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ABSTRACT 

 

Large accumulation of organic waste produced from intensive animal production systems 

pose challenges for disposal and direct land application of these materials adversely affect the 

environment. Composting aids to reduce waste volume and produce a stable product, rich in 

nutrients, that is valuable for soil fertility improvement. The Biomax system has been 

developed as a system to rapidly compost organic wastes at 70-80 oC in a 24 h period. The 

stability, quality and fertiliser value of the compost needs to be understood. Considering the 

high temperatures involved it would be essential to establish whether or not the addition of 

the enzyme is entirely necessary in the process. The objectives of this study was to determine 

effects of the Biomax composting time and enzyme addition on chicken litter compost 

stability, quality, nutrient release, in soils, and dry matter yield and nutrient uptake of 

spinach. Biomax composts were produced from mixtures of chicken litter and other organic 

wastes with (W) and without (N) the BM1 enzyme. Compost samples were collected after 1, 

6, 12, 18 and 24 h of composting, and analysed for pH, EC, total C, N, and P, exchangeable 

bases, trace elements, fulvic and humic acids and Escherichia coli and Salmonella spp. An 

incubation study was carried out with final composts (after 24 h of composting) applied to 

soil at 0, 1, 2 and 3 % (w/w)  and destructive sampling was done after 0, 7, 14, 28, 42 and 56 

days of incubation. The samples were analysed for pH, mineral N, available P, and bases. A 

glasshouse experiment was also conducted using the final compost produced with the BM1 

enzyme. The compost was applied as the nitrogen source to 3 kg soil at 0, 2.5, 5, 10 and 20 

t/ha and spinach (Spinacia oleracea) grown for eight weeks.  

The pH of compost with the BM1 enzyme decreased with composting time while the one 

without the enzyme increased between 1 and 12 h. Total C, electrical conductivity (EC), 

carbon to nitrogen ratio (C:N) and humification ratio (HR) were not affected by composting 
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time for both composts. Total N increased up to 18 h of composting and became constant 

afterwards for both composts. Pathogenic organisms E. coli and Salmonella species were not 

detectable in all composts irrespective of composting time. In the incubation study NH4-N 

levels initially were similar statistically for all rates of both composts, except for soil treated 

with 1% of compost with the enzyme, which had lower NH4-N than that amended with 3% of 

the compost without the enzyme. Levels of soil NO3-N showed rapid increase in all 

treatments including control between 14 and 28 days of incubation and remained constant 

thereafter. The amount of available P was higher in soil treated with 3 % of both composts. 

There was no differences in spinach tissue nitrogen concentrations among the different 

application rates of Biomax compost. Spinach dry matter yield and N uptake improved with 

addition of compost. The findings of this study implied that the Biomax system is not 

effective in stabilising chicken litter into compost but it effectively sterilizes the organic 

waste materials and that the resultant composts rapidly release nutrients at sufficient rates to 

improve dry matter yield and nutrient uptake of spinach.   

 

Keywords: Biomax compost, mineralisation , nutrient composition, plant nutrient uptake, spinach 

(Spinacia oleracea). 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Global increases in population, and the associated need for more food including milk, eggs 

and meat, have resulted in production of large quantities of organic wastes in intensive 

animal production systems, designed to meet such increase in demand (Adeoye et al., 2014).  

For many decades landfill has been used as one of the technique of disposal of organic wastes 

in many developing countries, including South Africa (Taiwo, 2011; Strategy National 

Organic Waste Composting, 2013). However, organic waste degradation at landfills could 

result in leachates that contain high levels of nutrients, heavy metals and toxins; a major 

environmental concern. The pollutants may leach into groundwater resources thereby posing 

health risk to animals and humans (Gao et al., 2010a; Taiwo, 2011). While waste disposal has 

proved to be a major challenge in these systems, there is need for greater quantities and 

variety of source of plant nutrients in order to meet the increased requirements for feed (for 

these production systems), and food and fibre for humans (Atiyeh et al., 2000).  

Organic wastes from animal production systems contain large quantities of nutrients and 

could contribute as organic fertilisers. For example, on average fresh poultry manure contains 

about 3-5% nitrogen, 1.5-3.5 % phosphorus and 1.5-3.0 % potassium and considerable 

amount of micro-nutrients (Amanullah et al., 2010).  However, land application of fresh 

wastes for extended periods may pollute air, soil and water, and pose human health risks. 

Direct application of the wastes, as fertiliser, is limited by their instability, which leads to 

odours and losses, through gaseous emissions, of nitrogen (NH3), carbon (CO2; CH4) and 

sulphur (H2S) (Atiyeh et al., 2000; Khalil et al., 2005; Petersen et al., 2007). The ammonia 

volatized from manure pollutes the air by the peculiar odour (Tanksley & Martin, 2003). The 

fresh wastes could also contain large populations of pathogenic organisms like Escherichia 
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coli (E. coli) and Salmonella spp (Kenyangi & Blok, 2013), which pose risks to human 

health, including haemorrhagic diarrhoea from infection with E. coli (Sobsey et al., 2001; 

Atwill et al., 2012). Therefore, pre-treatment can be a viable strategy for management of 

these organic wastes (Castillo et al., 2005). Composting has been widely accepted as a viable 

pre-treatment of organic wastes. 

Composting is a biological process that is facilitated by microorganisms to break down 

organic waste materials into a more stable and useable product (Bernal et al., 2009). 

Thermophilic composting has been widely used for stabilisation and sterilisation of organic 

wastes (Godley et al., 2004), and to kill weed seeds, through promotion of microbial activity 

and the high (thermophilic) temperatures. While this strategy has been popular, the process 

takes a long-time (at least two months) and could result in nitrogen losses due to 

ammonification (Sweeten & Auvermann, 2008). In order to reduce these nitrogen losses, 

vermicomposting has been promoted and is currently being utilised but the disadvantages of 

this technique include losses of nutrients through leaching, although leachate can be 

collected. Furthermore the method takes a long time and does not eliminate pathogens unless 

a pre-thermophilic step is included (Misra et al., 2003; Mupondi et al., 2010). Development 

of rapid thermophilic composting could shorten the process and sterilise the products with 

minimal nutrient losses. 

A Singapore-based company, Biomax, has developed a Rapid Thermophilic Digestion 

System that produces compost-like product within 24 h; greatly shorter than the over two 

months of normal thermophilic composting. The system operates at 70-80 oC with the aid of 

an enzyme, BM1 (identity not disclosed by the manufacturer), and the dependence of this 

system on high temperature appears to suggest that it is a shortened thermophilic composting 

process. The short composting time could minimise ammonia losses while high temperatures 

helps to get rid of pathogenic organisms. The Biomax composting technology is being 
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introduced in South Africa on an experimental scale. It is essential to test its effectiveness in 

terms of stabilisation and sterilisation of organic wastes produced in intensive animal 

production systems in South Africa.  

While testing its effectiveness, it could be important to determine whether the time could be 

shortened further, while achieving similar results, considering the electricity costs for 

maintaining 70-80 oC for 24 h. The need to use the BM1 enzyme in each “composting” cycle 

suggests that the user of the technology depends heavily on the supplier for the enzyme in the 

long term, with major cost implications. Considering the high temperatures involved it would 

be essential to establish whether or not the addition of the enzyme is entirely necessary in the 

process. The value of the compost produced will depend on its release of the nutrients. 

While chicken manure compost is known as a good source of macro and micro nutrients 

(Qureshi et al., 2014), it is essential to investigate nutrient release patterns and effectiveness, 

as fertiliser, of the Biomax composts. The general objective of this study was to evaluate the 

effects of the Biomax composting system on quality, nutrient release and fertiliser value of 

chicken litter composts.  

The specific objectives were: 

(a) To determine the effect of process time of Biomax composting on compost stability, 

nutrient composition and pathogen composition. 

(b) To determine the effect of enzyme addition on compost quality parameters.  

(c) To determine the nutrient release patterns of the Biomax composts in soils. 

(d) To determine the effects of the Biomax compost on spinach plant growth and biomass 

yield.  
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To achieve the stated objectives the following hypotheses  were tested: 

(a) The Biomax composting time will increase the stability, nutrient composition and reduce 

pathogen composition within the 24 h cycle. 

(b) The addition of the BM1 enzyme improves compost quality parameters. 

(c) Application of Biomax compost with enzyme will improve release of nutrients compared 

to compost without enzyme. 

(d) Biomax compost addition will increase spinach growth, dry matter and nutrient uptake.
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CHAPTER 2 

THERMOPHILIC COMPOSTING OF ORGANIC WASTES FROM INTENSIVE 

ANIMAL PRODUCTION SYSTEMS AND FERTILISER VALUE OF COMPOSTS: A 

REVIEW 

 

2.1 Introduction 

Animal manure are natural organic materials that are ubiquitous in large quantities where 

intensive animal production is practised. Disposal of these materials is a major problem 

worldwide because of the negative effect on the environment (Petersen et al., 2007). On the 

other hand these materials are known as rich source of nutrients required by crops 

(Whitemore, 2007). As a result, for many decades they have been used and applied directly to 

soil as agriculture amendment, with benefits that they improve soil physiochemical properties 

and supplying nutrients for plant growth (Westermen & Bicudo, 2005). However limitation 

of using raw animal manure as fertilizer amendment is that they encompass large amounts of 

pathogen organisms especially chicken litter manure which can pose a risk to environment 

and human health (Chen & Jiang, 2014). Hence Gao et al., (2010a), postulated the pre-

treatment of raw organic manure prior to its application to soil through composting technique 

which is actually recommended to breakdown the life cycle of pathogens. 

2.2 Organic waste production and management in intensive animal production systems 

Intensive animal production is the prevalent practise adopted worldwide nowadays due to an 

ever increasing human population that demands animal products such as meat, eggs and milk 

(Laguë & Eng, 2000; Adeoye et al., 2014). In attempting to meet the demands, large amounts 

of animal waste are produced (Bolan et al., 2010). The build-up of these organic waste 

materials pose a disposal risk and safety to the environment unless there are viable strategies 
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to be used which are environment friendly and cost-effective (Hooda et al, 2000; Westerman 

& Bicudo, 2005; Adeoye et al., 2014). Furthermore organic wastes produced from animal 

production varies in terms of handling and nutrient content (Chastain et al., 2001). According 

to Lorimor (2000), Moreki & Keaikitse (2013) and Yardimci (2013), there are three forms of 

organic wastes produced from animal production systems which are solid, semi-solid and 

liquid form depending on handling. The solid form is the raw manure without addition of 

water while semi-solid  is the raw manure that is has with bedding material or litter added 

whereas liquid form is the raw manure flashed with water from the animal houses. Dairy and 

piggery organic wastes are the ones that have been produced in all forms compared to poultry 

manure which can only be produced in solid and semi solid forms (Yardimci, 2013).  

These organic waste materials is that they  contain essential nutrients that are required for 

plant growth which are nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), 

magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), zinc (Zn), boron (B), iron (Fe), 

and molybdenum (Mo) and some heavy metals (Van Horn et al., 1994; Chastain et al., 2001; 

Bolan et al., 2010; Faridullah et al., 2014). These nutrients originate from the feed, 

medication, supplements and water consumed by animals (Chastain et al., 2001). Combs et 

al., (2001) determined the nutrient elements  found in solid organic manure of dairy, swine 

and poultry on a dry mass basis (Table 2.1).  

All the studies that have been conducted to date conclude that animal organic wastes can be 

used for several purposes including use as fertilizer and soil amendment, energy recovery 

(heat, liquid, electricity), production of chemicals (volatile organic acids, ammonium 

products, alcohol) and animal feed (Salminen & Rintala, 2002; Davalos et al., 2002; 

Westermen & Bicudo, 2005; Bolan et al., 2010). However animal manure has been used 

frequently as fertilizer and soil amendment on agricultural lands due to its high nutritional 

value (Kelleher et al., 2002; Westermen & Bicudo, 2005). On the other hand, there are a 
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number of challenges associated with the utilization of raw organic manure on agricultural 

lands and management which adversely affect the environment, animals and humans 

(Martinez & Burton, 2003; Westerman & Bicudo, 2005). 

Table 2.1: Total nutrient concentrations and trace elements determined in poultry, dairy and 

swine solid manure on dry weight basis (Combs at el., 2001)  

 

According to Van Horn et al. (1994); Hooda et al. (2000); Oenema et al. (2007), poor 

management and over-application of raw organic animal wastes on agricultural lands 

produces odours gases to the atmosphere that can cause respiratory diseases  in animals and 

humans. The losses of nutrient through sub-surface drainage to groundwater thereby affecting 

water quality. Furthermore land application of organic manure as fertilizer releases 

greenhouse gases such as carbon dioxide, methane and nitrous oxides, which are implicated 

in ozone depletion and global warming (Davalos et al., 2002; Bolan et al., 2010). Martinez & 

Burton (2003), summarized the forms of mineral N (including gases), phosphate and methane 

Nutrients Poultry Dairy Swine 

N (%) 4.03 2.27 1.85 

P (%) 1.70 0.56 1.60 

K (%) 2.11 0.62 1.87 

Ca (%) 5.49 1.62 2.03 

Mg (%) 0.53 0.68 0.51 

S (%) 0.51 0.27 0.41 

Al (%) 0.18 0.13 1.48 

Fe (%) 0.17 0.12 1.12 

Na (%) 0.53 0.07 0.52 

Zn (mg/kg) 328 90 608 

B    (mg/kg) 53 25 30 

Mn (mg/kg) 419 163 844 

Cu (mg/kg) 437 27 381 

Se (mg/kg) 1.47 0.58 1.81 

As (mg/kg) 20.7 0.29 7.7 

Co (mg/kg) 1.7 0.80 4.7 

Cr  (mg/kg) 9.0 2.83 26.6 
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from manures produced by intensive animal production systems and their effects on the 

environment  (Table 2.2). 

Table 2.2: List of current concerns with the use of livestock manure and impacts of their 

degree on the environment (Martinez & Burton, 2003). 

Environmental 

Concern/issue 

Environmental and 

other impacts 

Scale of agricultural 

contribution 

Scale of impact 

Nitrate (NO3
-) Water quality 

 Eutrophication 

 Health 

Economic 

 loss to farmers 

 cost of removal 

Major source Local: on-farm surface waters. 

Regional: surface waters; 

catchment; aquifers 

National/international: maritime 

waters 

Nitrite (NO2
-) Water quality 

fish stocks and health 

Major source Local: on-farm surface waters. 

Regional: surface waters and 

wells. 

Ammonia 

(NH3) 

“Acid rain” 

acidification of soils 

 eutrophication of 

natural systems 

Direct toxicity 

Major source (>85%) Local: on-farm deposition. 

Regional: deposition on natural 

ecosystems 

National/international : cross 

boundary transfer of NH3 and 

deposition 

Nitrous oxide 

(N2O) 

Greenhouse gas 

 global warming 

Ozone interactions 

Substantial (likely to 

increase in importance 

as other sources 

decrease) 

Global 

Nitric oxide 

(NO) 

Tropospheric ozone 

precursor 

“minor”? Global 

Phosphorus (P) Water quality 

 eutrophication 

Health 

toxins from algal 

bloom 

Economic 

 cost of removal 

Substantial – 

increasing as industrial 

point sources decrease 

Local: on-farm surface waters 

Regional: surface waters, 

catchments 

National/international: maritime 

waters (cross boundary transfer) 

Methane (CH4) Greenhouse gas 

Global warming 

Substantial Global 
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Furthermore Irshad et al. (2013), postulated that land application of raw animal manure may 

lead to the immobilization of plant nutrients and results in  phytotoxicity due to inadequate 

decomposition of organic matter. A considerable body of literature exists regarding viable 

management strategies to stabilize livestock manure, before their use and disposal to 

minimize their negative impact on the environment. For example, vermicompost, anaerobic 

digestion, and composting strategies could be used (Westerman & Bicudo, 2005; Irshad et 

al., 2013; Yardimci, 2013; Nayak & Kalamdhad, 2014). Among the management techniques, 

composting has become the most preferred method due to its  economic and environmental 

benefits (Bernal et al., 2009). Furthermore the method aids in reducing bulk volumes of 

animal manure thereby eliminating pathogens, parasites and weeds seeds during the process 

leading to a finer stable and matured end product called compost (Tam & Tiquia, 1999; 

Bernal et al., 2009; Irshad et al., 2013; Martinez-Blanco et al., 2013).  

A number of studies have shown that the use of compost as organic fertilizer on agriculture 

lands may improve soil health and enhance nutrient availability for plant growth (Martinez-

Blanco et al., 2013). Cooperband (2002) & Martinez-Blanco et al. (2013), reported that the 

benefits associated with the addition of compost include soil structure improvement, 

promotion of soil water retention capacity, an increase in soil fertility and cation exchange 

capacity and enhanced soil microbial activity.  

2.3 Thermophilic composting  

Composting is defined as a natural process where the decomposition of organic waste 

materials is  carried out under controlled aerobic conditions by various microorganisms into a 

valuable end product free of pathogens and weeds called compost (Tuomela et al., 2000; 

Cooperband, 2002; Bernal et al., 2009; Hubbe et al., 2010; Chen et al., 2011). Sweeten & 

Auvermann (2008), reported that during composting process microorganism’s breakdown 

organic materials and generate heat, carbon dioxide and water (Figure 2.1). 
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Figure 2.1: Aerobic thermophilic composting process (Pace et al., 1995). 

The effectiveness of the process depends upon various parameters present within the 

composting system (Liang et al., 2003). Bernal et al (2009) categorised factors that 

significantly affect composting performance into two groups: those that depend on 

formulation of composting mixture such as C/N ratio, pH, particle size and porosity; and 

those dependent on composting process management which includes O2 amounts, water 

content and temperature. 

2.3.1 C/N ratio 

 

The carbon to nitrogen ratio of organic materials is the most considered parameter when 

formulating composting mixture since microorganisms utilize carbon as the source of energy 

and ingest nitrogen for protein synthesis during degradation of organic materials (Bernal et 

al., 2009; Hubbe et al., 2010). The proportion of C/N required by microbe’s averages about 

30 parts carbon and 1 part nitrogen (Bernal et al., 2009; Chen et al., 2011). According to 

Tuomela et al. (2000), C/N values vary depending on the substrate and suggested an optimum 
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value of  25-40. Haung et al. (2004), mentioned that C/N at 25-30 is considered  the optimum 

ratio for composting.  Cooperband (2002), mentioned that as a general rule if C/N is lower 

than 20:1, the microbes will use all the N for their own metabolic needs therefore proposed 

C/N ratio range from 25:1 to 35:1 as ideal for starting. As noted by Bernal et al. (2009); Gao 

et al. (2010b) & Chen et al. (2011), if the C/N ratio is too high, it means there is too little 

nitrogen therefore decomposition process slows. On the other side too low C/N ratio means 

there is excess of nitrogen that can be possibly lost through volatilization and leaching from 

the composted mixture.  

2.3.2 Organic material pH 

Several groups of researchers have studied the effect of pH during composting of various 

organic materials (Sundberg et al., 2004; Bernal et al., 2009; Hubbe et al., 2010). As noted 

by Chen et al. (2011), pH governs the growth and activity of microorganisms and fate of 

nitrogen during composting. Whereas Bernal et al. (2009) suggested pH ranging between 5.5 

and 8.0 to be optimum for microorganisms, Chen et al. (2011) suggested that the optimum 

pH values were around 6.0 to 7.5 and 5.0 to 8.0 for bacteria and fungi, respectively. In 

general terms, the pH decreases below 6.0 during the initial stages of composting due the 

release of organic acids and thereafter increases to 9.0 in the thermophilic stage of 

composting as a  result of ammonia production (Sundberg et al., 2004;  Sweeten & 

Auvermann, 2008; Hubbe et al., 2010;). Tuomela et al. (2000), reviewed related literature 

and found that  the end product of composting always has a neutral pH value. 

2.3.3 Particle size and porosity 

The particle size of organic materials matters when formulating the composting mixture since 

they form surface area for functioning of the microorganisms and adequate pores for aeration 

(Bernal et al., 2009; Hubbe et al., 2010). As reported by Hubbe et al. (2010), the reduction of  

the organic materials particle size helps in accelerating the decomposition process. Therefore, 
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larger particle sizes of organic materials reduces the surface area thereby reduces the rate of 

decomposition (Bernal et al., 2009). Conversely the smaller the particle sizes of the 

composted materials, the greater  the rate of the decomposition (Pace et al., 1995; Bernal et 

al., 2009). Hubbe et al. (2010) reported that the recommended particle sizes should be  

between 2.5 and 7.2 cm. Porosity relates to the empty pores in the composting mass and 

Bernal et al. (2009) proposed that air filled pores of composting pile should be in a range of 

35-50 %. 

2.3.4 Oxygen concentrations 

Thermophilic composting is the process that is facilitated by microorganisms that are aerobic 

and require oxygen to survive (Pace et al., 1995; Liang et al., 2003; Hubbe et al., 2010). 

Chen et al. (2011) stated that microbes utilize oxygen during composting as they oxidize 

carbon for energy to produce CO2. The oxygen is supplied by introducing air into the 

composting mass through air forced system or by turning the pile mechanically (Pace et al., 

1995; Sweeten & Auvermann, 2008). Inadequate supply of oxygen will turn the composting 

process into anaerobic condition thereby slowing decomposition of organic matter and 

generating odours (Pace et al., 1995; Hubbe et al., 2010; Chen et al., 2011). According to 

Bernal et al. (2009) optimum oxygen concentration required for accomplishing good 

composting ranges between 15 and 20 %. 

2.3.5 Moisture Content 

The moisture content of the composting mass is necessary since it supports the metabolism 

processes of microbes (Pace et al., 1995; Liang et al., 2003). The water content of organic 

materials combined when formulating the compost pile varies (Bernal et al., 2009; Chen et 

al., 2011). Therefore, to accomplish the best compost mixture, moisture levels should be 

optimized (Hubbe et al., 2010). Pace et al. (1995), stated that the optimum moisture levels 

should range between 40 to 65 % for a composting mixture whereas Liang et al (2003), 
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Bernal et al. (2009) and Chen et al. (2011), later suggested a 50 to 60 % moisture content . 

Low moisture levels (i.e. below 40 % of the compost mass) affects microbial activity and 

slows down the decomposition of organic matter (Pace et al., 1995; Liang et al., 2003; 

Sweeten & Auvermann, 2008). If the moisture content in the compost mixture is too high (i.e. 

above 60 %), the water will displace the air in the pore spaces of the composting materials 

thereby creating anaerobic conditions (Liang et al., 2003; Sweeten & Auvermann, 2008; 

Bernal et al., 2009; Chen et al, 2011). Sweeten & Auvermann (2008), stated that excessive 

moisture lowers the temperature thereby prolonging compost stability and maturity. 

2.3.6 Temperature  

Temperature is considered as one of the important parameter that affects the composting 

process (Liang et al., 2003). During the process, microbes breakdown organic materials by 

generating energy in the form of heat (Cooperband, 2002; Bernal et al., 2009). The 

accumulation of this heat possibly increases the temperature of the composted mixture 

(Bernal et al., 2009). The increase  in temperature during the composting process goes 

through a number of specific phases (Tuomela et al., 2000; Cooperband, 2002; Liang et al., 

2003). The initial phase is mesophilic, this stage normally starts off at ambient temperature 

(10-40 0C) where microbes consumes the easily degradable compounds thereafter it  

increases rapidly (Tuomela et al., 2000; Chen et al, 2011; Bernal et al., 2009). As the 

temperature increases thermophilic microorganisms colonize the mixture at temperatures 

above 40 0C (Chen et al., 2011) and within 24 to 72 hours the temperature in the compost 

mixture will increase to 54 to 65 0C and maintained there for several days or weeks 

depending of the type of feedstock (Cooperband, 2002; Chen et al, 2011). These thermophilic 

temperatures are suitable to kill pathogen organisms, weed seeds and fly larves (Pace et al., 

1995; Cooperband 2002; Bernal et al., 2009). Bernal et al. (2009), reported that optimum 

temperature should range between 40-65 0C for the composting process while Liang et al. 
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(2003), reported optimum temperature range of 52-60 0C for composting. Furthermore Liang 

et al. (2003), mentioned that if the temperature reaches or exceeds  about 82 0C the microbial 

activity will be adversely inhibited while Chen et al. (2011), stated that temperatures above 

71 0C inhibit microbial activity. After the thermophilic phase, microorganisms are left with 

less easily degradable materials to decompose therefore microbial activity and temperature 

decrease and the compost mixture is recolonized by mesophilic microorganisms (Bernal et 

al., 2009; Chen et al, 2011). This phase is called curing, and is  important for the stability and 

maturity of the compost (Pace et al., 1995; Cooperband, 2002; Sweeten & Auvermann, 

2008). 

 

2.3.7 Microorganisms and Inoculation 

Thermophilic composting is the process that is entirely facilitated by microorganisms (Bernal 

et al., 2009). During the process, various types of microorganisms rise and fall in succession 

with the change in temperature (Chen et al., 2011). As mentioned by Bernal et al. (2009), 

bacterial organisms are usually predominant at early stage of composting while fungi exists 

throughout the process but are inhibited at moisture content below 35 % and  temperature 

above 60 0C. In addition, at the curing stage actinomycetes and fungi are the most 

predominant organisms degrading the remaining resistant polymers. Del Carmen et al. 

(2006), suggested that certain microbial inoculation can be used to enhance the composting 

process, although microbesare present naturally in the organic wastes. Furthermore Ltibke 

(2000) and Del Carmen et al. (2006), stated that microbial inoculant products are known to 

function best in breaking down complex particles into small particles with hi-speed during 

composting and enhancing characteristics of the end product. In a study conducted by Zhou 

et al. (2015), inoculation enhanced temperature of the pile and degradation of lignocelluloses 
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when they added three different microbial inoculum during co-composting process of dairy 

manure and rice straw.   

2.3.8 Time 

According to Hubbe et al. (2010), time can be used as an independent factor to determine 

when the compost is ready. The length of the time required for composting depends on the 

parameters listed above (C/N, moisture, temperature, oxygen amounts, particle size and 

porosity and pH), feedstock, composting method and management (Pace et al., 1995; 

Cooperband, 2002). Sweeten & Auvermann (2008), reported that the minimum composting 

time when using turned windrow method is 1 month followed by at least 2 months of the 

curing phase after which the compost is ready for use. Goyal et al. (2005), composted 

different organic wastes for period a of 90 days using windrow mechanical aeration method. 

In addition Tognetti et al. (2007), composted  municipal organic wastes for about 130 days 

using the static pile method, whereas Raj & Antil (2011), composted agro-industrial wastes 

over a period of 150 days using windrow mechanical aeration method. Therefore it is on the 

basis of  the length of thermophilic composting that new technological approaches are 

desirable to shorten the time of composting.   

2.4 Compost quality  

For compost to be utilized as amendment in agricultural soils, an assessment of stability or 

maturity of the material is desirable (Bernal et al., 2009; Hubbe et al., 2010; Chowdhury et 

al., 2013). Stability is often defined as stable amounts of organic matter whereas maturity 

refers to compost material with free phytotoxic compounds and pathogens organisms 

(Cooperband et al., 2003; Chowdhury et al., 2013). Nonetheless Bernal et al. (2009) and 

Chowdhury et al. (2013), mentioned that the processes of stability and maturity go hand-

inhand normally since phytotoxic compounds are created by microorganisms in unstable 

compost. A number of authors have suggested a suite of parameters including threshold 
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values to be used to assess stability and maturity of compost (Cooperband et al., 2003; Bernal 

et al., 2009; Kristine & McCartney, 2010; Chowdhury et al., 2013). Carbon and nitrogen 

ratio in solid phase, cation exchange capacity (CEC), pH, electrical conductivity (EC), 

mineral nitrogen, organic matter humification and temperature have been the most used 

chemical parameters (Cooperband et al., 2003; Gao et al., 2010b; Kristine & McCartney, 

2010; Raj & Antil, 2011; Chowdhury et al., 2013). In general, the C:N ratio decreases as the 

composting process progresses due to losses of carbon in the form of carbon dioxide with 

ultimate compost stabilization (Kristine & McCartney, 2010; Raj & Antil, 2011). Different 

C:N ratio threshold values have been proposed in literature, for example Bernai et al. (1998), 

proposed that C:N ratio of compost of less than 12 may be the indication that it is suitable to 

be added to soil whereas Goyal et al. (2005), stated C:N ratio ranges between 15-20 as the 

indication of a matured compost. In addition Raj & Antil (2011), mentioned that a threshold 

value of C:N ratio below 20  is a good indication of a matured compost but C:N ratio less 

than 15 is more preferable. The cation exchange capacity tends to increase during composting 

as the organic materials are decomposed by microorganisms producing carboxyl and phenolic 

groups (Chowdhury et al., 2013). Furthermore CEC has been frequently used as one of the 

maturity indices (Kuo et al., 2004; Bernal et al., 2009; Chaudhry et al., 2013). The CEC 

threshold (optimum) value of 67 meq/100 g has been used to evaluate degree of compost 

maturity produced from  city refuse (Bernal et al. 1998; Chowdhury et al., 2013). However 

Bernal et al. (2009), argued that the value cannot be considered for composts produced from 

animal manure, since the limit (67 meq/100 g) can be reached at preliminary stages of the 

compost preparation. The pH of the composting end product has been considered as one of 

the parameters that indicates stability and maturity (Bernal et al., 1998; Cooperband et al., 

2003; Bernal et al., 2009). Chowdhury (2013) and Kristine & McCartney (2010), postulated 

that compost pH that is between neutral ranges may be a good indication of maturity 
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therefore suitable for agricultural application. Electrical conductivity (EC) is the amount of 

soluble salts in the compost product (Gao et al., 2010b; Kristine & McCartney, 2010). It has 

been used to evaluate compost stability and maturity (Cooperband et al., 2003; Bernal et al., 

2009). According to Gao et al. (2010b), the suggested EC stable limit value is 3000 µs cm-1 

whereas Chowdhury. (2013), mentioned an optimum EC value of 4000 µs/cm. Inorganic 

forms of nitrogen (NH4-N; NO3-N) have been used as criteria to evaluate the compost 

stability and quality (Sanchez-Menedero et al., 2001; Bernal et al., 2009; Kristine & 

McCartney, 2010). As noted by Sanchez-Menedero et al. (2001) and Bernal et al. (2009), 

compost with a high content of NH4-N above 400 mg/ kg shows immaturity and according to 

Bernal et al., 1998; Gao et al. (2010b) and Kristine & McCartney (2010), the limit value of 

400 mg/ kg suggests that the compost is stable and matured. Furthermore among the maturity 

indices ammonium and nitrate ratio has been considered as one of the parameters 

(Cooperband et al., 2003; Kuo et al., 2004). A limit value of 0.16 % was established by 

Sanchez-Menedero et al. (2001); Bernal et al. (2009) and Kristine & McCartney (2010), for 

NH4:NO3 ratio as the indication of a stable and matured compost of different kinds. The 

maturity of compost can be assessed by the degree of OM humification (Bernal et al., 2009). 

During composting amounts of humic acids (HA), humification index (HI) and ratio of humic 

to fulvic acids increase as a result of decrease in fulvic acids (FA), showing humification of 

organic matter (Benito et al., 2003; Kristine & McCartney 2010; Raj & Antil, 2011). Bernal 

et al. (1998) and Raj & Antil (2011), reported that compost with an HA:FA ratio above 1.9 

value which has been proposed for the city refuse and sludge compost is the indication of 

maturity. According to Bernal et al. (2009), amounts of FA ≤ 12.5 g/kg and humification 

ratio (HR) ≥ 6.0 were suggested as maturity indices  for a manure compost produced from 

different organic wastes. Raj & Antil (2011), mentioned that HI increased with composting 

time and proposed HI> 30 % as the maturity index for compost prepared from different farms 



18 
 

and agro-industrial wastes. However, a number of authors argue that humification parameters 

cannot be reliably used as indication of compost maturity (Benito et al., 2003; Bernal et al. 

2009; Kristine & McCartney 2010), due to the fact  that the initial organic materials used 

when formulating composting affects final values of humification parameters used for 

maturity index (Bernal et al., 2009; Kristine & McCartney, 2010). As noted by Cooperband 

et al. (2003), temperature is one of the parameters that have been used to assess the stability 

and maturity of compost. Bernal et al. (2009), stated that temperature above 55 0C is suitable 

for killing pathogenic organisms and according to Raj & Antil (2011), temperature indicates a 

good degree of compost stability during thermophilic composting when approaching the 

ambient level. 

 

2.5 Nutrient release from compost added to soil 

Stabilized organic composts have been used as fertilizer in agricultural soil due to their ability 

to improve soil health (Arslan et al., 2008; Canali et al., 2011).The benefits of adding 

composts to soil includes the improvement of soil aggregate, structure and fertility, increasing 

microorganisms population, enhancing water holding capacity and cation exchange capacity 

of the soil (Arslan et al., 2008; Angelova et al., 2013). However nutrient release from organic 

fertilizer varies when added to soil due to properties of the original source and characteristics 

of the soil (Canali et al., 2011). A number of authors have studied the dynamics of nutrient 

release of various composts under laboratory incubation experiment (Gagnon & Simard, 

1999; Heenkende & Parama, 2010; Barral et al., 2011). Preush et al. (2002), determined the 

availability of N and P in composted and uncomposted poultry litter mixed with sandy loam 

soil through incubation for about 120 days and observed low concentrations of NH4-N (1 to 2 

mg/kg) throughout the study. This was due to a stable compost product that was more 

resistant to nutrient release. Moreover there was no significant effects on the soil NO3-N 
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amounts for the duration of the incubation period. Burgos et al. (2006), observed high 

amounts of NH4-N (38.2 mg/kg) at week 0 when the municipal solid waste compost was 

blended with sandy soil for an incubation period of 40 weeks. The NH4-N content decreased  

for 6 weeks after which it remained constant while the NO3-N amounts increased until the 

end of incubation, this was due to  the  nitrification process. Furthermore Ebid et al. (2007), 

studied nitrogen mineralization in soil amended with composted tea leaves, coffee wastes and 

kitchen garbage  and incubated for a period of 63 days. They observed the highest NH4-N 

concentrations during the 21 days of incubation due to ammonification, thereafter the NH4-N 

content decreased gradually after 42 days in all composted mixtures as a result of N 

immobilization. On the other hand, the composted kitchen garbage had the highest amounts 

of NO3-N during the first 7 days while the other composted mixtures increased in similar 

trend as time lapsed, the increase in NO3-N corresponded with decrease in NH4-N, thereby 

indicating a rapid conversion of NH4-N to NO3-N by nitrifying bacteria.  In a study 

conducted by Ebid et al. (2007), P release patterns were not identical in composted tea leaves, 

coffee waste and kitchen garbage during a incubation. The wide variations was explained by 

immobilization of P by soil microbes and compost materials. Leconte et al. (2011) studied 

available P when sandy soil was blended with poultry manures compost separated at different 

particle size and  incubated for a period of 16 weeks. They observed that poultry compost 

with 1 to 5 and 5 to 10 mm fractions  released high amounts of mineral P (76-185 mg/kg) at 

week 0 and (86-340 mg/kg) at week 16 due to the mineralization of P during the incubation 

period. Barral et al. (2011) observed adsorption of P when the municipal solid waste compost 

was added to schist and granite soils and  incubated for a period of 90 days. This was 

attributed to fixation and immobilization of P by soil microorganisms. Furthermore, Ebid et 

al. (2007) concluded that the release patterns of K, Mg and Ca were not the same during the 

incubation study of soil mixed with organic composts. The wide inconsistency in nutrient 
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release of exchangeable bases was related to the immobilization of K, Mg and Ca by compost 

materials. In contrast, Barral et al. (2011) observed an increase in amounts of soil 

exchangeable bases (K, Ca & Mg) when municipal   solid waste compost was blended with 

schist and granite soil 90-day incubation study. The release of K, Ca and Mg were 

approximately 150, 800 and 30 mg/kg, respectively, and this was the results of compost 

addition which had high concentrations of these elements.  Shivay et al. (2010) studied 

nutrient release of micro-elements (Cu, Zn and Mn) when rock mineral flour and city wastes 

compost were added to quartz sand under incubation period of 140 days. The results showed  

the release of Cu and Mn during the first 21 days of incubation due to compost application 

effect afterwards remain constant until the end of the period which was the indication of 

adsorption and redox reaction condition in the medium. On the contrary, soil Zn amounts 

were negative throughout the incubation which was an indication of the adsorption of Zn 

from the city waste compost.  

2.6 Effect of compost application as organic fertilizer on crop growth and nutrient 

uptake 

The use of organic compost as fertilizer has been adopted and promoted by agronomists as 

the remedy to enhance poor soil fertility and crop production (Indriyati, 2014). The effect of 

various organic fertilizers on growth and yield of different crops have been studied by several 

authors (Ibrahim et al., 2008; Asgharipour & Rafiei, 2011;  Indriyati, 2014; Korai et al., 

2014; Iqbal et al., 2014) under greenhouse experiment. Ibrahim et al., (2008), observed a 

significant increase in oven dry matter yield of wheat crop with a minimum value of 19.57 

g/pot when various levels of compost were added whereas Asgharipour & Rafiei (2011), 

reported dry weight yield value (19 g/pot) of basil crop when commercial city refuse compost 

was used over control. In a study conducted by Indriyati (2014), the komatsuna crop showed 

higher values of dry weight yield (51.27, 91.13 and 105 g/pot) when it was planted in soils 
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containing residues of chicken manure composts with different content of N. On other hand, 

Korai et al. (2014), observed that maize crops gave higher dry matter yields that coincided 

with an increase in N, P and K plant uptake when sugarcane press-mud biocompost was 

applied due to sufficient  mineralisation of nutrients by microorganisms into soil solution for 

plant uptake. Similarly Shu (2005), observed a significant increase in nutrient uptake of N, P 

and K in rice plant when pea-rice hull compost was used compared to the cattle dung-tea 

compost and chemical fertilizer under greenhouse experiment.  As noted by Leytem et al. 

(2011), most published studies have shown less focus on the effect of compost manure on the 

uptake of Ca, Mg and trace elements such as Fe, Mn and Zn. In a study conducted by Malik 

et al. (2013), wheat crop showed an increase in nutrient uptake of plant tissue when different 

organic amendments were used including biogenic waste compost compared to control soil. 

Furthermore, Leytem et al. (2011) observed a decrease in Ca, Mg and Mn plant tissue 

concentrations of silage corn when composted dairy manure was applied as amendment, 

whereas Zn amounts showed an increase with increasing compost rate. On the contrary in  a 

study conducted by Iqbal et al (2014), the addition of P enriched compost on soil and maize 

crop systems showed a higher increase on plant tissue and soil residual amounts of 

micronutrients (Cu, Zn, Fe and Mn) with an increase in compost rate. Korai et al. (2014) 

observed a significant increase in soil residual organic matter, available P and N  compared 

with the control after the addition of biocompost. In a study conducted by Duong et al. 

(2012), soil organic matter, electrical conductivity, available P and N showed significant 

increases after application of six compost types with different texture. Both Duong et al. 

(2011) and Korai et al. (2014), observed no effects of compost on soil pH. Moreover, Demir 

& Gulser (2015) observed low values of exchangeable Ca compared to the control soil after 

application of rice husk compost whereas exchangeable Mg concentrations increased with 

increasing compost rate over the control.  
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2.7 Potential of Biomax technology for composting poultry in South Africa 

In South Africa,  poultry production includes meat and eggs produce but broilers production 

have been fast growing over the past five decades because it is an affordable source of meat 

protein than all the other animal meats according the Department of Agriculture Fisheries & 

Forestry (Department of Agriculture Foresrty and Fisheries, 2012). Department of 

Agriculture Foresrty and Fisheries (2013) reported that in 2012 broiler meat production in 

South Africa was the largest segment at 17.6 % among other animal products that contributed 

48.2%. The broiler meat production is practised throughout the provinces of South Africa, 

with KwaZulu-Natal being the fourth largest producer (Figure 2.2).  

 

Figure 2.2 Statistics of broiler meat production in South Africa 2011 (Department of 

Agriculture Foresrty and Fisheries, 2012). 

Malapo (2009), highlighted that the production of large organic waste material is one of the 

major challenges that poultry industries are facing in South Africa, and these material are 

known to have a negative impact on the environment. Therefore, recommended composting 

as disposal strategy. However since thermophilic composting process takes three or more 

months, Biomax Technologies company, in Singapore saw the need to shorten the process by 
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designing a new technological system called Rapid Thermophilic Digestion technology 

(RTD) (Tong, n.d). The system functions with the BM1 enzyme, which is recommended to 

speed up the degradation process within a 24 h period. During the process, RTD mixes 

organic materials under conducive aerobic condition at temperature levels maintained 

between 70 to 80 0C inside the digester. After 24 hours the raw organic materials are 

considered fully decomposed into compost, which can be used as organic fertilizer (Tong, 

n.d). RGS Smith Drumnadrochit Farm, situated in KwaZulu-Natal, South Africa, purchased 

the system for the composting of their poultry litter. However the dynamics in composition of 

the chemical parameters and pathogens during RTD composting process are not clearly 

understood. Furthermore the nutrient release patterns and fertilizer value of the composts 

needs to be established. 

2.8 Conclusion  

The disposal of organic wastes coming from the intensive animal production system is a 

major challenge worldwide. Thermophilic composting has been used as the traditional  

technique to reduce and convert organic animal manure wastes into a usable product called 

compost. However the challenge about thermophilic composting process is the length of time 

it takes to produce compost. The Biomax technology has a potential to produce compost from 

organic wastes within a 24 h period, the changes in the chemical composition, stability and 

composition of pathogens of the product during the composting period, are not clearly 

understood. The nutrient release patterns and fertilizer value of the compost needs to be 

established. 
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CHAPTER 3 

STABILISING AND STERILIZING EFFECTS OF BIOMAX COMPOSITING ON 

CHICKEN LITTER AND OTHER ORGANIC WASTES 

 

3.1 Introduction 

 About 20 million tons of the waste generated in South Africa per annum is organic (Kasner, 

2012). The organic wastes typically originate mainly from animal and plant sources and are 

therefore biodegradable (Strategy National Organic Waste Composting, 2013). Disposal and 

management of these organic wastes is the main problem worldwide. Traditionally organic 

materials have been directly applied on land as organic fertiliser since they contain nutrients 

that plants need. However usage of these raw organic materials is limited due to gaseous 

emission, odour smell, pathogen population and loss of nutrients and flies attraction (Bernal 

et al., 2009; Amanullah et al., 2010).  

 Major organic wastes produced in South Africa, with potential for use in agriculture include 

sewage sludge and  organic chicken litter waste. Griessel (1979), stated that rate of chicken 

litter manure production in South Africa per annum was about 373 200 tons with possibility 

that it will increase to about 800 000 tons by the year 2000. Therefore there is a need to 

process these organic materials before they can be applied on land to prevent nutrient loss 

and reduce waste. Composting has been found as one of the best technique that can be 

utilized to reduce the volume of organic waste and convert it into more useable product rich 

in nutrients (Bernal et al., 2009; Gao et al., 2010a; Amanullah et al., 2010; Hubbe et al., 

2010). However the rapid accumulation of chicken litter manure suggests that the slow 

thermophilic composting may not be fast enough to process these organic wastes and the 
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Biomax composting technology that as showed to produce compost within 24 h has a good 

potential.   

The RGS Smith Drumnadrochit Farm in the Midlands, KwaZulu-Natal, is involved in 

intensive poultry (chicken) production, including layers and broilers. These systems produce 

large amounts of chicken litter, and other organic wastes. The Biomax composting 

technology is being tested for its effectiveness for stabilising and sterilising the organic 

wastes to produce compost that could be used an organic fertilizer, in South Africa. Since the 

BM1 enzyme and electricity are among the major costs of the process, it is essential to test 

effects of composting time with or without the enzyme on the quality of the compost. The 

objectives of this study were to determine the effect of (a) Biomax composting time on 

chemical properties and composition of pathogens in chicken litter composts and (b) addition 

of the BM1 enzyme on compost quality parameters. The hypotheses were:   

(a) The Biomax composting time will increase the stability, nutrient composition and 

reduce pathogen composition within the 24 h cycle. 

(b) The addition of the BM1 enzyme will improve compost quality parameters. 

 

3.2 Materials and Methods  

3.2.1 Biomax composting  

The chicken manure composts were produced using the Biomax Rapid Thermophilic 

Digestion technology at RGS Smith Drumnadrochit Farm in the Midlands, KwaZulu-Natal.  

A variety of organic materials were mixed and composted according to farmer practice. The 

organic materials consisted of chicken litter (42 bins), egg shells plus grass (4 bins), feed mill 

sweepings (2 bins), woodchips (8 bins), papers plus grass (1 bag) and reworks (2 

wheelbarrows). Reworks were residual composts from the previous composting batches. The 
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bins and bags were “50 kg” size. All the materials were integrated into a 4000 L Biomax 

Rapid Thermophilic Digester.  Thereafter the machine was started to mix the inputs together.  

About 1 kg of BM1 enzyme was split added during the process of composting at different 

temperatures of  62 and 73.2 oC to accelerate decomposition as the machine was continuously 

mixing. The temperature was maintained at 70-80 oC for 24 h. During the process, “compost” 

samples were taken at 1, 6, 12, 18 and 24 h of composting for characterisation of nutrients 

composition and stability of compost. Another run of the procedure was carried out without 

enzyme, in order to determine effect of enzyme on the composting process. All the composts 

samples were dried to constant weight in an oven at 70oC, ground and sieved through a 2 mm 

sieve before analysis. 

3.2.2 Compost pH and electrical conductivity  

For compost pH and electrical conductivity (EC) determination, the samples were stirred in 

distilled water at a 1:10 (compost: water) ratio for 5 seconds and allowed to stand for 50 

minutes before stirring again and allowing to stand for ten minutes. The pH was determined 

using PHM 210 standard meter. The same procedure was also followed to determine compost 

pH in 1.0 M KCl. The same water supernatant solutions used for pH analysis were used for 

determination of EC using CDM 210 conductivity meter as described by Rayment & Lyons 

(2011). 

3.2.3 Total carbon and total and mineral nitrogen   

The Leco TruMac CNS/NS Carbon/Nitrogen/Sulfur Determinator was used for determination 

of total C and N (Leco Corporation, 2012).  The procedure is based on dry combustion of air 

dried compost samples (0.2 g) in crucibles and subjected to 1450 oC furnace temperature for 

about 6 minutes per sample. Mineral nitrogen in the compost (NH4-N and NO3-N) were 

extracted with 2M KCl (Kalra & Maynard, 1991). Air dry compost (2.5 g) was placed into a 
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100 ml centrifuge tubes and 25 ml of 2M KCl was added, shaken for 30 minutes, and filtered 

through Whatman no 5 filter paper before analysis for nitrate-N with Gallery Discrete 

Autoanalyser (Scientific Thermo Fisher, 2014), and for ammonium-N using the UV/VIS 

spectrophotometer following the salicylate-nitroprusside colorimetric method, after 

development of a blue colour (Anderson & Ingram, 1993). 

3.2.4 Total and available phosphorus 

Total P was extracted by microwave digestion system (CEM Corporation, 2014). For this 

purpose, compost samples were further sieved (<0.5 mm), for homogeneity, and 0.5 g of each 

compost was weighed into digestion vessels. Five ml of both perchloric and nitric acids were 

added and allowed to predigest by standing for 15 minutes before sealing the vessels. The 

samples were digested at 200oC for 30 minutes, allowed to cool before filtration through 

Whatman no 5 filter paper. The filtrates were then diluted with deionised water in 25 ml 

volumetric flasks and analysed with Gallery.  

 Available P was extracted with Ambic-2 procedure (The Non-Affiliated Soil Analysis Work 

Committee, 1990). Compost samples (2.5 g) were weighed and placed into extracting bottles 

to which 25 ml of Ambic-2 solution (0.25 mol dm-3 NH4HCO3 + 0.01 mol dm-3 Na2 EDTA + 

0.01 mol dm-3 NH4F + Superfloc) was added. The suspension was shaken on a reciprocating 

horizontal shaker at 400 revolution per minute (rpm) for 10 minutes, and then filtered through 

a Whatman no 5 filter paper (The Non-Affiliated Soil Analysis Work Committee, 1990) and 

the filtrate analysed for P with the Gallery Discrete Autoanalyser.  

3.2.5 Humic and fulvic acids  

Humic acids were extracted and analysed as described by Mupondi et al. (2010). Compost 

samples (2.5 g) were weighed into centrifuged tubes and 50 ml of 0.1 M NaOH added, 

shaken for 4 h at 180 oscillations per minute and centrifuged for 15 minutes at 4000 rpm. The 
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supernatant was divided into two fractions; one was stored for analyses of total extractable 

fraction (EX) while the other was adjusted to pH 2 by adding concentrated H2SO4 and 

allowed to coagulate for 24 h at 4 oC (Sanchez-Monedero et al., 1996). The precipitates 

comprised of humic acids fraction (HA), while fulvic acids (FA) remained in solution 

(Mupondi et al., 2010). The dissolved fulvic acids were separated by centrifugation (as 

above) and stored for analysis. Total C in the extractable fractions (EX) and FA were 

determined using the modified Walkley-Black method (Sanchez-Monedero et al., 1996). A 5 

ml aliquot of extract was transferred into 250 Erlenmeyer flask and 10 ml of 0.167 M 

K2Cr2O7 added, and the flasks swirled to mix the solution uniformly. Concentrated sulphuric 

acid (20 ml) was added rapidly, the flasks swirled again gently till the sample and reagents 

were thoroughly mixed, and then the contents were swirled more vigorously for one minute. 

The flasks were allowed to cool under the fume hood for 30 min, and 150 ml of de-ionized 

water and 10 ml concentrated ortho-phosphoric acid were added. O-phenanthroline hydrate 

indicator (1 ml) was added and excess dichromate was titrated against 0.5 M ferrous 

ammonium sulphate ((NH4)2Fe(SO4)2·6H2O) solution. 

The carbon concentration of humic acid fractions (CHA) were calculated by subtracting 

fulvic acids fraction C (CFA) from total extractable fraction C (CEX). Humification ratio 

(HR) was estimated using the following equation:  

1) HR = (CEX/C) x 100 

The humification index (HI) was estimated using the following formula: 

 

2) HI = (CHA/C) x 100 
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3.2.6 Exchangeable bases and extractable micro-elements 

Exchangeable Ca, Mg, Na and K, in the composts were extracted using ammonium acetate 

(NH4OAc) at pH 7. Compost samples (5.0 g) were placed in centrifuge tubes and 50 ml of 

1M NH4OAc solution added, and shaken on a reciprocating horizontal shaker at 180 

oscillations per minute for 30 minutes. The suspension was filtered through Whatman no 5 

filter paper and the filtrate analysed using the atomic absorption spectrophotometer (AAS). 

The CEC was estimated from the sum of bases (The Non-Affiliated Soil Analysis Work 

Committee, 1990).  

Available Cu, Zn, Co, Fe and Mn were extracted by 1 % EDTA (di-sodium salt). Five grams 

of compost was placed in centrifuge tubes and 50 ml of 1 % EDTA was added and shaken for 

1 h, before filtration through Whatman no 5 filter paper (The Non-Affiliated Soil Analysis 

Work Committee, 1990) and analysed with Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES 720 Varian).  

 

3.2.7 Escherichia coli and Salmonella species 

Fresh subsamples of the composts were analysed for E. coli and Salmonella species by KZN 

Agriculture, Environmental Affairs and Rural Development’s Allerton Provincial Veterinary 

Laboratory. For Escherichia coli determination, serial dilutions of samples were prepared 

with buffered peptone water (BPW) and 1 ml of the diluted samples were pipetted into a petri 

dish. Thereafter, cooled molten Rapid E coli 2 Agar was added to each plate and swirled 

clockwise and anti-clockwise to allow thorough dispersion and mixing of the sample with the 

media. Afterwards the media were allowed to solidify at room temperature for approximately 

20 minutes then incubated (inverted) for 21 h. Plates with 15 to 150 of colonies were selected 

for counting of E coli colonies (Official Method 966.24).  
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For Salmonella spp, compost sample (8 g) was added to 80 ml of buffered peptone water 

(BPW) and the suspension was incubated at 37 °C for 18 h. Thereafter 0.1 ml of the culture 

was transferred to a tube containing 10 ml of preheated (41.5 °C) Rappaport-vassiliadis 

Salmonella (RVS) broth. The inoculated RVS broth was incubated at 41.5 °C for 24 h. After 

incubation the culture obtained from RVS broth was inoculated by looping the surface of one 

90 mm Xylose lysine deoxycholate (XLD) agar, so that well-isolated colonies could be 

obtained. The petri-dishes were inverted and placed in the incubator set at 37°C. After 24 h of 

incubation the plates were examined for the presence of typical colonies of Salmonella 

(Official Method 17.1ISO 6576:2003). 

3.2.8 Statistical Analysis  

GenStat 14th edition (VSN International, 2011) software was used for statistical analysis in 

this study. Two way analysis of variance (ANOVA) was used to determine the effect of 

sampling time and addition of enzyme during composting process on all measured 

parameters.                                                 
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3.3 Results 

3.3.1 pH  

The trends of pH, in both H2O and KCl, for compost with enzyme decreased with increase in 

composting time between 1 and 12 h, while it increased without enzyme (Figure 3.1).The 

compost with the enzyme had higher pH than without, up to 6 h of composting period 

whereas without enzyme had higher pH than with enzyme between 12 and 18 h. The pH of 

the compost with enzyme (W) remained constant between 12 and 24 of composting period 

while that without enzyme (N) decreased between 18 and 24 h.There was not difference 

between the composts, in terms of pH at 24 h.  
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Figure 3. 1. pH values of Biomax composts over composting time: (a) pH in water and (b) pH in KCl at p≤0.05. . Error bar indicate least 

significant difference (LSD) at p < 0.05
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3.3.2 Total C and total N and Electrical conductivity  

Total C contents did not significantly changed throughout composting process for both 

composts, while total N increased up to 18 h of composting after which it became constant 

(Table 3.1). The C:N of the compost with enzyme remained constant throughout the 

composting period, the one without the enzyme increased in the first 6 h and decline between 

12 and 18 h of composting. The final composts had similar C:N ratios irrespective of whether 

the enzyme was added or not (Table 3.1). Electrical conductivity values of the composts, with 

or without enzyme, were slightly affected by composting time.The compost with enzyme had 

lower levels of EC throughtout composting time than without enzyme. The EC of compost 

with enzyme remained constant between 18 and 24 h while it increased for the compost 

without the enzyme (Table 3.1). 

Table 3.1 Selected chemical properties of Biomax composts sampled at different hours 

during composting process. 

W = Biomax compost with enzyme; N = Biomax compost without enzyme; C:N = carbon-to-

nitrogen ratio 

 

 

 

Sample Time (h) EC (dS/m) Total N (%) Total C (%) C:N 

 

 

With enzyme 

 

 

 

 

Without enzyme 

 

 

LSD (P≤0.05) 

1 

6 

12 

18 

24 

1 

6 

12 

18 

24 

0.11a 

0.10b 

0.11a 

0.10b 

0.10b 

0.12c 

0.12c 

0.12c 

0.12c 

0.13d 

0.01 

2.9a 

2.8b 

2.9a 

3.0c 

3.0c 

2.9a 

2.8b 

2.9a 

3.0c 

3.0c 

0.04 

30.0a 

29.5a 

29.9a 

30.9b 

30.7ab 

29.5a 

29.9a 

30.1ab 

29.8a 

30.3ab 

0.84 

10.2a 

10.4a 

10.3a 

10.3a 

10.3a 

10.1ba 

10.7c 

10.5ca 

10.1ba 

10.1ba 

0.28 
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3.3.3 Mineral nitrogen 

Concentrations of NH4-N generally decreased with composting time for both composts. 

Compost without (N) enzyme had higher NH4-N release, only after 1 h than with enzyme 

(W). Conversely concentrations of NH4-N were high between 6 and 24 h of composting with 

enzyme over without enzyme (Figure 3.2a). In the final composts, NH4-N was greater in the 

compost with the enzyme than without. Concentrations of NO3-N increased between 6 and 

18h with enzyme and between 12 and 18 h without the enzyme and there was not change 

between 18 and 24 h of composting. The compost produced without enzyme had lower 

nitrate concentrations than that with the enzyme from 12 h of composting and beyond (Figure 

3.2 b).  
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Figure 3.2. Available concentrations of mineral nitrogen of Biomax composts at different sampling time during process of Rapid Biomax 

composting. (a) NH4-N and (b) NO3-N. Error bar indicate least significant difference (LSD) at p < 0.05. 
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3.3.4 Mineral N (NH4-N + NO3-N) 

Concentrations of mineral N decreased in the first 6 h of composting, with greater decline 

without the enzyme, and afterwards increased between 12 and 24 h (Figure 3.3). The compost 

with the enzyme had higher mineral N than without starting from 6 h of composting process. 
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Figure 3.3. Mineral N concentrations of Biomax composts throughout Biomax thermophilic 

composting process. 

3.3.5 Total P and available P 

Total P concentrations increased up to 6 h with the enzyme and between 6 and 12 h of 

composting without the enzyme, and thereafter it remained constant (Figure 3.4a).  In the 

final composts, the compost without the enzyme had greater total P than the one with it 

(Figure 3.4a). Soluble P was higher during the first hour of composting for both composts. 

Afterwards available P declined drastically between 6 and 24 h of the composting period for 

both composts with or without the enzyme (Figure 3.4 b).  
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Figure 3. 4. Change in concentrations of total P of Biomax composts at different sampling hours (a); Available mineral P concentrations of 

Biomax composts over the period time during composting (b). Error bar indicate LSD at 0.05 level of significance.
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3.3.6 Humic and fulvic acids 

Fulvic acid (CFA) concentration declined with composting time for composts with the 

enzyme, while the compost without the enzyme showed an increasing pattern. In contrast, 

humic acids (CHA) concentration and humification index (HI) in the compost with the 

enzyme increased with time while no clear pattern was shown for the compost without 

enzyme (Table 3.2). The final composts with the enzyme had higher concentrations of humic 

acids and HI, and lower CFA, than without. The humification ratio was not affected by 

addition of the enzyme or by composting time. were higher after  18 and 24 h than the intial 

levels, with no change without  the enzyme 

Table 3.2 Selected maturity parameters of Biomax composts.  

CFA = fulvic acid carbon; CHA = humic acid carbon; HI = humification index; HR = 

humification ratio.  

3.3.7 Exchangeable bases, CEC and extractable micro-nutrients 

There were no clear trends in concentration of Mg, K, Na and CEC with composting time but 

Ca concentrations decreased between 1 and 12 h then increased between 12 and 18 h for 

compost with enzyme, while without  the enzyme there was no clear trend. Composts with 

the enzyme had higher CEC and concentrations of exchangeable Ca, Mg and Na and lower 

concentration of K than those without the enzyme (Table 3.3). 

Samples  Time CFA CHA CHA/CFA HI HR 

 (hrs) (%) (%) 

 1 0.40a 0.26a 0.64a 0.86a 2.21 

 6 0.36b 0.42a 1.17ab 1.43a 2.65 

With enzyme 12 0.33c 0.45a 1.35b 1.50a 2.61 

 18 0.31d 0.52ba 1.70b 1.69ba 2.69 

 24 0.27e 0.61ba 2.24cb 1.99ba 2.88 

 1 0.30d 0.26a 0.88ab 1.68ba 2.69 

 6 0.36b 0.37a 1.03ab 1.23a 2.43 

Without enzyme 12 0.32cd 0.34a 1.08ab 1.15a 2.21 

 18 0.35b 0.47ba 1.35b 1.58a 2.74 

 24 0.39a 0.33a 0.85ab 1.08a 2.36 

LSD (P≤0.05)  0.01 0.21 0.59 0.81 0.82 
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Concentrations of Zn, Cu and Mn decreased, with time of composting with the enzyme while 

they increased for composting without the enzyme (Table 3.4). There was no clear trend in 

concentrations of extractable Fe of composts with composting time with or without the 

enzyme.  

Table 3.3 Concentrations of exchangeable bases of Biomax composts over sampling time.  

 

Table 3.4 Micro- nutrients concentrations of Biomax composts during composting process 

Sample Time Ca Mg Na K CEC 

 (h) (cmol/kg) (cmol/kg) 

 1 48.4a 24.6a 38.4a 85.6a 197.0a 

 6 44.3b 28.0b 37.6a 87.9a 197.0a 

With enzyme 12 31.3c 24.9a 31.0c 76.2b 163.4b 

 18 42.4d 33.1c 39.2a 92.3c 207.0c 

 24 38.8e 34.3c 37.3ab 91.7c 202.0d 

 1 35.5f 21.2d 22.9d 93.9c 173.5e 

 6 28.9g 15.3e 19.9e 97.2d 161.3b 

Without enzyme 12 32.4c 16.7e 23.3d 96.1d 168.4f 

 18 31.4c 20.7d 23.2d 94.0cd 169.4f 

 24 29.2g 25.4a 23.7d 94.0cd 172.3e 

LSD (P≤0.05)  1.57 1.52 1.63 2.62 4.57 

Compost Time Zn Cu Mn Fe 

 (hrs) (mg/kg) 

 

 

With enzyme 

 

 

1 133.8 5.1 167.0 186.0a 

6 127.0 5.0 160.3 142.8b 

12 125.3 4.6 163.7 119.1b 

18 125.4 4.4 162.6 177.1a 

24 120.3 3.7 143.5 171.2a 

 

 

Without enzyme 

 

 

1 99.9 4.4 161.0 124.1b 

6 105.0 5.8 155.9 199.9a 

12 109.0 5.6 152.5 189.5a 

18 113.9 6.0 152.0 147.4ba 

24 128.6 6.2 201.7 165.0ab 

LSD (P≤0.05)  4.3 0.4 7.1 29.6 
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3.3.8 Pathogens 

E. coli and Salmonella species were not detectable in all the composts irrespective of 

composting time or whether or not the enzyme was added (Appendix 1).  

 Table 3.5 Pathogenic organism’s population of Biomax composts sampled over time during 

composting. 

 

3.4 Discussion 

The decrease in pH values for the compost with the enzyme within the first 12 h could be 

explained by production of nitrate and organic acids (Gao et al., 2010a). This was supported 

by the results of NO3-N, which increased with composting time. The nitrification process 

produces H+ ions resulting in decline in pH (Gao et al., 2010a; Shen et al., 2011).  On the 

other-hand, the increase in pH within 18 h of composting without the enzyme, which 

coincided with rapid decline in NH4-N and no change in NO3-N suggested that the pH 

increase was a result of formation of NH3 gas, which eventually got lost. This was supported 

by the results of mineral N (sum of NH4-N and NO3-N), which was higher from 6-24 h of 

composting for the compost with the enzyme, than without the enzyme. These results were 

contrary to those of Gao et al. (2010a), who showed that pH and NH4-N increased in the first 

10 days and thereafter the levels of these parameters decreased and NO3-N increased, during 

Samples Time E. Coli count Salmonella species 

identified 

 (h) (cfu/g)  

 1 0 Not detected 

 6 0 Not detected 

With enzyme 12 0 Not detected 

 18 0 Not detected 

 24 0 Not detected 

 1 0 Not detected 

 6 0 Not detected 

Without enzyme 12 0 Not detected 

 18 0 Not detected 

 24 0 Not detected 
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normal thermophilic composting of chicken litter. The difference could be explained by the 

limited time (24 h) of Biomax composting, which did not allow for the mineralisation 

processes to take place. Furthermore pH values during traditional thermophilic composting 

stabilised at 7.0, which was similar case to this study. However, the concentrations of  NH4-N 

and NO3-N in Biomax composts were higher and this could be attributed to minimal losses in 

the closed system whereas, during normal thermophilic composting,  nitrogen is lost through 

volatilization process when pH is above 7.0 (Tam & Tiquia, 1999). While the difference in 

pH suggested possible greater ammonia losses in the compost without the enzyme, the results 

of total N showed no significant difference between the composts, possibly because of the 

lower sensitivity of total N measurements. In a closed system, insignificant N losses could 

occur. The C/N ratio of end product of composting is one of the paramount parameters used 

to measure maturity of the compost. The losses in OM reduces the dry weight mass and 

decreases C/N ratio (Bernal et al., 2009). After 24 h of composting the C/N ratio for both 

composts were lower than 20 suggested by Nayak & Kalamdhad (2014) for matured 

compost. While such C/N suggested that the composts could have been mature, the initial 

composting mixture had low initial C/N ratios, because the chicken litter and bulking agents 

were not mixed according the C/N ratio requirements for composting.  The initial C/N 

required for composting is between 25 and 30 and as such the farmer practice of mixing 

wastes for Biomax composting resulted in a lower than ideal C/N ratio. Such a low C/N could 

encourage ammonia losses during composting (Ogunwade et al., 2008; Wang et al., 2013). 

However, the results of total N and total C suggest that minimal losses of these elements 

occurred during the composting period, possibly because a closed system was used (Sanchez-

Monedero et al., 2001). The EC values, which ranged between 0.10 to 0.13 dS/m, which were 

lower than 4 dS/m throughout the composting period, for both composts, indicated that the 

salt concentration was within the acceptable range, with limited salinity potential (Nayak & 
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Kalamdhad, 2014). The increase of amount of total P for both composts could be explained 

by biomass reduction which resulted in an increase of P concentration of the existing 

minerals (Nayak & Kalamdhad 2014).. These results were similar to those of Chaudhry et al. 

(2013) which showed that total P increased during conventional thermophilic composting of 

chicken litter. However total P concentrations were lower compared to those of normal 

thermophilic composting. The decrease in inorganic P could be attributed to the fact that 

soluble phosphorus decreases with humification, so phosphorous solubility during the 

decomposition was immobilized by microorganisms (Shyamala & Belagali, 2012). 

Considering the relatively high pH values in the composts, P reduction could have been a 

result of precipitation of calcium phosphates (Eneji et al., 2003). This is supported by the 

results of exchangeable Ca, which showed a general decline for compost with enzyme 

between 1 and 12 h  and without between 21 and 24 h during composting. The high amounts 

of Ca, Mg and Na of compost with enzyme can be attributed to greater decomposition of 

organic matter and mineralisation of these elements (Hubbe et al., 2010). These results were 

contrary to those of Jr Orrico (2010) which showed that concentrations of exchangeable Ca, 

Mg, Na and K increased during normal thermophilic composting of chicken litter but these 

concentrations were lower compared to those of Biomax composts. 

Additionally this difference may be due to addition of inoculum BM1 enzyme that greatly 

speed up the digestion of chicken manure. CEC is one of the parameter that is used to 

determine stability and maturity of compost. The relatively higher CEC values of the compost 

with the enzyme could be a result of organic matter humification process (Bernal et al., 1998; 

Gao et al., 2010b).This was supported by the higher humic acid, CHA/CFA ratio and HI, in 

the compost with enzyme than the other, especially at the end of composting processes 

(Bernal et al., 1998). The decrease in amounts of fulvic acid and the increase humic acids, in 

the compost with the enzyme suggest that the enzyme encouraged humification and 
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facilitated maturity of the compost. This was supported by the results of CHA/CFA ratio 

(Bernal et al., 1998) and HI, which indicated that humification of organic matter occurred 

(Raj & Antil, 2011) when the enzyme was added. In generally the CHA/CFA ≥1.6 is 

considered as indication of a mature compost (Ko et al., 2008). In this study the CHA/CFA 

ratio was > 1.6 for compost with the enzyme, after 18 and 24 h of composting. According to a 

review by Bernal et al. (2009), the HR ≥ 7.0, HI ≥ 3.5 and CHA/CFA (polymerisation index) 

≥ 1.0, are the agronomically established limits for a stable and matured compost. These 

results were similar to those of Bernal et al. (1998) which showed that CHA/CFA, HI and HR 

increased with time during normal thermophilic composting of chicken litter. The 

concentrations of these parameters were higher than those of Biomax composts and the 

difference could be explained by humification of organic matter and the pronounced decrease 

in CFA (Bernal et al., 1998). 

Although the final pH of both composts (pH 7.0) suggested maturity of the composts, the 

values of HR and HI which were ≤7.0 and ≤3.5 respectively after composting indicating that 

the composts were immature and unstable (Bernal et al., 2009).  

The decrease concentrations of extractable Zn, Cu and Mn of compost with time in the  

enzyme treatment coincided with increase in humification, while lower humification in the 

compost without the enzyme could have resulted in increase in extractable Zn, Cu and Mn 

concentrations with time at the end of composting. Humic substances (CFA and CHA acids) 

bind metal cations and reduce their mobility (Pettit, 2004). The lack of E. coli and Salmonella 

spp pathogenic organisms in both composts, even after only 1 h of composting, could be due 

to the high composting temperatures of 70-80oC. These results were contrary to those of Gao 

et al. (2010a), who showed that  pathogenic organisms were eliminated in 3 days during 

conventional thermophilic composting of chicken litter. The difference could be explained by 

the higher temperatures used in the Biomax system than the above 55oC in normal 
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thermophillic composting.The temperatures above 55oC are suitable to kill pathogenic 

organisms during composting (Bernal et al., 2009). This finding suggested that the use of the 

Biomax system for composting organic wastes is effective in sterilising the waste from 

pathogenic organisms within the first few hours of the process. 

 

3.5 Conclusion  

Although the chemical composition of Biomax composts with BM1 enzyme differs from 

those without the enzyme, the technology does not stabilise chicken litter and other organic 

wastes into a compost irrespective of composting time.  The technology was effective in 

sterilising the organic wastes, from E. coli and Salmonella spp. Longer composting periods, 

and mixing of organic materilas based on recommended C/N ratio, may need to be tested for 

better compost stability and nutrient release of the composts.  
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CHAPTER 4 

NUTRIENT RELEASE POTENTIAL OF BIOMAX COMPOSTS 

4.1 Introduction    

The use of inorganic fertilizers as the source of essential nutrients has been predominate for 

over 50 years now (Shu, 2005) because they contain nutrients (e.g., NH4+, NO3
-, HPO4

_ and 

K+) in the readily available forms (Murugan & Swarnam, 2013). However continuous 

application of inorganic fertilisers may amount of organic matter and acidify soils, leading to 

unfavourable effects on microbial activity and fertility status of the soil (Adediran et al., 

2005; Shu, 2005). Organic materials have been used to replenish the fertility  of  soils.  

 

Use of organic fertiliser supplies nutrients and improves chemical, physical and biological 

properties of the soil thus enhancing soil fertility (Adediran et al., 2003; Abbasi, 2007). 

Chicken manure has been the most desirable organic material because of its high nitrogen (3-

5 %), phosphorus (1.5-3.5 %) and potassium (1.5-3.0 %) content (Amanullah et al., 2010). 

Composting is used to convert the unstable organic materials into a black end product called 

humus (Anwar et al., 2015). In addition to normal thermophilic and vermi-composting, the 

Biomax Rapid Thermophilic Digester is being tested for the quality of the composts 

produced. The value of an organic fertiliser as a source of nutrient depends on its nutrient 

release patterns in the soil.  

Composted organic material are slow release fertilisers, which release nutrients like N and P 

through mineralisation by microbial activity while K is mainly in readily available form 

(Manitoba, 2013).  Nutrient release from organic materials is affected by the properties of the 

original source and the properties of the soil to which the material is applied (Murugan & 

Swarnam, 2013). In soil, nutrient release from organic matter into soil solution is governed 
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by biochemical (mineralisation and immobilization) and physiochemical (adsorption, 

desorption, dissolution and precipitation) processes. These processes are functions of soil 

temperature, soil aeration, soil water, soil organic matter, cation exchange capacity (CEC), 

and soil pH (Comerford, 2005; Manitoba, 2013). According to Murugan & Swarnam (2013), 

application of poultry manure to acid soil at a rate of 120 kg N/ ha significantly increased N 

mineralisation (NH4
+- NO3

2-) during the first week of incubation relative to the control. In 

addition Heenkende & Paraman (2010), observed higher release of soil NH4
+, ranging from 

45 to 58 mg/kg,  after  7 to 21 days of incubation with seri-compost, prepared with silk worm 

pupae waste and farm yard manure, and applied at  a rate of 100 kg N/ ha . Higher release of 

NO3
- ranging from 16.8 to 112 mg/kg, was observed between 0 to 21 days of incubation for 

the same application rate.  

 

The results in Chapter 3 showed that the Biomax Rapid digestion process stabilises pH, and 

increased mineral N and humification parameters. It is essential to understand the nutrient 

release patterns of Biomax compost in soils as these will have implications on nutrient 

availability and fertiliser value of the composts. The objective of this study was to determine 

nutrient release patterns of Biomax compost in soil. The specific objective was to determine 

the effects of Biomax compost type (with and without enzyme) and application rates on 

mineral N and P and exchangeable bases release in the soil during incubation. The hypothesis 

was that application of Biomax compost with enzyme will better release nutrients  compared 

to compost without enzyme. 
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4.2 Materials and methods 

4.2.1 Soil 

The soil used in this study was collected from the 0 - 20 cm depth of a Glenrosa soil form at 

Ukulinga Research Farm of the University of KwaZulu-Natal in Pietermaritzburg, using an 

auger. The average annual rainfall is 695 mm and most comes in summer. The mean 

temperatures are 27oC and 20.5oC in summer and winter respectively (Mdlambuzi, 2014). 

The samples were mixed thoroughly to make composite sample. The soil sample was air-

dried for seven days, crushed and sieved (< 2 mm) and stored in a dry place before analysis. 

The samples were analysed for pH, EC, bases, extractable P, micro-nutrients, mineral N, soil 

organic carbon, particle size and field capacity.  

pH  

Soil pH was measured in 1: 2.5 soil: solution ratio in both H2O and KCl. Ten grams of air- 

dried soil was placed in a beaker and 25 ml of water (or KCl solution) was added. The 

contents were stirred with a glass rod for 5 seconds and allowed to stand for 50 minutes 

before stirring again and allowing to stand for ten minutes. The pH was determined using 

standard meter PHM 210 (Okalebo et al., 2000).  

 

 Exchangeable bases  

Exchangeable Ca, Mg, Na and K were extracted using 1 M ammonium acetate (pH 7) and the 

concentrations determined using the atomic absorption spectrophotometer (AAS) (The Non-

Affiliated Soil Analysis Work Committee, 1990). Five grams of soil was placed in an 

extracting bottle and 50 ml NH4OAc solution was added to the soil. The suspension was 

shaken on a reciprocating shaker at 180 oscillations per minute for 60 minutes, before 
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filtration through Whatman no 42 filter paper and the filtrate was analysed for Ca, Mg, K and 

Na.  

 

Available P 

Available P was extracted with the Ambic-2 method (The Non-Affiliated Soil Analysis Work 

Committee, 1990). Soil (2.5 g) was placed in an extracting bottle and 50 ml of Ambic-2 

solution was added. The content was shaken for 10 minutes. The extract was filtered through 

a Whatman no 5 filter paper and the filtrate was collected and analysed with Gallery Discrete 

Autoanalyser.  

 

Micro-nutrients 

Copper, Zn, Fe and Mn were extracted with 1 % ethylenediaminetetraacetic acid (EDTA). 

The soil (5 g) was placed in centrifuge tube, 50 ml of 1 % EDTA added, and the soil 

suspension shaken for 1 hour, before filtration through Whatman no. 542 filter paper (The 

Non-Affiliated Soil Analysis Work Committee, 1990). The filtrates were then analysed for 

Cu, Zn, Fe and Mn with ICP. 

 

Total carbon and total and mineral nitrogen   

Total C and N were analysed using the Leco TruMac CNS/NS autoanalyser (Leco 

Corporation 2012).  Air dry soil samples (0.2 g) were placed in crucibles and subject to 

furnace temperature (1450 oC) for 6 minutes per sample as detailed in the instrument manual. 

For extraction of mineral N, 5 g of soil was placed in a centrifuge tube and 50 ml of 2M KCl 

added to soil before shaking at 180 rpm for 30 min. The suspension was filtered through 
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Whatman no. 5 filter paper before analysis of NH4-N and NO3-N (Kalra & Maynard, 1991). 

Ammonium-N was determined using a UV/VIS spectrophotometer after development of a 

blue colour using salicylate-nitroprusside (Anderson & Ingram, 1993) while nitrate-N was 

analysed with Gallery. 

Soil organic carbon   

Soil organic carbon was determined using the Walkley-Black method (The Non-Affiliated 

Soil Analysis Work Committee, 1990). Air dried soil samples (1g) were transferred into a 

500 ml separately in Erlenmeyer flask and 10 ml of 0.167 M K2Cr2O7 solution was added. 

The flasks were swirled before 20 ml of concentrated sulphuric acid was added rapidly. The 

flasks were swirled again to thoroughly mix the content, and allowed to cool for 30 min 

before 150 ml of de-ionized water and 10 ml concentrated ortho-phosphoric acid were added. 

The excess dichromate was back-titrated against 0.5 M ferrous ammonium sulphate solution.  

 

Particle size distribution 

Soil samples (50 g) were weighed into 400 mL beakers and saturated with distilled water 

before addition of 10 mL of 10% sodium hexametaphosphate. The suspensions were allowed 

to stand for 10 minutes and transferred into a dispersing cup thereafter 300 mL of water was 

added and mixed thoroughly for 2 minutes using high-speed electric mixer. The sediments 

were transferred into a 1 litre graduated cylinder and made up to the mark by water. The 

plunger was inserted into the cylinder to further mix the sediments thoroughly and  

hydrometer was inserted into the suspensions soon after the sedimentation was complete for 

about 10 s before taking the first reading (R1) then removed and wiped. The cylinders were 

allowed to stand undisturbed for 6 h thereafter a hydrometer was reinserted for about 10 s 
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before taking the next reading (R2) exactly after 6 hours. Soil particle size (clay, sand and silt) 

were calculated and texture triangle used for determination of soil texture (Gee & Or, 2002). 

Field Capacity 

Field capacity was determined using a pressure plate apparatus (Gebregiorgis & Savange, 

2007). Soil cores were placed on ceramic plate and saturated with water for 24 h, before 

being placed in a pressure chamber at matric potential of -1/ 3 bar until the excess water was 

drained. Gravimetric moisture content was determined after oven-drying at 105oC for 24 h. 

4.2.2 Compost 

Biomax composts produced after 24h of composting with and without enzyme were used in 

this incubation study. The characteristics of the composts are as detailed in Chapter 3. A 

summary of the characteristics is given in Table 4.1.  

Table 4.1. Chemical properties of Biomax composts    

 W = Biomax compost with enzyme; N = Biomax compost without enzyme 

 

Parameters Biomax compost with 

enzyme 

Biomax compost 

without enzyme  

pH H2O 7.03 6.98 

pH KCl 7.02 7.01 

EC (dS/cm) 0.10 0.13 

Total N (%) 2.98 2.99 

Total C (%) 30.72 30.33 

Ca (cmol/kg) 38.72 29.30 

Mg (cmol/kg) 34.33 25.44 

Na (cmol/kg) 37.30 23.69 

K (cmol/kg) 91.66 93.96 

Available P (mg/kg) 133.74 136.3 

Total P (%) 0.89 0.97 

NO3-N (mg/kg) 899.2 638.8 

NH4-N (mg/kg) 1342 1147 

C:N 10.30 10.14 

HI 1.99 1.08 

HR  2.88 2.36 
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4.2.3 Incubation study  

 The incubation study was conducted in a constant temperature room at 25 oC for 56 days. 

The experiment was laid out in a completely randomized design with three replicate for each 

treatment. The treatments were the two Biomax composts, presented in Table 4.1, applied to 

the soil at 0, 1, 2 and 3 % (w/w). Air dried soil (equivalent to 100 g oven-dry soil) was placed 

in 450 ml plastic vials before addition of the treatments. The vials had 8 holes perforated 

right around the rim to allow gaseous exchange without rapid drying. The amended soils 

were then moistened to field capacity (24 %) with distilled water and incubated. Thereafter, 

moisture correction was done weekly after determination of weight loss. There were enough 

replicates to allow for destructive sampling after 0, 14, 28, 42 and 56 days of incubation. At 

each sampling, the samples were stored in fridge at 4oC before analysis of pH, NH4-N and 

NO3-N, available P, and exchangeable bases. The exchangeable bases were only analysed for 

samples collected after 0, 28 and 56 days of incubation. The methods of analysis of all the 

parameters were as described under soil characterisation. Soil pH was measured in 1:2.5 

soils: water ratio. Extractable P was determined calorimetrically following Ambic – 2 

extraction and determined using Gallery Discrete Autoanalyser. Mineral nitrogen (NH4
+-N 

and NO3-N) were extracted with 2 M KCl solution (Kalra & Maynard, 1991) and NO3-N was 

determined using Gallery Discrete Autoanalyser and NH4-N by calorimetric method 

(Anderson & Ingram, 1993). Exchangeable bases were extracted by ammonium acetate  at 

pH 7 and analysed with the AAS (The Non-Affiliated Soil Analysis Work Committee, 1990).   

4.2.4 Statistical analysis 

Statistical analysis was done with GenStat 14th edition software (VSN International, 2011). A 

two-way analysis of variance (ANOVA) was used to determine effects of compost type (with 

or without the BM1 enzyme) and compost application rates on concentrations of mineral 

nitrogen, phosphorus and bases for the different incubation times.  
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4.3 Results 

4.3.1 Soil characteristics  

The soil used was loamy with 22% clay, pH 5.9, 1.8% organic C and 18 mg P kg-1, among 

other parameters (Table 4.2). The soil also contained 950 mg kg-1of NH4-N and 9.3 mg kg-1 

of NO3-N. 

Table 4. 2. Characterized chemical and physical properties of soil. 

 

4.3.2 pH 

Soil pH in both H2O and KCl increased with increase in application rates for both composts 

(Figure 4.1). Compost produced with enzyme resulted in lower pH than that without the 

enzyme throughout incubation period (Figure 4.1). For all the application rates, for both 

Parameters Value 

pH H20 5.9 

pH KCl 5.9 

EC (dS/m) 0.63 

Exchangeable Ca   (cmolc/kg) 5.17 

Exchangeable Mg  (cmolc/kg) 1.18 

Exchangeable Na  (cmolc/kg) 0.46 

Exchangeable K     (cmolc/kg) 0.36 

CEC (cmolc/kg) 7.17  

Available P (mg/kg) 18.0 

NO3-N (mg/kg) 9.29 

NH4-N (mg/kg) 9500 

OC (%) 1. 8 

Extractable Zn (mg/kg) 11.5 

Extractable Cu (mg/kg) 5.88 

Extractable Mn (mg/kg) 403.2 

Extractable Fe (mg/kg) 290.6 

Total N (%) 0.24 

Total C (%) 2.1 

Clay (%) 22 

Sand (%) 46 

Silt (%) 32 
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composts, soil pH decreased gradually in the first 28 days and then remained constant up to 

the end of the incubation (56 days), except for the control, which increased between 28 and 

56 days of incubation.  
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Figure 4. 1. Variations in soil pH during incubation of different application rates of Biomax 

composts with (W) and without (N) enzyme. Error bars indicate LSD at p ≤0.05. The 0 = 

control; W1,  2  and 3 (w/w) indicates application rates of  Biomax compost with enzyme; N 

1, 2 and 3 (w/w)  Biomax compost application rates without enzyme. 
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4.3.3 Mineral nitrogen (NH4-N and NO3-N) 

Initial levels of NH4-N were statistically similar for all the rates of both composts, except that 

the soil treated with 1% of compost produced with the enzyme had lower NH4-N than that 

amended with 3% of compost without the enzyme. Whereas the NH4-N of all other rates of 

the two composts remained constant up to 28 days of incubation, that of the 3% compost with 

the enzyme increased. Statistically there was no change in NH4-N at all rates of the compost 

without the enzyme while that with the enzyme declined betweeen days 28 and 42 days after 

which they remained constant. Compost without enzyme had higher concentrations of NH4-N 

at all rates than the one with enzyme. 

Soil NO3-N were initially low at all rates of both composts, and were similar to the control. 

There was a rapid increase in NO3-N in all treatments (including the control) between 14 and 

28 days of incubation, and a decline at 42 days after which the levels remained constant 

(Figure 4.2). From 28 to 56 days of incubation, the NO3-N levels increased with rate of 

application of both composts, with no differences between the compost type of the same rate.  

The control had the lowest NO3-N levels throughout the incubation period.  
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Figure 4.2 . Changes in  of NH4
+ and NO3

- (mg/kg)  concentration during incubation of soil with different application rates. 0 = control; W1,2  

and 3 (w/w) indicates application rates of  Biomax compost with enzyme; N 1, 2 and 3 (w/w)  Biomax compost application rates without 

enzyme.
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4.3.4 Mineral P 

Available P remained constant throughout the incubation period for all treatments except the 

3% rate, which declined in the first 14 days and then increased up to 28 days beyond which it 

remained constant for both composts (Figure 4.3). At all sampling times, available P was 

higher at higher application rates, and there were no differences between the composts at 

each the same application rate.  
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Figure 4.3. Variation of available P concentrations during incubation of soil with different 

application rates of the two composts. The error bar represents the least significant difference 

at p<0.05 level. 0 = control; W1,  2  and 3 (w/w) indicates application rates of  Biomax 

compost with enzyme; N 1, 2 and 3 (w/w)  Biomax compost application rates without 

enzyme. 
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4.3.5 Ca and K concentrations  

Exchangeable Ca concentrations increased with increase in application rates, but decrease 

with incubation time for both composts, with higher exchangeable Ca in soils treated with 

compost produced without the enzyme than with the enzyme (Figure 4.4a). The concentration 

of Ca decreased with incubation time for all compost rates between 0 to 56 days (Figure 

4.4a). Concentrations of soil K increased with increase in application rates for both composts 

(Figure 4.4b). Soil K concentrations generally declined in the first 28 days and then increased 

between 28 and 56 days of incubation except for 1 % and 2% rates of compost  produce 

without the enzyme in which K decreased  and increased, respectively, with increase in 

incubation time. Soil amended with compost without enzyme showed higher concentrations 

of K than with the enzyme at 2 % and 3 % compost rates. 

4.3.6 Mg and Na 

Soil exchangeable Mg (Figure 4.5a) and Na (Figure 4.5b) concentrations increased with 

increase in application rate for both composts. Except for the control and the 1% compost 

produced with the enzyme, all other treatments resulted in increase in exchangeable Mg and 

Na with incubation time, particularly between 28 and 56 days. For all application rates, 

composts without the enzyme resulted in greater available Mg and Na than with the enzyme 

throughout the incubation time. The control had the lowest Mg and Na at all sampling times.  
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Figure 4. 4 Variation of Ca and K concentrations (cmolc kg-1) during incubation of soil with different application rates. The error bar represents 

the least significant difference at p<0.05 level. 0 = control; W 1,  2  and 3 (w/w) indicates application rates of  Biomax compost with enzyme; N 

1, 2 and 3 (w/w)  Biomax compost application rates without enzyme. 
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Figure 4. 5 Variation of Mg and Na concentrations (cmolc kg-1) during incubation of soil with different application rates. The error bar represents  

the least significant difference at p<0.05 level. 0 = control; W 1, 2 and  3 (w/w) indicates application rates of Biomax compost with enzyme; N 

1, 2 and 3(w/w) indicates application rates of Biomax compost without enzyme. 
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4.4 Discussion 

The increase in pH of the soil with increasing compost rate, was  a reflection that the addition 

of Biomax composts, which had high pH values, moderated the soil pH. These results were 

similar to those of Leconte et al. (2011) which showed that the addition of thermophilic 

composted poultry manure in different fractions increased the pH to close to nuetral. The 

decrease in soil pH during the first 28 days coincides with an increase in nitrate-N 

concentration (Dou et al., 1996). The low pH values of the soil treated with compost 

produced with the enzyme may be due to the production of humic and organic acids during 

the decompostion of organic matter by microorganisms (Yu et al., 2013). The gradual decline 

in the NH4-N mineralisation for both composts between 28 to 42 days of incubation can be 

attributed to N immobilization (Amanullah et al., 2007) and this was confirmed by the  

decrease in NO3-N concentration between 28 and 42 days. These results were similar to those 

of Amanullah et al. (2007), which showed that NH4-N mineralisation declined with varying 

concentrations whereas the soil NO3-N increased after the addition of thermophilic 

composted chicken litter followed by 105 days of incubation. Moreover N mineralisation 

concentrations of Biomax composts were higher compared to those of thermophilic 

composted chicken litter during incubation (Amanullah et al. 2007). This difference could be 

explained by higher concentrations of mineral N  in the composts. 

The higher NH4-N concentration (1147 mg/ kg)  in the compost without the enzyme could be 

explained by the instability of the initial compost, with lower mineral N which then 

mineralised during the incubation in the soil, than the one with the enzyme. As noted by 

Sanchez-Menedero et al. (2001) and Bernal et al. (2009), compost with NH4-N content above 

400 mg/ kg showed immaturity .The rapid increase of soil NO3-N concentrations between 14 

to 28 days of incubation for both composts at all rates was an indication of the nitrification 

process. These results were similar to those of Heenkende & Parama (2010), which showed 
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an increase in NO3-N within 21 days of incubation after the application of thermophilic 

composted chicken litter. 

 The results of pH confirms the occurrence of nitrification at pH > 4.5. Xiao et al. (2014) 

reported that the a pH of less than 4.5 affects growth and activity of nitrifying 

microorganisms. An increase in the soil available P concentrations between 14  and 28 days, 

for both composts  at 3 % application rate,  could be attributed to mineralisation of P from 

compost decompostion by microorganisms (Abbasi et al., 2015). The available P and pH 

showed similar trends after 28 day of incubation for both composts. The pH of  6 and 7.5 in 

this study was ideal for P availability because pH values below 6 or above 7.5 directly affect 

P availability (Fuentes et al., 2006). 

These results were contrary to those reported by Yu et al. (2013), which showed that 

concentrations of available P increased during the first 30 days of incubation and therafter 

decreased following the application of the thermophilic chicken litter compost. This 

difference could be explained by the combination of mineralisation and adsorption of P by 

soil clay particles. The general decrease in extractable soil Ca concentrations for both 

composts with incubation time may be explained by the adsorption of  Ca by soil particles 

and compost materials. Since Ca is a cation ion, it is adsorbed in the soil to the surface clay 

and organic matter which are negatively charged (Brady & Weil, 1999).  

Furthermore, the prominent decrease of soil Ca at all compost rates was the reflection of 

adsorption of  Ca by compost material (Brady & Weil, 1999). These results were contrary to 

those obtained by Ch’ng et al. (2014), which showed that concentrations of excheangeable 

Ca increased with the application rate of composted chicken litter during the incubation 

period of  90 days. This could be attributed to relatively high concentration of Ca from the 

compost. The increase in the soil K concentrations between 28 and 56 days of incubation was 
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a reflection of high concentrations of K from the composts and the release of K during the 

decomposition of organic matter. The increase in the soil exchangeable Mg and Na for both 

composts between 28 and 56 days could be attributed to the release of these elements during 

the decomposition of composts (Hargreaves et al., 2008). Although the compost containing 

no enzyme had higher total Ca, Mg and Na, the compost with the enzyme had lower 

exchangeable bases (Ca, Mg and Na) concentrations, which could be a result of 

immobilization of the bases by compost with enzyme. 

4.5 Conclusion 

Biomax composts without the enzyme resulted in greater available N, P and bases than with 

the enzyme. Higher rates of the composts resulted in greater available nutrients in the 

soil.The effect of nutrient release on the fertilizer value of the composts needs to be 

established under glasshouse and field experiments. 
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CHAPTER 5 

BIOMAX COMPOST AS NITROGEN FERTILIZER FOR SPINACH (SPINACIA 

OLERACEA). 

 

5.1 Introduction 

Composted chicken manure has been used successfully for a long time as remedy in 

improving soil degradation and decline in productivity that is caused by conventional tillage 

and lack of soil conservation practices (Hernandez et al., 2014). Utilization of organic 

compost as remedy is based on its ability to improve physical, chemical and biological 

properties of soil thereby having positive effect on crop production (Deportes et al., 1995; 

Rigane & Medhioub, 2011). The agronomic practice of utilization of organic composts does 

not only represent low-cost disposal method but it also recycles essential nutrients for plant 

growth. Use of compost can only show negative impact on plant-soil system when is  

excessively applied than required, as results runoff and leaching process of nutrients will be 

prevalent phenomenon. 

 Furthermore beneficial effects of compost on crop production and soil properties are related 

to the amount of organic composts applied (Wong et al., 1999). Therefore it is essential to 

investigate the effects of application rates on soil-plant system as to determine benefits of 

using composts as fertilizer compared to conventional inorganic fertiliser. Kara et al. (2006), 

observed increase in NH4 mineralisation during the first week of incubation, thereafter NH4
+ 

was nitrified into NO3
- that accumulated as the experiment was progressing when poultry 

compost was added to a silt loam soil under an incubation study of 84 days.  The Biomax 

composts from chicken litter contain significant concentration of nutrients. Result in Chapter 

4 showed that NH4-N and NO3-N was released rapidly within 28 days of incubation in soil, 

which suggested that the Biomax composts could have potential as a nitrogen fertiliser. The 
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specific objective for this study was to determine effect of different application rates of 

Biomax compost as nitrogen source on yield and nutrient uptake of spinach (Spinacia 

oleracea). The hypothesis was that application of Biomax compost will   increase  spinach 

growth, dry matter and nutrient uptake.  

5.2 Materials and Methods 

The study was conducted as a pot experiment under glasshouse conditions at the University 

of KwaZulu-Natal (UKZN), Pietermaritzburg campus (29o36′S 30o 23′E).  The temperatures 

ranged from 19 - 28oC. The soil used in the incubation study was also used for this study, and 

its characteristics are detailed in Chapter 4. The compost with enzyme used had pH 7.45, 2.98 

% N, 30.72 % C, 133.74 mg P kg-1, 33000 mg K /kg and C: N ratio of 10.30 among other 

parameters (Table 4.2).  

5.2.1 Pot experiment  

The experiment was laid out in a randomized complete block design, with three replicates. 

The air dried and sieved soil (<2 mm) was treated with 0, 2.5, 5, 10 and 20 t/ha of Biomax 

compost produced with enzyme to vary the N rates, with the 10 and 20 t/ha supplying 3 and 6 

times the recommended N rate (111.63 kg N/ha), based on total N. Phosphorus and K 

supplied by the composts were topped up with sodium dihydrogen phosphate (NaH2PO4) and 

potassium chloride (KCl), respectively, to achieve recommended rates. The recommended 

application rates (kg/ha) were 111.63 N, 246.9 P and 306.02 K. The rates translated to 0.076 

g N, 0.167 g P and 0.21 K per pot with 2.2 kg soil.  

Six 8-week old spinach seedlings (Spinacia oleracea) were transplanted to each pot and 

thinned to two plants per pot after two weeks. The plants were irrigated with tap water when 

required, to ensure that water was not limiting, and were allowed to grow for eight weeks and 

harvested by cutting with a scissors at 1 cm above the soil surface. The harvested plants were 
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rinsed with water and oven dried at 65oC for 48 h to determine dry weight. The tissue 

samples were ground to <1 mm and stored for analysis of total C, N, P, Ca, Mg, Na and K. 

The soil from the pots were air dried for a week and sieved (<2mm) before analysis of pH, 

EC, mineral nitrogen, available P, exchangeable bases and trace elements. 

5.2.2 Plant tissue analysis  

Total C and N in plant tissue were analysed using Leco Trumac Autoanalyser as described in 

Chapter 3. For analysis of tissue P, bases and micronutrients, the plant tissue was digested 

using a microwave digester (CEM Corporation, 2014). The ground tissue samples (0.18 g) 

were digested with a mixture of 7 ml of nitric (HNO3) acid and 1 ml of hydrogen peroxide 

(H2O2) following the installed procedure for plant materials. After complete digestion, the 

samples were allowed to cool and the solution was diluted  to 50 ml using deionised water 

and analysed for total P, Ca, Mg, Na and K using the ICP (Vummiti, 2015).  

5.2.3 Analysis of soils  

Soil pH, EC and mineral nitrogen were determined following procedures described in 

Chapters 4. The soils (2.5 g) were placed in centrifuges tubes and 25 ml of Mehlich 3 

extraction solution (0.2 N CH3CHOOH+0.25 N NH4NO3+0.015 N NH4F+0.013 N 

HNO3+0.001 M EDTA) was added to each tube and placed on reciprocating shaker for 5 

minutes at 200 oscillation per minute. The samples were centrifuged at 8 300 rpm for 4 min 

and filtered through 1.2 g of activated carbon (charcoal granular) placed on Whatman  No. 2 

filter paper to decolorize the filtrate. The filtrates were analysed for P, Ca, Mg and K on ICP 

(Wolf & Beegle, 2009).  
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5.2.4 Statistical analysis  

Statistical analysis were performed using 14th edition of GenStat software (VSN 

International, 2011). One-way analysis of variance (ANOVA) was conducted to determine 

effect of application rates of Biomax compost as source of nitrogen on the measured 

parameters. 

5.3 Results 

 

5.3.1 Spinach dry matter yield, plant tissue nitrogen and carbon content  

Spinach dry matter yield increased as the Biomax compost application rate increased (Table 

5.1). Dry matter yield increase was proportional to the application rate of compost, with 1.6 

and 2.1 g/pot for the 10 and 20 t/ha, respectively, while the mineral fertiliser treatment had 

1.73 g/pot. There were no differences in spinach tissue nitrogen (N) concentrations among 

the different application rates of Biomax compost, except that the highest N rate had greater 

tissue N concentration than the control (Table 5.1). However, N uptake of spinach followed 

similar trend as dry matter. The mineral fertiliser treatment had N uptake of 0.030 gN/pot. All 

treatments had similar tissue C except the positive control (fertiliser), which had greater 

concentration (Table 5.1). Although there were no significant differences in tissue C/N ratio 

among treatments, the values appreared to decrease with increase in compost application rate. 
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Table 5.1. Dry matter, N uptake, Total content of N, C & C:N ratio as the results of Biomax compost application rates 0 (control), 2.5, 5, 10, 20 

t/ha and the recommended nitrogen fertilizer application rate on Ukulinga soil. The LSD means least significant difference.

Treatment Dry matter Total N Total C C:N N-uptake 

 (g) (%)  (g N/pot) 

0 t compost/ha 0.9130a 1.44a 36.3a 25a 0.013a 

2.5 t compost/ha 1.1670b 1.72a 35.2a 21a 0.020b 

5 t compost/ha 1.4330c 1.66a 36.2a 22a 0.024b 

10 t compost/ha 1.6000c 1.76a 37.1ab 21a 0.028cd 

20 t compost/ha 2.1000e 1.85ab 36.0a 20ab 0.039d 

Mineral N  1.7330cd 1.72a 37.9b 22a 0.030c 

LSD 0.2470 0.325 1.60 4.6 0.0064 
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5.3.2 Other nutrients in plant tissue 

The highest tissue P concentration was in the 20 t/ha treatment which was not significantly 

different from the 10 and 5 t/ha rates (Table 5.2) The positive control (mineral fertiliser) had 

the least tissue P followed by the negative control, with the 2.5 t/ha having a higher value 

than negative and positive control. The 20 t/ha and negative control treatments had higher Ca 

than  most of the other treatments. Tissue Mg concentration was higher in the 20 t/ha than all 

other treatments.The 20 t/ha treatment had greater tissue K concentration than the other 

compost treatments, which had greater values than the mineral N and control treatments. In 

addition uptake of these elements generally increased with increase in  compost application 

rates except Ca tissue that increase only after 20 t/ha (Table 5.3). The highest uptake of these 

nutrients were observed in the 20 t/ha treatment. Mineral treatment did not differ that much  

in Ca, Mg and K amounts with most compost tretments.  

  

 

 

.  
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Table 5.2. Spinach tissue nutrient concentration at increasing Biomax compost application rates. 

 

 

            

Treatment P Ca Mg K 

 

(%) 

0 t compost/ha 0.35a 0.16ab 0.12a 0.48a 

2.5 t compost/ha 0.64b 0.13a 0.12a 0.65b 

5 t compost/ha 0.72c 0.14a 0.11a 0.63b 

10 t compost/ha 0.74c 0.13a 0.10a 0.56c 

20 t compost/ha 0.76c 0.18b 0.16b 0.71db 

Mineral N  0.29d 0.11a 0.12a 0.52ac 

LSD 0.05 0.04 0.04 0.07 
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Table 5.3.  Uptake of P, Ca, Mg and K as the results of Biomax compost application rates 0 (control), 2.5, 5, 10, 20 t/ha and the recommended 

nitrogen fertilizer application rate on Ukulinga soil. The LSD means least significant difference. 

 

 

 

Treatment P-uptake Ca-uptake Mg-uptake K-uptake 

 (g P/pot) (g Ca/pot) (g Mg/pot) (g K/pot) 

0 t compost/ha 0.003 0.002 0.001 0.004 

2.5 t compost/ha 0.008 0.002 0.001 0.008 

5 t compost/ha 0.010 0.002 0.002 0.009 

10 t compost/ha 0.012 0.002 0.002 0.009 

20 t compost/ha 0.016 0.004 0.004 0.015 

Mineral N 0.005 0.002 0.002 0.009 

LSD 0.002 0.001 0.001 0.002 
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5.3.3 Residual soil mineral nitrogen  

At harvest there were no significant differences in concentration of NO3
- in the soil among 

the treatments. However, NH4
+ increased with increase in compost rate. The 5 t/ha compost 

treatment had lower NH4
+ concentration than the mineral N fertiliser treatment which had 

lower levels than the 10t/ha and 20 t/ha compost treatments (Figure 5.1). 
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Figure 5.1. Concentrations of mineral nitrogen in soil after harvest of spinach fertilized with 

Biomax compost at relative application rates. The error bars denotes LSD at p<0.05. 
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5.3.4 Residual soil chemical composition  

Soil pH remained constant with increase in application rates in all treatments (Table 5.4). Soil 

EC increased with increase in compost application rate. The mineral N treatment had lower 

EC than all manure treatments, but was higher than in the negative control. The 5 and 10 t/ha 

compost treatments had the least available soil P, which was similar to the negative control 

(Table 5.4). The 20 t/ha compost treatment had the highest soil P which was not statistically 

significant compared to the 2.5 t/ha and the mineral N treatments. The mineral N fertiliser 

treatment had the lowest exchangeable Ca, followed by the negative control, and the compost 

treatments had greater levels, with the 20 t/ha having the greatest Ca (Table 5.4). The 20 t/ha 

compost treatment had highest levels of Mg, while positive control  had lower.  On the other 

hand, the negative control and 2.5, 5 and 10 t/ha compost rates had similar concentrations of 

Mg. The least exchangeable soil K was in the 5 and 10 t/ha manure treatments, followed by 

2.5 and 20 t/ha, which had lower levels than the negative control and the mineral N fertiliser 

treatment (Table 5.4).  
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Table 5.4. Residual soil characteristics after harvest of spinach from the different Biomax compost treatments. 

                

Treatment pH EC P Ca Mg K 

(t/ha) (H20) (KCl) (dS/m)               (mg/kg)                                            (cmol/kg) 

0 6 5 0.69 314a 12.12a 4.71a 3.75a 

2.5 6 5 0.84 338ab 12.91b 4.59a 3.44b 

5 6 5 0.84 300a 13.06b 4.47a 2.99c 

10 6  5 0.90 302a 13.33b 4.60a 3.04c 

20 6 5 1.28 401b 14.32c 4.80ab 3.55b 

Mineral N 6 5 0.76 369ba 11.24d 3.82c 4.06d 

LSD 0.18 0.09 0.02 65.56 0.74 0.28 0.19 



74 
 

5.4 Discussion 

The use of the Biomax compost, as an organic N fertilizer showed significant increase in 

spinach yield compared to inorganic fertiliser, especially at higher rates. The increase in 

spinach yield with increase in application rates over negative and positive controls was the 

reflection of N (and other nutrients) released during compost decomposition (Arthur et al., 

2012). The similarity in the trend of N uptake and spinach drymatter yield suggested that the 

increase in yield was in response to N uptake. Furthermore the highest yield and nutrient 

plant uptake were recorded at 20 t/ha compost rate. These results were similar to those 

obtained by Indriyati (2014), which showed that incorporation of thermophilic chicken litter 

compost into soil resulted in increase of komatsuna dry matter and N-uptake over negative 

and positive control. The values of dry matter and N-uptake in this study (Biomax compost) 

were lower compared to those of Indriyati (2014). This difference could be explained by 

higher concentrations of plant readily available N after decomposition of compost with 

enzyme by mircoorganisms (Arthur et al., 2012). Furthermore P, Ca, Mg and K plant uptake 

followed the same trends of spinach drymatter and N-uptake reflecting release of these 

nutrients during decomposition of Biomax compost by microorganisms (Leytem et al., 2011).  

The increase in tissue P with increase in application rates, with the 20 t/ha being the highest, 

was the results of high levels of P from compost. The higher concentration of Ca than the 

control was the reflection of the soil Ca before planting, which was about 5.17 cmol/kg. In 

addition the high amounts of tissue Mg and K in 20 t/ha was due to high concentrations of 

Mg and K in compost. These results were similar to those of Preush et al. (2004), which 

showed that application of composted chicken litter increased plant uptake of P, Ca, Mg and 

K. The values of  P, Mg, and K uptake in this study (Biomax compost) were higher than 

those of Preush et al. (2004). The difference was due to higher concentrations of  P, Mg and 

K in the added thermophilic compost (Hirzel et al., 2007). 
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At harvest, the similar pH values in all treatments, including soils amended with Biomax 

compost, suggested that the composts did not affect soil pH. On the other hand, the increase 

in soil exchangeable Ca, Mg and K concentrations with increase in application rates, agreed 

with those of Warren et al (1993), when composted chicken litter was applied. However, the 

concentrations of these parameters were higher in this study compared to those of Warren et 

al (1993), which could be explained by from the addition of egg-shells during the production 

of Biomax compost (Mitchell, 2005).  

Although there was an increase in soil EC with increase in rates, the values were still below 2 

dS/m, which is an indication of a healthy soil (Arnold et al., 2005). The trend was supported 

by increase in soil residual mineral N (NH4
+- NO3

-), which was the results of mineralisation 

of OM (Cavins et al., 2000). Furthermore, higher NH4
+  at higher compost rate at harvest, 

suggested that N mineralisation continued up to the end of the pot trials. These results were 

similar to those of Atiyeh et al. (2000), which showed that addition of  thermophilic 

composted chicken litter increased soil mineral N and had high values of NH4-N and NO3-N 

compared to this study, this could be explained by higher N mineralisation of thermophilic  

chicken compost (Li et al.,2014). On the other hand Warren et al. (1993) showed that 

incorporation of chicken compost increased  soil available P and had high figures of P 

compare to those of this study (Biomax compost), this could be attributed to higher release of 

P during mineralisation of compost (Fuentes et al., 2006). The increase in soil P with increase 

in compost rates was the reflection of compost addition, which had significant amounts of P. 

On the contrary, the increase in soil P in of the control treatment compared with 5 t/ha and 10 

t/ha compost rates could be a result of P uptake by the greater drymatter in response to higher 

N, compared to lower drymatter in the control. 
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5.5 Conclusion 

Biomax compost, as N fertiliser increased dry matter and nutrient uptake of spinach. At least 

10 t/ha of Biomax compost would be required to produce greater drymatter and uptake of N, 

P and bases than the recommended rate of mineral N fertiliser. Therefore positive effects of 

Biomax compost on drymatter and nutrient uptake of crops need to be tested under field 

conditions.  
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CHAPTER 6 

GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 General Discussion 

 

Land application of raw organic materials results in release of volatile compounds and loss of 

ammonia with odors and accumulation of pathogenic organisms in soil (Atiyeh et al., 2000; 

Khalil et al., 2005; Petersen et al., 2007). Composting is used to  stabilize the organic 

materials and sterilize it from pathogens (Godley et al., 2004). The quality of the compost  is  

determined by its chemical composition, nutrient release pattern and effects on crop growth. 

The Biomax Rapid thermophilic composting as been developed to produce composts at 70-80 

oC  within a 24 h period. The objective of this study was to determine effects of Biomax  

composting time and addition of the  BM1 enzyme on compost quality and nutrient release 

and the fertilizer value of the  composts.  

Based on the low HI (<3.5 )and HR (<7.0) indices (Bernal et al., 2009), Biomax composting 

did not result in mature and stable compost, but eliminated E. coli and Salmonella spp and 

composting time did not have significant effects on total C, N and C/N ratio. The HI and HR 

for Biomax composts were lower compared to agronomically established limits for a stable 

and matured compost (Bernal et al., 2009) and the effect of high temperatures (70-80oC) 

during composting could be responsible for eradicating pathogenic organisms. Work by 

Bernal et al. (2009) indicated that temperatures above 55 oC were suitable for eliminating 

pathogens. The non significant effect of composting on total C, N and C/N could have been 

the results of immaturity and instability of the composts coupled with minimal losses of N 

and C during composting in a closed system (Sanchez-Monedero et al., 2001). Composting 
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for at least 18 h resulted in increased mineral N and decline in mineral P. The increase in 

mineral N was a result of mineralisation of N from the chicken litter (Gao et al. 2010a). The 

decline in available P could have been the result of precipitation of by Ca, Cu, Zn, Mn, Fe 

phospahates (Tan, 2010). Mineral-N, HI and HR were increased, and available Zn, Cu and 

Mn were reduced by incorporation of the BM1 enzyme compared to without the enzyme, 

supporting the view that the enzyme is required to enhance mineralisation, while the 

reduction of micro nutrients  in compost with enzyme was due to increase in humification 

(Pettit, 2004). Work by Tan (2010) showed that humic compounds were effective in binding 

mirconutrients during decomposition of OM. Increase in humification indicates advance in 

stability of the compost. 

The similarity in total C, N and P concentrations and C/N in the composts could explain the 

similarity in trends of mineral N, particularly NO3-N, and P in the incubation study. The 

higher NH4-N during incubation of compost without the enzyme, than with the enzyme, 

could be explained by the lower HI and HR (lower stability) in the compost (Benal et al., 

2009), which released more NH3. This finding was supported by the pH values which was 

higher in the compost without the enzyme, during incubation. The concentrations of NH4-N 

and NO3-N increased with rate of composts during incubation could be explained by the 

higher rates of total N added, which mineralised N and nitrified (Gao et al. 2010a). The 

increase in mineral N with compost rate could explain the results of N uptake in the pot trial, 

which resulted in increase in drymatter  with increase in compost rate. The declined in NH4-N 

while NO3-N concentrations increased during incubation were in agreement with Preusch et 

al. (2002), who reported a similar trend in soil treated with 20 gN/kg composted chicken litter 

during 120 days of incubation period. Furthermore the decline in NH4-N while NO3-N 

concentrations increased during incubation were in agreement with Azeez & van Averbeke 
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(2010), who observed  similar results in soil treated with 120 kg N/ha uncomposted chicken 

manure  during an incubation period of 120 days.  

 The higher NO3-N after 28 days incubation, than earlier days, suggested that spinach 

growing in such a medium would have access to high levels of available N between 28 and 

56 days of the pot trial, resulting in greater  uptake and biomass accumulation. These results 

were in agreement with those of Indriyati (2014), which showed that drymatter of komatsuna 

crop increased after incorpation of thermophilic composted chicken litter in the soil. Dikinya 

& Mufwanzala (2010) also observed similar trends, where drymatter of spinach increased 

with increase in rate of uncomposted chicken manure.  

The increase in residual mineral N in the soil also  reflected that N was mineralised from 

chicken manure (Dikinya & Mufwanzala, 2010), and some of the N was taken up by spinach 

resulting in increased drymatter. These findings were similar to those of Zai et al. (2008) and 

Dikinya & Mufwanzala (2010), which showed that addition of thermophlic chicken compost 

and uncomposted chicken litter, respectively, increased soil residual mineral N due to  N 

mineralisation (Indriyati, 2014).  Soil residual mineral-N amounts increased with compost 

rates but at lower levels compared to mineralised-N during incubation, possibly because 

some of the nitrogen was taken up by plants and assimilated by microorganisms during 

decomposition of compost (Manitoba, 2013). The Biomax compost  applied at 10 t/ha  

appears to be the most appropriate for increased spinach drymatter and nutrient uptake and 

residual soil nutrients, whereas higher rates (20t/ha) could result in nitrate leaching losses 

from the soil and pollution of ground water (Syman & van der Waals, 2004). 

In addition to N uptake, spinach drymatter yield could also be explained by uptake of P, Ca, 

Mg and  K (Dikinya & Mufwanzala, 2010), which followed the same trend, and all of these 

macronutrients could have been released from the degradation of compost and mineralisation. 
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This view was supported by the results of the incubation study, which showed increases in 

available P, Ca, Mg and K, with increase in application rate.  The trends of drymatter were 

similar to those of uptake of these macronutrients. These results were similar to those of  

Preush et al. (2004), which showed that uptake of Ca, Mg and K  increased with rates of 

thermophilic composted chicken litter compared to the negative control. The increase in 

uptake of Ca, Mg and K by spinach with increasing rate compared to mineral-N inorganic 

fertilizer was due to greater release of these nutrients as indicated in incubation study. These 

nutrients were made available for plant uptake after decomposition of compost by 

mircoorganisms (Leytem et al., 2011). Furthermore Ezeocha et al. (2014) reported that plant 

uptake of Ca and Mg increased with increasing rates of uncomposted chicken manure more 

than negative control due to greater release of excheangeable bases that were taken up by the 

plant (Dikinya & Mufwanzala, 2010). The higher levels of Ca concentration in the residual 

soil also support the view that the compost released these macronutrients, and the Ca could 

have originated from the egg-shells added during the production of the composts. The higher 

drymatter in the 5 and 10t/ha treatments, than the control could have resulted in greater 

uptake of P and K, leaving lower residual levels. The soil pH of 6.5, from the incubation 

study, suggested that availability of most nutrients, including phosphorous and exchangeable 

bases, were favoured.   

Although the pot trial was done with the compost produced with the BM1 enzyme only, using 

the compost without the enzyme could have resulted in similar drymatter, N and P uptake 

based on the similarity of the mineralisation of these nutrients in the incubation study, and the 

composition in the initial composts. Residual soil N and P composition could also have been 

the same. Total N and P in the initial compost, and nitrate-N and mineral P in the incubation 

study, were similar in  the two composts. Although mineral P concentration did not change 

with incubation time for both composts, Doydora et al. (2011) showed that soil amended with 
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200 kg P/ha uncomposted chicken litter  increased P concentrations within 21 days of 

incubation, as a result of greater P mineralisation (Kumar et al., 2015). Exchangeable Ca in 

the original compost and Ca release in the incubation study showed that the compost with the 

enzyme had higher levels, while levels of K were higher in the compost without the enzyme. 

Uptake and residual soil concentration of Ca could have been lower had the compost without 

the enzyme been used, while K uptake could have been higher. 

In considering the larger quantities of chicken litter in South Africa, rapid composting 

strategies are required. However the conditions used for Biomax composting in 24 h with or 

without addition of BM1 enzyme, are inferior to normal thermophilic composting from a 

chemical composition perspective (Gao et al., 2010a). This is because the composts are not 

stable and mature. Whereas Mupondi et al. (2010) showed that one week pre-composting to 

eliminate pathogens, the Biomax thermophilic composting eliminates pathogenic organisms 

within an hour of the process. Based on the instability and low composition of pathogens, 

these composts could just be behaving like uncomposted chicken litter that has been 

sterilised. Normally composting is done with material mixed to get a C/N of about 25 (Haung 

et al. 2004) and in this study the farmer practice was used and the C/N was 10:1. This 

anomaly could have contributed to the immaturity of the composts.  

 

6.2 Conclusions 

Biomax composting (within 24 h), with or without the BM1 enzyme, produces immature 

composts, which are free of pathogenic organisms. When added to soil, the Biomax compost 

without the enzyme releases more nutrients, than with the enzyme and most of the 

mineralisation occurs within the first 28 days. Addition of Biomax compost, as an organic 

fertilizer, increased spinach drymatter yield and uptake of N, P and bases. Compost rates ≥10 
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t/ha resulted in greater drymatter, nutrient uptake, and residual soil nutrients, than the 

inorganic fertiliser at the recommended rate.  

It is recommended that the Rapid Biomax technology be adopted sterilise large amounts of 

organic wastes within a short space of time. Nutrient release dynamics from Biomax compost 

in different soils for more than 56 days need further investigation so as to fully understand the 

potential and limitations of using Biomax compost. Future studies should be conducted to 

fully understand the fertiliser value of Biomax composts with a variety of crops under field 

conditions.  
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APPENDICES 

Appendix 1: Pathogenic organism’s population of Biomax composts sampled over time 

during composting. 
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