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ABSTRACT 

The measurement of plant water content is essential to assess stress and 

disturbance in forest plantations. Traditional techniques to assess plant water 

content are costly, time consuming and spatially restrictive. Remote sensing 

techniques offer the alternative of a non destructive and instantaneous method of 

assessing plant water content over large spatial scales where ground 

measurements would be impossible on a regular basis. The aim of this research 

was to assess the relationship between plant water content and reflectance data in 

Eucalyptus grandis forest stands in KwaZulu-Natal, South Africa. Field reflectance 

and first derivative reflectance data were correlated with plant water content. The 

first derivative reflectance performed better than the field reflectance data in 

estimating plant water content with high correlations in the visible and mid-infrared 

portions of the electromagnetic spectrum. Several reflectance indices were also 

tested to evaluate their effectiveness in estimating plant water content and were 

compared to the red edge position. The red edge position calculated from the first 

derivative reflectance and from the linear four-point interpolation method performed 

better than all the water indices tested. It was therefore concluded that the red 

edge position can be used in association with other water indices as a stable 

spectral parameter to estimate plant water content on hyperspectral data. The 

South African satellite SumbandilaSat is due for launch in the near future and it is 

essential to test the utility of this satellite in estimating plant water content, a study 

which has not been done before. The field reflectance data from this study was 

resampled to the SumbandilaSat band settings and was put into a neural network 

to test its potential in estimating plant water content. The integrated approach 

involving neural networks and the resampled field spectral data successfully 

predicted plant water content with a correlation coefficient of 0.74 and a root mean 

square error (RMSE) of 1.41 on an independent test dataset outperforming the 

traditional multiple regression method of estimation. The potential of the 

SumbandilaSat wavebands to estimate plant water content was tested using a 

sensitivity analysis. The results from the sensitivity analysis indicated that the 



 ix

xanthophyll, blue and near infrared wavebands are the three most important 

wavebands used by the neural network in estimating plant water content. It was 

therefore concluded that these three bands of the SumbandilaSat are essential for 

plant water estimation. In general this study showed the potential of up-scaling field 

spectral data to the SumbandilaSat, the second South African satellite scheduled 

for launch in the near future.  
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Chapter One 

1. Introduction 

 

1.1. Background 

There are approximately 1.5 million hectares of commercial forests in South Africa 

(Zwolinski et al., 1998) with plantations taking up 1.1% of the country’s land base 

(DWAF, 2005). Pinus and Eucalyptus species are planted extensively on selected 

areas in South Africa (Zwolinski et al., 1998) with forest products contributing 1.2 % 

(approximately R 14 billion) to the country’s gross domestic product (GDP) (Ismail 

et al., 2008). Eucalyptus grandis which is the most dominant hardwood species 

accounts for 47.8 % of the total hardwood area in South Africa. South African 

hardwood species are mainly grown for pulpwood and mining timber, and is 

dominant in KwaZulu-Natal (DWAF, 2005). The success of commercial forest 

plantations in South Africa is highly dependent on accelerating forest productivity 

and tree growth through improved silvicultural and management techniques 

(Naidoo et al., 2006). 

 

Water and nutrient interactions have been widely recognized as key factors in 

determining forest productivity and tree growth (Campion et al., 2005; Naidoo et 

al., 2006). The growth rate and health of plantations is largely dependent on 

moisture availability which is often limited through high evaporation (Naidoo et al., 

2006). Water stress is one of the most common limitations of forest productivity, 

and is induced by the closure of the stomata which restricts transpiration (Ceccato 

et al., 2001). Due to less water evaporating from the leaf surface, the temperature 

of the leaf increases putting the tree at stress and limiting productivity. 

 

The detection of plant water content is important for monitoring the physiological 

status of plants and in the assessment of stress and disturbance in forest 

plantations (Ceccato et al., 2001; Datt, 1999). According to Ripple (1986) 

traditional techniques for accurate ground based evaluation of plant water 
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measurements are time consuming, costly and spatially restrictive. Although field 

based sampling of individual leaves and shoots provide the most accurate 

assessments of plant water status, such methods are not feasible when estimates 

are required over large areas of plantations. Remote sensing techniques offer the 

alternative of a non-destructive and instantaneous method of assessing water 

content over large spatial scales (Datt, 1999).  

 

Remote sensing is the art and science of getting information about the earth’s 

surface without really being in contact with it and this is done by earth observation 

technologies. Earth observation technologies such as satellites provide local to 

global coverage on remote areas where ground measurements are impossible on 

a regular basis. According to Ceccato et al., (2001) different sensors are onboard 

earth observation satellites and may be used to monitor plant water content. 

However even with airborne multispectral scanners; remote sensing data collection 

is limited to a specified and finite number of spectral bands. Treitz et al., (1999) 

states that satellite data have provided relatively poor spatial, spectral and 

temporal resolutions for measuring biophysical and physiological characteristics of 

forest health.  

 

Remote sensing developments in hyperspectral technology provide the potential to 

monitor forest health. Hyperspectral refers to spectra consisting of a large number 

of very narrow contiguous bands in the electromagnetic spectrum and is also 

referred to as spectroscopy or spectrometry (Mutanga, 2004). Spectroscopy is the 

branch of physics concerned with the production, transmission and interpretation of 

electromagnetic energy. Spectrometers are used in laboratory, field, aircraft or 

satellite studies to measure the reflectance spectra of natural surfaces (Mutanga, 

2004). Due to hyperspectral remote sensing having a variety of narrow spectral 

band features of less than 10 nanometers, changes in forest health can be 

detected. According to Schmidt (2003), the ability to assess plant water content 

using high spectral resolution data is a major goal for remote sensing research.  
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Eucalyptus grandis which is the most dominant hardwood species in South Africa 

is highly intolerant to adverse conditions and shows poor growth rate when there is 

a lack of moisture (Naidoo et al., 2006). The growth rate and health of plantations 

which is largely dependent on moisture availability is often limited through high 

evaporation (Naidoo et al., 2006). In the context of South African forest plantations 

where water content frequently limits growth and influences wood properties 

(Naidoo et al., 2006), the measurement of water content is essential to detect 

stress and disturbance in plantations. Field spectroscopy together with suitable 

analysis techniques provides the potential to quantitatively measure water content 

in forest plantations. 

 

A number of studies have measured water content in forest species using 

laboratory and field spectroscopy with the intention of up-scaling it to airborne and 

satellite remote sensing (Ceccato et al., 2001; Datt, 1999; Liu et al., 2004). The 

advances in laboratory and field spectroscopy allow for the measurement of forest 

condition from fine scale measurements such as leaves to coarser canopy scale 

studies (Milton et al., 2007). Various water absorption bands and band indices 

have been developed to estimate water content (Gao, 1996; Hunt and Rock, 1989; 

Penuelas et al., 1993). Water indices use reflectance measurements in the near-

infrared and shortwave infrared regions to take advantage of known absorption 

bands to estimate water content. However, the remote sensing of plant water 

content is difficult because the absorption bands sensitive to water content are also 

affected by atmospheric vapour and they sometimes mask the absorption bands 

used for water estimation (Liu et al., 2004). A method using non-water absorption 

bands but with minimum atmospheric interference such as the red edge position 

would be valuable in estimating plant water content. According to Liu et al., (2004) 

the red edge can be used as a stable spectral parameter to estimate plant water 

content, but has not  been utilized widely for plant water estimation. To the best of 

our knowledge, in South Africa the red edge position has not been tested for plant 

water estimation and has not been compared to the available water indices. The 
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relationship between plant water content and the red edge position has therefore 

not been well established in South African forest plantations.  

 

Internationally, the measurement of plant water content at field level has been 

carried out using very high resolution spectrometers such as the analytical spectral 

device (ASD) with spectral sampling intervals of less than 2nm (Liu et al., 2004; 

Stimson et al., 2005). However current operational airborne and spaceborne 

sensors have a much coarser resolution compared to that of field spectrometers. In 

view of the current availability of spaceborne sensors, it is of interest if these 

sensors can be related to plant water content, through resampling fine spectral 

resolution data from spectrometers to coarser spectral resolutions of the 

spaceborne sensors. If the results are positive, the measurement of plant water 

content in plantations could be operational on satellite platforms. Within the South 

African context, the SumbandilaSat is scheduled to be launched in the near future. 

The SumbandilaSat is the second satellite to be launched by South Africa after the 

launch of SunSat in 1999. The SumbandilaSat has 6 wavebands with a swath 

width of approximately 40 km and a ground sampling distance (resolution) of 6.5 

metres (Scholes and Annamalai, 2006). It is imperative to test the utility of the 

SumbandilaSat bands in estimating plant water content in the Eucalyptus grandis 

forests stands of South Africa, an exercise that has not been carried out. This is 

critical for monitoring plantation health in South Africa using a cheaply available 

local sensor containing key vegetation wavelengths such as the red edge and the 

xanthophyll, which are not usually available on current operational multispectral 

satellite sensors but on hyperspectral sensors, which are expensive to acquire. In 

this regard, the development of techniques that can make use of the 

SumbandilaSat bands for plant water estimation are critical. 

 

According to Mutanga and Kumar (2007) the successful extension of field 

spectroscopy to airborne and satellite remote sensing has been confounded by the 

use of linear models, such as stepwise regression, which does not take into 
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account non-linearity in a data set. Neural networks are able to model non-linearity 

in a dataset and are a more powerful method of estimation compared to traditional 

linear models. By inputting water content in a neural network, Trombetti et al., 

(2008) showed that MODIS satellite data can retrieve canopy water content in 

different vegetation types in the USA. The neural network approach outperformed 

the multiple linear regression approach which was also used to retrieve canopy 

water content. Similar results were reported by Mutanga and Skidmore (2004) who 

input the red-edge position and absorption features into a neural network and 

successfully mapped nitrogen concentration using an airborne hyperspectral image 

data. A neural network is capable of modeling various types of non-linear 

behaviour in a data set (Atkinson and Tatnall, 1997) which is expected in the forest 

plantations of KwaZulu-Natal, South Africa. 

 

This study tests the potential of field spectroscopy to estimate plant water content 

in Eucalyptus grandis plantations in KwaZulu-Natal, South Africa. The study will 

compare the effectiveness of the red edge position and various indices in 

estimating plant water content. The field spectra will be resampled to the 

SumbandilaSat band settings and will be input into a neural network to test the 

potential for estimating plant water content using satellite remote sensing. 

 

It is against this background that the study sets itself to the following aim and 

objectives: 

 

1.2. Aim and objectives 

The aim of this research is to assess the relationship between plant water content 

and reflectance data in Eucalyptus grandis forest stands in KwaZulu-Natal, South 

Africa. The main objectives of this thesis are: 

 

� To test the relationship between plant water content from Eucalyptus grandis 

trees and reflectance data measured from a field spectrometer at each 
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wavelength. 

� To evaluate the effectiveness of several reflectance indices for estimating plant 

water content and compare them to the red edge position. 

� To resample the field spectra to the SumbandilaSat band settings and assess 

its potential in estimating plant water content using an artificial neural network. 

� To assess the relative importance of the individual SumbandilaSat wavebands 

in estimating plant water content using a sensitivity analysis. 

 

1.3. The study area 

The study area (300 29’S 290 82’E) is located in Richmond, KwaZulu-Natal, South 

Africa. The Richmond area falls in the Bioresource Group (BRG) 5 and is referred 

to as the Moist Midlands Mistbelt. Richmond is situated at an altitude range of 900 

m – 1400 m above sea level and has a high percentage of arable land. The area 

receives an annual rainfall ranging from 800 mm to 1280 mm and has a mean 

annual temperature of 170 Celsius (Camp, 1997). The landuse potential of 

Richmond is good due to its favourable climate and high percentage of arable land. 

37.7 % of the Bioresource Group has high potential soil and 47 % of the area is 

arable (Camp, 1997). Forestry is ecologically suitable and is the most widespread 

landuse. Eucalyptus, Pinus and Acacia species are grown on selected sites in the 

valleys on deep well drained soils. The study area was selected due to the wide 

variation in forest species and the fact that Eucalyptus grandis is the most 

dominant hardwood species in KwaZulu-Natal, South Africa (DWAF, 2005). Figure 

1.1 shows the location of the study area in South Africa. 
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Figure 1.1. Location of the study area in South Africa. The study area is located in 

Richmond, KwaZulu-Natal. Eucalyptus grandis plantations were sampled.  
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1.4. Outline of thesis 

Chapter 2 reviews the literature on remote sensing and plant water content. The 

use of spectral indices and the red edge region to assess plant water content is 

evaluated. Potential applications of the SumbandilaSat are summarized and the 

use of satellite remote sensing to estimate plant water content is discussed. The 

final section describes the theory behind neural networks and the integration with 

remote sensing data. Examples are given of how neural networks together with 

remote sensing data are used to estimate plant water content.  

 

Chapter 3 reviews the methods used to carry out the research. The chapter 

outlines the field spectral measurements, the plant water samplings and the 

statistical techniques used to assess the relationship between plant water content 

and reflectance. The methods used to assess the relationship between plant water 

content, the water indices and the red edge position are described. The resampling 

of the field spectra to the SumbandilaSat wavebands and the neural network 

algorithm is discussed. The final section describes the sensitivity analysis carried 

out for the SumbandilaSat wavebands.  

 

Chapter 4 outlines the results of the relationship between plant water content and 

field reflectance data and is reported in the form of a paper for publication therefore 

it has a separate results and discussion section. A comparison between the red 

edge position and the water indices in estimating plant water content is also 

discussed. 

 

Chapter 5 outlines the results of integrating field spectroscopy with neural networks 

to estimate plant water content using spectra resampled to the SumbandilaSat 

wavebands and is also reported in the form of a paper for possible publication. The 

relative importance of the SumbandilaSat wavebands in estimating plant water 

content is also described using a sensitivity analysis.  
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Chapter 6 gives a conclusion to the study. The aim and objectives of the thesis are 

reviewed in order to ascertain how close the study came in order to achieve the 

goals set. Limitations of the study are evaluated and future recommendations are 

given. 
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Chapter Two 

2. Literature Review 

 

2.1. Introduction 

Water availability is a critical factor for plant survival, development and distribution 

(Ripple, 1986). Water is one of the most valuable resources and the monitoring of 

water status has important ramifications for understanding plant stress, fire 

potential and ecosystem dynamics (Toomey and Vierling, 2005). The growth rate 

and health of plantations is largely dependent on moisture availability which is 

often limited through high evaporation (Naidoo et al., 2006). When there is high 

evaporation, an imbalance occurs between water absorption by the roots and 

water loss by transpiration (Naidoo et al., 2006) thereby causing disturbances in 

the organismic variables putting the tree at stress. Eucalyptus grandis is the most 

dominant hardwood species in South Africa and shows poor growth rate when 

there is a lack of moisture (Naidoo et al., 2006). In the context of South African 

forest plantations where water content frequently limits growth and influences wood 

properties (Naidoo et al., 2006), the measurement of water content is essential to 

detect stress and disturbance in forest plantations. Remote sensing techniques 

offer the potential to detect and monitor plant water content over large spatial 

scales. This chapter will review the techniques used in the remote sensing of plant 

water estimation. 

 

2.2. Remote sensing and plant water content 

According to Ripple (1986) traditional techniques for accurate ground based 

evaluation of plant water measurements are time consuming, costly and spatially 

restrictive. Ceccato et al., (2001) states that the most practical and cost effective 

way to monitor vegetation from a local to global scale is to use earth observation 

technologies such as satellites. Satellites provide local to global coverage on a 

regular basis and also provide information on remote areas were ground 

measurements are impossible on a regular basis (Ceccato et al., 2001). Different 
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sensors are onboard earth observation satellites and may be used to monitor 

vegetation water content. However even with airborne multispectral scanners; 

remote sensing data collection is limited to a specified and finite number of spectral 

bands. Multi-spectral systems commonly collect data in three to six spectral bands 

from the visible and near infrared region of the electromagnetic spectrum 

(Govender et al., 2007). Due to the restricted number of spectral bands, satellite 

data have provided relatively poor spatial, spectral and temporal resolutions for 

measuring physiological characteristics such as plant water content (Treitz and 

Howarth, 1999). However, over the past two decades, advances in sensor 

technology have overcome the limitations of multi-spectral systems, with the 

development of hyperspectral sensor technologies. Hyperspectral refers to spectra 

consisting of a large number of very narrow bands in the electromagnetic spectrum 

and is also referred to as spectroscopy or spectrometry (Mutanga, 2004). 

Spectrometers are the instruments used to measure reflectance of natural surfaces 

and are used in various remote sensing applications. 

 

Hyperspectral data consists of many, very narrow contiguous spectral bands 

throughout the visible, near-infrared, mid-infrared and thermal infrared portions of 

the electromagnetic spectrum. These very narrow, contiguous spectral bands allow 

for in-depth examination of earth surface features which would be lost with other 

coarse multispectral scanners (Govender et al., 2007). This development in 

spectroscopy provides the potential to detect manifestations in vegetation health 

such as stress and assess physiological characteristics including plant water 

content (Treitz and Howarth, 1999). Over the last twenty years spectroscopy has 

played a key role in understanding energy interactions from fine scale 

measurements such as leaves to coarser canopy based studies (Milton et al., 

2007). Internationally a number of studies have used laboratory and field 

spectroscopy to assess plant water content with the view of up-scaling it to 

airborne remote sensing (Datt, 1999; Liu et al., 2004; Ripple, 1986). Various water 

absorption bands and water indices have been developed from the 
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electromagnetic spectrum in order to estimate plant water content. The next 

section will describe the reflectance properties that occur within the 

electromagnetic spectrum and its associated relationship with plant water content. 

 

2.3. Plant water content and reflectance properties  

Water strongly absorbs radiant energy throughout the mid-infrared region (1300 -

2500 nm) of the electromagnetic spectrum with strong absorption bands centered 

on 1450, 1940 and 2500 nm; and weak absorption bands located in the near-

infrared region (750-1300 nm) (Carter, 1991; Datt, 1999). Numerous correlations 

between spectral bands and bands related to water content have been developed 

to estimate plant water content.  However in order to estimate plant water content 

using spectral reflectance data, there needs to be an understanding of how 

reflectance data is influenced by plant water content. According to Carter (1991) 

water has several primary and secondary effects which influence the spectral 

reflectance of leaves. The absorption of radiation by water within the 400-2500 nm 

causes leaf reflectance to decrease and this is an important primary effect that 

water has on reflectance. Other primary effects include multiple scattering by water 

molecules in leaves referred to as ray-leigh scattering or scattering of small 

particles (Carter, 1991; Gates et al., 1965). Ray-leigh scattering of water molecules 

however does not have a significant effect on the spectral reflectance of leaves 

due to the short path-length within leaves (Carter, 1991). Secondary effects of 

water content on the spectral reflectance of leaves are influenced by the 

transmissive properties of water. This occurs when water is absorbed by other 

substances such as pigments and depends on leaf internal structure, cell size and 

cell shape. Together with this, wavelength independent processes such as multiple 

reflections occur within leaves and hence influence the spectral reflectance of 

leaves (Carter, 1991). As water is lost from leaves the intercellular air spaces begin 

to increase thereby increasing the intensity of multiple reflections within leaves. 

These wave-optical processes partially explain how water loss in leaves increases 

reflectance in the water absorption bands and throughout the 400-2500 nm 
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spectrum (Carter, 1991). Using these water absorption bands and the reflectance 

properties of leaves, various techniques and indices have been developed to 

estimate plant water content (Hunt and Rock, 1989; Stimson et al., 2005). The 

following section will describe the water indices used for plant water estimation. 

 

2.4. Spectral indices and plant water estimation 

Due to water absorbing radiant energy throughout the mid-infrared region (1300-

2500 nm) of the electromagnetic spectrum, a number of indices have been 

developed for the estimation of water content. Water indices use reflectance 

measurements in the near-infrared and shortwave infrared regions to take 

advantage of known absorption features to estimate water content.  Penuelas et 

al., (1993) developed the water band index (WI) which is based on the ratio 

between the water band 970 nm and reflectance at 900 nm. The WI is a 

reflectance measurement that is sensitive to changes in canopy water status. The 

WI together with the first derivative minimum reflectance spectra in the 950-970 nm 

region was found to be strongly correlated with relative water content. Penuelas et 

al., (1993) states that reflectance in the 950-970 nm region is an important 

indicator of plant water status at ground level.  

 

Hunt and Rock (1989) developed the moisture stress index (MSI) which is the ratio 

of the Landsat Thematic Mapper (TM) satellite bands 5 to 4 (1550-1750 and 760-

900 nm). The MSI is a reflectance measurement that is sensitive to changes in leaf 

water content. As leaf water content increases the absorption around 1599 nm 

increases and this is sensitive to changes in moisture stress (Hunt and Rock, 

1989). Datt (1999) used the MSI to estimate plant water content in Eucalyptus 

leaves. The MSI was most sensitive to equivalent water thickness (EWT) 

compared to other water indices tested and yielded a significant correlation of r = 

0.67. The EWT refers to the ratio between the quantity of water and the leaf area 

and is used for plant water estimation (Ceccato et al., 2001). 
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Gao (1996) developed the normalized difference water index (NDWI). The NDWI is 

an index that is sensitive to changes in canopy water content and uses reflectance 

at 857 and 1241 nm. Reflectance at 857 and 1241 nm are similar but have slightly 

different liquid water absorption properties. Due to the scattering of light by 

vegetation the water absorption band at 1241 nm is enhanced and thus becomes 

useful for detecting changes in plant water status (Gao, 1996). The NDWI is used 

to predict water stress in canopies and assesses plant productivity (Gao, 1996). 

 

Datt (1999) measured water content in several Eucalyptus species and developed 

two new semi-empirical indices for the estimation of plant water content. These 

new water indices are least sensitive to radiation scatter and possess advantages 

over other commonly used empirical indices such as simple ratios or normalized 

band ratios (Datt, 1999). The indices showed significantly stronger correlations with 

equivalent water thickness, compared to all other indices tested and yielded 

correlation coefficients of 0.78 and 0.76 respectively. Datt (1999) states that these 

indices are therefore proposed for the remote sensing of vegetation water content 

in all types of plants. 

 

Vegetation indices play an important role in the estimation of plant water content 

and rely mainly on empirical methods (Colombo et al., 2008). However, the remote 

sensing of plant water content is difficult because the absorption bands sensitive to 

water content are also affected by atmospheric vapour and they sometimes mask 

the absorption bands used for water estimation. A method using non-water 

absorption bands but with minimum atmospheric interference such as the red edge 

position would be valuable in estimating plant water content. The red edge which is 

a non-water absorption band has been proposed for plant water estimation (Liu et 

al., 2004) but has not been used widely. The next section will discuss the red edge 

position and its relationship with plant water content.  
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2.5. Red edge and plant water estimation 

According to Liu et al., (2004) the red edge can be used as a stable spectral 

parameter to estimate plant water content, but has not been utilized widely for plant 

water estimation. The red edge position is the point of maximum slope in 

vegetation reflectance spectra that occurs between 690-720 nm (Filella and 

Penuelas, 1994; Horler et al., 1983). It is characterized by low red chlorophyll 

reflectance to high reflectance around 800 nm associated with leaf internal 

structure and water content (Cho and Skidmore, 2006; Schmidt, 2003). Since the 

red edge is a wide feature of approximately 30 nm it is quantified by a single value 

known as the inflection point. The inflection point is the point of maximum slope on 

the infrared curve (Schmidt, 2003).  For an accurate determination of the red edge 

inflection point a large number of very narrow bands are required. This is possible 

with hyperspectral data as the derivative spectra give an accurate position of the 

inflection point. A first derivative transformation of the reflectance spectrum 

calculates the slope values from the reflectance and can be derived from the 

following equation (Dawson and Curran, 1998): 

 

λλλλ ∆−= + /)( )()1()( jji RRFDS                                         (2.1) 

 

Where FDS is the first derivative reflectance at a wavelength i midpoint between 

wavebands j and j+1. Rλ(j) is the reflectance at the j waveband, Rλ(j+1) is the 

reflectance at the j+1 waveband and ∆λ is the difference in wavelengths between j 

and j+1.  

 

When hyperspectral data is unavailable the red edge position can be calculated 

using the linear four-point interpolation method developed by Guyot and Barett 

(1988). This method assumes that the reflectance curve at the red edge can be 

simplified into a straight line centered near the midpoint between the reflectance in 

the NIR at about 780 nm and the reflectance minimum of the chlorophyll absorption 

feature at about 670 nm (Cho and Skidmore, 2006). The linear four-point 
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interpolation method uses four wavebands (670, 700, 740 and 780 nm), and the 

red edge position is determined using a two-step calculation procedure. The 

reflectance at the inflection point (Rre) is calculated by the following equation (Guyot 

and Barett, 1988): 

 

2/)()( 780670 RRRre +=                                                (2.2) 

 

The red edge position is then calculated using the following equation: 

 

)]/()[40700 700740700 RRRRrere −−+=λ                                 (2.3) 

 

700 and 40 are constants resulting from interpolation in the 700-740 nm intervals 

and R is the reflectance. 

 

The first derivative reflectance and the linear four-point interpolation method are 

techniques developed to extract the red edge position from hyperspectral data. Liu 

et al., (2004) correlated plant water content with the red edge in six different growth 

stages of wheat plants and got correlation coefficients between 0.62 to 0.72 at the 

0.999 confidence level. The results were more reliable than the WI and the NDWI. 

Similar results were reported by Stimson et al., (2005) who correlated foliar water 

content with the red edge position in Pinus edulis  trees and got significant 

correlations of r2 = 0.45 and r2 = 0.65 respectively. In South Africa the red edge 

position has not been tested for plant water estimation and has not been compared 

to the available water indices to the best of the author’s awareness. The red edge 

position has been used to estimate biochemical constituents such as foliar nitrogen 

concentration in the Kruger National Park (KNP), South Africa (Mutanga and 

Skidmore, 2007) however there is a lack of work on the relationship between plant 

water content and the red edge.  The relationship between plant water content and 

the red edge position has thus not been well established in South African forest 

plantations under different environments and conditions. The next section will 
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discuss the up-scaling of hyperspectral data to airborne and satellite remote 

sensing of plant water content. 

 

2.6. Satellite remote sensing of plant water content 

Internationally a number of studies have used laboratory and field spectroscopy to 

assess plant water content with the view of up-scaling it to airborne and satellite 

remote sensing (Datt, 1999; Liu et al., 2004; Ripple, 1986). The measurement of 

plant water content at laboratory and field level has been carried out using very 

high resolution spectrometers such as the ASD spectrometer with spectral 

sampling intervals of less than 2 nm (Liu et al., 2004; Stimson et al., 2005). 

However current operational airborne and spaceborne sensors have a much 

coarser resolution compared to that of field spectrometers. If the currently available 

spaceborne sensors can be related to plant water content through resampling 

spectra from spectrometers, then the measurement of foliar moisture content in 

plantation forests could be operational on satellite platforms.  

 

The up-scaling of field spectroscopy has played an important role for the calibration 

of aircraft and satellite sensors and provides users with greater confidence in 

measurements from earth orbiting sensors (Milton et al., 2007). Internationally a 

number of studies have measured water content using satellite remote sensing 

(Jackson et al., 2004; Toomey and Vierling, 2005; Yilmaz et al., 2008). Toomey 

and Vierlang (2005) used Landsat TM and Advanced Spaceborne Thermal 

Emission and Reflectance Radiometer (ASTER) satellite data to quantify foliar 

moisture content in Pinus plantations. The Landsat satellite data demonstrated 

stronger correlations with foliar moisture content (r2= 0.67) compared to the 

ASTER data. Similarly Yilmaz et al., (2008) used ASTER and Landsat TM satellite 

data to assess the relationship between equivalent water thickness and the 

normalized difference infrared index (NDII). The NDII was significantly correlated 

with EWT and yielded an r2= 0.85. Satellite remote sensing has therefore been 

applied internationally to quantify plant water content. 
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Within the South African context, the, SumbandilaSat is scheduled to be launched 

in the near future. The SumbandilaSat has 6 wavebands with a swath width of 

approximately 40 km and a ground sampling distance (resolution) of 6.5 metres 

(Scholes and Annamalai, 2006). The SumbandilaSat is a high resolution multi-

spectral earth observation satellite with six spectral bands. The satellite has an off-

nadir viewing capability with a viewing area of about 530 km in diameter (Figure 

2.1). Using this off-nadir viewing capability, any point in South Africa can be 

revisited within 5 days. The principle will be to image during daytime passes and 

download during night time passes so data will be available within 12 hours at the 

download station (SunSpace, 2006). 

 

 

Figure 2.1. Example of SumbandilaSat coverage for image acquisition (SunSpace, 

2006). 
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The SumbandilaSat is a high resolution multi-spectral earth observation satellite 

with six spectral bands. The spectral content of each band is explained in Table 

2.1.  

 

Table 2.1. SumbandilaSat wavebands and potential applications (van Aardt, 2007). 

Wavelength Range Intended Application 

440-510 nm (blue) Water bodies, soil/vegetation, 

deciduous/coniferous. 

520-540 nm (xanthophyll) Silt in water and deforested lands, urban 

areas. 

520-590 nm (green) Green reflectance peak for plant vigour. 

620-680 nm (red) Chlorophyll absorption, roads, bare soil. 

690-730 nm (red-edge) Plant Stress. 

840-890 (near-infrared) Plant-biomass estimates, water bodies, 

vegetation. 

 

In South Africa, not much work has been done on the remote sensing of plant 

water content in forest plantations. There should be an increased interest in using 

high spectral resolution imagery for plant water estimation due to the future 

availability of hyperspectral sensors in South Africa. According to Scholes and 

Annamalai (2006) it is envisaged that after the launch of the SumbandilaSat, ZA 

Sat-003 which is yet to be named will be launched. ZA Sat-003 will carry a full 

multisensor microsatellite imager (MSMI) instrument as well as a hyperspectral 

sensor with a 14.9 km swath and 14.5 m ground sampling distance. This 

hyperspectral sensor will slice the spectrum between 400 nm and 2350 nm into 

200 bands, each 10 nm wide. With the future availability of hyperspectral imagery 

in South Africa, the question that arises is whether there can be any successful 

estimate of plant water content. 
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Therefore the field reflectance data in this study will be resampled to the 

SumbandilaSat band settings to assess the potential of the SumbandilaSat 

wavebands in estimating plant water content, a study which has not been done 

before. However, according to Mutanga and Kumar (2007) the extension of field 

spectral data to airborne and satellite remote sensing has been constrained by the 

use of linear models, such as regression models, which ignores non-linearity in a 

dataset. Neural networks are used in conjunction with remote sensing data due to 

its ability to model non-linear behaviour in a dataset and its ability to reduce error. 

The next section will outline neural networks and its use in remote sensing studies. 

 

2.7. Neural networks and remote sensing  

Due to hyperspectral laboratory and field data having a large number of narrow 

bands, there is an increase in the size and amount of data. Whilst this data is 

essential for many environmental issues, they also pose challenges of data 

processing and interpretation (Atkinson and Tatnall, 1997). Furthermore, other 

traditional linear and non-linear techniques such as stepwise regression do not 

take into account non-linearity in a data set. Neural networks are a more powerful 

method of estimation compared to traditional linear and non-linear techniques 

(Jiang et al., 2004). Neural networks employ a non-linear response function that 

iterates many times in a neural network structure to learn the complex relationship 

between input and output training data (Jiang et al., 2004). In this context many 

researchers have applied neural networks to a variety of remote sensing 

applications (Mutanga and Skidmore, 2004; Trombetti et al., 2008).  

 

A neural network is defined as a mathematical model of brain activity and has been 

motivated by the realization that the human brain is very efficient in processing vast 

quantities of data from various sources (Atkinson and Tatnall, 1997; Sunar Erbek 

et al., 2004). A neural network is composed of a large number of highly 

interconnected processing elements working in union to solve problems through a 

learning process (Sunar Erbek et al., 2004). The use of neural networks in remote 
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sensing is mainly due to their wide ability to incorporate different types of data from 

different sensors as well as ancillary data for analysis (Benediktsson and 

Sveinsson, 1997). Neural networks perform more accurately than other statistical 

classifiers and they perform better than other traditional multiple regression 

analysis (Mutanga and Skidmore, 2004). 

 

One of the most common neural networks used in remote sensing is the multi-layer 

perceptron (MLP) which is a feedfoward neural network. Networks that have a 

single direction of information movement are known as feed-forward neural 

networks, and a neural network that has multiple directions of information flow are 

known as recurrent neural networks (Murphy et al., 2003). In a MLP there are three 

types of layers which consist of nodes that are fully interconnected to each other. 

These layers are known as the input, hidden and output layers (Kavzoglu and 

Mather, 2003). A MLP (Figure 2.2) usually compromises one input layer, one or 

two hidden layers and an output layer. 

 

 

Figure 2.2. A four layer interconnected feed-forward neural network (Kavzoglu and 

Mather, 2003). 

 

The input layer nodes corresponds to individual data sources such as bands of 

imagery, the hidden layers are used for computations, and the output layer 

includes a set of codes to represent the classes (Kavzoglu and Mather, 2003). A 

neural network also consists of a number of interconnected nodes which are 
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equivalent to biological neurons. These nodes act as connectors and respond to 

weighted inputs they receive from other nodes within the network (Atkinson and 

Tatnall, 1997). Because information about the classes is known, the model is 

‘taught’ to the network. One of the most common teaching methods is the 

‘backpropagation learning algorithm’ (Kavzoglu and Mather, 2003). 

Backpropagation is a learning technique that aids in the accuracy of the model.  

According to Kavzoglu and Mather (2003) backpropagation works in two stages. 

 

Stage 1: weights are randomly put through the network and are propagated 

forward to estimate the value for each training set (Kavzoglu and Mather, 2003). 

 

Stage 2: the difference in error between the known and estimated output values 

are sent back through the network and the weights are changed to reduce error. 

The whole process is repeated and the weights are recalculated at every iteration 

until the error is minimal (Kavzoglu and Mather, 2003). 

 

Many studies have used backpropagation neural networks in remote sensing to 

estimate vegetation biophysical characteristics (Mutanga and Kumar, 2007; 

Mutanga and Skidmore, 2004; Trombetti et al., 2008). Mutanga and Skidmore 

(2004) integrated imaging spectrometry and neural networks to map nitrogen 

concentration in an African savanna rangeland. The integrated approach using 

neural networks and spectrometry explained 60% of variation in nitrogen 

concentration compared to 38% explained by a multiple linear regression. The 

study demonstrated the potential of spectrometry and neural networks to estimate 

physiological characteristics of vegetation. Trombetti et al.,  (2008) applied a neural 

network to MODIS satellite data to retrieve vegetation canopy water content. The 

neural network algorithm showed good performance across different vegetation 

types with high correlation coefficients. The neural network approach outperformed 

a multiple linear regression approach which was applied to estimate canopy water 

content. The high correlations suggest that neural networks provide a basis for 
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multi-temporal assessments of canopy water content (Trombetti et al., 2008). 

Neural networks have been used concurrently with remote sensing data to 

estimate plant biophysical parameters including water content. In this study the 

field spectra will be resampled to the SumbandilaSat and will be input into a neural 

network to test the potential for estimating plant water content using satellite 

remote sensing. 

 

2.8. Lessons learnt from the review 

Water availability is essential for plant survival, development and distribution and 

the monitoring of plant water content has important ramifications for understanding 

plant stress and disturbance to forest plantations. Internationally, laboratory and 

field spectroscopy have measured water content using spectral indices. However 

within South Africa, the relationship between plant water content and field 

reflectance data is lacking. New techniques such as linking the red edge position to 

water content and comparing this to the available water indices has not been done 

in forest plantations. Furthermore with the launch of the SumbandilaSat in the near 

future, it is essential to test the potential of the SumbandilaSat in estimating plant 

water content by resampling the spectra to simulate the SumbandilaSat 

wavebands. However the successful extension of field spectral data to satellite 

remote sensing has been confounded by the use of linear models such as 

stepwise regression which does not take into account non-linearity in a dataset 

(Mutanga and Kumar, 2007). Neural networks have the ability to model non-

linearity in a dataset and can incorporate data from different types of sensors. By 

inputting field spectral data into a neural network, non-linearity in a dataset is 

accounted for and neural networks are a more powerful method of estimation 

compared to the traditional linear techniques.  
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2.9. Conclusion 

Plant water content is critical for plant survival, development and distribution 

(Ripple, 1986). The monitoring of plant water content is essential to assess stress 

and disturbance to forest plantations. With the advances in laboratory and field 

spectroscopy, plant water content can be quantitatively measured using suitable 

remote sensing techniques. The ability to assess plant water content using high 

spectral resolution data is a major goal for remote sensing research. In general this 

review has illustrated the ability of field spectroscopy, neural networks and satellite 

remote sensing in estimating plant water content in forest plantations.  
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Chapter Three 

3. Methods 

 

3.1. Introduction 

This chapter will outline the methods and techniques used to assess the 

relationship between plant water content and field reflectance data in the 

Eucalyptus grandis forest stands of KwaZulu-Natal, South Africa. 

 

3.2. Experimental setup 

During July 2007, field reflectance measurements were taken at Eucalyptus 

grandis plantations (centroid 300 29’S 290 82’E) in Richmond, KwaZulu-Natal, 

South Africa. A total of 50 Eucalyptus grandis trees were selected for 

measurements. The sampling scheme was designed to cover a wide variation in 

leaf type and water content. Purposively selected sampling was done based on 

sunlit portions of the forests and on terrain that supported the cherry picker. Leaf 

samples were obtained using a cherry picker and leaves were picked from sunlit 

parts of the canopy (Figure 3.1). The leaves were stacked 5 layers together for 

reflectance measurements. After field reflectance measurements were taken, the 

leaf samples were stored over ice in a portable refrigeration unit to keep them fresh 

and were immediately taken to the laboratory for water content measurements. 

        

Figure 3.1. Cherry picker used to access leaf samples. 
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3.3. Field reflectance measurements 

Leaf spectral measurements were taken using an ASD spectrometer (Fieldspec3 

Pro FR) fitted with a 250 field of view bare fibre optic. The ASD field spectrometer 

senses in the spectral range of 350-2500 nm at a sampling interval of 1.4-2.0 nm 

and has a resampled bandwidth of 1 nm (Analytical Spectral Devices, 2002). 

Radiance measurements were converted to target reflectance using a calibrated 

white spectralon panel on the leaf clip (Figure 3.2). Reflectance measurements 

were taken by averaging 10 scans with a dark current correction at every spectral 

measurement.  

 

Figure 3.2. Leaf spectral measurement 

 

3.4. Plant water content sampling 

Plant water samplings were taken almost synchronously after spectral 

measurements. The leaf samples were stored over ice in a portable refrigeration 

unit and were immediately taken to the laboratory for water measurements. The 

leaf samples were weighed fresh (fresh weight, FW) and then dried in an oven for 

approximately 24 hours at 70oC. The leaf samples were then weighed again after 

drying (dry weight, DW). Plant water content (PWC) was calculated after Liu et al., 

(2004):  

 

%100*/)( FWDWFWPWC −=                                      (3.1) 
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In the beginning of the study 25 samples were collected and were used for analysis 

with the reflectance data. In order to carry out the neural networks experiment 25 

more samples were taken, increasing the sample size to 50 thereby making the 

neural network experiment more viable. The 50 plant water measurements were 

then used for analysis with the field reflectance data.  

 

3.5. Relationship between plant water content and field reflectance 

To assess the relationship between plant water content and reflectance the 

Pearson correlation coefficient r was calculated for all wavelengths in the range 

350-2500 nm for the field reflectance and the first derivative reflectance. The first 

derivative reflectance was calculated after (Dawson and Curran, 1998): 

 

λλλλ ∆−= + /)( )()1()( jji RRFDS                                         (3.2) 

 

Where FDS is the first derivative reflectance at a wavelength i midpoint between 

wavebands j and j+1. Rλ(j) is the reflectance at the j waveband, Rλ(j+1) is the 

reflectance at the j+1 waveband and ∆λ is the difference in wavelengths between j 

and j+1. 

 

The correlation coefficients for the field and first derivative reflectance were then 

plotted as correlograms. The wavelength regions of statistically significant 

correlation (p < 0.05), were then evaluated. 

 

3.6. Estimating plant water content from reflectance indices  

In order to ascertain the relationship between plant water content and reflectance 

indices, bootstrapping correlation was executed on 6 water indices. Bootstrapping 

is a general technique for estimating sampling distributions, standard errors and 

confidence intervals for any statistic and is the most common method for indicating 

statistical accuracy (Efron, 1982; Mutanga and Skidmore, 2007). Bootstrapping 

simulates the sampling distribution of any statistic by treating the observed data as 
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if it was the entire statistical population under study. On each replication a random 

sample size of N is selected with replacement from the available data (Efron, 1982; 

Mutanga and Skidmore, 2007). The statistic of interest which is the correlation 

coefficient is calculated on the bootstrapped sub-sample and recorded. The 

process is repeated several times in order to obtain the sampling distribution. 

According to Mutanga and Skidmore (2007) bootstrapping facilitates accuracy 

assessment using the same dataset. Six spectral indices were calculated from the 

field reflectance data and were correlated against the plant water content 

measurements. The six spectral indices are listed below: 

 

Moisture Stress Index (MSI) 

The MSI is a reflectance measurement that is sensitive to changes in leaf water 

content. The MSI was calculated according to Hunt and Rock (1989) using single 

wavelength reflectances in these 2 regions:  

 

819/1599 RRMSI =                                                (3.3) 

 

Where, R represents the reflectance at the indicated wavelengths. 

 

Water Index (WI) 

Penuelas et al., (1993) developed the water band index which is based on the ratio 

between the water band 970 nm and reflectance at 900 nm. The WI is a 

reflectance measurement that is sensitive to changes in canopy water status. The 

WI was calculated according to Penuelas et al.,(1993): 

 

970/900 RRWI =                                                   (3.4) 
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Normalized Difference Water Index (NDWI) 

The NDWI is used to predict water stress in canopies and assess plant productivity 

(Gao, 1996). The NDWI was calculated according to Gao (1996): 

 

)1240860/()1240860( RRRRNDWI +−=                                 (3.5) 

 

Normalized Difference Vegetation Index (NDVI) 

The NDVI was calculated according to Stimson et al., (2005): 

 

)690860/()690860( RRRRNDVI +−=                                 (3.6) 

 

Although the NDVI is not an index of plant water content, it is the most common 

vegetation index and was merely used for comparison with the other indices. 

 

Datt (1999) developed 2 new indices for the estimation of plant water content. 

These indices in the thesis will be referred to as Reflectance I (RI) and Reflectance 

II (RII). These new water indices are least sensitive to radiation scatter and 

possess advantages over other commonly used empirical indices such as simple 

ratios or normalized band ratios (Datt, 1999). 

 

Reflectance I (RI):  

 

)1928850/()2218850( RRRRRI −−=                                 (3.7) 

 

Reflectance II (RII):  

 

)1928850/()1788850( RRRRRII −−=                                  (3.8) 
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Bootstrapping correlation was performed on the six water indices to assess their 

effectiveness in estimating plant water content.  

 

3.7. Estimating plant water content from the red edge position 

The red edge position was calculated using the first derivative spectra (FDS) 

(Dawson and Curran, 1998) and the linear four-point interpolation method 

developed by Guyot and Baret (1988). This was done to compare the two 

techniques used for extracting the red edge position and their associated 

relationship with plant water content. 

 

The first derivative reflectance was calculated between wavelengths 690 – 720 nm. 

A first derivative transformation of the reflectance spectrum calculates the slope 

values from the reflectance and was calculated from equation 3.2 on page 27. 

                                        

The linear four-point interpolation method was also used to calculate the red edge 

position (Guyot and Barett, 1988). The linear four-point interpolation method 

assumes that reflectance at the red edge can be simplified into a straight line 

centered on a midpoint between the reflectance in the NIR at 780 nm and 

reflectance at 670 nm (Mutanga and Skidmore, 2004). Reflectance measurements 

at 670 nm and 780 nm were used to estimate the inflection point reflectance 

(equation 3.9) and a linear interpolation procedure was applied between 700 nm 

and 740 nm to estimate the wavelength of the inflection point (equation 3.10).The 

reflectance value at the inflection point (Rre) was calculated as: 

 

2/)()( 780670 RRRre +=                                                (3.9) 

 

The red edge position was calculated as: 

 

)]/()[40700 700740700 RRRRrere −−+=λ                                 (3.10) 
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Where R670, R700, R740 and R780 are the reflectance values at 670, 700, 740, and 780 

nm respectively. The value 700 refers to the wavelength position belonging to R700. 

The value 40 refers to the wavelength interval between 700 nm and 740 nm.  

 

In order to ascertain the relationship between plant water content and the red edge 

positions bootstrapped correlations were performed on the 2 red edge techniques. 

The bootstrapping technique is designed to compute statistics so that an 

appropriate sample size can be established (Gomez-Buckley et al., 1999). The 

strength of the bootstrapping technique is sampling with replacement from the 

available dataset. The bootstrapping technique enhances statistical significance 

testing to help determine the replicability of the results and facilitates accuracy 

assessment using the same dataset (Higgins, 2005; Mutanga and Skidmore, 

2007). 

 

3.8. Resampling the spectra to the SumbandilaSat 

The field reflectance measurements were then resampled to the SumbandilaSat 

wavebands to simulate the reflectance and assess the potential of the satellite in 

estimating plant water content. This study was the first attempt to predict plant 

water content in Eucalyptus grandis forest stands using field spectra resampled to 

the SumbandilaSat band settings. The resampling of the field spectra was done 

using the ENVI (Environment for visualizing images, Research Systems, Inc.) 

software. The method uses a gaussian model with a full width at half maximum 

(FWHM) equal to the band spacings provided. The FWHM method is a simple and 

well defined number which is used to compare the quality of images under different 

resolutions. The technique uses the field spectral data from the ASD spectrometer 

and resamples it to the spectral width of the SumbandilaSat band settings. The 50 

plant water measurements were then correlated with the resampled 

SumbandilaSat wavebands to assess the relationship with plant water content. 

Following this, the resampled SumbandilaSat wavebands were then input into a 

neural network algorithm to test its potential in estimating plant water content. 
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3.9. The neural network algorithm 

An artificial neural network was used to estimate plant water content. A neural 

network is composed of a large number of highly interconnected processing 

elements working in union to solve problems through a learning process (Sunar 

Erbek et al., 2004). Neural networks perform more accurately than other statistical 

classifiers and they perform better than other traditional multiple regression 

analysis (Mutanga and Skidmore, 2004). A multiple layer perceptron neural 

network was applied in this study as it has the ability to learn to weight significant 

variables and ignore less important ones.  

 

A back-propagation algorithm was used in a three layer network which consists of 

an input, hidden and output layer (Figure 3.3). The algorithm was chosen due to its 

frequent use in remote sensing studies and the ability to minimize error. The back-

propagation algorithm is designed to minimize the root mean square error (RMSE) 

between the actual output of a multiple layer perceptron and the desired output 

(Mutanga and Skidmore, 2004). Figure 3.3 shows the neural network structure that 

was used to predict plant water content (PWC) using the SumbandilaSat 

wavebands. 
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Figure 3.3. The neural network structure. The input layer (oi) consists of the 

SumbandilaSat wavebands. The inputs are connected to hidden nodes (oj), which 

are in turn connected to the output layer, which is the PWC (ok). Wji and Wkj refer 

to the weights between the input and hidden nodes, and between the hidden nodes 

and the output layer. 

 

The back-propagation algorithm comprises a forward and a backward phase 

through the neural network. The forward phase occurs whereby the input values 

which are the SumbandilaSat bands (oi) are presented to a node and are multiplied 

by a weight factor (wji) (Skidmore et al., 1997). The products are then summed at 

the hidden nodes (oj) to create a value zj for the jth layer. The following description 

is after Skidmore et al., (1997): 

 

∑=

j

OiWjiZj *                                                 (3.11) 

 

For a three layer network with the layers i, j, k and k being the output layer zk may 

be calculated as equation 3.11. Non-linearity is added to the network when the 
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value zj is passed through a sigmoidal activation function for each node. The 

output of this function is defined as: 

 

oj
j

z
e

O
θ

θ )(
1

1

+−
+

=                                                     (3.12) 

 

Where zj is defined from equation (3.11), θ  is a threshold or bias and 0θ is a 

constant (Skidmore et al., 1997). 

 

The forward phase stops once the output values that is PWC (ok) is calculated for 

each output node. The second phase involves the back-propagation whereby the 

output node values are compared with the target values (measured PWC) and 

involves training of the network. The difference between the target (measured 

PWC) and calculated output values is referred to as error. This whole process 

whereby error is calculated represents one epoch of the back-propagation 

algorithm. Back-propagation of the error is achieved by changing the weights of 

each node during training. The whole process is repeated and the weights are 

recalculated at every iteration until the error is minimal.  

 

The total dataset was randomly divided into two groups, one subset for training (38 

samples) and the other subset for testing (12 samples). This was based on the ¾ 

training and ¼ testing sample criteria. This proportion is recommended in literature 

since it gives more weight to data for model building (Mutanga and Rugege, 2006). 

The training process was run 5 times with random initial weights (Zhang et al., 

2002). The performance of the network was tested by changing the number of 

hidden nodes in the neural network. The neural network that yielded the highest 

correlation coefficient as well as the lowest RMSE on the independent test data set 

was then selected. The RMSE was calculated according to Siska and Hung (2001): 
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n

SSE
RMSE

2

=                                                   (3.13) 

 

Where SSE is the sum of errors (observed – predicted values) and n is the number 

of samples.  

 

The utility of the neural network approach in predicting PWC was also compared 

with that of a stepwise multiple regression using the same training data (38 

samples) and test data (12 samples). The performance of the stepwise multiple 

regression was assessed using the correlation coefficient as well as the RMSE.  

 

3.10. Sensitivity analysis and the relative importance of the SumbandilaSat 

wavebands 

A sensitivity analysis was carried out in order to assess the importance of the 

individual SumbandilaSat wavebands in estimating plant water content. A 

sensitivity analysis indicates which input variables (SumbandilaSat wavebands) of 

the neural network are most important and identifies wavebands that can be 

ignored for subsequent analysis. The results are explained in terms of ranked 

ratios with significant bands having higher ratios indicating the importance of that 

particular waveband in the neural network structure.  

 

The results from this study will be described and discussed in the following 

chapters. 

 

 

 

 

 

 



 36 

Chapter Four 

4. Field spectroscopy of plant water content in Eucalyptus grandis 

plantations: A comparison between water indices and the red 

edge position 

 

4.1. Overview 

The measurement of plant water content is a major goal for ecological remote 

sensing applications (Ceccato et al., 2001; Seelig et al., 2008) and it is essential to 

detect stress and disturbance to forest plantations. Over the past few decades 

numerous studies have investigated water bands and water indices in order to 

estimate plant water content. However water indices rely mainly on empirical 

methods (Colombo et al., 2008) and the remote sensing of water content becomes 

difficult because the bands that are used for water estimation are also affected by 

atmospheric vapour. According to Liu et al., (2004) a method using non-water 

absorption bands but with minimum atmospheric interference such as the red edge 

position would be valuable in estimating plant water content. This paper evaluates 

the effectiveness of several water indices in estimating plant water content and 

compares them to the red edge position calculated from the first derivative 

reflectance and the linear four-point interpolation method. A comparison is also 

made between the field reflectance and the first derivative reflectance and their 

associated relationship with plant water content. This study was carried out in the 

Eucalyptus grandis forest stands of KwaZulu-Natal, South Africa and the results 

are described below. 

 

Spectra of the mean reflectance and ± 95 confidence limits for the samples are 

shown in Figure 4.1. Like most green vegetation spectra, the average spectrum in 

Figure 4.1 shows high reflectance in the near infrared and low reflectance in the 

visible. 
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Figure 4.1. Reflectance spectra of Eucalyptus grandis leaves. The mean, upper 95 

% confidence limit (UCL) and lower 95 % confidence limit (LCL) of the spectra are 

shown. 

 

4. 2. Estimating plant water content from field and first derivative spectra 

4.2.1. Relationship between plant water content and reflectance 

To determine how the relationship between plant water content and reflectance 

changed with wavelength, the Pearson correlation coefficient, r was calculated for 

all wavelengths in the range 350-2500 nm for the field and first derivative spectra. 

The correlograms in Figure 4.2 show the wavelengths of statistically significant 

correlation (p < 0.05) and are indicated by wavelengths that are below the dashed 

line. For the field reflectance spectra, plant water content was significantly 

correlated with the visible portion of the spectrum with correlations ranging from -

0.40 to -0.61. The first derivative spectra was significantly correlated with plant 

water content in the visible and mid-infrared regions with correlations ranging from 

-0.40 to -0.68. 



 38 

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0 500 1000 1500 2000 2500 3000

Wavelength (nm)

C
o

rr
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

565
719

(a)

 

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0 500 1000 1500 2000 2500 3000

Wavelength (nm)

C
o

rr
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

446 2261

2398
706

(b)

 

Figure 4.2. Relationship between plant water content and reflectance. (a) Field 

Reflectance (b) First derivative reflectance. Wavelengths of highly correlated peaks 

are shown. 

 

4.3. Estimating plant water content from reflectance indices 

4.3.1. Relationship between plant water content and reflectance indices 

In order to ascertain the relationship between plant water content and reflectance 

indices, bootstrapping correlation was executed on 6 water indices. Table 4.1 

shows the mean, standard errors and confidence intervals of the bootstrapped 

correlation coefficient between the 6 indices and plant water content. 
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Table 4.1. Bootstrapped correlation coefficients between plant water content and 

the six indices. A total of 200 iterations were executed for each pair. 

Indices Mean Standard Error 95% CL 

MSI 0.28** 0.0636 0.0088 

WI -0.15* 0.0788 0.0109 

NDWI -0.15* 0.0762 0.0106 

NDVI 0.41** 0.0532 0.0074 

RI -0.34** 0.0603 0.0084 

RII -0.31** 0.0629 0.0087 

**Significant: p < 0.01 *Significant: p < 0.05 

 

The NDVI which was mainly used for comparison with the other water indices 

yielded the highest bootstrapped correlation coefficient with plant water content. 

The WI and the NDWI yielded the lowest negative correlation with plant water 

content. The MSI and the 2 semi-empirical indices developed by Datt (1999) 

performed well with significant correlations at p < 0.01. Figure 4.3 shows the 

bootstrapped correlations between the 6 indices and plant water content. The 

histograms show the normal distribution correlations produced by the 

bootstrapping methodology.  The small 95 % confidence limits suggest that the 

bootstrapped correlation coefficients approach the population estimate with a high 

precision. 
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Figure 4.3. Bootstrapped correlation coefficients between plant water content and 

the six indices. A total of 200 simulations were run between plant water content 

and the six indices. 
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4.4. Estimating plant water content from the red edge position 

4.4.1. Calculating the red edge position from derivative spectra 

The red edge position was calculated using the first derivative reflectance and the 

linear four-point interpolation method developed by Guyot and Baret (1988). Figure 

4.4 shows the first derivative reflectance and the peaks that are found at the 

respective wavelengths. Previous studies have also found double peaks in the first 

derivative spectra (Boochs et al., 1990; Cho and Skidmore, 2006; Smith et al., 

2004) and this is merely a function of natural florescence emission that occurs at 

690 and 730 nm (Cho and Skidmore, 2006). The red edge positions at the peaks 

were correlated with plant water content. The positions that yielded the highest 

Pearson correlation coefficient were then selected for the subsequent 

bootstrapping analysis. Figure 4.4 shows the derivative spectra of the samples 

within the red edge region indicating the peaks and Figure 4.5 shows the mean 

derivative spectra within the red edge region. 
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Figure 4.4.  First derivative spectra and the double peaks within the red edge 

region. 
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Figure 4.5. Mean first derivative spectra of Eucalyptus grandis leaves. The mean, 

upper 95 % confidence limit (UCL) and lower 95 % confidence limit (LCL) of the 

spectra are shown. 

 

4.4.2. Relationship between plant water content and the red edge positions 

In order to ascertain the relationship between plant water content and the red edge 

positions, bootstrapped correlations were performed on the two red edge 

techniques. Table 4.2 shows the mean, standard errors and confidence intervals of 

the bootstrapped correlation coefficient between the two red edge positions and 

plant water content. 

 

Table 4.2 Bootstrapped correlation coefficients between plant water content and 

the two red edge positions. A total of 200 iterations were executed for each pair. 

Indices Mean Standard Error 95% CL 

Red Edge (FDR) 0.65** 0.0280 0.0039 

Red Edge 

(Interpolation) 

0.56** 0.0421 0.0058 

**Significant: p < 0.01 
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The red edge positions were significantly correlated with plant water content 

yielding correlations of 0.65 and 0.56 respectively. Figure 4.6 (a) and (b) shows the 

bootstrapped correlations between the two red edge positions and plant water 

content. The histograms show the normal distribution correlations produced by the 

bootstrapping methodology.   
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Figure 4.6. (a) Bootstrapped correlation coefficients between plant water content 

and the red edge position: first derivative reflectance (FDR). (b) Bootstrapped 

correlation coefficients between plant water content and the red edge position 

(Linear four-point Interpolation). 

 

4.5. Discussion 

Two main aspects are discussed in this section, (1) the relationship between plant 

water content and field reflectance, and (2) the relationship between water indices 

as compared to the red edge position in estimating plant water content.  

 

4.5.1. Relationship between plant water content and reflectance 

One of the major problems in relating plant water content to spectral reflectance is 

the variation in leaf internal structure (Datt, 1999). According to Datt (1999) 

differences in leaf internal structure and thickness cause changes in the scattering 

properties of leaves thereby producing reflectance differences that are unrelated to 
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water content. A method that suppresses the effects of differences in leaf internal 

structure and overlapping spectral features such as derivative spectroscopy has 

more potential in relating leaf reflectance to water content (Danson et al., 1992). 

From the results above plant water content was significantly correlated with field 

reflectance in the visible portion of the spectrum with highly correlated peaks at 

565 nm (r = -0.55) and 719 nm (r = -0.61). For the first derivative reflectance, plant 

water content was significantly correlated with reflectance in the visible and mid-

infrared portions of the spectrum with peaks at 446 nm (r = -0.68), 706 nm (r = -

0.59), 2261 nm (r = -0.67) and 2398 nm (r = -0.57). Similar results were reported 

by Danson et al., (1992) on the derivative reflectance with strong correlations in the 

mid-infrared regions. Danson et al., (1992) states that the first derivative of leaf 

reflectance is better at predicting leaf water status than the original reflectance 

spectrum when there is a variation in leaf internal structure. The visible and mid-

infrared portions of the spectrum are therefore proposed as suitable regions for 

plant water estimation as they were significantly correlated with plant water 

content. 

 

4.5.2. Comparison between water indices and the red edge in estimating water 

content 

Water indices use reflectance measurements in the near-infrared and short wave 

infrared regions of the electromagnetic spectrum to estimate water content. Of all 

the indices tested NDVI yielded the highest bootstrapped correlation coefficient of 

(r = 0.41). Similar results were reported by Stimson et al., (2005) whereby the 

NDVI yielded the highest correlation of r2 = 0.71 compared to the other water 

indices tested on Pinus edulis trees. The relationships with water content for the 

other indices were: MSI (r = 0.28); WI (r = -0.15,); and NDWI (r = -0.15). Datt 

(1999) reported poor correlations with the indices tested above except for the MSI 

that yielded a significant correlation of (r = 0.67). The two new semi-empirical 

indices developed by Datt (1999) for water estimation performed better than the 

other water indices tested and yielded bootstrapped correlation coefficients of:  
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RI (r = -0.34) and RII (r = -0.31). The red edge which is a non-water absorption 

band has been proposed for plant water estimation (Liu et al., 2004) but has not 

been used widely. The bootstrapped correlation coefficients for the red edge 

positions yielded higher correlations (r = 0.65) and (r = 0.56) at the 0.999 

confidence level compared to all the water indices tested. This confirms the 

capability of the red edge position in estimating plant water content. The first 

derivative reflectance technique performed better than the linear four-point 

interpolation method in estimating plant water content. This is expected in 

spectroscopy as the first derivative reflectance gives a more accurate 

determination of the red edge inflection point due to the large number of narrow 

bands found in hyperspectral data (Schmidt, 2003). The linear four-point 

interpolation method developed by Guyot and Barett (1988) is used when a large 

number of bands are not available in the red edge region and hence is calculated 

by an equation. Liu et al., (2004) reported similar results whereby the red edge 

yielded high correlations at the 0.999 confidence level and performed better than 

the WI and the NDWI.  The red edge region which is less subject to background 

effects and has minimum atmospheric interference has thus been proposed for 

plant water estimation on hyperspectral data. The results from this study indicate 

that the red edge position can be used for plant water estimation as it performed 

better than the traditional indices used for water estimation.  

 

 4.6. Conclusion 

This study had two main objectives: 1) to assess the relationship between plant 

water content and leaf reflectance and 2) to compare the effectiveness of the red 

edge position compared to the other water indices tested in estimating plant water 

content. The following conclusions can be drawn: 

 

1: the visible and mid-infrared regions of the electromagnetic spectrum were 

significantly correlated with plant water content using the first derivative 

reflectance. 
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2: the red edge position can be used as a stable spectral parameter to estimate 

plant water content as it performed better than the traditional indices used for water 

estimation. 

 

Overall the potential of spectroscopy and the red edge position in estimating plant 

water content has been confirmed by this study. Future research should investigate 

other water parameters such as relative water content, water potential and 

equivalent water thickness with the red edge region. Due to time constraints within 

this study these water parameters could not be tested.  

 

This paper assessed the relationship between plant water content and reflectance 

data using univariate correlations. However it is important to predict plant water 

content on unsampled sites using predictive models. The next chapter will 

therefore develop models based on artificial neural networks and data resampled 

to the SumbandilaSat band settings for the possible purpose of mapping water 

content in plantation forests.  
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Chapter Five 

5. Integrating field spectroscopy and neural networks to estimate 

plant water content using spectra resampled to the Sumbandila 

Satellite  

 

5.1. Overview 

The monitoring of plant water content has important ramifications for understanding 

plant stress, fire potential and ecosystem dynamics (Toomey and Vierling, 2005). 

According to Ceccato et al., (2001) the most practical and cost effective way to 

monitor plant water content from a local to global scale is to use earth observation 

technologies such as satellites. Satellites provide local to global coverage on a 

regular basis and also provide information on remote areas where ground 

measurements are impossible on a regular basis. In the context of South Africa, 

studies focusing on the estimation of plant water content using hyperspectral data 

have been limited due to the cost and availability of imagery. However it is 

envisaged that the South African satellite, Sumbandila (ZASat-002) is due for 

launch in the near future from a Russian submarine (Scholes and Annamalai, 

2006). With the future availability of satellite imagery available in South Africa, the 

question then arises: is there the potential to successfully estimate plant water 

content? This study resamples field spectral data from Eucalyptus grandis stands 

in KwaZulu-Natal, South Africa to the band settings of the SumbandilaSat in order 

to test its potential in estimating plant water content using an artificial neural 

network, a study which has not been done before. The potential of the individual 

SumbandilaSat bands in estimating plant water content will be assessed using a 

sensitivity analysis. The next section will describe the results. 
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Table 5.1. Variation in plant water content    

Variable Samples Mean 

(%) 

Minimum 

(%) 

Maximum 

(%) 

Standard 

Deviation 

Water 

Content 

50 52.03 44.72 73.19 6.55 

 

Plant water content measurements (Table 5.1) varied from 44.72 % to 73.19 % 

with an average of 52.03 %. Similar water content measurements were reported by 

Ceccato et al., (2001) at leaf level that ranged from 58.07 % to 61.31 % on four 

species in a temperate forest. The differences in the plant water measurements 

can be explained by the wide variation in leaf type and cover of Eucalyptus grandis 

leaves. Spectra of the mean reflectance and ± 95 confidence limits for the samples 

are shown in Figure 5.1.  
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Figure 5.1. Reflectance spectra of Eucalyptus grandis leaves (n = 50). The mean, 

upper 95 % confidence limit (UCL) and lower 95 % confidence limit (LCL) of the 

spectra are shown. 
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5.2. Resampling field spectra to the SumbandilaSat wavebands 

The field spectra were resampled to simulate the SumbandilaSat wavebands using 

ENVI (Environment for visualizing images, Research Systems, Inc) software. The 

method uses a gaussian model with a full width at half maximum (FWHM) equal to 

the bands spacings provided. The FWHM method is a simple and well defined 

number which is used to compare the quality of images under different resolutions. 

The technique uses the field spectral data from the ASD spectrometer and 

resamples it to the spectral band width of the SumbandilaSat band settings. Figure 

5.2 shows the mean resampled spectra of the SumbandilaSat wavebands. 
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Figure 5.2. Mean resampled spectra of the SumbandilaSat wavebands. The mean, 

upper 95 % confidence limit (UCL) and lower 95 % confidence limit (LCL) of the 

spectra are shown. 

 

5.3. Relationship between SumbandilaSat wavebands and plant water 

content 

The 50 plant water measurements were correlated with the resampled 

SumbandilaSat wavebands. Table 5.2 shows the correlation coefficients of the 

SumbandilaSat wavebands with plant water content. None of the SumbandilaSat 

wavebands were significantly correlated with the plant water content 
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measurements. The xanthophyll waveband yielded the highest correlation of 0.24 

and the red edge yielded the lowest correlation of 0.03.  

 

Table 5.2. SumbandilaSat relationship with plant water content 

SumbandilaSat Wavebands Correlation Coefficient (r)  

Blue 0.15 

Xanthophyll 0.24 

Green 0.21 

Red 0.16 

Red Edge 0.03 

Near-infrared -0.22 

 

Due to the limited number of wavebands on the SumbandilaSat, water indices 

could not be calculated as the bands used for water estimation are unavailable. 

The NDVI which is mainly used to assess vegetation cover was calculated and 

yielded a Pearson correlation coefficient of -0.31. In comparison with the 

hyperspectral data the NDVI yielded a significant correlation of 0.41 at the 0.999 

confidence interval. The resampled SumbandilaSat wavebands were then put into 

a neural network to test its potential in estimating plant water content.  

 

5.4. Parameters of the neural network 

The six SumbandilaSat wavebands were input into a neural network to test its 

potential in estimating plant water content. The total dataset was randomly divided 

into two groups, one subset for training (38 samples) and the other subset for 

testing (12 samples). The effect of increasing the number of nodes on the 

performance of the neural network was tested. According to Atkinson and Tatnall 

(1997) the larger the number of nodes in the hidden layer, the better the neural 

network’s ability to  represent the training data, however at the expense of the 

ability to generalize. Figure 5.3 shows that as the number of nodes increase the 

correlation coefficient increases for both the training and test dataset. However 
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once the number of hidden nodes reached six the correlation coefficient for both 

the training and test dataset began to decline. 
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Figure 5.3. Number of nodes versus correlation coefficients for the training and 

test data sets. 

 

Following a series of experiments to obtain the optimum neural network settings 

(changing the number of nodes versus the correlation coefficient) Table 5.3 shows 

the neural network parameters for the trained neural network that was used to 

estimate plant water content. 
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Table 5.3. Parameters for the trained neural network used for predicting plant 

water content.  

Parameter Value 

Number of inputs 6 

Number of outputs 1 

Number of layers 3 

Number of hidden nodes 6 

Neural Network Multiple layer perceptron 

 

5.5. Applying the neural network to estimate plant water content 

The neural network parameters presented in Table 5.3 were used in training the 

neural network. The training process was run 5 times with random initial weights 

(Zhang et al., 2002). The prediction capability of the neural network was assessed 

using the correlation coefficient and the root mean square error (RMSE). The 

neural network that yielded the highest correlation coefficient as well as the lowest 

RMSE was then selected. Figure 5.4 shows a scatter plot of the predicted and 

measured plant water content using the best-trained neural network. Table 5.4 

shows the results from the other neural network experiments. 
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Figure 5.4. Scatterplot obtained from the best trained neural network that was 

selected. 

 

Table 5.4. Results from the Neural Network Experiments 

Neural Network Training (r)  Test (r)  

1 0.67 0.28 

2 0.02 0.13 

3 0.37 0.27 

4* 0.79 0.74 

5  0.75 0.66 

*Best trained neural network. 

 

5.6. Comparison between neural networks and multiple regression 

The performance of the neural network in estimating plant water content was 

compared to that of a stepwise multiple regression. The same training dataset for 

the neural network algorithm was put into a forward stepwise multiple regression 

model. The regression model yielded a correlation coefficient of 0.51 with the 

xanthophyll, green and red wavebands showing significance at p < 0.04. These 
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wave bands were then used in predicting plant water content on the test dataset. 

The performance of the multiple regression was assessed using the correlation 

coefficient as well as the RMSE. Table 5.5 shows the comparison between the 

multiple regression and the neural network experiments.  

 

Table 5.5. Comparison between multiple regression and neural networks 

 Multiple Regression Neural Network 

Plant Water Content Training Test Training Test 

Correlation coefficient 0.51 0.70 0.79 0.74 

RMSE 0.80 2.83 0.78 1.41 

 

The neural network yielded a higher correlation coefficient (r = 0.74) compared to 

the multiple regression (r = 0.70) on an independent test data set. The prediction 

capability of the regression model and the neural network was also measured 

using the RMSE. The neural network yielded a lower RMSE (1.41) compared to 

the multiple regression RMSE (2.83) on an independent test data set. 

 

5.7. Sensitivity analysis and the relative importance of the SumbandilaSat 

wavebands 

The relative importance of the SumbandilaSat wavebands in predicting plant water 

content was tested using a sensitivity analysis. A sensitivity analysis indicates 

which input variables of the neural network are most important. For each variable 

(SumbandilaSat wavebands), the network is executed as if that variable is 

unavailable in the model. The error obtained when that variable is unavailable is 

then divided by the error obtained when the variable is available. Important 

variables have a high ratio, indicating that the performance of the network will 

deteriorate if that variable is no longer available to the model. Table 5.6 shows the 

relative importance of the SumbandilaSat wavebands in estimating plant water 

content. 
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Table 5.6. Sensitivity analysis of the SumbandilaSat bands used in the neural 

network 

Rank Variable Ratio 

1 Xanthophyll 2.04 

2 Blue 1.46 

3 Near-Infrared 1.43 

4 Red Edge 1.09 

5 Red 1.07 

6 Green 1.06 

 

The sensitivity analysis indicates the relative importance of the xanthophyll band 

which was ranked 1 and the blue and near-infrared bands which were ranked 2 

and 3 in estimating plant water content. These bands are therefore essential in 

estimating plant water content from the SumbandilaSat. 

 

5.8. Discussion 

This section will discuss the potential of field spectroscopy and neural networks in 

estimating plant water content using the resampled spectra, and assess the 

importance of resampling the spectra to simulate the SumbandilaSat wavebands. 

 

5.8.1. Integrating neural networks and spectroscopy to estimate plant water 

content 

This study has demonstrated the potential of integrating field spectroscopy and 

neural networks to estimate plant water content. The resampled field spectra that 

was put into a neural network yielded a correlation coefficient of, r = 0.74 with a 

RMSE of 1.41 between the predicted and measured plant water content 

measurements on an independent test data set. The neural network approach 

outperformed the conventional multiple regression method used for prediction. The 

ability of a neural network to model complex behavior and non-linearity within a 

dataset through its weighting function therefore confirms that it is better at 
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predictive modeling compared to a multiple regression approach. The results from 

this study are comparable with that of Mutanga and Skidmore (2004) who 

integrated imaging spectrometry and neural networks to predict nitrogen 

concentration in an African savanna. The neural network approach explained 60% 

of variation in nitrogen concentration compared to 38% explained by a multiple 

regression. Similarly Trombetti et al., (2008) applied a neural network to MODIS 

satellite data to retrieve vegetation canopy water content. The neural network 

algorithm showed good performance across different vegetation types and yielded 

high correlation coefficients. This study therefore confirms previous studies that 

have successfully applied neural networks and remote sensing data to estimate 

biochemical constituents such as water content.  

 

5.8.2. Resampling to the SumbandilaSat wavebands 

The resampling of the field spectra to simulate the SumbandilaSat wavebands is of 

great importance due to the launch of the satellite in the near future and to assess 

the potential of the satellite in determining vegetation vigour and health. This study 

was the first attempt to predict plant water content in Eucalyptus grandis forest 

stands using the resampled field spectra of the Sumbandila satellite. There were 

no significant correlations between the 50 plant water measurements and the 

resampled bands. However, the xanthophyll waveband yielded the highest 

correlation of 0.24 and was ranked the most important waveband used by the 

neural network in estimating plant water content using a sensitivity analysis. The 

sensitivity analysis gives important insights into the usefulness of individual 

wavebands and identifies wavebands that can be ignored for subsequent analysis. 

The xanthophyll, blue and near infrared wavebands were ranked the three most 

important wavebands used by the neural network in estimating plant water content 

as they yielded the highest ratios. If these bands were removed the performance of 

the neural network in predicting plant water content will deteriorate. In general this 

study demonstrated the importance of resampling the field spectra to simulate the 

performance of the SumbandilaSat wavebands in estimating plant water content.  



 57 

5.9. Conclusion 

The main objective of this paper was to assess the potential of integrating field 

spectroscopy and neural networks to estimate plant water content using spectra 

resampled to the SumbandilaSat band settings. The following conclusions can be 

drawn: 

 

1:  the integrated approach involving resampled field spectra and neural networks 

successfully predicted plant water content with a correlation coefficient of 0.74 and 

a RMSE of 1.41 between the predicted and measured data on an independent test 

dataset. The result indicates the potential of the SumbandilaSat, the South African 

satellite which is proposed for launch in the near future. 

 

2: the neural network approach performed better than the traditional multiple 

regression method for estimating plant water content.  

 

3: the xanthophyll, blue and near-infrared bands of the SumbandilaSat are 

proposed for plant water estimation. 

 

Overall the potential of integrating field spectroscopy and neural networks to 

estimate plant water content has been confirmed by this study. With the launch of 

the SumbandilaSat evident in the near future, this was the first attempt to predict 

plant water content in Eucalyptus grandis forest stands using spectra resampled to 

the SumbandilaSat band settings and this has yielded positive results. 
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Chapter Six 

6. Conclusion 

 

6.1. Introduction 

This study aimed to assess the relationship between plant water content and 

reflectance data in Eucalyptus grandis forest stands in KwaZulu-Natal, South 

Africa. This chapter will review the aim and objectives of this study and examine 

how close the study came in order to achieve the goals set. Limitations of the study 

will be evaluated and future recommendations in the field of spectroscopy and 

plant water content will be made. 

 

6.2. Aim and objectives reviewed 

The aim of this research was to assess the relationship between plant water 

content and field reflectance data in Eucalyptus grandis forest stands in KwaZulu-

Natal, South Africa. In order to achieve this aim the following objectives were 

carried out: 

 

� To test the relationship between plant water content from Eucalyptus grandis 

trees and reflectance data measured from a field spectrometer at each 

wavelength. 

 

This was achieved by correlating the field reflectance and the first derivative 

reflectance with plant water content at each wavelength in the electromagnetic 

spectrum. The results show that the first derivative reflectance performed better 

than the original reflectance in estimating plant water content with significantly high 

correlations in the visible and mid-infrared portions of the electromagnetic 

spectrum. Similar results were reported by Danson et al., (1992) on the derivative 

reflectance with strong correlations in the mid-infrared regions. It was therefore 

concluded that the visible and mid-infrared portions of the electromagnetic 

spectrum are suitable for plant water estimation. It was also concluded that the first 
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derivative reflectance is better at predicting plant water content when there is a 

variation in leaf internal structure which was present in the Eucalyptus grandis 

forest stands of KwaZulu-Natal, South Africa. 

 

� To evaluate the effectiveness of several reflectance indices for estimating plant 

water content and compare them to the red edge position. 

 

This was done by performing bootstrapping correlations on six water indices and 

on the two red edge positions. From the reflectance indices, NDVI yielded the 

highest bootstrapped correlation coefficient followed by the two new semi-empirical 

indices developed for plant water estimation by Datt (1999). The bootstrapped 

correlation coefficients for the red edge positions yielded higher correlations r = 

0.65 and r = 0.56 at the 0.999 confidence level compared to all the water indices 

tested. Liu et al., (2004) reported similar results whereby the red edge yielded high 

correlations at the 0.999 confidence level and performed better than the WI and the 

NDWI. It was therefore concluded that the red edge position can be used for plant 

water estimation on hyperspectral data as it performed better than the traditional 

indices used for water estimation. 

 

� To resample the field spectra to the SumbandilaSat and assess its potential in 

estimating plant water content using an artificial neural network. 

 

To achieve this objective the field reflectance data was resampled to simulate the 

SumbandilaSat wavebands and was input into a neural network to assess its 

potential in estimating plant water content. Following a series of experiments to 

obtain the optimum neural network settings by changing the number of hidden 

nodes, the neural network that yielded the highest correlation coefficient as well as 

the lowest RMSE was then selected to predict plant water content. The neural 

network approach performed better than the traditional multiple regression 

approach for estimating plant water content and yielded a correlation coefficient of 
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0.74 and a RMSE of 1.41 between the predicted and measured data on an 

independent test dataset. It was therefore concluded that neural networks can be 

successfully integrated with remote sensing data to estimate plant water content.  

 

� To assess the relative importance of the individual SumbandilaSat wavebands 

in estimating plant water content using a sensitivity analysis. 

 

The potential of the SumbandilaSat wavebands in estimating plant water content 

was assessed using a sensitivity analysis. A sensitivity analysis indicates which 

input variables of the neural network are most important and identifies wavebands 

that can be ignored for subsequent analysis. The xanthophyll, blue and near 

infrared wavebands were ranked the three most important wavebands used by the 

neural network in estimating plant water content as they yielded the highest ratios 

indicating their importance in estimating plant water content. It was therefore 

concluded that the xanthophyll, blue and near-infrared bands of the SumbandilaSat 

are essential for plant water estimation. 

 

6.3. A synthesis  

This study has showed the potential of field spectroscopy in estimating plant water 

content in the Eucalyptus grandis forest stands of KwaZulu-Natal, South Africa. 

From this study it is evident that the visible and mid-infrared portions of the 

electromagnetic spectrum are suitable for plant water estimation as they were 

strongly correlated with plant water content using the first derivative spectra. The 

study evaluated the effectiveness of several water indices in estimating plant water 

content and compared them to the red edge position. The red edge position 

outperformed all the traditional indices used for plant water estimation and yielded 

significantly high correlations at the 0.999 confidence interval. However when the 

spectra was resampled to the SumbandilaSat band settings, the xanthophyll, blue 

and near-infrared bands were ranked more important than the red edge. This is 

possible because the derivative spectra give a more accurate determination of the 
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red edge position compared to a multi-spectral satellite such as the SumbandilaSat 

which has a limited number of wavebands. The SumbandilaSat wavebands are 

made up of the red edge reflectance and not the red edge position. Due to the 

restricted number of bands available on the SumbandilaSat the resampling 

technique could not accurately determine the red edge position whereas with the 

hyperspectral data, the red edge position can be accurately calculated due to the 

large number of bands available. It was therefore possible that the red edge was 

thus not picked up as the most significant band for plant water estimation and was 

thus ranked fourth in importance, compared to the other wavebands. However, the 

SumbandilaSat wavebands successfully predicted plant water content with a 

correlation coefficient of 0.74 and a RMSE of 1.41 between the predicted and 

measured data on an independent test dataset using an artificial neural network. 

The sensitivity analysis also indicated the importance of the xanthophyll, blue and 

near-infrared bands in estimating plant water content. This study has indicated the 

potential of estimating plant water content using field spectroscopy. Furthermore 

the study has demonstrated the potential of up-scaling field hyperspectral data to 

satellite remote sensing using the South African satellite SumbandilaSat, which is 

scheduled for launch in the near future. 

 

6.4. Limitations of the Study 

One of the limitations of this study was sampling on the edge of the forestry 

compartments referred to as the ‘edge effect’ in forestry. Sampling was done on 

trees that grew on the edge of the Eucalyptus grandis compartments as the cherry 

picker could not be taken inside the forest stands. Future research on plant water 

content in forest stands should allow for the branches to be shot down or the trees 

should be climbed and branches should be cut in order to obtain samples. This will 

compensate for the edge effect in forest stands and reduce bias sampling. 
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6.5. Future recommendations and Conclusion 

Future research in plant water content and spectroscopy should investigate other 

water parameters such as relative water content, water potential and equivalent 

water thickness with the red edge region as the results from this study show that 

the red edge performs better than the conventional indices used for water 

estimation on hyperspectral data. This was the first attempt to predict plant water 

content in Eucalyptus grandis forest stands using spectra resampled to the 

SumbandilaSat band settings. When the SumbandilaSat becomes operational, 

research should also incorporate neural networks with imagery in estimating plant 

water content in South African plantations. Traditional techniques to assess plant 

water measurements and forest stress are time consuming, costly and spatially 

restrictive. The ultimate goal will involve developing reliable and stable methods to 

estimate plant water content using airborne satellite remote sensing. Satellite 

remote sensing provides local to global coverage on remote areas where ground 

measurements are impossible on a regular basis and enables effective 

management of forest health. 
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Appendix 
Plant Water Content 

Samples Fresh Weight (g) Dry Weight (g) % Moisture 
1 4.192 2.077 50.451 
2 4.612 2.276 50.660 

3 5.631 2.799 50.287 
4 4.408 2.156 51.089 
5 5.342 2.538 52.495 
6 4.548 2.263 50.234 
7 4.741 2.380 49.810 
8 4.900 2.354 51.951 

9 5.351 2.732 48.934 
10 3.847 1.989 48.285 
11 4.380 2.228 49.136 
12 6.253 3.154 49.566 
13 4.565 2.330 48.967 
14 4.990 2.378 52.344 
15 4.937 2.627 46.779 

16 4.358 2.024 53.570 
17 6.636 3.240 51.172 
18 5.884 2.850 51.558 
19 6.601 3.121 52.724 
20 4.025 1.936 51.887 
21 6.149 3.042 50.533 

22 4.301 2.082 51.588 
23 7.226 3.670 49.214 
24 5.868 2.824 51.877 
25 4.398 2.282 48.114 
26 7.091 1.901 73.186 
27 9.081 2.744 69.788 

28 8.324 2.317 72.166 
29 8.506 2.590 69.551 
30 8.626 2.686 68.864 
31 6.989 3.864 44.716 
32 8.197 4.212 48.617 
33 6.144 3.120 49.225 
34 6.491 3.378 47.954 

35 4.893 2.494 49.034 
36 6.166 2.999 51.357 
37 5.250 2.733 47.949 
38 5.845 3.101 46.946 
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Samples Fresh Weight (g) Dry Weight (g) % Moisture 
39 3.161 1.625 48.587 
40 7.007 3.688 47.365 
41 9.495 4.767 49.797 
42 4.038 2.066 48.829 

43 5.521 2.688 51.320 
44 4.765 2.485 47.858 
45 5.120 2.505 51.072 
46 5.301 2.628 50.425 
47 5.844 2.950 49.523 
48 5.228 2.468 52.788 
49 5.702 2.747 51.817 

50 4.986 2.505 49.760 
    

 


