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Abstract

We study the class of partial differential equations Utt = f(x, ux)uxx +
g(x, u x), with arbitrary functions f(x, u x) and g(x, u x), from the point of view
of group classification. The principal Lie algebra of infinitesimal symmetries
admitted by the whole class is three-dimensional. We use the method of pre­
liminary group classification to obtain a classification of these equations with
respect to a one-dimesional extension of the principal Lie algebra and then a
countable-dimensional subalgebra of their equivalence algebra. Each of these
equations admits an additional infinitesimal symmetry. L.V. Ovsiannikov [9]
has proposed an algorithm to construct efficiently the optimal system of an
arbitrary decomposable Lie algebra. We use this algorithm to construct an
optimal system of subalgebras of all dimensionalities (from one-dimensional
to six- dimensional) of a seven-dimensional solvable Lie algebra.
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Chapter 1

Introduction

Sophus Lie was the first person to consider the problem of classification of

partial differential equations according to their symmetries. Lie's algorithm

for finding the symmetry group of a differential equation or system of differ­

ential equations can be found in the literature, in particular [4] - [7].

Ames et al. [10] investigated the group properties and associated Lie

algebra of the quasilinear hyperbolic equations of the form

Utt = f(ux)u xx .

The investigation was continued by Torrisi et al. [11] to include equations

of the form

In this dissertation our goal is to get sufficiently acquainted with the

literature on this subject and to gain a deeper understanding of classification

and research methods. To do this we set out to give a detailed review of

papers [1] - [3] which deal with the equation
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(1.1 )

where f and 9 are arbitrary functions of their arguments.

Other papers written on this subject include [13] - [17].

We do not claim originality in this study, but our contribution is the

provision of details. At the end of this exercise we have a rich classification

of this equation. This study and classification are important because these

equations feature prominently in many physical problems, namely, non-linear

wave equations involving non-homogeneous processes, non-linear telegraph

equation, equations of the flow of a one-dimensional gas, etc..

.The classification problem of equation (1.1) reduces to the classification

of the subalgebras of an equivalence algebra. For each subalgebra of the full

Lie algebra there corresponds a set of group-invariant solutions of the given

system of partial differential equations. The problem of classifying all sub­

algebras of the Lie algebra L up to similarity is the problem of constructing

the optimal system of subalgebras OL and this plays a very important role

in the group analysis of differential equations.

The presence of arbitrary functions in equation (1.1) does not allow us to

make profitable use of computer packages in the various symbolic languages,

such as REDUCE or MACSYMA.

Ibragimov et al. [8] suggested the method of preliminary group classifi­

cation. The essence of this method is to look for extensions of the principal

Lie algebra admitted by a class of differential equations among elements of

its equivalence algebra. The limitation of this method is that it can carry
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out the classification only relative to the finite-dimensional subalgebras of

the full algebra of equivalence transformations.

Ovsiannikov [9] has proposed an algorithm which enables the optimal

systems of arbitrary decomposable Lie algebra to be efficiently constructed.

Using Lie-point symmetries we demonstrate the application of these two

methods to construct the optimal system of subalgebras BL of equation (1.1).

In Chapter 2 we construct the principal Lie algebra and the equivalence

transformations of equation (1.1).

In Chapter 3 using the method of preliminary group classification we

obtain a classification of equation (1.1) with respect to a one-dimensional

subalgebra of their equivalence algebra. Each of these equations admits an

additional infinitesimal symmetry beyond the principal Lie algebra.

In Chapter 4 we obtain a classification of equation (1.1) with respect to a

countable-dimensional subalgebra of their equivalence algebra. Again, each

of these equations admits an additional infinitesimal symmetry.

In Chapter 5 by using Ovsiannikov's algorithm we construct the opti­

mal system BL for all dimensionalities, namely, BL7 = Ul~k~6 Bk (L7 ). The

arbitrariness in the process of the construction of the optimal solution is

minimized by normalizing the optimal system.

Finally, in Appendices A - D we tabulate some of the results obtained.
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Chapter 2

The Equivalence

Transformations

2.1 The Principal Lie Algebra

In this section we wish to determine the Lie algebra admitted by the equation

(1.1) for arbitrary functions f and g. We call this the principal Lie algebra

of the equation (1.1) and will denote it by Lp.

Geometrically the equation (1.1) can be interpreted as a surface in the

(t, x, u, Ut, U x , Utt, Utx, uxx ) - space. The corresponding nonlinear group action

on the (t,x,u) - space translates into a linear infinitesimal action of this

algebra on the same space. The generators of the group which are elements

of Lp are of the form:

... - a a ax = 6(t, x, u) at +6(t, x, u) ax +Tf(t, x, u) au· (2.1)

These represent local vector fields on the (t, x, u) - space. Lp will be

completely determined if we can find the coefficients 6, 6 and Tf in (2.1).
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Since the surface Utt - fu xx - 9 = 0 is a second order differential equation, the

infinitesimal action of X needs to be prolonged to the second order, namely,

(2.2)

where

(1 - Dt (",) - ut Dt(6) - uxDt(6),

(2 D x("') - Ut Dx(6) - uxD x(6),

(n - Dt((t) - Utt Dt(6) - utxDt(6), (2.3)

(12 - Dx((t) - uxtDx(6) - uxxD x(6),

(22 D x((2) - Utx Dx(6) - uxx DA6)

and the total derivatives Dt and Dx are given by

fj fj fj fj
Dt - -fj + Ut-fj + Utt-fj + Utx-fj + ... ,

t U Ut Ux
fj fj fj fj

-fj + 'ux-fj +Utx-fj +uxx-fj +....
x U Ut Ux

(2.4)

The generator X(2) is thus a local vector field extending X onto the

(t, x, u, Ut, Ux, Utt, Utx, u xx ) - space.

The invariance condition for equation (1.1) is

(2.5)

restricted to the surface Utt - fu xx - 9 = o. This condition yields the following

equation
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From the linear independence of the variables uO and U xx we obtain the

following determining equations:

(2.7)

(2.8)

Since these equations are true for arbitrary f and 9, it follows that

(2.9)

Equation (2.7) then becomes

(2.10)

In the case of arbitrary f it follows that

From equations (2.3), (2.9) and (2.11) we obtain

Dt(TJ) - utDt(6) (I,

Dx(TJ) - utDt(6) - 0,

Dt((I) - uttDt(6) - 0,

-UtxDx(6) - o.

6
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Equation (2.15) gives

By the independence of Utx and UtxUx we have

86 = 86 = o.
8x 8u

Equation (2.13) gives

and hence by independence arguments

8", = 8", = O.
8x 8u

From (2.12) and (2.14) we obtain

and hence

86 = fJ26 = 8
2

", = 0
8t 8t2 8t2 •

Solving equations (2.17), (2.19) and (2.21) yields

where Cl, C2 and C3 are arbitrary constants.
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(2.17)

(2.18)

(2.19)

(2.20)
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The generator (2.1) then takes the form

(2.23)

The basis vectors for the principal Lie algebra Lp are therefore

(2.24)

2.2 The Equivalence Transformations

In this section we construct a subgroup Ee of the group of all equivalence

transformations E of the equation (1.1). In particular, we will construct the

generators of the Lie algebra of the subgroup Ee •

By an equivalence transformation we mean a nondegenerate change of the

variable t, x and u, which takes any equation ofthe form (1.1) to an equation

of the same form. In general, after the transformation, the functions f(x, ux )

and g(x, ux ) may be different. The method to construct Ee was suggested by

Ovsiannikov [4] and is termed the Lie infinitesimal criterion.

Since the functions f and 9 in equation (1.1) vary during the action of

E e , let us replace these with local variables p and j2 respectively. We now

wish to determine the infinitesimal generator Yof the group E:

(2.25)
~ k fJ

X+1l- fJJk,k=1,2,
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where X is as in equation (2.1). The dependence of p and J.tk are as follows:

p = P(t,x,U,Ut,ux) and J.tk = J.tk(t,x,U,ut,ux,f\P). Equation (1.1) thus

takes the form of the system:

Utt - flu xx - P = 0,

(2.26)

ftk = f: = f:
1
= 0, k = 1,2.

The action of Y extends to that of

~ _ "'(2) k~ k~ k~
Y - X +Wl a fk +Wo afk +WOl afk '

Jt 1£ 1£1

where X(2) is as in equation (2.2) and

(2.27)

where

and

(i)

(ii)

a = t, u, Ut,

- a k a
Da = aa + fa ap'

k k k - a- a - a
From ft = fu = fUI = 0, it follows that Dt = -a ' Du = -a and DUI - -.

t U aUt
By simplifying (2.28) for the various values ofa we obtain

W; = J.t~ - f:(6)t - f:,.((2)t,

w~ J.t~ - f:(6)u - f:,,((2)u,

w~l J.t~1 - f:" ((2)1£1'

9
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The invariance conditions

~ 1 2) _Y(Utt - f Uxx - f - 0,

9un = 9U:) = 9U:J = 0, k = 1,2,

restricted to the surface Utt - jluxx - F = 0, yield

and hence also

(2.30)

11: - f:(6)t - f:,.((2)t

11~ - f:(6)u - f:x ((2)u

0,

0, (2.31 )

l1~t - f:'x ((2)ut 0.

Since equations (2.31) must hold for every jl and F, we obtain:

Ilk = Ilk = Ilk =° k = 1 2rt ru rUt , , ,

(6)t = (6)u = 0,

((2)t = ((2)u = ((2)ut = 0.

Equations (2.32) yield:

f-lk = f-lk(x, ux.fl, F),

6 = 6(x).

We now have from equations (2.3)

10
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O'f/ O'f/ (06 oel) 06
(2 = OX +UX OU - Ut OX +UX OU - UX OX .

From equations (2.32) and (2.33) we have

(2.33)

From equations (2.33) and independence arguments we obtain

06 = 06 = 0
ox OU

and
02'f/ 02'f/ 02'f/ 02'f/ O'f/ 06
Ou2 = otox = OUOX = otou = OU - ox = O.

We therefore have

6. 6(t),

6 - 6(x),

'f/ - CIU +F(x) +H(t),

JLk - JLk(x, Ux , P, P)·

11
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The invariance condition (2.29) yields

Using equations (2.3), (2.33), (2.35) and Utt = jluxx +p we have

(1 H'(t) + C1 U t - (6)'Ut,

(2 - F'(x)+c1 ux-(6),ux,

(11 = H"(t) + (Cl - 2(6)')(jluxx +P) - (6)"ut,

(22 - F"(x) + let - 2(6)']uxx - (6)"ux'

From (2.36) and (2.37') it follows that

(2.36)

(2.37)

From the independence of uo, Ut, Ux, and Uxx we obtain the following deter­

mining equations:

(6)" = 0, (2.39)

[Cl - 2(6),]P - {L1 - [Cl - 2(6)']P = 0, (2.40)

[Cl - 2(6),]P + H" - jlF" + pUx(6)" - {L2 = O. (2.41)

Equation (2.39) gives 6 = C2t + C3, where C2 and C3 are arbitrary constants.

Let 6 = ep(x), where ep(x) is an arbitrary function of x.

12



From (2.40) we obtain

(2.42)

Differentiating (2.41) with respect to t we get Hili = 0 and hence

(2.43)

where C4, C5 and C6 are arbitrary constants.

Therefore from (2.41) we have

(2.44)

Altogether we have

6 C2t + Ca,

6 <p(x),

TJ clu+F(x)+C4t2+C5t, (2.45)

pI 2(<p' - C2)ft,

p2 (Cl - 2C2)P + 2C4 + (<p"ux - F")ft,

where Cl, C2, Ca, C4, C5 are arbitrary constants and <p(x) and F(x) are arbitrary

functions. The constant C6 has been incorporated into the function F(x).

The infinite-dimensional subgroup Ec of the equivalence transformations

has a Lie algebra generated by the following infinitesimal generators:

a
at'
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f; 0
ou

,

Y3
0

- tou'

Y4
0

- Xou'
... 000
Ys t ot + x OX +2u OU '

... 000
(2.46)Y6 t--?f--2g-

ot ~ of og'

- 2 0 0
Y7 - t ou +2og'

fs 0 0
- u ou +9 og'

Yep o 'f 0 11 0- c.p Ox + 2c.p of + c.p Ux og'

YF - F~ - Fllf~.
ou og

The vector f; is obtained by setting F = 1 in YF and it is included above

because it is part of the principal Lie algebra Lp.

The following reflections

t 1----+ -t,

X 1----+ -x,

U 1----+ -u,
(2.47)

9 1----+ -g

are included in the group Ec obtained by integrating the vector fields (2.46).
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Chapter 3

The ten-dimensional

subalgebra

3.1 The method of Preliminary Group Clas-

sification

In this section we briefly sketch the method of preliminary group classifica­

tion. In this method we will use any finite or countable-dimensional subalge­

bra of the algebra Le, constructed in Chapter 2. Later on in Chapter 4, use

will be made of a countable-dimensional subalgebra. For now let us select a

ten-dimensional subalgebra L lO of Le whose generators are as follows:

Y1 a
- at'

- a
12 au ,

f3 a
- tau'

15



f4 a
ax ,

~ a
15 xau'
~ a a a

(301)1'6 - tat + xax + 2u au '
~ t a a a
Y7 - - 2. at + f af + 9ag'
~ t2 a a
Ys "2 au + ag'

Yg a a
uau + 9 ag'

YIo
x2 a a

- ---f-2 au agO

Since the functions f and 9 have the following dependence on the vari­

ables: f = f(x, ux ) and 9 = g(x, ux ), we have to prolong the generators (3.1)

to ones including the variable UXo

Therefore ~ needs to be prolonged to

- ~ (1) aYi = Yi +7] -,aux

where

Hence the extensions are:

16



Y2
8
8u

,

13
8

t au'

Y4
8
-
ax

,

Ys
a 8

- xl)+8'u UX

Y6
8 a 8 a

(3.2)- ta +xl) +2ul) +ux8,t x u UX

Y7
t 8 8 a

- -"2 at + f af +9 ag'

Ys
t2 a 8

- 2: 8u + ag'

8 a 8
Y9 ul)+g7J+ux8,u 9 Ux

x2 8 8 a
Yio - ---f-+x-

2 8u ag aux·

By taking the projections of the generators (3.2) on the (x,ux,f,g) - space

we obtain the following nonzero projections:

(3.3)

or

.... a
Zl 8x'
.... a

Z2
aux

,

23
8 8

xl)+ux8,x Ux

24
8 a

f 8f +9 8g'

17
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....
Zs

o
og'
o 0

g7.1 + ux~,
ug uUx

o 0
x--f-·. oUx og

vVe denote by L 7 the algebra whose basis is the set of generators (3.4).

By the preliminary g1'OUp classification we will mean the classification of

all nonequivalent equations of the form (1.1) with respect to a given equiva­

lence group Ec• It is worthwhile to note that Ec is not necessarily the largest

equivalence group but it can be any subgroup of the group of all equivalence

transformations.

This method was proposed in [8] and it is applied when an equivalence

group is generated by a finite dimensional Lie algebra Le. The essence of

the method is the determination of all the equivalence classes of subalgebras

of Le of various dimensions; under conjugation or similarity. As regards to

equations of the form (1.1) the following propositions contain the essence of

the method:

Proposition 1 Let Lm be an m-dimensional subalgebm of L7 • Let Z(i) (i =

1,2, ... , m) be a basis of L m and y(i) be the elements of the algebm LlD such

that Z(i) = pr(y(i)), i.e., if

then by (3.1) - (3.3) we have

7

z(i) = '" ecr ZL.... • Cl

Cl=l
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If the functions f = <I>(x, u x ) and 9 = f(x, u x ) are invariant with respect to

the algebm L m then the equation

(3.7)

admits the genemtors

x(i) = projection of y(i) onto the (t, x, u) - space.

Proposition 2 Let equation (3.7) and the equation

Utt = <I>'(x, ux)uxx + f'(x, ux) (3.8)

be constructed according to Proposition 1 via subalgebms L m and L'm respec­

tively. If L m and L'm are similar subalgebms in LlD, then the equations (3.7)

and (3.8) are equivalent with respect to the equivalenre group C lD genemted

by LlD.

From these propositions it follows that the problem of the preliminary

group classification of equation (1.1) with respect to the finite-dimensional

subalgebra LlD of Le is reduced to the algebraic problem of constructing the

nonsimilar subalgebras of L 7 or determining the optimal system of subalge­

bras.

3.2 The adjoint group for the algebra L7

Here we wish to construct the adjoint group of L7 . Before doing that, we give

some definitions and explain some terms.
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Let G be a Lie group and L its Lie algebra. For each element T E G there

exists an inner automorphism Ta f---+ TTaT-l of G. Each group automor­

phism induces a Lie algebra automorphism. The set of all automorphisms of

L induced from the inner automorphisms of G form a local Lie group called

the group of inner automorphisms of L or the adjoint group of L which we

denote by GA.

The Lie algebra of GA is the adjoint algebra LA (or ad L) of the algebra

L defined as follows:

For each X E L, the linear mapping:

adx : L -t L

defined by adx(e) = le, X] is an automorphism of the algebra L. Since the

above map also satisfies the product rule for differentiation of the algebra

L, it is called the inner derivation of L. The set LA of all inner derivations

together with the bracket [adx , ady 1 = ad[x,YI is a Lie algebra, called the

adjoint algebm of L. Clearly the adjoint algebra LA is the Lie algebra of the

adjoint group GA.

Two subalgebras in Lare conjugate or similar if there exists an element

of GA which maps one subalgebra into the other. The collection of all pair­

wise nonconjugate m-dimensional subalgebras is called an optimal system

of order m in L and is denoted by OmL. Since we will be determining an op­

timal system of order one, we will show that every element of L 7 is conjugate

to one of various canonical forms.

We now wish to construct the adjoint group of the algebra L 7 • Let us

20



--+ --+ --+ --+ --+ --+ --+

ZI Z2 Z3 Z4 Zs Z6 Z7
--+ --+ --+

ZI 0 0 ZI 0 0 0 Z2
--+ --+ --+

Z2 0 0 Z2 0 0 Z2 0
--+ -i1 -i2 0Z3 0 0 0 0

i 4 0 0 0 0 -is 0 0
--+

is isZs 0 0 0 0 0

i 6
--+ --+ -i70 -Z2 0 0 -Zs 0

i 7
--+ --+

-Z2 0 0 0 0 Z7 0

Table 3.1: Commutators of L7

(3.9)a=I,2, ... ,7.

denote the elements of ad L7 by the letter A. The generators of ad L7 are

--+ 7 [--+ --+] 8Aa = L Za, Z(3 ---::;-,
(3=1 8Z(3

The commutation table of L7 is given in Table 3.1.

Using Table 3.1 and equation (3.9) we obtain the following generators:

--+ --+ 8 --+ 8
Al ZI~+Z2~,

8Z3 8Z7
--+ --+ 8 --+8

A2 Z2~+Z2~,
8Z3 8Z6

A3
--+ 8 --+ 8

- -ZI~-Z2~,
8Z1 8Z2

--+ --+ a
A4 -Zs~ (3.10)

8Zs'
--+ --+ 8 --+ 8

As ZS~+Z5~,
8Z4 8Z6

21



By letting
-+ 1 a 2 a 7 a

Ai = ei --::;- +ei--::;- +... +ei --::;-aZl aZ2 aZ7

and solving the initial value problem

dZk = e with Zk = Zk when ai = 0 (k = 1,2, ... ,7 and i = 1,2, ... ,7)
dai •

we obtain the one-parameter groups of linear transformations.

For example taking Al we obtain

Z~ = ZI, Z~ = Z2' Z~ = Z3 +alZI, Z~ = Z4'
Z~ = Zs, Z~ = Z6' Z~ = Z7 +al Z2,

where al E 3U

Therefore in the adjoint group of L7 we have

1 0 al 0 0 0 0

0 1 0 0 0 0 al

0 0 1 0 0 0 0

Ml(al) = 0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

llR is the set of real numbers and lR+ is the set of positive real numbers.
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where al E ?R.

Similarly for A21 A31 ... 1 A7 we have

1 0 0 0 0 0 0

0 1 a2 0 0 a2 0

0 0 1 0 0 0 0

M2(a2) = 0 0 0 1 0 0 0 ,

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

a3 0 0 0 0 0 0

0 a3 0 0 o '0 0

0 0 1 0 0 0 0

M3(a3) = 0 0 0 1 0 0 0 ,

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

M4(a4) = 0 0 0 1 0 0 0 ,

0 0 0 0 a4 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

Ms(as) = 0 0 0 1 0 0 0 ,

0 0 0 as 1 as 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 a6 0 0 0 0 0

0 0 1 0 0 0 0

M6(a6) = 0 0 0 1 0 0 0

0 0 0 0 a6 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 a6

1 0 0 0 0 0 0

-a7 1 0 0 0 0 0

0 0 1 0 0 0 0

M7(a7) = 0 0 0 1 0 0 0 ,

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 a7 1

where a2, as, a7 E ~ and a3, a4, a6 E ~+.
7

Let M = n Mex(aex ). Then
ex=!
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a3 0 a1a3 0 0 0 0

-a3a7 a3a6 a2a3a6 - a1 a3a7 0 0 a2a3a6 a1 a3a6

0 0 1 0 0 0 0

M= 0 0 0 1 0 0 0

0 0 0 aSa6 a4a6 aSa6 0

0 0 0 0 0 1 0

0 0 0 0 0 a7 a6

For each Z E £7 we have
7L i ~ - (1 2 7) (3.11)Z = e Zi = e, e , ... , e .

i=l

L - (1 2 7) - - (-1 -2 -7) d - - Met e - e, e , ... , e ,e - e, e , ... , e an e - e.

Then the components of e are:

a3 (e1 + a1 e3 ) ,

a3 [-a7e1 + a6e2 + (a2a6 - a1a7) e3 + a2a6e6 + a1a6e7] ,

e3 ,
(3.12)

These transformations give rise to the adjoint group elements of the algebra

£7. The reflections (2.47) give rise to the following transformations:

(3.13)

(3.14)
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3.3 Optimal system of order one

In the next section we will be extending the algebra Lp by one-dimensional

subalgebras of L7 . We therefore need to construct the optimal system of

one-dimensional subalgebras of L7 . This is carried out as follows:

(i) By using M E GA and reflections (3.13) and (3.14) we map e ­

(el, e2, ... ,e7) to as simple a form e = (el, e2, ... ,e7) as possible.

(ii) We will then divide the vectors obtained into nonequivalent classes.

In any class we select a representative which has the simplest possible

form.

For M E GA the mapping

e=Me

leaves the components e3
, e4 and e6 invariant in (3.12). Thus we need to

seek all the possibilities for e3 , e4 and e6 and in each case simplify the other

components of e by the transformations (3.12).

CASE 1 : e3 =f 0, e4 =f 0, e6 =f 0

By substituting

in (3.12) we obtain

(3.15)

( 1)-lIe 3
e = a3 e - e3 e = 0,
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From (3.15) and (3.16) and by keeping the other parameters arbitrary

any vector e is transformed to e = (0, e2 , e3
, e\ eS

, e6
, 0), provided Case

1 is valid.

We can further simplify the vector e by means of the transformations

(3.12) by putting al = a7 = O. Hence the components of the vector e

are transformed to the vector e having components:

el 0,

e2 a3 [e2+ a2 (e3+ e6)] ,

e3 e3 ,

e4 e4 (3.17). ,
e5 [as (e4+ e6) +a4eS] ,

e6 e6,
e7 O.

From the components of e we can distinguish the following four sub-

cases:

SUBCASE 1 : e3 + e6 =J 0, e4 + e6 =J 0

By putting

_e2
a ----

2 - e3 + e6 '

-eS

a4 = 1, as = --­
e4 + e6

we get e2 = 0, eS = 0 and thus
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The vector (3.20) can be written in the form

e = (0,0, a,,8, 0,1,0), a # 0, -1, ,8 # 0,-1 (3.21 )

using the fact that any infinitesimal generator can be defined up

to a constant factor.

SUBCASE 2 : e3 + e6 # 0, e4 + e6 = °
Substitution for az using (3.18) in (3.17) yields eZ 0, e4

Thus

Here we have either e5 = °or e5 # 0.
6

For e5 # °:By using the factor a4 = e5 and the reflection (3.13)
e

we obtain

(3.22)

Again using the fact that any infinitesimal generator can be de­

fined up to a constant factor we write vector (3.22) in the form

e= (O,O,a,-l,l,l,O), a #0,-1.

For e5 = °we obtain

e = (0,0, a, -1,0,1,0), a # 0,-1.

SUBCASE 3 : e3 + e6 = 0, e4 + e6 # °
Substitution of (3.19) in (3.17) leads to
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Following the same procedure as in Subcase 2 we obtain from this

vector two different vectors:

e = (0,1, -1,,8,0,1,0), ,8 =f 0, -1,

e = (0,0,-1,,8,0,1,0), ,8 =f 0,-1.

SUBCASE 4 : e3 + e6 = 0, e4 + e5 = °
Here vector (3.17) yields

- (0 2 6 6 5 6 0)e = , a3e , -e , -e , a4e ,e, .

(3.25)

(3.26)

Using arbitrary positive factors for a3, a4 and the reflections (3.13)

and (3.14) we obtain from this vector the following four vectors:

e = (0,1, -1, -1, 1, 1,0),

e = (0,0, -1, -1, 1, 1,0),

e = (0,1,-1,-1,0,1,0),

e = (0,0, -1, -1,0,1,0).

(3.27)

(3.28)

(3.29)

(3.30)

In summary, for Case 1, any vector e is equivalent to vectors (3.21) and

(3.23) - (3.30). Using equation (3.11) we see that these vectors give rise
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to the following nonequivalent generators:

aZ3 + .824 + Z6' a # 0, .8 # 0,

aZ3 - 24 + Zs + Z6' a # 0,

Z2 - Z3 + .8Z4 + Z6' .8 # 0,

Z2 - Z3 - Z4 +Zs +Z6'

(3.31 )

The restriction on the parameters a and .8 is changed in order to present

the generators in a compact form. For example, the vector (3.29) is

included in vector (3.24) if the condition.8 # -1 is cancelled.

Similarly the analysis of the other cases yields the following nonequivalent

generators:

CASE 2 : e3 # 0, e4 # 0, e6 = °

aZ3 + Z4 + Z1' a # 0,

aZ3 + Z4' a # 0.

CASE 3 : e3 # 0, e4 = 0, e6 # °
Z2 - 23 +26 ,

a23 + i 6 , a # O.

CASE 4 : e3 # 0, e4 = 0, e6 = °

Z3' Z3 + ZS, Z3 + Z1'
Z3 + is + Z1' 23+ 2s - Z1'
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CASE 5 : e3 = 0, e4 f. 0, e6 f. °
i 4 +25 - 26 ,

21 - 24 + 25 + i 6 •

CASE 6 : e3 = 0, e4 f. 0, e6 = °
24 , 21 + 24 , 22 +24 ,

24 +27 , i 1 + i 4 + i 7 •

CASE 7 : e3 = 0, e4 = 0, e6 f. °

CASE 8 : e3 = 0, e4 = 0, e6 = °

i 1 + is, i 1 + i 7 ,

22 + 25 , is + i 7 , is - i 7 ,

21 +25 + i 7 , i 1 + is - i 7 •

(3.35)

(3.36)

(3.37)

(3.38)

Altogether from (3.31) - (3.38) we have the following optimal system of

one-dimensional subalgebras of L 7 (a and f3 are arbitrary constants) :
~,

(9) ~ ~

Z = ZI + Zs,
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Z(ll) = i 1 + i 7 , Z(12) = Z2 + Z4' Z(13) = i 2+ zs,
Z(14) = Z3 + is, Z(1S) = Z3 + i7, Z(16) = is + Z7'

3.4 Equations admitting an extension of al-

gebra Lp by one

To obtain all nonequivalent equations (1.1) admitting an extension by one of

the principal Lie algebra Lp we apply Propositions 1 and 2 to the optimal

system obtained in the previous section. For each subalgebra in the optimal

system we obtain equations of the form (1.1) such that they admit, together

with three basic generators of Lp, also a fourth generator X4 • Whenever

these extensions occur, we list the corresponding functions f and 9 and the

additional generator X4 0

To illustrate the method we choose the following examples from our

optimal system:

(a) Consider Z(24) :
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Z{24} 21 - i 4 + is + i 6

8 8 8 8
8x +u x 8ux - f 8 f + 8g'

Invariants are found from the subsidiary equations:

dx dux df dg
-=-=--=-
1 u x f 1

From these equation we obtain:

(i)

(ii)

(iii)

dx dux
---
I ux

:::} 11 = e-xux'

dx = dg

:::} 13 = 9 - x.

(3.39)

(3.40)

(3.41 )

where h, k = 1,2 and 3, are the labels for the characteristics.

By applying Proposition 1 we can take the invariance equations in the

form
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(3.42)

Let A= 11 = e-xux' From (3.40) and (3.42) we have

From (3.41) and (3.42) we have

9 - x = f(A) => 9 = f(A) + x.

In terms of equation (3.11) the subalgebra Z(24) is equivalent to the vector

e = (1,0,0,-1,1,1,0). Applying equation (3.6) to the subalgebra Z(24) we

obtain

y(24) 94 - 97 +Ys +Yg

!~+~+ (t 2

+u) ~-f~+~.
2 at ox 2 ou of og

By taking the projection of y(24) onto the (t,x,u) - space we obtain the

additional generator X4 of the subalgebra Z(24), namely,

Hence the equation

admits the four-dimensional algebra £4 with generators
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... 8
(b) Consider Z(S} = Zs = - :

8g

Invariants of this subalgebra are

(3.43)

In this case there are no invariant equations of the form (3.7) i.e.) the invari­

ants (3.43) cannot be solved with respect to the functions f and g.

Proceeding in a similar manner we perform the calculations for the other

subalgebras in our optimal system. In Appendix A we give the result of the

preliminary group classification of equation (1.1) admitting an extension of

the principal Lie algebra Lp by one dimension. There are 29 nonequivalent

equations in this list.
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Chapter 4

The countable-dimensional

subalgebra

In this chapter we consider the equivalence transformations not contained

in LlQ. We will investigate a countable-dimensional subalgebra L# of the

infinite-dimensional equivalence algebra Le or rather a countable number of

n-dimensional extensions Ln of LlQ. We then proceed with the method of

preliminary group classification for the equation (1.1) with respect to the

subalgebra L#.

4.1 The countable-dimensional subalgebra L#

In this section we obtain a countable-dimensional subalgebra L# of Le.

After extending the generators (2.46) onto the (u, t, x, ux ,!, g) - space we

get the following full equivalence algebra Le given by the following generators:

Yi a
at'

- a
12 tau'
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Y3
a a a a

- t a + x7) +2u7) +ux8 ,
t x U Ux

Y. t a a a (4.1)- -"2 at + f a f +9 ag'

~ t 2 a a
Y5 "2 au + ag'

~ a '( a "() f a '( ) aYcp <p(x)ax + 2<p x) f a f +<p x U x ag - ux<p x aux'

- F(x)~ - F"(x)f~ +F'(x)~.YF - au ag aux

where <p(x) and F(x) are arbitrary functions.

Taking the projections of generators (4.1) onto the (x, ux , f, g) - space

we obtain the following non-zero projections:

it pr(Y3)
a a

- x7)+ux8,x Ux
~

pr(y')
a a

Z2 - f af +g7)'
~

.pr(Ys)
a 9

Z3 ag'
~

pr(Ycp) <p(x) :x +2<p'(x)f:f +<p"(x)uxf~ - ux<p'(x) a~x'Vcp
~ ~ a 0

WF pr(YF) - -F"(x)f- +F'(x)-.
og aux

(4.2)

The table of commutators of Le are given in Table 4.1.

From Table 4.1 we see that we obtain subalgebras of dimension n + 5,

n ~ 1, by taking the following functions of <p and F:

<p = 1, x;

1 2 1 n
F = x, "2x , ... ,;;x .
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~ ~ - V,p WGZ1 Z2 Z3

Z1 0 0 0 VX,p'-,p WxG'-2G

Z2
~

0 0 -Z3 0 0
~ ~

Z3 0 Z3 0 0 0

VI"
~ ~

WcpG'Vcp-xcp' 0 0 V,pcp' _cp,p'
~

W2F- xF' -W,pF' 0WF 0 0

Table 4.1: Commutators of Le

We denote their corresponding generators by Vi, V2 and W}, W2, ... , Wn

respectively.

The subalgebras Ln +5 are contained in the countable-dimensional subal­

gebra L# which corresponds to the choice of F as an analytic function of x.

The table of commutators of L n+5 are given in Table 4.2.

4.2 The adjoint algebra L,#

In this section we construct the adjoint algebra L# which generates the group

of inner automorphisms of the algebra L#. Similarly to equation (3.9) in

Section 3.2, each row of Table 4.2 can be considered as the coordinates of

the infinitesimal generator of the adjoint algebra L#.
Our problem essentially now is to find all classes of the generators:

(4.3)
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... 22

... ... ...
W1 W2

...
Zl Z3 Vi Vi ... Wn

21 -Vi
...

n-2~0 0 0 0 -W1 0 ...
n n

... ....
Z2 0 0 -Z3 0 0 0 0 ... 0

23

...
0 Z3 0 0 0 0 0 ... 0

... ... ... W1

...
VI Vi 0 0 0 VI 0 ... Wn - 1

112
....

W1

...
Wn0 0 0 -VI 0 W2 ...

W1 W1 0 0 0 -W1 0 0 ... 0

W2 -W1

...
0 0 0 -W2 0 0 ... 0

.. . .. . .. . . .. .. . . .. .. . . .. .. . ...
...

_n-2~ -Wn - 1

...
Wn 0 0 -Wn 0 0 " . 0n n

Table 4.2: Commutators of Ln+5
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nonequivalent with respect to the group of inner automorphisms. We will

investigate the automorphisms Mi(ai) which correspond to the generators Ai

(i 2: 8) since 1 :::; i :::; 7 have been dealt with in Chapter 3.

The automorphism Mi(ai) for i 2: 8 can be expressed as follows:

For n 2: 3 we have

.... n-2 .... 8 .... 8 .... 8
An+5 = ---Wn - .... - Wn - 1 -::;- - Wn -::;-. (4.4)

n 8Z1 8Vi 8112

The one-parameter group of linear transformation is obtained by solving the

equations:

dZ~ n - 2
TXT--=---l'l'n,

dan+5 n

dV{ ....
-d-- = - Wn - 1 ,

an+5
(4.5)

subject to the initial conditions Zi = Zll Vi = Vi, V{ = V; when an+5 = O.

Thus An +5 generates the following one-parameter group of linear trans­

formations:

.... .... n -2 ....
Z~ = Zl - --Wn an+5, Z~ = Z2' Z~ = Z3'n

V; = Vi - Wn - 1an+5, V; = V; - Wn an+5' (4.6)

where n 2: 3. The transformation (4.6) can be represented by the following

matrix:
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1

o
o
o
o

o 0

1 0

o 1

o 0

o 0

o
o
o
1

o

o
o
o
o
1

o 0

o 0

o 0

o 0

o 0

o 0 0 -an +5 0
n-2

---an+5 0 0 0 -an+s
n

1 0

o 1

From the above matrix we obtain the following transformation of compo-

nents:
e' ei

, i =I- n +4, n +5,

(4.7)

where n ~ 3.

Only the automorphism Mg(ag) changes the component e7 of equation

(4.3) and this occurs only when the component e4 I- O. The optimal system

of one-dimensional subalgebras obtained in Section 3.3 has four vectors with

e4 =I- 0, namely,
Z(ll)

... ...
- Vi +W2 ,

Z(l9) - i 2 + Vi +W2 ,

Z(20) - i 3+ Vi +W2 ,

Z(2l) - Z3 + Vi - W2 •

These vectors have el = e5 = O. Thus Mg(ag) changes only e7 and now e7

41



7

can be annulled by putting a8 = ~ in (4.7) as follows:
e4

- o.
Therefore the subalgebras Z(11), Z(19), Z(20) and Z(21) are equivalent to the

subalgebras Z(l), Z(8) and Z(9). We have thus reduced the number of one­

dimensional subalgebras obtained in Chapter 3 by four.

As a result of this the optimal system of one-dimensional subalgebras of

L7 relative to the adjoint algebra L,# written in the form:

are

Z~(5) - Z'"
- 3,

~ (7) ...
Z = W2 ,

- (10) 1'" ...... 1 ...
Z = "2Z1 + (1 + (3)Z2 + Vi - "2 V2,

2(11) = Z2 + H\, 2(12) = Z3 + Wll 2(13) = Zl + Z3'

2(14) = Zl +W2, 2(15) = Z3 +W2, 2(16) = Z3 - W2,

Z(19) = i 1 + Z3 - W2, Z(20) = tZ1 + Z3 + Vi - t~,

- (21) 1 ... ... 1 ... ...
Z = -"2Z1 + (1 + (3)Z2 - "2V2 + Wll
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4.3 One-dimensional Optimal System of sub-

algebras of L#

In this section we will construct the one-dimensional optimal system of sub­

algebras of L#. Using the chain of transformations (4.7) we simplify and then

divide any vectors of the form:

into nonequivalent classes.

n

Z[i] = tU) +L eS+iWi
i=l

(4.8)

D or the vectors Z[l] Z[3] Z(4) Z[8] Z(9) Z(13) Z[14] Z[17] Z[18) Z[19]
.l~' , 'a=jl!:D' , , , 'a=jl!:D' , ,

Z[21], Z[23] and Z[6], Z[22] with a =f n~2' n ~ 3 the transformation (4.7) only

changes the components enH and en+5 as follows:

en+S en+S _ an+ses _ n:2 e1

en+S + an+s ( -es _ n:2 e1)

en
+5 +an+s((el, eS),

ei ei i =f n + 5, n ~ 3.

Using the appropriate factors for ai the components ei (i ~ 8) become

zero and the components ei (i :S 7) remain unchanged. We need to perform

only a finite number of transformations to annul the components ei , provided

that the sum in equation (4.3) is finite.
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The vector Z[6] with a = n:"2' n 2: 3, simplifies as follows:

-f -I -f n .-1(! + a)Zl + (1 + (3)Z2 - !"Vi + ,L eS+~Wi
~=l

-I -I -f n .-f

(! + n:"2)Zl + (1 + (3)Z2 -!Y; + i~l e5+'Wi
..... ..... -f n ......

~ n:"2Zl + (1 + (3)Z2 - !Y; + i~l e5+~Wi'

Therefore Z[6] can be written as

Similarly vector Z[22] with a = n:"2' n 2: 3 can be simplified to the form:

[22] n ... ... n - 2 ... ...
Z = 2"Zl + (n - 2)Z3 - -2-Y; + j.lWn, n 2: 3.

In the case of vectors Z[lO] and Z[20] their components include el = !'
e4 = 1, eS = -!, e6 = 0, e7 = O. Thus the transformation (4.7) only changes

the components of Z[lO] and Z[20] as follows:

en+S en+S _ an+ses _ n~2 el

en+5 _ an+5(-! + n~2!)

en +S + .lan n+S,

and

ei = ei i =I n +4, n + 5, n 2: 3.

We can annul the last component eN of equation (4.8) by the transformation

MN and then use the transformations MN-l, MN- 2 , ••• , Ms to bring the
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vectors Z[10) and Z[20) to the form:

Thus vectors Z[lO) and Z[20) are similar to Z(10) and Z(20) respectively.

F1'nally the vectors Z[2) Z[5) Z[7) Z[l1) Z[12) Z[15) and Z[16) are unchanged,. "'"
by the transformation (4.7) since their components include e1 = e4 = e5 = O.

Thus the optimal system of one-dimensional subalgebras of L# which we

have now constructed is as follows:

- [4) ~ ~ - [5) 1 ~ ... 1 ...
Z = Z3 + WF(x), Z = (2 +a)ZI + (1 + (3)Z2 - 2"'2,

-[6) n ~ ~ n - 2 ~ ~
Z = 2"Zl + (n - 2)(1 + (3)Z2 - -2-"'2 + J.LWn , n 2:: 3,

Z[7) = 22 + iit, Z[8) = 23 + iit,
-[9) 1... ~ ~ 1 ~
Z = 2Z1 + (1 + (3)Z2 + VI - 2"'2,

Z[lO) = 22 +WF(x) , Z[l1) = 21 +23 ,

- [14) ... ~ ~ - [15) ~ ~ ~

Z = ZI + Z3 +W2, Z = ZI + Z3 - W2,

- [16) 1 ~ ~ ~ 1 ~
Z = 2ZI + Z3 + VI - 2"'2,

- [17) 1 ~ ~ 1 ~ ~
Z = -2Z1 + (1 + (3)Z2 - 2"'2 + Wb

-[) 1 ~ ~ 1 ~
Z 18 = (2 +a) Zl + Z3 - 2"'2,
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To compact the generators we let the function F(x) be as follows:

For vectors Z[2] and Z[10] : (obtained from the vectors Z(2), Z(4) and

Z(l1), Zit.::6 respectively) F(x) is an analytic function with either:

(i) F'(O) = 0, F"(O) = 0,

or (ii) F'(O) = 1, F"(O) = 0,

or (iii) F'(O) = 0, F"(O) = 1.

For vectors Z[3] : (obtained from the vectors Z(12), Z(15) and Z(16») F(x)

is an analytic function with either:

(i) F'(O) = 0, F"(O) = 0,

or (ii) F'(O) = 1, F"(O) = 0,

or (iii) F'(O) = 0, F"(O) = ±1.

4.4 Equations admitting an extension of al­

gebra Lp by one

Following the procedure of in Section 3.5 we obtain equations of the form

(1.1) such that they admit, together with three basis vectors (2.24) of the

principal Lie algebra Lp, also a fourth generator X4 •

In Appendix B we give the result of the preliminary group classification

of equation (1.1) with respect to a countable-dimensional subalgebra L# of
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the equivalence algebra Le. For this particular classification we obtain 22

nonequivalent equations.
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Chapter 5

Ovsiannikov's algorithm

In this chapter we demonstrate the application of the recently developed

Ovsiannikov's algorithm to construct the optimal system of the subalgebras

of a seven-dimensional solvable algebra of equation (1.1).

5.1 Preliminaries

In this section we will give some important definitions and notations that

will be used in this chapter.

Definition 5.1 : Let L be an algebra. A subalgebra J c L is called an

ideal of L if for any X E J, Y E L, [X, Y] E J.

Definition 5.2 : The ideal L(1) = [L, L] is called the commutant of

the Lie algebra L. The commutant of the commutant L(2) = [L(l), L(l)] is

called the second commutant of the Lie algebra L. The (k +1)th commutant

is L(k+l) = [L(k), L(k)].

Lq is a q-dimensional solvable Lie algebra if there exists a chain of sub-
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algebras

such that L(k) is a k-dimensional Lie algebra and L(k-l) IS an ideal of

L(k), k = 1,2, ... ,q.

Definition 5.3 : The Killing's polynomial (or the characteristic poly­

nomia0 of the Lie algebra Lr for the variable x is

x(x, A) = det(Ah - adx) = Ar
- Tl(X)Ar- 1 +T2(X)Ar- 2- ... + (-1)ITr_l(X)A1

,

(5.1 )

where Tr-l =f:. 0 and 12: o.
Definition 5.4 : The maximal value of the number 1in equation (5.1),

obtained when the vector xranges over the whole space LT, is called the rank

of the Lie algebra Lr.

Definition 5.5 : Let G be a group acting on a set S and x E S. The

stabilizer of x is the set of elements g E G such that gx = x.

Definition 5.6 : The normalizer of a subalgebra K of a algebra L is

defined by

NordK) = {x ELl [x,K] ~ K},

If K = N orL(K), we call K self-normalizing.

5.2 Ovsiannikov's algorithm

(5.2)

In this section we will give a brief outline of Ovsiannikov's algorithm. A

more detailed discussion of this method can be found in [9].
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Let A be the group of inner automorphisms of a finite n-dimensional Lie

algebra L. The calculation of the optimal system of subalgebras ()AL begins

by fixing the composition series of ideals

0= Jo C J 1 C J 2 C ... c Js = L, (5.3)

where each Jq is the ideal in L, Jq # Jq+l where it is impossible to condense

the series (5.3) any further. For s > 1 there exists (J' (1 ~ (J' ~ s) such

that the factor algebra L / Jq is isomorphic to some subalgebra N C L. This

provides the algebra L with a decomposition into a semidirect sum of the

proper ideal J (with J = Jq) and the subalgebra N as follows:

L = J EBs N. (5.4)

In this case the group of inner automorphisms A is also decomposed into the

semidireet product A = AJ 0s AN of the proper invariant subgroup AJ and

the subgroup AN. The use of these decompositions allow the calculation of

()AL in two steps:

Step 1 The optimal system ()ANN = {Np I PEP} is calculated and the

stabilizer A p C A of the subalgebra N p is found for each pEP. N p (p =

1,2, ... , P) are representatives of ()N

Step 2 The optimal system ()Ap(J +N p) = {Kp,q Iq E Qp} is calculated.

Then the set of all subalgebras {Kp,q Iq E Qp} is the optimal system ()AL.

This two-step algorithm is performed as many times as the decompositions

(5.4) admits the series (5.3).
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An additional condition requires that the optimal system be a normalized

one since for any K E ()AL, NorLK E ()AL. From [12] we see that the

advantage of having normalized lists is that the problem of merging several,

sublists into a single overall list becomes greatly simplified.

5.3 The algebra L7

In this chapter to simplify the calculations we choose the following basis for

the algebra L7 :

Xl a
- ,aux

X2
a
ag'

X3
a
ax'

-+ a a
X4 x--f- (5.5)aux ag'

xs
a a

U x au
x

- f al'
-+ a a

X 6 xax + f al'
-+ a a

X 7 - 9 ag +1ar

The following relation exists between the basis (5.5) and the basis ill i 2 ,

... ,i 7 from (3.4), namely,
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~ ~ ~ ~

Xs
~

X7Xl X2 X3 X4 X6

Xl
~

0 0 0 0 Xl 0 0
~ ~

X2 0 0 0 0 0 0 X2

X3 Xl
~

0 0 0 0 X3 0
~ ~ ~ ~

X4 0 0 -Xl 0 X4 -X4 0
~ ~ ~

Xs -Xl 0 0 -X4 0 0 0

X6 0 0 -X3 X4 0 0 0

X7 0 -X2 0 0 0 0 0

Table 5.1: Commutators of L 7

The commutator relations for the algebra L 7 are given in Table 5.1.

The general vector x E L 7 is written in the form

and hence every x is represented by the seven-dimensional vector x= (Xl, x 2 , •• • , X 7).
7 ~

The inner derivation mapping adv for the general vector v = 2: va X a is
a=l

advx = [x, v] = (V 5 X 1 + V 4 X 3 - V 3 X 4 - VIXS)X1

+(v7x 2
- V

2
X

7)X2 + (V6 X 3 - v3X 6 )X3

+((VS- V
6

)X
4

- v4
X S + V 4 X 6 )X4 •
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The representation of the mapping adv in matrix form follows:

v5 0 v4 _v3 _VI 0 0

0 v7 0 0 0 0 -v2

0 0 v6 0 0 _v3 0

adv = 0 0 0 v5 - v6 _v4 v4 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The Killing's polynomial of L7 is

>. _ x 5 0 x4 -x3 -Xl 0 0

0 >. _ x7 0 0 0 0 _x2

0 0 >. _ x6 0 0 -x3 0

X(x, >') = det(>'h - adx) - 0 0 0 >. - (x 5 _ x6 ) -x4 x4 0

0 0 0 0 >. 0 0

0 0 0 0 0 >. 0

0 0 0 0 0 0 >.

Thus the rank of the algebra £7 is 3.

The commutants of the algebra L7 have the form

Therefore the algebra L7 is solvable.
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The generators of the group of inner automorphisms of the algebra L7

are:

... s 8
Al - x 8x l '

A 2
7 8

x 8x2'

... 4 8 6 8
A3 - x 8x l + x 8x3'

... _xs~ + (XS_ x6)~ (5.6)A4 8x l 8x4'

As
1 8 4 8-x --x-
8x l 8x4'

A 6
3 8 4 8

- - x 8x3 + x 8x4'

A 7
2 8

- -x 8x2"

These generators yield the following seven-dimensional group of linear

transformations on the (Xl, x 2 , " " " , X 7) -space:

Al XlI = Xl + alxs,

A 2 X21 = X2 + a2x7 ,

A3 Xli = Xl + a3x4 , X31 = x 3 + a3x6 ,

...
A6 XlI = a61x3 , X41 = a6x \

A 7 Xli = a7x2 ,

(5.7)

where aI, a2, a3, a4 E ~ and as, a6, a7 E ~+" The calculation for A 6 is given

in Appendix E.
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The transformation (5.7) leaves the components xs, X6 and X7 of the

vector under consideration invariant.

The group of equivalence transformations includes the following reflec-

tions:

(5.8)

(5.9)

(5.10)

For our purposes we only use the transformations (5.8) and (5.9).

The algebra L7 can be decomposed into a direct sum of the proper ideal

J = {X\, X2 , X3 } and the subalgebra N = {X4 , Xs, X6 , X7 } as follows:

L7 J tIJ N

- {Xt, X2 , X3 } tIJ {X4 , Xs, X6 , X7 }.

(5.11)

The algebra L7 is the factor algebra of LlD with respect to its ideal which

is the three-dimensional principle Lie algebra Lp i.e. L7 = LlO / Lp.

5.4, Application of the algorithm

In this section we use the two-step algorithm to construct OLT • In Step 1

we construct the optimal system of the algebra N. Np (p = 1,2, ... ,P) are

representatives of ON. In Step 2 we complete every subalgebra Np to the

subalgebras f{p,q (q = 1,2, ... , Q) which are representatives of the optimal

system 0L7 .
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5.4.1 Step 1 : Construction of Optimal System ON

Every s-dimensional subalgebra Ms eN (s = 1,2,3) can be represented by

matrix Q as follows:

The approach we will use is to simplify this matrix Q by means of transfor­

mations of bases, inner automorphisms (5.6) and reflections (5.8) and (5.9).

We will then divide the matrices we obtain into nonequivalent classes and in

any class we select a representative having the simplest possible form.

First we assume that there is a nonzero element in the first column,

say x 4
• Then after B-transformations (linear combinations of rows) we ob­

tain y4 = Z4 = o. We have x 5 = x6 otherwise x4 can be annulled by the

automorphism ..44 •

Let the 2 x 3 submatrix Ql of the matrix Q have the form:

The rank Ql may be equal to 2,1, O. When the rank Ql = 2, we have three­

dimensional subalgebras of N and rank Ql = 0, 1 we have one- and two­

dimensional subalgebras of N respectively. Therefore we have the following

cases:

CASE 1 : rank Ql = 2
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We reduce Ql by B-transformations preserving the first column of Q

to one of the following forms :

[ 0

1
Ql_
1-

(i) For Qt, matrix Q has the form:

1 Xs x6 x7

Q= 0 1 0 y71 S 6
, X = X .

0 0 1 Z71

Using B-transformations we make xS = x 6 = 0 and as a result

we obtain the following generators:
...

i 4 + x7
i 7 ,HI

fi2 is + y71i7,

... ... 7'"
H3 X 6 + Z 'X7 .

(5.12)

These generators have the following commutator relations:

(5.13)

The vectors (5.12) generate a subalgebra if the commutators (5.13)

are linear combinations of fil , fi2 and fi3 • Therefore x 7 = O. Thus

the first subalgebra of N is
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(ii) For Qi, matrix Q has the form:

1 x 5 x6 x7

Q= 0 1 y61 0 , x 5 = x6
.

0 0 0 1

Using B-transformations we make x 5 = x 7 = 0 .Thus x 6 = 0 and

we obtain the following generators:

... ...
HI X 4 ,

H2
... 6'"

X5 +Y 'X6 ,

H3 X7 •

These generators have the following commutator relations:

The subalgebra of N is therefore

(iii) For Qr, we obtain the subalgebra

CASE 2 : rank Q1 = 1

We now consider two-dimensional subalgebras of N. The matrix Q

then has the form:

x 4 x 5 x6 x7

Q= y4 y5 y6 y7 x 5 = x6
.

0 0 0 0
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Again by B-transformations we reduce the submatrix Q1 to one of the

following possible forms:

4 [1 y61 y;lQ1 = 0
0

QS_ [:1

Y~l1 -
0

Q6 _ [:0

~ ]1-

0

(i) For Qt, we obtain the following generators:

~ .... 7 ....."
HI X 4 + X X 7 ,·

H2 Xs + y
61X6 + y

7/X7 ,

and therefore

These vectors generate subalgebras when either x 7 = 0 or y61 = 1.

For x7 = 0 we obtainthe subalgebra

For y61 = 1 and x 7 # 0, HI becomes X4 + X7 as a result of

B-transformations and automorphism As in (5.7) and hence
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(ii) For Qf, we have

(iii) For Qt, we have

and

CASE 3 : rank Ql = 0

In this case we obtain the following one-dimensional subalgebras of N:

N lO = {X4 +X7 },

Nu = {X4 },

Suppose that x 4 = y4 = Z4 = 0 in the first column of Q. The prob­

lem now simplifies greatly in order to compute all nonsimilar subalgebras of

the algebra {X5 , X6 , Xr}. The group of inner automorphisms acts trivially

on this algebra (x 5 , x6 , and x7 are its invariants). We will only consider

B-transformations. The rank of Q may equal 3,2,1 or O.

For rank Q = 3 we have
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For the other cases we choose Qi (i = 1, ... ,6) as was discussed above. Hence

the subalgebras of {Xs, X6 , X7 } are:

N IS = {X6 , X7 },

N I6 = {XS ,aX6 ,,BX7 },

N I7 = {X6 + ,BX7 },.

NIB = {X7 },

where a, ,B E ~.

The subalgebras N p (p = 1,2, ... ,19) obtained above are the entire

representatives of the optimal system ON.

5.4.2 Step 2 : Construction of Optimal System OL7

Here we illustrate Step 2 of the algorithm by constructing four- and five­

dimensional subalgebras of L7 corresponding to the subalgebra N7 = {X4 +
Xs + X6 ,X7 }.

The four-dimensional subalgebras L~ C L7 are represented by the matrix:

1N 19 corresponds to the ideal {.:X't, X2 , Xa} in the decomposition (5.11) .
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R=
yl y2 y3 0 0 0 1

Zl Z2 Z3 0 0 0 0

Let RI be the 2x 3 submatrix in the lower left corner of R. Since the rank R =

4, the rank RI = 2. The matrix RI can be reduced by B-transformations

to one of the following forms:

CASE 1 : For Rt, we use B -transformations to bring Xl = x2 = yl = y2 = 0 and

the matrix R now has the form:

0 0 3' 1 1 1 0x

0 0 3' 0 0 0 1y
R=

1 0 0 0 0 0 0

0 1 t3' 0 0 0 0
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Therefore the four generators are

Ht X
3/X3 +x4 + Xs +x3 ,

....
y

3/X3 +x7 ,H2 -
.... ....

H3 - XIl

H4
.... 3 ....

X 2 + t 'X3 •

The commutator relation of these generators are:

(5.14)

The right hand side of each commutator in (5.14) must be linear com­

binations of HIl H2 , H3 , and H4 • It therefore follows that X
31 = y31 =

t31 = o.

Therefore the first four-dimensional subalgebra of ()L7 is

CASE 2 : For R~, we proceed as in Case 1 to obtain the following four-dimensional

subalgebra of ()L7 :

CASE 3 : For Ri, after applying B-transformations and the automorphism 13
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we obtain the following four generators:

~

X4 +X5 +X6 ,HI

H2 yl/Xl +X7 ,

~ ~

H3 X 2 ,

~ ~

H4 X 3 •

The commutator [HI, H21= -Xl - X3 • This is not a linear combination

of the vectors HI, H2 , H3 , H4 and hence in this case we do not have a

contribution to the optimal system fJL7 .

Five-dimensional subalgebras L~ C L 7 are represented by the matrix:

Xl x2 x3 1 1 1 0

yl y2 y3 0 0 0 1

R= ZI Z2 Z3 0 0 0 0

t I t 2 t3 0 0 0 0

ul u2 u3 0 0 0 0

Let RI be the 3 x 3 submatrix in the lower left corner of R. Since the

rank R = 5, the rank RI = 3. We reduce RI to the identity matrix by

B-transformations. We then annul all Xk (k = 1,2,3) by B-transformations

which preserve the structure of N7 • We thus obtain only the following five­

dimensional subalgebra:

To summarize, the list of four- and five- dimensional subalgebras of fJL7

corresponding to the form N7 consists of L~,I' L~,2 and L~,I respectively.
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Proceeding analogously with the other elements of Np we obtain all the

possible subalgebras of ()L7 . In [3], Chupakhin obtained the complete list of

()L7 , which consists of 397 representatives.

We now need to normalize the optimal system ()L7 . For example, we

consider Li 24 = {i2 + i 3 +is} and apply Definition 5.6 to obtain,

Also in [3], Chupakhin obtained 36 self-normalized subalgebras of ()L7 •

The one-dimensional nonsimilar subalgebras ()1 (L~) are presented in Ap­

pendix C. In [3], the list of the two-dimensional nonsirnilar subalgebras ()1 (L7 )

can be found. The complete list of the self-normalized subalgebras are pre­

sented in Appendix D.
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Concluding Remarks

In this exercise a deeper understanding of the construction of principal Lie

algebras and equivalence transformations and the construction of optimal

systems of subalgebras using the methods of preliminary group classification

and Ovsiannikov's algorithm has been gained.

Although not covered in this study, it would be interesting to extend this

analysis to other classes of equations, for example, equations of the form:

The resulting classification could then be compared with the results obtained

in this research report.

Also, the problem of the preliminary group classification of equation (1.1)

with respect to the two-dimensional extensions of the principal Lie algebra

has still to be solved.

66



APPENDIX A

...
N Z Invariant ,\ Equation Utt = Additional generator X4
1 Z(l) 4>uxx + f 8Ux ax
2 Z(2) x 4>uxx + f x.2....

Bu a 2 a3 Z(3) ux/x 4>uxx + f t at + x ax + u all.
4 Z(4) ux/x x C1 {4>uxx + f} (1- ~)t%t + x;x + 2u;u040
5 z~620 x uf3x{ 4>uxx + f} (3t.£. - 2u.2....at all.
6 Z(6) ux/xC1+1 u'Y {4>uxx + xC1 fu x} (2-,)t%t +2x;x +2(0-+2);11.0<#0
7 Z(7) x 4>uxx - x-l 4>ux + f x2 .2....all.
8 Z(8) Ux eX {4>uxx + f} t.£. - 2.2....

a~ ax
9 Z(9) Ux 4>uxx + f + x 2- + t2 .2....ax . all. a
10 Z(10) e-xux uf3x{4>uxx + fu x} (3t.£. - 2.2.... - 2u-at a5 all.
11 Z(ll) x2 - 2ux 4>uxx + f - x4> 2.2.... + x2 - .

gx ~u12 Z(12) x ell." {4>uxx + f} t- - 2x-at a~ .
13 Z(13) x 4>uxx + r + Ux (t 2 + 2x)a-
14 Z(14) ux/x 4>uxx + f + In Ixl 2t.£. + 2x1. + (t 2 + 4u).2....at at a~15 Z(IS) ux-xlnlxl 4>uxx + f - 4> In Ixl 2t.£. + 2x- + (x 2 + 4u)-at Bx all.
16 Z(16) x 4>uxx + (1 - 4> )x-Iux + f (t 2 + x2

) all.
17 Z(17) x 4>uxx - (1 + 4> )x-Iux + f (t 2

- x2
) :11.

18 Z(18) x2 - 2ux eX
{ 4>uxx - x4> + f} t.£. - 2.2.... - x2 .2....

a~ ax a~19 Z(19) x2 - 2ux 4>uxx + (1 - 4»x + r 2- + (t 2 + x2 )_at all.20 Z(20) x2 + 2ux 4>uxx + (1 + 4»x + f 2- + (t 2 - x2 ).2....ax all.
21 z~2~b x eu,,/x4>{Uxx - X-lux -In 14>/ + f} t.£. - x2 .2....at ax
22 Z(21) Ux - o-x In Ixl xC1 4>{Uxx - 0- In Ixl - In 14>1 + f} (2 - o-).£. + 2x.2.... + (o-x 2 + 4u).2....0<#0 at Bx all.23 Z(22) ux-xlnlxl 4>uxx + (1-: 4» In Ixl + r (t 2 + x 2 + 4u) all.
24 Z(23) ux+xlnlxl 4>uxx + (1 + 4» In Ixl + f 2t.£. + 2x.2.... + (t 2 - X + 4u).2....at ax all.
25 Z(24) e-xux e-x4>u fx + f + x t.£. + 2.2.... + (t 2 + 2u).2....at ax all.
26 Z(2S) ux+ln/xl x- f3 {4>uxx + x-If} ((3 + 2)t:u + 2x:x + 2(-x + u);u
27 z~2~b x 4>u,; -luxx + r + In luxl t.£. + (t 2 + 2u).2....at all.
28 Z(26) X-(I+C1)u x x-C1 4>uxx + r + 0- In Ixl (2 + o-)t%t + 2x;x + [o-t 2 + 2(2 + o-)u];u0<#0
29 Z(27) ux+xlnlxl x4>uxx + f + Ux t %t + 2x :x + (- t 2

- 2x + 2u) ;"

Table A : Result of the classification of Chapter 3 (0- = 1/a" = (3/a, 4> and f
are arbitary functions of '\).
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APPENDIX B

Additional generator X4Equation Utt =

<Puxx +f
F" f<Puxx - FT<Pux +

xOl {epuxx + f}
1-F"~epuxx - ----p-ux + f

u.Bx{ epuxx + fux}
u"l {epuxx + xO'f}
x.Bep{ epuxx
-xn

-
2 [Jl(n -1)ln Ixl + f]}

eX {epuxx + f}

epUxx +f +x
u.Bx{ epUxx + fux}
eU:r/F'ep{uxx - ~:Ux + f}

epuxx + f + In Ixl
epuxx + f - In Ixl
xOlep{Uxx - a In/xl + f}
epuxx + (1 - ep) In Ixl + f

epuxx + (1 + ep) In Ixl + f
e-xepuxx +f + x
x-.B{epu +[}xx x
epux-luxx +f + In luxl

x-O' epuxx +r + IT In Ix I

a
ox
F2-oU
(1 - £)t2-. + x2- +2u2-

2 at ex ou
(t2 + 2F) tu
(3t2-. - 2u2-at ou
(2 -,)t;t + 2xtx + 2(lT +2)tu
(1 - ll)t2-. + x2-

2 at ox
+(nu + ~Jl)tu
t2-. - 22-at ox
22- + t22-ex eu
(3t ;t - 2tx - 2u eau
t2-. - 2F2-at ou
2t ;t +2x tx + (t2 +4u) tu
2t ;t +2x tx + (x2 +4u) tu
(2 - a)t;t +2xtx + (x 2 +4u)tu
2t ;t +2x tx + (t 2 + x2 +4u) tu
2t ;t +2x tx + (t2

- x2 +4u) tu

t;t +2tx + (t 2 +2u)tu
((3 +2)t ;t +2x tx + (u - x) tu

t tt + (t 2 +2u) tu

(1+ i)ttt +x;x
+[~t2+ (2 + IT)u] tu
nt;t + 2xtx

+[n - 2 - Jl(n -1)<P]ln Ixl +[2nu - (n - 2)t2 + 2Jl x:]tu

x<Puxx +f +Ux t %t +2x tx +(_t2 - 2x +4u) t y

Invariant A

x

Ux/x
ux/x -In Ixl
ux/x-alnlxl

ux/x-xlnlxl

ux/x + In Ixl

-Jlln Ixl
ux+lnlxl

N Z
1 2[1) U x

2 2[2) x

3 2[3) ux/x
4 2[4) x

-[5)
5 ZOI=O x

- [5)
6 ZOI#O
7 2[6)

8 2[7)

9 2[8)

10 2[9)

11 2[10)

12 2[11)

13 2(12)

14 2(13)

15 2[14)

16 2[15)

17 2[16)

18 2[17)

19 2l1~b
20 2(18)

01#0

22 2[20)

Table B : Result of the classification of Chapter 4 (IT = 1/a" = (3/a, <P and f

are arbitary functions of A).
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APPENDIX C

In Table C.1 and Table C.2 the one-dimensional nonsimilar subalgebras

()l (L7 ) are given. In the first column the number of the subalgebra, in the

second column its basis and conditions for the parameters a, j3 and in the

last column the basis of the normalizer of this subalgebra are given.

N Basis of subalgebra

1 Xl
2 X2

3 X3

4 X4

5 X5

6 X6

7 X7

Normalizer of subalgebra

L 7

L7

Xll X2,X3,X5,X6,X7
XI,X2,X4,X5,X6,X7
X2,X3,X5,X6,X7
Xll X2,X5,X6,X7
Xl,X3,X4,X5,X6,X7

8 X4+X5+X6+aX7,a i= 0 X4,X5+X6,X7
9 X4+X5+X6 X2,X4,X5+X6,X7
10 ±X2+X4+X5+X6
11 X3+X4+X7
12 X4 +X7

13 ±X2 +X3 +X4

14 ±X2 +X4

15 X3 +X4

X2,X4 ,X5 +X6

Xll X3+X4,X7
Xll X4 , X5 +X6

-.-. .... -10-1> 1-1> -+

XI, X 2 , X 3 + X 4 , X 5 + 2(X6 +X 7 )

X1,X2 ,X4,X5+ X7,X6- X7
Xll X2,X3 + X4,X5+ !X6,X7

TABLE C.1 : Optimal system of one-dimensional subalgebras ()1(L7 )
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N Basis of subalgebra

16 X5+aX6 + j3X7,a i= 0,1, j3 i= 0

17 X5+X6 + j3X7,j3 i= 0

18 X2 +X5+aX6 , a i= 0,1 .

19 X5+aX6 , a i= 0,1

20 X2 +X5+X6

21 X5 + X6

22 X3 +X5+ j3X7,j3 i= 0

23 X5+ j3X7,j3 i= 0

24 X2 +X3 +X5
25 X2 +X3

26 X3 +X5
27 Xl +X6 +aX7,a i= 0
28 X6 + j3X7,j3 i= 0

29 Xl +X2 +X6
30 Xl +X6

31 X2 +X6
32 X3 +X7
33 Xl +X7

34 X2 + X3

35 Xl +X2

Normalizer of subalgebra

X5,X6,X7
X4,X5,X6,X7
X2 ,X5,X6
X2,X5,X6,X7
X2,X4,X5,X6
X2,X4,X5,X6,X7
X3 ,X5,X6,X7
X3 ,X5,X6 ,X7
X2 ,X3 ,X5
X2 , X3 , X5,X6

X2 ,X3 ,X5,X7
XI ,X6,X7
Xt,X5,X6 ,X7
Xt,X2 ,X6,
Xt, X2 , X5,X6
Xt,X2 ,X5,X6

XI ,X3 ,X5,X7
Xt, X3 , X4,X6,X7
XllX2,X3,X5,X6 + X7
Xt,X2 ,X3 ,X4 ,XS + X6 ,X6

TABLE C.2 : Optimal system of one-dimensional subalgebras ()1(L7 )
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APPENDIX D

In Table D.1 and Table D.2 the self-normalized subalgebras of L7 are given.

N Basis of Subalgebra Dimension

2

2

3

4

5

±X2 + X4 ,XS + X7 ,X6 - X7

- ~... 1""'" ....
X 3 +X 4 ,XS + 2X6 ,X7
........... _ .... 1- ....

Xl +X 2 , X 3 +X 4 , X s + 2X6, X7
.... .... .- ........ 1"" -

XI, ±X2 + X 3 +X 4 ,XS + 2(X6+X7) 3

6 XS ,X6 ,X7

7 Xl +X2,XS +X7 , X6

8 X2 +X3 ,XS ,X7 +X6

9 X4 , Xs, X6 , X7

10 XI, Xs, X6 , X7

11 X2 , Xs, X6 , X7

12 X3 ,XS,X6 ,X7

13 XI, ±X2 +X4 , Xs +X7 , X6 - X7

14 Xl +X2 , X4 , Xs +X7 , X6

........ -to - 1- ....
15 XI,X3 + X 4 ,XS + 2X6,X7

........ ........ 1- -
16 X 2 ,X3 +X 4 ,XS + 2X6,X7

17 XI, X2 +X3 , Xs, X6 +X7

18 Xl +X2 , X3 , Xs +X7 , X6

19 XI,X2 +X3 ,X3 +X4 , t(X6 +X7 )

4

TABLE D.1 : Self-normalized subalgebras of L7 .
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N Basis of Subalgebra

20 Xt,X4 ,XS,X6 ,X7

21 X2,X4 , Xs , X6,X7

22 Xt,X2 ,XS,X6 ,X7

23 Xt,X3 ,XS,X6 ,X7

24 X2,X3,XS,X6,X7
25 Xt,X2 + X3,X4 ,XS,X6+ X7
26 Xt,±X2 + X4,X3,XS+ X7,X6- X7

...... -. ~ ............ 1...... ......
27 Xt,X2,X3 +X4 ,XS + 2X6,X7

28 Xl, X2,X4 , Xs , X6,X7
29 Xt,X3,X4,XS,X6,X7
30 Xt,X2,X3,XS,X6,X7
31 L7

Dimension

5

6

7

TABLE D.2 : Self-normalized subalgebras of L7 .
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APPENDIX E

Consider the vector
... 3 0 4 0

A6 = -x OX3 + X ox4 '

Using the First Fundamental Theorem of Lie [7] we solve the following

initial value problem to obtain the one-parameter Lie group of transforma-

tions:
dX 41
___ 4

dt - x , k = 1,2,5,6,7

subject to the conditions xiI = xi, j = 1,. , . , 7 when t = O.

C 'd' 1 dX
31

3 l'onSI ermg on y -;[; = - x resu ts m

From the definition of the group of transformation [7] we have x 3/1

(1 - t ' )X3' and this leads to

Therefore the law of composition is <p(a, b) = a +b - ab.

To find Cl we proceed as follows:
a

Let a +b- ab = e or b =-- where e is the identity element. For a = €
a-I

and b = Cl we get

~Cl
€

-
1-t

1 1-€
~- -

t- I t

~t - 1- Cl.
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Hence Cl = 1 - t implies x 3/ = C I X 3 •

Thus vector A6 yields the following one-parameter group of linear trans-

formations:
Xli Xl ,
x 2/ x 2,
x 3/ t- I X 3 ,
x 4/ tX4 ,
x 5/ x 5 ,
x6 / x6 ,
x 7/ - x 7

.
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