be tested locally due to the large aperture size of the geogrid (Secugrid 120/40) and the limitations of the ring shear device and other shear box devices in South Africa. All representative materials were sent to Naue, Germany for the testing. A 300mm x 300mm shear box device was used and the materials were hydrated for the direct shear test. Normal stresses of 50kPa, 100kPa and 200kPa were used. The test results are attached in Appendix D.3 and are included in Table 5.3.

Therefore, from the above ring shear tests carried out locally and internationally, the peak and residual interface friction angles and their corresponding peak and residual adhesion values are given in Table 5.3.

			Peak	Residual	Residual	
		Peak Friction	Adhesion	Friction	Adhesion	
		Angle (δ)	(c _a)	Angle (δ)	(c _a)	
HDPE Geomemb	orane	(Degrees)	(kPa)	(Degrees)	(kPa)	
Stabilised sand	Makro spike	35.05	6.67	31 77	17.67	
(3% cement) vs	Mario spike	55.05	0.02	51.77	17.07	
Protection	Makro spike	25 55	36.02	10.30	28.33	
geotextile vs	Mario spike	25.55	30.92	10.50	20.33	
Micro spike vs	Protection	17.09	11.84	15.24	11.70	
where spike vs	geotextile	17.07	11.04	13.24	11.70	
Protection	Veneer	26.68	2.22	22.56	3 30	
geotextile vs	Reinforcement	20.00	2.22	22.30	5.59	

Table 5.3: Friction angles and adhesion values from direct shear tests

The weakest interface for configurations Type A, Type B and Type C was the same for all configurations. The weakest interface was:

Micro spike vs Protecti- geotexti	n 17.09	11.84	15.24	11.70
--------------------------------------	---------	-------	-------	-------

The factors of safety for the configurations of the Type A, Type B and Type C were checked and are shown in Table 5.4 and are graphically represented in Figure 5.10. The factor of safety calculations were based on the residual shear strength parameters and are attached as Appendix D.4.

Table 5.4:	Mariannhill	Landfill s	site factors	of safety	of the	weakest interface
------------	-------------	------------	--------------	-----------	--------	-------------------

Mariannhill Landfill Site – Cell 4 Phase 3 Critical Interface: HDPE Geomembrane Micro Spike vs				
Protection Geotextile for Type A, '	Protection Geotextile for Type A, Type B and Type C			
Easton of Sofaty	Slopes up to			
Factor of Safety	1:3	1:2.5	1:2	
Uniform Stone Layer Thickness	8.91	7.58	6.28	
Uniform Stone Layer Thickness with Equipment Loads	5.37	4.34	3.29	

Figure 5.10: Graphical presentation of Mariannhill Landfill Site Cell 4 Phase 3 factors of safety

All the factors of safety for Cell 4 Phase 3 are above 1.5 and are acceptable. The use of veneer reinforcement was not needed for the construction stage of the landfill cell, however it will be needed during the settlement of the waste, when the landfill cell is filled, to prevent tensile stresses in the underlying geosynthetic lining system components. The factors of safety with the equipment loads are almost parallel to the factors of safety without the equipment loads. The relationship between the factors of safety appear to be linear.

Integrity of the HDPE Geomembrane, Protection Geotextile and Veneer Reinforcement

The integrity of the HDPE geomembrane, protection geotextile and veneer reinforcement was calculated by comparing the self-weight of the geosynthetics with its yield strength assuming the worst case scenario of no frictional support from the underlying layer. The factors of safety for integrity of the geosynthetics for the various slopes are listed in Table 5.5. The calculations of the geosynthetics integrity factors of safety are attached as Appendix D.5.

Factor of Safety	Up to 1:3 Slope	Up to 1:2.5 Slope	Up to 1:2 Slope
HDPE Geomembrane	71.42	89.28	119.03
Protection Geotextile	309.89	387.36	516.48
Veneer Reinforcement	843.61	1054.52	1406.02

 Table 5.5: Integrity factors of safety

The factors of safety for the integrity of the HDPE geomembrane, protection geotextile and veneer reinforcement on the various slopes were found to be more than acceptable.

5.4 Assessment by Appointed Geotechnical Engineer

Due to the complexity of Mariannhill Landfill site Cell 4 Phase 3, external Consulting Civil Engineers and Engineering Geologists were appointed to assess the stability of the landfill Cell 3 Phase 4. A 2D Limit State Equilibrium programme called PC STABL5 was used to analyse the various modes of failure.

The recommendation by the external Consultant was to ensure that the interface with the weakest shear strength has a residual friction angle > 9 degrees, which would result in a stable landfill. The letter of recommendation is attached in Appendix D.6. The residual friction angle of the weakest interface was 15.24 degrees as shown in Table 5.3.

These analyses are in-line with the analyses carried out above and therefore should result in a stable landfill. Figure 5.12 shows the landfill Cell 4 Phase 3 upon completion.

5.5 Comments on the Case Study

The planning and construction of the Mariannhill Landfill site commenced in the late 1990's and even at that stage it was known that steep valley side slopes of 1 in 2 would be encountered in the final cell lifts of the landfill site. However, the conventional lining system for a GLB^+ site, as recommended by the DWAF Minimum Requirements for Waste Disposal by Landfill, could not be applied due to stability issues. The lining system design had to be adapted to ensure that an environmentally acceptable landfill site is still constructed whilst ensuring stability and integrity of the lining system. The difference between the lining system specified for a GLB^+ site and the lining system used at Mariannhill Landfill site are shown in Figure 5.11.

Figure 5.11: Difference between GLB⁺ site prescribed lining system and the lining system used at Mariannhill Landfill site on the steepest slope of 1 in 2

Various lining systems were incorporated into the various landfill cells, and of interest was the stability and integrity of the lining system on the steep slopes of 1 in 2 due to the complexity of the site.

As can be seen from the stability analyses above, a stable landfill cell, Cell 4 Phase 3, has been constructed on slopes up to 1 in 2 with factors of safety in excess of 1.5. This case study highlights that the specified lining system for a GLB^+ site could not applied. However, a stable lining system is achievable on steep landfill side slopes as long as the appropriate lining system components are chosen, tested and analysed using site specific conditions.

Figure 5.12 shows the landfill Cell 4 Phase 3 upon completion.

Figure 5.12: Cell 4 Phase 3 upon completion

CHAPTER 6

SUMMARY AND CONCLUSIONS

Chapter Six presents a summary of the dissertation. The summary highlights the three objectives that were set at the beginning of this dissertation and the methodology used to try to achieve the objectives. This chapter also presents a summary of the results obtained from the limit state equilibrium analyses for the various factors of safety on different slope angles using the prescribed lining system and alternative geosynthetics. The conclusions from the dissertation and the recommendations for further study are presented.

6.1 Introduction

South Africa has been following closely behind the global progression of waste management and in 1994 the Waste Management Series, which comprised of the Minimum Requirements for Waste Disposal by Landfill, was published. The Second Edition of the Waste Management Series was published in 1998 for acceptance and use in the waste management industry. From 1998 to August 2013, the lining systems to be used for different classifications of landfill sites in South Africa were specified. In August 2013 the lining systems prescribed by the Minimum Requirements for Waste Disposal by Landfill was superseded by R636 National Norms and Standards for Disposal of Waste to Landfill. Since the change in prescribed lining systems occurred during the research for this dissertation, the lining systems prescribed by the Minimum Requirements for Waste Disposal by Landfill is discussed only and the lining systems specified by the National Norms and Standards for Disposal of Waste to Landfill were analysed.

Although waste minimisation, recycling and treatment is being promoted globally and in South Africa, there is, and always will be, the need for landfill sites in the foreseeable future. As land for landfill sites become more scarce and in an attempt to maximise each landfill site with regards to storage capacity, the use of land with slopes greater than 1 in 4 and 1 in 3 become more commercially viable. However, the lining of steep landfill slopes provides new design challenges.

The objectives of this dissertation were to assess the newly prescribed lining system components, to determine the stability and integrity of a selected lining system on various slopes and to determine whether the use of alternative geosynthetics would help improve stability on steep slopes.

6.2 Methodological Approach Used To Achieve Objectives

The methodological approach used to achieve the objectives of this research is summated by the key questions highlighted below.

What are the fundamental changes with regards to the previously prescribed lining systems and the now prescribed lining systems?

All classes of landfills, as per the National Norms and Standards for Disposal of Waste to Landfill, must have composite lining systems whereas only hazardous waste landfills were specified to have a composite lining system, as per the Minimum Requirements for Waste Disposal by Landfill.

The mineral lining system components characteristics are the same, however the mineral lining system components may now be replaced with equivalent geosynthetic alternatives. However, the use of equivalent geosynthetics as an alternative must be proven.

How was the objective of determining the stability and integrity of lining systems on steep slopes achieved?

The current tools available for stability analyses were researched. Currently 2-D limit equilibrium and 3-D finite-element analyses are available. A 2-D limit-equilibrium analysis was selected as it is currently industry norm and gives results that are more conservative by giving factors of safety that are equal to or less than 3-D finite element analyses (Thiel, 2001).

A Class B landfill lining system and slopes of 1 in 4, 1 in 3, 1 in 2, and 1 in 1 were selected to analyse the factors of safety.

Direct shear tests were carried out using a 180mm outside diameter circular ring shear device, at UKZN, to determine the various interface shear strength properties.

Using 2-D limit equilibrium analyses the factors of safety for the various lining systems on the various slope angles using equivalent geosynthetics, where required, were calculated. The integrity of the geosynthetics was also checked. The relationship between the stability and the slope angles were thereafter determined.

A case study to determine the effects of the slope angle in relation to the factor of safety was investigated. Mariannhill Landfill site was selected as the case study due to the steep valley side slopes and the overall complexity of the site. The results found for Mariannhill Landfill site was compared to the results from this dissertation to determine whether the results are consistent with current industry applications.

6.3 Summary of Results

A summary of the various lining systems analysed with their corresponding factors of safety are shown in Table 6.1 and the factors of safety for Mariannhill Landfill site are shown in Table 6.2. The factors of safety below 1.5 are highlighted with red, the lining system components with factors of safety higher than 1.5 but have construction limitations are highlighted in green and the factors of safety above 1.5 are highlighted in yellow. The factors of safety in Table 6.1 and 6.2 are based on:

- i) the weakest interface
- ii) the various slopes
- iii) the worst case scenario which includes equipment loads

		Sl	ope		
Lining System Name	1:4	1:3	1:2	1:1	Comments
Configuration No. 1 (Figure 34)	4.61	3.32	2.09	1.07	Based on a Class B landfill
Configuration No. 2 (Figure 36) without veneer reinforcement			0.70	0.59	Using geosynthetics with mono textured HDPE geomembrane
Configuration No. 2 (Figure 36) with varying veneer reinforcement strengths (tensile strength)	1.72 (50/50)	1.68 (100/100)	3.0 (200/200)	1.75 (200/200)	Using geosynthetics with mono textured HDPE geomembrane and veneer reinforcement
Configuration No. 3 (Figure 38)	25.43	17.71	10.51	5.23	Using geosynthetics with double sided textured HDPE geomembrane

Table 6.1: Summary of factors of safety for analysed lining systems

 Table 6.2: Factors of safety for Mariannhill Landfill Site

		Slopes up to		
Lining System Name	1:3	1:2.5	1:2	Comments
Mariannhill Landfill				Using geosynthetics with
Site - Cell 4 Phase 3	5.37	4.34	3.29	double sided textured
(Figures 42, 43 and 44)				geomembrane

The factors of safety for the integrity of all the lining system configurations were checked and were found to be acceptable.

6.4 Conclusions

In South Africa and globally there is, and will be, the need for landfill sites in the foreseeable future. Land for these landfill sites become scarcer and land with slopes greater than 1 in 4 become more commercially viable. However, the design of lining systems on steep slopes has greater technical challenges.

From the results of Configuration No. 1 and from the materials and geosynthetics tested and used for this dissertation, it can be seen that the lining systems that are prescribed by the National Norms and Standards for Disposal of Waste to Landfill in South Africa will not be suitable on slopes steeper than 1 in 3 due to construction limitations and stability, unless geosynthetics of equal performance are considered.

Even though equivalent geosynthetic materials may be used on steeper slopes, the equivalency must be proven and the design-by-function properties of the geosynthetics must be considered.

The use of geosynthetics on gentle slopes as well as on steep slopes does not necessarily mean that the lining system stability and integrity will be achieved and must be analysed thoroughly with the stability assessment tools available. The geosynthetics used for Configuration No. 2 was based on a mono textured HDPE geomembrane liner inducing a greater friction angle below the liner, which is required, with the smooth surface of the liner in contact with a protection geotextile. Configuration No. 2 still has factors of safety below 1.5 on all the slopes i.e. 1 in 4, 1 in 3. 1 in 2 and 1 in 1, although geosynthetics were used. It is however, possible to increase these factors of safety with the use of other geosynthetics in the form of veneer reinforcement, as can been seen in the research.

The selection of the correct equivalent geosynthetic materials is a vital part of achieving acceptable factors of safety for stability on steep slopes. Configuration No. 3 comprises of a double sided textured HDPE geomembrane liner and the factors of safety on all the slopes are well above 1.5.

The trending of the factors of safety for the various lining system configurations, tested for this dissertation, clearly shows a relationship between the slope angle and the factor of safety. The relationship appears to be exponential where the factor of safety exponentially decreases as the slope angle increases.

The Mariannhill Landfill site case study selected, shows factors of safety well above 1.5 indicating that the lining system design was conservative due to the complexity of the site. The factors of safety for the varying slopes, follows a similar trend to the results obtained from this dissertation.

From the title of this dissertation "The Lining of Steep Slopes in South Africa and the Applicability of the Minimum Requirements for Waste Disposal by Landfill by the Department of Water Affairs and Forestry", the following brief conclusions are made:

- The Minimum Requirements for Waste Disposal by Landfill was superseded by R636 National Norms and Standards for Disposal of Waste to Landfill and a representative Class B landfill lining system from the National Norms and Standards for Disposal of Waste to Landfill was selected to achieve the aims of this dissertation.
- The landfill lining systems specified by the National Norms and Standards for Disposal of Waste to Landfill are not applicable for steep slopes due to the low factors of safety achieved from the materials and geosynthetics analysed for this dissertation.
- It is possible to achieve acceptable factors of safety above 1.5 for stability on steep slopes with the selection of suitable geosynthetics of equal performance. It must be noted however, that site specific testing must be carried out.

6.5 Suggestions for Further Research

Due to the large number of variables required for the analyses of lining systems, various factors have not been taken into consideration for this dissertation. During the literature review process for this dissertation, many of these variables were also discussed briefly in the literature available but no in-depth research was available or found. Suggestions for further research include the following:

- a) The effects of thermal increases on steep slope lining systems.
- b) The use of geosynthetic drainage systems for the replacement of the mineral leakage detection layer on steep slopes.
- c) Compilation of interface shear strength parameters for geotextile-geonet composites, for the use as geosynthetic drainage systems, and for geogrids-geotextile interfaces. This cannot be adequately researched in South Africa due to the limitations of the direct shear test apparatus available in South Africa. Ideally these interfaces should be tested in a shear box larger than the 300mm x 300mm shear box currently available in South Africa, due to their large aperture sizes.

d) The effects of using the methods of coextrusion, impingement or lamination for the texturing of the HDPE geomembrane for the lining of steep slopes.

REFERENCES

- ASTM D5321–02. Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. Annual Book of ASTM Standards, Volume: 04.13.
- ASTM D6467–13. Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils. Annual Book of ASTM Standard, Volume: 04.09.
- ASTM D4439-11. Standard Terminology for Geosynthetics. Annual Book of ASTM Standards Volume: 04.13.
- Blumel W., Stoewahse C., Dixon N., Kamugisha P., Jones D.R.V. British-German Cooperative Research on Geosynthetic Friction Testing Methods.
- Cilliers C. and Msiza J. (2009). Case Studies: The design and construction elements that arise when hazardous waste lagoons incorporate steep side slopes. Proceedings from GIGSA GeoAfrica 2009 Conference, Cape Town, South Africa.
- Dixon N. and Jones D.R.V. (2003). Stability of Landfill Lining Systems: Report No. 2 Guidance. R&D Technical Report P1-385/TR2, p. 4, 39, 153-165. Environment Agency, Bristol.
- Dixon N., Ng'ambi S. and Jones D.R.V. (July 2004). Structural Performance of a Steep Slope Landfill Lining System, Proceedings of the Institution of Civil Engineers, Paper 13567: p. 115-125
- Elton D.J. and Peggs I. (2002). Geomembrane Research Needs. Geosynthetics International, Vol 9, No. 3: p. 289-290
- Fowmes G.J. (2007). Analysis of Steep Sided Landfill Lining Systems. EngD Thesis.

- German Geotechnical Society. (2011). Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcement. Translation of 2nd German Edition. Ernst & Sohn GmbH & Co. KG. p. 142-149
- Giroud J.P. (1984). Geotextiles and Geomembranes, Definitions, Properties and Design, Vol 1. p. 5-40
- GSE Environmental. (2013). Technical Note Hydraulic Equivalency Comparison: CFR Prescriptive Liner System vs. Coal Ash Barrier System, TN46 Rev22APR2013.
- IPENZ Practice Note 21 ISSN 1176–0907 Version 2, March 2013. Farm Dairy Effluent Pond Design and Construction.
- Jones D.R.V. and Dixon N. Landfill Engineering: A Technical Challenge or Old Hat. Golder Associates (UK) Ltd., Stanton-on-the-Wolds, UK.
- Koerner R.M. (2005). Designing with Geosynthetics, Fifth Edition. Pearson Prentice Hall, NJ, USA.
- Koerner R.M. An Overview of Geogrids. Geosynthetic Institute, Folsom, PA.
- Koerner R.M. (2003). Selected Papers on the Design Decision of using Peak Versus Residual Shear Strengths. GRI Report No. 29.
- Koerner R.M. and Daniel D.E. (1993). Technical Equivalency Assessment of GCLs to CCLs. *Proceedings of the 7th Geosynthetic Research Institute Seminar*. Philadelphia, PA.
- Koerner R.M. and Soong T.Y. (1998). Analysis and Design of Veneer Cover Soils. Proceedings of the 6th IGS Conference. p. 1-26
- Koerner G.R. (2013). Geosynthetic Barriers Short Course Notes. *Proceedings of Landfill Interest Group 2013*, Muldersdrift, Johannesburg.

- National Solid Wastes Management Association (2008). Modern Landfill: A Far Cry from the Past. Washington, DC.
- Oweis, I.S. (1992). Stability of Landfills. "In Geotechnical Practice for Waste Disposal", Chapman and Hall, London.
- Qian, X., Koerner, R. M., and Gray, D. H. 2003. Translational failure analysis of landfills. Journal of Geotechnical and Geoenvironmental Engineering, 129(6), 506-519.
- Qian, X., Gray, D. H., and Koerner, R. M. 2004. Estimation of maximum liquid head over landfill barriers. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 488-497.
- Qian, X., and Koerner, R. M. 2004. Effect of apparent cohesion on translational failure analyses of landfills. Journal of Geotechnical and Geoenvironmental Engineering, 130(1), 71-80.
- Qian, X., and Koerner, R. M. 2005. A new method to analyze for, and design against, translational failures of geosynthetic lined landfills. Ling, H. I., Kaliakin, V. N., and Leshchinsky, D., eds., Geosynthetics and Geosynthetic-Engineered Structures (McMat Conference), 61-98. Baton Rouge: ASME/ASCE/SES.
- Qian, X. 2006. Translational failures of geosynthetic lined landfills under difference leachate buildup conditions. Lu, N., Hoyos, L. R., and Reddi, L., eds., Advances in Unsaturated Soil, Seepage, and Environmental Geotechnics, Proceedings of Sessions of GeoShanghai. ASCE Geotechnical Special Publication 148, 278-289. Reston: ASCE/GEO Institute.
- Qian, X., and Koerner, R. M. 2007. Translational Failure Analysis of Solid Waste Landfills Including Seismicity and Leachate Head Calculations, GRI Report 33. Folsom: Geosynthetic Research Institute.
- Qian, X. 2008. Limit equilibrium analysis for translational failure of landfills under different leachate buildup conditions. Water Science and Engineering, 1(1), 44-62.

- Regulation Gazette No. 10008. (2013). R634 National Environmental Management: Waste Act (59/2008): Waste Classification and Management Regulations. Department of Environmental Affairs, Republic of South Africa.
- Regulation Gazette No. 10008. (2013). R635 National Norms and Standards for the assessment of Waste for Landfill Disposal. Department of Environmental Affairs, Republic of South Africa.
- Regulation Gazette No. 10008. (2013). R636 National Norms and Standards for Disposal of Waste to Landfill. Department of Environmental Affairs, Republic of South Africa.
- Saravanan M., Kamon M., Faisal H. A., Katsumi T., Akai T., Inui T., Matsumoto A. (2006) Landfill Stability Assessment Using Interface Parameters, Proceeding of the 6th Japan-Korea-France Joint Seminar on Geoenvironmental Engineering, 2006, Japan. 137-146.
- Stark T.D. and Eid H.T. (1996). Shear Behaviour Reinforced Geosynthetic Clay Liners. Geosynthetics International Vol 3 No. 6. Industrial Fabrics Association International, Minnesota, USA.
- The Physics Factbook. Pressure in a Truck Tire. [Internet]. Available from http://hypertextbook.com/facts/2003/AlexandraKanonik.shtml. [Accessed 25 November 2013].
- Thiel, R.S. (2001) "Peak vs. Residual Shear Strength for Landfill Bottom Liner Stability Analyses" Proceedings of the 15th Annual GRI Conference Hot Topics in Geosynthetics – II, presented in Houston, TX, Dec. 13, 2001, Geosynthetics Institute, Folsom, PA, pp. 40-70.
- TRH14. (1985). Guidelines for Road Construction Materials. National Institute for Transport and Road Research, Pretoria, South Africa. p. 13-26.
- Vajirkar M.M. (2004). Slope Stability Analysis of Class I Landfills with Co Disposal of Bio solids Using Field Test Data. MSc Thesis

- Willaims N., Giroud J.P., and Bonaparte R. (1984). Properties of Plastic Nets for Liquid and Gas Drainage Associated with Geomembranes. Proceedings of the international Conference on Geomembranes. IFAI, p. 399-404.
- Wilson-Fahmy R.F., Narejo D. and Koerner R.M. (1996). Puncture Protection of Geomembranes, Part I: Theory. Geosynthetics International, Vol 3 No. 5. p. 605-628
- Xuede Q. (2008). Critical interfaces in Geosynthetic Multilayer Liner System of a Landfill. Water Science and Engineering Vol.1 No.4, p. 22-35

APPENDICES

Appendix A: Technical Data Sheets

GCL Data Sheet GCL Interface Friction Test Report GCL Tensile Strength Geotextile Data Sheet HDPE Data Sheet Rock Grid PC Data Sheet Secugrid Data Sheet

GCL Data Sheet

Johannesburg +27 (0)11 922 3300 Pinetown +27 (0)31 717 2300 Cape Town +27 (0)21 531 8110 East London +27 (0)43 727 1055 www.kaytech.co.za

TECHNICAL DATA SHEET

Product Name

EnviroFIX[®] X 1000

Reference No: DS WAST 0497-08/2013

Date of Issue 06 August 2013

Description Envirofix is a geosynthetic clay liner

			MARV (min average roll value)	Factory QC Test Frequency (m ²)	
Geotextile Cover	PP nonwoven, white	g/m²	200	4 000	ASTM D5261
	PP slit film, woven	g/m ²	110		
Geotextile	PP nonwoven, white	g/m ²	N/A	4 000	ASTM D5261
Carrier Layer	Composite	g/m ²	N/A		
Bentonite Laver	Quality	Mor	ntmorillonite content > 75	%, Sodium Cation N	Na* > 60 %
(bentonite mass at 0% moisture	Sodium Bentonite Powder	g/m ²	4 000	4 000	ASTM D5993
content)	Swell Index (minimum)	m0/2 g	≥ 24	35 tonnes	ASTM D5890
GCL Ma	ss per Unit Area	g/m ²	4 310	4 000	ASTM D5993
Bond	ling Process	Needlepunched and Thermal Lock™			
1000	MD	N	600	1.1	
Grab Strength	XD	N	600	4 000	ASTM D4632
000 0	Strength	N	1 600	00.000	100 10000
CBR BUIST	Elongation	%	≥ 15	20 000	150 12230
Hydraulic Cor	nductivity (maximum)	m/s	≤ 1.85 x 10 ⁻¹¹	25 000	ASTM D5887
Index Flux (pre-hy	dration thickness 4.5 mm)	m ³ /m ² /s	4.0 x 10 ⁻⁹	25 000	ASTM D5887
Peel Strength	(excl Edge Treatment)	N/m	> 360	4 000	ASTM D6496
Edg	e Treatment	800	g/m² x 300 mm self-sealin	g bentonite edge er	hancement
Roll Size	width x length	m	5.35 x 35	1 % toler width an	ance on d length
(standard)	diameter	cm	60	Nor	ninal
	Average roll mass	kg	970	Тур	ical

Manufactured by Kaytech to the ISO 9001:2000 Quality Management System Standard PP = Polypropylene MD = Machine Direction XD = Cross Direction

Kaytech reserves the right to make technical modifications to its products

The information given in Kaytech's documentation is to the best of our knowledge true and correct. However, new research results and practical experience can make revisions necessary. No guarantee or liability can be drawn from the information mentioned herein. Furthermore, it is not Kaytech's intention to violate patents or licenses. GCL Interface Friction Test Report

Interface Friction Test Report

Client:	Kaytech - Kaymac Group	TRI Log#: E2365-07-08
Project	GCL Shear Strength Program	Test Method: ASTM D 6243
Test Date:	03/28/12-03/29/05	

John M. Allen, P.E., 03/30/2012 Quality Review/Date

Tested Interface: Internal Shear of Envirofix X1000 GCL

Specimen No.	1	2	3
Bearing Slide Resistance (kPa)	0.7	1.3	23
Normal Stress (kPa)	30	100	200
Corrected Peak Shear Stress (kPa)	103	197	225
Corrected Large Displacement Shear Stress (kPa)	48	17	37
Peak Secant Angle (degrees)	73.7	63.1	48.3
Large Displacement Secant Angle (degrees)	58.1	9.8	10.6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🗆 Austin, TX 78733-6201 L (512) 263-2101 🗆 (512) 263-2558 L 1-800-880-TEST

GCL Tensile Strength Test

GCL TENSILE ASTM D6768 R02

Product	: BCL10CPHT535035(ZEBRA)	Load Range	: 5000 N
Batch	: 13110574	Extension Range	: 100 mm
Date	: 2013/11/15	Test Speed	: 300 mm/min
Operator	: BULL	Preload	:75 N

Force/Dimension @8% N/mm	Strain at Max %	Maximum N/mm	Width	Specimen
8.70	14.60	12.49	100.0	1
7.97	13.80	10.60	100.0	2
8.49	13.05	11.45	100.0	3
8.10	12.60	10.84	100.0	4
8.50	13.60	11.39	100.0	5
8.3	13.53	11.35	Mean	
0.3278	0.761	0.730	Std. Dev.	
3.911	5.63	6.43	Coe. Var.	
8.70	14.60	12.49	laximum	N
7.9	12.60	10.60	Minimum	

- Page 1 -

QMat 5.35 / Q4160 - Kaylech Engineered Fabrics (Pty) Ltd.

H25KT/130 - 5000N / [CW00-012.HTW - 1.0] - GCL TENSILE ASTM D6768 R02
Geotextile Data Sheet

Johannesburg +27 (0)11 922 3300 Pinetown +27 (0)31 717 2300 Cape Town +27 (0)21 531 8110 East London +27 (0)43 727 1055 www.kaytech.co.za

TECHNICAL DATA SHEET

Product Name

bidim

Reference No:	
Date of Issue	

DS FLTR 0472-06/2013 Rev2

Description

11 June 2013 Nonwoven, Continuous Filament, Needle Punched, Polyester Geotextile

			A1	A2	A3	A4	A5	AG	A7	A8	A10	
Mass	Nominal	g/m²	130	150	180	210	270	340	550	750	1000	SANS 10221-2007
Thickness	Thickness under 2 kPa	mm	1.2	1.6	1.8	2.0	2.5	3.2	4.4	6.1	6.9	SANS 10221-2007
Throughflow	@ 100mm head	U/s/m²	320	265	230	215	185	170	110	60	46	SANS 10221-2007
Permittivity		5 ⁻¹	3.2	2.6	2.3	2.1	1.8	1.7	1.1	0.7	0.5	Calc
Permeability	@ 1 x 10 ⁻³	m/sec	3.8	4.2	4.1	4.3	4.6	5.4	4.8	4.3	3.2	SANS 10221-2007
	Machine	kN/m	8	11	13	16	22	30	49	62	76	
Tensile	Across	kN/m	7	9	11	14	20	27	43	57	67	SANS 10221-2007
	Elongation	%					40 - 60					A second
Penetration Load	CBR	EN	1.4	1.8	2.2	2.6	3.7	4.7	7.2	9.2	11.4	SANS 10221-2007
Porosity		%	92	93	93	93	93	92	90	90	87	GTS

The above results represent laboratory averages

Nonwoven Continuous Filament Needlepunched Polyester Geotextile Nonwoven – High throughflow and excellent filtration Continuous Filament – High isotropic strength Needlepunched – High elongation Polyester – Superior chemical resistance

Kaytech reserves the right to make technical modifications to its products

The information given in Kaytech's documentation is to the best of our knowledge true and correct. However, new research results and practical experience can make revisions necessary. No guarantee or liability can be drawn from the information mentioned herein. Furthermore, it is not Kaytech's intention to violate patents or licenses. HDPE Data Sheet

Technical Data 2177 Carbofol® 406 Karo-Noppe/Megakron

windinginenweg 4, 473001
Germany
fon: +49 2845 808 - 155
fax: +49 2845 808 - 116
www.naue.com
info@naue.com
dated: 18.04.2007

Values tested in structu	red area
Droporty	Test Math

Property	Test Method	Unit				
Thickness nominal	ASTM D 5199	mm	1,50	2,00	2,50	3,00
Thickness lowest individual value	ASTM D 5199	mm	1,42	1,90	2,38	2,85
Width	1	mm	5100	5100	5100	5100
Density	ASTM D 1505 ASTM D 792	g/cm³	0,942	0,942	0,942	0,942
Melt flow index	ASTM D 1238 Cond. P 190/5	g/10 min	< 3,0	< 3,0	< 3,0	< 3,0
Melt flow index	ASTM D 1238 Cond. E 190/2,16	g/10 min	< 1,0	< 1,0	< 1,0	< 1,0
Tensile strength at yield	ASTM D 6693	N/mm MPA	25 16	33 16	42 16	50 16
Elongation at yield	ASTM D 6693	%	12	12	12	12
Tensile strength at break	ASTM D 6693	N/mm MPA	> 26 > 18	> 35 > 18	> 47 > 18	> 54 > 18
Elongation at break	ASTM D 6693	%	400	400	400	400
Carbon black content	ASTM D 1603	%	2	2	2	2
Carbon black dispersion	ASTM D 5596	Category	1-2	1-2	1-2	1-2
Tear resistance	ASTM D 1004	N	200	280	350	400
Cold bending at -20°C	ASTM D 2136	I	passed	passed	passed	passed
Multi axial elongation	Based on DIN 53861 / EN 14151	%	15	15	15	15
ESCR *1	ASTM D 1693	hours	2000	2000	2000	2000
Perforation resistance	DIN 16726	mm	800	1200	1600	2000
Dimensional stability after warm storage 1h/100°C	ASTM D 1204	%	≤ 2	≤1	≤1	≤1
NCTL – Test *1	ASTM D 5397 app.	hours	> 300	> 300	> 300	> 300
OIT	ASTM D 3895	min	70	70	70	70
Puncture resistance	ASTM D 4833 EN ISO 12236	N	500 4000	700 5400	820 6700	960 7400

file: 2177 - 406 kn-mk struc. Rev.2 eng.doc

*1 Measurement within the outside edge weiding zones

The a.m.technical data are average values gained from measurings over the production width. These data are guiding values achieved in our aboratories and/or independent testing institutes. Our products can be subject to change without prior notice.

Rock Grid PC Data Sheet

Johanneeburg +27 (0)11 922 3300 Pinetown +27 (0)31 717 2300 Cape Town +27 (0)21 531 8110 East London +27 (0)43 727 1055 www.kaytech.co.za

TECHNICAL DATA SHEET

ROCKPC Product Name

DS REIN 0455-01/2013 Reference No:

Date of Issue 21 December 2012

Description

High strength composite geotextile offering high modulus characteristics for reinforcement applications, with the additional benefits of in-plane capacity and high installation survivability

				50/50	100/100	200/200	
Material				Polyester, s nonwov	taple fibre 150 g/i en / high strength	m ^a needle punche polyester yams	ed,
		Machine	kN/m	50	100	200	
Short Term Tensile Strengt	1 h (T _u)	Across	kN/m	50	100	200	ISO 10319
		Elongation	%	10	10	10	
Long Term Desig	n Strengt	n (LTDS") 120 Years	kN/m	26	52	105	ISO 10319
Creep Lim	ited Streng	gth 120 Years	kN/m	30	60	120	ISO 13431
Water Flow	No	rmal to Plane	Uis/m ²		150		ISO 11058
Rate	in i	Plane 20 kPa	Us/m/hr		20		ISO 12958
R	toll Dimen	sions	m		5 x 100		ISO 12958

$$LTDS = \frac{T_u}{f_c.f_d.f_e.f_m} \begin{cases} c \text{ (creep)} &= 1.85 \text{ (120 years)} \\ f_d \text{ (damage)} &= 1.05 \text{ (sand, silt, clay, yarn facing soil)} \\ f_e \text{ (environment)} &= 1.10 \text{ (pH 4-9)} \\ f_m \text{ (material)} &= 1.00 \end{cases}$$

The above results represent laboratory averages Kaytech reserves the right to make technical modifications to its products

The information given in Kaytech's documentation is to the best of our knowledge true and correct. However, new research results and practical experience can make revisions necessary. No guarantee or liability can be drawn from the information mentioned herein. Furthermore, it is not Kaytech's intention to violate patents or licenses.

Secugrid Data Sheet

ť

С÷

Geogrid

Secugrid® R (PES/PET)

Product description:

Laid geogrid made of stretched, monolithic polyester (PET) flat or profile bars with welded junctions used for the reinforcement in many fields of civil engineering including landfill engineering, road construction and hydraulic engineering

Property	Test method*	Unit	60/20 R6	80/20 R6	120/40 R6	200/40 R6	400/40 R6
Raw material	-	-		poly	ester/PET, transp	arent	
Mass por unit area	EN ISO 9864	9/m²	380	380	580	810	1.420
Max, tensile strength, md / cmd**	EN ISC 10319	kN/m	≥ 60 / ≥ 20	≥ 80 / ≥ 20	≥ 120 / ≥ 40	≥ 200 / ≥ 40	≥ 400 / ≥ 40
Elongation at nominal strength, md / cmd**	EN ISO 10319	%			≤8/≤8		
Tensile strength at 2% elongation, md**	EN ISO 10319	KN/m	21	28	42	70	140
Tensile strength at 5% elongation, md**	EN ISO 10319	kN/m	36	48	72	120	240
Aperture size, md x cmd**	-	mm x mm	approx. 73 x 31	approx. 73 x 30	approx. 71 x 28	approx. 71 x 25	approx. 70 x 14
UV-resistance (remaining tensile strength)	EN 12224	%			96.3		
Weather resistance	FGSV	class			high		
Production specific elongation		%			0		
Roll dimensions, width x length		m x m		4.75	x 100		4.75 50

"based on, ""md = machine direction, amd = cross machine direction

The listed technical values are guiding values, achieved in our laboratories and/or independent testing institutes. Our products are subject to changes without prior hotice.

13 July 2009

N-Std Secugrid.XLS 60'80-20 120'200'400-40 R6_en, Rev. 11

Appendix B: Geotextile Equivalency Calculations for HDPE Protection Layer

							B	UR	ST	RESISTAN	CE			
T _{reqd}	=	0.5	p'	dv	[f	(€)]				
where														
T _{reqd}	=	required §	geo	ote	xt	tile	e	str	en	igth				
p'	=	stress on	the	e ge	eo	te	ex	tile	2, 1	which is sl	ightly less t	han p, the	tire	
		inflation p	ore	SSI	Jr	eä	at	th	e	ground sur	face			
d _v	=	maximum		bid	d	ia	m	et	er	of the stor	$ne \cong 0.33d_a$			
d _a	=	the avera	ge	sto	n	e	di	am	net	ter				
f(∈)	=	strain fun	cti	on	o	ft	he	e d	ef	ormed geo	otextile,			
		=	1 4		2	<u>2y</u> b	+	b 2y]	, in which	 			
b	=	width of c	pe	eni	ng	g (01	٠vc	bid	ł)				
у	=	deformat	or	i in	t	he	e c	pe	eni	ing (or void	(b			
FS	=	60.6 p _{test}												
	=	1.90	(>	1.5	5 t	he	er	efc	ore	e Bidim A1	0 OK)			
p _{test}	1100	kPa	-L	lti	m	at	e	bu	rst	t strength	from Figure	e 2.30 (Koe	rner, 2005)	
p'	700	kPa	- 1	ire	i	nf	la	tio	n	pressure f	rom http://	hypertext	book.com/f	acts/2003
d _a	50	mm	-r	nax	cir	າເ	Jn	n s	to	ne size fro	m DWAF, 1	998		

						•	TE	NS	SIL	E.	STRENGT	ГН										
T_{allow}	=	maximun	n grab s	streng	th	of	ge	eot	e	xt	tile											
T _{reqd}	=		p'	d_v^2	[f	(\in)]]											
where	į																					
							_															
T _{reqd}	=	required	grab te	ensile	for	ce																
р'	=	applied p	ressur	e																		
dv	=	maximun	n void (diame	ter	of	ft	he	st	to	one ≅ 0.33	3d _a										
da	=	the avera	ge stoi	ne dia	me	te	r															
f(∈)	=	strain fun	iction o	of the	det	for	m	ed	l g	je	otextile,											
				_					_													
		=	:	<u>ı</u>	2	<u>2y</u>	+-	b			in which											
			4	1		b	-	2у	J	ľ	,	_										
-					_		-			-		_										
b	=	width of s	stone v	void			_															
у	=	deformat	ion int	o stor	ie v	/oi	d			-		_										
					+		+			-		-										
-		1 1 2 10/0	- \ 1									<u> </u>					_					_
I _{reqd}	=	p'd _v -[f(∈	-)]	-max	am	ur	n	gra	ab	S	trength o	ot g	eote	xtil	e		_					_
	=	99.75			_		_		_	L							_					
																			10			
p'	=	700	кРа	-tire	int	'la 	tic	n	pr	e	essure from	m I	http:	//h	yper	textl	ook	(.coi	m/ta	icts/	2003	
dv	=	16.5	mm	-0.33	3 d _a	(К	00	err	ne	r,	, 2005)											
da	=	50	mm	-max	cim	ur	n	stc	on	e	size from	ו D	WAF	, 19	98							
f(∈)	=	0.52	_	-stra	in	fur	าต	tio	n	0	fdeforme	ed	geot	ext	ile (I	Koer	ner,	200	5)			
	_				-		+			-		-					_					
T _{allow}	=	Max grab	streng	th	_		_			-		_					_					
	_	Reduction	n facto	rs	-		+			-		-					_					
	=	1480	N		+		+			+		-					_					
	_	2700	N	m 2)	im		n	ara	h		trongth o	fD	idim	۸1	0 (fr	om k	avto	ch F)-+-	Sho	^+)	
	-	25		-red	uct	in	n f	i c	to	s	s (Koerne	r C	2005)	AI			ayıe		Jala	Sile	eŋ	-
		2.5	-	icu			T	uc		1	5 (Roeme		20037									-
					+	Η	1		F	t		t										-
		Tallow		148	0		1			T		T										
FS	=	T	-=	99.7	5		+		F	t		\vdash										-
		• reqa		55.7	-		+		╞	┝		┢					_					-
	=	14.84		(>1.5	5 th	er	ef	or	e l	∣ Bi	idim A10	ОК)									
							Ţ															

	_	1			P	UNC	TU	RE RESI	STA	NCE						
_	-															
Fallow	=	ultimate punc	ture s	strengt	h ac	cord	ling	to AST	ML	04833			_			
F _{reqd}	=		p'	d_a^2	S ₁	S ₂	S ₃									
where	·															
Frond	=	required verti	cal pi	uncturi	ng fa	orce	to	be resi	ster	4						
p'	=	pressure exer	ted o	n the g	eote	exti	le (a	approxi	ima	- tely 1	00%	of tire	inflati	on	_	
		pressure at th	e gro	und su	rface	e fo	r th	n cove	ring	, thick	ines	ses)				
d _a	=	average diam	eter o	of the p	unc	turi	ng a	Iggrega	te c	or sha	rp o	bject				
S ₁	=	protrusion fac	tor of	the p	unct	urin	gо	oject								
S ₂	=	scale factor to	adju	st the A	STN	/I D4	833	puncti	ure	test v	alue	e that u	ses a			
		8mm diamete	r pun	cture p	rob	e to	the	actual	pu	ncturi	ng c	bject				
S ₃	=	shape factor t	o adju	ust the	AST	ΜD	483	3 flat p	unc	ture p	orob	e to the	5			
		actual shape of	of the	puncti	uring	g ob	jec									
													_			
		1 1 2 01 00 00														
Freqd	=	p'd _a \$1\$2\$3		-requ	ired	ver	tica	l punct	urir	ng for	ce to	o be res	isted			
	=	1134	N						_							
n'	=	700	kPa	-tire i	nfla	tior	nr	essure f	fror	n httr		wnerte	xthool	k com/	facts/	2003
d.	-	50	mm	-aver	age	diar	net	erofth	n or Ie n	unctu	ring	aggreg	ate (D	WAF 1	1998)	2005
s.	=	0.9		-nrot		n f	acto	or of the	nu e	nctur	ing	ohiect (Table	2 13 K	oerne	r 2005)
5 <u>1</u> S.	_	0.5		-scale	fac	tor	Tak		k ko	orno	r 20	05)	Table	2.13, K	Jenne	1, 2003)
52 c	_	0.8		chan			(Ta	hlo 2.15	, ко о и	oorno	, 20 .r 2	005)	_			
3 3	-	0.9		-snap	era		(18	DIE 2.1.	э, к	oeme	21, 2	005)				
Fallow	=	Ult punctur	e stre	ngth											_	
allow		Reductio	n fact	ors	-										_	
	=	5850	N													
	=	11700	N	-ultin	nate	pur	nctu	re stre	ngtl	n of B	idim	n A10 (f	rom Ka	aytech	Data S	heet)
		2		-redu	ctio	n fa	cto	rs (Koer	rner	, 2005	5)					
						\square	\square		_							
	-	F		5850		+	$\left \right $								_	
FS	=		-=	112/	<u> </u>				+							
		⊂ reqd		1154	·		$\left \cdot \right $		-						_	
	=	5,16		(>1.5	ther	efo	re F	idim A	10 C)к)					-	
										,						

								MPA	СТ (Т	ΕA	R) RESISTAN	CE						
													_		_			
E _{allow}	=	geot	extile	e allo	owa	ble	imp	act st	rengt	th								
							_		_	+			_		_			
E _{reqd}	=	m	g	h	\		_			_								
	=	(V	X	ρ) g	n	_			+			_		_			
	=	[V x ((p _w G _s	s)] gr	١		7 1	_		_			_					
	=		π($(d_a /$	1000)) ³		1000	Okg	_ ((2.6) (9.81) h						_	
		L		6	5			m	3				_		_			
	=	13.35	5 x 10	$\int_{a}^{6} d_{a}^{3}$	'n												_	
										+			_					
where							_			+			_		_		_	
								- \		+			_		_			
E	=	ener	gy ae	evero	peo 	יין ד גערי	ouie	s)		+			_		_			
m	=	mass		те ти	ing	נמס	ect (кg)	/ ²				-		-		_	
g b	=	accel	lerati	on a fall (ue 1 m)	to g	ravi	ty (m/	sec))			_		_		_	
II V	-	volu		f tho	nn) obi	oct	lm^3	`		+							_	
v	-	done	ity of	f the	obi	oct	(III (ka/	/ /m ³)		t					-		_	
p	-	dons	ity of	f wat	orl	ect	$\frac{(kg)}{m^3}$	····)		t							_	
p _w	-	cnoc	ity O		u of	∿g/ +ba		oct (d	limor		ionloss)		_		_		_	
G _s	-	spec	iiic gi		y 01	une In i n	: 00J	ect (u	imer	15	ioniess)		_		_			
0 _a	=	diam	leter	of tr	ie o	bje	ct (n	nm)	_	+			_		_			
							-	_	_	+			-		-		_	
E _{max}	=	13.35	5 x 10	$^{-6} d_{a}^{-3}$	'n					T								
	=	67.6	1	-			-			+							_	
		07.0	5							+								
da	=	150	mm	-dia	me	ter	of th	ie obj	ect (r	mı	m) (assumed)						
h	=	1.5	m	-he	ight	of	fall (m) (a	ssum	neo	d)							
E _{reqd}	=		E,	max														
		Rec	luctio	on fa	cctc	or												
	=	8.45	J							_								
		_			<u> </u>						00000)		_					
Red. fact	=	8		-bas	sed	on	igu	re 2.3	4 (Ko	er	mer, 2005)		_		_			
assumed	CRP	value	of 1	0	$\left \right $	\square	-	-		+					_		_	
assumed	CDN	varue								t								
Eallow	=	18	J	-allo	owa	ble	imn	act st	reng	th	of Bidim A10) (from k	avte	ch Dat	a Sh	eet)		
anow			-									,	.,			/		
		Eallow		18						t								
FS	=	Eroad	=	8	╎		-			t								
		-reda		5	$\left \right $		+	-		+					-		_	
	=	2.13		(>1.	5 th	ere	fore	Bidin	n A1(00	ОК)		-		\neg			

Appendix C: Stability Calculations

- C.1. Ring Shear Tests Raw Data and Graphs
- C.2. Configuration No. 1 Factors of Safety
- C.3. Factors of Safety for HDPE Geomembrane Integrity
- C.4. Configuration No. 2 Factors of Safety
- C.5. Factors of Safety for GCL, Protection Geotextile and Veneer Reinforcement Integrity
- C.6. Configuration No. 3 Factors of Safety

C.1. Ring Shear Tests – Raw Data and Graphs

Mr A.S Dookhi	MSc Eng	RING SHEAR TESTING	started	October 2013
---------------	---------	--------------------	---------	--------------

Interface No. 1 HDPE geomembrane - makro spike vs Protection geotextile Bidim A10 (fluffy) Shearing rate : 1,0 mm/minute

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	s 200kPav/s	400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	А	А	в	в	А	А	в	в	А	А	в	В	А	А	в	в									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	65	130	57	114	99	198	64	128	230	460	127	254	388	776	227	454	244	326	714	1230	50	610	358	0.01263	48.30	28.35	19.32	25.81	56.53	97.39	0.5
1	99	198	75	150	166	332	93	186	309	618	181	362	456	912	375	750	348	518	980	1662	100	810	442	0.01263	64.13	35.00	27.55	41.01	77.59	131.59	1
1.5	132	264	92	184	223	446	116	232	391	782	250	500	522	1044	487	974	448	678	1282	2018	200	1814	762	0.01263	143.63	60.33	35.47	53.68	101.50	159.78	1.5
2	165	330	109	218	261	522	129	258	463	926	310	620	578	1156	562	1124	548	780	1546	2280	400	2450	1190	0.01263	193.98	94.22	43.39	61.76	122.41	180.52	2
2.5	184	368	116	232	271	542	134	268	514	1028	353	706	616	1232	609	1218	600	810	1734	2450				0.01263			47.51	64.13	137.29	193.98	2.5
3	190	380	115	230	262	524	129	258	535	1070	372	744	605	1210	582	1164	610	782	1814	2374				0.01263			48 30	61 92	143.63	187 97	3
3.5	186	372	111	222	250	500	126	252	510	1020	344	688	566	1132	533	1066	594	752	1708	2198				0.01263			47.03	59.54	135.23	174.03	3.5
4	171	342	104	208	235	470	120	240	454	908	304	608	535	1070	498	996	550	710	1516	2066				0.01263			43.55	56.22	120.03	163.58	4
45	161	322	101	202	230	460	119	238	421	842	273	546	504	1008	476	952	524	698	1388	1960				0.01263			41 49	55.27	109.90	155 19	45
5	155	310	98	196	222	444	116	232	403	806	259	518	498	996	470	940	506	676	1324	1936				0.01263			40.06	53.52	104.83	153.29	5
6	151	302	96	192	219	438	114	228	391	782	247	494	478	956	456	912	494	666	1276	1868				0.01263			39.11	52 73	101.03	147 90	6
7	146	292	93	186	214	428	112	224	383	766	243	486	476	952	458	916	478	652	1252	1868				0.01263			37.85	51.62	99.13	147.90	7
8	150	300	95	190	212	424	112	224	374	748	233	466	471	942	451	902	490	648	1214	1844				0.01263			38.80	51.31	96.12	146.00	8
q	143	286	92	184	209	418	110	220	369	738	227	454	464	928	444	888	470	638	1192	1816				0.01263			37 21	50.51	94.38	143 78	ğ
10	143	286	92	184	206	412	108	216	368	736	226	452	463	926	448	896	470	628	1188	1822				0.01263			37.21	49 72	94.06	144.26	10
12	144	288	91	182	203	406	107	214	359	718	221	442	443	886	436	872	470	620	1160	1758				0.01263			37.21	49.09	91.84	139.19	12
14	140	280	02	18/	203	406	108	216	355	710	218	436	444	888	442	884	464	622	1146	1772				0.01263			36.74	49.25	90.74	140.30	14
16	142	284	93	186	198	396	105	210	346	692	208	416	434	868	433	866	470	606	1108	1734				0.01263			37 21	47.98	87.73	137.29	16
18	139	278	95	190	200	400	106	212	342	684	206	412	430	860	434	868	468	612	1096	1728				0.01263			37.05	48.46	86.78	136.82	18
20	138	276	94	188	191	382	104	208	344	688	197	394	427	854	432	864	464	590	1082	1718				0.01263			36 74	46 71	85.67	136.03	20
25	131	262	93	186	186	372	103	206	338	676	193	386	416	832	427	854	448	578	1062	1686				0.01263			35.47	45.76	84.09	133.49	25
30	127	254	93	186	177	354	101	202	326	652	189	378	405	810	421	842	440	556	1030	1652				0.01263			34.84	44.02	81.55	130.80	30
35	126	252	96	192	175	350	100	200	317	634	187	374	390	780	413	826	444	550	1008	1606				0.01263			35.15	43.55	79.81	127.16	35
40	121	242	92	184	169	338	100	200	309	618	181	362	387	774	413	826	426	538	980	1600				0.01263			33.73	42 60	77.59	126.68	40
50	117	234	92	184	161	322	99	198	287	574	188	376	374	748	409	818	418	520	950	1566				0.01263			33.10	41.17	75.22	123.99	50
60	112	224	89	178	159	318	103	206	267	534	192	384	353	706	400	800	402	524	918	1506				0.01263			31.83	41 49	72.68	119 24	60
70	115	230	89	178	149	298	103	206	255	510	196	392	349	698	394	788	408	504	902	1486				0.01263			32 30	39.90	71 42	117.66	70
80	114	228	87	174	138	276	99	198	238	476	196	392	348	696	382	764	402	474	868	1460				0.01263			31.83	37.53	68.73	115.60	80
90	116	232	88	176	137	274	98	196	237	474	208	416	343	686	368	736	408	470	890	1422				0.01263			32.30	37.21	70.47	112.59	90
100	110	220	82	164	134	268	94	188	222	444	201	402	340	680	354	708	384	456	846	1388				0.01263			30.40	36.10	66.98	109.90	100
120	108	216	79	158	132	264	92	184	215	430	207	414	342	684	326	652	374	448	844	1336				0.01263			29.61	35.47	66.83	105.00	120
140	104	208	78	156	130	260	93	186	230	460	185	370	353	706	299	598	364	446	830	1304				0.01263			28.82	35.31	65.72	103.25	140
160	101	202	78	156	131	262	90	180	235	470	166	332	362	724	279	558	358	442	802	1282				0.01263			28.35	35.00	63.50	101 50	160
180	104	208	79	158	142	284	83	166	246	492	163	326	353	706	274	548	366	450	818	1254				0.01263			28.98	35.63	64.77	99.29	180
200	99	198	81	162	156	312	78	156	244	488	152	304	337	674	281	562	360	468	792	1236				0.01263			28.50	37.05	62 71	97.86	200
220	97	194	84	168	153	306	77	154	240	480	148	296	312	624	284	568	362	460	776	1192				0.01263			28.66	36.42	61.44	94.38	220
240	99	198	84	168	152	304	77	154	238	476	143	286	295	590	300	600	366	458	762	1190				0.01263			28.98	36.26	60.33	94.22	240
				.00					200		. 10	-00	200		200		- 50														0

peak				
	Peak Friction Angle (δ) =	23.17 deg	Peak Cohesion (c) =	32.26 kPa
residual	Residual Friction Angle (δ) =	10.88 deg	Residual Cohesion (c) =	18.43 kPa

al Friction Angle (δ) =	10.88 deg	Residual Cohesion (c) =	18.43 kPa

Mr A.S Dookhi	MSc Eng	started	October 2013
---------------	---------	---------	--------------

Interface No. 2	HDPE geomembrane - micro spike vs Protection geotextile Bidim A10 (fluffy)	Shearing rate : 1,0 mm/minute
-----------------	--	-------------------------------

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	200kPav/s	400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	A	A	в	в	A	A	в	в	A	A	в	в	A	A	в	в									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	90	180	54	108	89	178	83	165	143	287	153	306	255	510	218	435	288	343	593	945	50	460	244	0.01263	36.41	19.31	22.80	27.13	46.94	74.82	0.5
1	100	200	69	138	122	244	103	206	183	366	218	435	356	712	337	674	338	449	801	1385	100	678	335	0.01263	53.71	26.56	26.79	35.56	63.42	109.67	1
1.5	122	244	82	164	147	294	134	267	215	430	268	536	418	836	419	837	407	561	965	1673	200	1181	568	0.01263	93.47	44.94	32.23	44.42	76.41	132.49	1.5
2	137	275	91	182	166	332	157	314	24	48	307	614	472	943	476	951	456	646	662	1894	400	2141	895	0.01263	169.48	70.86	36.13	51.14	52.38	149.98	2
2.5	139	278	91	182	176	353	163	326	260	521	330	660	507	1014	523	1046	460	678	1181	2060				0.01263			36.41	53.71	93.49	163.06	2.5
3	129	258	86	171	176	352	154	308	264	528	326	653	528	1056	542	1085	429	659	1181	2141				0.01263			33.97	52.19	93.47	169.48	3
3.5	116	232	79	158	167	334	140	281	253	506	303	606	511	1021	521	1041	389	614	1112	2062				0.01263			30.81	48.62	88.08	163.28	3.5
4	113	227	77	155	161	323	137	273	245	491	288	576	469	937	467	933	381	596	1067	1870				0.01263			30.19	47.17	84.47	148.08	4
4.5	114	228	77	155	159	318	135	270	242	485	281	561	433	865	432	864	383	588	1046	1729				0.01263			30.29	46.56	82.80	136.91	4.5
5	112	223	76	152	156	312	133	266	235	470	273	546	429	858	434	869	375	578	1016	1727				0.01263			29.67	45.72	80.48	136.70	5
6	112	224	77	153	148	295	126	252	221	443	258	516	407	814	402	804	377	547	959	1618				0.01263			29.88	43.33	75.91	128.08	6
7	105	210	74	149	145	289	125	249	214	428	252	504	397	794	395	789	359	538	932	1583				0.01263			28.38	42.61	73.82	125.37	7
8	104	209	73	146	141	282	120	240	208	416	242	485	377	755	371	741	354	522	901	1496				0.01263			28.05	41.33	71.33	118.43	8
9	101	203	71	143	138	276	119	237	202	403	238	476	373	745	366	732	345	513	879	1477				0.01263			27.34	40.62	69.57	116.96	9
10	101	203	73	146	135	270	116	231	199	398	236	473	361	721	352	704	348	501	871	1425				0.01263			27.58	39.67	68.95	112.80	10
12	98	196	71	141	131	262	110	221	188	376	227	455	350	701	336	672	337	482	830	1373				0.01263			26.65	38.17	65.72	108.69	12
14	95	191	69	138	128	256	109	218	183	366	221	443	339	678	330	660	329	473	809	1338				0.01263			26.03	37.46	64.01	105.94	14
16	92	185	68	135	126	252	108	216	178	355	216	432	331	661	319	638	320	468	787	1299				0.01263			25.32	37.05	62.33	102.83	16
18	92	185	68	135	122	245	105	210	174	348	212	423	323	646	310	620	320	455	771	1265				0.01263			25.32	36.01	61.05	100.17	18
20	91	181	67	134	120	240	104	207	169	338	206	413	317	635	300	600	315	447	751	1235				0.01263			24.92	35.39	59.45	97.77	20
25	87	174	64	128	116	233	102	204	156	312	195	390	305	610	287	573	302	437	702	1183				0.01263			23.87	34.58	55.58	93.63	25
30	87	174	64	128	110	221	99	198	150	300	194	389	303	606	278	557	302	419	689	1163				0.01263			23.87	33.16	54.51	92.04	30
35	85	169	62	123	107	214	99	198	146	293	189	378	296	592	268	536	292	412	671	1127				0.01263			23.14	32.59	53.11	89.24	35
40	82	163	60	120	105	210	98	195	142	284	183	366	295	589	260	519	283	405	650	1108				0.01263			22.42	32.07	51.50	87.74	40
50	83	166	60	120	102	204	95	189	127	253	187	374	296	593	246	492	286	393	627	1085				0.01263			22.61	31.12	49.62	85.89	50
60	79	158	57	114	101	203	93	186	116	232	202	404	303	606	233	467	272	389	635	1073				0.01263			21.57	30.78	50.29	84.92	60
70	79	158	57	114	97	193	91	182	105	210	206	411	308	616	218	437	272	375	621	1052				0.01263			21.57	29.67	49.17	83.30	70
80	76	151	56	113	94	187	91	182	101	203	209	417	307	614	211	422	264	369	620	1036				0.01263			20.88	29.19	49.07	82.02	80
90	76	151	56	113	92	184	89	177	100	199	204	408	310	620	205	410	264	361	607	1030				0.01263			20.88	28.55	48.08	81.54	90
100	75	150	55	110	92	184	92	183	104	209	201	402	311	622	205	410	260	367	611	1031				0.01263			20.55	29.03	48.36	81.64	100
120	74	149	55	110	91	182	92	183	109	217	191	383	306	612	203	405	258	365	600	1017				0.01263			20.45	28.93	47.48	80.52	120
140	74	148	53	107	85	170	92	183	108	216	184	368	291	582	206	413	254	353	584	995				0.01263			20.12	27.98	46.20	78.74	140
160	73	145	53	105	82	164	90	180	107	215	185	369	271	541	216	432	250	344	584	973				0.01263			19.81	27.27	46.22	77.05	160
180	72	144	53	105	81	162	91	182	107	215	184	368	254	509	215	429	249	344	582	938				0.01263			19.71	27.20	46.10	74.25	180
200	71	142	52	104	81	162	92	183	108	216	182	363	248	497	221	443	245	345	579	939				0.01263			19.41	27.32	45.84	74.37	200
220	71	142	53	105	80	161	90	180	106	212	179	357	245	491	220	440	247	341	569	930				0.01263			19.52	26.98	45.08	73.66	220
240	70	140	52	104	79	158	89	177	107	214	177	354	247	494	200	401	244	335	568	895				0.01263			19.31	26.56	44.94	70.86	240

Peak Friction Angle (δ) =	20.92 deg	Peak Cohesion (c) =	16.59 kPa
Residual Friction Angle (δ) =	8.42 deg	Residual Cohesion (c) =	12.66 kPa

Mr A.S Dookhi	MSc Eng	RING SHEAR TESTING	started	October 2013

Interface No. 3 HDPE geomembrane - smooth vs Protection geotextile Bidim A10 (fluffy) Shearing rate : 1,0 mm/minute

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	s 200kPav/s	s 400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	A	A	В	в	A	А	В	В	A	А	в	в	A	A	в	В									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	47	94	36	72	86	172	42	84	222	444	31	62	364	728	227	454	166	256	506	1182	50	208	136	0.01263	16.47	10.77	13.14	20.27	40.06	93.59	0.5
1	55	110	44	88	92	184	44	88	207	414	53	106	363	726	375	750	198	272	520	1476	100	272	194	0.01263	21.54	15.36	15.68	21.54	41.17	116.86	1
1.5	57	114	47	94	92	184	43	86	207	414	52	104	343	686	487	974	208	270	518	1660	200	520	394	0.01263	41.17	31.20	16.47	21.38	41.01	131.43	1.5
2	52	104	48	96	90	180	44	88	204	408	52	104	337	674	562	1124	200	268	512	1798	400	1874	952	0.01263	148.38	75.38	15.84	21.22	40.54	142.36	2
2.5	50	100	48	96	89	178	42	84	204	408	51	102	328	656	609	1218	196	262	510	1874				0.01263			15.52	20.74	40.38	148.38	2.5
3	49	98	49	98	88	176	42	84	204	408	52	104	323	646	582	1164	196	260	512	1810				0.01263			15.52	20.59	40.54	143.31	3
3.5	48	96	49	98	88	176	42	84	203	406	52	104	319	638	533	1066	194	260	510	1704				0.01263			15.36	20.59	40.38	134.92	3.5
4	48	96	49	98	87	174	41	82	203	406	51	102	312	624	498	996	194	256	508	1620				0.01263			15.36	20.27	40.22	128.27	4
4.5	46	92	50	100	87	174	42	84	202	404	51	102	309	618	476	952	192	258	506	1570				0.01263			15.20	20.43	40.06	124.31	4.5
5	46	92	50	100	86	172	41	82	203	406	51	102	304	608	470	940	192	254	508	1548				0.01263			15.20	20.11	40.22	122.57	5
6	44	88	51	102	85	170	41	82	202	404	51	102	297	594	456	912	190	252	506	1506				0.01263			15.04	19.95	40.06	119.24	6
7	43	86	51	102	85	170	41	82	201	402	51	102	288	576	458	916	188	252	504	1492				0.01263			14.89	19.95	39.90	118.13	7
8	43	86	50	100	84	168	41	82	200	400	51	102	282	564	451	902	186	250	502	1466				0.01263			14.73	19.79	39.75	116.07	8
9	42	84	50	100	83	166	41	82	199	398	50	100	275	550	444	888	184	248	498	1438				0.01263			14.57	19.64	39.43	113.86	9
10	41	82	50	100	83	166	40	80	198	396	50	100	269	538	448	896	182	246	496	1434				0.01263			14.41	19.48	39.27	113.54	10
12	41	82	50	100	81	162	40	80	197	394	50	100	258	516	436	872	182	242	494	1388				0.01263			14.41	19.16	39.11	109.90	12
14	40	80	51	102	81	162	40	80	195	390	49	98	245	490	442	884	182	242	488	1374				0.01263			14.41	19.16	38.64	108.79	14
16	38	76	51	102	80	160	39	78	194	388	48	96	236	472	433	866	178	238	484	1338				0.01263			14.09	18.84	38.32	105.94	16
18	37	74	52	104	80	160	39	78	192	384	46	92	228	456	434	868	178	238	476	1324				0.01263			14.09	18.84	37.69	104.83	18
20	36	72	53	106	80	160	39	78	192	384	44	88	223	446	432	864	178	238	472	1310				0.01263			14.09	18.84	37.37	103.72	20
25	31	62	56	112	78	156	38	76	191	382	43	86	200	400	427	854	174	232	468	1254				0.01263			13.78	18.37	37.05	99.29	25
30	27	54	58	116	78	156	38	76	191	382	39	78	204	408	421	842	170	232	460	1250				0.01263			13.46	18.37	36.42	98.97	30
35	24	48	60	120	77	154	37	74	193	386	34	68	195	390	413	826	168	228	454	1216				0.01263			13.30	18.05	35.95	96.28	35
40	22	44	62	124	75	150	37	74	195	390	29	58	185	370	413	826	168	224	448	1196				0.01263			13.30	17.74	35.47	94.70	40
50	18	36	63	126	75	150	36	72	199	398	23	46	159	318	409	818	162	222	444	1136				0.01263			12.83	17.58	35.15	89.94	50
60	14	28	65	130	72	144	37	74	205	410	13	26	140	280	400	800	158	218	436	1080				0.01263			12.51	17.26	34.52	85.51	60
70	12	24	65	130	69	138	38	76	205	410	4	8	116	232	394	788	154	214	418	1020				0.01263			12.19	16.94	33.10	80.76	70
80	12	24	64	128	66	132	38	76	205	410	4	8	106	212	382	764	152	208	418	976				0.01263			12.03	16.47	33.10	77.28	80
90	13	26	62	124	64	128	39	78	206	412	4	8	110	220	368	736	150	206	420	956				0.01263			11.88	16.31	33.25	75.69	90
100	15	30	60	120	62	124	40	80	206	412	3	6	122	244	354	708	150	204	418	952				0.01263			11.88	16.15	33.10	75.38	100
120	24	48	54	108	59	118	42	84	206	412	3	6	182	364	326	652	156	202	418	1016				0.01263			12.35	15.99	33.10	80.44	120
140	33	66	45	90	56	112	43	86	200	400	3	6	210	420	299	598	156	198	406	1018				0.01263			12.35	15.68	32.15	80.60	140
160	36	72	38	76	56	112	43	86	198	396	3	6	248	496	279	558	148	198	402	1054				0.01263			11.72	15.68	31.83	83.45	160
180	33	66	37	74	56	112	43	86	195	390	10	20	264	528	274	548	140	198	410	1076				0.01263			11.08	15.68	32.46	85.19	180
200	33	66	37	74	57	114	40	80	176	352	23	46	260	520	281	562	140	194	398	1082				0.01263			11.08	15.36	31.51	85.67	200
220	34	68	38	76	60	120	37	74	168	336	30	60	257	514	284	568	144	194	396	1082				0.01263			11.40	15.36	31.35	85.67	220
240	21	42	47	94	63	126	37	74	167	334	30	60	250	500	300	600	136	200	394	1100				0.01263			10.77	15.84	31.20	87.09	240

Peak Friction Angle (δ) =	18.68 deg	Peak Cohesion (c) =	0.00 kPa
Residual Friction Angle (δ) =	10.70 deg	Residual Cohesion (c) =	0.00 kPa

Mr A.S Dookhi	MSc Eng	started	October 2013

Interface No. 4 HDPE geomembrane - makro spike vs GCL X1000 nonwoven Shearing rate : 1,0 mm/minute

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	s 200kPav/s	s 400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	А	А	в	в	А	А	в	В	А	А	в	в	А	А	в	в									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	132	264	76	151	163	326	121	242	263	526	214	428	468	935	305	609	415	568	954	1544	50	765	402	0.01263	60.53	31.85	32.87	44.94	75.55	122.25	0.5
1	184	367	97	193	223	447	151	301	336	671	305	609	652	1305	471	943	561	748	1280	2248	100	1124	550	0.01263	89.01	43.55	44.39	59.22	101.35	177.95	1
1.5	223	447	114	229	270	539	196	392	394	788	375	750	767	1533	586	1172	676	931	1537	2705	200	1882	887	0.01263	148.97	70.25	53.48	73.68	121.72	214.19	1.5
2	252	504	127	254	305	609	230	460	44	88	429	859	865	1729	666	1331	758	1069	947	3061	400	3454	1467	0.01263	273.50	116.16	60.01	84.66	74.97	242.33	2
2.5	255	510	127	254	323	647	239	477	477	955	462	924	930	1859	732	1464	765	1124	1879	3323				0.01263			60.53	89.01	148.76	263.08	2.5
3	237	473	120	239	322	645	226	451	484	968	457	914	968	1936	759	1518	712	1096	1882	3454				0.01263			56.41	86.75	148.97	273.50	3
3.5	212	425	110	221	306	612	206	411	464	928	424	848	936	1872	729	1457	645	1023	1777	3330				0.01263			51.08	81.00	140.68	263.63	3.5
4	208	416	108	216	296	592	200	400	450	900	403	806	859	1718	653	1306	632	992	1706	3024				0.01263			50.05	78.56	135.09	239.46	4
4.5	209	418	108	216	292	583	198	396	444	889	393	785	793	1586	605	1210	634	979	1674	2796				0.01263			50.22	77.51	132.56	221.36	4.5
5	205	409	106	212	286	572	195	389	431	862	382	764	787	1573	608	1216	621	961	1627	2789				0.01263			49.19	76.12	128.80	220.82	5
6	206	411	107	214	271	541	185	370	406	812	361	722	746	1492	563	1126	626	911	1534	2617				0.01263			49.53	72.11	121.47	207.22	6
7	193	385	104	208	265	530	183	365	393	785	353	706	728	1456	552	1105	593	895	1491	2561				0.01263			46.94	70.89	118.05	202.77	7
8	191	383	102	204	259	517	176	352	382	763	339	678	692	1384	519	1037	587	869	1442	2421				0.01263			46.44	68.80	114.15	191.70	8
9	186	372	100	200	253	506	174	348	370	739	333	666	683	1366	512	1025	571	854	1405	2391				0.01263			45.23	67.59	111.24	189.31	9
10	186	372	102	204	248	495	169	339	365	730	331	662	661	1322	492	985	576	834	1392	2307				0.01263			45.57	66.02	110.21	182.67	10
12	179	359	99	197	240	480	162	323	344	689	318	636	642	1285	470	941	556	803	1325	2226				0.01263			44.02	63.58	104.90	176.22	12
14	175	350	97	193	234	469	160	319	336	671	310	620	622	1243	462	924	543	788	1291	2167				0.01263			42.99	62.36	102.18	171.58	14
16	169	339	95	189	231	462	158	317	326	651	302	605	606	1212	446	893	528	779	1256	2105				0.01263			41.79	61.66	99.45	166.64	16
18	169	339	95	189	224	449	154	308	319	638	296	592	592	1184	434	867	528	757	1230	2051				0.01263			41.79	59.92	97.40	162.38	18
20	166	332	93	187	220	440	152	304	310	620	289	578	582	1164	420	840	519	744	1198	2004				0.01263			41.10	58.88	94.85	158.65	20
25	160	319	89	179	213	427	150	299	286	572	273	546	559	1118	401	802	498	726	1118	1920				0.01263			39.39	57.48	88.52	152.00	25
30	160	319	89	179	202	405	145	290	275	550	272	544	556	1111	390	779	498	695	1094	1890				0.01263			39.39	55.04	86.61	149.65	30
35	155	310	86	172	196	392	145	290	268	537	265	529	542	1085	375	750	482	682	1066	1834				0.01263			38.19	54.00	84.40	145.23	35
40	150	299	84	168	193	385	143	286	261	521	256	512	540	1080	363	727	467	671	1034	1807				0.01263			36.99	53.13	81.85	143.06	40
50	152	304	84	168	187	374	139	277	232	464	261	523	543	1087	344	689	472	651	987	1776				0.01263			37.34	51.56	78.16	140.59	50
60	145	290	80	160	186	372	136	273	212	425	282	565	556	1111	327	653	450	645	990	1764				0.01263			35.63	51.04	78.35	139.68	60
70	145	290	80	160	177	354	133	266	193	385	288	575	564	1129	306	611	450	620	960	1740				0.01263			35.63	49.12	76.04	137.74	70
80	139	277	79	158	172	343	133	266	186	372	292	584	563	1126	295	590	435	609	956	1717				0.01263			34.42	48.25	75.66	135.91	80
90	139	277	79	158	168	337	130	260	183	365	286	571	569	1137	287	573	435	596	936	1711				0.01263			34.42	47.21	74.14	135.45	90
100	138	275	77	153	168	337	134	268	191	383	281	563	570	1140	287	573	428	605	946	1713				0.01263			33.91	47.90	74.87	135.62	100
120	136	273	77	153	167	334	134	268	199	398	268	536	561	1122	284	567	426	603	934	1689				0.01263			33.74	47.73	73.93	133.73	120
140	135	271	75	149	156	312	134	268	198	396	257	515	534	1067	289	578	420	581	911	1645				0.01263			33.23	45.99	72.09	130.21	140
160	133	266	74	147	151	301	132	264	197	394	258	517	496	992	302	605	413	565	910	1597				0.01263			32.72	44.77	72.08	126.44	160
180	132	264	74	147	149	297	133	266	197	394	257	515	466	933	300	601	411	563	908	1533				0.01263			32.54	44.59	71.92	121.41	180
200	130	260	72	145	149	297	134	268	198	396	254	508	455	911	310	620	405	565	904	1530				0.01263			32.03	44.77	71.59	121.16	200
220	130	260	74	147	147	295	132	264	195	389	250	500	450	900	308	615	407	559	889	1515				0.01263			32.19	44.24	70.40	119.96	220
240	129	257	72	145	145	290	130	260	196	392	248	496	453	906	280	561	402	550	887	1467				0.01263			31.85	43.55	70.25	116.16	240

Peak Friction Angle (δ) =	31.40 deg	Peak Cohesion (c) =	28.56 kPa
Residual Friction Angle (δ) =	13.59 deg	Residual Cohesion (c) =	20.13 kPa

stress kPa

shear

Mr A.S Dookhi	MSc Eng	RING SHEAR TESTING	started	October 2013

Interface No. 5 HDPE geomembrane - micro spike vs GCL X1000 nonwoven Shearing rate : 1,0 mm/minute

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	3 200kPav/s	400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	A	A	в	в	A	А	В	в	А	А	в	в	А	A	В	В									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	120	240	72	144	148	296	110	220	239	478	204	408	425	850	290	580	384	516	886	1430	50	706	372	0.01263	55.90	29.45	30.40	40.86	70.15	113.22	0.5
1	167	334	92	184	203	406	137	274	305	610	290	580	593	1186	449	898	518	680	1190	2084	100	1022	500	0.01263	80.92	39.59	41.01	53.84	94.22	165.00	1
1.5	203	406	109	218	245	490	178	356	358	716	357	714	697	1394	558	1116	624	846	1430	2510	200	1750	828	0.01263	138.56	65.56	49.41	66.98	113.22	198.73	1.5
2	229	458	121	242	277	554	209	418	40	80	409	818	786	1572	634	1268	700	972	898	2840	400	3206	1358	0.01263	253.84	107.52	55.42	76.96	71.10	224.86	2
2.5	232	464	121	242	294	588	217	434	434	868	440	880	845	1690	697	1394	706	1022	1748	3084				0.01263			55.90	80.92	138.40	244.18	2.5
3	215	430	114	228	293	586	205	410	440	880	435	870	880	1760	723	1446	658	996	1750	3206				0.01263			52.10	78.86	138.56	253.84	3
3.5	193	386	105	210	278	556	187	374	422	844	404	808	851	1702	694	1388	596	930	1652	3090				0.01263			47.19	73.63	130.80	244.66	3.5
4	189	378	103	206	269	538	182	364	409	818	384	768	781	1562	622	1244	584	902	1586	2806				0.01263			46.24	71.42	125.57	222.17	4
4.5	190	380	103	206	265	530	180	360	404	808	374	748	721	1442	576	1152	586	890	1556	2594				0.01263			46.40	70.47	123.20	205.38	4.5
5	186	372	101	202	260	520	177	354	392	784	364	728	715	1430	579	1158	574	874	1512	2588				0.01263			45.45	69.20	119.71	204.91	5
6	187	374	102	204	246	492	168	336	369	738	344	688	678	1356	536	1072	578	828	1426	2428				0.01263			45.76	65.56	112.91	192.24	6
7	175	350	99	198	241	482	166	332	357	714	336	672	662	1324	526	1052	548	814	1386	2376				0.01263			43.39	64.45	109.74	188.12	7
8	174	348	97	194	235	470	160	320	347	694	323	646	629	1258	494	988	542	790	1340	2246				0.01263			42.91	62.55	106.10	177.83	8
9	169	338	95	190	230	460	158	316	336	672	317	634	621	1242	488	976	528	776	1306	2218				0.01263			41.81	61.44	103.40	175.61	9
10	169	338	97	194	225	450	154	308	332	664	315	630	601	1202	469	938	532	758	1294	2140				0.01263			42.12	60.02	102.45	169.44	10
12	163	326	94	188	218	436	147	294	313	626	303	606	584	1168	448	896	514	730	1232	2064				0.01263			40.70	57.80	97.55	163.42	12
14	159	318	92	184	213	426	145	290	305	610	295	590	565	1130	440	880	502	716	1200	2010				0.01263			39.75	56.69	95.01	159.14	14
16	154	308	90	180	210	420	144	288	296	592	288	576	551	1102	425	850	488	708	1168	1952				0.01263			38.64	56.06	92.48	154.55	16
18	154	308	90	180	204	408	140	280	290	580	282	564	538	1076	413	826	488	688	1144	1902				0.01263			38.64	54.47	90.58	150.59	18
20	151	302	89	178	200	400	138	276	282	564	275	550	529	1058	400	800	480	676	1114	1858				0.01263			38.00	53.52	88.20	147.11	20
25	145	290	85	170	194	388	136	272	260	520	260	520	508	1016	382	764	460	660	1040	1780				0.01263			36.42	52.26	82.34	140.93	25
30	145	290	85	170	184	368	132	264	250	500	259	518	505	1010	371	742	460	632	1018	1752				0.01263			36.42	50.04	80.60	138.72	30
35	141	282	82	164	178	356	132	264	244	488	252	504	493	986	357	714	446	620	992	1700				0.01263			35.31	49.09	78.54	134.60	35
40	136	272	80	160	175	350	130	260	237	474	244	488	491	982	346	692	432	610	962	1674				0.01263			34.20	48.30	76.17	132.54	40
50	138	276	80	160	170	340	126	252	211	422	249	498	494	988	328	656	436	592	920	1644				0.01263			34.52	46.87	72.84	130.17	50
60	132	264	76	152	169	338	124	248	193	386	269	538	505	1010	311	622	416	586	924	1632				0.01263			32.94	46.40	73.16	129.22	60
70	132	264	76	152	161	322	121	242	175	350	274	548	513	1026	291	582	416	564	898	1608				0.01263			32.94	44.66	71.10	127.32	70
80	126	252	75	150	156	312	121	242	169	338	278	556	512	1024	281	562	402	554	894	1586				0.01263			31.83	43.86	70.78	125.57	80
90	126	252	75	150	153	306	118	236	166	332	272	544	517	1034	273	546	402	542	876	1580				0.01263			31.83	42.91	69.36	125.10	90
100	125	250	73	146	153	306	122	244	174	348	268	536	518	1036	273	546	396	550	884	1582				0.01263			31.35	43.55	69.99	125.26	100
120	124	248	73	146	152	304	122	244	181	362	255	510	510	1020	270	540	394	548	872	1560				0.01263			31.20	43.39	69.04	123.52	120
140	123	246	71	142	142	284	122	244	180	360	245	490	485	970	275	550	388	528	850	1520				0.01263			30.72	41.81	67.30	120.35	140
160	121	242	70	140	137	274	120	240	179	358	246	492	451	902	288	576	382	514	850	1478				0.01263			30.25	40.70	67.30	117.02	160
180	120	240	70	140	135	270	121	242	179	358	245	490	424	848	286	572	380	512	848	1420				0.01263			30.09	40.54	67.14	112.43	180
200	118	236	69	138	135	270	122	244	180	360	242	484	414	828	295	590	374	514	844	1418				0.01263			29.61	40.70	66.83	112.27	200
220	118	236	70	140	134	268	120	240	177	354	238	476	409	818	293	586	376	508	830	1404				0.01263			29.77	40.22	65.72	111.16	220
240	117	234	69	138	132	264	118	236	178	356	236	472	412	824	267	534	372	500	828	1358				0.01263			29.45	39.59	65.56	107.52	240

25.59 kPa	Peak Cohesion (c) =	29.64 deg	Peak Friction Angle (δ) =
18.39 kPa	Residual Cohesion (c) =	12.67 deg	Residual Friction Angle (δ) =

Mr A.S Dookhi	MSc Eng	started	October 2013

Interface No. 6 HDPE geomembrane - smooth vs GCL X1000 nonwoven Shearing rate : 1,0 mm/minute

h g h g h g h g h g h g h g h g h g h	Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	. 200kPa v/s	corr sh.	200kPa v/s	corr. sh	. 400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	s 200kPav/s	s 400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
A A B B A A B B A A B B A A B		sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
0 0		A	А	в	В	A	A	В	В	А	А	в	В	А	А	В	В									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0 0																																
0.5 40 80 31 61 73 78 65 77 78 77 78 78 78 78 78 78 78 78 78 78 79 78 79 78 79 78 79 79 79 79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
1 47 94 37 75	0.5	40	80	31	61	73	146	36	71	189	377	26	53	309	619	193	386	141	218	430	1005	50	177	116	0.01263	14.00	9.15	11.17	17.23	34.05	79.55	0.5
15 48 97 40 80 76 75 76 <th< td=""><td>1</td><td>47</td><td>94</td><td>37</td><td>75</td><td>78</td><td>156</td><td>36</td><td>72</td><td>176</td><td>352</td><td>45</td><td>90</td><td>309</td><td>617</td><td>319</td><td>638</td><td>168</td><td>228</td><td>442</td><td>1255</td><td>100</td><td>243</td><td>165</td><td>0.01263</td><td>19.22</td><td>13.06</td><td>13.33</td><td>18.08</td><td>35.00</td><td>99.33</td><td>1</td></th<>	1	47	94	37	75	78	156	36	72	176	352	45	90	309	617	319	638	168	228	442	1255	100	243	165	0.01263	19.22	13.06	13.33	18.08	35.00	99.33	1
2 44 85 41 82 64 153 77 75 73 347 44 85 670 225 445 1528 400 1583 1620 01233 12.812 12.81	1.5	48	97	40	80	78	156	37	73	176	352	44	88	292	583	414	828	177	230	440	1411	200	442	335	0.01263	35.00	26.52	14.00	18.17	34.86	111.72	1.5
12 43 65 44 68 64 68 64 188 60 0.0123 1.11 1.50	2	44	88	41	82	84	168	37	75	173	347	44	88	286	573	478	955	170	243	435	1528	400	1593	662	0.01263	126.12	52.40	13.46	19.22	34.46	121.01	2
3 42 83 75 150 36 71 173 347 44 88 275 540 455 153 153 0.01263 13.6 17.5 34.6 17.5 34.6 17.5 34.6 17.5 34.6 17.5 34.6 17.5 34.6 17.5 17.5 34.6 17.5 17.5 34.6 17.5 17.5 34.6 17.5 17.5 34.6 17.5 17.5 34.6 17.5 17.5 34.6 17.5 17.5 34.6 17.5 <	2.5	43	85	41	82	82	164	36	71	173	347	43	87	279	558	518	1035	167	235	434	1593				0.01263			13.19	18.64	34.32	126.12	2.5
3.5 41 82 42 83 75 150 86 71 73 345 44 88 271 542 433 906 165 271 143 1445 0.01283 13.06 17.50 34.32 11.88 35 4 4.5 39 78 43 65 71 173 34.6 64 77 13.06 17.50 34.6 10.0023 12.20 17.36 34.6 10.05 44.5 55 0.01283 12.20 17.36 34.6 10.05 44.5 45 70 170 34.4 49 77 163 21.00 135 10.001283 12.20 17.36 34.6 10.05 17.50 34.5 10.001283 12.20 17.30 34.5 10.05 10.001283 12.20 10.001283 12.20 17.30 34.6 10.05 10.001283 12.20 10.001283 12.20 10.001283 12.20 10.001283 12.20 10.001283 12.20 10.001283 12.20 10.001283 12.20 10.001283 12.20 <th< td=""><td>3</td><td>42</td><td>83</td><td>42</td><td>83</td><td>75</td><td>150</td><td>36</td><td>71</td><td>173</td><td>347</td><td>44</td><td>88</td><td>275</td><td>549</td><td>495</td><td>989</td><td>167</td><td>221</td><td>435</td><td>1539</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>13.19</td><td>17.50</td><td>34.46</td><td>121.81</td><td>3</td></th<>	3	42	83	42	83	75	150	36	71	173	347	44	88	275	549	495	989	167	221	435	1539				0.01263			13.19	17.50	34.46	121.81	3
4 4 4 7 7 148 35 70 172 345 43 87 265 50 423 57 1355 0.01233 1.028 1.22 1.73 34.6 1.05 1.55 5 39 78 43 87 73 443 87 73 443 87 73 443 87 73 443 87 73 443 87 73 443 87 73 443 87 73 443 87 73 443 87 73 443 87 74 449 83 74 449 83 74 449 83 74 449 83 77 438 74 449 430 77 430 73 430 0.01233 122 16.8 33.7 43 85 73 449 449 430 77 165 240 440 430 77 450 240 440 47 376 75 155 264 2119 200283 122.5	3.5	41	82	42	83	75	150	36	71	173	345	44	88	271	542	453	906	165	221	434	1448				0.01263			13.06	17.50	34.32	114.68	3.5
4.5 99 7.6 4.3 85 7.4 148 36 7.1 17.2 34.3 87 22.8 57 400 7.9 430 13.5 0.01283 12.9 7.8 34.05 10.56 4.5. 6 37 77 43 67 72 145 35 70 172 34.3 67 22.5 65 388 77.7 162 214 430 12.90 0.01263 12.92 17.6 16.8 17.7 18 37.7 73 43 65 71 143 35 70 17.7 34.3 67 21.0 47.7 18.8 21.1 47.7 12.82 12.82 12.82 12.82 17.8 18.7 12.82 17.8 18.7 12.82 12.83 12.82 17.8 18.8 17.4 18.2 17.4 18.3 17.4 18.3 17.7 18.8 17.4 17.8 18.7 12.82 18.8 17.7 18.8 17.4 17.8 17.8 17.8 17.8 17.8 17.8 1	4	41	82	42	83	74	148	35	70	173	345	43	87	265	530	423	847	165	218	432	1377				0.01263			13.06	17.23	34.19	109.03	4
5 39 78 43 85 73 146 35 70 173 343 87 286 517 400 799 163 216 422 1136 0.01233 12.92 17.09 84.09 10.18 5 7 37 73 43 87 72 143 35 70 170 342 87 240 170 80 77 160 214 420 1280 0.01233 12.25 16.38 33.7 9 86 71 413 35 70 170 34.0 85 229 460 213 472 122 10.0123 12.85 16.80 33.8 96 96 10 33.8 34 68 10 33.8 17 74 155 206 420 1180 0.01233 12.25 16.2 33.8 28 93.7 74 155 206 416 1180 0.01233 11.1 <th< td=""><td>4.5</td><td>39</td><td>78</td><td>43</td><td>85</td><td>74</td><td>148</td><td>36</td><td>71</td><td>172</td><td>343</td><td>43</td><td>87</td><td>263</td><td>525</td><td>405</td><td>809</td><td>163</td><td>219</td><td>430</td><td>1335</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>12.92</td><td>17.36</td><td>34.05</td><td>105.66</td><td>4.5</td></th<>	4.5	39	78	43	85	74	148	36	71	172	343	43	87	263	525	405	809	163	219	430	1335				0.01263			12.92	17.36	34.05	105.66	4.5
6 37 75 43 67 72 145 35 70 712 343 67 252 505 388 775 162 214 430 1280 0.01263 12.50 12.56 33.27 16.86 34.05 101.35 6 8 37 73 43 85 71 141 35 70 170 340 43 67 240 478 383 767 156 214 423 1222 0.01263 12.55 16.86 33.27 98.66 8 10 35 70 43 85 71 141 34 68 166 332 42 45 381 775 156 208 422 1219 0.01263 12.55 16.8 33.3 86.51 10 33.2 86.5 14 145 345 44 86 147 37.7 381 76 145 145 145 145 145 145 145 145 145 145 145 145 145 <	5	39	78	43	85	73	146	35	70	173	345	43	87	258	517	400	799	163	216	432	1316				0.01263			12.92	17.09	34.19	104.18	5
7 37 73 43 67 72 145 55 70 171 342 67 246 490 380 779 160 214 428 1286 0.01283 12.65 18.63 33.27 10.41 7 9 36 71 43 85 71 141 34 65 29 37 75 166 211 422 1222 0.01283 12.28 16.68 33.28 96.71 11 12 35 70 43 85 69 138 34 68 167 332 42 219 422 120 0.01283 12.25 15.29 32.8 98.1 11 116 32 43 85 29 437 75 151 20.6 415 1168 0.01283 112.5 16.29 32.6 98.1 11 155 20.6 415 1168 0.01283 11.8 16.02 32.7 98.1 11 16.5 33.6 98 78 151 20.2 415 11	6	37	75	43	87	72	145	35	70	172	343	43	87	252	505	388	775	162	214	430	1280				0.01263			12.79	16.96	34.05	101.35	6
8 37 73 43 85 71 143 85 70 170 440 47 93 77 158 213 427 1242 0.01263 12.52 16.83 33.76 98.66 8 10 35 70 43 85 71 141 34 68 168 33.7 93.64 122 122 0.01263 12.25 16.29 33.25 93.1 71 141 34 68 43 87 68 138 44 68 168 33.25 93.4 85 219 439 751 155 206 415 1160 0.01263 12.5 16.29 32.67 90.6 16 16 43 44 88 68 136 36 16 133 22 65 151 202 405 1125 0.01263 11.4 156 23.0 8.16 33 86 16 33 8.6 <td>7</td> <td>37</td> <td>73</td> <td>43</td> <td>87</td> <td>72</td> <td>145</td> <td>35</td> <td>70</td> <td>171</td> <td>342</td> <td>43</td> <td>87</td> <td>245</td> <td>490</td> <td>389</td> <td>779</td> <td>160</td> <td>214</td> <td>428</td> <td>1268</td> <td></td> <td></td> <td></td> <td>0.01263</td> <td></td> <td></td> <td>12.65</td> <td>16.96</td> <td>33.92</td> <td>100.41</td> <td>7</td>	7	37	73	43	87	72	145	35	70	171	342	43	87	245	490	389	779	160	214	428	1268				0.01263			12.65	16.96	33.92	100.41	7
9 36 71 43 85 71 141 35 70 169 337 43 85 234 468 377 755 156 211 423 122 0.01233 12.28 16.68 33.2 96.78 9 10 35 70 43 85 71 143 86 71 43 85 71 41 55 206 420 1180 0.01233 12.25 16.29 32.5 93.47 14 16 32 65 43 87 68 136 33 66 163 32.0 97 74 76 151 202 411 1137 0.01233 1198 16.02 32.7 98.01 16 25 65 44 98 66 133 32 65 162 32.5 37 73 170 340 363 714 141 160 0.01233 114 15.6 31.3 15.6 31.3 15.7 73 171 15.1 11.6 11.	8	37	73	43	85	71	143	35	70	170	340	43	87	240	479	383	767	158	213	427	1246				0.01263			12.52	16.83	33.78	98.66	8
10 35 70 43 85 71 141 34 68 168 337 43 85 219 457 381 762 155 208 422 1219 0.01263 122.5 16.68 33.85 98.61 10 14 34 68 43 87 68 138 34 68 166 33.2 92.4 14 15 206 415 1168 0.01263 12.5 16.29 32.4 92.4 92.4 14 14 14 15 206 415 1168 0.01263 118 16.02 32.6 93.7 75 140 388 766 115 202 405 1125 0.01263 118 16.02 32.0 80.1 16 32.6 93.7 75 140 386 776 143 147 146 197 381 1065 0.01263 111.4 15.61 30.6 81.7 75 170 340 35 776 143 197 381 1065 0.01263 111.1<	9	36	71	43	85	71	141	35	70	169	338	43	85	234	468	377	755	156	211	423	1222				0.01263			12.38	16.69	33.52	96.78	9
14 35 70 43 85 69 18 34 68 167 335 43 85 219 439 71 74 155 206 410 1100 0.01233 12.55 12.25 12.29 32.24 93.41 14 16 32 65 43 87 68 136 33 66 165 32.6 40 401 368 756 151 202 411 1175 0.01233 1198 16.02 32.75 90.05 11 18 16.02 32.65 90.04 18 161 42.0 410 1125 0.01233 11.98 16.02 32.77 80.11 18 160 19.2 19.4 19.4 14.4 161 202 410 114 0.01233 11.98 16.02 32.77 88.1 16 33.2 17.0 347 35.7 16.4 13.4 347 38.7 166 103.4 0.01233 11.4 15.0 41.8 35.7 17.0 34.0 35.2 17.0 14.	10	35	70	43	85	71	141	34	68	168	337	43	85	229	457	381	762	155	209	422	1219				0.01263			12.25	16.56	33.38	96.51	10
14 94 98 43 97 99 138 94 98 132 42 83 208 417 376 751 152 206 415 1187 0.01283 1198 16.22 32.24 92.47 14.4 16 32 63 44 88 68 136 33 66 163 326 39 78 194 388 369 78 151 202 405 1125 0.01283 1198 16.02 32.03 189.1 16.02 32.03 189.1 16.02 32.03 189.1 16.02 32.03 14.9 190.3 39.5 77.4 100 39.0 36.7 74.1 151 202 405 1125 0.01283 11.14 15.0 31.0 30.0 30.3 30.1	12	35	70	43	85	69	138	34	68	167	335	43	85	219	439	371	741	155	206	420	1180				0.01263			12.25	16.29	33.25	93.41	12
16 32 65 43 87 68 136 33 66 163 330 41 62 201 401 386 736 151 202 411 1137 001263 11.88 16.02 22.73 90.05 11 8 20 31 61 45 90 68 136 33 66 163 326 37 75 190 379 367 734 151 202 401 1114 0.01263 11.98 16.02 31.7 88.16 20 25 26 53 48 95 66 133 32 65 162 325 33 66 173 347 346 164 197 381 1066 0.01263 11.11 15.61 31.00 64.39 20 39 351 702 143 194 366 1034 0.01263 11.31 15.04 30.5 61.44 35 33 64 14.0 20 231 11.91 30.9 34.4 30 44	14	34	68	43	87	69	138	34	68	166	332	42	83	208	417	376	751	155	206	415	1168				0.01263			12.25	16.29	32.84	92.47	14
18 31 63 44 88 68 136 33 66 163 326 39 78 194 388 78 151 202 405 1125 0.01233 11.98 16.02 32.03 89.11 18 25 26 53 48 99 66 133 32 65 162 325 37 73 170 340 363 726 148 197 398 1066 0.01263 11.41 15.61 31.05 84.93 30 23 46 49 99 66 133 32 65 162 325 33 66 173 347 345 716 145 197 391 1063 0.01263 11.41 15.61 31.05 84.93 30.6 84.93 30 36 103 166 332 25 431 197 391 1063 104 0.01263 11.31 15.64 30.46 80.9 371 966 0.01263 10.3 14.9 29.47 75.9 10.0	16	32	65	43	87	68	136	33	66	165	330	41	82	201	401	368	736	151	202	411	1137				0.01263			11.98	16.02	32.57	90.05	16
20 31 61 45 90 68 136 32 65 162 325 37 75 190 370 867 734 151 202 401 1114 0.01283 11.98 10.02 31.77 88.46 20 25 26 53 48 95 66 133 32 65 162 325 37 73 170 340 358 76 145 197 398 1066 0.01283 11.14 15.04 30.96 44.3 30 35 20 41 51 102 65 131 31 63 166 322 25 49 157 315 351 702 143 194 386 1004 0.01283 11.31 15.04 30.55 81.44 35 50 15 31 54 107 64 128 31 61 128 125 184 185 377 966 0.01283 10.01 14.44 29.48 76.46 50	18	31	63	44	88	68	136	33	66	163	326	39	78	194	388	369	738	151	202	405	1125				0.01263			11.98	16.02	32.03	89.11	18
26 53 48 95 66 133 32 65 162 325 37 73 170 340 863 766 148 197 398 1065 0.01263 11.11 15.61 31.00 84.31 30 35 20 41 51 102 65 131 31 63 164 322 53 66 173 37 70 143 194 386 1063 0.01263 11.31 15.48 30.58 81.44 35 40 19 37 53 105 64 128 31 61 169 382 25 49 157 315 51 70 143 190 381 1017 0.01263 11.31 15.4 30.5 81.44 30 30 60 138 189 371 966 0.01263 10.31 14.0 29.48 72.68 60 10 20 55 111 61 30.48 79 131 162 355 867 0.01263 10.	20	31	61	45	90	68	136	33	66	163	326	37	75	190	379	367	734	151	202	401	1114				0.01263			11.98	16.02	31.77	88.16	20
30 23 46 49 99 66 133 32 65 162 325 33 66 173 347 358 716 145 197 391 1063 0.01283 11.44 15.61 30.96 81.84 35 35 20 41 51 102 65 113 31 63 164 328 25 49 157 315 351 702 143 190 381 1017 0.01263 11.31 15.08 30.55 81.44 30 60 12 24 55 111 61 122 31 61 128 31 62 124 91 174 349 174 29 135 351 702 143 190 381 1017 0.01263 11.31 15.4 30.49 46 45 164 144 146 144 146 144 146 144 146 144 146 144 146 144 146 144 146 145 144 146 <t< td=""><td>25</td><td>26</td><td>53</td><td>48</td><td>95</td><td>66</td><td>133</td><td>32</td><td>65</td><td>162</td><td>325</td><td>37</td><td>73</td><td>170</td><td>340</td><td>363</td><td>726</td><td>148</td><td>197</td><td>398</td><td>1066</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>11.71</td><td>15.61</td><td>31.50</td><td>84.39</td><td>25</td></t<>	25	26	53	48	95	66	133	32	65	162	325	37	73	170	340	363	726	148	197	398	1066				0.01263			11.71	15.61	31.50	84.39	25
35 20 41 51 102 65 131 31 63 164 28 29 58 166 332 25 70 143 194 386 1001 001263 11.31 15.48 30.55 81.44 35 50 15 31 54 107 64 128 31 61 169 338 20 39 155 25 131 154 30.55 81.44 36 60 15 31 64 107 64 128 31 61 149 381 1017 001263 10.90 14.47 29.88 76.45 50 60 10 20 55 111 59 117 32 65 174 349 3 7 90 187 315 66 870 0118 182 355 880 001263 01023 10.03 14.40 28.13 66.5 70 10 120 20 51 102 54 109 31 7	30	23	46	49	99	66	133	32	65	162	325	33	66	173	347	358	716	145	197	391	1063				0.01263			11.44	15.61	30.96	84.13	30
40 19 37 53 105 64 128 31 63 166 332 25 49 157 315 51 702 143 190 381 1017 0.01283 11.31 15.08 30.15 80.49 40 50 15 31 54 107 64 128 31 61 169 338 20 39 135 270 348 69 138 371 966 0.01283 0.01283 10.03 14.67 29.88 76.45 50 70 10 20 55 111 59 117 32 65 174 349 37 99 197 355 670 131 122 55 10.03 14.67 29.88 76.45 50 100 20 54 119 32 65 174 349 3 7 99 197 355 830 0.01283 0.01283 10.03 14.60 28.13 65.86 70 133 102 14 14.99	35	20	41	51	102	65	131	31	63	164	328	29	58	166	332	351	702	143	194	386	1034				0.01263			11.31	15.34	30.55	81.84	35
50 15 31 54 107 64 128 31 61 129 338 20 339 135 270 138 189 377 966 0.01263 10.90 14.94 29.88 76.45 50 70 10 20 55 111 50 117 32 65 174 349 1 22 60 174 349 3 7 99 197 335 670 131 182 355 867 0.01263 10.36 14.00 28.13 65.65 867 0.01263 10.26 14.00 28.13 65.65 867 0.01263 10.01 13.06 28.27 64.34 90 90 13 26 13 120 231 65.0 10.0 13.06 28.07 73.01 10.0 14.9 28.27 64.34 90 100 13 26 51 102 33 66 175 350 3 5 99 198 301 602 128 175 357 <td< td=""><td>40</td><td>19</td><td>37</td><td>53</td><td>105</td><td>64</td><td>128</td><td>31</td><td>63</td><td>166</td><td>332</td><td>25</td><td>49</td><td>157</td><td>315</td><td>351</td><td>702</td><td>143</td><td>190</td><td>381</td><td>1017</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>11.31</td><td>15.08</td><td>30.15</td><td>80.49</td><td>40</td></td<>	40	19	37	53	105	64	128	31	63	166	332	25	49	157	315	351	702	143	190	381	1017				0.01263			11.31	15.08	30.15	80.49	40
60 12 24 55 111 61 122 31 63 174 349 11 22 119 238 340 680 134 185 371 918 0.01233 10.63 14.67 29.34 72.88 60 70 10 20 55 111 59 117 32 65 174 349 3 7 99 197 325 687 0.01283 10.63 14.00 28.13 68.65 70 90 11 22 53 105 54 109 33 66 175 350 3 7 94 187 313 626 128 173 355 830 0.01283 0.01283 10.0 18.03 84.8 90 100 13 26 51 102 53 105 34 7 94 187 313 626 128 173 355 800 0.01283 10.0 18.03 84.37 90.301 16.02 133 16.0 31.03	50	15	31	54	107	64	128	31	61	169	338	20	39	135	270	348	695	138	189	377	966				0.01263			10.90	14.94	29.88	76.45	50
70 10 20 55 111 59 117 32 65 174 349 3 7 99 197 335 670 131 182 355 867 0.01263 10.36 14.00 28.13 68.65 70 90 11 22 53 105 54 109 33 66 175 350 3 7 94 187 313 626 128 175 357 830 0.01263 10.10 13.66 28.27 64.34 90 100 13 26 51 102 53 105 34 68 175 350 3 5 99 198 276 554 130 0.01263 10.10 13.86 28.27 64.34 90 120 20 41 46 95 37 73 175 350 3 5 99 198 277 355 800 0.01263 10.10 13.89 28.13 65.6 120 14.40 28.13 65.6 <t< td=""><td>60</td><td>12</td><td>24</td><td>55</td><td>111</td><td>61</td><td>122</td><td>31</td><td>63</td><td>174</td><td>349</td><td>11</td><td>22</td><td>119</td><td>238</td><td>340</td><td>680</td><td>134</td><td>185</td><td>371</td><td>918</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>10.63</td><td>14.67</td><td>29.34</td><td>72.68</td><td>60</td></t<>	60	12	24	55	111	61	122	31	63	174	349	11	22	119	238	340	680	134	185	371	918				0.01263			10.63	14.67	29.34	72.68	60
80 10 20 54 109 56 112 32 65 174 349 3 7 90 180 325 649 129 177 355 830 0.01263 10.23 14.00 28.13 66.88 80 90 11 22 53 105 54 109 33 66 175 350 3 7 94 187 313 66 125 357 813 0.01263 0.01263 10.0 13.8 28.27 64.34 90 100 13 26 51 102 53 100 36 71 175 350 3 5 99 198 301 602 128 173 355 800 0.01263 0.10 13.3 28.33 100 13.3 100 13.3 100 13.3 100 13.3 100 13.3 100 13.3 100 13.3 100 10.3 13.3 100 13.3 100 13.3 13.3 100 13.3 16.3	70	10	20	55	111	59	117	32	65	174	349	3	7	99	197	335	670	131	182	355	867				0.01263			10.36	14.40	28.13	68.65	70
90 11 22 53 105 54 109 33 66 175 350 3 7 94 187 313 626 175 357 813 0.0123 10.10 13.8 28.27 63.3 100 13.6 28.17 53.7 813 0.0123 10.10 13.6 28.27 63.3 100 13.6 28.17 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 63.3 100 13.6 28.13 13.6 33.5 100 20.4 254 13.3 172 355 800 0.01263 10.50 13.3 27.2 28.10 100 13.3 27.3 160 13.3 27.4 10.5 13.6 12.3 17.5 13	80	10	20	54	109	56	112	32	65	174	349	3	7	90	180	325	649	129	177	355	830				0.01263			10.23	14.00	28.13	65.68	80
100 13 26 51 102 53 105 34 68 175 350 3 5 99 198 301 602 128 173 355 800 0.01263 10.0 13.73 28.13 63.33 100 120 20 41 46 92 50 100 36 71 175 350 3 5 99 198 277 554 133 172 355 752 0.01263 10.50 13.59 28.13 63.33 100 140 28 56 38 77 48 95 37 73 170 340 3 5 102 204 254 153 163 345 712 0.01263 10.50 13.59 28.13 56.40 140 160 31 61 32 65 102 204 254 464 168 342 674 0.01263 942 13.3 27.05 53.49 200 200 28 56 31 <td< td=""><td>90</td><td>11</td><td>22</td><td>53</td><td>105</td><td>54</td><td>109</td><td>33</td><td>66</td><td>175</td><td>350</td><td>3</td><td>7</td><td>94</td><td>187</td><td>313</td><td>626</td><td>128</td><td>175</td><td>357</td><td>813</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>10.10</td><td>13.86</td><td>28.27</td><td>64.34</td><td>90</td></td<>	90	11	22	53	105	54	109	33	66	175	350	3	7	94	187	313	626	128	175	357	813				0.01263			10.10	13.86	28.27	64.34	90
120 20 41 46 92 50 100 36 71 175 350 3 5 99 198 277 554 133 172 355 752 0.01263 10.05 15.9 28.13 59.66 120 140 28 56 38 77 48 95 37 73 168 337 3 5 100 200 237 474 126 168 345 712 0.01263 10.0 13.3 27.05 53.39 160 180 28 56 31 63 48 95 37 73 168 332 9 17 98 196 233 466 119 168 342 674 0.01263 9.42 13.3 27.9 53.39 160 200 28 56 31 63 48 97 34 63 32 9 17 98 196 233 466 119 165 338 674 0.01263 9.42 13.3	100	13	26	51	102	53	105	34	68	175	350	3	5	99	198	301	602	128	173	355	800				0.01263			10.10	13.73	28.13	63.33	100
140 28 56 38 77 48 95 37 73 170 340 3 5 102 204 254 508 133 168 345 712 0.01263 10.50 13.33 27.32 56.40 140 160 31 61 32 65 48 95 37 73 168 337 3 5 100 200 237 474 126 188 345 674 0.01263 9.96 13.33 27.32 56.40 140 180 28 56 31 63 48 95 37 73 166 332 9 17 98 196 233 466 19 168 342 674 0.01263 9.42 13.33 27.05 52.40 180 200 28 56 31 63 48 97 34 68 150 299 48 196 239 478 119 165 338 674 0.01263 9.42 13.06 26.79<	120	20	41	46	92	50	100	36	71	175	350	3	5	99	198	277	554	133	172	355	752				0.01263			10.50	13.59	28.13	59.56	120
160 31 61 32 65 48 95 37 73 168 337 3 5 100 200 237 474 126 168 342 674 0.01263 9.96 13.33 27.05 52.30 160 180 28 56 31 63 48 95 37 73 166 332 9 17 98 196 233 466 119 168 349 662 0.01263 9.42 13.33 27.05 52.40 180 200 28 56 31 63 48 97 34 68 150 299 20 39 478 119 168 349 662 0.01263 9.42 13.33 27.05 53.34 200 200 28 56 31 63 48 100 209 20 39 196 233 466 119 168 349 662 0.01263 9.42 13.08 27.59 53.34 200 203 203 <t< td=""><td>140</td><td>28</td><td>56</td><td>38</td><td>77</td><td>48</td><td>95</td><td>37</td><td>73</td><td>170</td><td>340</td><td>3</td><td>5</td><td>102</td><td>204</td><td>254</td><td>508</td><td>133</td><td>168</td><td>345</td><td>712</td><td></td><td></td><td></td><td>0.01263</td><td></td><td></td><td>10.50</td><td>13.33</td><td>27.32</td><td>56.40</td><td>140</td></t<>	140	28	56	38	77	48	95	37	73	170	340	3	5	102	204	254	508	133	168	345	712				0.01263			10.50	13.33	27.32	56.40	140
180 28 56 31 63 48 95 37 73 166 332 9 17 98 196 233 466 119 168 349 662 0.01263 9.42 13.33 27.59 52.40 180 200 28 56 31 63 48 97 34 68 150 299 20 39 98 196 239 478 119 165 338 674 0.01263 9.42 13.06 26.79 53.34 200 220 29 58 32 65 51 102 31 63 143 286 26 51 97 194 241 483 122 165 337 677 0.01263 9.42 13.06 26.65 53.59 220 240 18 6 40 80 54 107 31 63 142 284 26 51 97	160	31	61	32	65	48	95	37	73	168	337	3	5	100	200	237	474	126	168	342	674				0.01263			9.96	13.33	27.05	53.39	160
200 28 56 31 63 48 97 34 68 150 299 20 39 98 196 239 478 119 165 338 674 0.01263 9.42 13.06 26.79 53.34 200 220 29 58 32 65 51 102 31 63 143 286 26 51 97 194 241 483 122 165 337 677 0.01263 9.69 13.06 26.67 53.59 220 240 18 36 40 80 54 107 31 63 142 284 26 51 97 194 241 482 112 165 337 678 0.01263 9.69 13.06 26.65 53.58 240 240 18 6 40 80 54 107 13.66 678 0.01263 9.15 13.46 26.52 <td>180</td> <td>28</td> <td>56</td> <td>31</td> <td>63</td> <td>48</td> <td>95</td> <td>37</td> <td>73</td> <td>166</td> <td>332</td> <td>9</td> <td>17</td> <td>98</td> <td>196</td> <td>233</td> <td>466</td> <td>119</td> <td>168</td> <td>349</td> <td>662</td> <td></td> <td></td> <td></td> <td>0.01263</td> <td></td> <td></td> <td>9.42</td> <td>13.33</td> <td>27.59</td> <td>52.40</td> <td>180</td>	180	28	56	31	63	48	95	37	73	166	332	9	17	98	196	233	466	119	168	349	662				0.01263			9.42	13.33	27.59	52.40	180
220 29 58 32 65 51 102 31 63 143 286 26 51 97 194 241 483 122 165 337 677 0.01263 9.69 13.06 26.65 53.59 220 240 18 36 40 80 54 107 31 63 142 284 26 51 98 196 241 482 116 170 335 678 0.01263 9.15 13.46 26.52 53.68 240	200	28	56	31	63	48	97	34	68	150	299	20	39	98	196	239	478	119	165	338	674				0.01263			9.42	13.06	26.79	53.34	200
240 18 36 40 80 54 107 31 63 142 284 26 51 98 196 241 482 116 170 335 678 0.01263 9.15 13.46 26.52 53.68 240	220	29	58	32	65	51	102	31	63	143	286	26	51	97	194	241	483	122	165	337	677				0.01263			9.69	13.06	26.65	53.59	220
	240	18	36	40	80	54	107	31	63	142	284	26	51	98	196	241	482	116	170	335	678				0.01263			9.15	13.46	26.52	53.68	240

Peak Friction Angle (δ) =	18.20 deg	Peak Cohesion (c) =	0.00 kPa
Residual Friction Angle (δ) =	7.19 deg	Residual Cohesion (c) =	0.00 kPa

114

C.2. Configuration No. 1 Factors of Safety

	Integrity of HDPE Geomembrane														
	Comments														
Thickness	=	2	mm		=	2	mm	Data sheet							
Density	=	942	kg/m ³		=	942	kg/m ²	Data sheet							
Mass of 1m strip	=	41*1*0.002*942	ka		=	32*1*0.002*942	ka								
Weight of the stair	_	77.24 * 0.91 / 1000	кg		_	C0 20 * 0 81 / 1000	кg								
weight of 1m strip	=	0.76	kN/m		=	0.59	kN/m								
Tensile strength at yield	=	33	kN/m		=	33	kN/m	Data sheet							
Factor of Safety	=	33 / 0.76			=	33 / 0.59									
	=	43.55			=	55.80									

C.3. Factors of Safety for HDPE Geomembrane Integrity

C.4. Configuration No. 2 Factors of Safety

C.5. Factors of Safety for GCL, Protection Geotextile and Veneer Reinforcement Integrity

				<u> </u>		y or G		11000					
		1:4 Slope			1:3 Slope			1:2 Slope			1:1 Slope		Comments
Mass per unit area	=	4310	g/m ²	=	4310	g/m ²	=	4310	g/m ²	=	4310	g/m ²	Data sheet
M 61 /		41*1*4 210			20*1*4 210			22*1*4 210			14*1*4 210		
Mass of 1m strip	=	41*1*4.310	ka	_	32*1*4.310 137.02	ka	_	22*1*4.310	ka	_	14*1*4.310	ka	
	-	170.71	кg		137.32	кg	_	54.02	кg	-	00.54	кg	
Weight of 1m strip	=	176.71 * 9.81 / 1000		=	137.92 * 9.81 / 1000		=	137.92 * 9.81 / 1000		=	137.92 * 9.81 / 1000		
	=	1.73	kN/m	=	1.35	kN/m	=	0.93	kN/m	=	0.59	kN/m	
Tensile strength at	_	0 20	IcNI/m		0 20	LNI/m		0 20	kN/m		0 20	LNI/m	Data shaat
yieid	-	0.30	KIN/III	_	0.30	KIN/III	_	0.30	KIN/III	-	0.30	KIN/III	Data sheet
Factor of Safety	=	33 / 1.73		=	33 / 1.35		=	33 / 1.35		=	33 / 1.35		
	=	4.83		=	6.19		=	9.01		=	14.16		
		1:4 Slope			1:3 Slope	otectio	n (1.2 Slope			1:1 Slope		Comments
		1000	- / ²		1000	- / ²		1000	- (²		1000	- / ²	Dete sheet
Mass per unit area	=	1000	g/m	-	1000	g/m	-	1000	g/m	-	1000	g/m	Data sneet
Mass of 1m strip	=	41*1*1		=	32*1*1		=	22*1*1		=	14*1*1		
F	=	41.00	kg	=	32.00	kg	=	22.00	kg	=	14.00	kg	
Weight of 1m strip	=	41 * 9.81 / 1000		=	32 * 9.81 / 1000		=	22 * 9.81 / 1000		=	14 * 9.81 / 1000		
	=	0.40	kN/m	=	0.31	kN/m	=	0.22	kN/m	=	0.14	kN/m	
Tansila strangth at							_						
vield	=	76	kN/m	=	76	kN/m	_	76	kN/m	_	76	kN/m	Data sheet
Factor of Safety	=	76 / 0.40		=	76 / 0.31		=	76 / 0.22		=	76 / 0.14		
	=	188.96		=	242.10		=	352.15		=	553.37		
			Integ	rit	y of Veneer Reinfo	rceme	nt	- (Tensile Strength	Varies	5)			
		1:4 Slope (50/50))		1:3 Slope (100/10	0)		1:2 Slope (200/200))		1:1 Slope (200/200))	Comments
Mass per unit area	=	150	g/m ²	=	150	g/m ²	=	150	g/m ²	_	150	g/m ²	Data sheet
Mana af 1		41*1*0.15			22*1*0.15			22*1*0.15		_	14*1*0 15		
Mass of 1m strip	=	41*1*0.15 6 15	ka	=	32*1*0.15	ka	_	22*1*0.15 3 30	kα	=	14*1*0.15	ka	
	-	0.15	кg	F	+.00	ĸg	-	5.50	кg	Ē	2.10	ĸg	
Weight of 1m strip	=	6.15 * 9.81 / 1000		-	4.80 * 9.81 / 1000		=	3.30 * 9.81 / 1000		_	2.10 * 9.81 / 1000		
U T	=	0.06	kN/m	=	0.05	kN/m	=	0.03	kN/m	=	0.02	kN/m	
Tensile strength at													
vield	=	26	kN/m	_	52	kN/m	_	105	kN/m	_	105	kN/m	Data sheet
	-						1						_ and sheet
				4						-			
Factor of Safety	=	76 / 0.40		=	76 / 0.31		=	76 / 0.22		=	76 / 0.14		

C.6. Configuration No. 3 Factors of Safety

Appendix D: Case Study – Mariannhill Landfill Site

- D.1. Planning Phases Site Plan and Construction Layout Plan
- D.2. Ring Shear Tests Raw Data and Graphs
- D.3. Shear Box Test Secugrid vs Protection Geotextile
- D.4. Calculation of Factors of Safety for Mariannhill Landfill Site
- D.5. Factors of Safety for HDPE Geomembrane, Protection Geotextile and Veneer Reinforcement Integrity
- D.6. Mariannhill Landfill Cell 4 Phase 3 Consultant Letter

D.1. Planning Phases Site Plan and Construction Layout Plan

cad file DRAWN : TG Design : ND REVISION SCALE IIILE REFERENCE DRAWINGS : 100490/02A - TYPICAL DETAILS 100490/03A - PIPE LAYOUT 100490/04A - SIDE SLOPE CROSS SECTIONS **CLEANSING AND SOLID WASTE** MARIANNHILL LANDFILL: CONSTRUCTION OF CELL 4 - PHASE 3 \\100490\DRAWINGS EC 2010 DATE 500 SIGNATURE : AYOUT PLAN Р DSW DATE : DRAW ociates (Pty) Limited Reg. No. 97/4139/07 PDNA HOUSE. 16 Cranbrook Cresent La Lucia Ridge, 4019 P.O. Box 25370 Gateway 4321 Tel: 031 - 581 6000 Fax: 031 - 566 4381 FOR TENDER DESCRIPTION 100490/01A TENDER DECEMBER 2010 DATE :

NOTE
1. ALL SURVEY RELATES TO JULY 2010 OR BEFORE AND LANDFILL AREAS ARE LIKELY TO CHANGE
2. ANCHOR TRENCHES TO BE CONSTRUCTED AT A 1% GRADIENT TOWARDS THE LINER EDGE PROTECTION BERM

			_
3302812.970	15416.000	A13	
3302858.493	15451.417	A11	
3302697.999	15408.335	A8	
3302712.837	15439.305	A6	
3302754.242	15622.008	Α4	
3302737.527	15634.823	A3	
3302712.876	15614.704	A2	
3302697.676	15604.623	A1	
×	Y		
VAIES	COORDIN		
	いいしてい		

STONE PROTECTION BERM

ANCHOR TRENCH

D.2. Ring Shear Tests – Raw Data and Graphs

TEST 1 HDPE MAKRO SPIKE VERSUS SAND STABILISED WITH 3% CEMENT

Shearing rate : 1,0 mm/minute

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	200kPav/s	s 400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	A	А	в	в	A	A	в	в	A	А	в	В	A	А	в	в									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	57	11/	57	114	65	130	48	96	111	222	62	124	154	308	73	146	228	226	346	454	50	620	692	0.01263	40.00	54 79	18.05	17.80	27 40	35.05	0.5
1	89	178	70	140	95	100	63	126	214	428	96	102	312	624	124	248	318	316	620	872	100	870	888	0.01263	68.88	70.31	25.18	25.02	10.00	69.04	1
1.5	87	174	58	116	99	108	59	118	277	554	114	228	427	854	100	380	200	316	782	1234	200	1842	1828	0.01263	145.84	144 73	22.06	25.02	61.02	97 70	1.5
2	80	178	48	96	116	232	66	132	309	618	111	222	504	1008	264	528	274	364	840	1536	400	3648	3352	0.01263	288.84	265.40	21.60	28.82	66.51	121.62	2
2.5	109	218	53	106	142	284	78	156	331	662	111	222	560	1120	318	636	324	440	884	1756	400	3040	0002	0.01263	200.04	205.40	25.65	34.84	60.00	139.03	2.5
2.5	131	262	62	124	170	340	91	182	361	722	124	248	608	1216	362	724	386	522	970	1940				0.01263			30.56	/1 33	76.80	153.60	2.5
35	147	202	71	1/2	203	406	102	204	301	782	124	240	662	132/	415	830	436	610	1058	2154				0.01203			34.52	41.33	83 77	170.55	35
1	161	322	80	160	200	456	112	204	412	824	160	320	718	1/36	469	038	482	680	1144	2374				0.01263			38.16	53.84	00.77	187.97	0.0
4.5	172	344	86	172	248	406	120	240	412	854	188	376	772	1544	520	1040	516	736	1230	2584				0.01263			40.86	58 27	07 30	204 59	4.5
	183	366	94	188	269	538	120	254	451	902	215	430	825	1650	565	1130	554	792	1332	2780				0.01263			43.86	62 71	105.46	220 11	
6	105	300	100	200	203	586	136	272	507	1014	273	546	012	1824	640	1280	590	858	1560	3104				0.01263			46 71	67.03	123.52	245.76	6
7	200	400	103	200	206	500	137	274	539	1078	311	622	986	1024	720	1440	606	866	1700	3/12				0.01263			40.71	68.57	134.60	270.15	7
8	200	400	105	212	208	596	137	274	573	11/6	345	690	995	1000	720	1540	616	870	1836	3530				0.01263			48.77	68.88	1/5 37	270.10	8
q	202	404	107	212	298	596	137	274	575	1150	346	692	1002	2004	822	1644	620	870	1842	3648				0.01263			49.09	68.88	145.84	288.84	q
10	203	400	106	217	205	590	137	274	574	11/18	341	682	990	1080	810	1620	614	864	1830	3600				0.01263			48.61	68.41	1// 80	285.04	10
12	200	402	107	212	202	584	138	276	572	1140	310	638	982	106/	808	1616	614	860	1782	3580				0.01263			48.61	68.00	1/1 00	283.45	12
14	195	300	106	217	280	578	135	270	566	1132	318	636	976	1052	800	1600	602	848	1768	3552				0.01263			47.66	67.14	130.08	281.24	14
16	108	396	108	216	203	568	130	260	559	1118	321	642	966	1032	784	1568	612	828	1760	3500				0.01263			48.46	65.56	139.35	201.24	16
18	196	302	110	220	204	580	133	266	566	1132	328	656	966	1032	788	1576	612	846	1788	3508				0.01263			48.46	66.08	1/1 57	277.75	18
20	195	300	110	220	205	500	132	264	560	1120	332	664	965	1030	779	1558	610	854	1784	3488				0.01263			48.30	67.62	1/1 25	276.17	20
25	189	378	109	218	293	586	130	260	564	1120	344	688	970	1940	774	1548	596	846	1816	3488				0.01263			40.30	66.98	143.78	276.17	25
30	201	402	116	232	290	580	128	256	556	1112	342	684	969	1938	767	1534	634	836	1796	3472				0.01263			50.20	66 19	142 20	274.90	30
35	209	418	119	238	289	578	126	252	564	1128	354	708	971	1942	751	1502	656	830	1836	3444				0.01263			51 94	65.72	145 37	272.68	35
40	200	408	117	234	280	578	127	254	558	1116	342	684	968	1036	744	1/188	642	832	1800	3424				0.01263			50.83	65.87	142.52	271 10	40
50	196	392	111	204	286	572	125	250	555	1110	340	680	966	1932	710	1420	614	822	1790	3352				0.01263			48.61	65.08	141.73	265.40	50
60	186	372	110	220	289	578	128	256	551	1102	342	684	960	1920	681	1362	592	834	1786	3282				0.01263			46.87	66.03	141 41	259.86	60
70	184	368	107	214	289	578	129	258	559	1118	360	720	970	1940	680	1360	582	836	1838	3300				0.01263			46.08	66 19	145.53	261.28	70
80	188	376	106	212	289	578	130	260	555	1110	353	706	976	1952	680	1360	588	838	1816	3312				0.01263			46.56	66.35	143.78	262.23	80
90	186	372	104	208	288	576	130	260	550	1100	347	694	980	1960	681	1362	580	836	1794	3322				0.01263			45.92	66.19	142.04	263.02	90
100	184	368	101	202	288	576	131	262	551	1102	333	666	987	1974	683	1366	570	838	1768	3340				0.01263			45.13	66.35	139.98	264.45	100
120	199	398	108	216	290	580	134	268	556	1112	331	662	1006	2012	691	1382	614	848	1774	3394				0.01263			48.61	67.14	140.46	268 73	120
140	177	354	104	208	291	582	138	276	559	1118	330	660	1009	2018	673	1346	562	858	1778	3364				0.01263			44.50	67.93	140.78	266.35	140
160	190	380	112	224	293	586	140	280	558	1116	337	674	1012	2024	665	1330	604	866	1790	3354				0.01263			47.82	68.57	141.73	265.56	160
180	200	400	119	238	296	592	142	284	558	1116	330	660	1016	2032	652	1304	638	876	1776	3336				0.01263			50.51	69.36	140.62	264.13	180
200	207	414	121	242	297	594	143	286	554	1108	332	664	1018	2036	658	1316	656	880	1772	3352				0.01263			51.94	69.68	140.30	265.40	200
220	212	424	125	250	298	596	145	290	564	1128	341	682	1020	2040	656	1312	674	886	1810	3352				0.01263			53.37	70.15	143.31	265.40	220
240	216	432	130	260	298	596	146	292	569	1138	345	690	1022	2044	654	1308	692	888	1828	3352				0.01263			54.79	70.31	144.73	265.40	240

 peak
 35.05
 cohesion
 6.62

 residual
 31.77
 cohesion
 17.67

HDPE MICRO SPIKE VERSUS SAND STABILISED WITH 3% CEMENT TEST 2

Shearing rate : 1,0 mm/minute

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	s 200kPav/s	400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	A	Α	в	в	A	А	в	В	A	А	в	в	А	А	в	В									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	62	124	53	106	60	120	46	92	130	260	71	142	175	350	89	178	230	212	402	528	50	556	488	0.01263	44.02	38.64	18.21	16.79	31.83	41.81	0.5
1	84	168	72	144	106	212	67	134	237	474	109	218	339	678	144	288	312	346	692	966	100	750	762	0.01263	59.38	60.33	24.70	27.40	54.79	76.48	1
1.5	98	196	81	162	145	290	80	160	308	616	134	268	448	896	219	438	358	450	884	1334	200	1580	1714	0.01263	125.10	135.71	28.35	35.63	69.99	105.62	1.5
2	114	228	88	176	180	360	89	178	368	736	154	308	517	1034	277	554	404	538	1044	1588	400	3176	2654	0.01263	251.46	210.13	31.99	42.60	82.66	125.73	2
2.5	122	244	91	182	207	414	96	192	418	836	182	364	572	1144	329	658	426	606	1200	1802				0.01263			33.73	47.98	95.01	142.68	2.5
3	133	266	95	190	228	456	100	200	454	908	203	406	638	1276	387	774	456	656	1314	2050				0.01263			36.10	51.94	104.04	162.31	3
3.5	143	286	100	200	241	482	103	206	476	952	216	432	691	1382	441	882	486	688	1384	2264				0.01263			38.48	54.47	109.58	179.26	3.5
4	150	300	103	206	253	506	106	212	492	984	227	454	741	1482	496	992	506	718	1438	2474				0.01263			40.06	56.85	113.86	195.88	4
4.5	154	308	105	210	257	514	106	212	506	1012	234	468	790	1580	538	1076	518	726	1480	2656				0.01263			41.01	57.48	117.18	210.29	4.5
5	161	322	108	216	262	524	107	214	516	1032	243	486	834	1668	569	1138	538	738	1518	2806				0.01263			42.60	58.43	120.19	222.17	5
6	167	334	111	222	268	536	107	214	534	1068	256	512	890	1780	622	1244	556	750	1580	3024				0.01263			44.02	59.38	125.10	239.43	6
7	168	336	110	220	269	538	105	210	532	1064	256	512	910	1820	644	1288	556	748	1576	3108				0.01263			44.02	59.22	124.78	246.08	7
8	165	330	109	218	268	536	104	208	524	1048	250	500	929	1858	659	1318	548	744	1548	3176				0.01263			43.39	58.91	122.57	251.46	8
9	158	316	107	214	270	540	103	206	512	1024	235	470	914	1828	641	1282	530	746	1494	3110				0.01263			41.96	59.07	118.29	246.24	9
10	155	310	107	214	267	534	101	202	504	1008	225	450	908	1816	634	1268	524	736	1458	3084				0.01263			41.49	58.27	115.44	244.18	10
12	150	300	105	210	268	536	98	196	497	994	220	440	898	1796	627	1254	510	732	1434	3050				0.01263			40.38	57.96	113.54	241.49	12
14	148	296	104	208	264	528	97	194	492	984	218	436	887	1774	620	1240	504	722	1420	3014				0.01263			39.90	57.17	112.43	238.64	14
16	144	288	104	208	266	532	98	196	493	986	218	436	880	1760	614	1228	496	728	1422	2988				0.01263			39.27	57.64	112.59	236.58	16
18	146	292	104	208	266	532	97	194	492	984	217	434	873	1746	607	1214	500	726	1418	2960				0.01263			39.59	57.48	112.27	234.36	18
20	146	292	103	206	264	528	97	194	488	976	217	434	865	1730	601	1202	498	722	1410	2932				0.01263			39.43	57.17	111.64	232.15	20
25	144	288	104	208	260	520	96	192	485	970	218	436	856	1712	601	1202	496	712	1406	2914				0.01263			39.27	56.37	111.32	230.72	25
30	142	284	104	208	263	526	97	194	484	968	218	436	847	1694	594	1188	492	720	1404	2882				0.01263			38.95	57.01	111.16	228.19	30
35	142	284	104	208	268	536	101	202	481	962	224	448	842	1684	588	1176	492	738	1410	2860				0.01263			38.95	58.43	111.64	226.44	35
40	141	282	104	208	266	532	102	204	484	968	225	450	846	1692	588	1176	490	736	1418	2868				0.01263			38.80	58.27	112.27	227.08	40
50	143	286	104	208	266	532	103	206	477	954	231	462	832	1664	590	1180	494	738	1416	2844				0.01263			39.11	58.43	112.11	225.18	50
60	140	280	103	206	265	530	105	210	468	936	237	474	828	1656	582	1164	486	740	1410	2820				0.01263			38.48	58.59	111.64	223.28	60
70	140	280	104	208	266	532	106	212	466	932	243	486	827	1654	579	1158	488	744	1418	2812				0.01263			38.64	58.91	112.27	222.64	70
80	140	280	103	206	268	536	107	214	464	928	250	500	822	1644	583	1166	486	750	1428	2810				0.01263			38.48	59.38	113.06	222.49	80
90	140	280	104	208	268	536	108	216	456	912	258	516	821	1642	583	1166	488	752	1428	2808				0.01263			38.64	59.54	113.06	222.33	90
100	140	280	105	210	268	536	109	218	448	896	266	532	820	1640	582	1164	490	754	1428	2804				0.01263			38.80	59.70	113.06	222.01	100
120	142	284	106	212	270	540	110	220	442	884	301	602	796	1592	580	1160	496	760	1486	2752				0.01263			39.27	60.17	117.66	217.89	120
140	140	280	104	208	274	548	112	224	436	872	336	672	773	1546	579	1158	488	772	1544	2704				0.01263			38.64	61.12	122.25	214.09	140
160	139	278	105	210	269	538	110	220	428	856	392	784	750	1500	578	1156	488	758	1640	2656				0.01263			38.64	60.02	129.85	210.29	160
180	139	278	105	210	269	538	109	218	398	796	446	892	730	1460	576	1152	488	756	1688	2612				0.01263			38.64	59.86	133.65	206.81	180
200	140	280	104	208	268	536	111	222	368	736	483	966	736	1472	589	1178	488	758	1702	2650				0.01263			38.64	60.02	134.76	209.82	200
220	140	280	105	210	269	538	110	220	360	720	497	994	729	1458	612	1224	490	758	1714	2682				0.01263			38.80	60.02	135.71	212.35	220
240	139	278	105	210	270	540	111	222	351	702	506	1012	717	1434	610	1220	488	762	1714	2654				0.01263			38.64	60.33	135.71	210.13	240

peak	31.33
residual	26.45

26.45 cohesion

cohesion

5.86

17.92

Time min.	50kPa v/s	corr.sh.	50kPa v/s	corr. sh.	100kPa v/s	corr. sh.	100kPav/s	corr. sh.	200kPa v/s	corr sh.	200kPa v/s	corr. sh.	400kPav/s	corr. sh.	400kPav/s	corr. sh.	50Kpa v/s	100kPav/s	s 200kPav/s	s 400kPav/s	vertical	peak sh.	residual	interface	peak sh.	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh. str. N.	str. N.	sh. str. N.	str. N.	sh. str.N.	str. N.	sh. str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.N.	str. N.	sh.str. N.	str. N.	sh.str.	sh.str.	sh.str.	sh.str.	str. kPa	stress N.	stress N.	area m^	stress	sh. stress	sh.str.	sh.str.	sh.str.	sh.str.	mm.
	А	А	в	В	А	А	в	В	А	А	в	в	А	А	в	в									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	30	60	32	64	31	62	33	66	60	120	44	88	105	210	55	110	124	128	208	320	50	392	362	0.01263	31.04	28.66	9.82	10.13	16.47	25.34	0.5
1	50	100	43	86	56	112	45	90	110	220	66	132	196	392	88	176	186	202	352	568	100	488	452	0.01263	38.64	35.79	14.73	15.99	27.87	44.97	1
1.5	62	124	48	96	74	148	54	108	147	294	82	164	259	518	110	220	220	256	458	738	200	916	822	0.01263	72.53	65.08	17.42	20.27	36.26	58.43	1.5
2	72	144	52	104	87	174	61	122	174	348	95	190	306	612	129	258	248	296	538	870	400	1714	1536	0.01263	135.71	121.62	19.64	23.44	42.60	68.88	2
2.5	79	158	54	108	97	194	67	134	195	390	105	210	344	688	149	298	266	328	600	986				0.01263			21.06	25.97	47.51	78.07	2.5
3	84	168	56	112	105	210	71	142	206	412	112	224	364	728	177	354	280	352	636	1082				0.01263			22.17	27.87	50.36	85.67	3
3.5	90	180	58	116	111	222	75	150	217	434	119	238	380	760	200	400	296	372	672	1160				0.01263			23.44	29.45	53.21	91.84	3.5
4	95	190	59	118	115	230	78	156	229	458	125	250	394	788	217	434	308	386	708	1222				0.01263			24.39	30.56	56.06	96.75	4
4.5	99	198	60	120	120	240	81	162	239	478	131	262	406	812	231	462	318	402	740	1274				0.01263			25.18	31.83	58.59	100.87	4.5
5	104	208	61	122	124	248	84	168	249	498	136	272	419	838	243	486	330	416	770	1324				0.01263			26.13	32.94	60.97	104.83	5
6	109	218	63	126	130	260	88	176	265	530	144	288	441	882	264	528	344	436	818	1410				0.01263			27.24	34.52	64.77	111.64	6
7	114	228	65	130	136	272	92	184	275	550	150	300	462	924	283	566	358	456	850	1490				0.01263			28.35	36.10	67.30	117.97	7
8	115	230	66	132	139	278	95	190	281	562	155	310	480	960	301	602	362	468	872	1562				0.01263			28.66	37.05	69.04	123.67	8
9	118	236	68	136	142	284	97	194	286	572	159	318	493	986	314	628	372	478	890	1614				0.01263			29.45	37.85	70.47	127.79	9
10	122	244	70	140	145	290	99	198	289	578	162	324	503	1006	322	644	384	488	902	1650				0.01263			30.40	38.64	71.42	130.64	10
12	122	244	70	140	143	286	99	198	292	584	166	332	519	1038	334	668	384	484	916	1706				0.01263			30.40	38.32	72.53	135.08	12
14	124	248	71	142	140	280	99	198	288	576	163	326	524	1048	333	666	390	478	902	1714				0.01263			30.88	37.85	71.42	135.71	14
16	124	248	71	142	141	282	100	200	290	580	165	330	518	1036	327	654	390	482	910	1690				0.01263			30.88	38.16	72.05	133.81	16
18	125	250	71	142	141	282	100	200	284	568	163	326	520	1040	321	642	392	482	894	1682				0.01263			31.04	38.16	70.78	133.17	18
20	124	248	70	140	139	278	100	200	286	572	161	322	520	1040	321	642	388	478	894	1682				0.01263			30.72	37.85	70.78	133.17	20
25	121	242	70	140	137	274	100	200	283	566	159	318	502	1004	304	608	382	474	884	1612				0.01263			30.25	37.53	69.99	127.63	25
30	122	244	71	142	134	268	99	198	279	558	158	316	494	988	296	592	386	466	874	1580				0.01263			30.56	36.90	69.20	125.10	30
35	125	250	72	144	136	272	100	200	277	554	156	312	491	982	292	584	394	472	866	1566				0.01263			31.20	37.37	68.57	123.99	35
40	121	242	72	144	136	272	101	202	280	560	157	314	488	976	288	576	386	474	874	1552				0.01263			30.56	37.53	69.20	122.88	40
50	120	240	71	142	134	268	100	200	275	550	155	310	487	974	286	572	382	468	860	1546				0.01263			30.25	37.05	68.09	122.41	50
60	120	240	70	140	133	266	99	198	273	546	152	304	485	970	285	570	380	464	850	1540				0.01263			30.09	36.74	67.30	121.93	60
70	119	238	71	142	132	264	99	198	274	548	152	304	484	968	280	560	380	462	852	1528				0.01263			30.09	36.58	67.46	120.98	70
80	118	236	71	142	132	264	98	196	274	548	153	306	484	968	284	568	378	460	854	1536				0.01263			29.93	36.42	67.62	121.62	80
90	117	234	71	142	130	260	97	194	272	544	152	304	484	968	282	564	376	454	848	1532				0.01263			29.77	35.95	67.14	121.30	90
100	118	236	71	142	131	262	97	194	270	540	150	300	480	960	281	562	378	456	840	1522				0.01263			29.93	36.10	66.51	120.51	100
120	113	226	70	140	132	264	98	196	268	536	149	298	482	964	284	568	366	460	834	1532				0.01263			28.98	36.42	66.03	121.30	120
140	115	230	71	142	131	262	97	194	267	534	149	298	480	960	283	566	372	456	832	1526				0.01263			29.45	36.10	65.87	120.82	140
160	114	228	70	140	131	262	96	192	267	534	148	296	480	960	284	568	368	454	830	1528				0.01263			29.14	35.95	65.72	120.98	160
180	112	224	71	142	130	260	96	192	266	532	148	296	482	964	283	566	366	452	828	1530				0.01263			28.98	35.79	65.56	121.14	180
200	113	226	71	142	131	262	95	190	265	530	148	296	480	960	286	572	368	452	826	1532				0.01263			29.14	35.79	65.40	121.30	200
220	112	224	70	140	130	260	94	188	265	530	147	294	480	960	287	574	364	448	824	1534				0.01263			28.82	35.47	65.24	121.46	220
240	111	222	70	140	132	264	94	188	264	528	147	294	480	960	288	576	362	452	822	1536				0.01263			28.66	35.79	65.08	121.62	240

MARIANNHILL LANDFILL RING SHEAR TESTING

HDPE MICRO SPIKE VERSUS GEOFABRIC

PD NAIDOO AND ASSOCIATES

TEST 3

1.835 residual	peak	17.09
y = 0.2725x + 11.697	residual	15.24

19th JULY 2011

Shearing rate : 1,0 mm/minute

 peak
 17.09
 cohesion
 11.84

 residual
 15.24
 cohesion
 11.70

Time min	50kPa v/s	corr sh	50kPa v/s	corr sh	100kPa v/s	corr sh	100kPav/s	corr sh	200kPa v/s	corr sh	200kPa v/s	corr sh	400kPav/s	corr sh	400kPav/s	corr sh	50Kna v/s	100kPay/s	200kPav/s	400kPay/s	vertical	neak sh	residual	interface	neak sh	residual	50 kPa v/s	100kPav/s	200kPav/s	400kPav/s	strain
	sh str N	str N	sh str N	str N	sh str N	str N	sh str N	str N	sh str N	str N	sh str N	str N	sh str N	str N	sh str N	str N	sh str	sh str	sh str	sh str	str kPa	stress N	stress N	area m^	stress	sh stress	sh str	sh str	sh str	sh str	mm
	A	A	В	в	A	A	В	В	A	A	В	В	A	A	В	В									kPa.	kPa.	kPa.	kPa.	kPa.	kPa.	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0	0
0.5	42	84	23	46	24	48	27	54	74	148	43	86	116	232	57	114	130	102	234	346	50	706	426	0.01263	55.90	33.73	10.29	8.08	18.53	27.40	0.5
1	63	126	37	74	41	82	37	74	123	246	63	126	180	360	78	156	200	156	372	516	100	996	546	0.01263	78.86	43.23	15.84	12.35	29.45	40.86	1
1.5	75	150	48	96	56	112	47	94	158	316	76	152	242	484	98	196	246	206	468	680	200	1894	960	0.01263	149.96	76.01	19.48	16.31	37.05	53.84	1.5
2	85	170	57	114	69	138	56	112	184	368	86	172	296	592	114	228	284	250	540	820	400	2798	1220	0.01263	221.54	96.60	22.49	19.79	42.76	64.92	2
2.5	95	190	64	128	80	160	65	130	205	410	95	190	339	678	128	256	318	290	600	934				0.01263			25.18	22.96	47.51	73.95	2.5
3	104	208	69	138	87	174	75	150	226	452	102	204	372	744	139	278	346	324	656	1022				0.01263			27.40	25.65	51.94	80.92	3
3.5	111	222	73	146	94	188	86	172	245	490	108	216	404	808	154	308	368	360	706	1116				0.01263			29.14	28.50	55.90	88.36	3.5
4	118	236	76	152	101	202	94	188	260	520	113	226	430	860	175	350	388	390	746	1210				0.01263			30.72	30.88	59.07	95.80	4
4.5	127	254	80	160	108	216	100	200	275	550	117	234	450	900	193	386	414	416	784	1286				0.01263			32.78	32.94	62.07	101.82	4.5
5	135	270	84	168	115	230	105	210	293	586	122	244	469	938	208	416	438	440	830	1354				0.01263			34.68	34.84	65.72	107.21	5
6	153	306	92	184	132	264	113	226	318	636	127	254	502	1004	234	468	490	490	890	1472				0.01263			38.80	38.80	70.47	116.55	6
7	170	340	99	198	154	308	125	250	357	714	136	272	527	1054	253	506	538	558	986	1560				0.01263			42.60	44.18	78.07	123.52	7
8	187	374	106	212	176	352	139	278	397	794	147	294	570	1140	278	556	586	630	1088	1696				0.01263			46.40	49.88	86.14	134.28	8
9	201	402	111	222	193	386	158	316	429	858	165	330	613	1226	305	610	624	702	1188	1836				0.01263			49.41	55.58	94.06	145.37	9
10	209	418	115	230	208	416	181	362	470	940	193	386	652	1304	334	668	648	778	1326	1972				0.01263			51.31	61.60	104.99	156.14	10
12	220	440	118	236	231	462	211	422	523	1046	244	488	727	1454	397	794	676	884	1534	2248				0.01263			53.52	69.99	121.46	177.99	12
14	231	462	121	242	255	510	235	470	568	1136	288	576	800	1600	458	916	704	980	1712	2516				0.01263			55.74	77.59	135.55	199.21	14
16	232	464	121	242	260	520	238	4/6	611	1222	336	672	850	1700	511	1022	706	996	1894	2722				0.01263			55.90	78.86	149.96	215.52	16
18	223	446	116	232	256	512	231	462	600	1200	344	688	860	1720	539	1078	678	974	1888	2798				0.01263			53.68	77.12	149.49	221.54	18
20	214	428	113	226	248	496	222	444	584	1168	340	680	842	1684	546	1092	654	940	1848	2776				0.01263			51.78	74.43	146.32	219.79	20
25	193	300	106	212	217	434	193	300	492	964	202	100	700	1400	457	914	596	02U 70C	1040	2314				0.01263			47.35	64.92	122.57	103.21	25
30	104	300	104	200	209	209	104	300	457	914	249	496	624	1200	403	760	5/6	760	1412	2094				0.01263			40.01	62.23	107.69	165.60	30
30	179	256	106	212	199	276	169	330	441	002	239	4/0	6024	1196	360	700	570	710	1300	2008				0.01203			43.01	55.70	107.00	150.55	40
50	168	336	100	200	184	368	164	328	392	784	198	396	555	1110	326	652	536	696	1180	1762				0.01203			44.01	55.11	93.43	139.55	50
60	164	328	98	196	179	358	159	318	385	770	192	384	536	1072	306	612	524	676	1154	1684				0.01263			41 49	53.52	91 37	133.33	60
70	163	326	99	198	175	350	156	312	380	760	188	376	516	1032	290	580	524	662	1136	1612				0.01263			41 49	52.41	89.94	127.63	70
80	156	312	97	194	171	342	152	304	376	752	184	368	503	1002	282	564	506	646	1120	1570				0.01263			40.06	51.15	88.68	124.31	80
90	153	306	95	190	166	332	149	298	371	742	179	358	489	978	272	544	496	630	1100	1522				0.01263			39.27	49.88	87.09	120.51	90
100	149	298	94	188	161	322	145	290	366	732	174	348	482	964	261	522	486	612	1080	1486				0.01263			38.48	48.46	85.51	117.66	100
120	145	290	93	186	148	296	136	272	356	712	163	326	474	948	252	504	476	568	1038	1452				0.01263			37.69	44.97	82.19	114.96	120
140	142	284	92	184	147	294	136	272	342	684	158	316	462	924	241	482	468	566	1000	1406				0.01263			37.05	44.81	79.18	111.32	140
160	138	276	91	182	146	292	135	270	340	680	152	304	439	878	220	440	458	562	984	1318				0.01263			36.26	44.50	77.91	104.35	160
180	135	270	90	180	145	290	134	268	337	674	150	300	429	858	212	424	450	558	974	1282				0.01263			35.63	44.18	77.12	101.50	180
200	130	260	89	178	144	288	132	264	335	670	148	296	419	838	206	412	438	552	966	1250				0.01263			34.68	43.71	76.48	98.97	200
220	128	256	88	176	144	288	131	262	333	666	147	294	413	826	202	404	432	550	960	1230				0.01263			34.20	43.55	76.01	97.39	220
240	126	252	87	174	143	286	130	260	333	666	147	294	410	820	200	400	426	546	960	1220				0.01263			33.73	43.23	76.01	96.60	240

PD NAIDOO AND ASSOCIATES

TEST 4

MARIANNHILL LANDFILL

HDPE MAKRO SPIKE VERSUS GEOFABRIC

RING SHEAR TESTING

19th JULY 2011

Shearing rate : 1,0 mm/minute

peak	25.55	cohesion	36.92
residual	10.30	cohesion	28.33

157

D.3. Shear Box Test – Secugrid vs Protection Geotextile

In the direct shear test, the frictional behaviour of the test sample is determined using a standard shear box apparatus. The sample material is placed into the shear box and a uniform normal load is applied via compacted air cushion to the apparatus.

A shear force is induced by the displacement of the lower section of the shear box apparatus. The force is plotted against the displacement for different normal stress loading conditions.

Test:

Shear plane: Area [cm²]: Rate of strain [mm/h]: Shear plane: Consolidation:

Normal stress [kPa] Consolidation stress [kPa] Time of consolidation [h] Secugrid 120/40 and sand vs. Fibertex F-1000 900 10 under water yes, under water

50	100	200
50	100	200
1	1	1

The use of the results and the appropriate application is the responsibility of the engineer and must take into consideration all aspects of the proposed construction and local soil conditions.

Espelkamp-Fiestel

10/10/2011

H. Ehrenberg

K Knost

hust

Shear Box Testing of Secugrid against a geotextile protection layer, Naue, Germany

D.4. Calculation of Factors of Safety for Mariannhill Landfill Site

D.5. Factors of Safety for HDPE Geomembrane, Protection Geotextile and Veneer Reinforcement Integrity

		Integrity of H	DPE G	ec	omembrane - 2.0mm	n doubl	e :	sided textured		_
Up to 1:3 Slope			Up to 1:2.5 Slope				Up to 1:2 Slope	Comments		
Thickness	=	2	mm							
Density	=	942	kg/m ³	=	942	g/m ²	=	942	g/m ²	Data sheet
Length of slope*	=	25	m		20	m		15	m	
Mass of 1m strip	=	25*1*0 002*942		_	20*1*0 002*942		_	15*1*4 310		
	=	47.10	kg	=	37.68	kg	=	28.26	kg	
WI ' 1. C 1 '		17 10 # 0 01 / 1000			25 (0 * 0 01 / 1000			20.25 # 0.01 / 1000		
weight of 1m strip	=	47.10 * 9.81 / 1000 0.46	kN/m	=	37.68 * 9.81 / 1000 0.37	kN/m	=	28.26 * 9.81 / 1000 0.28	kN/m	
	Γ	0.10	Ki t/ III		0.07	Ki () III	_	0.20	Ki () III	
Tensile strength at										
yield	=	33	kN/m	=	33	kN/m	=	33	kN/m	Data sheet
Factor of Safety	=	33 / 0.46		_	33 / 0.37		=	33 / 0.28		
	=	71.42		=	89.28		=	119.03		
						_				
* Intermediate and	ho	r trench constructed t	o assist	st	ability and integrity					
]	Integrit	y	of Protection Geote	extile A	1)		
	Up to 1:3 Slope				Up to 1:2.5 Slope			Up to 1:2 Slope		Comments
Mass per unit area	=	1000	g/m ²	=	1000	g/m ²	=	1000	g/m ²	Data sheet
Mass of 1m strip	=	25*1*1	ka	=	20*1*1	la	=	15*1*1	lra	
	-	25.00	кg	_	20.00	ĸg	-	15.00	ĸg	
Weight of 1m strip	=	25 * 9.81 / 1000		=	20 * 9.81 / 1000		=	15 * 9.81 / 1000		
	=	0.25	kN/m	=	0.20	kN/m	=	0.15	kN/m	
T] (() (
vield	=	76	kN/m	_	76	kN/m	_	76	kN/m	Data sheet
<i>y.</i>									10.011	Butu Sheet
Factor of Safety	=	76 / 0.25		=	76 / 0.20	_	=	76 / 0.15		
	=	309.89		=	387.36		=	516.48		
									-	
	_	Integrit	y of Ve	ne	neer Reinforcement Securg			1 120/40	-	
		Up to 1:3 Slope			Up to 1:2.5 Slope			Up to 1:2 Slope		Comments
Mass per unit area	=	580	g/m ²	=	580	g/m ²	=	580	g/m ²	Data sheet
Mass of 1m strip	_	25*1*0 58		_	20*1*0 58			15*1*0 58		
nuos or nirourp	=	14.50	kg	_	11.60	kg	=	8.70	kg	
Weight of 1m strip	=	14.50 * 9.81 / 1000		=	11.60 * 9.81 / 1000		=	8.70 * 9.81 / 1000		
	=	0.14	kN/m	=	0.11	kN/m	=	0.09	kN/m	
Tensile strength at	1									
yield	=	120	kN/m	=	120	kN/m	=	120	kN/m	Data sheet
Factor of Safety	=	120 / 0.14 843 61		=	120 / 0.11	<u> </u>	=	120 / 0.09		
	=	043.01			1034.32		=	1400.04		

D.6. Mariannhill Landfill Cell 4 – Phase 3 – Consultant Letter

DRENNAN, MAUD & PARTNERS

Consulting CMI Engineers and Engineering Geologists Registered Member : S.A. Association of Consulting Engineers Registered Member : Consulting Engineers of South Africa

PARTNERS: R.D. COLLYER, P.Eng. B.Sc. (Eng.), M.Sc. (Eng.), MSA KEL M.J.P. BEHET, P.Sci Nat. B.Sc. (Hone,), M.Sc., P.SAIBD. M.J. HADLOW, P.Sci Nat., B.Sc. (Hone,), MSAIBG.

CONSULTANTS: R.R. MAUD, Pr.Sci. Nat., B.Sc. Ph. D. FGS, FGBSA, FSAEG, FSAE

OUR REF .: 21504

YOUR REF.

68 RIDGE ROAD TOLLGATE DURBAN 4001

P.O. BOX 30464 MAYVILLE 4058

TELEPHONE (031) 201-8992 TELEFAX (031) 201-7920

E-MAIL dmp@iafrica.com

15 June 2011

P D Naidoo & Associates P O Box 37659 OVERPORT 4067

Attention: Mr Nash Dookhi

MARIANHILL LANDFILL - CELL 4 - 3

Hi Nash,

As a follow-up to this mornings meeting on site, herewith a summary of issues discussed and a few additional guidelines/points noted:

- The fill to be placed in the undercut areas shown on site this moming is anticipated to be stable provided:
 - The base is horizontally benched with bench widths limited to a minimum of 3m.
 - The fill material is granular (relatively free drainage as found on site) and is well compacted.
 - Extensive drainage (subsoils) are inserted to prevent any build up of the water table and poor water pressures in the fill.
 - The outer fill slope angles are of the order of 1 in 2,4 as indicated on site.

- For definite answers regarding the fill stability a recommended way forward would be to run some stability analysis in the fill areas and see what factors of safety are obtained. This will however require time, a few cross-sections of the undercut profile, and some shearbox tests on a re-compacted sample of the fill.
- It is recommended that the earthworks be performed as rapidly as possible or in limited length segments because:
 - Stormwater erosion will cause extensive damage to the exposed sandy fill slope prior to lining/sealing.
 - The steep face portions below the upper cut off drain are susceptible to localised failures. If practically possible, temporary support soil berms can be placed in steeper under cut areas to provide temporary support until such time as a particular area is worked.
- As mentioned on site this morning, a brief review of the proposed liner detail raises the following concerns:
 - There are some areas where the stabilised sand liner approaches 27 30° which may have stability (limited safety factor built in) and practical (compaction) implications. A test section on the steeper areas will shed light on whether it is possible to use stabilised sand on the steeper areas (>26°) or whether it would be better to use a thick protection geotextile instead.
 - Interface shearbox testing of the proposed liner will reveal the weakest layer with the lowest shear strength. This layer should be above the HDPE geomembrane.
 - Our preliminary stability analysis reveals that a Residual Friction angle >9° for this weakest layer should result in a stable landfill. However due to limitations of our stability analysis relative to the complexity of Marianhill, as outlined in our letter (27 October 2010), a second opinion is still recommended in this regard.

Yours faithfully DRENNAN, MAUD AND PARTNERS

Acadell

KARL RIBBINK Pr.Sci.Nat